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Abstract

In an effort to continue increasing performance in the power-constrained setting

of the post-Dennard era, there is growing interest in hardware specialization. How-

ever, a major obstacle to the more widespread use of hardware acceleration is the level

of difficulty in hardware design today. Despite the increased availability of rich IP

libraries and even IP generators that span a wide range of application domains, de-

veloping hardware today is limited to experts, takes more time and is more expensive

than ever.

This thesis presents the Pandora IP development paradigm that facilitates hard-

ware development and specialization by extending the concept of generator-based IPs.

Pandora encapsulates the IP author’s expertise and domain knowledge to offer sup-

porting infrastructure and assist the users’ interactions with the IP. In contrast to ex-

isting IPs and IP generators that only capture the structural and microarchitectural

view of a design, Pandora argues for augmenting IPs with: (1) detailed IP design

space characterization to help the user understand the effects of parameter choices

with respect to hardware implementation and IP-specific metrics, (2) application-level

goal-oriented parameterization that is meaningful to the IP user and automatically sets

low-level structural parameters to achieve the desired design optimizations, and (3)

purpose-built domain-aware simulation-time and run-time monitoring mechanisms to

assist functional and performance debugging.

To highlight the benefits of hardware specialization and demonstrate the key princi-

ples of the Pandora IP development paradigm, this thesis presents our research efforts

on: (1) CONNECT, a flexible Network-on-Chip (NoC) IP generator that embodies

the Pandora principles and is actively used by hundreds of researchers around the
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world, (2) DELPHI, a framework for fast easy IP characterization that facilitates map-

ping the design space of arbitrary RTL-based IPs, (3) Nautilus, an IP optimization en-

gine that demonstrates how incorporating IP author knowledge in genetic algorithms

can enable very fast—orders of magnitude faster than conventional methods—high-

level goal-oriented IP optimization, and (4) IRIS, an instrumentation and introspec-

tion framework that combines hardware monitors with software-based post-processing

and visualization engines to accelerate debugging of complex IPs and enable higher

system-level visibility.
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Chapter 1

Introduction

We are currently witnessing fundamental and disruptive changes in the semiconductor industry.

On the one hand, rapidly growing transistor counts driven by Moore’s Law [74], coupled with

recent technology advances and trends, such as die stacking and the increased presence of on-die

reconfigurable logic, are enabling the development of massive, diverse Systems-on-Chip (SoCs)

comprising of tens or even hundreds of interacting Intellectual Property (IP) blocks with unique and

demanding communication requirements. On the other hand, our inability to further scale supply

voltage is leading to the breakdown of classical CMOS scaling as described by Dennard [36].

As a result, after decades of continuous growth, transistor efficiency, which has been the primary

driving force behind performance improvements in general-purpose computing, has now reached a

stalemate [41, 106].

In an effort to continue increasing performance in the power-constrained setting of the post-

Dennard era, there is a growing interest in hardware specialization [89]. While hardware special-

ization is key to power-efficient computing, hardware development today is notoriously hard. As

a result, even though there is great demand for mapping applications to specialized hardware to
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achieve higher performance and power efficiency, and despite the availability of an ever-growing

number of rich Intellectual Property (IP) block catalogs, hardware development today is not only

limited to experts, but takes more time, requires larger design teams, and is more expensive than

ever (Figure 1.1).

1.1 The Rise of Hardware Complexity

An alarming trend of increasing complexity in hardware design was first recognized about

fifteen years ago and was labeled the “design productivity gap” (Figure 1.2), which pertains to

the difference between the transistors available on a single die and the number of transistors a

designer is able to effectively design for. Efforts to bridge this gap sparked research efforts in

multiple aspects of hardware design, including high-level synthesis techniques [44, 65], validation

tools, more powerful hardware description languages [20, 102] and frameworks [95] that enable the

development of flexible IP generators and new hardware design methodologies, such as platform-

based design [53].

Of particular interest to this work is the increased use of IP blocks (which refer to pre-made,

pre-validated, reusable packaged units of hardware design). With IP reuse, instead of designing ev-

ery component in a chip from scratch, designers build entire chips or portions thereof by leveraging

existing IP blocks, often developed by third parties. This practice greatly reduces the development

2
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time and cost of individual submodules within a larger chip. Sure enough, IP reuse is ubiquitous to-

day and has become an indispensable part of modern chip design. Over the years, IP blocks, which

started as simple design instances, have now evolved to sophisticated, highly-parameterized and

complex domain-specific IP generators responsible for multi-million-transistor blocks in a chip.

The IP Complexity Wall. Despite an enormous rise in scale, complexity, and specialization,

the way IP blocks are developed and used has not fundamentally changed since the introduction

of modern Hardware Description Languages (HDLs) and the proliferation of ASIC-based design

flows more than two decades ago. The result is a “complexity explosion” as designers build chips

as “fragile” collections of many complex IP blocks, each with its own set of cryptic (for the non-

domain-expert) low-level knobs, which can often be traced back to a crude hardware schematic

or specification document. Today, we are facing a new encounter with the “design productivity

gap” at a different scale—not at the level of the transistor, but instead at the level of the IP block.

Current hardware design methodologies are struggling to keep up with the complexity involved in

configuring, tuning, integrating, and validating the multiple interacting IP blocks within a modern

chip. Consequently, the complexity and the associated development time, cost, and manpower

required to build a chip today continue to increase prohibitively.

3



1.2 Pandora: Facilitating IP Development for Hardware Specializa-

tion

The focus of this thesis is on a novel knowledge-encapsulating IP development paradigm, called

Pandora1, that is aligned with existing efforts to tackle design complexity and aims at retaining the

benefits of highly parameterized IP design and generation to facilitate hardware specialization,

while at the same time addressing the associated complexity explosion. The Pandora paradigm

is motivated by the highly specialized nature of modern IP blocks and argues for tailoring them

with supporting functionalities according to their specific application domain. Pandora’s ultimate

goal is to lower the barrier-to-entry for building specialized hardware accelerators and allowing

application-experts to more easily and efficiently realize their ideas in hardware.

In Pandora, IP blocks not only capture the microarchitectural or low-level structural view of

a design, but also encapsulate domain-specific infrastructure and additional dimensions of knowl-

edge that the IP author has to offer. The Pandora paradigm marks a departure from the current

status quo in hardware design by combining a set of key ideas and principles that empower IP au-

thors and enhance how users interact with hardware IPs. The three defining aspects of the Pandora

IP paradigm can be summarized as:

• Facilitate fast detailed IP design space characterization to help the user understand the ef-

fects of parameter choices and allow for obtaining quick estimates with respect to hardware

implementation and IP-specific metrics.

• Provide application-level goal-oriented domain-specific optimization interfaces that are mean-

1The name Pandora is inspired from Greek mythology and has a dual meaning. The first meaning relates to how Pan-
dora was created through unique gifts from each god, which resembles how the proposed design paradigm encapsulates
rich domain-expert (“gods”) knowledge to support complexity-reducing interfaces, mechanisms, and tools (“gifts”). The
second meaning pertains to Pandora’s box, which kept sealed all of the evils of the world, similar to how the proposed
hardware design paradigm tries to hide or restrain complexity within the IP and avoid exposing the user to the “evils” or
complexities of hardware design.

4



ingful to the IP user and automatically set low-level structural parameters to achieve the

desired design optimizations.

• Support purpose-built domain-aware simulation-time and run-time instrumentation and in-

trospection mechanisms that gather, present, and analyze the gathered data to identify or

even diagnose higher-order correctness and performance issues.

In addition to keeping complexity under control and boosting productivity, Pandora also dra-

matically reduces the combined total effort because work that would otherwise be repeated by each

IP user, is now only performed once by the authors of the IP.

As part of my work on Pandora, I have developed CONNECT, DELPHI, Nautilus, and IRIS.

CONNECT [68, 81, 82] is a flexible Network-on-Chip (NoC) IP generator I developed and publicly

released, that is actively used by hundreds of researchers around the world, and has both served as

an inspiration as well as demonstration vehicle for Pandora. DELPHI [84] is a framework for per-

forming fast and efficient IP characterization (power, area, frequency) across multiple technology

nodes. Nautilus [83] is a high-level goal-oriented IP optimization engine that uses modified ge-

netic algorithms that incorporate IP author knowledge to perform fast guided design space search.

IRIS is an IP instrumentation framework that facilitates system-level debugging, monitoring, and

analysis. In the context of this thesis, the CONNECT NoC IP generator highlights the benefits

of specialization and serves as a driving example for Pandora, while DELPHI, IRIS, and Nautilus

serve as demonstration vehicles for Pandora’s key principles.

1.3 Thesis Contributions

This thesis makes the following contributions:

• Proposes the Pandora IP development paradigm and demonstrate many of its key principles
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through the development of CONNECT, DELPHI, Nautilus, and IRIS.

• Presents the CONNECT Network-on-Chip IP Generator, which is actively used by hundreds

of researchers around the world.

• Demonstrates the benefits of hardware specialization through an investigation of interconnect

specialization and tuning in the context of FPGAs and CoRAM applications.

• Presents DELPHI, a framework for fast, easy, efficient RTL-based characterization of IP

designs.

• Presents Nautilus, which demonstrates how IP author knowledge can be used to vastly ac-

celerate hardware IP optimization and design space search using guided genetic algorithms.

• Proposes and develops IRIS, a flexible systematic instrumentation framework that allows

incorporating IP author knowledge for efficient hardware debugging and system-level moni-

toring.

• Demonstrates how Pandora can drastically enhance how IP users interact with IP generation

frameworks by developing and showcasing a proof-of-concept Pandora-powered version of

the CONNECT Network-on-Chip IP generator that incorporates the key ideas and research

artifacts presented in this thesis.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 describes the CONNECT

Network-on-Chip IP generator that was developed and extended in support of this thesis, and

demonstrates how CONNECT allows specializing the generated NoC IP instances for the underly-

ing hardware, as well as the traffic characteristics of a given application. Chapter 3 presents the Pan-

dora IP development paradigm and elaborates on the Pandora principles, which are demonstrated

6



through the frameworks described in the next three chapters. In particular, Chapter 4 presents the

DELPHI framework for fast IP characterization. Chapter 5 presents the Nautilus IP optimization

framework and Chapter 6 presents the IRIS instrumentation and introspection framework. Chap-

ter 7 describes how the CONNECT Network-on-Chip IP generator was extended to incorporate and

demonstrate many of the Pandora key ideas and research artifacts presented in this thesis. Finally,

Chapter 8 concludes and discusses potential future directions.
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Chapter 2

The CONNECT Network-on-Chip IP

Generator

2.1 Introduction

Today’s integrated circuits contain billions of transistors organized as tens to hundreds of in-

teracting modules as a System-on-Chip (SoC). As the scale and complexity of modern SoCs grow,

building the on-chip interconnect to enable this vast number of modules to communicate is an

increasingly important and challenging task. As a result, the interconnect has become a central

element in modern chip designs. Previously, the communication needs of smaller, simpler chip

designs with just a handful of major modules could be met by ad-hoc point-to-point wires or a

shared bus. Such approaches do not scale to handle the more complex and demanding commu-

nication requirements of the interacting modules in today’s SoCs. This realization led to a push

towards more sophisticated and scalable systematic interconnect schemes, like Networks-on-Chip

(NoCs), which, as the name implies, implement a dedicated network of links and routers to act as
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the communication substrate of a chip [33].

The proliferation of NoCs has been followed by a surge in NoC-related research that spans

all the way from low-level hardware implementation issues, such as efficient allocator designs,

to higher level issues that affect the application, such as providing traffic isolation or Quality-

of-Service guarantees. As a result, NoC designs today form a broad and very diverse landscape

that mirrors the equally diverse communication needs and requirements of the various applications

running on modern SoCs. Despite this vast design space and the fact that there is no “one-size-fits-

all” solution to the interconnect problem, deployable NoC IPs currently available to the research

community are limited to fixed NoC instances or target only localized portions of the NoC design

space.

CONNECT. In an effort to support my work on Pandora and significantly expand the NoC

options available to academic and other research communities, we developed and released CON-

NECT, a flexible NoC IP generation engine that produces high quality synthesizable1 Verilog RTL

NoC implementations. CONNECT, evolved from a tool originally created to support our own

FPGA-specialized NoC design exploration research [27, 29, 81, 82] and was publicly released in

2012 in the form of a web-based NoC generation service (http://www.ece.cmu.edu/calcm/connect).

CONNECT allows quickly navigating the NoC design space and generating fast lightweight NoC

IPs. To satisfy the diverse communication needs and design constraints of different applications,

CONNECT offers a high degree of parameterization to support a very wide range of NoC design

variants. By adhering to a set of common interfaces, CONNECT allows for quickly switching

between different NoC alternatives, thus enabling rapid experimentation and prototyping.

1Synthesizable designs are those described at a sufficient level of detail for Electronic Design Automation (EDA)
tools to implement them or “synthesize” them in hardware, e.g., using FPGA or ASIC design flows.
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Since its release in 2012, CONNECT has been used by a growing number of users around

the world. As of this writing, the CONNECT website has seen more than 15,000 hits and 10,000

unique visitors. The CONNECT service has generated more than 3,500 networks for more than

800 users in more than 50 countries. There have been multiple third-party research papers that

use CONNECT to generate NoCs for design space research or for direct use as production IP in

design projects. Figure 2.1 shows collected network generation statistics, such as topology break-

down and network size, to give a sense of the types and scale of networks that CONNECT users

have requested. More detailed statistics and usage information are available on the CONNECT

website [68].

2.2 Background: NoC Terminology

This section offers a brief review of key NoC terminology and concepts relevant to this chapter.

For a more comprehensive introduction please see [31]. Readers already familiar with NoCs may

continue directly to Section 2.3.

Topology. The topology of a network specifies how routers and endpoints are arranged and

connected.

Packets. A packet is the basic logical unit of transfer within the network and can consist of

multiple flits (see below).

Flits. When traversing a network, packets are often broken into flits (flow control digits), which

are the basic unit of resource allocation and flow control within the network. Some NoCs require

special additional “header” or “tail” flits to carry control information and to mark the beginning

and end of a packet.

Head-of-line Blocking. Head-of-line blocking [63] refers to a situation where the first packet

in a queue is blocking all the remaining packets waiting in the queue, when they could otherwise
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be making progress (if not for the first “stuck” packet). Head-of-line blocking can severely limit

network performance.

Virtual Channels. A channel corresponds to a path between two points in a network. NoCs of-

ten employ a technique called virtual channels (VCs) to provide the abstraction of multiple logical

channels over a physical underlying channel. Routers implement VCs by having non-interfering flit

buffers for different VCs and time-multiplexed sharing of the switches and links. Thus, the number

of implemented VCs has a large impact on the buffer requirements of an NoC. Employing VCs

can help in the implementation of protocols that require traffic isolation between different message

classes (e.g., to prevent deadlock [32]), but can also increase network performance by reducing the

effects of head-of-line blocking.

Deadlock. Deadlock refers to a situation where there is a cyclic dependency involving multiple

network resources (e.g., buffer space), which is preventing the network from making any progress.

Quality-of-Service (QoS). QoS refers to a network’s capability of providing guarantees (e.g.,

with respect to latency or bandwidth) or prioritizing specific types of traffic over others.

Flow Control. In lossless networks a router can only send a flit to a downstream receiving

router if it is known that the downstream router’s buffer has space to receive the flit. “Flow control”

refers to the protocol for managing and negotiating the available buffer space between routers. Due

to physical separation and the speed of router operation, it is not always possible for the sending

router to have immediate, up-to-date knowledge of the buffer status at the receiving router. In

credit-based flow-control, the sending router tracks credits from its downstream receiving routers.

At any moment, the number of accumulated credits indicates the guaranteed available buffer space

(equal to or less than what is actually available due to delay in receiving credits) at the downstream

router’s buffer. Flow control is typically performed on a per-VC basis.

Input-Output Allocation. Allocation refers to the process or algorithm of matching a router’s
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input requests with the available router outputs. Different allocators offer different trade-offs in

terms of hardware cost, speed and matching efficiency. Separable allocators [31] form a class of

allocators that are commonly used in NoCs. They perform matching in two independent steps,

which sacrifices matching efficiency for speed and low hardware cost.

NoC Performance Characterization. The most common way of characterizing an NoC is

through load-delay curves, which are obtained by measuring packet delay under varying degrees

of load for a set of traffic patterns. A common metric for load is the average number of injected

flits per cycle per network input port. Packet delay represents the elapsed time from the cycle the

first flit of a packet is injected into the network until the cycle its last flit is delivered. For a given

clock frequency, load and delay are often reported in absolute terms, e.g., Gbits/s and ns.

2.3 NoC Design Parameterization

Besides CONNECT, there are several other freely available synthesizable NoC IPs (e.g., [12,

43, 92, 98]; additional examples and discussion in Section 2.7). These IPs typically come in the

form of structural RTL design modules. As such, their parameterization is limited by the expres-

siveness of current hardware description languages, such as Verilog or VHDL. The static nature

of these design modules limits their configurability (e.g., usually restricted to a single or a limited

set of topology configurations). IP users trying to use such NoC IPs also have to deal with low-

level details, such as editing RTL design files to set parameters or configure individual routers and

writing additional RTL code to arrange routers in a desired topology and populate routing tables.
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Figure 2.2: The Web-Based CONNECT NoC Generator (a) and Network Editor (b) along with Samples of Pre-Selected and
Custom Topologies (c).
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CONNECT embodies many of the Pandora key principles discussed in Chapter 3. One of CON-

NECT’s main goals is to drastically reduce the complexity involved in configuring and generating

working NoC designs. To this end, CONNECT offers a “push-button” solution for generating a

very wide range of NoC configurations. To support a high degree of parameterization, which spans

multiple key NoC design choices (e.g., topology, router architecture, flow control, allocation algo-

rithms, pipelining options, buffer sizing, etc.), the CONNECT NoC generation engine dynamically

generates the requested NoC designs on-demand. The rich design space of CONNECT NoC IPs

is presented to the user through a web-based front-end interface, which consists of multiple high-

level user-friendly configuration interfaces that are dynamically updated to guide users while they

interact with the generator. Figure 2.2 shows screenshots of CONNECT’s web interface along

with sample network topologies. CONNECT’s main interface offers support for a wide range of

common network topologies and displays a dynamically-generated visual preview of the router

and endpoint arrangement for each candidate network. Below we highlight CONNECT’s most

prominent configuration options with emphasis on network topology and router design options.

2.3.1 Network Topologies

CONNECT offers direct support for a wide range of pre-selected common unidirectional and

bidirectional topologies (single switch, ring, double ring, star, mesh, torus, fat tree, fully connected,

butterfly, distribution/aggregation tree). Each supported topology family includes its own extensive

set of scaling and configuration parameters. CONNECT also populates the routing tables in each

network using a default routing scheme according to the selected topology variant (which the user is

free to override). This wide range of topology and configuration options allows a meaningful degree

of customization to satisfy the connectivity needs of many common applications with a very low

barrier-to-entry and this is already an important capability over other available NoC IP alternatives,
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Figure 2.3: High-Level Architectural Diagram of a CONNECT Router.

which typically only target a single fixed topology and often require significant knowledge and

manual effort to configure.

In addition to the pre-selected set of topologies described above, the CONNECT NoC generator

also supports the creation of custom arbitrary-topology NoCs through the use of a visual network

editor (Figure 2.2 (b)) or by using a custom network specification language. These advanced in-

terfaces allow for instantiating routers of different radix, mixing unidirectional and bidirectional

links, and attaching multiple (or no) endpoints to each router in the generated network. This high

degree of customization allows expert users to build networks that precisely match the connectivity

and communication characteristics of their application. Figure 2.2 (c) shows samples of some of

CONNECT’s pre-selected topologies, as well as some instances of custom topologies.

2.3.2 Router Architectures

Figure 2.3 shows an abstracted block diagram of the basic structure of a CONNECT router.

Communication with other routers happens through input and output port interfaces, which can

vary in number depending on the router configuration. Each input (or output) port interface consists
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of two channels; one channel for receiving (or sending) data and one side channel running in the

opposite direction for flow control. Input and output interfaces are either connected to network

endpoints or are used to form links with other routers in the network. Optional auxiliary signaling

is available to query each router’s unique ID and to dynamically update routing information.

To tailor to a wide variety of diverse application communication requirements and to meet dif-

ferent design objectives, CONNECT routers are available in three major variants: “Virtual Chan-

nel”, “Virtual Output Queued”, and “Input Queued”.

• Virtual Channel (VC): The VC router supports a variable number of VCs and organizes in-

coming traffic at each input into separate buffers based on VC information carried by packets.

Employing VCs can help in the implementation of protocols that require enforcing Quality-

of-Service (QoS) guarantees, such as traffic isolation and prioritization between different

message classes (e.g., prioritize responses over requests to prevent deadlock [32]), but can

also be used to increase network performance by mitigating the effects of head-of-line block-

ing [63].

• Virtual Output Queued (VOQ): The VOQ router can offer the highest performance out of

the three supported architectures. For each input it steers incoming traffic into per-output

dedicated buffers, eliminating the effects of head-of-line blocking and offering very high

levels of performance that can approach that of an ideal (but impractical) output-queued

router architecture [31]. VOQ routers are well suited for demanding applications with heavy

communication requirements and less structured traffic patterns that would still suffer from

head-of-line blocking using a conventional VC-based router.

• Simple Input Queued (IQ): The IQ router employs a single buffer per router input and

is often well suited as a baseline design. It is useful for building simple bare-bones NoCs

for applications that require basic connectivity at low hardware cost. NoCs built around IQ
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routers are a good match for applications with non-critical or simple communication needs

that do not require the isolation, prioritization, or higher performance offered by the VC and

VOQ router architectures.

For each of the variants above, CONNECT allows configuring an extensive set of low-level

details, including different pipelining options, multiple allocator alternatives, and flexible user-

editable routing, to enable implementation-level trade-offs with respect to performance, area, fre-

quency, as well as to meet specific traffic prioritization and fairness goals. CONNECT also offers

support for two interfacing options that implement different flow control protocols (“credit-based”

and “peek” [81]) to better match the communication assumptions and requirements of a given

application.

2.4 Generated NoCs

NoCs are typically used or studied as part of larger designs with multiple interacting modules

that exhibit diverse communication characteristics and often impose stringent hardware resource

constraints. Thus, in addition to providing a wide range of design options to meet the commu-

nication demands of a given design, it is also important for CONNECT to produce high-quality

NoC implementations that map well to the available hardware resources. To this end, all NoC IPs

generated by CONNECT, including any debug and instrumentation structures, comprise of fully

synthesizable Verilog descriptions that map efficiently to both Field Programmable Gate Arrays

(FPGAs) and Application Specific Integrated Circuits (ASICs). Moreover, to ensure that CON-

NECT NoCs can coexist in harmony and share resources with other hardware-resident components

in FPGA environments with tight resource constraints, CONNECT is capable of generating very

lightweight NoCs by taking special consideration of unique FPGA implementation characteristics.
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Network Details FPGA Implementation (LX760T) ASIC Implementation (32nm)

Network

(# indicates endpoints)

Link

Width

Ports /

Router

#Routers

(Arch.)

#Virtual

Channels

Area

(% LUTs)

Max Freq.

(MHz)

Peak Bisection

BW (in Gbps)

Area

(um2)

Max Freq.

(GHz)

Peak Bisection

BW (in Gbps)

Ring 128 128 2 128 (IQ) N/A 9.0 312 80 566406 5.0 1278

Ring 64 64 2 64 (VC) 2 3.3 250 32 294455 4.2 538

DoubleRing 16 48 3 16 (VC) 4 1.8 160 31 102095 1.8 342

DoubleRing 32 64 3 32 (VC) 2 2.8 177 45 144086 4.0 1014

FatTree 16 32 4 20 (VOQ) N/A 2.0 138 71 22208 4.0 2067

Mesh 16 (4x4) 32 4 16 (VC) 4 2.9 116 30 78458 3.5 907

Mesh 48 (6x8) 24 4 48 (VC) 2 3.0 124 24 49862 4.3 821

Torus 20 (4x5) 64 5 16 (VOQ) N/A 5.7 128 131 49230 4.7 4768

FullyConnected 8 32 8 8 (VC) 2 3.2 85 22 19817 4.2 1079

HighRadixCustom 16 48 9 8 (IQ) N/A 4.3 78 30 31259 5.1 1960

Table 2.1: Sample CONNECT NoC Implementation Results for a 32nm ASIC Commercial Standard Cell Library and a Xilinx
LX760T FPGA.
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To provide a broad indication of CONNECT NoC quality on FPGAs and ASICs, Table 2.1

shows implementation results for select realistic CONNECT NoC configurations. The presented

network configurations capture a representative sample of CONNECT networks that vary in the

number of endpoints, link width, number and architecture of routers, and number of virtual chan-

nels (when using VC routers). Results include maximum frequency, area, and peak bisection band-

width based on synthesis estimates for FPGA and ASIC implementations. FPGA logic area is

reported as a percentage of total FPGA LUT capacity (LX760T); it is worth noting that all of these

sample networks fit well within 10% of a moderately-sized Xilinx LX760T FPGA.

2.4.1 Specializaing for the FPGA Substrate

What is not apparent in Table 2.1 is that the detailed parameter settings leading to optimal

results on FPGAs vs. ASICs can be drastically different because the two implementation environ-

ments are very different with respect to the relative speed and cost of logic, wires, and memory

primitives. CONNECT takes into account the unique mapping and operating characteristics of

FPGAs, such as their dense configurable routing substrate, on-chip storage peculiarities, and fre-

quency limitations, to produce specialized NoCs that make very efficient use of FPGA resources.

We focus on these FPGA characteristics that influence fundamental CONNECT NOC design

decisions: (1) the relative abundance of wires compared to logic and memory; (2) the scarcity of

on-die storage resources in the form of a large number of modest-sized buffers; (3) the rapidly

diminishing return on performance from deep pipelining; and (4) the field reconfigurability that

allows for an extreme degree of application-specific fine-tuning.

Abundance of Wires. As previously also noted by other work [60], FPGAs are provisioned,

even over-provisioned, with a highly and densely connected wiring substrate. As a result, wires are

plentiful, or even “free”, especially relative to the availability of other resources like configurable
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logic blocks and on-chip storage. In CONNECT we make the datapaths and channels between

routers as wide as possible to consume the largest possible fraction of the available (otherwise

unused) wires. In addition, we also adapt the format of network packets; information that would

otherwise be carried in a separate header flit is carried through additional dedicated control wires

that run along the data wires. Finally, we also adapt flow control mechanisms to occupy fewer

storage resources by using wider interfaces [81].

Storage Shortage. Modern FPGAs provide storage in two forms: (1) Block RAMs with tens

of kilo-bits of capacity, and (2) small tens-of-bits Distributed RAMs built using logic Look-Up

Tables (LUTs). Both of these monolithic memory macros can not be subdivided, which can lead

to inefficiencies. This sets up a situation where NoCs on FPGAs pay a disproportionately high

premium for storage because NoCs typically require a large number of buffers whose capacities

are each much bigger than Distributed RAMs but much smaller than Block RAMs. To make the

most efficient use of storage resources, CONNECT only uses Distributed RAM and implements

multiple logical flit buffers in each physically allocated buffer on the FPGA. CONNECT does not

use any Block RAMs, which are typically in high demand from the rest of the FPGA-resident user

logic.

