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Abstract

Our visual experience is extraordinarily varied and complex. The diversity of the visual world
makes it difficult for computer vision to understand images and for computer graphics to
synthesize visual content. But for all its richness, it turns out that the space of “scenes” might
not be astronomically large. With access to imagery on an Internet scale, regularities start
to emerge – for most images, there exist numerous examples of semantically and structurally
similar scenes. Is it possible to sample the space of scenes so densely that one can use similar
scenes to “brute force” otherwise difficult image understanding and manipulation tasks? This
thesis is focused on exploiting and refining large scale scene matching to short circuit the
typical computer vision and graphics pipelines for image understanding and manipulation.

First, in “Scene Completion” we patch up holes in images by copying content from matching
scenes. We find scenes so similar that the manipulations are undetectable to naive viewers
and we quantify our success rate with a perceptual study. Second, in “im2gps” we esti-
mate geographic properties and global geolocation for photos using scene matching with a
database of 6 million geo-tagged Internet images. We introduce a range of features for scene
matching and use them, together with lazy SVM learning, to dramatically improve scene
matching – doubling the performance of single image geolocation over our baseline method.
Third, we study human photo geolocation to gain insights into the geolocation problem, our
algorithms, and human scene understanding. This study shows that our algorithms signifi-
cantly exceed human geolocation performance. Finally, we use our geography estimates, as
well as Internet text annotations, to provide context for deeper image understanding, such
as object detection.

i



ii



Acknowledgements

I would like to acknowledge my amazing thesis advisor Alexei (Alyosha) Efros. He has given
me valuable guidance and encouragement and he has been a selfless promotor of my work.
He has provided me with many opportunities professionally and personally. Prior to this
thesis work, I had the fortune of being advised by Yanxi Liu and Irfan Essa who both helped
me grow tremendously as a researcher.

I would like to thank my thesis committee – Jessica Hodgins, Martial Hebert, Takeo Kanade,
and Rick Szeliski – for their guidance. I’ve had the pleasure of interacting with Jessica and
Martial throughout my time at CMU. They’ve helped me in numerous ways and made me
feel at home with their graphics and vision research groups, respectively. CMU is a great
environment for a researcher and I thank the numerous collaborators who have helped me
along the way.

I thank Flickr for keeping their site open to researchers such as myself and Yahoo! and
Intel Research Pittsburgh for sharing their facilities with me as part of the data intensive
supercomputing initiative.

And finally, I thank all the friends I’ve made in Pittsburgh for their support (especially
recent babysitting). Most of all I am grateful to my wife, Sonia, who has been tirelessly
supportive of me and our son Alex throughout my thesis work.

iii



iv



Table of Contents

1 Introduction 1

1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Scene Matching and Features . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background and Related Work 9

2.1 Holistic Image Representations in Computing . . . . . . . . . . . . . . . . . 9

2.1.1 Content Based Image Retrieval . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Scene Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Global Image Features for Object Recognition . . . . . . . . . . . . . 10

2.1.4 Applications of Scene Matching . . . . . . . . . . . . . . . . . . . . . 11

2.2 Human Visual Memory and Scene Perception . . . . . . . . . . . . . . . . . 14

3 Scene Completion Using Millions of Photographs 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

v



3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Semantic Scene Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Local Context Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Results and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.1 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Image Geolocation 39

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Building a Geo-tagged Image Dataset . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Evaluation Test Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Scene Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Data-driven Geolocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Is the data helping? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.2 Which features are most geo-informed? . . . . . . . . . . . . . . . . . 48

4.4.3 How accurate are the estimates? . . . . . . . . . . . . . . . . . . . . . 49

4.5 Why Does it Work? Deeper Performance Analysis . . . . . . . . . . . . . . . 55

4.5.1 Measuring performance without geographic bias. . . . . . . . . . . . . 55

4.5.2 Measuring category level geolocation performance. . . . . . . . . . . . 59

vi



4.5.3 Measuring Landmark Geolocation Performance . . . . . . . . . . . . 61

4.6 Image Sequence Geolocation With Human Travel Priors . . . . . . . . . . . 62

4.7 Secondary Geographic Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Geographic and Keyword Context for Object Detection 77

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Geographic Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Keyword (Semantic) Context . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Direct, VOC-learned context . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Object Presence Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Combining the scores for PASCAL 2008 Entry . . . . . . . . . . . . . . . . . 83

5.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Lazy Learning for Large Scale Scene Matching 87

6.1 Learning for Scene Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1.2 Learning Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1.3 Image Geolocation Learning Results . . . . . . . . . . . . . . . . . . 93

6.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

vii



6.2 Additional Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2.1 Geometry Derived Features . . . . . . . . . . . . . . . . . . . . . . . 96

6.2.2 Bags of SIFTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.3 Feature Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7 Human Geolocation of Images 115

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 Perceptual Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8 Conclusion 127

8.1 Why Does Scene Matching Work? . . . . . . . . . . . . . . . . . . . . . . . . 127

8.2 Future Areas of Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A How Heavy-Tailed is Our Visual World? 131

A.1 Measuring the “heavy-tail”. . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

viii



List of Figures

3.1 Teaser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Comparison of image completion methods . . . . . . . . . . . . . . . . . . . 19

3.3 Scene match examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Compositing example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Alternate Image Completions . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Results 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.7 Results 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.8 Results 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.9 Alternate Completions, im2gps database . . . . . . . . . . . . . . . . . . . . 32

3.10 Additional Results, im2gps database . . . . . . . . . . . . . . . . . . . . . . 33

3.11 Additional Inputs, im2gps database . . . . . . . . . . . . . . . . . . . . . . . 34

3.12 Failure cases 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.13 Failure Cases 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.14 Perceptual study results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ix



4.1 Teaser Photographs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 im2gps database distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 im2gps test set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Geolocation performance across database sizes . . . . . . . . . . . . . . . . . 48

4.5 Geolocation performance across features . . . . . . . . . . . . . . . . . . . . 49

4.6 Distribution of geolocation errors . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 Geolocation error with multiple guesses . . . . . . . . . . . . . . . . . . . . . 51

4.8 Results 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.9 Results 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.10 Results 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.11 Photo density in im2gps database . . . . . . . . . . . . . . . . . . . . . . . . 56

4.12 Accuracy on Geographically Uniform Test Set . . . . . . . . . . . . . . . . . 57

4.13 GMM vs MS clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.14 im2gps results for different cities . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.15 Toy Test Set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.16 Toy Test Set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.17 Global travel model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.18 Travel model from Hawaii . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.19 Sequence geolocation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.20 Population density estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 67

x



4.21 Elevation gradient estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.22 Land cover classification map and key . . . . . . . . . . . . . . . . . . . . . . 69

4.23 Barren geography ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.24 Forest geography ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.25 Water geography ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.26 Savanna geography ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.27 Light pollution map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.28 Light pollution of im2gps test set . . . . . . . . . . . . . . . . . . . . . . . . 72

4.29 Light pollution estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.30 Light pollution ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 Object detector mistake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Geography and Keyword context diagram . . . . . . . . . . . . . . . . . . . 79

5.3 Context/detector disagreements 1 . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Context/detector disagreements 1 . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1 Sample of 2k random test set . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Geolocation learning accuracy on 2k random test set . . . . . . . . . . . . . 95

6.3 Geometry features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 Geometric regions of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.5 Geometric regions of interest 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xi



6.6 Scene matches with new features . . . . . . . . . . . . . . . . . . . . . . . . 103

6.7 Scene matches with new features 2 . . . . . . . . . . . . . . . . . . . . . . . 104

6.8 geolocation learning results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.9 geolocation learning results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.10 geolocation learning results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.11 geolocation learning results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.12 geolocation learning results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.13 geolocation learning results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.14 geolocation learning results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.15 geolocation learning results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.16 geolocation learning results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.17 geolocation learning results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.1 Human Geolocation Test Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Human Geolocation Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3 “100ms” Viewing Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.4 Human Geolocation Performance, for each Participant . . . . . . . . . . . . 121

7.5 Examples Where Human Geolocation is Better than im2gps . . . . . . . . . 122

7.6 Examples Where Human Geolocation is Worse than im2gps . . . . . . . . . 123

7.7 Human Geolocation Performance vs Scale . . . . . . . . . . . . . . . . . . . 125

xii



7.8 Human Geolocation Performance, by Scene Type . . . . . . . . . . . . . . . 126

A.1 Word frequency vs rank on Wikipedia . . . . . . . . . . . . . . . . . . . . . . 132

A.2 Photo density in im2gps data set . . . . . . . . . . . . . . . . . . . . . . . . 133

A.3 Photo density versus rank in im2gps database . . . . . . . . . . . . . . . . . 134

A.4 Object category frequency vs rank in “Tiny Images” and “LabelMe” . . . . . 135

A.5 Description frequency vs rank for synonyms in “LabelMe” . . . . . . . . . . 136

xiii



xiv



List of Tables

5.1 Accuracy of context types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1 Performance across values of K . . . . . . . . . . . . . . . . . . . . . . . . . 93

xv



xvi



Chapter 1

Introduction

We are in the midst of an imaging revolution enabled by inexpensive digital cameras and
the Internet. Consumers bought 130 million standalone digital cameras last year and it
is estimated that cell phones will put cameras into the pockets of one-third of the world
population by 2011. Photographers share their images on massive, rapidly growing web
sites – Flickr and Facebook have over three billion and ten billion photographs respectively.
These photos are often accompanied by informative user or community created metadata.
For the “Facebook generation”, visual content is a core element of online communication.
Meanwhile, computers, unable to cope with the diversity of our visual world, are nearly blind
to image content and progress in image-based graphics is held back by this lack of image
understanding. But just as large quantities of real data pushed speech recognition from an
“AI-hard” problem to a widely deployed tool, Internet scale imagery could lead to vision
systems reliable enough for everyday use.

Computer vision and graphics are difficult because of the exceeding complexity of our visual
world. The traditional computer vision or computer graphics pipeline mitigates this com-
plexity with a bottom up, divide and conquer strategy (e.g. segmenting then classifying,
assembling part-based models, or using scanning window detectors). This thesis research is
fundamentally different – we use holistic scenes as our elementary visual unit. We observe
that while the space of images is infinite, the space of “scenes” might not be astronomically
large. With access to imagery on an Internet scale, regularities start to emerge – for most
images, there exist numerous semantically and structurally similar scenes. It is possible to
sample the space of scenes so densely that one can “brute force” otherwise difficult image
understanding and manipulation tasks. This thesis is focused on exploiting, refining, ana-
lyzing the large scale scene matching that lets us short circuit the typical computer vision
and graphics pipelines for image understanding and manipulation.
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First of all, let us be absolutely clear – brute force image matching will not solve all of
computer vision. Image space is effectively infinite with thousands of meaningful dimensions.
A photograph of a complex, dynamic scene of articulated figures is not just one in a million,
it is one in the lifetime of the universe. Deeper computer vision reasoning about the precise
pose, arrangement, and geometry of objects is necessary to understand the visual world as
humans do. But in this thesis, we are concerned with understanding images at a global scene
level. We hope that the image understanding provided by scene matching can provide priors
and context which make deeper image understanding successful.

The key contributions of this thesis are:

• General Scene Matching. The key enabling observation for this thesis is that we’ve
reached a tipping point where the flood of Internet imagery rivals the entire diversity
of our visual experience. We can use this Internet imagery and annotation to push back
against the complexity that makes scene understanding so difficult. Scene matching
is the mechanism that we use towards this end. Throughout this thesis we examine
several different image features for scene matching and we propose some of our own.

• Scene Completion. Using scene matching, we develop the first image completion algo-
rithm that leverages data from outside imagery. Scene matching gives the algorithm
implicit high-level scene manipulation capabilities – the objects or scene elements that
are inserted adhere to valid scene semantics because they came from real scenes with
similar layouts. We are the first to create a standardized test set for image completion
and perform a perceptual study to quantify the effectiveness of our algorithm.

• Geographic Reasoning for Images. We are the first to approach the problem of global
image geolocation by utilizing the huge amount of geotagged data online. We consider
not just landmarks but general scenes. Beyond location, we can estimate a litany of
geographic properties. With collaborators, we build global movement models from
the spatiotemporal statistics of our Internet data and use this to geolocate sequences
of images. We measure human image geolocation performance and show that our
computational methods are more accurate.

• Context for Object Detection. We use scene matching to provide novel sources of
context for object detection – geographic information from geotags and semantic infor-
mation from Internet keywords. With collaborators, we build a state-of-the-art object
detection system and evaluate numerous contextual cues.

• Large Scale Learning. We show that “lazy learning” can provide dramatic improve-
ments to scene matching applications with little additional complexity. We use a

2



multiclass Kernel SVM to learn geographic classifiers from the nearest neighbor scene
matches. We demonstrate significantly improved performance for image geolocation.

In the remainder of the Introduction we provide a rigorous definition of what we mean by
“scene” (Section 1.1), give an overview of our scene matching architecture and features (Sec-
tion 1.2), and discuss the data sources and data sets used throughout this thesis (Section 1.3).

1.1 Definitions

Our usage of “scene” and “scene similarity” are similar to a layperson’s intuition. A Scene
can be considered an abstraction of an image that is less concerned with the exact appearance,
structure, and arrangement of elements than with the high-level semantics depicted. In
traditional computer vision, reasoning in “scene” space might imply seeing through “image”
space to more meaningful, possibly 3d real world structure. But we do not necessarily make
this distinction. We can find similar scenes while working in directly image space, although
more invariant features can also be useful.

It is easiest to define “scene” by asking what properties do we expect similar scenes to share?
Different applications may be concerned with different aspects of scene similarity, but in
general if two scenes are said to be “similar” or “matching” then that implies the following
–

• The coarse layout of scene elements and the coarse geometric structure are similar.
Scene elements with similar semantic meaning (roads, buildings, sky) occupy corre-
sponding image regions and have roughly the same scale. The scene elements should
be similarly shaped and oriented.

• The view or camera parameters are similar. This includes the focal length of the
camera, the height of the camera, the in-focus depth of field, and the orientation of
the camera with respect to the horizon.

• The appearance and materials of the scenes are similar. This includes color, texture,
illumination, weather, vegetation / land cover type, and architectural style.

• The high-level semantics of the situations represented are similar. This includes object
likelihoods (there could be a hairdryer, but not an airplane), navigation possibilities (I
can turn left but not right), function (kitchen, highway, or basketball court), whether

3



the scenes are natural or manmade, and location (indoors versus outdoors, Japan
versus California).

Defined as such, the space of scenes is intrinsically quite high-dimensional. For two scenes
to be similar does not imply that all of these properties are precisely the same. It is very
unlikely that the exact articulation of objects or exact geometry would be the same between
two scenes. Scene similarity is a continuous notion – given a query scene, we can say that
one scene is a better match than another scene.

Our usage of “scene” is not limited to meaning a physical, real-world, navigable scene as it
has been previously defined in the literature. For instance, Aude Oliva and Antonio Torralba
state –

In an attempt to define what a “scene” is, as opposed to an “object” or a “tex-
ture”, we propose to consider the absolute distance between the observer and
the fixated zone. Therein, if an image represents an “object” when the view sub-
tends 1 to 2 meters around the observer, a “view on a scene” begins when there is
actually a larger space between the observer and the fixated point, usually after
5 meters. Thus, whilst most of the “objects” are at a hand distance, a scene is
mainly characterized as a place in which we can move. [74]

Our usage of “scene” is more general. For instance, it would be reasonable to try and find
a similar scene given a portrait, a close-up view of an object, a macro view of a flower,
or even an abstract illustration. Other authors seem to have relaxed their usage of the
terminology as well, using the phrase “scene matching” to describe the retrieval of similar
images of graffiti [89] or portraits and close-up object views [103], while other authors use
more generic phrases such as “image matching” [100].

1.2 Scene Matching and Features

Our scene matching process is simple – for a novel photo, we find nearest neighbors scenes
according to various image features. We make no attempt to optimize the search process
even though it can be cumbersome with millions of images. Instead we focus on the design
of features and distance metrics.

