
Rainbow: Cost-Effective Software
Architecture-Based Self-Adaptation

Shang-Wen Cheng

CMU-ISR-08-113

17 May 2008

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
David Garlan, Chair

Jonathan Aldrich
Peter Steenkiste

Jeff Magee, Imperial College London

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2008 Shang-Wen Cheng

This research was sponsored by DARPA under grants N66001-99-2-8918 and F30602-00-2-0616, the US Army
Research Office (ARO) under grant numbers DAAD19-01-1-0485 and DAAD19-02-1-0389 ("Perpetually Avail-
able and Secure Information Systems") to Carnegie Mellon University’s CyLab, the NASA High Dependability
Computing Program under cooperative agreement NCC-2-1298, and a 2004 IBM Eclipse Innovation Grant.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of DARPA, the ARO, the U.S. government, NASA,
IBM, or any other entity.

Keywords: Self-adaptive system, software architectural style, adaptation objective, utility
preferences, strategy, tactic, architectural operator

To
My almighty God
My dear Family

My beloved Hsien

iv

Abstract

Modern, complex software systems (e-commerce, IT, critical infrastructures,
etc.) are increasingly required to continue operation in the face of change, to self-
adapt to accommodate shifting user priorities, resource variability, changing envi-
ronments, and component failures. While manual oversight benefits from global
problem contexts and flexible policies, human operators are costly and prone to er-
ror. Low-level, embedded mechanisms (exceptions, time-outs, etc.) are effective and
timely for error recovery, but are local in scope to the point-of-failure, application-
specific, and costly to modify when adaptation objectives change. An ideal solution
leverages domain expertise, provides an end-to-end system perspective, adapts the
target system in a timely manner, and can be engineered cost-effectively.

Architecture-based self-adaptation closes the “loop of control,” using external
mechanisms and the architecture model of the target system to adapt the system. An
architecture model exposes important system properties and constraints, provides
end-to-end problem contexts, and allows principled and automated adaptations. Ex-
isting architecture-based approaches specialize support for particular classes of sys-
tems and fixed sets of quality-of-service concerns; they are costly to develop for new
systems and to evolve for new qualities.

To overcome these limitations, we pose this thesis: We can provide software en-
gineers the ability to add and evolve self-adaptation capabilities cost-effectively, for
a wide range of software systems, and for multiple objectives, by defining a self-
adaptation framework that factors out common adaptation mechanisms and pro-
vides explicit customization points to tailor self-adaptation capabilities for particu-
lar classes of systems, for multiple quality-of-service objectives.

Our approach, embodied in a system called Rainbow, provides an engineering
approach and a framework of mechanisms to monitor a target system and its environ-
ment, reflect observations into the system’s architecture model, detect opportunities
for improvements, select a course of action, and effect changes. The framework pro-
vides general and reusable infrastructures with well-defined customization points,
a set of abstractions, and an adaptation engineering process, focusing engineers on
adaptation concerns to systematically customize Rainbow to particular systems. To
automate system self-adaptation, Rainbow provides a language, called Stitch, to rep-
resent routine human adaptation knowledge using a core set of adaptation concepts.

vi

Acknowledgments

I deeply appreciate my advisor and mentor, David Garlan, for his penetrating
insight, patient guidance, candid advice, kind encouragement, inspiring tango, and
fine taste of wine. My thanks to Jonathan Aldrich, Peter Steenkiste, and Jeff Magee
for carefully reviewing my work to strengthen and elevate its quality, and to Jonathan
for going beyond the call of duty to coach me on defining operational semantics. I
thank Mary Shaw for her lessons on writing, research, abstraction, & classification.

I am eternally grateful to my dear Mom, Dad, and Sister for loving, supporting,
and understanding me; my Gramps, Aunts, and Uncles in Taiwan for shaping and
disciplining me during the crucial early years.
And, a man cannot long and happily live without his friends.
My cheers!
My heartfelt thanks, to...

George Fairbanks, a fantastic housemate
for enjoying beers, watching movies, sharing good times,

giving advice, exchanging ideas, helping me to crystallize the news site example

Bradley Schmerl and Karen Hay
for mentorship and friendship, for asking the tough questions not only in research,

but also in romance, over coffee, with sushi and other nourishments.

Carl and SoYoung Paradis, siblings-in-Christ
for food, fun, (spiritual) fellowship, and friendship.

Nicholas Sherman
for brews, cools, tools, and drools shared of all instances and types.

Kevin B, Nels B, Greg H, Ciera J, Annie L, Dean S, and fellow PhD’ers
for goodwill, rapport, stimulating interations, and beers.

Vahe Poladian
for helping me to clarify the language formalism based on utility theory;

for Piling Higher & DeeperTM, motivating, predicting, steaking, pair-writing.

Jichuan Chang, Joao Sousa, Bridget Spitznagel, and members of the ABLE group;
An-Cheng Huang and Ningning Hu

for brainstorming, collaboration, feedback, idea exchange, and support.

Paul H, James H, Ross M, Frank L, Kevin L, Matt F, Roger C, David H, Ping C
for the memorable corporate living at D-1, cooking, praying, tan-painting Kevin...

Sharon Pan, my beloved
for her companionship timely, her encouragements gentle, her care loving.

For lending me an ear or a hand;
For showing me who I am;

I appreciate my fellow friends and mentors, whom I cannot all name.

viii

Contents

1 Coping with Change 1
1.1 Self-Adaptation Loop of Control . 2

1.1.1 External, Feedback Control . 3
1.1.2 IBM Autonomic Framework . 5

1.2 Architecture-Based Self-Adaptation . 6
1.3 Opportunities for Improving the State-of-the-Art 7

1.3.1 Lack in System Context and Adaptation Knowledge 8
1.3.2 Lack of Support for Quality-of-Service Trade-Off 8
1.3.3 High Cost of Development and Maintenance 9

1.4 This Thesis . 10
1.4.1 Thesis Evaluation Plan . 11
1.4.2 Thesis Contributions . 12
1.4.3 Document Roadmap . 12

2 Related Work 13
2.1 Software Engineering and Architecture . 13
2.2 External Contributing Disciplines . 15
2.3 Related Self-Adaptation Approaches . 17

2.3.1 Adaptive Technologies . 17
2.3.2 Industrial Initiatives and Autonomic Computing 19
2.3.3 Architecture-Based Adaptation . 19

2.4 Limitations to State-of-the-Art Addressed . 22

3 Rainbow Overview 23
3.1 Overview of Approach . 23

3.1.1 Software Architecture Model and Style 24
3.1.2 Control Systems and the Self-Adaptation Cycle 25
3.1.3 Utility Theory . 26
3.1.4 Design Constraints for Self-Adaptation 27

3.2 Znn.com Example . 27
3.3 Tailorable Rainbow Framework . 29

3.3.1 Rainbow Models . 30
3.3.2 Translation Infrastructure—Monitoring and Action 32
3.3.3 Model Manager . 34

ix

3.3.4 Architecture Evaluator . 34
3.3.5 Adaptation Manager . 35
3.3.6 Strategy Executor . 35

3.4 Rainbow Application to Znn.com . 36
3.5 Adaptation Engineering Process . 37
3.6 Summary . 38

4 Stitch Self-Adaptation Language 39
4.1 Rainbow Context for Language . 39
4.2 Requirements for the Self-Adaptation Language 40

4.2.1 Nature of System Administration Tasks 40
4.2.2 Language Design Considerations . 42

4.3 Self-Adaptation Concepts of Stitch . 43
4.3.1 Overview . 43
4.3.2 Quality Dimensions, Utility Preferences, and Adaptation Conditions . . . 45
4.3.3 Operator . 46
4.3.4 Tactic . 48
4.3.5 Strategy . 50
4.3.6 Strategy Selection . 52

4.4 Semantics of Stitch Constructs . 53
4.4.1 Model of Adaptation . 53
4.4.2 Utility-Based Strategy Selection . 56
4.4.3 Adaptation Execution . 58

4.5 Stitch Illustration Using Znn.com . 66
4.6 Summary . 68

5 Customizable Framework 69
5.1 Architecture and Design of Rainbow . 70

5.1.1 Rainbow Deployment Architecture . 71
5.1.2 Model Manager and Rainbow Models 74
5.1.3 Translation Infrastructure—Monitoring and Action 76
5.1.4 Architecture Evaluator . 80
5.1.5 Adaptation Manager . 81
5.1.6 Strategy Executor . 83

5.2 Adaptation Integrated Development Environment 84
5.2.1 Stitch Script Editor . 85
5.2.2 Rainbow Control Console . 85

6 Examples and Supporting Evidence 87
6.1 Basic Client-Server System . 87
6.2 Libra Videoconferencing System . 90
6.3 University Grade System—Security Domain . 93
6.4 TalkShoe . 97

6.4.1 Background . 98

x

6.4.2 TalkShoe Infrastructure . 98
6.4.3 Problem Scenarios for Adaptation . 99
6.4.4 Data and Result . 103
6.4.5 Conversations with the TalkShoe Architect 104
6.4.6 TalkShoe Summary . 105

6.5 Znn.com News System . 106
6.5.1 Motivation: Slashdot Effect . 106
6.5.2 Rainbow Customization for Znn.com 107
6.5.3 Experimental Setup . 109
6.5.4 Slashdot Effect Traffic Profile . 110
6.5.5 Data and Results . 111
6.5.6 Znn.com Summary . 114

6.6 Interview with System Administrators . 114
6.6.1 Methodology . 114
6.6.2 Interview Results . 115
6.6.3 Adaptation Analysis from Almossawi’s Administrative Experiences . . . 119
6.6.4 Interview Summary . 120

6.7 Real-World Adaptive Scripts in Stitch . 120
6.8 Summary . 126

7 Thesis Evaluation 127
7.1 Claim: Generality . 128
7.2 Claim: Cost-Effectiveness . 129
7.3 Claim: Transparency . 133
7.4 Summary . 136

8 Discussion of Issues and Limitations 137
8.1 Central Control . 137
8.2 Asynchronous Interaction and Uncertainty . 141
8.3 Closed-Loop Feedback Control . 143
8.4 Stitch Expressiveness: Operator, Tactic, and Strategy 144
8.5 Limitations to Adaptation Using a Model . 146
8.6 Limitations to Using Utility Theory . 147
8.7 Framework, Reuse, and Experience on Cost-Effectiveness 148
8.8 Summary . 148

9 Conclusion and Future Work 149
9.1 Thesis Contributions . 149
9.2 Future Work . 150

9.2.1 Short-Term Framework Improvements 150
9.2.2 Medium-Term Rainbow Research Issues 151
9.2.3 Longer-Term Research Beyond Rainbow 155

9.3 Summary . 156

xi

Bibliography 159

A Rainbow Framework Architectural Style 173

B Stitch Grammar 175

C Znn.com Customization Content 177

D Additional Thesis Supporting Materials 191
D.1 Personal Records . 191
D.2 Listing and Abstract Descriptions of netbwe Subroutines 192

xii

List of Figures

1.1 A closed-loop control paradigm . 3
1.2 Conventional block diagram showing a Feedback Control System 4
1.3 The IBM Autonomic MAPE Reference Model 5

3.1 Architecture model of the Znn.com system . 28
3.2 The Rainbow framework with notional customization points 29
3.3 Example definition of the architecture model in Acme 30
3.4 Example definition of the environment model in Acme 31
3.5 Monitoring mechanisms: probes and gauges . 32

4.1 Stitch grammar highlights (see Appendix B on page 175 for full grammar) 47
4.2 An example tactic switchToTextualMode . 49
4.3 An example strategy SimpleReduceResponseTime 51
4.4 Flowchart of the Rainbow adaptation process; Figure 4.5 refines Execute strategy 64
4.5 Flowchart of strategy execution, Figure 4.6 refines Execute tactic 65
4.6 Flowchart of tactic execution . 65

5.1 Rainbow architectural diagram . 69
5.2 Rainbow run time deployment . 72
5.3 Architectural decomposition of the Model Manager 74
5.4 Visual connection of gauges to the architecture model 76
5.5 Architectural decomposition of the Architecture Evaluator 80
5.6 Architectural decomposition of the Adaptation Manager 81
5.7 Mock-up of a Rainbow AIDE workbench . 84

6.1 A class of web-based client-server systems . 88
6.2 Architecture model of the client-server system 89
6.3 Experiment result, with and without Rainbow adaptation 91
6.4 Architecture model of the Libra videoconferencing system 92
6.5 Architecture model of the University Grade System 94
6.6 Excerpted Acme description of the University Grade System 95
6.7 Example adaptation strategies for the university grade system 97
6.8 A simplified architecture model of TalkShoe’s infrastructure 99
6.9 Tactic notifyByEmail and Strategy NotifyOnExpire 103
6.10 Architecture model of the Znn.com system . 108

xiii

6.11 Graph of actual, peak-day traffic of a site experiencing Slashdot effect. 110
6.12 Graph summarizing preliminary Znn.com experiment data 112
6.13 A system context diagram of the netbwe subsystem 120
6.14 Model of the CMU network infrastructure . 122

8.1 Control graphs for representative points . 138
8.2 GFS Architecture (extracted from [GGL03]) . 139
8.3 Control graph for Rainbow . 140

9.1 Rainbow illustrated as a feedback control system 156

xiv

List of Tables

2.1 Characterization of the space of control paradigm 16

3.1 An example gauge instance specification . 33
3.2 Summary of four Translation Infrastructure correspondence mappings 34
3.3 Znn.com: example application of the Rainbow framework 37

4.1 Stitch self-adaptation concepts motivated by the sys-admin’s tasks 43
4.2 Data schema for a Utility Profile . 45
4.7 Znn.com utility profiles and preferences . 66
4.8 Znn.com tactic cost-benefit attribute vectors . 67
4.9 Znn.com aggregate attribute vectors for two applicable strategies 67
4.10 Znn.com utility evaluation for two applicable strategies 67
4.11 Traceability summary of Stitch language features 68

5.1 Rainbow architectural style description — Main Family 70
5.2 Who-Does-What-How summary of framework customization 71

6.1 TalkShoe scenario feasibility assessment . 100
6.2 TalkShoe scenario development activity data . 104
6.4 Summary of Walter’s solution strategy and tactics 116

7.1 Task-based estimation of effort: Rainbow versus custom-solution 133
7.2 Summary of example evidence toward thesis evaluation 136

8.1 Invocation relationship between Stitch operational constructs 145

xv

xvi

Chapter 1

Coping with Change

Imagine a world where a software engineer could take an existing software system and specify
objectives, conditions for change, and strategies for adaptation to make that system self-adaptive
where it was not before. Furthermore, imagine that this could be done in a few weeks of effort
and be sensitive to maintaining business goals and other properties of interest. For example,
an engineer might take an existing client-server system and make it self-adaptive with respect
to a specific performance concern such as latency. The engineer might specify an objective to
maintain request-response latency below some threshold, a condition to change the system if
the latency rises above the threshold, and a few strategies to adapt the system to fix the high-
latency situation. Another engineer might make a coalition-of-services system self-adaptive to
network performance fluctuations while keeping down cost of operating the infrastructure. Still
another engineer might make a cluster of servers self-adaptive with respect to certain security
attacks. Imagine that the engineers could achieve their tasks within a few days to weeks, rather
than weeks to months. Imagine further that the engineers could share and reuse the adaptation
expertise and quickly apply others’ adaptation strategies to their own system.

Increasingly, systems must have the requirement to self-adapt with minimal human oversight.
They must cope with variable resources, system errors, and changing user priorities, while main-
taining as best as they can the goals and properties envisioned by the engineers and expected
from the users. Engineers and researchers alike have responded to and met this self-adaptation
need in somewhat limited forms through programming language features such as exceptions and
in algorithms such as fault-tolerant protocols. But these mechanisms are often highly specific
to the application and tightly bound to the code. As a result, self-adaptation in today’s systems
is costly to build, often taking many man-months to develop or retrofit systems with the capa-
bilities. Moreover, once added, the capabilities are difficult to modify and usually provide only
localized treatment of system errors.

The vision outlined above requires an approach that makes it possible for engineers to eas-
ily define adaptation policies that are more global in nature, and which take into consideration
business goals and quality attributes. In particular, we require that engineers be able to aug-
ment existing systems to be self-adaptive without needing to rewrite them from scratch, that
self-adaptation policies and strategies can be reused across similar systems, that multiple sources
of adaptation expertise can be synergistically combined, and that all of this can be done in ways
that support maintainability, evolution, and analysis.

1

In this dissertation, we describe an approach to achieving the above goals using architecture-
based self-adaptation techniques. In particular, our approach reflects observed properties of an
executing system into properties of an architecture model, where they can be reasoned about
using an array of existing architectural analysis techniques. The results of these analyses can
then be used to reason about changes that should be made to the target system to correct it or
improve its achievement of quality attributes, using utility theory to make trade-offs across these
attributes.

Our approach is embodied in a system called Rainbow, which focuses on two means of
achieving cost-effective self-adaptation: (1) an approach and mechanism that helps reduce en-
gineering effort and (2) an explicit representation of adaptation knowledge. Rainbow provides
an engineering approach and a framework of mechanisms to monitor a target system and its
executing environment, reflect observations into its architecture model, detect opportunities for
improvements, select a course of action, and effect changes. By leveraging the notion of ar-
chitectural style to exploit commonality between systems, the framework provides general and
reusable infrastructures with well-defined customization points to cater to a wide range of sys-
tems. It also provides a useful set of abstractions to focus engineers on adaptation concerns,
facilitating the systematic customization of Rainbow to particular systems.

To automate system adaptation in general, focusing on mundane and routine system adminis-
tration tasks in particular, Rainbow provides a language, called Stitch, to represent routine human
adaptation knowledge using a core set of adaptation concepts. It offers modularity with respect
to quality dimensions and domain expertise, allows specifying multi-step strategies of tactics
with conditions of applicability and expected effects, provides a mechanism to tailor adaptation
policies to particular system domains, and uses utility theory to determine the best adaptation
strategy in the face of uncertainty.

In the following chapters, we make a case for architecture-based self-adapting systems, sur-
vey the research landscape, introduce the Rainbow approach and the Stitch language, describe
how the approach addresses current limitations and achieves the stated goals, discuss the research
and engineering challenges, and demonstrate the approach with example applications focusing
on adaptations to improve qualities such as fidelity, performance, security, and cost of operations.

1.1 Self-Adaptation Loop of Control
In the past, systems that required self-adaptation were rare, confined mostly to domains like
telecommunication switches or deep space control software, where shutdown for maintenance or
upgrade was not an option and manual intervention was not always possible. Today, more and
more systems have this requirement and are supporting some form of self-adaptation. Systems
such as those in the e-commerce and mobile embedded system domains must operate continu-
ously with only minimal human oversight. They must cope with variable resources (e.g., band-
width and service availability), system faults (e.g., server component failing or connections going
down), and changing user priorities (e.g., high-fidelity video streams at one moment and rapid
response time at another). Ubiquitous computing, where highly mobile users operate within het-
erogeneous environments contending for constrained resources, further motivates the need for
self-adaptive systems. However, where self-adaptation capabilities are provided, they are often

2

built-in, solution-oriented, and application-specific. Such “low-level” adaptation mechanisms—
program exceptions, network time-outs, etc.—are great for detecting problems quickly, but they
lack an end-to-end system context. Moreover, the adaptation logic is often dispersed through-
out the implementation, making modification and maintenance of adaptation functionality costly,
analysis of its outcome challenging, and its reuse nearly impossible.

In the Information Technology (IT) domain, self-adaptation support has gained ground but
has been limited to custom-made or vendor-specific solutions (e.g., Microsoft Operations Man-
ager [Mic08]). These tools often target a particular aspect of system management, such as report-
ing and scripting, requiring significant human involvement to monitor and maintain the overall
system. While humans are better at understanding the overall problem context than computers,
human operators are prone to long reaction time, errors, and varying and possibly inconsistent
expertise. The lack of solid automation support for mundane and routine tasks contribute to
high IT operation cost. In fact, industry data indicate that the cost of ownership of IT systems
attributable to managing the system ranges from 70–90 cents per dollar [Fry03, GC03, Sco02].
Recognizing these challenges, leading software companies like IBM [GC03] are pursuing ways
to develop “self-managing and self-provisioning” infrastructure to help businesses streamline IT
operations [Fry03].

1.1.1 External, Feedback Control

Figure 1.1: A closed-loop control paradigm

Overcoming the challenges of self-adaptation and allowing managed systems to self-adapt
with minimal human oversight requires closing the “loop of control.” Software systems have tra-
ditionally been designed as open-loop systems. Once a system is designed for a certain function
and deployed, its extra-functional attributes remain relatively unchanged. In most cases, if some-
thing goes wrong, i.e., the system operates beyond acceptable bounds, humans can intervene,
often by restarting the failed subsystem, or in the worst case, taking the system offline for repair.
However, to allow a system to self-adapt dynamically, a number of researchers have proposed
an alternative approach that uses external mechanisms to maintain a form of closed-loop control
over the target system (e.g., [OGT+99, GR91, KHW+01]). As shown notionally in Figure 1.1,
closed-loop control consists of mechanisms that monitor the system, reflect on observations for
problems, and control the system to maintain it within acceptable bounds of behavior. This kind
of system is known as a feedback control system in control theory [SEM89].

3

Figure 1.2: Conventional block diagram showing a Feedback Control System

Figure 1.2 shows the block diagram of a single-input, single-output feedback control system.
Given the desired setting, called the reference input, the Controller modifies the control input to
the Target System to align the system’s measured output with the reference input. The output is
optionally filtered by a Transducer to smooth or aggregate signals.

To illustrate how a feedback control system works, consider an ordinary thermostat-
controlled, home-heating furnace. The furnace is the system under control. The temperature
is the measured output of the home (system) environment. The thermostat—the controller or
adaptation mechanism—controls the on and off states of the furnace, which comprise the control
input (or knob) of the system. Via the thermostat, the homeowner can set the desired temperature
(say, 68 degrees) as the reference input. The physical model of temperature and thermodynamics
form the system model. Typical of such systems, the model is considerably simpler than the sys-
tem being monitored—i.e., the temperature model is much simpler than the furnace subsystem.

The thermostat measures the temperature of the environment and checks it against the set
point. If the measured temperature falls below 68, the thermostat turns the furnace on until
the measured temperature reaches 68, at which point the thermostat turns the furnace off. For
simple systems like these, the control model may be built-in to the design. In more complex
systems, such as a chemical processing plant, an explicit process model is necessary for effective
control [SEM89]. For example, an air conditioning system for a large building that monitors
multiple locations and controls multiple heating or cooling units would require an explicit model
of the building partitions and temperatures to efficiently control which units to turn on and when.

For software systems, the external controller requires an explicit model of the target sys-
tem to reflect on observations and to configure and repair the system [OGT+99]. Monitoring
mechanisms extract and aggregate target system information to update the model. An evaluation
mechanism detects problems in the target system as reflected in the model. A problem triggers
an adaptation mechanism to use the model to determine a course of action. The mechanism then
propagates the necessary changes to the target system to fix the problem.

In principle, external mechanisms have a number of benefits over internal mechanisms. Ex-
ternal control separates the concerns of system functionality from that of adaptation (or “excep-
tional”) behaviors. With the adaptation mechanism as a separate entity, engineers can modify and
extend it, and reason about its adaptation logic, with ease. Furthermore, the separation of mech-
anisms allows the application of this technique even to legacy systems with inaccessible source
code, assuming that the target system provides, or can be instrumented to provide, hooks to ex-

4

tract system information and to make changes. Finally, providing external control with generic
but customizable mechanisms (e.g., model management, problem detection, strategy selection)
facilitates reuse across systems, reducing the cost of developing new self-adaptive systems.

A prominent, commercial computing system that uses this external, feedback control
paradigm is the Google File System (GFS). GFS is a massively distributed, highly scalable sys-
tem that exemplifies a remarkable, custom-built self-adaptive system whose centralized, master
controller possesses global knowledge of abstract system states. It runs on commodity server
hardware, which has high failure rate. Yet, it serves up data quickly and reliably. It uses a
lightweight master controller, combined with server health states, to determine how to serve data
from and store data to appropriate disks [BDH03, GGL03]. We aim to generalize a software en-
gineering solution that is characteristically similar, yet applicable to a broad spectrum of system
domains.

1.1.2 IBM Autonomic Framework
The reference standard from the IBM Autonomic Computing Initiative codifies an exter-
nal, feedback control approach in its Autonomic Monitor-Analyze-Plan-Execute (MAPE)
Model [IBM04]. Figure 1.3 illustrates the MAPE loop, which distinguishes between the au-
tonomic manager (embodied in the large rounded rectangle) and the managed element, which is
either an entire system or a component within a larger system. The MAPE loop highlights four
essential phases of self-adaptation:

Figure 1.3: The IBM Autonomic MAPE Reference Model

1. Monitor: The monitoring phase is concerned primarily with extracting information—
properties or states—out of the managed element. Mechanisms range from source-code
instrumentation to non-intrusive communication interception.

2. Analyze: The analysis phase is concerned with determining if something has gone awry
in the system, usually because a system property exhibited a value outside of expected
bounds, or a property exhibited a degrading trend. This thesis terms it the Detection phase.

5

3. Plan: The planning phase is concerned with determining a course of action to adapt the
managed element once a problem is detected. This thesis refers to it as the Decision phase.

4. Execute: The execution phase is concerned with carrying out a chosen course of action
and effecting the changes in the system. In this thesis we refer to it as the Action phase.

Shared between these four phases is the Knowledge component, which contains models, data,
and plans or scripts to enable separation of adaptation responsibilities and coordination of adap-
tations. As discussed in Chapter 3, the Rainbow framework provides components that fulfill each
of these four phases and the knowledge to support self-adaptation.

1.2 Architecture-Based Self-Adaptation
A key issue in using an external model is to determine the appropriate kind of models to use for
software-based systems. State machines, queuing theory, graph theory, differential equations,
and other mathematical models [SEM89, PGM97] have all been used for model-based, external
adaptation. Each type of model has certain advantages in terms of the analyses and kinds of
adaptation it supports. In principle, a model should be abstract enough to allow straightforward
detection of problems in the target system, but should provide enough fidelity for figuring out
what remedial actions to take to fix the system. As we highlight here and discuss further in
Section 3.1.1, software architecture strikes an ideal balance as a model for self-adaptation.

Over the past decade and a half, software architecture has emerged as a prominent and pow-
erful design abstraction [BCK98]. A recent branch of work advances the use of the target sys-
tem’s architecture as the external model for dynamic adaptation [GKW02]. The architecture of a
software system is an abstract representation of the system as a composition of computational el-
ements and their interconnections [SG96]. Specifically, an architecture model represents the sys-
tem architecture as a graph of interacting components.1 Nodes in the graph, termed components,
represent the principal computational elements and data stores of the system: clients, servers,
databases, user interfaces, etc. Arcs, termed connectors, represent the pathways of interaction
between the components. This is the core architectural representation scheme adopted by a num-
ber of architecture description languages (ADLs), such as Acme [GMW00] and xADL [DHT01].

The use of software architecture as the basis of a control model for self-adaptation, termed
architecture-based self-adaptation in this thesis, holds a number of potential promises. A rich
body of work on architecture trade-off analysis techniques used at system design time facilitates
runtime self-adaptation. As an abstract model, an architecture model provides a global perspec-
tive on the system and exposes the important system-level behaviors and properties. As a locus
of high-level system design decisions, the model makes system integrity constraints explicit,
thereby helping to ensure the validity of a change.

Consider, for example, a signal-processing system implemented as a graph of stream-
processing elements. The architecture model of the system can be represented as a pipe-filter
model where the stream-processing elements are filters and the data-flow connections are pipes.

1Although there are different views of architecture [CBB+03], in this thesis we are primarily interested in the
component-connector view because it characterizes the abstract state and behavior of the system at run time to
enable reasoning about problems and courses of adaptation.

6

This model of the runtime system configuration provides a global perspective on all the elements
of the system. It exposes such important properties as the throughput of each filter and the band-
width of each pipe, allowing one, for instance, to compute the overall throughput of the system.
Furthermore, the model might be associated with explicit constraints on the architecture that, for
example, forbid cycles. This knowledge can be used at run time to reason about the effect of a
change on the system’s throughput or structure.

Crucial for architecture-based self-adaptation is the choice of the architectural style used to
represent the target system. A style (e.g., pipe-filter) provides the vocabulary to describe the
architecture of a system in terms of a set of component types (e.g., filter) and connector types
(e.g., pipe), along with the rules for composition (e.g., no cycles) [AAG95]. A style might also
prescribe the properties associated with particular element types (e.g., throughput on a pipe).
Usually associated with a style is a set of analytical methods to reason about properties of sys-
tems in that style. For example, systems in the MetaH style use real-time schedulability analy-
sis [FLV00].

Style is important because it constrains and gives structure to the system design space. Each
style provides opportunities for specific analysis of system behavior and properties. For self-
adaptation, given some quality objectives, each style may guide the choice of system properties
to monitor, help identify strategic points for system observation, and suggest possible adapta-
tions. Consider again the signal-processing system. The pipe-filter style constrains the system to
a data-flow computation pattern, points to throughput as a system property, identifies the filter as
a strategic point for measuring throughput, and suggests throughput analysis for reasoning about
overall system throughput. The pipe-filter style may suggest adaptations that swap in different
variants of filters to adjust throughput, create redundant paths to improve reliability, or add en-
cryption to enhance security. In contrast, consider a different system in the client-server style.
This style highlights request-response latency as an important property, identifies the client as a
strategic point for measuring latency and the server for load, and suggests the use of queuing the-
ory to reason about service time and latency. The style may suggest an adaptation that switches
a client between different servers to reduce latency.

1.3 Opportunities for Improving the State-of-the-Art
A number of researchers have explored self-adaptation using an external architecture model with
varying success. Gorlick and colleagues have developed the Weaves framework, which supports
continuous observation and dynamic rearrangement of systems in the data-flow architectural
style [GR91]. Magee and colleagues have designed the Darwin formalism for specifying soft-
ware architectures that support dynamic component initiation and binding [MDEK95]. Taylor
and colleagues have developed an architecture evolution framework to enable runtime system
modifications that are kept consistent with an architecture model, based primarily on hierarchi-
cal publish-subscribe in C2 [TMA+96, OMT98].

These architecture-based self-adaptive systems have been hand-crafted to support a particular
class of system (e.g., data-flow) and address a specific domain of concern (e.g., performance).
Given a system in a supported style, there is typically an ADL and tooling support to model
and analyze the system and capture constraints on system properties, and mechanisms to detect

7

constraint violations and adapt the system. While these efforts represent point solutions in the
general problem space of architecture-based self-adaptation, they also highlight three classes of
limitations with the state-of-the-art: (1) a lack in system context and adaptation knowledge, (2)
lack of support for quality-of-service trade-off, and (3) high cost of development and mainte-
nance. In this section, we consider each class of limitations in turn.

1.3.1 Lack in System Context and Adaptation Knowledge

Since the onset of dynamic systems research in the late-90s, advances have been made in ba-
sic monitoring and action technologies crucial for self-adaptation [CDS01, GKW02]. Currently
we can dynamically obtain system information and change system states. From machine learn-
ing and decision theory communities we have techniques to analyze what changes to make as
well as reason about what course of action to take [Mit97, Bat00]. However, we are missing
two crucial self-adaptation capabilities—an explicit model for the system context or execution
environment, and a systematic and explicit representation for adaptation knowledge—with the
following consequences:

1. The lack of an explicit model for the system’s environment creates “blind-spots” in adap-
tation decision-making. In particular, choosing an adaptation requires knowledge of the
availability of alternative components, spare resources, etc. Knowledge of options that are
not available (a more challenging problem) is likewise important to determine what course
of actions are out of question. Finally, knowing about contextual computation elements
and resources could help identify opportunities for improvement.

2. The lack of a systematic and explicit representation for adaptation knowledge makes it
difficult to capitalize on system management expertise already available today. Further-
more, this reflects the lack of explicit abstractions for reasoning about and controlling
self-adaptation capabilities.

To address these limitations, we need a way to model system environment that captures spare
resources and alternative components. We also need a representation that hoists adaptation
concerns as first-class, manipulable concepts to give software engineers control over the self-
adaptation capabilities of their system and to allow reasoning about self-adaptation decisions.

1.3.2 Lack of Support for Quality-of-Service Trade-Off

Due to monetary, time, and various resource constraints, keeping a system operational often
requires a system administrator to balance multiple, possibly conflicting objectives. Ultimately, a
self-adaptation system must also be able to balance multiple quality dimensions simultaneously
(e.g., performance vs. cost vs. security). To that end, a custom-solution self-adaptive system
might attempt to reconcile all the quality concerns (or objectives) at once, such as keeping a
system secure while minimizing impact on performance and maintaining availability.

Systems today typically wire in trade-offs on qualities of service, making these policies im-
plicit artifacts of design. In fact, a process such as the Architecture Trade-off Analysis Method
(ATAM) explicitly considers qualities of service during software design, but does not tradition-

8

ally expose the resulting trade-off decisions as first-class (operational) entities in the functionality
of the software. Hardwiring trade-off policies suffers from a number disadvantages:

1. Adding a new quality of concern may be difficult, requiring changes that touch many as-
pects of the system, including those that detect and signal changes in the system properties
related to the particular quality and those that compute trade-off and decide an outcome.

2. Hardwired policies have a single context of use. For instance, a policy may have embedded
a particular preference of system response time over quality of delivered content, which
becomes obsolete when that preference changes due to evolving business needs.

3. The implicit nature of hardwired policies makes it difficult to reason about satisfying ob-
jectives, for there is often (a) no explicit treatment of objectives, (b) no traceability from
objectives to the implemented trade-offs, (c) no link between trade-off computation steps
(if the computation itself is obvious) and particular objectives, and (d) no obvious distinc-
tion between desired versus emergent trade-off outcome.

For a self-adapting system, trade-off policies must be made explicit to enable dynamic adap-
tation. Different kinds of adaptations will have different quality-of-service trade-offs. For ex-
ample, an adaptation that addresses reliability and performance might be able to achieve both
with redundant, replicated servers. Another adaptation that addresses performance and security
might need to make a choice between reducing network response time and increasing the num-
ber of intrusion detection filters. Yet another adaptation that addresses cost, performance, and
security might need to give different preferences to each depending on the business context. A
self-adaptation approach should be flexible enough to cater to different trade-off needs.

In short, current approaches address only fixed quality dimensions, lack support for compo-
sition and trade-off across multiple dimensions, and do not cater to varying business contexts.
To address these limitations, we need a systematic approach, along with corresponding mech-
anisms and techniques, to (a) allow developing each adaptation separately for separate quality
concerns, (b) facilitate reasoning about and composing two or more adaptations that trade off
across multiple dimensions to produce the desired objectives, and (c) enable flexible modifica-
tion of adaptation policies to cater to evolving business context.

1.3.3 High Cost of Development and Maintenance
Building an architecture-based self-adaptive system is a costly proposition because one has to
develop the probing infrastructure to monitor the target system, a representation to encode the
architecture model and constraints, a manager for the architecture model instance(s), a problem
detector to determine adaptation opportunities, adaptation mechanisms to resolve problems and
propagate changes to the system, and translation mechanisms to bridge the system-model ab-
straction gap. Finally, one has to integrate all of these parts into a coherent, self-adaptive system.

Most existing approaches have associated description languages, adaptation mechanisms, and
toolsets targeting a single style and fixed quality concerns. Applying these approaches to a new
system, often with a different style or different concerns, would require either re-developing the
adaptation mechanisms from scratch, or reusing some parts and custom-building the remaining
capabilities. Both incur significant time and effort to develop, integrate, and engineer the adap-
tation mechanisms correctly. Once built, modifying or enhancing the adaptation mechanisms

9

would likewise incur significant effort.
In short, whether developing a software system ground-up with adaptation support, or oth-

erwise retrofitting adaptation capabilities into an existing system, both are guaranteed to in-
cur high cost. To make economic sense, we need a generalized self-adaptation framework that
amortizes cost and effort across multiple systems (which has been the aim of projects such as
AEM [DHT02] and IBM autonomic systems [IBM04]), that can cater to more than one style of
systems and different quality concerns, that enables engineers to avoid re-developing significant
mechanisms, that allows low-effort incremental development of adaptation capabilities.

1.4 This Thesis
Ideally, we would like a solution that realizes the benefits of architecture-based self-adaptation
highlighted in Section 1.2 while overcoming the limitations outlined above. The solution should
support models and mechanisms that provide a global system perspective to adapt the system
effectively and in a timely manner. The solution should leverage domain expertise, allow the
specification and evolution of adaptation policies for different domains of concern, and support
the composition of policies across domains. Furthermore, the solution should enable system
engineers to engineer self-adaptation for their systems cost-effectively.

In this dissertation we develop a new approach to engineering architecture-based self-
adaptive systems that allows engineers to tailor a common infrastructure to particular system
domains and quality objectives. Specifically, we investigate the following thesis:

We can provide software engineers the ability to add and evolve self-adaptation
capabilities cost-effectively for a wide range of software systems and for
multiple objectives by defining a self-adaptation framework that factors out
common adaptation mechanisms and provides explicit customization points to
tailor self-adaptation capabilities for particular classes of systems and quality
objectives.

This thesis statement leads to three specific claims that must be demonstrated. First, our approach
to architecture-based self-adaptation applies to a wide range of architectural styles of systems for
multiple objectives or dimensions of system quality that architects are typically concerned with.
We will refer to this claim as the generality of the approach.

Second, compared with custom, style-specific solutions, a framework with common, reusable
infrastructures significantly reduces the cost of engineering self-adaptation capabilities for exist-
ing systems, while explicit customization points makes the framework easy to tailor to target
systems. We will refer to this claim as cost-effectiveness.

Third, the ability to tailor self-adaptation capabilities implies transparency in the knowl-
edge and process of self-adaptation: (a) separating concerns of adaptation makes the distinct
concepts and steps of the process understandable, (b) explicit adaptation concepts makes actions
separately definable and composable to achieve overall system goals, and (c) providing a value
system makes adaptation choice automatable. We summarize the 3 claims as follows:

• Generality: The approach applies to a broad spectrum of styles for common quality di-
mensions with which modern architects are concerned.

10

• Cost-effectiveness: The approach significantly reduces cost, relative to existing special-
ized solutions, to engineer and evolve self-adaptive systems.

• Transparency: The approach makes the adaptation process understandable, actions com-
posable, and adaptation choice automatable for routine system adaptations.

To demonstrate this thesis, we will focus on a particularly important subgroup of computing
systems, those currently requiring human administration to ensure normal and uninterrupted
operation. Because of the high cost of system upkeep (as much as 70–90 cents per dollar of
ownership in some domains), automating self-adaptation for managed systems would reduce
administrative cost for IT and e-commerce systems and significantly reduce ownership cost.

This thesis comprises a two-part solution: (1) a framework, Rainbow, to enable architecture-
based self-adaptation and (2) a language, Stitch, to express system-administration adaptation
concepts. The framework consists of a common, reusable infrastructure with systematically
defined components for system monitoring, model management, constraint evaluation, strategy
selection, and adaptation execution. The solution approach defines explicit customization points
as well as recommends a workflow to tailor the framework for specific systems. The language
represents important adaptation concepts as manipulable and first-class operational entities. In
concert with the framework, the language allows engineers to focus on adaptation concerns when
specifying adaptation strategies and policies.

1.4.1 Thesis Evaluation Plan

To evaluate this thesis, we apply the approach and framework to a number of systems, each
belonging to one of three architectural styles and addressing up to three quality dimensions of
interest. Together, these example applications serve to demonstrate applicability across a breadth
of styles as well as transparency. We then assess the cost-effectiveness of the framework using
a task-based estimation of effort and informal user feedback. Specifically, we satisfy the three
claims as follows.

To evaluate generality, we demonstrate that the Rainbow framework applies to multiple
styles, for multiple quality dimensions. For practical reasons, we target only a subset of typical
styles and quality dimensions. Specifically, we show an in-depth demonstration of the Rainbow
adaptation cycle on one system, and provide example applications showing how customization
pieces of the Rainbow framework are specified for representative styles of systems.

To evaluate cost-effectiveness, we demonstrate reuse and ease-of-use with the Rainbow
framework. We show that the Rainbow framework provides common and reusable infrastruc-
tures, which are flexible to customize to make a system self-adaptive. In effect, Rainbow saves
engineers time and development effort to add and evolve self-adaptation capabilities to a target
system. To show effort savings, we characterize the self-adaptation tasks and provide coarse-
grained, task-based estimation of effort, then qualitatively assess and evaluate savings of self-
adaptation effort with Rainbow relative to current practice.

To evaluate transparency, we demonstrate that the approach allows domain experts to define
adaptation strategies separately for different quality dimensions, and enables an adaptation engi-
neer to compose strategies across the dimensions and automate adaptation choice. In particular,
we show that the approach facilitates understanding how to engineer self-adaptation capabil-

11

ities. We show that the self-adaptation language provides constructs to specify strategies for
different dimensions, support to combine those dimensions meaningfully, and mechanisms to
automatically select and carry out adaptations that integrate the strategies to achieve multiple
objectives. We demonstrate the expressiveness of the language by (a) interviewing system ad-
ministrators to understand the administrative process and (b) qualitatively analyzing how well
the self-adaptation language represents typical classes of system administrative tasks.

1.4.2 Thesis Contributions
This thesis advances the state-of-the-art in software engineering by improving our understanding
of the approaches, mechanisms, and tradeoffs for software architecture-based self-adaptation. In
brief, contributions of this dissertation include:
• characterization of a general approach to architecture-based self-adaptation customizable

to a class of systems and a set of quality dimensions, language to represent system admin-
istration concepts and adaptation knowledge, and process for adaptation engineering;

• demonstration of techniques for self-adaptation, including a utility-theoretic algorithm for
selecting adaptation strategies, a Markov Decision Process framework to model the adap-
tation process, and control theory for adaptation control;

• provision of a packaged tool set for the Rainbow approach, in particular a mechanism for
adaptation selection and interpreter for the Stitch language;

• demonstration of coverage of a representative region of the self-adaptation system space
with particular styles of system, domains of concern, and kinds of feasible adaptation.

1.4.3 Document Roadmap
In the remainder of this document, Chapter 2 describes the background of this work and discusses
related solutions and their limitations. Chapter 3 restates the thesis requirements, describes the
overall architecture-based self-adaptation approach, and sets the context for introducing the self-
adaptation concepts and language in Chapter 4. Chapter 5 presents the customization points
of the framework and illustrates how they facilitate reuse and low-effort customization of self-
adaptation for a target system. Chapter 6 details example applications and evidence in support
of the thesis, which Chapter 7 evaluates. Then, Chapter 8 discusses issues and limitations, and
Chapter 9 concludes this thesis, highlighting future work.

12

Chapter 2

Related Work

In this chapter, we describe work related to the self-adaptation approach in this thesis. We start
with the contributing disciplines of software architecture and analysis, control theory, and deci-
sion theory. We then discuss related approaches for architecture-based self-adaptation.

2.1 Software Engineering and Architecture
In the software engineering discipline, a large body of foundational work on software architecture
paved the way for architecture to be used as a model to reason about a software system. The
landmark paper by Perry and Wolf defined software architecture and established it as a discipline,
drawing analogies from building architectural styles and forming a basis for using architectures
as system models [PW92]. Shaw and Garlan characterized and codified many common styles
of system architecture [SG96]. Bass, Clements, and Kazman investigated the practical issues of
applying software architecture through many case studies, providing techniques for designing
and analyzing architecture [BCK98, BCK03]. Here we briefly discuss a directly relevant subset
of the discipline—architecture style, architecture description languages, and quality attributes.

An architectural style defines, for a class of systems, a vocabulary of element types, proper-
ties common to the element types in theses systems, a set of constraints on the permitted compo-
sition, and the associated analyses for reasoning about this class of systems [AAG93, MKMG97].
Style has been formalized and applied in many system designs. In essence, architectural style
is useful for capturing commonalities between systems of a particular class and, consequently,
variabilities across different classes of systems.

A body of work on analytical models from the areas of engineering and computer sciences
have contributed to analysis for software, usually associated with particular styles. Examples
of style-specific system analyses include queuing theory and performance modeling for client-
server systems [LGSZ84, SG98], throughput analysis for data flow networks [SC81], and relia-
bility models [XDP04]. In this work, we use a software architecture model to leverage its power
for abstracting system structures and for expressing and analyzing system properties.

A central theme to the work of the ABLE Group1 is to tailor a generic design environment

1Architecture-Based Languages and Environments Group, led by Professor David Garlan in the School of Com-
puter Science, Carnegie Mellon University

13

to specific classes or domains of system through the explicit use of architectural styles. Acme, a
generic ADL, supports the explicit notion of style [GMW00] and provides a first-order predicate
logic similar to UML OCL [Obj01] to capture system design constraints [Mon99]. The Acme
constraint logic provides a set of architectural functions to facilitate the definition of logical
expressions that capture such relationships as connectedness, type conformance, and hierarchy.
AcmeStudio [Sch08, SG04] is a customizable design environment and visualization tool for
software architectural designs based on Acme [CMU08].

This thesis takes the notion of architectural style into the runtime world. To support the
needs of runtime adaptation, as presented in Section 3.1.1, we augment the notion of style
and the associated tools with the notions of operators to change an architecture. Many ADLs
have been developed for various domains, modeling purposes, and even interchange, including
Acme, C2, MetaH, Rapide, SADL, UniCon, Wright, and XML variants like xAcme [CU01] and
xADL [DHT01]. A few efforts have attempted to compare and classify them [Cle96, MT97].
Acme is used in this thesis because of its explicit support for style, particularly architectural
constraints, and its features for extensibility.

Wright provides an explicit capability to define styles in a fairly formal fashion [All97].
C2 and associated tool suites support the description and analyses of event-based, hierarchical
publish-subscribe systems with explicit rules of inter-hierarchy communication [MORT96]. Dar-
win models systems with bidirectional communication links and supports formal reasoning about
deadlocks and concurrency [MDEK95]. Weaves uses a data-flow style that facilitates software
construction and analysis, allowing parts of systems to be snipped and spliced without disruptions
to data-flow [GR91]. SADL describes systems as interfaces and connections, and supports direct
translation to logic sentences for correctness analysis [MR97]. There are also XML variants of
ADLs that are meant to support interchange as well as style-generic architecture descriptions,
including xArch [UC01], xAcme [CU01], ADML, and xADL [DHT01].

A number of efforts have attempted to codify architectural design expertise. Butler devel-
oped an approach and model for assessing security risks and quantifying such risks as relative
index [But02]. Bass and John characterized software usability issues as architectural design
trade-offs [BJ03]. Project ArchE used software analytical models to assist the software architect
in making trade-offs during system design [BBKS05]. Bass, et al., described specific architec-
tural design tactics to achieve system quality attributes [BCK03].

A quality attribute is an attribute of the system that is orthogonal to its functionality and of-
ten bears on and pervades the structure of the system [BLKW97]. Examples of quality attributes
include performance, security, scalability, and ease of maintenance—the “ilities.” Quality at-
tributes play a critical role in the design of software architecture, and design tactics can be used
to achieve the desired quality attributes. A tactic is a “design decision that influences the control
of a quality attribute response.” A collection of tactics forms an architectural strategy, and tactics
can be packaged into architectural patterns.

This thesis applies the design-time concepts of quality attributes and tactics to support adapta-
tion decisions in the runtime space, using adaptation tactics and adaptation strategies to achieve
the desired system quality attributes at run time. We primarily address concerns that directly
impact the runtime qualities of a system, including performance, security, dependability; we do
not address such design-time concerns as modifiability, maintainability, and extensibility.

14

2.2 External Contributing Disciplines
Here we highlight four areas of research—control theory, decision theory, system and network
management, and artificial intelligence—from which we have incorporated concepts and tech-
niques to develop our approach to self-adaptation.

Control Theory Closed-loop control is one of several process control paradigms extensively
studied and applied in various disciplines to influence the behavior of dynamical systems2.
Closed-loop control typically involves a controllable process or “target system” (e.g., a heat
exchanger water tank) that usually includes the environment, a controlled variable or “measured
output” (e.g., the outflow of a heat exchanger), and a load or “control input” (e.g., the inflow to a
heat exchanger) [SEM89, Wik08a]. The objective of closed-loop control is to continuously ad-
just the control input into the target (e.g., amount of inflow), or the process itself (e.g., amount of
heat), or both, so that the measured output matches the reference input (e.g., outflow temperature,
T) to within some error margin.

Monitoring the measured output to determine what changes to make is known as feedback
control, while monitoring only the control input to determine control action is known as feed-
forward (or predictive) control. Feedforward control can anticipate changes to the measured
output, while feedback control reacts to perturbations in the target, so the techniques are often
combined. A specific form of closed-loop control called model predictive control (MPC) is par-
ticularly well suited for multi-input, multi-output (MIMO) control problems, where significant
interactions occur between manipulated inputs and outputs [PGM97].

Controlling a software system can be viewed as a MIMO control problem; however, the
measured output and control input are often discrete rather than continuous as in traditional
closed-loop process control. Fortunately, control theory also allows the control of discrete vari-
ables. Closed-loop control thus seems well-suited overall for the control of software systems,
as applied in this research, provided that the measured output and control input can be properly
identified. Other interesting forms of control not pursued in this research include open-loop con-
trol, self-stabilization, multi-level supervisory control, and biological homeostasis. Open-loop
control assumes reliable conditions and does not monitor the process. Self-stabilizing systems
are designed to converge to a desired behavior despite arbitrary starting state [Dol00]. Advances
in adaptive robotics demonstrate the power of multi-level supervisory control to gradually en-
able autonomy [BMD+03]. Homeostatic systems constantly move away from the “region” of
bad behavior toward the healthy region [Sha02].

This thesis draws concepts and techniques—stability, accuracy, settling time, overshoot—
from the control-theory domain to control software systems. Unlike traditional control systems,
however, this thesis targets discrete, state-based computing systems [HDPT04], which require a
different type of system model, such as an architecture model.

There are two fundamental aspects to any control system: the availability of information
and the degree of control over the target system. Let us consider these as two orthogonal
dimensions—scope of knowledge and scope of control. The spectrum for scope of knowledge

2A dynamical system is a mathematical formalization for any fixed "rule" which describes the time dependence
of a point’s position in its ambient space [Wik08c].

15

ranges from localized to global, while that of scope of control ranges from singleton (conceptu-
ally, one knob of control) to multi-point. By examining the extremes, we can characterize the
space grossly as four representative points, as shown in Table 2.1.

Table 2.1: Characterization of the space of control paradigm

Scope Local Knowledge Global Knowledge

Singleton
Control

Micro-reboot reboot

Multi-point
Control

S-O-S GFS, Rainbow, ...

The most restrictive point in this space is a controller with global knowledge of the system,
but only a single knob of control. A crude example is the common user experience with Microsoft
Windows, where the user has global knowledge of whether the operating system has failed (the
blue screen of death), but the user only has a single control action: to reboot. Consider a more
elaborate system where local knowledge of system components is available, but only a single
control action is possible. For instance, in a J2EE application server, an operator could obtain
fine-grained knowledge about bean health and micro-reboot beans that fail, thereby reducing
disruption to the rest of the system and increasing overall system availability [CKF+04].

Some systems provide more degrees of control than just reboot, including capabilities to
swap components and tune quality of service. Depending on the scale and configuration of such
systems, a controller might have global knowledge about the states of all of the system parts,
or only local knowledge to states of subsystems. Rainbow and the Google File System serve as
examples of the former kind. An example of a system whose controller has only local knowledge
is the Self-Organizing System proposed by Georgiadis, Magee, and Kramer, where distributed
component managers coordinate and construct local models of the system and manage local com-
ponents individually [GMK02]. Another example is the Aura framework with an Environment
Manager component that possess knowledge and access to local contexts and resource configu-
rations [PGS+07, SG02].

While useful for comparison, these four points represent only a rough dissection of a large
space, and there may be many other interesting points in between. Also, no single point has
absolute advantage over the others. For example, in contrast to a system with multi-point con-
trol and global knowledge, a system with singleton control and local knowledge boasts greater
simplicity in mechanism. Furthermore, a system with multi-point control and local knowledge
is potentially more scalable and less susceptible to a single point-of-failure than a system with
multi-point control and global knowledge.

Decision Theory and Utility Decision theory is an area of study concerned with how real
or ideal decision-makers make (or should make) decisions, and how optimal decisions can be
reached [Bat00, Wik08b]. A core concern of decision theory is to study choice (between incom-
mensurable commodities) under uncertainty. Numerous techniques for choice under uncertainty
have been developed, including the isomorphic forms of decision tree and decision table [Bak04],

16

the use of utility [Wik08e] (or expected value) to attribute values to decisions, and Markov De-
cision Process to solve for an optimal decision [How60].

In this thesis, we extend the notion of utility to compare quality dimensions, and we adopt
preference weights to assign relative importance to the dimensions. Together, utility and prefer-
ences enable our automating the choice of adaptation strategy under uncertainty.

System and Network Management A major research challenge in system and network man-
agement is to allow dynamically adaptable policies that cater to different user needs in dis-
tributed, cross-domain systems [SL02]. Ponder is one notable example of a policy language
for specifying both system management and security policies with dynamic adaptability of be-
havior [DDLS01]. In particular, Ponder assumes distributed, object-oriented systems, and pro-
vides an object-based enforcement mechanism as well as a deployment model [DLSD01]. Our
work shares a similar goal of supporting “dynamic adaptability of behaviour by changing pol-
icy without recoding or stopping the system.” However, our approach extends beyond system
management to provide a general engineering framework for self-adaptive systems.

Artificial Intelligence The area of artificial intelligence contributes a number of potential tech-
niques to enable system self-adaptation, including rule-based expert systems and the use of fuzzy
logic [Dur94], planning algorithms [RN03] (e.g., FLECS [VS95]), and reinforcement learn-
ing [Mit97] (e.g., Q-learning [Wat89]). In our approach, rather than automatically generating an
optimal adaptation plan, we use an explicit language of representation to capture routine human
expertise about system adaptation. Our self-adaptation language embodies rule-like constructs
(condition-action), but relies on utility theory to choose an adaptation, instead of an inference
engine to “reason” about the most appropriate action, given the current target system state.

2.3 Related Self-Adaptation Approaches
This section highlights related work in self-adaptive systems. We start with adaptive technolo-
gies, explore initiatives from industry and IBM Autonomic Computing in particular, and examine
similar architecture-based approaches to system self-adaptation.

2.3.1 Adaptive Technologies
The self-adaptation approach advanced in this thesis builds on a number of adaptive technolo-
gies, as described below. Specifically, some of the research address the sensing and effecting
problems, which are not the main focus of this thesis.

As part of the DASADA project, researchers developed a number of adaptive technologies
and defined standards for the probe and gauge infrastructures [Bal01, CDS01, GSC01]. To
monitor software states, Heineman developed the AIDE probe architecture [Hei98] to instrument
Java source code and Wells and Pazandak developed ProbeMeister [PW02, WP01] to instrument
Java bytecode. Researchers at Columbia University developed gaugents to collect and propagate
monitoring events and advanced a Worklets effector technology to effect changes using mobile
Java code [GGK+01, VKK01, VK02]. Event systems like SIENA [CRW01] and MEET [Gro02]

17

provided the communication infrastructure for event distillation and packaging—supporting such
features as defining event models or event time windows, and detecting event protocol anomaly—
to enable monitoring of self-healing system in a distributed setting. Workflow systems have been
applied to support planning-based self-adaptation, such as the Cougaar-based adaptive system of
BBN Technologies [CV02].

Some self-adaptation research provided enabling adaptive techniques as well as primitives
for reasoning about adaptations, from generic, low-level architecture operators to stylized op-
erators [MRMM02, MM03]. Advances in research to bridge architecture to code (e.g., Arch-
Java [ACN02] and transformational connector [Spi05]) contributed techniques for discovering
and constructing architectural models from system events (e.g., DiscoTect [YGS+04]).

The mechanism for doing actual adaptations embody different concepts and vary greatly,
from doing only quiescent adaptation, to supporting mixed-mode adaptation where old and new
components are allowed to communicate [BK07], to micro-rebooting components of a managed
system periodically to improve overall system availability [CKF+04] (also known as recovery-
oriented computing). Finally, the separation of policy from mechanism is a common adaptive
technique, also applied in designing the approach in this thesis. An example from a related work
is to abstract service-specific knowledge as recipes, separate from the lower-level adaptation
mechanism, to allow cost savings with a shared framework that synthesizes the optimal service
configuration [Hua04].

While this thesis advances a form of self-adaptation external to the controlled software
system and notionally “above the application layer,” there is a similar body of research in
which adaptation is applied from “below the application layer” at the infrastructure or oper-
ating system level. In particular, adaptive components or multi-fidelity components provide
useful capabilities in existing software systems and offer complementary approaches to self-
adaptation [SN01, FPS02, JBB03, MLR03]. In addition, a recent branch of middleware research
attempts to support dynamically adaptive distributed systems by developing reflective, adaptive,
and, in general, more “intelligent” middleware [Agh02, KCBC02]. Adaptive middleware tech-
nology may prove synergistic with the approach proposed in this thesis.

Adaptive middlewares monitor and control software applications using interception or inter-
position techniques. Specifically, an adaptive middleware makes extensive use of interceptors
to, for example, profile, trace, and even affect dynamic library usage [Cur94, NMMS99]. Fault-
tolerant CORBA provides transparent OMG-compliant fault tolerance through strong replica
consistency, using techniques such as N-versioning, hot, warm, or cold swap, and redundant
servers [NMMS02]. Some of the challenges include the ordering of operations, duplication of
operations, recovery, and consistency in the face of multithreading. Some adaptive middlewares
explicitly support and adapt for quality-of-service (e.g., Quality Objects (QuO) [LSZ+01]) or
tracks changes in user, system, and environment contexts (e.g., MADAM [MPF+06]).

From monitoring and effecting technologies to adaptive middlewares, this collection of re-
search advances specific niches of adaptation capabilities to enable the overall adaptation engi-
neering framework explored in this thesis. Moreover, not addressed by any of the above effort,
this thesis addresses issues of engineering and of making the self-adaptation process transparent
to the target system owners and developers.

18

2.3.2 Industrial Initiatives and Autonomic Computing
Several industry initiatives aim to achieve self-managing or autonomous systems to increase
system autonomy and reduce the growing business overhead of IT operations, including the
N1 Architecture by Sun Microsystems [Sun02], the PlantCare project by Intel Research for the
autonomous care of houseplants [Int02], the Adaptive Enterprise by Hewlett-Packard [Hew03],
the Dynamic Systems Initiative by Microsoft [Mic03], and the Utility Data Center jointly by HP
and Microsoft [Tur03]. Most notable is IBM’s ten-year Autonomic Computing initiative from
2002 [GC03, JBB03, MLR03].

The primary challenge of Autonomic Computing is to control self-managing components
in a large, distributed system to produce emergent autonomic behavior. Autonomic comput-
ing applies the concept of a control loop to monitor, evaluate, and adapt a system component.
At the heart of the control loop are various kinds of business and system knowledge to help
determine how to adapt the behavior of the system. Researchers of autonomic computing distin-
guish levels of control, differentiated primarily by degree of automation and scope of knowledge.
Self-management is categorized into self-configuring—to adapt automatically to dynamically
changing—self-healing—to discover, diagnose, and react to disruptions—self-optimizing—to
monitor and tune resources automatically—and self-protecting—to anticipate, detect, identify,
and protect from any attacks. A suite of tools has emerged from IBM’s effort, most notably
the Autonomic Computing Toolkit [IBM08], which provides consoles and tools to help problem
diagnosis and engineer autonomic systems.

This thesis applies a similar control loop paradigm to monitor and adapt software systems. A
principle difference of this approach is the use of an explicit architecture model combined with
adaptation strategies and utility-based adaptation choice to achieve similar autonomic capabili-
ties. Similar to the business goals of IBM and others, this thesis aims to support cost-effective
engineering of self-adaptation capabilities. In particular, this thesis solves a number of diffi-
cult issues: the representation of adaptation expertise, a framework to facilitate cost-effective
engineering, the automated choice of adaptation that achieves multiple objectives, and the devel-
opment of a cost-effective approach to apply self-adaptation.

2.3.3 Architecture-Based Adaptation
To date, several dynamic software architectures and architecture-based adaptation frameworks
have been proposed and developed [BCDW04, GSRU07, OGT+99], including an effort to char-
acterize the style requirements of self-healing systems [MRMM02]. Below, we examine a repre-
sentative set of approaches, categorizing each by its primary focus, then highlighting its main
features. Broadly speaking, related approaches either focus on formalism and modeling, or
mechanisms of adaptation. A third category uniquely addresses distribution and decentraliza-
tion of control.

Distributed, Decentralized Adaptation Work on self-organizing systems [GMK02] proposes
an approach where self-managing units coordinate toward a common model, an architectural
structure defined using the architectural formalism of Darwin [MK96]. Each self-organizing
component is responsible for managing its own adaptation with respect to the overall system and

19

requires the global architecture model to do so. While this approach provides the advantage of
distributed control and eliminates a single point of failure, requiring each component to main-
tain a global model and keep the model consistent imposes significant performance overhead.
Furthermore, the approach prescribes a fixed distributed algorithm for global configuration. This
thesis overcomes the performance overhead and coordination issue by allowing tailorable global
reorganization without imposing a high performance overhead, but we trade off distributed, lo-
calized control of adaptation decision.

Formal, Dynamic Architectures A number of approaches focuses on modeling and formal-
izing dynamic systems, using graph rewriting or a flavor of π-calculus, showing minimal mech-
anisms, if any, for either enabling the modeled dynamism in a target system or enforcing certain
adaptation properties, such as integrity and safety, on a target system. While this thesis does
not formalize dynamic systems, our approach builds on a formal architectural model, using the
model within a framework of reusable infrastructures to enable self-adaptation in a target system.

Wermelinger and colleagues developed a high-level language (sometimes described as an
Architecture Modification Language), based on CommUnity, to describe architectures and for
operating changes over an architectural configuration, such as adding, removing, or substituting
components or interconnections [WLF01]. The language follows an imperative style and builds
on a semantic domain where architectures are modeled through categorical diagrams, and dy-
namic reconfiguration through algebraic graph rewriting. The language provides two kinds of
commands: basic commands perform the actual configuration, while composite commands only
control the flow of execution.

The K-Component model addresses integrity & safety of dynamic software evolution, mod-
eled as graph transformations of meta-models on architecture [DC01]. It uses reflective programs
called adaptation contracts to build adaptive applications, coordinated via a configuration man-
ager (similar to Le Métayer’s approach [Le 98]).

Darwin is an ADL for specifying the architecture of a distributed system, with an operational
semantics that captures dynamic structures as the elaboration of components and their bindings
in a configuration [MK96]. Organization of components and connectors may change in the
architecture of the system during execution. The evolving structures of Darwin is elegantly
modeled using Milner’s calculus of mobile processes, allowing the correctness of its program
elaboration to be analyzed. Together with the π-calculus semantics, Darwin serves as a general-
purpose configuration language for specifying distributed systems.

ArchWare [MBO+07] and PiLar [CdlFBS01] are example of ADLs that use architectural
reflection to model layers of active architectures, allowing separate concerns to be addressed
at different layers. The approaches rely on sophisticated reflective technologies to support the
active architectures and enable dynamic co-evolution.

These approaches assume that system implementations are generated from the architecture
descriptions. In contrast, our approach in this thesis relies on external mechanisms decoupled
from the target system and can therefore be used to add adaptation to existing systems.

Style-Specific Approaches with Fixed Quality Attributes A number of architecture-based
approaches provided frameworks of mechanisms to enable self-adaptation (or system reconfig-

20

uration). We highlight a few below. While they vary in details, the approaches share a number
of common characteristics: they generally apply a closed-loop control and use an architecture
model for reasoning about the target system; and they assume certain structures in the target
system and adapt for a fixed set of quality attributes.

For example, Gorlick and Razouk developed the Weaves framework, which supports con-
tinuous observation and dynamic rearrangement of systems in the data-flow style to facilitate
software construction and analysis, allowing parts of systems to be snipped and spliced with-
out disruptions to data-flow [GR91]. Wolf, et al., developed the Willow framework to enhance
the survivability of critical, networked information systems, consisting of network sensors to
acquire network state, synthesis and diagnostics components to analyze the sensor events and
respond with network changes, an environment to coordinate a workflow of network changes,
and a universal actuation interface [WHC+01].

Peyman Oreizy’s dissertation on the “open architecture software” approach proposes the use
of an application’s architectural model as a basis for decentralized software evolution for a greater
degree of adaptability while supporting increased consistency over prior techniques [Ore00]. In
his approach, an architecture evolution manager validates changes to the architecture model, in
the C2 hierarchical publish-subscribe style, and carries out the changes on the application’s im-
plementation to reflect the model. An associated ArchStudio environment provides a number of
tools to support evolution of software via changes to the architecture model for C2-style appli-
cations. As a natural extension, the UCI research group then developed an architecture-based
runtime architecture evolution framework, which dynamically evolves systems using a moni-
toring and execution loop controlled by a planning loop [DHT02]. This framework supports
self-adaptation for C2-style systems, and evolution of the architecture model uses architectural
differencing and merging techniques similar to those used for source code version control.

Bastista and colleagues at Lancaster developed the Plastik adaptation framework, which uses
an extension of the Acme ADL to specify adaptation policy, relies on OpenCOM APIs to sensing
system state and actuating changes, and focuses on performance properties [BJC05]. Hinz, et al.,
demonstrated an adaptive framework for pipelined information systems that adapts for through-
put and other performance goals [HPUM07]. Liu and Gorton developed the Adaptive Server
Framework, which applies IBM’s autonomic framework for constructing dynamic and adaptive
application servers that optimize performance [LG07].

Mukhija and Glinz developed the CASA framework to adapt for resource availability con-
cerns in mobile network environments [MG04]. Each application offers alternative component
configurations. The generic concept of contract is used to define adaptation policy for each
application. Interactions between applications are mediated by a service negotiator, which par-
ticipates in a service agreement protocol (SAP) to determine the application’s configuration. The
adaptation and enforcement system of the framework handle adaptations in response to changes
in the execution environment, and some of the typical adaptations react to either abundance or
scarcity of resources.

Sztajnberg and Loques developed the CR-RIO framework, which uses a style-neutral ADL
(CBabel), architectural contracts to specify execution context, application profile to describe re-
source requirements, and a middleware to perform architectural reconfigurations based on the
specified contracts [SL06]. CR-RIO demonstrates formal verification capability but does not ap-
pear to support automation of multi-objective adaptations, e.g., by composing multiple contracts,

21

nor to address engineering aspect.
This thesis generalizes the application of the closed-loop control by providing an engineer-

ing framework that can be tailored to different styles to enable adaptation for multiple quality
dimensions.

2.4 Limitations to State-of-the-Art Addressed
In this chapter, we presented an overview of the related work to show how the state-of-the-
art partially serves our thesis objective. Advances in software research provide the language,
model, and analysis to represent and reason about a system’s software architecture, giving us
the powerful notion of architectural style. Advances in adaptive technology provide mecha-
nisms to enable self-adaptation, in particular to monitor system states and effect changes, which
form building blocks for advanced system control. Research in related self-healing systems and
architecture-based approaches demonstrate point solutions for particular classes of systems and
singular quality dimensions.

However, current approaches present a number of limitations and unresolved issues, which
we address in this thesis. In particular, where traditional adaptive techniques—e.g., ones based
on exception-handling mechanisms and network time-outs—rely only on localized knowledge
of system states, we use an architecture-based approach to leverage global perspective. While
existing approaches do not address the quantity of adaptation and system-level details that engi-
neers grapple with in order to build self-adaptation for their systems, we design a language that
encapsulates core self-adaptation concepts and hoists them as first-class building blocks for sys-
tem engineers to build self-adaptation capabilities. Finally, almost no existing approach provides
a systematic, integrated approach to self-adaptation that combines end-to-end system perspec-
tive, style-based adaptation, automation of routine human expertise, and incremental support to
developing self-adaptation capabilities; we address this by providing an engineering framework
with reusable infrastructures and customizable elements.