Low Clock Frequency. FPGA designs tend to operate at significantly lower clock frequencies

compared to ASIC designs, which was one of the gaps studied in [58]. This frequency gap can

be attributed to the use of LUTs and long interconnect wires and results in rapidly diminishing

returns when attempting to deeply pipeline a FPGA design to improve its frequency. To minimize

FPGA resource usage and network latency, CONNECT routers are based on a shallow single-cycle

pipeline architecture. As we will see later, the single-stage router used in CONNECT reaches

lower but still comparable frequency as an ASIC-tuned 3-stage-pipelined router. The FPGA’s per-

formance penalty from running at a lower frequency can be much more efficiently made up by
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increasing the width of the datapath and links or even switching to an entirely different topology.

Reconfigurabilitiy. Given the flexibility of FPGAs stemming from their reconfigurable nature,

an effective NoC design is likely to be called to match up against a diverse range of applications.

To cover the needs of such a diverse and rapidly changing set of applications, the CONNECT

NoC generator is fully parameterized and more importantly topology-agnostic, which means that

individual routers can be composed to form arbitrary custom network topologies. Moreover, to

minimize changes in the user logic, all CONNECT networks adhere to the same simple standard

common interface. From the user’s perspective the NoC appears to be a plug-and-play black box

device that receives and delivers packets. Rapid prototyping and design space exploration become

effortless as any CONNECT network can be seamlessly swapped for another CONNECT network

that has the same number of endpoints.

Figure 2.4 showcases an example of the efficiency benefits of CONNECT-generated NoCs
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Figure 2.5: Performance of Four Sample CONNECT Networks Under “Uniform Random” and
“Unbalanced” Traffic.

specially tuned for FPGAs [81]. When compared against a high-quality publicly available ASIC-

oriented 4x4 mesh NoC [98], equivalent CONNECT-generated NoC instances can offer compara-

ble network performance at one-half the FPGA resource cost; or alternatively, three to four times

higher network performance at approximately the same FPGA resource cost.

2.4.2 Specializing for the Application

In addition to specializing an IP’s implementation for the hardware substrate, it is also im-

portant to specialize an IP for the specific usage scenario or application. As an example in the

context of NoCs, consider the four NoCs shown in Figure 2.5 (a). All of these networks support 16

endpoints, and as such would be interchangeable from an application perspective. Figure 2.5 (b)

shows the load-delay results for these four networks under two different traffic patterns, “uniform

random”, where the destination for each packet is randomly selected, and “unbalanced”, where
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90% of the generated packets are local and are sent to neighboring nodes. These two example

traffic patterns can be thought of as corresponding to two different classes of applications, each

with different degrees of local communication. The fact that the relative performance of each

network drastically changes depending on the specific traffic pattern points to the importance of

application-specific specialization of the NoC.

Shrinkwrap. In the Shrinkwrap work [27] we experimented with compiler-guided devel-

opment of application-specific Networks-on-Chip within the CoRAM FPGA memory abstrac-

tion [28]. For this work, we extended CONNECT to support a class of tree-based topologies

that were a good fit for the traffic patterns exercised by various CoRAM applications. Compared to

using a baseline generic NoC, across a number of CoRAM application instances, the customized

NoCs generated through CONNECT reduced FPGA resource usage (for the interconnect) by al-

most an order of magnitude, while retaining the same application performance levels as a baseline

generic NoC [29]. As an example, the overall efficiency (throughput/area) gains for two FPGA-

based applications (Dense Matrix Multiply and Black Scholes) from switching from a baseline

generic mesh interconnect to a custom application-tuned tree-based interconnect ranged from 37%

to 48%.

2.5 CONNECT Principles

Our motivation for developing and releasing the CONNECT NoC generation framework was

to create a powerful and user-friendly research tool that would be useful to the broader research

community. To achieve this goal we adhered to a set of design principles that span all aspects

of CONNECT from front-end user interface to back-end hardware generation engine. Below we

highlight some key design elements that we conscientiously engineered into CONNECT to enhance

its usability as a NoC research tool.
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Matching Interfaces to User Expertise Level. CONNECT offers a variety of user interfaces

for configuring and generating NoCs. These interfaces can take different forms and are tailored to

the expertise of the specific IP user. They include a basic web-based front-end that offers a set of

preconfigured common topologies and settings, a more advanced visual custom topology network

editor coupled with a custom specification language that eliminates the need for low-level bug-

prone RTL coding. To further aid IP users, CONNECT’s interfaces also guard against erroneous

configurations—which are a common problem when dealing with complex highly-parameterized

IP blocks—by, for example, dynamically updating the available options as the user is making

selections and automatically populating routing tables. In addition, the interface guides the user

through visual cues (e.g., preview of topology and endpoint arrangement) and feedback (e.g., tips

on how different options affect hardware implementation). Separately, for expert users who wish to

drive CONNECT through the command-line or by automated scripts, we also provide a non-GUI

command-line front-end (summarized in Appendix A) that generates NoC instances by remotely

connecting to the CONNECT framework.

Rapid Prototyping and Exploration. The CONNECT NoC architecture is designed around

a simple set of link-level interfaces that are common among all CONNECT-generated NoCs as to

allow easy integration within a design project. From a user perspective, the NoC appears to be a

plug-and-play black box module that receives and delivers packets. This simplifies rapid prototyp-

ing and design space exploration as all CONNECT NoCs with the same number of endpoints are

interface-compatible at the network boundary. Moreover, CONNECT supports dynamic runtime

updating of routing tables, which not only opens up interesting research directions, such as exper-

imenting with adaptive routing techniques, but can also drastically reduce experiment turn-around

time. Regarding the latter, a user can build a system around a dense highly-connected topology and

then modify the routing scheme on the fly to emulate other topologies (e.g., overlay a ring or mesh
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on top of a torus), without having to repeat the time-consuming synthesis process, which can take

many hours.

Easy Integration. In addition to the plug-and-play nature of the generated networks, CON-

NECT also offers features specifically targeted at easing endpoint implementation. For exam-

ple, “peek” flow control allows endpoints to directly observe buffer occupancy of routers (in lieu

of credit-based protocols), and “virtual links” guarantee contiguous transmission and delivery of

multi-flit packets eliminating the need for reassembly logic and buffering at the receiving end-

points. Features like these push complexity, which would otherwise be handled by the network

endpoints, back into the network. Last but not the least, each generated NoC is accompanied by

a host of supporting material, such as documentation, testbenches, scripts, as well as user-editable

routing and topology files, all custom-generated to match the specific NoC configuration.

CONNECT as a Service. Behind the scenes, CONNECT is a sophisticated tool comprising of

many components developed using several different tools. Releasing CONNECT to users as a self-

maintained package would be quite challenging both in terms of initial installation (e.g., installing

tools and libraries, setting up a proper environment, acquiring licenses, etc.) and continuing up-

keep. To this end, we decided to release CONNECT in the form of a web-based IP generation

service. This approach to IP dissemination reduces complexity for the user and greatly lowers

the barrier to entry; the only requirement for generating CONNECT NoC designs is an internet

connection. As an added benefit, having a single point of distribution allows quick and transparent

delivery of bug fixes or improvements.

2.6 Pandora Motivation

Our experience with building and releasing CONNECT has provided us with invaluable in-

sight into multiple aspects of IP development, dissemination, and usage. For NoC design experts,
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CONNECT is a very powerful tool in saving them the time and effort to code—not to mention

debug—the Verilog design of the NoC; they only have to dial-in exactly the configuration they are

looking for. However, user feedback has revealed that a large portion of CONNECT users are not

NoC experts. This class of users do not know what configuration to ask for and many times do not

understand all of the low-level NoC parameters that CONNECT offers.

We see in our generation statistics that most CONNECT users only configure very few high-

level parameters (and often suboptimally), such as topology or datapath width, and typically leave

most other options, such as router architecture or allocator type, untouched, despite their signifi-

cant impact on cost, performance, and correctness. This problem continues after non-NoC-expert

users integrate a CONNECT NoC into their design, as they are likely to also be unable to properly

diagnose performance and correctness issues (e.g., degraded performance or deadlock due to sub-

optimal router architecture or allocator choice). Despite the ease of use promised by IP generators

like CONNECT, there can still exist a wide “knowledge gap” between “domain-experts” who de-

velop the IP and “non-domain-experts” who use the IP. This gap is becoming evident in general as

IPs encapsulate greater complexity and support higher degrees of detailed parameterizations. This

observation was the original inspiration to start work on the Pandora IP development paradigm to

help close this knowledge gap.

2.7 Related Work

The rapid growth in both research interest and commercial applications of Networks-on-Chip

has led to the development of several NoC-related tools and frameworks. In particular, academic

and research-oriented efforts have yielded a variety of NoC-related public releases over the past

few years. The Stanford Open-Source Router RTL [98] provides a flexible state-of-the-art Virtual-

Channel router implementation in synthesizable Verilog. Netmaker [92] consists of a library of
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various synthesizable NoC components, along with supporting material and scripts to run simula-

tions under different traffic patterns. Atlas [88] is a mesh and torus NoC generation and evaluation

framework. Bluetiles and Bluetree, both part of Blueshell [91], are mesh and tree NoC implemen-

tations in Bluespec System Verilog for connecting processor cores to each other and with memory.

NoCBench [37] provides a set of hardware and software models and tools to help evaluate NoC

designs. Finally, the FPGA NoC Designer tool [73] offers implementation estimates for hard and

soft NoCs targeting FPGA devices.

In the commercial space, several companies offer interconnect solutions, which however are

typically not publicly available for academic or research use. This includes SoC-oriented solu-

tions, such as the Spidergon STNoC, Arteris’ FlexNoC, ARM’s AMBA, Sonics’ NoCs products,

as well as interconnect architectures that are commonly also used in FPGA environments, such as

ARM’s AXI, found in modern Xilinx FPGAs, or Altera’s Qsys. Academic and research solutions,

such as the ones mentioned above, or CONNECT, which is presented in this article, can often syn-

ergistically coexist with commercial interconnects to cover the diverse communication needs of

FPGA-based research and emerging SoCs.
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Chapter 3

The Pandora IP Development Paradigm

This chapter describes the key ideas and principles of the Pandora IP development paradigm

that aims at reining in the growing complexity of modern highly-parameterized IP generators. To

achieve this goal, in Pandora, IP blocks not only capture the microarchitectural and structural view

of a design but also encapsulate additional dimensions of knowledge that the IP author has to offer,

which can come in the form of: (1) detailed IP design space characterization to help the user un-

derstand the effects of parameter choices with respect to hardware implementation and IP-specific

metrics, (2) application-level goal-oriented parameterization that is meaningful to the IP user and

automatically sets low-level structural parameters to achieve the desired design optimizations, and

(3) purpose-built domain-aware simulation-time and run-time monitoring mechanisms to assist

functional and performance debugging. In addition to reducing complexity and boosting produc-

tivity, the Pandora approach also dramatically reduces the combined total effort, because work that

would potentially otherwise be repeated by each IP user, is now only performed once and can be

leveraged by others.

Pandora marks a departure from the current status quo in hardware design by combining a set
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of key ideas and principles that aim at empowering both IP developers and users. In addition to

encompassing the low-level crude hardware description of a design, the IP is enriched with domain-

expert knowledge and includes supporting mechanisms, tools, and a diverse set of interface layers

to match the expertise of the IP user. Combined, these features give the IP a sense of “smartness”

or “self awareness” that enhance how the user interacts with it and can simplify and accelerate the

integration, tuning, and validation phases of the design cycle.

The rest of this chapter is organized as follows. Section 3.1 provides background on the rise

of hardware design complexity and motivates the need for Pandora. Section 3.2 describes the

salient ideas and principles underlying Pandora. Section 3.3 touches on existing efforts that, like

Pandora, also try to tackle various aspects of the hardware design complexity problem. Section 3.4

introduces and gives an overview of projects described later in this thesis that demonstrate the

Pandora principles. While this chapter presents Pandora at the conceptual level and focuses on

the broader guidelines underlying Pandora, Chapters 4, 5, and 6 present more tangible research

artifacts that embody the principles described in this chapter and demonstrate key aspects of the

Pandora IP development paradigm.

3.1 Background: The Rise of Design Complexity

Over the last few decades technology scaling has closely tracked Moore’s Law [74], which

refers to the empirical observation that the number of transistors in a chip doubles approximately

every 18 months. This exponential growth in transistor counts, which has surprisingly persisted

until today, along with Dennard scaling [36], which predicted that power density remains constant

as transistors get smaller, have served as major drivers in the semiconductor industry for multi-

ple decades. As a result, by the 1990s integrated circuits already contained tens of millions of

transistors while power consumption still remained a second-order concern.

32



The Productivity Gap. As chip density continued its exponential growth, hardware designers

struggled to keep up. This discrepancy between the number of transistors available on a single chip

and the ability of designers to efficiently use these transistors was identified about fifteen years

ago and was labeled the “design productivity gap”, which is illustrated in Figure 1.2 of Chapter 1.

This worrying trend sparked research in multiple aspects of hardware design, including high-level

synthesis techniques [44, 65], validation tools, more powerful hardware description languages [20,

102] and frameworks [95] that enable the development of flexible IP generators and new hardware

design methodologies, such as platform-based design [53].

In particular, the increased (re)use of Intellectual Property (IP) blocks, which refer to pre-

made, pre-validated, reusable packaged units of hardware, has been recognized as a very promising

approach to alleviate the productivity gap. Instead of designing every component in a chip from

scratch, designers can build entire chips or portions thereof by leveraging third-party prepackaged

IP blocks, which can greatly reduce the development time and cost of individual submodules within

a larger chip. Compared to other approaches trying to tackle the growing productivity concerns, IP

reuse faired as a simpler, more tangible and immediate solution, that can be quickly adopted by the

semiconductor industry, because it does not require significant changes to the design process. Sure

enough, the proliferation of an ever-growing number of rich IP catalogs came as a much-needed

productivity boost that would bridge the productivity gap to some extent through modular design

and heavy IP reuse.

The Power-Constrained Era. Since this design productivity gap was identified in the 1990s,

transistor counts have continued to rapidly increase driven both by Moore’s Law, as well as recent

technological advances in Integrated Circuit (IC) fabrication, such as the use of silicon interposers

or other forms of 3D stacking technologies. However, the inability to further scale supply volt-

age (due to leakage concerns) has led to the breakdown of classical CMOS scaling as described
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by Dennard [36]. This, in turn, has cast power dissipation as a first-order concern in hardware

design affecting all facets of computing, from embedded systems and smart phones to datacen-

ter servers or even high-performance computing. In an effort to continue increasing performance

in the power-constrained setting of the post-Dennard era, designers are turning to increased use

of application-specific special-purpose hardware. Hardware specialization is a promising path to-

wards more energy-efficient computing because it can lower the energy required to perform a task.

The confluence of these trends—namely the ever-growing availability of transistors, which are

now in the billions, and the increased need for power-efficient special-purpose hardware within a

chip—is leading to the development of massive chips, that include tens or hundreds of interact-

ing modules, organized in intricate multi-level hierarchies. Yet, despite the clear power efficiency

benefits of special-purpose hardware and our ability to fabricate denser chips with billions of tran-

sistors, current design methodologies have not evolved at the same pace to handle the complexity

associated with such massive, diverse designs. As a result, designing a chip today requires large

skilled hardware design teams and costs more than ever, even without considering manufacturing

costs.

The IP Complexity Wall. Despite an enormous rise in scale, complexity, and specialization,

the way IP blocks are developed and used has not fundamentally changed since the introduction

of modern Hardware Description Languages (HDLs) and the proliferation of ASIC-based design

flows more than two decades ago. The result is a “complexity explosion” as designers build chips

as “fragile” collections of complex IP blocks, each with its own set of cryptic (for the non-domain-

expert) low-level knobs, which can often be traced back to a crude hardware schematic or speci-

fication document. Today, we are facing a new encounter with the “design productivity gap” at a

different scale—not at the level of the transistor, but instead at the level of the IP block. Current

hardware design methodologies are struggling to keep up with the complexity involved in config-
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uring, tuning, integrating, and validating the multiple interacting IP blocks within a modern chip.

Consequently, the complexity and the associated development time, cost, and manpower required

to build a chip today continue to increase prohibitively.

3.2 Pandora Principles

The overarching goal of this work is to tackle the problem of increasing complexity in hardware

design and make “reusable” IPs more “usable” through the Pandora IP development paradigm. To

achieve this goal, Pandora raises the level of abstraction to allow non-domain-experts to easily and

efficiently navigate and identify sweet spots within the design space, and use and debug highly

parameterized IPs, without having to deal with the low-level and often cryptic details of modern

IP design. The rest of this section delves into the salient principles of Pandora, which all share the

common goal of overcoming the “Complexity Wall” in hardware design.

3.2.1 Detailed IP Characterization

In addition to capturing the microarchitectural and structural view of a design, Pandora IPs also

carry qualitative and quantitative meta-data. This information captures how the various knobs and

parameter settings affect the IP design space with respect to hardware implementation and higher-

level domain-specific properties and performance characteristics. This embedded knowledge pro-

vides the foundations for a Pandora IP to provide an elevated design abstraction and supporting

functionalities for the IP users.

Hardware Implementation Characterization. This refers to capturing how the IP parameters

affect implementation characteristics of the design, such as area, critical path, and power dissipa-

tion. In its simplest form this can be a database or characterization library that is attached to and

maintained along with the IP. Alternatively, this can also be complemented or take the form of
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predictive tools or analytical formulas that approximate implementation trends, such as DELPHI,

presented in Chapter 4. Implementation information can be maintained at different degrees of fi-

delity, ranging from classes of hardware devices (e.g., FPGAs or ASICs), specific device families

(e.g., Altera Stratix V), or instances (e.g., Virtex-6 XC6VLX760), or technology libraries (e.g.,

TSMC 32nm). Moreover, additional information can be maintained depending on the specific IP

and implementation target. For instance, in an FPGA environment, area can be broken down into

LookUp Tables (LUTs), BlockRAMs, DSPs, etc., or similarly in a design with multiple clock

domains, critical path information can be kept on a per-clock basis.

Domain-Specific Metrics and Properties. Besides hardware implementation details, which

are typically common across all different types of IP, Pandora also argues for capturing how the

various IP parameters affect higher-level metrics that are specific to the domain at hand. These are

also typically the metrics that the IP end-users are interested in and try to adjust to meet application-

specific goals. For instance, in the case of a processor core, such a metric could be IPC (Instructions

Per Cycle), or in the case of a NoC IP, such metrics could be the saturation bandwidth and idle

latency of the network. This characterization can also include high-level properties, e.g., in the

case of a NoC IP, capture how IP parameters affect packet delivery and ordering guarantees, traffic

isolation or Quality-of-Service properties.

These characterization libraries are meant to aid the design process and do not necessarily need

to be exhaustive or perfectly accurate. As we show in Chapter 5 with Nautilus, exploring even a

small subset of the design space is often sufficient to vastly accelerate the IP design space search

and optimization process. Depending on the degree of parameterization and complexity of the

IP, the characterization of the IP design space can be done in many ways and varying degrees of

detail: e.g., (1) collectively for the entire IP (i.e., sweeping over externally-exposed parameters),

(2) per submodule (i.e., considering the internal parameters of each submodule in the hierarchy),
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(3) through selective sampling of the design space (driven by domain-expert knowledge), or (4)

through the derivation of analytical formulas that predict implementation and performance results

based on expert knowledge or experience.

Even in its raw form, whether it is detailed characterization libraries based on experimental data

(e.g., synthesis runs or simulations) or coarser grain predictive data based on analytical formulas

and designer experience, this extra knowledge that is coupled with the IP is already very useful to

the IP user. Not only does it facilitate faster and more informed navigation of the design space,

but can also help drastically prune the design space by identifying parameter combinations that

do not constitute interesting or feasible design points. To demonstrate this aspect of Pandora, the

CONNECT Network-on-Chip generator has been extended as part of this thesis to provide FPGA

and ASIC estimates through the DELPHI framework, which is described in Chapter 4.

3.2.2 Automated IP Optimization

It is typical for modern parameterized IP blocks to expose a large set of low-level raw “struc-

tural” parameters, which are directly tied to and affect low-level implementation details of the

resulting hardware, e.g., datapath widths, buffer depths, memory dimensions, arithmetic operation

precision, etc. For example, the top-level router module of the Stanford Open Source Network-

on-Chip Router project [98] exposes 42 parameters with multiple additional parameters per each

submodule, leading to billions of valid design variants. Access to such low-level parameters gives

fine-grain control to expert hardware designers familiar with the domain pertaining to the IP. How-

ever, as hardware designs scale in size and comprise of a growing number of IP blocks spanning

different expertise domains and are often developed and maintained by different engineers or even

third-party IP vendors, properly setting and tuning the myriad of low-level parameters associated

with each submodule becomes unmanageable for IP users who are looking to be shielded from the
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internal complexity of the IP in the first place.

To alleviate this problem, the authors of Pandora IPs should raise the level of abstraction at

which the user interacts with the IP by exposing high-level configuration and tuning interfaces

that are meaningful at the application level and intuitive to the end-user of the IP. In Pandora,

IP authors enrich their IP blocks with high-level information about their functionality, parameter

settings, tuning, capabilities, and also capture how the various knob settings relate to hardware

implementation details, such as area, power, or clock frequency, instead of raw structural choices.

This abstraction layer empowers non-domain-experts to easily and effectively navigate the design

space to meet application-level design goals. This high-level parameterization allows users to

achieve the desired customization objectives but nevertheless very effectively shields the users

from the inner workings or low-level details of the IP.

Depending on the domain, user objectives and level of expertise, the provided interfaces can

take different forms, span varying levels of abstraction, and be tailored to match different classes

of users. For example, in a NoC setting these interfaces can range from something very simple,

such as providing the user with a set of known-to-be good specialized configurations or “person-

alities” to choose from (e.g., pre-selected NoC configurations tailored for stencil computations,

one-to-many data distribution, or point-to-point bulk DMA transfers) to a sophisticated objective

and constraint-driven query system (e.g., “find minimal area NoC that runs at 800MHz and offers

50Gbps of bisection bandwidth with 2 virtual channels for traffic isolation and prioritization”) or

even a specialized interface that is only meaningful within the specific domain (e.g., analyze a

weighted graph or set of traces that capture the traffic patterns of an application to find best NoC

configuration).

To support this thesis, our work on CONNECT and Nautilus demonstrates some of the Pan-

dora ideas described above. CONNECT, presented in Chapter 2, offers a multitude of configuration
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interfaces that are tailored to the expertise of the specific IP user and guard against configuration

errors. These interfaces include (1) a web-based front-end that offers a set of preconfigured com-

mon topologies for the beginner user, (2) a graphical user interface [67] that allows designing

semi-custom topologies for the more advanced user, and (3) a detailed command-line interface,

as well as a specification language for describing fully custom networks that offers full control to

expert users, but still eliminates the need for low-level bug-prone RTL coding. Our work on Nau-

tilus, presented in Chapter 5, provides an even more general solution to the IP configuration and

optimization problem by demonstrating how IP author knowledge can be incorporated in guided

genetic algorithms to vastly accelerate and automate hardware IP design space search and optimiza-

tion across multiple types of IPs. Chapter 7 shows how we augmented CONNECT with additional

high-level configuration interfaces powered by Nautilus.

3.2.3 Sophisticated IP Instrumentation

To reduce the complexity of using an IP and accelerate the hardware development cycle once

an IP instance has been chosen and integrated within a larger hardware design, Pandora argues for

including instrumentation and introspection mechanisms that constantly monitor, collect, analyze,

and visualize detailed information about the IP’s operation. These mechanisms, which can either be

both part of the generated hardware (whether simulation only or synthesizable) and also consist of

supporting tools performing analysis in a post-processing step, enable accelerated validation as well

as more effective performance and cost optimization by guiding the designer through meaningful

feedback.

To be amenable to the non-domain-expert and simplify how users interact with the IP, instead of

flooding the user with low-level raw data, Pandora IPs, imbued with the IP author’s domain-expert

knowledge, come with the necessary tools to analyze and interpret the raw data to (1) capture high-
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level effects (e.g., in the case of a NoC detect deadlocks, capture congestion effects, or identify

bottlenecks); and (2) trace back and inform the user about the root cause of any correctness and

performance issues. As a result, the IP user receives meaningful feedback that relates to and cap-

tures application-level behaviors, which, in turn, accelerates the verification process and enables

effective performance and cost optimization.

Instrumentation. Instrumentation refers to tapping into a design for monitoring, validation,

or statistics collection purposes, and is commonly done in an ad-hoc fashion by IP users while

working with an IP instance (e.g., to identify performance issues or find a bug). Pandora argues

for:

• Introducing instrumentation support during the IP authoring process and bundling it as part

of the IP generator. An immediate obvious benefit of this approach is reduced effort, as this

process is done once during the IP authoring stage and does not have to be repeated by each

IP user. More importantly, when the instrumentation is staged by the IP developer, who is

naturally more familiar with the domain and has a much better grasp of the inner workings of

the IP, it will be of higher quality and more effective at collecting the proper set of low-level

data needed to draw conclusions about potential IP correctness and performance issues.

• Keeping all or the majority of the instrumentation synthesizable to allow the IP user to main-

tain a unified and consistent view of the IP’s operation, whether the IP is used within a

simulation environment or running on actual hardware.

Benefits of Synthesizable Instrumentation. Synthesizable instrumentation is especially use-

ful in a reconfigurable FPGA setting for a number of reasons. Firstly, even considering the possible

area and timing penalty of turning on instrumentation, running in hardware is still multiple orders

of magnitude faster than RTL simulations. This not only shortens the development cycle, but also

improves coverage from a verification perspective, as the design can now quickly reach states that
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would otherwise never be exercised in a simulation environment. Secondly, the flexible nature of

FPGAs allows for quickly turning instrumentation on and off, which can be, for example, partic-

ularly useful when trying to diagnose performance bottlenecks. Instead of having to recreate the

same scenario in a simulation, the designer can quickly switch to an instance of the design with in-

strumentation and start collecting data. Thirdly, synthesizable instrumentation allows designers to

capture hardware artifacts and behaviors that would otherwise be very hard or impossible to repro-

duce in a simulation environment (e.g., DRAM controller refresh). Finally, since all measurements

are taken by directly probing the actual running hardware, they are bound to be more accurate than

those obtained within a simulation environment.

Instrumentation can take many different forms, depending on its purpose and the nature of

the IP; it can range from a simple set of passive counters that monitor interesting events to more

sophisticated stateful pieces of logic that can keep track of sequences of events and even interact

with the IP. For instance, in the case of a processor IP, a simple example of instrumentation could

monitor cache misses or keep track of the types of events that cause stalls. Similarly, in a NoC IP,

instrumentation can take many different forms and span different levels of the internal IP hierar-

chy. At a basic level it can be used to monitor link utilization, network load, packet latency, buffer

occupancy, average number of hops, or lower level data such as allocator unit matching quality,

or how many times a higher priority traffic class blocked a lower level traffic class. A more ad-

vanced instrumentation example could pertain to a sophisticated monitoring and diagnostic block

that implements the network flow control protocol and is attached to a network port to monitor or

stress-test the NoC. Chapter 6, which describes the IRIS instrumentation framework, showcases

several such instrumentation examples in the context of CONNECT-generated Networks-on-Chip.