With large amounts of data, surprisingly basic image features can find similar scenes, even
tiny RGB images [100]. In Scene Completion (Chapter 3), we rely on the gist descriptor [72]
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which simply measures edge intensity and direction over a coarse grid. Even though the gist
descriptor is a very low level measure of scene statistics, it can often retrieve scenes with high
level semantic agreement as long as one has millions of images to search through. In im2gps
(Chapter 4) we employ several more features that measure texture, color, and straight line
statistics of a scene and show that these improve performance considerably. In Chapter 6, we
add SIFT [65] histograms and higher level features that measure the statistics of geometric
regions of images (e.g. the color of vertical surfaces). The features are described in more
detail as they are introduced throughout the thesis.

There is no universal, ideal feature set. As feature sets become larger and over-complete it
is more important to use learning, as in Chapter 6, to focus on relevant features for a given
task or a given query.

1.3 Data

For this thesis I use Flickr.com as the sole source of data. As of July 2009, Flickr has
∼1.3 billion high resolution photographs available for download, with ∼50 million added in
the past month. While search engines such as Google Image Search index more images,
a significant portion of those images are low quality photos or illustrations. Furthermore,
search engines truncate the results for any given query to a few thousand results [33].

Flickr photographs can be weakly labeled with text “tags”, “titles”, and “descriptions” but
most are not. Furthermore, most of these labels do not correspond to object and scene
descriptions (e.g. “chair” has ∼169 thousand hits and “kitchen” has ∼300 thousand hits),
but rather to place and event names (e.g. “Japan” has ∼5 million hits and “wedding” has
∼8.2 million hits). Object annotations tend to be accurate, although many Flickr images
are quite unusual or artistic. [6] reports that half of photos labelled with landmark names
represent those concepts poorly.

Since August 2006, Flickr users have been able to “geotag” their photographs. As of July
2009, there are ∼77 million publicly available photographs with GPS coordinates attached,
with ∼2 million added in the past month. These coordinates are either hand annotated by
the photographer using a map applet or added automatically be GPS-enabled cameras (such
as an iPhone).

Two large databases of images were created for this thesis:

• Scene Completion database. ∼2.3 million Flickr images used for the original Scene
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Completion experiments. Approximately half of the database, downloaded December
2006, consists of hand-selected Flickr “Groups” that specialize in outdoor photography.
The other half, downloaded April 2007, was built from keyword searches. The images
are fairly high quality in general and well suited to outdoor image completion. The
images have text annotations but they are never used. More details about the data
are provided in Chapter 3.

• im2gps database. ∼6.5 million Flickr images introduced in im2gps and downloaded
November 2007. These images all have geotags as well as text and time labels. Geo-
tagged images also appear to be of slightly higher quality than the general pool of
Flickr photos (in general, photo annotation seems correlated with picture quality).
This database is utilized in every chapter of this thesis. It is used as unlabelled data
for Scene Completion, as geotagged data for im2gps and its follow up work, as tempo-
rally tagged data to build global travel models (Chapter 4.6), and as text tagged data
to provide context for object detection (Chapter 5). More details about the data and
its geographic distribution are provided in Chapter 4.

These databases are available to other researchers, but it is generally easier to recreate equiva-
lent databases directly from Flickr. We provide code online for this purpose.1 Approximately
1 Terabyte of storage is required for each 5 million JPEG compressed photographs. Comput-
ing all scene features for each million images requires ∼0.15 CPU years for Scene Completion
features, ∼1 CPU year for the im2gps features, and ∼2 CPU years for the additional features
described in Chapter 6.

Paired with these databases are several test sets:

• Scene Completion test set. 51 image completion test cases used to quantitatively eval-
uate Scene Completion (Chapter 3), as well as 27 additional test cases. Each test case
is an unmanipulated photo paired with a mask that indicates which pixels must be re-
placed. This is the first shared and rigorously evaluated test set for image completion.
The images are taken from either the LabelMe database [84] or personal photos and
do not overlap with either image database. The test set is available online.2

• im2gps test set. 237 geotagged images used to evaluate im2gps. These photos were
manually filtered from a random subset of the 6.5 million im2gps database to remove
corrupt or privacy-violating images.

1http://graphics.cs.cmu.edu/projects/im2gps/flickr code.html
2http://graphics.cs.cmu.edu/projects/scene-completion/
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• 2k random test set. 2000 geotagged images randomly sampled from the im2gps database,
without filtering.

• geo-uniform test set. 955 geotagged images randomly sampled from the im2gps database
such that their distribution is roughly uniform over the land area of the Earth. See
Section 4.5 for more details.

• Human geolocation test set. 64 geotagged images manually selected from a random
subset of the im2gps database. Images that had no geographic information were in-
tentionally removed. Landmark, landscape, and urban photographs are all well repre-
sented. This test set was used to measure human geolocation performance (Chapter 7)
and compare it with our computational methods.

• Image sequence test set. 4117 geotagged photos by 20 Flickr users which were uploaded
after November 2007 (and thus do not overlap with the im2gps database). These
sequences were filtered from a larger set of sequences by the heuristics described in
Section 4.6. This test set is used to evaluate Image Sequence Geolocation.

The im2gps and human geolocation test sets are available online.3 Because the test sets
overlap with the im2gps database, care must be taken to avoid scene matching to the same
photos or the same photographers.

3http://graphics.cs.cmu.edu/projects/im2gps/
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Chapter 2

Background and Related Work

This chapter discusses research related to holistic image representations and semantic image
matching in computing as well as visual memory and scene context in cognitive neuroscience.
These references cover work that is most closely related to the scene matching process that
is at the core of this thesis. References related to the specific applications of scene matching
such as image completion, geolocation, object detection, and learning can be found in the
appropriate chapters.

2.1 Holistic Image Representations in Computing

2.1.1 Content Based Image Retrieval

Content based image retrieval (CBIR) is concerned with allowing users to easily and effi-
ciently search libraries of visual data. Queries to a CBIR system may take the form of an
example image, a user painted sketch, or constraints on the layout of scene elements such as
buildings or trees. See [61] for a survey of the field. While early CBIR systems “could only
be used effectively by scientists”, more recent efforts focus on “bridging the semantic gap” to
find results that don’t just match with respect to low-level features but also with respect to
high-level semantic concepts [61]. Thus CBIR and our definition of “scene matching” overlap
considerably. Popular image features in CBIR such as color and texture histograms have
also proved useful for scene matching applications [39], and conversely features used heavily
in scene matching such as the gist descriptor [74] have been used in CBIR [81]. Recent work
focuses on improving retrieval for weakly and noisily labelled Internet images (such as the
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Flickr images we use) [6, 81].

CBIR might be distinguished from “scene matching” applications (Section 2.1.4) in that
CBIR’s ultimate goal is the user-guided image retrieval itself, perhaps for a setting such
as an internet search engine, whereas scene matching in the computer graphics and vision
communities is often concerned with finding similar images to drive some secondary task
such as object recognition [86], image parsing [63, 103], image completion [38], or image-
based rendering [89]. With more specific tasks in mind, scene matching applications can be
more precise about what domain of imagery they expect to work with and how they require
images to be similar. For instance [38] works only with outdoor scenes and expects matching
photos to share semantics, coarse geometric structure, and camera parameters.

2.1.2 Scene Categorization

Scene categorization is the problem of classifying an image into one of a small number
(typically less than 20) of predefined scene categories such as mountain, beach, kitchen, or
city [32, 108]. Features and algorithms first demonstrated for scene categorization such as
the gist descriptor of [74] and the spatial pyramid of [60] have proven to be very useful
for tasks driven by scene matching (Section 2.1.4). The categorization task offers an easy
way to quantify scene matching performance. However, setting up the data sets and ground
truth is tricky – how does one decide on categories? Does one pick photographs knowing
the categories? How is membership into categories decided? Scenes don’t necessarily fit
neatly into categories. Humans will disagree on whether a scene belongs to a “street” class
or an “inside of city” class. How much of our visual experience lies on the boundary between
these categories? For instance, in one 5-way classification task (“coasts”, “rivers/lakes”,
“mountains”, “plains”, “forests”) human labellers agreed with each other only 89.7% of the
time [109].

When the scene categories are specific real-world locations, e.g. “corridor 6b”, “elevator
400/1”, and “Draper Plaza”, scene categorization becomes place recognition. [104] uses the
gist descriptor to recognize these types of environments. [116] introduces a new global scene
feature, the spatial PACT, to categorize the location of a mobile robot.

2.1.3 Global Image Features for Object Recognition

Because similar scenes are likely to contain similar objects, many object classification algo-
rithms include global image features that are similar to those used for scene matching. For
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instance, all of the entries to the PASCAL VOC 2007 object classification challenge, in which
the goal is to decide whether an image contains an object of a certain class, use some type
of global features computed over the entire image or at interest points rather than trying
to specifically detect and localize the object in question. [30]. Indeed there are questions
as to whether the “methods are learning more about context/scene appearance than object
appearance?” [30].

Object detection, the task of recognizing and localizing objects in an images, also benefits
from global image features. “Statistical context priming for object detection” [102] learns
relationships between gist-like global image features and likely object locations. “Object
detection and localization using local and global features” [69] makes use of this relationship
to provide context to more discriminative local features for object detection.

2.1.4 Applications of Scene Matching

There are numerous recent projects that utilize non-parametric scene matching with global
image representations. Similar to my work in this thesis, these papers all have an explicit
division between finding or grouping similar scenes and then utilizing those scenes for sec-
ondary computer graphics or computer vision tasks.

“Object Recognition by Scene Alignment” [86] improves object detections in an image by
first finding similar scenes from the LabelMe database [84] and then examining labelled
objects in those scenes to provide priors on object location and scale. Because the space of
scenes is very diverse, the relationship between scene features and object locations can be
hard to capture with compact parametric models. So while previous work used Gaussian
mixture models to relate scene features to object priors [102], the main novelty of “Object
Recognition by Scene Alignment” is the examination of non-parametric scene matching for
this application.

“Tiny Images” [100] provides the most rigorous examination of large scale data-driven com-
puter vision to date. The authors build a database of 80 million 32x32 images by querying
image search engines with 70 thousand concrete English nouns. Each image has one label
associated with it – the noun used in the query that found it. The authors were inspired to
use 32x32 images by the fact that humans can parse such low resolution images surprisingly
well. For instance, humans recognize cars in 32x32 scenes better than the best computational
methods recognize cars in full resolution images. Using nearest-neighbor image retrieval the
authors examine many tasks such as object recognition, scene categorization, image coloriza-
tion, and image orientation correction. They use WordNet [33] to group labels and recognize
objects at different levels of semantic specificity (eg. “artifact”, “instrument”, “device”,
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“vice”). The authors evaluate many tasks with variably sized databases and conclude that
simple non-parametric image retrieval with Internet scale data sets is competitive at many
computer vision tasks. However, the rate of performance growth is not promising – to in-
crease performance linearly the data set must grow logarithmically in many cases. Growing
data sets orders of magnitude beyond 80 million images will be difficult in the near future.
But the performance observed in Tiny Images could be a manifestation of the computational
difficulty of leveraging 32x32 images. In such low resolution images there is no notion of tex-
ture and objects in scenes must be recognized by context more than appearance. While this
is at the limit of human abilities, it is far beyond the capabilities of current computational
methods. Scene matching benefits tremendously from texture and gist features [39] and ob-
ject detection benefits from a diverse set of features [106]. It could be that by using such an
impoverished image representation, “Tiny Images” is more vulnerable to the combinatorial
explosion of image space (which is huge, even at 32x32) because it cannot “see through”
semantically meaningless image variations without richer image features. But the study pro-
vides is a compelling argument that computer vision will not be solved by brute force with
32x32 images.

One of the major limitations of data-driven scene matching is the computational expense
it requires. In the naive case, finding similar scenes means a linear scan through tens or
hundreds of gigabytes of scene descriptors [38,39]. For some loss of accuracy one can perform
coarse to fine search where the initial search finds candidate matches using low resolution
descriptors or PCA coefficients [100]. In “Small codes” [103] the authors go even smaller,
describing scenes with binary codes from 8 to 256 bits in size. A mapping from gist scene
descriptors to small codes is learned such that scenes with small ground truth distances will
have small Hamming distances between their binary codes. Ground truth scene distances are
defined by object overlap (for 20,000 LabelMe images) or by the full dimensional gist distance
(in the case of a larger database of 13 million unlabelled web images). Scene matching using
the small codes is faster and more accurate than other dimensionality reduction schemes
such as Locality Sensitive Hashing. It even outperforms the full gist descriptor when trained
and tested with subsets of the labelled data. When the codes are small enough (∼ 30 bits) to
enumerate all possible codes in a hash table in memory, the retrieval can be extremely fast (6
microseconds). Longer codes can be exhaustively searched in less than a second if they still
fit in memory. The authors use their scene matching to directly vote on image segmentation
and labelling. For a novel image, the most similar scenes from the LabelMe database are
retrieved, and for each image location the scene matches vote on the object label of the
query scene. The method works reasonably well for labelling large scene elements such as
“building”, “sky”, and “road’, but since smaller scene elements won’t precisely align (e.g.
the people in a street scene) the combinatorics of object configurations make this simple
approach unlikely to scale well.
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“Can Similar Scenes Help Surface Layout Estimation?” [23] tries to improve geometric clas-
sification of images by using similar unlabelled examples of similar scenes. For a query image,
similar scenes are found using [39]. These unlabelled examples are segmented and classified
using the baseline geometric context system [40]. The hope is that 1) similar scenes will
share similar surface layouts, 2) the baseline geometric classifier will be mostly accurate,
and 3) any classification errors because of ambiguities in a specific scene can be smoothed
over by correct classifications in the majority of scenes. Ideally, the scene matches will be
geometrically identical to each other and the query but still visually varied. It turns out
that segmentations and classifications from the similar scenes can indeed be used to help
improve the geometric classification of the original scene, although the effect is somewhat
weak. However, as scene matching improves the effect should become stronger.

“Creating and exploring a large photorealistic virtual space” [89] stitches together similar
scenes to hallucinate plausible virtual environments. It is similar to the well known “Photo
Tourism” work [90] except that instead of finding geometric relationships between multiple
images of the same real-world location using structure from motion, it uses scene matching
to piece together images which have no real world connection. Users can navigate between
scenes by “rotating”, “translating”, and “zooming” a virtual camera. For each of these
navigation possibilities, a new scene is found and fused with the previous scene(s) after
simulating the camera motion with image warping. Scenes are matched using gist descriptors
and small color images, similar to [38]. To improve the scene matching, the authors train
classifiers to group the scenes into categories (referred to as “themes”) such as “people”,
“landscape”, or “skyline”. When navigating a virtual environment, only scenes from the
same theme will be used to extend the environment unless a transition is explicitly requested.
To maintain the apparent height of the virtual camera the horizon in each scene needs to be
identified. The authors estimate horizon locations using by relating gist features to horizon
height as in [102].

The combinatorics of object layout and scene geometry make it unlikely that any two scenes
will align at high resolution. This is a problem for applications that need precise corre-
spondence between scenes to build object location priors [86], to parse scenes [103], or to
share segmentations and geometric labels [23]. In “Sift Flow” [63,64], the authors compute a
dense correspondence between scenes in order to match visually similar scene elements while
also preserving local coherence and minimizing the total amount of shift that scene elements
undergo. The algorithm is able to correspond semantically like regions between scenes with
significant structural variation. The paper uses an increasingly popular scene descriptor –
densely sampled, quantized SIFTs histogrammed with a spatial pyramid [60]. The authors
demonstrate their dense correspondence between scenes by using scene matches from videos
to predict motion fields in still images. The authors also show that re-ranking scene matches
based on the cost of their dense correspondence leads to qualitatively better scene matches.
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In [63] the authors parse scenes by label transfer and show promising results for recognizing
“stuff” (large objects with variable shape such as buildings, trees, sky, and road) but not
“things” (smaller scale, better defined objects such as fire hydrants or birds).

“Image Restoration using Online Photo Collections” [20] improves white balance, exposure,
and contrast for photographs by finding similar scenes from a database of 1 million Internet
photographs and transferring the matched scene statistics to the query photograph. The
assumption is that the database images have correct (or at least better) white balance,
exposure, and contrast. In “CG2Real” [48] this idea is taken even further – the query
photographs are computer generated images. The scene matches are used not just to guide
color corrections but also as texture sources to replace the query image content. A parameter
controls how well a region needs to match before it is replaced by texture from a scene
match. For most queries, the output ends up being a relatively seamless composite of real
and computer generated content.