The insight of using architecture-based feedback control to develop self-adaptive systems
still leaves some important questions to address. What kind of control model does one develop
and how best to use it? What are the most efficient and effective ways to get information out of
the target system, and how does one interpret the system states? How does one make decisions
of and reason about the remedial actions to take on the system? How can one best effect changes
on the system? There is also the overall challenge of engineering such a system cost-effectively.

In this thesis, we focus on two core challenges to achieve cost-effective self-adaptation:

1. Approach and mechanism to reduce engineering effort

2. Representation of adaptation knowledge critical to the decision process for choosing
remedial actions

We now present our overall self-adaptation approach in Chapter 3.

22

Chapter 3

Rainbow Overview

The objective of this thesis is to empower software engineers with an approach and the tools to
add self-adaptation capabilities to software systems. In Chapter 2 we argued how the state-of-the-
art partially serves our objective: Advances in software research provide the language, model,
and analysis to represent and reason about a system’s software architecture. Advances in adaptive
technology provide mechanisms to enable self-adaptation, in particular to monitor system states
and effect changes. Research in related self-healing systems and architecture-based approaches
demonstrate point solutions for particular classes of systems and singular quality dimensions.

However, in order to accomplish the thesis objectives enumerated in Section 1.4, we require
a self-adaptation framework generally applicable to different styles and quality objectives, the
ability to explicitly represent administrator adaptation concepts as operational entities, the mech-
anism to automatically decide the best course of adaptation, and an integrated approach that saves
engineers time and effort. To provide the missing capabilities requires solutions to two problems.
The first requires a framework we call “Rainbow” to provide the general supporting mechanisms
for self-adaptation. For the second problem, we develop a language called “Stitch,” which plugs
in to this framework, to provide an appropriate representation for adaptation expertise so that we
can reason about and automate adaptation to satisfy multiple objectives.

In this chapter, we provide an overview of the Rainbow architecture-based approach to self-
adaptation. We present technical details in later chapters: the Stitch language in Chapter 4, the
design of the framework and its customization points in Chapter 5, example instantiations of
Rainbow to demonstrate the approach in Chapter 6, and the thesis evaluation in Chapter 7. In
the sections that follow, we first enumerate the requirements of a solution, then highlight the
Rainbow approach and the framework for realizing the self-adaptation cycle to monitor, detect,
decide, and act, and conclude with an overview of the process to apply Rainbow.

3.1 Overview of Approach
To overcome the limitations outlined in Section 2.4, we require a principled approach to engineer
self-adaptive systems. As noted earlier from the thesis claims, we enumerate three requirements
for the solution:

1. Achieve general coverage: The approach should apply to a broad spectrum of styles for

23

typical quality dimensions with which modern architectures are concerned.

2. Facilitate cost-effective adaptation engineering: The approach should facilitate low-cost,
expeditious efforts to engineer self-adaptation capabilities for supported classes of systems.

3. Enable transparent self-adaptation: The approach should allow engineers to separately
specify self-adaptation strategies for distinct quality objectives, then integrate them to
achieve self-adaptations that trade off across multiple objectives.

Our approach consists of a framework, a language, and an incremental process for engineering
self-adaptation. The framework consists of two parts: (1) a generic, reusable infrastructure of
common adaptation mechanisms that software engineers can apply to different classes of sys-
tems, and (2) a set of explicitly-defined customization points that allow the engineers to tailor, or
to target and customize, the infrastructure to a specific class of system. The underlying principle
here is to separate mechanism from policy, the machinery that performs the self-adaptation work
from the instructions that tell the machinery what to do.

The language codifies concepts for defining adaptation policies to achieve multiple, specific
adaptation objectives. The incremental process prescribes new roles of adaptation engineers
(Section 3.5 below) to develop self-adaptation capabilities in the target system, and describes how
the capabilities can be developed piecemeal. In particular, the process describes what custom
contents to define, which parts to develop, and when and where to define and develop them.

Below, we highlight three important underpinnings of our solution: Software architecture
gives us leverage to make self-adaptation general and cost-effective. Control theory provides a
well-understood mechanism for closed-loop system adaptation. Utility theory allows decision-
making of adaptations that considers multiple factors and is sensitive to its context. We conclude
this section with a set of design constraints for a framework that is fit for our adaptation purpose.

3.1.1 Software Architecture Model and Style

The first major underpinning of this approach is the use of a stylized software architecture model
to monitor and adapt a target system. Like the blueprint of a building, the software architecture
model of a system provides an abstract view of the modeled software system. The architec-
ture model elides low-level details and allows the architect to focus on the important, high-level
properties of the system. The model is described using a particular vocabulary that conveys
the structural characteristics of the system, e.g., client-server, dataflow, N-tier, and repository.
Current approaches to architecture modeling also allow the architect to specify explicit rules, or
constraints, about element composition in the system. An architecture model so specified en-
ables the architect to perform analyses on the system for such quality attributes as performance,
availability, reliability, and security. Together, vocabulary, properties, rules, and analyses, sum-
marized below, comprise the building blocks of architectural style [AAG95].

1. Vocabulary (V) of element types, including component types (e.g., database, client,
server, filter, etc.), connector types (e.g., sql, http, rpc, pipe, etc.), and component and
connector interface types.

2. Design rules (R), or constraints, that determine the permitted composition of those ele-
ments. For example, the rules might require every client in a client-server organization to

24

connect to at most one server, prohibit cycles in a particular pipe-filter style, or define a
compositional pattern such as a starfish arrangement of a blackboard system or a pipelined
decomposition of a compiler.

3. Properties (P) that are characteristic or common of elements in a style, in particular to
provide analytic and sometimes behavioral or semantic information. For instance, “load”
and “service time” properties might be characteristic of server elements in a performance-
specific client-server style, while “transfer-rate” might be a common property in a pipe
element of a pipe-filter style.

4. Analyses (A) that can be performed on systems built in that style. Examples include
performance analysis using queuing theory for a client-server system [SG98] and schedu-
lability analysis for a style oriented toward real-time processing [AVCL02].

While this traditional notion of style suffices to model snapshots of a system’s architecture, in-
cluding dynamic behavior of, and interactions between, system elements (e.g., Darwin [MK96]
and Wright [All97]), the traditional style lacks natural mechanisms to represent what architec-
tural changes are allowed by systems of the style. Capturing allowable operations to the sys-
tem is important for modeling, analyzing, and reasoning about dynamic system adaptation. For
example, knowing whether a system’s style allows the activation of a server or the swap of a
communication channel helps determine possible adaptations for that system.

In order to handle the notion of dynamism with respect to architectural structure, in this thesis
we augment the notion of style with operators. We assume that operators are blackbox, target
system-provided capabilities defined in a style; hence, we do not address their specification.

5. Operators (O). A set of style-specific operations that may be performed on elements of a
system to alter its configuration. For example, a service-coalition style might define opera-
tors addService or removeService to add or remove a service from a system configuration
in this style. Style-specific operators are specifiable in terms of generic architectural oper-
ators, such as component add or remove, connect, or disconnect, a classification of which
is exemplified in [MM03].

As we shall see, the notion of architectural style (augmented with operators) gives the ar-
chitect a powerful abstraction to describe, classify, and analyze many different kinds of systems.
Style provides the unifying concepts to factor commonalities out of classes of system and to char-
acterize differences between classes of system. Specifically, we leverage style in our design of
the Rainbow approach and framework, in combination with the runtime use of architecture and
environment models, to achieve generality and cost-effectiveness. We introduce the framework
in Section 3.3, present its design and customization points in Chapter 5, and evaluate how well
it satisfies the generality and cost-effectiveness claims in Chapter 7. Next, we discuss control
systems, which is integral to the design of our self-adaptation framework.

3.1.2 Control Systems and the Self-Adaptation Cycle

The second major underpinning of this approach is the application of control systems concepts
to the adaptation problem. Whereas software systems are traditionally designed as open-loop
systems, we overcome the challenges of self-adaptation by taking a control systems’ view and

25

closing the loop of control. We further choose a specific type of control system model to make
our approach generalizable and reusable across different classes of systems.

In a typical control system, such as the one depicted via box diagram in Figure 1.2 on page 4,
the Controller must have access to relevant Measured Output from the target system as well
as maintain control over some Control Input. In our context, the Target System is the software
system that requires self-adaptation. Controlling a software system would require mechanisms to
obtain information about the system and its environment as well as to manage the corresponding
architecture and environment models. Furthermore, the Controller must be able to select a course
of action and effect the changes on the system.

These required capabilities of control correspond to the 4+1 phases of the adaptation cycle,
also defined by the IBM Autonomic MAPE Architecture mentioned in Section 1.1.2 [GC03]:

Monitoring phase extracts relevant target system states using techniques of varying intrusive-
ness, from instrumenting the source code, to intercepting low-level system events, to un-
obtrusively reading system logs. This phase usually acquires information without interpre-
tation, except as needed to extract that information, such as parsing a log. Due to potential
resource overhead, precisely what to monitor is an important consideration.

Detection phase consists of two important steps: (1) interpreting information from the moni-
toring phase, and (2) deciding whether a problem or opportunity for improvement exists.
This phase relies on one or more analytical models to assess conditions of error.

Decision phase comprises two aspects: (optionally) determining the root of the problem, and
choosing the appropriate course of remedy. This phase most likely relies on one or more
analytical models (as used in detection), and requires a repertoire of remedial actions.

Action phase executes the chosen action, effects the appropriate changes on the target system,
and may need to recover from intermediate failures. This phase requires some degree of
access to the system states, and may need to interpret and handle system-level errors.

Knowledge contains the model(s) and data shared by the separate phases to achieve adaptation.

As we shall see in this chapter, the Rainbow framework realizes these 4+1 self-adaptation phases:
knowledge is embodied in the architecture model1 managed by the Model Manager, monitoring is
achieved by Probes and Gauges updating the model, detection is performed by the Architecture
Evaluator assessing problems on the model, decision occurs through the Adaptation Manager
choosing a remedy based on model states, and action is accomplished by the Strategy Executor
effecting changes on the system via Effectors. For the decision phase, in order to represent and
reason about the courses of remedy, we introduce tactic and strategy as formal concepts of self-
adaptation in Chapter 4. Each adaptation decision requires the consideration of multiple factors,
which leads to the third underpinning, utility theory.

3.1.3 Utility Theory
The third major underpinning of this approach is the use of utility theory for decision-making
that considers multiple factors while being sensitive to the context of use, such as to overall busi-

1When we say “architecture model” and, subsequently, “model” in the same paragraph context, we will mean
both the architecture model and the environment model of the managed system, as described in Section 3.3.1.

26

ness objectives and priorities. When the self-adaptation mechanism detects an opportunity for
improvement in the target system and is choosing a strategy to adapt the system, it must consider
numerous factors and make a choice between both similar kinds of strategies and strategies that
have juxtaposing effects. Simply stated, the problem is to choose the best strategy to adapt the
system, given existing system conditions, that takes multiple objectives into consideration.

To determine which strategy is “best,” we need to define values for the objectives, relate the
objectives to specific system conditions, and assess the impact of the strategies to the objectives.
Since there is uncertainty in the outcome of an adaptation, we also need to estimate the likelihood
of observing certain system conditions after executing a strategy. Utility theory, combined with
a stochastic model of the strategy outcomes, provides the method to quantify strategies relative
to the objectives, under uncertainty. Chapter 4 explains how we leverage utility theory in Stitch.

3.1.4 Design Constraints for Self-Adaptation
We now briefly consider and motivate the design of a generic, self-adaptation framework that
addresses our thesis requirements. We explore design alternatives and potential limitation is
Chapter 8. To be fit for adaptation purpose, the runtime framework should be designed to monitor
the target system dynamically without affecting target-system operation, track its state in a central
model to provide overall system context, provide functionalities for closed-loop control, and
be flexible to change and resilient to failure. These considerations of adaptation purpose lead
naturally to the following design constraints for our solution framework:
• Asynchronous monitoring and adaptation from target system operations (cf. Section 8.2)
• Central management of system’s model (cf. Section 8.1)
• Distinct allocation of control responsibilities (cf. Section 8.3)
• Resiliency to component failures and eliminating single point-of-failure (cf. Section 8.1)
• Well-defined customization points for common functionalities (cf. Sections 5.1 and 8.7)

Next, we introduce a complete example before describing the Rainbow framework.

3.2 Znn.com Example
To illustrate the framework, consider an example news service, Znn.com, that serves multimedia
news content to its customers, based on real sites like cnn.com and RockyMountainNews.com.
Architecturally, Znn.com is a web-based client-server system that conforms to an N-tier style.
As illustrated in Figure 3.1, Znn.com uses a load balancer to balance requests across a pool of
replicated servers, the size of which is dynamically adjusted to balance server utilization against
service response time. A set of client processes (represented by the C component) makes stateless
content requests to one of the servers. Let us assume we can monitor the system for information
such as server load and the bandwidth of server-client connections. Assume further that we can
modify the system, for instance, to add more servers to the pool or to change the quality of the
content. We want to add self-adaptation capabilities that will take advantage of the monitored
system and adapt the system to fulfill Znn.com objectives.

27

Figure 3.1: Architecture model of the Znn.com system

The business objectives at Znn.com are to serve news content to its customers within a rea-
sonable response time range while keeping the cost of the server pool within its operating budget.
From time to time, due to highly popular events, Znn.com experiences spikes in news requests
that it cannot serve adequately, even at maximum pool size. To prevent unacceptable latencies,
Znn.com opts to serve minimalist textual content during such peak times in lieu of providing its
customers zero service. The Znn.com system administrators (sys-admins) adapt the system using
two actions: adjust the server pool size or switch content mode. When the system comes under
high load, the sys-admins may increase the server pool size until a cost-determined maximum
is reached, at which point the sys-admin would switch the servers to serve textual content. If
the system load drops, the sys-admin may switch the servers back to multimedia mode to make
customers happy in combination with reducing the pool size to reduce operating cost.

The adaptation decision is determined by observations of overall average response time ver-
sus server load. Specifically, four adaptations are possible, and the choice depends not only on
the conditions of the system, but also on business objectives:

1. Switch the server content mode from multimedia to textual

2. Switch the server content mode from textual to multimedia

3. Increment the server pool size, and

4. Decrement the server pool size

We want to help Znn.com automate system management to adjust the server pool size vs. switch
content between multimedia and textual modes. In reality, a news site like cnn.com already sup-
ports some level of automated adaptation. However, automating decisions that trade off multiple
objectives to adapt a system is still unsupported in most systems today. For instance, while au-
tomating adaptations on performance concerns is possible (e.g., load balancing), it is much harder
to do so for potentially conflicting qualities such as performance and security. This work is an
important step in that direction: to allow automation of adaptations that must strike a balance
between multiple objectives (we will address this issue in Chapter 4).

In the Rainbow framework, the adaptation mechanism uses the architecture model of the sys-
tem to monitor the system and reason about appropriate strategies. Abstractly speaking, the
framework shown in Figure 3.2 functions as follows. Monitoring mechanisms—probes and
gauges—observe the running target system. Observations are reported to update properties of
the architecture model managed by the Model Manager. The Architecture Evaluator evaluates
the model upon update to ensure that the system is operating within an acceptable range, as

28

Figure 3.2: The Rainbow framework with notional customization points

determined by the architectural constraints. If the evaluation determines that the system is not
operating within the accepted range, the Evaluator triggers the Adaptation Manager to initiate
the adaptation process and choose the strategy. The Strategy Executor executes the strategy on
the running system via system-level effectors.

In terms of Znn.com, the average response time and server load for Znn.com are monitored
and those measurements update corresponding properties in the Znn.com architecture model
managed by the Znn.com-customized Model Manager. The customized Architecture Evaluator
evaluates the model as needed to make sure that no client experiences a request-response latency
above a certain threshold. If a client is experiencing above-threshold latencies, the Evaluator
triggers the customized Adaptation Manager to initiate the adaptation process and determine
whether to activate more servers or decrease content quality. The customized Strategy Executor
carries out the strategy on the Znn.com system using the provided system hooks.

Building a self-adaptive system such as that outlined above is a costly proposition if the
important components such as the monitoring, model management, adaptation, and translation
mechanisms have to be built from scratch. For this reason, we have engineered an integrated
framework with shared infrastructure and developed an iterative process to facilitate reuse of
self-adaptive functionalities and reduce the cost and effort of achieving self-adaptation.

3.3 Tailorable Rainbow Framework
To fulfill the self-adaptation requirements outlined in Section 3.1, we envision a framework with
general and reusable infrastructures that can be tailored to particular system styles and quality
objectives, and further customized to specific systems. The customization is notionally illustrated
as plug-in pieces in Figure 3.2. The Rainbow framework consists of a number of components
that provide the monitoring, detection, decision, and action capabilities of self-adaptation. As
indicated below, several of these capabilities derive from prior work, while the decision and

29

language-associated mechanisms are new to this thesis. Rainbow functionalities are described
abstractly in this section, and the framework design is presented in detail in Chapter 5.

This customizable self-adaptation framework has a number of advantages. Providing a sub-
stantial base of reusable infrastructure greatly reduces the cost of development. Providing sep-
arate customization mechanisms allows engineers to tailor the framework to different systems
with relatively small increments of effort. In particular, the tailorable model management and
adaptation mechanisms give engineers the ability to customize adaptation to address different
properties and quality concerns, and to add and evolve adaptation capabilities with ease. Fur-
thermore, as described in Chapter 4, a modular adaptation language to specify the adaptation
policy allows engineers to consider adaptation concerns separately and then compose them. In
short, assessed abstractly, the Rainbow framework has the potential to satisfy the generality,
cost-effectiveness, and transparency requirements of this thesis (Section 1.4).

3.3.1 Rainbow Models
The Rainbow framework leverages two kinds of models, the architecture and the environment,
to make adaptation decisions. An architecture model reflects abstract, runtime states of the target
system itself. While existing approaches in architecture-based self-adaptation share this feature,
as mentioned in Section 1.3.1, current approaches fail to take advantage of the system context,
or environment, to make adaptation decisions. Rainbow addresses this shortcoming through an
explicit treatment of environment states in the self-adaptation process. An environment model
provides contextual information about the system, including its executing environment and the
resources used. For example, when additional servers are needed, the environment model indi-
cates what spare servers are available. When a better connection is required, the environment
model contains information about the available bandwidth of other communication paths.

1 Family ClientServerFam = {
2 Component Type Cl ien tT = { . . . }
3 Component Type ServerT = { . . . }
4 /∗ . . . connector / po r t / r o l e / p roper ty d e f i n i t i o n s . . . ∗ /
5 Property Type LatencyPropT = f l o a t ;
6 Property MAX_RESPTIME : f l o a t ;
7 }
8 System ZnnCSSystem : ClientServerFam = {
9 Property MAX_RESPTIME : f l o a t = 1000.0;

10 . . .
11 Component Cl i en t1 : C l i en tT = new Cl ien tT extended with { . . .
12 Property avg_latency : LatencyPropT = 0.0
13 invar iant se l f . avg_latency < MAX_RESPTIME;
14 }
15 Component Server1 : ServerT = new ServerT extended with { . . . }
16 }

Figure 3.3: Example definition of the architecture model in Acme

Focusing first on the architecture model, managing an executing system dynamically requires
knowing what entities are present, what runtime states they are in, and how they communicate.
The architecture model captures the state of the system as a graph of interacting, communicat-
ing entities representing the Component and Connector (C&C) view of architecture [CBB+03] in

30

Acme. It consists of an instance of the target system defined in a particular style, associated prop-
erties and their dynamically updated values, and constraints on the structure of the target system.
Figure 3.3 illustrates a partial architecture description of an example style, ClientServerFam, with
component, connector, and property types. Instantiated from that style is a partial Znn.com sys-
tem description, ZnnCSSystem, which defines a client instance with an average_latency property
value (line 12) and an architectural constraint (line 13), which we describe in Section 3.3.4 on
the Architecture Evaluator.

1 Family EnvType = {
2 Property Type ResourceStatePropT =
3 Record [u n i t : str ing ; t o t a l : f l o a t ; a v a i l a b l e : f l o a t ; used : f l o a t ;] ;
4 . . .
5 Component Type NodeT = {
6 Property cpuOvera l l : ResourceStatePropT ;
7 Property memoryMain : ResourceStatePropT ;
8 Property storageLocal : ResourceStatePropT ;
9 Property socketPool : ResourceStatePropT ;

10 Property b a t t e r y O v e r a l l : ResourceStatePropT ;
11 }
12 Connector Type EdgeT = {
13 Property bandwidthAvg : ResourceStatePropT ;
14 Property capac i t y : ResourceStatePropT ;
15 }
16 Port Type NetworkPortT = { } / / . . . and Role Type NetworkRoleT
17 / / connector−por t−r o l e to capture containment r e l a t i o n s h i p
18 Connector Type MappingT = { }
19 Port Type ContainmentPortT = { } / / . . . and Role Type ContainerRoleT
20 Port Type PartPor tT = { } / / . . . and Role Type PartRoleT
21 }
22 System ZnnEnvModel : EnvType = {
23 Component elementX : NodeT = new NodeT extended with { . . . }
24 . . .
25 }

Figure 3.4: Example definition of the environment model in Acme

Turning now to the second model, the environment model captures states of the target sys-
tem’s execution environment to provide additional information for the self-adaptation process.
Two central modeling questions are: (1) what environment information should be captured, and
(2) how to capture it? To support self-adaptation, of primary concern are the kind, and usage sta-
tus of environment resources. Examples include CPU load and free memory on a host machine,
total capacity and available bandwidth of connections between nodes, and aggregate entities such
as particular types of computing nodes, applications, and services. The broad notion of resources
includes various granularity of resources necessary to facilitate reasoning about adaptation.

To capture environment information, as with architecture, we take a graph approach to rep-
resent resources as nodes and typed relations as edges (physical connection, containment, and
dependencies). In general, there are resource (node) types and relation (edge) types, which we
capture in an environment style and instantiate for a specific system environment. We have ex-
plored one style of environment with performance-centric resources, as illustrated in Figure 3.4,
but other styles of environment may be defined, such as an environment that captures sources of
attack to help reason about adaptation for security concerns. The necessary environment infor-
mation typically relates closely to the system elements. Thus, we maintain a mapping between

31

architecture-model elements and environment-model elements. To manage scope, we use the
graphical notion of hop count [Uni96] as a model parameter and track only the environment
elements within a defined number of hops from the core, architectural elements.

Because Acme has explicit constructs corresponding to nodes and edges, supports types, and
has the extensible property construct, we model the environment in Acme, which also allows
us to leverage existing tooling support for model description. Figure 3.4 illustrates a partial
environment description for Znn.com, which we discuss in more detail in Chapter 5.

3.3.2 Translation Infrastructure—Monitoring and Action

In order to get information out of the target system into an abstract model for management, and
then to push changes back into the system, we need mechanisms that hook into the target system
and understand what is represented in the model. The layer marked Translation Infrastructure
in Figure 3.2 provides these monitoring and action (cf., Section 3.1.2) hooks, and bridges the
abstraction gap between the system and the architecture model. This infrastructure builds on
prior work and encompasses monitoring mechanisms, action mechanisms, and various sets of
correspondence mappings [CHG+04, GSC01, Bal01].

Figure 3.5: Monitoring mechanisms: probes and gauges

Monitoring Mechanisms Probes and gauges extract system states, then aggregate and abstract
them to update the model. Intuitively, a probe measures some part of the system, while a gauge
interprets that measurement to provide a reading. In Rainbow, as illustrated in Figure 3.5, probes
are deployed onto the target system to measure and publish system information, such as CPU
load or process run state. Gauges are associated with specific properties in the architecture model;
they collect, aggregate, and abstract probe measurements to populate corresponding architectural
properties. Different kinds of probes are deployed onto the target system to detect system states
(e.g., whether compression across a communication link is enabled), measure quality attributes
(e.g., link latency or intrusion detector state), and discover resources (e.g., to find an available
Apache server). Likewise, different types of gauges are needed to aggregate and interpret system
properties (e.g., to average latency).

To tailor the monitoring mechanisms, an adaptation engineer identifies the properties of spe-

32

cific element types to monitor2 and finds matching gauges and probes from gauge and probe
libraries to monitor those properties (or develops them if none are available). The engineer
maps the gauge-updated property to the architectural property via the mapping attribute, and
also defines the target probe, by type name, to which the gauge maps. Table 3.1 illustrates a
gauge instance specification that defines an instance GL of a predefined latency gauge type La-
tency_Gauge_T, shows the architecture model and property (L.Latency, where L is a connector
instance in the model) associated with the gauge (Latency), and indicates the target probe type
(Target_Probe=”pingrtt”) to which the gauge maps. While we require probes and gauges to en-
able overall Rainbow functionality, they are not the focus of this thesis. Chapter 5 describes how
we use probes and gauges and how we associate gauges with the architecture model.

Table 3.1: An example gauge instance specification
Gauge Name : Gauge Type GL: Latency_Gauge_T
Model Name : Model Type ZnnSys : Acme
Mapping <Latency, L.Latency>
Setup Values Src_IP_Addr : String = L.IP1;

Dst_IP_Addr : String = L.IP2;
Configuration Values Sampling_Freq : int = 100;

Target_Probe: string = “pingrtt”;

Action Mechanisms Effectors carry out change operations on the target system; they are as-
sociated with architectural operators in the Rainbow Architecture Layer (Figure 3.2). Under the
hood, the mechanism to realize an effector could range in complexity from a system-call, to a
script, to a complex, workflow-based subsystem (e.g., KX Worklets [VKK01]). As with probes
and gauges, we require effectors to enable overall Rainbow functionality, but they are not the
focus of this thesis. Rainbow’s dependency on monitoring and action capabilities for the target
system is not a serious limitation. We build on others’ work on probes and effectors, includ-
ing adaptive middleware technology [CDS01, ACM02]. Furthermore, modern systems increas-
ingly support probing and effecting capabilities, as evidenced in industrial products such as from
IBM’s Autonomic Computing [GC03] and Microsoft’s Dynamic Systems Initiatives [Mic03].

Translation Mappings Our use of an abstract model to monitor and control the target sys-
tem requires us to bridge the abstraction gap with correspondence mappings. In prior publica-
tion [CHG+04], we identified four distinct kinds of correspondence mappings, maintained by the
Translation Infrastructure, to facilitate translation of control3 information between the architec-
ture model and the target system. For example, when the Strategy Executor invokes an effector,
arguments to be passed to the effector must be translated from architectural elements to target-
system entities. We briefly summarize the mappings below and illustrate them in Table 3.2:
Type A type map relates a type of element in the architecture model with a type of entity in the

target system, including any properties defined for the type of element/entity.
2Note that element types and properties correspond to sets V and P defined for style in Section 3.1.1.
3In this dissertation, monitoring mechanisms do not currently use the translation mappings.

33

Element An element map relates an element instance in the architecture model with an entity in
the target system, including the property values.

Operation An operation map relates an architectural operator, along with its formal parameters
(type and name), to an effector operation, along with the corresponding parameters.

Error An error map relates the identifier and error sources of an exception in the target system
to a corresponding error at the architecture-level.

Table 3.2: Summary of four Translation Infrastructure correspondence mappings
Map Description Definition Example Mapping Instance

Type
Element kind
& properties

archType (prop1,.., propn) ::
sysType (prop1,.., propn)

GatewayT (location:String, cost:float) ::
ServiceGW (ip:InetAddr, cost:double)

Element
Model or
system entity

archInst (type, prop1,..,propn)
:: sysEnt (type, prop1,..,propn)

g1 (GatewayT, location=”PA”, cost=1.3) ::
sg1 (ServiceGW, ip=”10.1.2.3”, cost=1.3)

Operation
Action &
parameters

archOp (param1,.., paramn)
:: sysOp (param1,.., paramn)

startSvc (s:GatewayT, timeout:float) ::
Service.start (s:ServiceGW, timeout:double)

Error
Operation
problem

archErr :: sysEx
GatewayNotFound ::
GatewayHostNotFoundEx

3.3.3 Model Manager
We need a mechanism that updates and controls access to the architecture model, the shared
knowledge among the adaptation mechanisms (cf., Section 3.1.2). The Model Manager man-
ages both the architecture and environment models of the target system. It leverages prior work
on architecture modeling, particularly the ADL called Acme and the supporting typechecking
software library [GMW00]. It maintains references between elements of the environment and
the architecture models. It tracks the model states, maintains correspondence of the models to
system and environment states via gauges, provides the Rainbow components with shared access
of the models via query and modify APIs, and deploys gauges (and corresponding probes) as dic-
tated by model property queries. Elements in both the architecture and the environment models
are accessed via direct model reference in the adaptation scripts (e.g., EnvModel.elementX.prop).

To tailor the Model Manager, it is sufficient to tailor the managed models. A style writer
(cf., Section 3.5) specifies a vocabulary (a family of element types in Acme) to describe the
architecture of the target system, defines the architecture and environment model instances, and
identifies the relevant properties to collect via the monitoring infrastructure.4

3.3.4 Architecture Evaluator
Armed with a model that captures runtime system and environment states, we need a mecha-
nism to detect when an adaptation is needed (cf., Section 3.1.2). When any model property

4Note that vocabulary and properties correspond to sets V and P defined for style in Section 3.1.1.

34

changes, the Architecture Evaluator evaluates the conformance of the architecture model to a
predefined set of constraints. Upon detecting a constraint violation, it notifies the Adaptation
Manager (Figure 3.2) to trigger adaptation. This mechanism leverages prior work on the use
of architectural (Acme) constraints, specified in first-order predicate logic, to identify flaws in
system design [Mon99]. We extend this work by checking architectural constraints over runtime
system properties to detect target system problems at run time.

To tailor the Evaluator, a style writer (cf., Section 3.5) specifies as rules the topological and
behavioral constraints5 that (a) characterize the bounds of the target system and/or (b) signify
opportunities for adaptation. These architectural rules are specified in the architecture model
as first-order predicate logic expressions over architectural structure and properties. A simple
constraint is illustrated on line 13 in Figure 3.3, requiring that the average latency experienced
by the client component never exceed a “max_latency” threshold.

3.3.5 Adaptation Manager
Once a problem is detected, we need a mechanism to decide on the appropriate adaptation rem-
edy (cf., Section 3.1.2). When triggered by the Architecture Evaluator, the Adaptation Manager
uses the architecture model to select a course of remedial strategy that best suits the present
problem state of the system, then coordinates the execution of that strategy. The Adaptation
Manager combines utility, decision, and control theories to solve the decision-making problem
in self-adaptive systems.

In addition to the operator, this thesis formalizes the notions of strategy and tactic as core
concepts for decision-making in the Stitch self-adaptation language, detailed in Chapter 4.
Briefly, a tactic defines an action, packaged as a sequence of commands; it specifies condi-
tions of applicability and expected effects. A strategy captures a pattern of adaptations in which
each step evaluates a set of condition-action pairs and executes an action, possibly waiting for
the action to take effect. A strategy also specifies conditions of applicability that determine in
what contexts it should be involved.

During the adaptation process, the Adaptation Manager selects the best strategy given ob-
served system conditions. It first scans a repertoire of strategies for applicable ones based on
present system conditions, then scores those strategies based on their expected utilities relative
to a defined set of quality objectives, and finally selects the highest-scoring strategy to execute.

To tailor the Adaptation Manager, the engineer specifies a set of adaptation strategies and
the policy for selecting strategies. However, a number of critical issues remain: How should
strategies and selection policies be specified? How is the appropriate strategy determined? What
does one do if conflicts arise? We discuss these issues further in Chapter 4.

3.3.6 Strategy Executor
Once a strategy is chosen, we need a mechanism that understands how to interact with action
hooks in the target system to carry out the adaptation. The Strategy Executor is dispatched by
the Adaptation Manager to execute the selected strategy on the target system. It resolves model

5Constraints correspond to set R defined for style in Section 3.1.1.

35

references within the strategy against the Rainbow model, observes model states and evaluates
branch conditions to determine tactics to execute, maps operators within tactics to system-level
effectors to carry out changes, and handles errors from effector invocation.

The Strategy Executor is tailored by the set of operators6 that are defined as part of the
system’s architectural style. Examples of operators from a few architectural styles include:

pipe-filter style: add- / remove- / replaceFilter and connect- / disconnectPipe

service-coalition style: add- / remove- / start- / stopService and connect- / disconnectProtocolX

3.4 Rainbow Application to Znn.com
To illustrate the Rainbow framework, let us walk through the Znn.com example. Table 3.3 high-
lights how each of the Rainbow components is customized for Znn.com. This example is sim-
plified to illustrate only the major features of Rainbow. Detailed language features, including
strategy selection and failure handling, appear in Chapter 4; Chapter 5 details Rainbow cus-
tomization; and Section 6.5 describes the full-fledged Znn.com example.

Three quality objectives are defined: timely response, high-quality content, and low-
provision cost. As part of the N-tier style of Znn.com, a set of element types are defined to
model elements of the system architecture: ClientT to model client instances, ServerT for server
instances, DatabaseT for databases in the data layer, and HttpConnT as one of the prominent
protocols of communication. Properties corresponding to the objectives are defined on the
style elements to help measure and assess satisfaction of the objectives; respectively, they are
ClientT.reqRespLatency, ServerT.fidelity, ServerT.cost. These and other properties are measured
by probes and gauges in the translation infrastructure.

A rule specifies the acceptable bound of request-response latencies experienced by a client:
exceeding MAX_LATENCY indicates a problem. A set of operators correspond to available effec-
tors in Znn.com: the system can be controlled to add or remove servers, or to change the fidelity
of the served content. Three tactics are defined, along with their expected cost-benefit impact on
the quality objectives: to switch server content to from multimedia to textual and vice versa, and
to adjust the server pool size by i servers. Lastly, two strategies are defined (using the tactics
above): one to reduce the request-response time and one to improve content fidelity.

The customized Rainbow framework for Znn.com works as follows. The Model Manager
deploys gauges and corresponding probes on Znn.com to monitor server status, connection
bandwidths, and request-response latencies experienced by the clients (can be approximated via
server-side proxy). Probes usually report instantaneous and low-level values, while gauges ag-
gregate and average these measurements and report them as values of corresponding architectural
properties to the Model Manager. When the Model Manager updates the architecture model, the
Architecture Evaluator checks the model to make sure that the constraint is satisfied, i.e., no
client experiences a request-response latency above the maximum threshold.

If a client experiences above-threshold latencies, a constraint violation occurs, and the Eval-
uator triggers the Adaptation Manager to initiate adaptation. The Adaptation Manager scans
through a repertoire of strategies, filtering out the inapplicable ones, then scores them, selects

6Operators correspond to the set O defined for style in Section 3.1.1.

36

Table 3.3: Znn.com: example application of the Rainbow framework
Set Rainbow Component Customization Content Highlight

Objective Adaptation Manager timely response (uR), high-quality content (uF),
low-provisioning cost (uC)

Vocabulary Model Mgr, Translators ClientT, ServerT, DatabaseT, HttpConnT
Property Architecture Evaluator,

Monitoring Mechanisms
ClientT.reqRespLatency, HttpConnT.bandwidth,
ServerT.load, ServerT.fidelity, ServerT.cost

Rule Architecture Evaluator ClientT.reqRespLatency <= MAX_LATENCY
Operator Strategy Executor addServer, removeServer, setFidelity

Tactic Adaptation Manager switchToTextual [−uR, −uF , 0uC],
switchToMultimedia [+uR, +uF , 0uC],
adjustServerPoolSize(i) [−iuR, 0uF , +iuC]

Strategy Adaptation Manager simpleReduceResponseTime, improveFidelity

the highest-scoring one, and delegates it to the Strategy Executor. In this case, simpleReduceRe-
sponseTime might be selected, which either activates more servers or decreases content quality,
depending on specific system conditions. Assuming conditions favor decreasing content qual-
ity, the Executor evaluates the branches of simpleReduceResponseTime, chooses to execute the
tactic switchToTextual, and invokes the setFidelity operator, which is mapped to a corresponding
effector to change the Znn.com system. Once changes are effected, Rainbow’s adaptation cycle
continues to monitor system states.

3.5 Adaptation Engineering Process

The Rainbow framework not only provides customizable components, but also allows engineers
to focus on adaptation-level concerns by enriching the adaptation design process with abstract
adaptation concepts like strategies, tactics, operators, effectors, gauges, and probes. Associated
with these concepts and the framework components, we have developed an iterative process to
engineer a system for self-adaptation. The aim of the process is to produce self-adaptive systems.
Integral to this process is a team of adaptation engineers who perform various adaptation engi-
neering roles—adaptation integrator, system adapter, gauge writer, style writer, tactic writer,
and strategy writer—to evolve and augment a target system with self-adaptation capabilities.

The process is focused primarily on gathering the necessary artifacts to customize the Rain-
bow framework, as illustrated briefly in Section 3.4 and detailed in Chapter 5. First, an adaptation
integrator queries the system owners for the business objectives to guide system self-adaptation
(e.g., “timely response,” “high-quality content,” “low provisioning cost”). The adaptation inte-
grator will later complete the customization of the self-adaptation framework. As we will show
in Chapter 4, the business objectives, in the form of utility functions and preferences over quality
dimensions, are critical for the decision-making process of self-adaptation.

Next, the adaptation integrator studies the target system to determine its architectural style
(e.g., N-tier) and to find an existing definition from a style library. If no existing style can be

37

reused, then a style writer would need to define a new style. Finally, the adaptation integrator
adapts the style to fit the target system and to produce a C&C architecture model (e.g., Zn-
nCSSystem). Access to architectural documentations from the software lifecycle of the target
system may expedite this modeling effort. In practice, style development most likely proceeds
incrementally as a combination of using an existing style (e.g., ClientServerFam) and refining it
to fit a new system.

Based on the quality objectives, the system adapter identifies pertinent system properties
for which to develop and deploy probes (e.g., ClientT.reqRespLatency and ServerT.fidelity), and
changeable states for effectors (e.g., changeFidelity.pl). Depending on the fit of the style, the
adaptation integrator adds constraints to the model (e.g., the invariant on line 13 of Figure 3.3)
to adapt for the objectives. In addition, the gauge writer finds or develops gauges to update the
architectural properties necessary for adaptation, and the adaptation integrator maps gauges to
corresponding probes. The adaptation integrator also establishes mappings between operators
and effectors, as discussed in Section 5.1.6.

With the help of the target system’s administrators, tactic and strategy writers then develop
tactics and strategies, which emulate how the sys-admins would adapt the system. Since tactics
and strategies form the decision-making elements, factors for decision also need to be described.
The adaptation integrator makes initial approximations of how each of the tactics impacts the
quality dimensions and develops relative weights for strategy selection using the elicited prefer-
ences over the same dimensions. We focus on these decision-making details in the next chapter.

Finally, the adaptation integrator hooks up these parts through the Rainbow framework, and
tests the roundtrip adaptation. Roundtrip testing is the integration test, and thus a crucial step,
of adaptation engineering. A very important feature of this process is the incremental devel-
opment and integration of adaptation functions, allowing iterative realization of overall system
self-adaptation capabilities. Undoubtedly, some upfront cost is required to develop the first archi-
tecture styles, gauges, effectors, etc. However, styles, gauges, probes, and effectors are reusable
artifacts; thus, building libraries of them will amortize cost and reduce adaptation engineering ef-
forts for future projects. Furthermore, strategies and tactics can be reused in systems with similar
styles and concerns. We discuss reuse further in Section 7.2.

3.6 Summary
In this chapter, we reiterated the requirements of generality, cost-effectiveness, and trans-
parency to engineer architecture-based self-adaptive systems. We highlighted software archi-
tecture, control theory, and utility theory as three important components of our approach. We
introduced a two-part Rainbow approach and framework for realizing the self-adaptation cycle,
which consists of generic infrastructures with customizable elements to enable monitoring, de-
tection, decision, and action. We illustrated the approach with the Znn.com example. Finally,
we described the iterative and incremental Rainbow adaptation engineering process. Next, we
present the language for self-adaptation.

38

Chapter 4

Stitch Self-Adaptation Language

This thesis aims to provide a cost-effective engineering approach to enable self-adaptation capa-
bilities, focusing specifically on automating mundane and routine system administration tasks.
Automating self-adaptation can reduce IT operation cost for many businesses, as argued in Sec-
tion 1.1. In the previous chapter, we provided an overview of Rainbow as an integrated frame-
work for self-adaptation that applies generally to different styles and quality objectives, and can
potentially save engineers time and effort adding and evolving adaptation capabilities to their
systems. To enable architecture-based self-adaptation, not only do we need the mechanisms to
monitor system states, detect problems, and effect adaptation changes, we also need a way to
capture routine human adaptation knowledge as explicit adaptation policies. By capturing what
to adapt for, when to adapt, and how to adapt, these policies provide the Rainbow mechanisms
instructions for automating adaptations.

In this chapter, we enumerate the requirements for an expressive language of self-adaptation,
in the context of Rainbow, and as motivated by the need to automate routine system adminis-
tration tasks. We present a language, called Stitch, which embodies the adaptation concepts of
operator, tactic, and strategy as first-class entities to capture a (a) system-provided command, (b)
single adaptation step with cost and benefit impact, and (c) packaged pattern of adaptation steps.
Stitch supports explicit representation of business objectives and relation of tactic costs and ben-
efits to objectives, reusable strategies of self-adaptation, a utility-based algorithm for strategy
selection, leverage of architectural style to support a broad spectrum of systems, the ability to
control timing, and the handling of uncertainty. Using the Znn.com example, we illustrate the
expressiveness of this language with respect to representing adaptation expertise and supporting
multi-objective trade-offs.

4.1 Rainbow Context for Language

While describing the overall Rainbow approach in Chapter 3, we alluded to features of a self-
adaptation language and briefly illustrated them using Znn.com in Section 3.4. To motivate the
requirements for this language, we first examine its role in the context of the overall framework
with respect to the adaptation process. Specifically, we consider what are the inputs and outputs
when the adaptation mechanism executes adaptations expressed in this language.

39

Revisiting the Znn.com example, when a client experiences above-threshold latencies, viola-
tion of the request-response constraint triggers the Adaptation Manager to initiate the adaptation
process, using information available in the architecture and environment models. Effectively, the
current system and environment conditions, as observed through Rainbow’s models, are used
to filter out the inapplicable strategies and to score the applicable subset. The highest-scoring
strategy is given to the Strategy Executor to be carried out on the target system.

The adaptation process requires both static and dynamic inputs to the mechanism. The static
inputs consist of the architectural style of the target system, a repertoire of strategies, and a
utility profile specification. The dynamic inputs include the architecture and environment model
instances and a trigger caused by one or more violated constraints.

To carry out adaptations, the framework provides a number of capabilities for evaluating
adaptation instructions. The Model Manager allows querying the elements and properties of
the architecture and environment models. For example, an expression written in the language
can query the Model Manager for the current value of the (gauge-updated) load property of a
server instance. The Strategy Executor provides access to the architectural operators defined by
the style. For instance, a statement written in the language can directly invoke the architectural
operator, startService to start an instance of a Service component in the target system (which
is translated to the equivalent system-level operations). Finally, the framework supplies various
library utilities, such as set operations, mathematical functions, and I/O operations.

4.2 Requirements for the Self-Adaptation Language
To automate adaptation tasks, we require a language sufficiently expressive to represent routine
human expertise, while flexible and robust enough to capture complex preferences. At an ab-
stract level the language will need to define operational self-adaptation concepts and support the
specification of a value system to enable choice of adaptation:

Concepts Define concepts that formalize the operational aspects of self-adaptation: the lan-
guage should allow one to express both low-level operations and high-level abstractions.

Value System Provide a way to specify value systems for comparing adaptations: the language
should enable representing quality objectives, preferences across the objectives, and the
impact of adaptations on those objectives.

Choice Apply the value system to select the best course of adaptation action: the language
should allow analyzing the best course of action given the specified objectives, preferences,
and adaptations.

As noted earlier, our approach to addressing the general problem of automated self-adaptation
is to focus on the specific domain of system administration. Hence, to determine the required
features of Stitch, we first examine the nature of system administration tasks.

4.2.1 Nature of System Administration Tasks
Imagine a sys-admin, Sam, who manages the Znn.com infrastructure. We consider the task,
knowledge, and cognitive model involved for Sam to keep Znn.com operational. Under normal

40

conditions, faced with the large number of system conditions to check, Sam chooses to monitor a
system property that has historically been a good indicator of problems, i.e., the average request-
response time. In general, the sys-admin monitors a few top indicators of opportunities for
improvement. The language should support capturing adaptation conditions.

To enable administration, the system generally provides a suite of basic operators to change
system states, such as starting an application, killing a process, or invoking specific system utility
commands. The language should take advantage of system-provided operators.

Although Sam might directly use a subset of the given operators in isolation, Sam typically
builds larger-unit actions to facilitate system adaptation. To form these reusable units of actions
or tactics, Sam has packaged frequently-performed sequences of operations into scripts, such
as instantiating a new web server or changing the content quality of active servers. Effectively,
the sys-admin has built up an arsenal of tactics to use at each adaptation step. Sam knows from
experience when to apply each tactic, what its costs and benefits are, and what outcome to expect.
Sam also treats each tactic as an abstract step of adaptation that runs to completion. The language
should support the definition of tactics.

In general, solving a problem may require more than one of these actions, with decision points
along the way involving intermediate observations of the system. For example, in response to a
problem, Sam typically follows a strategy from experience and carries out a number of adaptation
steps, with the aim of achieving a favorable aggregate impact over the whole path. In some
cases, this may involve putting the system temporarily in a state that provides fewer services
(e.g., rebooting a few servers). At each step in the strategy, Sam observes system conditions to
take a paired action; Sam may also decide to do nothing, or to complete or abort the strategy.
Because the exact outcome of an action is uncertain, after taking each action, Sam may wait for it
to take effect before taking the next step. The language should support the definition of strategies
composed of steps of condition-action-delay.

Assume that at some point Sam notices the average request-response time at Znn.com rising
above a maximum threshold. From the system state, Sam realizes that this rise is attributable to
either a performance or a security problem, but decides from observing the system conditions to
pursue a performance-improvement strategy. The language should support specifying conditions
of applicability for strategies.

But how does Sam know how to pick a strategy from among applicable ones? In the case of
systems like Znn.com, Sam manages the system to satisfy three quality objectives of concern to
the business, each objective signifying a dimension: (a) response time experienced by the cus-
tomers, (b) news content quality, and (c) server provisioning cost to Znn.com. In general, each
dimension has a measurable system property, and there might be a number of potentially conflict-
ing objectives. To facilitate resolving such conflicts, the business has notions of utility for, and
preferences across, the quality dimensions. The language should support characterizing quality
dimensions and utility preferences across the dimensions. Sam’s choice of adaptation strategy
must make an appropriate trade-off across the dimensions based on the utility preferences of the
business. The language should support utility-based strategy selection.

For example, there might be several performance-improvement strategies, including one
based on server load, another based on content fidelity, a smart one incorporating both, and a
sophisticated one that rejects a subset of requests. Before pursuing a particular strategy, Sam
considers several factors, including how many resources an action might require, how long the

41

action might take, and how much the action might improve the system. The language should
support characterizing cost-benefit attributes.

Continuing the example, with the smart performance-improvement strategy, Sam checks
server loads, observes high load, and concludes that there is a popular news event. Sam in-
vokes a script to enlist a free server into the server pool, then waits a few seconds to see if that
reduces the system load. Sam observes that the load is still high and invokes another script to
switch all the servers to textual mode so that the system can recover and fulfill pending customer
news requests. After waiting a little while, Sam observes that system load has improved and the
strategy has completed.

As another example, after switching all the servers to textual mode, Sam considers the size of
the server pool and the company operating budget to determine whether to increase the pool size
to serve more requests. With this increase in pool capacity, it turns out that Sam can switch the
servers back to multimedia mode. This case exemplifies an adaptation where Sam has identified
an opportunity for improvement rather than a problem to fix.

We summarize the concepts of self-adaptation from this analysis in Table 4.1 below.

4.2.2 Language Design Considerations

In addition to examining the nature of system administration tasks, we must also consider issues
in specifying adaptation expertise during the engineering phase and in executing adaptations
during the operation phase. These issues motivated the design of various constructs in the Stitch
language, which we present in the next section.

Designing self-adaptation capabilities for a target system typically requires considering mul-
tiple quality attributes, which depend potentially on different domain expertise and, thus, multi-
ple experts. An essential feature for a cost-effective approach to engineering self-adaptation is
to enable both per-concern knowledge capture and cross-concern adaptation engineering. We
want to enable different experts to capture their domain expertise individually for their particular
concerns (strategy conditions of applicability). In a separate phase, we want to be able to com-
pose and integrate expertise from domains relevant to the quality attributes of the target system.
This engineering scheme allows us to build a library of adaptation expertise incrementally and to
reuse expertise from system to system.

During adaptation operation, due to asynchrony of adaptation (cf. Section 8.2), there is often
uncertainty in (a) whether an observed problem condition is transient and (b) when an adaptation
action has taken effect in the target system. To cope with condition uncertainty, an effective
technique is to capture the conditions of applicability for an adaptation action and then verify that
condition at the moment of execution. To cope with effect uncertainty, an effective technique is
to designate a timing delay for the adaptation mechanism to wait and observe the effect.

As we present in the next section and discuss further in Section 8.4, we need three distinct
constructs of operator, tactic, and strategy for separation of concerns. Tactic-tactic and strategy-
strategy invocations complicate analysis, but loops within these constructs allow for repetition
and reuse of adaptation logic. Finally, restricting utility selection to only the strategy level allows
for adaptation steps that temporarily reduce target-system utility (e.g., reboot).

In fulfillment of the above requirements, we now present Stitch, the self-adaptation language.

42

Table 4.1: Stitch self-adaptation concepts motivated by the sys-admin’s tasks
Self-adaptation concept Sys-admin task, knowledge, model

operator Single command in system, e.g., kill process
tactic Script of commands with conditions + effects, e.g., addWebServer

cost-benefit attributes Factors considered in strategy choice w.r.t quality dimensions
strategy Pattern of adaptations with condition, action, and delay

conditions of applicability System conditions to decide what strategies are applicable

quality dimensions Business qualities of concern
utility preferences Business preferences over quality dimensions

adaptation conditions System indicators of opportunities for improvement

strategy selection Decision between strategy alternatives w.r.t. quality dimensions

4.3 Self-Adaptation Concepts of Stitch
Automating system adaptation requires formalizing three kinds of information to instruct the
machine to act automatically: for what to adapt, when to adapt, and how to adapt the system.
In this section, we show how Stitch captures these three kinds of information and describe its
execution context.

4.3.1 Overview
Based on our analysis of the sys-admin’s task, knowledge, and cognitive model, we can gener-
alize a number of core concepts for automated system self-adaptation, summarized in Table 4.1:
operator, tactic with cost-benefit attributes, strategy with conditions of applicability, quality di-
mensions, utility preferences, adaptation conditions, and strategy selection. In particular, we
identify the following list of language features:

1. Operator: An operator is a basic command provided by the target system. E.g., operator
stopService provided by the service-coalition style.

2. Tactic: A tactic defines an action, packaged as a sequence of commands (operators). It
specifies conditions of applicability, expected effects, and (in a separate customization
step) cost-benefit attributes to relate its impact on the quality dimensions. E.g., switchTo-
TextualMode, as shown later in Figure 4.2.

3. Strategy: A strategy captures a pattern of adaptations in which each step evaluates a set
of condition-action pairs and executes an action (tactic), possibly waiting for the action to
take effect. A strategy specifies conditions of applicability that determine in what contexts
it should be involved. E.g., SimpleReduceResponseTime, as shown later in Figure 4.3.

4. Quality dimensions: A quality dimension characterizes a business quality of concern as a
utility functions and maps it to a monitored architectural property. E.g., Average response
time (uR) is mapped to ClientT.experRespTime in the architecture and has the utility func-
tion defined by the points 〈(0, 1) , (500, .9) , (1500, .5) , (4000, 0)〉 to represent the utility
of average response time at 0, 500, 1500, and 4000 ms.

43

5. Utility preferences: Utility preferences capture business preferences over the quality di-
mensions. E.g., [w1 : 0.6, w2 : 0.3, w3 : 0.1] might represent preferences where dimension
u1 is twice as important as u2, and u2 is three times as important as u3.

6. Adaptation conditions: Adaptation conditions identify opportunities for improving the sys-
tem. E.g., invariant self.avg_latency < MAX_RESPTIME.

Revisiting the top-level language requirements on page 40, note that features 1–3 fulfill the oper-
ational concepts requirement and features 4–6, the value system requirement. The choice require-
ment is fulfilled by a strategy selection process that we discuss in Section 4.3.6. We now high-
light how the Stitch concepts express the important aspects of the Rainbow adaptation process
to enable automated system self-adaptation. Flowcharts of the adaptation process (Figure 4.4),
strategy execution (Figure 4.5), and tactic execution (Figure 4.6) are shown on pages 64–65.

1. When the Architecture Evaluator detects an adaptation condition, it triggers the Adapta-
tion Manager to initiate a round of adaptation.

2. The Adaptation Manager first checks the strategy conditions of applicability to filter a
subset of applicable strategies based on current system conditions (reflected in the model),
then selects the best strategy from the subset by computing the expected1 utility of each
strategy as follows (Section 4.4.2 explores the selection semantics):

(a) Compute the expected aggregate impact of each strategy on each quality dimension
using the cost-benefit attributes specified for the tactics;

(b) Score the strategies using the utility preferences over the quality dimensions; and

(c) Select the highest-scoring strategy.

3. The Strategy Executor evaluates the chosen strategy, which can be understood as a tree in
which nodes represent actions; edges, conditions; and the tree root, the initial node.

(a) The conditions preceding each tree level are evaluated against the model to determine
which branch applies. If more than one applies, a branch is chosen randomly.

(b) The tactic of the associated branch is executed, and its operators effected on the
target system via effectors.

(c) At the end of the tactic, the Strategy Executor observes the system (reflected in the
model) for the effect of the tactic to be achieved, up to a specified window of delay.

(d) Then the conditions of the next tree level in the strategy are evaluated, again, possibly
referencing the updated model.

(e) This continues until (i) done is reached, which terminates the strategy successfully
or (ii) fail is reached, which aborts the strategy and notifies a Rainbow administrator.

We now describe how the Stitch features are specified. We first present the value system features,
followed by the operational concepts, and finally the choice process.

1As we shall see in Section 4.3.5, there are uncertainties in the outcome of the tactic, so the computed cost-benefit
impact and utility are “expected” in the probabilistic sense.

44

4.3.2 Quality Dimensions, Utility Preferences, and Adaptation Conditions
As noted above, quality dimensions determine what to adapt for and correspond to the business
qualities of concern for the target system, e.g., concerns of system reliability, service availability,
or database performance. A quality dimension provides a notion of utility for particular values of
a quality attribute. Hence, each dimension defines a utility function and maps to an architectural
property monitored by Rainbow. As described below for the tactic, we quantify the impact of a
strategy on each of the quality dimensions to determine the merits of one strategy over another.

Table 4.2: Data schema for a Utility Profile
Field Description Definition Example

identifier A unique mnemonic string “uR”
label Human-readable name string “Average Response Time”

description Descriptive comment string “R, client experienced response
time (ms), float arch property”

mapping Monitored arch property string “ClientT.experRespTime”
utility function Type & domain-range linear | sigmoid | custom;

〈(x1, y1) , .., (xn, yn)〉
custom; 〈(0, 1) , (500, .9) ,

(1500, .5) , (4000, 0)〉

Each quality dimension is captured as a Utility Profile, its data schema summarized in Ta-
ble 4.2. The profile consists of an identifier, label, description, mapping to a monitored ar-
chitectural property, and utility function definition. The mapping refers to a property defined
in the architectural style, and allows designating a smoothing function (e.g., exponential aver-
age) for accumulating the series of property values. The utility function could be captured as a
linear or sigmoid function with two defining points, or an explicit set of value pairs (with inter-
mediate points linearly extrapolated).2 An example profile written in YAML [YAM04],3 from
Section 5.1.5, appears below:

1 u t i l i t i e s :
2 uR:
3 l a b e l : " Average Response Time "
4 mapping : " [EAvg] C l ien tT . experRespTime "
5 d e s c r i p t i o n : "R, c l i e n t experienced response t ime (ms) , f l o a t arch proper ty "
6 u t i l i t y :
7 0: 1.00
8 500: 0.90
9 1500: 0.50

10 4000: 0.00

Utility Preferences Utility preferences define the relative importance between the quality di-
mensions. Given a set of dimensions, it may be impossible to achieve all of them optimally due
to resource constraints (e.g., there is only sufficient bandwidth to fulfill objective X or Y, but not
both) and fundamental conflicts between certain quality attributes, such as performance and se-
curity (e.g., turning on intrusion detection reduces risk, but increases service latency). However,

2In the dissertation (see Chapter 8), we currently support only the latter.
3YAML is a standard, human-readable, indentation-sensitive, structured data format that is expeditious to convert

into Java collection objects and to translate into XML.

45

it is often possible to assign different levels of importance to the dimensions (e.g., X is valued to
be twice as important as Y). Utility theory provides a systematic technique to do so.

From utility theory [Wik08e], a von Neumann-Morgenstern utility function ud : Xd → R
assigns a real number to each quality dimension d, which we can normalize to the range [0, 1].
Across multiple dimensions, we can attribute a percentage weight to each dimension to account
for its relative importance compared to other dimensions. These weights form the utility pref-
erences. The overall utility is then given by the utility preference function, U =

∑
d

wdud. For

example, if three objectives, u1, u2, u3, are given decreasing importance as follows: the first is
twice as important as the second, and the second is three times as important as the third. Then
the business utility preferences would be quantified as [w1 : 0.6, w2 : 0.3, w3 : 0.1].

Adaptation Conditions As noted above, adaptation conditions indicate opportunities for im-
proving the target system and determine when to adapt. To automate system self-adaptation, we
define quantitative expressions with respect to specific quality dimensions, similar to a service-
level contract of an electronic stock exchange stipulating that premium trades must clear within
2 seconds of execution. After eliciting quality dimensions from the system owner, the adaptation
engineer identifies specific system properties that correspond to these dimensions and determine
measurable threshold quantities to define quality-of-service statements as adaptation conditions.
We specify, in the architecture model (cf. lines 9 and 13 in Figure 3.3), a measurable threshold
quantity as a system-instance architectural property and an adaptation condition as an architec-
tural constraint, a violation of which identifies an opportunity for adaptation:

1 / / t h resho ld q u a n t i t y (p roper ty def ined i n the s t y l e , value i n the ins tance)
2 Property MAX_RESPTIME : f l o a t = 1000.0;
3 / / adapta t ion c o n d i t i o n (def ined i n the s t y l e)
4 invar iant se l f . avg_latency < MAX_RESPTIME;

4.3.3 Operator

An operator represents a basic command provided by the target system; it corresponds to a
system-level effector as a primitive building block.4 The style writer (see Section 3.5) defines
the operators for a given style to specify the available changes on systems in that style. For
example, an architectural operator to stop a service, stopService, might translate to a system-level
effector that terminates the running service process. Other examples of operators are startServer,
setFidelity, and connectPipe.

Operators are not specified as part of Stitch, but rather, they are specified as part of the style
(not addressed by this thesis) and mapped to effectors (see Section 5.1.6). In Stitch, the operator
manifests itself as an identifier (the identifierPrimary term in Figure 4.1, line 20). In Figure 4.2,
the import statement on line 3 imports the operators provided by the Znn.com architectural style,
and the tactic statement on line 12 shows invocation of an operator. Note that operators may only
be invoked from within the action block of a tactic (via the statement form).

4In practice, the operator, though having a simple interface, may require a complex implementation.

46

1 # Note t h a t the grammar , w r i t t e n i n ANTLR, uses the f o l l o w i n g BNF convent ions :
2 # − lowercase term i d e n t i f i e s a non−t e rm ina l
3 # − uppercase term i d e n t i f i e s a te rmina l , whose lexeme should be deducib le from labe l , except :
4 # > IDENTIFIER : : = (UNDERSCORE) ∗ LETTER (UNDERSCORE | DOT | LETTER | DIGIT | MINUS) ∗
5 # > INTEGER_LIT : : = (DIGIT) + > FLOAT_LIT : : = (DIGIT) + (DOT (DIGIT) +)?
6 # > STRING_LIT : : = DQUOTE (~ ’ " ’) ∗ DQUOTE / / non−double−quote charac te rs
7
8 s c r i p t : : = MODULE IDENTIFIER SEMICOLON
9 (impor t) ∗

10 (f u n c t i o n) ∗
11 (t a c t i c) ∗
12 (s t r a t egy) ∗
13 EOF ;
14
15 impor t : : = IMPORT (LIB |MODEL|OP) STRING_LIT importRenameClause? SEMICOLON ;
16 importRenameClause : : = LBRACE importRenamePhrase (COMMA importRenamePhrase) ∗ RBRACE ;
17 importRenamePhrase : : = IDENTIFIER AS IDENTIFIER ;
18
19 f u n c t i o n : : = DEFINE dataType IDENTIFIER ASSIGN expression SEMICOLON ;
20 opera tor : : = i d e n t i f i e r P r i m a r y ;
21
22 t a c t i c : : = TACTIC s igna tu re LBRACE
23 (d e c l a r a t i o n SEMICOLON) ∗
24 CONDITION LBRACE (booleanExpression SEMICOLON) ∗ RBRACE
25 ACTION LBRACE (statement) ∗ RBRACE
26 EFFECT LBRACE (booleanExpression SEMICOLON) ∗ RBRACE
27 RBRACE ;
28
29 s t r a t egy : : = STRATEGY IDENTIFIER
30 LBRACKET booleanExpression RBRACKET
31 LBRACE (f u n c t i o n) ∗ (s t ra tegyExpr) ∗ RBRACE ;
32 s t ra tegyExpr : : = IDENTIFIER COLON strategyCond IMPLIES strategyOutcome ;
33 strategyCond : : = LPAREN (HASH LBRACKET strategyProbValue RBRACKET) ?
34 (booleanExpression | SUCCESS | DEFAULT) RPAREN ;
35 strategyOutcome : : = strategyClosedOutcome SEMICOLON
36 | strategyOpenOutcome (AT LBRACKET expression RBRACKET) ?
37 LBRACE (s t ra tegyExpr) + RBRACE ;
38 strategyClosedOutcome : : = DONE | FAIL
39 | DO LBRACKET (IDENTIFIER | INTEGER_LIT) ? RBRACKET IDENTIFIER ;
40 strategyOpenOutcome : : = IDENTIFIER LPAREN argExpress ionL is t RPAREN
41 | NULLTACTIC ;
42 st rategyProbValue : : = FLOAT_LIT | IDENTIFIER (LBRACE IDENTIFIER RBRACE) ?
43
44 argExpress ionL is t : : = expression (COMMA expression) ∗ ;
45 # boolean , quan t i f i ed , l o g i c a l , r e l a t i o n a l , and a r i t h m e t i c expressions
46 expression : : = . . . ; # see l i n e s 82−109 i n Appendix B on page 176
47 # one of the expressions i s a " pr imaryExpression , " which may be an " i d e n t i f i e r P r i m a r y "
48 i d e n t i f i e r P r i m a r y : : = IDENTIFIER (LPAREN argExpress ionL is t RPAREN) ? ;
49 # compound stmt , dec la ra t i on , expression , i f−stmt , fo r−stmt , whi le−stmt , or opera tor
50 statement : : = . . . | opera tor ;
51
52 s igna tu re : : = IDENTIFIER
53 LPAREN (dataType IDENTIFIER (COMMA dataType IDENTIFIER) ∗) ? RPAREN ;
54 d e c l a r a t i o n : : = dataType IDENTIFIER (ASSIGN expression) ?
55 (COMMA IDENTIFIER (ASSIGN expression) ?)∗ ;

Figure 4.1: Stitch grammar highlights (see Appendix B on page 175 for full grammar)

47

4.3.4 Tactic
A tactic, as distinguished from the operator, provides an abstraction that (a) packages operators
into larger units of change to form primitive steps of adaptation, and (b) serves as a logical
unit for specifying the cost and benefit impact of an adaptation step with respect to the quality
dimensions. In Stitch, the tactic construct is characterized as follows:
• It specifies a sequence of operators;
• It is guarded with a set of conditions that determine its applicability;
• It defines a set of effects that should be observed after sequence completion;
• Its execution context consists of the architectural style of the system (for reference to the

architectural types and operators) and model instance;
• During execution it accesses a read-only snapshot of the model instance, captured at the

time the tactic is invoked;
• It uses only operators, and provides action primitives to the strategy (Section 4.3.5); and
• It is specified with impacts on the quality dimensions of the system (Section 4.3.6).

The tactic offers an abstract primitive for adaptation that has separate concerns from the style-
defined operator to modify system elements. It provides a construct for attributing the impact of
adaptation on the target system, while allowing multiple operations to be packaged into a larger,
but conceptually single, step of change (e.g., setFidelity(1) for active servers).5 As a single
adaptation step, the tactic has access only to a snapshot of the architecture model at the start of
execution. The snapshot is not updated during tactic execution, so conditional statements within
the tactic can depend only on the initially known architectural state and not on intermediate
changes in system state. This single-step semantics also means that tactics cannot invoke other
tactics. Nesting tactics makes cycles possible, complicating not only the tactic’s single-step
semantics, but also the evaluation of its condition and effect blocks (cf. Section 8.4).

The Stitch grammar for the tactic is shown in Figure 4.1, lines 22–27. Before defining tactics,
the script first imports the namespace of the architecture model and the architectural operators
using the import statement (lines 15–17). The import statement allows renaming references with
shorter identifiers. As noted in Section 4.1, the Rainbow framework binds model references to
the model managed by the Model Manager, and translates the operators to system-level effectors.
In the tactic, the condition block (line 24) defines the condition of applicability for the tactic.
The action block (line 25) prescribes the specific operations for performing the tactic; it allows
assignment statements and basic control flow statements such as if-then-else, while-loop, and for-
loop. The effect block (line 26) defines the expected effect after executing the action block. Both
the condition and effect blocks allow first-order predicate expressions over model properties.

An example tactic to switch servers to textual mode is illustrated in Figure 4.2. The script first
imports (lines 1–3) the architectural style (T), the model instance (M),6 and the style operators.
The condition block (lines 6–8) specifies that there must exist at least one client component whose
experienced-response-time property exceeds a maximum threshold. The action block (lines 9–

5Note that this approach leads to no loss of generality because a single operator can be wrapped as a tactic.
6Note that reference to the model instance is necessary for quantification over generic instances of a certain type

(e.g., components of type T.ClientT), but does not impact reuse of the tactic nor the strategy.

48

1 module newssi te . t a c t i c s . example ;
2 import model " ZnnSys . acme" { ZnnSys as M, ZnnFam as T } ;
3 import op " newssi te . opera tor . ArchOp " { ArchOp as Sys } ;
4

5 t a c t i c switchToTextualMode () {
6 condition {
7 exists c : T . C l i en tT in M. components | c . experRespTime > M.MAX_RESPTIME;
8 }
9 action {

10 svrs = { select s : T . ServerT | ! s . isTextualMode } ;
11 for (T . ServerT s : svrs) {
12 Sys . setTextualMode (s , true) ;
13 }
14 }
15 ef fec t {
16 f o r a l l c : T . C l i en tT in M. components | c . experRespTime <= M.MAX_RESPTIME;
17 f o r a l l s : T . ServerT in M. components | s . isTextualMode ;
18 }
19 }

Figure 4.2: An example tactic switchToTextualMode

14) finds all the servers not already in textual mode and sets them to textual mode via a model-
provided operator with the signature, setTextualMode(ServerT, boolean). The effect block (lines
15–18) specifies that no Client should exhibit an above-threshold response time, and that all
Servers should be in textual mode.

