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Abstract

Mathematics is a topic in American education in which students lag behind their international
peers, yet it is a key building block for high-performing careers in science, computers, and engi-
neering. Intelligent tutoring systems have been helping to narrow this gap by providing students
with opportunities to practice problem-solving and receive detailed feedback along the way, letting
them work at their own pace and practice specific concepts. Prior to this work, intelligent tutors for
math have been shown to improve student performance one standard-deviation above traditional
classroom instruction [35]. This dissertation explores ways to improve this effect via the use of al-
ternative input modalities, specifically: handwriting input, and investigates the impact on learning
in the domain of algebra equation solving.

This dissertation shows that handwriting provides usability benefits in that speed of entry in-
creases, user error decreases, and user satisfaction increases. Furthermore, it shows that handwrit-
ing may also provide learning benefits: students solving the same problems by handwriting as
others who are typing experience a faster learning rate. Specific math advantages of using hand-
writing are: a reduction in extraneous cognitive load due to the affordance of handwriting for more
direct manipulation, and improved support for the two-dimensional spatial information which is
inherently meaningful in mathematics (e.g., vertical fraction notation). This dissertation investi-
gates these factors and their impact.

One concern with the use of handwriting in intelligent tutoring systems, however, is that recog-
nition technology is not perfect. To the extent that the system cannot be confident of correctly rec-
ognizing what the student is writing, it cannot identify tutoring opportunities and provide detailed,
step-targeted feedback. Therefore, a trade-off is clear between the difficulty of improving recogni-
tion accuracy and the need to support step-targeted feedback. One strategy to address this trade-off
is using a type of instruction based on worked examples, which provide a sort of feed-forward to
guide learners. A second strategy is to investigate technical approaches to improving handwriting
recognition accuracy. This dissertation explores two methods of enhancing baseline recognition:
training the recognition engine on a data corpus of student writing in order to maximize writer-
independent recognition accuracy; and making use of domain-specific context information on the
fly to refine the recognition hypotheses.

The approach taken in this dissertation includes technical development, pedagogical develop-
ment, and user studies. Topics addressed include what the advantages of using handwriting are,
how the above factors contribute to these advantages, and how these advantages can be lever-
aged in real tutoring systems. Reasonable writer-independent handwriting recognition rates can be
achieved by a priori data collection and training, and these can be even further improved via the
addition of domain-context information. Furthermore, a realistic tutoring interaction paradigm can
be achieved through these methods, in spite of imperfect raw recognition accuracy. This disserta-
tion leaves the door open to continued work on basic recognition technology which can improve
the achievements reported here even further.
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Chapter 1

Introduction

This dissertation presents the results of explorations into the adaptation of handwriting input for the
interfaces of intelligent tutoring systems, specifically for high school algebra. The approach taken
in this dissertation includes technical development, pedagogical development, and user studies.
Topics addressed include what the advantages of using handwriting are in terms of learning and
usability, what factors contribute to these advantages, and how these advantages can be leveraged
in real tutoring systems. Case studies of three unique recognizers evaluate their handwriting recog-
nition accuracy for this domain. Reasonable writer-independent handwriting recognition rates can
be achieved by a priori data collection and training, and these can be even further improved via
the addition of domain-context information. Furthermore, a realistic tutoring interaction paradigm
can be achieved through the methods demonstrated by this dissertation, in spite of imperfect raw
recognition accuracy.

1.1 Motivation
This work is motivated symmetrically along two dimensions: the pedagogical needs of students
working with intelligent tutoring systems in the classroom, and the technological needs of enhanc-
ing and improving handwriting recognition for use in real-world applications. Intelligent tutoring
systems are becoming much more common tools for students to use in the classroom, and it is im-
perative that these systems are able to provide the most seamless and natural learning environments
for the students as possible. Handwriting recognition is not perfect, but this dissertation shows that
it can be improved for use in a learning application via certain domain-specific techniques.

1.1.1 Limitations of Typing in Intelligent Tutors for Math
Mathematics training is essential for participation in science and engineering careers. American
high school students have a poorer mastery of basic math concepts than their counterparts in most
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other leading industrialized nations, as found by the Programme for International Student Assess-
ment (PISA) [51]. There are many theories explaining why U.S. students lag behind their peers
abroad in math and other science subjects (e.g., [17, 87]), including teaching style. Other reasons
include a shortage of teachers in general, high rates of teacher turnover, and a lack of qualified
teachers (c.f., [66, 67]). For example, many teachers teach math without being certified in the
subject [129].

These types of issues may be at least partially addressed by supplementing some classroom
instruction with one-on-one tutoring. Bloom found that the best human tutors can raise the grade
of a C student to an A, known as the “two-sigma effect” [19]. However, it is clearly not feasible
from either a financial or human resources perspective to provide every student in America with an
expert human tutor. A potential solution to the scarceness of qualified human teachers and tutors
is to use intelligent software math tutors. An intelligent tutoring system is educational software
containing an artificial intelligence component. The software monitors the student as she works at
her own pace, and tailors feedback and step-by-step hints along the way. By collecting information
on a particular student’s performance, the software can make inferences about her strengths and
weaknesses, and can tailor the curriculum to address her needs. Although tutoring system have
been shown to be quite effective, raising the grade of a C student to a B [2, 38], they are still not at
the level of improvement the best human tutors can provide, which is treated as the de facto “gold
standard” of the intelligent tutoring systems community.

One area in which tutoring systems may be improved is with respect to the interface they
provide to students for problem-solving. Most systems use keyboard- and mouse-based windows-
icons-menus-pointing (WIMP) interfaces. Such interfaces are not well-suited for math tutoring
systems. These interfaces impose extraneous cognitive load [134] on the student, because repre-
senting and manipulating two-dimensional mathematics equations can be cumbersome in a typing
interface. This cognitive load is extraneous (rather than germane) because using and learning the
interface is (and should be) separable from the math concepts being learned. A more natural inter-
face that can more directly support the standard notations for the mathematics that the student is
learning could reduce extraneous cognitive load and therefore yield increased learning (c.f., [134]).
Furthermore, young children may be a particularly good audience for handwriting-based interfaces,
even without considering learning. Recent studies have shown that children experience difficul-
ties with the standard QWERTY keyboard, making text entry laborious and causing them to lose
their train of thought—a sign of high cognitive load [119]—even given the rise in computer use
by children. There is also some evidence that children may write more fluently when using a
handwriting-based interface than a standard keyboard-and-mouse interface when entering uncon-
strained text [120].

Anecdotally, teachers say that students have difficulty moving from the computer tutor to work-
ing on paper. A teacher might see a student solving a problem on the computer with no trouble,
but then see that same student unable to solve a similar problem on his own on paper. The WIMP
interface may act as a crutch. Even with pedagogical scaffolding [28], the knowledge students ac-
quire may become most strongly activated by (or linked to) the visual cues of the interface, making
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it difficult for them to access their conceptual knowledge without those cues. In this case, students
may not be engaging in deep learning, and their knowledge is imperfect, making transfer to new
skills or different situations difficult or impossible.

This dissertation uses handwriting input in these tutors, mimicking the paper-based learning
experience in that it is unconstrained. It is not an assumption of this dissertation that that students
will always work on paper and so interfaces must be modeled based on paper affordances, since it
seems that more and more societies are moving away from being paper-based; but rather, this dis-
sertation posits that current keyboard-based interfaces for math tutoring systems constrain student
problem solving too closely.

The use of handwriting interfaces has particular pedagogical advantages in the domain of learn-
ing environments, especially for the mathematics domain. Studies conducted as part of this dis-
sertation find that handwriting input for math is faster than in typing interfaces. The efficiency of
a handwriting interface for a math tutor allows students to complete more problems in the same
amount of time (c.f., [56]). Second, the use of handwriting rather than a menu-based typing inter-
face may result in a reduction of extraneous cognitive load on students during learning. Extraneous
cognitive load (c.f., [134]), in this context, can be thought of as a measure of how much mental
overhead is experienced as a result of interface-related tasks while one is also trying to learn a
mathematical concept. Additionally, students may prefer handwriting, especially if it makes the
problem-solving process easier or more natural for them, which leads to increased engagement
during tutoring (c.f., [47]). Finally, in mathematics, the spatial relationships among symbols have
inherent meaning, even more so than in other forms of writing. For example, the spatial placement
of the x in the following expressions significantly changes the meaning: 2x vs 2x. Handwriting
is a much more flexible and robust modality for representing and manipulating such spatial rela-
tionships, which become more prevalent as students advance in math training. This dissertation
explores these areas in more depth in order to establish a theoretic foundation on how to achieve
better learning gains using an appropriate interface.

1.1.2 Limitations of Handwriting Recognition
Most intelligent tutoring systems rely on standard keyboard- and mouse-based graphical user inter-
faces (GUIs); however, the reasons tend to be technological rather than pedagogical. Handwriting
recognition is often seen as being in its early stages of development, too inaccurate for use with
real users. In addition, developers of intelligent tutoring systems are typically not experts on
current handwriting recognition technology. Handwriting recognition systems can range from en-
tirely opaque (black-box) and non-customizable implementations such as the Microsoft TabletPC
recognizer1, to entirely open and customizable, but undocumented, systems such as the Freehand
Formula Entry System (FFES) [131]. Both extremes make handwriting recognition technology
somewhat inaccessible to non-experts. One potential outcome of disseminating this dissertation’s

1http://msdn.microsoft.com/en-us/library/aa510941.aspx

http://msdn.microsoft.com/en-us/library/aa510941.aspx
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findings in favor of using handwriting input in learning applications is that handwriting recogni-
tion experts and intelligent tutoring systems experts may more highly prioritize working together
toward making it easier to incorporate such tools into real user interfaces.

In order to get maximum benefit from the automated instruction provided by an intelligent
tutor, student entries must be interpreted by the computer tutor in order for it to be able to offer
instructional feedback. Handwriting recognition technologies have been studied since the 1950s
(e.g., [6, 97]). Although they have advanced significantly since the first systems, they are still far
from 100% recognition accuracy. For some applications, small recognition imperfections may not
be critical. However, for students learning new concepts, a system making errors recognizing their
input, and then presenting these errors to the student, introduces new problems. Requiring the
students to correct the system simply moves the extraneous cognitive load from learning interface
menus to monitoring recognition performance. How accurate the recognition has to be in order to
successfully interpret student input and provide adequate instructional feedback is an open ques-
tion partially addressed by this dissertation. The tutor should not provide inaccurate instructional
feedback, which would have potentially serious learning consequences. This work investigates two
methods to address this concern. First, training the recognition engine in advance on a data corpus
of samples from a student population helps by increasing baseline writer-independent accuracy.
Second, the handwriting engine can be adapted to utilize alternate sources of information from the
problem-solving context of the tutoring system in order to more accurately interpret student input.

In summary, although current methods for interpretation of handwritten equations may in fact
not be adequate for classroom use, the methods explored in this dissertation yield useful results
and techniques for the successful incorporation of handwriting recognition into computer tutors.

1.2 Concept
The thesis statement of this dissertation is as follows:

The use of handwriting interfaces in intelligent mathematics tutoring software can
yield higher learning gains in students through lower cognitive load than the use of
standard typing interfaces. An important part of achieving this effect is increasing
recognition accuracy to a level sufficient for adequate instructional feedback.

In order to investigate this thesis statement, a testbed is used consisting of an intelligent tutor
for math learning that allows students to enter their solutions in an unconstrained problem-solving
space via handwriting input. A screenshot of this prototype for the algebra equation-solving do-
main is shown in Figure 1.1. The interface components are explained in more detail in Chapter 7.
This system has been evaluated both in the laboratory and in the classroom on measures of usabil-
ity, learning, and cognitive load.
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Figure 1.1: A screenshot of a proposed tutoring system for algebra equation solving that allows students to
enter their solutions via handwriting in an unconstrained problem-solving space. Different versions of this
prototype were used throughout this work.

1.3 Approach
The research approach taken in this work encompasses the following four goals:

• Evaluate performance of novice users entering mathematical equations using the hand-
writing modality. This dissertation advances learning theory by examining (a) how hand-
writing affects student interactions with intelligent tutoring systems with respect to speed,
errors, and engagement, and (b) what advantages the handwriting modality provides to
learning applications with respect to decreasing cognitive load and increasing learning
gains.
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• Evaluate performance of existing handwriting recognition technologies for equation en-
try. This dissertation explores (a) how handwriting engines perform with respect to recogni-
tion errors during equation entry, and (b) how it is possible to improve recognition accuracy
via a priori writer-independent training and on-the-fly consideration of domain-specific con-
text information.

• Develop handwriting interfaces to support intelligent tutoring systems for mathemat-
ics. Technical products of this dissertation include (a) a multimodal system using handwrit-
ing to enhance math tutors, and (b) co-recognition algorithms using domain-specific context
information to enhance the robustness of the system.

• Evaluate potential handwriting-based math tutors in in vivo experiments. Iterations of
the developed handwriting-based math tutor are evaluated for different learning tasks, such
as solving algebraic equations, with high school students in the Pittsburgh Science of Learn-
ing Center’s LearnLab environment. The final product consists of design and educational
guidelines toward applying such interfaces to a handwriting-based tutor for algebra equation
solving that may use the recognition enhancements developed in this dissertation.

Several systems already exist for handwriting-based mathematics input both online and offline
(see § 2.3.4 for more details), but are not widely available to most novices. This dissertation (1)
develops an interface for an intelligent tutoring system for beginning algebra equation solving
that will allow middle and high school students to use handwriting input to solve equations on
the computer, (2) investigates potential learning gains in the use of handwriting interfaces for the
intelligent math tutor, and (3) advances handwriting recognition technology via machine learning
techniques to improve accuracy to a level suitable for use by students in a learning situation.

Existing recognition technologies that were relatively mature were adapted for this dissertation,
rather than implemented from scratch. Their design and optimization have been the subject of re-
search for decades. In order for such technologies to become usable in actual interfaces for real
users, they must be incorporated into interfaces for real users. The ways in which such interfaces
can provide advantages for users, as well as the ways in which such interfaces can be adapted for
users, are studied in this dissertation. The focus of this work is on the intersection of the fields of
educational technology and handwriting recognition, with respect to the advantages both can give
to the other. The component handwriting recognition engine used in this work is FFES [131, 149],
although others were explored (discussed in § 5.1). In addition, intelligent tutoring systems are
already highly effective learning environments. Existing successes from past research on intelli-
gent tutoring systems are leveraged in the exploration of ways to continue to improve them. The
intelligent tutoring system used is Carnegie Learning’s Cognitive Tutor for Algebra2 (e.g., [5, 37]).
Details on each of these systems are given in § 2.5.5 and § 2.5.6, respectively.

2http://www.carnegielearning.com

http://www.carnegielearning.com
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1.4 Document Organization
This dissertation is organized into the following chapters. Chapter 2 surveys the related work in
the areas of handwriting interfaces, especially for mathematics, intelligent tutoring systems and
pedagogical theory, and some machine learning data-driven classification approaches. Definitions
of key terminology used in this dissertation are given in § 2.6. The dissertation then establishes
the ways in which handwriting input can help in the domain of intelligent tutoring systems for
mathematics, especially algebra, by first discussing the theoretical contributors in Chapter 3, and
then by describing in Chapter 4 three foundational studies that were conducted. The dissertation
next discusses the technical methods used to enhance handwriting recognition accuracy for use in
a real application with real students learning algebra, by first describing the process of choosing
a recognition engine and establishing baseline writer-independent accuracy rates in Chapter 5,
and then by describing the process of incorporating domain-specific context information into the
recognition process in Chapter 6. Chapter 7 lays out a set of interaction scenarios that could
be realized because of the results presented in this dissertation. Finally, Chapter 8 presents the
conclusions of this dissertation, contributions and limitations, and outlines areas for future work.



Chapter 2

Related Work

2.1 Intelligent Tutoring Systems and Cognitive Tutors
Intelligent tutoring environments for problem solving have proven to be highly effective learning
tools [5, 142]. Many of these environments present complex, multi-step problems and provide the
individualized support that students need to complete them: step-by-step feedback and context-
specific problem-solving advice. They are two or three times as effective as typical human tutors,
but only half as effective as the best human tutors [35], who can improve student learning by two
standard deviations [19].

Cognitive Tutors are a specific class of intelligent tutoring systems that are designed based
on cognitive psychology theory and methods and that pose authentic problems to students and
emphasize learning-by-doing [5]. Each Cognitive Tutor is constructed around a cognitive model of
the knowledge students are acquiring, and can provide step-by-step feedback and help as students
work. They have been created for a variety of learning domains, including algebra, geometry,
foreign languages, chemistry, computer programming and more. Cognitive Tutors for mathematics
are in use in over 2,600 schools in the United States. A screenshot of a typical Cognitive Tutor
interface for an algebra unit is shown in Figure 2.1, showing important interface components such
as the worksheet and equation solver tool.

Cognitive Tutors, and other intelligent tutoring systems, are beginning to explore more natural
interfaces such as natural language processing of typed input (e.g., [3, 53]), spoken dialogues with
conversational agents (e.g., [16, 60, 82]), and animated characters with gesture-based interfaces
(e.g., [101]). Most systems still currently rely on standard windows-menu-icon-pointing (WIMP)
interfaces. The prevalence of WIMP interfaces is due in part to the fact that the technology avail-
able to most students in the classroom is limited to keyboard-and-mouse—this situation is changing
however, as students receive PDAs or TabletPCs in the classroom [68, 147]. In addition, research
into handwriting recognition technology has not emphasized making recognizers easy to use and
to adapt for new domains by non-experts, and recognition systems are often inaccessible or opaque
to anyone but the system’s own developers. However, there is reason to expect that the use of hand-
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Figure 2.1: A screenshot of the Cognitive Tutor interface for an algebra unit involving formulating the
relationship between two variables.

writing interfaces could have particular advantage in the domain of math learning environments,
as this dissertation establishes.

2.2 Learning Science and Educational Technology
The learning sciences comprise an interdisciplinary field borrowing from the traditions of cognitive
science, computer science, psychology, education, neuroscience, and social science to study how
people learn. In addition, the learning sciences and the related field of educational technology
are concerned with designing and implementing learning innovations. The science of learning re-
invented the fact- and procedure-based educational model of the early twentieth century in favor of
an educational system based more on deeper conceptual understanding and critical thinking [126].

The Cambridge Handbook of the Learning Sciences [126] outlines the following five thrusts of
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modern learning science research and emphases in learning and teaching:

• Deeper conceptual understanding,

• Focusing on the process of learning (not just how to teach),

• Creating complex and rich learning environments,

• Building on a learner’s prior knowledge, and

• Encouraging student reflection on knowledge and concepts.

These five thrusts represent a shift in thinking away from exclusive drill-and-practice types
of instruction; in drill-and-practice instruction, students are asked to repeatedly review previously
learned concepts until they have reached a predetermined level of mastery [126]. Instead, a new
conceptualization of learning evolved; rather than characterizing learning as a process of forming
connections between stimuli and response [23], scientists began emphasizing more contextual,
conceptual and applied types of instruction. It was found that:

...children retain material better, and are able to generalize it to a broader range of
contexts, when they learn deep knowledge rather than surface knowledge, and when
they learn how to use that knowledge in real-world and social contexts [126].

The learning sciences owe much of the methodologies and tools for testing theories of learning
and learning innovations to the field of cognitive science (c.f., [23]), which emerged in the mid-
1950s and drew together many different disciplines such as anthropology, linguistics, computer
science, neuroscience, philosophy and psychology to formulate foundations of learning theories,
anchored within models of the brain and memory.

Today the learning sciences emphasize “learning with understanding” [23] and active learn-
ing [21], which is a philosophy of instruction that places the responsibility of learning on the
learner. Active learning can be encouraged in many ways, including role-playing, debate or class
discussion, cooperative learning, peer tutoring [145], question-asking [7], and studying exam-
ples [135]. A further component of active learning is metacognition. Students can be metacog-
nitively aware of their own cognitive processes, and in the case of learning, can have knowledge
about what they know, how difficult something is for them to learn, and to what degree they un-
derstand something [50]. Learning science and intelligent tutoring systems attempt to support
metacognition, even going so far as to tutor it through, for example, requiring students to engage
in self-explanation (e.g., [2, 31]).

A self-explanation is a meaningful and correct explanation of a step in the students own
words [31]. When students engage in self-explanation, they tend to develop a deeper understanding
of the material. Novices tend to match surface features of a problem, like diagrams and problem
statement wording, with those in a worked-out example. In contrast, experts use the principles
and deep structure, that is, conceptual knowledge that generalizes across problems, as criteria for
matching a worked-out example to a problem [141].
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2.2.1 Worked Examples as Instructional Interventions
Actively studying worked examples is a type of active learning [135]. A worked example is a
step-by-step demonstration of how to perform a task or how to solve a problem [33]. Sample
worked examples are shown in Figure 2.2, from geometry (a) and from physics (b). In 1985,
Sweller proposed studying worked examples as an alternative to problem solving in order to limit
cognitive load caused by mental search [135]. Studying such worked examples have been shown
to be an effective strategy for teaching problem-solving skills, because such examples reveal the
mental models of problem-solving experts to the novices studying the examples, who may have
misconceptions and false models [93].

Many studies have established the benefit of using worked examples as a supplement to problem-
solving instruction, including [34, 104, 123, 140], although there is no consensus on how and when
to provide them or what they should look like [128]. Much of the benefit of worked examples re-
quires that students engage in metacognitive self-explanation of the solution steps listed in the
example [123].

This dissertation uses worked examples alongside problem-solving tasks as a means of provid-
ing students more information when detailed feedback is unavailable.

2.2.2 Ways to Measure Learning
Learning methods are often compared to one another though controlled experiments, in which stu-
dents are assigned randomly to one of several instructional methods. Another common method is
through quasi-experimental studies, in which students are not assigned individually to conditions,
but rather entire classrooms or all students taught by one teacher might be randomly assigned as a
group, for practical reasons. The learning method with the most improved learning will be consid-
ered “best,” but how does one measure improved learning? Learning gains are measured through
assessments, usually in the form of a pre-test to assess pre-existing knowledge and a post-test to
assess differences in the levels of knowledge after a study is complete.

The Pittsburgh Science of Learning Center (PSLC) is pioneering a deeper way of measuring
learning called robust learning [99]. Three crucial components that make learning robust are
long-term retention, far transfer, and accelerated future learning.

So-called “normal learning” [99] is typically measured via immediate (as in, immediately fol-
lowing instruction) post-tests containing items that are isomorphic to the items in instruction.
Isomorphic in this case means that the items have similar form, but may have different content. In
addition, these tests can include near-transfer items.

The concept of transfer refers to the application of a skill learned in one situation to a different
but similar situation [130]. For example, in algebra equation-solving instruction, students might
first be taught problems such as 4x + 3 = 9. Problems that were similar, such as 6x − 7 = −4,
would be considered isomorphic; problems involving slightly harder skills, such as 5 + 2

7
x = 29,

would be considered near transfer. Examples of far (or farther) transfer items might be: (a) more
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(a) A sample of a worked example in the geometry domain. Figure reprinted courtesy of Salden et al. [124]
and the Geometry Self-Explanation Tutor Project.

(b) A sample of a worked example in the physics domain. Figure reprinted courtesy of Ringenberg et
al. [123] and the Andes Physics Tutor Project.

Figure 2.2: Sample worked examples from two different domains. Note the differences in level of detail.
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difficult problems that have additional features, such as 2x − 7 = −5x + 9; or (b) a conceptual
format assessing knowledge of features, such as, “Which of the following does not belong and
why? a. 3 + 4x b. 3 + (−4x) c. 4x− 3 d. 4x + 3.”

A further measure of learning might be to determine how long or how strongly students retain
the knowledge they acquired during certain instruction. A retention test can be administered after
a delay to measure how well students remember or can reconstruct acquired skills. There are no
rules about the length of this delay, but a reasonable long-term retention interval (the time between
the end of instruction and the test) should be as least as long as the time of the instruction (the
time between the beginning and end of the instructional period of the study) [99]. Differences
between control and treatment instruction tend to be harder to detect at longer retention intervals,
but the longer the interval at which a difference is detected, the greater the evidence of the treatment
leading to long-term retention [99].

In the learning-oriented studies presented in this dissertation, learning is measured via normal
post-tests, near-transfer items, and long-term retention tests.

2.3 Handwriting Recognition Techniques and Systems
Handwriting recognition has been an active area of research since the late 1950s and 1960s (e.g., [25,
41, 54, 97]), even for mathematics (e.g., [6]). Techniques for the recognition of handwritten
mathematics range from the recognition of a page of notes after it has already been written (of-
fline) (e.g., [48, 78, 94]), to the recognition of a user’s handwriting even while she is in the pro-
cess of writing (online) (e.g., [18, 40]). Approaches to the pen-based handwriting recognition
problem have included statistical classifiers, support vector machines (SVMs), clustering, near-
est neighbor algorithms, Bayesian networks, fuzzy logic, decision trees, dynamic programming,
Hidden Markov Models (HMMs), neural networks, expert systems, hardware solutions, and com-
binations of these techniques [62, 73]. A brief discussion of several of the most relevant tech-
niques used in handwriting recognition systems is provided here; for excellent surveys of the field,
see [29, 73, 139].

2.3.1 Neural Networks
Neural networks are learning algorithms that are modeled after neurobiological systems [95]. They
consist of a network of nodes that can accept real-valued inputs and produce real-valued outputs.
The connections between nodes in a neural network are associated with activation weights which
determine the effect of that connection. Neural networks with only one input layer and one out-
put layer are limited to the representation of linear functions. However, neural networks can be
extended to contain hidden layers of nodes which provide the ability to learn a much larger set of
functions. Due to this feature of neural networks, the weights learned are not usually interpretable
by humans. A common algorithm for training neural networks is called back-propagation. This
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algorithm feeds a training instance forward through the network and then calculates the errors
backward through the network to use in readjusting the weights. This progress iterates many times
through the training set until a termination condition is reached. Although it may take a long time
to train a neural network, evaluating a new instance is relatively much faster. An example of a
handwriting system that uses neural networks for recognition is [148].

2.3.2 Support Vector Machines
SVMs [43, 143] are a method of classification that consider two input datasets (i.e., clusters) as
vectors in an n-dimensional space for which a plane can be constructed that attempts to maximize
the margin between the two data sets. The margin is defined as the distance between the data set
and the plane. Samples from each class that lie on the margin are called the support vectors. SVMs
are typically binary classifiers, that is, distinguishing between two possible clusters only. However,
multiple SVMs can be combined to achieve a multiclass classifier by creating several one-vs-rest
classifiers, one for each class of interest. An example of a handwriting system that uses SVMs for
recognition is [137].

2.3.3 Hidden Markov Models
HMMs can use information about transition probabilities in sequential data to augment classifica-
tion based on observation probabilities. HMMs can answer questions such as the following: what
is the probability of a given sequence of observations given a model, and what is the sequence of
true states that best explains the set of observations [111]. Words are sequential streams of char-
acters and therefore an HMM can take advantage of within-word context to enhance recognition
accuracy in handwriting, although this is more difficult in mathematics.

For fully-observable data, learning an HMM is trivial: one simply counts the occurrences of
each observation, state and transition. To classify a pattern, HMMs use a dynamic programming
technique known as the Viterbi algorithm [144] to find the most likely explanation of a series of
observations. The algorithm iterates over the sequence of observations, one for each state, storing
the highest probability out of all possible ways to have reached each possible value of this state
from the previous state. Once it reaches the final state, it then backtracks and builds the path that
would have generated the most likely assignment for the entire sequence.

An example of a handwriting system that uses HMMs for recognition is [30].

2.3.4 Pen-Based Handwriting Recognition Performance
As discussed above, a broad range of approaches have been used to address the pen-based hand-
writing recognition problem. These approaches present different speed, accuracy, and memory
demands and tradeoffs, but none of them significantly outperforms all others in every respect [62].
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Vocabulary size often dictates the type of approach used. Large vocabularies increase the diffi-
culty of the recognition task because there can be more similar pairs of words in the dictionary as
its size increases. Typically, modern approaches to handwriting recognition using neural networks
for such large vocabularies are not frequently used as standalone classifiers, but as part of hybrid
approaches, where they are used to estimate a priori class probabilities or grapheme probabilities.
Recently, HMMs have become the dominant approach to automatic speech and pen recognition
due to their power in representation [73].

A technical limitation of recognition technologies such as handwriting is that recognition ac-
curacies are not perfect. LaLomia [74] provided an argument and evidence that adults will tolerate
accuracy rates in handwriting recognition for a variety of tasks only as low as 97%.1 It is only
through writer-dependent recognition that current systems get even close to achieving this high
level of accuracy. It is difficult to quote a state-of-the-art handwriting recognition accuracy rate
because few rigorous evaluations have been done from a usability perspective on handwriting rec-
ognizers for any domain, a weakness identified early on in the literature [57] but never pursued.
Typically developers report accuracy numbers without much context or detail. Many of the evalu-
ations that do exist are now out-of-date (e.g., [88, 125]), as recognition technology has continued
to advance over the past decade or so. Handwriting recognition systems for math are especially
lacking in formal evaluations. MathPad2 is one of the few recent systems to perform a complete
user study designed to gauge factors such as user performance, satisfaction, ease-of-use, and learn-
ability along with recognition engine performance [77]. Still, the study reported in that paper
involved only seven users and did not report statistical significance of findings because it had only
one condition, although more rigorous studies are planned. Other recent studies have similarly
small numbers of users or report system accuracy as a footnote in the context of a larger discussion
of a new algorithm or technique (e.g., [131]).

The Lipi Toolkit is a project to provide tools to allow data processing and annotation, and
adapting recognizer engines to use in applications [89]. It is in the early stages of development and
therefore can currently only support a limited set of recognition algorithms and isolated characters
(with bounding boxes, for instance). A formal set of evaluations on an HMM recognizer is reported
in [84], but the domain is offline handwriting recognition of cursive handwriting. Its methodol-
ogy can be informative but must be extended in order to apply to online (real-time) recognition
applications.

User-centered design requires that both halves of the equation be considered when developing
an application to use handwriting input: both the accuracy of the system itself and how a user
reacts to and interacts with the system. Frankish et al. [52] explored the relationship between
recognition accuracy and user satisfaction and found that it was highly task-dependent: some tasks
(such as a form-filling task) were rated as very suitable for pen-based input no matter what the
recognition accuracy level was, whereas others (such as a diary task) were only rated highly when
accuracy was also high. The type of recognition supported may have also impacted these results;

1Note that human recognition rates are around 96.8% [125] and see § 2.3.5 for acceptable accuracy with children.
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the system only accepted isolated characters printed within boundary boxes. As newer, more
natural methods of handwriting input become available, it is important to re-evaluate them from a
usability perspective.