2.2 Human Visual Memory and Scene Perception

Biological vision systems have long been of interest to computer vision researchers. For
example, the design of the Laplacian Pyramid [11] was justified by the understanding of the
limits and biases of human perception. [65], in introducing the SIFT descriptor, devotes a
section to connections with primate vision. The gist scene descriptor [74] was inspired by
human rapid scene recognition capability.

It might seem that massively data-driven approaches to image understanding are not biolog-
ically plausible. Surely human visual memory capacity cannot compare to a 6 million image
database [39]? It’s not entirely clear. According to [16], “the empirical study of long-term
memory capacity has been virtually absent because of the impractical requirements of testing
humans over extended periods.” Because of this, the authors instead perform such an exper-
iment on pigeons. Two pigeons are trained in 700 sessions over 3 years to remember specific,
binary responses in association with example images. Afterwards, the pigeons can correctly
respond to 73% of photos out of a set of 1,825 which the authors estimate corresponds to a
long term visual memory capacity of more than 800 images.

Studies over shorter time frames have shown that humans could remember 83% out of a set
of 10,000 pictures [94]. But at the same time, humans are often amazingly bad at remem-
bering the exact configuration of a specific, real-world scene – a phenomena referred to as
“change blindness” [83]. Thus there was speculation that human visual memory recorded
only high-level scene semantics and would be confused by scenes with similar semantics but
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different layouts. However, Oliva and colleagues have recently shown that human object and
scene memory is surprisingly robust to interference from intentionally similar distracting
imagery [73]. In one experiment, participants were shown a sequence of 3,000 scenes with
only 3 seconds to study each image. After this two and a half hour visual marathon, partic-
ipants’ memory was measured with a paired, forced-choice examination asking them which
photograph they had already seen. Many of the images came from semantically identical
scene categories (e.g. “hair salon”, “iceberg”, “country road”, “library”, or “crashing wave”)
photographed in similar ways. Increasing numbers of similar scenes caused more confusion,
but the effect was surprisingly minor. With 4 similar scenes in a category, participants were
84% accurate, but with 64 similar scenes, participants were still 76% accurate! These results,
along with similar results concerning object memory [10], lead Oliva to state that “A massive
memory for details lend credence to object recognition approaches that require brute force
storage of multiples viewpoints and exemplars” and that “Massive memory capacity is the
infrastructure of scene gist recognition [in humans]” [73].1

Humans use their massive scene memory to provide context for deeper image understanding.
The psychology and neuroscience literature related to context in human vision is too broad
to review here but [101] and [4] provide an excellent overview. Humans can use contextual
information from numerous cues to help in image understanding, but there are two views on
what the dominant source of context is – relationships between objects or relationships to
a holistic scene representation. For instance, in trying to recognize a blurry object in a city
scene, object context might provide information of the form “this object is on top of a side-
walk and beside a fire hydrant” whereas global scene context might provide information of
the form “this object is near the horizon in a street scene with this rough layout and scale”.
Object context would be utilized in a serial process, perhaps recognizing easy objects and
then moving on to more difficult ones. Global scene context does not require the recognition
of any objects. It is consistent with the idea that image understanding proceeds top down
from an understanding of global structure to recognition of local details [70]. Humans prob-
ably employ both forms of context, but it is an open question as to whether the sources of
context are acquired through a single mechanism or through parallel pathways using different
brain regions (although [29] suggests specialized brain hardware related to scene layout). In
this thesis, scene matching is used to provide computer vision with contextual information
analogous to the global scene context that humans employ.

1Oliva’s usage of “scene gist” is not referring to the gist scene descriptor, but to the coarse understanding
of a scene that humans rapidly acquire when viewing a novel image.
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Chapter 3

Scene Completion Using Millions of
Photographs

Chapter Summary. We present a new image completion algorithm powered by a database
of 2.3 million photographs gathered from the Web. The algorithm patches up holes in
images by finding similar image regions in the database that are not only seamless but
also semantically valid. Our algorithm is entirely data-driven, requiring no annotations or
labelling by the user. Unlike existing image completion methods, our algorithm can generate
a diverse set of image completions and we allow users to select among them. We quantify
the effectiveness of our algorithm, and compare to an existing image completion method,
with a perceptual study. This work was described, in part, in [38].

1Project Page: http://graphics.cs.cmu.edu/projects/scene-completion/

Original Image Input Scene Matches Output

Figure 3.1: Given an input image with a missing region, we use matching scenes from a large
collection of photographs to complete the image.
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3.1 Introduction

Every once in a while, we all wish we could erase something from our old photographs. A
garbage truck right in the middle of a charming Italian piazza, an ex-boyfriend in a family
photo, a political ally in a group portrait who has fallen out of favor [51]. Other times, there
is simply missing data in some areas of the image. An aged corner of an old photograph, a
hole in an image-based 3D reconstruction due to occlusion, a dead bug on the camera lens.
Image completion (also called inpainting or hole-filling) is the task of filling in or replacing
an image region with new image data such that the modification can not be detected.

There are two fundamentally different strategies for image completion. The first aims to
reconstruct, as accurately as possible, the data that should have been there, but somehow
got occluded or corrupted. Methods attempting an accurate reconstruction have to use some
other source of data in addition to the input image, such as video (using various background
stabilization techniques, e.g. [42]) or multiple photographs of the same scene [1, 90].

The alternative is to try finding a plausible way to fill in the missing pixels, hallucinating data
that could have been there. This is a much less easily quantifiable endeavor, relying instead on
the studies of human visual perception. The most successful existing methods [18,26,54,114,
115] operate by extending adjacent textures and contours into the unknown region. These
algorithms are similar to texture synthesis algorithms such as [27,28,56,57], sometimes with
additional constraints to explicitly preserve Gestalt cues such as good continuation [113],
either automatically [18] or by hand [96]. Importantly, all of the existing image completion
methods operate by filling in the unknown region with content from the known parts of the
input source image.

Searching the source image for usable texture makes a lot of sense. The source image often
has textures at just the right scale, orientation, and illumination as needed to seamlessly fill
in the unknown region. Some methods [26, 115] search additional scales and orientations to
gain additional source texture samples. However, viewing image completion as constrained
texture synthesis limits the type of completion tasks that can be tackled. The assumption
present in all of these methods is that all the necessary image data to fill in an unknown region
is located somewhere else in that same image. We believe this assumption is flawed and that
the source image simply doesn’t provide enough data except for trivial image completion
tasks.

Typical demonstrations of previously published algorithms are object removal tasks such
as removing people, signs, horses, or cars from relatively simple backgrounds. The results
tend to be fairly sterile images because the algorithms are only reusing image content that
appeared somewhere else in the same image. For situations in which the incomplete region is
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Original Image Input Criminisi et al. 2003

Smart Erase Wilczkowiak et al. Our algorithm

Figure 3.2: Results from various image completion algorithms including Microsoft Digital
Image Pro Smart Erase.
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not bounded by texture regions, or when there is too little useful texture, existing algorithms
have trouble completing scenes (Figure 3.2).

3.2 Overview

In this study we perform image completions by leveraging a massive database of images.
There are two compelling reasons to expand the search for image content beyond the source
image. 1) In many cases, a region will be impossible to fill plausibly using only image data
from the source image. For instance, if the roof of a house is missing or the entire sky is
masked out. 2) Even if there is suitable content in the source image, reusing that content
would often leave obvious duplications in the final image, e.g. replacing a missing building
with another building in the image. By performing hole filling with content from other
images, entirely novel objects and textures can be inserted.

However, there are several challenges with drawing content from other images. The first
challenge is computational. Even in the single image case some existing methods report
running times in the hours [26, 28] because of the slow texture search. Texture Synthesis
based image completion methods are difficult to accelerate with traditional nearest-neighbor
or approximate nearest-neighbor methods because of the high dimensionality of the features
being searched and because the known dimensions of the feature being matched on change
depending on the shape of the unknown region at each iteration.

The second challenge is that as the search space increases, there is higher chance of a synthesis
algorithm finding locally matching but semantically invalid image fragments. Existing image
completion methods might produce sterile images but they don’t risk putting an elephant in
someone’s back yard or a submarine in a parking lot.

The third challenge is that content from other images is much less likely to have the right
color and illumination to seamlessly fill an unknown region compared to content from the
same image. More than other image completion methods we need a robust seam-finding and
blending method to make our image completions plausible.

In this work we alleviate both the computational and semantic challenges with a two-stage
search. We first try to find images depicting semantically similar scenes and then use only the
best matching scenes to find patches which match the context surrounding the missing region.
Scene matching reduces our search from a database of one million images to a manageable
number of best matching scenes (60 in our case) which are used for image completion. We
use a low dimensional scene descriptor [72] so it is relatively fast to find the nearest scenes,
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Figure 3.3: The first 164 nearest neighbor scenes for the incomplete image in the center.
Most of the scenes are semantically and structurally similar; many are even from the same
city (London).

even in a large database. Our approach is purely data-driven, requiring no labelling or
supervision.

In order to seamlessly combine image regions we employ Poisson blending. To avoid blending
artifacts, we first perform a graph cut segmentation to find the boundary for the Poisson
blending that has the minimum image gradient magnitude. This is in contrast to minimizing
the intensity domain difference along a boundary [115] or other heuristics to encourage a
constant intensity offset for the blending boundary [46]. In section 3.4 we explain why
minimizing the seam gradient gives the most perceptually convincing compositing results.

The image completion work most closely resembling our own, Wilczkowiak et al. [115], also
demonstrates the search of multiple images. However, in their case it was only a few images
that were hand selected to offer potentially useful image regions. Also related are methods
which synthesize semantically valid images either from text or image constraints [22, 49].
These methods create semantically valid images through explicit sematic constraints using
image databases with semantically labelled regions. The database labelling process must be
supervised [22] or semi-supervised [49].

3.3 Semantic Scene Matching

Since we do not employ user-provided semantic constraints or a labelled database, we need
to acquire our semantic knowledge from the data directly. This requires us to sample the set
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of visual images as broadly as possible. We constructed our image collection by downloading
all of the photographs in thirty Flickr.com groups that focus on landscape, travel, or city
photography. Typical group names are “lonelyplanet,” “urban-fragments,” and “ruraldecay.”
Photographs in these groups are generally high quality. We also downloaded images based
on keyword searches such as “travel,” “landscape,” and “river.” We discarded all duplicate
images and all images that did not have at least 800 pixels in their largest dimension and
500 pixels in their smallest dimension. All images were down-sampled, if necessary, such
that their maximum dimension was 1024 pixels. Our database downloading, pre-processing,
and scene matching are all distributed among a cluster of 15 machines. In total we acquired
about 2.3 million unique images totalling 396 gigabytes of JPEG compressed data.

In order to successfully complete images we need to find image regions in our database that
are not just seamless and properly textured but also semantically valid. We do not want
to complete hillsides with car roofs or have ducks swimming in city pavement which locally
resembles a lake. To help avoid such situations we first look for scenes which are most
likely to be semantically equivalent to the image requiring completion. The use of scene
matching is the most important element of our image completion method. Without it, our
search would not be computationally feasible and our image completion results would rarely
be semantically valid. Our scene matching, in combination with our large database, allows
us to do image completion without resorting to explicit semantic constraints as in previous
photo synthesis work [22,49].

We use the gist scene descriptor [69, 72] which has been shown to perform well at grouping
semantically similar scenes (eg. city, tall buildings, office, fields, forest, beach) and for place
recognition. It must be noted that a low-level scene descriptor in and of itself cannot encode
high-level semantic information. Scenes can only be trusted to be semantically similar if the
distance between them is very small. The way we address this issue is by collecting a huge
dataset of images making it more likely that a very similar scene to the one being searched is
available in the dataset. Indeed, our initial experiments with the gist descriptor on a dataset
of ten thousand images were very discouraging. However, increasing the image collection to
one million yielded a qualitative leap in performance. Independently, Torralba et al. [100]
have observed a similar effect with a dataset of up to 80 million tiny (32x32) images.

The gist descriptor aggregates oriented edge responses at multiple scales into very coarse
spatial bins. We found a gist descriptor built from 6 oriented edge responses at 5 scales
aggregated to a 4x4 spatial resolution to be most effective. We augment the scene descriptor
with the color information of the query image down-sampled to the spatial resolution of the
gist.

Searching for similar scenes first rather than directly looking for similar patches speeds up
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our search dramatically. Instead of looking for image patches in all one million images at
multiple offsets and scales we can instead eliminate 99.99% of the database quickly by finding
the nearest neighbor scenes based on the relatively low dimensional scene descriptor.

Given an input image to be hole-filled, we first compute its gist descriptor with the missing
regions excluded. This is done by creating a mask which weights each spatial bin in the
gist in proportion to how many valid pixels are in that bin. We calculate the SSD between
the the gist of the query image and every gist in the database, weighted by the mask. The
color difference is computed in the L*a*b* color space. The distance is weighted such that
each of the 4 different gist scales and the color information contribute roughly equally to the
distance calculations. Examples of the nearest scenes for two particularly successful queries
are shown in Figure 3.3.

Because we match scenes using arbitrary dimensions of the descriptor (depending on which
regions of a query image are missing), we can not use PCA dimensionality reduction as
suggested in [72]. For the same reason we do not use any approximate nearest-neighbor
scheme since they tend to incur large relative errors when matching on arbitrary dimensions
of descriptors with hundreds of dimensions. However, the descriptors are small enough to
exhaustively search in a few minutes.

3.4 Local Context Matching

Having constrained our search to semantically similar scenes we can use traditional template
matching to more precisely align those matching scenes to the local image context around
the missing region. The local context is all pixels within an 80 pixel radius of the hole’s
boundary. This context is compared against the 200 best matching scenes across all valid
translations and 3 scales (.81, .90, 1) using pixel-wise SSD error in L*a*b* color space.
Only placements (translations and scales) for which the context is fully contained in the
matching scene are considered. Since we expect our matching scenes to already be roughly
aligned with the incomplete image we discourage spurious, distant matches by multiplying
the error at each placement by the magnitude of the offset. At the minimum error placement
of each matching scene we calculate a texture energy distance as the sum of the pixel-wise
differences in edge energy ‖ ∇Scene(x, y) ‖ − ‖ ∇Context(x, y) ‖ as an indication of how
similarly textured each matching scene is with the incomplete image. This score will be used
as part of the ranking criteria among candidate image completions.

We composite each matching scene into the incomplete image at its best scoring placement
using a form of graph cut seam finding [57] and standard poisson blending [76]. Using a seam
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finding operation to composite the images is arguably undesirable for hole filling since a user
might want to preserve all of the image data in the input image. Past image completion
algorithms [18] have treated the remaining valid pixels in an image as hard constraints which
are not changed. We relax this, as in [115], and allow the seam-finding operation to remove
valid pixels from the query image but we discourage the cutting of too many pixels by adding
a small cost for removing each pixel in the query image which increases with distance from
the hole (Equation 2).

When performing a seam-finding operation and gradient domain fusion in sequence it makes
sense to optimize the seam such that it will minimize the artifacts left behind by the gradient
domain fusion. Jia et al. [46] uses dynamic programming to find a seam which has minimum
intensity difference between the two images after allowing some constant intensity offset.
The intuition is that humans are not sensitive to relatively large shifts in color and intensity
as long as the shifts are seamless and low frequency.

We argue that it is better to minimize the gradient of the image difference along the seam
instead of intensity differences. While the heuristic in [46] will indeed minimize the seam
gradient if it succeeds in finding a constant color offset seam, that is impossible in many
compositing situations (Figure 3.4). Minimizing intensity domain differences (even after
optimizing for the best global color offset) can cause the seam to pass through many high
frequency edges which will leave obvious blending artifacts after Poisson blending (Figure 3.4,
a). If we instead minimize the gradient of the image difference along the seam (Figure 3.4,
c), the seam tends to pass through regions of the images which either match (and thus have
low absolute difference and thus low difference gradient) or are both constant colored (in
which case poisson blending will hopefully do a good job of hiding the color difference at low
frequencies). This is especially true in our scene completion domain – the query and scene
matches are similarly colored. A seam that crosses an image edge produces more noticeable
artifacts than small color differences across the seam.

