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Abstract

The behavior of MaxCut on large, regular, random undirected graphs is well under-
stood up to third-order terms. Even so, we do not yet know of efficient algorithms for
refuting the existence of a large cut. Our current best-known refutation algorithms are
all specific instances of the sum-of-squares (SOS) algorithms hierarchy, and we know
degree-2 SOS does not well approximate the MaxCut on these random graphs. As the
hierarchy gets more powerful with increasing degree, does this result hold for degree-4
SOS as well?

In this work, we develop a technique for extending degree-2 pseudo-expectations, ob-
jects showing inapproximability, to degree-4 pseudo-expectations. We identify configuration-
symmetry as a key property of these pseudo-expectations, and bound the effects that
prevent natural extension. By analyzing those effects more carefully, one may be able
to obtain degree-4 SOS lower-bounds.

This thesis contains joint work with Ryan O’Donnell and Tselil Schramm.
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1 Introduction

In the quest to understand whether a problem can be solved computationally, we often turn
to worst-case hardness. There, NP-hardness tells us that a particular problem is at least as
hard as any problem in NP—problems whose answers can be checked in polynomial time.
Most natural problems that people want to solve can be expressed in NP—solving puzzles,
determining whether a circuit has a valid input, graph coloring, finding dense clusters—so
understanding this hardness has many applications. However, worst-case hardness does not
give a complete picture of the difficulty of a problem. A problem that is known to be NP-
hard could only have one super-difficult instance. In this case, we may be able to write an
algorithm that gives answers quickly on almost all possible inputs and only fails to work on
that one situation. For practical applications, this algorithm would be almost as good as an
algorithm that works all the time; the practical instances that come up every day would be
easily solved and the probability of getting the one bad instance would be negligible. How do
we know whether a particular problem is going to be infeasible to solve in most cases? For
that, we turn to average-case hardness: whether a random instance is going to be difficult
to solve.

For determining whether a problem is hard in the average case, we turn to the sum-
of-squares (SOS) algorithm family. The SOS algorithm takes a degree (strength/round)
parameter and gets better, but slower, as the degree increases. Typically, SOS is applied on
the refutation side of a problem: producing a checkable proof that the particular instance
has no solution—no coloring, no valid input, no dense cluster. Our goal is to show that,
unless the degree is sufficiently high, SOS will not be able to refute a random instance of
our chosen problem. Of course, showing that a particular algorithm fails is not sufficient
to argue that a problem is not solvable; however, understanding the behavior of SOS does
give us a lot of information about the difficulty of the problem itself. In particular, SOS is
the optimal approximation algorithm for many kinds of combinatorial optimization if the
Unique-Games conjecture holds [21]. Also, many of the current best-known approximation
algorithms for combinatorial optimization problems make use of spectral or semidefinite-
programming methods [11]. As SOS is a particular generalization of semidefinite program-
ming, understanding the behavior of SOS will tell us whether these methods can be extended.

The particular combinatorial optimization problem we will focus on is MaxCut. The
MaxCut problem tries to isolate one particular aspect of graph connectivity: given an un-
weighted, undirected graph, we would like to separate its vertices into two parts such that
the number of edges between the parts is as large as possible. Alternatively, we can think
about painting each vertex either red or blue while maximizing the number of edges that
touch both colors. As MaxCut is NP-hard, its worst-case behavior is well-understood. Re-
cently, Montanari [18] came up with an optimal search algorithm in the average-case under
the mild assumption of a conjecture from statistical physics.

But for average-case refutation, we understand MaxCut for degree-2 SOS [19, 4, 3, 11].
The dual object to an SOS proof is called a pseudo-expectation, and, as the dual to a
refutation, it acts like a MaxCut partition. The main metric of a pseudo-expectation is
its average edge-correlation ε. We know the true value of the MaxCut has edge-correlation
ε ≈ 2P∗/

√
d ≈ 1.526/

√
d [10], which is the number to beat for any lower-bound. For degree-2

SOS, we have optimal pseudo-expectations with ε ≈ 2/
√
d. Our main goal is to extend this
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result to higher SOS degrees.
A week before the defense of this work, Kunisky and Bandeira [14] accomplished a very

similar goal by creating a degree-4 psuedo-expectation with the same ε ≈ 2/
√
d for the

Sherrington-Kirkpatrick hamiltonian, rather than MaxCut. This work does not discuss that
result.

1.1 Our Results

Our main result is a technique for extending a degree-2 pseudo-expectation into a degree-
4 pseudo-expectation. To do this, we isolate a key property of all the known degree-2
pseudo-expectations that arises from our graph distribution. We generalize this property
to a notion called configuration-symmetry. With configuration-symmetry and a degree-2
pseudo-expectation, many decisions for how to construct the degree-4 pseudo-expectation
are forced. In our analysis of the spectrum of this degree-4 pseudo-expectation, we were
only able to achieve achieve ε ≈ 1/(6

√
d). We believe our construction does present a non-

trivial degree-4 pseudo-expectation because it is motivated by the structure of the problem,
even though we were not able to fully analyze it. In service to this main result, we prove a
lemma that converts, with a negligible loss, pseudo-expectations on regular graphs of high
girth to pseudo-expectations on random regular graphs.

2 Polynomial Proofs

2.1 MaxCut as a Polynomial

Let G = (V,E) be a simple, undirected graph and AG be its 0/1-indicator adjacency matrix.
If u, v ∈ V are vertices in G then the entry (AG)u,v is 1 if {u, v} ∈ E is an edge of G and 0
otherwise. We will often write u, v ∈ G to mean vertices u and v are vertices of G and e ∈ G
if the edge e = uv = {u, v} is an edge of G. If the graph G is unambiguous, we will write
A = AG for the adjacency matrix.

MaxCut is most naturally stated its optimization form:

Problem. Given a simple, undirected graph G = (V,E), find the set S ⊆ V maximizing
the number of crossing (cut) edges |{uv ∈ E : u ∈ S, v 6∈ S}|.

We can rewrite this problem into a slightly different form. Suppose we have some variables
xv ∈ {±1} for each vertex v ∈ G. We could identity xv = 1 with v ∈ S and xv = −1 with
v 6∈ S. For an edge uv ∈ G, the product xuxv = −1 if and only if exactly one of u and v is
in S and the edge uv is cut. We can rewrite the objective

|{uv ∈ E : u ∈ S, v 6∈ S}| =
∑
uv∈E

1− xuxv
2

and restate MaxCut as

Problem. Given a simple, undirected graph G, maximize
∑

uv∈E −xuxv. where xv ∈ {±1}.

10



2.2 The Sum-of-Squares Algorithm

We can also consider the refutation variant of MaxCut:

Problem. Given a simple, undirected graph G = (V,E) of size |V | = n and constant k,
output a “checkable proof” that every choice of x ∈ {±1}n satisfies k−

∑
uv∈E −xuxv ≥ 0 if

such a proof exists.

By using standard search-to-decision techniques, an algorithm for the refutation variant
of this problem can efficiently be transformed into an algorithm for the optimization variant.

