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Abstract

Cloudlet offload is a valuable technique for ensuring low end-to-end latency of resource-intensive
cloud processing for many emerging mobile applications. This paper examines the impact of user
mobility on cloudlet offload, and shows that even modest user mobility can result in significant
network degradation. We propose VM handoff as a technique for seamlessly transferring VM-
encapsulated execution to a more optimal offload site as users move. Our approach can perform
handoff in roughly a minute even over limited WANs by adaptively reducing data transferred. We
present experimental results to validate our implementation and to demonstrate effectiveness of
adaptation to changing network conditions and processing capacity.
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1 Introduction
Seamless handoff is a core concept in cellular networks. Without any disruption to ongoing voice or
data transmission, a user is able to freely move over a significant geographic area that is spanned
by many base stations of limited individual coverage. In this paper, we describe an analogous
mechanism for cloud offload. For reasons of low end-to-end latency, some emerging mobile appli-
cations require cloud offload infrastructure to be close to the mobile device. In the ideal case, it is
just one wireless hop away. For example, the offload infrastructure could be located in a cellular
base station or it could be LAN-connected to a set of Wi-Fi base stations. In keeping with recent
usage [24], we refer to individual elements of this offload infrastructure as cloudlets. An industry
initiative on Mobile-edge Computing (MEC) was recently created by the European Telecommuni-
cations Standards Institute (ETSI) [12] to standardize cloudlets and to create a new ecosystem and
value chain.

Since virtual machine (VM) encapsulation is used for safety, isolation, resource allocation,
and provisioning of multi-tenant cloudlets, we refer to our mechanism as VM handoff. As a user
moves, his VM is seamlessly transferred from cloudlet to cloudlet in order to preserve low end-
to-end latency. This mechanism resembles live migration of VMs in data centers, but differs in at
least three important ways.

First, the two mechanisms are optimized for very different performance metrics. The figure of
merit in VM handoff is total time to completion, since degraded end-to-end latency persists until
the end of the operation. Live migration, on the other hand, aims at short duration of the very last
step (called “down time”), during which the VM instance is suspended. The total time to comple-
tion is a secondary consideration. As we show in Section 5.1, this difference in optimization metric
can result in an order of magnitude difference in total completion time. Second, the economics of
cloudlet deployments force it to accept whatever network and computing resources exist across
dispersed cloudlets. Unlike the data center assumptions of live migration, VM handoff cannot rely
on the presence of a dedicated high-bandwidth network. Hence, our system needs to tolerate high
variability in bandwidth and compute capacity due to workloads from other users even during the
course of a single handoff. By dynamically adapting to these changing conditions, VM handoff
can offer significant performance improvement as shown in Section 5.3. Third, VM handoff lever-
ages the presence at the destination of a base VM from which its image was derived and uses this
in combination with delta provisioning of VM states as originally proposed by Ha et al. [15].

VM handoff targets emerging mobile applications that require low end-to-end latency. For
example, the report of the 2013 NSF Workshop on Future Directions in Wireless Networking [4]
identifies a new genre of applications called cognitive assistive applications that it characterizes as
“astonishingly transformative.” These applications use cloud resources in the critical path of real-
time user interaction. Consequently, they cannot tolerate end-to-end operation latencies of more
than a few tens of milliseconds. Augmented reality applications that use head-tracked systems
require end-to-end latencies of less than 16 ms [11]. Thin client access to cloud-based virtual
desktop applications require an end-to-end latency of less than 60 ms to match the perceived quality
of local execution [28]. Action games with remote rendering also require low latencies and high
bandwidth [16].

The interactive response of such latency-sensitive applications will degrade as the logical net-
work distance increases. As discussed in the next section, this degradation can be far worse than
physical distance may suggest. VM handoff can mitigate this effect of user mobility while remain-
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5% 10% 50% 90% 95%
Home A & B 18.5 19.2 26.4 77.8 133.6
Home B & C 36.4 37.2 44.9 87.2 98.0
Home C & A 38.8 39.3 44.9 75.1 92.6

(a) Latency Distribution (milliseconds)

5% 10% 50% 90% 95%
Home A & B 0.5 0.6 1.9 2.3 2.3
Home B & C 0.5 0.7 0.8 0.9 0.9
Home C & A 0.5 0.5 0.8 0.9 0.9

(b) Upload Bandwidth Distribution (Mbps)

These are the observed distributions of latency and upload bandwidth over a one-week
period in November 2014 between three homes that are located within a one square
mile area. All the homes have broadband Internet connectivity provided by ISP1 for A
and B, and ISP2 for C.

Figure 1: Network Quality Between Homes

ing transparent to applications.

2 Why VM Handoff?
In practice, how important is VM handoff to user experience? Consider the scenario of a user
visiting his neighbor who lives just down the street. The user is running a mobile application that
is latency-sensitive and is using the services of a cloudlet in his home. When he reaches the second
home, he associates with a Wi-Fi access point there but continues to use the original cloudlet.
Because of two traversals of last-mile links connecting the homes to their ISPs, the user is likely
to see significant degradation of latency and bandwidth to his cloudlet.

To validate this intuition, we measured network quality over a one-week period between the
homes of three authors of this paper that are located within the same neighborhood in a city. As the
results in Figure 1 show, end-to-end latency and bandwidth are poor in spite of physical proximity.
For example, even though homes A and B connect to the same ISP, the median latency between
them is 26.4 milliseconds. This is consistent with measurements reported by Sundaresan et al [26].
Homes that are connected to different ISPs can expect even worse network quality between them.
For example, homes B and C are just one block apart, but the median latency between them is more
than 40 milliseconds. Without VM handoff, even modest user mobility may result in unacceptable
degradation of network quality to the associated cloudlet.