We find our seam by minimizing the following cost function.

C(L) =
∑

p

Cd(p, L(p)) +
∑
p,q

Ci(p, q, L(p), L(q)) (3.1)

Where Cd(p, L(p)) are the unary costs of assigning any pixel, p, to a specific label L(p), and
Ci(p, q, L(p), L(q)) is the higher-order cost for two pixels p and q taking labels L(p) and L(q)
respectively. The label of each pixel, L(p), has two values patch and exist corresponding to
a pixel being taken from the scene match or the incomplete image. For missing regions of
the existing image, Cd(p, exist) is a very large number. For regions of the image not covered

24



Figure 3.4: In this synthetic compositing example, we are placing the barn from Image 1 into
the field of Image 2. The cyan region is constrained to come from image 1, and the Yellow
region is constrained to come from image 2. (a) shows the optimal seam which minimizes
intensity differences (even after some best, constant color shift). (c) shows the optimal seam
which minimizes the gradient of the image difference. (b) and (d) are the Poisson blending
results from (a) and (c) respectively.
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Original Input Alternate Completions

Figure 3.5: The algorithm presents to the user a set of image completions alternatives for
each input. Here we show three such alternatives.

by the scene match, Cd(p, patch) is very large. For all other pixels,

Cd(p, patch) = (k ∗Dist(p, hole))3 (3.2)

This small penalty assigns a cost to each pixel taken from the scene match which increases
with a pixel’s distance from the hole, Dist(p, hole). We use an empirically found k = .002.
Wilczkowiak et al. [115] use a similar penalty.

Ci(p, q, L(p), L(q)) is non-zero only for immediately adjacent, four-way connected pixels.
When neighbors p and q share the same label, L(p) = L(q), the cost is also zero. Along
the seams, when L(p) 6= L(q), Ci(p, q, L(p), L(q)) = ∇diff(p, q) where ∇diff(p, q) is the
magnitude of the gradient of the SSD between the existing image and the scene match at
pixels p and q.

Using this cost function has the added advantage that it can be globally minimized quickly
using a graph cut [9] unlike the heuristic in [46] which has to iterate until convergence
while estimating the best color offset. A very similar metric was also mentioned but not
demonstrated in [1]. As in [1] we allow the Poisson blending to operate on the entire image
domain instead of correcting one of the images. We use the poisson solver of [2]. It is
worth noting that two image compositing techniques developed at the same time as our
research [59,112] may considerably improve the quality of our results.

Finally we assign each composite a score which is the sum of the scene matching distance,
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the local context matching distance, the local texture energy distance, and the cost of the
graph cut. All four components of the score are scaled to contribute roughly equally. We
present the user with the 20 composites with the lowest scores.

3.5 Results and Comparison

We test our algorithm on a set of 51 incomplete images. All test images come from either the
LabelMe database [84] or our own personal photo collections, none of which are contained
in our downloaded database. Images in the test set, about a half megapixel each, are higher
resolution than the images used in most previous works [18, 26] and likewise the missing
regions are quite large (56,000 pixels on average). The regions we removed from the photos
all had semantic meaning such as unwanted objects, storefronts, walls with graffiti, roads,
etc. The test set is made freely available on the authors’ web page.

Image completion is an inherently under-constrained problem. There are many viable ways
to fill a hole in an image. Previous approaches, which operate by reusing texture from the
input image can offer relatively few viable, alternative completions (perhaps by changing
parameters such as the patch size). While some such results might look slightly better than
others, the semantic interpretation of the image is unlikely to change. On the other hand,
our algorithm can offer a variety of semantically valid image completions for a given query
image (Figure 3.5). After compositing the best-matching patches we present a user with
the 20 top image completions (roughly equivalent to one page of image search results). In
some cases, many of these completions are of acceptable quality and the user can select
the completion(s) which they find most compelling. In other cases, only a few or none of
the results were acceptable. The quality of our results benefits from this very simple user
interaction and it is difficult for conventional image completion methods to offer an analogous
selection of results.

Some of our image completions are shown in Figures 3.6, 3.7, and 3.8. The bottom result in
Figure 3.8 is interesting because the scaffolding on the cathedral that was masked out has
been replaced with another image patch of the same cathedral. The database happened to
contain an image of the same cathedral from a similar view. It is not our goal to complete
scenes and objects with their true selves in the database, but with an increasingly large
database such fortuitous events do occur.
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Original Image Input

Matching Scene Output

Original Image Input

Matching Scene Output

Figure 3.6: Results 1. The input and the matching scenes are composited together to create
the outputs. The matching scene used in each output is highlighted in red. Note that the
algorithm can handle a large range of scenes and missing regions. On rare occasions, the
algorithm is lucky enough to find another image from the same physical location as seen in
the bottom example.



Original Image Input

Matching Scene Output

Original Image Input

Matching Scene Output

Figure 3.7: Results 2.
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Original Image Input Output

Figure 3.8: Results 3.

30



In all of the successful cases the completion is semantically valid but there might be slight
low-level artifacts such as resolution mismatch between the image and patch, blurring from
Poisson blending, or fine-scale texture differences between the image and patch. For failure
cases these low level artifacts are often much more pronounced (Figure 3.12, top). Another
source of failure is a lack of good scene matches which happens more often for atypical
scenes (Figure 3.12, middle). Semantic violations (e.g. half-objects) account for another
set of failures. The latter is not surprising since the algorithm has no object recognition
capabilities and thus no notion of object boundaries.

For uniformly textured backgrounds (Figure 3.13, top), existing image completion algorithms
perform well. However, our algorithm struggles since our scene matching is unlikely to find
the exact same texture in another photograph. Furthermore, image completion algorithms
such as Criminisi et al. [18] have explicit structure propagation which helps in some scenes
(Figure 3.13, bottom).

As we get more data the scene matches improves and the image completions are better.
Figures 3.9 and 3.10 show results obtained by using the 6.5 million image im2gps database
instead of the 2.3 million image database used throughout this Chapter.

The scene matching, local context matching, and compositing take about 3, 10, and 4 minutes
respectively on a single CPU but we parallelize all of these across many CPUs. Our algorithm
is implemented in Matlab.

3.5.1 Quantitative Evaluation

It is difficult to rigorously define success or failure for an image completion algorithm be-
cause so much of it depends on human perception. While previous approaches demonstrate
performance qualitatively by displaying a few results, we believe that it is very important
to also provide a quantitative measure of the algorithm’s success. Therefore, to evaluate
our method, we performed an IRB-approved perceptual study to see how well naive viewers
could distinguish our results, as well as those of a previous approach [18], from real pho-
tographs.1 The study was performed on a set of 51 test images that were defined a priori
and spanning different types of completions. We were careful not to include any potentially
recognizable scenes or introduce bias that would favor a particular algorithm. We generated
three versions of each image– the real photograph from which the image completion test

1One could argue that we should evaluate not only how reliably the image completion result fools novel
viewers, but also how faithfully the result preserves the original image and how satisfied the user is with the
novel composition.
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Figure 3.9: Six possible completions for the photograph shown in Figure 3.1. These results
were produced with the larger photo dataset and features described in im2gps (Chapter 4).

cases were constructed, the result from Criminisi et al., and the result from our algorithm.

Each of our 20 participants viewed a sequence of images and classified them as real or
manipulated. Of the 51 images each participant examined, 17 were randomly chosen from
each source, but such that they do not see multiple versions of the same image. The order
of presentation was also randomized. The participants were told that some of the images
would be real, but they were not told the ratio of real vs manipulated images. We also told
the participants that we were timing their responses for each image but that they should
try to be accurate rather than fast. Overall the participants classified 80% of the images
correctly. No effort was made to normalize for the differences in individual aptitude (which
were small).

With unlimited viewing the participants classified our algorithm’s outputs as real 37% of
the time compared with 10% for Criminisi et al. [18]. Note that participants identified real
images as such only 87% of the time. Participants scrutinized the images so carefully that
they frequently convinced themselves real images were fake.

It is interesting to examine the responses of participants over time. In Figure 3.14 we
measure the proportion of images from each algorithm that have been marked as fake with
an increasing limit on the amount of time allowed. We claim that if a participant who has
been specifically tasked with finding fake images cannot be sure that an image is fake within
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Figure 3.10: Additional results. Can you spot the manipulations? The inputs are shown
separately in Figure 3.11. These completions were produced with the larger photo collection
and features described in im2gps (Chapter 4).
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Figure 3.11: The input photos for Figure 3.10. The regions to be replaced are highlighted
in red.
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ten seconds, it is unlikely that an unsuspecting, casual observer would notice anything wrong
with the image. After ten seconds of examination, participants have marked our algorithm’s
results as fake only 34% of the time (the other 66% are either undecided or have marked the
image as real already). For Criminisi et al. participants have marked 69% of the images as
fake by ten seconds. For real photographs, only 3% have been marked as fake. All pairwise
differences are statistically significant (p < 0.001).

3.6 Discussion

This work approaches image completion from an entirely new direction – orthogonal and
complementary to the existing work. While previous algorithms [18, 26, 28, 115] suggest
clever ways to reuse visual data within the source image, we demonstrate the benefits of
utilizing semantically valid data from a large collection of unlabelled images. Our approach
successfully fills in missing regions where prior methods, or even expert users with the Clone
brush, would have no chance of succeeding because there is simply no appropriate image data
in the source image to fill the hole. Likewise, expert users would have trouble leveraging
such a large image collection – it would take 10 days just to view it with one second spent on
each image. Additionally, this is the first study in the field of image completion to undertake
a full perceptual user study and report success rates on a large test set. While the results
suggest substantial improvement over previous work, image completion is extremely difficult
and far from solved. Given the complimentary strengths of our method and single-image
techniques, a hybrid approach is likely to be rewarding.

It takes a large amount of data for our method to succeed. We saw dramatic improvement
when moving from ten thousand to one million images. But our database is still tiny in
comparison with the billions of high quality photographs available on sites like Picasa or
Flickr. As we are able to leverage more data we expect the algorithm to perform better.

Because our algorithm requires a large amount of data it would be logistically challenging
to distribute and use as a standalone desktop application. Our algorithm would be better
suited to a web-based interface, where a user would submit an incomplete photo and a remote
service would search a massive database, in parallel, and return results.

Beyond the particular graphics application, the deeper question for all appearance-based
data-driven methods is this: would it be possible to ever have enough data to represent the
entire visual world? Clearly, attempting to gather all possible images of the world is a futile
task, but what about collecting the set of all semantically differentiable scenes? That is,
given any input image can we find a scene that is “similar enough” under some metric? The
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Input Output Scene Match

Figure 3.12: Typical failure cases. Some results exhibit pronounced texture seams (top).
Others are failures of scene matching (middle). The last failure mode (bottom), shared
with traditional image completion algorithms, is a failure to adhere to high-level semantics
(e.g. entire people).
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Input Criminisi et al. Our algorithm

Figure 3.13: Cases where existing image completion algorithms perform better than our
algorithm.

truly exciting (and surprising!) result of our work is that not only does it seem possible, but
the number of required images might not be astronomically large. This study, along with
work by Torralba et al. [100], suggest the feasibility of sampling from the entire space of
scenes as a way of exhaustively modelling our visual world. This, in turn, might allow us to
“brute force” many currently unsolvable vision and graphics problems.

Acknowledgments: We would like to thank Antonio Torralba for the gist code and useful
comments and Gabriel Brostow for sharing their hole-filling software. We also thank Tamara
Berg, Alex Berg, and Rob Fergus for sharing their image downloading scripts.
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Chapter 4

Image Geolocation

Chapter Summary. We propose a simple algorithm for geolocating a single image using
a purely data-driven scene matching approach. We leverage a dataset of over 6 million
GPS-tagged images from the Internet. We represent the estimated image location as a
probability distribution over the Earth’s surface. We quantitatively evaluate our approach
in several geolocation tasks and demonstrate encouraging performance. Additionally we
consider the case of geolocating a sequence of timestamped photographs. We show that
geolocation estimates can provide the basis for numerous other image understanding tasks
such as population density estimation, land cover estimation or urban/rural classification.
This work was described, in part, in “im2gps” [39] and “image sequence geolocation” [50], a
collaboration with Evangelos Kalogerakis, Olga Vesselova, and Aaron Hertzmann.

4.1 Introduction

Consider the photographs in Figure 4.1. What can you say about where they were taken?
The first one is easy – it’s an iconic image of the Notre Dame cathedral in Paris. The
middle photo looks vaguely Mediterranean, perhaps a small town in Italy, or France, or
Spain. The rightmost photograph is the most ambiguous. Probably all that could be said
is that it’s a picture of a seaside in some tropical location. But note that even this vague
description allows us to disregard all non-coastal, non-tropical areas – more than 99.9%
of the Earth’s surface! Evidently, we humans have learned a reasonably strong model for
inferring location distribution from photographs. Moreover, even in cases when our geo-

1Project Page: http://graphics.cs.cmu.edu/projects/im2gps/
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Figure 4.1: What can you say about where these photos were taken?

localization performance is poor, we are still able to give fairly confident estimates to other
related questions: How hot/cold does it get? How many people live there? How well-off are
they? etc.

What explains this impressive human ability? Semantic reasoning, for one, is likely to play
a big role. People’s faces and clothes, the language of the street signs, the types of trees
and plants, the topographical features of the terrain – all can serve as semantic clues to the
geographic location of a particular shot. Yet, there is mounting evidence in cognitive science
that data association (ask not “What is it?” but rather “What is it like?”) may play a
significant role as well [5]. In the example above, this would mean that instead of reasoning
about a beach scene in terms of the tropical sea, sand and palm trees, we would simply
remember: “I have seen something similar on a trip to Hawaii!”. Note that although the
original picture may not actually be from Hawaii, this association is still extremely valuable
in helping to implicitly define the type of place that the photo belongs to.

Of course, computationally we are quite far from being able to semantically reason about a
photograph (although encouraging progress is being made). On the other hand, the recent
availability of truly gigantic image collections has made data association, such as brute-force
scene matching, quite feasible [38,100].

In this study, we propose an algorithm for estimating a distribution over geographic locations
from an image using a purely data-driven scene matching approach. For this task, we lever-
age a dataset of over 6 million GPS-tagged images from the Flickr online photo collection.
We represent the estimated image location as a probability distribution over the Earth’s sur-
face, and geolocation performance is analyzed in several tasks. Additionally, the usefulness
of image localization is demonstrated with meta-tasks such as land cover estimation and
urban/rural classification.
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Figure 4.2: The distribution of photos in our database. Photo locations are cyan. Density
is overlaid with the “jet” color map (log scale).

4.1.1 Background

Visual localization on a topographical map has been one of the early problems in computer
vision, which turned out to be extremely challenging for both computers and humans [98].
But the situation improves dramatically if more sources of data are available. Jacobs et
al. [43] proposes a very clever and simple method of geolocating a webcam based on corre-
lating its video-stream with satellite weather maps over the same time period.

The recent availability of GPS-tagged images of urban environments coupled with advances
in multi-view geometry and efficient feature matching led to a number of groups developing
place recognition algorithms, some of which competed in the “Where am I?” Contest [97]
at ICCV’05 (winning entry described in [118]). Similar feature-based geometric matching
approaches have also been successfully applied to co-registering online photographs of famous
landmarks for browsing [90] and summarization [87], as well as image retrieval in location-
labeled collections, e.g. [14]. Landmark photos are linked to Wikipedia photos and articles
within a specified city in [80]. Since the publication of im2gps, [17] and [119] have attacked the
global landmark recognition problem, in the latter case scaling up to thousands of landmarks
with high accuracy.

But can these geometric feature-based matching approaches scale up to all photos of world?
This is unlikely in the near future, not just because of computational cost, but simply because
the set of all existing photographs is still not large enough to exhaustively sample the entire
world. Yes, there are tens of thousands of photos of a many landmarks, but some ordinary
streets or even whole cities might be entirely missing. Even with a dense visual sample,
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much of the world is too self-similar (e.g. the 300 thousand square kilometers of corn fields
in the US). Clearly, a generalization of some sort is required.