Some handwriting recognition researchers have implied that the burden is on the user to “adapt”
her handwriting style as she learns the idiosyncrasies of the particular recognizer (c.f., [52]). In
contrast, the foundational approach to this dissertation work is that the user should never have to
adapt to the system, but it should instead be the other way around. In fact, researchers have pointed
out that errors in handwriting input tend to be constant over time [88], implying that users will not
reliably adapt to specific recognizers.

2.3.5 Handwriting and Child-Computer Interaction
While higher recognition accuracies may manifest in certain domains such as beginning algebra
equation solving due to the limited symbol set and grammar used, the fact that middle and high
school students are the target audience of this work may itself hurt performance. Read et al.2 have
done extensive research on the area of designing, developing, and deploying user interfaces that
utilize handwriting or pen-based input for children. Much of the work has informed this disserta-
tion and the most relevant aspects are described here.

While work with adults has found that 97% accuracy is considered “acceptable” by users of a
system with handwriting input, Read found that 91% may be closer to the truth for children [117].
Though the study in [117] was quite limited, its results indicates a trend in a direction that could be
useful for designing these interfaces for students: knowing that lower accuracy may be acceptable
may help system designers be more confident about including handwriting input in their systems
for kids. Reasons for this difference in acceptability of errors include the fact that children find
handwriting input to be very appealing and engaging, thus increasing their overall tolerance for the
system making errors [112].

Children, and therefore students, are a specific population of users that share much in com-
mon with their adult counterparts, but who also have their own special usability requirements and
purposes for using computers or other technology. Druin and Solomon studied the types of re-
quirements children bring to the table and what features they want in a product, such as “honesty,
curiosity, repetition, and control” [44]. It can be extremely difficult, if not impossible in some
cases, for recognition-based interfaces to provide these features. Honesty and control are particu-
larly difficult, due to the ambiguous nature of the interface, which may provide conflicting feedback
to the children using the system. However, studies show that children experience difficulties with
the standard QWERTY keyboard, making text entry laborious and causing them to lose their train
of thought [119]. There also is some evidence that children may write more fluently when using a
handwriting-based interface than a standard keyboard-and-mouse interface when entering uncon-
strained text [120]. Deciding what type of interface to provide for a given application depends on
the trade-off between the pros and cons of each input modality, based on these findings.

2http://www.chici.org/

http://www.chici.org/
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While observational studies of children using pen-based input and handwriting recognizers
have been undertaken that determined some specific types of user errors (e.g., [115]), the studies
were in the domain of creative writing rather than math. In addition, these studies have used a
paradigm in which the input device and display screen are separate, requiring the student to look
at one or the other. In the studies reported in this dissertation, onscreen input was used in order to
eliminate many of these problems, although some still persist and others arise. Finally, while these
studies were conducted in the classroom, they did not address the topic of learning, only entering
input on the computer; their findings may shed light on the domain addressed in this dissertation
but it is not clear to what degree the results will generalize.

2.4 Interfaces for the Math Domain

2.4.1 Traditional Input Modalities
The tools currently available for entering and manipulating mathematics on the computer are
sharply divided between expert mathematics users and novices. For the purpose of this disserta-
tion, novice users are defined as those who are still learning mathematical concepts and notations,
or who need to use or include mathematics within text documents, but who are not professional
mathematicians. Entering algebraic equations is the focus of this dissertation, but similar lim-
itations exist for other, more complex mathematical operations. Current standard interfaces for
entering mathematical equations into computers are largely limited to keyboard- and mouse-based
interfaces. Mathematics tools that use a typing interface often require the user to become an expert
at a new programming language (e.g., MapleSoft’s Maple3, The MathWorks’ Matlab4, and Wol-
fram Research’s Mathematica5. These programs have a large learning curve, even for mathematics
experts, and therefore can be not only difficult and inaccessible for novices but also slow for ex-
perts to use. Furthermore, handwritten or typeset mathematics often appears in higher-dimensional
layouts, enabling the representation of, for example, both superscripts and subscripts. Figure 2.3
shows examples of the interface of each of the most commonly used math input tools currently
available. Most computer interfaces are optimized for entering linear text [131]. Linear input
methods might inhibit mathematical thinking and visualization, especially for some learning tasks.

Mathematics interfaces that do not require users to linearize their input are called template-
based editors, which force users to select pre-defined mathematical structure templates (e.g., frac-
tions, superscripts, subscripts) from a menu or toolbar and then fill in the templates with num-
bers and operators by typing on the keyboard. Users can construct a representation of higher-
dimensional mathematics, but must do so in a top-down manner, making later structural changes
difficult [131]. The most commonly accessible such tool for novices is the Equation Editor in-

3http://www.maplesoft.com
4http://www.mathworks.com
5http://www.wolfram.com

http://www.maplesoft.com
http://www.mathworks.com
http://www.wolfram.com
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(a) Maple. (b) Matlab.

(c) MathType. (d) Mathematica.

Figure 2.3: Examples of user interfaces for the most common computer tools for mathematics. Clockwise
from upper left: Maple, Matlab, Mathematica, MathType.
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cluded in Microsoft Office; the professional version of this equation editor is MathType6. Worthy
of note is that Microsoft has an extension to the Equation Editor for the TabletPC that allows
handwritten input7. However, because it is not customizable by the end-user or an application
developer, it cannot be easily adapted to new domains such as math learning, making it subopti-
mal for use in research into new handwriting recognition applications beyond the original goals of
EquationWrite.

2.4.2 Handwriting Input for Math
Unlike such computer-aided math input tools, writing math allows the use of paper-based math-
ematical notations simply and directly. It is therefore natural and convenient for users to com-
municate with computers this way [20]. Because pen-based input can use traditional paper-based
notations, it may be more suited for entering mathematics on computers. However, pen-based in-
terfaces for mathematics are not widely available. In the past, computer recognition of mathematics
has been limited to the recognition of a printed page of mathematics, but now with the prevalence
of TabletPCs and PDAs (personal digital assistants) which offer handwriting as a main mode of
input, online (that is, while in the act of writing) human handwriting recognition is becoming more
important.

Several research and commercial systems do exist that allow users to input and/or edit mathe-
matical expressions via handwriting input. MathPad2 [76] is among the most robust and complex.
In MathPad2, users can write out mathematics equations and the system animates the physical re-
lationships given by these equations, for example, to animate a pendulum or oscillating sine curve.
Other systems such as xThink’s MathJournal8 allow the sketching and writing of mathematics,
but rely on in-context menus to allow users to perform manipulations. In addition, even tradi-
tional keyboard-based math software such as Microsoft’s Equation Editor [106] are now offering
handwriting-based input, although limited in the amount of the equation that can be written or in
what can be done as far as manipulation of the equation once it is input. Finally, Littin’s recognition
and parsing system [83], Natural Log [91], inftyEditor [70], FFES [131], and JMathNotes [137]
are simple equation entry/editing programs without the added benefit of sketching or graphing.

The added-value of the work of this dissertation on handwriting input for tutoring software is
that the focus is on learning mathematics. Most other systems focus only on letting users input
mathematics. They do not provide a structured approach to learning how to perform mathematical
operations conceptually; they assume their users already know how. There is at least one system
that does consider education: Jumping Minds’ Practice series9. The Jumping Minds series has a
simple interface which use an instructional paradigm similar to drill-and-practice. Simple prob-

6http://www.dessci.com
7http://www.microsoft.com/windowsxp/downloads/tabletpc/educationpack/

overview4.mspx
8http://www.xthink.com/MathJournal.html
9http://www.jumpingminds.com

http://www.dessci.com
http://www.microsoft.com/windowsxp/downloads/tabletpc/educationpack/overview4.mspx
http://www.microsoft.com/windowsxp/downloads/tabletpc/educationpack/overview4.mspx
http://www.xthink.com/MathJournal.html
http://www.jumpingminds.com
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lems such as beginning arithmetic are provided to students one after another with feedback only of
the type “Correct!” or “Try again!” Oviatt has investigated the use of pen-based input for geometry
learning [102]. However, in neither of these works is there tailored feedback or a model of student
learning, both of which are significant contributors to the advantage of Cognitive Tutors (c.f., [5]).

2.5 Methods and Tools Used in this Dissertation

2.5.1 Wizard-of-Oz
The Wizard-of-Oz method can be used to evaluate an interface or interaction afforded by a technol-
ogy for which the computer component would be costly or difficult to develop. In this technique,
a human takes the place of the computer (usually this fact is unknown to the user), and performs
whatever computation is needed. For instance, in recognition systems, a Wizard-of-Oz set-up
would involve a human performing recognition rather than the computer. The user’s input would
be sent to the Wizard, who would then send back the “computed” results. To improve speed of
response, some level of automation can be provided to aid the Wizard. This technique was first
described in [132], though usually attributed to [59]. It was not referred to by the “Wizard-of-Oz”
moniker until [71]. See [113] for a detailed history and summary of this technique.

2.5.2 Cross-validation
In machine learning experiments, cross-validation is a method used in order to prevent over-
training to the training set. There are several different types of cross-validation (CV), including
repeated random sub-sampling CV, k-fold CV, and leave-one-out CV. The type used throughout
this dissertation is k-fold CV, in which the complete dataset is broken into k segments, usually five
or ten, called “folds.” Then, each fold is used as a testing set iteratively; in each case, the remaining
folds are all used together to build the training set. In this dissertation, the data for a particular user
are all grouped together in one fold, rather than allowing them to be split across several folds. k-
fold CV has the benefit over other methods that that all observations are used for both training and
validation, and each observation is used for validation exactly once. The cross-validation method
was first described in the field of statistical analysis in [55].

2.5.3 Cognitive Load Self-Report
Cognitive load [134] can be a difficult quantity to directly measure because interpreting a given
level of cognitive load depends on the context of its associated performance level [105].

According to [104], the more human-centered concept of mental effort can be used as an “in-
dex” of cognitive load, and can be measured both via objective techniques and subjective tech-
niques. Objective techniques include physiological parameters such as heart-rate variability, pupil-
lary dilation, blink rate, or galvanic skin response (GSR) [105]. Such physiological measurements
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can be invasive and costly to implement, especially during a classroom study. There is a question
as to whether these invasive measurement techniques might not themselves interfere and impose
their own mental effort. Self-report has been shown to correlate with physiological measures of
cognitive load [104], and is a much less invasive and costly measurement technique. In self-report,
participants are periodically asked to answer a question, usually on a Likert scale [81], during a
task, about their perceived level of cognitive load or mental effort. Much work has been done
establishing the validity of such self-report metrics in capturing a representation of participants’
mental effort or cognitive load (e.g., [58, 98]).

2.5.4 Collaborative Information Retrieval: Ranking Fusion
The problem of how to fuse two independently ranked lists emerges in many domains, especially
collaborative information retrieval and search. In metasearch, for example, multiple search engines
perform a query toward a particular information-seeking goal and must then combine the results
they have obtained into one coherent list. The question is of how best to order the results in the final
list when the original lists: (a) may not have the same number of elements, (b) may have elements
that do not appear in both lists, and (c) may have widely different ranking schemas resulting in the
elements appearing at very different positions in the two lists (c.f., [122]).

Borda count is the most commonly used method, as well as the simplest and fastest in terms
of processing speed [45], to address the problem of ranking fusion. The method was originally
proposed in the 1700s by a French mathematician and political scientist named Jean-Charles de
Borda, as a voting method to decide elections [22]. In this method, each voter ranks each of several
candidates by order of preference. The candidates are given a certain number of points based on
their position in each list, and usually the candidate with the most points is the winner.

In the method as applied to the search and information retrieval domain, the voters are two
sources of ranked lists such as search engines. The candidates are the elements of the rank-list
from each search engine. If the raw ranks are summed, the candidate with the least amount of
points will be the winner, or best match. A weighted Borda count can apply different weights to
the ranks from each source, if, for example, one search engine is more trusted than the other [42].
In the case of this dissertation, the handwriting recognizer is one “voter” and the other is the tutor’s
knowledge model. Both voters use their own information sources, the handwritten strokes and the
problem-solving operations and answers, respectively, to construct their own rank-lists. Then a
weighted Borda count is used to combine these lists into one aggregated list. More detail on this
procedure and how it is used in this dissertation can be found in § 6.1.2.

2.5.5 Freehand Formula Entry System
For handwriting recognition, the system primarily used in this work is the Freehand Formula Entry
System (FFES) [131]. However, several handwriting recognition systems were tested prior to se-
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lecting FFES, including JMathNotes [137] and Microsoft’s TabletPC recognizer10. FFES achieved
a much higher base accuracy rate than the others on a corpus of test data for the target popula-
tion and application of this dissertation. Chapter 5 discusses the comparison of these recognition
systems in further detail.

FFES is a pen-based equation editor written in C++. FFES recognizes mathematical equa-
tions via two components: character recognition (California Interface Tools, or CIT) [131], and
mathematical expression parsing (DRACULAE) [149]. The main advantage of this handwriting
recognizer is that it is easily trainable to whatever subset of the entire symbol set is needed; for
instance, one can keep only mathematical symbols and numbers that are needed in the beginning
algebra domain. By narrowing the symbol set, higher recognition accuracy rates can be achieved
because there are fewer possible character classifications from which to choose. In addition, this
system includes a built-in spatially-based mathematical expression parser (DRACULAE). Another
advantage of this system is that its source code is available under the Gnu Public License (GPL),
allowing changes to be made to the recognition algorithm. FFES has reported character recogni-
tion accuracy rates of about 77%, for both expert and novice users who had not trained the system
to their style of writing. With training, FFES can yield accuracy rates as high as 95% [131].

2.5.6 Cognitive Tutor Algebra
Cognitive Tutors are distributed by Carnegie Learning, Inc.11 Several full-year curricula are of-
fered, including Algebra I, Geometry, and Bridge to Algebra (pre-algebra). Cognitive Tutors have
been designed based on cognitive psychology theory and methods [5]. The primary instructional
paradigm is problem solving. In Cognitive Tutor Algebra, students solve problems set in realistic
contexts (see Figure 2.1). They are given word problems in which they represent the situation al-
gebraically in the worksheet, graph the functions, and solve equations with a symbol manipulation
tool.

In this dissertation, Cognitive Tutors are used as the intelligent tutor foundation; a handwrit-
ing interface is added to already-existing algebra equation-solving lessons. There are several ad-
vantages to using this system. First, its curriculum and implementation have been previously
developed and field-tested extensively. Second, Cognitive Tutors exist for a variety of learning
domains including algebra, geometry, foreign languages, chemistry, computer programming and
more, which provides possibilities for generalization of these techniques to other domains in which
handwriting may be advantageous. Third, Cognitive Tutors for mathematics are in use in about
2,600 schools in the United States, and therefore the results of this research have the potential to
be disseminated on a large scale in real classrooms and to improve math learning in students all
over the country.

10http://msdn.microsoft.com/en-us/library/aa510941.aspx
11http://www.carnegielearning.com

http://msdn.microsoft.com/en-us/library/aa510941.aspx
http://www.carnegielearning.com
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2.6 Glossary of Terminology
This list of terminology defines concepts used in this dissertation which may be less well-known
outside of their natal field. Throughout this dissertation, glossary terms will be indicated by bold
text, pointing as a reference back to this location.

Alignment: In multimodal interfaces, the problem of temporally or spatially aligning two distinct
streams of input in order to extract semantics or improve recognition.

Answer-level feedback: In intelligent tutoring systems, instructional feedback only on a student’s
final answer, without reference to the actual problem-solving steps that the student per-
formed.

Cognitive load: In learning science, amount of mental effort or work involved in a particular
activity. Load can be germane, meaning a propos and critical to the task, or extraneous,
meaning irrelevant and potentially interfering.

Cross-validation: In machine learning, a method of selecting from data to create training sets
such that all observations are used for both training and testing, and each observation is used
for validation exactly once. Overall performance is reported by averaging across the “folds.”
This prevents overfitting to a specific training set.

Enrollment: In speech or handwriting recognition, the training period during which a user trains
the recognition system to his specific style of speech or writing.

Isomorphic: In learning science, two problems are isomorphic if they have the same surface struc-
ture, and therefore require similar or identical skills in order to solve them. For example, the
problems 5 + 2x = 3 and 8 = 3− 4x are isomorphic forms of the ax + b = c problem type.

Likert scale: In social science, a method of quantitatively assessing a subjective variable, by ask-
ing to participants to rate their level of agreement with a statement. The rating scale is
typically arranged from least agreement to most agreement, with five to nine discrete values.

Mastery: In learning science and intelligent tutoring systems, the point at which a student demon-
strates a predetermined level of proficiency on certain material.

N-best list: In handwriting recognition, a list sorted by confidence of the top N candidates for a
given set of stroke(s) as returned by the system.

Rank-list: In information retrieval, a list of the top N candidates, sorted by the degree to which
they match the search criteria.

Retention: In learning science, the degree to which students retain knowledge after the instruc-
tional period has ended. An important measure of robust learning, retention is often mea-
sured via a delayed post-test.



CHAPTER 2. RELATED WORK 42

Robust learning: In learning science, and as defined by the Pittsburgh Science of Learning Cen-
ter (PSLC), a type of learning which is either retained for long periods, transfers to novel
situations, or aids future learning.

ROC curve: A graph of the relationship between the sensitivity or recall rate (true positive rate)
vs (1 - the specificity) or precision rate (false positive rate) of some binary classifier, e.g., a
threshold value.

Scaffolding: In learning science, tutoring aids that help students successfully arrive at the solution
to a problem. Typically, these are faded with time so that students are eventually solving
problems on their own.

Step-targeted feedback: In intelligent tutoring systems, instructional feedback on the specific
problem-solving process the student performed, with a focus on individual steps; this feed-
back may be immediate (after each step is executed) or delayed (at the end of an entire
problem).

Transfer: In learning science, the ability for students to apply knowledge they learn in one situa-
tion or domain to another they encounter later.

Wizard-of-Oz: In user testing, a study in which part or all of a complex technical component
is simulated by a human for the purpose of evaluating the interaction made possible if the
technical component were available.

Worked example: In learning science, a worked-out problem solution provided to a student as
an example of the conceptual problem-solving steps needed to solve a particular type of
problem.

Writer-dependent recognition: In handwriting recognition, recognition in which the recognizer
has been trained only on the same user on which it is being tested.

Writer-independent recognition: In handwriting recognition, recognition in which the users in
the recognizer’s training set do not intersect with the users in the testing set.



Chapter 3

Handwriting Helps: Theory from Learning
Science and Human-Computer Interaction

The foundational approach this dissertation takes is to establish the ways in which handwriting
input can provide benefits for students in intelligent tutoring systems, in order to properly moti-
vate research into ways to effectively incorporate handwriting input into ITS for math and improve
handwriting recognition accuracy for this application domain. In service of this approach, hypothe-
ses were formulated as to how the benefits of handwriting would manifest and what factors would
be causing these advantages, from both a usability and a pedagogical perspective. This chapter
describes these theoretical foundations in terms of motivating the use of handwriting input in tu-
toring systems for math. The chapter concludes with pointers to the places in this dissertation that
directly address each factor hypothesized to contribute to handwriting input’s benefits for learning
math on the computer.

3.1 Usability and Handwriting
Given prior studies where typing was found to be faster than handwriting (e.g., [24, 69]), one might
ask why handwriting would ever be used instead of typing. In point of fact, studies favoring typing
over handwriting with respect to speed have focused on entering paragraphs of English text and
may not apply to equation entry. Standard keyboards do not allow users to easily type complex
mathematical expressions such as fractions, exponents or special symbols like

∑
and

√
. It is

possible that for simple linear equations, the keyboard may be faster.
Although some systems that can recognize handwritten equations have reported evaluations

(e.g., [52, 77, 88, 125, 131]), none of them have reported an evaluation of the handwriting modality
from a usability perspective, de-coupled from recognition limitations with respect to accuracy and
correction of errors. A foundational assumption of this work is that usability and user preference
concerns are critical to the success of a system. However, evaluating usability of a modality in
the company of a system’s recognition errors measures only the usability of that particular system
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with its particular idiosyncratic recognition behavior. The usability of handwriting input itself has
not been established prior to this dissertation. Without such motivation, further effort to develop
handwriting recognition for user domains might be superfluous. For novice users of math input
tools, such as middle and high school students, this dissertation posits and proves the hypothesis
that handwriting input should be faster and more natural for them due to its similarity to the familiar
modality of paper.

3.2 Pedagogical and User-Focused Factors
Pedagogical theory grounds the approach taken in this work. This work hypothesizes, and then ex-
plores, how several factors could contribute to pedagogical advantages that handwriting interfaces
may have in the domain of learning environments, especially for the mathematics domain.

3.2.1 Cognitive Load
One factor which might contribute to handwriting’s advantages for learning is an expected reduc-
tion in cognitive load due to the use of handwriting rather than a menu-based typing interface.
Extraneous cognitive load (c.f., [134]) can be thought of as a measure of how much mental over-
head students experience as a result of interface-related tasks while they are also trying to learn a
mathematical concept. That is, extraneous cognitive load interferes with the learning event.

Although intelligent tutors for math have improved with respect to pedagogical style and over-
all effectiveness over the last 15 years (e.g., [38]), their interfaces have remained more or less the
same: keyboard-and-mouse windows-icons-menus-pointing (WIMP) interfaces. Output modality
contrasts have been studied with respect to learning, including the use of animations, diagrams and
talking heads (e.g., [60, 92], but the literature has been silent on the effects of input modality on
learning.1 In designing such interfaces for online learning and tutoring, it is important to consider
what aspects of using the software are directly relevant to the learning event and what aspects are
extraneous. The output modality of the student is most likely extraneous to the learning event; that
is, the actual method of outputting the steps of a problem-solving process is irrelevant to learning
the problem-solving process. However, inherent in various output modalities are the amount of
attention, time and extraneous load spent in performing the cognitive, perceptual and motor pro-
cesses associated with generating that output. These output processes are irrelevant to the cognitive
and perceptual processes associated with solving the problem, and as such distract the user from
the learning event. To the extent that certain modalities require less time, and therefore attention,
the user experiences less distraction from the learning event, and vice versa.

For example, in current Cognitive Tutors, students are required to search for the appropri-
ate command operation in a set of menus and submenus (e.g., “Combine like terms”) in order

1Note that input modality here refers to the modality of generation by the student, and the output modality is the
modality presented to the student by the system.
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to perform the next step of the equation’s solution. This requires the student to either memorize
or search the menus after every problem-solving step. Issues of cognitive load caused by such
resource-consuming interfaces may interfere with learning of the goal concepts. This dissertation
hypothesizes that a handwriting-based interface that allows students to directly represent and ma-
nipulate equations, via standard mathematical notations, induces less cognitive overhead for the
students and interferes less with the primary learning event. This hypothesis can be measured by
self-reports and tests.

3.2.2 Spatial Characteristics of Math
Another factor that may contribute to pedagogical advantages of handwriting input is that in math-
ematics, the spatial relationships among symbols have inherent meaning. For instance, the spatial
placement of the x in these two expressions changes the meaning of the expression significantly: 2x

vs 2x. Handwriting is a much more flexible and robust modality for representing and manipulating
such spatial relationships, which become more prevalent as students advance in math training to
calculus and beyond. Two-dimensional mathematics can be difficult to represent and manipulate in
text-based interfaces, involving menu-based markups or special characters. Handwriting provides
affordances for annotations and nonlinear input much more naturally and easily than typing, from
a user-centered perspective. This dissertation finds support for the hypothesis that the appearance
of non-keyboard math symbols, or even nonlinear notations such as fractions, magnifies the nega-
tive impact of typing interfaces compared to handwriting ones, especially in terms of input speed
and efficiency. Increased input efficiency will allow students using handwriting to cover more
material in the same amount of time, achieving more advanced curricular goals than their typing
counterparts.

3.2.3 Fluency and Transfer to Paper
Modality fluency and familiarity is another factor that might contribute to handwriting’s advan-
tages for learning. Students practice in the classroom, do homework, and take tests on paper using
handwriting; this modality may become more fluent for them than typing for students when solv-
ing algebra equations. An interface that can take advantage of this fluency should allow a higher
degree of transfer and cause the tutoring system to overpredict student performance after achiev-
ing mastery in a lesson less than a typing interface for the same lesson. Anecdotally, teachers
have said that students do have trouble moving from the computer interface to paper, meaning that
the tutor may overpredict student capabilities. A tutoring interface that better predicts students’
performance when working on their own is important to ensuring accurate assessment of student
skills, and to ensuring that the tutoring system is actually helping the students. This dissertation
hypothesizes that, due to its similarity in both look and feel to paper, tutors that allow handwriting
input will better predict student mastery levels, as measured by performance on classroom tests,
than tutors that use typing input.
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3.3 Bridging Pegagogy and Technology
The main research pillars of this dissertation are:

1. that recognition accuracy can be improved “enough” to be usable by students by taking
advantage of domain-specific knowledge, and

2. that less than 100% recognition accuracy will be “enough” in the tutoring domain because
the instructional paradigm can be designed to rely less heavily on step-by-step feedback.

These hypotheses focus strongly on creating a bridge between the world of pedagogy and the
world of recognition technology. Each half of the equation can capitalize upon elements of the
other to overcome its own weaknesses and vice versa. The interplay between recognition accuracy
and instructional feedback is the hub around which this dissertation centers.

Recognition accuracy rates vary between systems, but are usually better for domain-specific
vocabularies and applications [86, 108] or for writer-dependent systems in which the recognizer
has been trained on the writing of the user using it [131]. In the math tutoring domain, the vocabu-
lary is small (only 22 symbols are used throughout this dissertation), and domain-specific context
information is available. However, training handwriting recognition engines usually involves a
large upfront time commitment during which the user inputs many (20 or more) examples of each
character the recognizer is to understand. In a classroom setting, teachers are resistant to spending
any classroom time on non-learning objectives in order to allow students to train the handwriting
system. Therefore, it is imperative that the system maximize recognition accuracy while minimiz-
ing upfront training cost for individual users.

The type of instructional feedback a tutoring system can provide is dependent on the level of
accuracy or confidence the system has about its interpretation of student input. If the system is very
unconfident about its interpretation (i.e., it is known to be highly inaccurate), it may only be able
to provide feedback at the most abstract level—whether or not the final answer is correct (answer-
level feedback). If it is very confident, it may be able to provide more detailed feedback at a lower
level of granularity, for instance, step-targeted feedback. Thus, the accuracy of the recognition is
related to the level of feedback the system can provide. Before this work was undertaken, it was not
clear what level of feedback would be required for students to succeed in the math tutoring domain.
Through the course of this dissertation it was found that the use of worked examples, in which
students study or copy complete problem solutions in addition to solving problems, helps mitigate
the criticality of step-targeted feedback. In addition, because in this domain the final answers
(e.g., x = −4) tend to be short and simple, if needed students can type them into the interface
after entering their solution process via handwriting; typing the last step completely eliminates
ambiguity and allows answer-level feedback to be perfectly accurate.

The learning sciences literature has not yet come to a consensus on the benefits of including
worked examples in intelligent tutoring systems, or even how and when to provide them, or what
they should look like [128]. This dissertation provides valuable evidence in favor of annotated
worked examples interspersed with problem-solving, in the company of step-targeted feedback.
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Prior literature has shown that, in a comparison of step-targeted vs answer-level feedback,
students perform better with the former. In the LISP programming tutor study of [36], in the only
condition that had only answer-level feedback, students took longest to complete the lesson and
performed worst on post-test quizzes. That study was not done in the context of worked examples,
however, but in straight problem solving, which may be where the critical difference lies. Trafton
and Reiser [140], in the same LISP programming tutor curriculum, demonstrated large learning
benefits for relevant worked examples interleaved with problem solving and did not give step-
targeted feedback. The paradigm used in this dissertation is to study a relevant worked example
just before solving a problem, as a means to provide a level of feed-forward help that may be able
to compensate for less step-targeted feedback. The outcome of using this method will provide
another datapoint in favor of worked examples in tutoring systems and may begin to focus the
design of consistent instructional paradigms based on worked examples.

The learning and technology components of this work are highly intertwined. The relationship
between these components is examined, and alternative methods of instruction, such as worked
examples, are explored, that may help the resulting system become more than the sum of its parts.

3.4 Proving the Hypotheses
To summarize, the factors this dissertation posits as the source of handwriting input’s benefits for
online math learning are as follows:

1. Speed of input and time on task

2. User errors

3. User preferences

4. Reduced cognitive load via unconstrained input

5. Better support for the spatial characteristics of math notation

6. Better transfer to paper and tutor predictiveness

Each of these factors is explored in the foundational user studies described in Chapter 4. For
quick reference, cross references to the specific findings that address each one from each study are
listed here.

3.4.1 Usability Measures
Speed of input and time on task. Measured via computer logs of student input and tutoring
sessions, on both a total-time-spent scale and an individual-equation (or problem) scale. See § 4.1,
§ 4.2, and § 4.3 for how this is addressed in each of the studies.
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User errors. Measured via computer logs of student input and tutoring sessions. In some studies
it was measured via human coding of video data showing student input (§ 4.1). In those cases, an
“error” was defined as when the user submitted a completed equation with an incorrect character,
or when the user acknowledged having made an error by correcting something previously entered
(e.g., scratching out, overwriting). In other studies, it was measured by virtue of the tutoring system
logs indicating on which steps students made a mathematical or conceptual error (§ 4.3), or if the
students entered an incorrect final answer (§ 4.2 and § 4.3).

User preferences. Measured via Likert scale questionnaires (§ 4.1) or open-ended survey ques-
tions (§ 4.2). Students were asked to indicate the degree to which each input modality felt “natural”
for entering math (§ 4.1), or which modality they liked best and why (§ 4.2), and whether they
would want to use any of the modalities again for math (§ 4.2).

3.4.2 Pedagogical Measures
Reduced cognitive load via unconstrained input. Measured via self-report on a Likert scale of
mental effort in § 4.3. Students were asked to indicate the degree of mental effort they felt during
the study and how this compared to normal use of the Cognitive Tutor in their classroom. These
self-report questions were modeled on the same questions used to measure cognitive load in [103].

Better support for the spatial characteristics of math notation. Measured by item analysis on
individual equations or problems students entered via different modalities; some items contained
non-keyboard characters such as

∑
and

√
(§ 4.1), others contained fractions, a common nonlinear

math notation (§ 4.2). Interactions between the occurrence of these types of math notations and
other measures such as input speed and errors were analyzed.

Better transfer to paper and tutor predictiveness. Measured via correlation of performance
during the training session (e.g., tutor use) and performance on the tests (§ 4.2 and § 4.3). Per-
formance during training is defined as the proportion of training problems solved correctly on the
first try; this is analogous to a test-taking environment in which students only have one try to solve
a problem. The correlation between the two reveals the degree to which a tutoring environment
effectively predicts student performance when solving problems on their own vs with the tutoring
hints and scaffolding available.



Chapter 4

Handwriting Helps: Foundational Studies

In order to begin exploring ways in which handwriting input has advantages for students inputting
and learning mathematics, several foundational studies were conducted. The first matter of interest
was whether or not the use of handwriting input provided any usability benefits—after all, students
are users, too, and it is important to ensure the most usable interaction possible so as not to interfere
with the learning process. After establishing that handwriting did in fact have benefits in terms of
usability, showing how and to what degree handwriting input leads to improved learning was next.