Degraded network quality translates into slower response times for latency-sensitive applica-
tions. To illustrate this, we evaluate the performance of three representative mobile applications. In
our experiments, user interaction occurs on a mobile device while the compute-intensive process-
ing of each interaction occurs in a back-end server encapsulated in a VM instance on a cloudlet. In
the FLUID application, the mobile device sends sensor readings from a smartphone to a cloudlet;
there, a compute-intensive particle simulation of a liquid with specific viscosity properties is per-
formed [25], and a frame containing the liquid’s state is generated and returned for rendering. In

2



(a) Fluid Graphics (10 minutes run) (b) Face Recognition (300 requests)

(c) Augmented Reality (100 requests)

Figure 2: CDF of Response Times (milliseconds)

the FACE application, an image is shipped from the mobile device to the cloudlet; there, a face
recognition algorithm is executed and a text string of the name of the person is returned. This
algorithm uses a Haar Cascade of classifiers for face detection and the Eigenfaces method for face
identification [29]. In the MAR application, an image is shipped from the mobile device to the
cloudlet; there, a back-end server identifies buildings and landmarks, and returns a modified image
with these annotations [27].

In Figure 2, the label “nearby cloudlet” corresponds to the case where the mobile device and
cloudlet are both located at home C. In this configuration, the mobile device has one-hop Wi-Fi
connectivity to its cloudlet. The label “distant cloudlet” corresponds to the case where the mobile
device is at C, but its associated cloudlet is at A. In all cases, a nearby cloudlet yields significantly
lower response times. For example, the median response time of FACE is 104 ms when it is
associated to the nearby cloudlet, but it is 882 ms when using the distant cloudlet. Since this
performance difference is solely due to differing network conditions, it confirms the importance of
VM handoff.

3 Background and Related work

3.1 Live Migration for Data Centers
Live migration [8] is the de facto standard for VM migration in data centers. Its goal is to mini-
mize “down time” during which a migrating VM instance is suspended. To achieve this goal, live
migration allows the VM instance to continue execution at the source host while transferring mod-
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VM Total Down State
time time transfer size

OBJECT 127 Min (0.03) 1.45 s (0.1) 8.42 GB (0.004)
MAR 159 Min (394) 7.44 s (0.3) 10.56 GB (0.43)

(a) No Base Image at Destination (no-share)

VM Total Down State
time time transfer size

OBJECT 12 Min (0.07) 1.54 s (0.3) 0.80 GB (0.004)
MAR 52 Min (20.4) 7.63 s (0.8) 3.45 GB (1.35)

(b) Using Base Image at Destination (incremental)

VM for both OBJECT and MAR are configured with 8GB disk and 1GB memory. The
OBJECT guest operating system is Ubuntu Linux 12.04, while that of MAR is Windows
7. Average of 3 runs is reported with standard deviation in parentheses.

Figure 3: QEMU-KVM Live Migration on WAN

ified memory state in the background to the destination host. During the transfer, which may take
many seconds to tens of seconds in typical usage, additional memory state may be modified by the
executing VM instance. The entire process is repeated for multiple iterations (typically of shorter
and shorter durations) until the very last step. In that final step, the VM instance is suspended
at the source, all its remaining modified state is sent to the destination, and execution is resumed
there. Through this convergent series of iterations, live migration minimizes down time to as little
as hundreds of milliseconds on LAN. The entire migration process typically takes between tens of
seconds to a few minutes.

As originally described, live migration does not transfer disk state; it only transfers memory
state. This is acceptable in a data center environment because the source and destination hosts can
be assumed to share disk storage through a mechanism such as a SAN (storage area network) or
NAS (network-attached storage) device. A number of efforts [2, 6, 19, 32] have extended the basic
live migration mechanism to work across data centers that are connected by a WAN. These efforts
address the transfer of both memory state and disk state during migration, since shared-storage
mechanisms do not work well over WANs.

3.2 Using Live Migration for VM Handoff
One may wonder whether VM live migration can be used with cloudlets because it is designed
for seamless migration of computing states across machines. To verify feasibility, we conducted
experiments using QEMU-KVM in Ubuntu Linux 12.04. This production-quality VMM imple-
mentation is widely used in OpenStack data centers for cloud computing [20]. As representative
cloudlet workloads, we use MAR, the augmented reality application that was described in Sec-
tion 2, and OBJECT, an object recognition application. The back-end server of OBJECT uses the
MOPED algorithm [9] on an image sent by the mobile device, and returns the bounding box and
identity of recognized objects. We performed live migration between two cloudlets that were con-
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Figure 4: Overall System Diagram for VM Handoff

nected by a stable 10 Mbps, 50 ms RTT network provided by a Linktropy emulator on a gigabit
Ethernet.

QEMU-KVM hypervisor provides a mechanism to migrate both memory states and disk states,
called live block migration. In live block migration, one can either transfer entire disk state to the
destination or only transmit incremental disk state assuming the source and destination share base
disk states. Figure 3(a) presents the results for the expected worst case, which transfers the entire
disk state to the destination. The results show a total migration time of over two hours for both
images, but a down time of just a few seconds. Two hours is a very long time for a mobile user
to suffer degraded network access to his cloudlet. The fact that down time is just a few seconds is
little consolation. Most mobile users would gladly accept much longer down times if it resulted in
a faster switch to a nearby cloudlet.

Figure 3(b) presents the results when the base VM images into which OBJECT and MAR were
installed are available at the destination cloudlet. One would expect the total state transfer, and
hence migration time, to decrease significantly. This is indeed true for OBJECT, which completes
the entire migration in just 12 minutes. Unfortunately, MAR behaves quite differently. The total mi-
gration time still takes more than 50 minutes with high variation. It turns out that this unexpected
behavior is due to the timing of background activity in the Windows 7 guest. This background ac-
tivity generates modified memory state at rate high enough to inordinately prolong live migration.
And it is reflected in the large total volume of state transferred. Yet, down time remains less than
10 seconds for MAR in Figure 3(b).