On the other side of the spectrum is the philosophy that all forests look more or less the
same, as do deserts, mountains, cities, kitchens, bathrooms, etc. A large body of work exist
on scene recognition [62,74,82,108], which involves defining a handful of scene categories and
using various low-level features to classify a novel image into one of these categories. While
impressive results are typically obtained, classification is not a difficult task if the number
of categories is small. Moreover, the choice of categories is often not very scientific.

The approach we are proposing in this study neatly straddles these two extremes, seamlessly
adapting to the amount of data available. If the query image is a famous landmark, there
will likely be many similar images of the same exact place in the database, and our approach
is likely to return a precise GPS location. If the query is more generic, like a desert scene,
many different deserts could match, producing a location probability that is high over the
dry, sandy parts of the world. In fact, our approach provides a more scientifically valid
method of defining scene categories – based on geographic location as well as appearance.

4.2 Building a Geo-tagged Image Dataset

In order to reason about the global location of an arbitrary scene we first need a large number
of images that are labelled with geographic information. This information could be in the
form of text keywords or it could be in the form of GPS coordinates. Fortunately there
is a huge (and rapidly growing) amount of online images with both types of labels. For
instance, Flickr.com has hundreds of millions of pictures with either geographic text or GPS
coordinates.

But it is still difficult to create a useful, high-quality database based on user collected and la-
belled content. We are interested in collecting images that depict some amount of geographic
uniqueness. For instance, pictures taken by tourists are ideal because they often focus on
the unique and interesting qualities of a place. Many of these images can be found because
they often have geographic keywords associated with them (i.e. city or country names).
But using geographic text labels is problematic because many of them are ambiguous (e.g.
Washington city/state, Georgia state/country, Mississippi river/state, and LA city/state) or
spatially broad (e.g. Asia or Canada).

Images annotated with GPS coordinates are geographically unambiguous and accurate, but
are more likely to be visually irrelevant. Users tend to geo-tag all of their pictures, whether
they are pet dog pictures (less useful) or hiking photos (more useful). In fact, the vast
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Figure 4.3: The 237 image im2gps test set. Note how difficult it is to specifically geolocate
most of the images.
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majority of online images tagged with GPS coordinates and to a lesser extent those with
geographic text labels are not useful for image-based geolocation. Many of the images
are poor quality (low resolution, noisy, black and white) or depict scenes which are only
marginally useful for geolocation (most portraits, wedding pictures, abstracts, and macro
photography). While these types of photos can sometimes reveal geographic information
(western-style weddings are popular in Europe and Japan but not India; pet dogs are popular
in the US but not Syria) the customs are so broadly distributed that it is not very useful for
geolocation.

However, we found that by taking the intersection of these groups, images with both GPS
coordinates and geographic keywords, we greatly increased the likelihood of finding accu-
rately geolocated and visually useful data. People may geo-tag images of their cats, but
they’re less likely to label that image with “New York City” at the same time. Our list
of geographic keywords includes every country and territory, every continent, the top 200
most populated cities in the world, every US state, and popular tourist sites (e.g. “Pisa”,
“Nikko”, “Orlando”).

This results in a pool of approximately 20 million geotagged and geographic text-labelled
images from which we excluded all photos which were also tagged with keywords such as
“birthday”, “concert”, “abstract” and “cameraphone”. In the end we arrived at a database of
6, 472, 304 images. All images were downsized to max dimension 1024 and JPEG compressed
for a total of 1 terabyte of data.

While this is a tremendous amount of data it cannot be considered an exhaustive visual
sampling of Earth. Our database averages only 0.0435 pictures per square kilometer of
Earth’s land area. But as figure 4.2 shows the data is very non-uniformly distributed towards
places where people live or travel which is fortunate since geolocation query images are likely
to come from the same places.

4.2.1 Evaluation Test Set

To evaluate the performance of our method, we also need a separate, held-out test set of
geo-located images. We built the test set by drawing 400 random images from the original
data set. From this set we manually removed the types of undesirable photos that we tried
to excluded during database construction – abstract photos, overly processed or artistic
photos, and black and white photos. We also excluded photos with significant artifacts such
as motion blur or extreme noise. Finally we removed pictures with easily recognizable people
or other situations that might violate someone’s privacy. To ensure that our test set and
database are independent we exclude from the database not just test images, but all other
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images from the same photographers.

Of the 237 resulting images, about 5% are recognizable as specific tourist sites around the
globe but the great majority are only recognizable in a generic sense (See Figure 4.3). Some of
the images contain very little geographic information, even for an astute human examiner.
We think this test set is extremely challenging but representative of the types of photos
people take.

4.3 Scene Matching

Is it feasible to extract geographic information from generic scenes? One of the main ques-
tions addressed by this study is as much about the Earth itself as it is about computer vision.
Humans and computers can recognize specific, physical scenes that they’ve seen before, but
what about more generic scenes which make up most of our database and our test set. Many
of these scenes may be impossible to specifically localize. We know that our world is self-
similar not just locally but across the globe. Film creators have long taken advantage of this
(e.g. “Spaghetti Westerns” films that were ostensibly set in the American Southwest but
filmed in Almeŕıa, Spain.) Nonetheless, it must be the case that certain visual features in
imagery correlate strongly with geography even if the relationship is not strong enough to
specifically pinpoint a location. Beach images must be near bodies of water, jungles must
be near the equator, and glaciated mountains cover a relatively small fraction of the Earth’s
surface.

What features can we extract from images that will best allow us to examine and exploit this
correlation between image properties and geographic location? In this study we evaluate an
assortment of popular features from literature:

Tiny Images: The most trivial way to match scenes is to compare them directly in color
image space. Reducing the image dimensions drastically makes this approach more compu-
tationally feasible and less sensitive to exact alignment. This method of image matching has
been examined thoroughly by Torralba et al. [100] for the purpose of object recognition and
scene classification. Inspired by this work we will use 16 by 16 color images as one of our
features.

Color histograms: In the spirit of most image retrieval literature, we build joint histograms
of color in CIE L*a*b* color space for each image. Our histograms have 4, 14, and 14 bins
in L, a, and b respectively for a total of 784 dimensions. We have fewer bins in the intensity
dimension because other descriptors will measure the intensity distribution of each image.
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We compute distance between these histograms using χ2 distance.

Texton Histograms: Texture features might help distinguish between geographically cor-
related properties such ornamentation styles or building materials in cities or vegetation and
terrain types in landscapes. We build a 512 entry universal texton dictionary [67] by cluster-
ing our dataset’s responses to a bank of filters with 8 orientations, 2 scales, and 2 elongations.
For each image we then build a 512 dimensional histogram by assigning each pixel’s set of
filter responses to the nearest texton dictionary entry. Again, we use χ2 distances between
texton histograms. Note that this representation is quite similar to dense visual words.

Line Features: We have found that the statistics of straight lines in images are useful
for distinguishing between natural and man-made scenes and for finding scenes with similar
vanishing points. We find straight lines from Canny edges using the method described in
Video Compass [55]. For each image we build two histograms based on the statistics of
detected lines- one with bins corresponding to line angles and one with bins corresponding
to line lengths. We use L1 distance to compare these histograms.

Gist Descriptor + Color: The gist descriptor [72] has been shown to work well for scene
categorization [74] and for retrieving semantically and structurally similar scenes [38]. We
create a gist descriptor for each image with 5 by 5 spatial resolution where each bin contains
that image region’s average response to steerable filters at 6 orientations and 4 scales. We
also create a tiny L*a*b image, also at 5 by 5 spatial resolution.

Geometric Context: Finally, we compute the geometric class probabilities for image re-
gions using the method of Hoiem et al. [40]. We use only the primary classes- ground, sky,
and vertical since they are more reliably classified. We reduce the probability maps for each
class to 8x8 and use L2 distance to compare them.

We precomputed all features for the database which took about 15 seconds per image on a
contemporary Xeon processor for a total of 3.08 CPU years. Using a cluster of 400 processors
we computed the features over 3 days.

4.4 Data-driven Geolocation

After all the preprocessing is complete, the geolocation framework is quite simple. For each
input image in our test set we build the same features as discussed in Section 4.3 and compute
the distance in each feature space to all 6 million images in the database. We scale each
feature’s distances so that their standard deviations are roughly the same and thus they
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influence the ordering of scene matches equally. For each query image we use the aggregate
feature distances to find the nearest neighbors in the database and we derive geolocation
estimates from those GPS tagged nearest neighbors.

To produce a geolocation estimate, the simplest heuristic is to take the GPS coordinate of the
first nearest neighbor (1-NN) scene match. Of course, 1-NN approaches are often not robust.
Alternatively, we can consider a larger set of k-NN (k = 120 in our experiments). This set of
nearest neighbors together forms an implicit estimate of geographic location – a probability
map over the entire globe. The hope is that the location of peak density in this probability
map corresponds to the true location of the query image. One way to operationalize this
is to consider the modes of the distribution by performing mean-shift [15] clustering on the
geolocations of the matches. We represent the geolocations as 3d points and re-project the
mean-shift clusters to the Earth’s surface after the clustering procedure. We use a mean-
shift bandwidth of 500km (although other settings work similarly) and disregard clusters
with fewer than 4 matches, resulting in between 6 to 12 clusters containing about two thirds
of the original 120 matches. The clustering serves as a kind of geographic outlier rejection
to clean up spurious matches, but can be unfavorable to locations with few data-points.

To compute a geolocation estimate, one approach is to pick the cluster with the highest
cardinality and report the GPS coordinate of its mode. For some applications, it might be
acceptable to return a list of possible location estimates, in which case the modes of the
clusters can be reported in order of decreasing cardinality. We show qualitative results for
several images in Figure 4.8. More results can be found on our project web page.

4.4.1 Is the data helping?

The most interesting research question for us is how strongly does image similarity correlate
with geographic proximity? To geolocate a query we don’t just want to find images that are
similarly structured or of the same semantic class (e.g. “forest” or “indoors”). We want
image matches that are specific enough to be geographically distinct from otherwise similar
scenes. How much data is needed start to capture this geography-specific information? In
Figure 4.4 we plot how frequently the 1-NN scene match is within 200km of the query’s true
location as we alter the size of the database. With a tiny database of 90 images, the 1-NN
scene match is as likely to be near the query as a random image from the database. With
the full database we perform 16 times better than chance.
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Figure 4.4: Geolocation performance across database sizes. Percentage of test set images
that were correctly geolocated within 200km of ground truth as function of dataset size
using 1-NN. As the database shrinks the performance converges to chance.

4.4.2 Which features are most geo-informed?

Another interesting question we consider is which visual characteristics are more helpful in
disambiguating between locations? In Figure 4.5 we examine the geolocation accuracy when
using each of the features from Section 4.3 in isolation as well as in unison. For each feature
we consider the geolocation accuracy of 1-NN as well the largest cluster. The latter is indeed
more robust than using 1-NN, although performance is similar when using all features. The
richer feature combinations seem less prone to geographic outliers which disrupt the 1-NN
approach.

Using all features together performed considerably better than any one by itself, suggesting
that the information they are capturing is somewhat independent. The most geographically
discriminative features are the gist, color histogram, and texton histogram. The gist, es-
pecially, performs well, even in the 1-NN regime. Surprisingly, color also does extremely
well (but only after discarding geographic outliers), which suggests that it is a more diverse
and location-specific feature than previously assumed (artists have long talked about “that
special color” of a particular location). The least geographically discriminative feature is
the 8x8 geometric context class likelihoods. This seems reasonable – the geometric context
framework is inspired by the observation that the vast majority of scenes can be succinctly
modelled by ground, sky, and vertical components. A view down a forest path can share
the same class distribution as a view down Wall St. (when considering only the primary
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Figure 4.5: Geolocation performance across features. Percentage of test cases geolocated to
within 200km for each feature. We compare geolocation by 1-NN vs. largest mean-shift
mode.

geometric classes). The 16x16 tiny images also scored low. In fact, after geographic outlier
rejection, they performed worse than humble 5x5 color images, suggesting that perhaps they
are too noisy for this task. In the rest of the evaluations, we will use all features except the
geometric context and the 16x16 tiny images.

4.4.3 How accurate are the estimates?

Given a photo, how often can we pin-point the right city? Country? Continent? So far we
have evaluated geolocation accuracy only in terms of a distance threshold. In Figure 4.6 we
more closely examine the distribution of geolocation errors (distances between estimated and
ground truth locations) across our test set. For the two heuristics (1-NN, and mean-shift
mode) plus three baselines (chance, and two best case scenarios), we sort the errors on the
test set independently, from best to worst. We see that both heuristics are able to localize
about 25% of the data within the scale of a (small) country. The 1-NN approach performs
better at precise localization (within a city). Both methods outperform chance by a large
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Figure 4.6: Accuracy of geolocation estimates across the test set. Localization errors (dis-
tance between predicted and ground truth location), are shown for 1-NN and mean-shift
estimates. Errors are sorted from best to worst independently for each curve, thus showing
the proportion of images geolocated within any error threshold. Chance performance (ran-
dom matches) and two best-case scenarios – picking the mean-shift mode or scene match
which is spatially closest to the ground truth query location – are shown for comparison.

margin.

It is instructive to note that although the largest one-third of errors across the test set are
very large (nearly as bad a chance), for almost all queries there is some scene match or
mean-shift cluster that is quite close to the query (see “best case” curves on Figure 4.6). In
other words, among the 120 nearest neighbors there are almost always several geographically
accurate matches but the heuristics sometimes have trouble disambiguating those from other
visually similar, spatially dissimilar matches (e.g. Hawaii vs Martinique or New York City vs
Hong Kong). If we allow ourselves N “guesses” as to the location of a query we can rapidly
get closer to the ground truth location (Figure 4.7). For this task we compare geolocation
estimates from N nearest neighbors and the modes of the N largest clusters. The probability
map modes are especially accurate for this task. With 6 guesses for each query, the median
error for the test set is less than 500km (nearly half the error of 6-NN, and one quarter the
error of 6 random scenes).
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Figure 4.7: Geolocation error with multiple guesses. Median geolocation error for NN and
mean-shift modes with increasing numbers of guesses allowed. The error is the distance from
an algorithm’s best guess to the query’s ground truth location. Although the geolocation of
a query may be ambiguous among several possibilities, after multiple guesses it is likely that
one of the estimates is near the ground truth location.
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Figure 4.8: Results 1. From left to right: query images, nearest neighbors, and three visu-
alizations of the estimated geolocation probability map. The probability map is shown as
a jet-colorspace overlay on the world map. Cluster modes are marked with circumscribed
“X”’s whose sizes are proportional to cluster cardinality. If a scene match is contained in a
cluster it is highlighted with the corresponding color. The ground truth location is a cyan
asterisk surrounding by green contours at radii of 200km, 750km, and 2500km. From top to
bottom, these photos were taken in Paris, Barcelona, Thailand, California, and Argentina.
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Figure 4.9: Results 2. From top to bottom, these photos were taken in Utah, Germany, New
York City, New York City, and Tanzania. The Apple Store in Manhattan is a surprisingly
popular location for geo-tagged photographs, possibly due to the GPS-enabled iPhone.
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Figure 4.10: Results 3. In all of these cases the geolocation estimate was quite poor. From
top to bottom, these photos were taken in Morocco, Oklahoma, Argentina, Afghanistan,
and Japan. In the top two cases, the scene matches are fairly good, but the scenes are non-
distinctive and there are not enough geolocated reference photos in Morocco or Oklahoma.
In the middle photo, the matched scenes are largely tropical locations even though the photo
is taken in frigid, Southern Argentina. In the bottom two photographs, the scene matches
are poor.
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4.5 Why Does it Work? Deeper Performance Analysis

This section was added after the initial publication of im2gps. Using the im2gps test set, we
have found that the first nearest neighbor scene has a 16% chance of being within 200km
of a query. The mode of the largest geographic cluster has a 15% chance of being within
200km. In this section we examine what factors account for the this performance and try to
measure their influence.