But, how would we actually give such a proof? We are trying to show that our target
polynomial f(x) = k −

∑
uv∈E −xuxv is non-negative for every x ∈ {±1}n. Of course,

the square of a polynomial must be non-negative everywhere, so if we could find a set of
polynomials g1, . . . , gt such that

f(x) = g1(x)2 + · · ·+ gt(x)2

for all choices of x ∈ {±1}n then this would show that f ≥ 0. We call the polynomials
g1, . . . , gt a degree-2r sum-of-squares certificate of the fact f ≥ 0 if the polynomials g1, . . . , gt
have degree at most r.

As of yet, this certificate does not seem very useful; we would still need to verify the equal-
ity for all x ∈ {±1}n. To fix this, we will multilinearize the polynomial. Say a polynomial
p(x) is multilinear if it can be written as

p(x) =
∑
S⊆[n]

(
αS
∏
v∈S

xv

)

for some coefficients αS ∈ R. Because every variable xv ∈ {±1}, its square x2v = 1. By
repeatedly replacing xcv 7→ xc mod 2

v within a polynomial p, we multilinearize p into the poly-
nomial p̂ equal to p on {±1}n. This multilinear representation is unique [20], so the certificate
is good if the multilinearization of f − g21 − · · · − g2t is identically zero.

With an actual structure of our proofs in hand, we can go about looking for them. As it
turns out, a generalization of the Positivstellensatz tells us that

Fact 2.1 (Corrollary of Positivstellensatz). For f : {±1}n → R a polynomial, there exists
degree-2n sum-of-squares certificates of the fact f ≥ 0.

Proof. Explicitly construct the degree-n multilinear polynomial g(x) =
√
f(x) that has one

term for each x ∈ {±1}n. For example, when n = 1 construct the function

g(x) =

√
f(1) +

√
f(−1)

2
· 1 +

√
f(1)−

√
f(−1)

2
· x

By construction, we have that g2 = f on x ∈ {±1}n. As g had degree n, it serves as a
degree-2n sum-of-squares certificate.

The sum-of-squares algorithm hierarchy looks for degree-r sum-of-squares certificates
that f ≥ 0 for a particular r. To do this, it constructs a semidefinite program optimizing
over nO(r) variables. Thus, for r being a constant, this algorithm runs in polynomial time.
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2.3 Pseudo-expectations

The main concern of this work is the dual of the previous question: when do there not exist
degree-r SOS certificates that the polynomial f ≥ 0? Thinking all the way back to where
these certificates originated, the SOS certificate was just a way to tell us that the objective
f(x) ≥ 0 for all choices of x. One way that we could show no certificate exists would be by
exhibiting some particular value of x violating the objective with f(x) < 0. We could even
choose a distribution D over the x values such that

E
x∼D

[f(x)] < 0

But choosing such a distribution will not let us prove anything useful. We already argued
that the SOS certificate only can exist if f is truly non-negative, so, for MaxCut, there will
not be SOS certificates of any degree that show us the cut must be smaller than the true
MaxCut.

For our purposes we want to be able to argue something stronger: if r is too small, the
degree-r SOS certificates will not be able to get anything close to the true MaxCut. To do
this, we will create a fake distribution on the x to fool all of the degree-r certificates. We
call the linear functional1 Ẽx : R[x]→ R a degree-r pseudo-expectation if it satifies

• scaling: Ẽx[1] = 1,

• positivity: Ẽx[p(x)2] ≥ 0 for every polynomial p2 of degree at most r, and

• poly-symmetry: Ẽx[p(x)] = Ẽx[p̂(x)] for every polynomial p and its corresponding
multilinearization p̂.

The most important consideration when choosing our pseudo-expectation is that it helps:
our target polynomial must satisfy Ẽ[f(x)] < 0.

Does this pseudo-expectation actually accomplish our intended goal? Suppose we have
a degree-r pseudo-expectation with Ẽ[f(x)] < 0 and a purported degree-r SOS certificate
g1, . . . , gt. Then, we can derive a contradiction

0 = Ẽ[0] = Ẽ[f(x)− g1(x)2 − · · · − gt(x)2] = Ẽ[f(x)]− Ẽ[g1(x)2]− · · · − Ẽ[gt(x)2] < 0

where we used poly-symmetry, linearity, and then positivity. Thus, the existence of a degree-
r pseudo-expectation actually does prevent a degree-r SOS certificate. The rest of this work
will focus on creating psuedo-expectations to show the failure of the SOS algorithm.

For more information and an exhaustive treatment of the sum-of-squares algorithm,
SOS certificates, pseudo-expectations, and applications, see the survey paper by Barak and
Steurer [5] or the paper on planted clique by Barak et al. [6]. There, scaling and poly-
symmetry are known as “hard” constraints because they must be satisfied exactly, and
positivity is known as a “soft” constraint.

1A linear operator that maps polynomials to real numbers
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2.4 The Moment Matrix

How exactly do we define a degree-2r psuedo-expectation Ẽ? Because Ẽ satisfies poly-
symmetry, it is sufficient (and necessary by uniqueness of the multilinear representation) to

define Ẽ only on multilinear polynomials; the rest are filled in by looking at their multilinear
counterpart. Then, by linearity it suffices (and is necessary) to define Ẽ on monomials:

{
∏

v∈S xv : S ⊆ [n]}. Finally, we need to somehow ensure positivity, that Ẽ[p(x)2] ≥ 0 for
all p(x)2 of degree at most 2r. Because positivity only depends on monomials of degree at
most 2r, we can map monomials of higher degree arbitrarily.

To ensure positivity, let us examine the vector monr(x) indexed by subsets S ⊆ [n] of
size |S| ≤ r, where the entry (monr(x))S =

∏
i∈S xi. Let m be the dimension of monr(x).

Define the moment matrix
M = Ẽ[monr(x) ·monr(x)ᵀ]

whose entries contain only and all of the terms Ẽ[p(x)] where p(x) is a monomial of degree
at most 2r.

Lemma 2.1. Ẽ satisfies positivity if and only if the matrix M = Ẽ[monr(x) ·monr(x)ᵀ] � 0.

Proof. In the forward direction, take an arbitrary vector v ∈ Rm and compute the quadratic
form

vᵀMv = Ẽ[vᵀ monr(x) ·monr(x)ᵀv] = Ẽ[vᵀ monr(x) ·monr(x)ᵀv] = Ẽ[(monr(x)ᵀv)2] ≥ 0

In the reverse direction, let p(x) be some polynomial of degree at most r. We can write

p̂(x) =
∑

S⊆[n]:|S|≤r

(
vS ·

∏
i∈S

xi

)
= vᵀ monr(x)

for a vector v ∈ Rm. Then, the pseudo-expectation

Ẽ[p(x)2] = Ẽ[(vᵀ monr(x))2] = Ẽ[vᵀ monr(x) ·monr(x)ᵀv] = vᵀMv ≥ 0

In addition to positivity, we need to define poly-symmetry for the moment matrix M .
Partition the entries indexed by (S, T ) of M into equivalence classes based on the multi-
linearization of

∏
i∈S xi ·

∏
i∈T xi (equivalently by S4T ). As the values in each equivalence

class correspond to the same multilinear polynomial, our pseudo-expectation will give the
same value by poly-symmetry. Conversely, any two cells in different equivalence classes have
different polynomials, so we have free choice as to what their values are. Finally, our scaling
property is M∅,∅ = 1 (which holds if and only if Ẽ[1] = 1). We will often bundle scaling in
with poly-symmetry.