In principle, one could re-tune live migration parameters to eliminate this pathological behav-
ior. However, this could hurt down time in situations where that metric matters. Optimizing for the
right context-sensitive metric is a non-trivial problem. Classic live migration is a fine choice for
data centers, but inappropriate in a cloudlet context. Other possibilities include applying the con-
cept of partial VM migration [5], and leveraging content similarity from VM images distributed
across multiple nodes [17, 21, 22, 23]. These approaches are complementary to VM handoff,
which focuses on achieving near-ideal post-handoff performance without reliance on external in-
frastructure.
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3.3 Dynamic VM Synthesis
Dynamic VM synthesis [24] leverages the fact that most VM images are derived from a small
number of widely-used base VM images (typically Linux or Windows) that can pre-populate
cloudlets. The desired application-specific VM image, referred to as the launch VM, is initially
created through a relatively slow offline process that involves installation of application-specific
software (including dynamically-linked libraries and tool chains) into a base VM. The binary dif-
ference between a launch VM and its base VM is the VM overlay, whose small relative size is the
key to previous work on rapid provisioning [15]. At runtime, the launch VM is reconstituted by
applying the overlay to its base VM.

Our implementation of VM handoff is inspired by VM synthesis. However, rather than overlay
creation being a one-time offline operation, a series of overlays are generated afresh at runtime on
the source cloudlet during the course of a single VM handoff. The time for overlay creation, which
was ignored in earlier work because it was an offline operation, now becomes a significant limiting
factor. In addition, the tuning parameters (such as compression algorithm) used in overlay creation
are dynamically re-optimized at run-time in order to reflect the current relative costs of network
transmission and cloudlet computation. Thus, although VM handoff borrows concepts from VM
synthesis, it represents a substantial new mechanism in its own right.

4 Design and Implementation
Our design of VM handoff reflects the three considerations mentioned in Section 1: (a) optimiz-
ing for total handoff time rather than down time; (b) dynamically adapting to WAN bandwidth
and cloudlet load; and (c) leveraging existing VM state at cloudlets. Figure 4 illustrates the over-
all design. A pipeline of processing stages is used to efficiently find and encode the differences
between current VM state at the source, and already-present VM state at the destination. This
delta encoding is then deduplicated and compressed (using parallelization wherever possible), and
then transferred. The algorithms and parameters used in these stages are chosen to match current
processing resources and network bandwidth. We describe these details below.

4.1 Tracking Changes
Our system is mostly implemented as modules separate from the hypervisor. This allows the sys-
tem to be more flexible in controlling the resource usage for handoff, minimizes modifications to
the hypervisor, and potentially allows support for different hypervisors, though our current imple-
mentation uses QEMU/KVM. On the other hand, it is more difficult to track VM disk and memory
state changes from outside the hypervisor.

To efficiently track changes to VM disk state, our system uses the Linux FUSE interface to
implement a user-level filesystem on which the VM disk image is stored. All of the running VM’s
disk accesses are passed through the FUSE layer, which can accurately track modified blocks
with little performance impact to the running VM. At the start of handoff, our system can then
immediately capture all VM disk blocks that differ from those in the corresponding standard base
VM image. As in live migration, the VM can continue to run, and any further disk modifications
will be tracked for subsequent iterations of transmission.
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LZMA level 9 for compression)

For tracking VM memory modifications, a FUSE-like approach would incur too much overhead
on every memory write. Instead, we capture the memory snapshot at handoff, and determine the
changed blocks in our code. To get the memory state, we rely on QEMU/KVM’s live migration
mechanism. We use a Unix socket to send a command to QEMU/KVM to start migrating state.
This will cause it to mark all VM pages as read-only to trap and track any further modifications, and
to start a complete transfer of the memory state. Rather than sending this state over the network,
our system redirects this through a pipe to our processing stages that filter out unmodified pages,
and heavily compress the remaining data before transmission using various techniques. As this
capture of memory snapshot is based on a mechanism intended for live migration, QEMU/KVM
will then iterate this process, sending pages that were modified over the duration of the previous
iteration of modified pages. To limit repeated transmission of a set of rapidly changing pages, our
system can regulate the start of these iterations, limit how many iterations are performed, or can
eliminate them completely by pausing the VM before starting the memory snapshot.

4.2 Reducing Data Size
As the network bandwidth is often the bottleneck in VM handoff, our system tries to aggressively
reduce the data volume transmitted across the network. We implement a pipeline of processing
stages to delta-encode, deduplicate, and compress data before it hits the network.

We study the effectiveness of these processing stages in reducing data size on four applications
that are representative of cloudlet workloads. The behavior of these applications, OBJECT, FACE,
MAR, and FLUID are explained in Figure 2 and 3. Figure 5 shows that the system can significantly
reduce the volume of data transferred to between 1/5 and 1/10 of the total modified data blocks.
However, the processing costs of these operations may result in CPU, rather than network transfer,
becoming the bottleneck. To avoid this, our system can use different algorithms and settings to bal-
ance the processing requirements and data size reductions. Details of these options are discussed
below.
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Delta encoding of modified pages and blocks: The streams of modified disk blocks and all
VM memory pages are fed to two delta encoding stages (Disk diff and Memory diff stages in Fig-
ure 4). The data streams are split into 4KB (page/block size) chunks, and are compared to the
corresponding chunks in the base VM. We use a SHA-256 hash [14] to make these comparisons.
The hash values are preserved for later use. Chunks that are identical to those in the base VM are
omitted. For each modified chunk, we use binary delta algorithm to encode the difference between
the chunk and the corresponding one in the base VM image, and only transmit the delta if it is
smaller in size than the chunk. The idea here is that small or partial modifications are common
and there may be significant overlap between the modified and original block when viewed at finer
granularities. Our system can be dynamically configured to use either xdelta3, bsdiff4, or
xor to perform the binary delta encoding, or to simply pass through modified chunks without delta
encoding. As both the hash computations and the delta encoding steps are compute intensive, we
parallelize these on multiple processing threads.

Deduplication: The streams of modified disk and memory chunks, along with the computed
hash values, are merged and passed to the deduplication stage. Deduplication has been widely
used and is very effective in reducing redundant data in a variety of contexts. Here, deduplication
is particularly effective, as multiple copies of the same data commonly occur in a running VM. For
example, multiple copies of the same data may reside in kernel and user-level buffers, or on disk
and OS page caches. For each modified chunk, we compare the hash value to those of (1) all base
VM disk chunks, (2) all base VM memory chunks, (3) a zero-filled chunk, (4) all prior chunks seen
by this stage. The last is important to capture multiple copies of new data in the system, in either
disk or memory. This stage filters out the duplicates that are found, replacing them with pointers
to identical chunks in the base VM image, or that were previously emitted. As the SHA-256 hash
used for matching was already computed in the previous stage, deduplication primarily reduces to
fast hash lookups operations, so this stage can be easily run as a single thread.