Table 4.1 enumerates each study performed in this dissertation and gives a summary of the im-
portant experimental design variables. The following sections describe each study in detail. None
of the user studies reported in this dissertation were conducted with a prototype where handwriting
recognition was used to respond to the user. In all cases, the system allowed handwriting input, but
instructional feedback was either not provided or was only provided on a portion of the input that
was typed, for instance, the final answer of a problem-solving solution. Following these studies,
which establish the benefits of handwriting input for learning and the necessity for more detailed
feedback than one can provide without recognition, technical improvements were undertaken on a
recognition system to improve accuracy for the purpose of provided detailed feedback to students,
described in Chapters 5 and 6. In Chapter 7, a system is described that can make use of such
improvements in order to provide a natural interaction flow for the students; the implementation
and evaluation of such a system is left to future work.

4.1 Study 1: The Math Input Study
The research questions addressed by this study1 include:

• Which of the most common desktop input modalities is the fastest or least error-prone when
entering mathematics on the computer?

1This section is partly based on content from the following publications: [8, 9].
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Table 4.1: All user studies performed to support this dissertation. Note that although all studies include
a handwriting input modality, none use real-time recognition or provide feedback to the participants as to
what specifically the system thinks was written.
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• Do these effects change significantly as the mathematics being entered increases in complex-
ity?

• Which modality do users rate most highly as being natural for entering mathematics on the
computer?

Overall, this study found that handwriting was three times faster for entering calculus-level
equations on the computer than typing using a template-based editor, and this speed impact in-
creased as equations got more complex (namely, as characters not on the keyboard were included).
In addition, user errors were three times higher when typing than when writing for entering math on
the computer. Finally, users rated the handwriting modality as the most natural, suitable modality
for entering math on the computer out of the ones they used during this study.

4.1.1 Experimental Design
This study was a within-subjects laboratory study in which users were asked to enter given math-
ematical equations on the computer in several modalities. Prior literature had indicated that hand-
writing was not any faster or less error-prone than typing [24], but that research was in the domain
of writing natural English. The hypothesis of this study was that studying handwriting for mathe-
matics would yield different results.

In this study, users were asked to enter mathematical equations of varying complexity using
four different modalities: (1) traditional keyboard-and-mouse (typing) using Microsoft Equation
Editor (MSEE), (2) pen-based handwriting entry (handwriting), (3) speech entry (speaking), and
(4) handwriting-plus-speech (multimodal). MSEE was chosen as a representative tool for novice
users because it is in wide use and is a prime example of a common interface for mathematics.
There was no automatic handwriting or speech recognition in this (or any) study; users simply
input the equations and did not get feedback about computer recognition of their input. Figure 4.1
shows the interfaces used in the study as users saw them.

Pairing handwriting and speaking may not immediately seem like a natural choice. A multi-
modal input method combining handwriting and speech was included because such a combination
might enhance computer-based recognition of equations (c.f., [100]) and could aid user cognition.
Research has shown that people speak in an “inner voice” (subvocalization) while reading or writ-
ing [85]. Several users during the sessions, in the speaking-only condition, wrote in the air with
their hands while speaking the equation out loud. Exploring the pairing of these two modalities
may be important to understanding how to support user cognition during handwriting input on the
computer.

Participants

Forty-eight paid participants (27 male, 21 female), graduate or undergraduate students at Carnegie
Mellon, answered an ad to participate in this study. All participants were fluent English speakers



CHAPTER 4. HANDWRITING HELPS: FOUNDATIONAL STUDIES 52

(a) Typing Condition.

(b) Handwriting Condition.

(c) Speaking Condition.

Figure 4.1: Screenshots of the interfaces used in the Math Input Study. From top to bottom: the typing
condition using Microsoft Equation Editor, the handwriting condition, and the speaking condition. The
handwriting-plus-speaking, or multimodal, condition looked like the handwriting condition from the user’s
perspective; the speech recorder was running in the background.
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with unaccented speech. No effects of age or ethnicity were seen in exploratory data analysis,
so these variable were excluded from further analyses. Most (33) had no experience with MSEE
before the study. Of those who knew of it or had used it, only two classified themselves as knowing
it “very well.”

Procedure

The experiment was a within-subjects design in which participants came to the lab for a 45-minute
session and entered mathematical equations on a TabletPC in four different conditions. There was
a list of 36 equations (nine per condition) which remained constant for all participants; order of
presenting each condition was counterbalanced across all possible orderings. Before the session,
participants took a math symbols recognition test to ensure that all users would be able to speak
the name of each symbol they would encounter. Participants answered a questionnaire before the
session in which they rated their pre-existing preferences for each condition. Before performing
each condition, participants were instructed as to how to enter equations in that condition. For
instance, in the handwriting condition, the experimenter explained that the stylus could be used like
a regular pen on paper. The experimenter did not tell the participants in what format to write the
math, or how to find certain symbols or express themselves. Participants were given a five-minute
practice period before the typing condition to familiarize themselves with the MSEE toolbar. This
toolbar provides menus to allow users to enter special symbols, fractions, exponents, etc. During
this time, participants explored on their own with no feedback or input from the experimenter.
There was no exploratory period for the other three conditions; to account for interface learning
effects, the first two equations in each condition were considered practice and were not included in
the analyses. When participants finished all four conditions, they answered a questionnaire again
rating their preferences for entering equations in each condition. All materials for this study are
given in Appendix B.

Stimuli Design

The experimental stimuli (36 equations) were designed with two factors in mind: (1) the number
of characters in the equation, and (2) the number of “complex” symbols appearing in the equation
such as fractions, exponents, special symbols, and so on. Figure 4.2 shows three sample equations
in increasing complexity from left to right. The first equation has 10 characters and has no special
symbols that do not appear on the keyboard. The second equation has 17 characters and also no
non-keyboard symbols. The third equation has 14 characters, two of which are special symbols.
Both factors should have an effect on user performance. Increased length should increase time
because additional characters in any modality would require more time to enter. Adding symbols
that do not appear on the keyboard, such as

∑
and

√
, should only have a significant effect in

the typing condition, because special symbols are no more difficult than normal symbols when
speaking or writing. The length of each equation ranged from 10 to 18 characters. All 36 equations
are listed in full in Appendix B.1.
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Figure 4.2: Experimental stimuli as users saw them.

Measures

The data from each session were collected at 30 frames per second by capturing the screen output
and audio on a DV recorder. The videotape was later analyzed by a single coder to extract the
number of errors each participant made while entering each equation in each condition. An “er-
ror” was defined as when the user submitted a completed equation with an incorrect character or
acknowledged having made an error by correcting something previously entered. Time for each
participant to enter each equation in each condition was logged. User preference questionnaires
rating each modality were administered both before and after the session, consisting of a five-point
Likert scale from “least suitable or natural” to “most suitable or natural” (see Appendices B.3
and B.4 for the exact wording and form of the questionnaires).

4.1.2 Results and Discussion
All means for quantitative measures reported for the Math Input Study are given in Table 4.2.
Individual tables are referenced in each relevant section that follows.

Qualitative Results

Table 4.3 shows examples of an equation from each condition and a randomly chosen user’s re-
sponse to that equation. In the typing condition, students typically did utilize the template menus
provided by MSEE in order to construct their equations. However, in the example given in Ta-
ble 4.3 for the typing condition, that user did not use the template for the absolute value symbol.
The user could not find the appropriate symbol on the keyboard, substituting ’/’ instead. The ’/’
and the ’1’ instead of ’x’ were counted as errors. The equation shown for the typing condition
took the longest to complete out of all equations, at 209 seconds for that user. In the multimodal
condition example, the use of ’()’ quantifiers instead of ’[]’ was not counted as an error, as they are
syntactically and semantically equivalent quantifiers.

The speech utterances of students speaking math in this study were very interesting sources of
data. Although a detailed analysis was out of scope for this work, it is worth mentioning some
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Table 4.2: Means tables for all measures reported from the Math Input Study.

(a) Means table of time per equation in seconds. N is the number of equations.

Condition Mean N StdErr
Typing 46.193 315 0.636
Handwriting 15.688 333 0.597
Speaking 13.958 313 0.625
Multimodal 19.513 325 0.608

(b) Means table of total errors per equation. N is the number of equations.

Condition Mean N StdErr
Typing 1.769 316 0.106
Handwriting 0.589 332 0.105
Speaking 0.658 311 0.101
Multimodal 1.395 326 0.102

(c) Means table of interaction between appearance of non-keyboard characters (e.g., “Complex”) and con-
dition with respect to time per equation in seconds. N is the number of equations.

Simple Complex
Condition N Mean StdErr N Mean StdErr
Typing 232 39.09 0.687 83 51.98 1.196
Handwriting 238 14.50 0.677 95 16.85 1.076
Speaking 224 12.59 0.703 89 15.31 1.123
Multimodal 233 17.54 0.687 92 21.35 1.108

(d) Means table of Likert scale ratings of user preferences for each condition. Higher numbers correspond
to a better rating. N is the number of participants.

Pre-Session Post-Session
Condition N Mean StdErr Mean StdErr
Typing 48 4.10 7.48 3.33 9.42
Handwriting 48 4.46 11.64 4.75 3.67
Speaking 48 3.81 6.51 3.33 6.72
Multimodal 48 n/a n/a 4.00 7.83
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high-level qualitative notes here.2 The length of student utterances in speech was affected by the
appearance of non-keyboard characters such as

∑
and

√
. The occurrence of these characters

appeared to prompt more phrases such as “uh,” “um” and so on. The average utterance length
across all equations (not accounting for number of characters in the equation) was 17.6 words
(including conversational phrases such as “uh” or self-corrections such as “oops”), with a range of
nine to 42 words per utterance. The number of pauses in spoken utterances between the speech-
only and multimodal conditions did differ significantly, however. This difference is likely due to
the effect of synchronization of speech and writing in the multimodal condition. The overall mean
number of pauses per equation was 3.0, with a range of zero pauses to 13 pauses per equation
(speech-only mean: 2.76, stdev: 1.49; multimodal mean: 3.6, stdev: 1.46).

Finally, ambiguity control in speech was inconsistent, even within users. The examples of
speech shown in Table 4.3 show that participants were not generally very precise in their speech
with respect to ambiguity of expression. For instance, they often left out phrases such as “quan-
tity of,” especially in complex equations where it might become difficult to keep all of the open
quantities in short term memory. In comparing users’ speech to the typeset equations with respect
to parenthetical markers, it seemed that participants were most likely to omit parentheticals in the
speech modality, but were also more likely to add in their own, different parentheticals in those
conditions containing speech (speech-only and multimodal). In addition, they also tended to add
more parentheticals in the typing condition. This may be due to the fact that some of the partic-
ipants linearized the typeset version of the equation while typing it, thus requiring the addition
of parentheses to be interpretably correct. These ambiguities are not counted in general as errors
throughout this dissertation, as they are naturally occurring speech patterns. For teaching purposes,
tutoring systems can correct students if the teacher desires them to be mathematically precise in
speech, but the system must be able to recognize the common patterns of speech in general.

Speed

Means of time per equation in seconds by condition are shown in Table 4.2(a). The typing con-
dition was three times slower than the others, including handwriting, and this difference was sig-
nificant. A univariate ANOVA on time per equation was conducted considering the following
factors: (1) participant as a random factor to account for the correlations between datapoints,
(2) input condition and appearance of non-keyboard characters in each equation as fixed fac-
tors, and (3) the number of characters in each equation as a continuous covariate. This analy-
sis yielded a significant interaction between condition and appearance of non-keyboard characters
(F3,1241 = 13.53, p < 0.05), and a significant main effect of the number of characters in the equa-
tion (F1,1241 = 39.35, p < 0.05). Estimated marginal means of time per equation given these two
factors are shown in Table 4.2(c). Longer equations took more time to enter. The typing condition
experienced a much larger slowdown due to appearance of non-keyboard characters than the other
three conditions, which follows intuitively from the nature of the factor itself. Writing or saying

2Detailed statistics on these results can be found in [9].
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Table 4.3: Samples of user input in the four conditions of the Math Input Study. Note that the typing sample
contains three errors: the use of ’/’ instead of ’|’ and ’1’ instead of ’x’ (twice). In the multimodal entry, the
point at which the user substituted which quantifier symbol was used was not considered an error.

Condition Typeset Version Example of User Input
Typing 1

|x|+1
− x2

2
<= y 1

/1/+1
− x2

2
<= y

Handwriting f(x) = 5(y2−y1)

Speaking y−4
y2−5y+4

= 9
“y minus four over y squared mi-
nus five y plus four equals nine”

Multimodal
∑

[c2
k − 2ck − 10]

“sum of c subscript k squared
minus two c subscript k minus
ten close parentheses”

a character that does not appear on the keyboard but is a common mathematical notation is no
more difficult than writing or saying actual keyboard characters. A planned contrast comparing the
typing condition to the other three conditions showed a significant difference (t(1241) = 34.91,
p < 0.05), typing being slower than the others. Figure 4.3 shows a graph of the mean time in
seconds for each condition.

User Errors

Means of errors per equation by condition are shown in Table 4.2(b). The typing condition had
three times as many errors as the handwriting condition, and this difference was significant.

A univariate ANOVA on errors per equation was conducted with the same factors as above. A
significant three-way interaction was found between condition, length of the equation, and appear-
ance of non-keyboard characters (F4,1222 = 2.39, p < 0.05), which implies that the length of the
equation alters the relationship between condition and appearance of non-keyboard characters with
respect to errors per equation. Students are more likely to make many errors (i.e., more than the
length of the equation) on equations of any length when typing than when handwriting or speak-
ing, where the number of errors increases linearly with length of equation. Because there were no
significant two-order interactions, however, here the main effects of each variable are the focus.
Significant main effects of all three factors were found: condition (F3,1232 = 35.33, p < 0.05), the
appearance of non-keyboard characters (F1,1232 = 13.61, p < 0.05), and the length of the equation
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Figure 4.3: Mean time in seconds per equation by condition. Error bars indicate standard error.

(F1,1232 = 4.95, p < 0.05). Longer equations and appearance of non-keyboard characters tend to
result in more errors.

A planned contrast comparing typing to the other three conditions yielded a significant differ-
ence (t(1232) = 8.17, p < 0.05), typing having more errors per equation. Figure 4.4 graphs the
expected mean number of errors per equation for each condition. The pattern in this graph matches
the pattern of speed by condition shown in Figure 4.3. The relationship between condition and er-
rors helps to explain why some conditions are slower than others. It is likely that the fact that the
typing condition had the most errors per equation is an artifact of the input device itself. Because
the keys are close together on a keyboard, people often make typographical errors and must use
the backspace key to correct them, whereas in the other conditions errors are more likely to be
cognitive (although slips of the pen are possible). The multimodal condition has about as many
errors as the speaking condition plus the handwriting condition combined because users did both
modalities and could make independent errors in each of them.

Table 4.4 gives a summary of the distribution of errors per equation across the four conditions.
Errors occurred on 46% of all equations. The speaking condition was the least error-prone with
errors on only 29% of equations performed in this condition, and a maximum of five errors on any
one equation (compared to 55% in the typing condition, with a maximum of 15 errors). However,
participants rated speaking lowest in spite of its higher accuracy. They said later in informal
interviews that they did not like the lack of feedback in the speaking condition—with no visual
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Figure 4.4: Mean number of errors made per equation by condition. Error bars indicate standard error.

Table 4.4: Distribution of errors per equation by condition.

Condition % of Equations
with No Errors

% of Equations
with One Error

% of Equations with
Multiple Errors (Max
Errors)

Typing 45% 23% 32% (15)
Handwriting 58% 28% 14% (5)
Speaking 71% 20% 9% (5)
Multimodal 45% 24% 31% (11)

reminder of what they had said, they did not feel confident in that modality.

User Preferences

Users were asked both before and after the session to rate the “suitability” and “naturalness” of
each modality in the session for entering mathematics on computers (see Appendix B.3 for the
exact questions asked). Users rated each modality’s suitability on a five-point Likert scale. Means
of these ratings by condition are shown in Table 4.2(d). The pre-session questionnaire did not ask
a question about the multimodal condition because it was not a condition that participants were
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Figure 4.5: Pre-session and post-session questionnaire rankings of each condition on a five-point Likert
scale. The pre-session questionnaire did not include a question about the multimodal condition. Error bars
indicate standard error.

likely to have encountered before the study. The conditions were rated equally well before the ses-
sion, indicating no pre-existing biases. After the session, the handwriting condition was rated more
highly than the typing condition, and this difference was significant. On the pre-test questionnaire,
there was no significant difference between the typing condition and the handwriting condition
(t(47) = −1.61, n.s.). However, on the post-test questionnaire, users rated the handwriting condi-
tion higher than the typing condition (t(47) = 4.49, p < 0.05). Figure 4.5 shows a graph of the
overall mean pre-session and post-session questionnaire ratings of the four conditions in the Math
Input Study.

Users were not told how to perform the multimodal condition, meaning they could either use
both modalities in parallel or perform one and then the other. Most users (77%) chose to use
the two modalities in parallel for each equation. Of those who did not use the modes in parallel,
they were split evenly between starting with handwriting or starting with speech. The way users
performed the multimodal condition did not significantly affect their rating of that condition post-
session (F2,45 = 0.34, n.s.).
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4.1.3 Conclusions
This study found that handwriting was faster, less error-prone and more well-liked by users for
entering math on the computer than a common typing interface. The increased efficiency of a
handwriting interface for a math tutor would allow students to accomplish more problems in the
same amount of time, and the fact that students prefer handwriting might lead to increased engage-
ment during tutoring (c.f., [47]). As a result, this study established that, even when not considering
learning as a task, math input via handwriting is more usable than typical typing interfaces for
math.

4.2 Study 2: The Lab Learning Study
The Math Input Study established the usability advantages of the handwriting modality for enter-
ing math on the computer. The next step was to determine if these effects applied for the target
population of algebra learners, and also to begin to collect evidence for the type and degree of
learning improvements handwriting input might engender.

The research questions addressed by this study3 include:

• Do students experience differences in learning due to the modality in which they generate
their answers?

• Do the results reported in § 4.1, with college students entering calculus expressions with
complex symbols often not found on keyboards, generalize to a younger population and
simpler equations that can be typed easily?

Overall, the Lab Learning Study did in fact show that the usability advantages generalized to
students performing a learning task with simpler equations. Students were twice as fast to com-
plete the tutoring lesson in handwriting than in typing, but experienced no significant difference
in learning—the extra time students spent in the typing condition did not help their learning. In
addition, students overwhelmingly chose handwriting as their favorite of the modalities that they
tried during this study.

4.2.1 Experimental Design
The study was a laboratory experiment with both within-subjects and between-subjects phases,
described in detail below, with local middle and high school students. Three modalities were
included in this study: typing, in which students typed out the solution in a blank text box (not
MSEE); handwriting, in which students wrote the solution using a stylus in a blank space on
the screen; and multimodal, identical to handwriting but students were also asked to speak aloud

3This section is partly based on content from the following publications: [12, 13].
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the steps to the problems they were solving. This condition was included based on prior work
finding that spoken self-explanations are more effective for learning than written or typed ones [63].
Speaking-only was not included in this study because of its extremely low user satisfaction rating
in the Math Input Study. Examples of the interfaces the participants used in each condition are
shown in Figure 4.6.

Participants

In this study, 48 middle and high school students participated. Ten students were dismissed due to
technical difficulties with the experiment software or due to scoring 100% on the pre-test measur-
ing algebra skills. Of the remaining 38 students, 19 participants were female and 19 were male.
They ranged from sixth to tenth grades (age range: 11 to 17, mean: 13.5 yrs). They were all paid
participants who responded to a newspaper ad offering help in algebra. Most students had not used
handwriting input on the computer before and two-thirds claimed to be very comfortable with typ-
ing. In spite of the wide range of ages and grades, most students were at about the same level of
algebra skills, based on the pre-test. No effects of ethnicity, gender, age or other demographic data
were seen during exploratory data analysis, so they are excluded from further analyses here.

Procedure

All students came to a research laboratory at the university for about two and a half hours. The
session had two main phases. Before each phase, a training handout was distributed and the experi-
menter reviewed this with each participant to ensure he or she understood the task and the interface.
During the first phase, students copied given equations of beginning algebra level in all three con-
ditions; an example of these equations is given in Figure 4.7(a). In the second phase, following
a brief pre-test to gauge prior algebra knowledge, students solved beginning algebra equations in
only one of the three conditions. The equations students saw in this part of the session were sim-
pler than in the copying phase (see Figure 4.7(b)). All equations given in this study during both
phases are given in Appendix C.1. During the problem-solving phase, students alternated copy-
ing a non-annotated worked example (see Figure 4.7(c)) and then solving an analogous equation
while referring to the example. This instructional paradigm was modeled after [140] and was cho-
sen because step-by-step feedback was not provided during problem-solving due to technological
constraints of recognizing handwritten input at this stage. The example was intended to provide a
kind of step-by-step feed-forward to aid students.

Feedback on student answers was given via the Wizard-of-Oz paradigm. When students com-
pleted a problem their answer was sent to an experimenter (Wizard) at a separate computer for
answer verification; the experimenter responded only “Yes” or “No” based on the student’s final
answer. This response was then shown on the student’s screen. Students were not given specific
reasons why their answers were incorrect. To prevent students from becoming stuck, after three
incorrect attempts, the program automatically displayed the correct solution; the students copied it
and moved on.
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(a) The typing condition.

(b) The handwriting condition.

Figure 4.6: Screenshots of the interface used in the Lab Learning Study. The typing condition is shown
on top, and the handwriting condition is shown below it. The multimodal interface looked identical to the
handwriting condition, but a background process was also recording the student’s voice.
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Figure 4.7: Samples of equations and problems from each phase of the experiment.

This study controlled for content rather than time. When the students had completed all nine
problems in the curriculum, they took the paper post-test. Two test forms (A and B) were de-
signed with problems isomorphic to those in the session; students were randomly assigned each
of the forms as either the pre-test or the post-test. After the post-test, students filled out a question-
naire about their satisfaction with their experiences in the session, their prior math and computer
skills, and what their favorite modality was in the study. All materials for this study are given in
Appendix C.

Measures

Dependent variables in this study were different in each phase of the session. In the copying
phase, they included the time it took students to copy each equation and the number of errors
they made during copying. In the solving phase, the dependent variables included the total time it
took students to complete all problems; the time it took them to solve each problem or copy each
example; the number of attempts it took them during training to either get the answer correct or
move on (up to a maximum of three); and the change in score from pre-test to post-test. General
dependent variables included the responses on the user satisfaction questionnaire about the three
modalities they had tried.

4.2.2 Results and Discussion
All means for quantitative measures reported for the Lab Learning Study are given in Table 4.5.
Individual tables are referenced in each relevant section that follows.
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Table 4.5: Means tables for all measures reported from the Lab Learning Study.

(a) Means table of time per equation during copying phase. N is the number of participants.

Condition Mean N StdErr
Typing 33.509 38 1.790

Handwriting 19.030 38 0.954
Multimodal 18.196 38 1.065

(b) Means table of total time on task during learning phase. N is the number of participants.

Condition Mean N StdErr
Typing 19.757 12 1.940

Handwriting 13.568 13 2.395
Multimodal 14.199 14 1.907

(c) Means table of interaction between appearance of fractions and condition with respect to time per equa-
tion during the copying phase. N is the number of participants.

No Fractions Fractions
Condition N Mean StdErr Mean StdErr
Typing 26 31.22 1.78 42.66 3.198
Handwriting 26 19.01 0.93 19.94 0.907
Multimodal 26 19.55 1.41 16.84 1.041

(d) Means table of interaction between appearance of fractions and condition with respect to time per prob-
lem during the learning phase. N is the number of participants.

No Fractions Fractions
Condition N Mean StdErr Mean StdErr
Typing 12 73.98 5.79 110.61 9.46
Handwriting 13 41.76 5.56 57.71 9.09
Multimodal 14 43.78 5.36 58.03 8.76

(e) Means table of test scores and gains from pre-test to post-test. N is the number of participants.

Pre-Test Post-Test (Post - Pre) Gain
Condition N Mean StdErr Mean StdErr Mean StdErr
Typing 12 53.69 6.70 66.31 7.01 12.62 5.10
Handwriting 13 51.83 6.44 65.75 6.73 13.92 4.90
Multimodal 13 60.22 6.44 69.01 6.73 8.79 4.90
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Time on Task

The time students took to complete both the copying phase and the learning phase was measured.
Means of time per equation by condition during the copying phase are shown in Table 4.5(a), and
means of total time on task by condition during the learning phase are shown in Table 4.5(b). Dur-
ing both the copying and the learning phases, students took about twice as long to enter equations
in typing than in the other two conditions, and this difference was significant.

In a repeated measures analysis of the within-subjects factor of condition with the dependent
variable of average time per equation in the copying phase, a significant main effect of condition
was found (F2,74 = 49.60, p < 0.05), with a planned contrast showing typing as the slowest
condition (F1,37 = 58.49, p < 0.05). In a univariate ANOVA on total time to solve the problems
with condition as a fixed factor in the learning phase, a significant main effect of condition was
found (F2,35 = 11.05, p < 0.05) in which typing was the slowest (t(35) = 12.31, p < 0.05). These
results replicate the findings from the Math Input Study that showed handwriting was the faster
modality when compared to typing; the effect is smaller in this case (two times faster here vs three
times faster in the Math Input Study), which may be due to the complexity of the interface used
in the prior study (Microsoft Equation Editor). The time speed-up during the learning phase is not
a direct measure of learning gain, but has important implications for learning in that students who
can get through problems more quickly by virtue of a more natural interface can therefore advance
further in the curriculum than if they had been typing.

Prior to this study, it was hypothesized that equations with nonlinear elements such as frac-
tions would impact the time taken and/or learning experienced for the typing modality and not the
handwriting modality. In both the learning and the copying phases, students took much longer to
enter equations with fractions when typing, but not when handwriting. Estimated marginal means,
given the factors of condition and presence of fractions, of time per equation in the copying phase
are given in Table 4.5(c), and of time per problem in the learning phase are given in Table 4.5(d).
In the copying phase, about 40% of the equations contained fractions. A separate repeated mea-
sures analysis on time per equation, using the 26 students for whom data was available on what
problems contained fractions in the copying phase, revealed a significant interaction between the
two within-subjects factors of condition and appearance of fractions (F1,25 = 4.76, p < 0.05). In
the learning phase, half of the problems contained fractions and half did not. A repeated measures
analysis of the average time students took per problem to solve problems with fractions vs without
fractions revealed a significant interaction between the between-subjects factor of condition and
the within-subjects factor of appearance of fractions (F2,36 = 5.25, p < 0.05).

Figure 4.8 shows the interaction plot of appearance of fractions and input condition for the
learning phase. The typing condition is slowed down more by the appearance of fractions, whereas
there is no difference in the other two conditions when fractions appear vs when they do not. This
interaction between speed and complexity of the math replicates the findings in the Math Input
Study that showed a similar interaction based on appearance of non-keyboard characters. The
result reported in this study is more robust in that the interaction is based on spatial characteristics
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Figure 4.8: Mean time per problem by condition crossed with appearance of fractions in the learning phase
for both copying examples and solving problems. Error bars indicate standard error.

of the math rather than simply what is easily typeable on a keyboard. This result implies that the
speed benefits of handwriting input will magnify as students progress to more complex math such
as polynomial algebra or calculus, which contain high frequencies of fractions, exponents, etc.
Again, students may be able to progress further more quickly by virtue of handwriting’s faster,
more natural support for these notations.

User Preferences

All students were exposed to all three conditions during the copying phase and then used only one
modality during the learning phase. All qualitative comments in response to the question: “Did you
like the modality you used during problem-solving? Why or why not?” are included in Table 4.6.
Those students that did not answer the question or who selected the wrong modality (i.e., it did
not match the one they actually used during learning) have been excluded (n = 10). Most students
indicated that they did indeed like the method they used during the learning phase. However, none
of the handwriting students indicated that they did not like this method at all. Note the student in
the typing condition who said he or she liked the method, but “handwriting and speech made it
even better.”

Students showed a strong preference for handwriting. Out of 38 total students, only 21% said
typing was their favorite method, while over 78% preferred one of the methods with handwriting.
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Figure 4.9: Histogram of user responses rating their favorite input modality grouped by the modality they
used during the learning phase of the session.

As shown in Figure 4.9, this difference was not based on a bias to prefer the method used during
learning (a Pearson Chi-Square test of independence reveals no significant association between the
method used during learning and the method chosen as the favorite; χ2(4, N = 38) = 1.802, n.s.).
This lack of association implies little or no novelty effect of handwriting occurred.

Learning Gains and Learning Efficiency

Means of test scores on both tests by condition, including gain scores from pre-test to post-test, are
shown in Table 4.5(e). Gains are roughly equal across all three conditions; no significant difference
was found. Despite taking about half the time during the learning phase, the handwriting students
learned just as much as the typing students.

In a univariate ANOVA on learning gain from pre-test to post-test with condition as a fixed
factor, there was no significant difference (F2,35 = 0.293, n.s.). Even though students in the
handwriting condition spent much less time to complete the same exercises in the instruction, they
still learned just as much (mean: 11.75%, stdev: 17.34).

Although learning gains appeared to be of the same magnitude based on pre- to post-test scores,
the fact that the time spent per condition was so different suggests that perhaps handwriting was
a more efficient learning modality than typing. The concept of learning efficiency has been used
in, for example, [123], to explore how students may be able to achieve similar levels of mastery



CHAPTER 4. HANDWRITING HELPS: FOUNDATIONAL STUDIES 69

Table 4.6: List of all qualitative comments by students in answer to the question: “Did you like the modality
you used during problem-solving? Why or why not?”

Learning
Modality

Liked it? Why or why not?

Typing

Yes

“Because I don’t like using the handwriting on computers”
“Because it helped me to see the answer and figure out [when] it’s done.”
“Because it was nice”
“Because it was easier and more fun”
“I liked it because it was an easier way of doing the problems and it was more
fun.”
“[It] seemed easier although handwriting and speech made it even better”
“It was easier than writing it out and saying everything”
“It was easy and understandable. I’ve done things like this before.”
“It was easy to use and understand”
“It was [good] and easier by [computer]”

No “It took [too] long”
“It took too long and was hard to get everything where I wanted”

(blank) “[I’m] not really sure if I liked it or not”

Handwriting Yes

“Because I knew what I was writing down”
“Because it is easier than typing”
“Because [it’s] easy”
“Because the Handwriting is more natural than speech or typing. It’s hard to
write + speak.”
“I thought it was a little bit helpful”
“It was better than typing”
“It was fairly easy to just write the problem out rather than type it”
“It was faster than typing”
“It was fun”
“It was [just] like using pen and paper”
“Yes, because it is how I’m used to doing problems in math class, by writing
them out. It was harder [than] writing on paper though.”