To pick the pseudo-expectation Ẽ, it suffices to pick a poly-symmetric matrix M � 0 as
its moment matrix. We will call such a moment matrix M valid.

13



2.5 The Trace Method

One way we might want to show positivity for the moment matrix M of dimension n is to
show M = 1 + A for a spectrally small matrix A. We define the spectral radius

spr(A) = max
v:‖v‖=1

‖Av‖

Because A is symmetric, the spectral radius spr(A) ∈ {|λ1|, |λn|} where the eigenvalues of
A are λ1 ≥ · · · ≥ λn. Then, the quadratic form vᵀMv = vᵀv + vᵀAv ≥ vᵀv(1 − spr(A)).
Instead of showing positivity, we can bound the spectral radius of A.

To isolate the spectral radius of A, we look at its long-term behavior after T applications.
For our chosen even T , the eigenvalues of the power AT are λT1 , . . . , λ

T
n . This tells us the

trace is bounded by

Tr[AT ] =
n∑
i=1

λTi ≥ spr(A)T Tr[AT ] =
n∑
i=1

λTi ≤ n · spr(A)T

because spr(A) ∈ {|λ1|, |λn|} and all of the eigenvalue powers satisfy 0 ≤ λTi ≤ spr(A)T for
even T . By choosing the power T ≥ C lg n, we can obtain a very close approximation of the
spectral radius

spr(A) ≤ T
√

Tr[AT ] ≤ n1/T · spr(A) ≤ 21/C spr(A)

If we think about A as the (weighted) adjacency matrix of a graph, computing the trace
of a high power T counts the total weight of closed walks starting and ending at any vertex.
Then, we can use our intuition about the graph in order to count these walks. The trace
method is useful because it enables us to measure a spectral property in an combinatorial
way. In this work, we will use the trace method to analyze “glitches” in our prepared degree-4
moments.

3 Large Regular Random Undirected Graphs

In order to analyze average-case complexity, we need to define our average-case—a distribu-
tion over graphs G. Given the degree d and the size n, we consider the uniform distribution
Gregn,d over random d-regular graphs with n vertices. This model is discussed in detail by
Wormald [22]. We would like to think about asymptotic behavior with n being much larger
than d; namely, we will think of d as a constant with respect to n becoming large, but then
also look at the asymptotic behavior with respect to d. For the purposes of imagining these
graphs, think of d = 17 and n = 106.

One could also consider the more popular Erdös-Rényi distribution: G ∼ G(n, d/n).
There, each pair of vertices has an edge independently with probability d/n. However, this
makes the spectrum of the adjacency matrix AG much more difficult to analyze and the
resulting graphs G much less nice. In particular, while graphs G ∼ Gregn,d are connected with
high probability [22], graphs G ∼ G(n, d/n) have many disconnected vertices; each vertex
has a constant probability (related to d) of being disconnected. As such, we will confine
ourselves to the random regular distribution.

14



3.1 The Truth about MaxCut

As it turns out, the true value of the MaxCut is actually known for graphs G ∼ Gregn,d. By
using an approach from statistical physics, Dembo et al. [10] were able to determine that for
random regular graphs G ∼ Gregn,d the cut value is, with high probability,

MaxCut(G) = n
(
d
4

+ P∗

√
d
4

+ o(
√
d)
)

+ o(n)

where P∗ ≈ 0.7632 is an analytic constant coming from a ground-state energy as defined in
Dembo et al. [10]. Recall that in the situation where x ∈ {±1}n is the optimal partition, we
can express

MaxCut(G) =
∑
uv∈E

1− xuxv
2

=
nd

4
+
∑
uv∈E

−xuxv
2

Rewriting these two equations, we find that

2/(nd)
∑
uv∈E

−xuxv = 2P∗/
√
d+ o(1/

√
d) ≈ 1.526/

√
d

where nd/2 = |E|. Define this quantity, the average cutting of each edge, as

ε := 2/(nd)
∑
uv∈E

−xuxv

We will seek to make ε as large as possible.

3.2 Being the Barber

You might ask whether there exist efficient algorithms for finding the partition x to make
ε as large as possible. Remember that our goal for this work is to find psuedo-expectations
that act like fake cuts in order to fool the sum-of-squares algorithm. As it turns out, we
can use a fake cuts from a pseudo-expectation in order to generate a real partition x. This
rounding technique is due to Goemans and Williamson [13]. The below algorithm will be
very similar to what they originally described but presented from a different perspective.

Let us suppose we are given a graph G on n vertices and we have a procedure to construct,
with high probability, a degree-2 pseudo-expectation Ẽ = ẼG where −1 ≤ Ẽ[xixj] ≤ 0 for
ij ∈ E(G). We want this pseudo-expectation to be a good fake cut, namely

Ẽ
[∑

ij∈E xixj

]
= −ε|E|

for ε ≥ (2 − on(1))/
√
d. We will describe several algorithms for obtaining a pseudo-

expectation later on; all of the known results satisfy these requirements.
Now, let’s look at the (partial) moment matrix M = Ẽ[x · xᵀ] � 0. We know that we can

find a set of vectors vi such that Mij = vᵀi vj because M � 0. Note that the scaling property
of M implies that ‖vi‖ = 1. To find our actual partition (xi), we will randomly round the
vectors (vi). For this, we will pick a random direction r and set xi = sgn(rᵀvi). Picking this
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random directly r picks a random hyperplane and we round the vectors according to which
side of the hyperplane they appear on.

We will cut an edge ij (xixj = −1) if the two vectors vi and vj appear on opposite
sides of the hyperplane. This happens with probability proportional to the angle between
them. As such, the probability Pr[xixj = −1] = 1

π
arccos(vᵀi vj) [13]. Using the fact that

1 − 2
π

arccos(y) ≤ 2
π
y for −1 ≤ y ≤ 0, we can compute the expected value gotten by this

rounding scheme:

E
[∑

ij∈E xixj

]
=
∑
ij∈E

(1− 2
π

arccos(vᵀi vj)) ≤
∑
ij∈E

2

π
vᵀi vj =

2

π
Ẽ
[∑

ij∈E xixj

]
which gives us an edge coefficient of

ε ≥ ( 4
π
− on(1))/

√
d ≈ 1.273/

√
d

Recently, Montanari [18] came out with a better algorithm for the G(n, d/n) model. The
correctness proof also relies on an unproven conjecture from statistical physics called con-
tinuous replica symmetry breaking; the conjecture is widely believed to hold with evidence
supporting it. The algorithm from Montanari [18] makes use of a technique they call incre-
mental approximate message passing, which iteratively refines its solution towards a good
objective value by mixing across edges. With high probability over the choice of graph, they
achieve an edge correlation of

ε = (1− δ)2P∗/
√
d− o(1/

√
d)

for any δ > 0, which is effectively optimal. The algorithm runs in polynomial time if you
treat δ as a constant.