Introspection. Introspection in Pandora refers to the supporting mechanisms and logic that

are bundled with the IP and can analyze and visualize the data collected during instrumentation.
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This can happen dynamically while the IP is actively being used (or simulated) or in a separate

post-processing step that analyzes logs of collected data.

At a basic level, Pandora’s introspection mechanisms facilitate better visibiliy into a design

and can also help accelerate the verification process by quickly identifying design issues. These

can range from static configuration mistakes (e.g., invalid routing table that prevents packets from

reaching their destination) to improper integration or use of the IP (e.g., network endpoints do not

properly implement flow control). At a more advanced level, Pandora leverages the embedded

domain-expert knowledge to capture higher-level domain-specific dynamic effects and behaviors

to offer feedback that is more natural, meaningful, and intuitive to the end-user of the IP. For

instance, in the case of an NoC IP, such feedback could range from detecting deadlocks to capturing

congestion effects or identifying bottlenecks. Chapter 7 describes how we used IRIS to incorporate

such introspection features in CONNECT-generated NoC instances.

3.2.4 The IP “Uncore”1

The Pandora principles presented up to this point were tied in one way or another to the core

functionality of the IP and described Pandora’s approach to characterizing, tuning and debugging

an IP. These final principles of Pandora span a variety of related topics and mechanisms that affect

hardware design and pertain to IP supporting material and toolsets, as well as release and packaging

strategies. Although not crucial to the functionality of the IP, this final set of Pandora principles

greatly enhance the IP user experience and contribute towards reducing the complexity involved in

developing and using an IP block.

Supporting Infrastructure. Contrary to software projects, hardware designs are often released

in a very crude form, which can be attributed, at least in part, to the limited expressiveness of

1The uncore is a term used by Intel to describe the functions of a microprocessor that are not in the core, but which
are essential for core operation and performance.
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conventional HDLs. Pandora argues for augmenting the IP with supporting infrastructure that

boosts productivity and enhances how the user interacts with the IP. In addition to elementary

supporting material, such as documentation and testbenches, this includes supporting toolsets, such

as scripts and interfaces for configuring the IP or processing output logs, as well as more advanced

supporting infrastructure, such as sophisticated optimization frameworks.

This supporting infrastructure is often domain-specific and as such, needs to be tailored by

domain-experts that have a better grasp of the type of supporting material that might be useful to

the end user. When building these auxiliary mechanisms, Pandora can leverage the characterization

and domain-expert knowledge described previously. For example, in an NoC setting, a configu-

ration tool could enhance design space navigation by tapping into the characterization database to

provide instant feedback on hardware implementation characteristics (e.g., frequency, area), pre-

dict network performance (e.g., bisection bandwidth, latency), and show previews of the generated

network topology or even give hints as to what types of applications would be a good match for the

selected configuration. A more advanced example could be a sophisticated feedback-driven opti-

mization framework that processes instrumentation data and iteratively tunes network parameters

to reach a design sweet spot.

Releasing the IP as a Service. Given the inability of conventional HDLs to express and capture

the high degrees of parameterization required to develop a flexible IP block, developers typically

have to either package their IP with ad-hoc auxiliary tools, such as Java applets, that generate

instances of the IP (e.g., Xilinx’s CORE Generator System [1]) or develop their IP within special

languages and frameworks that natively support hardware generation, such as Bluespec [20] or

Genesis2 [45]. Regardless of the specific packaging approach, this typically entails additional

effort and increases the complexity for the IP user, who typically has to perform multiple steps on

his end to start using the IP, such as setting up a proper environment, acquire licenses, install a
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series of tools, take care of any library dependencies, etc.

In an effort to reduce complexity and lower the barrier to entry for the IP user, Pandora argues

for packaging and releasing IP generators as a service, that isolates the IP user/client from the

IP developer/provider. This can be done in the form of a portal that combines the various high-

level configuration and tuning interfaces along with interactive feedback mechanisms and other

supporting material, such as documentation. The primary benefit of such an approach is that the

user can focus on using the IP, without having to worry about equipment, environment and tools

setup, or development and configuration logistics.

This service-oriented distribution of the IP also has multiple advantages from an IP developer

standpoint, such as facilitating prompt and transparent IP updates. This becomes especially inter-

esting in the presence of the high-level interfaces described earlier, e.g., in an NoC setting, the user

can receive an internally improved NoC instance that still meets the same high-level criteria. Pro-

viding IP generation as a service through a single point of distribution also allows the IP provider

to gather usage statistics, which can be used to improve the IP and guide development or even

potentially facilitate crowd-sourced characterization of the IP.

The publicly available CONNECT Network-on-Chip IP Generator, presented in Chapter 2,

originally served as the inspiration and eventually as the demonstration vehicle for many of the

ideas described above.

3.3 Existing Efforts to Tackle Design Complexity

Other researchers have also recognized complexity as a major obstacle in hardware design,

which has led to a number of proposals that attempt to mitigate various aspects of this problem.

These efforts vary in scale and range from the development of new hardware description languages,

tools, and algorithms that can enhance existing chip development flows, to novel design method-
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ologies that fundamentally rethink the way we design hardware. Despite the wide variety, most

proposed approaches share many similar underlying themes, such as design reuse, modularity, ab-

straction, hierarchical design, and orthogonalization of concerns. The remainder of this section

highlights some of these efforts that are relevant to or aligned with the work in this thesis.

Design Reuse and Patterns. The reuse of existing design efforts has been a common recurrent

theme across many efforts to tackle design complexity. Design reuse can take various forms, from

module or IP replication to extensive parameterization to reusing concepts and techniques, and

can span multiple levels, from smaller hardware elements, such as an adder circuit, to larger chip

modules or components, such as a complex processor block or memory controller. Recent research

has also studied the use of design patterns [34], which refer to a more systematic and organized

way of classifying and cataloging existing hardware designs in an effort to more effectively leverage

design reuse.

Alternative Hardware Description Languages. The majority of hardware design today is

carried out using the Verilog and VHDL Hardware Description Languages (HDLs), which were

introduced in the 1980s. Even though both of these languages have been updated over the years

and do include support for modular design and some primitive forms of parameterization, they still

require that designs are described at a low structural level. This makes hardware design a very

tedious and bug-prone process and has a negative impact on designer productivity.

Over the last years there have been a number of proposals to replace the aging Verilog and

VHDL HDLs to allow designers to shift their focus on the behavior, functionality, and algorith-

mic view of their hardware design instead of its structural composition and implementation details.

Bluespec [20] and Chisel [102] are two examples of recently proposed hardware description lan-

guages that allow designers to describe hardware at a higher level, borrowing software constructs,

such as loops, conditionals and recursion. Such languages enable high degrees of parameterization
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and modularity by allowing for well-structured typed interfaces and support for polymorphism. In

the case of Bluespec, designers also benefit from compiler-enabled type checking and scheduling.

High-Level Synthesis (HLS). A more aggressive approach towards the same goal of raising the

level of abstraction and increasing designer productivity is synthesis of hardware from high level

languages. The main idea behind this approach is to allow designers to express their algorithms

or desired behaviors using high-level software-like languages. HLS has gained significant traction

in recent years and current research and commercial solutions allow designers to write code using

existing software languages (e.g., C/C++), which is eventually converted into hardware. Examples

of high-level synthesis tools include Vivado HLS [113], LegUp [25], ROCCC [5], Catapult [66],

and Impulse [2].

Despite having a lot of potential, HLS is still a long way from replacing traditional HDL-based

hardware design. For arbitrary hardware designs, current high-level synthesis solutions typically

produce lower quality results compared to conventional hardware design flows and are also limited

in terms of their expressiveness as they can only handle subsets of existing software languages.

Still, recent research has shown promising results when using HLS tools within specific problem

domains, such as signal processing [77] or nested loop transformations [75, 110].

Communication Architectures. As the number of interacting modules on a chip continued

to rapidly grow, communication was quickly recognized as a critical and time-consuming part

of the design process. To keep design time and cost under control, both academia and industry

have studied tools and frameworks [15, 19, 49, 87, 93] that automate and facilitate the process of

designing and implementing communication mechanisms. As the number of interacting modules

kept increasing, more recent efforts have shifted their focus from traditional bus-based and ad-hoc

interconnect solutions to the more scalable approach of using Networks-on-Chip [33, 46]. This

shift also came with a push for interface standardization to promote modularity and design reuse.
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New Design Approaches and Methodologies. In an effort to overcome the increasing chal-

lenges in chip design, researchers have also explored higher-level unified approaches and method-

ologies to tackle design complexity, which often combine or leverage some of the techniques and

approaches already described above, such as design reuse or interface standardization. In platform-

based design [53], chips are built as platform instances, which are compositions of library elements

that are represented by models of varying fidelity and adhere to a common set of rules and inter-

connection standard interfaces defined by the “platform”. The “platform” serves as an abstraction

layer or API that allows for quick design space exploration and shields designers from low-level

details. This approach is particularly useful in a System-on-a-Chip (SoC) setting, where designs

are implemented as collections of pre-made IP blocks.

Complementary approaches to platform-based design that also aim towards the same goal of

raising the level of abstraction have looked at new ways to describe hardware, how to embed de-

signer knowledge in IP blocks and how to create templates or generators that can produce multiple

variants of a hardware design from a common description. These efforts have led to the develop-

ment of higher level software-like languages, such as SystemC [8], as well as highly specialized

hardware description languages, often specifically tuned to a particular domain, such as digital

signal processing [69, 77]. To enable embedding of designer knowledge and template-based de-

sign, the Genesis2 project [45] offers a powerful framework that builds on top of SystemVerilog

and allows designers to build chip generators [95], such as a multiprocessor generator [97] or a

floating-point unit generator [96].

3.4 Demonstrating Pandora

In support of this thesis and to demonstrate various aspects of Pandora, we have: (1) de-

veloped and extended the CONNECT Network-on-Chip generator to demonstrate many of the
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Pandora design principles, such as application-specific goal-oriented NoC optimization [83], and

NoC-specialized system-level instrumentation and introspection mechanisms, (2) developed DEL-

PHI [84] for performing fast and efficient IP characterization (power, area, frequency) across mul-

tiple technology nodes, (3) developed and evaluated Nautilus [83], an IP optimization engine,

which uses modified genetic algorithms that incorporate IP author knowledge to perform auto-

mated guided design space search, and (4) developed a set of flexible reusable simulation-time and

run-time instrumentation components to aid in hardware functional and performance debugging.

DELPHI, presented in Chapter 4, pertains to a flexible open framework that leverages the

DSENT modeling engine [99] for fast, easy, and efficient characterization of RTL hardware de-

signs. In the context of Pandora, DELPHI can be used to accelerate the IP characterization pro-

cess and rapidly map an IP’s design space with respect to implementation characteristics or other

IP-specific metrics of interest. The DELPHI flow processes Verilog or VHDL RTL hardware de-

scriptions to generate a technology-independent DSENT design model, which can then be used to

perform very fast—one to two orders of magnitude faster than full RTL synthesis—estimation of

hardware performance characteristics, such as frequency, area, and power.

As a next step towards realizing the Pandora vision, we developed Nautilus [11], presented in

Chapter 5, which builds on top of the DELPHI characterization engine to help IP users perform pa-

rameter optimization and navigate an IP’s design space in a fast and automated manner. At the core

of Nautilus is a modified genetic algorithm, that allows embedding of IP-author knowledge pertain-

ing to the IP design space. This knowledge, coming in the form of “hints”, captures the IP author’s

intuition about how IP parameters relate to the various metrics of interest; the goal is to help steer

the optimization search process toward profitable regions or directions in the design space. Our

evaluations across multiple IPs show that author-guided instances of Nautilus can achieve the same

quality of results up to an order of magnitude faster than a baseline genetic algorithm.
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To demonstrate the instrumentation and introspection ideas of Pandora, we developed IRIS,

which is presented in Chapter 6 and pertains to a flexible systematic instrumentation framework

that (1) allows for fast and efficient hardware debugging and monitoring, and (2) enables system-

level visibility and analysis. IRIS includes a library of parameterized simulation and/or runtime

instrumentation modules, as well as a post-processing and visualization engine that can help cap-

ture and identify higher level system behaviors and design issues, which not only help the designer

during the development cycle but also enable the end-customer of a system gain high-level insights

about the system’s operation.

Finally, parts of all of these efforts are combined in a proof-of-concept Pandora-powered ver-

sion of CONNECT, which is showcased in Chapter 7.
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Chapter 4

DELPHI - Fast IP Characterization

This chapter presents DELPHI, a flexible, open IP characterization framework that facilitates

the first key principle of Pandora, namely detailed IP design space characterization. DELPHI

leverages the DSENT [99] modeling engine for faster, easier, and more efficient characterization of

RTL-based hardware IPs. DELPHI first synthesizes a Verilog or VHDL RTL design (either using

the industry-standard Synopsys Design Compiler tool or a combination of open-source tools) to

an intermediate structural netlist. It then processes the resulting synthesized netlist to generate a

technology-independent DSENT design model. This model can then be used within a modified

version of the DSENT flow to perform very fast—one to two orders of magnitude faster than full

RTL synthesis—estimation of hardware performance characteristics, such as frequency, area, and

power across a variety of DSENT technology models (e.g., 65nm Bulk, 32nm SOI, 11nm Tri-Gate,

etc.). In our evaluation using 26 RTL design examples, DELPHI and DSENT were consistently

able to closely track and capture design trends of conventional RTL synthesis results without the

associated delay and complexity.

The rest of this chapter is organized as follows. Section 4.1 motivates the need for RTL-based
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design evaluation. Section 4.2.1 provides background on RTL synthesis and characterization flows

and known issues with relying on RTL-synthesis results. Section 4.2.2 offers additional background

on the DSENT tool. In Section 4.3 we present the DELPHI flow and discuss its strengths and

limitations. Section 4.4 reports our evaluation methodology and experimental results. Finally, we

discuss related work in Section 4.5.

4.1 The Need for Fast Accurate Architecture Design Evaluation

Computer architects have predominantly relied on software-based simulation to evaluate the

performance and other qualities of design proposals. Unfortunately, simulators—even high fidelity

cycle-accurate ones—typically do not capture low-level hardware implementation artifacts, such as

area overhead, increase in power consumption, or timing-related side-effects of micro/architectural

design choices. To overcome these limitations of simulation and gain more precise insight and

deeper understanding of a proposed idea, computer micro/architectural studies have increasingly

incorporated register-transfer level (RTL) design investigation to complement simulation studies.

Evaluating a design or sub-component of a system as RTL models typically entails designing

and developing a low-level structural hardware implementation using a Hardware Description Lan-

guage (HDL), such as Verilog or VHDL, and then taking this HDL through an Electronic Design

Automation (EDA) flow. Even though EDA flows consist of multiple steps and tools, architects

typically only focus on the first step, synthesis, which takes the HDL source and implements it us-

ing a set of primitive logic standard cells. While still far from the final chip, synthesis can provide a

rough—Section 4.2.1 elaborates on this—estimate on the quality of a design (power, area, timing).

As is true for most steps of an EDA flow, synthesis can be a tedious, time-consuming, slow,

and error-prone process that requires expert knowledge and access to costly and hard-to-get tools,

proprietary process design kits, and standard cell libraries. Moreover, synthesis—which can take
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from a few minutes to several hours depending on design size, complexity, and implementation

goals/constraints—has to be repeated for each implementation variant targeting different technol-

ogy nodes and standard cell libraries. Finally, because synthesis tools are designed to be chained

and used in conjunction with other commercial closed-source specialized EDA tools, they main-

tain and operate on a low-level internal representation of a design, which hinders integration with

traditional software-based simulation frameworks. This makes it very challenging to co-simulate

or combine hardware RTL modules with software-based components.

This chapter presents DELPHI, a flexible open framework that leverages DSENT electrical

modeling for timing, area, and power [99] for faster, easier, and more efficient characterization of

RTL hardware designs. Previously, DSENT could only be applied to hand-created DSENT design

models in a DSENT-specific format. DELPHI enables DSENT modeling to be applied to generic

RTL designs by translating a synthesized RTL-based design (in the form of a structural netlist)

into a software-based technology-independent DSENT design model. This model can then be used

within a modified version of the DSENT flow to perform very fast—one to two orders of magnitude

faster than synthesis—estimation of hardware performance characteristics, such as frequency, area,

and power.

Compared to traditional EDA flows, DELPHI is a simpler and faster alternative that captures

design trends and is consistent with actual synthesis results. By utilizing DSENT design models,

DELPHI allows researchers to use existing or new custom-built DSENT technology models to

quickly sweep over a large number of target technology nodes and standard cell variants without

having to repeat the lengthy and complex synthesis process. Conversely, researchers are also able

to quickly explore how low-level technology parameter changes impact high-level characteristics

of designs. The generated models seamlessly interface with the DSENT framework and facilitate

integration within larger software simulation frameworks.
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4.2 Background

4.2.1 RTL Synthesis

Detailed evaluation of a hardware design is a multi-step process that involves taking a design

through a series of Electronic Design Automation (EDA) tools. This process starts with a de-

scription of a design, typically using a Hardware Description Language (HDL), such as Verilog

or VHDL, and ends with a hardware implementation that corresponds to the detailed layout of a

chip. This description has to be at a sufficiently low level, also known as register-transfer level

(RTL), in order for the tools to be able to map it or “synthesize” it to hardware. As a design pro-

gresses through an EDA flow and gets closer to the final hardware implementation, more details

are incorporated, and thus the tools can do a better job of accurately estimating implementation

characteristics, such as how much area it occupies, how much power it consumes, and how fast it

can run.

Logic synthesis is the first step in an EDA flow and is responsible for turning an RTL descrip-

tion of a design into a set of fundamental logic building blocks (logic gates and registers), which,

for an ASIC technology, are then mapped to a collection of standard cells. The resulting stan-

dard cell instantiations and their interconnections become what is known as a (gate-level) netlist.

This synthesized netlist can vary significantly based on a number of factors, including tool quality

and user-specified design goals and constraints. While this post-synthesis netlist corresponds to a

functionally correct implementation of the original RTL description, it does not capture significant

hardware implementation details pertaining to the physical layout of a circuit, which are determined

in later steps of an EDA flow, such as “Place and Route (P&R)”1. As such, hardware design char-

1P&R refers to the EDA process of physically laying out a chip that includes finding a valid placement of its standard
cells, creating a network of wires to connect them together, taking care of power distribution, and creating a clock
network.
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acterization based on synthesis output can often deviate significantly from the final implementation

produced at the end of the EDA flow.

Confidence in synthesis results. Hardware designers and the EDA community are well aware of

the “noisy” and speculative nature of synthesis results, as well as of the gap between post-synthesis

and post-P&R results [21, 56, 90]. However, in the architecture community, it is quite common

for researchers to place a lot of trust in synthesis results and treat them as the “ground truth”.

Moreover, given the complex nature of modern synthesis tools and EDA flows, it is not uncommon

for non-experts to misconfigure or misuse synthesis tools, which only exacerbates the observed

variance and unrepresentative nature of synthesis results.

Below we list the most important factors that can cause variance or introduce “noise” in syn-

thesis results, along with some illustrative examples.

• Lack of Physical Layout Information. Synthesis tools treat a design at an abstract level

as a collection of interconnected standard cells. Layout and other implementation details

are determined at later stages of the EDA flow. As such, synthesis tools either completely

ignore layout artifacts (e.g., ignore wire length and assume an ideal clock network) or use

simplified models to estimate layout effects. In practice, synthesis results usually tend to be

“optimistic” and it is not uncommon to see them deviate by 30%-40% compared to post-

layout results. As an example, in a recent ASIC design effort within our group, our finalized

design could only achieve a clock frequency that was 38% lower than the synthesis-based

estimates.

• Optimization Goals, Constraints, and Settings. Synthesis is an iterative process that is

guided by user-specified optimization goals (e.g., optimize for area), constraints (e.g., run at

2GHz), and many other settings (e.g., effort level, driving/load assumptions for circuit input-
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Figure 4.1: Clock Period with Aggressive vs. Conservative Synthesis Settings.

s/outputs, etc.), which can all significantly affect the characteristics and performance of the

resulting netlist (e.g., different implementations of design subcomponents, standard cell siz-

ing, buffer insertion, register retiming, etc.). To illustrate this point, Figure 4.1 compares the

range of reported minimum clock period for a variety of RTL designs, which are synthesized

targeting the same commercial 65nm standard cell library; for each design, the differences

between the red and blue bars arise purely from using different synthesis optimization/con-

straint settings.

• Synthesis Tool Features and Quality. Synthesis is a complex, highly configurable pro-

cess. Depending on the selected options, different tools might use different algorithms and

employ models of varying fidelity (e.g., different wire and clock tree models) during design

optimization or performance estimation. Moreover, commercial tools, such as Synopsys De-

sign Compiler, offer different variants of their tools (e.g., DC Explorer or DC Ultra) and

extensions (e.g., use of Designware components, topographical technology, etc.), which can
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Figure 4.2: Clock Period with Lower vs. Higher Vt Cells.

significantly affect both the generated netlist and the characterization accuracy.

• Variance Across Standard Cell Libraries. For a particular process technology, there are

usually multiple standard cell libraries from multiple sources. The foundry will often have

two distinct sets of libraries, one for internal use and one for external customers. Further,

there are third-party standard cell vendors who produce libraries for a variety of process tech-

nologies, and within each of these sets of libraries there will be multiple versions (e.g., low

power, high performance, compact area). As a result, even within the realm of a single pro-

cess technology, synthesis results can vary dramatically. To illustrate this point, Figure 4.2

shows the minimum clock period achieved by a variety of designs, all targeting the same

45nm process, but using cell variants with a different threshold voltage (Vt).

In summary, when studying an RTL design at the synthesis level, it is important to keep in

mind the various factors that can cause inaccuracies and variance. One must be knowledgeable and
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Fig. 2: The DSENT framework with examples of network-related user-defined models.

TABLE I: DSENT electrical parameters

Process Parameters 45 nm SOI 11 nm TG
Nominal Supply Voltage (VDD) 1.0V 0.6V
Minimum Gate Width 150 nm 40 nm
Contacted Gate Pitch 200 nm 44 nm
Gate Capacitance / Width 1.0 fF/um 2.42 fF/um
Drain Capacitance / Width 0.6 fF/um 1.15 fF/um
Effective On Current / Width [24] 650 uA/um 738 uA/um
Single-transistor Off Current 200 nA/um 100 nA/um
Subthreshold Swing 100 mV/dec 80 mV/dec
DIBL 150 mV/V 125 mV/V
Interconnect Parameters 45 nm SOI 11 nm TG
Minimum Wire Width 150 nm 120 nm
Minimum Wire Spacing 150 nm 120 nm
Wire Resistance (Min Pitch) 0.700 Ω/um 0.837 Ω/um
Wire Capacitance (Min Pitch) 0.150 fF/um 0.167 fF/um

Shown values are for NMOS transistors and the global wiring layer
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Fig. 3: Standard cell model generation and characterization. In this example,
a NAND2 standard cell is generated.

Currently, DSENT supports the 45 nm, 32 nm, 22 nm, 14 nm
and 11 nm technology nodes. Technology parameters for the
45 nm node are extracted using SPICE models. Models for the
32 nm node and below are projected [26] using the virtual-
source transport of [27] and the parasitic capacitance model
of [28]. A switch from planar (bulk/SOI) to tri-gate transistors
is made for the 14 nm and 11 nm nodes.

B. Standard Cells

The standard-cell models (Figure 3) are portable across
technologies, and the library is constructed at run-time
based on design heuristics extrapolated from open-source
libraries [29] and calibrated with commercial standard cells.

We begin by picking a global standard cell height, H =
Hex + α · (1 + β) · Wmin, where β represents the P-to-N ratio,
Wmin is the minimum transistor width, and Hex is the extra
height needed to fit in supply rails and diffusion separation. α
is heuristically picked such that large (high driving strength)
standard cells do not require an excessive number of transistor
folds and small (low driving strength) cells do not waste too
much active silicon area. For each standard cell, given a drive
strength and function, we size transistors to match pull-up
and pull-down strengths, folding if necessary. As lithography
limitations at deep sub-100 nm force a fixed gate orientation
and periodicity, the width of the cell is determined by the max
of the number of NMOS or PMOS transistors multiplied by
the contacted gate pitch, with an extra gate pitch added for
separation between cells.

C. Delay Calculation and Timing Optimization

To allow models to scale with transistor performance and
clock frequency targets, we apply a first-order delay estimation
and timing optimization method. Using timing information in
the standard cell models, chains of logic are mapped to stages
of resistance-capacitance (RC) trees, shown in Figure 4a. An
Elmore delay estimate [30, 31] between two points i and k
can be formed by summing the product of each resistance and
the total downstream capacitance it sees:

td,i−k = ln(2) ·
k∑

n=i

k∑

m=n

Rn · Cm (2)

Note that any resistances or capacitances due to wiring
parasitics is automatically factored along the way. If a register-
to-register delay constraint, such as one imposed by the clock
period, is not satisfied, timing optimization is required to
meet the delay target. To this end, we employ a greedy
incremental timing optimization algorithm. We start with the
identification of a critical path. Next, we find a node to
optimize to improve the delay on the path, namely, a small
gate driving a large output load. Finally, we size up that node
and repeat these three steps until the delay constraint is met
or if we realize that it is not possible and give up. Our method
optimizes for minimum energy given a delay requirement,
as opposed to logical-effort based approaches employed by
existing models [18, 32, 33], which optimize for minimum
delay, oblivious to energy. Though lacking the rigorousness of
timing optimization algorithms used by commercial hardware
synthesis tools, our approach runs fast and performs well given
its simplicity.

D. Expected Transitions

The primary source of data-dependent energy consumption
in CMOS devices comes from the charging and discharg-
ing of transistor gate and wiring capacitances. For every
transition of a node with capacitance C to voltage V , we
dissipate an energy of E = 1

2 C · V 2. To calculate data-
dependent power usage, we sum the energy dissipation of all
such transitions multiplied by their frequency of occurrence,
PDD =

∑
Ci · V 2

i · fi. Node capacitance Ci can be calculated
for each model and, for digital logic, Vi is the supply voltage.
The frequency of occurrence, fi, however, is much more

Figure 4.3: DSENT Internal Hierarchy (with authors’ permission).

diligent about properly setting the many configuration options pertaining to synthesis. It should

be noted that while synthesis results are not to be taken at face value, they are still very useful

for performing first-order characterizations of designs and help guide the RTL development and

optimization process.

4.2.2 The DSENT Tool

DSENT (Design Space Exploration for Network Tool) is an open-source tool developed for

rapid design space exploration of photonic and conventional electrical Networks-on-Chip (NoCs),

which was released in 2012 [72]. DSENT can be either used standalone as a dedicated NoC evalu-

ation tool or it may be integrated within an architectural simulator for interconnect modeling [59].

In DELPHI, we take advantage of DSENT’s design characterization technology and generalize it

to support arbitrary RTL design inputs.

DSENT is written in C++ and is internally organized as three distinct parts shown in Figure 4.3

(from [99] with authors’ permission) and described below:

• User-defined design models serve as the “front-end” of DSENT that most users interact
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DELPHI flow, or produced by the DELPHI flow).

with. Within the context of NoC studies, this “front-end” contains a hierarchically organized

set of parameterized building blocks that can be easily combined to assemble and experiment

with a wide range of on-chip networks. In general, users that wish to extend DSENT’s design

library with their own custom-defined models are free to develop their own models in C++

or modify DSENT’s pre-existing design models.