No No students indicated this choice.

Multimodal
Yes

“Because I could hear my work and it is [easier] if I hear it.”
“Because I like computers”
“Because it was it was [easier] to [write] it than it was to type it.”
“I could write it down and think about the problems so I thought I did better
than just writing”
“I enjoyed writing free hand and it helped”
“I liked using a pen better and typing.”
“I think it helped me.”
“It helped me understand the problem more”
“It made it easier to think it out when I said it while doing it.”
“[It’s] easier to understand when you talk through the problems”

No “I kept forgetting that I had to use speech too”
“My handwriting looked awful”
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but do fewer problems. In this study, students all did the same number of problems, but the time
spent per session was significantly different by modality. If time in each modality is significantly
different, it follows that learning rate per hour should be significantly different. The pre- to post-
test gain per hour of instruction was extrapolated for each modality based on the average time
over all three conditions per session for the learning phase (31 minutes). Handwriting performed
the best at about 10 percentage points of gain per hour, multimodal was at about eight points per
gain per hour, and typing was worst at about five points per gain per hour. Although there is a
trend in favor of handwriting, there was no significant difference. The learning measurement of
raw pre-test to post-test gain is relatively coarse, and the large standard deviation indicates that
individual differences may have overshadowed the effects of condition in this study for learning
benefits. Even so, handwriting had significant benefits in terms of other measures, such as time on
task and transfer to paper, which may impact student performance.

Transfer to Paper

One hypothesized advantage of using the handwriting modality is that handwriting will allow a
greater degree of transfer to paper than using typing interfaces. In this study, level of transfer in
each condition was assessed by correlating the pre-test score and post-test score with performance
during training to see if there was any difference—if the tutor predicts performance effectively,
there should be a significant correlation. It was hypothesized that, in the cases in which there was
a modality switch (i.e., writing on the pre-test to typing in the interface to writing on the post-test),
there should be a lower correlation of performance during training to performance on the tests. A
bivariate correlation was run on the proportion of problems solved correctly on the first try dur-
ing training and the pre-test score, grouped by condition; the contrasts are shown in Table 4.7.
The Pearson correlation for the typing condition was not statistically significant (r = 0.343, n.s.),
whereas for the two handwriting conditions, there was a significant, strong correlation (r = 0.613,
p < 0.05 for handwriting; r = 0.614, p < 0.05 for multimodal). A separate bivariate correlation
of training performance and the post-test score was conducted. The Pearson correlation for the
typing condition in this case was again not statistically significant (r = 0.320, n.s.), whereas for
the two handwriting conditions, there was a significant, strong correlation (r = 0.708, p < 0.05
for handwriting; r = 0.553, p < 0.05 for multimodal). These results support the conclusion that
handwriting affords students a higher degree of transfer to paper, likely because it does not involve
a modality switch from training to testing. Performance during testing more closely matches per-
formance during training when the modality of testing is similar to that of training (or vice versa),
leading to stronger assessment power.

Handwriting plus Speaking, or Multimodal Input of Math

Throughout this dissertation, the focus is primarily on contrasting typing with handwriting. How-
ever, multimodal input illustrated an interesting trade-off between speed and learning that did not
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Table 4.7: Results of bivariate correlations between performance during training and on each of the two tests
given during the study (pre-test and post-test). The correlation results are grouped by condition. † indicates
significance at the 0.05 level; ‡ indicates marginal significance at the 0.10 level.

Performance during:
Training N Pre-Test Post-Test
Typing 12 .343 .320
Handwriting 13 .613† .708†
Multimodal 13 .614† .553†

manifest in the other two conditions. While the multimodal students were about as fast as the
handwriting students, they did not learn as much, based on the time-adjusted score. (They did
learn more than the typing students.) It appears from these preliminary data that the cognitive
load of speaking while also writing, in terms of the extra cognitive processing needed, somehow
interferes with learning the goal concept. Teachers frequently speak and write math while lectur-
ing at the blackboard, yet it seems that students are not comfortable with generating solutions in
both modalities at once. Prior literature has demonstrated that students learn better when they self-
explain [31], and even further, that they learn better when their self-explanations are spoken rather
than typed [63]. The multimodal input results presented here indicate that the learning benefits
for students self-explaining aloud do not manifest in a “shadowing” paradigm in which students
simply state aloud the problem-solving steps they perform; and are consistent with findings in the
literature that paraphrasing is not as good as independent self-explanation [63]. Knowledge of
these effects can inform future design of instructional paradigms that support or require student
self-explanations.

4.2.3 Conclusions
This study found that the results from the Math Input Study did generalize to the target population
of algebra learners and simpler mathematical expressions, although the effect size decreased. In
the Math Input Study, handwriting was three times as fast; here in the Lab Learning Study, hand-
writing was twice as fast. This difference is likely due to the simpler nature of the equations given
in this study (fewer advanced characters used), the simpler nature of the typing interface used (to
be more like the handwriting interface), and the addition of the learning task. The Lab Learning
Study also found that, although students in the handwriting condition spent half as much time in
the tutoring system, they learned just as much, implying that the extra time spent in the typing con-
dition was wasted. With respect to the effect of worked examples, students experienced sizeable
learning gains from pre-test to post-test in spite of being given only answer-level feedback, in
the context of worked-examples-based instruction. This finding lends credence to the hypothesis
that worked examples may be an appropriate method of instruction when using handwriting input
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interfaces that may not be able to support step-targeted feedback. Finally, the most interesting
finding here was that there was better transfer-to-paper in the handwriting conditions than in the
typing condition: the tutor better predicted student performance on the post-test in the handwrit-
ing condition. Predicting paper-based performance is critical for accurate assessment of student
knowledge within curricula that utilize intelligent tutoring systems.

4.3 Study 3: The Cognitive Tutor Study
Based on the findings of the Math Input Study and the Lab Learning Study, the motivation for
including handwriting input in tutoring applications was very strong. The handwriting modality
had been shown to have advantages both in terms of usability and in terms of impact on learning.
The next step was whether or not the instructional paradigm could be modified to account for
the fact that step-targeted feedback was difficult, if not impossible, to provide given current
recognition levels.

The research questions addressed by this study include:

• Do students experience differences in learning due to the modality in which they generate
their answers?

• Do the benefits due to the presence of worked examples sufficiently counteract the disadvan-
tages of the lack of step-targeted feedback?

• Do the results from the Math Input Study and the Lab Learning Study for the benefits of
handwriting, in terms of time and user satisfaction, generalize to a more complex tutoring
system and classroom environment?

• Do the results from the Lab Learning Study, where students in a lab study experienced bet-
ter to transfer to paper when handwriting than when typing, generalize to a more complex
tutoring system and classroom environment?

• Do students experience less cognitive load as measured by self-report when they use hand-
writing to solve problems than when they use typing?

Overall, the Cognitive Tutor Study found that worked examples provided added value to the
normal Cognitive Tutor, even without handwriting, which is positive evidence that they can be
instructionally helpful in this context. In addition, step-targeted feedback was important for student
learning, and handwriting, while outperforming typing input without step-targeted feedback, did
not outperform typing input with step-targeted feedback and examples. Therefore, the Cognitive
Tutor Study determined that step-targeted feedback is very important instructionally for students
in the math tutoring domain, and so the technology needs to be improved to be able to provide
more than just answer-level feedback.
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4.3.1 Experimental Design
The Cognitive Tutor Study was a between-subjects, in vivo classroom study, enabling the exam-
ination of the use of handwriting-based input in a real-world setting. This is important because
classroom environments are often much less organized, noisier, and students are less apt to co-
operate with the experimenter than they are in lab studies. The three factors this study explored
were input modality (handwriting or typing); level of feedback (step-targeted or answer-level), and
presence of annotated worked examples (yes or no).

Participants

Eight Algebra I classrooms taught by four different teachers at two different schools (one urban
public high school; one suburban vocation/technical high school) participated in the study, for a to-
tal of 106 participants. Students in the classrooms were in grades nine through 12 (ages 13 through
18, exact ages unknown). Of these, 31 students were removed due to absences for one or both of
the pre-test or post-test, or due to spending less than 30 minutes in the computer tutor during the
study. These exclusion criteria left 76 participants, of which at least 27 were female (demographic
data such as grade, gender and ethnicity were unavailable for 14 students). Approximately 48 were
Caucasian and 28 were African-American. At least 27 were in ninth grade, 31 were in tenth grade,
and four were in eleventh grade. Exploratory data analysis revealed no effects of gender, age or
school on any factors, so they are excluded from the analyses reported here.

Factorial Design

The experiment design was a between-classroom study in which two classrooms were randomly
assigned to each of four conditions, with the constraint that no two classrooms taught by the same
teacher or at the same school were in the same condition.

The four conditions selected for the study were as follows:

1. typing, no examples, step-targeted feedback (control: Cognitive Tutor; CogTutorS in tables
and graphs)

2. typing, examples, step-targeted feedback (CTExamplesS in tables and graphs)

3. typing, examples, answer-level feedback (CTExamplesA in tables and graphs)

4. handwriting, examples, answer-level feedback (HWExamplesA in tables and graphs)

The 2x2x2 matrix of possible conditions is shown in Table 4.8; the selected conditions are
shaded. The design of the study satisfied three constraints: the control condition was the normal
Cognitive Tutor; the handwriting condition made use of worked examples as a way of mitigating
the lack of step-targeted feedback, which was not possible at that time; and each condition differed
from the next and previous by only one factor. This study was also designed to determine whether
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Examples Present 
Modality 

No Yes 
Type of Feedback 

1 2 Step-targeted Typing 
 3 Answer-only 

  Step-targeted Handwriting 
 4 Answer-only 

 

Table 4.8: Experimental design matrix showing the full cross of the three experimental factors; the shaded
cells indicate conditions in the Cognitive Tutor Study.

or not the benefits of handwriting-based input, plus worked examples, would be sufficient to out-
weigh the disadvantage of not having step-targeted feedback. All four conditions as they were seen
in the study are shown in Figures 4.10 (condition 1: CogTutor-NoExamples-StepFeedback), 4.11
(condition 2: CogTutor-Examples-StepFeedback), 4.12 (condition 3: CogTutor-Examples-Answer-
Feedback), and 4.13 (condition 4: Handwriting-Examples-AnswerFeedback).

Procedure

Students completed one unit in the tutoring system over two classroom periods of 75 minutes or
three classroom periods of 49 minutes, depending on their school’s schedule. If students finished
the unit early, they went back to their previous work. All students in each classroom took the post-
test at the same time. There were three unique test forms (A, B, and C). Classrooms were randomly
assigned as to which test form to use for each of the three tests. All materials for this study are given
in Appendix D. The material covered in this study was Unit 18 in the 2006 Cognitive Tutor Algebra
curriculum. This unit covered two- and three-step algebra equations, and contained problem types
such as ax + b = c, ax + b = cx + d, and a/x + b = c, with integers, decimals and large numbers
(greater than 1,000). Students had to demonstrate mastery on each problem type before moving on
to the next.

Students in the control condition (CogTutor-NoExamples-StepFeedback) worked with the stan-
dard Cognitive Tutor. The Cognitive Tutor equation solver widget requires them to solve a given
equation by selecting equation-solving operations from a menu. In some sections of the unit, the
result of the operation is computed for the student (no-type-in); in others, the student is required to
type in the result (type-in). Students in two of the three treatment conditions (CogTutor-Examples-
StepFeedback and CogTutor-Examples-AnswerFeedback) used the same equation solver interface,
but were also were given a worked example, annotated with step-level instructions about what op-
erations were being performed, to copy each time they encountered a new problem type (in the
no-type-in sections only). They copied the example by entering the solution steps into the inter-
face, and the instructions encouraged students to study each step and consider why it was taken as
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Figure 4.10: A screenshot of the CogTutor-NoExamples-StepFeedback condition (control condition) in the
Cognitive Tutor Study.
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Figure 4.11: A screenshot of the CogTutor-Examples-StepFeedback condition in the Cognitive Tutor Study.
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Figure 4.12: A screenshot of the CogTutor-Examples-AnswerFeedback condition in the Cognitive Tutor
Study.
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Figure 4.13: A screenshot of the Handwriting-Examples-AnswerFeedback condition in the Cognitive Tutor
Study.
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they copied it. On subsequent problems of the same problem type, an analogous worked example
was displayed for reference as they solved a problem. In the type-in sections, no examples were
given. In this way scaffolding of the examples was implemented, so that eventually students in all
conditions had to solve problems on their own with no interface help.

In the CogTutor-Examples-StepFeedback condition, the detailed, immediate feedback of the
standard Cognitive Tutor was used. In the CogTutor-Examples-AnswerFeedback condition, feed-
back was only given on the student’s final answer. Students clicked a button in the tutor to check
their final answer. If the answer given was incorrect, students were given error feedback and asked
to try again. To prevent a student from becoming stuck, if he got the answer wrong three times, the
solution to the problem was displayed for him to study and copy (like a worked example), which
the same paradigm used in the Lab Learning Study.

Students in the Handwriting-Examples-AnswerFeedback condition (the only handwriting con-
dition) entered their solution process in a blank space onscreen via an electronic stylus attached to
their monitor. They also had examples during problem solving, and they were only given feedback
on their final answer, which they typed into a text box to eliminate ambiguity.

Measures

A 10-item pre-test and 10-item post-test were administered by the individual teachers. These
tests contained two review problems (problems from prerequisite lessons), five “normal” problems
(problems from the current lesson), and three transfer problems (problems requiring one additional
step or skill than normal problems). The detailed log files of the students’ tutor use during Unit 18,
including total amount of time spent in the tutor, were also collected.

There was also a 10-item follow-up retention test three weeks after the post-test; and there was
a short cognitive load survey given immediately before students took the post-test. Modeled after
that used in [104], the survey asked students to rate, on a nine-point Likert scale, their perceived
mental effort (cognitive load) during the study and how it compared to normal tutor use, and to
indicate the primary source of this mental effort.

4.3.2 Results and Discussion
All means for quantitative measures reported for the Cognitive Tutor Study are given in Table 4.9.
Individual tables are referenced in each relevant section that follows.

Gains from pre-test to post-test and retention test

Means of test scores on all three tests by condition, including gain scores from pre-test to post-test
and pre-test to retention test, are shown in Tables 4.9(a) and 4.9(b), respectively. No difference
was found in gains from pre-test to post-test, but there was a significant difference by condition in
gains from pre-test to retention test.
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Table 4.9: Means tables for all measures reported from the Cognitive Tutor Study.

(a) Means table of test scores and gains from pre-test to post-test. N is the number of participants.

Pre-Test Post-Test (Post - Pre) Gain
Condition N Mean StdErr Mean StdErr Mean StdErr
CogTutorS 13 16.92 5.04 13.85 4.82 -3.08 3.72

CTExamplesS 15 19.33 4.69 18.00 4.48 -1.33 3.46
CTExamplesA 23 24.35 3.79 18.26 3.62 -6.09 2.79
HWExamplesA 25 17.20 3.63 15.20 3.47 -2.00 2.68

(b) Means table of test scores and gains from pre-test to retention test. N is the number of participants.

Pre-Test Retention-Test (Retention - Pre) Gain
Condition N Mean StdErr Mean StdErr Mean StdErr
CogTutorS 8 15.00 6.12 16.25 5.83 1.25 4.05

CTExamplesS 10 21.00 5.48 42.00 5.21 21.00 3.63
CTExamplesA 13 25.39 4.80 20.00 4.57 -5.39 3.18
HWExamplesA 14 17.14 4.63 30.00 4.41 12.86 3.06

(c) Means table of total time spent in tutor. N is the number of participants.

Condition Mean N StdErr
CogTutorS 100.62 13 10.15

CTExamplesS 103.20 15 9.45
CTExamplesA 108.44 23 7.63
HWExamplesA 81.20 25 7.32

(d) Means table of the aggregate mental effort measure. Higher numbers mean students indicated they
experienced more mental effort. N is the number of participants.

Condition Mean N StdErr
CogTutorS 4.885 13 0.388

CTExamplesS 5.200 15 0.361
CTExamplesA 5.895 19 0.321
HWExamplesA 5.200 25 0.279
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In a univariate ANOVA on learning gains computed as change in score (% correct) from pre-
test to post-test, no significant difference by condition was found (F3,72 = 0.52, n.s.). However, a
similar analysis on the 44 students who had taken retention tests did find a significant difference by
condition in gain from pre-test to retention test (F3,41 = 11.91, p < 0.05). Tukey’s post-hoc com-
parisons indicated that CogTutor-Examples-StepFeedback was better than CogTutor-NoExamples-
StepFeedback (t(41) = 19.75, p < 0.05)); CogTutor-Examples-StepFeedback was better than
CogTutor-Examples-AnswerFeedback (t(41) = 26.39, p < 0.05); Handwriting-Examples-Answer-
Feedback was better than CogTutor-Examples-AnswerFeedback (t(41) = 18.24, p < 0.05);
and Handwriting-Examples-AnswerFeedback was marginally better than CogTutor-NoExamples-
StepFeedback (t(41) = 11.61, p = 0.118). No other contrasts were significant. A graph of the
estimated marginal retention gain means are shown in Figure 4.14.

While no significant difference in improvement from pre-test to post-test between conditions
was found, a significant difference at retention test time was seen. Students may have been
receiving subsequent instruction on these topics in the classroom, either through homework or
class lectures. One explanation for the effect is that students in the better-performing conditions
(the CogTutor-Examples-StepFeedback and Handwriting-Examples-AnswerFeedback conditions)
might have been better prepared and experienced accelerated future learning [32]. Six out of the
eight students in the CogTutor-NoExamples-StepFeedback condition who took the retention test
did work in the control Cognitive Tutor on the unit covered by this study between the post-test and
retention test times. It can be speculated that students in the other conditions also spent extra time
on the material, in part because CogTutor-NoExamples-StepFeedback was not the best-performing
condition on the retention test. However, this speculation could not be confirmed with the log data
available at the time of writing; later additions to the DataShop of control Cognitive Tutor use (i.e.,
students using the regular tutor as part of their normal classtime, outside of any study) might be
able to shed light on this issue. Also, further evidence for this speculation comes from finding a sig-
nificant correlation between post-test scores and retention scores (Pearson coefficient r = 0.351,
p < 0.05). If there were no correlation, it would point to the strong possibility that students in
different conditions were spending different amounts of extra time on this tutor lesson. Though the
correlation is in the medium-strength range, this possibility cannot be completely ruled out.

An interesting finding of this study is that the CogTutor-Examples-StepFeedback condition
was significantly better with respect to learning than the control condition, CogTutor-NoExamples-
StepFeedback. The presence of worked examples was the sole difference between the two con-
ditions. This study therefore provides good evidence in favor of using worked examples to sup-
plement problem solving in the domain of algebra. Interspersing the annotated examples with the
problems, leaving the examples for reference during problem solving, and fading the examples
with time seemed to work well for these students. These findings contribute to the science of
learning by providing instructional design recommendations for the use of worked examples and
their effectiveness in algebra equation solving.

Although the handwriting condition performed well, there is reason to believe it did not perform
as well as it could have. Bringing technology into a real-world classroom setting for the first time
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Figure 4.14: Estimated marginal means of learning gains as measured from pre-test to retention test
condition in the Cognitive Tutor Study. The key finding is that the handwriting condition (Handwriting-
Examples-AnswerFeedback is only marginally significantly better than the control (CogTutor-NoExamples-
StepFeedback). Error bars indicate standard error.

is an error-prone process. Several technical glitches occurred during the study caused by the stylus
devices used to allow the students to enter their solutions via handwriting. The devices interfered
with each other in close proximity and caused the stylus to respond in unpredictable ways. As the
technology improves and becomes more widely used (e.g., TabletPCs in schools), these issues will
no longer be present.

Time spent in tutor

Means of total time spent in the tutor by condition are shown in Table 4.9(c). Students in the
Handwriting-Examples-AnswerFeedback condition spent less time in the lesson than other stu-
dents, but this difference was only marginally significant.

A univariate ANOVA with number of minutes spent in the tutor between pre-test and post-
test as the dependent variable and condition as a between-subjects factor was conducted, and a
marginally significant difference was found (F3,72 = 2.49, p = 0.067). In the Math Input and Lab
Learning studies, handwriting was much faster than typing interfaces for mathematics, whereas
here the difference is only marginal. This diminished effect could be because students in the
classroom are essentially controlled for time; knowing how much time they have remaining in
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the class period may affect how quickly students work, whereas in a lab situation they are able
to finish early and leave. In addition, the technical glitches involved in using the handwriting
devices (mentioned in the discussion on learning) likely also interfered with students’ efficiency.
The difficulties with the technology slowed students down and forced them to re-do problems at
times, which would affect their problem-solving speed.

Cognitive load, or Mental effort

Cognitive load was measured via self-report—students answered two questions about the degree
of mental effort they experienced during the study and how this mental effort differed from their
normal use of the Cognitive Tutor. These two questions can be treated as two measures of the same
quantity, that of cognitive load, along some scale whose exact parameters are unknown. Therefore,
in analyses of the amount of cognitive load in this study, the two questions were aggregated by
averaging each student’s response to each question. Means of the aggregated mental effort rating
by condition are shown in Table 4.9(d). A bivariate correlation of the two dependent measures
represented by each question was run to verify that they can in fact be reliably assumed to be
estimating the same quantity. The Pearson coefficient was statistically significant (r = 0.390,
p < 0.05).

A univariate ANOVA with the aggregated mental effort rating as the dependent variable and
condition as a between-subjects factor was conducted. No significant difference was found (F3,68 =
1.59, n.s.), although there was trend in favor of the Handwriting-Examples-AnswerFeedback con-
dition. A planned contrast between the CogTutor-Examples-AnswerFeedback and the Handwriting-
Examples-AnswerFeedback conditions, the pair of conditions that most directly show the impact of
just the input modality, showed a marginally significant trend in favor of Handwriting-Examples-
AnswerFeedback (t(68) = 0.695, p = 0.11).

This trend lends support to the hypothesis that handwriting interfaces lead to a reduction in
cognitive load as compared to typing interfaces, although the difference is not significant. The
technical difficulties of using the handwriting input devices during the study, as well as the fa-
miliarity students had with the other interfaces, are the likely contributing factors to the lack of
significance. Students in these classrooms all used the normal Cognitive Tutor during their math
courses, and were therefore already familiar with how the Cognitive Tutor interface worked. Stu-
dents in the handwriting condition were therefore somewhat at a disadvantage; however, training
time on the handwriting devices was not possible due to the strict constraints on teaching and lab
time in the classroom environment. This issue deserves further exploration in future work on math
tutoring systems and handwriting input.

In addition, a Pearson Chi-Square test of independence with condition and source of mental
effort (“mostly the problems,” “mostly the interface,” or “about the same for both”) was significant
(χ2(6, N = 72) = 16.91, p < 0.05). The cross-tabulated responses are shown in Table 4.10.
The responses in Table 4.10 indicate that the students in the CogTutor-Examples-AnswerFeedback
condition were more likely to say that the problems were the source of their mental effort during
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Table 4.10: Cross tabulated totals of responses of students to the question: “What was the source of the
mental effort?”

Condition: CogTutorS CTExamplesS CTExamplesA HWExamplesA
Source:
Mostly the problems 7 (54%) 8 (53%) 12 (63%) 6 (24%)
Mostly the interface 2 (15%) 0 (0%) 0 (0%) 9 (36%)
About the same for both 4 (31%) 7 (47%) 7 (37%) 10 (40%)
Total respondents 13 15 19 25

the study. Students’ difficulties in this condition suggest that the presence of worked examples may
not completely compensate for for the lack of step-targeted feedback. Students in this condition
used the standard Cognitive Tutor equation solver interface, but without its step-targeted feedback.
The standard Cognitive Tutor does not allow a student to go to the next step if their answer to the
current step is incorrect; the prototype did allow this. Even though this was explained before the
study began, students interpreted being allowed to move on as implicit feedback of being correct.
Although the handwriting condition also did not have step-targeted feedback, its interface was
completely new to them and so their mental model of how it should work was more flexible. In
the future, effective interface designs that do not conflict with students’ mental models must be
considered more closely.

The responses in Table 4.10 also indicate that students in the Handwriting-Examples-Answer-
Feedback condition were more likely to say that working with the interface was the primary source
of their mental effort experienced during the study. This is unfortunate, since the goal of intro-
ducing handwriting input was to reduce extraneous cognitive load caused by the interface, but not
surprising given the events of the actual study. The technical difficulties of using the handwriting
devices in the classroom (mentioned in the discussion on learning) frustrated students, which likely
led directly to the results in Table 4.10.

Transfer to Paper

The Lab Learning Study found that tutoring that utilized handwriting instead of typing tended to
better predict student performance on the tests, implying that students experienced better transfer
to paper and working on their own. In the Cognitive Tutor Study, the same analysis was conducted
to determine if a similar result would hold true. In the cases in which there was a modality switch
(i.e., writing on the pre-test to typing in the interface to writing on the post-test or retention test),
there should be a lower correlation of performance during training vs to performance on the tests.

A bivariate correlation was run on the proportion of problems solved correctly on the first try
during training and the pre-test score, grouped by condition. Similar analyses were also done for
the post-test and retention-test scores. The results of these correlations are shown in Table 4.11.
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Table 4.11: Results of bivariate correlations between performance during training (full credit only) and on
each of the three tests given during the study (pre-test, post-test, and retention test). The correlation results
are grouped by condition. † indicates significance at the 0.05 level; ‡ indicates marginal significance at the
0.10 level.

Performance during:
Training N Pre-Test Post-Test Retention Test
CogTutorS 13 .501‡ .628† .645†
CTExamplesS 15 .154 .342 .486‡
CTExamplesA 23 .620† .575† .414†
HWExamplesA 25 .310 .329‡ .055

The main results can be summarized as follows:

1. The CogTutor-NoExamples-StepFeedback condition shows significant or marginally signif-
icant correlations between training and all three tests, indicating that the anecdotal evidence
about lack of transfer to paper does not hold up in this study.

2. The CogTutor-Examples-AnswerFeedback condition shows significant correlations between
training and all three tests. This condition was the worst with respect to overall learning,
however, so these correlation results simply show that students did just as badly during train-
ing with this interface as they did when later tested.

3. The Handwriting-Examples-AnswerFeedback condition does not show a significant correla-
tion of the magnitudes seen in the Lab Learning Study.

It is likely that two factors were responsible for the lack of correlation in the handwriting condi-
tion. First, the technical difficulties with the handwriting devices, mentioned during the discussion
on learning, interfered with students during training such that they were unable to effectively trans-
fer their knowledge outside of the tutoring environment. Second, the familiarity that these students
already had with the Cognitive Tutor interface most likely helped them in the other three condi-
tions, especially the CogTutor-NoExamples-StepFeedback control condition.

4.3.3 Conclusions
In summary, the Cognitive Tutor Study found that the usability benefits of handwriting input
continue to hold, in terms of total time spent during the lesson. Key findings with respect to
pre-test to retention-test gains include the fact that Handwriting-Examples-AnswerFeedback was
significantly better than CogTutor-Examples-AnswerFeedback, in which the direct comparison
is the presence of handwriting input, implying that handwriting input is better than typing, all
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else being equal; that CogTutor-Examples-StepFeedback was better than CogTutor-NoExamples-
StepFeedback, in which the direct comparison is the presence of examples, implying that having
interspersed examples is better than not having them, all else being equal; and that CogTutor-
Examples-StepFeedback was better than CogTutor-Examples-AnswerFeedback, in which the di-
rect comparison was step-targeted vs answer-level feedback, implying that step-targeted feedback
is crucial to student success, all else being equal.

However, while a marginal effect was found in terms of reduction in cognitive load and im-
proved transfer to paper of the handwriting condition, the benefits of handwriting input were not
as strong in these areas as hypothesized or found in earlier studies. The technical difficulties that
were encountered with using the handwriting devices in the classroom reduced the effectiveness of
the handwriting condition in this study. In the Math Input Study and Lab Learning Study, strong
evidence in favor of handwriting input was found in terms of speed, user preferences and trans-
fer to paper. The Cognitive Tutor Study did find several important facts that support pursuing
handwriting input further, but in order to do so in future studies, the technical difficulties must be
addressed. Now that some of these difficulties are better known, especially in terms of the specific
devices used here, future studies can be designed to avoid or account for them more directly.

Recall that Handwriting-Examples-AnswerFeedback was marginally better than CogTutor-
NoExamples-StepFeedback in terms of learning gains from pre-test to retention test. From this,
it can be concluded that, in spite of the difficulties with the handwriting modality, students were
still able to perform marginally better in that condition than in the control condition. This is an
important finding which indicates the value of further pursuit of this line of work.

4.4 General Conclusions from the Three Studies
The three studies presented in this chapter laid the foundation for proving that handwriting recog-
nition can have benefits for math-oriented tasks, both in terms of usability and pedagogy. It
was found that, in general, handwriting is faster and better-liked than typing; and in learning
domains, that students sometimes experience better transfer to paper (and therefore better inde-
pendent knowledge) when they transition from working in the tutor to working on their own in
handwriting than they do in typing. All of these studies included at least one condition that al-
lowed the participants to input mathematics on the computer via handwriting. None of the studies
included recognition of said handwriting input. The focus was on discovering what could be
achieved with the modality and how comfortable users would be with the modality. Therefore,
the studies have helped establish the motivation to apply handwriting input in this domain. It was
known before the studies were performed that handwriting recognition was not perfectly accu-
rate. These studies also have helped establish that work is needed on the technical challenges of
handwriting recognition in order to provide natural interfaces that support effective pedagogical
strategy during tutoring, as step-targeted feedback was found to be critical in the Cognitive Tutor
Study.
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The next chapters focus on how handwriting recognition was adapted for this domain for the
purposes of this dissertation, including training the recognition engine in advance on a training set
of math writing from the target population, and using domain-specific context information during
the recognition process to help refine the results.



Chapter 5

Improving Recognition: Baseline
Writer-Independent Accuracy

Chapters 3 and 4 established some of the ways in which handwriting input can benefit users of
math software and students learning math. In the three studies presented, the users only entered
their input via handwriting; there was no recognition engine behind it. Interpretation of student
input was either not performed, or was performed by a human, in the Wizard-of-Oz paradigm.
The results of the Cognitive Tutor study showed that adding unrecognized handwriting input is
enough to beat the traditional Cognitive Tutor without worked examples, but not enough to beat
it with worked examples and step-targeted feedback. Therefore, the next two chapters discuss
the ways in which handwriting recognition was incorporated into the interface of a state-of-the-art
tutoring system, Cognitive Tutor Algebra, beginning with a search for the best recognition engine
for this domain and then discussing the training, testing, implementing, iterating and evaluating
that was conducted.1

5.1 Choosing a Recognition Engine: Case Studies
For the purposes of this dissertation, three different easily accessible and independently-developed
recognition engines were compared: (1) the Freehand Formula Entry System (FFES) [131]; (2)
JMathNotes [137, 138]; and (3) Microsoft’s TabletPC recognizer2. The rationale for choosing these
specific systems was to explore the most commonly used, or representative, recognition systems
available for application developers wishing to incorporate handwriting input into new interfaces.