3.3 A Tree Near You

One nice property of graphs G ∼ Gregn,d is that they are locally tree-like. Most vertices in G
have neighborhoods that look like trees. Indeed, let L be a constant. The L-neighborhood
of a vertex v is the set

NL(v) = {u ∈ G : d(u, v) ≤ L}

If the vertex v has a cycle in its neighborhood NL(v) then we call it L-bad. With high
probability, the number of L-bad vertices in G is at most log n [22].

Because so few vertices do not have tree-like neighborhoods, we will now only consider
graphs G with girth g(G) ≥ Ω(L). Then, every vertex will have a tree-like neighborhood.
After finding results for high-girth graphs, we will be able to translate the results down to
all graphs with a negligible loss.

3.4 Configuration Symme-tree

Combining regularity and high girth, the neighborhoods of every vertex looks the same.
This motivates a strengthened requirement on Ẽ: configuration symmetry. Configuration-
symmetry is a generalization of invariants of the prior work’s degree-2 psuedo-expectations.
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Let U ∈ V (G)r be an ordered r-tuple of vertices (duplicates allowed). Define the L-
configuration CL(U) = (H,U) as follows: H is the minimal subgraph of G containing all
vertices in U and, for each a, b ∈ U where d(a, b) ≤ L, all vertices on the shortest path
Pa,b between a and b. See Figure 1 for an example configuration. By requiring the girth
g(G) > rL, the shortest path Pa,b is unique (if it exists) and H(CL(U)) will be a forest.

1

2

3

𝐺 = (𝑉, 𝐸) 2-configuration
𝐶) 1,2,3

1

2

3

Figure 1: An example configuration with L = 2

We say that two configurations C and D are isomorphic C ' D if there exists some
vertex bijection f : V (C) → V (D) such that relabeling the vertices in C results in D.
In other words, there is an isomorphism between their underlying graphs H(C) and H(D)
that preserves the identified vertices U(C) and U(D). We will naturally extend other graph
operations to configurations by having them work directly on the graph H.

We can now talk about what it means for the pseudo-expectation Ẽ to be L-configuration-
symmetric. Given any two L-configurations C and D, the pseudo-expectation

Ẽ
[∏

i∈U(C) xi

]
= Ẽ

[∏
i∈U(D) xi

]
We can extend this notion to an equivalent one on the moment matrix M just as we did with
poly-symmetry. For M to be configuration-symmetric, we require that two entries with the
same configuration have the same value. The L-configuration of an entry (S, T ) is CL(S, T ),
where we convert a set into a tuple by sorting its elements.

3.5 Perfect Trees

One way to ensure configuration-symmetry by design is to study, instead of the finite graphs
G, the d-regular infinite tree Td. The infinite tree Td is useful because it actually has certain
desirable properties our random regular graphs G almost have. For example, the adjacency
operator ATd has spectral radius spr(ATd) ≤ 2

√
d− 1 [12]. This spectral radius is exactly
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what we would expect from a random regular graph if not for the troublesome all-ones
eigenvector.

Figure 2: Part of the 3-regular infinite tree T3

Because every vertex in the infinite tree has an automorphism to every other vertex, it
really only makes sense to consider psuedo-expectations that are automorphism-invariant.
This automorphism-invariance is what provides configuration-symmetry.

4 Degree-2 Pseudo-expectations

Because we will use degree-2 pseudo-expectations as the basis for our degree-4 pseudo-
expectations, we will take some time to review the degree-2 constructions. Although the
degree-2 constructions all satisfy configuration-symmetry and are very similar, we will show
that there is some leeway in the choices of the moments. This leeway is unexpected because
configuration-symmetry initially seems restrictive.

The constructions we will discuss all define the moment matrix M restricted to singleton
rows and columns (indexed by S with |S| = 1) rather than defining the whole moment
matrix. We can equivalently consider M indexed by vertices.

Lemma 4.1. If a matrix M with rows and columns indexed by the vertices V is positive
semi-definite M � 0 and has 1 on the diagonal (Mi,i = 1), then the full moment matrix

M ′ = Ẽ[mon1(x) ·mon1(x)ᵀ] =

S,T |T |=0 |T |=1[ ]
|S|=0 1 0
|S|=1 0 M

is valid.

Proof. Clearly, the matrix M ′ � 0 because it is PSD block-diagonal. Scaling is satisfied
because M ′

∅,∅ = 1. Therefore, we only need to check that M ′ is poly-symmetric. We do this
by casing on the size of S4T for entry (S, T ) of M ′.
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• |S4T | = 0. Then, S = T and we are considering a diagonal entry. By assumption
MS,S = 1 and by construction M ′

∅,∅ = 1, so these entries all have the same value.

• |S4T | = 1. Then, S = ∅ and |T | = 1 or vice-versa. In either case, M ′
S,T = 0 by

construction.

• |S4T | = 2. Then, we know S 6= T and |S| = |T | = 1, so we lie squarely within M . In
order to obtain the same S4T , our sets must either be (S, T ) or (T, S). By symmetry
of M , these have the same value.

Why did we enforce that Ẽ[xi] = 0? A pseudo-expectation pretends to be a coloring of
the graph with a large cut. For any particular coloring, flipping the colors of every vertex
does not change the cut. Thus, for each coloring where a vertex i is colored +1, there is an
equivalent coloring where vertex i is colored −1. Intuitively, we lose nothing by enforcing
that Ẽ[xi] = 0.

Our final perspective on the pseudo-expectation comes from the following fact

Fact 4.1. A matrix M � 0 if and only if there exist centered Gaussian random variables Xi

with moment matrix E[XXᵀ] = M .

Proof. Take a vector of i.i.d standard Gaussians Y and mix them to form X = V Y where
V V ᵀ = M . The X are still centered and

E[XXᵀ] = V E[Y Y ᵀ]V ᵀ = V I V ᵀ = M

Thus, it will be sufficient choosing a degree-2 pseudo-expectation to pick a standard
Gaussian for each vertex. Recall that our goal is to have a pseudo-expectation where

Ẽ
[
k −

∑
uv∈E −xuxv

]
< 0

to show that we cannot refute the existence of the MaxCut. As such, we need to pick
Gaussians with large negative correlations across edges in the graph. Once we have chosen
these Gaussians, we can assign the matrix M to be the moment matrix of the Gaussians,
further extend it to the full moment matrix M ′, and thereby define the pseudo-expectation.

4.1 To Infinitree and Beyond

The first degree-2 psuedo-expectation comes from thinking about the Gaussian perspective
on the d-regular infinite tree Td [10]. That is, we will try to pick a standard Gaussian for each
vertex of the tree Td. The Gaussians chosen will have some good edge correlations and also
the property that two far-enough vertices have zero correlation. This far-enough property is
what enables us to then move the Gaussians down to a finite graph.