A tactic terminates in one of four ways. In the normal case, the condition block evaluates to
true, signifying that the tactic is applicable; the action block completes, signifying no operators
have failed; and the effect block evaluates to true, signifying the tactic has achieved its aim. We
can identify three unsuccessful situations: (1) the condition block evaluates to false, signifying
inapplicability; (2) the condition block evaluates to true, but the action block fails to complete,
signifying some operator has failed; (3) the condition block evaluates to true, the action block
completes, but the effect block evaluates to false, signifying that the tactic has not achieved its
aim. We will see how tactic failure is handled in the strategy section below.

Cost-Benefit Attributes Cost-benefit attributes define the impact of a tactic on each of the
quality dimensions (e.g., disruption time, content fidelity), represented as a vector of dimension-
value pairs, where the value component captures delta value of cost or benefit. Thus, if a target
system owner defines three quality dimensions, u1, u2, u3, then the attribute vector would look
like [a1 : ∆v1, a2 : ∆v2,a3 : ∆v3]. For instance, tactic enlistServers for Znn.com is defined with
the cost-benefit attribute vector, [aR : −1000, aF : 0, aC : +1.00], which specifies that the tactic
is expected to reduce the average response time by 1000, to have no impact on content fidelity,
and to increase cost by 1. The delta values specify no units, but they are understood to have the
units of the quality dimension as defined in the utility profile. Excerpted from Section 5.1.5, the
example is shown below. By defining the cost-benefit attributes for a tactic, we capture causal
relationships between an adaptation step and the quality dimensions.

1 e n l i s t S e r v e r s :
2 uR: −1000
3 uF : 0
4 uC: +1.00

49

4.3.5 Strategy
A strategy encapsulates a path of adaptations where each step is the conditional execution of
some tactic. Conditions along the path allow us to make the path sensitive to how effective
the tactics are. Key features of the strategy are: (1) The choice of a tactic might depend on
intermediate result; in some cases, an intermediate step might put the system temporarily in a
state that provides fewer services or, more generally, reduces utility. (2) By introducing timing
delay, we can account for asynchrony in achieving the effect of a tactic on the target system. (3)
Probabilities on conditions allow us to handle inherent uncertainty about the effects of operations
on the system (useful for calculating expected utility, Section 4.4.2). In Stitch, the strategy is
characterized as follows:
• It is a tree of condition-action-delay decision nodes, with explicitly defined probability for

conditions and delay time-window for observing tactic effects;
• It specifies conditions of applicability as style, system, or quality domain constraints;
• Its execution context consists of the system style (for the types) and the set of tactics;
• During execution it allows intermediate system observations at each decision node; and
• It enables the computation of aggregate cost-benefit attributes for utility-based strategy

selection (Section 4.3.6).
The strategy embodies explicit decision choices and provides a packaging construct to constrain
adaptation to individual domains of expertise for tractable human reasoning. Its condition-action-
delay construct explicitly allows observation of the target system at decision points and provides
an intuitive handle on nondeterministic outcomes. The strategy packages multiple adaptation
steps as a conceptual unit of adaptation that improves the target system, even if an intermediate
step temporarily reduces target-system utility. This conceptual unit is the level at which com-
position of adaptations is feasible for achieving multiple objectives. A strategy cannot invoke
another strategy (cf. Section 8.4), as it is unclear (a) how to reconcile the conditions of appli-
cability in the called strategy, (b) what it would mean for a strategy written for one quality to
invoke a strategy intended for a different quality, and (c) how to handle recursive invocations.
Furthermore, utility-based scoring of nested strategies would be greatly complicated.

We model the strategy syntax after Dijkstra’s Guarded Commands Language [Dij75], which
provides condition-action and while-loop constructs. The strategy grammar is shown on lines
29–42 of Figure 4.1. Before defining strategies, as before, the script first imports the namespace
of the Rainbow model, tactics, and Rainbow-provided library utilities. Next, the script defines
functions and then strategies. Functions (line 19) can appear at the beginning of a Stitch script or
a strategy and can access the model. They compute one type of value from an expression (lines
45–46). The complete semantics and syntax of a strategy are explained through a simple strategy
from the Znn.com example to reduce system response time, shown in Figure 4.3. At the top, the
script imports (lines 2–5) the namespace of the architecture (T & M) and environment (E) models,
the tactic defined in Figure 4.2, and library utilities (Model, for querying the model).

The strategy is first specified with its condition of applicability, usually evaluated against the
model. Strategy SimpleReduceResponseTime specifies the expression, styleApplies && cViolation,
as its condition of applicability (line 11). The Boolean function styleApplies (line 7) checks
whether the model defines two architectural types used in the strategy. The Boolean function

50

1 module newssi te . s t r a t e g i e s . example ;
2 import model " ZnnSys . acme" { ZnnSys as M, ZnnFam as T } ;
3 import model " ZnnEnv . acme" { ZnnEnv as E } ;
4 import l i b " newssi te . t a c t i c s . example " ;
5 import op " org . sa . rainbow . s t i t c h . l i b .∗ " ; / / Model , Set , & U t i l
6
7 define boolean s t y l e A p p l i e s = Model . hasType (M, " C l ien tT ") && . . . " ServerT " . . . ;
8 define boolean c V i o l a t i o n =
9 exists c : T . C l i en tT in M. components | c . experRespTime > M.MAX_RESPTIME;

10
11 strategy SimpleReduceResponseTime [s t y l e A p p l i e s && c V i o l a t i o n] {
12 define boolean hiLatency =
13 exists conn : T . HttpConnT in M. connectors | conn . la tency > M.MAX_LATENCY;
14 define boolean hiLoad =
15 exists s : T . ServerT in M. components | s . load > M. MAX_UTIL ;
16
17 t1 : (# [Pr { t1 }] h iLatency) −> switchToTextualMode () @[1000 /∗ms∗ /] {
18 t1a : (success) −> done ;
19 }
20 t2 : (# [Pr { t2 }] hiLoad) −> e n l i s t S e r v e r (1) @[2000 /∗ms∗ /] {
21 t2a : (! hiLoad) −> done ;
22 t2b : (! success) −> do [1] t1 ;
23 }
24 t3 : (defaul t) −> f a i l ;
25 }

Figure 4.3: An example strategy SimpleReduceResponseTime

cViolation (lines 8–9) checks for the violation condition that any client is experiencing above-
normal response time. If the applicability condition evaluates to false at strategy selection time,
then the Adaptation Manager would not include this strategy for utility-based selection. On the
other hand, if the applicability condition is satisfied and this strategy is selected, then the top-level
nodes in the strategy body, labeled t1, t2, and t3 in this example, are considered.

The example strategy defines two Boolean functions, hiLatency (lines 12–13) and hiLoad (lines
14–15). In node t1 (lines 17–19), if condition hiLatency evaluates to true, then tactic switchToTex-
tualMode is executed (line 17 after arrow). Since there is typically a delay to observe the outcome
of tactic execution in the system, t1 specifies up to 1000 milliseconds (end of line 17) for observ-
ing the tactic effect. The only child node of t1 is t1a (line 18). In a strategy, the keyword success
is a Boolean condition to indicate whether the parent-node tactic completed successfully. In
the example, the success condition of node t1a evaluates to true if tactic switchToTextualMode
completes successfully, or false if the tactic fails due to one of the three situations identified in
Section 4.3.5. In the successful case, the keyword done is evaluated.

In a strategy, the keyword done signifies that the adaptation aim of the strategy has been
achieved and terminates the strategy successfully, while fail signifies that the adaptation aim has
not been achieved and aborts the strategy (a Rainbow administrator is alerted of this outcome).
The keyword default is a Boolean condition to indicate whether none of the peer-node conditions
in the branch level matches. If no default branch is defined, then one is implied with a fail
terminator. In the example strategy on line 188, under unsuccessful cases, since no other peer
nodes match, the implied default branch is chosen.

If condition hiLatency evaluates to false but hiLoad is true, then node t2 (lines 20–23) would be
evaluated and tactic enlistServer executed to enlist an available server. Again, due to asynchrony,

51

t2 specifies up to 2000 ms for observing the tactic effect. In the case that hiLoad is true and tactic
enlistServer does not succeed, child node t2b is chosen and the do-repetition is evaluated, which
is semantically equivalent to repeating the subtree rooted at node t1 as a child node, t1’, of t2b.
Evaluation proceeds with the hiLatency condition of node t1’: if true, then the rest of the node is
evaluated as described before; if false, then the implied default branch aborts the strategy. The
[1] (default to 3 if unspecified) indicates the number of times the do repetition can occur within a
single evaluation of this strategy if the do node is revisited (not illustrated by this example).

In the example strategy, if both top-level node conditions hiLatency and hiLoad are true, then
one is chosen randomly. An alternative to choose by utility would not only add computation
overhead, but also render the original strategy utility score meaningless. If neither hiLatency
nor hiLoad is true, then node t3 is chosen, and the strategy aborts. Note that this strategy has five
termination points: nodes t1a and t2a define two success points, node t3 defines an explicit failure
point, and nodes t1 and t2 have two implicit child-level failure points.

When a strategy fails, any unresolved adaptation conditions are handled subsequently through
the normal cycle of triggering adaptation conditions and further strategy execution. The Adap-
tation Manager also has a basic learning feature: It tracks the historical failure rate of each
strategy—its failure count divided by selection count—and incorporates that failure rate in the
scoring process for strategy selection. The rationale for tracking just the failure rate is that, when
a strategy g has been selected for execution, it is the best match for some set of conditions c.
Failure of g decreases the confidence that c would indicate the applicability of g the next time
around, without needing to consider the exact conditions under which g failed, so no additional
statistics need to be tracked for g. Once the adaptation engineer turns on this learning feature and
defines the strategy-failure utility profile, the framework automatically incorporates strategy fail-
ure rates as a utility component in weighted-scoring. This feature gives the adaptation engineer
control over how likely a strategy is selected in the future if it has been prone to failure.

Because there is uncertainty in whether (a) a tactic achieves its intended effect and (b) a
condition is observed, we estimate the likelihood of observing the branch conditions. As we
shall see in Section 4.4.2, stochastic branch conditions allow an aggregate attribute vector to
be computed for each strategy in utility-based selection, described next. The probabilities can
be captured explicitly for each strategy node condition. The Pr{*} expression preceding each of
the conditions of t1 and t2 (lines 17 and 20) denotes the estimated probability that the condition
will evaluate to true among the peer-node conditions. Actual probability values are defined in a
separate property file and not significant during strategy evaluation. Probabilities for peer-node
conditions sum to 1; thus, in the example, t3’s probability is an implied complement.

Although we have used a simplified strategy to illustrate the Stitch syntax, Stitch is suffi-
ciently expressive for defining more elaborate strategies. For example, one could use loops to
repeat a path of tactics until a condition is observed. One could also use set quantification to con-
dition adaptations on a partial subset of model elements. A couple of more interesting examples
from the Znn.com system can be found in Appendix C on page 184.

4.3.6 Strategy Selection
When faced with a system problem and multiple adaptation alternatives to choose from, the sys-
admin considers business objectives and combines heuristics with past experiences to analyze

52

trade-offs and determine the best course. To automate this process, in Rainbow the Adapta-
tion Manager weighs the alternative strategies against the quality dimensions by evaluating the
expected aggregate utility of each applicable strategy using the specified utility profiles and pref-
erences for the quality dimensions.

Once we have defined cost-benefit attributes for each tactic and specified utility preferences
over the quality dimensions, we are only steps away from selecting a strategy (formalized in
Section 4.4.2) that is most applicable to the current system conditions and that balances across
the quality dimensions. The next step is to compute the expected aggregate attribute vector for
each strategy. Recall that a strategy is composed of a tree of tactics, and the condition of each
node has a likelihood of matching. Computing the aggregate vector consists of descending the
strategy tree, unfolding do-repetitions as described in the strategy section above, and collecting
the cost-benefit attribute values of each tactic. If a do node is revisited more than once, and no do
counter is specified, then it is unfolded a finite number of times so that the recursion terminates.
(Although the default count is 3, we could instead terminate recursion when the net impact to the
path probability of unfolding another step falls below some small ε, e.g., ε < 0.01.)

The probabilities defined (or implied) for the conditions allow the attribute values to be prop-
agated up the strategy tree and eventually collected into an expected aggregate attribute vector.
The vector values designate aggregate delta costs and benefits against the quality dimensions, so
they are combined with architectural property values representing current system conditions, as
identified by the mappings of corresponding quality dimensions (e.g., the exponential average
of the client-experienced response time for the uR dimension). Using the utility profiles, these
aggregate values are converted to utility values per dimension, then a weighted sum is computed
using the preference weights to yield an expected utility score for each strategy. Finally, the
Adaptation Manager selects the strategy with the highest score, which is expected to achieve the
highest system utility when executed successfully.

Having presented the core features of Stitch, we now explore the semantics of its constructs.

4.4 Semantics of Stitch Constructs

We define the self-adaptation semantics of Stitch in correspondence with three important aspects
of the language: adaptation constructs, utility-based strategy selection, and execution of adapta-
tion. In this section, we first present an abstract machine and mathematical process to formalize
the adaptation process and establish a common mathematical basis to relate the Stitch constructs.
We then describe an algorithm for computing aggregate cost-benefit attribute vectors to facilitate
utility-based strategy selection. Finally, we present the operational semantics for evaluating a
Stitch script to execute an adaptation during the adaptation process.

4.4.1 Model of Adaptation

We now present an abstract machine and mathematical process to formalize the Rainbow adap-
tation process and provide semantics for the Stitch concepts: adaptation conditions, tactic, and
strategy. As we will see, the core constructs of Stitch, summarized in Table 4.1 and defined

53

by the grammar as in Figure 4.1, correspond to elements of a Markov Decision Process (MDP)
(except for one minor mismatch discussed in Section 8.4).

A Markov process is a mathematical model that is useful in the study of complex systems,
using the basic concepts of state of a system and state transition [How60]. An MDP is a math-
ematical framework built upon the concept of a Markov process to model problems in which
outcomes are partly under the control of a decision maker and partly nondeterministic. Formally,
an MDP is a discrete-time stochastic control process defined by a four-tuple,

M = (S,A, P·(·, ·), R(·))

where
• S is a countable set of possible states, with an initial state S0

• A is a countable set of actions
• P·(·, ·) is a transition probability matrix (by definition, the rows sum to 1), and
• R(·) is an immediate reward function with range [0, 1]

The state of the system changes over time due, in part, to the action choice of the decision maker.
In each state, s ∈ S, there are a number of actions, a ∈ A, from which the decision maker may
choose. The destination state, s′ ∈ S, is determined according to the transition probability matrix
P·(·, ·). Specifically, Pa(s, s′) = Pr(st+1 = s′ | st = s, at = a) where t is the current time. That
is, Pa(s, s′) is the probability of going into state s′ at time t+1 when the decision maker chooses
action a while in state s at time t. When the decision maker is in state s, an immediate reward
equal to R(s) is earned. Earned rewards accrue over time.

The goal of the decision maker is to accumulate the maximum reward possible over time,
typically with a discount rate of γ on future rewards,

∑∞
t=0 γ

tR(st), where 0 < γ ≤ 1 (usually a
few percent under 1). This is accomplished by solving for the optimal policy Π, which specifies
the best action to choose in each state.

To formalize Stitch, we start with the managed system and represent its states as conjunctions
of its architecture-model predicates. Formally, let AP be a set of atomic propositions—i.e.,
Boolean expressions over variables, constants, and predicate symbols—which compose the set
of architectural predicates. We define L as an interpretation function that maps a set of AP s
from the architecture model to a state in the MDP, L : 2AP → S. For example, if the architecture
model indicates an instance s: ServerT with a load property, s.load, that is below a threshold
value Loadmax, then the following conjunction describes this example state, seg ∈ S:

seg = L (hasInstance(s) ∧ declaresType(s, ServerT) ∧ ¬s.load ≥ Loadmax)

We define a trap state to capture error states. Furthermore, we interpret the complement of
the MDP discount factor, 1 − γ, as the probability of an error occurring that is not modeled in
any of the states. For the MDP to be useful, 1− γ is usually a low, single-digit percentage value;
otherwise, the MDP reaches negligible probability after a few iterations.

Let T be the set of tactics. A tactic t ∈ T is defined as a sequence of operators (whose seman-
tics are unspecified in our model). Given a set, OPERATOR,7 define T : seqOPERATOR,

7We will represent unspecified types (without further structure) in all caps, similar to Z basic types.

54

and define the null tactic, tNULL ∈ T , as the null sequence, tNULL = 〈 〉. tNULL is unique
because

∃t : T • t = tNULL ∧ ∀t′ : T | t′ = tNULL • t = t′

Tactics are treated as atomic adaptation primitives each corresponding to an action, a ∈ A, which
transitions the system nondeterministically from a state s to a destination state s′, i.e., T ⊆ A.

Let G be the set of strategies. A strategy g ∈ G is defined as a tree over a set of vertices
V and a set of edges E : V × V . The vertices correspond to the tactics, V ⊆ T . To simplify
predicates that characterize the strategy, we first define a few convenience functions:

root : G→ V

children : V → RV
edge : V × V → E

pred : E → V

succ : E → V

cond : E → PAP
prob : E → [0, 1]

The function root (g) gives the tree root of strategy g and children (v) gives the child vertices
of vertex v; edge (v1, v2) gives the edge that connects the two vertices v1, v2; pred (e) gives
the predecessor vertex and succ (e), the successor vertex, of e; cond (e) defines the matching
condition for edge e as a predicate of atomic propositions; and prob (e) defines the likelihood of
a transition across edge e.

To allow the aggregate expected value to be computed meaningfully over a strategy tree (see
Section 4.4.2 below), the probabilities of all the branches from a vertex must sum to 1:

∀v ∈ V • sum ({e ∈ E | v = pred (e) • prob (e)}) = 1

To handle the situation where no branch from a vertex has a matching condition, we require every
source vertex to define a default branch that applies when no other conditions match:

∀v ∈ V • ∃e ∈ E | v = pred (e) • cond (e) = AP −
⋃

e′∈E,e′ 6=e

cond (e′) ∧ succ (e) = FAIL

In relation to the MDP model, M, the condition on every branch maps to corresponding state
propositions, and the estimated probability of a transition that results from a tactic maps to the
transition probability of a corresponding action:

∀e ∈ E • ∃a1, a2 ∈ A | a1 = pred (e) ∧ a2 = succ (e) •
∃s1, s2, s3 ∈ S | Pa1 (s1, s2) > 0 ∧ Pa2 (s2, s3) > 0•

Pa1 (s1, s2) = prob (e) ∧ L(cond (e)) = s2

In essence, strategy g maps into a subgraph of M, where the branch condition of a node t0
in g corresponds to a state st0 in M, the node t0 corresponds to a transition action at0 from st0,
the branches from t0 correspond to the nondeterministic target states from at0, and so on. The
probabilities on the strategy branches correspond to the MDP transition probabilities. The tactic
observation delay time in the strategy is captured as an action effect of the MDP transition.

55

4.4.2 Utility-Based Strategy Selection
We now present the semantics for the Stitch concepts quality dimensions, cost-benefit attributes,
utility preferences, and strategy selection, and describe an algorithm to compute the expected
aggregate cost-benefit attribute vector, EAAV , for strategy selection.

Quality dimensions enable quantitatively capturing goals for achieving certain runtime qual-
ity attributes, where each attribute has a name and a range of values. An attribute might be a cost,
such as resource consumed, or a benefit, such as reduction in response time, but in computing
aggregate values, we accumulate units of each in the same manner, so we need not make a formal
distinction. We uniformly accumulate values by the sum operator + regardless of attribute type
because, at the strategy level, tactics are evaluated sequentially. Thus, we formalize a quality at-
tribute simply as an identifying label (e.g., “disruption”) and a value range, where the unspecified
range type might be real, enumerations, or even a dimensional unit, but it must be cardinal:

QT , (LABEL,RANGE)

For each target system, we define a set of quality attributes, A, with q elements of QT :

A ≡ {ai, · · · , aq ∈ QT}

The precise list differs by system, but we show one example below:
Aeg ≡ {a1, a2, a3, a4} =

{
(budget, $) , (disruption, {1, 2, 3, 4, 5}) ,

(response_time,N ms) , (content_fidelity, {1, 2, 3, 4, 5})
}

The set A forms an q-dimensional space of attribute values, SAV , for the target system, each
dimension having the range defined by ai:

SAV , RANGE1 × · · · ×RANGEq

A point in this space is represented by a vector (v1, · · · , vq), subscripted by dimension i ∈
N [1, q], where each value vi falls within the range defined by ai.

For each tactic, there is a cost-benefit attribute vector that describes the expected cost incurred
and benefit delivered by a tactic when it completes. The value elements in this vector represent
delta cost or delta benefit values for corresponding attributes; hence, we define a delta space,

dSAV , dRange (1)× · · · × dRange (q)

where the values of each dimension i range from the negative to the positive of the maximum
magnitude of differences between any values of RANGEi in SAV :

dMax(R : PRANGE) ≡ max {v1, v2 ∈ R • |v1 − v2|}

dRange (i ∈ N [1, q]) ≡ [−dmax (RANGEi) ,+dmax (RANGEi)]

We define a function, cbav : T → dSAV , to get the cost-benefit attribute vector of tactic t.
A utility curve captures how happy the target system owner would be with particular values

of an attribute. We define a set of utility functions where each element is a function that maps
the value of the corresponding attribute ai ∈ A to a utility value in the range R [0, 1]:

ui : RANGEi → R [0, 1]

56

The overall utility function, U , computes the scalar utility of a point in the attribute vector space,
in effect accounting for relative priorities between the attributes. To compute U , we define the
relative priorities between the attributes by a set of weights, W , which must sum to 1:

W ≡ {w1, · · · , wq ∈ R [0, 1]} , where
q∑

i=1

wi = 1

U : SAV → R [0, 1] =

q∑
i=1

wiui

Together, the tuple (A,W,U) defines the utility profile and preferences for the target system
to enable utility-based strategy selection. The utility function U corresponds to the expected
immediate reward function R (·) in MDP: it computes the utility score of an architectural state.

Using the branch probabilities and the attribute vector of each tactic in a strategy tree, we
can compute the expected aggregate attribute vector, EAAV : G → SAV , over the strategy
at its root node. Given any tree node x, with children nodes children (x) and branch probabil-
ities defined by p (x, c) ≡ prob (edge (x, c)), the aggregate attribute vector function, AggAV ,
recursively computes the sum of (a) the cost-benefit delta values of the current node and (b) the
aggregate attribute vector of each child node weighted by its branch probability; at a leaf node,
the second term yields zero:

AggAV (x) = cbav (x) +

{
0 if children (x) = �∑

c∈children(x) p (x, c)AggAV (c) otherwise

Then, EAAV is the vector sum of the aggregate attribute vector at the root of a given strategy,
with the attribute vector of the current system state, sysAV ∈ SAV :

EAAV (g) = sysAV + AggAV (root (g))

Finally, we select from the set of applicable strategies the one that yields the maximum utility,

max
g∈G
{U (EAAV (g))}

The strategy selection algorithm directly implements the mathematics described above, using
dynamic programming for the recursive aggregate attribute vector function. The complexity of
the algorithm depends on the number of quality dimensions, q = |A|, the number of nodes per
strategy tree, n = |g ∈ G|, and the number of strategies, s = |G|.

For function AggAV , in the worst-case, at each node and for each dimension, three com-
putation operations are required for attribute value lookup, addition, and multiplication (3qn).
For function EAAV , one addition is required per quality dimension (q). For function U , in the
worst-case, six arithmetic operations are required per dimension, ui, for linear extrapolation us-
ing the slope-intercept formula: y = y2−y1

x2−x1
(x− x2)+y2; a multiplication is required per weight,

wi; and a total of q − 1 additions are required to compute the sum (6q + q + q − 1).
In sum, the algorithm before the selection step requires (3n+ 9) q−1 operations per strategy.

Finally, the max computation requires a total of s− 1 comparisons, so the overall strategy selec-
tion algorithm requires [s ((3n+ 9) q − 1) + s− 1] operations, which reduces to (3n+ 9) qs−1.

57

For large numbers of dimensions, nodes per strategy, and strategies, the complexity of the utility-
based strategy selection algorithm is O (nqs).

Utility theory enables fair comparison of strategies that adapt for different quality dimensions.
It allows us to dynamically compute trade-offs between possibly conflicting interests, provided
we can elicit and capture business utility preferences and estimate strategy branch probabilities
(see Section 9.2.2). By allowing strategies of that address particular quality dimensions to be
chosen to adapt the target system, a utility theoretic approach allows composing adaptations
across multiple dimensions to accomplish multiple, possibly conflicting objectives.

4.4.3 Adaptation Execution
Here we present a big-step operational semantics8 for evaluating a Stitch script, particularly the
strategy and tactic. We first define the metavariables, which identify different types of terms.
We then present Stitch’s abstract syntax and the evaluation rules. We conclude this section with
flowcharts to illustrate strategy and tactic execution in the context of the adaptation process.

In Stitch, the execution context depends on the architecture and environment models, which
are available within a script once imported by the script. For simplicity, we do not specify model
structures but treat the models as a blackbox, accessible via M . Assume that, during Stitch script
parsing, the parser creates a function table (FT) for the define statements in the script, a method
table (MT) for the invoked methods, and a strategy node table (NT) for the strategy nodes of
each strategy. The function table allows looking up the defined expression of a function; the
method table, the body of a method. The node table allows looking up a strategy node by the
node label, and ensures that label l is unique within the scope of a strategy.

v ∈ Values values: true, false, N, R,String
nv ∈ Num number literals
S, AS, SAS ∈ Stmt statements
x, y, arg ∈ Var program variables; rv, rop, rtt, rsg: return variables
a ∈ AExp arithmetic expressions
P ∈ BExp Boolean predicates
s ∈ SExp set expressions
e ∈ Exp expressions (Exp = AExp ∪BExp ∪ SExp)
m ∈ Method invokable methods; rv: method return value
f ∈ Function defined functions; fa, fb, fs: corresponding value types
archOp ∈ ArchOp architectural operators; rop: Boolean return state
l ∈ Label uninterpreted label identifiers
T ∈ Tactic tactics; TNULL: null action; rtt: Boolean return state
G ∈ Strategy strategies; rsg: Boolean return state
GC ∈ Cond strategy conditions (Cond = BExp ∪ {default})
GA ∈ Action strategy actions
GN ∈ Label×Cond×Action strategy nodes

E,M ∈ Var→ Value execution context for vars and arch and envt models

8Notational conventions: metavariable, MetaSet, keyword, programvalue, mathvalue

58

MT ∈ Method→ seqVar× Stmt method table
FT ∈ Function→ seqVar×Exp function table
NT ∈ Label→ Cond×Action strategy node table

The abstract syntax of Stitch appears below. Prefix increment and decrement expressions are
rewritten as arithmetic assignment statements (e.g., x := a + 1). Relational operator archQry
represents typical queries on the architecture model, such as isConnected() or declaresType().

E ::= � (empty context)
| E, x 7→ v (variable-value binding)

M ::= �
| M,x 7→ v

G ::= strategyP 〈GN〉
GN ::= l : GC GA

| GN1;GN2

GC ::= PG

| default
GA ::= T 〈GN〉

| do a l
| done
| fail

T ::= tactic SAS condP actS effP
| TNULL

S ::= skip
| archOp
| AS
| S1;S2

| ifP thenS1 elseS2

| whileP doS

AS ::= x := a
| x := P
| x := s
| x := m

SAS ::= AS
| SAS1; SAS2

archOp ::= skip
| error

v ::= nv
| true
| false

59

| {v1, · · · , vn}
| errval

a ::= x
| fa

| nv
| a1 opa a2

P ::= x
| fb

| true
| false
| not P
| P1 opb P2

| a1 opr a2

| forallx in s|P
| existsx in s|P

PG ::= P
| success
| not PG

| PG opb P

s ::= x
| fs

| {}
| {v1, · · · , vn}
| {x in s|P}

e ::= a | P | s
m ::= method (arg)
f ::= function (arg)
arg ::= x

| arg1, arg2

opa ::= + | - | * | / | %
opb ::= && | || | -> | <->
opr ::= <= | < | == | != | > | >=| archQry

We now present the evaluation rules, with computation followed by reduction rules. In all
cases, the complete context consists of Mtest;Mop;E, where the two Ms are the model context
andE is the variable context. The firstM represents the model state against which archQrys are
evaluated, while the secondM reflects the updated model state (e.g., after an archOp execution).
In most cases, the two Ms reflect the same model state; however, in rules pertaining to the
architectural operator and tactic, Mtest and Mop differ to model the semantics that tactics do not
see changes to the architecture model. To reduce visual clutter, the first M is often omitted;
wherever only E appears, M ;M are implied in order, and they can be in an arbitrary state.

60

Note that rule reduce-sequenceNormal indicates the possibility of Mop changing arbitrarily
between statements. In addition, two meta-functions are used in two rules: remvElem removes
an element from a given set and returns the removed element; random randomly returns one of
the supplied values.

E ` v ⇓ value
Expression Evaluation

v ⇓ v (eval-val)

E [x] = v

E ` x ⇓ v
(eval-var)

E ` P ⇓ x E [x] = v

E ` P ⇓ v
(eval-bool)

E ` a ⇓ x E [x] = v

E ` a ⇓ v
(eval-arith)

E ` a ⇓ v E ` a′ ⇓ v′

E ` a opa a′ ⇓ v opa v′
(eval-oparith)

E ` true ⇓ true (eval-true)

E ` false ⇓ false (eval-false)

E ` P ⇓ v
E ` not P ⇓ not v

(eval-not)

E ` P ⇓ v E ` P ′ ⇓ v′

E ` P opb P ′ ⇓ v opb v′
(eval-opbool)

E ` a ⇓ v E ` a′ ⇓ v′

E ` a opr a′ ⇓ v opr v′
(eval-oprel)

∀v ∈ s E ` [v/x]P ⇓ true
E ` forallx in s|P ⇓ true

(eval-foralltrue)

∃v ∈ s E ` [v/x]P ⇓ false
E ` forallx in s|P ⇓ false

(eval-forallfalse)

∃v ∈ s E ` [v/x]P ⇓ true
E ` existsx in s|P ⇓ true

(eval-existstrue)

∀v ∈ s E ` [v/x]P ⇓ false
E ` existsx in s|P ⇓ false

(eval-existsfalse)

E ` archOp ⇓ E
Skip and Architectural Operator Reduction

E ` skip ⇓ E (reduce-skip)

E ` error ⇓ E, rop 7→ errval (reduce-error)

61

M ;M ;E ` archOp ⇓M ;M ′;E (reduce-archOpSuccess)

M ;M ;E ` archOp ⇓M ;M ′;E, rop 7→ errval (reduce-archOpFail)

E ` x := sub (v̄) ⇓ E, x 7→ v
Method and Function Reduction

E `MT [m] = (x̄, S) [x1 7→ v1, · · · , xn 7→ vn] ` S ⇓ E ′

E ` x := method (v̄) ⇓ E, x 7→ E ′ [rv]
(reduce-methodinvoke)

E ` FT [f] = (x̄, e) [x1 7→ v1, · · · , xn 7→ vn] ` e ⇓ v
E ` x := function (v̄) ⇓ E, x 7→ v

(reduce-functioncall)

E ` a ⇓ v

E ` S ⇓ E′
Statement Reduction

E ` a ⇓ v
E ` x := a ⇓ E, x 7→ v

(reduce-assign)

M ;E ` S1 ⇓M ′;E ′ M ′′;E ′ ` S2 ⇓M ′′′;E ′′

M ;E ` S1;S2 ⇓M ′′′;E ′′
(reduce-sequenceNormal)

M ;E ` S1 ⇓M ′;E ′ E ′ [rop] = errval

M ;E ` S1;S2 ⇓M ′;E ′
(reduce-sequenceError)

E ` P ⇓ true M ;E ` S1 ⇓M ′;E ′

M ;E ` ifP thenS1 elseS2 ⇓M ′;E ′
(reduce-iftrue)

E ` P ⇓ false M ;E ` S2 ⇓M ′;E ′

M ;E ` ifP thenS1 elseS2 ⇓M ′;E ′
(reduce-iffalse)

M ;E ` ifP thenS1 else skip ⇓M ′;E ′

M ;E ` ifP thenS1 ⇓M ′;E ′
(reduce-ifthen)

E ` P ⇓ true M ;E ` S; whileP doS ⇓M ′;E ′

M ;E ` whileP doS ⇓M ′;E ′
(reduce-whiletrue)

E ` P ⇓ false

E ` whileP doS ⇓ E (reduce-whilefalse)

M ;E ` Si; whileP do (S;Sf) ⇓M ′;E ′

M ;E ` for (Si;P ;Sf) doS ⇓M ′;E ′
(reduce-forloop)

M ;E ` x := remvElem (s) ; while s!= {} do (S; x := remvElem (s)) ⇓M ′;E ′

M ;E ` for (x : s) doS ⇓M ′;E ′
(reduce-foreach)

Because the state of the target system, as reflected in the architecture and environment mod-
els, can change arbitrarily, we reflect that change in Mop after evaluating a statement in rules
reduce-tactic* and a tactic in reduce-strategyTactic. Additionally, in rule reduce-strategyTactic,
notice that Mtest “synchronizes” with Mop after evaluating a tactic and before the next level of
strategy nodes, and the value of the context variable rop is “reset” before proceeding with the
next level of strategy nodes so that the next tactic invocation does not simply fail. To capture

62

the semantics that, during tactic evaluation, statements do not see changes to the model, Mtest

remains unchanged. After tactic evaluation, E is only modified by the tactic return state indicat-
ing whether tactic execution succeeded or failed. In rules reduce-strategyDo*, cntldo

is a counter
variable unique to each do node to track the number of times the do node has been visited.

E ` T ⇓ E, rtt 7→ v
Tactic Reduction

E ` TNULL ⇓ E, rtt 7→ true
(reduce-

nullTactic)

E ` SAS ⇓ E ′ E ′ ` P1 ⇓ true M ;M ;E ′ ` S ⇓M ′;E ′′ M ′;E ′′ ` P2 ⇓ true

M ;M ;E ` rtt := tactic SAS condP1 actS effP2 ⇓M ;M ′;E, rtt 7→ true

(reduce-
tacticSuccess)

E ` SAS ⇓ E ′ E ′ ` P1 ⇓ false

E ` rtt := tactic SAS condP1 actS effP2 ⇓ E, rtt 7→ false

(reduce-tactic-
CondFail)

E ` SAS ⇓ E ′ E ′ ` P1 ⇓ true M ;M ;E ′ ` S ⇓M ′;E ′′ E ′′ [rop] = errval

M ;M ;E ` rtt := tactic SAS condP1 actS effP2 ⇓M ;M ′;E, rtt 7→ false

(reduce-tactic-
ActionFail)

E ` SAS ⇓ E ′ E ′ ` P1 ⇓ true M ;M ;E ′ ` S ⇓M ′;E ′′ M ′;E ′′ ` P2 ⇓ false

M ;M ;E ` rtt := tactic SAS condP1 actS effP2 ⇓M ;M ′;E, rtt 7→ false

(reduce-tactic-
EffectFail)

E ` P ⇓ v

E ` G ⇓ E, x 7→ v
Strategy Reduction

E ` P ⇓ false

E ` strategyP 〈GN〉 ⇓ E, rsg 7→ false

(reduce-strategy-
NotAppl)

E ` P ⇓ true M ;M ;E ` 〈GN1; · · · ;GNn〉 ⇓M ′;M ′;E ′ E ′ [rsg] = v

M ;M ;E ` x := strategyP 〈GN〉 ⇓M ′;M ′;E, x 7→ E ′ [rsg]

(reduce-
strategyComplete)

E ` GC ⇓ v

E ` GN ⇓ E′
Strategy Condition Reduction

E [rtt] = v

E ` success ⇓ v
(reduce-strategy-

CondSuccess)

E ` GCi ⇓ true E ` GAi ⇓ E ′

E ` 〈l1 : GC1GA1; · · · ; ln : GCnGAn〉 ⇓ E ′
(reduce-strategy-
NodeOneMatch)

E ` GC1 ⇓ false · · · GCn−1 ⇓ false GCn = default E ` GAn ⇓ E ′

E ` 〈l1 : GC1GA1; · · · ; ln : GCnGAn〉 ⇓ E ′
(reduce-strategy-

NodeDefaultMatch)

E ` GC1 ⇓ false · · · GCn ⇓ false

E ` 〈l1 : GC1GA1; · · · ; ln : GCnGAn〉 ⇓ E, rsg 7→ false
(reduce-strategy-

NodeNoMatch)

E ` GA ⇓ E′
Strategy Action Reduction

63

M ;M ;E ` T ⇓M ;M ′;E ′

M ′;M ′;E ′, rop 7→ � ` 〈GN1; · · · ;GNn〉 ⇓M ′′;M ′′;E ′′

M ;M ;E ` T 〈GN〉 ⇓M ′′;M ′′;E ′′

(reduce-
strategyTactic)

cntldo
/∈ domE NT [ltgt] = (GC,GA)

E ` GC ⇓ true E ` a ⇓ nv E, cntldo
7→ nv ` GA ⇓ E ′

E ` doldo
a ltgt ⇓ E ′

(reduce-
strategyDo1stOk)

cntldo
/∈ domE NT [ltgt] = (GC,GA) E ` GC ⇓ false

E ` doldo
a ltgt ⇓ E, rsg 7→ false

(reduce-
strategyDo1stFail)

E [cntldo
] = nv nv 6= 0 NT [ltgt] = (GC,GA)

E ` GC ⇓ true E, cntldo
7→ (nv − 1) ` GA ⇓ E ′

E ` doldo
a ltgt ⇓ E ′

(reduce-
strategyDoOk)

E [cntldo
] = nv nv 6= 0 NT [ltgt] = (GC,GA) E ` GC ⇓ false

E ` doldo
a ltgt ⇓ E, rsg 7→ false

(reduce-
strategyDoFail)

E [cntldo
] = 0

E ` doldo
a ltgt ⇓ E, rsg 7→ false

(reduce-
strategyDoEnd)

E ` done ⇓ E, rsg 7→ true
(reduce-

strategyDone)

E ` fail ⇓ E, rsg 7→ false
(reduce-

strategyFailed)

Figure 4.4: Flowchart of the Rainbow adaptation process; Figure 4.5 refines Execute strategy

64

To illustrate the execution flow of the adaptation process, Figure 4.4 shows a flowchart of the
abstract Rainbow adaptation cycle on the left-hand half and the Adaptation Manager’s adaptation
process on the right-hand half. The Score and select strategy process uses the algorithm described
in Section 4.4.2. The flow of the Execute strategy process is expanded in Figure 4.5.

Figure 4.5: Flowchart of strategy execution, Figure 4.6 refines Execute tactic

Figure 4.6: Flowchart of tactic execution

In Figure 4.5, the abort and success terminators conclude the Execute strategy process in
Figure 4.4, which is followed by the successful? decision diamond: an abort terminator results

65

in a no decision, while a success results in a yes. Finally, the flow of the Execute tactic process
in Figure 4.5 is expanded in Figure 4.6, with its abort and success terminators having the same
effect on the parent tactic successful? decision diamond in Figure 4.5.

4.5 Stitch Illustration Using Znn.com
To bring together the concepts, we now illustrate the features of Stitch using the Znn.com ex-
ample system. We start with the three high-level, potentially competing, objectives and specify
a set of utility functions and preferences for those. We illustrate the definition of adaptation
tactics with their attribute vectors and demonstrate strategy selection using the defined utility
preferences.

The stakeholders in the Z.com example are the customers and the news service provider. The
customers care about quick response time of their news requests and high content quality (i.e.,
multimedia over textual). While aware of the customer content quality preferences, the provider
is constrained by infrastructure provisioning costs to provide the service. We use these three
quality concerns to define the quality dimensions, which correspond to measurable properties in
the target system. We capture each dimension as a discrete set of values:

1. Response time: low, medium, high

2. Quality: graphical or multimedia

3. Budget: within or over

We elicit from the service providers the utility values and preferences for these dimensions. In
addition, since response time is affected by the amount of time required to complete a tactic,
we also need to consider a fourth dimension, disruption, which should be minimized. We use an
ordinal scale of 1 to 5 to express the degree of disruption. Note that these four quality dimensions
provide the corresponding cost-benefit attributes necessary for strategy selection.

Given our understanding of the quality dimensions, we can specify discrete utility functions
for these four dimensions and complete the utility profiles (comments elided). To determine the
utility preferences, assume that Znn.com considers response time the most important, followed
by budget, then content quality, and finally disruption. This might yield a linear set of relative
weights shown in Table 4.7.

Table 4.7: Znn.com utility profiles and preferences
uR Avg Response Time ClientT.experRespTime 〈(low, 1) , (medium, 0.5) , (high, 0)〉 0.4
uF Avg Content Quality ServerT.fidelity 〈(textual, 0) , (multimedia, 1)〉 0.2
uC Avg Budget ServerT.cost 〈(within, 1) , (over, 0)〉 0.3
uD Disruption ServerT.rejectedRequests 〈(1, 1) , (2, 0.75) , (3, 0.5) , (4, 0.25) , (5, 0)〉 0.1

As described in the scenario (Section 3.2), four adaptations are possible and can be fulfilled
with three tactics. A switchToTextualMode tactic uniformly switches the server content mode
from multimedia to textual. A corresponding tactic switchToMultimediaMode achieves the oppo-
site effect. An adjustServerPoolSize tactic increments or decrements the server pool size by an

66

integral count. Associated with each of these three tactics is a cost-benefit attribute vector, each
consisting of the four previously described attributes, shown in Table 4.8.

Table 4.8: Znn.com tactic cost-benefit attribute vectors
Tactic uR uF uC uD

switchToTextualMode -2 steps -1 step +0 (no change) 3
switchToMultimediaMode +1 step +1 step +0 3

adjustServerPoolSize(int ∆k)
-2 steps if ∆k > 4,

-1 step if 0 < ∆k ≤ 4,
+1 step if ∆k < 0

+0
-1 step if

c(k + ∆k) < Thbud,
else +1 step

1

We simplify the illustration of strategy selection by defining two placeholder strategies, Drop-
FidelityStrategy that uses the tactic switchToTextualMode, and EnlargeServerPoolStrategy that
invokes the tactic adjustServerPoolSize with a ∆k-argument of 5 (which yields a -2-step effect
on the uR dimension). This eliminates the step of calculating the aggregate attribute vectors (cf.
Section 4.4.2) and focuses our discussion on the attribute- and utility-based strategy selection.

Let us assume that Znn.com hits a peak load period, and the system state falls into a problem
state in which the response time is high, the infrastructure cost is within budget, and the con-
tent mode is multimedia. In this case, both strategies are applicable: one to change the content
mode to textual and the other to increase the size of the server pool. So we need to score the
strategies to determine which one is most appropriate given the utility preferences. The specified
tactic attribute vectors would yield aggregate attribute vectors for the two strategies as shown in
Table 4.9, followed by their weighted utility evaluation in Table 4.10.

Table 4.9: Znn.com aggregate attribute vectors for two applicable strategies
Strategy uR uF uC uD

DropFidelityStrategy -2⇒low -1⇒textual +0⇒within 3
EnlargeServerPoolStrategy -2⇒low +0⇒multimedia +1⇒over 1

Table 4.10: Znn.com utility evaluation for two applicable strategies
Strategy Weighted Utility Evaluation

DropFidelityStrategy U = 0.4 (1) + 0.2 (0) + 0.3 (1) + 0.1 (0.5) = 0.75
EnlargeServerPoolStrategy U = 0.4 (1) + 0.2 (1) + 0.3 (0) + 0.1 (1) = 0.70

The utility scores indicate DropFidelityStrategy as the better adaptation strategy, given the
current system conditions. Note that if Znn.com attributed a lower weight to budget, or higher

67

weight to disruption, or swapped the importance of disruption versus budget, then the other
strategy would have scored higher.

Using such utility-based analysis, we can choose a strategy by considering four dimensions
and accounting for trade-offs across those using the additional input of business utility prefer-
ences. Although this example shows simple utility functions of a few points, one can define more
complex utility functions and benefit from this utility-based technique.

4.6 Summary
In this chapter, we identified a set of language requirements to represent adaptation knowledge
and presented the self-adaptation language, Stitch. We further motivated the required features
by analyzing the task, knowledge, and cognitive model of a system administrator. We then
discussed the concepts of quality dimensions and adaptation conditions, operator, tactic with
cost-effect attributes, strategy, utility preferences, and strategy selection. Finally, we detailed the
formal semantics of Stitch. The important features of the language and their traceability to the
motivating requirements are summarized in Table 4.11. Next, we present the design of Rainbow
framework design and its customization points..

Table 4.11: Traceability summary of Stitch language features
Sys-Admin Task Stitch Feature Semantics Treatment
1 Business qualities of concern Quality dimensions Schema of utility profile/functions
2 Improvement opp. indicator Adaptation conditions Acme constraints
3 Basic system-provided

command
Operator Architectural style operators

4 Step of adaptation action Tactic MDP actions + oper. semantics
4a - conditions for applying action - condition block Acme predicates
4b - sequence of commands - action block Operational semantics
4c - outcome expected of action - effect block Acme predicates
5 Patterns of adaptation with

condition-action-delay
Strategy MDP subgraph + oper. semantics

5a - choice of condition-action pair - condition matching MDP states + atomic propositions
5b - uncertainty in action outcome - branch probabilities MDP transition probabilities
5c - chosen action - tactic action MDP actions
5d - observation of outcome - delay time-window MDP nondet. transition target s′

6 Factors in choosing adaptation Cost-benefit attributes Schema of attribute-utility relation
7 Biz. preferences over qualities Utility preferences Assignment of weights to utilities
8 Choice from strategy alternatives Strategy selection Algorithm for strategy selection

68

Chapter 5

Customizable Framework

Chapter 3 presented the overall Rainbow approach and described the high-level functionalities of
the framework components, offering only a brief glimpse into the customization points. Chap-
ter 4 presented the Stitch self-adaptation language in the context of the Rainbow framework.
Having introduced the Rainbow customization points, we now provide more details to demon-
strate how they reduce effort in engineering a system for self-adaptation.

In this chapter, we describe the design and engineering of the Rainbow framework, focusing
particularly on the customization points and how the framework pieces fit together to facilitate
Rainbow customization. We briefly present the architecture of the framework, then provide
more details on each component to show how it functions and is customized. We showcase
the approach with a full customization using the Znn.com example. Finally, we introduce the
Rainbow Adaptation Integrated Development Environment (RAIDE).

Figure 5.1: Rainbow architectural diagram

69

5.1 Architecture and Design of Rainbow
As we have argued, the Rainbow approach is to provide a generic, reusable framework that can
be tailored to a specific architectural style of a target system and for adaptation with respect
to specific quality dimensions. The C&C architecture of the Rainbow framework, described in
Acme and modeled in a graphical architecture design environment called AcmeStudio [SG04], is
diagrammed in Figure 5.1. Table 5.1 shows the descriptions of architectural types for the main-
Rainbow family. The complete set of architectural types, including the base-Rainbow and the
representation-implementation families, appear in Appendix A on page 173.

Table 5.1: Rainbow architectural style description — Main Family
Type Name Functional Description
AdaptationEngineT Performs adaptation
ArchAnalyzerT Evaluates architectural constraints on the model
CustomizerT Customizes Rainbow components
EffectorT Propagates and enacts changes in the target system
ExecutorT Carries out adaptation actions on system via translator
GaugeT Updates model properties
ModelManagerT Manages model instance(s), provides model info query
ProbeT Extracts monitoring information from target system
TargetT Represents or simulates the target system
TranslatorT Maintains correspondence between model and system

EffectingConnT (ControlCn) For Effector to effect changes on target system
ChangeNotifyConnT (NotifyCn) Change notification bus, listen for system change requests
GaugeNotifyConnT (NotifyCn) A gauge bus
ProbeNotifyConnT (NotifyCn) A probe bus
RetargetConnT (NotifyCn) Customization notification bus for Customizer
TriggeredAnalyzeConnT (PollCn) Specific polling type, model update triggers analysis
ProbingConnT (PollCn) Specific polling type, instruments the target system

EffectingProvPortT (ProvideP) Enables effecting changes on target system
MonitoringProvPortT (ProvideP) Enables target system states to be monitored
RetargetProvPortT (ProvideP) Customization point to tailor component to specific style
EffectingReqPortT (RequireP) On the Effector, effects system changes
MonitoringReqPortT (RequireP) On the Probe, monitors (extracts) system states
RetargetReqPortT (RequireP) For Customizer to tailor component to specific style
UserPrefReqPortT (RequireP) For Rainbow to receive user preference info

RetargeteeRoleT (SubscriberR) Event bus subscriber role played by retargetee component

There is a close correspondence between this architectural model and the Rainbow frame-
work diagram in Figure 3.2 on page 29. This architecture provides a natural decomposition that
(a) logically separates the customization points on individual components and (b) allows runtime
separation of concerns where each component performs a cohesive self-adaptation function. The

70

notional framework customization points, the plug-in pieces, in the diagram are realized as Re-
target Ports (RetargetProvPortT) on the major Rainbow components, joined by a Retarget Bus
to the Rainbow Customizer component. In implementation, the Rainbow Customizer is realized
by the Oracle Java class, which instantiates the Rainbow component objects and provides the
initialization parameters to configure the components.

In this section, we describe the design of each Rainbow component and illustrate how each
is customized, and by whom, using the Znn.com example. The complete customizations appear
in Appendix C. A summary of who does what in what form is show in Table 5.2.

Table 5.2: Who-Does-What-How summary of framework customization
Artifact Parts/Encapsulation Who? How?

Style Types, rules, properties, Style Acme
. operators Writer Signature

Effector (System hook to make changes) System Adapter Desc. schema + impl.
Probe (System hook to check properties) System Adapter Desc. schema + impl.
Gauge Type, inst., model, properties Gauge Writer Desc. schema + impl.

Mapping Moe: operator→effector Adaptation Translation mapping
. Mgp: gauge→probe Integrator Part of gauge spec

Tactic
Context: style (incl. the operators);
script of operators, conditions, effects

Tactic Writer Stitch Tactic syntax

Strategy
Context: style (types) + tactics set;
applicability filter (style/domain);
decisions: condition-action-delay

Strategy Writer Stitch Strategy syntax

Utility
Cost-benefit attributes of tactics;
utility functions; preference weights

Adaptation Integrator Utility spec schema

5.1.1 Rainbow Deployment Architecture

Having described the Component-and-Connector view of the Rainbow architecture, we now dis-
cuss its deployment view, which addresses how the components are allocated to computing nodes
of the running system. Each of the top-level Rainbow components is an active object. The frame-
work defines an IRainbowRunnable interface, realized by a common super class AbstractRain-
bowRunnable, which manages the thread lifecycle, state transition, and disposal of the subclassed
component. Each active Rainbow component extends AbstractRainbowRunnable.

Since the Architecture-Layer components of Rainbow share access to the architecture model
via the Model Manager, running them within the same process eliminates the overhead of inter-
process communication. The Rainbow Oracle is the “main” of the Rainbow runtime, i.e., the
class where the Java main() method resides. Once executed on a Java VM, the Oracle sets up
the event middleware, initializes all of the Architecture-Layer components, and creates a GUI
console (a.k.a. Rainbow Control Console) for administrator oversight. Figure 5.2 illustrates the
Rainbow Oracle GUI console and Rainbow’s deployment architecture.

71

Figure 5.2: Rainbow run time deployment

The Translation Infrastructure, discussed in Section 5.1.3 below, is where the distribution of
various Rainbow parts occurs. As the Rainbow architecture indicates, the Model Manager and
the Strategy Executor each has a port that communicates via an event bus with the distributed
parts of Rainbow. The idea is to deploy a Rainbow Delegate, a surrogate actor of the Rainbow
runtime, on every computing node of the target system. Each Delegate sets up its end of the
communication infrastructure and initializes the applicable probes, gauges, and effectors on its
node. It serves as a locus of communication between the Oracle and the gauges and effectors on
the Delegate’s node.

Resource overhead incurred by the Delegate is minimal. Data from actual runs indicates
each Delegate consuming less than 2% of CPU (but occasionally sustained at ~5-10%) with a
couple megabytes of memory footprint, and this overhead is further reducible with optimization
in implementation. Nevertheless, on a computing node with highly constrained memory and
CPU resources, the adaptation engineer may choose to deploy only probes on the node and wire
the probes to report on the Probe Bus via the Oracle or a neighboring Delegate node.

Finally, to facilitate failure recovery (i.e., restart), remote management, binary deployment,
and version update, each of the Oracle and Delegate processes is spawned by a RainDropD dae-
mon. This daemon is required on each node to deploy Rainbow. Subsequently, the administrator
could manage all Delegate instances from a central console. The RainDropD daemon automat-
ically respawns its Delegate if the Delegate crashes. The daemon allows the administrator to
issue stop, restart, and terminate commands to each Delegate. It also allows rolling out version
updates of the Rainbow software and library updates of probes, gauges, and effectors. As a basic

72

security measure, the daemon responds only to messages from the Oracle node.

In a Rainbow-properties file, the adaptation integrator defines the configuration parameters
to initialize the Oracle and Delegates. The properties are loaded with one-time variable sub-
stitutions by the singleton org.sa.rainbow.Rainbow class, which provides access to the common
Rainbow properties. The excerpt below illustrates configuration for host locations, logging, event
infrastructure, and various Rainbow component-specific settings. The master host refers to the
host on which Oracle runs. The Rainbow service port is the common TCP/IP port used for event
communication and remote connection with the Rain Drop Daemon. To prevent name clash,
each Delegate defines a unique Delegate identifier of “name@location” when communicating
with the Oracle, and establishes a beacon period for liveness checking. Component-specific
settings define the file locations for the customization files described in this section. Finally,
system configuration tells Oracle the locations of all target system nodes. A more sophisticated
implementation, e.g., one based on an advanced event infrastructure, would allow the nodes in
the system to be discovered on Rainbow initialization.

1 ### U t i l i t y mechanism c o n f i g u r a t i o n
2 #− Conf ig f o r Log4J , w i th l e v e l s : OFF, FATAL,ERROR,WARN, INFO ,DEBUG,TRACE, ALL
3 l ogg ing . l e v e l = INFO
4 . . .
5 ### Rainbow component cus tomiza t ion
6 ## Rainbow host i n f o and communication i n f r a s t r u c t u r e
7 #− Locat ion in fo rma t i on o f the master and t h i s deployment
8 rainbow . master . l o c a t i o n . host = l o c a l h o s t
9 #− Locat ion in fo rma t i on o f the deployed delegate

10 rainbow . deployment . l o c a t i o n = $ { rainbow . master . l o c a t i o n . host }
11 #− Rainbow serv i ce po r t
12 rainbow . se rv i ce . po r t = 9210
13 . . .
14 #− Event i n f r a s t r u c t u r e , type of event middleware : rmi | jms | que
15 rainbow . event . se rv i ce = rmi
16 . . .
17 ## RainbowDelegate and ProbeBusRelay c o n f i g u r a t i o n s
18 rainbow . delegate . i d = RainbowDelegate@$ { rainbow . deployment . l o c a t i o n }
19 rainbow . delegate . beaconperiod = 5000
20 rainbow . delegate . s ta r tP robesOn In i t = f a l s e
21 probebus . r e l ay . i d = ProbeBusRelay@$ { rainbow . deployment . l o c a t i o n }
22 . . .
23 ## Model Manager cus tomiza t ion
24 customize . model . path = model / ZNewsSys . acme
25 . . .
26 ## Trans la to r cus tomiza t ion
27 customize . gauges . path = model / gauges . yml
28 customize . probes . path = system / probes . yml
29 customize . archop .map. path = model / op .map
30 customize . e f f e c t o r s . path = system / e f f e c t o r s . yml
31 ## Adaptat ion Manager
32 customize . s c r i p t s . path = s t i t c h
33 customize . u t i l i t y . path = s t i t c h / u t i l i t i e s . yml
34 customize . u t i l i t y . t r ackS t ra tegy = uSF
35 customize . u t i l i t y . scenar io = scenar io 2
36
37 ## System c o n f i g u r a t i o n i n fo rma t i on
38 customize . system . t a r g e t .0 = $ { rainbow . master . l o c a t i o n . host }
39 customize . system . t a r g e t .1 = orac le
40 customize . system . t a r g e t . s i ze = 2

73

Figure 5.3: Architectural decomposition of the Model Manager

5.1.2 Model Manager and Rainbow Models

As introduced in Section 3.3.3, the Model Manager maintains and manages instances of the
architecture model of the target system. It also maintains information about the system’s exe-
cution environment—the environment model, including spare computation resources, network
resources, contextual entities—and references between environment elements and architectural
elements. The architectural decomposition of the Model Manager is shown in Figure 5.3.

The Model Updater component acts as the Gauge Consumer (Figure 3.5), consuming gauge
updates via the Gauge Bus (discussed below in Section 5.1.3). Updates to the Acme Model occur
whenever a gauge event is consumed. The Query Provisioner serves two purposes: It extracts the
relevant and available query information from the Acme Model and the Env Model. If a property
is defined in the model, but the current value is not known, then it is the duty of the Query
Provisioner to issue a system query through the query mechanism of the gauge infrastructure.
The Change Syncher represents a feature to keep track of changes announced by the Executor on
a separate Acme Model instance. In future work, this allows tracking intended changes against
observed system changes and provides a placeholder for adaptation learning.

The user-oriented port to update the QoS Preferences is achieved by adding or modifying
design rules in the Acme Model, but future work could allow dynamic, user task-based in-
put (see Section 9.2.2). The Acme Model and Env Model data components are embodied in
the implementation Java class, RainbowModel. These two Model components extend existing
implementation on AcmeLib for manipulating architecture models defined in Acme [CMU08].
Finally, the three Provide (component side edges) and one Require (bottom edge) ports of the
Model Manager share a common Java interface, Model, with specific methods for model update
(updateProperty (String iden, String value)), constraint checking (evaluateConstraints ()), and
query (getProperty (String id)).

The customization point of the Model Manager is a pair of Rainbow Models: The architecture

74

model consists of Acme descriptions of one or more styles, defined by the style writer, and an
instance that extends them. The environment model likewise consists of Acme descriptions of
the environment style and instance. The example below shows the ZNewsFam style with a few
types shown and other details elided. Some properties of ServerT are updated by gauges, and the
design rules in ClientT are checked by the Architecture Evaluator.

1 import TargetEnvType . acme ;
2
3 Family ZNewsFam extends EnvType with {
4 Component Type ServerT extends ArchElementT with {
5 Property deploymentLocat ion : str ing << defaul t : str ing = " l o c a l h o s t " ; >>;
6 Property load : f l o a t << defaul t : f l o a t = 0 . 0 ; >> ;
7 Property reqServiceRate : f l o a t << defaul t : f l o a t = 0 . 0 ; >> ;
8 Property byteServiceRate : f l o a t << defaul t : f l o a t = 0 . 0 ; >> ;
9 Property f i d e l i t y : i n t << HIGH : i n t = 5; LOW: i n t = 1; defaul t : i n t = 5; >>;

10 Property cost : f l o a t << defaul t : f l o a t = 1 . 0 ; >> ;
11 Property l as tPageHi t : Record [u r i : str ing ; cn t : i n t ; kbytes : f l o a t ;] ;
12 rule anotherCons t ra in t = heur is t ic se l f . load <= MAX_UTIL ;
13 }
14 Component Type Cl ien tT extends ArchElementT with {
15 Property deploymentLocat ion : str ing << defaul t : str ing = " l o c a l h o s t " ; >>;
16 Property experRespTime : f l o a t << defaul t : f l o a t = 100.0 ; >> ;
17 Property reqRate : f l o a t << defaul t : f l o a t = 0 . 0 ; >> ;
18 rule pr imaryCons t ra in t = invar iant se l f . experRespTime <= MAX_RESPTIME;
19 rule reve rseCons t ra in t = heur is t ic se l f . experRespTime >= MIN_RESPTIME;
20 }
21 . . .
22 Properties { . . . } / / see ZNewsSys d e f i n i t i o n below
23 }
24
25 System ZNewsSys : ZNewsFam = {
26 Property MIN_RESPTIME : f l o a t = 100.0 ;
27 Property MAX_RESPTIME : f l o a t = 1000.0;
28 . . .
29 Property TOLERABLE_PERCENT_UNHAPPY : f l o a t = 0 . 4 ;
30 Property MIN_UTIL : f l o a t = 0 . 1 ;
31 Property MAX_UTIL : f l o a t = 0 .75 ;
32 Property MAX_FIDELITY_LEVEL : i n t = 5;
33 Property THRESHOLD_FIDELITY : i n t = 2;
34 Property THRESHOLD_COST : f l o a t = 4 . 0 ;
35 Component s0 : ServerT = new ServerT extended with {
36 Property deploymentLocat ion = " orac le " ;
37 Property cost = 0 . 9 ;
38 Property f i d e l i t y = 3 ;
39 Property load = 0.198;
40 . . .
41 }
42 Component c0 : C l i en tT = new Cl ien tT extended with {
43 Property deploymentLocat ion = " 127.0 .0 .1 " ;
44 Property experRespTime = 2360.2585;
45 . . .
46 }
47 Connector conn : HttpConnT = new HttpConnT extended with {
48 Property la tencyRate = 0 . 0 ;
49 Role req = { Property isArchEnabled = true ; }
50 Role rec = { Property isArchEnabled = true ; }
51 }
52 . . .
53 Attachments { . . . }
54 }

75

5.1.3 Translation Infrastructure—Monitoring and Action
To support a broad spectrum of systems and achieve generality (Section 3.1), the Translation
Infrastructure serves the dual role of decoupling and providing a bridge between the framework
Architecture Layer and the platform and implementation of the System Layer. Indirection and
common communication protocols are two effective design techniques to achieve decoupling,
and distribution is an essential feature because most modern systems are distributed to varying
degrees. For the Translation Infrastructure, correspondence mappings provide indirection, while
an event middleware implementing common communication protocols facilitates the distribution
of probes, gauges, and effectors on heterogeneous computing nodes of the target system.

As highlighted in Section 3.3.2, the Translation Infrastructure consists of probes, gauges,
effectors, and correspondence mappings, which together comprise its customization point. In
the Rainbow architecture, this infrastructure encompasses four component types, six connector
types, and related interfaces. All translation components share the correspondence mappings of
elements, operators, properties, and errors maintained by the Translator component. Generation
of the maps and boot-strapping of the initial architecture model are not addressed in this thesis,
but may be provided by an architecture discovery system such as DiscoTect [YGS+04].

For monitoring, ProbeT component instances instrument the target system via ProbingConnT
polling connector instances and then publish the information on the ProbeNotifyConnT connector
instance (Probe Bus). For instance, a Link Latency Probe periodically polls the link latency
between two IP nodes, src_ip and tgt_ip, in the target system and publish that link latency on the
Probe Bus. Multiple Link Latency Probes might be deployed to monitor different IP pairs.

Figure 5.4: Visual connection of gauges to the architecture model

GaugeT component instances subscribe to relevant probes on the Probe Bus to aggregate
and abstract system information, then publish the results on the GaugeNotifyConnT connector
instance (Gauge Bus). At the subscriber end of the Gauge Bus is the Model Manager, which
has gauge configuration knowledge and thus serves both as the Gauge Manager that creates
gauges and manages gauge lifecycles, and as the Gauge Consumer that consumes gauge reports
and updates corresponding properties in the architecture model. For example, a Latency Gauge

76

collects the latency output from a Link Latency Probe, averages the values over a configurable
time window, and publishes the average latencies for the Model Manager to update the latency
property of a connector with corresponding source and target IP addresses src_ip and tgt_ip. Note
that depending on gauge configuration, one Latency Gauge might handle one or multiple Link
Latency Probes. Figure 5.4 illustrates how gauges attach to the model.

For action, a change operation propagates via the ChangeNotifyConnT connector instance
(Change Bus) and is translated by the Translator into system level operation(s) and issued to the
EffectorT component instance. The Effector connects via an EffectorConnT connector instance
to effect changes on the target system.

The deployment and distribution of gauges, probes, and effectors on target system nodes
can vary in scheme for different reasons, including platform heterogeneity and differences of re-
source constraints between target computing nodes. We therefore provide a generic event mecha-
nism that is flexible for different deployment needs. Our generic event transport mechanism real-
izes a common interface and allows specific event implementations to be plugged in (e.g., RMI-
based, Java Messaging System), which can be configured by setting the rainbow.event.service
property of the Rainbow customization file with an event-service identifier (e.g., “rmi”, “jms”,
“que”). This design enables Rainbow components to interact with different target systems that
communicate using different event mechanisms. We have also designed a standard set of commu-
nication protocols to support pluggability of probes and gauges into Rainbow. In the following
paragraphs, we present the design of the probe and gauge communication protocols and describe
an integrating Translator. Together, they enable distribution, indirection, and decoupling.

Probe Protocol Design The probe protocol enables interaction between the Translator as the
Probe Manager, gauges that use probes, and the probes themselves. Each Rainbow Delegate
serves as the local proxy for the Probe Manager in managing probes local to the Delegate
host; it also propagates events between local probes and the Translator and gauges. Four core
event types are defined in the probe event vocabulary: ID:string ::= “name@location”, Capabil-
ities:seq<string> ::= <...>, Target:string ::= “location”, and Period:long ::= [0-9]+ /*ms*/. Note
that ID already encodes the probe target. Four probe states are defined: CREATED, ACTIVE,
INACTIVE, DESTROYED. The protocol rules are as follows:

1. Probe initialization: a probe can be spawned manually or by Rainbow

(a) Probe connects to the probe bus (possibly via a probe bus relay)

(b) Probe announces attributes: ID, capabilities (i.e., type), probe target, update period

(c) Probe enters CREATED state, initialized and ready to announce properties

2. While not DESTROYED, a probe periodically announces a "beacon event" of ID and type

3. Based on the probe type and probe target, the Probe Manager makes a probe match1 and
issues command via the probe bus to activate it; probe enters ACTIVE state

1Conceptually, the architecture model contains the knowledge of what property is associated with which probes
in the system. Practically, this information most likely lives in the translation infrastructure, known in a distributed
manner to the gauges. In effect, a gauge would know with which probe(s) it should interact.

77

4. While ACTIVE, a probe periodically announces on the probe bus the target properties under
its observation; announcements take the form: “[timestamp] {name/alias} msg”; or it could
be deactivated via the probe bus to stop publishing and enter INACTIVE state

5. A probe could be activated and deactivated any number of times

6. While either ACTIVE or INACTIVE, a command could issue from the probe bus to publish
the currently known property values, and the matching probe would immediately publish
its latest known value; this is used by the gauge to query values on-demand

7. While INACTIVE, a command could issue from the probe bus to destroy the probe, which
causes the probe to be terminated and/or garbage-collected; the probe enters DESTROYED
state (though state is not persisted); once DESTROYED, a probe may not be re-activated

Gauge Protocol Design For the gauge protocol, we build on work done elsewhere on a stan-
dard Gauge Infrastructure [GSC01]. The gauge protocol enables interaction between the Gauge
Manger at the Oracle end, the Rainbow Delegates as local Gauge Manager proxies, and the
gauges themselves. Here, we describe a simplified version, starting with a single event type:
ID:string ::= “name@location”. Like probes, four gauge states are defined: CREATED, ACTIVE,
INACTIVE, DESTROYED. The protocol rules are defined as follows:

1. Rainbow Delegates connects to the gauge bus from remote machines, ready to serve re-
quests from Gauge Manager

2. Gauge Manager reads gauge specification and coordinates gauge creation by delegating
the request to designated Rainbow Delegates

3. Rainbow Delegates create gauges locally and return identifiers for the created gauges

4. Gauge Manager keeps track of all the created gauges, and serves any request for gauge
reference by returning the gauge UID

5. Gauge Manager configures each gauge as needed and activates gauge

6. Gauge Manager deletes a gauge if it’s no longer needed

IGauge defines the public interface of, and provides a handle to, a gauge. A static class, Gauge-
ProtocolHandler, is provided to process gauge events, using gauge protocol identifiers and strings
defined in the IGaugeProtocol interface. Every event message is defined as a set of key-value
pairs, with meta-attributes that may be specific to event mechanisms. For example, JMS defines
the meta-attributes: ID to uniquely identify the message, ReplyTo for response message, Type of
the message, MessageID, Destination, Expiration, Priority, and Timestamp.