Compression: Compression is a final stage of processing before the VM modification data is
sent to the network. In this stage, we attempt to squeeze the data further by applying one of several
off-the-shelf compression algorithms, including GZIP (deflate algorithm) [10], BZIP2 [7], and
LZMA [31]. These algorithms vary in the data compression achieved and processing speed. GZIP
provides relatively modest compression ratios, but uses very little processing time. LZMA is op-
timized for high compression ratios and fast decompression, but at the price of slow compression.
BZIP2 falls in the middle in terms of compression rate and processing requirements. As these
compression algorithms (particularly LZMA) work best on large blocks of data, this stage aggre-
gates the modified chunk stream into approximately 1 MB segments before applying compression.
Finally, as this is a CPU intensive stage, we run multiple instances of the compression algorithms
in separate execution threads, sending segments to the threads in round-robin fashion. This lets
us take advantage of all available cores, and parallelizes well, without requiring multi-threaded
implementations of the compression algorithms.

4.3 Pipelined Execution
Our system pipelines the execution of these processing stages, so all of them are active simulta-
neously, and data is streamed through the various processing steps. This has two main advantages
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(a) Serial Processing

(b) Pipelined Processing

Memory/Disk diff stage use xdelta3 algorithm and compression stages uses LZMA
compression level 5.

Figure 6: Serial versus Pipelined Processing

over a serialized implementation, where all data is processed through a particular stage before start-
ing the next stage. First, it allows downstream stages to start before the preceding ones complete.
In particular, we can start transferring data on the network quickly, in parallel to the processing
stages. Increasing network bandwidth utilization is critical for VM handoff between cloudlets,
where network bandwidth is a scarce resource that should not be wasted or left unsused. Pipelin-
ing helps ensure migration data begins to reach the network as quickly as possible. Secondly, it
requires less memory to buffer the intermediate data generated by the individual stages, as they are
consumed quickly by downstream ones. Note that the total processing time is not significantly af-
fected by the pipelining. This is because the total amount of computation is roughly the same, and
even in the serialized case, our multi-threaded stages can make good use of multiple processing
cores.

The example measurements in Figure 6 illustrate the benefit of a pipelined implementation. In
the serial case, each stage has to be completed before the next stage can begin. In the pipelined
case, all stages are available to begin processing data very soon after initialization. Figure 6 shows
that pipelining produces a roughly 5% reduction in total processing time. (Serial processing takes
109.6 s and pipelined processing takes 102.7 s from its start to finishing compression). However,
total handoff time is reduced by 36% (171.9 s ! 110.2 s) because network transfers are overlapped
with execution of the processing stages.

We also measure how well our pipelined system scales as the available CPU resources increase
at the cloudlet. Figure 7 shows VM handoff time for different workloads with differing number of
CPU cores. Except for FLUID, the processing throughput increases as we use more cores. Much of
the gain comes from parallel processing of the input data, since we use multiple execution threads
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Figure 7: Processing Scalability of the System

for the stages that are CPU-intensive such as binary delta and compression. For FLUID, the total
volume of data processed is too small to significantly benefit from multiple cores.

4.4 Dynamic Adaptation
In the example handoff performance data from Figure 6, due to the particular choices of algorithms
and parameters used, the system is clearly processing bound. The processing takes 109.6 s, and
dominates the total handoff time, while network transfer only requires 62.3 s. Here, it would have
been better to select compression algorithms to reduce the processing requirements, even at the
expense of data transfer size in order to reduce the overall handoff time.

If we knew exactly how much compression could be achieved and exactly how long this would
take to transfer the modified VM state for all algorithms, and had guarantees on the available
bandwidth, we could find a static configuration of processing stages to optimize the handoff time.
However, we cannot know all of these in advance, as this is highly dependent on the actual data
that needs to be transferred. Furthermore, network bandwidth can fluctuate significantly over time,
as can available processing resources. Thus, selecting the best processing parameters a priori is
not practical, and in any case, a static configuration may not remain the best choice as conditions
change over the duration of handoff. Furthermore, the best static configuration for one workload
might not work well for the other workloads because processing time and compression ratio vary
depending on the workloads. Instead, our system employs continuous monitoring of handoff per-
formance, and uses this information to dynamically adapt the processing stage settings to reduce
handoff time, as detailed below. In the rest of this paper, we refer to a set of selected algorithms
and parameters for the processing stages as an operating mode.

4.4.1 Pipeline Performance Model

In order to develop an algorithm to select the right operating mode, we first develop a simplified
model of our processing pipeline. The goal of this modeling is to calculate the system throughput
by identifying the bottlenecks. Our pipelined system has two potential bottlenecks: processing and
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Stage 1 
 

R1, P1 

Stage 2 
 

R2, P2 

Stage n 
 

Rn, Pn 

Network 

Figure 8: Pipeline modeling

network transmission. On one hand, the handoff operation will be bottlenecked by the processing
speed if the system is configured to aggressively reduce migration data size using processing-
intensive algorithms and settings. On the other hand, the speed of handoff may be limited by
the available network bandwidth if the pipeline does less processing in order to more fully utilize
network bandwidth. In this modeling, we characterize system throughput with respect to these
potential bottlenecks.