Indeed, the far-enough property is equivalent to L-configuration-symmetry. By focusing
on the infinite tree and restricting ourselves to automorphism-invariant psuedo-expectations,
we get that any two paths of the same length have the same pseudo-expectation. But if we
look at L-configurations instead of ∞-configurations, we only have paths up to length L
before getting two disconnected vertices. Ensuring that every pair of disconnected vertices
has the same correlation is the far-enough property.
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The first non-trivial pseudo-expectations arise from the Gaussian wave. To pick our
Gaussians Xv, we will enforce that they satisfy the eigenvalue equation for the adjacency
operator A = ATd . ∑

u∈N(v)

Xu = λXv

If we make this choice, we can easily compute the edge correlations

λ = E[λX2
v ] = E [

∑
u∼vXuXv] = dE[XuXv]

Choosing the value λ = −dε, we get the desired edge correlations for our moment matrix. It
turns out that we can pick such Gaussians for any λ as long as |λ| ≤ d [8]. This would give
us an ε = 1! For that, we would color vertices alternating colors on the whole tree. But how
will we transfer that to the finite graph?

This is where we need to enforce the L-configuration-symmetry. As it turns out, for any
λ with |λ| ≤ 2

√
d− 1, we can also construct a sequence of Gaussian processes converging

to the Gaussian wave. Each process in the sequence is formed by taking a finite linear
combination of i.i.d Gaussians at each vertex [8]. That limiting sequence is what Dembo
et al. [10] use in their construction of the pseudo-expectation.

We can also make a simpler choice for our coefficients and arrive at an identical bound.
Let us assign an independent standard Gaussian Yv to each vertex v ∈ Td. Our final Gaus-
sians will be

Xv =
1

ζ

L∑
i=0

ci
∑

u:d(u,v)=i

Yu

for some constants c = −1/
√
d− 1 and ζ. The initial Gaussians Yv are i.i.d standard

Gaussians, so their covariance is E[YaYb] = 1(a = b). Therefore, we only get a contribution
in E[XaXb] for each vertex c at distance at most L from both a and b.

We can figure out the normalization by finding the variance

E[X2
v ] =

1

ζ2

L∑
i=0

∑
u:d(u,v)=i

c2i E[YaYb]

=
1

ζ2

(
1 +

L∑
i=1

c2i · d(d− 1)i−1

)
=
(
1 + c2d(L− 1)

)
/ζ2

= (c2dL− 1/(d− 1))/ζ2

Because we want E[X2
v ] = 1, this defines the value of ζ.

Now, we can compute the edge correlation −ε for an edge (u, v). For this, we need to
count the number of nodes at distance a from u and distance b from v. Fortunately, every
node is either closer to v and d(v, x) = d(u, x) + 1 or closer to u and d(v, x) + 1 = d(u, x).
Starting from vertex u, there are always d− 1 ways to step away from v and 1 way to step
closer. Thus, the number of nodes at distance a from u and a+ 1 from v is (d− 1)a.

E[XuXv] =
1

ζ2
· 2

L−1∑
a=0

c2a+1(d− 1)a =
1

ζ2
· 2cL
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into which we can plug our known value of ζ to find

ε = −E[XuXv] = − 2cL

c2dL− 1/(d− 1)
= − 2

cd
+

2

cd(dL− 1)
=

2
√
d− 1

d
−O(1/L)

Note that for vertices at distance > 2L there is 0 correlation, so we satisfy (2L + 1)-
configuration-symmetry.

In any case, we can easily transfer these moments down to the finite graph as long as
the finite graph G has girth g(G) > 2L + 1. To make the transfer, repeat the process of
picking i.i.d Gaussians and taking their linear combinations. Because our calculations of ε
only relied on there not being cycles within distance L of a pair of adjacent vertices, girth
g(G) > 2L+ 1 is sufficient to guarantee the same calculations occur on the finite graph.

One interesting note is, though this geometric coefficient sequence achieves the same
bound as the Gaussian wave approximations, it does not converge to the Gaussian wave.
Let us take a new decay rate c with |c| < 1/

√
d− 1 and take the limit process where the

distance L→∞. We can re-compute what the normalization ζ is

1 = E[X2
v ] =

1

ζ2

(
1 +

∞∑
i=1

c2id(d− 1)i−1

)
=

1

ζ2
(
1 + c2d/(1− c2(d− 1))

)
=

1

ζ2
1 + c2

1− c2(d− 1)

and use that to find the nearby correlations (for uv and vw an edge).

σ′1 = E[XuXv] =
1

ζ2
· 2 ·

(
∞∑
i=0

c2i+1(d− 1)i

)
=

2c

1 + c2

σ′2 = E[XuXw] =
1

ζ2

(
2 ·

∞∑
i=0

c2i+2(d− 1)i + c2 +
∞∑
i=0

c2i+4(d− 2)(d− 1)i

)

=
1

ζ2
· 2c2 + c2(1− c2(d− 1)) + c4(d− 2)

1− c2(d− 1)
=

3c2 − c4

1 + c2

We used similar counting techniques as before to compute these. We can compare these
correlations to the ones for the Gaussian wave [8]:

σ1 =
λ

d
σ2 =

λ2 − d
d(d− 1)

Clearly, for the distributions to match we need the first and second moments to match:
σ′1 = σ1 and σ′2 = σ2. If we pick λ = 2cd/(1 + c2) to get σ′1 = σ1, then the second moments
do not match. What this brief computation tells us is that the different optimal degree-2
pseudo-expectations are actually different and not only found via different methods.
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4.2 Never Look Back

Rather than looking at the infinite tree Td, Banks et al. [4] make use of non-backtracking
walks to define the moment matrix. Like the adjacency matrix A, we can define the non-
backtracking walk matrices A(t). The (i, j) entry A

(t)
i,j is the number of non-backtracking

walks of length t from vertex i to vertex j. A non-backtracking walk is any walk that does
not return to the immediately-previous vertex: i → j → i. In the high-girth situation, the
entry A

(t)
i,j becomes the indicator that the distance d(i, j) = t.

Using these non-backtracking walks, we would like to define the moment matrix as

M =
L∑
t=0

ctA
(t)

for some constant L and constants c0, . . . , cL. Note that this definition exactly captures
configuration-symmetry for the moment matrix M . Because M is indexed by singletons,
the cells U that we consider are pairs of vertices. The configuration CL(i, j) is either the
path between i and j or a pair of disconnected vertices. As above, the path configurations
of length t are exactly captured by A(t) (in the high-girth situation). Thus, we assign the
same value to each path configuration and, as M contains no other terms, we assign 0 to the
disconnected configuration.

To show positivity, we will eventually construct M as an explicit matrix square. To
do this, we first decompose the non-backtracking matrices A(t) with a simple recursion. A
non-backtracking walk of length t is a non-backtracking walk of length t− 1 plus one more
step that does not backtrack. To compute this, we can find the number of free last steps
and subtract out the ones that backtrack. When backtracking one step we effectively have
a non-backtracking walk of length t− 2, but we could have arrived in one of many different
ways—one for each neighbor.

A(0) = I

A(1) = A

A(2) = A · A(1) − dI = A2 − dI
A(t) = A · A(t−1) − (d− 1)A(t−2) t ≥ 3

By solving the recursion, we can see that A(t) can be represented by a polynomial of degree
exactly t in the adjacency matrix A. Thus, any polynomial of degree t in A can be represented
by a linear combination of the non-backtracking powers A(0), . . . , A(t).