1The content in this section is partially based on content from these publications: [11, 14].
2http://msdn.microsoft.com/en-us/library/aa510941.aspx
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5.1.1 Freehand Formula Entry System
The Freehand Formula Entry System3 [131] is based on the California Interface Tools (CIT) char-
acter recognizer4. It uses a nearest-neighbor classification based on a 48-dimensional feature space
and is implemented in C++ under the Gnu Public License. In total there are almost 12,000 lines of
code in 48 source files, not counting the included spatial math parser or user interface. Its minimal
set of dependencies includes a Unix-like environment (or cygwin5 on Windows) and ActiveTcl6.
As it is typical of many research systems, its documentation is minimal and there is no discrete
application programming interface (API).

FFES recognizes mathematical equations in a two-component process: character recognition
as mentioned above [131], and mathematical expression parsing (DRACULAE) [149]. This rec-
ognizer is extremely flexible—it can be easily trained to any symbol set needed, for instance,
the mathematical symbols and numbers that are needed in the beginning algebra domain. Stroke
grouping (character segmentation) is performed via an algorithm that finds the highest confidence
grouping of a set of m recently drawn strokes, where m is the maximum number of strokes in any
symbol in the recognizer’s symbol set.

In papers published on FFES, accuracy measures on simple experiments involving five users
were reported. Symbol-level accuracies of 77% were achieved for users to whom the system had
not been specifically trained (writer-independent), and rates as high as 95% were achieved for
users to whom the system had been specifically trained (writer-dependent) [131].

5.1.2 JMathNotes
The second recognition system tested was JMathNotes7 [137, 138]. It uses a multi-class support-
vector machine (DAG-SVM) classifier [110] using the radial basis function (RBF) kernel [26]. It is
written in Java under the Gnu Public License. The entire system has several dependencies: Weka8,
Jama9, and Lax10, but it can run on either Windows or Unix environments. Its documentation is
nonexistent, and the tool primarily exists as a demonstration of the author’s SVM techniques for
character recognition. The SVM implementation and recognition code consists of 42 source files
and almost 9,000 lines of code.

JMathNotes recognizes characters using 12 different SVM models built for four subsets of
characters: lowercase Latin alphabet, uppercase Latin alphabet, Greek letters, and digits/operators.
These subsets are further divided by the number of strokes per character (one, two, or three). Some

3http://www.cs.rit.edu/∼rlaz/ffes/
4CIT was developed by Jim Arvo.
5http://www.cygwin.com
6http://www.activestate.com/Products/activetcl/
7http://ostatic.com/32644-software-opensource/jmathnotes
8Open-source machine learning toolkit: http://www.cs.waikato.ac.nz/ml/weka/
9Java Matrix library: math.nist.gov/javanumerics/jama/

10“Launch Anywhere,” a retired platform-independent Java application launcher tool.

http://www.cs.rit.edu/~rlaz/ffes/
http://www.cygwin.com
http://www.activestate.com/Products/activetcl/
http://ostatic.com/32644-software-opensource/jmathnotes
http://www.cs.waikato.ac.nz/ml/weka/
math.nist.gov/javanumerics/jama/
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characters can be written in multiple styles with different numbers of strokes; they appear in more
than one model.

SVM training can be quite slow due to the requirement of learning a boundary between all pairs
of classes, whereas in the case of FFES and nearest-neighbor classification, training is extremely
fast. Stroke grouping is performed based on the geometric distance from the current stroke to
previously drawn strokes or symbols. See [137] for further details on the features, kernel functions,
and type of multi-class SVM used in JMathNotes.

No accuracy was reported on JMathNotes in prior publications on the recognizer [137, 138].

5.1.3 Microsoft TabletPC Recognizer
The third system tested was the Microsoft TabletPC recognizer11. The handwriting recognition
engine in Microsoft TabletPC Windows is widely regarded to be the state-of-the-art commercial
handwriting recognition engine [146]. Microsoft’s TabletPC writer-independent recognition soft-
ware relies on a very large database of character samples from a variety of writers, as well as
special-purpose heuristics to help distinguish easily confusable characters, such as ’O’ (the letter
oh) and ’0’ (the number zero).

The TabletPC recognizer is designed for general English text input rather than mathematics
symbols and spatial notations. Unlike the feature-based single symbol classification used by FFES
and JMathNotes, Microsoft’s TabletPC recognizer uses a neural network to identify input on the
word level, by using knowledge about common letter sequences in English words. While this
may serve to improve the accuracy of the TabletPC’s recognition on dictation, command input, or
note-taking tasks, it may actually hurt recognition for single characters or mathematics.

The fact that its source code is not available to developers, coupled with its lack of support for
training of its recognizer, were negatives as far as the goals of this dissertation were concerned.

It is especially difficult to obtain rigorous accuracy rates for commercial systems because com-
panies’s motives differ from academic research and these numbers are usually not reported. A
third-party evaluation of Microsoft’s TabletPC recognizer claimed it achieved very high accuracy
rates (90-100% [146]) in spite of not being trainable or adaptable with time12.

5.2 Baseline Handwriting Recognition Accuracy
The main research questions addressed by the case studies of these three recognizers are as follows:

• What is the best possible writer-independent recognition accuracy achieveable with each of
the three recognizers tested on the corpus of student algebra handwriting?

11http://msdn.microsoft.com/en-us/library/aa510941.aspx
12This feature is available in the latest version of Windows for the TabletPC, released some time after these exper-

iments were run. In addition, Microsoft now offers an extension to the Equation Editor for the TabletPC that allows
handwritten input called Equation Write. However, it is not customizable by the end-user or an application developer.

http://msdn.microsoft.com/en-us/library/aa510941.aspx
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• What is the minimum number of handwriting samples needed to achieve this best baseline
recognition engine accuracy?

• What are the limitations of each type of handwriting recognizer tested?

Evaluation of handwriting recognition systems has been limited by user-centered standards.
Often there will be fewer than 10 users included, and they are usually required to train the engine
to their own handwriting before beginning the evaluation, resulting in a writer-dependent test.
However, in our application domain: classroom tutoring systems for math, students are not able
to spend time training the system explicitly due to classroom time pressures. It is imperative in
domains such as algebra learning to deliver a system with the best writer-independent accuracy
possible, by training on a variety of users in advance. Writer-dependent accuracy tends to be
higher than writer-independent accuracy, however. The system can perform on-the-fly adaptation
to student writing over the course of a year-long curriculum in order to move toward a writer-
dependent model and improve recognition further.

In addition, real-world handwriting recognition, in which users may write symbols just as they
would on paper, involves two tasks: character segmentation or stroke grouping (i.e., determining
which strokes belong to which characters), and individual character recognition. In the mathemat-
ics domain, applications using handwriting recognition must also be able to parse the handwriting
input into a structured mathematics representation so that the application can manipulate the input.
This means that accuracy measured solely on individual symbols (e.g., where the system knows
that all strokes it receives are part of one character) may not be indicative of real-world perfor-
mance, because the additional, challenging step of character segmentation is ignored. Therefore,
it is important to consider accuracy measures on streams of characters (equations, in mathematics)
to yield better accuracy predictions.

In summary, there are three main factors that must be considered when measuring recognition
engine accuracy, especially in the domain of entering math expressions: type of usage (domain-
specific vs domain-general), type of training set (writer-dependent vs writer-independent), and
type of testing set (symbol-level vs equation-level). Each of these is described in more detail in the
following sections.

5.2.1 Domain-Specific vs Domain-General Use
Domain-specific recognition is typically easier and more accurate than domain-general recogni-
tion, which attempts to recognize any type of symbol in any type of configuration and application.
The recognition process can be made domain-specific either via hard-coding domain-specific rules
such as vocabulary or grammar during training, or via on-the-fly use of context, such as semantic
parsing. This dissertation only explores domain-specific recognition, by using recognizers whose
vocabularies have been pruned, and by incorporating context information from the tutoring ap-
plication as recognition is performed. The use context can provide detailed information to aid in
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Figure 5.1: An example of two ways of writing the symbol ’4’, either with one continuous stroke or two
separate strokes.

constraining the recognition process from the top down, or in refining the recognition hypothesis
once it has already been formed from the bottom up.

5.2.2 Writer-Dependent vs Writer-Independent Training
To clarify, writer-dependent means the engine is trained solely on samples of handwriting from the
same user that will be using the system or whose handwriting will be testing the system. Writer-
independent means the engine is being trained and tested on distinct users: no users from the
testing set appear in the training set, and vice versa.

Writer-dependent accuracy rates tend to be higher than writer-independent rates in most recog-
nition technologies because differences in handwriting or speech vary more widely across users
than within users. A particular user normally has a particular style of writing which does not vary
much over time [39]. Writer-dependent recognition represents the “ideal” case for the recognizer:
data consists of a set of similarly constructed symbols rather than differing styles, for instance,
writing a ’4’ with one continuous stroke vs with two separate strokes, as shown in Figure 5.1.

However, in certain domains, such as learning environments in classrooms, it is not feasible
for the user (i.e., student) to spend time training the system with no learning objectives. Train-
ing handwriting recognition engines to be writer-dependent usually involves a large upfront time
commitment, called enrollment, during which the user inputs many (20 or more) examples of each
character the recognizer is to understand, the recognizer’s vocabulary. In the vocabulary used in
this dissertation, there are 22 characters: that would be over 400 examples for each student to
enter! On the other hand, it is difficult to embed the handwriting training task into other, more
learning-oriented tasks because the system cannot provide adequate feedback on the learning as-
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Table 5.1: The set of all math symbols used throughout this dissertation.

0 1 2 3 4
5 6 7 8 9
x y a b c
+ - = ( )

/

pects without good a priori recognition accuracy. Therefore, it is important to attempt to improve
recognition without upfront training for each particular student. Writer-independent training al-
lows a walk-up-and-use interaction style.

5.2.3 Symbol-Level vs Equation-Level Testing
The second crucial factor in calculating baseline recognition accuracy is the symbol vs equation
difference, which refers to the way in which the system is tested. The problem of stroke grouping,
that is, deciding which strokes belong to each character, is a challenge that real-time recognition
applications must address. Testing an engine on single characters one at a time is not a realistic
estimate of accuracy in a real-world context because, in a real-world interface, users will be writing
their input with their own style and layout. Forcing users to input individual characters into bound-
ing boxes removes the stroke grouping problem, but introduces a very unnatural and constrained
interface style. Therefore, it is important to consider accuracy on full equations when judging how
well a recognition engine will perform for real users. To perform stroke grouping, the engine is
given a set of strokes that make up a full equation, and is iteratively asked to identify subsets of
them that make up individual characters and then to identify each character.

5.2.4 The Algebra Learner Corpus
In order to conduct these baseline accuracy experiments and test the three recognizers, the hand-
writing samples from the Lab Learning Study were extracted from the experiment logs. These
samples yielded a corpus of data from over 40 high school and middle school algebra learners
copying out equations. The data have been hand-segmented and hand-labeled. They are grouped
by equation as originally written by the users in order to allow real-world equation testing; they
can also be separated into individual symbols. The corpus contains 16,191 characters grouped into
1,738 equations. The symbol set includes 22 symbols, shown in Table 5.1. Each user wrote on
average 404 samples (range: [227, 471]) and 17 samples per symbol (range: [0 (’ ’), 44 (’=’)]).
There are on average 770 samples per symbol from all users (range: [569 (’9’), 1581 (’=’)]).
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5.2.5 The Evaluation Method
Several ways of selecting the training data for the recognition engine were considered to deter-
mine the most effective method of choosing a minimal subset of data that yields the best writer-
independent performance. These methods all involve randomly drawing from the entire available
pool of training data with varying enforcements over the selection:

• No selection criteria, incrementing total number of samples, selected at random from the
entire training set;

• Incrementing total number of samples per user, selected at random;

• Incrementing total number of samples per symbol, selected at random;

• Incrementing total number of samples per symbol per user, selected at random;

• Using all samples (n ≈ 400) for each user, but incrementing total number of users included,
selected at random.

The two factors of samples per symbol (in the vocabulary) and samples per user are important
because they are the two main sources of variance in the training set. Each symbol is a unique
class to be identified by the recognizer. Ensuring an equal representation of symbols is important
in order to provide the recognizer with a balanced model. In beginning algebra equation solving,
the most common character may be the equals sign (’=’), but otherwise most symbols are evenly
represented. Each potential user may have a particular style of writing that differs significantly
from any other user. In practice, there are not really an infinite number of writing styles, as some
agreed-upon standards have been established in service of legibility. Our corpus is sufficiently
large to expect to have covered the most common writing styles, which will aid a system trained
on this corpus to recognize samples from new users whose writing is similar in style to those styles
seen in the training set. Ensuring an equal representation of each possible user’s handwriting (or
each major style of writing) will prevent the system from having a bias toward a particular style
of writing. A writer-independent system has been exposed to many styles and will use these to
classify new users’ writing. Work on writer-identification has found that writing styles are highly
individual [133], but in terms of handwriting recognition algorithms, a degree of generality can be
abstracted in order to cluster writing styles [39].

The experiments were conducted using five-fold cross-validation, in which the set of users was
divided into five chunks, or folds. Each fold was used exactly once for the testing set, while the
other four folds were used to build the training set. Because there were 40 total users, this meant
that, in the writer-independent tests, the testing set always consisted of eight independent users, and
the training set was built from the samples of the remaining 32 users. In the writer-dependent tests,
a separate test was conducted for each user: the testing set consisted of one-fifth of the samples for
one user and the training set was built from the remaining four-fifths. Each of the experiments is
presented in the next section. Both writer-dependent and writer-independent baseline accuracies
of each recognizer are reported, on the algebra learner corpus.
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Table 5.2: Summary of baseline accuracy results for the three recognizers tested in this dissertation. Num-
bers in parentheses indicate the number of samples per symbol per user that yielded that accuracy value.
Microsoft’s TabletPC recognizer could not be trained to a writer-dependent model at the time of these ex-
periments. Symbol accuracy is the cumulative match score over all symbols tested. Equation accuracy is
average score over all equations, computed via normalized Levenshtein string distance.

Writer-Dependent Writer-Independent
Recognizer Symbol Equation Symbol Equation
Freehand Formula Entry System 91% 78% 83% (2) 71% (2)
JMathNotes 65% 44% 66% (10) 47% (10)
Microsoft TabletPC n/a n/a 83% (n/a) 54% (n/a)

An important note is that the Microsoft TabletPC API recognizer used for these experiments
was pre-Windows Vista and therefore was not trainable using user data. Therefore, only writer-
independent results are reported for that recognizer; the recognizer was not trained to either the
target vocabulary or the target population. As future work in this area, one could re-run the exper-
iments with the latest version of the Microsoft TabletPC recognizer that can now be trained.

In each experiment, accuracy is reported at the point at which accuracy has leveled off and no
significant benefit is obtained from continuing to add more data to the training set.

Accuracy was calculated via normalized Levenshtein string distance [80], which is equivalent
to the “word error rate” metric used in speech recognition, given by:

W =
S + I + D

N
,

where S is the number of substitutions, I is the number of insertions and D is the number of
deletions; and N is the length of the string to recognize.

5.2.6 Accuracy Results for Each Recognizer
The engine-specific accuracy results, both writer-dependent and writer-independent, are reported
here. In general, it was found that FFES was the most highly accurate recognizer tested on the
algebra learner corpus, and that the Microsoft TabletPC recognizer was not well-suited for this
domain. The summary table, Table 5.2, gives the best accuracy rates in each category of train-
ing/testing experiment for each recognizer, while Table 5.3 gives the detailed writer-independent
accuracy means for both trainable recognizers, by size of the training set, and Table 5.4 gives the
detailed writer-dependent accuracy distribution for both trainable recognizers.
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Table 5.3: Means tables for baseline accuracy measures reported for the Freehand Formula Entry System
and JMathNotes.

(a) Means table of writer-independent accuracy for FFES on both symbols and equations, showing what
training iterations were performed. N is the total number of tests across all folds. (Note that the standard
deviations are only for N = 5, and reflects the standard deviation of the number of folds, not individual
tests.)

Symbol Equation
Samples
per symbol
per user

N Mean StdDev N Mean StdDev

1 16192 81.44 2.91 1738 64.81 5.00
2 16192 83.05 1.95 1738 70.58 3.00
3 16192 82.96 2.16 1738 71.20 3.41
5 16192 82.76 2.46 1738 71.77 3.44
7 16192 82.72 2.55 1738 71.93 3.15
10 16192 82.63 2.47 1738 71.85 3.06
15 16192 82.89 2.07 1738 71.80 3.33
20 16192 82.73 2.08 1738 71.95 3.29
25 16192 82.81 2.09 1738 71.95 3.28
30 16192 82.77 2.11 1738 71.98 3.30
35 16192 82.75 2.08 1738 72.04 3.28

(b) Means table of writer-independent accuracy for JMathNotes on both symbols and equations, showing
what training iterations were performed. N is the total number of tests across all folds. (Note that the
standard deviations are only for N = 5, and reflects the standard deviation of the number of folds, not
individual tests. Note that JMathNotes tests were run with only 30 users instead of all 40.)

Symbol Equation
Samples
per symbol
per user

N Mean StdDev N Mean StdDev

1 12221 57.09 4.76 1311 38.04 4.21
2 12221 62.15 3.09 1311 40.75 4.27
3 12221 63.23 2.78 1311 41.41 3.52
5 12221 64.55 2.25 1311 43.27 3.43
7 12221 65.26 2.20 1311 44.85 3.76
10 12221 65.81 2.08 1311 46.97 4.38
15 12221 66.32 2.07 1311 48.75 4.12
20 12221 66.89 1.80 1311 49.24 3.96
25 12221 66.93 1.76 1311 49.66 3.90
30 12221 67.04 1.78 1311 50.30 4.02
35 12221 67.11 1.85 1311 50.70 4.03
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Table 5.4: Histogram table of all writer-dependent results for both the Freehand Formula Entry System and
JMathNotes.

Accuracy FFES JMathNotes
Bucket Symbol Equation Symbol Equation

20-24.9% 2
25-29.9% 1
30-34.9% 2
35-39.9% 5
40-44.9% 11
45-49.9% 9
50-54.9% 1 7
55-59.9% 5 3
60-64.9% 1 12
65-69.9% 5 13
70-74.9% 1 8
75-79.9% 1 18 1
80-84.9% 3 10
85-89.9% 8 5
90-94.9% 17
95-100% 11

Freehand Formula Entry System

The original FFES estimates of 95% (writer-dependent) and 77% (writer-independent) was not ob-
tained from a large sample of users; this dissertation attempts to replicate these original FFES ac-
curacy results via more systematic testing, using the algebra learner corpus. Two writer-dependent
experiments were conducted (one for symbols and one for equations) for each of the 40 users in
which the training set was four-fifths of that user’s data and the remaining one-fifth was used as a
test set. The five-fold cross-validated accuracy is above 90%, but not as good as the 95% quoted
for FFES in [131] (mean: 91.476%, stdev: 4.63; median: 92.85%). Figure 5.2(a) shows a his-
togram of the distribution over all 40 users of accuracy on the test set for symbols and equations,
which generally follows a normal distribution; actual values are given in Table 5.4. Accuracy on
equations is much lower than on symbols, on the other hand. The average accuracy for equations
is 78% (mean: 77.95%, stdev: 6.30; median: 78.76%) per user, an 14% decrease in accuracy
from the symbol case, and an 18% decrease in accuracy from the previously reported statistics on
FFES [131].

Writer-independent experiments were also conducted, in which the number of samples per sym-
bol per user included in the training set was varied, testing on both single symbols and equations.
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(a) Writer-dependent histogram of FFES’ accuracy on symbols and equations. Overall symbol accuracy
average is 91.48%; median is 92.85%. Equation accuracy average is 77.05%; median is 78.76%.
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(b) Writer-independent FFES’ accuracy on both symbols and equations when samples per symbol per user
is varied in the training set from 1 to 35. Accuracy at the point at which adding further training samples
does not significantly improve accuracy is 71.3% for equations, which is an approximate 9% decrease in
accuracy from the writer-dependent equation tests.

Figure 5.2: Baseline accuracy results for the Freehand Formula Entry System.
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Results of these tests are graphed in Figure 5.2(b). The recognition accuracy for single symbols
levels off (i.e., there is no significant benefit to accuracy of adding further training samples) around
83% after training on only two samples per symbol per user, a 9% decrease in accuracy from
the writer-dependent symbol case. For equation-level testing, the performance of FFES levels off
around 71% at the same point, a 14% decrease in accuracy from individual symbols and a 9%
decrease in accuracy from the writer-dependent equation tests.

JMathNotes

The same five-fold cross-validated data experiments on the algebra learner corpus were conducted
with the JMathNotes recognizer, with one exception: only 30 users were included rather than all
40, due to the much greater time demands of training and testing this SVM-based recognizer. For
each iteration, one SVM model was trained for all characters on varying subsets of the training
data and tested on the test set for that fold.

In general, JMathNotes did not perform as well as FFES. The five-fold cross-validated test
writer-dependent accuracy on symbols is 65% (mean: 65.46%, stdev: 5.71; median: 65.53%),
about 29% lower than the performance of FFES. Figure 5.3(a) shows a histogram of the distribu-
tion, over all 40 users, of accuracy on the test set for symbols and equations; actual values are given
in Table 5.4. It again follows a somewhat normal distribution, but is more spread out than that of
FFES. The equation accuracy is much lower than for symbols. The average accuracy over all users
for equations is 44% (mean: 44.11%, stdev: 8.60; median: 42.42%), which is a 32% decrease in
accuracy from JMathNotes’ own performance on symbols, and a 44% decrease in accuracy from
FFES on equations.

The same writer-independent experiments were conducted with the JMathNotes engine as with
FFES, varying the number of samples per symbol per user included in the training set. The results
for both equation and symbol are graphed in Figure 5.3(b). The recognition accuracy for single
symbols levels off (i.e., there is no significant benefit to accuracy of adding further training sam-
ples) at about 66% after training on ten samples per symbol per user, a 2% increase in accuracy
from JMathNotes’ own writer-dependent performance on symbols and a 15% decrease in accuracy
from FFES’ writer-independent accuracy on symbols (with only two samples per symbol per user).
For equations, it is 47% at the same point, a 7% increase in accuracy from JMathNotes’ writer-
dependent equation performance and a 34% decrease in accuracy from FFES’ writer-independent
accuracy on equations.

Microsoft TabletPC Recognizer

It was not possible to perform exactly the same set of experiments on Microsoft’s TabletPC rec-
ognizer because this recognizer was not trainable. Therefore, only writer-independent accuracy
estimates on the algebra learner corpus were computed. Two factors were varied: using or not
using a “word list” to constrain the recognition results to contain only symbols within the symbol



CHAPTER 5. IMPROVING RECOGNITION: BASELINE ACCURACY 100

0

2

4

6

8

10

12

14

16

18

20
-2

4.
9%

25
-2

9.
9%

30
-3

4.
9%

35
-3

9.
9%

40
-4

4.
9%

45
-4

9.
9%

50
-5

4.
9%

55
-5

9.
9%

60
-6

4.
9%

65
-6

9.
9%

70
-7

4.
9%

75
-7

9.
9%

80
-8

4.
9%

85
-8

9.
9%

90
-9

4.
9%

95
-1

00
%

Accuracy

N
um

be
r 

of
 U

se
rs

Symbol Equation

(a) Writer-dependent histogram of JMathNotes’ accuracy on both symbols and equations. Overall symbol
accuracy average is 66.46%; median is 65.53%. Equation accuracy average is 44.11%; median is 42.42%.
JMathNotes performed about 29% worse than FFES on symbols.
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(b) Writer-independent JMathNotes’ accuracy on both symbols and equations when samples per symbol per
user is varied in the training set from 1 to 35. Accuracy at the point at which adding further training samples
does not significantly improve accuracy is 47.0% for equations. JMathNotes performed about 34% worse
than FFES on equations.

Figure 5.3: Baseline accuracy results for JMathNotes.
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Table 5.5: Writer-independent recognition results for the Microsoft TabletPC recognizer.

Accuracy
Test Set Type Symbol Equation
No Word List 67.42% 54.20%
Word List 83.16% 36.42%

set; and testing symbols one at a time or full equations. The optimal results achieved through these
experiments are shown in Table 5.5.

These results show that the real-world performance of an engine that has not been trained to
the specific domain of use can be far lower than quoted rates of accuracy. This engine has achieved
rates as high as 90-100% [146] on note-taking and memo-writing tasks, but the underlying word-
level neural network structure of the recognizer apparently works quite poorly in the math domain.
Later versions of the recognition engine in Windows for the TabletPC include the ability to be
trained on user-defined data, which may help the rates improve for certain domain-specific tasks
such as entering or solving math equations and expressions. Also, the use of a word list in these
experiments did not precisely follow the intended use of such a list by the recognizer developers;
it appears that using the word list makes the system’s stroke grouping algorithm far too greedy,
clumping multiple symbols into one “word.” Because the “word list” used in these experiments was
actually the vocabulary of symbols, it was ineffective on equations: strokes for multiple symbols
would be grouped together greedily into one symbol. With the facilities available in the TabletPC
recognizer at the time of these experiments, it was not possible to achieve highly accurate math
recognition for full equations.

Writer-independent accuracy on symbols for Microsoft’s TabletPC recognizer was 83%, about
the same as FFES performance on the same, and 26% better than JMathNotes. Performance on
equations for Microsoft was 54%, a 24% decrease in accuracy from FFES, and a 15% increase
over JMathNotes.

5.2.7 Summary of Results and Discussion
Table 5.6 shows a summary of the writer-independent results for all three recognizers discussed
in this dissertation: the Freehand Formula Entry System, JMathNotes, and Microsoft’s TabletPC
recognizer.

In the single symbol case, both FFES and Microsoft are competitive at 83% accuracy. It is
in the equation case that the biggest difference emerges: FFES outperforms the others by almost
25%. The equation case allows users to input full equations without artificially placing bounding
boxes in which users have to enter individual symbols. This is a more natural way of entering
handwritten input because the users do not have to alter characteristics of their handwriting such
as spacing, connectedness or order of strokes to use the system. Therefore, performance on this
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Table 5.6: Summary of writer-independent recognition results for the three case studies.

Accuracy
Recognizer Symbol Equation
Freehand Formula Entry System 83.1% 71.3%
JMathNotes 65.8% 47.0%
Microsoft TabletPC 83.2% 54.2%

type of input should be emphasized in evaluations of handwriting recognizers.
Note that the equation-level accuracy is not what one would expect if processing of individ-

ual characters in the equation were independent. In fact, by virtue of the stroke-grouping process
involved in recognizing full equations, the individual symbols are not independent. If the individ-
ual characters could be treated independently, there would be no difference between the character
recognition rates in symbol and in equation modes. One could estimate the overall equation accu-
racy by taking the symbol accuracy to the nth power, where n is the length of the equation. For a
three-character equation, it would be 0.83 ∗ 0.83 ∗ 0.83, or 57%. Given that the average length of
the equations in the baseline recognition tests was nine characters, the results indicate that equation
level accuracy is better than independence would predict. Because the individual symbols in a full
equation cannot be treated independently, the accuracy for equations is computed differently from
the accuracy for symbols. Symbol accuracy is simply about substitution—given target a, did the
recognizer return a or some other symbol? On the other hand, Levenshtein string distance was used
for equations in order to account for issues in stroke grouping, which allows the recognizers to add
extraneous characters or remove others. Given target a, the recognizer could return a, b, bc, etc.
Therefore, the equation accuracy does not indicate that the system got 71% of equations perfectly
correct (that is quite rare, in fact). Rather, the average normalized Levenshtein string distance over
all equations is 71%. Hence, the equation accuracy does not represent what one would obtain by
raising the symbol level accuracy to the nth power, and stroke grouping errors are the reason.

Some limitations of the experiments performed in this dissertation do exist. One is that newer
versions of the Microsoft TabletPC recognizer are trainable, which might allow its accuracy to
increase significantly for the equation case. Domain-specific training can be crucial to maximizing
recognition accuracy within a specific application. Another limitation is that JMathNotes was
trained using only one DAG-SVM for all characters in the training set. It might improve accuracy
to train separate SVMs, for example, of characters with varying numbers of strokes, which would
yield a more complete picture for comparing the different recognizers. Another possibility for
future work would be to classify users’ styles of writing more finely than just number of strokes
per symbol and to ensure an equal representation of different writing styles.

The results of these experiments have implications for application developers who are intending
to use handwriting input and adapt existing recognition engines. The recognizers were trained by
ensuring an equal representation of samples per symbol per user in the training set in order to yield
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the best baseline accuracy with the least amount of samples. If available, domain-specific data
yields the best performance by pruning the symbol set and allowing the use of context to aid the
recognition engine. Research-level and state-of-the-art recognition systems currently require some
level of technical expertise to incorporate them into an application, but as more are adapted for real
systems, APIs and toolkits should follow.

5.3 General Conclusions
Three handwriting recognition engines were reviewed for this dissertation, but ultimately only one
was used as the base recognition system for the remainder of this work. FFES performed the best
out of the three on the algebra learner corpus collected in the Lab Learning Study, particularly in
the case of testing on full equations. The results of these experiments showed that with very little
training data per person—just two samples per symbol per person—very good writer-independent
accuracy can be achieved with FFES. In the future, other recognition engines may be found or built
that perform even better in general or on this corpus in this domain, and as such, the methodology
used in this chapter can help guide the training and adaptation of such an engine to this context.



Chapter 6

Improving Recognition: Domain-Specific
Context Information

The second main approach taken by this dissertation to enhance handwriting recognition accuracy
is to incorporate domain-specific context information into the recognition process, thereby con-
straining the recognition hypotheses to contextually relevant ones and yielding higher accuracies.
Work on recognition accuracy tends to hold domain-general recognizers that minimize user train-
ing, are multilingual, and are completely unconstrained as the “Holy Grail” [79, 86]; however,
domain-specific recognition can be just as valuable. Because it is typically more accurate in its
particular context by virtue of its smaller vocabulary sizes and specific grammar rules [86, 108], it
can be used in cases where domain-general recognition may not yet be suitably accurate.

In the tutoring domain, much context is available for free. For instance, the tutoring program
assigns the problems for the student to solve, so it knows what the student should be writing (the
correct answer). From the model of student knowledge, it knows the probability that this stu-
dent will get the correct answer, i.e., based on prior opportunities to practice the same skill(s)
applicable to the current step. From years of learning science research into difficulty factors as-
sessment [136], the system knows the most common misconceptions (known in learning science
literature as “bugs”) that students might write. These pieces of context can be used to constrain
the recognition hypothesis space before any recognition is performed (i.e., reducing the number
of symbols under consideration), or to further refine an initial recognition hypothesis after the
recognition was conducted normally.