Figure 8 shows a simplified model of our pipeline. The processing is a sequence of stages 1 –
n, each of which takes input data and outputs a transformed, smaller version of the data. For each
stage i, we define:

P

i

= processing time, R
i

=
output size
input size

at stage i

These values are defined for a particular operating mode (set of selected algorithms and param-
eters for the processing stages). From these, we can compute the processing time as:

T ime

processing

=
X

1in

P

i

(1)

The time to transfer on the network is computed as:

T ime

network

=
Size

migration

Network bandwidth
(2)

(where Size

migration

= Sizemodified VM ⇥ (R1 ⇥ · · ·⇥R

n

))

Since our pipeline overlaps processing and network transmission, from (1) and (2), the total
total handoff time is:

T ime

handoff

= max(T ime

processing

, T ime

network

) (3)

In the implementation, we use processing throughput and network transmission throughput
instead of processing time and network transfer time, because calculating total transmission time
requires undetermined information such as total input size. Therefore, the total system throughput
is

Thru

system

= min(Thru
processing

, Thru

network

) (4)

where,
Thru

processing

=
1P

1in

P

i

Thru

network

=
Network Bandwidth
(R1 ⇥ · · ·⇥R

n

)

(5)
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Figure 9: Trends of P and R across workloads (G: Gzip, B: Bzip2, L: LZMA)

Intuitively, (5) shows our pipelined system is bottlenecked by either processing speed or net-
work transmission speed. It also indicates that we can calculate the system throughput if we mea-
sure processing time (P ) and out-in ratio (R).

4.4.2 Adaptation Heuristic

Applying this model to our system, we develop a heuristic to dynamically adapt the operating
mode. The goal of the heuristic is to select the operating mode that maximizes the system through-
put Thru

system

. We profile the values of P and R for various workloads and operating settings.
However, as discussed earlier, the actual computational demands and compression ratios achieved
vary greatly depending on the actual content of the modified VM data. Hence, using the profiled
P and R values directly may be highly misleading. Figure 9 illustrates this with measured P and
R values for varying operating modes of two different workloads, FACE and OBJECT. Each data
point in the figure is P or R per block (i.e. modified memory page or disk blocks) of a particu-
lar mode. As expected, the P and R values differ significantly for the two workloads even with
the same compression settings. However, the ratio of P (or R) values between different operating
modes are relatively stable between the different workloads. In other words, the trends of P and
R in varying operating modes are similar across different workloads. The intuition behind this is
that although one workload may be much harder than another, it impacts the various compression
algorithms to a similar degree, and the relative performance remains roughly similar. We confirm
this on the 4 very different workloads used here: the absolute values of P and R of each workload
are different, but their trends are similar. The robustness of this similarity across workloads from
different developers and which span different operating systems, libraries, and databases suggests
that it is a stable metric upon which base adaptation. Our heuristic uses ratios of P (or R) from
the profiled data, rather than the absolute values, to determine which operating modes will likely
minimize handoff time. Each iteration of the heuristic proceeds as follows:

1. First, measure the current P (P
current

) and R (R
current

) values of the running workload with
the current operating mode (M

current

). The system also measures the current network band-
width by observing the rate of data segment acknowledgments received from the handoff
destination.

2. From the profile, find the profiled value P (P
profile

) and R (R
profile

) of the matching operating
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Mode, M . Then, compute the scaling factor for P and R.

Scale

P

=
P

current

P

profile

, Scale
R

=
R

current

R

profile

3. Apply these scaling factors to “adjust” the profiled values for the current workload. Then,
our heuristic calculates processing throughput (Thru

processing

) and network transmission
throughput (Thru

network

) using (5), for each operating mode.

4. Finally, select an operating mode that maximizes the system throughput according to (4).

This heuristic can react to changes in the networking bandwidth, available processing resources
(due to other loads on the cloudlet), or to changes in the compressibility of the VM modifications.
In practice, the P values are actually measured in terms of processing time per input data block.
The total possible combinations of settings (number of operating modes) is fairly small, so we can
exhaustively enumerate them with little processing effort. The adaptation loop is repeated every
100 ms to let the system react quickly to any changes, or quickly discover any mispredictions.
An updated operating mode will last for at least 5 s to provide hysteresis and give the system
enough time to let effects of the change propagate throughout the pipeline, and reflect in stable
measurements of P and R values.

4.5 Workload Distribution
The actual load placed on the processing pipeline and network are directly related to the number of
modified pages and blocks that are transferred. For disk blocks, our change tracking mechanisms
ensure only the modified disk blocks are delivered to the processing pipeline. For the memory
image, however, the entire snapshot, including both modified and unmodified pages are processed.
The relative loads on the network and processor, as well as our P and R values, vary depending on
the ratio of modified and unmodified pages arriving at the pipeline.

Unfortunately, operating systems often manage memory space such that allocations, and there-
fore modifications, tend to be clustered. Figure 10 illustrates the set of modified pages for a VM
by physical address. Clearly, the modifications are non-uniform, and highly clustered. Sending
this memory snapshot to our processing pipeline would result in a highly bursty workload. This is
problematic for two reasons. First, long sequences of unmodified pages could drain later pipeline
stages of useful work and may idle the network, wasting this precious resource. Long strings of
modified pages could result in high processing loads, requiring lower compression rates to keep
the network fully utilized. Both of these are detrimental to our goal of minimizing transfer time.

To address this problem and have a balanced workload during the process of VM handoff,
we use a technique called workload distribution. Workload distribution randomizes the order of
page frames passed by the hypervisor to our processing pipeline. This way, even if the memory
snapshot has a long series of unmodified pages at the beginning of physical memory, all of our
pipeline stages will quickly receive work to do, and neither processing nor network resources are
left idling for long. More importantly, the ratio of modified and unmodified pages arriving at the
processing pipeline remains stable compared to when we simply pass pages in the sequential, ad-
dress order. Figure 11 shows how workload distribution moderates the processing time per block,
eliminating both spikes and troughs. The spikes correspond to CPU-bound conditions, causing
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Figure 10: Modified Memory Regions (Black)

Figure 11: Randomized versus Sequential memory order (1-second moving average)

underutilization of network, while the troughs result in underutilization of CPU resources due to
network bottlenecks. Workload distribution avoids the extremes and helps our system efficiently
use both resources. Note that in this figure, no adaptation is performed (i.e., static mode is used), so
the overall average processing times are the same for both plots. Furthermore, no network transfer
is actually performed, so effects of network bottlenecks are not shown here.

4.6 Iterative Transfer for Liveness
VM handoff has to strike a delicate balance between brief service disruption and extended service
degradation. If total handoff time were the sole metric of interest, the approach of suspending,
transferring, and then resuming the VM would be optimal. Unfortunately, even with all our op-
timizations, this is likely to disrupt offload service too long (many minutes on a slow WAN) for
good user experience. At the other extreme, if reducing the duration of service disruption were the
sole metric of interest, classic live migration would be optimal. However, as shown earlier, this
may extend degraded service unacceptably. The reality of mobile user experience is that neither
extreme is acceptable.