• Support technology models rely on a set of technology parameters to provide the fundamen-

tal building blocks that are used to implement (either directly or indirectly) all user-defined

models. These building blocks come in the form of standard cells and optical components,

whose characteristics are shaped based on a supplied technology model. The technology

models used by DSENT aim at capturing the major characteristics of deep sub-100nm tech-

nologies based on a minimal set of technology parameters. While DSENT already includes

technology models for 45nm, 32nm, 22nm, and 11nm technology nodes, the simple nature

of the models allows users to define and calibrate their own technology models based on

ITRS [50] data, SPICE models, or actual process design kits.

• Tools provided by DSENT include a timing analysis and optimization tool, as well as infras-
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tructure for capturing and propagating circuit switching activity information that is used to

obtain accurate power estimates. Tools and support technology models form the “back-end”

of DSENT, which is responsible for estimating power and timing of a design.

Expanding DSENT’s Front-End. DSENT’s “back-end” circuit modeling engine is (1) fast, capa-

ble of characterizing a circuit in a matter of seconds; (2) high fidelity, as it performs modeling at the

standard cell level; and (3) flexible, allowing targeting different technology nodes through the use

of simple technology models. However, this powerful back-end is limited by the library of available

NoC-specific user-defined models. Users that want to characterize their own (non-NoC) arbitrary

hardware designs have to write C++ from the ground up to build new design models. This can be

a tedious process and essentially resembles performing “synthesis by hand”. To bridge this gap,

the subject of this chapter, DELPHI, provides an automated flow that can take RTL descriptions of

arbitrary hardware designs and generate a DSENT-compatible design model.

4.3 DELPHI

DELPHI consists of a set of tools aimed at simplifying and accelerating hardware design char-

acterization (determining area, clock frequency, and power). Like conventional RTL synthesis,

DELPHI starts from an RTL description of a design. This RTL description is then processed

through a conventional synthesis tool (e.g., Synopsys Design Compiler) to produce a netlist tar-

geting a particular standard cell library. This netlist along with other design information is then

processed in an automated manner to produce a technology-independent representation of the orig-

inal design in the form of a DSENT design model. A lightly modified version of DSENT can then

use this design model to perform very fast power, area, and frequency estimations across multiple

technology models.
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As is the case with traditional synthesis tools, DELPHI is useful for performing coarse charac-

terizations of RTL designs and obtaining first-order power, area, and timing results. Despite their

approximate nature, DELPHI, as well as DSENT, retain and analyze a design at a low structural

level. This offers higher fidelity compared to other commonly-used architectural modeling tools

(e.g., [62, 103]) and allows for capturing more subtle design trends as well as identifying more

specific potential areas for improvement (e.g., identify critical path in a design).

Using DELPHI. DELPHI includes all of the necessary scripts and tools required to take a de-

sign through all of the steps of the flow summarized above, including synthesizing RTL using

commercial or open-source tools, generating DSENT design models, and running DSENT. From a

user-perspective, DELPHI can be used in the form of a command-line utility. The user only needs

to specify a minimal set of details about the RTL module to be processed (such as the name of

the top-level module and the name of clock and reset ports) and, if not using the open-source flow,

provide details about the particular commercial standard cell library in use.

4.3.1 The DELPHI Flow

Internally, the DELPHI flow consists of a series of steps, shown in Figure 4.4 and outlined

below. Parts of the flow that we developed (or extended) in support of the DELPHI flow are

colored in red.

Synthesis. As a starting step towards importing a hardware design, DELPHI takes the RTL

design through a customized synthesis flow that ensures the resulting netlist is compatible with

later steps. DELPHI supports the commercial industry-standard Synopsys Design Compiler (DC)

tool, as well as a combination of open-source tools. When working with Synopsys DC, the user

can synthesize a design either targeting a commercial standard cell library or using one of the

freely available libraries, such as FreePDK [78] or the cell libraries provided by SPORT Lab [105].
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DELPHI generates custom scripts that instruct Synopsys DC to only use the subset of standard

cells available in DSENT and to generate a set of design reports that capture essential information

about the design used by DELPHI.

Once synthesis is completed, DELPHI parses the synthesis output, including the generated

netlist, as well as synthesis reports that include port and clock-tree information pertaining to a de-

sign, and recreates an intermediate representation of the netlist. At this point, this intermediate

representation still corresponds to the standard cells belonging to the original standard cell library

used during synthesis. In order for DELPHI to generate a technology-independent DSENT de-

sign model, it needs to map the vendor-specific standard cells to generic DSENT standard cells.

DELPHI captures this mapping in a custom-defined specification file that assigns the various stan-

dard cell variants to their equivalent DSENT counterparts. This file also includes information on

standard cell driving strength and pin mapping.

For users that do not have access to commercial synthesis tools or commercial standard cell

libraries, DELPHI provides an alternative flow based on open-source tools. In particular, the tool

YOSYS [111] is used to parse the RTL of a design and then the ABC synthesis tool [18] is used

with a custom-created DELPHI library and script to directly target DSENT’s native standard cells2.

Since the output of these tools is different from Synopsys DC, DELPHI includes a very basic

Verilog parser that supports the subset of Verilog used in the netlists produced by these tools.

DSENT Model Generation. DELPHI analyzes the netlist and other information produced during

synthesis to automatically generate the C++ code required to implement a DSENT design model.

The creation of this model starts with the definition of input and output ports that form the model’s

interface. DELPHI then instantiates all of the design’s standard cells and creates nets, which are

used to connect all of the standard cell pins with each other and with the input and output ports

2This flow currently supports Verilog, but not VHDL.
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of the design. If desired, DELPHI can size the instantiated cells to match the driving strengths

suggested by synthesis.

At this point, the DSENT design model is structurally equivalent to the synthesized netlist.

DELPHI now generates auxiliary C++ code that takes care of defining model parameters, creating

a clock tree, initializing transition info for the input and output ports, as well as the clock and reset

signals, and defining the events that should be monitored, gathered, and reported by DSENT. The

remaining code that is generated pertains to properly propagating transition probability information

in the correct order across all of the instantiated standard cells, which is necessary for performing

static power analysis.

Proper Propagation of Switching Activity Information. Dynamic power is dissipated when

internal nets are charged and discharged with signal transitions. Thus, to estimate power accu-

rately, DSENT relies on annotating every input/output port and internal net of a design with signal

transition probability information, which captures the likelihood of each possible signal transition

(0→0, 0→1, 1→1, 1→0). Based on the type of standard cell and its input transition probability

information, DSENT can calculate the transition probabilities of its outputs, which then have to be

propagated to all downstream input ports of other standard cells. This propagation needs to happen

in the correct order, to ensure all parts of the circuit are annotated with the correct transition prob-

ability information, which is eventually converted to a switching activity for a given frequency and

used for power estimation.

To this end, a challenge in the development of DELPHI was to deduce the ordering constraints

among all nodes in a netlist and then use this information to generate DSENT C++ code that will

trigger the propagation of transition probability information in the correct order. DELPHI also

takes special care to detect and handle sequential logic (e.g., finite state machines), which can

form feedback loops that create circular dependencies. The examples that follow demonstrate the
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Figure 4.5: Probability Propagation Example Circuits.

importance of updating transition probability information in the correct order. To keep matters

simple in these examples, instead of looking at transition probabilities, we only focus on the state

probability that a logic signal is high, which still exposes the problem at hand.

Consider the very simple circuit shown in Figure 4.5(a) that consists of the two AND gates G1

and G2. For this example, let’s assume that all inputs A, B and C have been annotated with a 50%

chance of being high, i.e., P(A)=P(B)=P(C)=0.5, and internal probabilities are also initially set to

0.5, i.e., P(Y1)=P(Y2)=0.5. Our task is to find an order in which we need to process the standard

cells in this circuit to correctly deduce the internal probabilities, P(Y1) and P(Y2). Since G1

depends on the output of G2, we first need to process G2 and then G1, which will set P(Y2)=0.25

and then process G1, which will set P(Y1)=0.125. Note that if we processed G1 before G2, we

would end up with the wrong probability on the output of G1, i.e., P(Y1)=0.25, as we would be

missing the updated probability info for P(Y2).

Now consider a slightly modified version of the previous circuit, shown in Figure 4.5(b), which

now also includes a register FF (D Flip-Flop) that forms a feedback loop. As before, assume that all

input probabilities are set to 50%, i.e., P(A)=P(B)=0.5. In this case, since G1 depends on G2 and

G2 depends on the output of FF, which in turn depends on G1, it is not clear anymore in what order

to propagate the state probabilities. To handle such cases, DELPHI takes a simple approach where
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it detects such loops and then exercises them in the correct order until the cells participating in the

loop have been processed up to a number of times, determined by a user-configurable threshold3.

To see this in action, assume that we set this threshold to five, which means that DELPHI will

update the state probability of the cells that are part of this loop up to five times, respecting their

ordering dependencies. Table 4.1 shows how the state probabilities of the various internal nodes

evolve over each iteration, assuming we process the nodes in the order G2, G1 and FF. After five

iterations, all signals, Y2, Y1, and C, have already been annotated with very low probabilities

(<1/1000). Intuitively, this makes sense because in this simple circuit it is clear that if either A or

B become low, it is then impossible for any of the internal nodes to ever become high again. Note

that if we did not iterate over this part of the circuit, we would have ended up with much higher,

clearly non-representative state probabilities, which would in turn distort static power analysis and

estimation.

Iteration# P(Y2) P(Y1) P(C)
1 0.25 0.125 0.125
2 0.0625 0.03125 0.03125
3 0.015625 0.0078125 0.0078125
4 0.00390625 0.001953125 0.001953125
5 0.0009765625 0.00048828125 0.00048828125

Table 4.1: State Probabilities Over Successive Iterations.

Running DSENT. The C++ code generated in the previous step is now ready to be compiled along

with the rest of the DSENT components to get power, area, and timing estimates. As the size of the

generated code can reach several megabytes, DELPHI takes special care to optimize the generated

3Static switching activity propagation and estimation is a critical part of power estimation and has been studied
extensively (e.g., [64]). While DELPHI’s approach is simple and does not guarantee probability convergence, it is
sufficient for getting first-order power estimates.
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C++ for fast compilation, which typically finishes in a matter of seconds even for large designs4.

DELPHI also offers a special “debug” mode that produces C++ code that is slower to compile, but

much easier to read and work with for users that wish to study or modify the resulting DSENT

design model.

Appendix B provides an overview of the DELPHI flow steps, including cell mapping specifi-

cation format, and tool invocations examples.

4.3.2 Strengths of the DELPHI Approach

Leverages DSENT’s Speed, Flexibility, and Accuracy. After the initial synthesis phase, which

only needs to be performed once, circuit characterization using DSENT technology models only

takes seconds and can be repeated targeting different technology models without requiring addi-

tional time-consuming synthesis or recompilation of DSENT design models, as DSENT constructs

its library at run-time. Moreover, new DSENT technology models are easy to define as they only

require specifying a minimal number of parameters. Finally, when properly calibrated, DSENT’s

integrated timing, area, and power models have been shown to be accurate within 20% against

SPICE simulations [99].

Harnesses the Power of Software. Creating a software-based representation of an RTL design

opens the doors to many opportunities. Firstly, since the generated models appear as standard

“user-defined” DSENT design models, they can be integrated and combined with all of DSENT’s

existing library of design models. Moreover, these models are portable, meaning that DSENT users

can exchange and instantiate them along or inside their own DSENT models. Secondly, the entire

DSENT framework can be modified to be integrated with software-based architectural simulation

frameworks, as was done in [11, 59, 71].
4This was not a trivial task, as our initial implementations generated C++ code that could take up large amounts of

memory and tens of minutes to compile and would even occasionally crash g++ for very large designs.
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Enables Fast, Automatic Model Creation. When manually building a DSENT model from

scratch, users have to either assemble their designs out of library components or directly build

them out of standard cells, which from a hardware development perspective is analogous to writing

assembly code in software. This can be a tedious and time-consuming process that also implicitly

places limits on the size and complexity of user-created models. By automating this process, DEL-

PHI greatly accelerates building DSENT design models, as a single synthesis run is much faster

than coding the necessary C++, and also eliminates the inevitable introduction of bugs. More-

over, given the abundance of freely available RTL hardware designs (e.g., from OpenCores [79]),

it tremendously expands the potential of DSENT.

Preserves Synthesis Optimizations. Traditional hand-written DSENT models have to explicitly

specify and fix all of the implementation details of a given hardware design. Since DELPHI relies

on synthesis to build DSENT design models, it can preserve any low-level optimizations performed

during synthesis. For instance, given the same RTL design, synthesis might implement subcom-

ponents differently based on optimization goals, (e.g., switch between different adder implemen-

tations depending on power/area/timing trade-offs). By using DELPHI, optimizations performed

during synthesis are preserved and can be carried onto and modeled within DSENT.

4.3.3 Limitations of the DELPHI Approach

Only as Accurate as Synthesis. The fidelity at which a design is modeled through DELPHI and

DSENT is comparable to synthesis tools. This means that design characterization in DELPHI,

like conventional RTL synthesis, ignores or makes simplifying assumptions about physical layout

artifacts, such as long wire delays, congestion, and clock distribution.

Garbage in, Garbage out. DELPHI and DSENT are only as good as the design model and tech-

nology model that they are used with. A low-quality poorly optimized RTL design or a wrong
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(or badly calibrated) DSENT technology model will obviously produce wrong or severely skewed

results and could even hide or distort trends.

Minimal Set of Standard Cells. The minimal set of cells used in DSENT’s technology-independent

standard cell library is not as rich as commercial standard cell libraries, which can lead to subop-

timal synthesis results, especially for designs that make heavy use of cells that are not supported

by DSENT. However, as we show in Section 4.4, this constraint does not affect designs by much.

Moreover, new standard cells can be easily added to DSENT and supported by the DELPHI flow

to overcome this limitation.

Multiple Clocks. DELPHI currently only supports designs with a single clock domain. To work

around this limitation, designs with multiple clocks can be broken down across clock boundaries

and modeled piecewise.

Large Memories. By default, synthesis tools build memories in an RTL design as collections

of latch or flip-flop standard cells. When dealing with RTL designs that contain large memories,

designers will sometimes use proprietary vendor-provided tools, called “memory compilers”, to

generate optimized memory layouts that are typically more efficient than large memories built

using conventional standard cells. DELPHI only supports “synthesized” memories, i.e., built out of

standard cells, as custom memories generated using memory compilers are treated as “black boxes”

during synthesis and cannot be processed by DELPHI. As future work, to improve large memory

modeling, we are considering extending the DELPHI flow to incorporate the use of CACTI [103]

memory models.

Limited to Static Analysis. DELPHI and DSENT support static analysis for power estimation,

which can provide satisfactory estimates based on probabilistic models of signal transitions. How-

ever, more accurate power modeling requires performing simulations that stimulate the circuit using
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representative inputs to capture actual switching activity information, which is then fed to commer-

cial power analysis tools, such as PrimePower.

4.4 Evaluation

This section presents our evaluations, based on actual synthesis results targeting commercial

standard cell libraries, as well as results obtained through DELPHI and DSENT. In the presen-

tation below, we first validate the assumptions underlying the DELPHI approach before directly

evaluating the accuracy of DELPHI estimates.

4.4.1 Methodology

All synthesis results were obtained using Synopsys Design Compiler (Version I-2013.12-SP3)

targeting 32nm, 45nm, 65nm, or 130nm commercial standard cell libraries that come from three

different vendors. When reporting timing results we synthesize with aggressive constraints to force

synthesis to reach the highest possible operating frequency for each target design. For all other

results, we synthesize and obtain power results targeting the same fixed frequency of 500MHz5.

All power estimation results assume a switching activity factor of 0.5 across all design inputs.

For DELPHI results, we use a lightly modified version of DSENT (0.91) targeting the default

45nm, 32nm, 22nm, and 11nm technology models that come bundled with the publicly released

version of DSENT, which, in our results, we denote as “DSENT 45”, “DSENT 32”, “DSENT 22”,

and “DSENT 11”. Our evaluations span 26 hardware designs: 18 benchmarks from the IWLS2005

benchmark suite [26] (including 11 designs from OpenCores and 7 from ISCAS) and 8 on-chip

router designs of varying size and architecture obtained through the CONNECT NoC generator [68,

5We pick this frequency as it was the highest frequency that could be met for all designs and for all technology nodes
used in our evaluation.
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81]. Within each group, benchmarks are sorted according to their size.

Finally, it is important to point out that the DELPHI results shown in this section were obtained

using the publicly available DSENT “generic” technology models, which do not correspond to any

of the commercial standard cell libraries used in this evaluation (and which are protected under

strict NDA agreements). As such, when comparing DELPHI results with actual synthesis results,

emphasis is placed on capturing the same trends, instead of matching the same absolute numbers.

While we focus our evaluation on the 32nm results, the most modern technology node for which

we have standard cells, we observe similar results across all technology nodes we have access to.

4.4.2 Results

Constraining Synthesis to DSENT Standard Cell Subset. An artifact of using DELPHI is that

synthesis must be constrained to target the DSENT-supported set of standard cells, typically a sub-

set of commercial libraries. The first set of results show the effects of constraining synthesis to only

using the subset of standard cells that are available in DSENT. Figures 4.6, 4.7, and 4.8 compare

power, area, and timing results from baseline (“unconstrained”) and “constrained” synthesis runs

targeting a commercial 32nm process.

Overall, “constrained” synthesis can experience approximately 5%-20% quality loss in the

design metrics. This is expected as, e.g., a design that could make use of a 3-input AND gate

will now have to switch to chaining two AND gates to implement the same logic, which in turn

can increase critical path, area, and power. As will be shown later, these minor—in light of the

speculative nature of synthesis—distortions do not prevent DELPHI from capturing design trends.

Independence from Standard Cell Library Choice for DSENT Model Creation. DELPHI

and the DSENT back-end provide technology-independent flows and modeling that are tolerant

to using different RTL-synthesis standard cell library targets when originally generating DSENT

70



0

100

200

300

400

C
lo

ck
 P

e
ri

o
d

 (
p

s)
 

32nm (Unconstrained)
32nm (DELPHI Constrained)

Figure 4.6: Timing Estimates of Regular vs. DELPHI-Constrained Synthesis.
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Figure 4.7: Area Estimates of Regular vs. DELPHI-Constrained Synthesis.
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Figure 4.8: Power Estimates of Regular vs. DELPHI-Constrained Synthesis.
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Figure 4.11: Power Estimates of Four DSENT Design Models All Targeting DSENT 32, But Gen-
erated Using Different Intermediate Synthesis Results.
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Figure 4.12: Comparing Trends Between the Average Timing Estimates of Four DSENT Models
Targeting DSENT 32 vs. 32nm Synthesis Results.
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Figure 4.13: Comparing Trends Between the Average Area Estimates of Four DSENT Models
Targeting DSENT 32 vs. 32nm Synthesis Results.
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Figure 4.14: Comparing Trends Between the Average Power Estimates of Four DSENT Models
Targeting DSENT 32 vs. 32nm Synthesis Results.

design models from RTL synthesis. For this next set of results we assess this premise by synthe-

sizing each design targeting all four commercial standard cell libraries (32nm, 45nm, 65nm, and

130nm) and then processing the synthesized netlists using the DELPHI flow to generate four sep-

arate DSENT design models. We then use these four models to target DSENT’s 32nm technology

model (DSENT 32) to obtain timing, area, and power estimates, shown in Figures 4.9, 4.10, and

4.11.

The fact that these results show low variance and behave consistently across all benchmarks

and estimated metrics (timing, area, and power), demonstrates that the DELPHI flow is robust to

using different RTL-synthesis standard cell libraries as a proxy for generating a DSENT design

model. The extent of “technology independence” becomes more apparent if one considers that

these standard cells not only span a wide range of technology nodes, but also come from three

different vendors, which vary significantly in their standard cell offerings.

Capturing Power, Area, Timing Trends. After having established the validity of the DELPHI/D-

SENT approach in the above studies, this last triplet of Figures, 4.12, 4.13, and 4.14, show how

well DELPHI captures timing, area, and power trends by juxtaposing results from baseline (“un-

constrained”) full RTL synthesis targeting a commercial 32nm standard cell library against the

average of the DSENT 32 estimates presented in the previous set of results. Note that the DSENT

estimates behave consistently and exhibit similar trends with the actual synthesis results. As was
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mentioned earlier, it is important to note that the absolute values of the presented data are not

meant to match, as the DSENT 32 model does not correspond and was not calibrated to match the

commercial 32nm cell library used for synthesis.

DELPHI Usage Example. As an example usage case for DELPHI, consider a hypothetical sce-

nario where a computer architecture researcher is interested in obtaining coarse power trends for

two different Network-on-Chip (NoC) router RTL designs as technology nodes scale, including

future technology nodes or nodes for which she or he does not have access to. The first router is

based on a simple minimal low-performance Input-Queued (IQ) router architecture and the second

router is based on a high-performance Virtual-Channel (VC) router architecture.

Assuming DELPHI is used, as a first step, these designs would have to be synthesized targeting

some available standard cell library, a process that would take in the order of tens of minutes and

would have to be repeated separately for each of the two router variants. The two synthesized

netlists are then taken through the DELPHI flow to generate DSENT design models and compile

DSENT, which typically takes less than two minutes for both models. These DSENT design models

are then used to target five DSENT technology models (65nm, 45nm, 32nm, 22nm, and 11nm) and

obtain power estimation results, which are shown in Table 4.2. From these results, it is clear that

the high-performance VC router becomes increasingly more attractive (from a power perspective)

in future technology nodes, especially at 11nm, where the power difference compared to the IC

router has decreased by an order of magnitude and has become negligible.

If the same characterization was to be performed through traditional full synthesis, it would

have taken many orders of magnitude longer to perform an equivalent characterization, which

would require running 10 synthesis jobs (not to mention the overhead of properly configuring the

synthesis environment for five different standard cell libraries). In fact, this technology forecast

study may not be possible at all using traditional synthesis, since it would require a prohibitive

74



investment to create standard cell libraries for future non-existent technology nodes.

Power Estimates (mW)

Technology Model 8x8 IQ Router 8x8 VC Router
DSENT 65 11.88 21.92

DSENT 45 8.65 15.94

DSENT 32 5.49 10.10

DSENT 22 3.34 6.16

DSENT 11 1.03 1.88

Table 4.2: Sample NoC Power Study Using the DELPHI Flow.

Summary. Overall, in our experiments DELPHI exhibits consistent and robust estimates across

a variety of benchmarks, standard cell libraries, and technology nodes. It is important to reiterate,

that DELPHI, like post-synthesis evaluation, is meant only to expose trends and perform first-

order characterization of a design. Our hope is that the results presented in this section will aid in

calibrating expectations with regards to DELPHI’s capabilities and the extent to which it is able to

perform hardware design characterization and capture trends.

4.5 Related Work

To overcome complexity and speed limitations, the architecture community has a history of

building and relying on models of varying fidelity to gauge the performance and characteristics of

hardware components, such as processors, memories, adders, Networks-on-Chip, etc. Examples of

such models include McPat [62], an integrated power, area, and timing modeling framework spe-

cific to multicore processor architectures, and CACTI [103], a tool for modeling power, area, and

timing characteristics of cache memories. Other tools place particular focus on specific metrics and

types of modeling, such as Wattch [22], which focuses on power estimation for microprocessors,
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or Orion 2.0 [52], which focuses on power and area for interconnection networks.

Compared to such models, DELPHI combined with DSENT can be thought of as a “meta-

model” in the sense that it can be used to generate fast power, area, and timing estimation models

based on any existing RTL-based hardware design. While previous models are either high-level,

such as McPat, which introduces abstraction errors, or limited to very specific hardware subcompo-

nents, such as CACTI, DELPHI sidesteps these issues and offers both high-fidelity and generality

by operating directly at the register-transfer level.

76



Chapter 5

Nautilus - Guided IP Optimization

This chapter presents Nautilus, which demonstrates the second key principle of Pandora, namely

how IP author knowledge can be used to facilitate fast automated design space navigation and

application-level goal-oriented IP optimization that is meaningful to the IP users. Nautilus is based

on a modified genetic algorithm we developed that allows embedding of IP author knowledge per-

taining to the IP design space. This knowledge, coming in the form of “hints”, captures the IP

author’s intuition about how IP parameters relate to the various metrics of interest; the goal is to

help steer the optimization search process more quickly toward profitable regions of or directions

in the design space. Our evaluations across two IPs show that author-guided instances of Nautilus

can achieve the same quality of results up to an order of magnitude faster than a baseline genetic

algorithm.

The rest of this chapter is organized as follows. Section 5.1 motivates the need for fast auto-

mated IP design space searh and introduces Nautilus. Section 5.2 provides background on genetic

algorithms (GAs) and describes how a baseline GA can be used to perform IP optimization. Sec-

tion 5.3 introduces Nautilus and describes our extensions to GA that incorporates author hints.
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Section 5.4 reports our evaluation methodology and experimental results. Finally, we discuss re-

lated work in Section 5.5.

5.1 Introduction

The use of IPs has become an indispensable part of modern hardware design flows. Instead

of designing every component in a chip from scratch, designers can build entire chips or portions

thereof by leveraging existing IP blocks, often developed by third parties. This practice greatly

reduces the development time and cost of individual submodules within a larger chip. Over the

years, IP blocks, which started as basic primitives (adders and multipliers), have now grown to

complex IP blocks and even sophisticated on-demand design generators (e.g., [70, 81, 97]). A

single IP block could be responsible for multiple millions of transistors in a chip.

To maintain performance and energy efficiency, today’s IP blocks have to be highly parame-

terized to allow tailoring an instantiation to match specific application and user requirements. The

flexibility of user customization however leads to the formation of a vast complex design space that

has to be navigated by the IP user. The sheer number and details of the parameters are burdens to

handle and a source for error. Moreover, many low-level module-specific parameters are cryptic

and incomprehensible to an average IP user who is not already deeply familiar with the specific

domain pertaining to the IP (e.g., signal processing, arithmetic units, on-chip interconnects). All of

the above result in suboptimal outcomes from an otherwise more-than-capable IP generator.

The Scale of the Problem. Consider the top-level router module of the Stanford Open Source

Network-on-Chip Router project [17], a highly-parameterized state-of-the-art router IP block, which

exposes 42 parameters (not including any additional sub-module parameters). The design space of

a single router already spans multiple billions of possible design points; this does not even consider

the countless ways these routers can be arranged and connected to form a network. To give a sense
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Figure 5.1: LUT Usage and Maximum Frequency for Approximately 30,000 Router Design Points
Based on FPGA Synthesis Results.

of what this design space can look like, Figure 5.1 plots FPGA LUT usage and maximum fre-

quency across approximately 30,000 design points—all interchangeable at a functional-level from

an IP user’s perspective—that belong to a subset of the full design space formed by only 12 out of

the 48 parameters.