4.5.1 Measuring performance without geographic bias.

The peaked geographic distribution of the data accounts for the performance that
we see. – Dan Huttenlocher, Boris Epshtein, Slashdot user comments, CSD
Immigration course attendees

The most common concern about im2gps, stated above, is that since the geographic distri-
bution of data appears peaked in relatively few places (Figure 4.2), our performance could
be a result of random guessing. In fact, the chance that two photos are within 200km in the
im2gps database is about 1.2%. For our test set of 237 images randomly sampled from the
database chance is 0.97%. For individual test cases, chance ranges from less than 0.01% in
Libya, Colombia, and Greenland to 4.9% near London. That is to say, 4.9% percent of the
im2gps database is within 200km of London. For other cities the values are: New York City
4.3%, San Francisco 3.1%, Paris 2.8%, Chicago 1.9%, Tokyo 1.8%, and Barcelona 1.5%.

How would im2gps perform if the test set distribution wasn’t geographically peaked? To
quantitatively evaluate this issue we define a new geographically uniform test set. We tes-
sellate the globe into quadrilateral regions roughly 400km on edge (Figure 4.11). We take
one query from each of the 955 regions in that have at least ten photographs. Chance is an
order of magnitude lower for this database – only 0.13%.1 Figure 4.12 shows the geographic
distribution of the test set, as well as the geolocation accuracy for each photo. Large re-
gions of South America, Africa, and Central Asia have no accurate geolocations. Overall, for
2.3% of the photos the first nearest neighbor is within 200km of the query photo’s location,
and only 4.15% within 750km. Interestingly, relative to chance, this is just as much of an
improvement as on the im2gps test set (∼ 16 times better).

1This value was calculated by counting the number of database photos close enough to each query in the
test set. Alternatively, each geolocation guess has an area of 126,663km2 and the land area of the Earth is
148, 940, 000km2, suggesting that a truly uniform test set would have a chance guessing accuracy of 0.084%.
Chance is higher for our test set because our database (and thus test set) contain no photographs in some
regions of Siberia, Sahara, and Antarctica.
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Figure 4.11: Photo density in im2gps database, linear scale (top) and natural log scale
(bottom). The height of each bar is proportional to the density of geotagged photos in each
equal area region. The bars are colored according to the Matlab “jet” color scheme. Regions
with zero photos have no bar.
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Figure 4.12: Accuracy on Geographically Uniform Test Set. For each photo in the test set,
the marker color indicates how accurately the photo was geolocated.

For this data set, using the largest mean shift mode is less geographically accurate than
the first nearest neighbor. With a fixed bandwidth for all parts of the globe, scene matches
that are found in sparse areas will not be grouped together. For example, if there are 4
scene matches in England and 20 in South America, the England matches will most likely
form a larger cluster than any in South America. As an alternative to mean shift we tried
geographically clustering the matches using a Gaussian Mixture Model (GMM). GMM is
appealing because its clusters can significantly vary in spatial density. The clustering is
initialized with k-means, then an Expectation Maximization (EM) procedure optimizes the
model parameters. We used K = 25 clusters.

Figure 4.13 shows an example of clustering from mean shift and GMM. The GMM clustering
is arguably more consistent with human expectations – photos in West Africa, sub-Saharan
Africa, South America, and Central Asia form clusters even though they are spread out. For
this query, mean shift does not even form a cluster within 3000km of the ground truth photo
location.2 Any geolocation heuristic using the clusters (e.g. picking the biggest cluster, or
using machine learning to decide among clusters (Chapter 6)) is hopeless in the mean shift
case. Unfortunately, the GMM clustering can not fare much better here – even if the nearest
cluster is picked, its mean coordinate is more than 1000km away from the photo location.
With an accuracy threshold of 200km, GMM clustering performs quantitatively worse than
MS clustering on all of our test sets. There is nothing stopping us from using multiple,
overlapping clusterings of the scene matches. Including both sets of clusters does not improve
performance in practice, though. Mean shift clustering, with its fixed bandwidth, is simply

2We could increase the mean shift bandwidth, but this does not help performance. In Chapter 6, we
decrease the minimum cluster size. This does not affect the “largest cluster” heuristic, but it does give our
learning an opportunity to choose isolated photographs.
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Figure 4.13: GMM vs MS clustering. Clustering of the same set of scene matches using
Gaussian Mixture Model (top) and Mean Shift (Bottom). The mean shift clustering uses a
bandwidth of 200km. Cluster membership is indicated by colored markers. The query image
is from Ahmedabad. The GMM does a better job of grouping photos in sparse regions.
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the most appropriate clustering method when we used a fixed distance threshold to evaluate
performance. With a different metric to evaluate geolocation accuracy the GMM clustering
might appear more effective.

The fundamental, unavoidable issue is that we do not have enough data for many locations
around the world. A generic photo of Brazilian rain forest will find many more matches
in Hawaii, Thailand, or more temperate locations than in the correct location. It is not
a matter of database peakedness drowning out the correct matches – if a scene is visually
distinct it will often be geolocated even if it is rarely photographed. But for generic scenes,
where the visual features distinguishing one location from another are extremely subtle, a
large amount of reference data is needed. So it is certainly the case that im2gps performance
is inextricably tied to the geographic distribution of our test set and database. A biased
sampling strategy at database creation time could help smooth out these differences, but
there is not enough geotagged data on Flickr to completely remove the geographic bias of
photo taking.

4.5.2 Measuring category level geolocation performance.

While we have demonstrated that our geolocation accuracy is far better than chance, random
guessing is arguably not a realistic baseline comparison. Just by retrieving scenes of the same
broad semantic category as a query (for instance “beach”, “mountain”, “city”, “forest”,
“indoors”, etc...) chance must rise considerably. Does category level guessing account for
im2gps performance, or is it picking up on more subtle geographic variations?

As we increase the size of the im2gps database we see a slow but steady increase in per-
formance (Figure 4.4). If random matching within the same scene broad scene category
could account for im2gps performance, it is likely that performance would saturate with a
dramatically smaller database. Previous work has shown 90% accuracy in 4-way categoriza-
tion using a couple thousand training examples and nearest neighbor classification with the
gist descriptor [74]. Why does our performance double as our database increases from six
hundred thousand to six million geolocated examples? Part of the gain is likely because the
scene matches become more discriminative (not just forest but rain forest, not just cities but
European cities).

Figure 4.14 shows three queries that would fit into a broadly defined “city” category. Notice
how different the geographic distribution of scene matches is for each query. The German
city geolocation estimate is correctly peaked in central Europe. The Hong Kong skyline is
confused with other skylines (New York, Shanghai, Tokyo, and Chicago). Hong Kong is the
5th largest cluster. The Alabama warehouse matches many paved areas or streets in the US,
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Figure 4.14: im2gps results for different cities. These city queries from Germany, Hong
Kong, and Alabama produce very different geolocation estimates.
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although none near the correct location. The im2gps scene matches can definitely be more
specific than typically defined scene categories.

We can quantify how accurately im2gps would perform with perfect category level scene
recognition and random guessing within that category for our test sets. We use the NASA
map of land cover classification (Figure 4.22) to assign a ground truth geographic scene cat-
egory to each image in a test set. The categories are “city”, “forest”, “water”, “shrubland”,
“rain forest”, “barren”, “snow and ice”, “crops and grassland”, and “savanna”. We classify
the entire im2gps database into the same 9 categories. Then for each photo in a test set, we
calculate the probability that randomly matching to scenes of the same category will produce
a geolocation guess within 200km. This is something of an ideal case because it assumes that
any two categories, e.g. “shrubland” and “savannah”, can always be distinguished. Chance
under this perfect categorical matching is still quite low – 2.09% for the im2gps test set (up
from 0.97%) and 0.36% for the geographically uniform test set (up from 0.13%). We can
safely say that our geolocation method is discriminating far more than just scene categories.

4.5.3 Measuring Landmark Geolocation Performance

Perhaps 5% to 7% of photos in the im2gps test set are readily recognizable landmarks such as
Sagrada Familia or the Sydney Opera House. A very geographically knowledgeable person
might even recognize the exact physical scene for 10% of the test cases. Landmarks are
visually distinctive and often photographed so it makes sense that they contribute a large
amount to im2gps performance. Of the 16% of queries whose first nearest neighbor is within
200km, 58% of the 1NN matches depict the same physical scene. Many of these would not
be considered “landmarks” by a layperson – an aircraft in the Smithsonian, an Apple store
in New York City, or a bridge in Portugal. At the same time certain possible landmarks,
such as the Millennium Wheel in London, are missed by the first nearest neighbor.

We also evaluate the contribution of instance level matching within the larger 2k random test
set. This set contains 2000 random, unfiltered images from the im2gps database. No corrupt,
abstract, portrait, or artistic photos were removed, as they were for the im2gps test set, so it
is much more challenging. For this experiment we use lazy learning and more sophisticated
features (Chapter 6), both of which significantly increase instance level recognition. Within
the 13% of test cases that are successfully geolocated, 40% of the 1nn matches are the
same physical scene. The cluster chosen by the learning contains a landmark match 58%
of the time. In some of these cases it requires a great deal of study to determine if any of
the matches are the same physical location and the geolocation probably would have been
correct even without those matches.
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Figure 4.15: Toy Test Set 1. Considered individually, none of these photos are successfully
geolocated. But considered as a sequence, the photos are successfully geolocated in Hawaii.

Figure 4.16: Toy Test Set 2. These two images separated by two hours and several hundred
kilometers. The first image is easy to geolocate in Athens, but the second is more difficult.
Considered as a sequence, the second image is successfully geolocated in the Greek Isles.

Thus instance level recognition does account for a slim majority of successful geolocations
with both test sets and both geolocation methods. But we are also able to geolocate a
significant number of photos that are not landmarks and would presumably fall through the
cracks of methods such as [17,119]. Our own experiments using SIFT features in Chapter 6
also support this.

4.6 Image Sequence Geolocation With Human Travel

Priors

Above we considered the task of geolocating a single image. In this section, we investigate the
task of geolocating a sequence of timestamped photographs taken by the same photographer.
This section is a high level overview of [50], which was primarily the work of Evangelos
Kalogerakis, Olga Vesselova, and Aaron Hertzmann, with Alexei A. Efros and myself
assisting.

2Project Page: http://www.dgp.toronto.edu/ kalo/papers/images2gps/
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Figure 4.17: Common trips derived from geotagged Flickr data, as estimated from pairs of
photographs taken by the same user 5+ days apart. Travel frequency is shown in jet color
map, natural log scale.

Single image geolocation is difficult because many photographs contain little or no geo-
graphic information. Some photos contain enough geographic information to narrow down
the possibilities, but not to decide on a single location. But given a sequence of photographs
from the same user, it is often possible to geolocate otherwise ambiguous photos. In the
simplest case, if the timestamps for a set of photos are very close together then the pictures
must have been taken in the same small geographic area. This means that the individual
geolocation estimates for each photo can reinforce each other – while many of the photos
might be generic European street scenes, if just one photo depicts the Eiffel tower then all
of the photos become unambiguous.

For a more subtle case, consider the photos in Figure 4.15. The geolocation estimates of
each individual photo are quite ambiguous. But if we know that all the photos are taken in
the same region, the most probable geolocation emerges, correctly, as Hawaii. The photos
reinforce each other because their geolocation ambiguities are independent. For this toy
example, we did not use any temporal information. But consider the photos in Figure 4.16,
which are separated both spatially and temporally. Can we use the fact that the first photo
is easily recognized as part of the Acropolis of Athens to help determine the location of the
second, more generic coastal photograph? We can, but to do so we need some understanding
of how people move across the planet to help constrain the geolocation. We would like a
model that tells us, for every location on Earth, and every possible destination, what is the
likelihood that someone would travel there after a given amount of time has elapsed.
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Travel Probability, 0 to 4 hours elapsed

Travel Probability, 4 to 8 hours elapsed

Travel Probability, 8 to 24 hours elapsed

Travel Probability, 1 to 5 days elapsed

Travel Probability, 5+ days elapsed

Figure 4.18: Given that a photo in a sequence was taken on the big island of Hawaii, these
figures visualize the frequency of the next photo being taken at different locations around the
globe for different ranges of time elapsed. With 0 to 4 hours elapsed, the next photo must be
on one of the Hawaiian islands. From 4 to 8 hours elapsed it is possible to fly to the Western
United States. The longer the time elapsed, the less likely it is that the photographer has
remained on Hawaii, although Hawaii remains the single most probable follow-up location.
Travel frequency is shown in jet color map, natural log scale.



It turns out that modelling human motion across the globe is an active and important re-
search problem. It is useful for traffic forecasting, disaster response planning, urban planning
and infectious disease simulation. Our approach is to directly learn a global photographer
movement prior from the im2gps dataset of geotagged Flickr images. To build this model,
and to geolocate a novel sequence, we require that the time differentials between pairs of
photographs to be known. In practice, this is not an onerous requirement because cameras
automatically include this information in photo EXIF data. Even if the time is inaccurate
(e.g. a photographer never set her camera’s clock), the time differences should be accurate.

We build our travel model on top of the same global location discretization described above
in Section 4.5 and shown in Figure 4.11. Using the im2gps database, we count how often
photographers move from every bin to each other bin to take their next photograph, for a
given range of elapsed time (e.g. 4 to 8 hours). A visualization of this model is shown in
Figure 4.17, and a smaller slice, showing travel probabilities from the big island of Hawaii
for different time ranges, is shown in Figure 4.18.

Finally, we can geolocate a novel sequence using the single image geolocation estimates from
im2gps and our travel model. We describe the unknown photo locations with a Hidden
Markov Model and use the Forward-Backward algorithm (an instance of dynamic program-
ming) to find the maximum likelihood locations. For a complete description of the model
and inference process see [50].

Returning to our toy example in Figure 4.16, the maximum likelihood solution correctly
places the second photograph in the Greek Isles. To more rigorously evaluate the algorithm,
we build a test set of 4117 geotagged images from 20 Flickr users. We can geolocate these
photos to within 400km of their correct bin 58% of the time compared to 15% for single
image geolocation. Results for three sequences are visualized in Figure 4.19.

What accounts for this dramatic increase in performance with sequences? One possibility,
that might obviate the need for the sophisticated learning machinery and travel models that
we employ is that photos are taken in temporal clusters and many clusters contain at least
one landmark. Thus, simply propagating the geolocation from landmarks to temporally
nearby photos would account for the performance increase. To test this, we identify all of
the test set images for which single image geolocation was correct (peaked in the ground
truth bin). We then replace the geolocation estimate for these distinctive images with delta
functions in the correct bin (reinforcing the confidence of the landmark), and replace the
image likelihoods of all other photographs with uniform distributions. Thus the Hidden
Markov Model sees a series of photos which are either correctly and confidently geolocated
or completely ambiguous. In this scenario, the geolocation accuracy drops from 58% to 39%.
Clearly landmarks alone do not account for the performance.
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Figure 4.19: Sample images from three of our test users, and their routes. Ground-truth
routes are shown in red, and estimated routes in blue. The number of images in each
location is shown, with blue numbers indicating correctly-tagged regions, and red indicating
errors. Top: A user with 137 photos of San Francisco, Washington DC, Budapest, Macau,
and Sydney. We geolocate this sequence with 97.8% accuracy, as compared to 37.7% with
single image geolocation. The only errors are in Sydney, which is shown in only three aerial
views. Middle: A user with 259 photos from Switzerland, Singapore, Hawaii, and San
Francisco. We geolocate this sequence with 99.6% accuracy, as compared to 18.5% with
single image geolocation. The only error is in Switzerland, which is only shown in a single
blurry night-time photo. Bottom: A user with 146 photos from South America. We geolocate
this sequence with 79% accuracy, as compared to 10% with single image geolocation. The
algorithm incorrectly labels the last leg of the trip as being in the United Kingdom. Figure
reproduced with permission of Evangelos Kalogerakis and Aaron Hertzmann.

We can further test how informative the ambiguously geolocated photographs are by replac-
ing the geolocation estimates for all distinctive images with uniform distributions. Thus our
algorithm is forced to geolocate sequences for which every single individual geolocation esti-
mate is wrong. Amazingly, the performance is still 27.5%, much better than the single image
geolocation performance. The ambiguous single image geolocations can often reinforce each
other. This is compelling evidence that generic scenes, and not just landmarks, can be used
to geolocate photos.
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Figure 4.20: Top: global population density map, shown with “jet” color map. Bottom: in
scanline order, the test cases with the highest and lowest estimated population density.