Our solution to this problem is to borrow the concept of iterative transfer from live migration,
but to embed it in the very different context of adaptive VM state transfer. As in live migration,
the VM instance continues to run and accrue further changes which are transferred in subsequent
iterations. However, unlike live migration, which focuses solely on volume of data transfer to
drive the process, VM handoff is sensitive to multiple factors: data volume, processing speed,
compression ratio achieved, and current bandwidth. Our system uses an input queue threshold to
trigger the next iteration and uses the duration of an iteration to capture all factors affecting the
speed of migration. If the duration of the iteration is sufficiently short, then our system suspends
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the VM and completes the handoff operation. We have empirically set the input queue threshold
to 10 MB, and the interval to 2 seconds.

5 Evaluation
In this section, we evaluate the performance of our system for different workloads under vari-
ous network and computing conditions. Specifically, we investigate our VM handoff system by
answering the following questions:

• Is our system able to provide short VM handoff time on a slow WAN? How does it perform
compared to classic live migration? (Section 5.1)

• How effectively does our system select operating modes at a given network bandwidth and
computing resources? How well does this adaptation compare to the static modes? (Sec-
tion 5.2)

• Is the implementation complexity of dynamic adaptation necessary? How dynamically does
our system adapt its pipeline to varying conditions? (Section 5.3)

In our experiments, we emulate WAN-like conditions using the Linux Traffic Control (tc [18]
tool), on physical machines that are connected by gigabit Ethernet. We configure bandwidth in
a range from 5 Mbps to 25 Mbps, according to the average bandwidths observed over the Inter-
net [1, 30], and use a fixed latency of 50 ms. To control computing resource availability, we use
CPU affinity masks to assign a fixed number of CPU cores to our system. Our cloudlet machines
(both handoff source and destination) each have an Intel R� CoreTM i7-3770 processor (3.4 GHz,
4 cores, 8 threads) and 32 GB main memory. To measure VM down time, we synchronize time
between the source and destination machines using NTP. For difference encoding, our system
selects from xdelta3, bsdiff, xor, or null. For compression, it uses the gzip, bzip2, or
LZMA algorithms at compression levels (1–9). We use OBJECT, FACE, FLUID, and MAR, de-
scribed earlier, as VM handoff workloads. For each workload, a back-end server is running and
ready to serve mobile clients.

5.1 Overall Performance
Figure 12 presents the overall performance of VM handoff over a range of network bandwidths.
The precise network and cloudlet conditions that trigger VM handoff are application-specific, and
may also involve user preferences. Our focus here is on what happens after handoff is started.
Handoff time is the total duration from the start of VM handoff until the VM resumes on the
destination cloudlet. A user may see degraded application performance during this period. Down
time, which is included in handoff time, is the duration for which the VM is suspended. Our results
show that even at 5 Mbps, handoff time is just a few minutes and down time is just a few tens of
seconds for all workloads. These are consistent with user expectations under such challenging
conditions. As WAN bandwidth improves, handoff time and down time both shrink. At 15 Mbps
using two cores, VM handoff completes within one minute for all of the workloads except MAR,
which is an outlier in terms of size of modified memory state (over 1 GB, see Figure 5). The
other outlier is FLUID, where the modified state is so small that there is not enough time for our
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1 CPU core 2 CPU cores
BW (Mbps) Handoff Down Handoff Down

Time(s) Time(s) Time(s) Time(s)

OBJECT

5 113.9 15.8 (6 %) 111.6 17.2 (7 %)
10 66.9 7.3 (42 %) 58.6 5.5 (5 %)
15 52.8 5.3 (12 %) 43.6 5.5 (31 %)
20 49.1 6.9 (12 %) 34.1 2.1 (22 %)
25 45.0 7.1 (30 %) 30.2 2.1 (26 %)

FLUID

5 25.1 4.0 (5 %) 17.3 4.1 (6 %)
10 24.6 3.2 (29 %) 15.7 2.5 (4 %)
15 23.9 2.9 (38 %) 15.6 2.2 (14 %)
20 23.9 3.0 (38 %) 15.4 2.0 (19 %)
25 24.0 2.9 (43 %) 15.2 1.9 (20 %)

MAR

5 494.4 24.0 (4 %) 493.4 24.5 (10 %)
10 257.9 13.7 (25 %) 250.8 12.6 (13 %)
15 178.2 8.8 (19 %) 170.4 9.0 (17 %)
20 142.1 7.1 (24 %) 132.3 7.3 (20 %)
25 121.4 7.8 (22 %) 109.8 6.5 (22 %)

FACE

5 247.0 24.3 (3 %) 245.5 26.5 (7 %)
10 87.4 15.1 (10 %) 77.4 14.7 (24 %)
15 60.3 11.4 (8 %) 48.5 6.7 (15 %)
20 46.9 7.0 (14 %) 36.1 3.6 (12 %)
25 39.3 5.7 (25 %) 31.3 4.1 (17 %)

Average of 5 runs and relative standard deviations (RSDs, in parentheses) are reported.
For handoff times, the RSDs are always smaller than 9 %, generally under 5 %, and
omitted for space. For down time, the deviations are relatively high, as this can be
affected by workload at the suspending machine.

Figure 12: Overall System Performance

Figure 13: Performance detail of OBJECT using 1 CPU core and varying network
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VM Approach Total Down Transfer
time time size

OBJECT
Handoff 1 Min 5.5 s 0.06 GB
KVM(no-share) 127 Min 1.45 s 8.42 GB
KVM(incremental) 12 Min 1.54 s 0.80 GB

MAR
Handoff 4.2 Min 12.6s 0.27 GB
KVM(no-share) 159 Min 7.44 s 10.56 GB
KVM(incremental) 52 Min 7.63 s 3.45 GB

Figure 14: Comparison with QEMU-KVM live migration at 10 Mbps BW, 2 CPU cores

adaptation mechanism to adjust behavior. Consequently, the numbers at different bandwidths are
very similar.