As another example, we used the publicly available CONNECT NoC IP generator [68] to gen-

erate a large collection of different network configurations (router design + network topology)

targeting a commercial 65nm technology. Figure 5.2 plots how power and area relate to peak net-

work bisection bandwidth (a network performance metric) across a variety of different 64-endpoint

NoC configurations (different colors represent different topology families). Note that, once again,

all of these design instances are only a small subset out of the myriad of potential NoC configura-

tions, which are all interchangeable from an IP application perspective; an IP user could pick any

of these to satisfy the functional-level connectivity requirements of his or her application. The fact
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Figure 5.2: Area, Power, and Performance for Various 64-Endpoint CONNECT NoCs Targeting a
Commercial 65nm ASIC Technology Node.

that these design points exhibit two to three orders of magnitude of variation across all presented

metrics (power, area, performance) highlights the need to be able to efficiently and quickly navigate

the design space and the criticality of picking a design point that makes the right trade off and fits

the constraints of the project.

Our Solution: Nautilus. The sheer scale and vastness of design spaces of parameterized IPs,

such as the ones presented above, and the fact that evaluating each design point can be very costly

(requiring long runs of CAD and/or simulation tools, each of which can take several minutes to

hours) makes exhaustive search prohibitive and motivates the need for automated, fast, and efficient

navigation of the design space. To this end, we present Nautilus, an IP author guided design space

exploration engine. This automatic design tuning approach is especially fitting in the context of

parameterized IP generators which are already software-driven active objects.

At the core of Nautilus is a modified genetic algorithm (GA) that allows embedding of IP

author knowledge pertaining to the IP design space. This knowledge, coming in the form of “hints,”
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captures the IP author’s intuition about how IP parameters relate to the various metrics of interest;

the goal is to help steer the optimization search process more quickly toward profitable directions.

In this work, we offer a taxonomy of key classes of IP author knowledge and discuss how to

incorporate them into GAs. A particularly important issue in embedding IP author guidance into a

GA is to balance the strength of the author’s guidance (which will be imperfect) and the stochastic

nature of the underlying GA, which is critical for overcoming local optima and for handling design

regions that may defy the author’s intuition.

We present an evaluation of the Nautilus approach in the context of two hardware IP generators,

targeting Networks-on-Chip and fast Fourier transforms (FFTs). The results show that GAs are

effective in the automatic tuning of IP parameters when optimizing for a number of key design

metrics (e.g., resource usage, efficiency), reducing the number of design points that have to be

evaluated by orders of magnitude compared to a naive brute force approach. The results further

show that the Nautilus guided GA, with the help of IP author knowledge, can further accelerate the

GA search process, reaching the same quality of results as a baseline GA with up to an order of

magnitude fewer design points evaluated. This is significant in light of the fact that each evaluation

typically corresponds to minutes to hours of EDA execution time depending on the complexity of

the IP.

5.2 Background: Genetic Algorithms

Genetic algorithms (GAs) are a class of stochastic adaptive optimization algorithms based on

the ideas of evolution, natural selection, and genetics [16]. An initial “population,” which consists

of randomly selected points in the solution space, is allowed to evolve over a number of genera-

tions. During each generation, samples of the population can mutate or combine with each other

(crossover) and at the end of each generation, the samples are evaluated and assigned a fitness
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score. The most “fit” samples resulting from this process form the next generation.

Applying GA to solve a new optimization problem consists of three main steps. The first step

is defining the genetic representation, i.e., expressing each possible solution in the solution space

as series of genes, called a genome. Once this mapping has been established, the second step is to

define and implement the genetic operators, such as mutation and crossover, that can be applied to

the population. Mutation operations modify genes of individual members of the population, while

crossover operations combine subsets of the genes of two existing members of the population

to produce a new member (i.e., “breeding”). Finally, the third step is defining a fitness (a.k.a.

objective) function that assigns a fitness score to each sample in the population. This fitness score

is used during the ranking and selection process of the GA that determines which members of the

population will survive to form the next generation, where they will have a chance to further mutate

and breed.

The quality of results and runtime of a GA algorithm depends on several factors, including:

• Population Size. A large initial population increases the solution space coverage, but also

increases the amount of work that the algorithm performs during each generation. Since suc-

cessive generations depend on each other, the population size effectively caps the available

parallelism during the evaluation phase of the algorithm that calculates the fitness scores.

• Mutation Rate. The mutation rate controls the probability of mutations. A low mutation

rate restricts the algorithm to localized search around existing solutions (exploitation), while

a high mutation rate allows the algorithm to make larger leaps and potentially overcome local

optima to reach unexplored portions of the design space (exploration). As is also the case

with other stochastic optimization algorithms, striking a good balance between exploration

and exploitation is an important aspect of tuning a GA to a particular problem.

• Fitness Function. The fitness function is used to assign a score to each sample in the pop-
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ulation which is used at the end of each generation for ranking the available samples and

selecting the ones that will make it on to the next generation. The fitness function is used to

guide the evolution process and is one of the most central elements of a GA. Not only is it

used to pick different optimization goals, but it can also be adapted to constrain the algorithm

to only explore specific portions of the solution space (e.g., by assigning very low scores to

solutions lying in regions of the design space that are not of interest or should be avoided).

GAs for IP Optimization. In this work we use genetic algorithms to automatically tune IP

parameters for a given optimization goal. In the context of IP optimization, the initial population

consists of potential design instances with different low-level parameter configurations, each cor-

responding to a distinct point in the design space. Mutations correspond to changing a parameter

value, and crossovers combine parameter settings of different samples in the design space. De-

pending on the type of IP and the metric being optimized, “fitness” can take many different forms

and even incorporate multiple metrics, which allows for great flexibility. For instance, in the case

of a Network-on-Chip router, fitness can correspond to FPGA resource usage, throughput, energy

efficiency, or even a custom-defined composite function that can combine these metrics in arbitrary

ways.

Evaluating GAs. We are mainly interested in two metrics when evaluating a GA: (1) runtime,

i.e., how long it takes for the GA algorithm to run, and (2) quality of results, i.e., how good of a

solution the GA finds. In the context of IP parameter optimization, runtime is directly tied to the

number of fitness function evaluations, since each evaluation requires running computationally ex-

pensive CAD tools (e.g., FPGA/ASIC synthesis or place-and-route tools) and/or simulations. The

quality of results can be either expressed as the fitness score of the best solution in the population

or as a percentage with respect to the best scoring sample for the specific optimization (if that is

known). It is important to understand that the goal of Nautilus is not to find the absolute best design

83



point. In real usage scenarios, we want to help an average IP user find a good design point that

is within some threshold of what the IP generator can offer. The goal is to do much better than

what an average IP user could do by trial-and-error or, worse yet, by taking the default. Thus, for

evaluation, we examine how many distinct design points have to be evaluated (at the cost of up to

hours each) in order to reach a desired quality of results.

5.3 Incorporating Author Knowledge

Overview. Traditional GAs, such as the baseline GA described above, explore the design

space in a random fashion, assuming no knowledge of how individual genes or parameters relate

to optimization goals or affect the fitness of the samples in the population; each point in the design

space is equally likely to be visited. This oblivious nature of the baseline GA makes it ideal for

exploring unknown or highly unpredictable non-convex solution spaces. Compared to naive brute

force design space exploration approaches, such as exhaustive search or random sampling, using a

GA already marks a significant improvement in terms of the number of design points that have to

be evaluated until a desirable one is found.

The baseline GA might be a good approach when an IP user is dealing with an IP he or she

is unfamiliar with. However, it is wasteful to forgo the wealth of knowledge the author of the

IP possesses about the design space. In Nautilus, we want the IP authors to embed knowledge

about the design space as an integral act of creating an IP. This IP author knowledge can drastically

improve the GA search and optimization process, even if this knowledge is limited and comes in

the form of partial or approximate hints.
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5.3.1 Nautilus Hints

To implement Nautilus we modified an existing open-source GA implementation, called PyE-

volve [3], and extended it to support various forms of IP author or domain-expert hints pertaining

to all or a subset of IP parameters. The idea behind these hints is to skew the search process towards

specific regions of the design space.1

To illustrate the effect of hints, Figure 5.3 compares how the “fitness” (average of 20 runs) of

a set of FFT hardware designs evolves over time using a baseline GA and Nautilus using a varying

number of hints. In this example the baseline GA takes 56 generations to find a solution within the

top 1%, while Nautilus can reach the same quality of results within 15 to 23 generations, depending

on how many hints are provided.

Supported Classes of Hints. Below we describe some of the supported classes of Nautilus

1Note that these hints are incorporated in a probabilistic manner, maintaining the stochastic nature of GA, which is
still free to explore the full design space and overcome local optima.
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hints and explain their effect with respect to the baseline GA behavior and how they are used to

guide the search process. It is important to keep in mind that the goal of Nautilus is to provide

infrastructural support for different classes of hints; the exact instances are specific to the given IP

generator and metric. The IP author’s specialized knowledge allows him/her to provide hints as

part of creating an IP. The IP author is free to supply as many or few hints as desired; if it lacks

sufficient hint information, Nautilus will fall back to using default values or employ the baseline

GA. Unless specified otherwise, each hint needs to be supplied per metric of interest and per IP

parameter, i.e., the IP author’s knowledge about how IP parameters relate to high-level metrics is

captured by a vector of hints, such as the ones described here.

• Importance: The importance hint assigns values from 1 to 100 to each parameter that cap-

tures how drastically the parameter is expected to affect the metric being optimized. In Nau-

tilus, the parameters’ relative importance skews which genes are more likely to be picked for

mutation during a genetic operation. This accelerates the algorithm, because it can directly

focus on the parameters most likely to matter, wasting less time experimenting with others.

• Importance Decay: The “importance decay” hint takes a value from 0 to 1 and allows

Nautilus to gradually adjust the relative importance differences of parameters. The idea is to

allow for the importance of some parameters to “decay” over time (at the rate defined by the

“importance decay” hint) as the algorithm progresses through generations.

This hint can be used to introduce a temporal aspect to Nautilus, allowing it to initially focus

on parameters believed to be “important” to coarsely navigate towards promising regions

of the design space and then gradually shift focus to experimenting with less “important”

parameters to perform more localized fine-tuning within those promising regions.

• Bias and Target: While the two previous hints affect which genes get selected to mutate, the
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bias and target hints affect the values that these genes will be assigned during each genetic

operation. Each parameter can either be assigned a bias hint or a target hint (but not both).

Bias takes values from −1 to 1 for each parameter and captures the correlation between the

parameter and the metric being optimized. A positive (negative) bias means that increasing

the parameter will increase (decrease) the metric being optimized. The target is a more direct

hint that allows the IP author to specify that good (or balanced) solutions are known to cluster

around a particular value. Bias and target can be used to guide Nautilus in a coarse manner,

e.g., towards a specific direction, or in a more fine grained manner, i.e., towards a specific

region in the design space. The bias and target hints cause Nautilus to behave in a much

more “directed” fashion compared to a baseline GA; when correctly set by an expert who

understands the design space, they can allow the algorithm to find efficient regions of the

design space quickly.

• Confidence: The confidence hint can be viewed as a high-level knob that controls how

much trust Nautilus should place in the author hints. In other words, this determines how

“guided” the algorithm will be. Setting low confidence values will make the algorithm be-

have more similarly to the baseline GA, while setting high confidence values along with

strongly-guided hints (e.g., setting target values of high bias values) will cause the algorithm

to perform very directed optimization that starts to resemble convex optimization methods

such as gradient descent. Confidence allows Nautilus to more easily incorporate heuristics or

even low-confidence experimental hints that might be purely based on “gut feeling” without

breaking the search or optimization process.

Finally, in addition to the hints described above, Nautilus includes some additional low-level

auxiliary settings that, e.g., determine the “stepping” of the algorithm or define ordering relation-

ships among values that a specific parameter can take (e.g., order different allocator options with
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respect to clock frequency or area). These settings control subtle aspects of the algorithm or are

used to ensure smooth operation of the algorithm under non-trivial design spaces (e.g., sparsely

populated design spaces that included infeasible points or regions).

In our targeted usage scenario, these hints are calibrated by the IP author during the IP de-

velopment phase and are packaged and provided along with Nautilus as part of the IP (preferably

in the form of an IP generator). However, in the absence of an IP “expert” these hints can also

be set directly by a knowledgeable IP user. Additionally, an IP user could try sweeping each IP

parameter independently and then observe how the various metrics of interest respond to estimate

approximate hint values.

5.4 Evaluation

We evaluate Nautilus with varying degrees of guidance against a baseline GA using a pub-

licly available [17] highly-parameterized state-of-the-art Virtual-Channel Network-on-Chip (NoC)

router IP, as well as the Spiral FFT IP design generator; for the remainder of this section we will

refer to these IP as “NoC” and “FFT”.

5.4.1 Methodology

As a preparatory step, we map a large portion of each IP’s design space consisting of comparable—

from an IP user perspective—design instances. The resulting datasets consist of approximately

12,000 design instances for the FFT IP (varying 6 parameters) and 30,000 design instances for

the router IP (varying 9 parameters). We run FPGA synthesis and/or simulations for each design

instance to characterize it with respect to hardware implementation metrics (e.g., area, frequency),

metrics specific to the IP domain (e.g., SNR values for the FFT IP), and composite metrics (e.g.,

throughput-per-LUT). FPGA synthesis results are obtained using Xilinx XST 14.7 targeting a Xil-
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inx Virtex-6 LX760T FPGA (part xc6vlx760). This characterization step was done “offline” (using

a dedicated cluster with 200+ cores running non-stop for about 2 weeks) to produce the datasets

that we used to evaluate Nautilus.

Both Nautilus and our baseline GA implementation are based on modified versions of the

PyEvolve genetic algorithm framework [3]. For each IP we define queries (e.g., optimize for

throughput/area) and then compare the baseline GA with Nautilus in terms of the computational

cost to run the query and quality of results (with respect to the given query). Unless otherwise

noted, for both the baseline GA and for Nautilus, we use an initial population of 10 samples, a

mutation rate of 0.1 (this means that each gene that belongs to a sample has a 10% chance of

mutating during each generation), and run for 80 generations. Results are averaged over 40 runs

for each experiment to compensate for the “noisy” nature of the stochastic process.

In the case of FFT, the Nautilus engine is expert-guided as the hints are provided from a member

of the Spiral development team. For the NoC IP we estimated hints by synthesizing 80 designs (less

than 0.3% of the design space) and observing trends; this is equivalent to an IP user (or some other

non-expert) supplying the hints using limited empirical knowledge or gut intuition about the IP.

5.4.2 Results

NoC. We first look at the NoC results, where Nautilus is guided by non-expert hints. We

compare two Nautilus variants (“strongly guided” and “weakly guided”2) against the baseline GA.

Figure 5.4 shows the result of a query aimed at finding designs in the NoC design space that can

achieve the highest frequency. The y-axis shows the maximum frequency for the best sample

in each algorithm’s population and essentially captures how the quality of results changes as the

algorithms progress. The x-axis shows the cumulative number of synthesis jobs needed for each

2The strongly and weakly guided lines differ only in the “confidence” hint.
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Figure 5.4: Maximizing Frequency in the NoC Design Space.

of the three techniques, reflecting the computational cost of the query. All three techniques are

run for 80 generations of the GA. Note however that the Nautilus lines require fewer designs to

be synthesized (because the GA revisits previously-synthesized results as it converges), allowing

their lines to stop after fewer designs. Both the strongly-guided and weakly-guided configurations

of Nautilus approach good solutions much faster than the baseline GA. The baseline GA requires

about 2.8x and 1.8x the number of synthesis jobs to converge to a solution within 1% of the best

solution.

Figure 5.5 shows the results for our second NoC query, which aims at minimizing the area-

delay product of a design. Here, results are shown only for the first 20 generations, because both

techniques converged to the optimal solution within this time. While our previous query only used

hints related to frequency, this query also incorporates hints related to the importance and bias of

IP parameters that affect area, such as virtual-channel buffer depth. In this case, Nautilus achieves
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similar quality of results with about half the number of synthesis runs required by the baseline. It

is interesting to note that even the non-expert guided Nautilus performs significantly better than

the baseline, offering much better quality of results for the same computational cost or the same

quality of results after significantly fewer synthesis jobs.

FFT. We next turn to the FFT results. As mentioned earlier, in this case Nautilus is “expert-

guided”, i.e., a developer of the FFT IP generator sets the hints. Figure 5.6 shows the result of a

query aimed at minimizing the number of LUTs used by an implementation from the FFT dataset.

Here we see that all three methods eventually converge on a same result (about 540 LUTs), but

the Nautilus designs converge much more quickly and require far fewer designs to be synthesized:

the strongly guided Nautilus strategy converges on the optimal design using an average of 101

synthesis runs, while the baseline GA requires 463 designs to be synthesized (on average) to reach

an equivalent result. If we relax the goal to 1,071 LUTs (twice the minimum), we see that the
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strongly guided Nautilus technique is able to meet the goal synthesizing 23.6 designs (on average),

while the baseline GA requires synthesizing an average of 78.9 designs to reach the same quality

result.3

Figure 5.7 aims to search the FFT design space for a design that uses a composite metric to

maximize the ratio of throughput to logic area consumed: throughput in million samples per second

(MSPS) divided by the number of LUTs. In this case, once again the strongly and weakly guided

Nautilus variants find significantly better solutions in less time; for example, the strongly guided

Nautilus strategy is able to reach 1.45 MSPS per LUT using 61.6 synthesis runs (on average),

while the baseline GA requires more than 8x synthesis runs (501.4 on average) to reach the same

value. Moreover, Nautilus is able to reach high-quality solutions exhibiting more than 1.5 MSPS

per LUT, which the baseline is never able to approach even after having explored a much larger

3For comparison, if random sampling was used, it would take on average 11,921 synthesis runs to find a design
meeting this goal.
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Figure 5.7: Maximizing Throughput per LUT in the FFT Design Space.

portion (>5x) of the design space.

Overall, Nautilus outperforms the baseline GA, both when guided by a non-expert (NoC), and

especially when given IP-expert guidance (FFT). Nautilus consistently produces higher quality of

results at much lower computational cost across multiple optimization queries in two separate IP

domain spaces.

5.5 Related Work

Stochastic Optimization in EDA. Stochastic methods such as genetic algorithms have been

used for a variety of aspects of hardware exploration, from the circuit level (e.g., low-level VLSI

layout optimization [40] and yield-aware circuit sizing [104]), to the system level (such as [94]

and [38], in which genetic algorithms are used to optimize aspects of hardware-software code-

sign). [80] uses GAs to perform exploration across a space of closely-related processor systems,
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which can be evaluated in only a few seconds per design. Other approaches focus on high-level

synthesis, such as [23, 57], which use genetic algorithms and Monte Carlo methods (respectively)

for HLS optimization. Lastly, simulated annealing has long been used in physical design automa-

tion problems (e.g., [13]).

Active Learning. Another important class of related work is research on active learning, a

family of learning techniques that iteratively evaluate potentially useful points within a set. Several

recent works [24, 54, 115, 116] use active learning techniques to model the entire Pareto-optimal

set of design points across a multi-objective space; specifically, [115, 116] consider costs and per-

formance of generated IPs. These approaches differ from our work in that they aim to understand

all design points that give a Pareto-optimal trade-off among any of the design characteristics. As

we are considering design spaces with tens of thousands of possible designs and on the order of

ten cost and performance metrics, this generalized approach would become extremely difficult;

instead we aim to provide a system that can answer a given query about this complicated design

space using as few synthesis steps as possible.
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Chapter 6

IRIS - IP Instrumentation &

Introspection

This chapter presents IRIS, a flexible systematic instrumentation and introspection framework

that demonstrates the third key principle of Pandora, sophisticated IP instrumentation. IRIS allows

for fast and efficient hardware debugging and monitoring, and enables system-level visibility and

analysis. It consists of (1) a library of parameterized “logic probe” modules that can be introduced

by the designer into a register-transfer-level design to count, sample, and record traces of events, as

well as capture distribution of scalars (e.g., buffer occupancy, transaction latency), (2) a software

post-processing engine that analyzes and summarizes the data collected by the instrumentation

components, and (3) a visualization engine that presents the analyzed instrumentation data through

an easy-to-navigate graphical user interface that highlights key metrics of interest and includes

dynamically generated interactive charts. The IRIS post-processing and visualization engines can

help capture and identify higher level system behaviors and design issues, which not only help the

designer during the development cycle but also enable the end-customer of a system gain high-
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level insights about the system’s operation (e.g., identify a bottleneck or hotspot). Because the

instrumentation components are implemented as synthesizable modules, they can be retained in

simulation, FPGA prototyping, and even in the final product. We demonstrate IRIS through case

studies in the context of the CONNECT Network-on-Chip generator. Our evaluation shows that

IRIS only has a small impact on simulation speed even for moderately instrumented designs. When

implemented in hardware, IRIS instrumentation components make efficient use of resources and

allow for fine-grain tuning to adjust the area and timing overhead.

The rest of this chapter is organized as follows. Section 6.1 introduces IRIS. Section 6.2 de-

scribes classes of IRIS instrumentation components, and the IRIS post-processing and visualization

engines. Section 6.3 evaluates IRIS with respect to hardware implementation cost and simulation

speed overhead, and also demonstrates the use of IRIS instrumentation in the context of CON-

NECT NoCs. Finally, Section 6.4 covers related work in the areas of hardware instrumentation,

design-for-test (DFT), and design-for-debug (DFD).

6.1 Introduction

Traditional approaches to hardware monitoring and debugging can take many forms depending

on the development phase and environment (e.g., RTL simulation vs. FPGA deployment). Com-

mon approaches used by IP users include adding assertions and display statements to the source

HDL, studying waveforms for a hand-picked subset of the design signals, or even instrumenting

a simulated design or actual hardware using logic analyzer tools (e.g., Xilinx Chipscope [112],

Altera Signaltap [14]) to directly probe signals and monitor their state at runtime.

While such approaches and tools can be powerful in the hands of expert designers looking to

observe or debug isolated small portions of a design in detail, they also have several drawbacks,

especially when dealing with large complex systems: (1) they are tedious, low-level, and have to
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be performed from scratch in an ad-hoc manner, (2) they have to be repeated and readjusted for

each submodule and as a design progresses through different phases of the development cycle, and

(3) they do not scale and are not able to capture higher level behaviors and identify system-level

issues as designs become larger and contain multiple complex large interacting IPs.

In this chapter, we present IRIS, a flexible systematic instrumentation framework that is aimed

at accelerating hardware debugging and monitoring, and enabling system-level visibility and anal-

ysis. IRIS combines a library of parameterized hardware instrumentation components that monitor

and collect information about a hardware design with software tools that post-process and visualize

the collected data. To maximize flexibility and minimize repeated effort, hardware and software in

IRIS work synergistically and allow a designer to instrument a design once and then dynamically

select which portions and to what extent will be retained and implemented in hardware, and which

portions of the instrumentation will be handled in software.

6.2 The IRIS Framework

The IRIS framework consists of three parts:

1. The IRIS Instrumentation Library (IIL), which is a collection of highly parameterized

synthesizable instrumentation components that provide different implementation options (e.g.,

hardware-resident, simulation-only) and can be spatially and temporally extended.

2. The IRIS Introspection Engine (IIE), which is a software-based tool designed to process,

analyze, and summarize event logs generated by the IRIS instrumentation components.

3. The IRIS Visualization Engine (IVE), which is responsible for visualizing and present-

ing the post-processed summarized collection of instrumentation data through an interactive

web-based graphical user interface.
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Figure 6.1: IRIS Usage Flow.

Using IRIS. Figure 6.1 shows a high level diagram of what the IRIS flow looks like. To use

IRIS, an IP has to first be instrumented using IRIS components from the IIL (or, as we explain later,

other components that adhere to the same spec). Then, as the hardware design is active, the instan-

tiated IRIS components generate events, which are processed by the IIE. The IIE fully replicates

the state of the IIL components present in hardware, and allows the user to define additional com-

ponents that build on top of the ones defined in the hardware. The IIE produces a JSON-formatted

summary of the information it gathered and processed from the IRIS components, which is passed

to the IVE. The IVE handles the visualization and generates a web-based interface that enables

viewing statistics, charts, and events pertaining to the instrumented system.

When designing the IRIS framework, we conscientiously chose to decouple and standardize

the interfaces between the IIL, IIE, and IVE to allow for greater flexibility, and reusability. In

particular, the IRIS event format, as well as the IRIS JSON format are both open and allow for

using each part of IRIS independently. For example, a user is free to use his own instrumentation

components, as long as they generate IRIS-compatible events. Similarly, a user is free to just use

the IRIS visualization engine standalone, by producing a JSON summary that conforms to the one

defined by IRIS.
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Figure 6.2: Overview of IRIS Components.

The rest of this section describes the IRIS Instrumentation Library (IIL), the IRIS Introspection

Engine (IIE), and the IRIS Visualization Engine (IVE).

6.2.1 IRIS Instrumentation Library

The IRIS Instrumentation Library (IIL) defines a set of instrumentation components logically

organized depending on their function, intended use, and visualization outcome. For each one of

these components, the IIL provides highly parameterized RTL implementations in both Bluespec

and Verilog. Each type of IIL component supports a set of methods and generates a set of events.

IIL components are organized in 3 groups, base, composite, and auxiliary components. Figure 6.2

provides an overview of the three IIL component groups.

The base IIL components are the IrisCounter, used for counting events in a system, the IrisSam-

pler, used for capturing distribution characteristics of scalar collections, and the IrisStatusMonitor,
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used to keep track of how pieces of hardware spend their time. The Composite IIL components

spatially and temporally extend the base IIL components to keep relevant information grouped dur-

ing the post-processing and visualization steps, or to observe hardware behaviors over time. They

include the Iris1D and Iris2D composite components, which allow creating 1D and 2D collections

of IIL base components (e.g., record number of packets per source-destination pair), as well as the

IrisTracer composite components, which allow tracing the state of IIL base component over time

(e.g., monitoring average network load per router, or variance in packet latency over time). Finally,

the auxiliary components include the IrisLogger, IrisConfig, and IrisChecker, which are primarily

used for communicating information about the instantiated instrumentation components, system

configuration, and operation of a design to the IRIS introspection and visualization engine.

Configuration and Parameterization. All IRIS components support a common set of config-

uration options that control their behavior in simulation, hardware implementation, logical group-

ing, and visualization. In addition, each type of IRIS base component also has its own individual

configuration options that are specific to that type of component. Finally, all IIL components allow

for structural parameterization (e.g., width of IrisCounter, number of histogram bins of IrisSam-

pler, dimensions of Iris1D/Iris2D collections, history length of IrisTracers, etc.) that affects the

hardware implementation cost and allows tailoring the component to a given environment and ap-

plication requirements. A summary of the configuration and parameter options that are common

across all IRIS base components are shown in Table 6.1.