4.7 Secondary Geographic Tasks

Once we have a geolocation estimate (either in the form of a specific location estimate or a
probability map), we can use it to index into any geographic information system (GIS) or
map. There is a vast amount of freely available geolocated information about our planet such
as climate information, crime rates, real estate prices, carbon emissions, political preference,
etc. Even if an image cannot be geolocated accurately, its geographic probability map
might correlate strongly with some features of the planet. For instance, given a map of
population density and a query image, we can sample the pop. density map at the estimated
geolocation(s) and assign the average value as an explicit pop. density estimate for the query
image. Using this approach we estimate the pop. density (Figure 4.20) and elevation gradient
magnitude (Figure 4.21) for each of our 237 test images.

We also produce land cover estimates for each of our test images by sampling from a land
cover classification map (Figure 4.22) according to each image’s geolocation probability map.
We show the test images which are most likely to be “barren” (Figure 4.23), “forest” (Fig-
ure 4.24), “water” (Figure 4.25), and “savanna” (Figure 4.26).
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Figure 4.21: Top: global elevation gradient map, shown with “jet” color map. Bottom:
in scanline order, the test cases with the largest and smallest estimated elevation gradient.
Major cities tend to be in flat regions.
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Figure 4.22: Land cover classification map and key.

Figure 4.23: Test images with the highest “barren” likelihood.
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Figure 4.24: Test images with highest “forest” likelihood. Note that there is no “mountain”
class in the land cover map– most mountains are labelled as “forest” or “barren” according
to their land cover. The mountains above are indeed forested.

Figure 4.25: Test images with the highest “water” likelihood.

Figure 4.26: Test images with the highest “savanna” likelihood. Perhaps only a couple of the
images in our test set actually depict “savanna”, but many of these images contain similar
visual elements.
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Figure 4.27: Map of global light pollution, shown with “jet” color map.

This framework can also be used to retrieve geographically relevant images out of an unla-
belled collection, i.e. “Which images in my photo collection are from my trip to India?”. In
this case the secondary geographic data source could be a global map where India=1.

Additionally, we can perform image classification using properties derived from a secondary
geographical data source according to our geolocation estimates. For example, using a global
map of light pollution (Figure 4.27), we look up the light pollution magnitude at the ground
truth location of each of our test cases. We divide the test images along their median light
pollution value into “urban” and “rural” classes (Figure 4.28). This is a difficult classification
problem because the classes are not cleanly separated, but it is a principled way to generate
ground truth scene categorization. Having defined a ground truth classification, we try to
predict each test image’s class without using its ground truth location but instead using its
estimated geolocation (Figure 4.29). Figure 4.30 shows the ROC curve for this task with
several different heuristics to estimate geolocation from scene matches. Using the entire
geolocation probability map instead of a single, explicit geolocation estimate performs best
(.82 area under ROC).
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Figure 4.28: The ground truth ranking of test cases by the amount of light pollution at
their locations. The images are classified into rural (white) and urban (yellow) by splitting
along the median score. Note how un-intuitive some of classifications are- fields, flowers, and
forests marked as urban because they are actually in or very near a large city. In addition,
some scenes that look like cities fall below the threshold because they are actually rather
small villages.



Figure 4.29: Our algorithm’s ranking of test cases by the amount of light pollution at their
estimated geolocation. The misclassifications are highlighted in red. Note the diversity of the
concepts that are being classified as urban- basketball arenas, indoor shopping centers, indoor
apartments, fruit markets, and dinner plates. Most of the misclassifications are reasonable
and likely consistent with human performance on this task.



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 

 

120 Nearest Neighbor Scene Matches

First Nearest Neighbor Scene Match

Mean Shift Mode, Largest Cluster

Chance− Random Scenes

Figure 4.30: ROC curve for urban/rural classification. Areas under ROC curve are .82, .74,
and .71 for 120-NN, 1-NN, and 1 mean-shift mode, respectively.

4.8 Discussion

We believe that estimating geographic information from images is an excellent, difficult, but
very much doable high-level computer vision problem whose time has come. The emergence
of so much geographically-calibrated image data is an excellent reason for computer vision
to start looking globally – on the scale of the entire planet! Not only is geo-location an
important problem in itself, but it could also be tremendously useful to many other vision
tasks:

i) Knowing the distribution of likely geolocations for an image provides huge amounts of ad-
ditional meta-data for climate, average temperature for any day, vegetation index, elevation,
population density, per capita income, average rainfall, etc.

ii) Even a coarse geo-location can provide a useful object prior for recognition (See Chapter
5). In the ideal case, knowing that a picture is somewhere in Japan would allow one to prime
object detection for the appropriate type of taxi cabs, lane markings, average pedestrian
height, etc.
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iii) Geolocation provides a concrete task that can be used to quantitatively evaluate scene
matching algorithms as well as provide a more scientific basis for scene recognition studies,
both for humans and machines. We return to geolocation for this purpose in Chapter 6 to
show the effectiveness of new features and “lazy learning” for scene matching.

In conclusion, this work is the first to be able to extract geographic information from a single
image. It is also the first time that a database of over 6 million geolocated images has been
used in computer vision. While our results look quite promising, much work remains to be
done. We hope that this work might jump-start a new direction of research in geographical
computer vision.

Acknowledgements: We thank Steve Schlosser, Julio Lopez, and Intel Research Pittsburgh
for helping us overcome the logistical and computational challenges of this project. All
visualizations and geographic data sources are derived from NASA data.
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Chapter 5

Geographic and Keyword Context for
Object Detection

Chapter Summary We improve object detection accuracy using two novel sources of
context – scene geography, as estimated by im2gps (Chapter 4) and keyword context, derived
from the keywords of matching Internet scenes. These sources of context are among several
explored in [24] in collaboration with Santosh Divvala, Derek Hoiem, Alexei A. Efros,
and Martial Hebert.

5.1 Introduction

Object detection – the task of identifying and localizing categories of objects in an image – is
one of the most actively studied problems in computer vision. The state-of-the-art methods
are “sliding window” approaches that exhaustively scan regions in an image for areas that
locally resemble an object category. For example, Felzenszwalb et al. [34] searches multiple
offsets and scales for rectangles that resemble discriminatively trained, deformable templates
of object categories in the “Histogram of Gradients” feature space popularized by [19].

But local appearance can be ambiguous or misleading. For example, in Figure 5.1, the
Felzenszwalb et al. detector has mistaken a carriage and horse legs for a dining table. To
a human, this seems like a particularly egregious error because the scene context (outdoor,
street), and object context (nearby cars and trees) make a dining table extraordinarily un-
likely. Humans use context to aid object detection (See [75] for an overview), and there have
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Figure 5.1: The detector of Felzenszwalb et al. [34] confidently detects a dining table in an
unlikely context.

been numerous recent computer vision methods for employing context in object detection
(see [24] for an overview), but these methods have not been proven effective on a dataset as
diverse as PASCAL.1

Here we introduce two novel sources of scene-level context for object detection and evaluate
them as part of an entry to the PASCAL VOC 2008 challenge. Specifically, we examine
context from geography and keywords as estimated from scene matching. The goal of this
scene-level context is to predict the likelihood of observing an object o given the image I
i.e., P (o|I). In Section 5.6 we will combine these estimates with the local object detector of
Felzenszwalb et al. [34].

5.2 Geographic Context

In im2gps [39] (Chapter 4) we showed that scene matching can be used to estimate geographic
properties of an image such as population density, elevation, land cover class, and urban vs

1The PASCAL Visual Object Challenge [31] is an annual competition for object classification and detec-
tion. Its data sets are frequently used as benchmarks for detection systems. PASCAL is very challenging,
requiring the detection of 20 object categories in diverse Flickr photographs.
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Figure 5.2: Geographic and Keyword context. Geographic properties and keywords associated
with the scene can help predict object presence in an image. The base detector finds a dining
table in this input image (see figure 5.1), while the context indicates that a dining table is
unlikely.

rural class. Object occurrence is correlated with scene geography – dining tables are rare in
forests, boats are frequently found in water scenes, people are more likely in high population
density scenes. We would like to test how strong this relationship is and whether knowing
scene geography could improve object detection accuracy.

To build a “geographic context”, we estimate geographic properties for a novel image by
finding matching scenes within our im2gps database of approximately 6 million geotagged
Flickr photographs with known geographic properties. We compute 15 geographic properties
such as land cover probability (e.g., ‘forest’, ‘cropland’, ‘barren’, or ‘savanna’), vegetation
density, light pollution, and elevation gradient magnitude by averaging the values of the
matching scenes. Separately for each object class, we train a logistic regression classifier [53]
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to predict object presence from these geographic properties.

Figure 5.1 visualizes our context pipeline at test time. The geography context is undecided
in this case: the high likelihood of forest suggests a dining table is unlikely, but the high like-
lihood of a city suggests a dining table is possible. The relationship between our estimated
geography and object presence is often weak. For instance, ten of the VOC object classes
are predominantly indoor and thus their contexts cannot be well distinguished by geogra-
phy. Furthermore, the geographic context can not reliably discriminate indoor vs outdoor
photographs.

5.3 Keyword (Semantic) Context

A more direct way to estimate object presence from scene matches might be to examine the
keywords attached to those scene matches. For example, if an image’s scene matches are
all labeled “cat” that is a strong indicator that the image contains a cat. Unfortunately,
inaccuracies in the scene matching process and the sparsity of text labels rarely make it
this straightforward. Useful keywords are very sparse – on average there is just one content
descriptive keyword per image in the im2gps dataset. Contrary to other studies [21], we
find the existing keywords to be fairly accurate (e.g. an image tagged “sheep” will usually
contain a sheep).

To build a “keyword context”, we first manually filter the 2000 most popular words appear-
ing in Flickr tags and titles into 50 categories. 20 categories are for words that correspond
unambiguously to each of the VOC object classes (e.g. ‘bottle’, ‘beer’, ‘wine’, and ‘vino’ for
the bottle category), and 30 categories for additional visual categories (e.g. a category for
‘church’, ‘cathedral’, and ‘temple’). Roughly 75% of the popular keywords are discarded be-
cause they are weakly correlated with visual content (e.g. “the”, “november”, and “nikon”).
The purpose of grouping the keywords into categories is to try and provide more robust
features to the learning. If the learning were presented with a 2000 word histogram it would
be more likely to overfit. A more sophisticated alternative would be to automatically learn
useful categories or to use a lexical database such as WordNet [33] to know that ‘A320’ is a
plane, ‘350z’ is a car, and ‘csx’ is a train. However, WordNet does not contain any of these
popular, proper names and for others it is misleading (‘Toyota’ is a city) so we did not use
it.

For a novel image we build a histogram of the keyword categories that appear among the
80 nearest neighbor scenes. We use logistic regression to predict object class based on this
histogram. In Figure 5.1, the keywords associated with the scene matches clearly indicate
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an outdoor setting. The logistic regression has learned that keywords relating to categories
“ruins”, “hiking”, and “monuments” mean the image is unlikely to contain a dining table.

Both geographic and keyword context classifiers are trained on the VOC’08 trainset. Due to
the large size of the VOC data set (∼ 10 thousand images), we approximated the distance
metrics of im2gps with the faster to compute L2 distance, which decreases the relevance of
the retrieved scenes somewhat. Both PASCAL VOC 2007 and 2008 partially overlap with
the im2gps database. During the scene matching process, we are careful to remove any exact
matches from consideration during the scene as well as all other photographs by the same
user.

Contemporary with our research, Wang, Hoiem, and Forsyth [110] examined image clas-
sification using keywords from matched Internet images. Although they did not use their
classifier for object detection context, it would likely be effective in that role.

5.4 Direct, VOC-learned context

The high-level strategy for geography and keyword context is: find similar Internet images,
and determine what their geographic and keyword labels indicate about object presence.
The relationship between those scene match labels and object presence is learned within the
VOC trainset. The advantage of using a large collection of Internet images is that it allows
us to reliably find similar scenes. But a disadvantage is that the labels on those scenes are
weak (in the case of geography) or sparse (in the case of keywords).

A logical alternative would be to instead find similar scenes within the VOC trainset. In
this case, the labelling is perfectly accurate and gives us information about not just object
presence, but object scale and location, as well. The difficulty of this approach is that the
VOC trainset is 2000 times smaller than our im2gps data set. With a data set as diverse
as PASCAL VOC, this amounts to a very sparse sampling of the space of observed scenes.
This alternative is explored in our work [24]. Within the VOC trainset, a direct relationship
is learned between the scene gist descriptor and geometric context of each image and the
presence of objects in that image. The scene gist of an image is computed in the standard
way as described in [74]. The geometric context for an image is computed as a set of seven
geometric class (ground, left, right, center, sky, solid, porous) confidence maps as described
in [40]. These confidence maps are re-sized to 12×12 grids and vectorized to serve as a coarse
“geometric gist” descriptor. For each of the descriptors, logistic regression is used to train
object presence classifiers for every object class. The idea of relating global scene statistics
to object presence was also explored in [105].
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Context source Average Precision
Geographic 15.1%
Keyword 25.6%
Scene gist 23.9%
Geometry 21.5%
Combined 31.2%

Table 5.1: Accuracy of context types. The average precision of object presence classifiers
trained on multiple sources of context and tested on the PASCAL VOC 2008 validation set.

5.5 Object Presence Accuracy

In Table 5.1 we report the average precision of each source of context for the task of predicting
whether an object is present in an image or not. This is exactly equivalent to the “object
classification” task of the PASCAL VOC. All of the methods are significantly better than
chance (∼ 7%)2, but none of the methods are competitive with the state of the art in
object classification (which is roughly 55% average precision). However, these sources of
context are meant to be complementary with a local object detector, and thus focus only
on scene statistics. VOC object classes that occur in very similar scene contexts (horse,
sheep, and cow; car and bus; dog and cat; bicycle and motorcycle; chair and sofa) are thus
indistinguishable to our context methods unless object appearance significantly influences
the scene descriptors (which is possible for large objects).

The Keyword context, derived from Internet scene matching, is the most effective. Thus
our use of large scale Internet data, although weakly labelled, is justified. The sources of
context are somewhat complementary – combining them with a provides a modest increase
in average precision.

2Chance is calculated as following: For every VOC test image, the confidence of that image containing
each class is assigned randomly. Calculation of average precision then proceeds normally. Because the
confidences are random, the precision will be uniform through the range of recall values. The precision for
each class will be the chance that a random test image actually contains that class. This chance varies for
each VOC class – maximum at 46% for person and minimum at 1.5% for sheep. Averaging across classes,
and assuming that the test set distribution matches the trainval distribution, one arrives at chance of 7.08%.
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5.6 Combining the scores for PASCAL 2008 Entry

Our goal was to use our geographic and keyword features as context for object detection (lo-
calization) and not in isolation for object classification (Table 5.1). We start with the object
detector of Felzenszwalb et al. [34] which had the top performance in the most categories in
the PASCAL 2007 VOC object detection challenge [30]. Our approach is to “rescore” each
candidate detection based on the object presence likelihood as determined by context. In
addition to the object presence context described above, we also employed contextual cues
for scale and position (see [24] for details). To train a final classifier which incorporates these
contextual cues we use the VOC validation set. For the top candidate detections in each
image we compute all of the context scores (which will be confidences from their respective
logistic regression classifiers). If the detection has at least 50% overlap with a ground truth
bounding box, we consider it correct. We train a final, combined L1 regularized logistic
regression classifier using the confidence of the object detection and the confidence of the
context cues. Lastly, the bounding box for each detected object is refined using a local graph
cut segmentation.

5.7 Results

The addition of context improves the average precision of the Felzenszwalb et al. [34] detector
from 18.2% to 19.4%. Improving the bounding boxes of the detections further increases
the average precision to 22.0%. This improvement was enough to put us among the top
performers in the 2008 challenge, although our entry was technically the sole entrant in
its competition because we use data beyond the PASCAL VOC training sets to build our
system. Another top performing system was a more recent version of [34]. We added the
same context to this version and attained slightly smaller improvements (from 22.4% to
23.4% with context and 23.9% with improved bounding boxes).