Translator Design In addition to “listening” to the change bus to translate operators into effec-
tor operations, the Translator also “listens” to the probe bus and serves as a Probe Manager and
Registry. Probes can register and deregister themselves with the Translator. Gauges can lookup,
subscribe to, and unsubscribe from probes through the Translator.

Customization of the Translation Infrastructure entails specifying the probes, gauges, and ef-
fectors. The probe specification, composed by the system adapter, defines the available probes

78

for the target system. The excerpt below illustrates two example probe instances with typical
parameters. (Key-value string substitutions are allowed, as illustrated on lines 2 and 19 below.)
Specifically, PingRTTProbe1 is a probe of type (alias) “pingrtt,” to be deployed on a node (lo-
cation) defined by the variable “customize.system.target.1,” implemented in Java (type) by the
class org.sa.rainbow.translator .znews.probes.PingRTTProbe, with a report period of 1500 ms
and Java arguments supplied via args. LoadProbe1 shares similar probe parameters, but is im-
plemented by a shell script located as defined in path, with argument supplied via argument.

1 vars :
2 _probes . commonPath : " $ { rainbow . path } / system / probes "
3 probes :
4 PingRTTProbe1 :
5 a l i a s : p i n g r t t
6 l o c a t i o n : " $ { customize . system . t a r g e t . 1 } "
7 type : java
8 j a v a I n f o :
9 c lass : org . sa . rainbow . t r a n s l a t o r . znews . probes . PingRTTProbe

10 per iod : 1500
11 args . leng th : 1
12 args . 0 : " $ { rainbow . master . l o c a t i o n . host } "
13 args . 1 : " $ { customize . system . t a r g e t . 2 } "
14 LoadProbe1 :
15 a l i a s : load
16 l o c a t i o n : " $ { customize . system . t a r g e t . 1 } "
17 type : s c r i p t
18 s c r i p t I n f o :
19 path : " $ { _probes . commonPath } / loadProbe . p l "
20 argument : "−k −s "

The gauge specification, composed by the gauge writer, defines available gauges. The
excerpt below illustrates one gauge type, ResponseTimeGaugeT whose parameters are as
those described in Section 3.3.2. Specifically, EERTG1 is a gauge instance of type Re-
sponseTimeGaugeT that reports an end-to-end response time value “end2endRespTime” to
the host “delegate.oracle,” meant to update the property “c0.experRespTime” of an Acme
model named ZnewsSys, to be deployed on a node (targetIP) defined by the variable “cus-
tomize.system.target.0,” with a heartbeat (beaconPeriod) of period 30000 ms, implemented by
the Java class org.sa.rainbow.translator .znews.gauges.End2EndRespTimeGauge, and config-
ured to sample values from the target probe type “clientproxy” with a period of 1000 ms.

1 gauge−types :
2 ResponseTimeGaugeT :
3 values :
4 end2endRespTime : double
5 setupParams :
6 t a r g e t I P :
7 type : S t r i n g
8 d e f a u l t : " l o c a l h o s t "
9 beaconPeriod :

10 type : long
11 d e f a u l t : 30000
12 javaClass :
13 type : S t r i n g
14 d e f a u l t : " org . sa . rainbow . t r a n s l a t o r . znews . gauges . End2EndRespTimeGauge "
15 configParams :
16 samplingFrequency :
17 type : long
18 d e f a u l t : 1000
19 targetProbeType :
20 type : S t r i n g

79

21 d e f a u l t : ~
22 comment : " Reports end−to−end response t ime from c l i e n t proxy . "
23 gauge−i ns tances :
24 EERTG1:
25 type : ResponseTimeGaugeT
26 model : "ZNewsSys :Acme"
27 mappings :
28 " end2endRespTime (delegate . o rac le) " : c0 . experRespTime
29 setupValues :
30 t a r g e t I P : " $ { customize . system . t a r g e t . 0 } "
31 conf igValues :
32 samplingFrequency : 1000
33 targetProbeType : c l i e n t p r o x y
34 comment : "EERTG1 i s assoc iated wi th c l i e n t component o f ZNewsSys i n Acme"

The effector specification, composed by the system adapter, defines available effectors in the
target system. The excerpt below illustrates one effector with typical parameters. Specifi-
cally, setFidelity1 is an effector available on a node (location) defined by the variable “cus-
tomize.system.target.1,” and implemented by shell script located as defined in path, with argu-
ment supplied via argument.

1 vars :
2 _ e f f e c t o r s . commonPath : " $ { rainbow . path } / system / e f f e c t o r s "
3 e f f e c t o r s :
4 # t e s t from GUI wi th <host > , S e t F i d e l i t y , f i d e l i t y = <1|3|5 >
5 s e t F i d e l i t y 1 :
6 l o c a t i o n : " $ { customize . system . t a r g e t . 1 } "
7 type : s c r i p t
8 s c r i p t I n f o :
9 path : " $ { _ e f f e c t o r s . commonPath } / changeF ide l i t y . p l "

10 argument : "− l { f i d e l i t y } "

5.1.4 Architecture Evaluator

Figure 5.5: Architectural decomposition of the Architecture Evaluator

The Architecture Evaluator, as introduced in Section 3.3.4, evaluates the conformance of
the architecture model to a predefined set of design rules, as either invariants or heuristics. The

80

style writer customizes the Architecture Evaluator by specifying design rules in the architecture
model, as already illustrated by the Acme description in Section 5.1.2.

The architectural decomposition of the Architecture Evaluator is shown in Figure 5.5. The
QoS Constraints data component represents the rules described in the Acme architecture model.
In the current design, the Architecture Evaluator acts as a Simple Constraint Evaluator and in-
vokes evaluateConstraints() on the architecture model to determine if any constraint violation
has occurred. We discuss its design alternatives in Section 9.2.2.

5.1.5 Adaptation Manager
The Adaptation Manager, as introduced in Section 3.3.5, responds to a constraint violation and
selects the best strategy to fix the current problem conditions. For the adaptation process, it
maintains (a) a repertoire of Stitch strategies and tactics with the associated cost-benefit attribute
vectors, and (b) the utility profiles and preferences. These comprise its customization point.

Figure 5.6: Architectural decomposition of the Adaptation Manager

The architectural decomposition of the Adaptation Manager is shown in Figure 5.6. The
Stitch Repertoire data component holds the repertoire of strategies and tactics; the Utility Data
component stores the utility profiles and preferences. Users update the Stitch Repertoire and
Utility Data via the User Preference port.

A Stitch Engine awaits adaptation trigger from the Architecture Evaluator, which sets a flag
via the blue Provide port to perform adaptation in the next run cycle. Upon trigger, the Stitch
Engine queries the Rainbow Model for the context of the constraint violation via getAcmeMo-
del() (the bottom-edge Require port on the Stitch Engine component). It then searches the Stitch
Repertoire for applicable strategies, requests the Utility Evaluator to select the best strategy, and
enqueues the strategy with the Executor to effect it on the target system (left-edge Require port of
Stitch Engine). In implementation, each of the Adaptation Manager subcomponents is realized
by a Java class or method accessible to the AdaptationManager class.

81

The tactic writer defines tactics and strategy writer composes strategies in the Stitch syntax
to produce adaptation scripts. The excerpt below illustrates one tactic and one strategy. A script
defines a namespace with the keyword module and may import one or more namespaces. The
tactic script imports (line 2) the namespace of the architecture model from the Acme description
“ZNewsSys.acme,” renaming references to the family as T and instance as M, (line 3) the set
of operators, and (line 4) Stitch utility libraries. The strategy script imports the tactic script and
acquires its namespace in the process.

1 module newssi te . t a c t i c s ;
2 import model "ZNewsSys . acme" { ZNewsSys as M, ZNewsFam as T } ;
3 import op " znews1 . opera tor . ArchOp " { ArchOp as S } ;
4 import op " org . sa . rainbow . s t i t c h . l i b .∗ " ; / / Model , Set , & U t i l
5
6 / / E n l i s t n f r ee servers i n t o se rv i ce pool .
7 t a c t i c e n l i s t S e r v e r s (i n t n) {
8 condition {
9 / / some c l i e n t should be exper ienc ing high response t ime

10 exists c : T . C l i en tT in M. components | c . experRespTime > M.MAX_RESPTIME;
11 / / there should be enough a v a i l a b l e server resources
12 Model . ava i l ab leSe rv i ces (T . ServerT) >= n ;
13 }
14 action {
15 set servers = Set . randomSubset (Model . f i ndServ i ces (T . ServerT) , n) ;
16 for (T . ServerT f reeSvr : servers) {
17 S. ac t i va teServe r (f reeSvr) ;
18 }
19 }
20 ef fec t {
21 / / response t ime decreasing below th resho ld should r e s u l t
22 f o r a l l c : T . C l i en tT in M. components | c . experRespTime <= M.MAX_RESPTIME;
23 }
24 }

1 module newssi te . s t r a t e g i e s ;
2 import l i b " newss i teTac t i cs . s " ;
3
4 define boolean s t y l e A p p l i e s =
5 Model . hasType (M, " C l ien tT ") && Model . hasType (M, " ServerT ") ;
6 define boolean c V i o l a t i o n =
7 exists c : T . C l i en tT in M. components | c . experRespTime > M.MAX_RESPTIME;
8
9 / / While i t encounters high experienced response time , t h i s simple s t r a tegy

10 / / f i r s t e n l i s t s one new server , then lowers f i d e l i t y one step , then q u i t s
11 strategy SimpleReduceResponseTime
12 [s t y l e A p p l i e s && c V i o l a t i o n] {
13 t0 : (c V i o l a t i o n) −> e n l i s t S e r v e r s (1) @[1000 /∗ms∗ /] {
14 t1 : (! c V i o l a t i o n) −> done ;
15 t2 : (c V i o l a t i o n) −> l o w e r F i d e l i t y (2 , 100) @[3000 /∗ms∗ /] {
16 t2a : (! c V i o l a t i o n) −> done ;
17 t2b : (defaul t) −> TNULL ; / / i n t h i s case , we have no more steps to take
18 }
19 }
20 }

Composed by the adaptation integrator from business input, the utility specification defines the
utility profiles of the quality dimensions and the business preferences over them. The excerpt
below illustrates a set of utility profiles, a set of preference weights, and a set of tactic cost-
benefit attribute vectors. The dimension uR defines the utility profile for Average Response
Time, which is related to the property ClientT.experRespTime in the architecture, and has the

82

enumerated discrete pairs of domain and range values. When evaluating the utility function,
range values are extrapolated for domain values that do not coincide with the defined points.

The cost-benefit attribute vector indicates that tactic “enlistServers” has a impact of -1000 ms
on the uR dimension, none on the uF dimension, and +1.0 unit on the uC dimension. The weights
distributed across the defined dimensions must sum to 1. Note that attribute vectors define delta
impact to each utility dimension. When computing the utility value for a dimension in terms
of delta impact, the aggregate average of the architectural property ClientT.experRespTime is
queried from the model and added to the delta before evaluating the utility function.

1 u t i l i t i e s :
2 uR:
3 l a b e l : " Average Response Time "
4 mapping : " [EAvg] C l ien tT . experRespTime "
5 d e s c r i p t i o n : "R, c l i e n t experienced response t ime (ms) , f l o a t arch proper ty "
6 u t i l i t y :
7 0: 1.00
8 100: 1.00
9 200: 0.99

10 500: 0.90
11 1000: 0.75
12 1500: 0.50
13 2000: 0.25
14 4000: 0.00
15 . . .
16 weights :
17 scenar io 1 :
18 uR: 0.3
19 uF : 0.4
20 uC: 0.2
21 uSF : 0.1
22 . . .
23 vec to rs :
24 # U t i l i t y : [v] R; [^] C; [< >] F (R by 1000 ms, increase C by 1 u n i t)
25 e n l i s t S e r v e r s :
26 uR: −1000
27 uF : 0
28 uC: +1.00
29 . . .

5.1.6 Strategy Executor

The Strategy Executor, as introduced in Section 3.3.6, executes a strategy and its internal tactics
on the target system. In particular, it handles the traversal of the strategy tree, the execution of
each tactic, and the re-observation of the system via queries to the Rainbow Model. Customiza-
tion is achieved by providing the architectural operators defined in the architectural style of the
target system, along with a mapping of the operators to effectors. In implementation, the execu-
tor maps each architectural operator to a corresponding system-level effector via the Translator,
which executes the effector and returns the result or any exception. The execution of an archi-
tectural operator in the tactic is passed to the Translator via synchronous, direct invocation; we
discuss this design option in Section 8.2.

The operator mapping specification, also composed by the adaptation integrator, defines the
mapping of style operators to effectors for the target system. The mapping description below
illustrates three operators mapped to three corresponding effectors by name. A more sophisti-

83

cated implementation would also specify mapping of parameters and any return values, as well
as potential errors.

1 s e t F i d e l i t y : changeState
2 ac t i va teServe r : s t a r t
3 deac t i va teServer : stop

Figure 5.7: Mock-up of a Rainbow AIDE workbench

5.2 Adaptation Integrated Development Environment
The Rainbow framework described thus far focused mainly on the runtime components and the
customization elements of Rainbow. In this section, we describe two additional components—the
Stitch Script Editor and the Rainbow Control Console—that are important to the functionality,
usability, and management of the Rainbow runtime. Together, the Rainbow framework runtime

84

and the Rainbow Control Console comprise a Rainbow Development Toolkit, which has been
packaged as a distributable Eclipse project. The Stitch Script Editor is packaged by itself as
an Eclipse plug-in. Together with AcmeStudio, an application also built in Eclipse, we are only
steps away from an Adaptation Integrated Development Environment that integrates the Rainbow
framework runtime and various editors. This AIDE would allow an adaptation engineer to edit
Acme Models, write Stitch scripts, compose customization files, test adaptation runs, and deploy
Rainbow runtime, all on one workbench, as illustrated by the mock-up in Figure 5.7.

5.2.1 Stitch Script Editor
With the help of Ali Almossawi, we provide an Eclipse-based script editor (shown in Figure 5.7)
for the Stitch language with basic syntax highlighting, structure outline, and keyword completion
to facilitate development of strategies and tactics. The Eclipse text editor API provides a marker
mechanism for marking lines with information, warning, or error flags. The Stitch editor hooks
into a back-end Stitch parser to support on-save script parsing, and reports syntax errors using
the editor markers. Additional engineering effort would provide a more featured Stitch editor,
with support for incremental build, navigation, linkage to architecture and model operators, code
completion, and debugging execution.

5.2.2 Rainbow Control Console
The Rainbow Control Console, also known as the Oracle GUI (see Figure 5.2), provides a central
console for managing the Rainbow runtime. In the current implementation with basic features,
the console consists of eight output textareas and menu items for controlling local and remote
Delegates, pushing out software updates, testing effectors, and deploying or undeploying probes.

Four of the eight consoles display the output of corresponding Rainbow components (note
similar border colors as in the framework diagram). In addition, the lower-right textarea displays
events on the Rainbow event infrastructure. The lower-center textarea displays probed states of
the target system. The lower-left textarea displays Translator information, including the probes
and effectors. The upper-left textarea displays output from the GUI console itself. Numerous en-
hancements are conceivable for the Rainbow Control Console, including greater control of each
Rainbow component and more fine-grained control for probe, gauge, and effector deployment.

Summary
In this chapter, we described the architecture and design of the Rainbow framework, focus-

ing specifically on the customization points of the Rainbow components. We discussed how to
customize each component, who contributes the content, what customization looks like using
examples from the Znn.com system. To support the Rainbow adaptation engineering process,
we presented a Rainbow Adaptation Integrated Development Environment, which consists of the
Rainbow framework runtime, the Stitch Script Editor, and the Rainbow Control Console. In the
next two chapters, we present five example systems applying Rainbow, and evaluate how the
Rainbow approach and framework achieve the thesis claims.

85

86

Chapter 6

Examples and Supporting Evidence

In Section 1.4.1, we described an evaluation plan for three thesis claims: generality to a broad
spectrum of styles for common quality dimensions that modern architects are concerned with;
cost-effectiveness to engineer and evolve self-adaptive systems relative to existing, specialized
solutions; and transparency to make the adaptation process understandable, actions compos-
able, and adaptation choice automatable for routine system adaptations. These claims lead to the
validation points below:

V1 Demonstrate self-adaptation for a single property in three styles (generality)

V2 Demonstrate self-adaptation for at least three properties in one style (generality)

V3 Demonstrate use of environment model in at least one instantiation (generality)

V4 Demonstrate infrastructure reuse and ease of customization (cost-effectiveness)

V5 Demonstrate trade-off of multiple objectives in at least one instantiation (transparency)

In this chapter, we present five applications of Rainbow and two substantive system admin-
istrative examples from the computing infrastructure of Carnegie Mellon University. To-
gether, these examples provide validation evidence for Rainbow. The first three sections de-
scribe the experimental systems from the exploratory phase of developing the Rainbow ap-
proach [CGS+02a, GCS03, CHG+04, GCH+04]. These demonstrate the feasibility of tailoring
Rainbow to different styles (client-server and service-coalition) of system for more than one qual-
ity dimensions (performance, cost, and security). Sections 6.4 and 6.5 present two instantiations
of the engineered Rainbow framework, one on the server infrastructure of TalkShoe, Inc., and the
other on a news-service system, Znn.com. Finally, Sections 6.6 and 6.7 present qualitative evi-
dence from cases of real system administration that support the Stitch self-adaptation language
design. In Chapter 7, we recap how well the Rainbow approach fulfills the thesis claims.

6.1 Basic Client-Server System

The first Rainbow prototype aimed for a proof-of-concept framework to demonstrate the essential
features of Rainbow on a basic client-server-style system, providing evidence that an adaptation
cycle could adapt a system for a single quality dimension, performance, within a minute.

87

In this prototype, we instrumented source code to insert probes, used Remos for network
monitoring [DGK+01], prototyped a gauge infrastructure, developed a few gauges, then hooked
them to AcmeStudio serving simultaneously as the model manager, architectural evaluator, and
model visualizer. We implemented an adaptation manager with built-in strategies and a simple
table-driven translator to translate the architecture-level operators into system-level effectors to
change the system. Details can be found in [CGS+02a, CGS+02b, GCS03, GCH+04].

Figure 6.1: A class of web-based client-server systems

Consider the problem of providing load-balancing self-adaptation to improve the perfor-
mance of a class of web-based client-server systems, illustrated in Figure 6.1, by minimizing
the request-response latency that the users experience. The web-based system consists of a set
of client processes making stateless, asynchronous file requests from a few clusters of servers
via HTTP communication. Implemented in Java, each client that is connected to a server group
sends requests to that group’s shared request queue, and servers that belong to the group consume
and fulfill requests from the queue. Component implementation provides remote method invoca-
tion (RMI) interface for effecting adaptation operations. The system concern focuses primarily
on performance, specifically, the end-to-end request-response latency observed by the client pro-
cess. We identify latency, server load, and available connection bandwidth as the important
properties to monitor.

Based on the performance concern and system analysis, we define a client-server style for the
system with performance properties. The architecture model, as illustrated in Figure 6.2, cap-
tures the client-server-style system with a fanning connector from one server-group component
to a set of client components. Within each server-group component—in its Acme representa-
tion—is a number of replicated server components. Two spare server-group components are
shown. The major elements of the style include:

• Types: ClientT, ServerT, ServerGroupT, LinkT

• Properties: ClientT.responseTime, ServerT.load, ServerGroupT.load, LinkT.bandwidth

• Architectural operators: ServerGroupT.addServer(), ClientT.move(ServerGroupT toGrp)

88

Figure 6.2: Architecture model of the client-server system

The ServerGroupT.addServer() operator finds and adds an available ServerT component to a
ServerGroupT instance to increase its capacity. The ClientT.move(ServerGroupT toGp) operator
disconnects a ClientT component from its current ServerGroupT instance and reconnects it to
a new ServerGroupT instance, toGrp. Adaptation actions target client-side latency and allow
(1) addition of servers to a group to offset and balance load, and (2) moving of a client to a
different server group to circumvent connection problems. Prior to the development of Stitch,
these actions were provided directly by the architectural operators.

Associated with each client, an invariant checks to see if the perceived response time is less
than a predefined maximum response time (line 1 below, self refers to a client instance). If the
invariant fails, an adaptation strategy is invoked to choose one of two adaptation actions, shown
below in a pre-Stitch representation. This strategy first checks to see if the current server group’s
load exceeds a threshold value. If so, it adds a server to the group to decrease the load and
thus decrease response time. However, if the available bandwidth, as reported by Remos probes,
between the client and the current server group drops too low, the strategy moves the client to
another group to get higher available bandwidth and lower response time.

1 i n v a r i a n t s e l f . responseTime < maxResponseTime !−> responseTimeStrategy (s e l f) ;
2
3 strategy responseTimeStrategy (C l ien tT c) {
4 l e t g = findConnectedServerGroup (c) ;
5 i f (query (" load " , g) > maxServerLoad) {
6 g . addServer () ;
7 r e t u r n true ;
8 }
9 l e t conn = f indConnector (c , g) ;

10 i f (query (" bandwidth " , conn) < minBandwidth) {
11 l e t g = f indBestServerGroup (c) ;
12 c . move(g) ;
13 r e t u r n true ;
14 }
15 r e t u r n fa lse ;
16 }

89

To demonstrate the effectiveness of the framework self-adaptation cycle, we conducted an
experiment on a dedicated testbed consisting of five routers and eleven machines communicating
over 10-Mbps lines. With the testbed, we could vary bandwidth availability on specific network
links to induce move-client adaptations. For each 30-minute experiment, the bandwidth was
untouched for the first two minutes, then dropped between two clients and their current server
group for eight minutes. To induce add-server adaptations, we controlled the clients to send a
low number requests for the first ten minutes, then raised the frequency to twice a second for
the next ten minutes to generate excessive load on the existing servers. The control variable is
whether adaptation is enabled. More details of the experimental setup, simulated load, and data
can be found in [CGS+02b].

Using the simulated network bandwidth setting and stress load, we conducted experiments
of adaptation on this client-server system, which required a client-experienced latency of less
than two seconds. The results showed that, for this application and the specific loads used in
the experiment, self-adaptation significantly improved system performance. Figure 6.3 shows
experiment results for system performance with and without adaptation. Part (a) shows that,
without adaptation, once the latency experienced by each client rose above 2 seconds, it never
recovered again to fall below this threshold. On the other hand, part (b) shows that if Rainbow
adaptation is enabled, client latencies were restoredto normal levels within about a minute of
exceeding the threshold. The latency peaks at the 2-minute mark reflect the drop in bandwidth
availability, while the peaks between the 10- and 20-minute marks reflect the high client-request
frequency during that 10-minute period.

Our experiment also revealed that external repair has an associated latency. In particular,
Rainbow took several seconds to notice a performance problem and several more seconds to fix it,
indicating that the software architecture-based approach might best suit adaptations that operate
on a system-wide scale and fix longer-term system behavior trends. In summary, as evidence
toward V1, this example application of Rainbow demonstrated an effective roundtrip adaptation
cycle using a client-server-style system to address a single quality dimension, performance.

6.2 Libra Videoconferencing System
The second Rainbow prototype used a videoconferencing system to explore the coordination
of adaptation control between two different, interacting quality dimensions of performance and
cost. This instantiation also improved the separation of control between Rainbow’s architectural
layer and the target-system layer, added capability of environmental resource measurement and
discovery, and provided insight into what constituted shared infrastructures of adaptation.

Specifically, this prototype explored two issues: (1) adaptation for multiple concerns via two
interacting adaptation managers, and (2) a more generic scheme for the translation infrastructure.
The translation infrastructure consisted of a set of translators that interacted via a repository
containing four kinds of mappings: element types, element instances, operators, and exceptions.
Three kinds of translators reconciled information from system to model, from model to system,
and between models of the adaptation managers. Details can be found in [CHG+04, GCH+04].

The dynamically composed system consists of a videoconferencing session with five partic-
ipating users. Two of the participants run the Vic/SDR videoconferencing tools, which use the

90

(a) Control run, adapation disabled

(b) Adaptation run; ticks at the top mark the start and end of adaptation processes per client

Figure 6.3: Experiment result, with and without Rainbow adaptation

91

Figure 6.4: Architecture model of the Libra videoconferencing system

Session Initiation Protocol (SIP) and IP multicast. Two other participants run NetMeeting, which
uses the H.323 protocol and unicast. The final participant uses a handheld device, which runs
a slightly modified version of Vic. Since the handheld device cannot perform protocol negoti-
ation, a handheld proxy (HHP) joins the conferencing session on behalf of the handheld user.
A videoconferencing gateway (VGW) that supports both H.323 and SIP translates the protocols
for NetMeeting and Vic users. Finally, to allow efficient communication among all participants
across wide-area networks, the system uses Narada, an end-system multicast overlay consisting
of three proxies, to provide the multicast functionality.

The service provider cares simultaneously about ensuring the delivery of smooth and good
quality video to the users (performance) while keeping the cost of providing the videoconferenc-
ing service low. For example, if only one NetMeeting user remains online, the system should
switch to a low-cost gateway. As another example, the system should ensure the delivery of
smooth and good quality video to the users. Performance analysis uses service load metrics and
simple connectivity analysis of topology. Cost analysis uses a simple weighted sum of the costs
of individual services within the composed system. These analyses identify process load, usage
cost, and connectivity as the properties to monitor.

Because this system has a peer-to-peer nature with service provided by various components,
we define a service-coalition style for the videoconferencing system based on stakeholder con-
cerns. The architecture model, as illustrated in Figure 6.4, shows the service-coalition-style
system with five video application components, two video service components, and one complex
connector for the end-system multicast overlay. The major elements of the style include:

• Types: VicT, NetMeetingT, HandheldT, GatewayT, HHProxyT, ESMProxyT, ConnectionT

• Properties: GatewayT.cost, GatewayT.load, ConnectionT.bandwidth

• Operators: HandheldT.move(HHProxyT toHHP), NetMeetingT.move(GatewayT toVGW)

92

The HandheldT.move(HHProxyT toHHP) operator switches the handheld user to a new handheld
proxy, while the NetMeetingT.move(GatewayT toVGW) operator switches the NetMeeting user to
a new video gateway. The adaptation strategies, shown below in pre-Stitch representation, enable
dynamic user joining and leaving, replacement of service components to eliminate video-quality
problems, and reconfiguration of the system to reduce cost or improve performance.

1 i n v a r i a n t bandwidthToHHP (s e l f) > minHHBandwidth) !−> HHBandwidthStrategy (s e l f) ;
2 i n v a r i a n t s e l f . cost / numberOfNMusers < maxVGWUnitCost !−> VGWCostStrategy (s e l f) ;
3
4 strategy HHBandwidthStrategy (HandheldT hh) {
5 l e t hhp1 = findBestHHP (hh) ;
6 hh . move(hhp1) ;
7 r e t u r n true ;
8 }
9

10 strategy VGWCostStrategy (GatewayT vgw) {
11 l e t vgw1 = f indLowestCost (GatewayT , " load ") ; /∗ lowest cost given cur load ∗ /
12 i f ((query (" cost " , vgw1) / numberofNMusers) < maxVGWUnitCost) {
13 l e t users = { select u : NetMeetingT in sys . components | connected (u , vgw) } ;
14 foreach (NetMeetingT u : users) {
15 u . move(vgw1) ;
16 }
17 r e t u r n true ;
18 }
19 r e t u r n fa lse ;
20 }

The first invariant (line 1 above) is associated with components of type HandheldT, while the
second invariant (line 2) is associated with components of type GatewayT. At runtime, when
either invariant is violated, the adaptation engine executes the corresponding adaptation strategy.
For example, when the available bandwidth between the handheld user and the handheld proxy
drops too low, the engine moves the handheld user to a better handheld proxy. When the unit
cost of the gateway VGW becomes too high—such as when a NetMeeting user leaves the ses-
sion—the engine switches the NetMeeting users connected to VGW to the lowest-cost gateway
that can handle the load. A conflict between concerns of performance and cost is possible, such
as when a performance-targeted adaptation pushes the system’s total service cost above a maxi-
mum threshold. Although not addressed in this prototype, as we present in another instantiation,
a composite utility function can help resolve such conflicts.

In summary, as evidence toward V1 and V5, this example application of Rainbow demon-
strated a second instantiation of the adaptation framework on a different style of system, service-
coalition, addressing two interacting quality dimensions of performance and cost (but without
considering automated trade-off analysis), reusing adaptation infrastructures from prototype one
(100 of 102 kLoC, or ~98%), and using a more generalized infrastructure for translation between
model and system.

6.3 University Grade System—Security Domain

A third application of Rainbow explored how self-adaptation could be applied to the security
domain, with particular attention to two issues: (1) how to model a quality concern that is not
immediately quantifiable, and (2) the potential interplay of adaptations between two attributes

93

like security and performance that exhibit fundamental trade-offs. Although this example was
not actually instantiated for experimentation, it did achieve the following:

1. Successfully represented security concerns (risk) in an architectural style;

2. Identified security-targeted plug-in elements for a Rainbow instantiation; and

3. Provided an example of adaptation strategies that required trade-off.

Figure 6.5: Architecture model of the University Grade System

This Rainbow application exemplifies a typical university system that aims to provide timely
and ubiquitous student information access. Such a system might consist of a server behind a
firewall, connected to one or more backend databases, serving one or more clients. To protect
the data assets, the university partitions the student information into three databases, one that
stores user account information for authentication, a second that stores student personal infor-
mation, and a third that stores student grades. Partitioning the data in this fashion is one security
engineering approach to prevent the compromise of one database from exposing all data.

In our scenario, a student might attempt to hack into the system to change grades, and the
university wants to prevent, or at least be able to detect, such an intrusion.1 At the same time,
the university wants the system almost always to be able to fulfill student requests within a
reasonable amount of time. When a suspected intrusion occurs, a security engineer may react
with one of a number of escalating responses: turn on auditing, switch authentication scheme,
sandbox, move grades data, close off connections, partition network, and turn off services. Note
that each of these countermeasures has some negative impact on the responsiveness of the system
to student requests, from short delays to zero response.

For security analysis, Rainbow requires a way to quantify security risk so that it can auto-
matically determine when a security adaptation is needed and when one has succeeded. To that
end, Butler’s Security Attribute Evaluation Method (SAEM) [But02] allows one to analyze and
determine an overall risk index for a system. First, one identifies a set of undesirable outcomes,
asset components, vulnerabilities in the system, threats to the system, and potential countermea-
sures against each threat. Then one develops threat models that estimate the threat probability

1N.B.: Despite careful intrusion detection, Easter Eggs inevitably surface in the most serious of documents, to
the author’s chagrin. If you find any, please do not return to its owner, but keep for you own satisfaction.

94

1 System Universi tyGradeSystem : SecureClientServerFam = new SecureClientServerFam
extended with {

2 Property o v e r a l l R i s k : P r o b a b i l i t y T = 0 . 1 ;
3 Property r i skThresho ld : P r o b a b i l i t y T = 0 .45 ;
4 Property undesirableOutcomes : OutcomeListT = < " p r o d u c t i v i t y loss " , " resource

loss " , " negat ive r e p u t a t i o n " >;
5 Property worstDamages : DamageVectorT = <
6 [value : f l o a t = 250.0 ; u n i t : str ing = " $ "] ,
7 [value : f l o a t = 5000.0; u n i t : str ing = " $ "] ,
8 [value : f l o a t = 15000000.0; u n i t : str ing = " $ "]
9 >;

10 Component Cl i en t1 : P r i n c i p l e d C l i e n t T = new P r i n c i p l e d C l i e n t T extended with {
11 Property experRespTime : f l o a t = 0 . 0 ;
12 . . .
13 rule per formanceConstra in t = invar iant se l f . experRespTime <= MAX_RESPTIME;
14 } ;
15 Component Unive rs i t y_Serve r : SecureServerT = new SecureServerT extended with {
16 Property load : f l o a t = 0 . 0 ;
17 Property i n t r us i onProb : P r o b a b i l i t y T = 0 . 0 ;
18 Port receiveRequest : SecureServerPortT = new SecureServerPortT ;
19 Port useIn fo : SecureDataUsePortT = new SecureDataUsePortT ;
20 Port scan : RequirePortT = new RequirePortT ;
21 Port useGrade : SecureDataUsePortT = new SecureDataUsePortTb1 ;
22 Port useDir : SecureDataUsePortT = new SecureDataUsePortT ;
23 . . .
24 rule s e c u r i t y C o n s t r a i n t = invar iant se l f . i n t r us i onProb <= MAX_IDPROB;
25 } ;
26 Component Student In fo : SecureDbT = new SecureDbT extended with {
27 . . .
28 Property threatModel : ThreatModelT = {
29 [t h r e a t : ThreatT = " unauthor ized access " ;
30 asset : AssetT = " ssn " ;
31 th rea tProb : P r o b a b i l i t y T = 0 . 1 ;
32 damagePotential : DamageVectorT = <
33 [value : f l o a t = 40; u n i t : str ing = "%"] ,
34 [value : f l o a t = 10; u n i t : str ing = "%"] ,
35 [value : f l o a t = 90; u n i t : str ing = "%"] >] ,
36 [t h r e a t : ThreatT = " v i r u s " ;
37 asset : AssetT = " ssn " ;
38 th rea tProb : P r o b a b i l i t y T = 0 .25 ;
39 damagePotential : DamageVectorT = <
40 [value : f l o a t = 10; u n i t : str ing = "%"] ,
41 [value : f l o a t = 20; u n i t : str ing = "%"] ,
42 [value : f l o a t = 20; u n i t : str ing = "%"] >] } ;
43 Property e f f e c t P r o f i l e : E f f e c t P r o f i l e T = {
44 [t h r e a t : ThreatT = " unauthor ized access " ;
45 mechanism : Capab i l i t yT = " p l a i n t e x t password " ;
46 e f f e c t i v e n e s s : P r o b a b i l i t y T = 0.01] ,
47 [t h r e a t : ThreatT = " v i r u s " ;
48 mechanism : Capab i l i t yT = " v i r u s scanner " ;
49 e f f e c t i v e n e s s : P r o b a b i l i t y T = 0.9] } ;
50 } ;
51 . . .
52 } ;

Figure 6.6: Excerpted Acme description of the University Grade System

95

per asset and its damages potential in case of compromise, along with effect profiles that relate
each threat with a countermeasure and its probabilities of effectiveness. Figure 6.6 illustrates
how these security concerns are captured for the university system.

The property overallRisk records the security risk value computed using the SAEM; risk-
Threshold specifies the maximum risk value tolerated for this system; undesirableOutcomes
lists the outcomes of security compromise that the system owner would like to prevent; and
worstDamages estimates the maximum dollar values that would be lost for corresponding out-
comes. An example threat model and effect profile are shown for the StudentInfo database com-
ponent, indicating that “ssn” is an asset susceptible to the threat “unauthorized access,” which
has a 10% likelihood of occurring and a damage potential indicated as percentages of the worst
damages. An effect-profile entry indicates that “plaintext password” has a 1% effectiveness
against “unauthorized access.” The UniversityServer component shows a property that captures
the probability of an intrusion occurring on the server. The intrusion-probability value would be
updated by a gauge that interprets the readings of a component-based intrusion-detection probe,
which scans port activities on the server to determine whether an intrusion might be taking place.

Using the threat models and estimated intrusion probability, the SAEM provides a means to
determine a relative risk index, from which one can compute an overall risk score for a system
configuration. The security analysis thus identifies intrusion probability as a property to mon-
itor. As with prior systems, performance analysis identifies process load and connectivity as
properties to monitor. From the system, security, and performance analyses, we define a com-
posite client-server and shared-data style with explicit performance and security properties—
secure-client-server—for the university grade system. The architecture model, illustrated in
Figure 6.5, represents the secure-client-server-style system with three clients connected to the
university server through a firewall, accessing three databases. Two security components are
shown: an IDS (intrusion detection system) and a Grade Auditing database. Built into this style
are security-related types and attributes, as illustrated in part by the Acme description of the sys-
tem in Figure 6.6, which allow the security risk score to be computed. The style also includes:
• Types: SecureServerT, PrincipledClientT, SecureDbT, IDST, SshConnT, HttpConnT

• Properties: SecureServerT.intrusionProb, SecureServerT.load, HttpConnT.bandwidth

• Operators: SecureServerT.replicate(int delta), SecureServerT.attachIDS(IDST ids),
SecureDbT.audit(boolean on), PrincipledClientT.isolate(), ...

The performance-targeted SecureServerT.replicate(int delta) operator increases or decreases the
replication count of the server by some delta. The remainder are security-oriented operators,
and note that the list highlights but a subset of possible operators to counter intrusion. The
SecureServerT.attachIDS(IDST ids) operator attaches an intrusion detection system to the server
to monitor it for potential intrusion attempts; the SecureDbT.audit(boolean on) operator turns
database audit trail on or off; and the PrincipledClientT.isolate() operator temporarily blocks a
client associated with an authentication principle from accessing the system.

Adaptation strategies, represented in Stitch in Figure 6.7, either increase the server replica-
tion count when the client-experienced response time exceeds a maximum threshold, or counter
intrusion when the intrusion probability hits a high threshold. While not shown, strategies that
achieve the reverse can also be specified. The architectural constraints and strategies have been
specified using the new Rainbow framework conventions. The constraints to trigger adaptation

96

1 module univ . grade . s t r a t e g i e s ;
2 import model " Universi tyGradeSystem . acme" { Universi tyGradeSystem as M,

SecureClientServerFam as T } ;
3 import op " t o o l . U t i l " { U t i l as U } ;
4
5 define boolean respTimeVio = exists c : T . P r i n c i p l e d C l i e n t T in M. components
6 | c . experRespTime > M.MAX_RESPTIME;
7 define boolean i n t r udeV io = exists s : T . SecureServerT in M. components
8 | s . i n t r us i onProb > M.MAX_IDPROB;
9

10 strategy FixResponseTime [respTimeVio] {
11 t0 : (true) −> t a c t i c R e p l i c a t e S e r v e r () | done ;
12 }
13
14 strategy Coun te r In t rus ion [i n t r udeV io] {
15 define boolean i n t r u d e C l i e n t = exists c : T . P r i n c i p l e d C l i e n t T in M. components
16 | U. computeIntruderProb (c . p r i n c i p l e) > M.MAX_IDPROB;
17 define boolean in t rudeDb = exists db : T . SecureDbT in M. components
18 | db . i n t r us i onProb > M.MAX_IDPROB;
19
20 t1 : (i n t r u d e C l i e n t) −> t a c t i c I s o l a t e C l i e n t () | done ;
21 t2 : (in t rudeDb) −> tac t i cAud i tDa tabase () | done ;
22 t3 : (defaul t) −> tac t i cA t t ach IDS () | done ;
23 }

Figure 6.7: Example adaptation strategies for the university grade system

are specified in the architecture description of the system, shown in Figure 6.6 on line 13 for
performance and line 24 for security. In most circumstances, a performance constraint viola-
tion results in the FixResponseTime strategy being chosen, while a security constraint violation
results in the CounterIntrusion strategy being chosen.

However, since CounterIntrusion strains server load, when the server load is already high,
CounterIntrusion will score lower and FixResponseTime will be selected. Then, in the next
adaptation cycle, the CounterIntrusion strategy is selected to address the security issue. While
such adaptation selection may not be desirable if security violations preempt performance ones,
it shows that quality trade-offs depends on the present system conditions for strategy selection.

In summary, as evidence toward V1 and V5, this example demonstrated the application of
Rainbow to a composite style of system, client-server with shared-data, addressing primarily the
non-trivial quality dimension of security while also highlighting trade-off against performance.

6.4 TalkShoe
An important validation of the Rainbow approach is to demonstrate its usefulness in a real-world
system. Ideally, we would like to have different IT organizations adopt the Rainbow adaptation
technique. However, for the purpose of the thesis, it suffices to show one instance: apply Rain-
bow to the IT infrastructure of one company for certain management objectives. TalkShoe served
this purpose. Most importantly, the TalkShoe instantiation of Rainbow showed the successful use
of the framework by someone other than its author and provided data on customization effort as
supporting evidence for the cost-effectiveness of the approach. Furthermore, TalkShoe offered
us some lessons for improving the Rainbow approach for future use.

97

6.4.1 Background

TalkShoe is a new technology company in Pittsburgh that offers web-based voice talk shows
and discussion groups, known as talkcasts, to its customers. Customers can create talkcasts on
their favorite topics, then host episodes and invite others to join the discussion. The primary
application interface is a TalkShoe Java client running on the customer’s computer. It is required
to host a talkcast episode. Customers can join a talkcast via a Java client or a regular telephone,
like a conference call. Business users can use TalkShoe to arrange various kinds of virtual,
internal meetings. Finally, the host of a talkcast episode can choose to archive the episode at
its termination, and the system automatically exports the recording to an MP3 file. MP3 files
comprise important tangible assets for TalkShoe customers.

Like many contemporary webservice companies, TalkShoe’s web service infrastructure in-
tegrates open source, as well as third-party proprietary software, making it highly difficult to
determine problem causes, and nearly impossible to eliminate all transient, system integration
bugs. More importantly, most transient problems are not detected until they manifest as faulty,
customer-visible system behavior. TalkShoe engineers hoped that Rainbow could at least provide
them the advantage of early detection.

In early-November 2006, Carl Paradis helped to arrange an audience with the TalkShoe en-
gineers. I sent an initial case study proposal through Carl, and negotiations ensued informally
to determine a fit for the case study. In early-February 2007, Chief Architect Robert (Bob)
Pawlowski arranged an initial meeting with me to see a research presentation on Rainbow and
assess collaboration potentials. Bob discussed some of the difficulties they encountered manag-
ing their server infrastructure, and saw potential applications of the Rainbow technique to close
the loop of control. From this initial meeting, we established an understanding that

1. I would have access to their system, including the pre-production environment (and possi-
bly even have my own local setup except for the third-party conference bridge).

2. Bob would be willing to work with me on the domain-specific code.

3. I would work closely with Bob to customize Rainbow for TalkShoe, which means, in
addition to providing Rainbow software support, I would create the architecture model
and write an initial Stitch adaptation script. Bob would provide me with a description for
adaptation, and he would be expected to modify the script on his own later.

6.4.2 TalkShoe Infrastructure

The TalkShoe infrastructure shares commonalities with the Libra videoconferencing system, in
which a hosting user sets up a teleconference and participants join or leave it after the conference
starts. Unlike Libra, a session consists only of one type of application client, there is no video,
and voice delivery is done via the Internet and a specialized teleconference bridge. Figure 6.8
shows a simplified architecture of TalkShoe’s infrastructure. The TalkShoe Server is a custom
standalone server that uses Java NIO to connect to many clients. It serves one or more TalkShow
Hosts and regular TalkShoe Live Clients (not shown in diagram). During talkcast sessions, each
TalkShoe Live Client connects to the TalkShoe Server through Java NIO using proprietary binary
protocol. TalkShoe also offers a web-based client that first connects via an HTTP server, then

98

Figure 6.8: A simplified architecture model of TalkShoe’s infrastructure

communicates with the TalkShoe Server using the Jabber protocol.
Data for TalkShow episodes are stored in the TalkShow Database. Some users join talkcasts

by teleconference using the Conference Bridge component (users not shown). At the command
of the TalkShow Host, the Conference Bridge may output the audio content of an episode to file,
and a Recording Process component monitors the Conference Bridge for audio files to export to
MP3. The box labeled Admin is not actually part of the architecture, but captures a sys-admin
who gets notified when a problem occurs. As explained later, Rainbow uses properties on this
Admin component to track processed notifications.

6.4.3 Problem Scenarios for Adaptation
In the February 2007 meeting, Bob identified four problem scenarios where Rainbow can help:

1. Web-based talk-show setup: the Tomcast clusters comprising the TalkShoeServer tran-
siently exhibits long service time, so Rainbow could be used for performance adaptation
of the Tomcat configurations.

2. Conference drop: once or twice a week, the ConfBridge drops out and requires restart, so
Rainbow could be used to detect this dropout and automatically issue a restart.

3. “Talk” status on client console stops updating: the TalkShow client console shows a “talk”
status for each participant of the episode, but occasionally, the talk status stops updating,
so Rainbow could potentially be used to determine the problem origin in the infrastructure.

4. Management of episode recordings: occasionally, something happens in the audio record-
ing pipeline that prevents the RecordingProcess from producing MP3 files, so Rainbow
could be used to notify the sys-admin of missing audio files before customers discover the
problem. One complicating factor is that the audio recording process takes time to com-
plete, so it’s unclear when an unavailable audio file is actually missing. On the other hand,
the sys-admins know from experience that the recording ought to take no more than 2-4
hours, and customers usually complain after about 3-4 hours.

99

Based on a preliminary assessment, Table 6.1 characterizes the four scenarios in terms of Talk-
Shoe’s priority (P), relevance to Rainbow (A), and estimated level of effort to customize Rainbow
to tackle the scenario (E). Scenario #2 appears to be the best candidate for an initial Rainbow-
TalkShoe effort because it involves at least three components in the TalkShoe infrastructure,
has existing effector actions that administrators currently perform manually, and may require a
couple of tactics and one or more strategies. However, it was unclear what properties could be
used to check for problem to adapt, and this scenario boils down to only one objective: continue
operation of, and minimize disruption to, existing teleconferences.

Table 6.1: TalkShoe scenario feasibility assessment
P A E

1 low high med
*2 high med low
3 med low high
4 high med med

Scenario #4 is a likely second candidate, whereas #1 may not be worthwhile, and #3 amounts
to distributed system debugging, not fit for Rainbow’s purpose. After discussing scenario fea-
sibility, Bob understood more clearly that Rainbow is most useful for monitoring day-to-day
operations and responding to undesirable conditions. Bob soon recognized a better TalkShoe
scenario for Rainbow: adapt a talkshow to prevent more users from joining once Rainbow de-
tects a rise in latency for existing users. Unfortunately, this scenario seemed overly complicated,
ambitious, and time-consuming, so we decided to save it as a potential future pursuit. Apparent
from similar discussions with TalkShoe engineers, once an engineer understands the potential of
architecture-based adaptation, s/he can quickly find applicable scenarios.

6.4.3.1 Scenario 4: Ensuring Presence of Episode Recording

In order to get TalkShoe engineers on board and to recognize the benefits of Rainbow, Bob
and I decided to pursue scenario #4, which TalkShoe deemed to be high-priority and required
manageable effort to implement. In this scenario, TalkShoe users were able to keep archives of
their own TalkShoe recording. A short pipeline process began from the point the user clicked
"Stop" to terminate the talkshow, to the point a transcoded MP3 recording of the show appeared
on the user’s TalkShow homepage (while an RSS feed was simultaneously generated). These
MP3 files were the only "tangible" assets to TalkShoe customers. The problem was that, for
some reason as yet undetermined, an MP3 file was not always successfully produced. When
the system failed to generate the necessary MP3 files, users expecting them became quite upset.
This scenario extended to a service that allowed a user to upload her own audio files, which the
TalkShoe system then processed before putting the MP3 into the database and updating the user’s
TalkShoe homepage. Here, the biggest point of failure seemed to be the upload step, especially
since the audio files were generally quite large.

At a high-level, the observable quality attribute was the availability of talkshow asset to the
user. To detect the presence of a problem, four probes were potentially needed for the following

100

purposes, and at least the first and the last must be present for meaningful problem identification.

1. Detect the talkshow episode “stop” operation from the user

2. Detect the presence of a wave file and the status of its transcoding into MP3

3. Detect the upload state of an audio file from a user

4. Detect an entry in the database as a sign of successful MP3 production

Once we could detect the episode-stop event and the MP3 database entry, we wanted to imple-
ment a simple strategy: if no MP3 recording was found in the database for an episode that had
been stopped for longer than a predefined observation window, say one hour, then notify the sys-
admin of a possible recording problem. The email notification action was the only adaptation
effector. Perhaps a more substantive adaptation was possible, but the engineers had not deter-
mined one for this scenario yet. In the architecture model, information about missing MP3 files
would logically reside as a property of the TalkShowDb component. More specifically, we could
use a TalkShowDb property episodeAbsentRecording, updated by a gauge, to track the status of
a set of episodes that were expected to have an MP3 recording eventually.

6.4.3.2 Adaptation Workflow for Scenario 4

Let us walk through the customization items needed for this scenario. For this scenario, there
was effectively one objective—the availability of the talkshow recording—so we did not need to
worry about trading off across utility dimensions.

1. First, we needed to develop two probes: the EndRecordingProbe to detect the episode-
stop event from the user, and the CheckForRecordingProbe to query the database for an
MP3 file. There was one small complication: CheckForRecordingProbe required knowl-
edge of the unique TalkShow Episode identifier (epID) associated with the episode that
was stopped, which was known only to the EndRecordingProbe. However, these two
probes resided on different machines, and no communication path existed between Rain-
bow probes across machines. So, we needed a way to connect these two pieces of data.

2. Next we needed a gauge to update the model property Talk-
ShowDb.episodeAbsentRecording. On initial configuration, the gauge would be
supplied with an observation time window, so that it knew when to update the set of
episodeAbsentRecording. This gauge would need to have knowledge of the epIDs for the
stopped episodes, as well as the status of MP3 recordings in the database. The two probes
could provide these two pieces of data. Furthermore, since the RecordingMonitorGauge
served as a single location to track both pieces of data, it could also coordinate this
information between the two probes. Thus, we had the following sequence of events:

(a) When the EndRecordingProbe detected an episode-stop event, it passed this informa-
tion to the RecordingMonitorGauge via the Probe Bus.

(b) RecordingMonitorGauge forwarded this information to the CheckForRecording-
Probe via a Probe-Configure operation.

(c) CheckForRecordingProbe queried the database periodically and published the sta-
tus of the expected MP3 file to the gauge. The status could be one of

101

URL_NOT_FOUND or RECORDING_FOUND.

(d) The RecordingMonitorGauge kept time on all the epIDs that it was tracking, and pub-
lished an updated set of episodesAbsentRecording to the architecture model when-
ever a timer exceeded the observation time window or a recording status changed to
RECORDING_FOUND.

3. In the architecture model, we needed to define constraints to trigger notification whenever
the set of episodeAbsentRecording changed. Since TalkShoe engineers did not want redun-
dant notifications, the constraint needed to be able to distinguish between new episodes that
were absent recording and episodes of which the sys-admin had already been notified. For
this purpose, the Admin component external to the architecture in Figure 6.8 served to
track those episodes for which a notification had been sent to the administrator.

4. To respond to the constraint trigger, we needed a Stitch script. Since this scenario required
only a notification action, the script would simply contain one strategy, NotifyOnExpire,
that invoked one tactic, notifyByEmail, to send an email notification for the new epIDs.

5. We needed an effector to send the email, which notifyByEmail would eventually invoke.

6.4.3.3 Development and Deployment

After a couple of brainstorming sessions, we were ready to start implementing the two probes and
the notification effector. I packaged together the Rainbow dependent Jar files, a set of Rainbow
customization files, a sample set of probes and gauges, and the Rainbow APIs pertaining to
probes, gauges, and effectors. This comprised the software development kit (SDK) for Rainbow,
in the form of an Eclipse workspace plug-in, which Bob would use for the customization to
TalkShoe. In terms of development interactions, I met with Bob at TalkShoe twice a week to
work on customizations that required his domain knowledge and the TalkShoe environment.
Individually, I worked on the architecture model and the Stitch script (counted in the time data),
as well as feature addition, bug fixes, and general enhancements to Rainbow (not counted).

In the first session (see Table 6.2), Bob created stubs for the EndRecordingProbe and the
CheckForRecordingProbe to (a) gain familiarity with Rainbow’s APIs, (b) simulate episode-
stop event and database lookup outside of the TalkShoe environment, and (c) provide me the
parts to connect other pieces of Rainbow. Based on my cursory understanding of the TalkShoe
infrastructure, I developed the Acme family and system instance that comprised the architecture
model of TalkShoe. I also enhanced the Rainbow framework to support gauge configuration of
probes. In the second session, I implemented the RecordingMonitorGauge to coordinate the two
probes and populate the architecture model, and Bob wrote an EmailNotifyEffector using Java
mail to send emails. I then composed the notifyByEmail tactic and NotifyOnExpire strategy for
the notification adaptation, shown in Figure 6.9. Bob and I hooked up the model, the Stitch script,
and the effector during session 3, refined the probes to generate useful data in session 4, and tested
the adaptation roundtrip on Bob’s development machine during sessions 5–7. Deployment into
the pre-production environment would mark the first exercise of all the cross-machine gauge and
probe communication code, and that succeeded on session 10.

Bob decided that once Rainbow passed pre-production testing, he planned to deploy it with
the July 2007 production release. However, in the end, the Rainbow code was not deployed

102

into production, in part due to Bob’s schedule constraint, and in part because a later TalkShoe
software version appeared to have solved the episode-recording issue, eliminating Rainbow from
TalkShoe’s set of critical features for production release.

1 module ta lkshoe . t a c t i c s ;
2 import model " TalkShoeSys . acme" { TalkShoeSys as M, TalkShoeFam as T } ;
3 import op " ta lkshoe . opera tor . ArchOperator " { ArchOperator as S } ;
4 import op " org . sa . rainbow . s t i t c h . l i b .∗ " ; / / Model , Set , & U t i l
5
6 t a c t i c not i f yByEmai l (set {T . TalkShoeDataT } dbs) {
7 set u n n o t i f i e d S e t = { } ;
8 condition {
9 / / some episodes are not i n Admin ’ s n o t i f i e d set , i . e . , not n o t i f i e d

10 exists db : T . TalkShoeDataT in dbs
11 | Set . s i ze (Set . d i f f (db . episodesAbsentRecording ,
12 M. Admin . ep isodesNo t i f i ed)) > 0 ;
13 }
14 action {
15 for (T . TalkShoeDataT db : dbs) {
16 u n n o t i f i e d S e t = Set . union (unno t i f i edSe t ,
17 Set . d i f f (db . episodesAbsentRecording , M. Admin . ep isodesNo t i f i ed)) ;
18 }
19 S. ema i lNo t i f y (" l o c a l h o s t " , u n n o t i f i e d S e t) ;
20 set n o t i f i e d S e t = Set . union (M. Admin . ep isodesNot i f i ed , u n n o t i f i e d S e t) ;
21 Model . setModelProperty (M. Admin . ep isodesNot i f i ed , n o t i f i e d S e t) ;
22 }
23 ef fec t {
24 / / those new episodes should now be i n Admin ’ s n o t i f i e d set
25 Set . s i ze (Set . d i f f (M. Admin . ep isodesNot i f i ed , u n n o t i f i e d S e t)) == 0;
26 }
27 }

1 module ta lkshoe . s t r a t e g i e s ;
2 import l i b " t a l kshoeTac t i cs . s " ;
3
4 define boolean i sTa lkShoeSty le = Model . hasTypes (M, " TalkShoeDataT ") ;
5
6 / / This St ra tegy s imply n o t i f i e s a developer o f l i s t o f bad episodes .
7 strategy Not i fyOnExpi re
8 [i sTa lkShoeSty le] {
9 set dbs = { select db : T . TalkShoeDataT in M. components

10 | U. s ize (db . episodesAbsentRecording) > 0 } ;
11 boolean hasUnnot i f ied = exists db : T . TalkShoeDataT in dbs
12 | Set . s i ze (Set . d i f f (db . episodesAbsentRecording ,
13 M. Admin . ep isodesNo t i f i ed)) > 0 ;
14
15 t0 : (hasUnnot i f ied) −> not i f yByEmai l (dbs) {
16 t1 : (! hasUnnot i f ied) −> done ;
17 }
18 }

Figure 6.9: Tactic notifyByEmail and Strategy NotifyOnExpire

6.4.4 Data and Result
While performing this case study, we kept track of the time spent. Total development time for
the MP3 scenario lasted almost 34 hours, with the activity breakdown detailed in Table 6.2. In
the beginning, Bob and I spent more than 3 hours on one-time development environment setup.

103

Table 6.2: TalkShoe scenario development activity data
Ses Date Time Development Activity Dur (hr)

1 2007.04.11 1415–1800 Initial dev env’t; Gauge + Probe 3.75
2007.04.13 1315–1515 Model: architecture style + instance defined 3.0*

2 2007.04.13 1515–1915 Gauge + Effector 4.0
2007.04.14 1125–1501 Stitch: script defined + effector plumbing 3.6

3 2007.04.18 1000–1245 Hooked with model + Stitch; Effector 2.75
4 2007.04.20 1520–1745 2 Probes + simulator 2.4
5 2007.04.25 1520–1750 Partial roundtrip debug + Stitch script 2.5

2007.04.25 1525–1640 Model: Port types, Admin component + Stitch [1.25]
2007.04.26 0130–0230 Model: families and episode record field type 1.0
2007.04.27
2007.04.28

0350–0405
0019–0025

Model: architecture constraint for absent recordings +
property type for EpisodeInfo

0.35

2007.04.27 2055–2319 Stitch: script completed, trigger condition added 2.4

6 2007.05.02 1012–1130 Roundtrip debug + deployment plan 1.3
7 2007.05.08 1112–1230 Deployment on local server; infrastructure bugs! 1.3

2007.05.10
2007.05.17

1325–1331
0214–0220

Model: modification + rollback of secondElapsed;
Architecture model final version

0.2

8 2007.06.01 1050–1144 Pre-production deployment 0.9
9 2007.06.05 1425–1725 Pre-production test #2; Gauge-Probe arch bug 3.0

10 2007.06.08 1100–1230 Successful pre-production deployment 1.5
Total development time: 33.95

*: italicized time indicates one-person effort
[]: bracketed time indicates overlap with another time block

In the end, we sank a little over 5 hours to debug Rainbow deployment in the TalkShoe pre-
production environment, an activity that is not expected to require as much effort after the initial
curve. Therefore, about 26 hours can be attributed to architecture modeling and customization of
Rainbow to the TalkShoe environment, including the development and testing of probes, gauges,
and effectors. Of those 26 hours, almost 12 hours involved only one person and the remaining
14 hours involved both persons. Hence, more accurately figured, the customization effort took
40 man-hours, while the overall scenario took 56 man-hours of effort.

6.4.5 Conversations with the TalkShoe Architect

On December 12, 2007, after concluding the Rainbow customization effort with Bob Pawlowski
the chief architect at TalkShoe, I met with Bob to acquire his view on the cost-effectiveness of
Rainbow. The format took the form of a prompted conversation:

• (Initial prompt) What would you estimate to be the time and effort (or difficulty) of modi-
fying the TalkShoe infrastructure to support similar self-adaptations without Rainbow?

• If adaptation concerns would have been considered upfront when designing the TalkShoe

104

Infrastructure, what would you say the impact to effort/time would have been?
• What would the time and effort be with Rainbow?
• What would be preventing the adoption of Rainbow today?

The benefit [of Rainbow] was, the more that is done, the more saving [in effort].
[Without Rainbow,] the initial [design and implementation] effort might take about
the same amount of time, but would [couple the design of adaptation concerns] into
the [TalkShoe] system. [After the initial efforts,] more [adaptation modifications]
can be done in a shorter time, [as there is essentially an] amortization of effort,
[assuming our design observed] separation of concerns [and was] generalizable.
[In designing and implementing the TalkShoe infrastructure, we adopted an] Agile
[mentality]: do the simplest that could make things work. So, these adaptation con-
cerns would not have come up early on. However, if we had to add the adaptation
concerns [initially, adaptation engineering of] just the monitoring and action loop
[(e.g., capabilities to probe recording status and notify by email)] would have per-
haps added about 5-10% (~2 man-months) [to the overall development time]. To
cover the basic adaptation concerns [for] most problematic [scenarios identified in
Section 6.4.3 would have probably required] another 2 man-months.
[The effort to apply Rainbow] depends on the time to learn Rainbow. If it were
a mature product with [an integrated development environment] and deployment
mechanism, then [it would] definitely [require] less time, say, a month to learn it, a
month to build. Then the amount of time saved would be in terms of maintenance.
[The trick for commercial adoption of Rainbow would be whether engineers] can
install Rainbow from one place to all parts of the system, [manage from] one
console, update [Rainbow] automatically, so that the engineers can focus on their
domain. [There is a] software development movement toward “convention-over-
configuration,” for example, Ruby-on-Rail, the Java alternative Grails (Groovy +
Spring + Hibernate). [So the] Litmus test [for Rainbow would be]: can the engi-
neer use it and get it working in a day. Also, incrementality of the framework [is
important/crucial].

From the conversation with Bob, a number of key phrases offer insight into the cost-effectiveness
of Rainbow: the more that is done, the more savings; amortization; separation of concerns; gen-
eralizable; four versus two (1+1) months; timed saved in maintenance; integrated development
and deployment; let engineers focus on their domain; incrementality. In the next chapter, we
discuss these points further when evaluating Rainbow’s fulfillment of the thesis requirements.

6.4.6 TalkShoe Summary

In brief, the TalkShoe case study demonstrated the following:

1. Evidence suggests that the Rainbow approach is cost-effective (see Section 7.2)

2. Architecture-based self-adaptation has potential adoption in the “real world”

3. There exists at least one engineer other than Rainbow’s author who can use the framework

105

As evidence toward V1, V3, and V4, this Rainbow instantiation for TalkShoe demonstrated its
successful application in an external, commercial setting by another individual. Rainbow was
customized for an N-tier-client-server-style system with availability concern. It provided data on
customization effort as supporting evidence for the cost-effectiveness of the approach.

6.5 Znn.com News System
Another, critical validation of the Rainbow approach is to demonstrate its ability to achieve
adaptation that trades off across multiple objectives. Besides serving as the running example in
this thesis thus far, the Znn.com Rainbow instantiation serves the following purpose:
• It explores the composability of adaptations across three different quality attributes;
• It demonstrates an integrated Rainbow framework with explicitly defined customization

points, while showing the ease of customizing the framework parts; and
• It fully illustrates the capabilities of the Stitch self-adaptation language.

In this section, we motivate and present the Znn.com system in detail, describe the experimental
scenarios and setup, and present the experimental data and self-adaptation engineering results.

6.5.1 Motivation: Slashdot Effect
The motivation for the Znn.com instantiation comes from an Internet phenomenon known as the
Slashdot effect, where an otherwise low-traffic website, shortly after being featured on slash-
dot.org, gets inundated with visitors for a period of time, anywhere from a few hours to a couple
days [Ter04]. Now a common term, it describes a similar phenomenon where a website experi-
ences a sudden, unanticipated rise in requests due to a popular event (or sometimes, anticipated,
but not to the scale observed), for example, breaking news or superbowl craze [Wik08d].

To illustrate a few instances, on the morning of August 17, 2006, a break in the JonBenet
Ramsey case resulted in a local news website, rockymountainnews.com, being swamped by news
readers. Browsing the site at 10:18 AM took more than 2 minutes to retrieve a blank page with
only the local weather showing in the corner (see also a timed wget record in Appendix D.1 on
page 191). On September 4, 2006, the shocking death of Steve “Crocodile Hunter” Irwin caused
the Australian Broadcasting Corp website to be temporarily shut down; similarly, numerous
other news sites groaned to a halt. Of note is that Australian Broadcasting Corp’s site resumed
a few hours later with a low-bandwidth format to cope with the high traffic [Tai06]. A more
problematic, revenue-losing case arises when an e-commerce site is shut down by the Slash-
dot-like effect, as exemplified by Wal-Mart’s shopping site on Black Friday 2006 (see screen-
shot in Appendix D.1)2, which remained inaccessible into the afternoon after the initial morning
rush [San06, Sch06].

The Australian Broadcasting Corp illustrates the present coping mechanism of most website
administrators to the Slashdot effect. When they first notice a sudden rise in visit requests, they
make a decision to temporarily shut down the site for manual reconfiguration, where usually

2Although, arguable in Wal-Mart’s case, the Black Friday traffic could have been anticipated, Wal-Mart may
have anticipated an initial burst for its storefront but not to the scale it experienced for its Web-front.

106

entails resorting to lower fidelity content. In extreme cases, the site might temporarily shut down
or simply post a notice to “visit later.” There are a number of disadvantages with this scheme:
• The problem may not be discovered in time;
• The manual process means slower response time;
• The chosen solution may be suboptimal; and
• It may result in a potential loss of confidence, revenue, or future business.

An ideal approach would be to achieve site adaptation automatically, and our aim is to demon-
strate such self-adaptation with the Znn.com instantiation. It is worth noting that a few modern
systems with sophisticated infrastructures, such as Google Gmail, have equipped themselves
with similar but limited adaptation capabilities, for example, to instruct its users to “reload in a
few seconds” when it detects a sudden peak or other underlying connectivity issues to its servers.

While the Znn.com example is motivated by Slashdot effect, we apply Rainbow to address
only the dynamic-adaptation aspect of the problem. Other solutions are possible, such as ex-
plicitly blocking links from Slashdot.org [Wik08d], using a thirt-party system like Mirrordot to
automatically mirror a website that is featured on Slashdot.org [Ter04], and using Akamai to
geographically distribute traffic.

To demonstrate Rainbow’s self-adaptation capabilities, we compare the use of self-adaptation
versus basic manual configurations using a Znn.com setup. We use the expected utility of the
system (as described in Section 4.3.6) to its two groups of stakeholders, the providers and users,
as the metrics of comparison. By effective, we mean that an approach resulted in a high utility
for the system. We show that Rainbow self-adaptation is more effective than basic manual con-
figuration on a system like Znn.com. We further show that Rainbow incurs low overhead in the
process, as well as achieves composability. Specifically, we explore the following hypotheses:
• Rainbow self-adaptation is more effective than manual reconfiguration.
• Rainbow incurs low resource overhead (1-2%) on crucial resources like CPU utilization.
• Given multiple objective dimensions, Rainbow chooses the most effective strategy.
• Incremental addition of a new objective dimension incurs low development effort, O(days),

and incremental addition of new adaptation strategies (once tested to work) requires, at
worst, a quick restart of Rainbow.

We now present the Znn.com system and its Rainbow customization.

6.5.2 Rainbow Customization for Znn.com
The typical infrastructure for a news website like cnn.com and rockymountainnews.com has a
three-tier architecture consisting of a set of application servers that serve contents from backend
databases to clients via frontend presentation logic. The Znn.com system imitates such a setup.
Architecturally, it is a web-based client-server system that satisfies an N-tier style, as illustrated
in Figure 6.10.3 Znn.com uses a load balancer to balance requests across a pool of replicated
servers, the size of which can be manually adjusted to balance server utilization against service

3Although a common component, the database increases system configuration complexities without adding value
to the illustration of adaptation features, and has thus been excluded from our instantiation.

107

Figure 6.10: Architecture model of the Znn.com system

response time. A set of client processes makes stateless content requests from one of the servers,
the servers serve both static files (e.g., images and videos) as well as dynamic contents (e.g.,
news template populated from periodically updated news source).