IrisCounter. The IrisCounter is the simplest IIL component and is intended to be used for

counting events or keeping track of a value in a system, e.g., number of sent packets, pending

memory responses, in-flight instructions, pipeline stalls, etc. The full set of configuration param-

eters, features, and methods supported by the IrisCounter are shown in Table 6.2. Depending on

how an IrisCounter is configured it can support a subset of these methods. In its simplest config-
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IRIS Parameter Name Description Default Value
showWarnings Enables displaying of warnings (only affects simulation) TRUE

stopOnWarnings Controls is system will halt on warnings FALSE
visualize Controls if component should be included in visualization TRUE

dumpEvents Controls if component should produce events for the IIE TRUE
buildHardware Controls if component is implemented in actual hardware TRUE

buildAccessInterface Controls if HW interface for reading/writing component state is implemented TRUE
periodicallySyncState Controls if component state should be periodically synced with IIE FALSE

syncAtCycles Controls how frequently component should be synced with IIE 0
numDimensions Set to the number of dimensions if component is part of 1D or 2D collections 0

sizeX Indicates size of 1D/2D collection 0
sizeY Indicates size of 1D/2D collection 0

i Indicates position of component instance within 1D/2D collection 0
j Indicates position of component instance within 1D/2D collection 0

debugLevel Controls verbosity of component (0:None, 1:Low, 2:Medium, 3:High) 0

Table 6.1: Common IRIS Component Parameters.

uration the IrisCounter only supports the “incByOne” method and acts as a simple accumulator.

Additional optional methods include “incByN”, “decByOne”, and “decByN”, as well as a “clear”,

“write”, and “readValue” methods to directly clear, overwrite, or read the counter value. The set of

enabled methods affects the hardware implementation cost, which is reported in Section 6.3.

IrisSampler. The IrisSampler IIL component samples scalar values and can keep track of

statistical distribution information, such as average, minimum, and maximum value, as well as

variance, and even record a histogram that captures a more detailed representation of the actual

distribution. It can either sample an existing instance of an IrisCounter or directly sample values

in a system, such as the occupancy of a buffer or the latency of packets betwen two endpoints in

the system. Table 6.3 shows the configuration parameters, features, and methods supported by the

IrisSampler IIL component. In addition to the basic “addSample” method, the IrisSampler can also

support optional methods that allow accessing and manipulating its state. As was also the case

with the IrisCounter, hardware implementation cost is directly tied to the configuration and subset

of enabled methods.

IrisStateMonitor. The IrisStateMonitor (a.k.a. IrisEventTracker) IIL component is initialized
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IrisCounter Parameters Description Default Value
bitWidth Bit width of counter 32

IrisCounter Features Default Value
allowIncByN Allow incrementing counter by arbitrary integers FALSE

allowDecByOne Allow decrementing counter by one FALSE
AllowDecByN Allow decrementing counter by arbitrary integers FALSE

isSigned Treat the stored value as signed FALSE
allowClear Allow clearing the counter FALSE
allowRead Build read interface FALSE
allowWrite Build write interface FALSE

IrisCounter Methods Description
incByOne Increments counter by one
decByOne Decrements counter by one

incByN(inc by n) Increments counter by inc by n
decByN(dec by n) Decrements counter by dec by n

clear Clears counter
write(stat t value) Overwrites counter value

stat t readValue Returns counter value

Table 6.2: IrisCounter Parameters, Features, and Methods.

with a set of distinct states (or events) and then keeps track of the state in which a part of a system

is spending its time in. For example, in a Network-on-Chip setting, this could be useful for moni-

toring the state of a router (e.g., idle, sending, blocked) or composing a detailed breakdown of the

reasons that a packet might not be making progress (e.g., blocked behind higher priority packet,

not picked by allocator, blocked due to flow control, etc.). The IrisStateMonitor states are as-

sumed to be mutually exclusive by design to allow for an efficient hardware implementation. The

main method is “setState” (or “addEvent”), and as with the other two base IIL components, the

IrisStateMonitor offers some configuration parameters and optional features that adjust its hard-

ware implementation cost. Table 6.4 shows the configuration parameters, features, and methods

supported by the IrisStateMonitor IIL component.

Iris1D and Iris2D. The Iris1D and Iris2D are composite IIL components that allow logically

organizing instances of the Iris base ILL components described above in 1D and 2D groups. This

grouping is convenient when monitoring collections of things (e.g., a set of processors) and working
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IrisSampler Parameters Description Default Value
bitWidth Bit width of sampled data type 32

maxSamples Specifies maximum number of sampled data points 1024
numBins Specifies number of histogram bins 8

IrisSampler Features Description Default Value
keepMinMax Maintains minimum and maximum values of sampled data TRUE
keepSqTotal Maintains sum of squared samples to calculate variance TRUE

isSigned Treat the samples as signed FALSE
allowClear Allow clearing the counter FALSE

hasBins Specifies if component maintains histogram bins FALSE
IrisSampler Methods Description

addSample(stat t sample) Add sample to the collection of samples
clear Clears all IrisSampler state

readTotal Returns sum of all samples
readNumSamples Returns counter of all samples

readSqTotal Returns sum of squares of all samples
readMin Returns minimum sampled value
readMax Returns maximum sampled value

getMaxBinId Returns highest available bin id
readBin(bin id) Returns value of bin bin id

Table 6.3: IrisSampler Parameters, Features, and Methods.

with pairs or combinations (e.g., keeping track latency per source-destination pair, or counting

number of packets per router and port). The grouping information is also used later on by the IVE

to pick appropriate visualizations for 1D and 2D collections of IIL components. The supported

methods are similar to those used for the base IIL component, but also contain a single or a pair

of indices that indicate an element’s position within the 1D or 2D array. Hardware cost is directly

proportional to the size across each dimension.

IrisTracer. While the Iris1D and Iris2D IIL components allow for spatial grouping of IIL base

components, the IrisTracer allows for temporally extending the base IIL components by coupling

them with a trace buffer of configurable granularity. This is useful for keeping track of a metric as

it changes over user-defined quantums of time, e.g., injection rate or average packet latency. The

hardware implementation cost of the IrisTracer components is directly tied to the history length of

the trace buffer.
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IrisStateMonitor Parameters Description Default Value
numStates Specifies the number of distinct available states 8

maxEventCount Specifies maximum value for each state count 4294967296
IrisSampler Features Description Default Value

specifyStates Allows specifying custom state names FALSE
stateNames Used to ”name” the different states to be monitored ””
allowClear Allow clearing all state in the component FALSE

IrisStateMonitor Methods Description
addState(state id) Indicate current monitored state is state id

clear Clears all IrisStateMonitor state
readStateCount(state id) Reads counter associated with state id

Table 6.4: IrisStateMonitor Parameters, Features, and Methods.

IrisLogger and IrisConfig. The IrisLogger and the IrisConfig are auxiliary IIL components.

An IrisLogger component allows a system to generate a stream of messages, which can belong

to one of three categories, “Info”, “Warning”, or “Error”. The IrisConfig component captures

configuration options of a system in a structured manner, represented as collections of key-value

pairs. Both the IrisLogger and IrisConfig are purely simulation-based components and generate

log information that is later used by the IIE and IVE engines.

IrisChecker. The IrisChecker is an auxiliary IIL component that acts as a shell for logic that

implements monitors that checks for and reports suboptimal or improper operation of the system

(e.g., detect deadlock, report starvation, etc.). The hardware cost of an IrisChecker depends purely

on the complexity of the logic that performs the system monitoring and checking, and which is up

to the designer to implement.

Appendix C provides an overview of the IRIS event specification, as well as an example of

what the output of an IRIS-instrumented CONNECT-generated NoC design looks like.

6.2.2 IRIS Introspection Engine

The IRIS Introspection Engine (IIE) processes events generated by the IIL components de-

scribed above. It is written in Python and contains fully equivalent software implementations of
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each IIL component, which are used to mirror the state of the instrumentation components as an in-

strumented hardware design is running. The user is free to instantiate additional software-only IIL

components that can build on top of the hardware-resident IIL components. The user is also free to

execute arbitrary code in callback functions for each type of event to build even more sophisticated

software-based instrumentation.

When simulating a hardware design, the IIE runs in tandem with the RTL simulator and pro-

cesses events on the fly, as they are produced by the various IRIS instrumentation components. In

a multi-core system, when the IIE and RTL simulator run as separate threads on different cores,

impact on simulation speed is minimal. Once the event stream is over or if instructed by the user,

the IIE generates a JSON-based summary of the state of all instrumentation components, including

the ones that are part of the hardware, as well as the ones that are only defined in software. This

JSON-based summary is then used by the IVE to generate the visualizations.

6.2.3 IRIS Visualization Engine

The IRIS Visualization Engine is a separate Python-based component that parses the JSON-

based summary produced by the IIE to generate a web-based interface that presents the gathered

statistics. Each IIL component gets visualized depending on its type. IrisSamplers produce a table

with statistical information, as well as a dynamic histogram that allows juxtaposing different Iris-

Sampler instances. IrisStatusMonitors generate pie charts indicating the breakdown for each state.

Iris1D and Iris2D composite components generate collections of bar graphs that can be dynami-

cally organized by dimension. Finally, IrisTracers generate a timeline chart that allows zooming in

and out, smoothing over a configurable window of time, and enabling/disabling individual datasets.

Examples of the visualization output are shown in Section 6.3.
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6.3 Evaluation

This section evaluates the IRIS IIL components with respect to hardware implementation and

simulation speed overhead, and also demonstrates the use of IRIS instrumentation in the context of

CONNECT-generated Networks-on-Chip.

6.3.1 Hardware Implementation Characteristics

To give a sense of the hardware implementation characteristics of the various IRIS components

we synthesize a wide range of variants of each base IIL component targeting a moderately-sized

Xilinx FPGA and present resource usage and maximum clock frequency estimates. For each com-

ponent we vary the subset of feature and structural configuration parameters that affect hardware

implementation characteristics. Synthesis results were obtained using Xilinx XST 14.7 targeting a

Xilinx Virtex-6 LX760T FPGA (part xc6vlx760).

Table 6.5 shows FPGA synthesis results for variants of the IrisCounter base IIL component.

As expected, FPGA resource usage (LUTs and FFs) increases as the width and enabled features of

an IrisCounter are increased. In particular, the number of used FFs always matches the width of

the IrisCounter, while enabling extra features can increase LUT usage by up to 4x-5x. Maximum

frequency is most affected by the “bitWidth” parameter, and in all cases the maximum frequency

is at least 375MHz, which is well above typical target operating frequencies for FPGA designs.

Table 6.6 reports synthesis results for variants of the IrisSampler base IIL component. In-

creasing the values of the structural parameters of the IrisSampler (“bitWidth”, “numBins”, and

“maxSamples”) increases FPGA resource usage (LUTs and FFs). The “bitWidth” and “numBins”

parameters have the strongest impact on the number of Flip-Flops (FFs) and LUTs respectively.

Enabling the various “features” of the IrisSampler also increases FPGA resource usage, and in

particular enabling the “keepSqTotal” feature also makes use of DSP hard blocks to implement the
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Structural Parameters Feature Parameters Synthesis Estimates
IIL Component bitWidth allowIncByN allowDecByOne allowDecByN allowClear allowWrite LUTs FFs Max Freq.

Varying structural parameters for IrisCounter with all features enabled
mkIrisCounter 8 TRUE TRUE TRUE TRUE TRUE 37 8 583
mkIrisCounter 16 TRUE TRUE TRUE TRUE TRUE 73 16 541
mkIrisCounter 32 TRUE TRUE TRUE TRUE TRUE 145 32 471
mkIrisCounter 48 TRUE TRUE TRUE TRUE TRUE 203 48 417
mkIrisCounter 64 TRUE TRUE TRUE TRUE TRUE 259 64 375

Varying feature parameters for a 32-bit IrisCounter
mkIrisCounter 32 FALSE FALSE FALSE FALSE FALSE 32 32 589
mkIrisCounter 32 FALSE FALSE FALSE FALSE TRUE 35 32 589
mkIrisCounter 32 FALSE FALSE FALSE TRUE FALSE 33 32 589
mkIrisCounter 32 FALSE FALSE FALSE TRUE TRUE 65 32 472
mkIrisCounter 32 FALSE FALSE TRUE FALSE FALSE 34 32 589
mkIrisCounter 32 FALSE FALSE TRUE FALSE TRUE 97 32 471
mkIrisCounter 32 FALSE FALSE TRUE TRUE FALSE 97 32 471
mkIrisCounter 32 FALSE FALSE TRUE TRUE TRUE 97 32 471
mkIrisCounter 32 FALSE TRUE FALSE FALSE FALSE 34 32 589
mkIrisCounter 32 FALSE TRUE FALSE FALSE TRUE 97 32 471
mkIrisCounter 32 FALSE TRUE FALSE TRUE FALSE 97 32 471
mkIrisCounter 32 FALSE TRUE FALSE TRUE TRUE 97 32 471
mkIrisCounter 32 FALSE TRUE TRUE FALSE FALSE 66 32 587
mkIrisCounter 32 FALSE TRUE TRUE FALSE TRUE 98 32 471
mkIrisCounter 32 FALSE TRUE TRUE TRUE FALSE 98 32 471
mkIrisCounter 32 FALSE TRUE TRUE TRUE TRUE 98 32 471
mkIrisCounter 32 TRUE FALSE FALSE FALSE FALSE 34 32 589
mkIrisCounter 32 TRUE FALSE FALSE FALSE TRUE 97 32 471
mkIrisCounter 32 TRUE FALSE FALSE TRUE FALSE 97 32 471
mkIrisCounter 32 TRUE FALSE FALSE TRUE TRUE 97 32 471
mkIrisCounter 32 TRUE FALSE TRUE FALSE FALSE 65 32 587
mkIrisCounter 32 TRUE FALSE TRUE FALSE TRUE 97 32 471
mkIrisCounter 32 TRUE FALSE TRUE TRUE FALSE 97 32 471
mkIrisCounter 32 TRUE FALSE TRUE TRUE TRUE 97 32 471
mkIrisCounter 32 TRUE TRUE FALSE FALSE FALSE 66 32 587
mkIrisCounter 32 TRUE TRUE FALSE FALSE TRUE 98 32 471
mkIrisCounter 32 TRUE TRUE FALSE TRUE FALSE 98 32 471
mkIrisCounter 32 TRUE TRUE FALSE TRUE TRUE 98 32 471
mkIrisCounter 32 TRUE TRUE TRUE FALSE FALSE 113 32 587
mkIrisCounter 32 TRUE TRUE TRUE FALSE TRUE 145 32 471
mkIrisCounter 32 TRUE TRUE TRUE TRUE FALSE 145 32 471
mkIrisCounter 32 TRUE TRUE TRUE TRUE TRUE 145 32 471

Table 6.5: FPGA Synthesis Estimates for Various IrisCounter Configurations.

required multiplier units. Frequency estimates for all IrisSampler variants range from 259MHz to

535MHz.

Table 6.7 shows FPGA synthesis results for several variants of the IrisStateMonitor base IIL

component. To make efficient use of FPGA resources, in its default configuration, the IrisState-

Monitor makes use of LUTRAM to store the state history. Thus, even at its largest configuration

(32 states, 64 bits), which requires 2 Kbits of storage, the IrisStateMonitor only occupies 116

LUTs, 48 of which are used as LUTRAM. When the “allowClear” feature is enabled, the IrisSam-

pler switches to a less efficient implementation and uses FFs, since LUTRAM cannot be cleared

in a single clock cycle. Clock frequency estimates for the IrisStateMonitor range from 264MHz to

420MHz.
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Structural Parameters Feature Parameters Synthesis Estimates
IIL Component bitWidth numBins maxSamples keepMinMax keepSqTotal allowClear hasBins LUTs FFs DSPs Max Freq.

Varying structural parameters of mkIrisSampler with all features enabled
mkIrisSampler 8 4 256 TRUE TRUE TRUE TRUE 100 97 1 348
mkIrisSampler 8 4 1024 TRUE TRUE TRUE TRUE 112 111 1 348
mkIrisSampler 8 4 4096 TRUE TRUE TRUE TRUE 122 125 1 348
mkIrisSampler 8 8 256 TRUE TRUE TRUE TRUE 121 129 1 348
mkIrisSampler 8 8 1024 TRUE TRUE TRUE TRUE 136 151 1 348
mkIrisSampler 8 8 4096 TRUE TRUE TRUE TRUE 161 173 1 348
mkIrisSampler 8 16 256 TRUE TRUE TRUE TRUE 160 193 1 348
mkIrisSampler 8 16 1024 TRUE TRUE TRUE TRUE 184 231 1 348
mkIrisSampler 8 16 4096 TRUE TRUE TRUE TRUE 217 269 1 348
mkIrisSampler 8 32 256 TRUE TRUE TRUE TRUE 276 321 1 335
mkIrisSampler 8 32 1024 TRUE TRUE TRUE TRUE 324 391 1 334
mkIrisSampler 8 32 4096 TRUE TRUE TRUE TRUE 380 461 1 309
mkIrisSampler 8 64 256 TRUE TRUE TRUE TRUE 484 577 1 294
mkIrisSampler 8 64 1024 TRUE TRUE TRUE TRUE 576 711 1 293
mkIrisSampler 8 64 4096 TRUE TRUE TRUE TRUE 665 845 1 308
mkIrisSampler 8 128 256 TRUE TRUE TRUE TRUE 888 1089 1 277
mkIrisSampler 8 128 1024 TRUE TRUE TRUE TRUE 1065 1351 1 276
mkIrisSampler 8 128 4096 TRUE TRUE TRUE TRUE 1248 1613 1 259
mkIrisSampler 16 4 256 TRUE TRUE TRUE TRUE 172 137 1 427
mkIrisSampler 16 4 1024 TRUE TRUE TRUE TRUE 184 151 1 427
mkIrisSampler 16 4 4096 TRUE TRUE TRUE TRUE 194 165 1 427
mkIrisSampler 16 8 256 TRUE TRUE TRUE TRUE 193 169 1 427
mkIrisSampler 16 8 1024 TRUE TRUE TRUE TRUE 208 191 1 423
mkIrisSampler 16 8 4096 TRUE TRUE TRUE TRUE 233 213 1 384
mkIrisSampler 16 16 256 TRUE TRUE TRUE TRUE 232 233 1 400
mkIrisSampler 16 16 1024 TRUE TRUE TRUE TRUE 256 271 1 398
mkIrisSampler 16 16 4096 TRUE TRUE TRUE TRUE 289 309 1 363
mkIrisSampler 16 32 256 TRUE TRUE TRUE TRUE 348 361 1 335
mkIrisSampler 16 32 1024 TRUE TRUE TRUE TRUE 396 431 1 334
mkIrisSampler 16 32 4096 TRUE TRUE TRUE TRUE 453 501 1 309
mkIrisSampler 16 64 256 TRUE TRUE TRUE TRUE 556 617 1 294
mkIrisSampler 16 64 1024 TRUE TRUE TRUE TRUE 648 751 1 293
mkIrisSampler 16 64 4096 TRUE TRUE TRUE TRUE 738 885 1 308
mkIrisSampler 16 128 256 TRUE TRUE TRUE TRUE 960 1129 1 277
mkIrisSampler 16 128 1024 TRUE TRUE TRUE TRUE 1136 1391 1 276
mkIrisSampler 16 128 4096 TRUE TRUE TRUE TRUE 1307 1653 1 259
mkIrisSampler 32 4 256 TRUE TRUE TRUE TRUE 326 217 4 357
mkIrisSampler 32 4 1024 TRUE TRUE TRUE TRUE 340 231 4 353
mkIrisSampler 32 4 4096 TRUE TRUE TRUE TRUE 352 245 4 349
mkIrisSampler 32 8 256 TRUE TRUE TRUE TRUE 347 249 4 357
mkIrisSampler 32 8 1024 TRUE TRUE TRUE TRUE 367 271 4 353
mkIrisSampler 32 8 4096 TRUE TRUE TRUE TRUE 391 293 4 349
mkIrisSampler 32 16 256 TRUE TRUE TRUE TRUE 387 313 4 357
mkIrisSampler 32 16 1024 TRUE TRUE TRUE TRUE 415 351 4 353
mkIrisSampler 32 16 4096 TRUE TRUE TRUE TRUE 447 389 4 349
mkIrisSampler 32 32 256 TRUE TRUE TRUE TRUE 502 441 4 335
mkIrisSampler 32 32 1024 TRUE TRUE TRUE TRUE 552 511 4 334
mkIrisSampler 32 32 4096 TRUE TRUE TRUE TRUE 611 581 4 309
mkIrisSampler 32 64 256 TRUE TRUE TRUE TRUE 710 697 4 294
mkIrisSampler 32 64 1024 TRUE TRUE TRUE TRUE 804 831 4 293
mkIrisSampler 32 64 4096 TRUE TRUE TRUE TRUE 896 965 4 308
mkIrisSampler 32 128 256 TRUE TRUE TRUE TRUE 1114 1209 4 277
mkIrisSampler 32 128 1024 TRUE TRUE TRUE TRUE 1292 1471 4 276
mkIrisSampler 32 128 4096 TRUE TRUE TRUE TRUE 1479 1733 4 259

Varying feature parameters for a 32-bit mkIrisSampler with 8 bins and 1024 max samples
mkIrisSampler 32 8 1024 FALSE FALSE FALSE FALSE 51 52 0 535
mkIrisSampler 32 8 1024 FALSE FALSE FALSE TRUE 110 132 0 423
mkIrisSampler 32 8 1024 FALSE FALSE TRUE FALSE 53 52 0 535
mkIrisSampler 32 8 1024 FALSE FALSE TRUE TRUE 113 132 0 423
mkIrisSampler 32 8 1024 FALSE TRUE FALSE FALSE 125 126 4 414
mkIrisSampler 32 8 1024 FALSE TRUE FALSE TRUE 184 206 4 414
mkIrisSampler 32 8 1024 FALSE TRUE TRUE FALSE 201 126 4 353
mkIrisSampler 32 8 1024 FALSE TRUE TRUE TRUE 261 206 4 353
mkIrisSampler 32 8 1024 TRUE FALSE FALSE FALSE 180 117 0 458
mkIrisSampler 32 8 1024 TRUE FALSE FALSE TRUE 239 197 0 423
mkIrisSampler 32 8 1024 TRUE FALSE TRUE FALSE 182 117 0 458
mkIrisSampler 32 8 1024 TRUE FALSE TRUE TRUE 242 197 0 423
mkIrisSampler 32 8 1024 TRUE TRUE FALSE FALSE 254 191 4 414
mkIrisSampler 32 8 1024 TRUE TRUE FALSE TRUE 313 271 4 414
mkIrisSampler 32 8 1024 TRUE TRUE TRUE FALSE 300 191 4 353
mkIrisSampler 32 8 1024 TRUE TRUE TRUE TRUE 363 271 4 353

Table 6.6: FPGA Synthesis Estimates for Various IrisSampler Configurations.
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Structural Parameters Feature Parameters Synthesis Estimates
IIL Component numStates maxEventCount allowClear LUTs LUTRAM FFS Max Freq.

Varying structural parameters of IrisStateMonitor with all features enabled
mkIrisStateMonitor 4 2ˆ8 FALSE 20 8 0 420
mkIrisStateMonitor 4 2ˆ16 FALSE 33 16 0 337
mkIrisStateMonitor 4 2ˆ32 FALSE 57 24 0 305
mkIrisStateMonitor 4 2ˆ48 FALSE 81 32 0 279
mkIrisStateMonitor 4 2ˆ64 FALSE 113 48 0 264
mkIrisStateMonitor 8 2ˆ8 FALSE 21 8 0 420
mkIrisStateMonitor 8 2ˆ16 FALSE 34 16 0 337
mkIrisStateMonitor 8 2ˆ32 FALSE 58 24 0 305
mkIrisStateMonitor 8 2ˆ48 FALSE 82 32 0 279
mkIrisStateMonitor 8 2ˆ64 FALSE 114 48 0 264
mkIrisStateMonitor 16 2ˆ8 FALSE 22 8 0 420
mkIrisStateMonitor 16 2ˆ16 FALSE 35 16 0 337
mkIrisStateMonitor 16 2ˆ32 FALSE 59 24 0 305
mkIrisStateMonitor 16 2ˆ48 FALSE 83 32 0 279
mkIrisStateMonitor 16 2ˆ64 FALSE 115 48 0 264
mkIrisStateMonitor 32 2ˆ8 FALSE 23 8 0 420
mkIrisStateMonitor 32 2ˆ16 FALSE 36 16 0 337
mkIrisStateMonitor 32 2ˆ32 FALSE 60 24 0 305
mkIrisStateMonitor 32 2ˆ48 FALSE 84 32 0 279
mkIrisStateMonitor 32 2ˆ64 FALSE 116 48 0 264

Varying feature parameters for a 32-bit IrisStateMonitor with 8 states
mkIrisStateMonitor 8 2ˆ32 FALSE 58 24 0 305
mkIrisStateMonitor 8 2ˆ32 TRUE 200 0 256 339

Table 6.7: FPGA Synthesis Estimates for Various IrisStateMonitor Configurations.

The FPGA resource usage of IRIS composite components, such as Iris1D/Iris2D and IrisTracer,

scale according to the size of the collection and the size of the trace buffer respectively. The

clock frequency of IRIS composite components tracks the clock frequency of the underlying base

components that they are using. The hardware implementation characteristics of an IrisChecker

component can vary and depend on the complexity and the associate storage and logic requirements

of the specific type of checker that the IP author is implementing. Finally, the IrisLogger and

IrisConfig components are simulation-only components.

6.3.2 IRIS Instrumentation in CONNECT

In this section we demonstrate how IRIS instrumentation is used in the context of the CON-

NECT Network-on-Chip IP generator for accumulating statistics, investigating performance issues,

as well as debugging functional correctness problems. We first describe the types of instrumenta-

tion components employed, then discuss the impact of instrumentation on simulation speed, and

finally show some visualization results from sample CONNECT networks driven by actual traffic.
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To investigate the use of IRIS as part of an actual IP generator, we modified the CONNECT IP

generator to produce NoCs that include a wide range of representative sample IRIS instrumentation

components, including:

• IrisConfig components that capture configuration information about the network being tested.

• IrisCounter components, including Iris1D and Iris2D variants, for counting packets and flits,

including total counts, counts per source, per destination, as well as per source-destination

pair.

• IrisSampler components, including Iris1D and IrisTracer variants, for measuring average

packet and flit latency, across all traffic, as well as per source and per destination.

• IrisStateMonitor components to track the state of multiple routers in the network.

• An IrisChecker component to detect and report when a deadlock has occurred.

Impact on Simulation Speed. As mentioned earlier, IRIS has been designed to have minimal

impact on simulation speed, especially on modern multi-core systems. To give a sense of the actual

simulation speed overhead of IRIS in highly instrumented designs, we report simulation runtime

overhead for a CONNECT NoC design with IRIS instrumentation. In particular, we generate

a heavily instrumented sample 4x4 mesh NoC design (using Input-Queued routers, 32-bit wide

links, 8-entry flit buffers) and drive it using a uniform random traffic pattern (with a load of 0.45

flits/cycle and 8-flit packets) for 250,000 cycles. For each simulation we report the average runtime

of five simulation runs. Results are reported using the Synopsys VCS RTL simulator [7] (version

I-2014.03) running on a Core i5-2500 @ 3.2GHz with 8GB of RAM. The Python-based IIE and

IVE componets are run using the PyPy Python interpreter [4] (version 2.5.1).

When instrumentation is disabled, the average simulation runtime is 105s. Enabling IRIS in-

strumentation increases average runtime to 154.6s. Note that this does not include any IRIS-specific
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processing and is the pure overhead due to adding the instrumentation logic and probes, which

would be incurred when instrumenting a design, regardless if using IRIS or not. Next we enable

the IRIS introspection engine (IIE). Enabling the IIE increases simulation time by 21.2s, which

corresponds to an overhead of 13.7%. Enabling the IRIS visualization engine (IVE) has negligible

overhead and only increases the average runtime by 0.14s. Overall in our experiments, the IIE has

been able to process approximately 380,000 IRIS events per second. Obviously, the overhead of

IRIS heavily depends on the exact hardware design, the type and configuration of instrumentation

components, as well as the RTL simulator; these results are meant to give a rough estimate of the

impact of IRIS on simulation speed and calibrate expectations.