To define the matrix M , we will make use of the roots of a specific polynomial qm(z) of
degree m = (L+ 2)/2 defined by Banks et al. [4]. Say the roots of qm(z) are r1 > · · · > rm.
Then, let our construction polynomial of degree L be

s(z) =
1

ζ

m−1∏
i=1

(z − ri)2

which is manifestly a square (and ζ is a normalization constant). We define the moment
matrix M = s(A) � 0. By using a quadrature rule, Banks et al. [4] are able to show
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that, when represented as explicitly configuration-symmetric, this matrix M =
∑L

t=0 ctA
(t)

satisfies scaling (c0 = 1) and has an edge coefficient

ε = −c1 =
2(1− oL(1))

√
d− 1

d

They also show that this is the optimal ε obtainable for degree-2 psuedo-expectations.
Using this recipe with L = 2, we obtain the matrix polynomial

M =
1

2

(
I − 1√

2d
· A
)

=

(
1

2
+

d

2d

)
· I − 1√

d
· A+

1

2d
(A2 − dI) = I − 1√

d
A+

1

2d
A(2)

which gives us an edge-coefficient of ε = 1/
√
d. This edge-coefficient does not beat 2P∗/

√
d,

but the moment matrix is simple to understand.

5 Weight Watchers: Fix Your Girth

What we would like to do is be able to take pseudo-expectations on graphs with high girth
and turn them into psuedo-expectations on graphs with low girth. The main reason why
the assumption of constantly-high girth is fine is the number of short cycles is actually quite
small. We quantify this key idea in the following lemma.

Lemma 5.1. If γ, d are constant and the graph G ∼ Gregn,d, then with probability at least
1−p(n) = 1−p there exists a set B of size |B| = O(lg(1/p) such that the girth g(G−B) ≥ γ.

Proof. To form B, we will select one vertex from each cycle of length less than γ. This forces
the girth g(G−B) ≥ γ because any smaller cycles have been disrupted.

Let the random variable Xk be the number of cycles of length k in G. Then, the random
variables X3, . . . , Xγ−1 are asymptotically independent random variables distributed Xk ∼
Poisson((d− 1)2/2k) [7]. If we let the random variable X =

∑γ−1
k=3Xk, we can upper-bound

the size |B| ≤ X. Because the Xk are independent and Poisson, X ∼ Poisson(λ) where

λ =

γ−1∑
k=3

(d− 1)2

2k

is a constant. Let m = max(2eλ, lg(1/p)) = O(lg(1/p)). Using a Chernoff bound, we find
that

Pr[X ≥ m] ≤ e−λ · (eλ/m)m ≤ 2− lg(1/p) = p

In addition to the key property that the number of cycles is small, we will also use a
gadget that makes the high-girth graph construction easier.

Lemma 5.2. For every degree d ≥ 3 and girth γ ≥ 3, there exists a d-regular graph G with
girth g(G) ≥ γ.

Proof. This result follows directly from the more general results of Dahan [9].
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Using the gadget and the key idea, we will almost embed our random graphs G into
larger graphs G′ of high girth. Then, we can directly map down the pseudo-expectation with
a small loss coming from the modifications in the almost embedding.

Lemma 5.3. Suppose that, given any d-regular graph G′ with girth g(G′) ≥ kL (where k is

a constant), there exists a degree-r pseudo-expectation ẼG′ with a correlation of

ẼG′ [xixj] = −ε

on each edge ij ∈ E(G′) and ẼG′ [xixj] = 0 for d(i, j) ≥ L. Then, given a d-regular random
graph G ∼ Gregn,d, except with probability at most p = p(n) there exists a degree-r pseudo-

exepctation ẼG satisfying

2

nd

∑
ij∈E(G)

ẼG[xixj] = −ε(1−O(lg(1/p) · 1/n))

Proof. Let the random graph G ∼ Gregn,d. We will construct a new graph G′ with girth
g(G′) ≥ kL that shares most of its structure with G.

By Lemma 5.2, we know that there exists a d-regular graph H with girth g(H) ≥
max(kL, L). Let B′ be a minimum set of vertices such that the girth g(G − B′) ≥ kL.
By Lemma 5.1, we know that |B′| ≤ On(lg(1/p)) with high probability. Let B be the set of
edges outgoing from vertices in B′. Clearly, the girth g(G−B) = g(G−B′) ≥ kL as well.

Initially, set the graph G′ = G. Let ab ∈ H be an arbitrary edge. For each edge uv ∈ B,
add a new copy of H to G′ and swap the edges uv and ab as in Figure 3. That is, remove
edges uv, ab and add edges ua, vb. Clearly, this edge-swap process preserves the degree of
each vertex; the graph G′ at the end is d-regular.

𝐺
𝑣

𝑢

𝐻
𝑏

𝑎

Figure 3: The edge-swap process

We would like to show that the girth g(G′) ≥ kL. Consider some cycle C in the graph
G′. If C does not enter into any copies of H, it must be contained it G − B. By the girth
property g(G − B) ≥ kL, we know that |C| ≥ kL. If C is entirely contained within some
copy of H, we trivially know |C| ≥ kL by construction of H.

Otherwise, the cycle C intersects both G and some copies of H as in Figure 4. Consider
one of those copies of H and look at the graph C ′ = C ∩H. Because the cycle C enters and
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𝐺
𝑣

𝑢

𝐻
𝑏

𝑎 𝐶

Figure 4: A cycle C in the graph G′

leaves a copy of H, the graph C ′ must be a path between a and b. Note that the graph C ′

cannot contain edge ab as the graph G′ does not contain that edge. Thus, the cycle C ′+ab is
a cycle in H and must satisfy |C ′ + ab| ≥ kL; the original cycle satisfies |C| ≥ kL. This same
reasoning also concludes that any path between a vertex u ∈ B′ and a vertex v ∈ G − {u}
must go through a copy of the graph H and thus have length at least L.

By assumption, we have a pseudo-expectation ẼG′ with average edge-correlation −ε.
Let M ′ be the moment matrix for ẼG′ . Restrict M ′ to those rows and columns that only
contain vertices of G forming the matrix M . Because the matrix M ′ � 0, the matrix
M � 0. Similarly, the poly-symmetry of M ′ implies poly-symmetry of M . Define ẼG by the
moment matrix M . Note that this means ẼG[p(x)] = ẼG′ [p(x)] for any polynomial p(x) only
mentioning vertices in G.

To conclude the proof, we need to verify the average edge correlation. Because edges in B
come from vertices in B′, we know that any ij ∈ B has dG′(i, j) ≥ L and thus ẼG[xixj] = 0.

Conversely, edges ij ∈ G−B appear in G′, so the coefficient ẼG[xixj] = −ε.