Typical of news provider concerns, our quality objectives for Znn.com is to serve news con-
tents to its customers within a reasonable response time range while keeping the cost of the server
pool within certain operating budget. From time to time, due to highly popular events, Znn.com
experiences spikes in news requests that it cannot serve adequately, even at maximum pool size.
To prevent losing customers, we opt to serve minimalist textual contents during such peak times
in lieu of providing zero service to the customers. In short, we identify three quality objectives
for the self-adaptation of the Znn.com system: (A) performance, (B) cost, and (C) content quality.

Performance analysis outcomes from prior systems with similar performance concerns in-
form us to monitor the request-response time, server load, and connection bandwidth of the
system. Cost analysis identifies the number of active servers as the primary contributor to cost,
hence we monitor the server count. For content quality, we characterize different levels of con-
tent fidelity ranging from full multimedia to static text, then assign three levels of high, medium,
and low. Thus, major elements of the N-tier-client-server architectural style for Znn.com include:

• Types: ClientT, ServerT, ProxyT, HttpConnT

• Properties: ClientT.experRespTime, ServerT.cost/load/fidelity, HttpConnT.bandwidth

• Operators: ServerT.activate(), ServerT.deactivate(), ServerT.setFidelity(int level)

The ServerT.activate() operator activates a ServerT instance, while the ServerT.deactivate() oper-
ator deactivates it. The ServerT.setFidelity(int level) operator sets the server content fidelity to the
level identified by the input integer. From these operators, we have specified two pairs of tactics
with opposing effects. One pair enlists (1) or discharges (2) servers while the other pair raises
(3) or lowers (4) the server content fidelity. In effect, these tactics allow the service level of the
Znn.com system to be stratified into gradients that trade off the various objectives. This enriches
the adaptation space over prior examples, which defined only binary modes of adaptation. The
following example illustrates how these tactics might interact:

When the response time is high, objective A suggests that Znn.com should increment its

108

server pool size (1) if it is within budget; otherwise, Znn.com should switch the servers to textual
model (4). When the response time is low, objective C suggests that Znn.com should decrement
its server pool size (2) if it is near budget limit; objective B suggests that Znn.com should switch
the servers to multimedia mode (3) if they are not already in that mode. When the response time
is in the normal range, objective B suggests that Znn.com should switch the servers to multime-
dia mode if they are currently textual, while the server pool size may either be incremented to
decrease response time or decremented to reduce cost.

Various adaptation strategies can be defined from these four tactics, and we have defined four,
listed in Appendix C on page 184, and summarized here:

SimpleReduceResponseTime: When any client experiences a request-response time above
threshold, this strategy lowers content fidelity by one level, then lowers fidelity again
if the first attempt fails to bring response time below threshold.

SmarterReduceResponseTime: Let n be the count of clients experiencing request-response time
above threshold; if n exceeds a tolerable percentage of total, this strategy enlists a
server, then enlists another server, then lowers the fidelity one level, then repeats the
last two sequence twice until successful.

ReduceOverallCost: When the total server cost exceeds a threshold value, this strategy dis-
charges up to four servers, one at a time, until the cost is reduced below threshold.

ImproveOverallFidelity: When the average content fidelity of the servers drop below a threshold
value, this strategy raises the fidelity level for all servers, up to twice, until the
average fidelity rises above threshold.

Note that these have juxtaposing effects to allow system adaptation to balance overall objectives.

6.5.3 Experimental Setup
To demonstrate self-adaptation on a news website as motivated in Section 6.5.1, we configured a
Znn.com system using open-source, commercial software, customized an instance of Rainbow on
the system as described in the previous subsection, then performed a Slashdot-effect experiment
with the system to determine the effectiveness of Rainbow self-adaptation.

The setup consisted of a pool of four typical Intel (~1 GHz) machines, each running a Debian-
flavor Linux operating system, configured with an instance of Apache webserver. A fifth machine
ran a load balancer to forward incoming requests in a round-robbin fashion to any active server
among the four. Two additional machines were set up to act as the clients, using Apache JMeter,
a Java application for testing web applications and measuring their performance, to simulate
request loads from multiple clients.

To perform the experiment, we designed a workload that is characteristic of a Slashdot effect
visitor traffic profile, as discussed in the next subsection, and devised the following trial types to
test the hypotheses and assess Rainbow’s effectiveness:

1. Control runs without Rainbow adaptation—to establish baseline and comparison envelopes

(a) Nominal configuration: single active server with full-fidelity (multimedia) content

(b) Maximum fidelity, highest cost: all servers active with full-fidelity content

109

(c) Maximum service capacity, minimum fidelity, highest cost: all servers active with
lowest-fidelity (textual) content

2. Experimental runs with Rainbow adaptation

(a) Rainbow self-adaptation capabilities tailored to Znn.com

i. SimpleReduceResponseTime and SmarterReduceResponseTime strategies
only—fidelity and cost dimensions to cope with Slashdot effect

ii. Add ReduceOverallCost and ImproveOverallFidelity strategies—recovery from
degraded modes; to illustrate full trade-offs

(b) Monitoring only—to allow accounting for resource overhead of system monitoring

For each trial type, we performed five runs to smooth stochastics and to yield consistent out-
comes. For every run, we collect statistics on the total number of samples, response latency
measurements, request throughput, and any errors. We also track the corresponding cost and
content fidelity values to compute cumulative utility and provide a complete picture of the trade-
off space as defined by the overall objectives. We use the cumulative utility value as measure to
assess variance and determine the final count of trial runs to perform.

6.5.4 Slashdot Effect Traffic Profile

Figure 6.11: Graph of actual, peak-day traffic of a site experiencing Slashdot effect.

110

The sharp increase in visitor traffic from the Slashdot effect can range from several hours to
a few days. The short Wikipedia article on this topic indicates that traffic might remain elevated
for 12 to 18 hours until the posted Slashdot article is pushed off the front page. The article also
graphically depicts a typical Slashdot effect traffic profile, marked by a sharp increase in traffic
preceded by relatively low activity and followed by a gradually tapering tail [Wik08d]. Example
of an actual Slashdot effect traffic is duplicated in Figure 6.11 [Jur04].

Due to the resource-demanding nature of the Slashdot effect, an adaptation that does not
quickly offset the sudden rise in demand for resources would not be effective. Therefore, the
initial sharp rise in traffic entails the critical duration of interest for our experiment purposes. For
measurement purposes, we choose to observe a sustained duration after the initial rise to make
sure that any effective adaptations remain effective for a reasonable amount of time. In lieu of 12
to 18 hours of actual traffic, we devise a Slashdot effect traffic profile patterned after the ~mjuric
profile (Figure 6.11), scaled down to one hour (12:1) but kept at a similarly high visit rate:

1. 1 minutes of low activity, 6 unique visits/min

2. 5 minutes of sharp rise in requests, ramp up to 600 visits/min (+120 visits/min/min)

3. 18 minutes of peak in requests, sustained at 600 visits/min

4. 36 minutes of linear decrease, ramp down to 60 visits/min (-15 visits/min/min)

We constructed this workload in JMeter, using Gaussian random timer between requests. We
then deployed this workload on two JMeter instances to generate the news reader traffic for our
Znn.com example. Data collected from the experiment runs is summarized in the next subsection.

6.5.5 Data and Results

Figure 6.12 shows a graph for two experiment runs, control (red) versus adaptation using one
simple strategy (green). For each run, the JMeter data table shows the total count of request
samples, the statistics of request-response time, and the net throughput. The graph plots the
latency per request, and the small table summarizes how many requests yielded latencies above
10 seconds and 1 second. The data indicated that Znn.com with Rainbow adaptation, in contrast
to Znn.com without, yielded far lower latencies (902 of 1200, or 75%, requests served within 1
second vs. 80 of 1200, or 7%) and better throughput (3.5x of control).

While instantiating Rainbow for the Znn.com system, we tracked Rainbow customization
activities in detail, shown below.4 The customization effort, including architecture modeling,
adaptation scripting, and development and testing of probes, gauges, and effectors, accounted for
a total of 93.4 hours, or approximately 2 1/3 work weeks. Of this, 13.3 hrs (14%) were used to
describe the model, 49.1 hrs (53%) to develop probes and gauges, 7 hrs (8%) to develop effectors,
21.3 hrs (23%) to compose adaptation scripts, and 2.7 hrs (3%) to compile the customization
files. Note that while the majority of the effort was spent developing monitoring capabilities, the
resulting probes and gauges are reusable artifacts, so less such effort would be required as more
are developed. Furthermore, the order of magnitude of effort has greater significance than the
actual durations: note that most activities required on the order of minutes to a couple hours, not

4[]: bracketed time indicates overlap with another time block, and excluded from total.

111

Figure 6.12: Graph summarizing preliminary Znn.com experiment data

days, while incremental changes required on the order of tens of minutes, not hours. We evaluate
the cost-effectiveness of Rainbow adaptation engineering in Section 7.2.

Activity Description Dur (hr)

Rainbow Model Description
K1 Created simple version of architecture model 1.0
K2 Developed full version of architecture model 8.0
K3 Added fidelity and cost thresholds 0.33
K4 Added request rate and other ApacheTop properties 0.67
K5 Added another constraint 0.17
K6 Added component deployment location property 1.0
K7 Added latency property to HTTP connector (follows M11) 0.17
K8 Created EnvModel type and incorporated with arch 2.0
K9 Added Client reverse constraint while testing strategies (incl. in S6) [0.17]

Subtotal Rainbow model description time: 13.3

Probes and Gauges Development
M1 ApacheTop utility Rainbow customization 20.0
M2 Fidelity detection perl script + Gauge (incl. in M3) [3.0]
M3 CPU Load perl script (incl. learn /proc/stat) + Gauge 8.0

112

M4 ApacheTopGauge (mostly regex patterns) 4.0
M5 Rainbow probes perl module + sockets 4.0
M6 ApacheTop perl script (incl. in M5) [2.0]
M7 DiskIOProbe perl script, via /proc/diskstats 2.25
M8 DiskIOProbe perl script, via iostat 0.75
M9 DiskIOGauge, aggregating stat from diskstat probe 1.5

M10 PingRTTProbe, java-based (mostly research time) 2.33
M11 LatencyGauge, using PingRTTProbe, est 1 KB data 0.25
M12 RtLatencyMultiHostGauge, gauges multiple hosts (added support framework) 4.0
M13 RtLatencyRateMultiHostGauge, 1st derivative 0.83
M14 ClientProxyProbe, to check experienced resp time 0.83
M15 End2EndRespTimeGauge, to check experienced resp time using ClientProxyProbe [0.33]

Subtotal probes and gauges development time: 49.1

Effectors Development
A1 Change server fidelity + Apache fidelity conf files 4.0
A2 Turn server on/off 2.0
A3 Set random reject 1.0

Subtotal effectors development time: 7.0

Stitch Scripts Composition
S1 Created newssite Strategies and Tactics scripts 10
S2 Added newssite strategies and tactics 3.0
S3 Updated newssite strategies, added simpleReduce 0.5
S4 Modified newssite strategies, added variedReduce; Strategy testing by simulation (1) 1.5
S5 Strategy (smarter) testing by simulation (2) 1.0
S6 Strategy testing by simulation (3) 3.5
S7 Improved newssite raiseFidelity tactic, fix oscillation 0.75
S8 Modified newssite strategies for grammar update 1.0

Subtotal Stitch scripts composition time: 21.3

Rainbow Customization Files (min)
R1 Gauge spec, add DiskIOGaugeT and instance 10
R2 Gauge spec, add LatencyGaugeT and instance 7
R3 Probe spec, add multi-host key-values 17
R4 Gauge spec, modified LatencyGaugeT to use Multi 11
R5 Gauge spec, add LatencyRateGaugeT and instance 10
R6 - Getting LatencyRateGaugeT to work 84
R7 Probe spec, add ClientProxyProbe (incl. in M15) [5]
R8 Gauge spec, add ResponseTimeGaugeT and inst (incl. in M15) [15]
R9 - Getting ReponseTimeGaugeT to work 20

Subtotal Rainbow customization files time: 2.7 h

Total Rainbow customization time: 93.4 h

113

6.5.6 Znn.com Summary
In summary, as evidence toward V1–5, the Znn.com example demonstrated the comprehensive
instantiation of an integrated Rainbow framework with its customization points, including the
use of an environment model. The overall customization effort required less than 94 hours, half
of which may be amortized with reusable probes and gauges. Furthermore, the resulting self-
adaptive Znn.com system demonstrated that, given a set of quality objectives, utility profiles,
and preferences, Rainbow can select the best adaptation strategy that trades off across multiple
quality dimensions to adapt the target system and achieve near-optimal overall utility. Finally,
Znn.com exercised the capabilities of the Stitch self-adaptation language to represent four quality
dimensions, two adaptation conditions, three different scenarios of utility preferences for testing
(see Appendix C on page 188, under the heading “weights”), three operators, four tactics with
cost-benefit attributes, and five strategies with conditions of applicability on style as well as
system conditions, timing delay, and branch probabilities.

6.6 Interview with System Administrators
The design of the Stitch language was derived, in part, from our understanding of how sys-admins
perform adaptive administrative tasks when they encounter system problems. We developed this
insight over time from personal experiences and interactions with other sys-admins [Alm06,
Bis06, Che08a, Whi06, You07, Rho08]. While our insight helped to shape the design of Stitch,
to further substantiate the expressiveness Stitch and the suitability of its design, we arranged to
interview sys-admins to gather systematic evidence [Alm06, Bis06, Whi06].

In this section we detail an interview process and a set of interview questions we developed.
We then report results from two sys-admins, one from interview, another, self-guided decision
analysis. Most of this content derived from the work of Ali Almossawi, an undergraduate stu-
dent with prior experience as a sys-admin, who performed a summer independent study on the
Rainbow project under my supervision. The objective of the interview process was to distill
important self-adaptation concepts and determine mismatches of system-administrative process
against Rainbow self-adaptation process.

6.6.1 Methodology
The interview process consisted of three steps. After initial contact with a sys-admin, we first
prepared the sys-admin for the interview by asking a set of pre-interview questions that prime
the sys-admin to think in terms of problem-objectives-actions, but without eliciting detailed re-
sponses. Second, we conducted the interview to elicit concrete responses and uncover in detail
the mental process of system administration with respect to problem-solving courses of action.
Third, we attempted to compose a script in Stitch for each of the problem-solutions discussed in
the interview, in some cases interacting with the sys-admin to obtain feedback.

Pre-Interview To make the interview process constructive and efficient, the following pre-
interview questions serve dual purposes: to set the interviewee with the proper frame-of-mind,

114

and to provide the interviewer with a high-level understanding of the system context within
which the sys-admin works. Ideally, leave a hiatus of a few days to a week between receiving
the pre-interview response and conducting the interview.

Context Briefly category the kinds of systems and applications you work with.

Problems Briefly describe some typical problems you encounter as a sys-admin.

Objectives For each of these problems, highlight any objectives you establish before attempting
a solution, that is, indicate briefly what motivates your decisions.

Courses of action For each objective, briefly describe the abstract steps you take to achieve it.

Interview Allow approximately 40 minutes to conduct the interview. To guide the interview
and maximize information elicitation, each of the following questions indicates an underlying
purpose [P] before listing the question [Q]:

1. [P] In order to see how expressible is each adaptation step, we need to obtain, from context,
an accurate description of the sys-admin’s problem-solving process.
[Q] Your pre-interview response identified a few problems and the associated problem-
solving steps that you normally take. Could you walk me through each set of steps to show
me your typical problem-solving workflow?

2. [P] In general, see whether utility theory is an appropriate decision technique; in particular,
determine whether adaptation decisions are consistent (rational), an indication of whether
quantifying factors using tactic attribute vectors is reasonable.
[Q] When you encounter a problem, how do you determine what action to take and whether
it is the best choice? In other words, how do you prioritize your choice? by simply picking
the cheapest or sufficiently effective one, or using a more complex set of criteria?

3. [P] Determine if the decision-making process of the sys-admin is sufficiently rational to
generalize as a yardstick for measuring the expressiveness of Stitch (need more than one
interview). In fact, if some typical strategies of the sys-admin have been written down, they
would serve as perfect specimens to gauge Stitch expressiveness or language omissions.
[Q] Do you have any mitigation strategies written down that I can examine or do you
usually rely on intuition? If intuition, would you say it’s fairly consistent or does it change
depending on case and time? Would you be able to codify your decision-making process
or are there variable factors that require human judgment?

4. [P] Determine whether the sys-admin uses a catch-all solution (e.g., rebooting the server)
or attempts solutions with partial confidence hoping that one of them fixes the problem;
exploring this helps to classify the types of decision-making (e.g., pessimist or optimist).
[Q] If you encounter a problem where you have insufficient information to determine how
to fix it, what do you usually do?

6.6.2 Interview Results

Following this process, Almossawi conducted an interview on July 24, 2006, with Walter White,
a former Carnegie Mellon University sys-admin. During a 20-minute interview, White described

115

three typical sets of problem-solutions. One set exhibited the highest relevance to illustrate sys-
tem adaptation: administering students who abuse network bandwidth. Almossawi documented
the interview, analyzed the sys-admin’s solution strategy, and composed a Stitch script to codify
the strategy and related tactics.

In a network bandwidth abuse case, a student had backed up ~80 GB of his hard disk onto
his server space. The system administrator observed a spike in bandwidth usage the next day
and a technician noticed that the backup tape was exhausted at around the same time. To prevent
future repeat of similar situations, the sys-admin would ideally want the ability to track disk
usage by file type, such as MP3s. The sys-admin also contemplated enforcing a disk quota on
user accounts, but that policy would have unjustly prevented legitimate users from transferring
large quantities of data; one solution would have been to enforce a disk quota only on the users
with excessive usage. Finally, a monitoring capability with email notification might have alerted
the sys-admin of the bandwidth abuse problem much earlier than the “next day.”

Solution Strategy, Tactics, and Cost-Benefit Attributes Based on White’s description of the
usage abuse problem and potential solutions, Almossawi captured three adaptive concerns, a set
of three tactics, and an overall strategy, summarized in Table 6.4. From his interview report,
Almossawi noted that only one of the tactics was directly drawn from the interviewee, while the
other two were inferred from context. Whether inferred or directly elicited, since these tactics fit
the problem context, they serve our purpose to assess the expressiveness of Stitch.

Table 6.4: Summary of Walter’s solution strategy and tactics
[S] DealWithAbusiveUser
trigger: notable spike in bandwidth usage
trigger: backup tape unexpectedly runs out

[T] increaseServerPoolSize (User user, Host h, int n)
guard: bandwidth is high
[overhead: 0.5; ill-feeling: 1; cost: 0]
[T] banAbusiveUser (User user)
guard: bandwidth is high
guard: the offense has been committed n times (where n>1)
guard: the disk space usage is high
[overhead: 1; ill-feeling: 0; cost: 1]
[T] warnAbusiveUser (User user)
guard: bandwidth is high
guard: the offense has been committed once before
guard: the disk space usage is at least medium*
[overhead: 1; ill-feeling: 0.5; cost: 1]

The three adaptation objectives are shown below, where the cost attribute captures a potential
for dollar value lost when executing a particular tactic.

116

1. Overhead: 1 if low, 0.5 if medium, 0 if high

2. Ill-feeling: 1 if low, 0.5 if medium, 0 if high

3. Cost (dollars): 1 if low, 0.5 if medium, 0 if high
To codify the adaptation strategy for this scenario, we establish reasonable assumptions5 about
the target system, which we can characterize as a set of servers (ServerT) and user machines
(HostT) inter-connected by network links (LinkT). In addition, users (UserT) in the environment
interact with the servers via machines they own. Using prior knowledge about the system, we
can deploy probes to monitor system properties such as bandwidth usage by links and by hosts,
host ownership, and disk usage by users. In a hypothetical model of the target system, we
can track these properties with gauges and specify threshold values. In addition, we model the
environment by tracking the users and their statistics, including offense history, which indicates
a user’s frequency of abusing the network. Although Walter indicated that disk space usage is a
non-issue, we use it as our action guard to illustrate variability.

Stitch Script From his interview analysis, Almossawi composed a Stitch script, but we re-
fined and improved upon it to better illustrate the expressiveness of Stitch. Except for minor
adjustments,6 the codified tactics correspond to what is described in the table above.

1 module abusiveUsers ;
2 import model " TargetSys . acme" { TargetSys as M, TargetFam as T } ;
3 import model " TargetEnv . acme" { TargetEnv as E } ;
4 import op " example . opera tor . Ef fectOp " { EffectOp as S } ;
5 import op " org . sa . rainbow . s t i t c h . l i b .∗ " ; / / Model , Set , & U t i l
6
7 define boolean s t y l e A p p l i e s = Model . hasTypes (E, " UserT ")
8 && Model . hasTypes (M, { " HostT " , " ServerT " , " SvrGrpT " , " LinkT " }) ;
9 define set l i n k s = { select cn : T . LinkT in M. connectors | true } ;

10 define f l o a t bwUsage = Model . sumOverProperty (" bandwidthUsed " , l i n k s) ;
11 define set backupServers = { select c : T . ServerT in M. components | c . doesBackup } ;
12 define boolean hasV io la t i on = bwUsage > M.HI_BANDWIDTH
13 && exists s : T . ServerT in backupServers | s . tapesAva i lab le = 0;
14
15 t a c t i c increaseServerPoolSize (set hosts , i n t n) {
16 condition {
17 bwUsage > M.HI_BANDWIDTH;
18 }
19 action {
20 / / acqu i re set o f server groups to which the hosts connect
21 set groups = { select g : T . SvrGrpT in M. components
22 | exists h : T . HostT in hosts | Model . connected (h , g) } ;
23 for (T . SvrGrpT g : groups) { / / increase s ize o f t h a t group / pool
24 S. addServers (g , n)
25 }
26 }
27 ef fec t {
28 bwUsage <= M.HI_BANDWIDTH;
29 }
30 }
31
32 t a c t i c banAbusiveUser (set users) {
33 condition {
34 bwUsage > M.HI_BANDWIDTH;

5As demonstrated in prior examples, these assumptions are reasonable for Rainbow’s capabilities.
6All tactics are parametrized with a set instead of a single element, and the disk space usage guard for the

warnAbusiveUsers tactic is captured in the set-selection predicate.

117

35 exists u : E . UserT in users
36 | u . diskUsage > M. HI_DISK_USAGE && u . of fenses > M.OFFENSE_THRESHOLD;
37 }
38 action {
39 set tg tUsers = { select u : E . UserT in users
40 | u . diskUsage > M. HI_DISK_USAGE && u . of fenses > M.OFFENSE_THRESHOLD} ;
41 for (E . UserT u : tg tUsers) {
42 / / l ock user out o f server space and b l a c k l i s t h i s / her IP address
43 S. setPermiss ions (u , M.PERMISSION_BAN) ;
44 set hosts = { select h : T . HostT in M. components | h . ownerID == u . userID } ;
45 for (T . HostT h : hosts) {
46 S. banIP (h . i p) ;
47 }
48 }
49 }
50 ef fec t {
51 bwUsage <= M.HI_BANDWIDTH;
52 }
53 }
54
55 t a c t i c warnAbusiveUser (set users) {
56 condition {
57 bwUsage > M.HI_BANDWIDTH;
58 f o r a l l u : E . UserT in users | u . o f fenses <= M.OFFENSE_THRESHOLD;
59 }
60 action {
61 set tg tUsers = { select u : E . UserT in users | u . diskUsage > M.MED_DISK_USAGE } ;
62 for (E . UserT u : tg tUsers) {
63 / / reprimand user by emai l and apply temporary quota to user account
64 S. setPermiss ions (u , M.PERMISSION_WARN) ;
65 S. warnUser (u) ;
66 }
67 }
68 ef fec t {
69 bwUsage <= M.HI_BANDWIDTH;
70 }
71 }
72
73 strategy DealWithAbusiveUsers
74 [s t y l e A p p l i e s && hasV io la t i on] {
75 define abusiveHosts = { select h : T . HostT in M. components
76 | h . bandwidthUsed > M.HOST_BW_QUOTA } ;
77 define abusiveUsers = { select u : E . UserT in E. components
78 | exists h : T . HostT in abusiveHosts | h . ownerID == u . userID } ;
79 define shouldBanAny = exists u : E . UserT in abusiveUsers
80 | u . o f fenses > M.OFFENSE_THRESHOLD;
81
82 t1 : (bwUsage > M.HI_BANDWIDTH) −> increaseServerPoolSize (abusiveHosts , 1) {
83 t1a : (bwUsage <= M.HI_BANDWIDTH) −> done ;
84 }
85 t2 : (shouldBanAny) −> banAbusiveUser (abusiveUsers) {
86 t2b : (bwUsage <= M.HI_BANDWIDTH) −> done ;
87 }
88 t3 : (defaul t) −> warnAbusiveUser (abusiveUsers) {
89 t3b : (bwUsage <= M.HI_BANDWIDTH) −> done ;
90 }
91 }

The codified strategy, DealWithAbusiveUsers, specifies two conditions of applicability: (a) a
number of types have to be defined in the style, and (b) the system must be in a state of violation.
Once these conditions are satisfied and the strategy is chosen, one of three paths is taken de-
pending on whether the link bandwidth usage exceeds a high threshold, whether any user should
be banned, or otherwise. As a final point of illustration, the script uses both the architecture as

118

well as environment models, and is able to express predicates that reference elements simultane-
ously from both models. This expressiveness empowers the adaptation engineer to reason about
adaptations by combining information from both the architecture and the environment.

6.6.3 Adaptation Analysis from Almossawi’s Administrative Experiences
As additional supporting evidence, Almossawi documented two scenarios from his personal ex-
periences as a sys-admin. Because he already understood the constructs of Stitch, Almossawi
structured the scenarios to facilitate representation in Stitch, though no actual Stitch scripts were
specified. Almossawi also documented two primary decision criteria for choosing appropriate
courses of action to fix a system problem:

How quickly can I execute it? I try to pick the course of action that requires the
least amount of effort. How severe is the situation? If someone discovers a critical
exploit in a software that I have installed and tells the whole world about it via, say,
BugTraq, I’ll probably immediately take the webserver down, apply the patch, then
bring it back up again. If one isn’t available, I’ll most likely take just the application
down until one is released.

To combat a noticeable slowdown in accessing web pages on his server:

| _ Ping and t race rou te the webserver
| _ I f r ep l y t ime i s too long or the request t imes out

| _ Check web host ’ s network usage graphs
| _ Contact network a d m i n i s t r a t o r

| _ Check server load
| _ I f h igh

| _ Quick f i x
| _ Res tar t the h t tpd process
| _ Restar t the mysqld process

| _ Check processes
| _ Check f o r o f f e n s i v e running processes

| _ K i l l any t h a t I f i n d
| _ Check e r r o r logs

| _ Increase value o f Serve rL im i t and MaxClients i n h t tpd . conf
| _ Res tar t the h t tpd process

| _ Check d isk space
| _ I f < 1% f ree

| _ Delete ro ta ted log f i l e s
| _ I f noth ing works , check U.S . t ime

| _ I f before 11 or a f t e r 6 or i f slowdown i s severe (website ’ s peak t ime)
| _ Reboot webserver immediate ly

| _ Otherwise , wa i t u n t i l t h a t t imeframe then reboot
| _ I f problem s t i l l p e r s i s t s

| _ Contact web host ’ s tech support

To combat possible suspicious activity on his server:

| _ Logwatch emai l i n d i c a t e s susp ic ious IP address or bru te fo rce at tempt
| _ Add IP address to f i r e w a l l ’ s " deny " l i s t
| _ Flush f i r e w a l l ’ s r u l es then r e s t a r t i t
| _ Check server logs and look up IP address to see i f i t has a h i s t o r y

| _ I f i t does
| _ Change superuser ’ s password

| _ Check server logs to ensure IP address didn ’ t gain access to the system
| _ I f I suspect i t d id

| _ Immediately run r o o t k i t checker
| _ Immediately run an t i−v i r u s scanner

119

| _ I f f o r some reason I ’m s t i l l susp ic ious
| _ Backup a l l data
| _ Reformat webserver
| _ Restore data

6.6.4 Interview Summary
Based on Almossawi’s interview and analysis results, the concerns, problems, and solutions
expressed by both the sys-admin interviewed and by Almossawi himself appeared to corroborate
concepts embodied in Stitch. In particular, evident in the documented responses were elements of
objectives, observable system conditions, specific actions in response to specific conditions, and,
to a lesser extent, preferences. Assessed abstractly, Stitch provides the appropriate constructs and
has the expressiveness for capturing an adaptive administrative strategy concisely and intuitively.
We evaluate the expressiveness of Stitch in greater detail in Chapter 7.

6.7 Real-World Adaptive Scripts in Stitch
Carnegie Mellon University possesses a sophisticated campus computer network. Over the past
decade, CMU has invested extensive engineering efforts to improve its networking infrastructure
and automate system administration [You07], making it a prime candidate to find evidence of
system adaptation scripts. Of the network administrative subsystems, I investigated the network
bandwidth enforcement (netbwe) subsystem, acquiring its Perl source code in January 2008 from
the network administrators [Rho08].

The netbwe subsystem is executed daily (as a cron job) to monitor network bandwidth usage
and enforce quota by machine, using sensors installed on campus routers. With a database,
netbwe tracks usage history, records quota violation, and tracks violation states. It interacts with
the notification subsystem (epidemic) to alert offending machine owners by email, and interacts
with a netblock component to block network access for repeat offenders. In short, netbwe has
the monitoring, detection, decision, and action elements of a self-adaptive system. Figure 6.13
illustrates the system context of the netbwe subsystem.

Figure 6.13: A system context diagram of the netbwe subsystem

120

Given that netbwe, a bona fide system administrative subsystem, fits the profile of a self-
adaptive system, the ability to express this adaptive script in Stitch would strengthen the case of
its expressiveness. Prior to examining the netbwe source code, I formulated the following set of
hypotheses, which also provided a concrete to-do checklist for this endeavor:

• Logical adaptive task units are distinguishable: operator, tactic, strategy.
• We can identify core commands as operators.
• We can identify frequently used subroutines as tactics, the adaptation steps, with conditions

of applicability and intended effects.
• We can identify top-level adaptation decisions, consisting of observable conditions and

decision-points, as strategies.
• An architectural model of the target system provides a core structure to reason about adap-

tation concerns, including what components to monitor, what properties can be monitored,
and what changes can be effected.

The netbwe subsystem consists of 19 Perl source files with about 10k physical source lines
of code (SLOC).7 In particular, three frontend Perl programs and two backend Perl module sub-
routines comprise the core adaptation functionality, while the remaining subroutines would be
considered effectors with operator counterparts for the adaptation script. The five programs/sub-
routines are summarized below and detailed in Appendix D.2 on page 192:

load_state loads network usage states by machine from bandwidth logs

log_usage determines and records current usage against database of prior machine states

do_violation determines machine violation incident, notifies owner, records violation state

Netbwe::API::violations collects list of hosts whose states reflect bandwidth usage violations

Netbwe::API::log_violation determines if any violation has occurred and LOG it to netnotify

After analyzing the netbwe subsystem, parallel customizations for Rainbow are identified.

Adaptation Objectives and Conditions From conversations with the network admins, the
netbwe subsystem has these adaptation objectives:

• Fair usage
• System fit-for-purpose (i.e., campus researchers can do what is needed)
• Reasonable campus connectivity provisioning cost, as determined by capacity and usage

These objectives correspond to the following adaptation conditions:

• Threshold on bandwidth usage
• Exemptions and dated restoration of violation states

Model Modeling the target system requires modeling the architecture and environment of
CMU’s network infrastructure, as illustrated in Figure 6.14.

7The report is generated using David A. Wheeler’s ’SLOCCount’.

121

Figure 6.14: Model of the CMU network infrastructure

The architectural style would define component types SwitchT, RouterT, AccessPointT, and
HostMachineT, and connector types LanLinkT and WirelessLinkT. The style would also define
operators including machineModify(HostMachineT,...) and netBlock(RouterT,...). Most impor-
tant, HostMachineT would define specific properties to track machine states:
• Machine/netreg ID
• Quota category ID
• IP/MAC address
• Daily in/out rate
• Daily inbound/outbound usage
• Total rate
• State of violation
• Exemption status
• Primary user

The architecture model would consist of link-connected instances of the defined component
types, most notably HostMachineT. The environment model would consist of (a) users with user
properties, (b) admins, and (c) model references between the users and the machines they own.
The admins and users serve as targets for netnotify. Note that routers can be modeled as part of
the system or as resources in the environment, and we have opted to do the former because it
interacts directly with other system elements and it has a defined operator of state modification.

Probes and Gauges The load_state program serves the probe function to get system states
from sensors. The log_usage program serves the gauge function to interpret and abstract states
to populate the architecture model (the database).

122

Operators, Tactics, Strategies Some of the netbwe Perl subroutines act as the effector counter-
parts of adaptation operators, while others serve as library utilities. We import the latter to reuse
the Perl modules; examples include db-connect, db-add, parse-message, send-mail, event_list,
and machine_list. For Rainbow customization, the required operators would be translated to ef-
fectors realized by the corresponding Perl subroutines. By analyzing the adaptation objectives
in combination with the Perl subroutines, we identified four strategies and five required tactics,
with a few of them codified in Stitch:

1 / / Common s c r i p t content f o r s t r a tegy and t a c t i c d e s c r i p t i o n s below .
2 module netbwe . t a c t i c s ;
3 import model " CmuNetworkSys . acme" { CmuNetworkSys as M, CmuNetworkSys as T } ;
4 import op " netbwe . opera tor . ArchOp " { ArchOp as S } ;
5 import op " p e r l . module . NetbweUt i l " ; / / Netbwe Per l module
6 import op " org . sa . rainbow . s t i t c h . l i b .∗ " ; / / Model , Set , & U t i l
7
8 define boolean s t y l e A p p l i e s = Model . hasType (M, " HostMachineT ") ;
9 define boolean hasV io la t i ons = exists m : T . HostMachineT in M. components

10 | NetbweUt i l . usageRate (m, U t i l . today ()) > M. quotaMax (m. quotaID) ;
11 / / assuming an " admin " component ins tance e x i s t s i n the arch model . . .
12 define boolean hasExemptionOverrides = Set . s i ze (M. admin . newExemptSet) > 0 ;

Strategy EscalateViolationStates escalates violation states of machines exceeding daily quota.

1 strategy Esca la teV io l a t i onS ta tes
2 [s t y l e A p p l i e s && hasV io la t i ons] {
3 / / captures l o g i c i n l i n e s 130−198 of " API : : v i o l a t i o n s " i n App D.2 , excerpted below
4 define set {T . HostMachineT } machsInVio la t ion = { select m : T . HostMachineT
5 in M. components
6 | NetbweUt i l . usageRate (m, U t i l . today ()) > M. quotaMax (m. quotaID) && !m. exempt } ;
7 define cond = Set . s i ze (machsInVio la t ion) > 0 ;
8
9 t0 : (cond) −> markV io la t ion (machsInVio la t ion) {

10 t1 : (cond) −> ema i lNo t i f y (machsInVio la t ion) | done ;
11 t2 : (defaul t) −> TNULL ;
12 }
13 }

/ / l i n e s 130−198, note the checking o f quota l i m i t and exempt s ta tus
Process the l i s t
foreach my $key (keys %$mach) {

f l u s h out the ones t h a t are not over quota
i f ($mach−>{$key } { Rate } <= $ l i m i t) {

delete $mach−>{$key } ;
next ;

}
Drop any machine t h a t i s exempt (∗∗∗∗)
my $query ; . . .
my($status , $reason , $ext ra) = CMU: : Netbwe : : ChkStatus ($dbh , $user , $query , $qlookup) ;
i f ($s ta tus eq " exempted ") {

delete $mach−>{$key } ;
next ;

. . .
}
. . .
i f commit i s yes , then log the v i o l a t i o n to n e t n o t i f y
($vio , $reason) = l o g _ v i o l a t i o n (. . .)

i f ($commit eq ’ yes ’) ;
. . .
i f ((defined $v io) && (re f $v io)) {

$mach−>{$key } { r e s u l t } = $v io ;
}

}

123

Strategy RestoreViolationStates reverses violation states of machines that pass probation.

Strategy BlockMachines blocks network access of machines with a “ban” violation state.

Strategy ExemptMachines adjusts violation states of machines with exemption override.

1 strategy ExemptMachines
2 [s t y l e A p p l i e s && hasExemptionOverrides] {
3 define set {T . HostMachineT } machsToExempt = { select m : T . HostMachineT in M. components
4 | Set . memberOf (m. id , M. admin . newExemptSet) } ;
5 define cond = Set . s i ze (machsToExempt) > 0 ;
6
7 t0 : (cond) −> setExempt (machsToExempt) {
8 t1 : (cond) −> modifyMachines (machsToExempt , " exempted ") | done ;
9 t2 : (defaul t) −> TNULL ;

10 }
11 }

Tactic markViolation marks machines with the next state of violation.

1 / / ex t rac ted from Per l program " l o g _ v i o l a t i o n "
2 t a c t i c markV io la t ion (set {T . HostMachineT } machs) {
3 condition {
4 f o r a l l m : T . HostMachineT in machs | NetbweUt i l . hasVio la t ionRecord (m. id , m. quotaID) ;
5 }
6 action {
7 for (T . HostMachineT m : machs) {
8 / / c rea te a v i o l a t i o n log en t ry (l i n e s 26−40,80−84 i n App D.2 , excerpted below)
9 record v ioEnt = [/∗ . . . t r a n s f e r machine props , e . g . , m. i d . . . ∗ /] ;

10 / / determine next v i o l a t i o n s ta te (l i n e s 72−77)
11 i n t nextSta te = NetbweUt i l . computeNextState (m. v i o l a t i o n S t a t u s) ;
12 v ioEnt . v i o l a t i o n S t a t u s = nextSta te ;
13 / / modify the machine wi th new s ta tes (l i n e 90)
14 S. machineModify (m, v ioEnt) ;
15 }
16 }
17 ef fec t {
18 true ;
19 }
20 }

/ / l i n e s 26−40
log a new en t ry f o r them . . .
$vals { ’ machines . mac_address ’ } = $svals−>{ ’ machines . mac_address ’ }

i f (defined $svals−>{ ’ machines . mac_address ’ }) ;
$va ls { ’ machines . mac_address ’ } = $svals−>{mac_address }

i f (defined $svals−>{mac_address }) ;
$va ls { ’ machines . ip_address ’ } = $svals−>{ ip_address }

i f (defined $svals−>{ ip_address }) ;
. . .
$va ls { ’ machines . quotaID ’ } = $quota ;
$vals { ’OUTBOUND_USAGE ’ } = spr in t f ("%−8.3 f " , $outbound / 1024) ;
$va ls { ’INBOUND_USAGE ’ } = spr in t f ("%−8.3 f " , $inbound / 1024) ;

/ / l i n e s 80−84
$vals { ’ machines . s ta tus ’ } = $t t imes−>{ $data− >[1] [$dapos−>{ ’ machines . s ta tus ’ }] } {

promoteto } ;
$va ls { ’ machines . s ta tus_date ’ } = $date ;
$vals { ’ machines . reason ’ } = " Exceeded $mode quota (t r ansm i t t ed $outbound Mbytes

outbound , $inbound Mbytes inbound) s ta te $vals { ’ machines . s ta tus ’ } on $date " ;
$va ls { ’OUTBOUND_USAGE ’ } = spr in t f ("%−8.3 f " , $outbound / 1024) ;
$va ls { ’INBOUND_USAGE ’ } = spr in t f ("%−8.3 f " , $inbound / 1024) ;

/ / l i n e s 72−77
Get the l i s t o f s t a te change t imes f o r t h i s quota
($ t t imes , $reason) = f u l l _ s t a t e _ l i s t _ h a s h ($dbh , $user , $quota) ;

124

. . .
$nex t_s ta te = $t t imes−>{$data− >[1] [$dapos−>{ ’ machines . s ta tus ’ }] } { promoteto } ;

/ / l i n e 90
($data , $reason) = machine_modify ($dbh , $user , $data− >[1] [$dapos−>{ ’ machines .

i d ’ }] , $data− >[1] [$dapos−>{ ’ machines . vers ion ’ }] , \%vals , $mai l) ;

Tactic emailNotify notifies machine owners of quota violation.

1 / / ex t rac ted from Per l program " d o _ v i o l a t i o n "
2 t a c t i c ema i lNo t i f y (set {T . HostMachineT } machs) {
3 str ing abuseDl is t = " post+org . acs . ng . abuse@andrew .cmu . edu " ;
4 str ing bwDl is t = " post+org . acs . ng . p r o j e c t . bandwidth@andrew .cmu . edu " ;
5 condition {
6 f o r a l l m : T . HostMachineT in machs | NetbweUt i l . hasVio la t ionRecord (m. id , m. quotaID) ;
7 }
8 action {
9 str ing msg = /∗ . . . body t e x t . . . ∗ / ;

10 NetbweUt i l . s o r t (machs , " machines . hostname ") ; / / s o r t by hostname
11 for (T . HostMachineT m : machs) { / / compose message per host (l i n e s 58−63)
12 msg += NetbweUt i l . s w r i t e (m. hostname , NetbweUt i l . long2dot (m. ipAddress) ,
13 m. macAddress , m. v i o l a t i o n S t a t u s) ;
14 }
15 / / send emai l o f f (l i n e 65)
16 S. sendmail (M. admin , msg , abuseDl is t , null , bwDl is t) ;
17 }
18 ef fec t {
19 true ;
20 }
21 }

/ / l i n e s 58−63
foreach (@hosts) {

$msg .= s w r i t e (
<< ’END ’ , $_−>[$hopos−>{ ’ machines . hostname ’ }] , CMU: : Netbwe : : long2dot ($_−>[$hopos−>{ ’

machines . ip_address ’ }]) , $_−>[$hopos−>{ ’ machines . mac_address ’ }] , $_−>[$hopos
−>{ ’ machines . s ta tus ’ }]) ;

@<<<<<<<<<<<<<<<<<<< | @<<<<<<<<<<<<<< | @<<<<<<<<<<< | @<<<<<<<<<<<<<<<<<<
END

}
/ / l i n e 65

CMU: : Netbwe : : send_mail ($msg , ’ post+org . acs . ng . abuse@andrew .cmu . edu ’ , undef , ’ post+org .
acs . ng . p r o j e c t . bandwidth@andrew .cmu . edu ’) ;

Tactic modifyMachines modifies the violation or exemption state of machines.

Tactic netblockMachines issues a block request on machines via netblock.

Tactic setExempt sets exempt privileges machines.
This exercise applied the Rainbow approach to the CMU network bandwidth enforcement sce-
nario. We have shown that, by identifying and extracting parallel Rainbow adaptation elements
from the scenario, Stitch is capable of representing the adaptation-oriented system administrative
concerns as embodied in actual administrative Perl source scripts.

Furthermore, this exercise demonstrated additional benefits in representing the netbwe sub-
system in Rainbow with Stitch. Representation in Rainbow clearly separates the concerns of
adaptation, so that probes, gauges, effectors, and adaptation choices are not distributed through-
out the code. In particular, adaptation choices are made prominent in strategies, rather than being
buried deep inside an API subroutine (Netbwe::API::violations). Finally, the distinction between
strategy and tactic enables the adaptation engineer to reason about and describe the specifics of
an adaptation action as an intellectually separate process from deciding when to take each action.

125

6.8 Summary
In this chapter, we showed five instantiations of Rainbow. In terms of the validation points, these
five example systems demonstrated the following.

V1 Single property in three styles: performance in CSSys, Znn.com, and Libra; security in
UniversityGradeSys; availability in TalkShoe

V2 Three properties in one style: Znn.com with performance, cost, and quality

V3 U se of environment model: TalkShoe (admin entity); Znn.com (spare servers)

V4 I nfrastructure reuse and ease of customization: CSSys⇒ Libra; TalkShoe⇒ Znn.com

V5 M ulti-objective trade-off: Znn.com

In addition, interview with system administrators together with analysis of real administrative
scripts showed the potential expressiveness of Stitch. In the next chapter, we evaluate the extent
to which the Rainbow approach, supported by evidence from these five cases and the two system
administrative example, fulfills the thesis claims.

126

Chapter 7

Thesis Evaluation

In Chapter 3 we enumerated the requirements of generality, cost-effectiveness, and trans-
parency for a self-adaptation approach and described the overall Rainbow approach and high-
level framework capabilities. In Chapter 4 we presented the features and semantics of the Stitch
self-adaptation language, while in Chapter 5 we detailed how to customize the framework. As-
sessed abstractly, these chapters have addressed the requirements as follows:

• Rainbow’s framework of mechanisms realizes the canonical self-adaptation control pro-
cess exemplified by the IBM Autonomic Computing reference framework.

• For generality, the Rainbow approach leverages the notion of software architectural style
to characterize and define explicit customization points for tailoring common, reusable
infrastructures of the framework to specific styles for multiple quality concerns.

• For cost-effectiveness, the Rainbow approach prescribes an adaptation engineering pro-
cess that guides a systematic, incremental customization of Rainbow to target systems.

• For transparency, the Rainbow approach provides a self-adaptation language that

separates the concerns of self-adaptation into distinct concepts to facilitate reasoning;

provides explicit constructs for those concepts to allow (a) representation of adapta-
tion knowledge and (b) separating definitions according to domain expertise; and

enables quantifying the utility of adaptation with respect to business objectives to
support (a) trade-off analysis of adaptation strategies and (b) integration of adaptation
strategies from different domains to satisfy multiple objectives.

In Chapter 6, we enumerated five validation points to assess our approach and presented five
instantiations of Rainbow as supporting evidence for validation. We further interviewed system
administrators and translated real-world system adaptation scripts as support for the design and
expressiveness of self-adaptation concepts in Stitch. Finally, we related each piece of evidence
to the validation item that it supports. In this chapter, we summarize the pieces of supporting
evidence and evaluate how each helps to satisfy the thesis claims introduced in Section 1.4.

127

7.1 Claim: Generality

As noted in Section 1.4.1, we evaluate the generality claim by

• Showing an in-depth demonstration of the Rainbow adaptation cycle on one system; and
• Describing how customizable pieces of the Rainbow framework are specified for represen-

tative styles of system and qualities of concern:

Styles: client-server, service-coalition, N-tier

Qualities: performance, cost, content fidelity, availability, security

The three styles—client-server, service-coalition, and N-tier—cover a majority of systems we
care about. Client-server and N-tier systems, typified in the Garlan and Shaw software architec-
ture book [SG96], pervade commercial information technology systems (e.g., J2EE family) and
many user applications (e.g., instant-messaging). In particular, the N-tier style, with variations,
represents the major style of architecture for backend computing infrastructures in e-commerce
(e.g., Amazon, Ebay) and business information technology [BMR+96]. The service-coalition
style encompasses peer-to-peer systems or, more specifically, systems composed from loose
computing nodes providing functionalities as services.1

As suggested by the SEI report on quality attributes [BLKW97], in designing systems, mod-
ern system architects typically care about performance, security, and dependability (which en-
compasses availability). For performance, system engineers and users typically are concerned
with service-time, latencies, and throughput of requests in the system. Additionally, system
owners would be concerned with the cost to operate and maintain the system. Furthermore, par-
ticular to a system that provides content services, content fidelity and accessibility of the service
constitute two more important concerns.

Presented in Section 6.5, the Znn.com instantiation of Rainbow demonstrates the full self-
adaptation capabilities of the framework and details the customization of Rainbow, specifically:

• Typical e-commerce architectural style: N-tier system;
• Multiple objectives: performance, cost, content fidelity, and service disruption;
• All phases of the adaptation process: monitoring, detection, decision, and action;
• Effective self-adaptation of the target system that achieves the highest overall utility to

satisfy multiple business objectives ; and
• Acceptably low resource overhead on CPU utilization and network bandwidth usage

The Client-server system described in Section 6.1 demonstrates Rainbow’s applicability to a
client-server style of system with performance as a quality concern. The Libra videoconferenc-
ing system described in Section 6.2 demonstrates Rainbow’s applicability to a service-coalition-
style system with performance and cost quality concerns. The university-grade system presented
in Section 6.3 suggests Rainbow’s applicability to a composite client-server-shared-data style of
system with security as a quality concern. The TalkShoe infrastructure presented in Section 6.4

1Service-oriented architectures (SOA) would be considered a specialization of this style, with stronger compo-
sition constraints than loose coalition.

128

demonstrates Rainbow’s applicability to an N-tier-style system with an availability quality con-
cern. In addition, if we consider a network of servers and host machines hosting a set of applica-
tion services (e.g., sshd, httpd, subversion) as a coalition of services, the scenarios described in
Sections 6.6 on sys-admin experiences and 6.7 on netbwe also suggest Rainbow’s applicability
to a service-coalition style of systems with a dependability or availability quality concern.

Security is a complex quality attribute, pervading nearly all aspects of software design. Ex-
perts agree that support for security is best considered upfront in the design of a system, and not
tacked on as an after-thought [Ram02]. Furthermore, most properties of security are difficult to
quantify, even by security experts themselves [But02], so self-adaptation for security may appear
irrelevant and infeasible.

However, experiences of security engineers suggest that being able to adapt a system to re-
solve security concerns could be a crucial or beneficial capability [GC03]. For instance, for
performance reasons, a typical system cannot afford to have all security features enabled at all
times. Ideally, more resource-intensive security capabilities, such as fine-grained network intru-
sion detection, would be enabled only as needed. Furthermore, as demonstrated by Butler using
techniques developed from decision theory, some security properties can be quantified in relative
terms, providing a means of making adaptation decisions [But02].

The example scenario in Section 6.3 explores the use of an essential security concern—
relative security risk—to enable self-adaptation for security. By defining an architectural style
that quantifies relative security risk, defining intrusion properties to monitor (e.g., intrusionProb-
ability), identifying a candidate set of change operators and adaptation tactics, and composing
example security-targeted adaptation strategies, we have shown the design of a customization of
Rainbow that can potentially self-adapt a system for security to counter detectable intrusions.

Together with the Znn.com system in Section 6.5, these examples demonstrate Rainbow’s ap-
plicability to three architectural styles and five quality attributes, providing evidence of coverage
for a representative set of architectural styles and for typical qualities of concern.

7.2 Claim: Cost-Effectiveness

As noted in Section 1.4.1, we evaluate the cost-effectiveness claim for Rainbow by

• Showing that the framework is flexbily customizable to make a system self-adaptive; and
• Qualitatively assessing task-based effort-savings with the framework versus without.

To determine the cost-effectiveness of the Rainbow approach, it is important to assess the en-
gineering effort for the generic framework separately from effort to engineer adaptation for a
target system. Framework engineering provides the core self-adaptation functionalities, makes
them generally available, and improves the common infrastructure shared by all customizations.
The framework engineering effort manifests itself as an upfront cost with diminishing incre-
mental cost and growing return-on-investment as customization instances increase [CN01]. The
effort to engineer target-system adaptations, such as that for TalkShoe, focuses primarily on the
domain-specific adaptation concerns and knowledge relevant to the target system. We therefore
focus on two framework aspects of cost-effectiveness: reuse and ease of use.

129

For reuse, we assess the extent to which the common infrastructures and, as a second-order
effect, the customized parts of the Rainbow framework can be reused from one instantiation to the
next. A basic measure of engineering effort, the “source line of code” (SLoC), gives an indication
of how much self-adaptation functionality an engineer would no longer need to implement, and
would thus save, each time the Rainbow framework is used to add self-adaptation capabilities to
a new system. The SLoC measurement is generated using David A. Wheeler’s “SLOCCount”
utility on the source code of the Rainbow framework runtime: as of December 2007, SLOCCount
measured 24,8912 total physical source lines of Java code, debugged lines of code that excludes
comment, blank, and non-essential lines. Excluding the initial prototyping and research time,
these ~25 kSLoC were developed over a period of two years. We have excluded from this count
various components of reusable code that we built on but did not develop as part of this thesis,
including AcmeLib, the Stitch editor, and third-party event transport libraries.

For second-order reuse, as described in Chapter 5, the customization contents for each Rain-
bow instantiation consisted of Yaml and Acme specification files and target system-specific trans-
lator implementations (i.e., probes, gauges, and effectors). These customizations are further
reusable in new instantiation efforts, and examples of such reuse appear later in this section.
As more instantiations are done, customization contents can be accumulated in a library, further
facilitating reuse, amortizing cost, and reducing effort.

For ease of use, we assess the degree of effort required to customize Rainbow and add self-
adaptation to a target system. To evaluate effort savings, we decompose the self-adaptation engi-
neering process into coarse-grained tasks and estimate the time to complete each task. Rainbow
customization entails three development tasks and one evolution task carried out by adaptation
engineers (cf., roles in Table 5.2 on page 71): domain analysis, model capture, design and im-
plementation, and updates and modifications.

Domain analysis (D) In the domain-analysis stage, the adaptation integrator identifies business
objectives to capture quality dimensions and utility preferences, and determines system
monitoring (probes) and action (effectors) hooks for adaptation.

Model capture (M) In the model-capture stage, the adaptation integrator captures the architec-
ture model for the target system, either reusing a style definition from a style library or
working with the style writer to define a new style. The integrator may need to adapt and
refine the style to fit the target system, in particular, to capture specific adaptation condi-
tions. The integrator also determines the model properties (gauges) to monitor.

Design-implementation (I) In the design-implementation stage, the system adapter finds or de-
velops probes and effectors; the tactic writer specifies tactics; the strategy writer composes
strategies; the adaptation integrator specifies cost-benefit attributes for tactics, integrates
the Rainbow parts, tests the adaptation roundtrip, and refines.

Update-modification (U*) In subsequent iterations of the update-modification stage, the adap-
tation engineers may add or evolve quality dimensions, utility preferences, properties to
observe or states to change, and tactics and strategies. They also modify any customiza-
tion elements affected as a result.

2While a custom implementation is likely to have less SLoC than a generic framework and yield less saving per
instantiation, the overall saving would likely exceed the framework cost on the second or third instantiation.

130

Reuse The example systems provided two data points of framework reuse. The Rainbow proto-
type for the Client-Server system (Section 6.1) was almost entirely reused to add self-adaptation
capabilities to the Libra videoconferencing system (see Section 6.2). As reported in [GCH+04],
the Rainbow prototype consisted of the adaptation mechanism, model manager, gauge and probe
infrastructures, gauges and probes, and translation and system-layer infrastructures, totaling 102
kilolines of code (KLoCs), of which 100 KLoCs (~98%) were reused. (This reuse figure in-
cludes both the core Rainbow infrastructure and the customization pieces, although the original
numbers did not make this distinction.)

Using the engineered Rainbow framework, TalkShoe (Section 6.4) and Znn.com (Section 6.5)
demonstrated a first-order reuse of the common infrastructures in entirety, approximately 25
KLoCs. In addition, second-order reuse of the customization elements includes the performance-
related system probes and gauges, the architectural style description, and customization files.
In principle, strategies, tactics, and the utility specification are also reusable. The Znn.com
instantiation shows one example of such reuse: the strategy SimpleReduceResponseTime was
reused from the first Client-Server system, with one minor modification to change content fidelity
rather than switch server group. More generally, for target system with similar quality concerns,
tactics can typically be reused with minor adjustments to the cost-benefit attributes, and strategies
can be reused with minor modifications of matched conditions or invoked tactics.

Ease of Use In the TalkShoe instantiation of Rainbow reported in Section 6.4, the development
time to customize Rainbow for the MP3 scenario totalled approximately 34 hours, 26 of which
was attributable to architecture modeling and customization of Rainbow to the TalkShoe envi-
ronment, including the development and testing of probes, gauges, and effectors. Because 14
of those hours, as well as the initial 8 hours, involved two persons, the customization effort re-
quired 40 man-hours while the overall scenario required 56 man-hours of effort. In the Znn.com
instantiation of Rainbow reported in Section 6.5, the development time to customize Rainbow
totalled approximately 93 hours, more time than TalkShoe, but also yielding significantly more
self-adaptation components. Note that in both cases, customization efforts match closely with
the best-case effort estimation in Table 7.1. (We discuss this observation further in Section 8.7.)

The Znn.com customization details—model, probes, gauges, effectors, Stitch scripts, utility
and other specification files—illustrated clearly-defined customization points, repeatable pro-
cess, and reusable artifacts. In addition, development data showed that adding support for a new
quality concern incurred a low incremental cost, within hours to a few days, which entailed ef-
forts to find or develop new probes and gauges, to enhance the architecture model, to modify
existing customization files, and to add new or modify existing tactics and strategies. Thus, this
evidence supports the last experimental hypothesis outlined in Section 6.5.1.

The development time data for TalkShoe reported in Table 6.2 on page 104, accounting for
just the adaptation engineering efforts, indicated reasonably low effort required to customize
Rainbow. Although a 40 man-hour effort, or 5 working days, might seem somewhat high for
a simple MP3 recording scenario, there are three reasons why this development-time data is
positive evidence for the cost-effectiveness of the Rainbow approach. First, because the MP3
scenario marked the first customization effort of Rainbow to TalkShoe, a large fraction of the
time spent was on learning and knowledge transfer: the Rainbow approach for Bob, and domain

131

knowledge of the TalkShoe business for me. After the initial learning curve, most of the two-
person effort was accomplished by a single person.

Second, as new adaptation scenarios are added for a particular target system, the incremental
effort required to customize Rainbow decreases as more reusable pieces are created—probes,
gauges, effectors, model elements, tactics and strategies. Third, without the Rainbow framework,
the effort required to build similar monitoring, modeling, and effecting capabilities directly into
the TalkShoe infrastructure would have been significantly higher. In addition, TalkShoe would
have increased their upfront risks by exposing their infrastructure to adaptation logic that are
custom-built and wired into their system code.

To compare efforts, let us explore a hypothetical scenario: assume that even without Rain-
bow the same probes, gauges, and effectors would have to be implemented to build the adaptation
mechanism into TalkShoe, with a simpler reactive mechanism created in place of the architec-
ture model and the adaptation manager. Assume also that only half as much time would be
spent on simpler reactive mechanism as on developing the architecture model (6h) and the Stitch
scripts (8h), that is, 7 hours. Additionally, we can reasonably expect that similar deployment
and roundtrip debug efforts would be required. Thus, without the initial 3 hours of environment
setup and 7 hours from the reactive mechanisms, the hypothetical scenario would most likely
have required a single engineer ~24 hours to complete.

However, this estimate does not account for the effort necessary for the basic adaptation
plumbing. Based on the Rainbow framework development experience, it would take over 2.5
months to design and implement the communication infrastructure and plumbing for the probes,
gauges, and effectors. Even if we assume simpler requirements for the hypothetical case, incur-
ring only half the time to develop Rainbow, it would still yield a total effort of more than one
month to add adaptation capabilities into TalkShoe. If we translate this effort to ~40 working
days, that would mean nearly an order of magnitude (~8x) increase in development effort to di-
rectly build the adaptation capabilities into the TalkShoe infrastructure. Furthermore, in doing
so, one loses the advantages that Rainbow provides, including architecture-level modeling and
analysis, separation of adaptation concerns from system functionality, and flexibility to add and
evolve self-adaptation capabilities.

Using development-activity data gathered from the Znn.com and TalkShoe examples, com-
bined with anecdotal evidence from TalkShoe’s chief architect and an exploratory analysis of
hypothetical custom-solution scenarios, we can make qualitative comparison of effort between
Rainbow-based versus custom-solution adaptation engineering. To prevent unfairly skewing the
comparison in favor of Rainbow, we have made estimates that favor custom-solution activities
wherever possible.

For custom-solution efforts, in terms of the four adaptation engineering stages described
above, we have assumed that domain analysis required the same amount of time as with Rain-
bow, that model capture generally required zero time, that design and implementation required
a minimum of one month on top of the Rainbow-based time for developing the monitoring and
effecting capabilities, and that each update and modification required a quarter of the design/im-
plementation time to complete because of buried and dispersed adaptation logic.

We treat the TalkShoe example as a best-case scenario due to its relatively straightforward
adaptation function; for the Rainbow-based data, we recorded one day on domain analysis that
was not included in the TalkShoe development-activity data. We treat the Znn.com system as an

132

average-case scenario due to its correspondence with typical N-Tier IT systems; for the Rainbow-
based data, we estimated about two weeks of domain analysis. We acquire Rainbow-based time
values by rounding up actual development-activity data to the nearest whole number of work
days or weeks, whichever is closer. While we do not have concrete data for a worst-case sce-
nario, we can reasonably estimate worst-case Rainbow-based development time to be an order-
of-magnitude worse than the average case.

Table 7.1 summarizes the task-based estimation of effort comparing Rainbow against cus-
tom solution. In the worst-case scenario, a Rainbow instantiation has no reusable style, gauges,
probes, and effectors from prior efforts. The adaptation engineer must construct many elements
from scratch, so the primary advantage of Rainbow comes from the reusable framework. Thus,
Rainbow-based initial development does no better in the worst case than custom solution. Ac-
cording to this coarse-grained task estimation of efforts, excluding the worst case, Rainbow
yields effort savings of 2–5× over custom solution for initial development of self-adaptation
capabilities. Thereafter, Rainbow achieves additional savings of up to two orders-of-magnitude
(6–192×) over custom solution when evolving self-adaptation capabilities. The upfront effort of
engineering the Rainbow generic framework accounts for the time-saving over custom solution.

Table 7.1: Task-based estimation of effort: Rainbow versus custom-solution
(h/d/w/m/y, 1w=5d, 1m=22d) Best case (TalkShoe) Average case (Znn.com) Worst case*
Stage (Development) Custom Rainbow Custom Rainbow Custom Rainbow

Domain analysis (D) 1d 1d 2w 2w 5m 5m
Model capture (M) - 4h - 2d - 1m

Design/implementation (I) 1m 4d 4d 1m 2w 2w 6m 5m

Development total: ~1.25m ~0.25m ~2m ~1m ~1y ~1y

Update/modification (U*) 6d 0.25h 8d 4h 6.5w 1w

*: italicized items are estimates

7.3 Claim: Transparency
As noted in Section 1.4.1, we evaluate transparency by demonstrating that our self-adaptation
framework provides
• Constructs to specify strategies for different dimensions;
• Support to combine those dimensions meaningfully; and
• Mechanisms to effect adaptation that integrate strategies to achieve multiple objectives.

We further demonstrate the expressiveness of the language by
• Interviewing system administrators to understand the administrative process; and
• Qualitatively assessing how well Stitch represents the adaptation class of sys-admin tasks.

Transparency of adaptation decisions entails being able to (a) understand the adaptation process,
(b) compose adaptation actions, and (c) automate adaptation choice. To understand the adap-
tation process, an approach must hoist to first-class the self-adaptation concepts of modeling,

133

monitoring, decision-making, and effecting changes; it must also provide capabilities that make
these concepts concretely accessible to engineering. To compose adaptation actions, an approach
must be able to harness knowledge of adaptations from domain experts of different domains sep-
arately, since an expert might not know enough of another domain to consider the related issues,
and then allow compositions of these adaptations, possibly in a different context, to achieve
overall objectives. To automate adaptation choice, an approach must provide the means of de-
termining when an action should be selected and how utility profiles and preferences affect the
resulting action chosen.

System administrative tasks can be broadly categorized into three classes: software installa-
tion and deployment, system configuration and maintenance, and fire-fighting or system adap-
tation. The first class of administrative tasks, though potentially automatable, usually requires
connecting hardware, manually moving physical media, etc.; we do not consider self-adaptation
support for this class. In contrast, the third class is precisely the class for which we want to
provide self-adaptation support, while the second class is only sometimes automatable. There-
fore, we assess expressiveness of the self-adaptation language by how well we can represent
self-adaptation scripts for the adaptation-class of administrative tasks.

The customization of Rainbow for Znn.com demonstrates all three aspects of transparency.
As illustrated in Section 5.1, Rainbow provides framework capabilities for distinct aspects of the
adaptation process: models, probes, gauges, and effectors; Rainbow also provides representation
constructs—operators, tactics, strategies, and utility dimensions and profiles—to help concretely
capture steps of adaptation, value systems, and preferences for trade-off decisions.

Znn.com demonstrates strategies that capture adaptation for separate dimensions, in particu-
lar, a strategy to fix response time by varying content fidelity, a strategy to recover fidelity level,
and a strategy to reduce the cost of under-utilized servers. Using utility profiles and preferences,
the strategies can be composed across 4 partially conflicting objectives to achieve high system
utility. The Znn.com experiment shows that Rainbow’s utility theory-based algorithm to integrate
the strategies works effectively.

Finally, the use of utility theory to compose strategies enables automation of adaptation
choice. As already illustrated in Section 4.5, varying the utility preferences allows the adap-
tation engineer to affect which strategy is selected. In fact, if a simulation harness is used (as we
did for Znn.com), the adaptation engineer could further explore what-if scenarios to determine
the desired input of utility profile and preferences. In short, Znn.com demonstrates that utility
profiles and preferences provide an explicit means for adaptation engineer to analyze, account
for, and resolve conflicts in adaptation objectives to automate choice.

Our experiences with Chief Architect Bob Pawlowski at TalkShoe provide another piece
of external supporting evidence that the Rainbow framework makes self-adaptation concepts
understandable. During our initial conversations about Rainbow customization for TalkShoe
scenarios, it was straightforward to establish as baseline the adaptation concepts of architecture
models, probes, gauges, effectors, objectives, conditions, operators, tactics, and strategies. Due
to their natural match with intuition, these concepts allowed Bob and me to make design progress
effortlessly; they are then directly implementable using the Rainbow framework. In short, this
anecdotal data point demonstrates that Rainbow makes self-adaptation concepts understandable,
and thus accessible, to an engineer wanting to add self-adaptation capabilities to his system.

134

Three pieces of evidence from sys-admins support the expressiveness of Stitch for represent-
ing system-administrative tasks in the adaptation category.

Almossawi’s interview of White offers an initial data point, revealing that a sys-admin be-
haves with implicit goals or objectives (adaptation objectives), reacts to system problem indica-
tions (adaptation conditions), takes specific actions (tactics) to resolve problems given observed
conditions (strategy: condition-action-delay), considers the impact of actions against implicit
criteria (cost-benefit attributes), and desires monitoring and early alert capabilities. In other
words, as shown in parentheses, the interview data substantiate the core Stitch concepts. Note
that although Almossawi has defined arbitrary numbers for three objectives, the key observation
is that objectives and cost-benefit are concepts integral to the sys-admin task. The interview fur-
ther reveals that sys-admins need the automation help that Rainbow can provide. As illustrated,
the Stitch script derived from Almossawi’s analysis of the interview sufficiently and naturally
captures the system adaptation scenario described by the sys-admin.

The two system adaptation scenarios originating from Almossawi’s personal experience offer
a second data point. The bare-bone listings of the tasks in Section 6.6.3 reveal a few important
elements in support of the concepts that Stitch embodies: the implicit adaptation objectives of
keeping the webserver in normal working order; adaptation conditions like “high server load”;
specific adaptation actions (tactics), for example, “restart httpd process”; and condition-action-
delay patterns (strategies) evident in Almossawi’s task sequence, particularly observations of
system conditions, such as “check disk space”. Note that Almossawi further identifies decision
criteria for choosing actions, which supports the Stitch concept of tactic cost-benefit attributes.

The system adaptation knowledge embodied in the netbwe Perl scripts offers a third data
point. As illustrated by the details in Section 6.7, we can identify from the netbwe source code
adaptation concepts supported by the Rainbow framework, and in particular, the Stitch language.
The adaptation objectives are separately inferred from conversations with the sys-admin, but that
fits our expectation, where implicit business objectives have to be elicited from system owners to
enable self-adaptation. All other elements are found in the Perl module, often buried innocuously
as a single line of source code. For example, line 133 of the Netbwe::API::violations subroutine
(listed under D.2 on page 198),

if ($mach->{$key}{Rate} <= $limit) {

captures an important adaptation condition where a machine has reached a bandwidth quota
limit. While the limit value is at least not hardcoded (it is defined elsewhere in a table of band-
width quota categories), burying this logic deep in a subroutine greatly hinders the ability to
understand and analyze adaptation decisions. In contrast, the EscalateViolationStates strategy
listed on page 123 captures the violation condition prominently with the hasViolations predicate.
As evident from this exercise, Stitch allows codifying and expressing adaptation concerns and
decisions in an explicit, straightforward, and natural form.