Figure 13 provides details of the processing time and compression ratio achieved under varied
bandwidth for the OBJECT workload using a single core. “CPU time” is the absolute CPU usage,
in seconds, by the VM handoff process. “Compression ratio” is the ratio of the input data size (i.e.,
modified VM state) to the output data size (i.e., final data shipped over the network). A higher
compression rate indicates a smaller output size, typically achieved with more CPU usage. As
the figure shows, our adaptation mechanism uses more CPU cycles to aggressively compress VM
state when bandwidth is low, thus reducing the volume of data transmitted. At higher bandwidth,
our system selects an operating mode consuming fewer CPU cycles, to avoid making processing a
bottleneck. The average CPU usage remains high (between 80% and 90%) across all of the cases,
indicating that the mechanism successfully balances computing speed and network transfer speed
while using all available resources. We discuss this further in Sections 5.2 and 5.3.

Figure 14 contrasts the performance of VM handoff and QEMU-KVM live migration over a
10 Mbps network. It shows two migration modes supported by off-the-self KVM live migration:
no-share and incremental. The no-share mode migrates the entire memory and disk state, while
the incremental mode transfers the entire memory and only modified disk state, assuming that
destination has the same base disk image used on the source. VM handoff clearly outperforms
KVM’s no-share migration. Even with the incremental migration mode (which has a conceptually
similar assumption to our approach), VM handoff improves total migration time by an order of
magnitude. This is due to the aggressive use of deduplication and compression while maintaining
balance between processing rate and network transfer rate.

5.2 Operating Mode Selection
5.2.1 Comparison with Static Modes

Our VM handoff approach uses dynamic adaptation to select an operating mode for the given net-
work conditions, processing resources, and workload. How well does this approach compare to
picking a static configuration? To evaluate this, we first compare against two distinctive modes in
the spectrum of the operating modes: highest compression and fastest speed. For
fastest speed, each stage is tuned to use the least processing resources to achieve fast pro-
cessing of migration data. In highest compression, we exhaustively run all the possible
combinations and choose the option that minimizes the data transfer size. Note that the most CPU-
intensive mode might not be the highest compression mode; some configurations can incur high
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(a) VM handoff time in OBJECT

(b) VM handoff time in MAR
Figure 15: Adaptation versus Static modes in varying network conditions using 1 CPU core

processing costs, yet fail to achieve high compression rates.
Figure 15 compares VM handoff time of the two static modes and adaptation using two work-

loads, OBJECT and MAR. As expected, fastest speed performs best with high bandwidth,
but works poorly with limited bandwidth. Except for the highest bandwidth tests, it is network-
bound, so performance scales linearly with bandwidth. In contrast, highest compression
minimizes the handoff time when bandwidth is low, but is worse than the other approaches at
higher bandwidth. This is because its speed becomes limited by computation, and bandwidth is
not fully utilized. It is largely unaffected by bandwidth change except in the very lowest bandwidth
setting where network becomes a bottleneck. Unlike the two static cases that perform well only in
certain bandwidth ranges, adaptation always yields good performance. In the extreme cases such
as 5 Mbps and 25 Mbps, where the static modes have their best performance, the adaptation is as
good as these modes. In the other conditions, it outperforms the static modes.

Figure 16 shows the handoff time for adaptation and the two static modes for differing numbers
of CPU cores. This is for the OBJECT workload, with bandwidth fixed at 10 Mbps. Fastest
speed shows constant handoff time regardless of available computing power, because it is not
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Figure 16: Adaptation versus Static modes as number of cores is varied (OBJECT, 10 Mbps)

BW Approach Handoff time Down time
5 Adaptation 113.9 s (3 %) 15.8 s (6 %)

Best static 111.5 s (1 %) 15.9 s (12 %)
Top 10% 128.3 s (2 %) 20.7 s (9 %)

10 Adaptation 66.9 s (6 %) 7.3 s (42 %)
Best static 62.0 s (1 %) 5.0 s (11 %)
Top 10% 72.1 s (1 %) 4.8 s (3 %)

20 Adaptation 49.1 s (8 %) 6.9 s (12 %)
Best static 45.5 s (3 %) 8.1 s (15 %)
Top 10% 48.5 s (1 %) 4.9 s (11 %)

30 Adaptation 37.0 s (4 %) 2.6 s (47 %)
Best static 34.3 s (2 %) 2.1 s (8 %)
Top 10% 48.5 s (1 %) 4.8 s (3 %)

Figure 17: Performance comparison between adaptation and static modes (OBJECT, 1 core, Rela-
tive standard deviations are reported in parentheses.)

limited by processing, but by network transfer. Highest compression improves as we assign
more CPU cores. Again, adaptation is better than or similar to the best performance of the static
operating modes in all of the conditions.

5.2.2 Exhaustive Evaluation of Static Modes

We have shown that adaptation performs better than two distinctive static modes. Note that it is
not trivial to determine a priori whether either of these static modes, or one from the many dif-
ferent possible modes, would work well for a particular combination of workload, bandwidth, and
processing resources. For example, our adaptation heuristic selects 15 different operating modes
for the OBJECT workload as bandwidth is varied between 5 Mbps and 30 Mbps. Furthermore, the
selections of the best static operating mode at particular resource levels is unlikely to be applicable
to other workloads, as the processing speed and compression ratios are likely to be very different.
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(a) System throughput trace

(b) P and R trace
Figure 18: Adaptation trace using 5 Mbps and 1 CPU core (OBJECT)

In spite of this, suppose we could somehow find the best operating mode for the workload
and resource conditions. How well does our adaptation mechanism compare to this optimal static
operating mode? To answer this question, we exhaustively measure the VM handoff times for all
possible operating modes. Figure 17 compares the best static operating mode with adaptation for
the OBJECT workload at varying network bandwidth. The 10th percentile performance among the
static modes for each condition is also shown. The adaptation results are nearly as good as the
best static mode for each case. Specifically, the adaptation results always rank within the top 5
among the 108 possible operating modes in most of the cases (ranked top 17th at 20 Mbps network
bandwidth). Therefore, our adaptation mechanism manages to select good operating modes across
a wide range of conditions, with little loss compared to the best static operating mode for each
condition.