6.1 Adding Domain-Specific Information
After the baseline writer-independent training described in Chapter 5, the FFES recognizer was
at a reasonably high level of accuracy even before adding any domain-specific context information
(73% writer-independent accuracy on full equations). Therefore, the tutor context information
was used to further refine the recognition hypothesis once the strokes had already been fed into

104
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the stroke grouper and character recognizer, rather than as a top-down constraint on what the
recognizer would consider as potential hypotheses.

During this process, it was much more complex to obtain the probabilities from the student
model or the common errors from the tutoring system than originally supposed. This is a limitation
of the tutor code rather than a challenge as a research topic, so for sake of demonstration of the use
of contextual information, only the set of all possible correct next steps is used (obtained at each
subsequent problem-solving step). This information is easily available from the tutor system, and
could be the most helpful piece of information, depending on the typical error rate in the types of
algebra equation-solving lessons used in this dissertation.

Several ways to incorporate this context information into the recognition process were con-
sidered, such as modeling the relationship between the recognizer confidences and the tutor in-
formation via Bayesian networks. The method actually implemented was inspired by the field of
collaborative information retrieval and metasearch, which uses ranking fusion techniques to com-
bine the results of multiple searches [122]. The recognition hypothesis is expressed in terms of an
n-best list per symbol, which can also be treated as a rank-list: elements with higher confidence
values are ranked more highly than elements with lower confidence. This simplifies the problem
in the sense that it can be difficult to convert confidences to probabilities for use in a Bayesian
network, depending on how these confidences are computed. In FFES, confidences are the inverse
Euclidean distance from the candidate to the nearest training example. While transformations such
as squaring the distance or taking the inverse log normal could be applied in order to convert these
distances into probabilities, for simplicity’s sake these transformations were not done here.

On the other hand, it is quite simple to convert the tutor probabilities into rank-lists. An exam-
ple of the information given by the tutor for a sample problem-solving step is given in Figure 6.1,
showing four possible correct next steps for the problem 2x + 10 = 30. Each possible correct next
step is treated as equally likely (i.e., there is no bias toward any particular solution path). This is
a useful simplying assumption; however, student preferences could be learned over time in a com-
prehensive curriculum. The probability of student error, which could be estimated from the tutor’s
knowledge model, is not used here. Because rank-lists are used rather than the raw n-best lists,
the probabilities and confidences are abstracted, and the error probability does not matter; only the
order of elements in the lists matters. The elements that would constitute errors (i.e., symbols not
in any correct option) can simply be given rank n + 1, where n is the size of the set of possible
correct steps.

6.1.1 Working with the Tutor Information
As mentioned, the tutor returns a list of the possible correct steps in equation (or expression)
form that the student could be writing, indicating which operation(s) are possible and what the
outcome would be. However, the recognizer is only recognizing one character at a time. The
recognizer, upon receiving a set of strokes to recognize, iteratively groups them into stroke groups
corresponding to the most likely characters using a confidence measure. The tutor information
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−10 from both sides
2x = 20
/2 on both sides
x + 5 = 15

Figure 6.1: The type of information received from the tutor: the set of possible correct options for the
current step (the step following 2x + 10 = 30).

should not be applied in sequence one character at a time because the recognizer may have made
errors in the stroke grouping process, for instance, breaking one multistroke symbol into two,
or aggregating two symbols into one. This problem, known as the alignment problem, is also
encountered in multimodal systems with two or more streams of co-occurring or synchronous
input (e.g., [46]). The presence of stroke grouping errors means that it will not be not useful for
the tutor to simply provide a rank-list for the nth character in the target. The tutor could be looking
at the wrong symbol if the stroke grouping algorithm has failed, causing the tutor information
to be of no benefit, and potentially to be of significant harm. Figure 6.2 shows how aligning
the two streams (the recognizer character-level recognition and the tutor equations) can fail given
errors in stroke grouping. In this example, the ’4’ has been split into its component strokes by the
recognition process because the recognizer’s confidence levels indicated that a ’c’ and ’1’ were
more likely than a ’4’. In addition, the ’-1’ strokes have been grouped into one symbol because
the recognizer’s confidence level indicated that a ’7’ was more likely. In trying to integrate the
tutor information with this recognition stream, the streams are misaligned: the recognizer’s sixth
character is the ’=’, for example, while the tutor’s is the ’8’. This stroke grouping mistake makes
the tutor unable to effectively benefit the recognition process by increasing the confidence that the
sixth character is actually an ’8’.

Therefore, another technique from information retrieval and natural language processing is
used, called “bag of words” (e.g., [27]), in this case, “bag of symbols.” Each set of correct steps is
jumbled together as a set of symbols, unordered, and treated as equally likely. Symbols that appear
more than once in the set of symbols are treated as more likely than symbols that appear once,
by summing the probabilities normalized by length of the equation or expression in which each
symbol appears. Figure 6.3 illustrates this process. The bag-of-words method abstracts away some
information from the tutor-supplied information that could be useful, but the alignment problem
is more potentially damaging to system performance because the tutor information cannot be of
any use at all in the presence of the alignment issue. As future work, in § 8.3 ways are described
to adapt the approach used here to alleviate the impact of this compromise, but which are out of
scope for this dissertation.
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3x + 4  = 8x  -  1

Input as written by student:

Stroke grouping errors make aligning symbols from recognition
    result and tutor information difficult even with correct input:

Recognizer

Tutor

Misalignment

Figure 6.2: The alignment problem prevents comparing the tutor information to the recognizer information
directly. Because the recognizer can make errors in stroke grouping, the tutor does not know which symbol
(in order from right to left) to consider. In this example, stroke grouping errors have occurred on the ’4’,
which has been split into two groups, and on the ’-1’ symbols, which have been combined into one group.
When the recognizer asks the tutor for the sixth character, the tutor returns ’8’ but the recognizer is already
looking at the ’=’. In this case, the tutor information would not help, and may in fact harm, recognition.

6.1.2 Average-Rank Sort
After putting the tutor-provided information into the bag-of-symbols format, both input streams
are in equivalent and comparable forms: lists of symbols sorted by “likeliness”—in the recognizer
case, this likeliness is represented as confidences; in the tutor case, this likeliness is represented as
probabilities. The next step is to combine the two input streams. Confidences and probabilities are
not directly comparable; therefore, the elements from both lists are converted into simple ranks.
For example, the symbol with the highest confidence or probability is assigned rank 1, the next
rank 2, and so forth. If two symbols are tied, they receive the same rank. Then, to combine the two
rank-lists, a weighted average-rank sort algorithm is used, similar to a weighted Borda count [22],
which effectively sums the rank position of documents from different results lists in search tasks.
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Figure 6.3: Converting the tutor information, provided as a set of possible correct equations, into a “bag of
words” rank-list involves the three steps shown above. The symbols in each of the equations are jumbled
together and re-sorted by frequency. Symbols with the same frequency are assigned the same rank, and
symbols in the vocabulary but not in any of the possible equations are assigned one more than the maximum
rank.

Figure 6.4 outlines the steps involved in combining the two lists via average-rank sort. First,
as described, convert the two lists into rank-lists, abstracting the raw probability or confidence
information. Then, for each symbol in the vocabulary, take the rank of the symbol in the tutor list
and average it with its rank in the recognition list (a straight or weighted average may be used).
Then, sort the final list by this average rank; in case of ties, the recognizer rank is trusted more (i.e.,
decide ties in the direction of the recognizer’s rank for that symbol), because the tutor information
is so limited in scope. This does not require either list to output a hypothesis for every symbol: if
the symbol does not appear in one or both lists, assign it rank n + 1 for each list, where n is the
size of the list.

As mentioned, the estimated student error probability (set here as 0.50) does not affect the
recognition process because the values are abstracted away by the conversion to rank-lists. If an
alternative means of combining the two lists were used, the error probability would have to be
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Raw accuracy of combined system at varying weights on the tutor and recognizer during the average rank sorting process.  The best improvement on the recognizer alone was seen at evenly weighting the tutor and recognizer

Recognition Process

Combination Process

Tutor Input Process

{ ('y': 0.997), ('+': 0.982), ('x': 0.976), ('4': 0.911), ('1': 0.790), ('7': 0.678),
   (')': 0.608), ('2': 0.603), ('-': 0.597), ('=': 0.553), ('(': 0.542), ('a': 0.531), 
   ('5': 0.519), ('9': 0.513), ('6': 0.508), ('b': 0.486), ('3': 0.484), ('c': 0.482),
   ('_': 0.453), ('0': 0.389), ('8': 0.378), ('/': 0.185) }

{ 'x(5 + 3) = 24': 0.167,
  '8x = 24': 0.167,
  '1(5x + 3x) = 24': 0.167,
  error: 0.50 }

5x + 3x = 24

{ ('x': 0.167*1/9+0.167*1/5+0.167*2/11), ('(': 0.167*1/9+0.167*1/11),
  ('5': 0.167*1/9+0.167*1/11), ('+': 0.167*1/9+0.167*1/11), 
  ('3': 0.167*1/9+0.167*1/11), (')': 0.167*1/9+0.167*1/11), ... }

{ ('x': 0.08), ('-': 0.07), ('2': 0.07), ('4': 0.07), ('(': 0.03), ('5': 0.03), ('+': 0.03), ... }

{ ('x': 1), ('-': 2), ('2': 2), ('4': 2), ('(': 5), ('5': 5), ('+': 5), ('3': 5), (')': 5), ('8': 10),
  ('1': 11), ('y': 12), ('7': 12), ('=': 12), ('a': 12), ('9': 12), ('6': 12), ('b': 12), ... }

{ ('y': 1), ('+': 2), ('x': 3), ('4': 4), ('1': 5), ('7': 6), (')': 7), ('2': 8), ('-': 9), ('=': 10), 
  ('(': 11), ('a': 12), ('5': 13), ('9': 14), ('6': 15), ('b': 16), ('3': 17), ('c': 18),
  ('_': 19), ('0': 20), ('8': 21), ('/': 22) }

{ ('y': 6.5), ('+': 3.5), ('x': 2), ('4': 3), ('1': 8), ('7': 9), (')': 6), ('2': 5),
  ('-': 5.5), ('=': 11), ('(': 8), ('a': 12), ('5': 9), ('9': 13), ('6': 13.5), ... }

{ ('x': 1), ('-': 2), ('2': 2), ('4': 2), ('(': 5), ('5': 5), ... }{ ('y': 1), ('+': 2), ('x': 3), ('4': 4), ('1': 5), ('7': 6), ... }

{ 'x', '4', '+', '2', '-', ')', 'y', '1', '(', '7', '5', '=', '3', 'a', '9', '6', 'b', 'c', '_', '8', '0', '/' }
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    possibilities.
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1. The two lists (from the tutor and from 
    the recognizer) are combined via the 
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    location in the final list is determined by
    the average of its rank in each list. The 
    weights used on each rank-list were 
    determined experimentally.

2. The final list is output, showing 'x'
    as the most likely candidate.

The algorithm is repeated for every
new stroke grouping in the input
until all strokes have been 
recognized.

{ ('x': 2), ('4': 3), ('+': 3.5), ('2': 5), ('-': 5.5), (')': 6), ('y': 6.5), ('1': 8),
  ('(': 8), ('7': 9), ('5': 9), ('=': 11), ('3': 11), ('a': 12), ('9': 13), ('6': 13.5), ... }

average

sort

Recognizer Tutor

Figure 6.4: The step-by-step algorithm which takes the recognition results and the tutor information and
combines them to better interpret students’ written input.
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empirically verified. A general error rate for all algebra equation-solving units, just one unit, or
just one problem type could be obtained from the PSLC LearnLab’s DataShop1 estimates from
learning logs from past courses in the curriculum, and hard-coded into the tutoring system where
needed. In addition, detailed error probabilities for this particular student could be obtained from
the tutor’s model of student knowledge in future development of this concept.

In summary, the procedure for adding the domain-specific context information to the recogni-
tion process to yield a combined hypothesis of what was written by the student is as follows:

1. Identify the current step the student is working on.

2. Determine all possible correct options for this step, by computing the set of next possible
operations and results of those operations based on the prior step.

3. Given the prior step, what step(s) do these operations yield?

4. Convert the list of possible steps into a “bag of symbols.”

5. Sort the “bag of symbols” by symbol frequency and convert to ranks.

6. Use a weighted average to sort the tutor rank-list and the recognizer rank-list (converted from
the n-best list with confidences) into one list via average-rank sort.

6.2 Context-Enhanced Recognition Accuracy
In order to evaluate the improvement in recognition accuracy as a result of this combination tech-
nique, a test suite of six sample problems was constructed. Each problem was included in the test
suite twice: once with a conceptual error leading to one or more incorrect steps, and once fully
correct, for each user in the corpus (the handwriting corpus used is the algebra learner corpus, the
same as that used in the baseline recognition accuracy experiments from Chapter 5 and collected
during the Lab Learning Study). Ten iterations of each problem solution, correct and incorrect,
were conducted per user to account for noise in recognition accuracy. With 40 users in the test
corpus, this yields 6 ∗ 2 ∗ 10 ∗ 40, or 4800, total problems tested. Problems had between three
to five steps, and each step had between three to nine characters. § 6.2.3 describes how the test
problems were chosen and Appendix E lists both the correct and incorrect versions of the problems
used.

All tests were writer-independent, meaning that the recognition component was trained on a
different set of users than the users being tested. In addition, five-fold cross-validation was used, so
that each student was part of the test set once and part of the training set four times. The entire set
of students was broken up into five subsets (folds) by using a random number generator to select
the eight students for each fold. All of the data for a particular student was assigned to the same
fold. All training data was used for each fold.

1https://learnlab.web.cmu.edu/datashop/
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It was important for comparison’s sake that the accuracies obtained in these experiments had to
be comparable to the baseline accuracy experiments from Chapter 5. In addition, a segmented and
labeled corpus of problem-solving data was not available. Therefore, these experiments used the
algebra learner corpus from Chapter 5, which was not a problem-solving corpus. Each problem-
solving step from the test suite of problems was artificially constructed for each user by choosing
random samples of each particular symbol for that user from the corpus, and translating them on
the virtual canvas to fit problem templates. Equations are lined up along a center line and fractions
are centered vertically over and below the fraction bar. These translated strokes were then fed to the
recognizer, which performed stroke grouping and character recognition as usual until all strokes
on the canvas had been recognized. The frequency of stroke grouping errors was not significantly
impacted by this template-based alignment, as compared to the experiments from Chapter 5.2

Each problem was tested one step at a time. After the recognition had been done for each
stroke grouping (several times per step), the tutor was asked for all possible correct steps at this
stage of the problem-solving process, to further refine the recognizer’s n-best list for that character,
as described in § 6.1.1. The step the tutor believes the student is on was determined on-the-fly, by
matching the recognition result (of tutor-plus-recognizer) to the set of correct options for that step,
and assuming the step that was written is the option with the least distance from the recognition
result. Using the tutor information, in terms of the correct next steps, to track student progress
through the problem artificially constrains the tutor to expect that the student is on the correct so-
lution path. However, this constraint is reasonable because the error rate for these types of algebra
units is low, making correct solution paths much more frequent (elaborated more in § 6.2.4). In
addition, if the step written were assigned directly to the recognition result of the system, other
problems could arise such as parsing errors where the recognition result is not legal math. The
tutor uses this hypothesis about what step was written to determine the set of next correct steps, so
it must be a legal, parseable expression or equation.

6.2.1 Tutor Testbed
A testbed platform was used throughout these experiments to obtain the appropriate information
from the tutor side. In this proof-of-concept approach, the tutor was working in the background
only (i.e., a fully functional prototype was not built). It was trivially extended to allow user input
for demonstration purposes, but it was considerably more involved to update the tutor model of
student knowledge based on the system’s interpretation of the student’s input (necessary to allow
the tutor to follow student progress and assign new problems). Therefore, the system cannot be
used as it is now with students.

The testbed system integrates the tutoring system, implemented in Java, with the recognition
system, implemented in C and C++. It uses a socket connection to the recognizer process in
order to send stroke coordinates to the recognizer and receive the recognition results. The testbed

2This was roughly verified by comparing the average difference in length between the target and the recognition
result from the baseline experiment log files for FFES to that of the current experiments.
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Figure 6.5: System architecture diagram of the prototype tutoring system. For the experiments reported
in this chapter, the “Interface wrapper” component is replaced with a batch testing program that reads
handwritten strokes from corpus files and feeds them into the recognizer.

system can be run as a test suite, reading the strokes to recognize from files, or as a proof-of-
concept for demonstration purposes that allows user input of the strokes and provides real-time
recognition. The general system architecture is shown in Figure 6.53. The tutor-provided context
information is obtained in the testbed from a “Tutor” object running in the background, which can
receive a problem or equation to solve and then be queried as to the set of next possible correct
steps. In a real, deployed system, this Tutor object would not just be in the background, but
the components of the testbed that handle the recognition calls and combination with the tutor
context information would be incorporated into the back-end of the complete tutoring system,
allowing real-time handwriting input in the context of problem-solving that is linked to the tutor’s

3This diagram has been updated from the one published in [10].
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knowledge-tracing model.
For the purposes of running these recognition accuracy tests, the test suite was hard-coded into

the program so that the recognizer would be run on the same problems for every user in the testing
set. The testbed wrote detailed logfiles of recognition results of both the recognizer alone and the
recognizer-plus-tutor-information system.

6.2.2 Iterative Algorithm Tuning
The average-rank sort allows different weights to be placed on both the recognition and the tutor
information sides, i.e., a weighted average as given by the following equation:

Kavg = WT ∗KT + WR ∗KR,

where KR is the recognition rank, KT is the tutor rank, WR is the weight on the recognition side,
and WT is the weight on the tutor side. With a weighted average, the weights should always be
normalized to sum to 1. For instance, a weight of 0.50 applied to each rank would correspond to
weighting the two sources evenly.

Different parameter values were tested for these weights, in order to find the best possible
accuracies obtainable with this method. The set of weights (WT , WR) tested was (0.0, 1.0), (0.1,
0.9), (0.2, 0.8), (0.3, 0.7), (0.4, 0.6), (0.5, 0.5), (0.6, 0.4), (0.7, (0.3), (0.8, 0.2), (0.9, 0.1), (1.0,
0.0). The results of these tests to find the best weights are given in § 6.2.4. As future work, in § 8.3
other possible ways of combining the lists, such as using Bayesian networks, are discussed. More
robust methods may yield further improvements upon those methods described here.

6.2.3 Choosing the Test Problems
The test set used in these experiments consists of six representative cases of problem-solving pro-
cesses, with errors, from the learning phase of the Lab Learning Study. These cases were chosen
by reviewing the screen captures of each problem-solving solution from the study (including both
ones with errors and ones without). Out of 500 total problems for 28 students, 73 were not solved
correctly on the first attempt (14% problem error rate). Each errorful problem example was roughly
coded at a high level of abstraction with the type of error the student made. Table 6.1 lists the types
of errors encountered in the corpus; the five most common were chosen for the errors to artificially
introduce in the test suite.

A specific representative example of a student making each of the highest-frequency error
types from Table 6.1 was chosen and included in the test cases. The types were “arithmetic error,”
“negative sign dropped,” “example mirroring/using a number not in the problem,” “using a wrong
number from the problem,” and “performing a different operation on each side.” The example-
mirroring case and using-a-number-not-in-the-problem case can be combined for testing purposes
because they amount to the same thing (the system sees numbers it does not expect); however, in
a deployed system, the numbers from the example can be known to the tutor and can be used to
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Table 6.1: Types of conceptual or other problem-solving errors represented in the corpus of problem-solving
examples from the Lab Learning Study’s learning phase, grouped by similarity. The frequency column sums
to more than 73 because some problems contained examples of multiple error types.

Error Type Frequency Description
Arithmetic error 24 The student makes a simple arithmetic error, such as

indicating that 7 ∗ 6 equals 56.
Transcription error 5 The student copies the problem incorrectly or incor-

rectly copies a number from one step to another.
Example mirroring or
copying

12 The student writes numbers in the problem that are
mirrored from the example provided, rather than from
the problem to be solved.

Negative sign dropped 12 The student divides by a negative number and does
not include the negative sign in the result.

Performing different
operation on each side

5 The student, for example, subtracts a number from
one side but divides on the other side.

Using different num-
bers on each side

2 The student applies the same operation to both sides
but uses different operands on each side.

Operated on terms
rather than sides

2 The student applies an operation to two terms on the
same side, ignoring the equals sign and the other side
of the equation.

Using a wrong number
from the problem

6 The student applies an operation using some number
from the problem other than the correct one.

Using a number not in
the problem or example

6 The student applies an operation using a number not
in the problem at all (and not in the example, i.e., not
example mirroring).

Reciprocal confusion 2 The student multiplies by the numerator rather than
the denominator to remove a fraction.

Not showing work 37 The student simply writes the final answer.
Incomplete solution 25 The student submits a partial solution without an x =

X line.
Expressed answer via
“plug and chug”

12 The student writes the original equation with the value
of x in the place of the variable, for example, writing
5 ∗ 3 + 3 ∗ 3 = 24 as the solution to 5x + 3x = 24.

Off-task writing 18 The student scribbles or writes messages unrelated to
the problem-solving process in the input space.
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help identify this specific type of error. The test cases included one example problem with each
of the five chosen errors, as well as the correct version of that problem. One more problem was
also included to help the test suite problems’ average deviation from correct match that of the
corpus at large; this problem was an example of both the “negative sign dropped” and the “using
a wrong number from the problem” error types. See § 6.2.4 for a further discussion of computing
this deviation.

In a problem solution in which an error has been made, the error will propagate through the rest
of the solution. Even if the student correctly applies operators to the remaining steps to achieve an
answer, the steps he writes will not be part of the correct set of possibilities, since the tutor is only
looking at the correct solution space. Therefore, a step is counted as an error step for analysis in
any case where the input does not match any of the candidates in the set of correct options. In all,
the test set had 11 steps that were error steps, out of 24 total steps. Half the problems had errors
on them, for a 50% problem error rate. This error rate is much higher than the real-world corpus
problem error rate of 14% mentioned above, in order to ensure that the proper cases were covered.
That means the raw accuracy achieved could actually be higher in real-world datasets, since the
combined system typically does better on steps without errors than steps with errors due to the
tutor bias in favor of correct solutions.

6.2.4 Evaluation Results
Two measures of success are reported here in order to evaluate or validate the approach taken by
this work. One is the best raw accuracy achieved with this approach. The other is more application-
specific: how good is this approach at identifying the step on which the error occurred?

Part of the original motivation to explore the use of handwriting recognition in the tutoring do-
main, in spite of imperfect recognition technology, was the hypothesis that aspects of the domain
would allow interaction patterns that do not require the system to output the recognition result of
each piece of input back to the student immediately, or possibly at all. Note that many recognition
systems perform a type of “beautification,” in which the user’s writing is transformed into a ma-
chine font or otherwise standardized; this probably is initially surprising to the user, but the user
eventually will become acclimated to it. It is more than beautification that is referred to here, but
the additional burden of correcting the system and focusing on input and display rather than mathe-
matics. In fact, this burden may impose its own type of cognitive load, whether or not recognition
is highly accurate [116]. When the student becomes aware of the system working, this awareness
may interrupt his cognitive flow and remove him from the context of problem-solving. For this
reason, it may be enough to simply provide feedback of the type: “Your final answer is incorrect.
It looks like you made an error on this step [highlight step in interface]. Why don’t you go back
and check that step?” This feedback structures the interaction in the form of a tutoring intervention
as a way to keep the student engaged in the problem-solving process, rather than exposing its true
purpose, checking its interpretation of the student input. In order to identify on which step the
problem occurred, the system must compare the distance from the set of correct possibilities with
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Figure 6.6: The raw accuracy of the combined system at varying weights on the tutor and recognizer during
the average-rank sorting process. The best improvement over the recognizer alone was seen at (WT = 0.40,
WR = 0.60) pair during the average-ranking process, with an accuracy of 72.5%. Performance of the
recognizer alone (WT = 0.00, WR = 1.00) is 66.3%.

the student’s input (after recognition) and determine which step has the highest deviation from the
appropriate correct set.

Accuracy was determined in the same way as in the experiments presented in Chapter 5: using
normalized Levenshtein string distance [80], counting the number of substitutions, insertions and
deletions and then normalizing by string length. Means on all metrics are given in Tables 6.2
and 6.3, and are described further in the following sections.

Raw Recognition Accuracy

The systematic tests revealed a relationship between the weight provided to the tutor and the accu-
racy obtainable. Figure 6.6 graphs the raw performance of the combined recognition system as a
function of different (WT , WR) pairs; raw means are given in Table 6.2(a). The overall accuracy is
shown, as well as the accuracy on steps with errors and steps without errors. Due to the context in-
formation’s bias toward correct answers, the combined system does better on steps without errors.
The steps with errors do not bring the overall accuracy down as much as they might because of the
distribution of steps with errors to steps without: there are many more steps without errors, which
mirrors real-world datasets.

Weighting the tutor slightly less than the recognizer (WT = 0.40, WR = 0.60) appears to
achieve the best recognition accuracy without as much penalty for the steps with errors. The mean
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Table 6.2: Means tables for accuracy and other performance metrics reported in this chapter.

(a) Means table of raw accuracy by (WT , WR) pairs.

Total Accuracy Accuracy
Steps with Errors Steps Without Errors

WT WR N Mean StdDev N Mean StdDev N Mean StdDev
0.0 1.0 18720 66.33 26.74 14820 65.69 26.94 3900 68.74 25.82
0.1 0.9 18720 66.53 26.79 14820 65.99 26.94 3900 68.58 26.10
0.2 0.8 18720 69.03 26.74 14820 69.22 26.99 3900 68.31 25.76
0.3 0.7 18720 69.29 27.44 14820 69.29 27.75 3900 69.28 26.24
0.4 0.6 18720 72.52 27.65 14820 72.54 28.06 3900 72.44 26.05
0.5 0.5 18720 71.20 27.83 14820 72.51 28.20 3900 71.00 26.33
0.6 0.4 18720 68.86 29.36 14820 69.65 30.35 3900 65.89 25.04
0.7 0.3 18720 65.29 30.72 14820 66.45 32.32 3900 60.86 23.17
0.8 0.2 18720 62.32 32.15 14820 62.90 34.21 3900 60.14 22.57
0.9 0.1 18720 57.06 34.19 14820 57.43 36.58 3900 55.66 22.92
1.0 0.0 18720 50.03 36.41 14820 49.21 38.69 3900 53.13 25.79

(b) Table of true-positive-rate and false-positive-rate for various threshold values by (WT , WR) pairs. The
threshold indicates the level of deviation from correct used to determine whether a step is an error. Threshold
values of 0.0 result in TPR and FPR of 100%; threshold values of 1.0 result in TPR and FPR of 0.0%. Bolded
cells indicate “points of interest.” N for FPR rows is 5460; for TPR rows, 3900. Standard deviation is not
included because this is the proportion across all folds/data.

Threshold Value
WT WR Rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 1.0 FPR 77.9% 69.0% 57.7% 41.5% 20.1% 16.1% 8.7% 4.1% 3.5%
TPR 99.8% 98.8% 90.3% 77.1% 63.5% 56.8% 50.9% 35.1% 34.3%

0.1 0.9 FPR 77.5% 67.8% 56.6% 41.4% 20.5% 16.3% 8.6% 4.2% 3.5%
TPR 99.7% 98.7% 89.8% 76.6% 64.1% 56.9% 51.9% 35.9% 35.4%

0.2 0.8 FPR 71.5% 61.6% 50.3% 35.7% 17.0% 14.2% 7.2% 2.8% 2.4%
TPR 99.5% 96.3% 87.8% 72.2% 59.1% 52.8% 47.7% 31.7% 31.4%

0.3 0.8 FPR 70.9% 60.9% 48.7% 37.1% 14.0% 10.6% 6.5% 2.2% 1.7%
TPR 98.8% 94.6% 83.9% 66.1% 57.9% 52.3% 48.6% 34.1% 33.9%

0.4 0.7 FPR 65.1% 54.3% 46.2% 34.2% 12.5% 9.8% 6.4% 1.4% 1.0%
TPR 96.9% 91.6% 80.2% 60.4% 43.5% 38.7% 35.9% 29.6% 29.1%

0.5 0.6 FPR 65.8% 55.4% 46.1% 34.2% 12.8% 10.1% 7.1% 1.6% 0.9%
TPR 96.7% 91.0% 79.0% 59.1% 42.3% 38.2% 35.8% 29.6% 29.2%

0.6 0.5 FPR 65.4% 56.8% 50.8% 40.5% 17.4% 12.3% 7.9% 2.2% 0.6%
TPR 93.0% 87.6% 73.8% 55.7% 43.9% 39.9% 37.8% 29.7% 29.3%

0.7 0.4 FPR 66.5% 58.9% 53.0% 45.3% 24.3% 20.8% 12.8% 2.8% 0.3%
TPR 88.4% 82.8% 69.8% 58.0% 53.6% 50.0% 47.6% 37.9% 37.3%

0.8 0.3 FPR 70.7% 64.0% 57.1% 50.2% 29.4% 25.6% 17.4% 2.2% 0.3%
TPR 86.2% 81.5% 70.8% 63.5% 60.8% 57.4% 53.7% 40.0% 37.3%

0.9 0.2 FPR 74.5% 69.4% 63.6% 59.0% 36.0% 31.0% 24.7% 3.8% 0.2%
TPR 82.2% 79.4% 70.1% 62.8% 60.5% 58.0% 52.8% 34.1% 30.0%

1.0 0.1 FPR 80.5% 76.0% 73.1% 68.8% 49.0% 45.7% 43.8% 8.3% 0.0%
TPR 82.2% 79.2% 69.6% 62.9% 59.9% 58.7% 57.3% 33.3% 29.8%
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Table 6.3: Performance on the error identification task. Standard deviations are not included because these
are raw proportions across all folds/data.

(a) Proportion of problems on which system correctly identifies error step by (WT , WR) pairs.

WT WR N ID First Error ID Any Error
0.0 1.0 390 0.426 0.585
0.1 0.9 390 0.426 0.580
0.2 0.8 390 0.432 0.619
0.3 0.7 390 0.371 0.558
0.4 0.6 390 0.424 0.597
0.5 0.5 390 0.401 0.580
0.6 0.4 390 0.390 0.529
0.7 0.3 390 0.396 0.505
0.8 0.2 390 0.456 0.567
0.9 0.1 390 0.465 0.598
1.0 0.0 390 0.320 0.403

(b) Proportion of problems on which system correctly identifies error step by problem type by (WT , WR)
pairs.