In short, evidence from sys-admins supports both the validity of self-adaptation concepts
designed in Stitch and the expressiveness of the language for representing adaptation logic.

135

7.4 Summary
In this chapter, we addressed how the examples and evidence collectively fulfill the thesis claims
of generality, cost-effectiveness, and transparency, summarized in Table 7.2.

Table 7.2: Summary of example evidence toward thesis evaluation
Claim CSSys Libra UnivSys TalkShoe Znn.com SysAdm Netbwe All

General — Rainbow applies to many styles and multiple objectives?
√

- 3+ styles (CS) (SvcC) (CS) (N-tier) (N-tier) (SvcC) (SvcC) 4
- 3+ objectives (perf) (perf +cost) (security) (avail.) (4) (bw+avail.) (3) 5

Cost-effective — Rainbow demonstrates reuse (between instances) and ease of use?
√

- Reusable
√

×
√

×
√
×

√

- Easy to use × × ×
√

93h
√

34h ×
√
×

√

Transparent — Rainbow makes adaptation process explicit and understandable
√

- Understand.
√
−

√
−

√
−

√ √ √ √ √

- Composable × 1D
√
− × 1D × 1D

√ √ √ √

- Analyzable × 1D
√
− × 1D × 1D

√ √
×

√
×

√

×: not applicable, thus not demonstrated√
×: possibly demonstrated with more in-depth study√
−: partially, but was not fully designed or supported

136

Chapter 8

Discussion of Issues and Limitations

In this chapter, we discuss potential limitations of our approach and reflect on our main design
choices. Specifically, we address the following issues:

• Central control as an important design choice for Rainbow;
• Asynchronous adaptation interactions and its ramifications to uncertainty and failure;
• Issues with closed-loop feedback control;
• Limitations of Stitch’s expressiveness to represent certain system administrative concepts;
• Limitations to adaptation inherent with the use of a model;
• Limitations to automating adaptation choice using utility theory; and
• Impact of framework, reusable artifacts, and adaptation experience on cost-effectiveness.

8.1 Central Control

We have chosen central control for the Rainbow approach. Centralizing control allows a single
point for decision-making, creating a powerful control mechanism while simplifying the adapta-
tion process. Combined with the use of an architecture model (discussed below in Section 8.5),
central control provides global perspective of the system, allowing adaptation decisions that takes
end-to-end system conditions into consideration. On the other hand, central control introduces
a single point-of-failure and leads to potential scalability and efficiency issues. An alternative
approach is to distribute control across the individual mechanisms.

For control systems, the degree of control generally ranges from despotic and centralized
to highly federated and distributed. As Section 2.2 (control paradigms) indicates, the degree
of control depends on the availability of information and of control knobs. We can view control
systems abstractly as directed graphs, where each node controls, or is controlled by, another node,
and an edge is either an information or a control flow. This abstraction allows us to characterize
control systems using five attributes:

• Nodes: (1) entity autonomy as a node property, ranging from none to full; (2) count of
controllers, or nodes with outgoing control edges, ranging from 1 to N

137

• Edges: (3) count of information edges (availability of information) and (4) count of control
edges (availability of control knobs); thickness indicates amount of data flow

• Configurations: (5) Graph type, ranging from fully disjoint (no information nor control
edges), to complete (nodes fully connected by information and control edges), to hierar-
chical, such as a tree (root node as top controller) or a forest (multiple root nodes)

Varying these 5 attributes produces different kinds of control systems with corresponding trade-
offs, such as, (a) power of the controllers, (b) susceptibility to failure, (c) scalability, and (d)
efficiency. Controller count and entity autonomy both determine the extent to which the system
is susceptible to controller failure.

(a) Star control graph (b) Disjoint control graph (c) Balanced GFS control tree

Figure 8.1: Control graphs for representative points

At one extreme is in an autocratic system, abstractly a star graph (Figure 8.1a), where all
information edges flow to one controller node and all control edges originate from that same
node. The controller node has complete power to control the behavior of the system, but is also a
single point-of-failure. Not only does controller failure cause the whole system to fail, but control
information is most likely irrecoverable. Such a system would also be difficult to scale and is
likely to be inefficient unless the information edges are thin. In contrast, with a fully distributed
system such as an intelligent swarm, abstractly a disjoint graph (Figure 8.1b), many nodes can
fail without severely crippling the overall system, but the behavior of the system is emergent and
may be difficult to predict [BDT99].

An important midpoint, as exemplified by the Google File System [GGL03], is a tree con-
figuration (Figure 8.1c) with two tiers of control. In each GFS cluster (see Figure 8.2), a
master controller is the root node, chunkservers are the second-level nodes, and disks are leaf
nodes. A master controller controls many chunkservers, but information edges from them are
thin. Chunkservers connect to many disks, and while information edges from disks are thicker,
chunkserver replication provides redundancy and increases efficiency. Clients (assume that these
nodes are transient on the graph) interact only briefly with the master, but reads data from
chunkservers directly. Chunkservers have some autonomy to control and access data from disks,

138

Figure 8.2: GFS Architecture (extracted from [GGL03])

but the master has global knowledge and manages namespace, creates content, replicates and
re-replicates content, and rebalances replicas.

Although the master is a single point-of-failure, it restarts quickly, or an external entity could
quickly replace the master with another node to bring the cluster back online. Thus, GFS has
a powerful controller, designed for frequent failures, that recovers quickly and scales well and
efficiently to serve file requests. GFS clearly illustrates that a central, powerful controller does
not necessarily indicate a show-stopping, single point-of-failure, or performance bottleneck.

Although we adopt primarily a central control for Rainbow, we have also designed mech-
anisms to distribute control responsibilities, making Rainbow another midpoint that strikes a
similar balance as GFS. Abstractly a tree configuration (Figure 8.3), the Rainbow controller box
marked “Architecture Level” (see Figure 3.2 on page 29) is the root node, Rainbow Delegates,
which manage probes and effectors in distributed target system nodes (see Section 5.1.1), are
the second-level nodes; probes and effectors are the third-level nodes; and target system entities
that interact with the probes and effectors are leaf nodes. Information flows from target system
entities to probes to the controller; control flows from the controller to effectors to target system
entities. The controller has global, end-to-end knowledge of the target system, allowing it to
make and enact well-informed adaptations.

The infrastructures of Rainbow have been designed to distribute responsibility while coping
with failures at several levels. Delegates allow probe and effector components to be deployed
on distributed computing nodes. Depending on the event infrastructure used, the communication
infrastructure for Rainbow’s components can be configured with varying levels of message de-
livery guarantees. Delegates can restart probes and effectors when they fail. Likewise, a daemon
can respawn delegates that fail.

The Rainbow controller appears to be the single point-of-failure. Within the Rainbow con-
troller are gauges and operators, elided from our discussion so far. Data flow from probes to
gauges, and control flow from operators to effectors. The Architecture Evaluator, Adaptation
Manager, and Strategy Executor each store minimal internal states. These components can all
be restarted upon failure without much loss of control capabilities. The Model Manager is the
locus of information flow from the gauges. If it fails, Rainbow ceases to function. Fortunately,

139

Figure 8.3: Control graph for Rainbow

as discussed in future work below (Section 9.2.2), we have techniques for quick model recovery.
With slightly more engineering, the Rainbow controller can be restarted upon failure, or

an external entity could quickly respawn the controller on a different computing node if the
controller node fails completely. Therefore, from the root node down the control hierarchy,
Rainbow components may fail, and may even be susceptible to a single point-of-failure; however,
our design enables distribution of responsibility and respawning of components at various levels,
making Rainbow resilient to most forms of (component) failures.

Due to the large amount of monitoring information potentially required in an architecture-
based approach, scalability and efficiency are important design concerns. Since probes and
gauges are deployable on distributed nodes, with the appropriate choice of event infrastruc-
ture, they do not pose scalability and efficiency issues. The communication and computation
bottleneck resides with the Model Manager, but we have already made a few mitigating design
decisions, including update-triggered (versus periodic) evaluation of model constraints. Perfor-
mance overhead in Znn.com experiment runs indicate that there appears to be considerable room
for improvements to Rainbow’s performance.

Unfortunately, the adaptation time window of Rainbow does limit its domains of applica-
bility. From probes, to gauges, to the model, to adaptation decision-making, to operators, and
back down to effectors, the inherent time delay in the adaptation cycle is, according to perfor-
mance data observed in this thesis, hundreds of milliseconds at best, seconds on average, and
minutes at worst. This time scale limits our ability to apply Rainbow to most embedded and
real-time systems, which usually operate at sub-millisecond time-scale. In addition, the com-
putational resources required to maintain the model—memory footprint on the order of tens of

140

megabytes—prevents the use of Rainbow on highly resource-constrained devices, such as hand-
helds and embedded devices. Fortunately, probes and effectors can be designed to operate at a
much shorter time-scale using much less memory, so if the Rainbow controller can operate on
a separate, more powerful computing node, and if the millisecond-to-second time-scale fits, it is
still possible to apply Rainbow on systems with constrained resources.

8.2 Asynchronous Interaction and Uncertainty
By design, Rainbow’s adaptation mechanisms interact asynchronously with the target system.
This design reflects our adoption of a control systems approach to self-adaptation. This de-
sign decouples the controller from the target system, making the self-adaptation infrastructures
reusable over different styles of system. On the other hand, asynchrony and loose coupling in-
troduce monitoring and action uncertainties between the target system and the controller. In
particular, there is greater uncertainty in knowing when a problem has been detected and when
a change has been successfully effected. In an alternative, synchronous approach, or one where
the adaptation logic is part of the target system implementation (e.g., via exception-handling),
problem detection can be more direct and adaptation changes can be effected immediately.

We discuss specific framework design choices that allow us to balance the needs for asyn-
chrony while addressing uncertainties. In this discussion, we shall distinguish the mechanisms of
adaptation interactions from the implementation-level mechanisms, where interactions are often
realized with call-return constructs, e.g., method calls. By adaptation interactions, we mean the
activities that occur in the adaptation cycle: monitoring, detection, decision, and action.

We are interested in systems that continue to operate in the face of problems, where the sys-
tems are not taken offline while adaptations are performed. Hence, adaptation mechanisms must
interact asynchronously with the target system. In the Rainbow framework, monitoring events
occur asynchronously at the probe and gauge levels. The gauge consumer thread in the Model
Manager updates the architecture model asynchronously, without blocking for model evaluation,
and vice versa. The Evaluator triggers the Adaptation Manager asynchronously, so that the Eval-
uator is not blocked by the adaptation process. The Adaptation Manager passes the selected strat-
egy to the Executor asynchronously. Although the Executor carries out tactics synchronously by
blocking until an operator (translated to an effector) completes, it does not block for changes to
take effect in the system. Instead, the strategy defines a timing delay for the Executor to observe
the expected effect in the system (as reflected in the model).

The primary disadvantage of asynchronous, concurrent interactions are issues of race condi-
tions and deadlocks. Therefore, we simplify the design for the Model Manager, the Evaluator,
the Adaptation Manager, and the Executor by choosing synchronous interactions within each
component. We therefore constrain the potential sources of concurrency problems to a small set
of interactions between these key components, which we carefully manage. The primary source
of race conditions would arise during model update, so our implementation observes the rule
that all model updates occur only from within the Model Manager thread. At the implementa-
tion level, the points where one adaptation component invokes another are the “critical sections”
where deadlocks can arise, so here we minimize computation and constrain side-effects to setting
(in Java parlance) a synchronized member variable.

141

Having discussed our design choices to address uncertainties from asynchrony at the
mechanism-level, we now discuss uncertainties within the phases of self-adaptation. In design-
ing the Rainbow framework, we have made assumptions about these adaptation uncertainties to
mitigate design complexities.

1. Monitoring: to get accurate measurement, we assume well-designed probes

2. Detection: to determine if problem exists, we assume that it suffices to detect symptoms

3. Decision: to decide on an adaptation action, we assume utility preferences can be elicited

4. Action: to carry out adaptation actions, we assume sufficient probe coverage to observe
system state and regroup from failure

Adaptation decision (#3) has received central focus in this thesis. When deciding on the course
of adaptation remedy, not only must numerous factors be considered, choices must also be made
between both similar kinds of actions as well as actions that have potentially juxtaposing effects.
As we have shown, utility theory, combined with a stochastic model for the action outcome,
enable trade-off comparison despite uncertainties. We consider the difficulties of eliciting utility
preferences in Section 8.6.

For problem detection (#2), a constraint violation identifies an opportunity for adaptation.
Given more than one constraint, multiple violations may occur in one adaptation round. To
handle this case, two approaches are possible. The first approach prioritizes the constraint vio-
lations and resolves the problem of highest impact (in effect, highest utility), particularly useful
for sys-admins who have limited time and cognitive resources to respond to multiple problems at
once. The second approach evaluates and chooses from a known list of potential actions to assess
which delivers the highest utility when applied to the present system conditions. This approach
eliminates the need to prioritize, and it is most suitable when the set of actions (i.e., strategies)
are available upfront and the assessment can be done in a reasonably short time.

In Rainbow, we have taken the second approach since the mechanism has a known list of
strategies, and the duration required to analyze and select the strategy that delivers the highest
utility is less than a fraction of a second. Together with an overall adaptation cycle on the order
of a second, the resolution time of Rainbow is much shorter than typical human resolution time
for system problems, from minutes to hours or longer [Wik08f]. We look at an alternative to
constraint-based detection in Section 9.2.2 (future work).

Rainbow’s adaptation decision mechanism depends on the monitoring infrastructure (#1) to
deliver proper readings. Thus far we have assumed that system probes are well-designed and
appropriately deployed to provide accurate readings. However, a combination of framework
mechanisms and careful engineering can eliminate reliance on this assumption. Most of the
mechanisms are already provided by Rainbow, but enhancements are possible with days to weeks
of effort. Making monitoring work entails proper attention to the following issues:
• Core functionality: The adaptation integrator should ensure that probes and gauges process

input, compute results, and report output as expected. Rainbow has provided interfaces and
abstract classes, as well as sample probes and gauges, to help focus the engineer on the
core functionality.

• Event delivery: The adaptation integrator should ensure probes and gauges are properly
connected, and events are delivered to the right place. Rainbow implements basic probe

142

and gauge infrastructures to facilitate event delivery.
• Timing: The adaptation integrator should consider how often probes and gauges report

values, from and to which nodes information propagates, capacity of links carrying report
values, and when and how events propagate up the monitoring chain. Rainbow’s top-level
customization of gauges and probes provides the engineer a complete picture and facilitates
spotting missing links.

The primary uncertainties in the action step (#4) are whether the effector completed its operations
and whether it achieved its intended effects. In either case, as long as there is sufficient probe
coverage to observe the current target-system state, the natural cycles of self-adaptation will
handle failure recovery.

8.3 Closed-Loop Feedback Control

The Rainbow framework is, at its core, a closed-loop feedback-control system. Closed-loop
feedback control enables a continuous cycle of reacting to target-system problems and making
adjustments. However, Rainbow is potentially susceptible to similar control issues as those typ-
ically encountered in control systems. Hellerstein, et al., defines four principle properties of
concern for feedback control of computing systems: stability, accuracy, settling time, and over-
shoot (SASO) [HDPT04]. Our framework design incorporates some of these control concepts.

We can define stability in terms of the property of hysteresis for physical materials with
magnetic characteristics: a system exhibits hysteresis if it retards the effect of changes in forces
acting upon it (adapted from Webster’s definition). In other words, a stable system is one that
reduces or dampens the effect of perturbations upon it. Conversely, a system is unstable if minor
perturbations results in oscillation of system behavior. Using the Znn.com example, if a rise in
visitor traffic causes the controller to oscillate between executing a strategy that reduces fidelity
to achieve better average response time, and one that increases fidelity to achieve better average
content quality, then the controller is unstable.

Hellerstein, et al., describe techniques to design controllers for discrete computing systems,
specifically by relating measurable outputs to controllable inputs, deriving equations to model
the system, and designing controllers that ensure SASO properties based on the system model.
The design techniques they describe are particularly suitable for systems where one can establish
mathematical equations to relate inputs to outputs. In contrast, Rainbow’s target systems gen-
erally do not fit this profile; nonetheless, the SASO properties are useful concepts for achieving
stable Rainbow control. So far, we have incorporated the concepts of accuracy, settling time, and
overshoot, to a limited extent.

In Rainbow, accuracy of control is achieved by the chain of constructs—adaptation condi-
tions, strategy conditions of applicability and condition-action pairs, and tactic conditions of
applicability—that ensure the appropriate action is chosen and executed for the observed system
symptoms. We apply settling time in the form of the time-window of delay for observing the
effect of an executed tactic. One disadvantage is that settling time requires manual input by the
adaptation engineer, but we have made it an explicit customization point in the framework. Fi-
nally, overshoot can occur when an action has an impact of control beyond what is necessary;

143

thus, the concept of overshoot manifests itself in the scope of control impact of each tactic. To
illustrate overshoot, consider from the Znn.com example an earlier version of the tactic raiseFi-
delity, which raises the fidelity level of all servers by a given number of steps, rather than just the
servers with the lowest fidelity:

1 / / An e a r l i e r vers ion t h a t causes overshoot :
2 t a c t i c r a i s e F i d e l i t y O v e r s h o t (i n t step , f l o a t fracReq) {
3 condition { . . . }
4 action {
5 / / f i r s t f i n d the set o f servers w i th room to ra i se f i d e l i t y
6 set servers = { select s : T . ServerT in M. components | s . f i d e l i t y <= M.

MAX_FIDELITY_LEVEL − step } ;
7 for (T . ServerT s : servers) {
8 S. s e t F i d e l i t y (s , java . lang . Math . min (s . f i d e l i t y +step , M. MAX_FIDELITY_LEVEL)) ;
9 }

10 }
11 ef fec t { . . . }
12 }
13
14 / / Current vers ion t h a t does not overshoot :
15 t a c t i c r a i s e F i d e l i t y (i n t step , f l o a t fracReq) {
16 condition { . . . }
17 action {
18 / / f i r s t f i n d the lowest f i d e l i t y set
19 set servers = { select s : T . ServerT in M. components | s . f i d e l i t y <= M.

MAX_FIDELITY_LEVEL − step } ;
20 i n t l o w e s t F i d e l i t y = M. MAX_FIDELITY_LEVEL ;
21 for (T . ServerT s : servers) {
22 i f (s . f i d e l i t y < l o w e s t F i d e l i t y) {
23 l o w e s t F i d e l i t y = s . f i d e l i t y ;
24 }
25 }
26 / / f i n d only servers w i th t h i s lowest f i d e l i t y se t t i ng , and ra i se f i d e l i t y
27 servers = { select s : T . ServerT in M. components | s . f i d e l i t y <= l o w e s t F i d e l i t y } ;
28 for (T . ServerT s : servers) {
29 S. s e t F i d e l i t y (s , java . lang . Math . min (s . f i d e l i t y +step , M. MAX_FIDELITY_LEVEL)) ;
30 }
31 }
32 ef fec t { . . . }
33 }

When the strategy ImproveOverallFidelity countered the effect of strategy SmarterReduceRe-
sponseTime, the earlier version of tactic raiseFidelity caused an overshoot of control and resulted
in unstable oscillation between the two strategies. Therefore, it is possible to reduce overshoot
by reducing the control impact of a tactic.

While the Rainbow approach embodies feedback control, Rainbow could also be enhanced
with proactive capabilities. The current design of the Architecture Evaluator evaluates the archi-
tecture model as triggered by model updates. One possible design enhancement would be to add
periodic, global model evaluation. Although potentially more resource-intensive, if combined
with predictive information about the system [PGS+07, Che08b, Pol08], periodic evaluation
could allow Rainbow to find opportunities for improvement in an anticipatory, proactive manner.

8.4 Stitch Expressiveness: Operator, Tactic, and Strategy
By observing commonly performed system administration tasks, we have extracted a set of three
constructs—operator, tactic, and strategy—and thus a basic ontology of an adaptation language

144

for automating mundane tasks in system management. Together, the concepts of adaptation
conditions, tactic cost-benefit attributes, strategy conditions of applicability, quality dimensions,
utility preferences, and strategy selection form an adaptation language with the expressiveness
to represent human adaptation expertise and the flexibility to incorporate dynamic preferences.

It is worth discussing why three constructs are needed: one might argue, would two not suf-
fice, one for the primitive steps, and one for the predefined plan? The need for three is motivated
by abstraction, packaging, and separation of concerns. The operator, as provided by an archi-
tectural style, embodies element modification within that style, while, as mapped to an effector,
it embodies specific actions to effect changes in the target system. In other words, the operator
provides the crucial reuse link between the adaptation mechanism and the architecture model as
well as the translation link between the adaptation mechanism and the target system.

However, the operator does not suffice as an adaptation primitive for two reasons. First, the
style writer who provides the architectural operators generally cannot know the adaptation con-
text in which the operators will be used. Knowledge of the adaptation context and, particularly,
the impact of operators on the utility dimensions for the target system are separate concerns of
the adaptation engineer. Second, the adaptation engineer may need to define larger steps of adap-
tation than is provided by architectural operators. Hence, we need a second, distinct concept. As
already stated in Section 4.3.5, the third concept, strategy, embodies explicit decision choices of
the sys-admin and provides a packaging construct to constrain adaptation to individual domains
of expertise for tractable reasoning.

Having discussed the need for three constructs, we now discuss which can invoke which. The
invocation relationship as currently implemented in Stitch is summarized in Table 8.1.

Since the operator is not specified in Stitch, Stitch does not designate whether operators can
call other operators. If realized as programs, operators might conceivably invoke another operator
as a matter of clarity and reuse. However, operators can neither invoke tactics nor strategies. In
Stitch, a tactic may only invoke an operator, not another tactic nor strategy. Allowing the tactic
to invoke a strategy would simply not make sense for the adaptation semantics we desire. As
already stated in Section 4.3.4, nesting tactics makes cycles possible, complicating the single-
step semantics of the tactic as well as the evaluation of the condition and effect blocks. In
particular, it is not obvious what role the condition block of a called tactic should play: should it
be allowed to abort the calling tactic? should it be ignored altogether?

By design, a strategy may only invoke a tactic and not an operator, for reasons already stated
for distinguishing the tactic from the operator. As already mentioned in Section 4.3.5, whether
a strategy should be allowed to invoke another strategy is not entirely a settled point. If such
invocation were allowed, the obvious semantics would be to graft the tree of the invoked strategy

Table 8.1: Invocation relationship between Stitch operational constructs
Operator Tactic Strategy

Operator ? X X
Tactic

√
X X

Strategy X
√

X

145

at the node of the invoking strategy. However, we have chosen not to allow such invocation for
simplicity and to prevent confounding domains of expertise (packaging).

Finally, we discuss strategy versus a generated plan. Given the current state of the target
system as observed through the model (conditions) and a set of available tactics (actions), it is
possible to use a planning algorithm to search for the best sequence (or path) of tactics, and thus
generate a strategy. In our approach, we elicit strategies rather than use a planning algorithm to
find the best adaptation path for a number of reasons. Planning is ideal for exploring a large space
of potential paths, but in the domains we are targeting, adaptation decisions are often known or,
at least, constrained in scope. Because plans are generated on-the-fly, from a utility perspective,
the uncertainty and potentially large number of generated plans make it difficult to perform an
end-to-end, closed analysis of adaptation outcomes.

In contrast, during adaptation, the set of strategies to explore is much smaller and, thus,
a more efficient set on which to perform utility-based analysis of adaptation outcomes. Strat-
egy yields consistent, verifiable, and reusable adaptation outcomes. Furthermore, the notion of
strategy is intuitive, giving sys-admins greater control over Stitch-type representations and its
decision outcome; the planning alternative would not be at all intuitive.

8.5 Limitations to Adaptation Using a Model
The Rainbow approach uses architecture and environment models for self-adaptation. Among
its many benefits, an abstract model allows the adaptation engineer to focus on important prop-
erties of the target system, to capture end-to-end conditions of the target system, and to perform
upfront analysis. However, using an abstract model raises questions surrounding what cannot
be represented at the model level. Specifically, does the model granularity allow capturing all
measurable properties, for example, socket connection queue length that might be useful to adapt
against buffer overflow? Does the architecture model allow dealing with non-quantifiable or non-
measurable properties? And, how does one deal with scope issues for the environment model?

Although the architecture model captures abstract structure and properties of the tar-
get system, its main purpose is to allow architects to capture the properties they care to
model [CBB+03]. In that sense, model granularity does not preclude capturing properties as
low (in terms of proximity in the application stack to the operating system) as socket connection
queue length, if that is the property of adaptation concern for a particular target system.

System attributes that are typically not quantifiable are still possible to model in the architec-
ture, as we have already demonstrated in Section 6.3 by capturing security risks using relative
risk index [But02]. Similarly, this sort of modeling is done commonly in system design, where
engineers often have to make trade-offs between system attributes that are subjective and not eas-
ily quantified. In such cases, engineers are often able to impose quality judgment (e.g., attribute
a1 is more important than a2) and rank attributes (cf. ATAM utility scenario analysis [KKC00]),
which are then translatable to quantifiable properties (e.g., [r1, r2, · · ·] = [0.4, 0.3, · · ·]). In short,
one can often derive a quantitative, ranking-based property from a qualitative system attribute to
enable system self-adaptation for that quality attribute.

One of the important purposes for modeling is to manage scope, to focus resources and
attention on aspects of the system that are important. For the environment model, it would not

146

be feasible nor useful to model the entire Internet of computing nodes. However, the question of
scope is easily settled by focusing on the target system in question. The environment resources
directly accessed by the target system would tend to be the important environment elements to
model and monitor, hence, our use of the notion of hop count (cf., Section 3.3.1).

The issue of what can be modeled leads to a larger issue of how general Rainbow is to
different systems: based on the data points so far, is Rainbow self-adaptation generalizable to
many quality attributes of concern? This issue is best addressed by pointing out a key feature
of the Rainbow framework. Applying the generic adaptation capabilities of the framework to a
particular quality attribute depends on whether Rainbow can (a) model it, (b) probe it, and (c)
effect some target system changes for it. If the answer is yes to all three parts, then Rainbow
is applicable to that quality attribute. To probe information about either the target system or
environment, in addition to advances in probing technology, systems currently provide support
for extracting system states in the operating system, such as the /proc/ for system and I/O statuses
in Linux kernel (version 2.5 and newer). Similarly for effecting changes, standard operating
system level control mechanisms exist, such as the SysV daemon control architecture.

8.6 Limitations to Using Utility Theory

We have chosen to leverage utility theory to automate strategy selection, but utility-based selec-
tion is only a partial solution to achieving trade-off decision making. The problem of reconciling
conflicting quality attributes is known to be a fundamentally hard problem. Quality attribute
trade-off is thus an essential (vs accidental) problem that cannot simply be automated. However,
features of an essential problem can be explicitly identified to facilitate finding a solution. In our
approach, we provide explicit mechanisms that make features of the quality trade-off problem
prominent to facilitate automation of trade-off decision making:

1. We rely on humans to define the value system (utility preferences) and the actions (strate-
gies and tactics) to build up self-adaptation capabilities

2. We rely on humans to relate impact of actions to value dimensions

3. We provide the mechanisms that automate the trade-off process and select the best (as
defined by user utility) strategy once these inputs are provided

The explicit specification of objective attributes and enumeration of preferences and relative
weights over those attributes not only allow fine-grained control over selection outcomes, but also
provide reasoning about selection decision via a quantitative framework. Evaluation using user
utility and preferences over outcomes enables a rigorous selection of the strategy that achieves
the best trade-off across multiple dimensions.

A final concern is the seemingly large amount of information to elicit from experts and own-
ers of the managed system: the utility profiles, preference weights, cost-benefit attributes, and
probabilities. We observe that sys-admins already have to process a large amount of information
when making decisions. Our approach simplifies the sys-admins’ job by giving structure to the
large quantity of information, providing placeholders for them in our framework, and allowing
the information to be supplied incrementally to achieve the desired self-adaptation capabilities.

147

8.7 Framework, Reuse, and Experience on Cost-Effectiveness
The Rainbow framework is instrumental to saving cost and effort in engineering a system for
self-adaptation. Because the framework is designed to be generic, investment to develop generic
infrastructure functionalities may be deemed expensive, but such investment should be consid-
ered amortized cost across new instantiations of the Rainbow framework.

Using the Rainbow framework, there are two levels of reuse that contribute to cost-savings:

1. First-order reuse of the generic and common infrastructures;

2. Second-order reuse of customization artifacts: probes, gauges, effectors, tactics, strategies.

In general, second-order reuse of artifacts from one target system to another depends not only on
the size of the reuse library, but also on similarities between the two systems: the more similar
the system styles and quality concerns, the more artifacts can be reused. Specifically, probes and
effectors depend on assumptions about the implementation platform of the target system, and
probes and gauges monitor a particular quality attribute. However, to reuse tactics and strategies
from one target system to the next, the minimum requirement is only that the system styles be
similar. In such cases, reusing a tactic would require, at worst, (a) changing the name of the
import architectural style and operator library at the script level and (b) rewriting the cost-benefit
attributes for the set of utility dimensions in the new system. Reusing a strategy would require,
at worst, (a) changing the name of the imported architectural style, (b) making sure all imported
tactics are available, and (c) adjusting timing delay for observing tactic effects.

Although in both cases of TalkShoe and Znn.com, the Rainbow customization effort matched
closely with the best-case effort estimation in Table 7.1, the customization in both cases was
done by an expert user of the Rainbow approach and framework. In contrast, we anticipate
a new adopter of Rainbow to expend either the average- or worse-case effort, while climbing
the initial learning curve, depending on the complexity of the self-adaptation capabilities being
added to the target system. However, as the adaptation engineer gains experience, we anticipate
the customization effort to approach the best-case in subsequent adaptation instances.

8.8 Summary
In this chapter, we have addressed a number of potential issues and limitations with the Rainbow
approach. Rainbow strikes an important balance of combining a centralized controller with a
set of distributed infrastructures and a design that is resilient to failures at various levels of
the system. While the interaction between Rainbow’s adaptation phases are asynchronous to
allow concurrent activities, the resulting sources of uncertainty can be mitigated with design
assumptions and well-engineered mechanisms. The Rainbow framework applies techniques from
control theory to achieve stable control. Most major limitations that we have identified can be
mitigated: Stitch’s expressiveness, the use of an abstract model, and achieving trade-off using
utility. Finally, the cost-effectiveness of the approach is dependent on three factors: framework
reuse and cost amortization, artifact reuse, and engineer’s experience in using the framework.

148

Chapter 9

Conclusion and Future Work

In this final chapter, we enumerate the thesis contributions and discuss research issues for future
work to improve the capabilities of Rainbow in particular, and our understanding of self-adaptive
systems in general. We conclude with a summary of this thesis.

9.1 Thesis Contributions
This thesis advances the state-of-art in software engineering by improving our understanding
of the approaches, mechanisms, and trade-offs for software architecture-based self-adaptation,
specifically with the following contributions:

1. Characterization of

(a) a general approach to architecture-based self-adaptation, including what constitutes
generic, reusable functionalities and what particular aspects must be customized for
a class of systems and a set of quality dimensions;

(b) a language that models system administration concepts, represents system adaptation
knowledge, enables domain expertise to be captured independently, and facilitates
analysis of adaptation strategy integration across domains of expertise; and

(c) an adaptation engineering software process to add and evolve self-adaptation capa-
bilities for existing systems, leveraging the approach developed in this thesis;

2. Demonstration of particular techniques to enable self-adaptation, including a utility-based
algorithm to compose and integrate independent adaptation strategies from different qual-
ity dimensions, the use of an MDP framework to model the adaptation process, and the
adoption of control theory concepts for adaptation control;

3. A packaged tool set that integrates the self-adaptation approach, provides a subset of tech-
niques, and supports the adaptation engineering process; and

4. Demonstration of coverage of a representative region of the self-adaptation system space,
helping to understand (1) what styles of system are amenable to adaptations, (2) what
domains of concerns can be addressed by automatic control, and (3) what kinds of system
adaptation are feasible.

149

9.2 Future Work
In this section, we discuss a few self-adaptation capabilities that are not currently realized by
Rainbow, but that are logical next steps. We also discuss a few important research issues to
further enrich our understanding of self-adaptive systems and advance the body of knowledge in
software engineering. Specifically, we discuss:

• Short-term framework improvements, including tool support;
• Improving framework fault-tolerance;
• Alternatives to constraint-based detection of opportunities for adaptation;
• Potential of the environment model and how it can be enriched;
• Enhancement of adaptation with control system techniques and learning;
• Design choices to enable preemption;
• Improving trust and and confidence in self-adaptation;
• Incorporating user input to improve relevance of system adaptation;
• Other potential uses of Rainbow; and
• Research issues beyond Rainbow.

9.2.1 Short-Term Framework Improvements
For future work within the next three to six months, we can make these framework improvements:

• Using Java concurrency library to facilitate scheduling and management of the multi-
threaded Rainbow runtime components;

• Adding support for linear, sigmoid, and other common utility functions for Utility Profile
specification;

• Adding error-handling mechanisms in the Strategy Executor to handle action errors iden-
tified in Section 8.2: translator-mapping, effector-connection, and effector-execution;

• When a Stitch script accesses an architecture model instance, restricting references to
generic collections of model elements of a certain type (e.g., M.components of type
T.ServerT), and never to specific model instances (e.g., M.admin0);

• Adding a two-staged response when Rainbow encounters system symptoms for which it
does not find a strategy: first, Rainbow alerts a human administrator when the unresolv-
able symptom is initially encountered; second, Rainbow invokes a worst-case strategy for
severe cases where an unresolvable symptom reflects an unstable target system; and

• Optimizing Rainbow performance, including increasing the efficiency of communication
within the monitoring mechanisms, batching gauge updates into coarser time slots, im-
proving incremental model evaluation, possibly distributing the model among multiple
machines for a really complex architecture.

Moreover, we can increase the adoptability of Rainbow by improving tool support, as we encoun-
tered during the TalkShoe case study. The Rainbow framework is intended as a tool to enable

150

adaptation engineering. To that end, working with Bob Pawlowski has provided one positive
data point that another engineer could use the Rainbow framework to engineer self-adaptation
for his or her own IT infrastructure. However, we identify a few items of future work to improve
the framework’s ease of use for software engineers:

• Rainbow customization requires numerous configuration files, which are separate for good
reasons, including separation of concerns, division of responsibility, and maintainability
and flexibility. As part of the Rainbow Adaptation Integrated Development Environment
(as proposed in Section 5.2 on page 84), an intelligent customization GUI (e.g., with wiz-
ards) could further increase the efficiency of managing these configuration files and provide
added benefits, including templated configuration elements, specialized forms for utility
description, and default or recommended values.

• To encourage greater use of Stitch scripts and prevent stitching frustration, the tooling
support for Stitch should be improved with features such as editor integration with the
architecture model, model-aware as well as context-aware auto-completion, typechecking
feedback, and runtime awareness as well as error-reporting of missing Rainbow pieces.

• The packaging of the Rainbow SDK should allow the Rainbow libraries and codebase to be
effortlessly integrated into the development environment of the target system. In particular,
we should separate the Rainbow APIs for standalone probes and effectors, which may need
to integrate with target system code.

• Shell scripts could be provided for common deployment tasks.

The Rainbow deployment architecture presents an issue for nodes with critical resources. One
of the simplifying assumptions made during the design of the Rainbow runtime deployment ar-
chitecture is that each host in the target system would instantiate a RainbowDelegate (a Java
process with a memory footprint of up to 32 MB). Effectors would execute from the local Rain-
bowDelegate process, eliminating the need for elaborate, cross-machine effector communication
protocols. However, system owners would most likely not want to deploy a RainbowDelegate on
host machines with critical processes or constrained resources. For such cases, it may make sense
to provide lightweight versions of the delegate process or other lightweight effector mechanisms.

9.2.2 Medium-Term Rainbow Research Issues

For future work within the next six months to a year, we can address a number of research issues
to enhance the Rainbow approach.

Fault-Tolerant Schemes To increase the fault-tolerance of Rainbow’s mechanisms, as dis-
cussed in Section 8.1, we need to ensure quick model recovery. There are a number of standard
techniques, including persistence and checkpointing. The architecture model, managed using
the Acme library, can be persisted to file periodically, and the internal model reconstructed from
file within seconds. The disadvantage of this technique is the potential inconsistency in states
between the reconstructed model and the target system. The alternative, upon Rainbow recovery,
is to recreate the architecture model by querying the present system state, with the downside of

151

taking more time to reconstruct the model. A third technique is to checkpoint the model period-
ically, log updates to the model at redundant points located separately from the Model Manager,
and then, upon Rainbow recovery, recreate the model by combining the check-point and log data.

Detecting Opportunities for Adaptation For coarse-grained but straightforward detection of
potential system problems, we have favored rapid recognition using a few key variables, over
complicated analysis, for greater efficiency and effectiveness [Gla06]. We have used a push-
based, model update-triggered, constraint-based detection to determine when the target system
requires adaptation. However, another design choice would be to use an envelope of qualities-
of-service to assess the need for adaptation in a pull-based manner. As illustrated in Figure 5.5
on page 80, a more sophisticated QoS Analyzer could replace the Simple Constraint Evaluator
to continuously evaluate the system for opportunities of adaptation based on qualities of service.
This design alternative would advance the capabilities of Rainbow toward a self-healing system
with softer adaptation precisions, as described by Shaw [Sha02].

The disadvantage is to incur greater computation overhead and potentially cause more dis-
ruptions to the target system due to more frequent adaptations and fine-tuning. However, one
mitigation is to account for disruption as a quality dimension [PSGS04]. Next, if we can reduce
the computational cost and time delay of the adaptation roundtrip to something reasonably small,
say milliseconds, then a QoS-based adaptation would become favorable.

Enriching the Environment Model In this thesis, we have taken first steps in using an explicit
environment model to enable self-adaptation. However, further research is required to investigate
what environment information to model for various quality dimensions, explore and enrich the
notion of an environment style, and characterize the relationship between the environment and
the architecture.

In the Znn.com instantiation, we explored a performance-oriented environment model. Our
technique is to treat the environment as equal in status to the architecture and thus to apply the
same modeling approach, including using the constructs of style, type-instance, property, and
even operator, and modeling environment-specific components, connectors, and interfaces. For
mechanism, as described in Section 3.3.1, the Model Manager maintains the environment model,
updating its properties via readings from environment resource gauges. Finally, the environment
model is accessible from strategies and tactics using the same model query mechanism as the
architecture model.

An important area of future work, applicable to ubiquitous and mobile computing where the
user’s environmental context provides crucial information for adaptation, is the ability to adapt
the environment, which extends beyond contextual systems to human users. Similar in process to
engineering for target system adaptation, environment adaptation would require resolving three
problems: describing the environment style supplied (by a system context engineer); develop-
ing probes to acquire environment information, which may be challenging if information is dis-
tributed and the entities and resources monitored are not in one’s control domain; and developing
effectors to control environment entities and resources. In a related approach, Poladian has de-
veloped models, mechanisms, and algorithms to optimize the use of environment resources to
achieve a certain user purpose [Pol08].

152

Enhancing Adaptation Control Utility-based strategy selection is one of several possible
methods of realizing adaptation, which could be implemented as “plug-ins” to change the be-
havior of the Adaptation Manager. These levels differ from one another in terms of control
timing, knowledge of the past, and knowledge of the predicted future. Utility-based selection
may be considered a first-cut, direct approach. We have also taken the logical next step to in-
corporate simple history in subsequent strategy selections, for example, to avoid repeating bad
actions (cf., Section 4.3.5). Once one has access to history, one can integrate learning as part of
the selection process to avoid oscillation and to improve selection quality. The next leap is to in-
tegrate predictions into the monitoring infrastructure, possibly via predictor gauges, to anticipate
certain quality-of-service problems, such as an anticipated rise in CPU load, drop in available
bandwidth, or even change in the state of user tasks [PGS+07, Pol08].

An orthogonal path to improve the Adaptation Manager is a multi-layered approach to de-
velop mechanisms on top of Rainbow to monitor Rainbow’s adaptation history, learn patterns,
and dynamically update (a) tactic cost-benefit attributes, (b) strategy branch probabilities, and
(c) utility profile (which requires incorporating user input). In the further future, one can ap-
ply advanced planning-based strategy selection to improve automation, similar to the robotics
architecture, e.g., MDS. In addition, one can explore extended adaptation capabilities, including
proactive adaptation to optimize conditions, exploratory adaptation to try different strategies to
determine the best, and, finally, continual and homeostatic adaptations [Sha02].

Preemption Problem preemption may be necessary when a problem arises that is severe
enough (e.g., security intrusion) to interrupt an adaptation process already in progress. For such a
scenario, we would introduce the notion of priority or severity to architectural constraints. When
the Architecture Evaluator detects a constraint violation, it could then determine, by comparing
problem priorities, whether to interrupt the adaptation process presently executing in the Adapta-
tion Manager. The Evaluator would have the power to preempt an adaptation, but this capability
requires addressing three issues: (1) Who captures priority, where? (2) Which constraint is the
current strategy adapting for? (3) How should unfinished adaptation be interrupted cleanly?

The adaptation integrator, with some level of knowledge across the adaptation domains,
most appropriately has the knowledge to capture and encode problem priority. Assigning levels
of severity to Acme design rules may be implemented in one of two ways, as an enhancement to
the Acme design rule construct that allows different levels of invariant, or with a meta-property
level for rules. The integrator may then assign levels to design rules to capture constraint priority.

The key concern in interrupting an in-progress adaptation is whether the target system would
be left in a consistent state. If the Adaptation Manager is in the middle of an adaptation process,
it is most likely evaluating a strategy. Since we have required the tactic to execute as a single
adaptation step, it follows that the interruption of an adaptation should not occur in the midst
of tactic execution. A natural interruption point is at a branch point of a strategy; alternatively,
the strategy writer could be allowed to explicitly identify interruptible branches, but the exact
mechanism would require additional design.

Since Rainbow’s strategy-selection process does not consider the set of violated constraints,
it is not obvious which constraint is being handled by the selected strategy. One possibility is to
use the strategy’s conditions of applicability to relate strategies to constraints. Another possibility

153

is not to worry about this relationship, but to assume that the utility dimensions and preferences
already capture the preemptive condition. In this case, when a severe-priority constraint is vio-
lated, the Adaptation Manager can be requested to perform only the strategy-selection process to
determine if the currently-executing strategy should be preempted.

Trust and Confidence in Self-Adaptation Adoption of the Rainbow approach is positive ev-
idence of its usefulness and effectiveness. One major hurdle to adoption is user trust in self-
adaptation, where transparency of the decision and adaptation process is crucial. Capabilities of
the framework should be enhanced to report adaptation actions, especially any failure of adap-
tation, to the user. We can gain trust by gradually building user confidence in the decision and
adaptation accuracy of the framework. An effective approach is to ask the user initially for
confirmation on decision steps, then allow the user to gradually assign greater control to the
adaptation mechanism. The adaptation mechanism can also be designed to learn the good versus
bad decisions from interactions with the user.

Incorporating User Input and Task-Oriented Computing In the Rainbow approach, the
system owner and users play an important role in the customization and engineering phase for
self-adaptation, but we have not addressed issues of ongoing changes in user needs once Rainbow
is deployed and operating. In other words, there is a parallel distinction to traditional software
systems between the design and the runtime phases of Rainbow, which can be removed in future
work; the key lies in allowing dynamic updates of the customization content. Most of the cus-
tomization points that require business input, such as the strategy metadata mentioned above, are
potential points for dynamic update, and thus for incorporating user input.

In our current implementation, we have assumed the strategy repertoire to be static: it is
provided once and does not change after Rainbow deployment. Since our strategy selection al-
gorithm allows the Adaptation Manager to consider different sets of strategies with each round
of adaptation, the strategy repertoire could be dynamically updated as necessary after Rainbow
is deployed and running. With additional engineering effort, Rainbow can be extended to allow
such dynamic repertoire update. In addition to modifying the repertoire, given an existing strat-
egy, its meta-information could conceivably be modified dynamically. In relation to strategies,
the branch probabilities, time window of tactic-effect observation, cost-benefit attribute values,
and utility profiles are all data that can be updated dynamically. Such dynamic update allows us
to incorporate user input to adjust or improve the accuracy of the adaptation decision process.

However, it may not always be feasible or desirable to expose these customization points
to the user directly. Instead, inputs to these customization points may result from user tasks
that have been explicitly modeled and captured, as in the Aura architecture [SG02]. When user
tasks change, their utilities and preferences will likely change for the system’s quality of service.
A component that bridges between Rainbow and a user task management component such as
Prism [Sou05] would provide dynamic adaptation parameters using user task models.

Potential Uses for the Rainbow Approach From the TalkShoe interaction, we observe two
new potential applications for Rainbow, one for system administration, and the other to aide sys-
tem deployment. A system management challenge is to provide the sys-admin with sufficient

154

information of the system states, preferably in one location, to help make appropriate decisions.
Rainbow’s central console could facilitate management by showing system states through the
architecture and environment models updated live with the target system states. For this purpose,
we need to perform a systematic user interface design catered to sys-admin needs. For system
deployment, we have learned that, despite configuration tools like the Spring framework, per-
forming the coordinated startup of software components distributed across different machines
remains an error-prone chore. In future work, Rainbow could be applied to help manage such
versioned, distributed software deployment, perhaps by modeling an architecture model where
software versions are component attributes, version dependencies are connector attributes, and
version compliance are composition constraints.

9.2.3 Longer-Term Research Beyond Rainbow

Looking back at software engineering issues, we draw insight from our work that might help
guide software engineers in designing future systems, so that system self-adaptations can in-
creasingly be achieved in a cost-effective and transparent manner.

Software engineers should design systems for runtime self-adaptation capabilities, including
providing explicit hooks for probing system state and events and for effecting changes, such as
to start, stop, restart system components or to update component states.

Software engineers should design systems for dynamism and adaptability, with conscious
effort to hoist points of system variability, make communication interactions and assumptions
explicit, support system changes as transaction and allow rollback and recovery, and make indi-
vidual components restartable and possibly swappable.

Finally, software engineering research should continue finding answers to the question: How
can we systematically analyze the behavior of adaptive system and assure certain system prop-
erties? Researchers have been advancing research on this front, but so far, we cannot answer
this question well. However, we are interested in specific formalism analyses that answer the
following questions:

• Is an adaptation operation consistent with the architectural style? The challenge is to deter-
mine the interaction between structure and behavior in an architectural change. This may
be addressed, for example, by Kim’s work [KG06].

• How does the semantics of adaptation interact with the semantics of the architecture? The
primary research issue here is to determine what properties we could prove.

• Can we automatically determine timing delay of an adaptation operation? The challenge
is to formalize effectors to enable timing analysis.

• How can we use a Markov Decision Process to generate or solve for a strategy that does
X? The hard problem is to come up with novel ways of handling the raw state space of the
system, which, even in the simplest of cases, has an infinite number of states. Once we can
manage states, then it becomes possible to model adaptive systems in MDP and solve for
the optimal policy, Π, to determine the best strategy of tactics from any given state.

The Rainbow approach embodies feedback control, and its framework components corre-
spond to the elements of a feedback control system (Figure 1.2 on page 4) as illustrated in Fig-

155

Figure 9.1: Rainbow illustrated as a feedback control system

ure 9.1. The control-system quality attributes of the Rainbow framework would correspond to
the SASO design points and the system model would be composed of the target system’s archi-
tecture model. In future work, we could potentially create self-adaptation system-design tools to
aid adaptation engineers in analyzing system inputs and outputs to establish mathematical rela-
tionships, or in incorporating analysis from control system design tools such as MatLab Control
Toolbox or SimuLink.

Further beyond, Rainbow is potentially an initial step toward goal-based computing, where
achievable goals are the primary input to the computer, and the computer automatically does
what is needed to attain the goal. One of the main features of Rainbow is allowing an adapta-
tion engineer to define a value system, define a set of adaptation strategies, and then relate the
strategies to the value system to achieve objectives. These three elements form the basic ingre-
dients for goal-based computing. The challenge is to determine how to generate these elements
automatically from a set of goals. The first step is to determine patterns and rules of connection
between a goal and a value system, an action, and the action effects. Goal-based computing is not
far-fetched; example designs exist that partially realizes it, for instance, the Mission Data System
architecture envisioned by researchers at the NASA Jet Propulsion Laboratory, which consists of
goal networks and goal elaboration capabilities to carry out goals through controllers, estimators,
sensors, and actuators [Gat00, DIMG07]. Similar approaches exist for modern robotics systems.

9.3 Summary
This thesis set out to demonstrate the effectiveness of the Rainbow architecture-based approach
to system self-adaptation. Modern systems grow increasingly complex while needing to adapt
to changes: user preferences may change, environment resources may vary, dependent software
components may disappear or fail. Architecture-based self-adaptation hoists properties of con-
cern into prominent architecture models and enables a target system to be monitored and adapted
at run time.

In Chapter 1 we posited the thesis that we can provide software engineers the ability to add

156

and evolve self-adaptation capabilities cost-effectively for a wide range of software systems and
for multiple objectives by defining a self-adaptation framework that factors out common adapta-
tion mechanisms and provides explicit customization points to tailor self-adaptation capabilities
for particular classes of systems and quality objectives. This thesis led to the claims of generality
(to a broad spectrum of styles for common quality dimensions with which modern architects are
concerned), cost-effectiveness (relative to existing specialized solutions, to engineer and evolve
self-adaptive systems), and transparency (making the adaptation process understandable, actions
composable, and choice automatable for routine system adaptations).

In Chapter 2, we surveyed areas of related work and identified contributing disciplines—
software architecture, control theory, utility theory—as well as limitation of related approaches,
which demonstrate point solutions for particular classes of systems and fixed quality dimensions,
but lack a self-adaptation framework generally applicable to different styles and multiple quality
objectives, the ability to represent administrator adaptation concepts as explicit and operational
entities, the mechanism to automatically decide the best course of adaptation, and an integrated
approach that saves engineers time and effort.

In this thesis we overcame the limitations in the state-of-art by providing an architecture-
based approach to system self-adaptation. We started from the thesis claims as requirements
in Chapter 3. The overall Rainbow approach provided a framework of self-adaptation mech-
anisms to enable architecture-based monitoring and adaptation, a language for expressing and
composing self-adaptation objectives and strategies, and a process for incrementally engineering
self-adaptation capabilities. We presented the features and semantics of the Stitch self-adaptation
language in Chapter 4, and detailed the customization points of the reusable framework infras-
tructures in Chapter 5. To demonstrate that we fulfilled our requirements and thus satisfied the
thesis claims, we presented seven concrete pieces of evidence in Chapter 6 and evaluated them
in Chapter 7. In summary, this thesis fulfills the requirements as follows.

Generality: the Rainbow approach leverages the notion of software architectural style to char-
acterize and define explicit customization points for tailoring common, reusable infrastructures
of the framework to specific styles for multiple quality concerns. Evidence: 5 example systems
and 2 scenarios, which together demonstrate coverage for
• 3 architectural styles: client-server, service-coalition, N-tier;
• 5 quality concerns: performance, cost, content fidelity, availability, security.

Cost-effectiveness: the Rainbow approach prescribes an adaptation engineering process that
guides a systematic, incremental customization of Rainbow to target systems. Evidence:
• Two instances of reuse from CSSys to Libra, and between TalkShoe and Znn.com;
• TalkShoe as external evidence of ease in customizing Rainbow;
• Task-based estimation of self-adaptation engineering effort with development data from

TalkShoe (34 h) and Znn.com (93 h).
Transparency: the Rainbow approach provides a self-adaptation language that separates the
concerns of self-adaptation into distinct concepts to facilitate reasoning, provides explicit con-
structs to represent adaptation knowledge separately for different domain expertise, and enables
integrating adaptation strategies from the different domains by quantitatively selecting the adap-
tation strategy that achieves the best trade-off satisfying multiple objectives. Evidence:

157

• Sys-admin examples substantiate the expressiveness of Stitch’s self-adaptation concepts;
• Znn.com and (in part) TalkShoe demonstrate that Rainbow makes self-adaptation under-

standable, composable, and automatable.

Closing Remarks This thesis presented evidence in support of Rainbow’s generality to ar-
chitectural styles and quality dimensions, cost-effectiveness via reusable artifacts and ease-
of-customization, and transparency in understanding, composing, and automating adaptation
choices. By defining and designing an architecture-based self-adaptation framework with com-
mon, reusable adaptation mechanisms that are customizable to specific styles of systems for
multiple quality objectives, we have provided software engineers the ability and tools to add and
evolve self-adaptation capabilities cost-effectively to a broad spectrum of systems for typical
qualities of concern.

To complete evaluation of this thesis, please solve the following puzzle:

© × ©
© © ×
× ×

158

Bibliography

[AAG93] Gregory D. Abowd, Robert Allen, and David Garlan. Using style to understand
descriptions of software architectures. ACM Software Engineering Notes, 18(5):9–
20, 1993. 2.1

[AAG95] Gregory D. Abowd, Robert Allen, and David Garlan. Formalizing style to under-
stand descriptions of software architecture. ACM Trans. Softw. Eng. Methodol.,
4(4):319–364, 1995. 1.2, 3.1.1

[ACM02] ACM. Adaptive middleware. Communications of the ACM, 45(6), June 2002.
3.3.2, 9.3

[ACN02] Jonathan Aldrich, Craig Chambers, and David Notkin. Archjava: connecting soft-
ware architecture to implementation. In ICSE ’02: Proc. of the 24th International
Conf. on Software Engineering, pages 187–197, New York, NY, 2002. ACM. 2.3.1

[Agh02] Gul A. Agha. Introduction. In Communications of the ACM [ACM02], pages
30–32. 2.3.1

[All97] Robert J. Allen. A Formal Approach to Software Architectures. PhD thesis,
Carnegie Mellon University School of Computer Science, May 1997. 2.1, 3.1.1

[Alm06] Ali Almossawi. Personal and email communications, May–August 2006. Sum-
mer independent study, carried out interview design and process, shared insight on
system administration. 6.6

[AVCL02] Robert Allen, Steve Vestal, Dennis Cornhill, and Bruce Lewis. Using an architec-
ture description language for quantitative analysis of real-time systems. In Proc.
of the 3rd International Workshop on Software and Performance, pages 203–210.
ACM Press, 2002. 4

[Bak04] D. Robert Baker. A decision table based methodology for the analysis of com-
plex conditional actions. Methods & Tools: Global knowledge source for software
development professionals – Fall 2004, 12(3):23–35, 2004. 2.2

[Bal01] Robert Balzer. Probe run-time infrastructure. http://
schafercorp-ballston.com/dasada/2001WinterPI/
ProbeRun-TimeInfrastructureDesign.ppt, 2001. 2.3.1, 3.3.2

[Bat00] John A. Bather. Decision Theory: An Introduction to Dynamic Programming and
Sequential Decisions. John Wiley & Sons, Baffins Lane, Chichester, West Sussex
PO19 1UD, England, first edition, July 13, 2000. 1.3.1, 2.2

159

http://schafercorp-ballston.com/dasada/2001WinterPI/ProbeRun-TimeInfrastructureDesign.ppt
http://schafercorp-ballston.com/dasada/2001WinterPI/ProbeRun-TimeInfrastructureDesign.ppt
http://schafercorp-ballston.com/dasada/2001WinterPI/ProbeRun-TimeInfrastructureDesign.ppt

[BBKS05] Felix Bachmann, Len Bass, Mark Klein, and Charles Shelton. Designing software
architectures to achieve quality attribute requirements. Software, IEE Proceedings,
152(4):153–165, August 5, 2005. 2.1

[BCDW04] Jeremy S. Bradbury, James R. Cordy, Juergen Dingel, and Michel Wermelinger.
A survey of self-management in dynamic software architecture specifications. In
WOSS ’04: Proc. of the 1st ACM SIGSOFT Workshop on Self-managed Systems,
pages 28–33, New York, NY, 2004. ACM. 2.3.3

[BCK98] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
The SEI Series in Software Engineering. Addison-Wesley Longman, 1998. 1.2,
2.1

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
The SEI Series in Software Engineering. Addison-Wesley Longman, second edi-
tion, 2003. 2.1

[BDH03] Luiz Andre Barroso, Jeffrey Dean, and Urs Holzle. Web search for a planet: The
google cluster architecture. IEEE Micro, 23(2):22–28, 2003. 1.1.1

[BDT99] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm intelligence: from
natural to artificial systems. Oxford University Press, Inc., New York, NY, 1999.
3(a) on p. 272. 8.1

[Bis06] Bill Bishop. Personal communications, May 2006. Discussed (a) possible case
study for Rainbow and (b) system administrative task. 6.6

[BJ03] Len Bass and Bonnie John. Linking usability to software architecture patterns
through general scenarios. Journal of Systems and Software, 66(3):187–197,
June 15, 2003. 2.1

[BJC05] Thaís Vasconcelos Batista, Ackbar Joolia, and Geoff Coulson. Managing dynamic
reconfiguration in component-based systems. In EWSA, volume 3527 of LNCS,
pages 1–17. Springer, June 13–14, 2005. 2.3.3

[BK07] Karun N. Biyani and Sandeep S. Kulkarni. Mixed-mode adaptation in distributed
systems: A case study. In Proc. of the 2007 International Workshop on Soft-
ware Engineering for Adaptive and Self-Managing Systems (SEAMS ’07), page 14,
Washington, DC, 2007. IEEE Computer Society. 2.3.1

[BLKW97] M. Barbacci, T. Longstaff, M. Klein, and C. Weinstock. Quality attributes. Tech-
nical Report CMU/SEI-96-TR-036, Software Engineering Institute, 1997. 2.1, 7.1

[BMD+03] David J. Bruemmer, Julie L. Marble, Donald D. Dudenhoeffer, Matthew O. Ander-
son, and Mark D. McKay. Mixed-initiative control for remote characterization of
hazardous environments. In 36th Hawaii International Conf. on System Sciences
(HICSS-36 ’03), CD-ROM / Abstracts Proc., page 127. IEEE Computer Society,
January 6–9, 2003. 2.2

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-oriented software architecture: a system of patterns. John Wiley &
Sons, Inc., New York, NY, 1996. Layers for Information Systems, p. 47. 7.1

160

[But02] Shawn A. Butler. Security attribute evaluation method: a cost-benefit approach.
In Proc. of the 24th International Conf. on Software engineering, pages 232–240.
ACM Press, May 19–25, 2002. 2.1, 6.3, 7.1, 8.5

[CBB+03] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little,
Robert Nord, and Judith Stafford. Documenting Software Architecture: Views and
Beyond. Pearson Education, Inc., 2003. 1, 3.3.1, 8.5

[CdlFBS01] Carlos E. Cuesta, Pablo de la Fuente, and Manuel Barrio-Solárzano. Dynamic
coordination architecture through the use of reflection. In SAC ’01: Proc. of the
2001 ACM Symposium on Applied Computing, pages 134–140, New York, NY,
2001. ACM. 2.3.3

[CDS01] Proc. of the Working Conf. on Complex and Dynamic Systems Architecture, De-
cember 12–14, 2001. 1.3.1, 2.3.1, 3.3.2, 9.3

[CGS+02a] Shang-Wen Cheng, David Garlan, Bradley Schmerl, João Pedro Sousa, Bridget
Spitznagel, and Peter Steenkiste. Using architectural style as a basis for self-repair.
In Jan Bosch, Morven Gentleman, Christine Hofmeister, and Juha Kuusela, editors,
Software Architecture: System Design, Development, and Maintenance, pages 45–
59, Massachusetts, USA, August 25–30, 2002. Kluwer Academic Publishers. 6,
6.1

[CGS+02b] Shang-Wen Cheng, David Garlan, Bradley Schmerl, Peter Steenkiste, and Ningn-
ing Hu. Software architecture-based adaptation for grid computing. In Proc. of the
11th IEEE International Symposium on High Performance Distributed Computing,
pages 389–398, July 23–26, 2002. 6.1, 6.1

[Che08a] Owen Cheng. Personal communications, April 2008. No Easter in April. :o). 6.6

[Che08b] Shang-Wen Cheng. Rainbow: Cost-Effective Software Architecture-Based Self-
Adaptation. Technical Report CMU-ISR-08-113, Carnegie Mellon University
School of Computer Science, 5000 Forbes Avenue, Pittsburgh, PA 15213, May
2008. 8.3

[CHG+04] Shang-Wen Cheng, An-Cheng Huang, David Garlan, Bradley Schmerl, and Peter
Steenkiste. An architecture for coordinating multiple self-management systems. In
Proc. of the 4th Working IEEE/IFIP Conference on Software Architecture (WICSA-
4), June 2004. 3.3.2, 3.3.2, 6, 6.2

[CKF+04] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and Armando
Fox. Microreboot – a technique for cheap recovery. In Proc. 6th Symposium on
Operating Systems Design and Implementation (OSDI), San Francisco, CA, Dec
2004, volume cs.OS/0406005, December 2004. 2.2, 2.3.1

[Cle96] Paul C. Clements. A survey of architecture description languages. In Proc. of the
8th International Workshop on Software Specification and Design, page 16. IEEE
Computer Society Press, 1996. 2.1

[CMU08] CMU Architecture Based Language and Environments. Acme - The Acme Archi-
tectural Description Language and Design Environment. http://acme.able.

161

http://acme.able.cs.cmu.edu/
http://acme.able.cs.cmu.edu/

cs.cmu.edu/, 2008. 2.1, 5.1.2

[CN01] Paul Clements and Linda Northrop. Software product lines: practices and patterns.
The SEI Series in Software Engineering. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, 3rev ed edition, August 30, 2001. 7.2

[CRW01] Antonio Carzaniga, David S. Rosenblum, and Alexander L Wolf. Design and eval-
uation of a wide-area event notification service. ACM Transactions on Computer
Systems, 19(3):332–383, August 2001. 2.3.1

[CU01] Carnegie Mellon University and University of California, Irvine. xAcme. http:
//www.cs.cmu.edu/~acme/pub/xAcme/, 2001. 2.1

[Cur94] Timothy W. Curry. Profiling and tracing dynamic library usage via interposition.
In USENIX Summer, pages 267–278, 1994. 2.3.1

[CV02] Nathan Combs and Jeff Vagel. Adaptive mirroring of system of systems architec-
tures. In Garlan et al. [GKW02], pages 96–98. 2.3.1

[DC01] Jim Dowling and Vinny Cahill. The k-component architecture meta-model for self-
adaptive software. In REFLECTION ’01: Proc. of the 3rd International Conf. on
Metalevel Architectures and Separation of Crosscutting Concerns, pages 81–88,
London, UK, 2001. Springer-Verlag. 2.3.3

[DDLS01] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The pon-
der policy specification language. In POLICY ’01: Proc. of the International Work-
shop on Policies for Distributed Systems and Networks, pages 18–38, London, UK,
2001. Springer-Verlag. 2.2

[DGK+01] Peter A. Dinda, Thomas Gross, Roger Karrer, Bruce Lowekamp, Nancy Miller,
Peter Steenkiste, and Dean Sutherland. The architecture of the remos system. In
Proc. 10th IEEE Symposium on High Performance Distributed Computing, 2001.
6.1

[DHT01] Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. A highly-extensible,
XML-based architecture description language. In Proceedings of WICSA2, Mas-
sachusetts, USA, August 28–31, 2001. Kluwer Academic Publishers. 1.2, 2.1

[DHT02] Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. Towards
architecture-based self-healing systems. In Garlan et al. [GKW02], pages 21–26.
1.3.3, 2.3.3

[Dij75] Edsger W. Dijkstra. Guarded commands, non-determinacy and formal derivation
of programs. Communications of the ACM, 18(8):453–457, 1975. 4.3.5

[DIMG07] Daniel D. Dvorak, Michel D. Ingham, J. Richard Morris, and John Gersh. Goal-
based operations: An overview. In Proc. of the Infotech@Aerospace Conf. and
Exhibit, May 7–10, 2007. 9.2.3

[DLSD01] Naranker Dulay, Emil Lupu, Morris Sloman, and Nicodemos Damianou. A pol-
icy deployment model for the ponder language. In Proc. 7th IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM’2001). IEEE Press,
May 2001. 2.2

162

http://acme.able.cs.cmu.edu/
http://acme.able.cs.cmu.edu/
http://acme.able.cs.cmu.edu/
http://www.cs.cmu.edu/~acme/pub/xAcme/
http://www.cs.cmu.edu/~acme/pub/xAcme/

[Dol00] Shlomi Dolev. Self-Stabilization. The MIT Press, Cambridge, MA, 2000. 2.2

[Dur94] John Durkin. Expert Systems: Design and Development. Prentice-Hall, Englewood
Cliffs, NJ 07632, 1994. 2.2

[FLV00] Peter H. Feiler, Bruce Lewis, and Steve Vestal. Improving predictability in em-
bedded real-time systems. Technical Report CMU/SEI-2000-SR-011, Carnegie
Mellon University Software Engineering Institute, Pittsburgh, PA 15213, Decem-
ber 2000. 1.2

[FPS02] Jason Flinn, SoYoung Park, and Mahadev Satyanarayanan. Balancing perfor-
mance, energy, and quality in pervasive computing. In Proc. of the 22nd Inter-
national Conf. on Distributed Computing Systems (ICDCS’02), pages 217–226.
IEEE Computer Society Press, July 02–05, 2002. 2.3.1

[Fry03] Colleen Frye. Self-healing systems. Application Development Trends, pages 29–
34, September 2003. 1.1

[Gat00] Erann Gat. The mds autonomous control architecture. In CD-ROM (ISOMA 9947)
Proc. of the 4th World Automation Conf. (WAC ’00), June 2000. 9.2.3

[GC03] A. G. Ganak and T. A. Corbi. The dawning of the autonomic computing era. IBM
Systems Journal, 42(1):5–18, 2003. 1.1, 2.3.2, 3.1.2, 3.3.2, 7.1

[GCH+04] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and Peter
Steenkiste. Rainbow: Architecture-based self adaptation with reusable infrastruc-
ture. IEEE Computer, 37(10), October 2004. 6, 6.1, 6.2, 7.2

[GCS03] David Garlan, Shang-Wen Cheng, and Bradley Schmerl. Increasing system de-
pendability through architecture-based self-repair. In Rogério de Lemos, Cristina
Gacek, and Alexander Romanovsky, editors, Architecting Dependable Systems,
Lecture Notes in Computer Science, pages 61–89, New York, NY, USA, 2003.
Springer-Verlag, Inc. 6, 6.1

[GGK+01] Philip N. Gross, Suhit Gupta, Gail E. Kaiser, Gaurav S. Kc, and Janak J. Parekh.
An active events model for systems monitoring. In CDSA [CDS01]. 2.3.1

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system.
SIGOPS Oper. Syst. Rev., 37(5):29–43, 2003. (document), 1.1.1, 8.1, 8.2

[GKW02] David Garlan, Jeff Kramer, and Alexander Wolf, editors. Proc. of the 1st ACM
SIGSOFT Workshop on Self-Healing Systems (WOSS ’02), New York, NY, USA,
November 18–19, 2002. ACM Press. 1.2, 1.3.1, 9.3

[Gla06] Malcolm Gladwell. Blink: The Power of Thinking Without Thinking. Penguin,
January 2006. 9.2.2

[GMK02] Ioannis Georgiadis, Jeff Magee, and Jeff Kramer. Self-organizing software archi-
tectures for distributed systems. In Garlan et al. [GKW02], pages 33–38. 2.2,
2.3.3

[GMW00] David Garlan, Robert T. Monroe, and David Wile. Acme: Architectural descrip-
tions of component-based systems. In Gary T. Leavens and Murali Sitaraman,
editors, Foundations of Component-Based Systems, pages 47–68. Cambridge Univ

163

Press, 2000. 1.2, 2.1, 3.3.3

[GR91] Michael M. Gorlick and Rami R. Razouk. Using Weaves for software construction
and analysis. In Proc. of the 13th International Conf. of Software Engineering,
pages 23–34, Los Alamitos, CA, USA, May 1991. IEEE Computer Society Press.
1.1.1, 1.3, 2.1, 2.3.3

[Gro02] Philip Gross. MEET. http://www.psl.cs.columbia.edu/meet/
index.html, 2002. 2.3.1

[GSC01] David Garlan, Bradley Schmerl, and Jichuan Chang. Using gauges for architecture-
based monitoring and adaptation. In CDSA [CDS01]. 2.3.1, 3.3.2, 5.1.3

[GSRU07] Debanjan Ghosh, Raj Sharman, H. Raghav Rao, and Shambhu Upadhyaya. Self-
healing systems - survey and synthesis. Decis. Support Syst., 42(4):2164–2185,
2007. 2.3.3

[HDPT04] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury. Feedback
Control of Computing Systems. John Wiley & Sons, 2004. 2.2, 8.3

[Hei98] George T. Heineman. A model for designing adaptable software components. In
COMPSAC ’98: Proc. of the 22nd International Computer Software and Applica-
tions Conference, pages 121–127, Washington, DC, 1998. IEEE Computer Society.
2.3.1

[Hew03] Hewlett-Packard Development Company. Adaptive enterprise. http:
//h71028.www7.hp.com/enterprise/cache/6842-0-0-0-121.
aspx, 2003. 2.3.2

[How60] Ronald A. Howard. Dynamic programming and Markov processes. MIT Technol-
ogy Press, June 1960. 2.2, 4.4.1

[HPUM07] Michael Hinz, Stefan Pietschmann, Matthias Umbach, and Klaus Meissner. Adap-
tation and distribution of pipeline-based context-aware web architectures. In
WICSA ’07: Proc. of the 6th Working IEEE/IFIP Conf. on Software Architecture,
page 15, Washington, DC, 2007. IEEE Computer Society. 2.3.3

[Hua04] An-Cheng Huang. Building Self-configuring Services Using Service-specific
Knowledge. PhD thesis, Carnegie Mellon University, December 2004. 2.3.1

[IBM04] IBM. An architectural blueprint for autonomic computing, 2004. 1.1.2, 1.3.3

[IBM08] IBM developerWorks. Autonomic computing toolkit. http://www.ibm.com/
developerworks/autonomic/overview.html, 2008. [Online; accessed
2-April-2008]. 2.3.2

[Int02] Intel Research Laboratory at Seattle. Plantcare. http://seattleweb.
intel-research.net/projects/plantcare/, 2002. 2.3.2

[JBB03] J. Jann, L. M. Browning, and R. S. Burugula. Dynamic reconfiguration: Basic
building blocks for autonomic computing on IBM pSeries servers. IBM Systems
Journal, 42(1):29–37, 2003. 2.3.1, 2.3.2

[Jur04] Mario Juric. Slashdotting of mjuric/universe. http://www.astro.