2

nd

∑
ij∈E(G)

ẼG[xixj] =
2

nd

 ∑
ij∈E(G)−B

ẼG[xixj] +
∑
ij∈B

ẼG[xixj]


=

2

nd

 ∑
ij∈E(G)−B

−ε+
∑
ij∈B

0


= −ε

(
1− 2|B|

nd

)
= −ε(1−O(lg(1/p) · 1/n))

6 Extension Method

For making the pseudo-expectation, the typical strategy is to start with a candidate satisfying
poly-symmetry for easy reasons and then work hard to show positivity. For the MaxCut
degree-4 pseudo-expectation, we will be getting our candidate by extending the degree-2
pseudo-expectation.

To do this, we will look at the moment matrix indexed by ordered pairs of potentially
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duplicate vertices:
M = Ẽ[(x⊗ x) · (x⊗ x)ᵀ]

We will naturally extend the notions of poly-symmetry and configuration-symmetry to this
matrix M . For entry (a, b) of M with a and b being ordered pairs, the L-configuration is
CL(a, b) and the polynomial (for poly-symmetry) is the multilinearization of

∏
i∈a xi ·

∏
i∈b xi.

The plan will be to extend M into a full moment matrix by setting all of the odd-degree
moments to 0. Note that M contains all of the even-degree moments.

Throughout this discussion, we will also think of the matrix M as describing weighted
movement throughout the graph. Because M is indexed by ordered pairs, it will describe
movement of pairs of vertices in the graph. For example, the matrix A⊗A describes moving
each vertex independently along an edge as shown in Figure 5. We will think about the row
index as the “start” or “left” pair of vertices and the column index as the “end” or “right”
pair of vertices.

𝐴
⊗
𝐴

⋮

𝐴 ⊗
𝐴

𝐴 ⊗ 𝐴

Figure 5: Movement according to the matrix A⊗ A

Let’s define F to be our configuration-symmetric degree-2 solution: in the resulting
pseudo-expectation, the matrix

F = Ẽ[x · xᵀ]

It would be beautiful if we could say M = F ⊗F , which means move each vertex in the pair
independently according to F . Unfortunately, moving independently fails poly-symmetry.
For example, we need

Fa,c · Fb,d = M(a,b),(c,d) = M(a,b),(d,c) = Fa,d · Fb,c (1)

= M(a,c),(b,d) = Fa,b · Fc,d (2)

as shown in Figure 6. However, we have no way of enforcing that our degree-2 solution F will
satisfy these constraints. The real problem is that only using the tensor-product captures 8
of the 24 possible reorderings of 4 vertices.

To fix equality (1), we need to allow swapping the vertices before or after moving along
F ⊗ F . To do this, we will define a 0/1 swapping matrix Π 6= with the (a, b), (c, d) entry
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𝑎 𝑏

𝑐 𝑑

𝐹&,(𝐹),* 𝐹&,*𝐹),( 𝐹&,)𝐹(,*

≡

≠ ≠

𝑎 𝑏

𝑐 𝑑

𝑎 𝑏

𝑐 𝑑

≡

Figure 6: Requirements for poly-symmetry

non-zero if and only if a 6= b, c 6= d, and {a, b} = {c, d}. Then, we can use this matrix
to enable swapping: Π 6= · (F ⊗ F ) · Π 6=/2. One can see how this improves the situation in
Figure 7. Dividing by two cancels out the double-counting from the fact that swapping at
the beginning and the end is the same as not swapping at all.

𝐹⊗ 𝐹

Π$

Π$

𝐹⊗ 𝐹
Π $

Π
$

Π$

Π$

⋮

⋮

Figure 7: The action of Π 6=

Next, we can fix equality (2) by allowing us to move from any F -related pair of vertices
to any other F -related pair of vertices. Define vec(F )(i,j) = Fi,j. In some sense, this vector
serves as an indicator for vectors being related by F . Then, the outer product vec(F )·vec(F )ᵀ

will allow moving from F -related vertices to F -related vertices, exactly how we want.
Putting these two fixes together, let’s define our extension recipe as

extend(F ) = vec(F ) · vec(F )ᵀ + Π 6= · (F ⊗ F ) · Π 6=/2

which almost works. Unfortunately, it has some glitches when the left and right vertex sets
overlap (e.g. Figure 8). These glitches arise because the tensor product and outer product
treat paths with overlapping vertices as disjoint paths, when, from the perspective of poly-
symmetry, they should be treated as a combined path. Let us define the glitch matrix G(F )
as follows:

G(F )(a,b),(c,d) =

{
2Fa,bFc,d a 6= b, c 6= d, {a, b} ∩ {c, d} 6= ∅
0 otherwise
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𝑎

𝑏, 𝑐

𝑑

𝑎

𝑏, 𝑐

𝑑

≡

Figure 8: An example glitch. Arrows point from the LHS to the RHS

Using this glitch to fix the poly-symmetry issues, we get a valid matrix.

Lemma 6.1. If F is poly-symmetric and L-configuration-symmetric then extend(F )−G(F )
is poly-symmetric and L-configuration-symmetric. Moreover, if an entry of extend(F )−G(F )
has polynomial xixj, then that entry has value Fi,j.

Proof. Label the parts of M = extend(F ) − G(F ): O = vec(F ) · vec(F )ᵀ, G = G(F ), and
T = Π6= · (F ⊗ F ) · Π 6=/2.

Examine the entry M(a,b),(c,d) = eᵀ(a,b)Me(c,d). The easiest term is eᵀ(a,b) ·O ·e(c,d) = Fa,bFc,d.
For the rest, let’s case on the polynomial xaxbxcxd.

• Case x4i . For poly-symmetry, we want the entry M(i,i),(i,i) = 1. Because a = b, this
term does not appear in G or T . Thus, M(i,i),(i,i) = O(i,i),(i,i) = Fi,iFi,i = 1.

• Case x2ix
2
j . For poly-symmetry, we’d also like to show this entry is 1. If a = b then

c = d and the term only appears in O. Then, M(i,i),(j,j) = O(i,i),(j,j) = Fi,iFj,j = 1.

Otherwise, a 6= b and c 6= d. The two sides share both vertices, so G(a,b),(c,d) = 2Fa,bFc,d.
Because Π 6= · e(c,d) = e(c,d) + e(d,c) when c 6= d, we have

eᵀ(a,b) · (Π6= · (F ⊗ F ) · Π6=/2) · e(c,d) =

(Fa,cFb,d + Fa,dFb,c + Fb,cFa,d + Fa,cFb,d)/2 = Fa,cFb,d + Fa,dFb,c

Let us suppose that a = c and b = d; the other case is symmetric. Our total is

M(a,b),(c,d) = Fa,bFc,d + (Fa,cFb,d + Fa,dFb,c)− 2Fa,bFc,d

= Fa,bFa,b + (Fa,aFb,b + Fa,bFb,a)− 2Fa,bFa,b

= Fa,aFb,b = 1

• Case x3ixj. We need the entry to be Fi,j. Because F is configuration-symmetric, this
type of entry will be as well (meaning it will match all other entries with the same
configuration). By the pigeon-hole principle, either a = b or c = d. This term can
therefore only appear in O. By poly-symmetry of F , we have Fi,j = Fj,i. Thus, in
every case the overall entry is Fi,iFi,j = Fi,j.
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• Case x2kxixj. We again need this entry to be Fi,j, which will be configuration-symmetric
because F is. Suppose first that a = b or c = d. Without loss of generality, we pick
a = b. The only contribution is therefore O, so our value is M(a,b),(c,d) = O(a,b),(c,d) =
Fa,bFc,d = Fc,d = Fi,j.