WT WR N 36
x

= 4 5x + 3x = 24 8x = 16 x
5

+ 4 = 7 −x = 5 −x = 8

0.0 1.0 390 0.103 0.664 0.436 0.292 0.221 0.841
0.1 0.9 390 0.077 0.692 0.459 0.297 0.203 0.826
0.2 0.8 390 0.069 0.774 0.510 0.192 0.215 0.833
0.3 0.7 390 0.056 0.744 0.441 0.182 0.041 0.762
0.4 0.6 390 0.159 0.531 0.849 0.172 0.044 0.790
0.5 0.5 390 0.126 0.492 0.831 0.167 0.026 0.767
0.6 0.4 390 0.287 0.210 0.885 0.182 0.056 0.721
0.7 0.3 390 0.377 0.172 0.844 0.228 0.056 0.697
0.8 0.2 390 0.467 0.336 0.867 0.195 0.018 0.856
0.9 0.1 390 0.518 0.244 0.879 0.274 0.000 0.874
1.0 0.0 390 0.454 0.000 0.856 0.613 0.000 0.000
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improvement at the peak weighting function is 72.5% (stdev: 27.7%), which is a 9% improvement
over the performance of the recognizer alone on the same test set (66.3% recognizer-only accuracy
on average). By a paired-samples t-test, the mean accuracy of the two samples (recognizer-only
vs recognizer-plus-tutor) were significantly different (t(18719) = 28.0, p < 0.05): the addition of
context significantly improved the recognizer’s performance. These accuracy numbers are lower
than those seen in the experiments presented in Chapter 5 (71.3% recognizer-alone equation accu-
racy), most likely due to the characteristics of this test set. The average length of the equations and
expressions sent to the recognizer in these experiments was shorter, and although the accuracy is
normalized by equation length, shorter expressions tend to have higher error rates. Furthermore,
the recognizer in this set of experiments was trained on all the data from the proper fold, which
may have added too much noise to the recognition process (rather than the minimal approach of
two samples per symbol per user taken in Chapter 5).

Note that 72.5% accuracy is the normalized character recognition rate in the presence of the
stroke grouping problem. It does not mean that the recognizer gets 72.5% of the equations perfectly
correct. Rather, the proportion of equations that the combination recognizer gets perfectly correct
at (WT = 0.40, WR = 0.60) is 39.2%. This number can be used to model the amount of recognition
noise interfering with the process of identifying whether a difference in the recognition result and
the set of correct options is due to recognition error or student error.

Student Error Identification

Figure 6.7(a) graphs the performance of the system on a real-world validation metric of identifying
where the error occurs in a problem-solving process; raw means are given in Table 6.3(a). For
instance, this might be incorporated into a tutoring system as an improved modification of answer-
level feedback. Once the student types in an incorrect final answer4, the system knows that the
student made an error somewhere in the problem, and can go back to each step and measure the
distance between the set of correct possibilities and what the recognizer interpreted. Figure 6.7(a)
shows the performance of the algorithm at identifying the error step using the deviation of the
recognizer results from the correct set. The two lines correspond to two possible “success” metrics
of the error identification task. When a student makes an error in a problem, the subsequent steps
she performs continue to deviate away from the set of correct options. So in essence, all subsequent
steps are “error steps.” However, pedagogically, it is probably only effective to identify the first
step on which an error was made. The graph shows that performance on this task is quite low:
the best performance achieved on identifying the first error (“ID First Error”) was at (WT = 0.90,
WR = 0.10) and was about 46%. This is better than chance since the problems have between three
to five steps: chance at identifying the error step correctly on the first try is 25%. The performance
on the task of identifying any error (“ID Any Error”) was better, but not by much: the best was
at (WT = 0.20, WR = 0.80) and was about 60%. Identifying “any” error is easier because the

4Following the instructional paradigm used throughout this dissertation, typing in the final answer is done in order
to remove ambiguity and because typing this step is simple.
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(a) The performance of the combined system at determining the erroneous step of a complete problem-
solving solution. Chance is 25%.
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(b) Detail by problem of the performance of the combined system at determining the erroneous step of a
complete problem-solving solution.

Figure 6.7: Performance of the system on the error identification problem.
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Figure 6.8: The ROC curve showing effect of applying different thresholds on identifying the error. Each
line is a different (WT , WR) pair.

answers deviate more and more from correct as the student solution continues, so the system can
eventually discover the student is on an error path, but not necessarily the point at which the student
diverged from the correct path. This implies that the ability of the system to correctly identify the
error the first time is not very good, and this algorithm needs improvement. Figure 6.7(a) does not
show any real relationship between tutor weight and performance on this metric, but Figure 6.7(b)
shows that performance differs dramatically when separated by problem; raw means are given
in Table 6.3(b). Unfortunately, with only six test problems, it is not possible to draw any real
conclusions about factors contributing to these differences. This would be a very interesting area
for future work, however.

An alternative to choosing the step with the highest deviation from correct out of all the steps in
a problem (and only provide delayed step-targeted feedback) is to treat each step individually and
choose a threshold at which to intervene. If this strategy performed well, a tutoring system could
provide immediate step-targeted feedback. By a one-way ANOVA, there is a significant difference
in the deviation from correct on error steps vs non-error steps when the system knows the student
made an error (F(1, 9358) = 631.8, p < 0.05); error steps tend to deviate more from correct than
non-error steps do. Means for the (WT = 0.90, WR = 0.10) pair are shown in Table 6.4. This
significance means it may be possible to rely on the difference to mark a threshold value.

Figure 6.8 is an ROC (receiver-operating-characteristics) curve of the error-detecting power of
varying threshold values; an ROC curve graphs the ratio of false-positives to true-positives. When
the recognition result for a step is above a certain threshold, indicating high deviation from the
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Table 6.4: Means table for deviation from correct of the recognition result on all error steps vs on all
non-error steps. N is the number of steps.

Error Step Mean Deviation N StdErr
No 41.3% 5460 0.396
Yes 58.6% 3900 0.596

set of correct options, the system would identify this step as a student error and begin tutoring. A
separate line is plotted for each (WT , WR) pair to determine how the behavior of the thresholds
change.

Unfortunately, no extremely strong candidate threshold emerges as identifying a large propor-
tion of the true-positives without also falsely identifying a large proportion of the false-positives.
Four “points of interest” are highlighted on the graph. These are (from left to right) the 0.9 thresh-
old value of the (WT = 0.7, WR = 0.3) pair (TPR: 37%, FPR: 0.3%), the 0.7 threshold value of
the (WT = 0.3, WR = 0.7) pair (TPR: 49%, FPR: 7%), the 0.7 threshold value of the (WT = 0.1,
WR = 0.9) pair (TPR: 52%, FPR: 9%), and the 0.5 threshold value of the (WT = 0.3, WR = 0.7)
pair (TPR: 58%, FPR: 14%). The false-positive rate indicates the proportion of the time that the
system would incorrectly identify a step as an error and intervene with the student when it is not
needed; (1− FPR) is the proportion of the time that the system would not identify a correct step
as an error and therefore, properly not intervene. The true-positive rate indicates the proportion of
the time that the system would identify an error step as an error and correctly intervene with the
student; (1 − TPR) indicates the proportion of the time that the system would fail to identify the
step as an error, and allow the student to move on with no intervention.

For instance, if we use the 0.7 threshold of the (WT = 0.3, WR = 0.7) pair with values TPR:
49% and FPR: 7%, then a little over 50% of the time a student error would go unidentified, but
only 7% of the time would the tutor intervene unnecessarily. Compare this performance to that
of the Reading Tutor from Project LISTEN5: overall accuracy in recent experiments was reported
as 80% (TPR: 77%, FPR: 20%) [150], meaning that only 23% of the time would a student error
go unidentified and 20% of the time the tutor would intervene unnecessarily. Intervening when it
should not is arguably the more serious consequence in tutoring tasks [1], from both a usability
perspective of user frustration and a pedagogical perspective of “undoing” good learning. To that
end, the system presented here can achieve comparable performance with the 0.5 threshold of the
(WT = 0.3, WR = 0.7) pair, with values TPR: 64% and FPR: 20% (missing a tutoring opportunity
36% of the time), also indicated on Figure 6.8; and with the 0.5 threshold of the (WT = 0.0, WR =
1.0) pair (recognizer only), with the same TPR and FPR values. The fact that this performance is
comparable to the Reading Tutor, which has been shown to be a very effective learning aid [96],
is a strong statement in favor of this threshold technique for error identification. However, due

5http://www.cs.cmu.edu/∼listen/

http://www.cs.cmu.edu/~listen/
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to the recognizer-only performance being competitive, it seems that the tutor information’s bias
toward correct prevents the system from being able to do as well as it might on this task. Further
exploration is needed to enhance this system’s performance on this metric.

What is the Impact on the Student?

With either error identification algorithm, the student will have to perform extra, unnecessary steps
as many times as it takes the system to find the step on which the error occurred. The system may
not properly identify the error step the first time, so an important extension of the results of the
previous section is to determine how often the system will have to unnecessarily intervene with the
student.

The expected total number of unnecessary steps a student will have to do on error problems is
given by the following equation:

∞∑
n=0

ne(n+1),

where n is the number of unnecessary steps and e is the error rate in identifying the proper step
where the student error is, given by one minus the success rate (e.g., 0.50 or 1

2
). For the value 0.50

of e, the sum converges to 1.0, meaning that with a 50% success rate at identifying which step the
student error is on, the student will have to do an average of one extra step per problem, in other
words, correcting the system once per problem on which an error occurs. Recall that the student
will not have to do any extra steps on problems without errors, because he would have typed in the
final answer correctly and been allowed to move on without the system needing to perform any
recognition.

In the corpus of student problem-solving solutions from the Lab Learning Study, there were
73 problems out of 500 that the students did not solve correctly on the first try, which corresponds
to a 14% problem error rate in the corpus. Therefore, the overall expected number of extra steps
is the product of this rate and the expected number of extra steps on error problems. In this case
it would be 1

7
, or, one out of every seven, problems that would require correcting, on average. In

practice, some problems would require multiple unnecessary corrections by the student and some
would require none, but the average would approach one out of seven problems.

For the maximum success rate of 46% seen in the results reported above for error identification,
the sum (with e = 0.54) converges to 1.378, meaning that more than once per problem on which
there was an error students would have to enter an unnecessary step. Multiplying by the 14%
problem error rate, this would yield approximately 0.193, or fewer than one out of five problems
would require unnecessary extra steps overall.

Recall the time benefit shown for handwriting in the Lab Learning Study, in which students
were twice as fast in handwriting as in typing for the same problems. Having to correct the system
on one out of five problems (on average) would cut into that time benefit, at least by 20%. Even
assuming conservatively that the added overhead of correcting costs the students twice as much
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time, one can expect to cut into the time benefit only by 40%, meaning the students in handwriting
would still be over 60% faster than students in typing for the same problems.

This formula is an important contribution in that it establishes the relationship between recog-
nition accuracy and tutoring behavior, as manifested in terms of requiring extra steps. Given any
goal tutoring behavior, this formula can be used to derive the required recognition accuracy. Fur-
thermore, when better recognizers are developed for this domain, the formula can be used to predict
performance on the error identification metric as has been shown here.

6.3 Limitations
The results reported in this chapter regarding performance of FFES when it is given domain-
specific context information from the tutoring system are subject to some limitations. One such
limitation is that these data are only as good as the original problems selected in the Lab Learning
Study. They were representative of the types of algebra problems students at a specific level would
encounter, and were also chosen to highlight some concepts which were known to present chal-
lenges to students, such as negative numbers. So the types of errors observed in the Lab Learning
Study during the learning phase, while representative, are by no means exhaustive.

Both of the error identification algorithms described here (one with delayed feedback and one
with immediate) did not perform as well as hoped on this task. Both rely on the deviation of the
recognized result from the set of correct options as the flag to determine whether something is an
error or not. However, given that the recognizer makes errors of its own, the deviation seen be-
tween the set of correct options and the recognition result may be the result of the recognition error
rather than the student error. Because the recognition process is noisy, the recognition result can-
not be trusted. Intuitively, the student’s errors must deviate even further from the correct set than
the amount of deviation caused by recognition noise in order to reliably identify them using this
algorithm. The larger the average magnitude of the student’s error from the set of correct options,
the more confident the system can be; but in addition, the larger the standard deviation of either
source of error, the less confident the system can be. The standard deviation of the raw recognition
is almost 28% (73% accuracy, or 27% error), and the standard deviation of the (artificially intro-
duced) student error is 14% (normalized by length, 36% on average; approximately 1.55 characters
different). These numbers imply that the recognizer would have to be improved, either in terms of
raw accuracy or reducing its variance, in order to be able to confidently determine on which step
the error occurred on the first try.

One problem found with the current approach is the fact that the equals sign (’=’) is always
recognized as two minuses (’−’), given the way stroke grouping plus recognition is performed
in the FFES recognizer (it disregards time information). This is easily correctable via a simple
heuristic to replace all instances of ’−−’ with ’=’. In fact, the DRACULAE parser [149] always
corrects this error due to the added information of the spatial layout of the two ’−’ (one above the
other). However, this correction cannot be made until both ’−’ have been recognized. Because
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the tutor combination is done after each stroke is recognized, the tutor list must treat ’=’ as two
’−’, meaning that ’−’ becomes the most likely character to be seen in each equation. As the tutor
weight increased, the output of the combined system became more and more heavily populated
with ’=’ signs. Therefore, in these experiments, ’=’ was translated into one ’−’, to avoid this bias.
Another possible way to reduce the impact that this limitation of FFES has on the combination
algorithm might be to delay the point at which the tutor combination is performed, allowing the
tutor list to work with one ’=’ rather than two ’−’. It is possible that a recognizer that utilizes time
information to perform stroke grouping may do better in general, and certainly on this particular
problem.

6.4 General Conclusions
The experiments presented in this chapter focused on using domain-specific context information
provided by the tutor to enhance recognition performance, both in terms of raw accuracy and in
terms of identifying the location of student errors. The tutor information significantly reduced
recognition error, by a factor of 9%, which is a significant improvement in terms of handwrit-
ing recognition research. However, on the task of identifying the location of student errors, the
performance of the system using the error identification algorithm based on the deviation of the
recognized result from the set of correct options did not perform as well as hoped. Nonetheless,
the efficiency cost of the extra, unnecessary interventions the system might perform is not that high
due to the low overall error rate students exhibit during equation-solving lessons. While further
technical improvements are needed and should be explored, the results of these experiments indi-
cate that there is great promise in the ability of a tutoring system that allows handwriting input to
effectively provide feedback to students.



Chapter 7

Interaction Case Studies

Based on all the results presented in this dissertation, it has been shown that handwriting input
provides benefits for math learning, as well as that recognition can be improved through the use of
even simple domain-specific context. These results point to several design recommendations for
ways to structure a pedagogical interaction in a tutoring system using the recognition system with
the enhancements outlined in Chapter 5 and 6. Intelligent tutoring systems developers can use the
recommendations described in this chapter to build the next generation of math tutors that take
advantage of the learning benefits allowed by handwriting input.

Figure 7.1 shows a proposed interface that is based on the Cognitive Tutor Algebra interface
but allows the student to enter his solution via handwriting input. On the surface it looks largely
like the prototype used in the Cognitive Tutor Study (Figure 4.13). It differs from that prototype
in the way that the interaction flow would be structured; this chapter presents scenarios of use for
such a tutor, describing how a student would use the system and how the system would handle
tutoring opportunities.

The key points to note about this scenario include the following facts:

1. The tutoring paradigm uses answer-level feedback, as long as the student gets the correct
final answer. Only if the student types the wrong answer does the recognizer attempt to
interpret the student’s solution, beginning a tutoring intervention.

2. Worked examples are used as part of the instructional paradigm, as they have been con-
firmed through this dissertation work to be effective learning aids in this task and context.

3. When the student makes an error on the final answer, the system launches recognition of the
problem-solving process, combining the recognition hypothesis based on the written strokes
with the tutor-provided context information. The system uses the degree of deviation of the
result from the correct set of possibilities for each problem-solving step in order to determine
which step is most likely to contain the error that led to the incorrect final answer.

The individual steps of the interaction scenario follow.

126
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Figure 7.1: The proposed interface for a tutor using Cognitive Tutor Algebra as its base and allowing
students to enter the problem-solving process via handwriting input. The worked example being used as
reference by the student appears on the lefthand side of the screen. The handwriting input space is a blank,
unconstrained input space. The text box for the student’s final answer is on the bottom right of the screen,
next to the “Check My Answer” button, which launches a tutoring intervention if the typed final answer is
incorrect.

7.1 Interaction Scenario
Figures 7.2 to 7.12 illustrate the interaction paradigm envisioned for the tutoring system using
handwriting input and recognition, made possible by the explorations of this dissertation.
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Figure 7.2: The scenario begins with the (fictional) student beginning a new lesson on solving linear equa-
tions with variables on both sides (ax + b = cx + d). The lesson begins with a review of a simpler problem
type, ax + b = c. The student is given an example of the first type of problem she will see, and is instructed
to copy it out while thinking critically about the steps involved.
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Figure 7.3: The student has copied out the example as instructed. When she clicks the “Check My Answer”
button, the system will check that she has actually copied the example and done it successfully (by checking
the final, typed-in answer). In this case, she has, so she will be allowed to move on.
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Figure 7.4: After moving on, the student is given a new problem, analogous to the problem shown in
the example that she has just copied, to solve on her own. The example remains onscreen to scaffold her
problem-solving experience. The problem and the example are of the same type (e.g., ax + b = c), but may
have different surface forms.
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Figure 7.5: The student is solving the problem given to her, by referring to the example onscreen.
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Figure 7.6: The student has completed solving the problem and types in her final answer. When she clicks
the “Check My Answer” button, the system will check that she has actually solved the problem (by checking
the handwriting space for input) and done it successfully (by checking the final, typed-in answer). In this
case, she has, so she will be allowed to move on.
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Figure 7.7: In an alternative scenario, the student has completed solving the problem and types in her final
answer. When she clicks the “Check My Answer” button, the system will check that she has actually solved
the problem (by checking the handwriting space for input) and done it successfully (by checking the final,
typed-in answer). In this case, she has not solved the problem successfully: she has forgotten the negative
sign when transcribing “-1308” in the third step, so the tutoring intervention begins.
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Figure 7.8: The system launches recognition of the handwriting input space containing the student’s com-
plete solution. The system first extracts the strokes belonging to each step by finding baselines for each
line or step of the problem and grouping strokes within steps. These strokes are then iteratively fed into the
recognizer; as each character is recognized, the tutor context information about the set of correct options for
each step is considered. Once the problem has been completely recognized, the system attempts to deter-
mine on which step the student’s error occurred by calculating the deviation of the recognized steps from the
correct options and choosing the maximum-deviation step as the most likely to contain the error. These are
background processing steps and are not shown to the user, but are included here for illustrative purposes.
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Figure 7.9: Once the system has identified a step as the most likely to contain the error, it highlights the
strokes associated with that step and prompts the student to revisit her solution beginning with that step. An
alternative, shown in the next figure, is to ask the student to verify that the recognition result matches what
she had written and commence tutoring once any ambiguity is resolved.
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Figure 7.10: An alternative prompting style to the one presented in the previous figure, which is agnostic
about what the student wrote, is the one presented here. The system asks the student to verify that the
recognition result matches what she had written and commences tutoring once any ambiguity is resolved.
An advantage of using this method is that the system exposes its interpretation to the user immediately,
cutting off any error spirals which could occur in the previous prompting style. However, this very exposure
could disrupt the student’s learning process.
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Figure 7.11: Following the prompting style from the previous figure, if the student indicates that the recog-
nition result is not correct (i.e., it does not match her intended input), the system brings up a text box in
which the student can enter her input for that step unambiguously. If it is an error, tutoring commences as
per Cognitive Tutor methods. If it is not an error, the recognizer can either iteratively attempt to identify
another error step, or turn this problem into a worked example by providing the solution for the student to
study, depending on its error identification confidence.
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Figure 7.12: The student corrects her solution beginning with the step on which she made her first error.
When she arrives at the correct final answer and types it into the text box, the tutor provides positive feedback
and allows her to move on. The student continues working in this way until the tutor’s knowledge-tracing
model determines that a certain level of mastery is reached.
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7.2 Interaction Flow
The scenario outlined in the preceding screenshot mockups (Figures 7.2 to 7.12) roughly embodies
the following flow of interaction:

1. The student copies the worked example given when she is about to first see a specific problem
type—this feeds forward into her problem-solving experience.

2. The student receives a problem to solve that is analogous to the example; the example stays
onscreen for reference.

3. The student begins solving the problem.

4. The student types in her final answer in a text box; this input mode is used for minimal
ambiguity—it is easy and desirable to allow the student to move on quickly if she is success-
fully solving problems.

5. The tutor checks the student’s answer.

• If it is correct, the student moves on—no tutoring is needed.

• If it is incorrect, tutoring is needed, and the system begins a recognition cycle.

(a) The system detects the baselines of the strokes onscreen, separating them into
distinct lines, or problem-solving steps.

(b) The system iterates over each step of the problem, recognizing the strokes and then
applying the tutor information for that step as indicated in Chapter 6.

(c) The system uses an error detection algorithm once all steps have been recognized—
choosing which step is furthest from any correct solution path based on deviation
measured by Levenshtein string distance.

(d) The system highlights the strokes contained in the hypothesized error step and
prompts the student to verify her answer for that step.

– If the student indicates the recognition result does match what she had written,
tutoring commences by providing a hint as to why the step is incorrect; the
student re-writes her solution from that point on.

– If the student indicates that the recognition result does not match what she had
written, she is given a text box to enter her step again with no ambiguity.
∗ If the non-ambiguous entry is correct, the system re-attempts to identify the

error step.
∗ If the non-ambiguous entry is incorrect, tutoring commences.

6. The student continues working in this way until the tutor model detects that mastery has been
reached.
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7.3 Errors and Error Repair Strategies
With the addition of the results laid out in this dissertation, there is plenty of HCI work to draw on in
building an effective tutoring system for math that allows handwriting input, including work on in-
terface recommendations regarding widget placement [115], user and usability requirements [118],
recommendations for error repair and error models for children using handwriting input [114], and
so on.

The interaction scenario presented in this chapter attempts to avoid exposing the system’s
recognition errors to the student as much as possible. In fact, that is a foundational approach
taken by this dissertation work. However, it may not always be possible or desirable to do so,
especially as an error spiral become more pronounced. For example, a student may be having
technical difficulties with the pen input device that is causing his handwriting to be continually
mis-recognized. For this reason, it is worth considering possible errors, both student and system,
and strategies for error repair.

In systems with potential for error, such as the handwriting recognizer used in this dissertation,
it often falls to the user to repair such errors. Mankoff and Abowd [90] identified five approaches
to error handling in recognition-based interfaces: (1) error reduction, (2) error discovery, (3) error
correction techniques, (4) validation of techniques, and (5) toolkit-level support. Error repair has
been studied extensively in speech recognition interfaces, but less so in handwriting interfaces.
The approaches to error repair taken in this dissertation are (1) error reduction—avoid making
errors in the first place as much as possible, and (2) error discovery—attempt to find the system’s
errors before they are presented to the student. Error correction techniques and their validation
can be taken into account if and when this system is developed and deployed. Many types of
error correction techniques exist, and some work has been done in exploring their suitability for
use with children. Read et al. [116] showed that students spend more time correcting errors when
recognition is real-time (i.e., displayed as characters are being written) than when it occurs at the
end of a discrete unit, such as a sentence or equation; however, the total number of errors made
does not differ. The extra time spent repairing errors is extraneous; delaying recognition feedback
until later seems wise in this domain with this target population.

A system developer may choose to provide explicit error recovery techniques, and may find it
useful to know what types of errors one can expect from this population and in this domain. Spe-
cific error types that are likely to occur in handwriting interfaces have been studied [127]. One can
expect to find (1) discrete noises, (2) badly formed shapes, (3) input that is legible by the human but
not by the recognizer, (4) misspelled words, (5) cancelled material and (6) device-generated errors.
Types of repair strategies undertaken by users when these errors occur are deletion, completion,
insertion and overwriting [65]. Error types for children using handwriting input include [121]:
spelling errors, construction errors (e.g., penmanship errors), execution errors in using the hand-
writing device, on top of recognition errors. In the learning domain, of course, the possibility of
the student making math errors is very real and must be taken into account.

Additionally, observational studies of children using pen-based input and handwriting recog-
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nizers have been undertaken, which have helped to identify specific types of device-generated
errors, including position-based errors such as when the stylus and pointer onscreen are not prop-
erly calibrated, or when the student writing goes off the page [115]. It is true that these studies have
used a paradigm in which the input device and display screen are separate, requiring the student to
look at one or the other, whereas there are other possibilities, such as TabletPCs and the devices
used in the Cognitive Tutor Study, which allow direct writing onto the display surface. This may
eliminate the chances of some of the issues occurring, but others will still be present, such as the
calibration issue.

The interaction scenario presented in this dissertation does not specifically deal with recogni-
tion error repair and recovery, and solely focuses on math errors, because it is the foundational
assumption of this work that involving the student in error repair induces its own cognitive load
and may reduce or eliminate the benefits for handwriting input that this work has found. How-
ever, it is a common approach in many recognition applications, and so it is worth considering the
known research and what recommendations can be drawn from it. The relevant issues described in
this section can help future application developers to design effective interactions that are robust
to both student and system errors.



Chapter 8

Conclusion

8.1 Discussion and Summary
This dissertation has presented work and results in the area of applying handwriting recognition
to intelligent tutoring systems for algebra equation-solving. The work began with a foundation of
ground-laying studies that established that handwriting is beneficial for math input and math learn-
ing, and explored the factors responsible for handwriting’s benefits. The Math Input Study found
that, for college-level students performing math entry (not learning), handwriting was three times
faster than typing, and this benefit increased as the equations got more complex. The Lab Learning
Study found that, for middle and high school students performing a learning task, handwriting was
two times faster, but learning did not suffer due to the decreased time spent in the lesson. In both
studies, students indicated that handwriting was the most comfortable and enjoyable modality to
enter math of all the ones they tried in the studies.

The Cognitive Tutor Study took this approach one step further and explored different pedagog-
ical interventions to accompany handwriting input, such as worked examples and answer-level
feedback, in order to account for the lack of highly accurate recognition. In this study, these in-
terventions were compared to the traditional Cognitive Tutor Algebra interface that is based on
typing. In this study, it was found that, in a classroom context with high school students using a
state-of-the-art intelligent tutoring system, students using handwriting experienced higher learn-
ing gains than control students using the traditional Cognitive Tutor, in spite of the lack of step-
targeted feedback. However, the “worked examples plus step targeted feedback” condition of
that study performed the best of all the conditions, so it was clear that it was worth exploring ways
to enhance handwriting recognition accuracy in order to be able to support step-targeted feedback
while in handwriting.

This dissertation presented several techniques to improve recognition accuracy for use in the
math tutoring domain, including training on a set of handwriting data from the target population in
order to enhance writer-independent accuracy and to reduce or remove the need for students to
take classroom time to train the system before they begin learning. In addition, the use of domain-
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context information to refine recognition results was explored, by adding information from the
tutoring system about the set of correct possible answers at each step of the problem-solving pro-
cess. The domain-context information used, though very simple in scope, significantly improved
recognition accuracy by approximately 9%. Furthermore, the impact on the student of this level of
recognition and the system’s ability to identify on what step a student error occurred was quantified
and expressed in a general formula. This formula can be used to estimate the impact on the student
when better recognizers become available as technology and algorithms continue to advance.

Finally, based on all these results, it is possible to structure a reasonable tutoring interaction
paradigm, which this dissertation has outlined in the form of a scenario of use with screenshot
mockups of the interaction. Designers of intelligent tutoring systems for mathematics can use this
interaction scenario to build on the proof-of-concept prototype from this dissertation work and
implement a tutoring system that can take advantage of the benefits of handwriting input, in spite
of the technological limitations of recognition. Further work in this area to evaluate such a tutoring
system would provide valuable commentary on the real-world validity of the results presented in
this dissertation.

8.2 Contributions
This dissertation makes contributions in several areas:

• Learning science and intelligent tutoring systems:

– Exploring and outlining the connections between learning gains and the input methods
used to enter problem-solving processes in online tutors;

– Designing and developing a handwriting interface for ITS in mathematics;
– Providing a proof-of-concept of handwriting input being used with real students that

can to inform other domains such as geometry or physics;

• Handwriting recognition:

– Conducting case studies exploring the success of several representative recognition
engines when trained and tested on middle and high school students writing in the
math domain;

– Developing techniques and evaluation metrics for using handwriting recognition in the
classroom, taking into account domain-specific context information to improve recog-
nition results;

– Discovering what levels of recognition accuracy are obtainable when the users are mid-
dle and high school students solving math problems;

– Developing design guidelines for how to incorporate the handwriting input modality
into new applications such as ITS for math;
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• Applied machine learning and information retrieval:

– Implementing co-recognition techniques for a new domain, that of math learning;
– Applying ranking fusion methods in a new domain, that of handwriting recognition,

especially for math;

• Human-computer interaction:

– Establishing the usability advantages of handwriting interfaces over typing for math
input on the computer, and especially in a learning task;

– Exploring and understanding the factors causing these advantages;
– Addressing the integration challenges of adapting handwriting recognition for use in

interfaces for real users.

8.3 Future Work
There are many potentially fruitful avenues for future work and further exploration of this area.
They can be roughly divided into two areas: (1) pedagogical explorations, and (2) technical explo-
rations.

8.3.1 Further Pedagogical Explorations
An obvious avenue of further work is to extend the prototype developed in this dissertation into
a complete system, and evaluate it with real students in the lab or a classroom. This dissertation
outlines scenarios of use upon which the interaction flow of this prototype could be modeled in
order to prove the conjecture that the levels of accuracy obtained by the methods presented here
are usable by students in this domain. The results from the foundational studies, especially the
Cognitive Tutor Study, indicate that this conjecture is probably true, but it has yet to be empirically
established. The accuracy obtained via this method was not quite at the 91% standard set by Read
et al. [117], but it was greatly improved over the original accuracy on the corpus. Such a study
could use a Wizard-of-Oz style design with perfect recognition as the control in order to set the
“gold standard” and determine how far behind, if at all, the methods presented in this dissertation
leave the situation.

In addition, other interaction models besides those presented in this dissertation could be ex-
plored. For example, the tutoring system could engage the student in a reciprocal teaching [107]
tutoring paradigm, in which the tutor plays the role of student and the student plays the role of tutor.
Human-human tutoring has been shown to benefit tutors just as much as the tutees (e.g., [61]). The
system could then structure the interactions to verify its interpretation of student input as a tutoring
dialogue: “It looks like you are adding two to both sides, is that true? Why are you doing that?”
Such an interaction approach has the added benefit of engaging the student in self-explanation of
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his solution process, which has been shown to engender deeper learning [31, 63]. Alternatively,
the tutoring interaction could be structured more like an educational game, in which correcting the
system is associated with rewards. For instance, in a spy game, the system could be construed as a
devious agent attempting to interfere with and garble messages sent from the student to “command
central,” requiring the student to find and correct places where the recognition system made er-
rors. Educational games are a hot topic in educational technology and intelligent tutoring systems
research [49], due to the expectation that such methods will increase engagement and therefore
learning (c.f., [47]).