164

http://www.psl.cs.columbia.edu/meet/index.html
http://www.psl.cs.columbia.edu/meet/index.html
http://h71028.www7.hp.com/enterprise/cache/6842-0-0-0-121.aspx
http://h71028.www7.hp.com/enterprise/cache/6842-0-0-0-121.aspx
http://h71028.www7.hp.com/enterprise/cache/6842-0-0-0-121.aspx
http://www.ibm.com/developerworks/autonomic/overview.html
http://www.ibm.com/developerworks/autonomic/overview.html
http://seattleweb.intel-research.net/projects/plantcare/
http://seattleweb.intel-research.net/projects/plantcare/
http://www.astro.princeton.edu/~mjuric/universe/slashdotting/
http://www.astro.princeton.edu/~mjuric/universe/slashdotting/

princeton.edu/~mjuric/universe/slashdotting/, January 13–15,
2004. Graph of actual Slashdot-effect traffic. 6.5.4

[KCBC02] Fabio Kon, Fabio Costa, Gordon Blair, and Roy H. Campbell. The case for reflec-
tive middleware. In Communications of the ACM [ACM02], pages 33–38. 2.3.1

[KG06] Jung Soo Kim and David Garlan. Analyzing architectural styles with Alloy. In
Workshop on the Role of Software Architecture for Testing and Analysis 2006
(ROSATEA 2006), Portland, ME, July 17, 2006. 9.2.3

[KHW+01] John C. Knight, Dennis Heimbigner, Alexander L. Wolf, Antonio Carzaniga,
Jonathan C. Hill, Premkumar Devanbu, and Michael Gertz. The Willow survivabil-
ity architecture. In Proc. of the 4th Information Survivability Workshop, October
2001. 1.1.1

[KKC00] Rick Kazman, Mark Klein, and Paul Clements. Atam: Method for architecture
evaluation. Technical Report CMU/SEI-2000-TR-004, CMU SEI, 2000. 8.5

[Le 98] Daniel Le Métayer. Describing software architecture styles using graph grammars.
IEEE Transactions on Software Engineering, 24(7):521–533, 1998. 2.3.3

[LG07] Yan Liu and Ian Gorton. Implementing adaptive performance management in
server applications. In Proc. of the 2007 International Workshop on Software En-
gineering for Adaptive and Self-Managing Systems (SEAMS ’07), page 12, Wash-
ington, DC, 2007. IEEE Computer Society. 2.3.3

[LGSZ84] Edward D. Lazowska, G. Scott Graham, Kenneth Sevcik, and John Zahorjan.
Quantitative System Performance: Computer System Analysis Using Queueing
Network Models. Prentice-Hall, Englewood Cliffs, NJ, February 1984. 2.1

[LSZ+01] Joseph Loyall, Richard Schantz, John Zinky, Partha Pal, Richard Shapiro, Craig
Rodrigues, Michael Atighetchi, David Karr, Jeanna M. Gossett, and Christopher D.
Gill. Comparing and contrasting adaptive middleware support in wide-area and
embedded distributed object applications. In Proc. of the 21st International Conf.
on Distributed Computing Systems, pages 625–635, April 2001. 2.3.1

[MBO+07] Ronald Morrison, Dharini Balasubramaniam, Flávio Oquendo, Brian Warboys, and
R. Mark Greenwood. An active architecture approach to dynamic systems co-
evolution. In ECSA, volume 4758 of LNCS, pages 2–10. Springer, September 24–
26, 2007. 2.3.3

[MDEK95] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer. Specifying dis-
tributed software architectures. In W. Schafer and P. Botella, editors, Proceedings
of 5th European Software Engineering Conference (ESEC 95), pages 137–153, Sit-
ges, Spain, September 26, 1995. Springer-Verlag, Berlin. 1.3, 2.1

[MG04] Arun Mukhija and Martin Glinz. A framework for dynamically adaptive appli-
cations in a self-organized mobile network environment. In ICDCSW ’04: Pro-
ceedings of the 24th International Conference on Distributed Computing Systems
Workshops - W7: EC (ICDCSW’04), pages 368–374, Washington, DC, 2004. IEEE
Computer Society. 2.3.3

165

http://www.astro.princeton.edu/~mjuric/universe/slashdotting/
http://www.astro.princeton.edu/~mjuric/universe/slashdotting/
http://www.astro.princeton.edu/~mjuric/universe/slashdotting/

[Mic03] Microsoft Corporation. Dynamic systems initiative. http://www.
microsoft.com/windowsserversystem/dsi/, 2003. 2.3.2, 3.3.2

[Mic08] Microsoft Corporation. System center operations manager 2007. http://www.
microsoft.com/systemcenter/opsmgr/, 2008. 1.1

[Mit97] Tom Michael Mitchell. Machine Learning. McGraw-Hill series in computer sci-
ence. McGraw-Hill, New York, 1997. 1.3.1, 2.2

[MK96] Jeff Magee and Jeff Kramer. Dynamic structure in software architectures. In SIG-
SOFT ’96: Proc. of the 4th ACM SIGSOFT Symposium on Foundations of Software
Engineering, pages 3–14, New York, NY, USA, 1996. ACM. 2.3.3, 2.3.3, 3.1.1

[MKMG97] Robert T. Monroe, Andrew Kompanek, Ralph Melton, and David Garlan. Archi-
tectural styles, design patterns, and objects. IEEE Software, 14(1):43–52, Jan–Feb
1997. 2.1

[MLR03] V. Markl, G. M. Lohman, and V. Raman. LEO: An autonomic query optimizer for
DB2. IBM Systems Journal, 42(1):98–106, 2003. 2.3.1, 2.3.2

[MM03] Nikunj R. Mehta and Nenad Medvidovic. Composing architectural styles from
architectural primitives. In ESEC/FSE-11: Proc. of the 9th European Software
Engineering Conf. held jointly with 11th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 347–350, New York, NY, 2003.
ACM. 2.3.1, 5

[Mon99] Robert Monroe. Rapid Development of Custom Software Architecture Design Envi-
ronments. Technical Report CMU-CS-99-161, Carnegie Mellon University School
of Computer Science, Pittsburgh, PA 15213, August 1999. 2.1, 3.3.4

[MORT96] Nenad Medvidovic, Peyman Oreizy, Jason E. Robbins, and Richard N. Taylor.
Using object-oriented typing to support architectural design in the C2 style. vol-
ume 21 of ACM Software Engineering Notes, pages 24–32, New York, NY, USA,
October 16–18, 1996. ACM Press. 2.1

[MPF+06] Marius Mikalsen, Nearchos Paspallis, Jacqueline Floch, Erlend Stav, George A.
Papadopoulos, and Akis Chimaris. Distributed context management in a mobil-
ity and adaptation enabling middleware (madam). In SAC ’06: Proceedings of
the 2006 ACM symposium on Applied computing, pages 733–734, New York, NY,
2006. ACM. 2.3.1

[MR97] Mark Moriconi and Robert A. Reimenschneider. Introduction to SADL 1.0: A
language for specifying software architecture hierarchies. Technical Report SRI-
CSL-97-01, SRI International, 1997. 2.1

[MRMM02] Marija Mikik-Rakic, Nikunj Mehta, and Nenad Medvidovic. Architectural style
requirements for self-healing systems. In Garlan et al. [GKW02], pages 49–54.
2.3.1, 2.3.3

[MT97] Nenad Medvidovic and Richard N. Taylor. A framework for classifying and com-
paring architecture description languages. In Software Engineering: ESEC/FSE
’97: 6th European Software Engineering Conference, held jointly with the 5th ACM

166

http://www.microsoft.com/windowsserversystem/dsi/
http://www.microsoft.com/windowsserversystem/dsi/
http://www.microsoft.com/systemcenter/opsmgr/
http://www.microsoft.com/systemcenter/opsmgr/

SIGSOFT Symposium on the Foundations of Software Engineering, volume 1301
of LNCS, pages 60–76, New York, NY, USA, September 22–25, 1997. Springer-
Verlag, Inc. 2.1

[NMMS99] Priya Narasimhan, Louise E. Moser, and P. M. Melliar-Smith. Using interceptors
to enhance CORBA. IEEE Computer, pages 62–68, July 1999. 2.3.1

[NMMS02] Priya Narasimhan, Louise E. Moser, and P. M. Melliar-Smith. Strongly consistent
replication and recovery of fault-tolerant CORBA applications. Journal of Com-
puter System Science and Engineering, Spring 2002. 2.3.1

[Obj01] Object Management Group. OMG Unified Modeling Language Specification, v.
1.4, September 2001. 2.1

[OGT+99] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner, Gre-
gory Johnson, Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and Alexan-
der L. Wolf. An architecture-based approach to self-adaptative software. IEEE
Intelligent Systems, 14(3):54–62, May–June 1999. 1.1.1, 1.1.1, 2.3.3

[OMT98] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-based
runtime software evolution. In 20th International Conference of Software Engi-
neering, pages 177–186, Los Alamitos, CA, USA, April 19–25, 1998. IEEE, IEEE
Computer Society Press. 1.3

[Ore00] Peyman Oreizy. Open Architecture Software: A Flexible Approach to Decentral-
ized Software Evolution. PhD thesis, University of California, Irvine, 2000. 2.3.3

[PGM97] Robert H. Perry, Don W. Green, and James O. Maloney. Perry’s Chemical Engi-
neers’ Handbook. McGraw-Hill, New York, NY, USA, seventh edition, 1997. 1.2,
2.2

[PGS+07] Vahe Poladian, David Garlan, Mary Shaw, Bradley Schmerl, Joao Pedro Sousa,
and Mahadev Satyanarayanan. Leveraging resource prediction for anticipatory dy-
namic configuration. In Proc. of the 1st IEEE International Conf. on Self-Adaptive
and Self-Organizing Systems (SASO ’07), pages 214–223, July 8–11, 2007. 2.2,
8.3, 9.2.2

[Pol08] Vahe Poladian. Tailoring Configuration to User’s Tasks under Uncertainty. PhD
thesis, Carnegie Mellon University School of Computer Science, 5000 Forbes Av-
enue, Pittsburgh, PA 15213, May 2008. 8.3, 9.2.2, 9.2.2

[PSGS04] Vahe Poladian, Joao Pedro Sousa, David Garlan, and Mary Shaw. Dynamic con-
figuration of resource-aware services. In Proc. of the 26th International Conf. on
Software Engineering, Edinburgh, Scotland, 23-28 May 2004. 9.2.2

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software
architecture. ACM SIGSOFT Software Engineering Notes, 17(4):40–52, 1992. 2.1

[PW02] Paul Pazandak and David Wells. Probemeister: Distributed runtime soft-
ware instrumentation. http://www.objs.com/ProbeMeister/paper/
020523-probemeister.pdf, May 23, 2002. Object Services & Consulting,
Inc. Baltimore, MD. 2.3.1

167

http://www.objs.com/ProbeMeister/paper/020523-probemeister.pdf
http://www.objs.com/ProbeMeister/paper/020523-probemeister.pdf

[Ram02] Jay Ramachandran. Designing security architecture solutions. John Wiley & Sons,
Inc., New York, NY, 2002. 7.1

[Rho08] Stephen Rhoton. Personal communication, January 8, 2008. Discussed example
adaptive scripts (user bandwidth restriction) in CMU network administraton. 6.6,
6.7

[RN03] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 2003. 2.2

[San06] Greg Sandoval. Christmas shopping crush stalls walmart.com. http://
news.zdnet.co.uk/internet/0,1000000097,39284866,00.htm,
November 27, 2006. CNET News.com. 6.5.1

[SC81] Charles H. Sauer and K. Mani Chandy. Computer systems performance modeling.
Advances in Computing Science & Technology. Prentice-Hall, Englewood Cliffs,
NJ, March 1981. 2.1

[Sch06] Evan Schuman. Black friday turns servers dark at wal-mart, macys. http:
//storefrontbacktalk.com/story/112406blackfriday.php,
November 25, 2006. StorefrontBacktalk - Techniques, Tools and Trades about
Retail Technology and E-commerce. 6.5.1

[Sch08] Bradley Schmerl. AcmeStudio. http://acme.able.cs.cmu.edu/
AcmeStudio/, 2001–2008. 2.1

[Sco02] Karyl Scott. Computer, heal thyself. Information Week, April 1, 2002. 1.1

[SEM89] Dale E. Seborg, Thomas F. Edgar, and Duncan A. Mellichamp. Process Dynamics
and Control. Wiley Series in Chemical Engineering. John Wiley & Sons, New
York, NY, USA, 1989. 1.1.1, 1.1.1, 1.2, 2.2

[SG96] Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice-Hall, 1996. 1.2, 2.1, 7.1

[SG98] Bridget Spitznagel and David Garlan. Architecture-based performance analysis.
In Proc. of the 10th International Conf. on Software Engineering and Knowledge
Engineering, pages 146–151. Knowledge Systems Institute, 1998. 2.1, 4

[SG02] Joao Pedro Sousa and David Garlan. Aura: an architectural framework for user
mobility in ubiquitous computing environments. In Jan Bosch, Morven Gentle-
man, Christine Hofmeister, and Juha Kuusela, editors, Software Architecture: Sys-
tem Design, Development, and Maintenance (Proc. of the 3rd Working IEEE/IFIP
Conf. on Software Architecture), pages 29–43. Kluwer Academic Publishers, Au-
gust 25–31, 2002. 2.2, 9.2.2

[SG04] Bradley Schmerl and David Garlan. AcmeStudio: Supporting style-centered archi-
tecture development. In ICSE 2004, 2004. 2.1, 5.1

[Sha95] Mary Shaw. Beyond objects: A software design paradigm based on process control.
Software Engineering Notes, 20(1):27–38, January 1995.

[Sha02] Mary Shaw. "Self-Healing": Softening precision to avoid brittleness. In Garlan
et al. [GKW02], pages 111–113. 2.2, 9.2.2, 9.2.2

168

http://news.zdnet.co.uk/internet/0,1000000097,39284866,00.htm
http://news.zdnet.co.uk/internet/0,1000000097,39284866,00.htm
http://storefrontbacktalk.com/story/112406blackfriday.php
http://storefrontbacktalk.com/story/112406blackfriday.php
http://acme.able.cs.cmu.edu/AcmeStudio/
http://acme.able.cs.cmu.edu/AcmeStudio/

[SL02] Morris Sloman and Emil Lupu. Security and management policy specification.
IEEE Network, 16(2):10–19, March 2002. 2.2

[SL06] Alexandre Sztajnberg and Orlando Loques. Describing and deploying self-adaptive
applications. In Proc. 1st Latin American Autonomic Computing Symposium,
July 14–20, 2006. 2.3.3

[SN01] Mahadev Satyanarayanan and Dushyanth Narayanan. Multi-fidelity algorithms for
interactive mobile applications. Wireless Networks, 7(6):601–607, 2001. 2.3.1

[Sou05] Joao Pedro Sousa. Scaling Task Management in Space and Time: Reducing User
Overhead in Ubiquitous-Computing Environments. Technical report cmu-cs-05-
123, Carnegie Mellon University School of Computer Science, 5000 Forbes Av-
enue, Pittsburgh, PA 15213, March 28, 2005. 9.2.2

[Spi05] Bridget Spitznagel. Compositional Transformation of Software Connectors. PhD
thesis, Carnegie Mellon Univeristy School of Computer Science Technical Report
CMU-CS-04-128, 2005. 2.3.1

[Sun02] Sun Microsystems. The sun fire(tm) v1280 server architecture. http://www.
sun.com/servers/midrange/pdfs/V1280_wp_final.pdf, Novem-
ber 2002. See "Introducing N1" on p 40. 2.3.2

[Tai06] Paul Tait. Irwin’s death prompts rush to web. http://www.abc.net.au/
science/articles/2006/09/06/1734081.htm, September 06, 2006.
Reuters. 6.5.1

[Ter04] Daniel Terdiman. Solution for slashdot effect? http://www.wired.com/
science/discoveries/news/2004/10/65165, October 1, 2004. 2:00
AM. 6.5.1

[TMA+96] Richard N. Taylor, Nenad Medvidovic, Kenneth M. Anderson, E. James Whitehead
Jr., Jason E. Robbins, Kari A. Nies, Peyman Oreizy, and Deborah L. Dubrow.
A component- and message-based architectural style for GUI software. Software
Engineering, 22(6):390–406, 1996. 1.3

[Tur03] Vernon Turner. HP utility data center: Enabling enhanced datacen-
ter agility. http://h30046.www3.hp.com/uploads/whitepapers/
IDCwhitepaperHPUDC1.pdf, June 2003. 2.3.2

[UC01] University of California, Irvine and Carnegie Mellon University. xArch. http:
//www.isr.uci.edu/architecture/xarch/, 2001. 2.1

[Uni96] United States Department of Commerce Institute for Telecommunication Sciences.
Telecommunications: Glossary of telecommunication terms. http://www.
its.bldrdoc.gov/fs-1037/fs-1037c.htm, August 7, 1996. Federal
Standard 1037C. 3.3.1

[VK02] Giuseppe Valetto and Gail Kaiser. A case study in software adaptation. In Garlan
et al. [GKW02], pages 73–78. 2.3.1

[VKK01] Giuseppe Valetto, Gail Kaiser, and Gaurav S. Kc. A mobile agent approach to
process-based dynamic adaptation of complex software systems. In 8th European

169

http://www.sun.com/servers/midrange/pdfs/V1280_wp_final.pdf
http://www.sun.com/servers/midrange/pdfs/V1280_wp_final.pdf
http://www.abc.net.au/science/articles/2006/09/06/1734081.htm
http://www.abc.net.au/science/articles/2006/09/06/1734081.htm
http://www.wired.com/science/discoveries/news/2004/10/65165
http://www.wired.com/science/discoveries/news/2004/10/65165
http://h30046.www3.hp.com/uploads/whitepapers/IDCwhitepaperHPUDC1.pdf
http://h30046.www3.hp.com/uploads/whitepapers/IDCwhitepaperHPUDC1.pdf
http://www.isr.uci.edu/architecture/xarch/
http://www.isr.uci.edu/architecture/xarch/
http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm
http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm

Workshop on Software Process Technology, pages 102–116, June 2001. 2.3.1, 3.3.2

[VS95] Manuela Veloso and Peter Stone. Flecs: Planning with a flexible commitment
strategy. Journal of AI Research (JAIR), 3, March 1995. 2.2

[Wat89] Christopher John Cornish Hellaby Watkins. Learning from Delayed Rewards. PhD
thesis, Cambridge University, Cambridge, England, May 1989. 2.2

[WHC+01] Alexander L. Wolf, Dennis Heimbigner, Antonio Carzaniga, Kenneth M. Ander-
son, and Nathan Ryan. Achieving survivability of complex and dynamic systems
with the Willow framework. In CDSA [CDS01]. 2.3.3

[Whi06] Walter White. Personal communication, July 2006. Sys-admin interview. 6.6

[Wik08a] Wikipedia. Control theory — wikipedia, the free encyclopedia.
http://en.wikipedia.org/w/index.php?title=Control_
theory&oldid=202373296, March 31, 2008. [Online; accessed 2-April-
2008]. 2.2

[Wik08b] Wikipedia. Decision theory — wikipedia, the free encyclopedia.
http://en.wikipedia.org/w/index.php?title=Decision_
theory&oldid=201515665, March 28, 2008. [Online; accessed 2-April-
2008]. 2.2

[Wik08c] Wikipedia. Dynamical system — wikipedia, the free encyclopedia.
http://en.wikipedia.org/w/index.php?title=Dynamical_
system&oldid=198931139, March 17, 2008. [Online; accessed 2-April-
2008]. 2

[Wik08d] Wikipedia. Slashdot effect — wikipedia, the free encyclopedia.
http://en.wikipedia.org/w/index.php?title=Slashdot_
effect&oldid=202237428, March 31, 2008. [Online; accessed 31-January-
2008]. 6.5.1, 6.5.4

[Wik08e] Wikipedia. Utility — wikipedia, the free encyclopedia. http:
//en.wikipedia.org/w/index.php?title=Utility&oldid=
200699805, March 17, 2008. [Online; accessed 25-March-2008] See "Expected
utility" section. 2.2, 4.3.2

[Wik08f] Wikiversity. System administration. http://en.wikiversity.org/
wiki/Topic:System_Administration, March 31, 2008. [Online; ac-
cessed 14-March-2008] Though this article covers system administration in gen-
eral, note that the resolution time mentioned are on the order of minutes to hours
to days. 8.2

[WLF01] Michel Wermelinger, Antónia Lopes, and José Luiz Fiadeiro. A graph based archi-
tectural (re)configuration language. SIGSOFT Software Eng. Notes, 26(5):21–32,
2001. 2.3.3

[WP01] David Wells and Paul Pazandak. Taming cyber incognito: Surveying dynamic/re-
configurable software landscapes. In CDSA [CDS01]. 2.3.1

[XDP04] Min Xie, Yuan-Shum Dai, and Kim-Leng Poh. Computing System Reliability:

170

http://en.wikipedia.org/w/index.php?title=Control_theory&oldid=202373296
http://en.wikipedia.org/w/index.php?title=Control_theory&oldid=202373296
http://en.wikipedia.org/w/index.php?title=Decision_theory&oldid=201515665
http://en.wikipedia.org/w/index.php?title=Decision_theory&oldid=201515665
http://en.wikipedia.org/w/index.php?title=Dynamical_system&oldid=198931139
http://en.wikipedia.org/w/index.php?title=Dynamical_system&oldid=198931139
http://en.wikipedia.org/w/index.php?title=Slashdot_effect&oldid=202237428
http://en.wikipedia.org/w/index.php?title=Slashdot_effect&oldid=202237428
http://en.wikipedia.org/w/index.php?title=Utility&oldid=200699805
http://en.wikipedia.org/w/index.php?title=Utility&oldid=200699805
http://en.wikipedia.org/w/index.php?title=Utility&oldid=200699805
http://en.wikiversity.org/wiki/Topic:System_Administration
http://en.wikiversity.org/wiki/Topic:System_Administration

Models and Analysis. Springer-Verlag New York, LLC, April 2004. 2.1

[YAM04] YAML.org. The official yaml web site. http://www.yaml.org/, Decem-
ber 28, 2004. Announcement of YAML 1.1 Working Draft. 4.3.2

[YGS+04] Hong Yan, David Garlan, Bradley Schmerl, Jonathan Aldrich, and Rick Kazman.
Discotect: A system for discovering architectures from running systems. In Proc.
of the 26th International Conf. on Software Engineering, Edinburgh, Scotland, 23-
28 May 2004. 2.3.1, 5.1.3

[You07] Russell J. Yount. Personal communication, April 2, 2007. Discussed the over-
hauled CMU network architecture. 6.6, 6.7

171

http://www.yaml.org/

172

Appendix A

Rainbow Framework Architectural Style

The Component-and-Connector architecture of Rainbow, described using Acme and modeled
in AcmeStudio, is diagrammed in Figure 5.1 with its architectural element types shown below,
defined in 3 hierarchical Acme families. BaseRainbowFam defines the basic element types that
can be instantiated or extended at any level of representation in the architecture—e.g., generic
data, provide and require port types. RainbowFam defines the top-level Rainbow architectural
element types instantiated in the above diagram. Element types described in the first-level repre-
sentations are defined in RainbowFamImpl1a. Types in each family below are listed in the order:
component, connector, port (component interface) , and role (connector interface).

Type Name Functional Description

BaseRainbowFam
DataT Stores generic data
ModelT Represents the model of the target system

CallReturnConnT Generic call-return
ControlConnT (CallReturnCn) Specific call-return type that controls interactions
QueryConnT (CallReturnCn) Specific call-return type that queries data
NotifyConnT Publish-subscribe, event-based
PollConnT Point-to-point, event-based push interaction

ProvidePortT Provides service or data to another component
PublishPortT (ProvideP) Specific event-based type that publishes events
RequirePortT Requires service or data of another component
SubscribePortT (RequireP) Specific event-based type that subscribes to events

OriginatorRoleT Role played by providing port of a component
PublisherRoleT (OriginatorR) Specific event-based role played by publishing port
RecipientRoleT Role type played by the requiring port of a component
SubscriberRoleT (RecipientR) Specific event-based role played by subscribing port

RainbowFam
AdaptationEngineT Performs adaptation
ArchAnalyzerT Evaluates architectural constraints on the model

173

CustomizerT Customizes Rainbow components
EffectorT Propagates and enacts changes in the target system
ExecutorT Carries out adaptation actions on system via translator
GaugeT Updates model properties
ModelManagerT Manages model instance(s), provides model info query
ProbeT Extracts monitoring information from target system
TargetT Represents or simulates the target system
TranslatorT Maintains correspondence between model and system

EffectingConnT (ControlCn) For Effector to effect changes on target system
ChangeNotifyConnT (NotifyCn) Change notification bus, listen for system change requests
GaugeNotifyConnT (NotifyCn) A gauge bus
ProbeNotifyConnT (NotifyCn) A probe bus
RetargetConnT (NotifyCn) Customization notification bus for Customizer
TriggeredAnalyzeConnT (PollCn) Specific polling type, model update triggers analysis
ProbingConnT (PollCn) Specific polling type, instruments the target system

EffectingProvPortT (ProvideP) Enables effecting changes on target system
MonitoringProvPortT (ProvideP) Enables target system states to be monitored
RetargetProvPortT (ProvideP) Customization point to tailor component to specific style
EffectingReqPortT (RequireP) On the Effector, effects system changes
MonitoringReqPortT (RequireP) On the Probe, monitors (extracts) system states
RetargetReqPortT (RequireP) For Customizer to tailor component to specific style
UserPrefReqPortT (RequireP) For Rainbow to receive user preference info

RetargeteeRoleT (SubscriberR) Event bus subscriber role played by retargetee component

RainbowFam-Impl1a
AcmeModelT (Model) C&C architecture model of target system
EnvironmentModelT (Model) Model about environment in which system executes
QoSPreferenceT (Data) Stores user QoS prefs as utility profiles & preferences
QoSConstraintsT (QoSPreference) Represents rules defined in the architecture model
StitchRepertoireT (Data) Stores strategies, tactics, and tactic meta-information
UtilityDataT (Data) Stores utility curves & weights for strategy selection
ActiveProcessT Acts as an active process
ChangeSynchronizerT (ActiveProcess) Checks if arch changes in sync with observed system
ConstraintEvaluatorT (ActiveProcess) Evaluates constraints satisfaction of a model
ModelUpdaterT (ActiveProcess) Updates model elements/properties based on gauges
QueryProvisionerT (ActiveProcess) Provides architecture and environment query service
StitchEngineT (ActiveProcess) Responds to trigger, selects strategy, executes tactic
UtilityEvaluatorT (ActiveProcess) Performs utility calculation to select strategy

DataAccessConnT (CallReturnCn) Accesses data from a DataT component

174

Appendix B

Stitch Grammar

The Stitch language for self-adaptation is presented in Chapter 4. Here we list the full grammar
of Stitch, but we have elided nuanced details for working around parsing ambiguities.

1 # Note t h a t the grammar , w r i t t e n i n ANTLR, uses the f o l l o w i n g BNF convent ions :
2 # − lowercase term i d e n t i f i e s a non−t e rm ina l
3 # − uppercase term i d e n t i f i e s a te rmina l , whose lexeme should be deducib le from labe l , except :
4 # > IDENTIFIER : : = (UNDERSCORE) ∗ LETTER (UNDERSCORE | DOT | LETTER | DIGIT | MINUS) ∗
5 # > INTEGER_LIT : : = (DIGIT) + > FLOAT_LIT : : = (DIGIT) + (DOT (DIGIT) +)?
6 # > STRING_LIT : : = DQUOTE (~ ’ " ’) ∗ DQUOTE / / non−double−quote charac te rs
7 # > CHAR_LIT : : = SQUOTE ~ ’ \ ’ ’ SQUOTE / / a non−s ing le−quote charac te r
8
9 s c r i p t : : = MODULE IDENTIFIER SEMICOLON

10 (impor t) ∗
11 (f u n c t i o n) ∗
12 (t a c t i c) ∗
13 (s t r a t egy) ∗
14 EOF ;
15
16 impor t : : = IMPORT (LIB |MODEL|OP) STRING_LIT importRenameClause? SEMICOLON ;
17 importRenameClause : : = LBRACE importRenamePhrase (COMMA importRenamePhrase) ∗ RBRACE ;
18 importRenamePhrase : : = IDENTIFIER AS IDENTIFIER ;
19
20 f u n c t i o n : : = DEFINE dataType IDENTIFIER ASSIGN expression SEMICOLON ;
21 opera tor : : = i d e n t i f i e r P r i m a r y ;
22
23 t a c t i c : : = TACTIC s igna tu re LBRACE
24 (d e c l a r a t i o n SEMICOLON) ∗
25 CONDITION LBRACE (booleanExpression SEMICOLON) ∗ RBRACE
26 ACTION LBRACE (statement) ∗ RBRACE
27 EFFECT LBRACE (booleanExpression SEMICOLON) ∗ RBRACE
28 RBRACE ;
29
30 s t r a t egy : : = STRATEGY IDENTIFIER
31 LBRACKET booleanExpression RBRACKET
32 LBRACE (f u n c t i o n) ∗ (s t ra tegyExpr) ∗ RBRACE ;
33 s t ra tegyExpr : : = IDENTIFIER COLON strategyCond IMPLIES strategyOutcome ;
34 strategyCond : : = LPAREN (HASH LBRACKET strategyProbValue RBRACKET) ?
35 (booleanExpression | SUCCESS | DEFAULT) RPAREN ;
36 strategyOutcome : : = strategyClosedOutcome SEMICOLON
37 | strategyOpenOutcome (AT LBRACKET expression RBRACKET) ?
38 LBRACE (s t ra tegyExpr) + RBRACE ;
39 strategyClosedOutcome : : = DONE | FAIL
40 | DO LBRACKET (IDENTIFIER | INTEGER_LIT) ? RBRACKET IDENTIFIER ;
41 strategyOpenOutcome : : = IDENTIFIER LPAREN (argExpress ionL is t) ? RPAREN
42 | NULLTACTIC ;
43 st rategyProbValue : : = FLOAT_LIT | IDENTIFIER (LBRACE IDENTIFIER RBRACE) ?

175

44
45 s igna tu re : : = IDENTIFIER
46 LPAREN (dataType IDENTIFIER (COMMA dataType IDENTIFIER) ∗) ? RPAREN ;
47 d e c l a r a t i o n : : = dataType IDENTIFIER (ASSIGN expression) ?
48 (COMMA IDENTIFIER (ASSIGN expression) ?)∗ ;
49 dataType : : = OBJECT | INT | FLOAT | BOOLEAN | CHAR | STRING
50 | SET (LBRACE dataType RBRACE) ?
51 | SEQUENCE (LT dataType GT) ?
52 | RECORD (LBRACKET
53 (IDENTIFIER (COMMA IDENTIFIER) ∗ (COLON dataType) ? SEMICOLON) ∗
54 RBRACKET) ?
55 | ENUM (LBRACE (IDENTIFIER (COMMA IDENTIFIER) ∗) ? RBRACE) ?
56 | IDENTIFIER ;
57
58 statement : : = compoundStatement
59 | d e c l a r a t i o n SEMICOLON
60 | assignmentStatement SEMICOLON
61 | expression SEMICOLON
62 | opera tor
63 | i fThenStatement
64 | i fThenElseStatement
65 | whi leStatement
66 | fo rStatement
67 | SEMICOLON ;
68 compoundStatement : : = LBRACE (statement) ∗ RBRACE ;
69 assignmentStatement : : = IDENTIFIER ASSIGN expression ;
70 i fThenStatement : : = IF LPAREN booleanExpression RPAREN statement ;
71 i fThenElseStatement : : = IF LPAREN booleanExpression RPAREN statement ELSE statement ;
72 whi leStatement : : = WHILE LPAREN booleanExpression RPAREN statement ;
73 fo rSta tement : : = FOR LPAREN
74 ((d e c l a r a t i o n | ass ignmentL is t) ? SEMICOLON
75 (booleanExpression) ? SEMICOLON
76 (ass ignmentL is t) ?
77 | parameterDec lara t ion COLON expression
78) RPAREN statement ;
79
80 argExpress ionL is t : : = expression (COMMA expression) ∗ ;
81 ass ignmentL is t : : = assignmentStatement (COMMA assignmentStatement) ∗ ;
82 expression : : = booleanExpression ;
83 booleanExpression : : = quan t i f i edExpress ion | imp l iesExpress ion ;
84 quan t i f i edExpress ion : : = (FORALL | EXISTS (UNIQUE) ?) q u a n t i f i e r D e c l a r a t i o n
85 IN (setExpress ion | i d e n t i f i e r P r i m a r y) BAR booleanExpression ;
86 q u a n t i f i e r D e c l a r a t i o n : : = IDENTIFIER (COMMA IDENTIFIER) ∗ COLON dataType ;
87 imp l iesExpress ion : : = i f f E x p r e s s i o n (IMPLIES impl iesExpress ion) ? ;
88 i f f E x p r e s s i o n : : = log ica lOrExpress ion (IFF i f f E x p r e s s i o n) ? ;
89 l og ica lOrExpress ion : : = log ica lAndExpress ion (LOGICAL_OR log ica lAndExpress ion) ∗ ;
90 log ica lAndExpress ion : : = equa l i t yExpress ion (LOGICAL_AND equa l i t yExpress ion) ∗ ;
91 equa l i t yExpress ion : : = r e l a t i o n a l E x p r e s s i o n ((NE | EQ) r e l a t i o n a l E x p r e s s i o n) ∗ ;
92 r e l a t i o n a l E x p r e s s i o n : : = add i t i veExpress ion ((LT | LE | GE | GT) add i t i veExpress ion) ∗ ;
93 add i t i veExpress ion : : = m u l t i p l i c a t i v e E x p r ((PLUS | MINUS) m u l t i p l i c a t i v e E x p r) ∗ ;
94 m u l t i p l i c a t i v e E x p r : : = unaryExpression ((STAR | SLASH | MOD) unaryExpression) ∗ ;
95 unaryExpression : : = INCR unaryExpression
96 | DECR unaryExpression
97 | UNARY_MINUS unaryExpression
98 | UNARY_PLUS unaryExpression
99 | LOGICAL_NOT unaryExpression

100 | pr imaryExpression ;
101 pr imaryExpression : : = i d e n t i f i e r P r i m a r y | setExpress ion | constant
102 | LPAREN assignmentExpression RPAREN ;
103 i d e n t i f i e r P r i m a r y : : = IDENTIFIER (LPAREN (argExpress ionL is t) ? RPAREN) ? ;
104 setExpress ion : : = se tCons t ruc to r | l i t e r a l S e t ;
105 se tCons t ruc to r : : = LBRACE SELECT q u a n t i f i e r D e c l a r a t i o n
106 IN (setExpress ion | i d e n t i f i e r P r i m a r y) BAR booleanExpression RBRACE ;
107 l i t e r a l S e t : : = LBRACE ((i d e n t i f i e r P r i m a r y | constant)
108 (COMMA (i d e n t i f i e r P r i m a r y | constant)) ∗) ? RBRACE ;
109 constant : : = INTEGER_LIT | FLOAT_LIT | STRING_LIT | CHAR_LIT | TRUE| FALSE |NULL ;

176

Appendix C

Znn.com Customization Content

This appendix lists the complete customizations of Rainbow for the Znn.com system. Confer
Chapter 5 to see how individual Rainbow components are customized.

Acme Model Core of this architecture-based self-adaptation approach, it customizes the Model
Manager and the Architecture Evaluator. The model consists of definitions of one or more styles,
defined by the style writer, and an instance that extends those styles. Section 5.1.2.

1 import TargetEnvType . acme ;
2
3 Family ZNewsFam extends EnvType with {
4 Property MIN_RESPTIME : f l o a t ;
5 Property MAX_RESPTIME : f l o a t ;
6 Property TOLERABLE_PERCENT_UNHAPPY : f l o a t ;
7 Property UNHAPPY_GRADIENT_1 : f l o a t ;
8 Property UNHAPPY_GRADIENT_2 : f l o a t ;
9 Property UNHAPPY_GRADIENT_3 : f l o a t ;

10 Property FRACTION_GRADIENT_1 : f l o a t ;
11 Property FRACTION_GRADIENT_2 : f l o a t ;
12 Property FRACTION_GRADIENT_3 : f l o a t ;
13 Property MIN_UTIL : f l o a t ;
14 Property MAX_UTIL : f l o a t ;
15 Property MAX_FIDELITY_LEVEL : i n t ;
16 Property THRESHOLD_FIDELITY : i n t ;
17 Property THRESHOLD_COST : f l o a t ;
18 Component Type ServerT extends ArchElementT with {
19 Property deploymentLocat ion : str ing << defaul t : str ing = " l o c a l h o s t " ; >>;
20 Property load : f l o a t << defaul t : f l o a t = 0 . 0 ; >> ;
21 Property reqServiceRate : f l o a t << defaul t : f l o a t = 0 . 0 ; >> ;
22 Property byteServiceRate : f l o a t << defaul t : f l o a t = 0 . 0 ; >> ;
23 Property f i d e l i t y : i n t << HIGH : i n t = 5; LOW: i n t = 1; defaul t : i n t = 5; >>;
24 Property cost : f l o a t << defaul t : f l o a t = 1 . 0 ; >> ;
25 Property l as tPageHi t : Record [u r i : str ing ; cn t : i n t ; kbytes : f l o a t ;] ;
26 rule anotherCons t ra in t = heur is t ic se l f . load <= MAX_UTIL ;
27 }
28 Component Type Cl ien tT extends ArchElementT with {
29 Property deploymentLocat ion : str ing << defaul t : str ing = " l o c a l h o s t " ; >>;
30 Property experRespTime : f l o a t << defaul t : f l o a t = 100.0 ; >> ;
31 Property reqRate : f l o a t << defaul t : f l o a t = 0 . 0 ; >> ;
32 rule pr imaryCons t ra in t = invar iant se l f . experRespTime <= MAX_RESPTIME;
33 rule reve rseCons t ra in t = heur is t ic se l f . experRespTime >= MIN_RESPTIME;
34 }
35 Component Type ProxyT extends ArchElementT with {
36 Property deploymentLocat ion : str ing << defaul t : str ing = " l o c a l h o s t " ; >>;
37 Property load : f l o a t << defaul t : f l o a t = 0 . 0 ; >> ;

177

38 }
39 Connector Type ProxyConnT extends ArchConnT with {
40 Role req : RequestorRoleT = new RequestorRoleT extended with { }
41 Role rec : ReceiverRoleT = new ReceiverRoleT extended with { }
42 }
43 Connector Type HttpConnT extends ArchConnT with {
44 Property bandwidth : f l o a t << defaul t : f l o a t = 0 . 0 ; >> ;
45 Property l a tency : f l o a t << defaul t : f l o a t = 0 . 0 ; >> ;
46 Property numReqsSuccess : i n t << defaul t : i n t = 0; >> ;
47 Property numReqsRedirect : i n t << defaul t : i n t = 0; >> ;
48 Property numReqsClientError : i n t << defaul t : i n t = 0; >> ;
49 Property numReqsServerError : i n t << defaul t : i n t = 0; >> ;
50 Property la tencyRate : f l o a t ;
51 Role req : RequestorRoleT = new RequestorRoleT extended with { }
52 Role rec : ReceiverRoleT = new ReceiverRoleT extended with { }
53 }
54 Port Type HttpReqPortT extends ArchPortT with { }
55 Port Type HttpPor tT extends ArchPortT with { }
56 Port Type ProxyForwardPortT extends ArchPortT with { }
57 Role Type RequestorRoleT extends ArchRoleT with { }
58 Role Type ReceiverRoleT extends ArchRoleT with { }
59 }
60
61 System ZNewsSys : ZNewsFam = {
62 Property MIN_RESPTIME : f l o a t = 100.0 ;
63 Property MAX_RESPTIME : f l o a t = 1000.0;
64 Property UNHAPPY_GRADIENT_1 : f l o a t = 0 . 1 ;
65 Property UNHAPPY_GRADIENT_2 : f l o a t = 0 . 2 ;
66 Property UNHAPPY_GRADIENT_3 : f l o a t = 0 . 5 ;
67 Property FRACTION_GRADIENT_1 : f l o a t = 0 . 2 ;
68 Property FRACTION_GRADIENT_2 : f l o a t = 0 . 4 ;
69 Property FRACTION_GRADIENT_3 : f l o a t = 1 . 0 ;
70 Property TOLERABLE_PERCENT_UNHAPPY : f l o a t = 0 . 4 ;
71 Property MIN_UTIL : f l o a t = 0 . 1 ;
72 Property MAX_UTIL : f l o a t = 0 .75 ;
73 Property MAX_FIDELITY_LEVEL : i n t = 5;
74 Property THRESHOLD_FIDELITY : i n t = 2;
75 Property THRESHOLD_COST : f l o a t = 4 . 0 ;
76 Component s0 : ServerT = new ServerT extended with {
77 Property deploymentLocat ion = " orac le " ;
78 Property cost = 0 . 9 ;
79 Property f i d e l i t y = 3 ;
80 Property load = 0.198;
81 Property isArchEnabled = true ;
82 Port h t tp0 : Ht tpPor tT = new HttpPor tT extended with { }
83 }
84 Component s1 : ServerT = new ServerT extended with { . . . }
85 Component s2 : ServerT = new ServerT extended with { . . . }
86 Component s3 : ServerT = new ServerT extended with { . . . }
87 Component l bp roxy : ProxyT = new ProxyT extended with {
88 Property deploymentLocat ion = " 127.0 .0 .1 " ;
89 Property isArchEnabled = true ;
90 Property load = 0 .01 ;
91 Port fwd0 : ProxyForwardPortT = new ProxyForwardPortT extended with { }
92 Port fwd1 : ProxyForwardPortT = new ProxyForwardPortT extended with { }
93 Port fwd2 : ProxyForwardPortT = new ProxyForwardPortT extended with { }
94 Port fwd3 : ProxyForwardPortT = new ProxyForwardPortT extended with { }
95 Port h t tp0 : Ht tpPor tT = new HttpPor tT extended with { }
96 Port h t tp1 : Ht tpPor tT = new HttpPor tT extended with { }
97 Port h t tp2 : Ht tpPor tT = new HttpPor tT extended with { }
98 }
99 Component c0 : C l i en tT = new Cl ien tT extended with {

100 Property deploymentLocat ion = " 127.0 .0 .1 " ;
101 Property isArchEnabled = true ;
102 Property experRespTime = 2360.2585;
103 Port p0 : HttpReqPortT = new HttpReqPortT extended with { }

178

104 }
105 Component c1 : C l i en tT = new Cl ien tT extended with { . . . }
106 Component c2 : C l i en tT = new Cl ien tT extended with { . . . }
107 Connector proxyconn0 : ProxyConnT = new ProxyConnT extended with {
108 Property isArchEnabled = true ;
109 Role req = { Property isArchEnabled = true ; }
110 Role rec = { Property isArchEnabled = true ; }
111 }
112 Connector proxyconn1 : ProxyConnT = new ProxyConnT extended with { }
113 Connector proxyconn3 : ProxyConnT = new ProxyConnT extended with { }
114 Connector proxyconn2 : ProxyConnT = new ProxyConnT extended with { }
115 Connector conn : HttpConnT = new HttpConnT extended with {
116 Property la tencyRate = 0 . 0 ;
117 Property isArchEnabled = true ;
118 Role req = { Property isArchEnabled = true ; }
119 Role rec = { Property isArchEnabled = true ; }
120 }
121 Connector conn0 : HttpConnT = new HttpConnT extended with { . . . }
122 Connector conn1 : HttpConnT = new HttpConnT extended with { . . . }
123 Attachment l bp roxy . fwd0 to proxyconn0 . req ;
124 Attachment s0 . h t tp0 to proxyconn0 . rec ;
125 Attachment l bp roxy . h t tp0 to conn0 . rec ;
126 Attachment c1 . p0 to conn . req ;
127 Attachment c2 . p0 to conn1 . req ;
128 Attachment l bp roxy . h t tp2 to conn1 . rec ;
129 Attachment l bp roxy . h t tp1 to conn . rec ;
130 Attachment c0 . p0 to conn0 . req ;
131 Attachment s2 . h t tp0 to proxyconn2 . rec ;
132 Attachment l bp roxy . fwd1 to proxyconn1 . req ;
133 Attachment s1 . h t tp0 to proxyconn1 . rec ;
134 Attachment s3 . h t tp0 to proxyconn3 . rec ;
135 Attachment l bp roxy . fwd3 to proxyconn3 . req ;
136 Attachment l bp roxy . fwd2 to proxyconn2 . req ;
137 }

Probe Specification The system adapter defines these available probes for the target system
using Yaml syntax. Section 5.1.3.

1 vars :
2 _probes . commonPath : " $ { rainbow . path } / system / probes "
3 probes :
4 ClientProxyProbe0 :
5 a l i a s : c l i e n t p r o x y
6 l o c a t i o n : " $ { customize . system . t a r g e t . 0 } "
7 type : java
8 j a v a I n f o :
9 c lass : org . sa . rainbow . t r a n s l a t o r . znews . probes . Cl ientProxyProbe

10 per iod : 2000
11 args . leng th : 1
12 args . 0 : " h t t p : / / delegate . o rac le / "
13 PingRTTProbe1 :
14 a l i a s : p i n g r t t
15 l o c a t i o n : " $ { customize . system . t a r g e t . 1 } "
16 type : java
17 j a v a I n f o :
18 c lass : org . sa . rainbow . t r a n s l a t o r . znews . probes . PingRTTProbe
19 per iod : 1500
20 args . leng th : 1
21 args . 0 : " $ { rainbow . master . l o c a t i o n . host } "
22 args . 1 : " $ { customize . system . t a r g e t . 2 } "
23 LoadProbe1 :
24 a l i a s : load
25 l o c a t i o n : " $ { customize . system . t a r g e t . 1 } "
26 type : s c r i p t

179

27 s c r i p t I n f o :
28 path : " $ { _probes . commonPath } / loadProbe . p l "
29 argument : "−k −s "
30 F ide l i t yP robe1 :
31 a l i a s : f i d e l i t y
32 l o c a t i o n : " $ { customize . system . t a r g e t . 1 } "
33 type : s c r i p t
34 s c r i p t I n f o :
35 path : " $ { _probes . commonPath } / f i d e l i t y P r o b e . p l "
36 argument : "−k −s "
37 ApacheTopProbe1 :
38 a l i a s : apachetop
39 l o c a t i o n : " $ { customize . system . t a r g e t . 1 } "
40 type : s c r i p t
41 s c r i p t I n f o :
42 path : " $ { _probes . commonPath } / apachetopProbe . p l "
43 argument : "−k −s "
44 DiskIOProbe1 :
45 a l i a s : d i s k i o
46 l o c a t i o n : " $ { customize . system . t a r g e t . 1 } "
47 type : s c r i p t
48 s c r i p t I n f o :
49 path : " $ { _probes . commonPath } / diskIOProbe . p l "
50 argument : "−k −s "

Gauge Specification The gauge writer defines these available gauges for the Translation In-
frastructure using Yaml. Section 5.1.3.

1 # Gauge Type and Gauge Instance S p e c i f i c a t i o n s
2 # − t ime per iods gene ra l l y i n m i l l i seconds
3 gauge−types :
4 ResponseTimeGaugeT :
5 values :
6 end2endRespTime : double
7 setupParams :
8 t a r g e t I P :
9 type : S t r i n g

10 d e f a u l t : " l o c a l h o s t "
11 beaconPeriod :
12 type : long
13 d e f a u l t : 30000
14 javaClass :
15 type : S t r i n g
16 d e f a u l t : " org . sa . rainbow . t r a n s l a t o r . znews . gauges . End2EndRespTimeGauge "
17 configParams :
18 samplingFrequency :
19 type : long
20 d e f a u l t : 1000
21 targetProbeType :
22 type : S t r i n g
23 d e f a u l t : ~
24 comment : " ResponseTimeGaugeT repo r t s end−to−end response t ime from c l i e n t proxy

. "
25 ApacheTopGaugeT :
26 values :
27 reqServiceRate : double
28 byteServiceRate : double
29 numReqsSuccess : i n t
30 numReqsRedirect : i n t
31 numReqsClientError : i n t
32 numReqsServerError : i n t
33 pageHit : S t r i n g
34 setupParams :
35 t a r g e t I P :

180

36 type : S t r i n g
37 d e f a u l t : " l o c a l h o s t "
38 beaconPeriod :
39 type : long
40 d e f a u l t : 20000
41 javaClass :
42 type : S t r i n g
43 d e f a u l t : " org . sa . rainbow . t r a n s l a t o r . gauges . ApacheTopGauge "
44 configParams :
45 samplingFrequency :
46 type : long
47 d e f a u l t : 1000
48 targetProbeType :
49 type : S t r i n g
50 d e f a u l t : ~
51 comment : "ApacheTopGaugeT repo r t s Apache server p r o p e r t i e s v ia ’ apachetop ’ . "
52 DiskIOGaugeT :
53 values :
54 t r ans fe rRa te : double
55 readRate : double
56 wr i teRate : double
57 setupParams :
58 t a r g e t I P :
59 type : S t r i n g
60 d e f a u l t : " l o c a l h o s t "
61 beaconPeriod :
62 type : long
63 d e f a u l t : 20000
64 javaClass :
65 type : S t r i n g
66 d e f a u l t : " org . sa . rainbow . t r a n s l a t o r . gauges . DiskIOGauge "
67 configParams :
68 samplingFrequency :
69 type : long
70 d e f a u l t : 1000
71 targetProbeType :
72 type : S t r i n g
73 d e f a u l t : ~
74 comment : " DiskIOGaugeT repo r t s d isk I /O s t a t o f host (read / w r i t e i n KBps) . "
75 LoadGaugeT :
76 values :
77 load : double
78 setupParams :
79 t a r g e t I P :
80 type : S t r i n g
81 d e f a u l t : " l o c a l h o s t "
82 beaconPeriod :
83 type : long
84 d e f a u l t : 20000
85 javaClass :
86 type : S t r i n g
87 d e f a u l t : " org . sa . rainbow . t r a n s l a t o r . gauges . CpuLoadGauge"
88 configParams :
89 samplingFrequency :
90 type : long
91 d e f a u l t : 1000
92 targetProbeType :
93 type : S t r i n g
94 d e f a u l t : ~
95 comment : "LoadGaugeT repo r t s CPU load of t a r g e t host "
96 Fidel i tyGaugeT :
97 values :
98 f i d e l i t y : i n t
99 setupParams :

100 t a r g e t I P :
101 type : S t r i n g

181

102 d e f a u l t : " l o c a l h o s t "
103 beaconPeriod :
104 type : long
105 d e f a u l t : 30000
106 javaClass :
107 type : S t r i n g
108 d e f a u l t : " org . sa . rainbow . t r a n s l a t o r . gauges . F ide l i tyGauge "
109 configParams :
110 samplingFrequency :
111 type : long
112 d e f a u l t : 2500
113 targetProbeType :
114 type : S t r i n g
115 d e f a u l t : ~
116 comment : " F idel i tyGaugeT repo r t s f i d e l i t y l e v e l o f served content "
117 LatencyGaugeT :
118 values :
119 l a tency : double
120 setupParams :
121 t a r g e t I P :
122 type : S t r i n g
123 d e f a u l t : " l o c a l h o s t "
124 beaconPeriod :
125 type : long
126 d e f a u l t : 20000
127 javaClass :
128 type : S t r i n g
129 d e f a u l t : " org . sa . rainbow . t r a n s l a t o r . znews . gauges . RtLatencyMult iHostGauge "
130 configParams :
131 samplingFrequency :
132 type : long
133 d e f a u l t : 1500
134 targetProbeType :
135 type : S t r i n g
136 d e f a u l t : ~
137 comment : " LatencyGaugeT repo r t s la tency on a connect ion "
138 LatencyRateGaugeT :
139 values :
140 la tencyRate : double
141 setupParams :
142 t a r g e t I P :
143 type : S t r i n g
144 d e f a u l t : " l o c a l h o s t "
145 beaconPeriod :
146 type : long
147 d e f a u l t : 20000
148 javaClass :
149 type : S t r i n g
150 d e f a u l t : " o . s . rainbow . t r a n s l a t o r . znews . gauges . RtLatencyRateMult iHostGauge "
151 configParams :
152 samplingFrequency :
153 type : long
154 d e f a u l t : 1500
155 targetProbeType :
156 type : S t r i n g
157 d e f a u l t : ~
158 comment : " LatencyRateGaugeT repo r t s la tency ra te o f change on a connect ion "
159 gauge−i ns tances :
160 EERTG1:
161 type : ResponseTimeGaugeT
162 model : "ZNewsSys :Acme"
163 mappings :
164 " end2endRespTime (delegate . o rac le) " : c0 . experRespTime
165 setupValues :
166 t a r g e t I P : " $ { customize . system . t a r g e t . 0 } "
167 conf igValues :

182

168 samplingFrequency : 1000
169 targetProbeType : c l i e n t p r o x y
170 comment : "EERTG1 i s assoc iated wi th c l i e n t component o f ZNewsSys i n Acme . "
171 ATG1:
172 type : ApacheTopGaugeT
173 model : "ZNewsSys :Acme"
174 mappings :
175 reqServiceRate : s0 . reqServiceRate
176 byteServiceRate : s0 . byteServiceRate
177 numReqsSuccess : conn0 . numReqsSuccess
178 numReqsRedirect : conn0 . numReqsRedirect
179 numReqsClientError : conn0 . numReqsClientError
180 numReqsServerError : conn0 . numReqsServerError
181 pageHit : s0 . las tPageHi t
182 setupValues :
183 t a r g e t I P : " $ { customize . system . t a r g e t . 1 } "
184 conf igValues :
185 samplingFrequency : ~
186 # Leave d e t a i l s unspec i f i ed (n u l l) to use type−l e v e l d e f a u l t value
187 targetProbeType : apachetop
188 comment : "ATG1 i s assoc iated wi th comp s0 and conn conn0 of ZNewsSys i n Acme . "
189 DioG1 :
190 type : DiskIOGaugeT
191 model : "ZNewsSys :Acme"
192 mappings :
193 t r ans fe rRa te : s0 . d iskXferRate
194 readRate : s0 . diskReadRate
195 wr i teRate : s0 . d iskWr i teRate
196 setupValues :
197 t a r g e t I P : " $ { customize . system . t a r g e t . 1 } "
198 conf igValues :
199 samplingFrequency : 1000
200 targetProbeType : d i s k i o
201 comment : " DioG1 i s assoc iated wi th component s0 o f ZNewsSys i n Acme . "
202 LoG0 :
203 type : LoadGaugeT
204 model : "ZNewsSys :Acme"
205 mappings :
206 load : s0 . load
207 setupValues :
208 t a r g e t I P : " $ { customize . system . t a r g e t . 0 } "
209 conf igValues :
210 samplingFrequency : 1000
211 targetProbeType : load
212 comment : "LoG0 i s assoc iated wi th component s0 o f ZNewsSys i n Acme . "
213 LoG1 : . . .
214 LoG2 : . . .
215 LoG3 : . . .
216 FiG1 :
217 type : Fidel i tyGaugeT
218 model : "ZNewsSys :Acme"
219 mappings :
220 f i d e l i t y : s0 . f i d e l i t y
221 setupValues :
222 t a r g e t I P : " $ { customize . system . t a r g e t . 1 } "
223 conf igValues :
224 samplingFrequency : 2500
225 targetProbeType : f i d e l i t y
226 comment : " FiG1 i s assoc iated wi th component s0 o f ZNewsSys i n Acme . "
227 LatG1 :
228 type : LatencyGaugeT
229 model : "ZNewsSys :Acme"
230 mappings :
231 " l a tency ($ { rainbow . master . l o c a t i o n . host }) " : conn0 . la tency
232 " l a tency (@{ZNewsSys . s1 . deploymentLocat ion }) " : conn1 . la tency
233 setupValues :

183

234 t a r g e t I P : " $ { customize . system . t a r g e t . 1 } "
235 conf igValues :
236 samplingFrequency : 1500
237 targetProbeType : p i n g r t t
238 comment : " LatG1 i s assoc iated wi th connectors o f ZNewsSys i n Acme . "
239 LatRoCG1 :
240 type : LatencyRateGaugeT
241 model : "ZNewsSys :Acme"
242 mappings :
243 " la tencyRate ($ { rainbow . master . l o c a t i o n . host }) " : conn0 . la tencyRate
244 " la tencyRate (@{ZNewsSys . s1 . deploymentLocat ion }) " : conn1 . la tencyRate
245 setupValues :
246 t a r g e t I P : " $ { customize . system . t a r g e t . 1 } "
247 conf igValues :
248 samplingFrequency : 1500
249 targetProbeType : p i n g r t t
250 comment : "LatRoCG1 i s assoc iated wi th connectors o f ZNewsSys i n Acme . "

Effector Specification The system adapter defines these available effectors in the target system
using Yaml. Section 5.1.3.

1 vars :
2 _ e f f e c t o r s . commonPath : " $ { rainbow . path } / system / e f f e c t o r s "
3 e f f e c t o r s :
4 # t e s t from GUI wi th <host > , S e t F i d e l i t y , f i d e l i t y = <1|3|5 >
5 s e t F i d e l i t y 1 :
6 l o c a t i o n : " $ { customize . system . t a r g e t . 1 } "
7 type : s c r i p t
8 s c r i p t I n f o :
9 path : " $ { _ e f f e c t o r s . commonPath } / changeF ide l i t y . p l "

10 argument : "− l { f i d e l i t y } "
11 ac t i va teServe r1 :
12 l o c a t i o n : " $ { customize . system . t a r g e t . 1 } "
13 type : s c r i p t
14 s c r i p t I n f o :
15 path : " $ { _ e f f e c t o r s . commonPath } / tu rnServer . p l "
16 argument : "−s on "
17 deact iva teServer1 :
18 l o c a t i o n : " $ { customize . system . t a r g e t . 1 } "
19 type : s c r i p t
20 s c r i p t I n f o :
21 path : " $ { _ e f f e c t o r s . commonPath } / tu rnServer . p l "
22 argument : "−s o f f "
23 randomReject1 :
24 l o c a t i o n : " $ { customize . system . t a r g e t . 1 } "
25 type : s c r i p t
26 s c r i p t I n f o :
27 path : " $ { _ e f f e c t o r s . commonPath } / setRandomReject . p l "
28 argument : "− r { f requency } "
29 k i l l D e l e g a t e 1 :
30 l o c a t i o n : " $ { customize . system . t a r g e t . 1 } "
31 type : java
32 j a v a I n f o :
33 c lass : org . sa . rainbow . t r a n s l a t o r . e f f e c t o r s . K i l l D e l e g a t e E f f e c t o r

Stitch Scripts The tactic writer defines tactics and strategy writer composes strategies in the
Stitch syntax to produce adaptation scripts, used by the Adaptation Manager and executed by the
Strategy Executor to remedy the target system. Section 5.1.5.

1 module newssi te . t a c t i c s ;
2 import model "ZNewsSys . acme" { ZNewsSys as M, ZNewsFam as T } ;

184

3 import op " znews1 . opera tor . ArchOp " { ArchOp as S } ;
4 import op " org . sa . rainbow . s t i t c h . l i b .∗ " ; / / Model , Set , & U t i l
5
6 / / E n l i s t n f r ee servers i n t o se rv i ce pool .
7 / / U t i l i t y : [v] R; [^] C; [< >] F
8 t a c t i c e n l i s t S e r v e r s (i n t n) {
9 condition { / / some c l i e n t should be exper ienc ing high response t ime

10 exists c : T . C l i en tT in M. components | c . experRespTime > M.MAX_RESPTIME;
11 / / there should be enough a v a i l a b l e server resources
12 Model . ava i l ab leSe rv i ces (T . ServerT) >= n ;
13 }
14 action {
15 set servers = Set . randomSubset (Model . f i ndSe rv i ces (T . ServerT) , n) ;
16 for (T . ServerT f reeSvr : servers) {
17 S. ac t i va teServe r (f reeSvr) ;
18 }
19 }
20 ef fec t { / / response t ime should decrease below th resho ld
21 f o r a l l c : T . C l i en tT in M. components | c . experRespTime <= M.MAX_RESPTIME;
22 }
23 }
24
25 / / Deact iva te n servers from serv i ce pool i n t o f r ee pool .
26 / / U t i l i t y : [^] R; [v] C; [< >] F
27 t a c t i c dischargeServers (i n t n) {
28 condition { / / there should be NO c l i e n t w i th high response t ime
29 f o r a l l c : T . C l i en tT in M. components | c . experRespTime <= M.MAX_RESPTIME;
30 / / there should be enough servers to discharge
31 Set . s i ze ({ select s : T . ServerT in M. components | s . load < M. MIN_UTIL }) >= n ;
32 }
33 action {
34 set l owU t i lSv r s = { select s : T . ServerT in M. components | s . load < M. MIN_UTIL } ;
35 set subLowUti lSvrs = Set . randomSubset (lowUt i lSv rs , n) ;
36 for (T . ServerT s : subLowUti lSvrs) {
37 S. deac t i va teServer (s) ;
38 }
39 }
40 ef fec t { / / s t i l l NO c l i e n t w i th high response t ime
41 f o r a l l c : T . C l i en tT in M. components | c . experRespTime <= M.MAX_RESPTIME;
42 }
43 }
44
45 / / Lowers f i d e l i t y by i n t e g r a l steps f o r percent o f requests .
46 / / U t i l i t y : [v] R; [v] C; [v] F
47 t a c t i c l o w e r F i d e l i t y (i n t step , f l o a t fracReq) {
48 condition { / / some c l i e n t should be exper ienc ing high response t ime
49 exists c : T . C l i en tT in M. components | c . experRespTime > M.MAX_RESPTIME;
50 / / e x i s t s server w i th f i d e l i t y to lower
51 exists s : T . ServerT in M. components | s . f i d e l i t y > step ;
52 }
53 action {
54 / / r e t r i e v e set o f servers who s t i l l have enough f i d e l i t y grade to lower
55 set servers = { select s : T . ServerT in M. components | s . f i d e l i t y > step } ;
56 for (T . ServerT s : servers) {
57 S. s e t F i d e l i t y (s , s . f i d e l i t y − step) ;
58 }
59 }
60 ef fec t { / / response t ime decreasing below th resho ld should r e s u l t
61 f o r a l l c : T . C l i en tT in M. components | c . experRespTime <= M.MAX_RESPTIME;
62 }
63 }
64
65 / / Raises f i d e l i t y by i n t e g r a l steps f o r percent o f requests .
66 / / U t i l i t y : [^] R; [^] C; [^] F
67 t a c t i c r a i s e F i d e l i t y (i n t step , f l o a t fracReq) {
68 condition { / / there should be NO c l i e n t w i th high response t ime

185

69 f o r a l l c : T . C l i en tT in M. components | c . experRespTime <= M.MAX_RESPTIME;
70 / / there e x i s t s some c l i e n t w i th below low−t h resho ld response t ime
71 exists c : T . C l i en tT in M. components | c . experRespTime < M.MIN_RESPTIME;
72 }
73 action {
74 / / f i r s t f i n d the lowest f i d e l i t y set
75 set servers = { select s : T . ServerT in M. components | s . f i d e l i t y <= M.