Visualization. Here we showcase sample visualizations generated by the IRIS Visualization

Engine (IVE). The IVE engine consumes the JSON-formatted summary produced by the IIE and

generates a dynamic graphical user interface using HTML and Javascript. This interface presents

all of the collected instrumentation data organized by type and allows interacting with different

components and even juxtaposing the data collected by different instrumentation components.

Figure 6.3 (a) shows the output of IrisConfig components, which capture the configuration

parameters of the specific simulation runs, including a graphical representation of the network

topology. Figure 6.3 (b) shows the output of IrisSampler components, which include statistical

information, such as the average, min, max, and variance, as well as a histogram that allows jux-

taposing different IrisSamplers. Figure 6.3 (c) shows a sample pie chart used to visualize an Iris-

StateMonitor that breaks down how individual routers in the design spend their time. Figure 6.3

(d) shows a collection of bar graphs that corresponds to an Iris1D collection of IrisCounters, and

Figure 6.3 (e) shows an Iris2D collection of IrisCounters that show the packets sent between each

source-destination pair. Finally, Figure 6.3 (f) shows the output of an IrisTracer component that

keeps track of two IrisSamplers that capture the average packet and flit latency over time.
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(a) IrisConfig Visualization (b) IrisSampler Visualization (c) IrisStateMonitor Visualization

(d) Iris1D Visualization (e) IrisTracer Visualization

(e) Iris2D Visualization

Figure 6.3: Examples of How Different IRIS Components are Presented by the IRIS Visualization
Engine (IVE).
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6.4 Related Work

There is a large body of existing work that has looked at various aspects of hardware instrumen-

tation, improving visibility, and collecting, extracting, or syncing state from a hardware platform,

as well as methodologies and techniques, such as Design-for-Test (DFT) and Design-for-Debug

(DFD), for faster, more efficient debugging and validation. Compared to such existing work, the

main contributions of IRIS are focused on providing a reusable parameterizable library of basic

instrumentation components along with a post-processing and visualization engine that help IP

authors distill and present the information that would be truly useful to a Pandora IP user.

Previous work has looked at facilitating the development of hardware-based run-time monitors

in processor designs. In particular, [51] presents a processor architecture framework that allows

designers to specify monitors in higher-level languages or even high-level synthesis (HLS) tools.

FlexCore [35] presents a hybrid processor architecture that allows dynamic fine-grain control of

the monitoring and bookkeeping functions of hardware monitors using an on-chip reconfigurable

fabric. MAMon [39] shares ideas with IRIS and proposes a monitoring system that collects low-

level events in hardware, which can be post-processed in software to study system-level behaviors

in a System-on-a-Chip environment. [76] looks at how monitoring and introspection mechanisms

can be built on separate active layers in a future 3D IC technology.

In the context of Network-on-Chip (NoC) and on-chip monitoring, existing work [9, 10, 85]

has looked at how to more efficiently detect and debug functional and performance issues in a

NoC. In addition, there is also a lot of work [30, 42, 100, 101, 107, 108, 114] on using the NoC,

by examining the communication and sequence of transactions in a system, to offer higher-level

visibility and accelerate debugging in embedded systems and Systems-on-a-Chip.

An overview of on-chip monitoring and debug strategies for SoCs is provided in [48], while [61]

summarizes and characterizes existing efforts of debug methods for hardware and software com-
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ponents of embedded systems. Finally, [109] offers an introduction and overview of debugging

strategies and methods for multi-core Systems-on-Chip, while [55] offers a very thorough and ex-

tensive survey and taxonomy of on-chip monitoring of multicore Systems-on-Chip.
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Chapter 7

Putting It All Together

This chapter describes how we extended the CONNECT Network-on-Chip (NoC) IP genera-

tor, first presented in Chapter 2, to incorporate and demonstrate many of the Pandora key ideas

and research artifacts presented in Chapters 3, 4, 5, and 6. In particular, this proof-of-concept

Pandora-powered version of CONNECT (1) leverages DELPHI to provide fast hardware imple-

mentation and performance estimates, (2) uses the Nautilus optimization engine to build high-level

configuration and tuning interfaces, and (3) incorporates IRIS instrumentation and introspection

capabilities into each generated network to facilitate efficient runtime debugging and monitoring.

The remainder of this chapter briefly describes and showcases each one of these CONNECT ex-

tensions.

7.1 Fast NoC Design Cost and Performance Estimation

This section describes how we leverage DELPHI along with multivariate interpolation to extend

CONNECT to provide real-time—in a matter of seconds—hardware implementation and perfor-

mance estimates for each candidate network configuration. These estimates are updated in real-
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time as the user modifies the various configuration parameters, which allows for fast informed

navigation of the design space.

Figure 7.1 shows two screenshots of the updated web-based interface of CONNECT, which

includes a new preview tab that provides instant on-demand feedback for each network configura-

tion, including implementation and performance estimates for FPGAs and multiple ASIC technol-

ogy nodes. In this particular example varying the flit data width from 32 in Figure 7.1 (a) to 8 in

Figure 7.1 (b) can yield a significant reduction in implementation area, e.g., from 22688 to 16272

LUTs when targeting an FPGA. This type of instant feedback can dramatically reduce the lengthy

trial-and-error process that IP users typically have to endure in order to find an IP configuration

that meets application goals and design constraints.

This CONNECT feature relies on DELPHI for quickly characterizing several thousands of

CONNECT NoC configurations, which are then used as the anchor grid points in the multivariate

interpolation. In our proof-of-concept implementation, we used 10370 DELPHI-based estimates

to populate the interpolation anchor point database and then leveraged the SciPy Interpolation

library [6] to characterize the full design space.

7.2 High-level NoC Configuration and Optimization

This section presents sample high-level configuration interfaces for CONNECT that were built

utilizing the Nautilus IP optimization engine. These proof-of-concept interfaces include (1) a sim-

ple “fuzzy” trade-off slider that allows novice users to set the desired balance between implementa-

tion cost and network performance, (2) a constraint-driven single-metric optimization interface that

supports maximizing/minimizing various high-level design metrics and arbitrary constraint expres-

sions, as well as (3) a custom query interface that allows expert users to directly define the fitness

function used by the guided genetic algorithm during the Nautilus optimization process.
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(a) 

(b) 

Figure 7.1: Example Snapshots of the DELPHI-Powered Interface, which Provides Real-Time
Hardware Implementation and Performance Estimates for CONNECT Network Configurations.
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Behind the scenes, all of these interfaces are built on top of the Nautilus IP optimization engine

presented in Chapter 5. Compared to the “traditional” version of CONNECT, where it was left to

the IP user to explicitly set all of the low-level IP parameters, these new interface extensions allow

for high-level goal-oriented optimization. The IP user now only needs to specify the number of

network endpoints; all low-level parameters are automatically populated by Nautilus.

The snapshots in Figure 7.2 show examples of using these new Nautilus-based configuration

interfaces. Figures 7.2 (a) and (b) show the resulting network configurations when using the trade-

off slider to pick a low-cost vs. high-performance network respectively. In this example, when

opting for a low-cost network, Nautilus suggests a lightweight network that consists of simple

Input-Queued routers arranged in a Ring topology, which only occupies 5100 LUTs and can offer

up to 6.41 GB/s of bisection bandwidth. When opting for a high-performance network, Nautilus

suggests a much denser 3x4 Torus topology built out of more sophisticated Virtual-Channel routers,

which occupies 268,442 LUTs and can offer up to 149.96 GB/s.

Figures 7.3 (a) and (b) show examples of using the constraint-driven single-metric optimization

interface. Figure 7.3 (a) shows the suggested network configuration for a simple query that tries

to maximize the operating frequency of the resulting design. In this case Nautilus suggests a Line

topology network that uses low-radix (2x2) fast Input-Queued routers, which have the shortest

critical path, leading to a max estimated operating frequency of 333.5 MHz. Figure 7.3 (b) shows

how queries can be further fine-tuned and tailored by adding constraints. In this case the constraint

dictates that the topology is not a “Line” and that the routers are not “Input-Queued”, causing

Nautilus to now suggest a Ring topology built out of Virtual-Output-Queued routers, which are the

next simplest and fastest topology and router combination.
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(a) 

(b) 

Figure 7.2: Example Snapshots of the Nautilus-Powered CONNECT Configuration Interface High-
lighting the Area vs. Bandwidth Trade-Off Slider Subinterface.

7.3 Effortless Monitoring and Debugging

This section highlights how we extended the CONNECT NoC generation engine to incorporate

many of the IRIS instrumentation components presented in Chapter 6. Enabling IRIS instrumenta-
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(a) 

(b) 

Figure 7.3: Example Snapshots of the Nautilus-Powered CONNECT Configuration Interface High-
lighting the Constraint-Driven Single-Metric Optimization Subinterface.

tion allows the generated NoC designs to leverage the IRIS Introspection and Visualization Engines

for efficient high-level monitoring and debugging.

Figure 7.4 shows how the CONNECT web-based generation interface was augmented to sup-
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port IRIS instrumentation. Checkbox elements allow IP users to fine-tune the types and granularity

of instrumentation components to match their application requirements and debugging needs. The

majority of the supported instrumentation options can be temporally or spatially extended to track

behaviors over time or at a finer granularity, e.g., per network router (1D) or per network source-

destination pair (2D). Figure 6.3 shows visualization samples of IRIS-instrumented CONNECT

networks.

Figure 7.4: Snapshot Showing the Various IRIS-Powered CONNECT Instrumentation Options.

Even though this Pandora-powered version of CONNECT was built as a proof of concept, it

already demonstrates how the key Pandora ideas and research artifacts presented throughout this

thesis can dramatically enhance how IP users interact with IP generation frameworks and increase

productivity when working with the resulting IPs.
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Chapter 8

Conclusions

Hardware specialization is proving to be a promising answer [89] to our quest to continue

scaling system performance in the power-constrained post-Dennard era. However, a major obstacle

to the more widespread use of hardware acceleration is the level of difficulty in hardware design

today. Despite the increased availability of rich IP libraries and even IP generators that span a

wide range of application domains, developing hardware today not only takes more time and is

more expensive than ever, but, more importantly, is limited to experts. As the complexity of IPs

has grown to the level of complete processors or Networks-on-Chip, today’s IPs require elaborate

parameterization and even often take the form of IP design generators to support the high degree

of parameterization. This unprecedented rise in IP complexity has led to a new design challenge

where just understanding and properly setting the myriads of domain-specific parameters of an IP

to produce a working and well-tuned design is becoming unmanageable to the average IP user.

This thesis presents the Pandora IP development paradigm that facilitates hardware special-

ization by extending the concept of generator-based IPs. Pandora encapsulates the IP author’s

expertise and knowledge to offer supporting infrastructure that enhances how IP users interact with
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the IP. In contrast to existing IPs and IP generators that only capture the structural and microar-

chitectural view of a design, Pandora argues for augmenting IPs with: (1) detailed IP design space

characterization to help the user understand the effects of parameter choices with respect to hard-

ware implementation and IP-specific metrics, (2) application-level goal-oriented parameterization

that is meaningful to the IP user and automatically sets low-level structural parameters to achieve

the desired design optimizations, and (3) purpose-built domain-aware simulation-time and run-time

monitoring mechanisms to assist functional and performance debugging.

To demonstrate the effectiveness of the Pandora IP development paradigm, this thesis presents

our work on: (1) CONNECT, a highly parameterized Network-on-Chip IP generator that embod-

ies and demonstrates many of the Pandora principles, (2) DELPHI, a framework for fast easy IP

characterization that facilitates mapping the design space of arbitrary RTL-based IPs, (3) Nautilus,

an IP optimization engine that demonstrates how incorporating IP author knowledge in genetic

algorithms can enable very fast—orders of magnitude faster than conventional methods—high-

level goal-oriented IP optimization, and (4) IRIS, an instrumentation and introspection framework

that combines hardware monitors with software-based post-processing and visualization engines to

accelerate debugging of complex IPs and enable higher system-level visibility.

The Pandora IP development paradigm and our efforts on CONNECT, DELPHI, Nautilus, and

IRIS are important steps towards realizing our overarching goal of tackling the increasing com-

plexity in hardware design and enabling the more widespread adoption of hardware acceleration

for sustained performance and power efficiency. Today, a computer vision or signal processing

expert can relatively easily and quickly experiment in software (e.g., using Matlab), but doing so

in hardware is out of the question. Our hope with Pandora is to help bridge this gap, so that in the

near future application-experts are able to experiment with their ideas in hardware the same way

that they are able to do so in software today.
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8.1 Future Directions

While CONNECT, DELPHI, Nautilus, and IRIS concretely demonstrate multiple aspects of the

Pandora IP development paradigm, the scope and key principles of Pandora were conscientiously

defined to transcend the individual tools, techniques, and methods developed in these projects. As

such, the broad nature of Pandora paves the way for many interesting extensions and future research

directions in the quest to reign in hardware design complexity.

Automated Design Space Sampling and Mapping. While DELPHI can dramatically reduce

the time required to map the design space of an IP and CONNECT includes hand-crafted and

heuristic-based predictive models, it would be interesting to investigate more general and “smarter”

approaches to mapping the design space of an IP that can work across multiple domains. IP author

hints, such as the ones used in Nautilus, could be used to define interesting regions of the design

space to steer the sampling and mapping process. To even further automate and accelerate the IP

design space mapping, it would be interesting to experiment with and potentially adapt some of the

ideas used in PinPoints [86] to identify representative regions of software benchmarks.

Multiple Pandora IPs. While this thesis has focused on demonstrating Pandora in the context

of a single IP, typical Systems-on-Chip are composed of multiple such IP blocks that span multiple

domains. As such, an interesting future direction is to investigate how multiple Pandora IPs can be

composed, and in particular, focus on (1) how to abstract away the interfacing details between IPs,

which are a common source of errors, and (2) how to implement a common cross-IP optimization

framework that can tune the potentially domain-specific “knobs” of each IP in a meaningful and

coordinated fashion to meet higher system-level goals and requirements.

Machine Learning and Automated IP Optimization. In Nautilus, we demonstrated how IP

author knowledge can be incorporated in a guided genetic algorithm to vastly accelerate hardware

IP optimization. While using a stochastic optimization process, such as the genetic algorithms in
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Nautilus, yielded promising results, it would be interesting to investigate if training machine learn-

ing models, such as artificial neural networks [47], can lead to an even faster and more effective

approach to IP optimization that performs well even in the absence of IP author hints. Along simi-

lar lines, it would be interesting to explore how the output of instrumentation can be analyzed and

post-processed to directly feed the optimization process, thus even further automating and tighten-

ing the IP optimization loop.
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Appendix A

CONNECT Command-Line Interface

Options

Usage

=====

SYNOPSIS

g e n n e t w o r k . py [−h,−−h e l p ] [−v,−−v e r b o s e ] [−−v e r s i o n ]

DESCRIPTION

Thi s s c r i p t g e n e r a t e s c o n f i g u r a t i o n f i l e s t h a t a r e used by t h e ne twork r t l and r e p r e s e n t

d i f f e r e n t t o p o l o g i e s and ne twork c o n f i g u r a t i o n s . In p a r t i c u l a r t h e s e f i l e s a r e g e n e r a t e d :

− n e t w o r k p a r a m e t e r s . bsv : s p e c i f i e s ne twork and r o u t e r p a r a m e t e r s .

− n e t w o r k l i n k s . bsv : s p e c i f i e s how r o u t e r s a r e c o n n e c t e d ( i . e . t o p o l o g y )

− n e t w o r k r o u t i n g X . hex : s p e c i f i e s c o n t e n t s o f r o u t e r t a b l e s f o r r o u t e r X ( i . e . r o u t i n g )

EXAMPLES

g e n n e t w o r k . py − t r i n g −n 4 −v 2 −d 8 −w 256

EXIT STATUS
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E x i t codes

AUTHOR

Michae l K. Papamichae l <papamix@cs . cmu . edu>

LICENSE

P l e a s e c o n t a c t t h e a u t h o r f o r l i c e n s e i n f o r m a t i o n .

VERSION

0 . 6

O p t i o n s

=======

−−v e r s i o n show program ’ s v e r s i o n number and e x i t

−−he lp , −h show t h i s h e l p message and e x i t

−−v e r b o s e v e r b o s e o u t p u t

−−t o p o l o g y =TOPOLOGY, − t TOPOLOGY

s p e c i f i e s t o p o l o g y ( can t a k e v a l u e s ” s i n g l e s w i t c h ” ,

” l i n e ” , ” r i n g ” , ” d o u b l e r i n g ” , ” s t a r ” , ” mesh ” ,

” t o r u s ” , ” f a t t r e e ” , ” b u t t e r f l y ” , ” f u l l y c o n n e c t e d ” ,

” u n i s i n g l e s w i t c h ” , ” u n i t r e e ” , u n i t r e e u p ” ,

” u n i t r e e d o w n ” , ” custom ” , ” i d e a l ” , ” xba r ” )

−−s e n d m a i l =SENDMAIL Send e m a i l n o t i f i c a t i o n when done

−−n u m r o u t e r s =NUM ROUTERS, −n NUM ROUTERS

S p e c i f i e s number o f e n d p o i n t r o u t e r s

−−s e n d e n d p o i n t s =SEND ENDPOINTS

S p e c i f i e s number o f send e n d p o i n t s f o r uni−d i r e c t i o n a l

t o p o l o g i e s

−−r e c v e n d p o i n t s =RECV ENDPOINTS

S p e c i f i e s number o f r e c e i v e e n d p o i n t s f o r uni−

d i r e c t i o n a l t o p o l o g i e s

−−o v e r r i d e n u m d e s t s =OVERRIDE NUM DESTS

Allows o v e r r i d i n g t h e number o f t o t a l ne twork

d e s t i n a t i o n s ( e . g . , t o b u i l d l a r g e r n e t w o r k s o u t o f
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s m a l l e r s u b n e t w o r k s ) . Th i s l e a d s t o l a r g e r r o u t i n g

t a b l e s and a wide r d e s t i n a t i o n f i e l d i n f l i t s . ( i f n o t

s e t ne twork d e s t i n a t i o n s w i l l e q u a l ne twork r e c e i v e

p o r t s o f c u r r e n t t o p o l o g y )

−−r o u t e r s p e r r o w =ROUTERS PER ROW, −r ROUTERS PER ROW

s p e c i f i e s number o f r o u t e r s i n each row ( on ly used f o r

mesh and t o r u s )

−−r o u t e r s p e r c o l u m n =ROUTERS PER COLUMN, −c ROUTERS PER COLUMN

s p e c i f i e s number o f r o u t e r s i n each column ( on ly used

f o r mesh and t o r u s )

−−num vcs=NUM VCS, −v NUM VCS

s p e c i f i e s number o f v i r t u a l c h a n n e l s

−−a l l o c t y p e =ALLOC TYPE , −a ALLOC TYPE

s p e c i f i e s t y p e o f a l l o c a t o r ( can t a k e v a l u e s

” SepIFRoundRobin ” , ” SepOFRoundRobin ” , ” SepIF iSLIP ” ,

” SepOFiSLIP ” , ” S e p I F S t a t i c ” , ” S e p O F S t a t i c ” ,

”Memocode ” )

−−u s e v i r t u a l l i n k s E n a b l e s l o c k i n g of v i r t u a l l i n k s (VC+ O u t P o r t ) i n t h e

p r e s e n c e o f m u l t i− f l i t p a c k e t s .

−− f l i t b u f f e r d e p t h =FLIT BUFFER DEPTH , −d FLIT BUFFER DEPTH

s p e c i f i e s d e p t h o f f l i t b u f f e r s

−−s i n k b u f f e r d e p t h =SINK BUFFER DEPTH , −s SINK BUFFER DEPTH

s p e c i f i e s d e p t h o f b u f f e r s a t r e c e i v i n g e n d p o i n t s . I f

n o t s p e c i f i e d f l i t b u f f e r d e p t h i s assumed .

−− f l i t d a t a w i d t h =FLIT DATA WIDTH , −w FLIT DATA WIDTH

s p e c i f i e s f l i t d a t a wid th

−−c u t =CUT, − i CUT s p e c i f i e s t h e c u t i n an i d e a l o r xba r ne twork

−− f i l e p r e f i x =FILE PREFIX , −p FILE PREFIX

o v e r r i d e d e f a u l t f i l e p r e f i x

−−x b a r l a n e s =XBAR LANES, − l XBAR LANES

s p e c i f i e s number o f l a n e s i n Xbar ne twork

−−o u t p u t d i r =OUTPUT DIR , −o OUTPUT DIR

s p e c i f i e s o u t p u t d i r e c t o r y ( d e f a u l t i s . / )

−−g e n r t l , −g i n v o k e s bsc c o m p i l e r t o g e n e r a t e r t l
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−−r u n x s t , −x g e n e r a t e s r t l and i n v o k e s x s t f o r s y n t h e s i s

−−r u n d c g e n e r a t e s r t l and i n v o k e s Synopsys DC f o r s y n t h e s i s

−−e x p o s e u n u s e d p o r t s Exposes unused u s e r p o r t s f o r Mesh t o p o l o g y .

−−f l o w c o n t r o l t y p e =FLOW CONTROL TYPE

s p e c i f i e s f low c o n t r o l type , C r e d i t−based or Peek ( can

t a k e v a l u e s ” c r e d i t ” , ” peek ” )

−−p e e k f l o w c o n t r o l Uses s i m p l e r peek f low c o n t r o l i n t e r f a c e i n s t e a d o f

c r e d i t−based i n t e r f a c e .

−−r o u t e r t y p e =ROUTER TYPE

s p e c i f i e s r o u t e r type , V i r t u a l−Channel−based , V i r t u a l−

Output−Queued or I n p u t−Queued ( can t a k e v a l u e s ” vc ” ,

” voq ” , ” i q ” )

−−v o q r o u t e r s Use V i r t u a l−Output−Queued (VOQ) r o u t e r s i n s t e a d o f

V i r t u a l−Channel (VC) r o u t e r s .

−−u n i t r e e i n p u t s =UNI TREE INPUTS

Number o f t r e e i n p u t p o r t s .

−−u n i t r e e o u t p u t s =UNI TREE OUTPUTS

Number o f t r e e i n p u t p o r t s .

−−u n i t r e e f a n o u t =UNI TREE FANOUT

Fan−o u t o f each t r e e r o u t e r ( w i l l be c a l c u l a t e d

a u t o m a t i c a l l y i f s e t t o 0 ) .

−−u n i t r e e d i s t r i b u t e l e a v e s

D i s t r i b u t e s t h e l e a f nodes t o t h e a v a i l a b l e r o u t e r s ,

when t h e t r e e does n o t p e r f e c t l y f i t t h e a v a i l a b l e

l e a f nodes .

−−p i p e l i n e c o r e P i p e l i n e s r o u t e r c o r e .

−−p i p e l i n e a l l o c P i p e l i n e s r o u t e r a l l o c a t o r .

−−p i p e l i n e l i n k s P i p e l i n e s f l i t and c r e d i t l i n k s .

−−c o n c e n t r a t i o n f a c t o r =CONCENTRATION FACTOR

s p e c i f i e s number o f u s e r p o r t s p e r e n d p o i n t r o u t e r

( n o t implemented y e t )

−−c u s t o m t o p o l o g y =CUSTOM TOPOLOGY

s p e c i f i e s custom t o p o l o g y f i l e .

−−c u s t o m r o u t i n g =CUSTOM ROUTING
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s p e c i f i e s custom r o u t i n g f i l e .

−−d u m p t o p o l o g y f i l e dumps t h e t o p o l o g y spec f i l e f o r t h e g e n e r a t e d

ne twork .

−−d u m p r o u t i n g f i l e dumps t h e r o u t i n g spec f i l e f o r t h e g e n e r a t e d ne twork .

−−dbg E n a b l e s debug messages i n g e n e r a t e d r t l .

−−d b g d e t a i l E n a b l e s more d e t a i l e d debug messages i n g e n e r a t e d r t l .

−−g e n g r a p h V i s u a l i z e s ne twork graph u s i n g g r a p h v i z .

−−g r a p h n o d e s Also i n c l u d e s e n d p o i n t nodes i n g e n e r a t e d graph .

−−g r a p h f o r m a t =GRAPH FORMAT

S p e c i f i e s o u t p u t f o r m a t f o r g r a p h v i z ( e . g . , png , j p g

o r svg )

−−g r a p h l a y o u t =GRAPH LAYOUT

S p e c i f i e s g r a p h v i z l a y o u t e n g i n e ( e . g . , dot , nea to ,

c i r c l e )
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Appendix B

DELPHI Flow Overview

#==============================================================================

#

# DELPHI − RTL−Based A r c h i t e c t u r e Des ign E v a l u a t i o n Using DSENT Models

# C o p y r i g h t ( c ) 2014 by Michae l K. Papamichae l , C a r n e g i e Mellon U n i v e r s i t y

#

#==============================================================================

Th i s document d e s c r i b e s t h e s t e p s i n v o l v e d i n t a k i n g a d e s i g n t h r o u g h t h e

DELPHI f low .