This dissertation focuses on algebra equation-solving because the menu-based equation-solver
tool is a crucial component of many of the Cognitive Tutor Algebra lessons, and because equation-
solving is a problem-solving process that could benefit from an unconstrained input space allowing
nonlinear layouts. However, the recommendations and methods used here can be adapted for other
domains such as geometry, chemistry or physics tutoring, for which tutors already exist, and in
which sketching and writing are crucial parts of the problem-solving process. Sketch recognition
is essentially a similar problem to handwriting recognition, albeit more complex due to the even
less constrained nature of sketching vs writing. Contextual cues and semantics have been used
in approaches to sketch recognition, with good results (e.g., [75, 4, 15]). The lessons from this
dissertation that could be applied to those approaches are the benefits of training data from the tar-
get population, the application of ranking fusion techniques, and the concept of delaying feedback
until enough information is available to be more confident about one’s recognition hypotheses.

8.3.2 Further Technical Explorations
Although the approach described in this dissertation achieved a 9% reduction in recognition error
rates, it may be possible to improve this effect even further. For instance, while FFES performed
the best out of the three recognition systems tested for this dissertation, recognition technology is
continually improving. It may be that the new state-of-the-art can achieve higher baselines than
FFES, and therefore, the techniques presented here could improve upon those recognizers to an
even higher final accuracy rate, approaching or surpassing 91% (c.f., [117])

Worth exploring are some other approaches to increase or magnify the recognition accuracy
improvement provided by this technique presented in this dissertation. The tutor context informa-
tion used in this dissertation included only the set of correct options at a particular step, biasing
the tutor somewhat toward correct input by the students. Other information could help refine this
behavior, such as including the probability, from the knowledge-tracing model, of this particular
student’s mastery of a skill and likelihood of performing a step correctly.

The representation of the tutor context information is highly simplified (“bag of words”) in
order to reduce the impact of the alignment problem. However, this abstracts some of the infor-
mation provided by the tutor which could be useful, such as order of symbols and bi-grams which
could be used to narrow down the set of correct options. One way to address this would be to
remove from the bag any symbol which has been chosen by the combined system to fit a set of
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strokes in that step already, or to reduce the probability that it would be written again to some low
number.

Also, the combination of the recognition hypothesis and tutor-provided context information is
currently very simple: average rank-sort. Other methods may be more robust and additionally re-
move some of the limitations of this approach, such as the alignment problem. Other ranking fusion
techniques besides the modified Borda count used here, such as Markov chaining [45, 122], voting
classifiers [72], or score-based rather than rank-based methods [64], might yield better ranking
results. Using a Bayesian network [109] to model the relationship between the observed variable
(the recognition result) and the sources of error (student error and recognition error) could improve
the system’s ability to detect on which step the student’s error occurred. Using multiple classifiers
is a technique already explored to some degree in the handwriting recognition community, and
could be combined here with the tutor context information provided.

Finally, the parser included with FFES, called DRACULAE [149], was not incorporated into
the recognition process used in this dissertation because of difficulties with altering the grammar to
handle the special types of “operation steps” used in problem-solving, and the spatial arrangement
of the templates in the test cases seemed to cause problems. In general, however, the parser is quite
flexible, and could further enhance accuracy if it were used.

8.4 Final Remarks
This dissertation attempts to address the following thesis:

The use of handwriting interfaces in intelligent mathematics tutoring software can
yield higher learning gains in students through lower cognitive load than the use of
standard typing interfaces. An important part of achieving this effect is increasing
recognition accuracy to a level sufficient for adequate instructional feedback.

While a prototype system that included handwriting recognition rather than simply handwriting
input has not been built and evaluated during this dissertation, the results obtained regarding the
benefits of handwriting interfaces for the math tutoring domain show that the above thesis holds.

The scenarios and mockups produced during the course of this dissertation can be used by,
for instance, the Cognitive Tutor Algebra developers (Carnegie Learning, Inc.) to incorporate
handwriting recognition into their tutoring system, especially for algebra equation-solving lessons,
to capitalize on the benefits seen here for handwriting input in this domain and to push their state-
of-the-art tutoring system to become even better. These tutors are used in over 2,600 schools
nationwide at the time of this writing, allowing a great possibility for the work in this thesis to
be widely disseminated to benefit many students. Developers of other tutoring systems can also
learn from and use these methods in their own work, bringing unconstrained handwriting to the
“desktop” once more.
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Appendix A

Character Set Used

This table gives all the math symbols and characters used throughout the studies and recognition
tests in this dissertation.

0 1 2 3 4
5 6 7 8 9
x y a b c
+ - = ( )

/
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Appendix B

Study 1 Materials: The Math Input Study

B.1 Full List of Equations Used in the Math Input Study

3x + 4 = 7 8x− 1 = 5 6x + 5 = 4 2x− 10 = 3

f(x) = x4 − 31 6xy + 4
3
(x− y) x

(
3− 2

x

)
= 0 y = 2x|4x− 18|

y−4
y2−5y+4

= 9
∣∣2x

3
− 17

∣∣ ≤ 3 y2−8
7(x+12)

9(y + 4) = 4x1 + x2

y ≤ |3x2/3 − 4x + 1| y = (x− 7)−2(x− 6)3 f(x) = 5(y2 − y1)
2
3
(x− 2) < 4

3
x + 8

4x1+3x2

15(x−1)
x2 + y2 − 5y − 9

4
= 0 1

|x|+1
− x2

2
≤ y x2y2 − 4xy + 9x2y + 18

f(x) = 1

18−( 5
x2 )

(x+5)(x−5)
3x2+9

≥ 0 x(tn) = x2 + 8(tn−1 + 2) 2x2

x+1
< |y| < x+5

2∑
[c2

k − 2ck − 10]
∫

8x2

(8x−2)2
dx

√
4(1−3w2)

w2+1
V = 1

3
π

(
y2

2

)2

∫ (
u7

2
− π

u5

)
du s =

√
t1−1√
t2+1

∑
k3 ≈

(
n(n+1)

2

)2 ∫ 3
√

7−3y2

8y2 dy
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B.2 Math Symbols Test

PRE-QUESTIONNAIRE 
 
Mathematics Symbols:  Please match the symbol on the left with its description on the right by 
writing the number of the description next to the symbol.  If you haven't seen a symbol before, just 
leave it blank. 
 

___ y2      1. integral 
 

___ ≤      2. variable 
 

___ ≈      3. fraction 
 

___ ∞      4. exponent 
 

___ ∑      5. pi 
 

___ ∫      6. absolute value 
 

___ √x      7. expression 
 

___ x      8. infinity 
 

___ ⅛      9. summation 
 

___ 0      10. square root  
 

___ x = 10y + 2     11. approximately equal to 
 

___ 4x - 9      12. less than or equal to 
 

___ |x|      13. equation  
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B.3 Pre-Session Questionnaire

PRE-QUESTIONNAIRE 
 

Input Methods:  What is the most frequently you've ever used (past or present) each of the following 

methods of computer input?  Circle the appropriate number. 

 

1. Keyboard and mouse 

 

 1-------------------2----------------------3---------------------4----------------------5                           N/A 

 

Use(d) it 

every day 

Use(d) it 

fairly often 

Use(d) it once 

in a while 

Use(d) it 

rarely 

Never used 

it, but have 

heard of it 

Never 

heard of it 

 

2. Speech dictation or speech commands 

 

 1-------------------2----------------------3---------------------4----------------------5                           N/A 

 

Use(d) it 

every day 

Use(d) it 

fairly often 

Use(d) it once 

in a while 

Use(d) it 

rarely 

Never used 

it, but have 

heard of it 

Never 

heard of it 

 

3. Graffiti® or other special-purpose pen-based alphabets 

 

 1-------------------2----------------------3---------------------4----------------------5                           N/A 

 

Use(d) it 

every day 

Use(d) it 

fairly often 

Use(d) it once 

in a while 

Use(d) it 

rarely 

Never used 

it, but have 

heard of it 

Never 

heard of it 

 

4. Pen-based handwriting recognition 

 

 1-------------------2----------------------3---------------------4----------------------5                           N/A 

 

Use(d) it 

every day 

Use(d) it 

fairly often 

Use(d) it once 

in a while 

Use(d) it 

rarely 

Never used 

it, but have 

heard of it 

Never 

heard of it 

 

5. Eye-tracking devices 

 

 1-------------------2----------------------3---------------------4----------------------5                           N/A 

 

Use(d) it 

every day 

Use(d) it 

fairly often 

Use(d) it once 

in a while 

Use(d) it 

rarely 

Never used 

it, but have 

heard of it 

Never 

heard of it 

 

6. Puff-and-sip devices 

 

 1-------------------2----------------------3---------------------4----------------------5                           N/A 

 

Use(d) it 

every day 

Use(d) it 

fairly often 

Use(d) it once 

in a while 

Use(d) it 

rarely 

Never used 

it, but have 

heard of it 

Never 

heard of it 
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PRE-QUESTIONNAIRE  

 

Input for Math:  Assuming the technology is near perfect, please rate how good you think the 

following input methods would be for mathematics equations, expressions, and/or symbols, by circling 

the appropriate number. 

 

1. Keyboard and mouse 

 

 1---------------------2---------------------3---------------------4----------------------5                          N/A 

  

Perfectly 

suited and 

natural 

Somewhat 

suited and 

natural 

Neither 

suited nor 

unsuited 

Somewhat 

unsuited 

or unnatural 

Not suited 

or natural 

at all 

Never 

heard of it 

 

2. Speech dictation or speech commands 

 

 1---------------------2---------------------3---------------------4----------------------5                          N/A 

  

Perfectly 

suited and 

natural 

Somewhat 

suited and 

natural 

Neither 

suited nor 

unsuited 

Somewhat 

unsuited 

or unnatural 

Not suited 

or natural 

at all 

Never 

heard of it 

 

3. Graffiti® or other special-purpose pen-based alphabets 

 

 1---------------------2---------------------3---------------------4----------------------5                          N/A 

  

Perfectly 

suited and 

natural 

Somewhat 

suited and 

natural 

Neither 

suited nor 

unsuited 

Somewhat 

unsuited 

or unnatural 

Not suited 

or natural 

at all 

Never 

heard of it 

 

4. Pen-based handwriting recognition 

 

 1---------------------2---------------------3---------------------4----------------------5                          N/A 

  

Perfectly 

suited and 

natural 

Somewhat 

suited and 

natural 

Neither 

suited nor 

unsuited 

Somewhat 

unsuited 

or unnatural 

Not suited 

or natural 

at all 

Never 

heard of it 

 

5. Eye-tracking devices 

 

 1---------------------2---------------------3---------------------4----------------------5                          N/A 

  

Perfectly 

suited and 

natural 

Somewhat 

suited and 

natural 

Neither 

suited nor 

unsuited 

Somewhat 

unsuited 

or unnatural 

Not suited 

or natural 

at all 

Never 

heard of it 

 

6. Puff-and-sip devices  

 

 1---------------------2---------------------3---------------------4----------------------5                          N/A 

  

Perfectly 

suited and 

natural 

Somewhat 

suited and 

natural 

Neither 

suited nor 

unsuited 

Somewhat 

unsuited 

or unnatural 

Not suited 

or natural 

at all 

Never 

heard of it 
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B.4 Post-Session Questionnaire

POST-QUESTIONNAIRE 

 
Input for Math:  Assuming the technology is near perfect, please rate how good you think the 

following input methods would be for mathematics equations, expressions, and/or symbols, by circling 

the appropriate number. 

 

1. Keyboard and mouse 

 

 1---------------------2---------------------3---------------------4----------------------5                          N/A 

  

Perfectly 

suited and 

natural 

Somewhat 

suited and 

natural 

Neither 

suited nor 

unsuited 

Somewhat 

unsuited 

or unnatural 

Not suited 

or natural 

at all 

Never 

heard of it 

 

2. Speech dictation or speech commands 

 

 1---------------------2---------------------3---------------------4----------------------5                          N/A 

  

Perfectly 

suited and 

natural 

Somewhat 

suited and 

natural 

Neither 

suited nor 

unsuited 

Somewhat 

unsuited 

or unnatural 

Not suited 

or natural 

at all 

Never 

heard of it 

 

3. Pen-based handwriting recognition 

 

 1---------------------2---------------------3---------------------4----------------------5                          N/A 

  

Perfectly 

suited and 

natural 

Somewhat 

suited and 

natural 

Neither 

suited nor 

unsuited 

Somewhat 

unsuited 

or unnatural 

Not suited 

or natural 

at all 

Never 

heard of it 

 

4. Speech recognition PLUS pen-based handwriting recognition  

 

 1---------------------2---------------------3---------------------4----------------------5                          N/A 

  

Perfectly 

suited and 

natural 

Somewhat 

suited and 

natural 

Neither 

suited nor 

unsuited 

Somewhat 

unsuited 

or unnatural 

Not suited 

or natural 

at all 

Never 

heard of it 
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B.5 Demographics Questionnaire

Demographic Data 

Reminder: All information is anonymous and confidential! 

 

Native English Speaker  [ ] Yes 

     [ ] No – Native Language: ________________________ 

 

Age     __________________ (write age here) 

     [ ] I prefer not to say. 

 

Gender     [ ] Male 

[ ] Female 

 

Ethnicity    [ ] African American 

[ ] American Indian 

[ ] Asian/Asian American 

[ ] Caucasian 

[ ] Other: ______________________________________ 

[ ] I prefer not to say. 

 

Highest Level of Education  [ ] High School or equivalent 

[ ] Some College 

[ ] College Degree 

[ ] Graduate Degree 

 

IF IN SCHOOL: 

Current grade level   [ ] College Freshman 

[ ] College Sophomore 

[ ] College Junior 

[ ] College Senior 

[ ] Graduate Student 

[ ] Other: ______________________________________ 

 

Major/Area of Specialty  ______________________________________________ 

 

IF EMPLOYED: 

Current Job    ______________________________________________ 

 

 

 

 

 

Microsoft Equation Editor:  [ ] Know it well 

     [ ] Know it a little 

     [ ] Don’t really know it, never heard of it 

 

 



Appendix C

Study 2 Materials: The Lab Learning Study

C.1 Full List of Equations Used in the Lab Learning Study

C.1.1 Equations Used During Copying Phase

Typing

1 x + 19 = 60 + 2y 11 a + 21b− 8 = 3

2 5y = 72(3 + x) 12 (6c+9x)
4y

= 7a

3 a
38

= 4(8a− 1) 13 50 = 4(a + 7)

4 −b = 29
6c

14 10b+2
86

= 39

5 78
c

= 53 + 5b 15 70 = (32c−98x)
61

6 4x− 10 = 6y + 23 16 4y − 5 = 67b− 2

7 7a− 8 = 15 17 −5c = 4(90x+4)
y

8 b
46

+ 90 = 35 18 31 = a + 8b

9 12 = 6c− 45x 19 5c− 7 = x− y

10 y+70
8

= 9 20 4a + b = 90c
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Handwriting

1 2x + 20 = 3 24 3a + b− c = 185

2 6y − 26 = 9 25 9
4
a− 4

9
b = 100

3 12a + 14b = 165 26 9(4x− 2y + 1) = 7a + c

4 5y = 8x + 17 27 4−a
7

= 8c
5

5 4
3
x− 12 = 85 28 6(5 + c) = 8(7− a)

6 x+6
62+8y

= 36 29 200 = 7x + 12

7 28−2y
9−(4y+c)

= 6y + 4 30 x = 46(x− y)

8 4(a + b) = 9c 31 3
7
(x− 10) = y

9 (4 + c)(2− c) = b 32 −8x + 19 = −7

10 2
3
y + 5

8
y = y − 3 33 b = −4+2c

x

11 5
9
(a− b) = 7

5
c 34 8y = 20x− 4

12 6
8
a + 5 = 4

3
a + 10 35 9(x−y)

17
= 50

13 x+5
9(6−68y)

= a− b 36 x− 3
7

= 10y

14 12x− x = 9 37 7b− 36 = 4c + 3

15 90b + 100c = 5000 38 280c + b− 35 = 55

16 y = ax + b 39 60a− 33b = 99

17 x = 10y − 6 40 3c− 7a = 6b

18 72x = 4(y − 8) 41 88 + c− 3b = 6a

19 5x + 1 = 99
x−4

42 55 = 87a + c

20 (9x+1)(6+x)
80

= y 43 (a+c−b)
93

= 56

21 b + 4 = c− 8 44 63c = a(b + 7)

22 12
7
(x− y) = 4

3
45 33 + 9a− b + 67c = 98

23 (a− 7)(b− 5) = 2c
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Speech

1 x + 32 = 89 + 7y 11 10a + 38b + 74 = 89

2 4y = 16(3 + x) 12 (50c−62x)
y

= 2a

3 a
50

= 7(4a− 6) 13 30 = 6(a + 5)

4 −b = 13
8c

14 4b+12
86

= 90

5 46
c

= 91 + 9b 15 11 = (35c+5x)
7

6 5x− 82 = 7y + 25 16 4y + 25 = 3b− 8

7 19a− 84 = 17 17 −6c = 10(22x−30)
y

8 b
300

+ 65 = 23 18 47 = a− 5b

9 78 = 9c− 4x 19 6c− 4 = x− 9y

10 y+6
9

= 7 20 7a− 9b = 80c
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C.1.2 Examples and Problems Used During Learning Phase

Copying (Examples)

x + 4 = 9

−4 −4

x = 5

8x = 16

8x

8
=

16

8
�8x

�8
= 2

x = 2

x

5
= 4

5·x
5

= 4·5

�5 ·
x

�5
= 20

x = 20

−x = 5

−1 · x = 5

−1 · x
−1

=
5

−1
��−1 · x

��−1
= −5

x = −5

Solving (Problems)

x + 3 = 5

−3 −3

x = 2

3x = 15

3x

3
=

15

3
�3x

�3
= 5

x = 5

x

7
= 6

7·x
7

= 6·7

�7 ·
x

�7
= 42

x = 42

−x = 8

−1 · x = 8

−1 · x
−1

=
8

−1
��−1 · x

��−1
= −8

x = −8
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56

x
= 7

x·56

x
= 7·x

�x·
56

�x
= 7x

56 = 7x

56

7
=

7x

7

8 =
�7x

�7
8 = x

4x + 5 = 13

−5 −5

4x = 8

4x

4
=

8

4
�4x

�4
= 2

x = 2

x

4
+ 5 = 8

−5 −5
x

4
= 3

4·x
4

= 3·4

�4·
x

�4
= 12

x = 12

36

x
= 4

x·36

x
= 4·x

�x·
36

�x
= 4x

36 = 4x

36

4
=

4x

4

9 =
�4x

�4
9 = x

5x + 2 = 17

−2 −2

5x = 15

5x

5
=

15

5
�5x

�5
= 3

x = 3

x

5
+ 4 = 7

−4 −4
x

5
= 3

5·x
5

= 3·5

�5·
x

�5
= 15

x = 15
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3x + 4x = 21

(3 + 4)x = 21

7x = 21

7x

7
=

21

7
�7x

�7
= 3

x = 3

x + 5

6
= 7

6·x + 5

6
= 7·6

�6·
x + 5

�6
= 42

x + 5 = 42

−5 −5

x = 37

5x + 3x = 24

(5 + 3)x = 24

8x = 24

8x

8
=

24

8
�8x

�8
= 3

x = 3

x + 4

3
= 8

3·x + 4

3
= 8·3

�3·
x + 4

�3
= 24

x + 4 = 24

−4 −4

x = 20
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C.2 Pre-Session Training Handout

COPYING 

 

There are 3 different ways we are going to do this.  You will do all 3 ways but you might do 

them in a different order than shown here. 

 

Keyboard 

 

The top section shows the current equation.  Type the equation into the text box on the bottom 

half of the screen.  Use whatever keys are on the keyboard and skip lines and use spaces if you 

want to make it look like what is shown, or use special keys on the keyboard like ‘/’ to show 

things like division.  Just type it out however feels most natural for you.  When you are finished, 

click the “Next Equation” button at the bottom of the screen to continue.  
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Handwriting 

 

The top section shows the current equation.  Write the equation into the white box at the bottom 

half of the screen using the pen.  Just write it out like you would on paper.  When you are 

finished, click the “Next Equation” button at the bottom of the screen to continue. 
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Handwriting + Speech 

 

The top section shows the current equation.  Write the equation into the white box at the bottom 

half of the screen using the pen.  Just write it out like you would on paper.  In addition, say the 

equation out loud into the microphone, similar to what a teacher would do when writing on the 

blackboard.  Just write and say it however feels most comfortable and natural for you.  When 

you are finished, click the “Next Equation” button at the bottom of the screen to continue. 
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LEARNING 

 

Examples 

 

The screen you see is divided into two sections.  First you will see an example problem on top 

which you will copy out step by step, just like it appears on the upper half of the screen.  Copy it 

in the space on the bottom half of the screen in whatever way you have been assigned.  You can 

skip any step that is just showing cancellations from the step before, like in line 8 below.  Try to 

understand why you can take each step as you copy it down.  When you have finished copying 

down the example, click the “Check my answer” button at the bottom of the screen and the 

computer will tell you if you copied it correctly or not.  
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Problems 

 

After you finish the example, it will stay on the screen and an equation for you to solve on your 

own will appear below it.  The new equation will be similar to the example you just copied.  

Solve this problem step by step using the example as a guide.  When you think you have the 

answer, click the “Check My Answer” button and the computer will tell you if you got the right 

answer or not.  If you are not sure of what you are doing, you can ask the computer to check your 

last step by clicking the same button, if you are really stuck.  The computer will take a few 

seconds to analyze your answer and may pause for a bit.   If you didn’t get the problem right, 

then you will get to try again.  If you give an incorrect answer three times, then the computer will 

give you the answer for you to copy down and you will go to the next problem.   

 

 
 



APPENDIX C. STUDY 2 MATERIALS: THE LAB LEARNING STUDY 179

You will be doing one of the three methods below: 

 

Keyboard 

 

Use the keyboard to copy examples and solve problems just like the copying section before. 

  

Handwriting 

 

Use the pen to copy examples and solve problems just like the copying section before. 

 

Pen + Speech 

 

Use the pen, while speaking, to copy examples and solve problems just like the copying section 

before. 
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C.3 Test A

1. x + 5 = 8

2. 6x = 12

3. x
4 = 8

4. −x = 3

5. 24
x = 8

6. 2x + 4 = 10

7. x
2 + 3 = 8

8. 2x + 3x = 15

9. x+8
5 = 4

10. 8x− 3x + 6 = 36

11. 3x+9x
x = 4x

12. 7x + 4 = 3x + 12

13. 3(x + 4) = 18

14. 2x+8
3 = 4

15. 3x+5x
4 = 4

C.4 Test B

1. x + 2 = 10

2. 2x = 10

3. x
3 = 4

4. −x = 6

5. 30
x = 6

6. 3x + 8 = 17

7. x
3 + 7 = 9

8. 3x + 2x = 20

9. x+6
8 = 4

10. 6x− 3x + 8 = 14

11. 7x+5x
x = 6x

12. 4x + 3 = 2x + 7

13. 3(x + 6) = 24

14. 3x+4
5 = 4

15. 5x−2x
5 = 3
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C.5 Post-Session Questionnaire

Participant __________ 

Questionnaire                                     COMPUTER TOOLS 

 
 

Other than today, have you ever used TYPING and the MOUSE to do stuff on the computer? 

� Yes, all the time 

� Yes, a few times 

� Yes, once 

� Not at all 

� I don't know 

 

Other than today, have you ever used HANDWRITING to do stuff on the computer, including 

on special handheld devices? 

� Yes, all the time 

� Yes, a few times 

� Yes, once 

� Not at all 

� I don't know 

 

Other than today, have you ever used SPEECH to do stuff on the computer? 

� Yes, all the time 

� Yes, a few times 

� Yes, once 

� Not at all 

� I don't know 

 

In school or at home, what method(s) do you use, if you use computers in math class? 

� We don't use computers for math class. 

� Typing, mouse 

� Handwriting 

� Speech 

� Other: _______________________________________________________ 
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Participant __________ 

 

Questionnaire                             LIKES and DISLIKES 

 

 

What method did you use today during the problem-solving part (not the copying part)? 

� Typing, mouse 

� Handwriting 

� Both handwriting and speech 

 

Did you like the method you used? 

� Yes 

� No 

Why or why not? ________________________________________________________________ 

 

   ________________________________________________________________ 

 

   ________________________________________________________________ 

 

Would you want to use this method in the future if you had a choice? 

� Yes 

� No 

Why or why not? ________________________________________________________________ 

 

   ________________________________________________________________ 

 

   ________________________________________________________________ 

 

During the copying part, which was your favorite method? 

� Typing, mouse 

� Handwriting 

� Speech 

Can you say why you liked this method best? 

 

  ________________________________________________________________ 

 

   ________________________________________________________________ 

 

   ________________________________________________________________ 
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Participant __________ 

 

Questionnaire                                                   ABOUT YOU 

 

 

What was your last report card grade in math? 

� A (100-90) 

� B (90-80) 

� C (70-80) 

� D (60-70) 

� F (below 60) 

 

What is your usual grade in math on assignments and tests? 

� A (100-90) 

� B (90-80) 

� C (70-80) 

� D (60-70) 

� F (below 60) 

 

What was the last math class you took or subject you were studying? 

� Pre-algebra 

� Algebra 

� Geometry 

� Other: _______________________________________________________ 

 

What school do you go to?  _______________________________________________________ 

� Private 

� Public 

 

What grade are you going into this fall? 

� 6th 

� 7th 

� 8th 

� Other: _______________________________________________________ 

 

How old are you?  __________________________________________ years old 

 

Are you male or female? 

� Male 

� Female 

 

What is your ethnicity? 

� African American 

� Native American/American Indian 

� Asian/Asian American 

� Caucasian 

� Other: _______________________________________________________ 

� I prefer not to say. 



Appendix D

Study 3 Materials: The Cognitive Tutor
Study

D.1 Demographics
This demographic information was filled in by the teachers at his/her option for each student:

1. School Name

2. Teacher Name

3. Class Period

4. Grade Level

5. Unit in Tutor Before Study

6. Average Grade in Math to Date

7. Attendance during Study

184
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D.2 Test A
1. Solve for y:

7 + 5y = 2

2. Solve for x:
x
−5

+ 8 = −2

3. Solve for x:
4x + 8x = 9

4. Solve for y and explain your steps:
3y + (−8) = 5 + 4y

5. Solve for x:
6 + (−7y) = −1 + 2y

6. Solve for x and explain your steps:
−3.2x + 4.1 = 12.8 + 6.4x

7. Solve for x:
−2.8 + 5.1x = 11.8x + (−3.4)

8. Solve for y and explain your steps:
y + 12.3 = −4.1y + (−9.2)

9. Solve for x:
4x+12

3
= −9x

10. Solve for x:
14.1x + 19.1 + (−8.2x) = −6.2x + 12.8
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D.3 Test B
1. Solve for y:

9 + 2y = 4

2. Solve for x4 :
x
−4

+ 6 = −3

3. Solve for x:
2x + 5x = 6

4. Solve for y and explain your steps:
4y + (−7) = 5 + 6y

5. Solve for y:
7 + (−8y) = −3 + 2y

6. Solve for x and explain your steps:
−1.8x + 6.3 = 9.7 + 5.1x

7. Solve for x:
−13.8 + 6.3x = 21.1x + (−5.9)

8. Solve for y and explain your steps:
y + 8.2 = −3.4y + (−11.6)

9. Solve for x:
3x+8

7
= −12x

10. Solve for x:
12.6x + 21.1 + (−7.4x) = −9.2x + 15.8
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D.4 Test C
1. Solve for y:

6 + 8y = 1

2. Solve for x:
x
−3

+ 4 = −7

3. Solve for x:
3x + 2x = 12

4. Solve for y and explain your steps:
6y + (−3) = 2 + 2y

5. Solve for y:
8 + (−5y) = −1 + 4y

6. Solve for x and explain your steps:
−4.8x + 3.2 = 8.9 + 2.5x

7. Solve for x:
−7.4 + 17.3x = 8.1x + (−24.6)

8. Solve for y and explain your steps:
y + 9.9 = −6.3y + (−4.2)

9. Solve for x:
7x+5

2
= −3x

10. Solve for x:
16.3x + 18.4 + (−5.9x) = −7.5x + 17.3
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D.5 Cognitive Load Questionnaire

Unit 18 Review of Linear Equations – Mental Effort Survey 

 

Please circle the answer that best represents how you felt about the amount of mental effort you 

spent while working with in Unit 18. 

 

 How much mental effort during the study?  Was the mental effort the normal amount? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Where did the mental effort come from? 

 

 

 

 

 

 

 

 

 

 

In solving or studying Unit 18, I invested, 

spent, or felt  

 

1. very, very low mental effort 

 

2. very low mental effort 

 

3. low mental effort 

 

4. rather low mental effort 

 

5. neither low nor high mental effort 

 

6. rather high mental effort 

 

7. high mental effort 

 

8. very high mental effort 

                                                             

9. very, very high mental effort 
 

The mental effort I spent or felt came from 

 

1. mostly thinking about the problems 

 

2. mostly trying to use the computer interface 

 

3. about the same amount for both 

 

The mental effort I spent or felt was  

 

 

1. very, very much less than normal tutor use 

 

2. very much less than normal tutor use 

 

3. much less than normal tutor use 

 

4. a little less than normal tutor use 

 

5. neither more nor less than normal tutor use 

 

6. a little more than normal tutor use 

 

7. much more than normal tutor use 

 

8. very much more than normal tutor use 

 

9. very, very much more than normal tutor use 



Appendix E

Set of Test Problems Used in Recognition
Experiments

Problem 1

36

x
= 4

∗x ∗ x

36 = 4x

/4 /4

9 = x

36

x
= 4

∗x ∗ x

56 = 7x wrong
/7 /7 wrong
8 = x wrong

Problem 2

5x + 3x = 24

x(5 + 3) = 24

8x = 24

/8 /8

x = 3

5x + 3x = 24

x(5 + 3) = 24

8x = 24

/3 /3 wrong
x = 8 wrong

189
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Problem 3

8x = 16

/8 /8

x = 2

8x = 16

/8 /8 wrong
x = 12 wrong

Problem 4

x

5
+ 4 = 7

−4 − 4
x

5
= 3

∗5 ∗ 5

x = 15

x

5
+ 4 = 7

−4 − 4 wrong
x

5
= 7 wrong

∗5 ∗ 5 wrong
x = 35 wrong

Problem 5

−x = 5

/− 1 /− 1

x = −5

−x = 5

/− 1 = /− 1

x = 5 wrong

Problem 6

−x = 8

/− 1 /− 1

x = −8

−x = 8

/8 /8 wrong
x = 8 wrong
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