MAX_FIDELITY_LEVEL − step } ;
76 i n t l o w e s t F i d e l i t y = M. MAX_FIDELITY_LEVEL ;
77 for (T . ServerT s : servers) {
78 i f (s . f i d e l i t y < l o w e s t F i d e l i t y) {
79 l o w e s t F i d e l i t y = s . f i d e l i t y ;
80 }
81 }
82 / / f i n d only servers w i th t h i s lowest f i d e l i t y se t t i ng , and ra i se f i d e l i t y
83 servers = { select s : T . ServerT in M. components | s . f i d e l i t y <= l o w e s t F i d e l i t y } ;
84 for (T . ServerT s : servers) {
85 S. s e t F i d e l i t y (s , java . lang . Math . min (s . f i d e l i t y +step , M. MAX_FIDELITY_LEVEL)) ;
86 }
87 }
88 ef fec t { / / s t i l l NO c l i e n t w i th high response t ime
89 f o r a l l c : T . C l i en tT in M. components | c . experRespTime <= M.MAX_RESPTIME;
90 }
91 }

1 module newssi te . s t r a t e g i e s ;
2 import l i b " newss i teTac t i cs . s " ;
3
4 define boolean s t y l e A p p l i e s =
5 Model . hasType (M, " C l i en tT ") && Model . hasType (M, " ServerT ") ;
6 define boolean c V i o l a t i o n =
7 exists c : T . C l i en tT in M. components | c . experRespTime > M.MAX_RESPTIME;
8
9 define set servers = { select s : T . ServerT in M. components | true } ;

10 define set unhappyCl ients =
11 { select c : T . C l i en tT in M. components | c . experRespTime > M.MAX_RESPTIME } ;
12 define i n t numClients = Set . s i ze ({ select c : T . C l i en tT in M. components | true }) ;
13 define i n t numUnhappy = Set . s i ze (unhappyCl ients) ;
14 define f l o a t numUnhappyF = 1.0∗numUnhappy ;
15
16 define boolean hiLoad = exists s : T . ServerT in M. components | s . load > M. MAX_UTIL ;
17 define boolean hiRespTime =
18 exists c : T . C l i en tT in M. components | c . experRespTime > M.MAX_RESPTIME;
19 define boolean lowRespTime =
20 exists c : T . C l i en tT in M. components | c . experRespTime < M.MIN_RESPTIME;
21 define f l o a t t o t a l C o s t = Model . sumOverProperty (" cost " , servers) ;
22 define boolean hiCost = t o t a l C o s t >= M.THRESHOLD_COST;
23 define f l o a t a v g F i d e l i t y =
24 Model . sumOverProperty (" f i d e l i t y " , servers) / Set . s i ze (servers) ;
25 define boolean lowFi = a v g F i d e l i t y < M. THRESHOLD_FIDELITY ;
26
27 / / While i t encounters high experienced response time , t h i s simple s t r a tegy
28 / / f i r s t e n l i s t s one new server , then lowers f i d e l i t y one step , then q u i t s
29 strategy SimpleReduceResponseTime
30 [s t y l e A p p l i e s && c V i o l a t i o n] {
31 t0 : (/∗ hiLoad ∗ / c V i o l a t i o n) −> e n l i s t S e r v e r s (1) @[1000 /∗ms∗ /] {
32 t1 : (! c V i o l a t i o n) −> done ;
33 t2 : (/∗ hiRespTime ∗ / c V i o l a t i o n) −> l o w e r F i d e l i t y (2 , 100) @[3000 /∗ms∗ /] {
34 t2a : (! c V i o l a t i o n) −> done ;
35 t2b : (defaul t) −> TNULL ; / / i n t h i s case , we have no more steps to take
36 }
37 }
38 }
39
40 / / This s t r a tegy looks f o r a percentage of c l i e n t s w i th anomalous experienced
41 / / response time , i n which case i t e n l i s t s a few servers i n sequence , then

186

42 / / lowers f i d e l i t y a few steps , then s t a r t s de lay ing C l i e n t s
43 strategy SmarterReduceResponseTime
44 [s t y l e A p p l i e s && c V i o l a t i o n] {
45 define boolean unhappy= numUnhappyF / numClients > M.TOLERABLE_PERCENT_UNHAPPY;
46
47 t0 : (unhappy) −> e n l i s t S e r v e r s (1) @[500 /∗ms∗ /] {
48 t1 : (! c V i o l a t i o n) −> done ;
49 t2 : (unhappy) −> e n l i s t S e r v e r s (1) @[2000 /∗ms∗ /] {
50 t2a : (! c V i o l a t i o n) −> done ;
51 t2b : (unhappy) −> l o w e r F i d e l i t y (2 , 100) @[2000 /∗ms∗ /] {
52 t2b1 : (! c V i o l a t i o n) −> done ;
53 t2b2 : (unhappy) −> do [1] t2 ;
54 t2b3 : (defaul t) −> TNULL ; / / i n t h i s case , we have no more steps to take
55 }
56 }
57 }
58 }
59
60 / / This exper imenta l s t r a t egy has the s o p h i s t i c a t i o n o f reducing f i d e l i t y
61 / / f o r a percentage of requests depending on percentage of unhappy c l i e n t s
62 strategy SophisticatedReduceResponseTime
63 [s t y l e A p p l i e s && c V i o l a t i o n && M.SUPPORT_FRACTION_GRADIENT] {
64 define boolean unhappy1 = numUnhappyF / numClients > M.UNHAPPY_GRADIENT_1; / / 10%
65 define boolean unhappy2 = numUnhappyF / numClients > M.UNHAPPY_GRADIENT_2; / / 25%
66 define boolean unhappy3 = numUnhappyF / numClients > M.UNHAPPY_GRADIENT_3; / / 50%
67
68 t1 : (hiLoad) −> e n l i s t S e r v e r s (2) @[500 /∗ms∗ /] {
69 t1a : (! c V i o l a t i o n) −> done ;
70 t1b : (defaul t) −> TNULL ;
71 }
72 t2 : (unhappy1) −> l o w e r F i d e l i t y (1 , M.FRACTION_GRADIENT_1) @[500 /∗ms∗ /] {
73 t2a : (! c V i o l a t i o n) −> done ;
74 t2b : (defaul t) −> do [1] t1 ;
75 }
76 t3 : (unhappy2) −> l o w e r F i d e l i t y (2 , M.FRACTION_GRADIENT_2) @[500 /∗ms∗ /] {
77 t3a : (! c V i o l a t i o n) −> done ;
78 t3b : (defaul t) −> do [1] t1 ;
79 }
80 t4 : (unhappy3) −> l o w e r F i d e l i t y (4 , M.FRACTION_GRADIENT_3) @[500 /∗ms∗ /] {
81 t4a : (! c V i o l a t i o n) −> done ;
82 t4b : (unhappy3) −> e n l i s t S e r v e r s (2) @[1000 /∗ms∗ /] {
83 t4b1 : (! c V i o l a t i o n) −> done ;
84 t4b2 : (defaul t) −> do [1] t1 ;
85 }
86 t4c : (defaul t) −> do [1] t1 ;
87 }
88 }
89
90 / / Tr iggered by t o t a l server costs above thresho ld , i t reduces # a c t i v e servers
91 strategy ReduceOverallCost
92 [s t y l e A p p l i e s && hiCost] {
93 t0 : (h iCost) −> dischargeServers (1) @[2000 /∗ms∗ /] {
94 t1 : (! h iCost) −> done ;
95 t2 : (lowRespTime && hiCost) −> do [2] t0 ;
96 t3 : (defaul t) −> TNULL ;
97 }
98 }
99

100 / / Tr iggered by o v e r a l l f i d e l i t y below th resho ld ; i t r a i ses server f i d e l i t y
101 strategy I m p r o v e O v e r a l l F i d e l i t y
102 [s t y l e A p p l i e s && lowFi] {
103 t0 : (lowFi) −> r a i s e F i d e l i t y (2 , 100) @[800 /∗ms∗ /] {
104 t1 : (! lowFi) −> done ;
105 t2 : (lowRespTime && lowFi) −> do [1] t0 ;
106 t3 : (defaul t) −> TNULL ;
107 }

187

108 }

Utility Specification The adaptation integrator defines, in Yaml, from business input, the qual-
ity dimension utility profiles and business preferences over them. Section 5.1.5.

1 u t i l i t i e s :
2 uR:
3 l a b e l : " Average Response Time "
4 mapping : " [EAvg] C l ien tT . experRespTime "
5 d e s c r i p t i o n : "R, c l i e n t experienced response t ime (ms) , f l o a t arch proper ty "
6 u t i l i t y :
7 0: 1.00
8 100: 1.00
9 200: 0.99

10 500: 0.90
11 1000: 0.75
12 1500: 0.50
13 2000: 0.25
14 4000: 0.00
15 uF :
16 l a b e l : " Average F i d e l i t y "
17 mapping : " [EAvg] ServerT . f i d e l i t y "
18 d e s c r i p t i o n : "F , server content f i d e l i t y l eve l , i n t arch proper ty "
19 u t i l i t y :
20 1: 0.80
21 5: 1.00
22 uC:
23 l a b e l : " Average Server Cost "
24 mapping : " [EAvg] ServerT . cost "
25 d e s c r i p t i o n : "C, server cost i n u n i t / hr , average of f l o a t arch proper ty "
26 u t i l i t y :
27 0: 1.00
28 1: 0.90
29 5: 0.20
30 10: 0.00
31 uD:
32 l a b e l : " Serv ice D is rup t i on "
33 mapping : " [EAvg] ServerT . re jectedRequests "
34 d e s c r i p t i o n : "D, se rv i ce d i s r u p t i o n measured by requests re j ec ted "
35 u t i l i t y :
36 1: 1.00
37 2: 0.98
38 3: 0.00
39 5: 0.00
40 uSF :
41 l a b e l : " H i s t o r i c a l S t ra tegy F a i l u r e "
42 mapping : " [EAvg] St ra tegy . r a t e F a i l u r e "
43 d e s c r i p t i o n : " Rate o f f a i l u r e o f a s t r a tegy ; must enable t rackS t ra tegy "
44 u t i l i t y :
45 0: 1.00
46 0 . 5 : 0.01
47 1: 0.00
48
49 # Weighted u t i l i t y preferences , each set should sum to 1. 3 scenar ios :
50 # 1 .) Normal request ra te −> Sustained , peak request ra te −> Normal ra te
51 # 2 .) Normal request ra te −> Trans ient , peak request ra te −> Normal ra te
52 # 3 .) Any request ra te −> Abnormally high ra te (e . g . , Ramsey case) −> Any ra te
53 weights :
54 scenar io 1 :
55 uR: 0.3
56 uF : 0.4
57 uC: 0.2
58 uSF : 0.1
59 scenar io 2 :

188

60 uR: 0.5
61 uF : 0.25
62 uC: 0.15
63 uSF : 0.1
64 scenar io 3 :
65 uR: 0.45
66 uF : 0.3
67 uC: 0.1
68 uSF : 0.15
69
70 # Tac t i c q u a l i t y a t t r i b u t e vec to rs
71 vec to rs :
72 # U t i l i t y : [v] R; [^] C; [< >] F
73 # assume each server w i l l drop response t ime by 1000 ms and increase cost by 1 u n i t
74 e n l i s t S e r v e r s :
75 uR: −1000
76 uF : 0
77 uC: +1.00
78 # U t i l i t y : [^] R; [v] C; [< >] F
79 dischargeServers :
80 uR: +1000
81 uF : 0
82 uC: −1.00
83 # U t i l i t y : [v] R; [v] C; [v] F
84 # assume each l e v e l o f f i d e l i t y reduces response t ime by 500 ms, cost by 10%
85 l o w e r F i d e l i t y :
86 uR: −500
87 uF : −2
88 uC: −0.10
89 # U t i l i t y : [^] R; [^] C; [^] F
90 r a i s e F i d e l i t y :
91 uR: +500
92 uF : +2
93 uC: +0.10

Mapping Specification The adaptation integrator defines this mapping of architectural style
operators to target system effectors, used by the Translator to fulfill Strategy Executor change
requests. Section 5.1.6.

1 s e t F i d e l i t y : changeState
2 ac t i va teServe r : s t a r t
3 deac t i va teServer : stop

Rainbow Oracle Properties To initialize the Rainbow Oracle and Delegates, the adaptation
integrator defines these configuration parameters, loaded with one-time variable substitutions by
singleton class, org.sa.rainbow.Rainbow, which provides access to common Rainbow properties.
Section 5.1.1.

1 ##
2 # Target : ZNews case study system wi th Probes , Gauges , and E f f e c t o r s implemented
3 # (rainbow . t a r g e t = znews1−d)
4 # Framework−def ined spec ia l p r o p e r t i e s :
5 # rainbow . path − the canon ica l path to the t a r g e t c o n f i g u r a t i o n l o c a t i o n
6 ##
7 ###
8 # Defau l t values f o r l oca t i on−s p e c i f i c p r o p e r t i e s taken from t h i s f i l e i f
9 # rainbow−<host >. p r o p e r t i e s f i l e does not spec i f y a value .

10
11 ### U t i l i t y mechanism c o n f i g u r a t i o n
12 #− Conf ig f o r Log4J , w i th l e v e l s : OFF, FATAL,ERROR,WARN, INFO ,DEBUG,TRACE, ALL

189

13 l ogg ing . l e v e l = INFO
14 event . log . path = log
15 l ogg ing . path = $ { event . log . path } / rainbow . out
16 moni to r ing . log . path = $ { event . log . path } / rainbow−data . log
17 # (d e f a u l t)
18 # logg ing . pa t t e rn = "%d { ISO8601 / yyyy−MM−dd HH:mm: ss .SSS} [% t] %p %c %x − %m%n "
19 # logg ing .max . s ize = 1024
20 # logg ing .max . backups = 5
21
22 ### Rainbow component cus tomiza t ion
23 ## Rainbow host i n f o and communication i n f r a s t r u c t u r e
24 #− Locat ion in fo rma t i on o f the master and t h i s deployment
25 rainbow . master . l o c a t i o n . host = l o c a l h o s t
26 #− Locat ion in fo rma t i on o f the deployed delegate
27 rainbow . deployment . l o c a t i o n = $ { rainbow . master . l o c a t i o n . host }
28 #− Rainbow serv i ce po r t
29 rainbow . se rv i ce . po r t = 9210
30 #− d e f a u l t r e g i s t r y po r t ; change i f por t−t unne l i ng
31 rainbow . master . l o c a t i o n . po r t = 1099
32 #− OS pla t fo rm , supported modes are : cygwin | l i n u x
33 # Use " cygwin " f o r Windows , " l i n u x " f o r MacOSX
34 rainbow . deployment . environment = l i n u x
35 #− Event i n f r a s t r u c t u r e , type of event middleware : rmi | jms | que
36 rainbow . event . se rv i ce = rmi
37 #− JMS/ JBoss−s p e c i f i c c o n f i g u r a t i o n s
38 #event . con tex t . f a c t o r y = org . jnp . i n t e r f a c e s . NamingContextFactory
39 #event . p rov ide r . u r l = $ { rainbow . master . l o c a t i o n . host } :1099
40 #event . u r l . p r e f i x e s = org . jboss . naming : org . jnp . i n t e r f a c e s
41 ## RainbowDelegate and ProbeBusRelay c o n f i g u r a t i o n s
42 rainbow . delegate . i d = RainbowDelegate@$ { rainbow . deployment . l o c a t i o n }
43 rainbow . delegate . beaconperiod = 5000
44 rainbow . delegate . s ta r tP robesOn In i t = f a l s e
45 probebus . r e l ay . i d = ProbeBusRelay@$ { rainbow . deployment . l o c a t i o n }
46 #− uncomment to enable f i l e −based communication w i th the ProbeBus Relay
47 #probebus . r e l ay . f i l e = $ { event . log . path } / r e l ay . log
48
49 ## Model Manager cus tomiza t ion
50 #− Arch model f i l e
51 customize . model . path = model / ZNewsSys . acme
52 #− Alpha f a c t o r f o r exponent ia l average , expAvg = (1−alpha) ∗expAvg + alpha∗newVal
53 customize . model . expavg . alpha = 0.30
54 customize . model . eva luate . per iod = 2000
55 ## Trans la to r cus tomiza t ion
56 #− Gauge spec
57 customize . gauges . path = model / gauges . yml
58 #− Probe spec
59 customize . probes . path = system / probes . yml
60 #− Operator spec as mapping to e f f e c t o r
61 customize . archop .map. path = model / op .map
62 #− E f f e c t o r spec
63 customize . e f f e c t o r s . path = system / e f f e c t o r s . yml
64 ## Adaptat ion Manager
65 #− D i r e c t o r y o f S t i t c h adapta t ion s c r i p t
66 customize . s c r i p t s . path = s t i t c h
67 #− U t i l i t i e s d e s c r i p t i o n f i l e and St ra tegy eva lua t i on c o n f i g u r a t i o n
68 customize . u t i l i t y . path = s t i t c h / u t i l i t i e s . yml
69 customize . u t i l i t y . t r ackS t ra tegy = uSF
70 customize . u t i l i t y . scenar io = scenar io 2
71 ## System c o n f i g u r a t i o n i n fo rma t i on
72 customize . system . t a r g e t .0 = $ { rainbow . master . l o c a t i o n . host }
73 customize . system . t a r g e t .1 = orac le
74 customize . system . t a r g e t . s i ze = 2

190

Appendix D

Additional Thesis Supporting Materials

D.1 Personal Records
This section contains personal records in partial support of arguments in the thesis.

RockyMountainNew.com Site Inundated on the Morning of a Break in the Ramsey Case
This timed wget command was issued on the morning of August 17, 2006, indicating that 2
minutes 38 seconds were required to download the main page from the news server. Note that
the content length was unspecified (in contrast to the following sample), further indicating that
the server was over-utilized and unable to precompute the total content length on HTTP-reply.

$ date
Thu Aug 17 10:18:01 EST 2006

$ time wget http://www.rockymountainnews.com/
--10:18:45-- http://www.rockymountainnews.com/

=> ‘index.html’
Resolving www.rockymountainnews.com... 208.62.120.181
Connecting to www.rockymountainnews.com|208.62.120.181|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: unspecified [text/html]

[<=>] 56,309 1.96K/s

10:21:22 (590.01 B/s) - ‘index.html’ saved [56309]

real 2m37.846s
user 0m0.062s
sys 0m0.218s

In contrast, the main page on a typical, low-traffic day downloaded in under two seconds.

$ date
Sun Feb 24 14:50:35 EST 2008

$ time wget http://www.rockymountainnews.com/
--14:50:36-- http://www.rockymountainnews.com/

=> ‘index.html.2’
Resolving www.rockymountainnews.com... 204.78.38.227
Connecting to www.rockymountainnews.com|204.78.38.227|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 72,061 (70K) [text/html]

191

100%[====================================>] 72,061 116.96K/s

14:50:37 (116.68 KB/s) - ‘index.html.2’ saved [72061/72061]

real 0m1.276s
user 0m0.030s
sys 0m0.062s

Wal-Mart Site Outage on Black Friday 2006 This screenshot, courtesy of Marwan Abi-
Antoun, captures the outage of Wal-Mart’s shopping site on Friday, November 24, 2006.

D.2 Listing and Abstract Descriptions of netbwe Subroutines
The five Perl programs and subroutines of the netbwe subsystem that provide the core adaptation
functionalities are listed below with abstract description of steps.

load_state Loads network usage states by machine from bandwidth logs.

1. Netbwe::Netbwe_db_connect (operator) to get DB handle

2. Get list of bandwidth usage logs file from AFS directory, for each...

3. Determine machine state (“State”->status, “Last_Updated_By”->who, “Last_Update”->version+status_date) from state file; sta-
tus is one of NOTIFIED, WARNED, KILL, EXEMPT; also notice quotaID “1” for wireless, “2” otherwise

4. Grab machine info (%mach) by header pos retrieved with Netbwe::NetReg_lookup: netregID, ip_address, mac_address, users

5. Read each LOG file and process...

6. Log type of: “Created host entry”, “Set state to”, “Note”, “Overwrote lock”; each log entry has version, who, machineID, reason

7. Entries of machines and set of logs are added to the DB tables of same name, using the logged values (a db-add operator!)

8. Cleanup: close files and disconnect from DB (operator)

192

1 $dbh = CMU: : Netbwe : : Netbwe_db_connect () ;
2 open (INLIST , " l s −1 / a fs / andrew / acs / ng / e tc / bandwidth / ∗ . log | ") ;
3
4 $mid = 0;
5 foreach $ f i l e (< INLIST >) {
6 $mid++;
7 chomp($ f i l e) ;
8 next i f ($ f i l e =~ / cmu−ye r i n /) ;
9 $ f i l e =~ / (. ∗) \ . log$ / ;

10 $ s t a t e f i l e = $1 ;
11
12 undef %mach ;
13 undef %log ;
14
15 open (STATE, $ s t a t e f i l e) | | die " Cannot open $ s t a t e f i l e \ n$! \ n " ;
16 open (LOG, $ f i l e) | | die " Cannot open $ f i l e \ n$! \ n " ;
17
18 @parts = s p l i t (/ \ / / , $ s t a t e f i l e) ;
19 $mach{ hostname } = $par ts [$# par t s] ;
20
21 while ($ i n l i n e = <STATE>) {
22 chomp $ i n l i n e ;
23 i f ($ i n l i n e =~ / ^ State /) {
24 $mach{ s ta tus } = (s p l i t (/ / , $ i n l i n e)) [1] ;
25 } e l s i f ($ i n l i n e =~ / ^ Last_Updated_By /) {
26 $mach{who} = (s p l i t (/ / , $ i n l i n e)) [1] ;
27 } e l s i f ($ i n l i n e =~ / ^ Last_Update /) {
28 $mach{ vers ion } = POSIX : : s t r f t i m e ("%Y%m%d%H%M%S" , localt ime ((s p l i t (/ / ,

$ i n l i n e)) [1])) ;
29 $mach{ s ta tus_date } = POSIX : : s t r f t i m e ("%Y−%m−%d %H:%M:%S" , localt ime ((s p l i t

(/ / , $ i n l i n e)) [1])) ;
30 }
31 }
32 i f ($mach { s ta tus } eq " 0 ") {
33 next ;
34 } e l s i f ($mach { s ta tus } eq " 1 ") {
35 $mach{ s ta tus } = ’ NOTIFIED ’ ;
36 } e l s i f ($mach { s ta tus } eq " warn ") {
37 $mach{ s ta tus } = ’WARNED’ ;
38 } e l s i f ($mach { s ta tus } eq " k i l l ") {
39 $mach{ s ta tus } = ’ KILL ’ ;
40 } e l s i f ($mach { s ta tus } eq ’ exempt ’) {
41 $mach{ s ta tus } = ’EXEMPT ’ ;
42 }
43 i f ($mach { hostname } =~ / \ . wv \ . c [cs] \ . /) {
44 $mach{ quotaID } = 1 ;
45 } else {
46 $mach{ quotaID } = 2 ;
47 }
48
49 $mdata = CMU: : Netbwe : : NetReg_lookup (" net reg " , { HOSTNAME => $mach{ hostname } }) ;
50 i f ((! re f ($mdata)) | | ($#$mdata == 0)) {
51 } else {
52 $mdpos = CMU: : Netbwe : : GetHeaderPos ($mdata) ;
53 $mach{ netregID } = $mdata− >[1] [$mdpos−>{ ’ machine . i d ’ }] ;
54 $mach{ ip_address } = $mdata− >[1] [$mdpos−>{ ’ machine . ip_address ’ }] ;
55 $mach{ mac_address } = $mdata− >[1] [$mdpos−>{ ’ machine . mac_address ’ }] ;
56 $mach{ users } = $mdata− >[1] [$mdpos−>{ ’ i n t e r n a l . users ’ }] ;
57 }
58 $mach{ i d } = $mid ;
59 undef @logs ;
60 @logs = () ;
61
62 while ($ i n l i n e = <LOG>) {
63 $ len t = { } ;
64 chomp $ i n l i n e ;

193

65 ($etime , $who , $ l type , $ tex t) = s p l i t (/ \ : / , $ i n l i n e , 4) ;
66
67 i f ($ l t ype eq " Created host en t ry ") {
68 $ lent −>{vers ion } = POSIX : : s t r f t i m e ("%Y%m%d%H%M%S" , localt ime (Time : :

ParseDate : : parsedate ($etime))) ;
69 $ lent −>{who} = $who ;
70 $ lent −>{machineID } = $mid ;
71 $ lent −>{reason } = " $ l t ype " ;
72 push (@logs , $ l en t) ;
73 } e l s i f ($ l t ype eq " Set s t a t e to ") {
74 $ lent −>{vers ion } = POSIX : : s t r f t i m e ("%Y%m%d%H%M%S" , localt ime (Time : :

ParseDate : : parsedate ($etime))) ;
75 $ lent −>{who} = $who ;
76 $ lent −>{machineID } = $mid ;
77 i f ($ t ex t eq " 1 ") {
78 $ tex t = ’ NOTIFIED ’ ;
79 } e l s i f ($ t ex t eq " warn ") {
80 $ tex t = ’WARNED’ ;
81 } e l s i f ($ t ex t eq " k i l l ") {
82 $ tex t = ’ KILL ’ ;
83 } e l s i f ($ t ex t eq ’ exempt ’) {
84 $ tex t = ’EXEMPT ’ ;
85 }
86 $ lent −>{reason } = " $ l t ype $ tex t " ;
87 push (@logs , $ l en t) ;
88 } e l s i f ($ l t ype eq " Note ") {
89 $ lent −>{vers ion } = POSIX : : s t r f t i m e ("%Y%m%d%H%M%S" , localt ime (Time : :

ParseDate : : parsedate ($etime))) ;
90 $ lent −>{who} = $who ;
91 $ lent −>{machineID } = $mid ;
92 $ lent −>{reason } = " $ tex t " ;
93 push (@logs , $ l en t) ;
94 } e l s i f ($ l t ype eq " Overwrote lock ") {
95 $ lent −>{vers ion } = POSIX : : s t r f t i m e ("%Y%m%d%H%M%S" , localt ime (Time : :

ParseDate : : parsedate ($etime))) ;
96 $ lent −>{who} = $who ;
97 $ lent −>{machineID } = $mid ;
98 $ lent −>{reason } = " $ l t ype " ;
99 push (@logs , $ l en t) ;

100 } else {
101 die "Don ’ t know how to handle l i n e type $ l t ype (et ime = >$etime < , who = >$who

< , l t y p e = >$l type < , t e x t = >$tex t <) \ n " ;
102 }
103 }
104
105 ($add , $reason) = Add ($dbh , " machines " , \%mach) ;
106 i f ($add) {
107 die " Could not add en t ry " . jo in (" , " , @$reason) . " \ n " ;
108 }
109 map {
110 ($add , $reason) = Add ($dbh , " logs " , $_) ;
111 i f ($add) {
112 die " Could not add en t ry " . jo in (" , " , @$reason) . " \ n " ;
113 }
114 } (@logs) ;
115
116 close (LOG) ;
117 close (STATE) ;
118 }
119 $dbh−>disconnect () ;
120 ex i t (0) ;

log_usage Determines and records current usage against database of prior machine states.

194

1. Target a host for which to log usage

2. Netbwe::Netbwe_db_connect to get DB handle

3. Fetch list of sensors via Netbwe::sensor_list, and for each sensor... collect its set of info to generate commands

4. Issue command via “/usr/ng/bin/topt” to collect log messages

5. Parse message by either: hostname+IP-address or MAC+Hostname (a parse-message operator!)

6. For each message, fetch values: outboundRate, inboundRate, eventdate, sensorID, ip_address/mac_address+subnet

7. Call Netbwe::API::event_add to add the fetched message values by user ’netbwe’ to ’events’ table

8. Cleanup: disconnect from DB

1 my ($host) = ‘ / b in / hostname ‘ ;
2 chomp $host ;
3 $dbh = CMU: : Netbwe : : Netbwe_db_connect () ;
4 i f (! $dbh) {
5 die __FILE__ . " : " . __LINE__ . " : Couldn ’ t open database \ n " ;
6 }
7 my $sensors = CMU: : Netbwe : : s e n s o r _ l i s t ($dbh , ’ netbwe ’ , " host_name l i k e ’ $host ’ ") ;
8 i f (re f $sensors) {
9 my $dapos = CMU: : Netbwe : : GetHeaderPos ($sensors) ;

10 s h i f t @$sensors ;
11 foreach my $sensor (@$sensors) {
12 my ($comopts) = {
13 $host => {
14 opts => $sensor−>[$dapos−>{ ’ sensors . op t ions ’ }] ,
15 f i l e => $sensor−>[$dapos−>{ ’ sensors . f i l e ’ }] ,
16 raw_data_path => $sensor−>[$dapos−>{ ’ sensors . raw_data_path ’ }] ,
17 prog => " / usr / ng / b in / t o p t " ,
18 }
19 } ;
20 i f ((! defined $comopts−>{$host } { opts })
21 | | (! defined $comopts−>{$host } { f i l e })) {
22 die "No c o n f i g u r a t i o n i s def ined f o r t h i s sensor . ($sensor−>[$dapos−>{ ’ sensors

. name ’ }]) \ n " ;
23 }
24 i f (defined $opts { i }) {
25 open (INFILE , $opts { i }) | | die " Could not open $opts { i } f o r read \ n$! \ n " ;
26 $ i n f i l e = \∗ INFILE ;
27 } else {
28 $ i n f i l e = \∗STDIN ;
29 }
30 i f (defined $opts { o }) {
31 open (OUTFILE , ">$opts { o } ")
32 | | die " Could not open $opts { o } f o r w r i t e \ n$! \ n " ;
33 $ o u t f i l e = \∗OUTFILE ;
34 } else {
35 $ o u t f i l e = \∗STDOUT;
36 }
37 i f (defined $opts {D}) {
38 $date = $opts {D } ;
39 i f ($date eq ’ today ’) {
40 $date = $date = s t r f t i m e "%Y/%m/%d " , localt ime ;
41 } e l s i f ($date eq ’ yesterday ’) {
42 $date = $date = s t r f t i m e "%Y/%m/%d " ,
43 localt ime (Time : : ParseDate : : parsedate (’ yesterday ’)) ;
44 } e l s i f ($date !~ / ^ 2 0 \ d \ d \ / \ d \ d ? \ / \ d \ d?$ /) {
45 die
46 " I n v a l i d date format , use ’YYYY/MM/DD ’ , ’ today ’ or ’ yesterday ’ on ly \ n " ;
47 }
48 } else {
49 $date = $date = s t r f t i m e "%Y/%m/%d " ,
50 localt ime (Time : : ParseDate : : parsedate (’ yesterday ’)) ;
51 }

195

52
53 # make sure raw_data_path has a d e f a u l t value :
54 unless ($comopts−>{$host } { raw_data_path }) {
55 $comopts−>{$host } { raw_data_path } = ’ / home / argus / a rch ive ’ ;
56 }
57 $command = " $comopts−>{$host } { prog } $comopts−>{$host } { opts } "
58 . " $comopts−>{$host } { raw_data_path } / $date / . counts / $comopts−>{$host } { f i l e } " ;
59 $msg = jo in (" " , ‘$command ‘) ;
60 $msg =~ s / \ r / / sg ;
61 $msg =~ s / IP address / IP−address / sg ;
62 i f ($msg =~ / IP−address /) {
63 $parsed = ParseMessage ($msg , [’ Hostname ’ , ’ IP−address ’]) ;
64 } e l s i f ($msg =~ /MAC / s) {
65 $parsed = ParseMessage ($msg , [’MAC ’ , ’ Hostname ’]) ;
66 } else {
67 $parsed = undef ;
68 }
69 i f (! $parsed) {
70 die __FILE__ . " : " . __LINE__ . " : Parse f a i l e d , message was something l i k e \

n " . Data : : Dumper−>Dump([$msg] , [’msg ’]) . " \ n " ;
71 }
72 $papos = CMU: : Netbwe : : GetHeaderPos ($parsed) ;
73 s h i f t @$parsed ;
74
75 $skipped_ignore = 0;
76 $skipped_netreg = 0;
77 $skipped_pool = 0 ;
78 $skipped_dup = 0;
79 foreach $ j (@$parsed) {
80 undef $vars ;
81 $vars−>{outboundRate } = $j−>[$papos−>{oMB}] ;
82 $vars−>{inboundRate } = $j−>[$papos−>{iMB }] ;
83 $vars−>{eventdate } = $date ;
84 $vars−>{sensorID } = $sensor−>[$dapos−>{ ’ sensors . i d ’ }] ;
85
86 i f ($papos−>{Hostname } == 0)
87 { # t h i s one came from a probe t h a t logs by IP
88 $vars−>{ ip_address } = $j−>[$papos−>{ ’ IP−address ’ }] ;
89 } else { # t h i s one came from a probe t h a t logs by mac address
90 $vars−>{mac_address } = $j−>[$papos−>{MAC}] ;
91 $vars−>{subnet } = $comopts−>{$host } { subnet }
92 i f (defined $comopts−>{$host } { subnet }) ;
93 }
94
95 ($val , $reason) = CMU: : Netbwe : : event_add ($dbh , ’ netbwe ’ , $vars) ;
96 i f (! re f ($va l)) {
97 i f ($va l == $CMU: : Netbwe : : e r r va l s −>{ENOENT}) {
98 $skipped_netreg ++;
99 } e l s i f ($va l == $CMU: : Netbwe : : e r r va l s −>{EIGNORE}) {

100 $skipped_ignore ++;
101 } e l s i f ($va l == $CMU: : Netbwe : : e r r va l s −>{EPOOL}) {
102 $skipped_pool ++;
103 } e l s i f (scalar grep { $_ =~ / Dup l i ca te / } @$reason) {
104 $skipped_dup ++;
105 next ;
106 } else {
107 die __FILE__ . " : " . __LINE__ . " : $CMU: : Netbwe : : errmeanings−>{$va l } : ["

. jo in (’ , ’ , @$reason) . "] \ n " ;
108 }
109 }
110 }
111 $sk ipped_ to ta l = $skipped_ignore + $skipped_netreg + $skipped_pool +

$skipped_dup ;
112 }
113 }
114 $dbh−>disconnect () ;

196

do_violation Determines violation incidents per machine, sends notifications to machine own-
ers, records violation “state” change.

1. $commit = ’yes’, $mail = ’yes’; fetch list of dates for which to process violation

2. Netbwe::Netbwe_db_connect to get DB handle

3. Netbwe::quota_list to fetch list of quota categories by user ’netbwe’ from ’quotas’ table

4. For each quota category $qname(quota), for each $day(date) specified, for each $mode “daily” and “initial”...

(a) process violations (see API::violations) and collect list of hosts whose states reflect bandwidth usage violations

5. Generate an email (operator) to the “Abuse BBoard” containing the list of state-changed hosts, incl. host-
name+ip_address+mac_address+status, sorted by status

6. Cleanup: disconnect from DB and sendmail

1 $commit = ’ yes ’ ;
2 $mai l = ’ yes ’ ;
3 $user = " netbwe " ;
4 i f (defined $opts { i }) {
5 open (INFILE , $opts { i }) | | die " Could not open $opts { i } f o r read \ n$! \ n " ;
6 $ i n f i l e = \∗ INFILE ;
7 } else {
8 $ i n f i l e = \∗STDIN ;
9 }

10 i f (defined $opts { o }) {
11 open (OUTFILE , ">$opts { o } ") | | die " Could not open $opts { o } f o r w r i t e \ n$! \ n " ;
12 $ o u t f i l e = \∗OUTFILE ;
13 } else {
14 $ o u t f i l e = \∗STDOUT;
15 }
16 i f (defined $opts {D}) {
17 push (@days , s p l i t (/ , / , $opts {D})) ;
18 } else {
19 push (@days , POSIX : : s t r f t i m e ("%Y−%m−%d " , localt ime (time () − 86400))) ;
20 }
21
22 $dbh = CMU: : Netbwe : : Netbwe_db_connect () ;
23 @hosts = () ;
24 $quotas = CMU: : Netbwe : : q u o t a _ l i s t ($dbh , ’ netbwe ’ , ’ d i sab le = "NO" ’) ;
25 i f (re f $quotas) {
26 my $quota_pos = CMU: : Netbwe : : GetHeaderPos ($quotas) ;
27 s h i f t @$quotas ;
28 foreach $quota (@$quotas) {
29 my $qname = $quota−>[$quota_pos−>{ ’ quotas . name ’ }] ;
30 foreach $day (@days) {
31 foreach $mode (qw / d a i l y i n i t i a l /) {
32 ($data , $reason) = CMU: : Netbwe : : v i o l a t i o n s ($dbh , $user , $qname , $day ,

$mode , $commit , $mail , $qlookup) ;
33 die __FILE__ . " : " . __LINE__ . "$CMU: : Netbwe : : errmeanings−>{$data } [" .

jo in (’ , ’ , $reason) . "] \ n " i f ((! re f $data) && ($data != 0)) ;
34 i f (@$data) {
35 s h i f t @$data i f (@hosts) ;
36 push (@hosts , @$data) ;
37 }
38 }
39 }
40 }
41 }
42
43 $hopos = CMU: : Netbwe : : GetHeaderPos (\ @hosts) ;
44 $msg = " " ;
45 $msg .= "X−Mai le r : Network Bandwidth Mon i to r ing System \ n " ;
46 $msg .= " Auto−Submitted : yes \ n " ;
47 $msg .= " Reply−To : abuse−bandwidth \ @andrew .cmu . edu \ n " ;

197

48 $msg .= "From : Bandwidth Usage <abuse−bandwidth \ @andrew .cmu . edu >\n " ;
49 $msg .= "To : \ " Abuse Bboard \ " <post+org . acs . ng . abuse \ @andrew .cmu . edu >\n " ;
50 $msg .= " Date : " . CMU: : Netdb : : ArpaDate () . " \ n " ;
51 $msg .= " Subject : Bandwidth State Changes f o r $days [0] \ n " ;
52 $msg .= " \ n " ;
53 $msg .= " State Changes due to high bandwith usage / e x p i r a t i o n \ n \ n " ;
54 s h i f t @hosts ;
55 @hosts = sort {
56 $a−>[$hopos−>{ ’ machines . s ta tus ’ }] cmp $b−>[$hopos−>{ ’ machines . s ta tus ’ }]
57 } @hosts ;
58 foreach (@hosts) {
59 $msg .= s w r i t e (
60 << ’END ’ , $_−>[$hopos−>{ ’ machines . hostname ’ }] , CMU: : Netbwe : : long2dot ($_−>[$hopos

−>{ ’ machines . ip_address ’ }]) , $_−>[$hopos−>{ ’ machines . mac_address ’ }] , $_−>[
$hopos−>{ ’ machines . s ta tus ’ }]) ;

61 @<<<<<<<<<<<<<<<<<<< | @<<<<<<<<<<<<<< | @<<<<<<<<<<< | @<<<<<<<<<<<<<<<<<<
62 END
63 }
64 $dbh−>disconnect () ;
65 CMU: : Netbwe : : send_mail ($msg , ’ post+org . acs . ng . abuse@andrew .cmu . edu ’ , undef , ’ post+

org . acs . ng . p r o j e c t . bandwidth@andrew .cmu . edu ’) ;
66 ex i t (0) ;

Netbwe::API::violations ($dbh, $user, $quota, $date, $mode, $commit=’no’, $mail=’no’,
$qlookup) collects list of hosts whose states reflect bandwidth usage violations.

1. Netbwe::helper::chkParam (operator); in general, Netbwe::helper and Netbwe::primitives are candidate operators

2. Check and standardize the parameters:

(a) $date: Netbwe::helper::TimeStamp to convert an Int or parse a string

(b) $quota: fetch identified quota, populate quota.id($quota), sensorID($sensor), name($qname), type($quota_type), ini-
tialPeriod($days), initialQuota($limit), dailyQuota($dlimit)

(c) $mode: make sure it’s either “daily” or “initial”

(d) $commit & $mail: “yes” or “no”

3. Fetch list of events (’events’ table) using Netbwe::API::event_list (operator) for a specific date if “daily” and the initialPeriod if
“initial”, for each event...

(a) Aggregate bandwidth usage of event per machine ($mach->{$hostkey})

(b) $hostkey is based on one of netregID (’netreg:’), mac_address (’hwaddr:’), or ip_address (’ipaddr:’)

(c) Store ’rates’ per date for ’inbound’ & ’outbound’

(d) Accumulate both ’outboundRate’ & ’inboundRate’

(e) Accumulate ’Rate’ based on $quota_type

i. ’outboundRate’ if “Outbound”

ii. ’inboundRate’ if “Inbound”

iii. Max of in & out if “Either”

iv. Sum of in & out if “Total”

4. For each machine iden’d by $key in %$mach...

(a) Drop machine if ’Rate’ is below initialQuota($limit)

(b) Determine if machine status is “exempted” using Netbwe::helper::ChkStatus (operator)

(c) Collect the log entry value set from $mach->{$key}{...}, incl. ’quotaID’ assigned with $quota

(d) If $commit==’yes’, invoke API::log_violation (operator) to determine if any violation has occurred and log to netnotify

(e) If there’s a logged violation for machine, store it for machine in ’result’

5. Collect and return array of machine violations

198

1 sub v i o l a t i o n s {
2 my ($dbh , $user , $quota , $date , $mode , $commit , $mail , $qlookup) = @_;
3 my ($data , $dapos , $reason) ;
4 my ($days , $ l i m i t , $ d l i m i t , $mach , $quota_type , $sensor) ;
5 my ($vio , $vals , $val , $ re t va l , $qname) ;
6 $commit = ’ no ’ i f (! defined $commit) ;
7 $mai l = ’ no ’ i f (! defined $mai l) ;
8
9 # check / s tandard ize date param

10 i f (CMU: : Netbwe : : chkParam (\ $date , [’DATE_TIME ’])) {
11 i f (CMU: : Netbwe : : chkParam (\ $date , [’ INTEGER ’])) {
12 return (wantarray ? ($er rva ls −>{EINVALID } , [’ date ’]) : $e r rva ls −>{EINVALID }) ;
13 } else {
14 $date = CMU: : Netbwe : : TimeStamp ($date) ;
15 }
16 } else {
17 $date = CMU: : Netbwe : : TimeStamp (Time : : ParseDate : : parsedate ($date)) ;
18 }
19 # check and get quota i n fo rma t i on
20 i f (CMU: : Netbwe : : chkParam (\ $quota , [’ INTEGER ’])) {
21 i f (CMU: : Netbwe : : chkParam (\ $quota , [’QUERY_CLEAN ’])) {
22 return (wantarray ? ($er rva ls −>{EINVALID } , [’ quota ’]) : $e r rva ls −>{EINVALID }) ;
23 }
24 ($data , $reason) =CMU: : Netbwe : : q u o t a _ l i s t ($dbh , $user , " (quotas . name= \ " $quota \ ") ") ;
25 } else {
26 ($data , $reason) =CMU: : Netbwe : : q u o t a _ l i s t ($dbh , $user , " (quotas . i d = \ " $quota \ ") ") ;
27 }
28 i f (! re f $data) {
29 return (wantarray ? ($data , $reason) : $data) ;
30 } e l s i f ($#$data == 0) {
31 return (wantarray ? ($er rva ls −>{ENOENT} , [’ quota ’]) : $e r rva ls −>{EINVALID }) ;
32 }
33 $dapos = CMU: : Netbwe : : GetHeaderPos ($data) ;
34 $quota = $data− >[1] [$dapos−>{ ’ quotas . i d ’ }] ;
35 $sensor = $data− >[1] [$dapos−>{ ’ quotas . sensorID ’ }] ;
36 $qname = $data− >[1] [$dapos−>{ ’ quotas . name ’ }] ;
37 $quota_type = $data− >[1] [$dapos−>{ ’ quotas . type ’ }] ;
38 $days = $data− >[1] [$dapos−>{ ’ quotas . i n i t i a l P e r i o d ’ }] ;
39 $ l i m i t = $data− >[1] [$dapos−>{ ’ quotas . i n i t i a l Q u o t a ’ }] ;
40 $ d l i m i t = $data− >[1] [$dapos−>{ ’ quotas . da i lyQuota ’ }] ;
41
42 # Check mode parameter
43 i f (CMU: : Netbwe : : chkParam (\ $mode , [’ONE_OF ’ , [’ d a i l y ’ , ’ i n i t i a l ’]])) {
44 return (wantarray ? ($er rva ls −>{EINVALID } , [’mode ’]) : $e r rva ls −>{EINVALID }) ;
45 }
46 # Check commit parameter
47 i f (CMU: : Netbwe : : chkParam (\ $commit , [’ONE_OF ’ , [’ yes ’ , ’ no ’]])) {
48 return (wantarray ? ($er rva ls −>{EINVALID } , [’ commit ’]) : $e r rva ls −>{EINVALID }) ;
49 }
50 # check mai l parameter (obsoleted by NetNot i fy , mai l always sent)
51 i f (CMU: : Netbwe : : chkParam (\ $mail , [’ONE_OF ’ , [’ yes ’ , ’ no ’]])) {
52 return (wantarray ? ($er rva ls −>{EINVALID } , [’ mai l ’]) : $e r rva ls −>{EINVALID }) ;
53 }
54
55 # Get event l i s t based on mode
56 i f ($mode eq ’ d a i l y ’) {
57 $ l i m i t = $ d l i m i t ;
58 ($data , $reason) = e v e n t _ l i s t ($dbh , $user , " ((events . sensorID = \ " $sensor \ ")

and (events . eventdate = \ " $date \ ")) " , [’ events . eventdate ’]) ;
59 } else {
60 my $ i n t e r v a l = $days − 1;
61 ($data , $reason) = e v e n t _ l i s t ($dbh , $user , " ((events . sensorID = \ " $sensor \ ")

and (events . eventdate between (\ " $date \ " − i n t e r v a l $ i n t e r v a l day) and \ "
$date \ ")) " , [’ events . eventdate ’]) ;

62 }
63 i f (! re f $data) {

199

64 return (wantarray ? ($data , $reason) : $data) ;
65 }
66 $dapos = CMU: : Netbwe : : GetHeaderPos ($data) ;
67 s h i f t @$data ;
68
69 # Add up the events , based on netregID , mac_address , or IP address
70 foreach my $row (@$data) {
71 my $hostkey = undef ;
72 i f (defined $row−>[$dapos−>{ ’ events . netregID ’ }]
73 && $row−>[$dapos−>{ ’ events . netregID ’ }] != 0)
74 {
75 # I f the event has a netregID , add them up by t h a t .
76 # never inc lude the IP i f we ’ ve got the netreg ID
77 $hostkey = " netreg : " . $row−>[$dapos−>{ ’ events . netregID ’ }] ;
78 $mach−>{$hostkey } { netregID } = $row−>[$dapos−>{ ’ events . netregID ’ }] ;
79 $mach−>{$hostkey } { mac_address } = $row−>[$dapos−>{ ’ events . mac_address ’ }]
80 i f (defined $row−>[$dapos−>{ ’ events . mac_address ’ }]
81 && $row−>[$dapos−>{ ’ events . mac_address ’ }] ne " ") ;
82 } e l s i f (defined $row−>[$dapos−>{ ’ events . mac_address ’ }]
83 && $row−>[$dapos−>{ ’ events . mac_address ’ }] ne " ")
84 {
85 # Or , i f the event has a mac address , add them up t h a t way .
86 # (I t h i n k having a mac addr , but not having a netreg ID should never happen ,

but i t s here f o r completeness)
87 $hostkey = " hwaddr : " . $row−>[$dapos−>{ ’ events . mac_address ’ }] ;
88 $mach−>{$hostkey } { ip_address } =
89 CMU: : Netbwe : : long2dot ($row−>[$dapos−>{ ’ events . ip_address ’ }])
90 i f (defined $row−>[$dapos−>{ ’ events . ip_address ’ }]
91 && $row−>[$dapos−>{ ’ events . ip_address ’ }] != 0) ;
92 $mach−>{$hostkey } { mac_address } = $row−>[$dapos−>{ ’ events . mac_address ’ }] ;
93 } e l s i f (defined $row−>[$dapos−>{ ’ events . ip_address ’ }]
94 && $row−>[$dapos−>{ ’ events . ip_address ’ }] != 0)
95 {
96 # F i n a l l y , i f we have no netregID or mac , i t must be from one of the sub

networks (CS, ECE, SEI) , and thus we
97 # only have an IP and hostname
98 $hostkey = " ipaddr : " . $row−>[$dapos−>{ ’ events . ip_address ’ }] ;
99 $mach−>{$hostkey } { ip_address } =

100 CMU: : Netbwe : : long2dot ($row−>[$dapos−>{ ’ events . ip_address ’ }]) ;
101 $mach−>{$hostkey } { hostname } = $row−>[$dapos−>{ ’ events . host_name ’ }]
102 i f (defined $row−>[$dapos−>{ ’ events . host_name ’ }]
103 && $row−>[$dapos−>{ ’ events . host_name ’ }] ne " ") ;
104 } else {
105 next ;
106 }
107
108 $mach−>{$hostkey } { ’ ra tes ’ } { $row−>[$dapos−>{ ’ events . eventdate ’ }] }
109 { ’ inbound ’ } = $row−>[$dapos−>{ ’ events . inboundRate ’ }] ;
110 $mach−>{$hostkey } { ’ ra tes ’ } { $row−>[$dapos−>{ ’ events . eventdate ’ }] }
111 { ’ outbound ’ } = $row−>[$dapos−>{ ’ events . outboundRate ’ }] ;
112 $mach−>{$hostkey } { outboundRate } =
113 ($mach−>{$hostkey } { outboundRate } | | 0) + $row−>[$dapos−>{ ’ events .

outboundRate ’ }] ;
114 $mach−>{$hostkey } { inboundRate } =
115 ($mach−>{$hostkey } { inboundRate } | | 0) + $row−>[$dapos−>{ ’ events .

inboundRate ’ }] ;
116 i f ($quota_type eq ’ Outbound ’) {
117 $mach−>{$hostkey } { Rate } = ($mach−>{$hostkey } { Rate } | | 0) + $row−>[$dapos

−>{ ’ events . outboundRate ’ }] ;
118 } e l s i f ($quota_type eq ’ Inbound ’) {
119 $mach−>{$hostkey } { Rate } = ($mach−>{$hostkey } { Rate } | | 0) + $row−>[$dapos

−>{ ’ events . inboundRate ’ }] ;
120 } e l s i f ($quota_type eq ’ E i t h e r ’) {
121 $mach−>{$hostkey } { Rate } = ($mach−>{$hostkey } { Rate } | | 0) +
122 CMU: : Netbwe : : max($row−>[$dapos−>{ ’ events . outboundRate ’ }] ,
123 $row−>[$dapos−>{ ’ events . inboundRate ’ }]) ;

200

124 } e l s i f ($quota_type eq " To ta l ") {
125 $mach−>{$hostkey } { Rate } =
126 ($mach−>{$hostkey } { Rate } | | 0) + $row−>[$dapos−>{ ’ events . outboundRate ’ }

] + $row−>[$dapos−>{ ’ events . inboundRate ’ }] ;
127 }
128 }
129
130 # Process the l i s t
131 foreach my $key (keys %$mach) {
132 # f l u s h out the ones t h a t are not over quota
133 i f ($mach−>{$key } { Rate } <= $ l i m i t) {
134 delete $mach−>{$key } ;
135 next ;
136 }
137 # Drop any machine t h a t i s exempt (∗∗∗∗)
138 my $query ;
139 $query−>{mac_address } = $mach−>{$key } { mac_address }
140 i f (defined $mach−>{$key } { mac_address }) ;
141 $query−>{netregID } = $mach−>{$key } { netregID }
142 i f (defined $mach−>{$key } { netregID }) ;
143 $query−>{ ip_address } = $mach−>{$key } { ip_address }
144 i f (! defined $query−>{netregID } && defined $mach−>{$key } { ip_address }) ;
145 my ($status , $reason , $ext ra) = CMU: : Netbwe : : ChkStatus ($dbh , $user , $query ,

$qlookup) ;
146 i f ($s ta tus eq " exempted ") {
147 delete $mach−>{$key } ;
148 next ;
149 } e l s i f ($s ta tus == $CMU: : Netbwe : : e r r va l s −>{EMULTIPLE}) {
150 # ChkStatus re turned the ex t ra b i t s , i t e r a t e over them
151 i f (re f $ext ra) {
152 # yes , j u s t look a t t h a t data
153 foreach my $m (@$extra) {
154 i f ($m eq " exempted ") {
155 delete $mach−>{$key } ;
156 l as t ;
157 }
158 }
159 }
160 i f (! defined $mach−>{$key }) {
161 delete $mach−>{$key } ;
162 next ;
163 }
164 }
165
166 # prep the log en t ry va l se t
167 undef $vals ;
168 $vals−>{quotaID } = $quota ;
169 foreach $val (keys %{ $mach−>{$key } }) {
170 $vals−>{$va l } = $mach−>{$key } { $va l } i f (! ($va l =~ / Rate /)) ;
171 }
172 # i f commit i s yes , then log the v i o l a t i o n to n e t n o t i f y
173 ($vio , $reason) = l o g _ v i o l a t i o n (
174 $dbh , $user ,
175 $vals , $mach−>{$key } { outboundRate } ,
176 $mach−>{$key } { inboundRate } , $quota ,
177 $date , $mode ,
178 $mail , $ l i m i t ,
179 $qlookup , $mach−>{$key } { ’ ra tes ’ } ,
180 $mach−>{$key } { ’ Rate ’ }
181)
182 i f ($commit eq ’ yes ’) ;
183 i f (
184 (defined $v io)
185 && (! re f $v io)
186 && (($v io == $CMU: : Netbwe : : e r r va l s −>{EXEMPT_MACHINE})
187 | | ($v io == $CMU: : Netbwe : : e r r va l s −>{ENTRY_EXISTS})

201

188 | | ($v io == $CMU: : Netbwe : : e r r va l s −>{EPREMATURE})
189 | | ($v io == $CMU: : Netbwe : : e r r va l s −>{ENOSTATE}))
190)
191 {
192 delete $mach−>{$key } ;
193 next ;
194 }
195 i f ((defined $v io) && (re f $v io)) {
196 $mach−>{$key } { r e s u l t } = $v io ;
197 }
198 }
199
200 @$retval = () ;
201 foreach (keys %$mach) {
202 next unless (defined $mach−>{$_ } { r e s u l t }) ;
203 $data = $mach−>{$_ } { r e s u l t } ;
204 i f (@$retval) {
205 s h i f t (@$data) ;
206 push (@$retval , @$data) ;
207 } else {
208 @$retval = @$data ;
209 }
210 }
211 return (wantarray ? ($ re t va l , " ") : $ r e t v a l) ;
212 }

Netbwe::API::log_violation ($dbh, $user, $svals, $outbound, $inbound, $quota, $date,
$mode, $mail, $limit, $qlookup, $rates, $totalRate) determines if violation occurred & logs to
netnotify.

1. Use API::SOAP_machine_list (operator) to search DB for existing violation record of current machine + quota category pairing

2. If $mode is “initial”

(a) If violation record found, then do no more and fail with ENTRY_EXISTS since the “daily” mode will take care of it

(b) Otherwise, create a new entry with: machines.mac_address/ip_address/netregID, machines.status, machines.status_date,
machines.reason, machines.quotaID, OUTBOUND_USAGE, INBOUND_USAGE, AVERAGE_RATE, and ’RATES’
(which lists inbound & outbound usage by date)

(c) Invoke API::machine_add (operator?!) to log the violation incident on Epidemic via SOAP

3. If $mode is “daily”

(a) If not existing violation record, nothing to do; otherwise...

(b) Check on exempt status, and return with error EXEMPT_MACHINE

(c) Call API::full_state_list_hash (operator) to obtain list of predefined state changes for this quota category

(d) Determine $next_state by referencing list of states to see what next state to “promoteto” given current machine state

(e) If there’s no next state, bail with ENOSTATE

(f) Otherwise, make the “state transition” with a modification to the machine violation entry

i. New status data: machines.status, machines.status_date, machines.reason, OUTBOUND_USAGE, IN-
BOUND_USAGE (no RATES list since this is a daily run)

ii. Invoke API::machine_modify (operator) to transition the state of the violation incident on Epidemic via SOAP

4. Otherwise bail with EINVALID

1 sub l o g _ v i o l a t i o n {
2 my ($dbh , $user , $svals , $outbound , $inbound ,
3 $quota , $date , $mode , $mail , $ l i m i t ,
4 $qlookup , $rates , $ to ta lRa te
5) = @_;

202

6 my (%vals , $event_t ime) ;
7 my ($data , $dapos , $reason) ;
8 my ($ t t imes , $next_s ta te) ;
9

10 # Check f o r o ld record
11 ($data , $reason) = SOAP_machine_list ($dbh , $user , $svals , undef , undef ,

$qlookup , 1) ;
12 i f (! re f $data) {
13 return (wantarray ? ($data , $reason) : $data) ;
14 } e l s i f ($#$data > 1) {
15 # We have a problem , we got m u l t i p l e rows back on what should be a unique key .
16 $reason = [" M u l t i p l e rows f o r machine / quota found "] ;
17 return (wantarray ? ($CMU: : Netbwe : : e r r va l s −>{EMULTIPLE} , $reason) : $data) ;
18 }
19 $dapos = CMU: : Netbwe : : GetHeaderPos ($data) i f (re f $data) ;
20 # I s t h i s the i n i t i a l f i n d i n g o f t h i s host (i e a n day t o t a l overusage)
21 i f ($mode eq ’ i n i t i a l ’) {
22 i f ($#$data == 1) {
23 # I f a l ready i n a s ta te , they w i l l get promoted by the da i l y , so j u s t r e t u r n ;
24 return (wantarray ? ($CMU: : Netbwe : : e r r va l s −>{ENTRY_EXISTS} , [" Ent ry Ex i s t s "

]) : $CMU: : Netbwe : : e r r va l s −>{ENTRY_EXISTS}) ;
25 }
26 # log a new en t ry f o r them . . .
27 $vals { ’ machines . mac_address ’ } = $svals−>{ ’ machines . mac_address ’ }
28 i f (defined $svals−>{ ’ machines . mac_address ’ }) ;
29 $vals { ’ machines . mac_address ’ } = $svals−>{mac_address }
30 i f (defined $svals−>{mac_address }) ;
31 $vals { ’ machines . ip_address ’ } = $svals−>{ ip_address }
32 i f (defined $svals−>{ ip_address }) ;
33 $vals { ’ machines . netregID ’ } = $svals−>{netregID }
34 i f (defined $svals−>{netregID }) ;
35 $vals { ’ machines . s ta tus ’ } = ’ i n i t i a l −n o t i f i c a t i o n−graceper iod ’ ;
36 $vals { ’ machines . s ta tus_date ’ } = $date ;
37 $vals { ’ machines . reason ’ } = " Exceeded $mode quota (t r ansm i t t ed $outbound Mbytes

outbound , $inbound Mbytes inbound) s ta te $vals { machines . s ta tus } on $date " ;
38 $vals { ’ machines . quotaID ’ } = $quota ;
39 $vals { ’OUTBOUND_USAGE ’ } = spr in t f ("%−8.3 f " , $outbound / 1024) ;
40 $vals { ’INBOUND_USAGE ’ } = spr in t f ("%−8.3 f " , $inbound / 1024) ;
41 $^A = " " ;
42 formline (" @>>>>>>>>> @>>>>>>>>>\n " , ’ Inbound ’ , ’ Outbound ’) ;
43 formline ("@>>>>>>>>> @>>>>>>>>> @>>>>>>>>>\n " , ’ Date ’ , ’ Usage ’ , ’ Usage ’) ;
44 $vals { ’AVERAGE_RATE ’ } = spr in t f (" %.3 f " , $ to ta lRa te / 1024 / 5) ;
45 foreach my $ra tedate (sort keys %$rates) {
46 my ($date) = s p l i t (’ ’ , $ ra tedate) ;
47 my $ in = spr in t f (" %.3 f " , $rates−>{$ra tedate } { ’ inbound ’ } / 1024) ;
48 my $out = spr in t f (" %.3 f " , $rates−>{$ra tedate } { ’ outbound ’ } / 1024) ;
49 i f ($ in > $out) {
50 formline ("@>>>>>>>>> @>>>>>>>>>GB∗ @>>>>>>>>>GB \ n " , $date , $in , $out) ;
51 } else {
52 formline ("@>>>>>>>>> @>>>>>>>>>GB @>>>>>>>>>GB∗ \ n " , $date , $in , $out) ;
53 }
54 }
55 $vals { ’RATES ’ } = $^A;
56 ($data , $reason) = machine_add ($dbh , $user , \%vals , $mai l) ;
57
58 i f (! re f $data) {
59 return (wantarray ? ($data , $reason) : $data) ;
60 }
61 } e l s i f ($mode eq ’ d a i l y ’) {
62 i f ($#$data == 0) {
63 # d a i l y run , on ly smack people w i th an e x i s t i n g en t ry .
64 return (wantarray ? (0 , undef) : 0) ;
65 }
66 # check to see i f machine i s exempt , i f so , j u s t r e t u r n w i th exempt e r r o r
67 i f ($data− >[1] [$dapos−>{ ’ machines . s ta tus ’ }] eq " exempted ") {
68 return (wantarray

203

69 ? ($CMU: : Netbwe : : e r r va l s −>{EXEMPT_MACHINE} , [" Exempt "])
70 : $CMU: : Netbwe : : e r r va l s −>{EXEMPT_MACHINE}) ;
71 }
72 # Get the l i s t o f s t a te change t imes f o r t h i s quota
73 ($ t t imes , $reason) = f u l l _ s t a t e _ l i s t _ h a s h ($dbh , $user , $quota) ;
74 i f (! re f $t t imes) {
75 return (wantarray ? ($data , $reason) : $data) ;
76 }
77 $next_s ta te = $t t imes−>{$data− >[1] [$dapos−>{ ’ machines . s ta tus ’ }] } { promoteto } ;
78 i f (defined $next_s ta te) {
79 # I f we have a def ined t r a n s i t i o n , se t up to make i t .
80 $vals { ’ machines . s ta tus ’ } = $t t imes−>{ $data− >[1] [$dapos−>{ ’ machines . s ta tus ’ }

] } { promoteto } ;
81 $vals { ’ machines . s ta tus_date ’ } = $date ;
82 $vals { ’ machines . reason ’ } = " Exceeded $mode quota (t r ansm i t t ed $outbound

Mbytes outbound , $inbound Mbytes inbound) s ta te $vals { ’ machines . s ta tus ’ }
on $date " ;

83 $vals { ’OUTBOUND_USAGE ’ } = spr in t f ("%−8.3 f " , $outbound / 1024) ;
84 $vals { ’INBOUND_USAGE ’ } = spr in t f ("%−8.3 f " , $inbound / 1024) ;
85
86 # i f there i s no t r a n s i t i o n t ime from the cu r ren t s ta te , r e t u r n
87 i f ((! defined ($ t t imes−>{ $data− >[1] [$dapos−>{ ’ machines . s ta tus ’ }] } {

promote })) | | ($ t t imes−>{ $data− >[1] [$dapos−>{ ’ machines . s ta tus ’ }] } {
promote } == 0)) {

88 return (wantarray ? ($CMU: : Netbwe : : e r r va l s −>{ENOSTATE} , ["No Next State "]
) : $CMU: : Netbwe : : e r r va l s −>{ENOSTATE}) ;

89 } else {
90 ($data , $reason) = machine_modify ($dbh , $user , $data− >[1] [$dapos−>{ ’

machines . i d ’ }] , $data− >[1] [$dapos−>{ ’ machines . vers ion ’ }] , \%vals ,
$mai l) ;

91 i f (! re f $data) {
92 return (wantarray ? ($data , $reason) : $data) ;
93 }
94 }
95 } else {
96 return (wantarray ? ($CMU: : Netbwe : : e r r va l s −>{ENOSTATE} , ["No Next State "])

: $CMU: : Netbwe : : e r r va l s −>{ENOSTATE}) ;
97 }
98 } else {
99 return (wantarray ? ($CMU: : Netbwe : : e r r va l s −>{EINVALID } , ["mode"]) : $CMU: :

Netbwe : : e r r va l s −>{EINVALID }) ;
100 }
101 return (wantarray ? ($data , $reason) : $data) ;
102 }

204

	1 Coping with Change
	1.1 Self-Adaptation Loop of Control
	1.1.1 External, Feedback Control
	1.1.2 IBM Autonomic Framework

	1.2 Architecture-Based Self-Adaptation
	1.3 Opportunities for Improving the State-of-the-Art
	1.3.1 Lack in System Context and Adaptation Knowledge
	1.3.2 Lack of Support for Quality-of-Service Trade-Off
	1.3.3 High Cost of Development and Maintenance

	1.4 This Thesis
	1.4.1 Thesis Evaluation Plan
	1.4.2 Thesis Contributions
	1.4.3 Document Roadmap

	2 Related Work
	2.1 Software Engineering and Architecture
	2.2 External Contributing Disciplines
	2.3 Related Self-Adaptation Approaches
	2.3.1 Adaptive Technologies
	2.3.2 Industrial Initiatives and Autonomic Computing
	2.3.3 Architecture-Based Adaptation

	2.4 Limitations to State-of-the-Art Addressed

	3 Rainbow Overview
	3.1 Overview of Approach
	3.1.1 Software Architecture Model and Style
	3.1.2 Control Systems and the Self-Adaptation Cycle
	3.1.3 Utility Theory
	3.1.4 Design Constraints for Self-Adaptation

	3.2 Znn.com Example
	3.3 Tailorable Rainbow Framework
	3.3.1 Rainbow Models
	3.3.2 Translation Infrastructure---Monitoring and Action
	3.3.3 Model Manager
	3.3.4 Architecture Evaluator
	3.3.5 Adaptation Manager
	3.3.6 Strategy Executor

	3.4 Rainbow Application to Znn.com
	3.5 Adaptation Engineering Process
	3.6 Summary

	4 Stitch Self-Adaptation Language
	4.1 Rainbow Context for Language
	4.2 Requirements for the Self-Adaptation Language
	4.2.1 Nature of System Administration Tasks
	4.2.2 Language Design Considerations

	4.3 Self-Adaptation Concepts of Stitch
	4.3.1 Overview
	4.3.2 Quality Dimensions, Utility Preferences, and Adaptation Conditions
	4.3.3 Operator
	4.3.4 Tactic
	4.3.5 Strategy
	4.3.6 Strategy Selection

	4.4 Semantics of Stitch Constructs
	4.4.1 Model of Adaptation
	4.4.2 Utility-Based Strategy Selection
	4.4.3 Adaptation Execution

	4.5 Stitch Illustration Using Znn.com
	4.6 Summary

	5 Customizable Framework
	5.1 Architecture and Design of Rainbow
	5.1.1 Rainbow Deployment Architecture
	5.1.2 Model Manager and Rainbow Models
	5.1.3 Translation Infrastructure---Monitoring and Action
	5.1.4 Architecture Evaluator
	5.1.5 Adaptation Manager
	5.1.6 Strategy Executor

	5.2 Adaptation Integrated Development Environment
	5.2.1 Stitch Script Editor
	5.2.2 Rainbow Control Console

	6 Examples and Supporting Evidence
	6.1 Basic Client-Server System
	6.2 Libra Videoconferencing System
	6.3 University Grade System---Security Domain
	6.4 TalkShoe
	6.4.1 Background
	6.4.2 TalkShoe Infrastructure
	6.4.3 Problem Scenarios for Adaptation
	6.4.4 Data and Result
	6.4.5 Conversations with the TalkShoe Architect
	6.4.6 TalkShoe Summary

	6.5 Znn.com News System
	6.5.1 Motivation: Slashdot Effect
	6.5.2 Rainbow Customization for Znn.com
	6.5.3 Experimental Setup
	6.5.4 Slashdot Effect Traffic Profile
	6.5.5 Data and Results
	6.5.6 Znn.com Summary

	6.6 Interview with System Administrators
	6.6.1 Methodology
	6.6.2 Interview Results
	6.6.3 Adaptation Analysis from Almossawi's Administrative Experiences
	6.6.4 Interview Summary

	6.7 Real-World Adaptive Scripts in Stitch
	6.8 Summary

	7 Thesis Evaluation
	7.1 Claim: Generality
	7.2 Claim: Cost-Effectiveness
	7.3 Claim: Transparency
	7.4 Summary

	8 Discussion of Issues and Limitations
	8.1 Central Control
	8.2 Asynchronous Interaction and Uncertainty
	8.3 Closed-Loop Feedback Control
	8.4 Stitch Expressiveness: Operator, Tactic, and Strategy
	8.5 Limitations to Adaptation Using a Model
	8.6 Limitations to Using Utility Theory
	8.7 Framework, Reuse, and Experience on Cost-Effectiveness
	8.8 Summary

	9 Conclusion and Future Work
	9.1 Thesis Contributions
	9.2 Future Work
	9.2.1 Short-Term Framework Improvements
	9.2.2 Medium-Term Rainbow Research Issues
	9.2.3 Longer-Term Research Beyond Rainbow

	9.3 Summary

	Bibliography
	A Rainbow Framework Architectural Style
	B Stitch Grammar
	C Znn.com Customization Content
	D Additional Thesis Supporting Materials
	D.1 Personal Records
	D.2 Listing and Abstract Descriptions of netbwe Subroutines