Otherwise, a 6= b and c 6= d. Take the case when a = c; the other cases a = d,
b = c, or b = d are symmetric. Because the left and right sides share entries, G has a
contribution. Like the x2ix

2
j case, our total will be

M(a,b),(c,d) = Fa,bFc,d + (Fa,cFb,d + Fa,dFb,c)− 2Fa,bFc,d

= Fk,bFk,d + (Fk,kFb,d + Fk,dFb,k)− 2Fk,bFk,d

= Fk,kFb,d = Fi,j

• Otherwise, all vertices are distinct. Because the two sides share no vertices, the glitch
has no contribution. Our entry therefore will be

M(a,b),(c,d) = Fa,bFc,d + (Fa,cFb,d + Fa,dFb,c)− 0

= Fa,bFc,d + Fa,cFb,d + Fa,dFc,b

Notice by including all possible orderings (because F is poly-symmetric), this entry
does not depend on the order of a, b, c, d. This entry is therefore poly-symmetric.
Finally, because F is L-configuration-symmetric this term only depends on all pairs of
distances between the vertices: their L-configuration.

Next, let’s transfer our matrix M ′ = extend(F ) − G(F ) to the moment matrix M . We
will assign

M =

S,T |T |∈{0,2} |T |=1[ ]
|S|∈{0,2} M (0,2) 0
|S|=1 0 M (1)

where M (1) = F and M (0,2) is a principal submatrix of M ′: choose the rows/columns ∅ 7→
(0, 0) and {x, y} 7→ (x, y) for x < y.

Lemma 6.2. If F is poly- and configuration-symmetric, then the matrix M defined above is
also poly- and configuration-symmetric.

Proof. This result follows almost directly from Lemma 6.1. Let us consider a particular
entry (S, T ) of M . We handle the entry differently based on the size |S4T |.
• Case |S4T | is odd. By construction, we have M(S,T ) = 0.

• Case |S4T | = 4. The entry occurs entirely within M (0,2). By the symmetries of M ′,
these entries all match.

• Case |S4T | = 0. We know that M(S,T ) = 1 by symmetries of F and M ′.

• Case S4T = {i, j}. If |S| 6= 1 (and therefore |T | 6= 1), we have that M
(0,2)
S,T = Fi,j as

stated explicitly in Lemma 6.1.

Otherwise, M
(1)
S,T = Fi,j by poly-symmetry of F . Configuration-symmetry of F here

again implies configuration-symmetry of M .
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6.1 Positivity

We believe that M � 0 as defined but we have not yet been able to prove it. As such, we
will instead show that Mα+ (1− α)I � 0 for α ∈ [0, 1] and a particular F , which will show
that Mα + (1− α)I is valid.

Lemma 6.3. Choosing F = 1 + 1/
√
d · A(1) + 1/2d · A(2) and α = 1/6, our moment matrix

Mα + (1− α)I � 0.

Proof. Recall that this F is the degree-2 polynomial solution from Banks et al. [4]. To show
that Mα + (1− α) � 0, it then suffices to show that M (0,2)α + (1− α) � 0.

Clearly, vec(F ) · vec(F )ᵀ � 0. Because F � 0, we know that F ⊗ F � 0. This implies
that Π6= · (F ⊗ F ) · Π6=/2 � 0 because Π 6= = Πᵀ

6=. If we let G be the submatrix of G(F )

in M (0,2), then we can write M (0,2) = P − G where P � 0 (as the principal submatrix of
extend(F ) � 0). With α = 1/6, it will suffice to show that spr(G) ≤ 5.

For this, we will use the trace method. Let us briefly consider what the entries of G are.
For a non-zero entry (S,R) we know that |S| = |R| = 2 and that S ∩R 6= ∅. At that point,
the value GS,R = 2FSFT (where we abuse notation with F{i,j} = Fi,j). For a pair S to be
related by F , the vertices must either be at distance 1 or at distance 2. To move from S to
R, we pay the cost FT and also the cost FS.

Let P = (P0, P1, . . . , PT ) be a path where each entry Pi ⊆ V is a set of size 0 or 2. The
trace then is

Tr[GT ] =
∑

P :P0=PT

T∏
i=1

GPi−1,Pi

Let’s consider a particular path P . We can assume that none of the Pi have size zero because
otherwise the product would be zero. Then, the total weight of that path would be

T∏
i=1

GPi−1,Pi
=

T∏
i=1

2FPi−1
FPi

= FP0 ·
T∏
i=1

2F 2
Pi
· (1/FPT

) =
T∏
i=1

2F 2
Pi

where the last step follows if FP0 6= 0 because P0 = PT . Say that the path P is good if
P0 = PT and FP0 6= 0. Plugging back into the trace

Tr[GT ] =
∑
P good

T∏
i=1

2F 2
Pi

= Tr[HT ]

where we define

HS,T =

{
2F 2

T |S| = |T | = 2, S ∩ T 6= 0, FS 6= 0

0 otherwise

From any given pair of vertices S, there are at most 2d pairs T with d(T ) = 1. Similarly,
there are at most 2d(d − 1) ≤ 2d2 pairs T with d(T ) = 2. Thus, the sum of magnitudes of
any row of H is at most 2d · 2 · (1/

√
d)2 + 2d2 · 2 · (1/2d)2 ≤ 5. By diagonal dominance, we

find
Tr[GT ]1/T = Tr[HT ]1/T ≤ ((

(
n
2

)
+ 1) · 5T )1/T ≤ 5 + δ

for any δ > 0. We conclude spr(G) ≤ 5.
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We now have a valid degree-4 pseudo-expectation defined by the moment matrix M/6 +
5/6. What kind of ε does this give us? The coefficient on edges in the chosen F was −1/

√
d,

but we scaled that down with α = 1/6. Thus, our final edge coefficient is ε = 1/(6
√
d).

Unfortunately, this does not beat the target 2P∗/
√
d, so our pseudo-expectation is not good

enough to give a non-trivial SOS lower-bound.

7 Conclusion

The goal of this work was to find a non-trivial degree-4 SOS lower-bound for average-case
MaxCut. We unfortunately did not achieve that goal because we were unable to completely
analyze the spectrum of our constructed moment matrix. However, we identified a key
property that we believe the pseudo-expectation should satisfy: configuration-symmetry.
This configuration-symmetry arises naturally from our graph distribution, and drastically
limits the search space for possible pseudo-expectations. We also showed how, instead of
focusing on any random graphs, we can focus on graphs of high girth without much loss in
the objective value. Using configuration-symmetry as our guide, we developed a recipe for
extending degree-2 pseudo-expectations into degree-4 pseudo-expectations on graphs of high
girth. We believe this recipe could produce a non-trivial degree-4 pseudo-expectation with
more careful analysis.
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