###############################################################################

#### 1 . Synopsys DC S y n t h e s i s

###############################################################################

DELPHI r e q u i r e s t h a t s y n t h e s i s i n Synopsys DC i s c o n s t r a i n e d t o on ly use c e l l s

t h a t a r e s u p p o r t e d i n DSENT . The c e l l s c u r r e n t l y s u p p o r t e d i n DSENT a r e ( t h e

u s e r i s f r e e t o f u r t h e r modify DSENT and add models f o r o t h e r s t a n d a r d c e l l s ) :

AND2 − 2− i n p u t AND g a t e wi th i n p u t p i n s A, B and o u t p u t p i n Y

OR2 − 2− i n p u t OR g a t e wi th i n p u t p i n s A, B and o u t p u t p i n Y
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BUF − B u f f e r wi th i n p u t p i n A and o u t p u t p i n Y

INV − I n v e r t e r w i th i n p u t p i n A and o u t p u t p i n Y

NAND2 − 2− i n p u t NAND g a t e wi th i n p u t p i n s A, B and o u t p u t p i n Y

NOR2 − 2− i n p u t NOR g a t e wi th i n p u t p i n s A, B and o u t p u t p i n Y

MUX2 − 2− i n p u t m u l t i p l e x e r wi th i n p u t p i n s A, B , S0 and o u t p u t p i n Y

XOR2 − 2− i n p u t XOR g a t e wi th i n p u t p i n s A, B and o u t p u t p i n Y

ADDF − F u l l a d d e r wi th i n p u t p i n s A, B , CI and o u t p u t p i n s S and CO

DFFQ − D F l i p−Flop wi th i n p u t p i n D and o u t p u t p i n Q, c l o c k e d by p i n CKN

DFFQ − Latch wi th i n p u t p i n s D, G and o u t p u t p i n Q

The d e f a u l t d r i v i n g s t r e n g t h s s u p p o r t e d f o r t h e s e c e l l s a r e ( t h e u s e r can

modify t h e a v a i l a b l e d r i v i n g s t r e n g t h s by mod i fy ing t h e DSENT t e c h n o l o g y

models ) :

1 . 0 , 1 . 4 , 2 . 0 , 3 . 0 , 4 . 0 , 6 . 0 , 8 . 0 , 1 0 . 0 , 1 2 . 0 , 1 6 . 0

###############################################################################

#### 1 . 1 C r e a t i n g a DC−DSENT c e l l mapping f i l e

The DELPHI f low r e q u i r e s t h a t t h e s t a n d a r d c e l l s used d u r i n g s y n t h e s i s a r e

mapped t o t h e above DSENT−c o m p a t i b l e c e l l s . Th i s mapping i s c a p t u r e d t h r o u g h a

use r−d e f i n e d f i l e t h a t u s e s a custom s p e c i f i c a t i o n l a n g u a g e t o map c e l l s and

p i n s o f t h e s t a n d a r d c e l l s used i n DC s y n t h e s i s t o t h e c e l l s and p i n s a v a i l a b l e

i n DSENT . Each l i n e o f t h e mapping f i l e can c o n t a i n one of t h e f o l l o w i n g

commands ( l i n e s s t a r t i n g wi th # a r e comments ) :

MAP CELL

I n f o : Maps DC c e l l t o DSENT c e l l

Syn tax : MAP CELL <DC CELL NAME> <DSENT CELL NAME> <DRIVING STRENGTH>

Example : MAP CELL NAND2X4 NAND2 4

MAP CELL PIN

I n f o : Maps p i n o f DC c e l l t o p i n o f DSENT c e l l

Syn tax : MAP CELL PIN <DC CELL NAME> <DC PIN NAME> <DSENT pin name>
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Example : MAP CELL PIN NAND2X4 Z Y

IGNORE CELL PIN

I n f o : I n s t r u c t s DELPHI t o i g n o r e a s p e c i f i c p i n o f a DC s h e l l

Syn tax : IGNORE CELL PIN <DC CELL NAME> <DC PIN NAME>

Example : IGNORE CELL PIN DFFSRX1 QN

ADD CELL IN PIN ( on ly used f o r YOSYS+ABC flow )

I n f o : I n s t r u c t s DELPHI t o t r e a t a p i n on a c e l l a s an i n p u t

Syn tax : ADD CELL IN PIN <ABC CELL NAME> <ABC PIN NAME>

Example : ADD CELL IN PIN NAND2X2 A

ADD CELL OUT PIN ( on ly used f o r YOSYS+ABC flow )

I n f o : I n s t r u c t s DELPHI t o t r e a t a p i n on a c e l l a s an o u t p u t

Syn tax : ADD CELL OUT PIN <ABC CELL NAME> <ABC PIN NAME>

Example : ADD CELL OUT PIN NAND2X2 Y

###############################################################################

#### 1 . 2 C o n s t r a i n i n g s y n t h e s i s

C o n s t r a i n i n g s y n t h e s i s w i t h i n Synopsys DC t o on ly DSENT−c o m p a t i b l e c e l l s t h e

r e q u i r e s p r o p e r l y s e t t i n g t h e ” d o n t u s e ” a t t r i b u t e f o r a l l non−s u p p o r t e d c e l l s

i n t h e t a r g e t s t a n d a r d c e l l l i b r a r y . Th i s needs t o be done b e f o r e r u n n i n g

s y n t h e s i s t h r o u g h t h e d c s h e l l u s i n g t h e ” s e t d o n t u s e ” and ” r e m o v e a t t r i b u t e ”

DC commands , e . g . :

# S e t t i n g t h e d o n t u s e a t t r i b u t e f o r c e l l s t h a t a r e n o t c o m p a t i b l e wi th DSENT

# Note : To f i n d t h e name of your t a r g e t l i b r a r y run t h e l i s t l i b s command

s e t d o n t u s e <y o u r l i b n a m e >/OR3X1

s e t d o n t u s e <y o u r l i b n a m e >/OR3X2

s e t d o n t u s e <y o u r l i b n a m e >/OR3X4

# A l t e r n a t i v e l y you can f i r s t s e t t h e d o n t u s e a t t r i b u t e f o r a l l c e l l s
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s e t d o n t u s e <y o u r l i b n a m e >/∗

# And t h e n s e l e c t i v e l y remove t h e d o n t u s e a t t r i b u t e f o r t h e s u b s e t o f c e l l s

# t h a t have a mapping t o DSENT−c o m p a t i b l e c e l l s

r e m o v e a t t r i b u t e <y o u r l i b n a m e >/NAND2X1 d o n t u s e

r e m o v e a t t r i b u t e <y o u r l i b n a m e >/NAND2X2 d o n t u s e

r e m o v e a t t r i b u t e <y o u r l i b n a m e >/NAND2X4 d o n t u s e

I f t h e u s e r has a l r e a d y p r e p a r e d t h e DC−DSENT mapping f i l e d e s c r i b e d above , t h e

DELPHI t o o l can a u t o m a t i c a l l y g e n e r a t e a t c l s c r i p t t h a t c o n t a i n s t h e commands

needed t o c o n s t r a i n s y n t h e s i s by i n v o k i n g i t w i th t h e s e command−l i n e o p t i o n s :

. / DELPHI −−g e n d c c o n s t r a i n s c r i p t −−d c l i b n a m e <y o u r l i b n a m e> \

−−d c d s e n t m a p f i l e <y o u r d c d s e n t m a p f i l e >

The r e s u l t i n g t c l s c r i p t <y o u r l i b n a m e> c o n s t r a i n . t c l needs t o be s o u r c e d b e f o r e

r u n n i n g s y n t h e s i s , e . g . :

. . .

s o u r c e ./< y o u r l i b n a m e> c o n s t r a i n . t c l

c o m p i l e u l t r a

. . .

Note : To v e r i f y t h a t t h e d o n t u s e a t t r i b u t e s have been p r o p e r l y s e t you can check

t h e o u t p u t o f t h e ” r e p o r t l i b <y o u r l i b n a m e >” command . C e l l s t h a t have a ” u ” n e x t

t o them have t h e ” d o n t u s e ” a t t r i b u t e s e t .

###############################################################################

#### 1 . 3 G e n e r a t i n g t h e n e c e s s a r y s y n t h e s i s r e p o r t s

DELPHI r e l i e s on v a r i o u s s y n t h e s i s r e p o r t s t h a t a r e p a r s e d and a n a l y z e d t o b u i l d

a DSENT model . Once c o n s t r a i n e d s y n t h e s i s i n DC i s f i n i s h e d , you can g e n e r a t e

t h e s e r e p o r t s by r u n n i n g t h e f o l l o w i n g commands a t a d c s h e l l :

ungroup −a l l − f l a t t e n

r e p o r t c e l l −n o s p l i t −c o n n e c t i o n s > d c c e l l r e p o r t

136



r e p o r t p o r t −n o s p l i t > d c p o r t r e p o r t

r e p o r t c l o c k t r e e −n o s p l i t > d c c l o c k r e p o r t

###############################################################################

#### 2 . G e n e r a t i n g a DSENT model and Running DSENT

###############################################################################

###############################################################################

#### 2 . 1 P r o c e s s i n g s y n t h e s i s r e s u l t s t o g e n e r a t e a DSENT model

The DC r e p o r t s g e n e r a t e d d u r i n g t h e l a s t s t e p o f DC s y n t h e s i s a r e now r e a d y t o

be f e d i n t o t h e DELPHI t o o l t o g e n e r a t e a DSENT model t h a t c o r r e s p o n d s t o t h e

s y n t h e s i z e d n e t l i s t . I n a d d i t i o n t o t h e g e n e r a t e d r e p o r t s t h e u s e r needs t o

s p e c i f y t h e names o f any c l o c k or r e s e t s i g n a l s i n t h e d e s i g n u s i n g t h e

”−−c l o c k n e t n a m e ” and ”−− r e s e t n e t n a m e ” command−l i n e o p t i o n s . Below i s an

example o f an i n v o c a t i o n o f t h e DELPHI t o o l :

. / DELPHI −−d c d s e n t m a p f i l e <y o u r d c d s e n t m a p f i l e > −−d c c e l l s f i l e \

<d c c e l l r e p o r t > −−d c p o r t s f i l e <d c p o r t r e p o r t > −−d c c l o c k t r e e f i l e \

<d c c l o c k r e p o r t > −−c l o c k n e t n a m e <c l k n e t n a m e> −−r e s e t n e t n a m e <r e s e t n e t n a m e>

Note : I f t h e DC s y n t h e s i s t a r g e t l i b r a r y used a ns t i m e s c a l e ( i n s t e a d o f ps ) ,

make s u r e t o a l s o add t h e f l a g ”−−n s t i m e s c a l e ” . To check t h e t ime u n i t s o f your

DC l i b r a r y run t h e command ” r e p o r t u n i t s ” a t t h e d c s h e l l .

For a f u l l l i s t o f DELPHI command−l i n e o p t i o n s a l o n g wi th t h e i r d e s c r i p t i o n s ,

run :

. / DELPHI −−h e l p

Once t h e s y n t h e s i s r e p o r t s a r e p r o c e s s e d , t h e DELPHI t o o l g e n e r a t e s t h e

f o l l o w i n g f i l e s :

− C++ code t h a t c o r r e s p o n d s t o a DSENT n e t l i s t f o r t h e o r i g i n a l n e t l i s t :
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DELPHI module .∗

− Sample c o n f i g u r a t i o n f i l e s t a r g e t i n g d i f f e r e n t t e c h n o l o g y models t o be used

when r u n n i n g DSENT:

DELPHI module ∗ . c f g

###############################################################################

#### 2 . 2 Compi l ing and r u n n i n g t h e new DSENT model

E x t r a c t t h e d e l p h i d s e n t 0 . 9 1 . t a r . gz t a r b a l l ( t a r −zxv f d e l p h i d s e n t 0 . 9 1 . t a r . gz )

and t h e n copy t h e g e n e r a t e d C++ f i l e s ( DELPHI module . cc and DELPHI module . h ) t o

t h e d e l p h i d s e n t 0 . 9 1 / model / d e l p h i / d i r e c t o r y and t h e c o n f i g u r a t i o n f i l e s

( DELPHI module ∗ . c f g ) t o t h e d e l p h i d s e n t 0 . 9 1 / c o n f i g s d i r e c t o r y .

To compi l e t h e g e n e r a t e d DSENT models n a v i g a t e t o t h e d e l p h i d s e n t 0 . 9 1

d i r e c t o r y and run :

make

Once c o m p i l a t i o n i s s u c c e s f u l l y f i n i s h e d you a r e now r e a d y t o run DSENT u s i n g

one o f t h e g e n e r a t e d ( o r a custom ) c o n f i g u r a t i o n f i l e , e . g . :

. / d s e n t −c f g c o n f i g s / DELPHI module 32 . c f g

For more i n f o r m a t i o n on r u n n i n g DSENT and t h e v a r i o u s o p t i o n s i n i t s

c o n f i g u r a t i o n f i l e s , p l e a s e s e e t h e README f i l e unde r d e l p h i d s e n t 0 . 9 1 .

138



Appendix C

IRIS Event Specification and Output

Examples

C.1 IRIS Event Specification

# IRIS EVENT SPEC − I n c l u d e s most b a s i c IRIS e v e n t s

# L i n e s t h a t s a r t w i th # a r e comments

# D e f a u l t p r e f i x i s ” I R I S ”

# Any p a r a m e t e r s i n [ ] a r e o p t i o n a l

# G e n e r a l e v e n t s − n o t needed f o r SW

IRIS RESET ALL

IRIS FINISH

# I r i s C o n f i g − P r i n t sys tem / s i m u l a t i o n c o n f i g u r a t i o n i n f o r m a t i o n

IRIS PARAM SETTING [@ c y c l e ] <param> <s e t t i n g >

# I r i s L o g g e r − Logging and p r i n t i n g e v e n t s

IRIS INFO [@ c y c l e ] <message>

IRIS LOG [@ c y c l e ] <l og message>
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IRIS WARN [@ c y c l e ] <warn ing message>

IRIS ERROR [@ c y c l e ] <e r r o r m e s s a g e>

# IRIS COUNTER e v e n t s

NEW IRIS COUNTER < i r i s c o u n t e r n a m e > [@ c y c l e ]

IC INC BY ONE < i r i s c o u n t e r n a m e > [@ c y c l e ]

IC INC BY N < i r i s c o u n t e r n a m e > [@ c y c l e ] <n>

IC DEC BY ONE < i r i s c o u n t e r n a m e > [@ c y c l e ]

IC DEC BY N < i r i s c o u n t e r n a m e > [@ c y c l e ] <n>

IC RESET < i r i s c o u n t e r n a m e > [@ c y c l e ]

# IRIS COUNTER 1D

NEW IRIS COUNTER 1D < i r i s c o u n t e r v e c t o r n a m e > <s i z e>

IC 1D INC BY ONE < i r i s c o u n t e r n a m e > [@ c y c l e ] <id>

IC 1D INC BY N < i r i s c o u n t e r n a m e > [@ c y c l e ] <id> <n>

IC 1D DEC BY ONE < i r i s c o u n t e r n a m e > [@ c y c l e ] <id>

IC 1D DEC BY N < i r i s c o u n t e r n a m e > [@ c y c l e ] <id> <n>

IC 1D RESET < i r i s c o u n t e r n a m e > [@ c y c l e ] <id>

# IRIS COUNTER 2D

NEW IRIS COUNTER 2D < i r i s c o u n t e r v e c t o r n a m e > <s i z e x> <s i z e y>

IC 2D INC BY ONE < i r i s c o u n t e r n a m e > [@ c y c l e ] <i> <j>

IC 2D INC BY N < i r i s c o u n t e r n a m e > [@ c y c l e ] <i> <j> <n>

IC 2D DEC BY ONE < i r i s c o u n t e r n a m e > [@ c y c l e ] <i> <j>

IC 2D DEC BY N < i r i s c o u n t e r n a m e > [@ c y c l e ] <i> <j> <n>

IC 2D RESET < i r i s c o u n t e r n a m e > [@ c y c l e ] <i> <j>

# IRIS SAMPLER e v e n t s

# <num bins> d e f i n e s b i n s used f o r h i s t o g r a m

# <bin min> <bin max> d e f i n e s r a n g e o f v a l u e s used f o r h i s t o g r a m and s i z e o f b i n s

NEW IRIS SAMPLER <i r i s s a m p l e r n a m e > <num bins> <bin min> <bin max>

IS ADD SAMPLE <i r i s s a m p l e r n a m e > [@ c y c l e ] <sample>

IS CLEAR <i r i s s a m p l e r n a m e > [@ c y c l e ]
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# IRIS SAMPLER 1D

NEW IRIS SAMPLER 1D <i r i s s a m p l e r n a m e > <s i z e> <num bins> <bin min> <bin max>

IS 1D ADD SAMPLE <i r i s s a m p l e r n a m e > [@ c y c l e ] <id> <sample>

IS 1D CLEAR <i r i s s a m p l e r n a m e > [@ c y c l e ] <id>

# IRIS SAMPLER 2D

NEW IRIS SAMPLER 2D <i r i s s a m p l e r n a m e > <s i z e x> <s i z e y> <num bins> <bin min> <bin max>

IS 2D ADD SAMPLE <i r i s s a m p l e r n a m e > [@ c y c l e ] <i> <j> <sample>

IS 2D CLEAR <i r i s s a m p l e r n a m e > [@ c y c l e ] <i> <j>

# IRIS TRACE SAMPLER e v e n t s

# num quantums and q u a n t u m l e n g t h n o t needed i n SW − use any v a l u e s

NEW IRIS TRACE SAMPLER < i r i s t r a c e s a m p l e r n a m e > <num quantums> <q u a n t u m l e n g t h>

ITS ADD SAMPLE < i r i s t r a c e s a m p l e r n a m e > [@ c y c l e ] <sample>

# S t a r t s new quantum − c a l l p e r i o d i c a l l y i n SW

ITS NEW QUANTUM < i r i s t r a c e s a m p l e r n a m e > [@ c y c l e ]

ITS CLEAR < i r i s t r a c e s a m p l e r n a m e > [@ c y c l e ]

# IRIS EVENT TRACKER

NEW IRIS EVENT TRACKER < i r i s e v e n t t r a c k e r n a m e > [@ c y c l e ] <num events>

IET EVENT NAME < i r i s e v e n t t r a c k e r n a m e > [@ c y c l e ] <e v e n t i d> <event name>

IET ADD EVENT < i r i s e v e n t t r a c k e r n a m e > [@ c y c l e ] <e v e n t i d>

# IRIS EVENT TRACKER 1D

NEW IRIS EVENT TRACKER 1D < i r i s e v e n t t r a c k e r n a m e > [@ c y c l e ] <s i z e> <num events>

IET 1D EVENT NAME < i r i s e v e n t t r a c k e r n a m e > [@ c y c l e ] <id> <e v e n t i d> <event name>

IET 1D ADD EVENT < i r i s e v e n t t r a c k e r n a m e > [@ c y c l e ] <id> <e v e n t i d>

# IRIS EVENT TRACKER 2D

NEW IRIS EVENT TRACKER 2D < i r i s e v e n t t r a c k e r n a m e > [@ c y c l e ] <s i z e x> <s i z e y> <num events>

IET 2D EVENT NAME < i r i s e v e n t t r a c k e r n a m e > [@ c y c l e ] <i> <j> <e v e n t i d> <event name>

IET 2D ADD EVENT < i r i s e v e n t t r a c k e r n a m e > [@ c y c l e ] <i> <j> <e v e n t i d>
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C.2 IRIS Event Output Example

I R I S IRIS PARAM SETTING NETWORK PARAMETERS FILE

mesh 16RTs 2VCs 8BD 32DW SepIFRoundRobinAlloc 4RTsPerRow 4RTsPerCol parameters . bsv

I R I S IRIS PARAM SETTING NETWORK LINKS

mesh 16RTs 2VCs 8BD 32DW SepIFRoundRobinAlloc 4RTsPerRow 4RTsPerCol l inks . bsv

I R I S IRIS PARAM SETTING NETWORK ROUTING FILE PREFIX

mesh 16RTs 2VCs 8BD 32DW SepIFRoundRobinAlloc 4RTsPerRow 4RTsPerCol rout ing

I R I S IRIS PARAM SETTING NUM ROUTERS 16

I R I S IRIS PARAM SETTING NUM IN PORTS 5

I R I S IRIS PARAM SETTING NUM OUT PORTS 5

I R I S IRIS PARAM SETTING NUM VCS 2

I R I S IRIS PARAM SETTING FLIT BUFFER DEPTH 8

I R I S IRIS PARAM SETTING FLIT DATA WIDTH 32

I R I S IRIS PARAM SETTING NUM LINKS 48

I R I S IRIS PARAM SETTING TRACE FILE PREFIX u n i f o r m 4 5

I R I S NEW IRIS COUNTER 1D p a c k e t s p e r s r c 16

I R I S NEW IRIS COUNTER 1D f l i t s p e r s r c 16

I R I S NEW IRIS COUNTER 1D p a c k e t s p e r d s t 16

I R I S NEW IRIS COUNTER 1D f l i t s p e r d s t 16

I R I S NEW IRIS COUNTER 2D p a c k e t s b y s r c d s t 16 16

I R I S NEW IRIS COUNTER 2D f l i t s b y s r c d s t 16 16

I R I S NEW IRIS SAMPLER 1D f l i t l a t e n c y p e r d s t 16 256 0 255

I R I S NEW IRIS SAMPLER 1D p a c k e t l a t e n c y p e r d s t 16 256 0 255

I R I S NEW IRIS COUNTER @ 0 t o t a l p a c k e t s s e n t

I R I S NEW IRIS COUNTER @ 0 t o t a l f l i t s s e n t

I R I S NEW IRIS COUNTER @ 0 t o t a l p a c k e t s r e c e i v e d

I R I S NEW IRIS COUNTER @ 0 t o t a l f l i t s r e c e i v e d

I R I S NEW IRIS SAMPLER @ 0 t o t a l p a c k e t l a t e n c y 256 0 255

I R I S NEW IRIS SAMPLER @ 0 t o t a l f l i t l a t e n c y 256 0 255

I R I S NEW IRIS SAMPLER @ 0 c r e d i t s a v a i l a b l e v c 0 256 0 255

I R I S NEW IRIS SAMPLER @ 0 c r e d i t s a v a i l a b l e v c 1 256 0 255

I R I S NEW IRIS SAMPLER @ 0 c r e d i t s a v a i l a b l e c o r n e r 256 0 255

I R I S NEW IRIS SAMPLER @ 0 c r e d i t s a v a i l a b l e e d g e 256 0 255
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I R I S NEW IRIS SAMPLER @ 0 c r e d i t s a v a i l a b l e c e n t e r 256 0 255

I R I S NEW IRIS TRACE SAMPLER @ 0 p a c k e t l a t e n c y o v e r t i m e 100 500

I R I S NEW IRIS TRACE SAMPLER @ 0 f l i t l a t e n c y o v e r t i m e 100 1000

I R I S NEW IRIS EVENT TRACKER @ 0 c o r n e r r t s t a t u s 5

I R I S IET SET EVENT NAME @ 0 c o r n e r r t s t a t u s 0 I d l e

I R I S IET SET EVENT NAME @ 0 c o r n e r r t s t a t u s 1 S e n d i n g n o b a c k p r e s s u r e

I R I S IET SET EVENT NAME @ 0 c o r n e r r t s t a t u s 2 S e n d i n g l o w b a c k p r e s s u r e

I R I S IET SET EVENT NAME @ 0 c o r n e r r t s t a t u s 3 S e n d i n g h i g h b a c k p r e s s u r e

I R I S IET SET EVENT NAME @ 0 c o r n e r r t s t a t u s 4 B l o c k e d o u t o f c r e d i t s

I R I S NEW IRIS COUNTER @ 0 F l i t s S e n t B y R o u t e r

. . .

I R I S IC INC BY ONE @ 9157 F l i t s S e n t B y R o u t e r

I R I S IC 1D INC BY ONE @ 9158 f l i t s p e r d s t 1

I R I S IS ADD SAMPLE @ 9158 t o t a l f l i t l a t e n c y 13

I R I S ITS ADD SAMPLE @ 9158 f l i t l a t e n c y o v e r t i m e 13

I R I S IS 1D ADD SAMPLE @ 9158 f l i t l a t e n c y p e r d s t 1 13

I R I S IC 1D INC BY ONE @ 9158 f l i t s p e r d s t 3

I R I S IS ADD SAMPLE @ 9158 t o t a l f l i t l a t e n c y 20

I R I S ITS ADD SAMPLE @ 9158 f l i t l a t e n c y o v e r t i m e 20

I R I S IS 1D ADD SAMPLE @ 9158 f l i t l a t e n c y p e r d s t 3 20

I R I S IC 1D INC BY ONE @ 9158 f l i t s p e r d s t 5

I R I S IS ADD SAMPLE @ 9158 t o t a l f l i t l a t e n c y 3

I R I S ITS ADD SAMPLE @ 9158 f l i t l a t e n c y o v e r t i m e 3

I R I S IS 1D ADD SAMPLE @ 9158 f l i t l a t e n c y p e r d s t 5 3

I R I S IC 1D INC BY ONE @ 9158 f l i t s p e r d s t 7

I R I S IS ADD SAMPLE @ 9158 t o t a l f l i t l a t e n c y 11

I R I S ITS ADD SAMPLE @ 9158 f l i t l a t e n c y o v e r t i m e 11

I R I S IS 1D ADD SAMPLE @ 9158 f l i t l a t e n c y p e r d s t 7 11

I R I S IC 1D INC BY ONE @ 9158 f l i t s p e r d s t 9

I R I S IS ADD SAMPLE @ 9158 t o t a l f l i t l a t e n c y 2

I R I S ITS ADD SAMPLE @ 9158 f l i t l a t e n c y o v e r t i m e 2

I R I S IS 1D ADD SAMPLE @ 9158 f l i t l a t e n c y p e r d s t 9 2

I R I S IC 1D INC BY ONE @ 9158 f l i t s p e r d s t 11

I R I S IS ADD SAMPLE @ 9158 t o t a l f l i t l a t e n c y 19
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I R I S ITS ADD SAMPLE @ 9158 f l i t l a t e n c y o v e r t i m e 19

I R I S IS 1D ADD SAMPLE @ 9158 f l i t l a t e n c y p e r d s t 11 19

I R I S IC 1D INC BY ONE @ 9158 f l i t s p e r d s t 14

I R I S IS ADD SAMPLE @ 9158 t o t a l f l i t l a t e n c y 6

I R I S ITS ADD SAMPLE @ 9158 f l i t l a t e n c y o v e r t i m e 6

I R I S IS 1D ADD SAMPLE @ 9158 f l i t l a t e n c y p e r d s t 14 6

I R I S IC INC BY N @ 9158 t o t a l p a c k e t s r e c e i v e d 0

I R I S IC INC BY N @ 9158 t o t a l f l i t s r e c e i v e d 7

I R I S IET ADD EVENT @ 9158 c o r n e r r t s t a t u s 2

I R I S IC 1D INC BY ONE @ 9158 f l i t s p e r s r c 0

I R I S IC 2D INC BY ONE @ 9158 f l i t s b y s r c d s t 0 5

I R I S IET ADD EVENT @ 9158 e d g e r t s t a t u s 0

I R I S IC 1D INC BY ONE @ 9158 f l i t s p e r s r c 2

I R I S IC 2D INC BY ONE @ 9158 f l i t s b y s r c d s t 2 3

I R I S IC 1D INC BY ONE @ 9158 f l i t s p e r s r c 4

I R I S IC 2D INC BY ONE @ 9158 f l i t s b y s r c d s t 4 7

I R I S IC 1D INC BY ONE @ 9158 f l i t s p e r s r c 6

I R I S IC 2D INC BY ONE @ 9158 f l i t s b y s r c d s t 6 8

I R I S IC 1D INC BY ONE @ 9158 f l i t s p e r s r c 7

I R I S IC 2D INC BY ONE @ 9158 f l i t s b y s r c d s t 7 8

I R I S IET ADD EVENT @ 9158 c e n t e r r t s t a t u s 0

I R I S IC 1D INC BY ONE @ 9158 f l i t s p e r s r c 10

I R I S IC 2D INC BY ONE @ 9158 f l i t s b y s r c d s t 10 9

I R I S IC 1D INC BY ONE @ 9158 f l i t s p e r s r c 12

I R I S IC 2D INC BY ONE @ 9158 f l i t s b y s r c d s t 12 7

I R I S IC 1D INC BY ONE @ 9158 p a c k e t s p e r s r c 12

I R I S IC 2D INC BY ONE @ 9158 p a c k e t s b y s r c d s t 12 7

I R I S IC INC BY N @ 9158 t o t a l p a c k e t s s e n t 1

I R I S IC INC BY N @ 9158 t o t a l f l i t s s e n t 7

I R I S IS ADD SAMPLE c r e d i t s a v a i l a b l e v c 0 7

I R I S IS ADD SAMPLE c r e d i t s a v a i l a b l e c o r n e r 7

I R I S IS ADD SAMPLE c r e d i t s a v a i l a b l e v c 1 8

I R I S IRIS ERROR @ 9273 DeadlockChecker − d e a d l o c k d e t e c t e d !
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