5.3 Dynamics of Adaptation
Our VM handoff system uses dynamic adaptation to both select an ideal operating mode for a static
set of of resources, and also to adjust the modes as conditions change. To evaluate how well this
process works, we study traces of execution under both static conditions and varying conditions.
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5.3.1 Adapting to Available Resources

We first demonstrate how well our system adapts to the available resources and network band-
width. Figure 18-(a) is an execution trace of our system, showing various throughputs achieved at
different points in the system: output throughput, potential output throughput, and input through-
put. Output throughput is the actual rate of data output generated by the processing pipeline to
the network (solid blue line). Ideally, this line should stay right at the available bandwidth level,
which indicates that the system is fully utilizing the network resource. If the rate stays above the
available bandwidth level for a long time, the output queues will fill up and the processing stages
will stall. If it drops below that level, the system is processing bound and cannot fully utilize the
network. In the figure, we see that the output rate closely tracks the available network bandwidth.

The second curve in the figure represents the potential output rate (blue dashed line). This
shows what the output rate would be given the current configurations of the pipeline stages, if
it were not limited by the network bandwidth. When using more expensive compression, the
potential output rate drops. Ideally, this curve stays above the bandwidth line (so we do not under
utilize the network), but as low as possible, indicating the system is using the most aggressive
data reduction techniques without being CPU-bound. Here, too, we see that the system keeps this
metric close to the network bandwidth limit.

The final curve is input throughput, which is the actual rate at which the modified memory and
disk state emitted by QEMU/KVM is consumed by the pipeline (thick red line). This is the metric
that ultimately determines how fast the handoff completes, and it depends on the actual output rate
and the data compression. The system maximizes this metric, given the network and processing
constraints.

The vertical dashed lines in the trace indicate the points at which the current operating mode
is adjusted. As described in Section 4.4, the system bases the decision on measurements of P and
R values (depicted in Figure 18-(b)) made every 100 ms. A decision is made every 5 seconds to
let the effects of changing modes propagate through the system before the next decision point. In
Figure 18-(a), our heuristic updates the operating mode 3 times during the VM handoff.

During the first 10 seconds of the trace, we observe high peaks of input and output throughput.
During this period, the empty network buffers in the kernel and the inter-stage buffers in our
pipeline absorb large volumes of data without hitting the network. Thus, the transient behavior
is not limited by the network bottleneck. However, once the buffers fill, the system immediately
adapts to this constraint.

The first decision, which occurs at approximately 10 seconds, changes the compression algo-
rithm from its starting mode (GZIP level 1) to a much more compressive mode (LZMA level 5),
adapting to low bandwidth. The effects of the mode change are evident in the traces of P and R
(Figure 18-(b)), where processing time per block suddenly increases, and the out-in ratio drops
after switching to the more expensive, but more compressive algorithm. In general, when the po-
tential output is very high (with excess processing resources), the operating mode is shifted to a
more aggressive technique that reduces the potential output rate closer to the bandwidth level, while
increasing the actual input rate. Our system manages to find a good operating mode for this trace
at this first decision point; the following two changes are only minor updates to the compression
level.
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(a) System throughput trace

(b) P and R trace
Figure 19: Dynamic adaptation for varying network bandwidth (MAR)

5.3.2 Adapting to Changing Conditions

Finally, we evaluate our adaptation mechanism in a case where conditions change during handoff.
Figure 19-(a) shows a system throughput trace for the MAR workload, where network bandwidth
is initially limited to 5 Mbps, but increases to 35 Mbps at 50 seconds, and reverts back to 5 Mbps
at 100 seconds. In such a situation, no single static mode can do well – the ones that work well at
high network bandwidth are ill-suited for low bandwidth, and vice versa.

Our adaptive system, however, reacts to these changes, and ensures a good operating mode
is used throughout the trace. At the first decision point, our system selects high processing, high
compression settings (LZMA, level 9) to deal with the very low network bandwidth. The output
rate is limited by network, but the input rate is kept higher due to the greater level of compression
(as shown in the P and R traces in Figure 19-(b)). After the bandwidth increases at 50 s, a decision
is made at 58 s to switch back to GZIP compression to avoid being processing bound (as potential
output is below the new network throughput). After a few minor mode changes, the system settles
on a mode that fully utilizes the higher bandwidth (GZIP, level 7). Finally, a few seconds after
bandwidth drops at time 100, our system once again switches to high compression (LZMA, level
9). The other mode changes are minor changes in compression level, which do not significantly
affect P or R. Throughout the trace, the system manages to keep output throughput close to the
network bandwidth, and potential output rate not much higher, thus maximally using processing
resources. Through this dynamic adaptation, we complete VM handoff in 251 s, 31 s faster than
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with the best static operating mode.

6 Conclusion
The creation of a Tactile Internet [13], in which mobile devices leverage offload infrastructure at
such extremely low latencies that it becomes possible to augment human perception and cognition
in real time, is a vision that has captured the imagination of 5G wireless pioneers. Unfortunately,
translating low first-hop wireless latency into low end-to-end latency is a difficult challenge today.
Adding dispersed infrastructure in the form of cloudlets is an important step towards meeting this
challenge [3, 24].

In the context of cloudlet offload, one can think of a small physical region around each cloudlet
as its “cell size.” Within this region, end-to-end latency is low enough to meet the demands of
emerging Tactile Internet applications. When a user moves outside this region, end-to-end latency
degrades unacceptably. Inspired by the success of cellular handoff in 3G/4G wireless networks, we
have introduced the concept of VM handoff in this paper. We have shown how this mechanism can
be implemented in today’s Internet, even with inter-cloudlet bandwidths that are as low as 5 Mbps.
We have also shown how adaptation can play an important role in VM handoff in order to cope
with dynamic application behavior, and with dynamic variation in WAN bandwidth and cloudlet
load. Our validation experiments confirm that the resulting mechanism is a promising building
block for enabling user mobility in the Tactile Internet.
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