In Figures 5.3 and 5.4 we show the images for which the context has most strongly increased
and decreased the confidence of local object detections. In essence this shows the cases where
the context and local appearance most strongly disagreed, or, equivalently, where the context
has the strongest effect.
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5.8 Discussion

The scene-level, object presence context described in this chapter accounted for a 1% gain in
average precision for each of the local object detectors we used. This may seem trivial, but
the PASCAL VOC is difficult and improvements are hard to come by. A deeper analysis of
the results reveals that our scene context significantly changes the types of errors the detector
makes – there are fewer false positives on background, but more false positives between some
objects that share contexts (e.g. birds and planes; horses and sheep). Small and occluded
objects, for which local appearance alone is more ambiguous, are more accurately detected.
See [24] for more detailed analysis.

While we have shown that Internet data, though weakly and sparsely labelled, is useful for
gaining image understanding and aiding object detection, the effect is somewhat limited.
There are numerous avenues for improvement – the quality of the scene matches can be
improved with better features and learning (Chapter 6). If large scale image collections
could be better annotated (and such efforts are underway in “Games With a Purpose” [3]
and ImageNet [21]), then the scene matching could provide much more reliable information.
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Figure 5.3: Images for which the best detections had the largest increase and decrease in con-
fidence after the addition of context. In these cases the local appearance and global context
disagree most strongly. When the addition of context increases confidence (left) it is because
a detection is in a reasonable setting for the object class, even if the local appearance does
not match well (motorbikes on second row share context with bicycles). When the addition
of context decreases confidence (right) it is typically pruning away spurious detections that
had high confidence scores from the local detector. (Red Dotted: Detector, Green Solid:
Detector+context).
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Figure 5.4: Images for which the best detections had the largest increase and decrease in
confidence after the addition of context. In these cases the local appearance and global
context disagree most strongly. (Red Dotted: Detector, Green Solid: Detector+context).
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Chapter 6

Lazy Learning for Large Scale Scene
Matching

Chapter Summary We use “lazy learning” and additional features to improve large scale
scene matching. First, we revisit the image geolocation task and train a multiclass, kernel
SVM to choose which geographic cluster of scene matches a query belongs to. Second, we
describe the additional features, some novel, that we utilized in the learning to address
shortcomings of the existing im2gps features (Chapter 4). In concert, the lazy learning and
new features double the baseline im2gps performance.

6.1 Learning for Scene Matching

Recently there has been significant interest in large scale image matching for computer
vision and computer graphics applications. These retrieval approaches are typically non-
parametric – finding nearest neighbors according to one or two image features and then
using those nearest neighbors for various tasks (object classification [100], instance level
recognition [45, 71, 78], scene parsing [63, 103], synthesizing virtual environments [89]), as
well as all of the applications in this thesis such as Image Completion (Chapter 3), Image
Geolocation (Chapter 4), and Object Detection (Chapter 5).

Most of these methods rely on a narrow range of image features – either SIFT [65] or scene
gist [72]. However, in this chapter we propose numerous other image features that could
be useful for scene matching – local and global measures of color, texture, and geometry
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(Section 6.2). This presents a problem because nearest neighbor methods suffer as feature
dimensionality increases. Nearest neighbor methods have no inherent ability to learn which
features are relevant and irrelevant. Furthermore, the relative importance of features is
not just task specific but query specific. There may not exist a satisfactory, fixed feature
weighting or distance function for a given task. Ideally, an algorithm would focus on the set
of features that is discriminative for each specific query.

In this chapter we adopt a “lazy learning” approach, inspired by SVM-KNN [117], to improve
large scale nearest neighbor methods. We demonstrate the effectiveness of this approach on
the task of global image geolocation as introduced in im2gps (Chapter 4). Our supervised
lazy learning can be seen as a post-process to refine the nearest-neighbor search we employed
in im2gps. A point of interest about our approach is that our classes for the supervised
learning emerge in a lazy manner (after a nearest neighbor search) rather than being pre-
defined as in SVM-KNN [117].1 We demonstrate that our learning, in concert with our
new features, dramatically improves geolocation accuracy. We believe this lazy learning
framework is applicable to other scene matching problems.

6.1.1 Related Work

Before we explain our lazy learning approach we will briefly review related learning methods:

Support Vector Machines

Typical kernel SVMs have a training complexity of O(N2 ∗ D) where N is the number of
training examples and D is the feature dimensionality.2 With millions of data points, this
approach is intractable. There are numerous large scale SVM approaches in the machine
learning literature, but any method that requires an all-pairs distance computation as a
starting point, such as SMO [79], is intractable with millions of high dimensional training
examples. Many large scale methods approximate the SVM solution without necessarily
seeing all of the training data. However, for the tasks that we are interested in, such as

1Because the output of a geolocation estimation system is a real-valued GPS coordinate, it might seem
like it is more naturally a regression problem. But for any query scene, the geolocation problem ends up
being a decision between several discrete, disconnected possibilities (e.g. Alps vs Cascades vs Rockies vs
Andes). Therefore we think it is natural to treat it as a classification problem.

2Although it is often stated that SVMs trained in the dual have a complexity of O(N2 ∗D) and SVMs
trained in the primal have a complexity of O(N ∗ D2), [12] argues that it is possible to reformulate either
approach to have complexity O(max(N,D) ∗min(N,D)2).
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geolocation, we know that performance depends on utilizing as much training data as possible
(Chapter 4, Figure 4.4). Other approximation methods limit the number of support vectors
(e.g. NORMA [52]). This strategy was found to hurt image classification performance
in [111].

Learning for Image Retrieval

There has been significant recent work in applying machine learning methods (often Kernel
Support Vector Machines) to image retrieval and scene classification problems. While there
is not room for an exhaustive review of the literature, the following methods provide a
sampling of different approaches. While some of these methods learn distance functions
that are applied to data sets of one million+ images, none are trained on more than tens of
thousands of examples.

Frome et al. [36] learn individual distance functions for every exemplar in a data set, referred
to as local distance function learning. Malisiewicz and Efros [66] continue this line of work
and propose and SVM-like optimization to learn local distance functions. These methods do
not naively scale to millions of data points because each training example requires a large
scale learning procedure involving all other points. Bosch et al. [8] explore KNN and SVM-
based scene classification with pLSA and bag-of-words models of various SIFT-like features.
The largest data sets explored contain thousands of images. In “small codes”, Torralba
et al. [103] learn a mapping from gist scene descriptors to small binary codes such that
scenes with small ground truth distances will have small Hamming distances between their
binary codes. Ground truth scene distances are defined by object overlap as indicated by
annotations for 22,000 LabelMe images. Two scenes with similar objects in similar positions
will have a high overlap score. The learned scene codes produce quantitatively better scene
matching within the LabelMe dataset than the original gist descriptor. Jain et al. [44] learn
distance metrics, coupled with hash functions, that allow rapid image retrieval with higher
accuracy than KNN.

Perhaps the most promising recent research for large scale SVMs, Wang et al. [111] train
SVMs to classify images into Flickr groups and PASCAL categories. They use the fast and
compact “histogram intersection kernel” coupled with an online stochastic SVM training
method. With 80 thousand example images and image features analogous to our own, they
can train an SVM in 150 seconds. Performance is nearly as good as traditional, batch-trained
SVMs.
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Lazy Learning Methods

Nearest neighbor methods are attractive because they require no training, they are trivially
parallelizeable, they perform well in practice, and their query complexity scales linearly with
the size of the dataset. In fact, it is often possible to perform nearest neighbor search in less
than linear time, especially if one is willing to adopt approximate methods. However, nearest
neighbor methods lack one of the fundamental advantages of supervised learning methods –
the ability to focus on the relevant features for a given task or query.

Our approach is a lazy learning technique inspired by SVM-KNN [117] and prior supervised,
KNN enhancements [25,35,37,95,107]. [13] provides a nice overview. Lazy learning methods
are hybrids of non-parametric, KNN techniques and parametric, supervised learning tech-
niques. The philosophy driving these works is that learning becomes easier when examining
the local space around a query instead of the entire problem domain.

Consider the image geolocation problem. The boundary between geographic classes (e.g.
Tokyo and London) is extraordinarily complex because it must divide a wide spectrum of
scenes types (indoor, urban, landscape, etc...) that occur in both locations. There is no
simple parametric boundary between these geographic classes. However, within a space of
similar scenes (e.g. subway carriage photos) it may be trivially easy to divide the classes and
this allows one to employ simpler, faster, and easier to interpret learning methods. Thus
lazy learning is promoted not as an approximation method, but as a learning enhancement.
But it is the scalability to very large data sets (which SVM-KNN [117] makes note of) that
makes lazy learning attractive to us.

The approach of SVM-KNN [117] is straightforward – for any query, find K nearest neighbors
and then train a multiclass, kernel SVM using those K nearest neighbors and then use it
to classify the original query point. The K nearest neighbors are found with a coarse,
fast to compute distance metric while the kernel matrix for the SVM is built with a more
sophisticated, slow distance metric. As K becomes small, the technique reduces to 1NN. As
K becomes large, the technique reduces to a standard kernel SVM.

6.1.2 Learning Approach

Our approach follows the same basic outline as SVM-KNN [117], although our classes emerge
at query time and we use different features, distance metrics, and multiclass SVM approaches.
For a novel query, our algorithm is:
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1. Find Ksl = 2000 rough nearest neighbors using the “base” features defined in im2gps
(Chapter 4).

2. Reduce the Ksl nearest neighbors to K using both “base” features and the additional
features introduced in this chapter.

3. Cluster the K nearest neighbors according to their geographic locations using mean
shift. We use a bandwidth of 200km. Each of the C clusters is now considered a
distinct class for the sake of learning. Typical values of C are 30 to 60, depending on
the minimum allowed cluster size.

4. Compute the all-pairs distances between all K nearest neighbors using both the “base”
and additional features with L1 and χ2 (chi squared) distances.

5. Convert the all-pairs distances into a positive semi-definite kernel matrix (i.e. the
“Kernel Trick”) and use it to train C 1-vs-all non-linear SVMs.

6. For each of the C classifiers, compute how far the query point is from the decision
boundary. The class for which this distance is most positive is the “winner”, and the
query is assigned to that class.

7. The final geolocation estimate for the query is then the average GPS coordinate of all
members of the winning class.

Steps 1 and 3 are largely unmodified from im2gps (Chapter 4), except that in im2gps the
mean shift clustering was explained as a form of “geographic outlier rejection” where the
largest cluster was the winner. It was effectively a KNN voting scheme. This can improve
performance (as seen in Section 6.1.3), but it is very sensitive to the value of K – if K is too
small, it reduces to 1NN. If K is large then popular locations in the database (e.g. London)
will always win. With SVM-KNN, tiny clusters can be chosen. Performance is not sensitive
to the minimum cluster cardinality, although disallowing singleton clusters can provide a
speed up.

Our approach depends on the nearest-neighbor search in steps 1 and 2 retrieving enough
geographically relevant scenes to train the SVM. If a query photo is from Pittsburgh and
none of the retrieved scenes are nearby, the learning can not hope to recover. We know
from im2gps (Chapter 4, Figure 4.6) that for 75% of queries, an image within 200km of
the ground truth location is among the Ksl = 120 nearest neighbors. Thus we can have
some confidence that geographically nearby scenes are being included among our nearest
neighbors and taking part in the learning process. In Table 6.1 we see that the algorithm is
not especially sensitive to the value of K once it is above ∼ 100.
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In step 5, to convert the all-pairs distance matrix into a kernel matrix, we first find M,
the maximum distance between any of the points (including the query point). We subtract
all distances from M, thus “flipping” the all-pairs distance matrix into an affinity matrix –
large distances become small affinities, and vice versa. This operation does not yet guarantee
that the matrix is positive semi-definite, as is required by an SVM. Like [117], we check that
the smallest eigenvalue of the kernel matrix is negative and if it is we subtract it from the
diagonal of our kernel matrix. In our experiments this condition never triggered when using
all features and rarely triggered when using the base im2gps features. The distances from
the query point to each of the K nearest neighbors are likewise “flipped” by subtracted them
from M.

We train our non-linear SVMs using Chapelle’s primal SVM code [12]. We tried a large range
of values for the regularization constant λ, but performance was relatively unchanged.3 For
each of C training operations, the kernel matrix is unchanged – only the class memberships
change. The output of each training step is a set of weights on the K training examples and
a bias term. The dot product of the these weights and the query distances plus the bias
term is the distance from the non-linear decision boundary. The class for which this value is
most positive wins. Our geographic classes are of unequal sizes (anywhere from 1 to 100+
photos). The SVMs we learn are implicitly biased towards picking the classes trained with
more positive examples and we make no effort to counter this.

We also experimented with passing our all-pairs distances through an RBF-like kernel,
K(xi, xj) = exp(−dist(xi,xj)

2σ
). We do not get a performance increase and furthermore the

performance is very sensitive to values of the kernel parameter σ and the SVM regulariza-
tion parameter λ.

Complexity and Running Time

As with KNN-SVM, our complexity is linear with respect to N , the number of “base”
distances we compute to find K nearest neighbors, and quadratic with respect to K. In
our case, N = 6471706 and K =∼ 200 so our running time is still dominated by the initial
search which takes ∼ 2.5 minutes (amortized over many queries). The total time per query
is ∼ 3 minutes. In our implementation we parallelize batches of queries across ∼ 100 CPUs.

3In general, performance was better when λ was smaller and support vectors were sparser. As λ ap-
proaches infinity, all exemplars become support vectors with uniform weighting and the SVM classification
degenerates into picking the cluster with the smallest average distance. This heuristic performs nearly the
same as picking the largest cluster. Performance with different values of λ and K = 200: λ = 1, 13.75%.
λ = 10 13.40%. λ = 500 13.25%. λ = 50, 000 9.65%.
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K Biggest Cluster Lazy SVM

1 8.85% 8.85%
25 10.75% 11.10%
50 10.65% 12.20%

100 10.50% 13.10%
200 9.70% 13.75%
400 8.40% 13.00%
800 8.15% 13.15%

Table 6.1: Performance across values of K. These experiments were carried out on the
im2gps 2k random test set with a 200km accuracy threshold. Picking the largest cluster of
scene matches (a heuristic proposed in im2gps) improves performance over 1NN for a range
of K. Our lazy learning approach produces significant performance gains as long as K is
large enough – about 100 in our experiments.

We have made little effort to optimize the initial search although “tiny images” [100] reports
good results from a very low dimensional initial search of PCA bases. Step 1 is amenable to
approximation because it does not need to have high precision, only high recall, assuming
that step 2 will filter out spurious matches.

6.1.3 Image Geolocation Learning Results

Our learning increases geolocation accuracy on the 2k random test set from 6.25% (1NN)
to 10.65% when using the im2gps features and from 8.85% (1NN) to 13.75% when using all
features (Section 6.2). As long as K is small, our im2gps heuristic of picking the largest mean
shift mode can improve over 1NN, but not nearly as much as our learning (See Table 6.1).
Furthermore, our learning is not as sensitive to the value of K.

6.1.4 Discussion

Our results are qualitatively and quantitatively greatly improved by new features and learn-
ing. In fact, our geolocation performance now exceeds that of humans (Chapter 7). But
there is still a great deal of room for improvement. As Figure 6.2 shows, we are still nearly
hopeless at geolocating photographs from sparsely sampled regions unless they show distinct
landmarks. While it was hoped that our scene matching might be able to pick up on subtle
landscape, vegetation, or architecture cues to geolocate images this is rarely observed. Our
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Figure 6.1: Sample of 2k random test set. 36 of the 2000 random images in the 2k random
test set. Many of these photos are difficult or impossible to confidently geolocate.
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Figure 6.2: Geolocation learning accuracy across the 2k random test set. The location of
each photo in the 2k random test set is plotted. Each marker is colored and sized according
to how accurately it was geolocated by the lazy learning.

algorithm’s advantage over humans is its large visual memory, not its ability to relate scene
statistics to geographic trends.

Although ∼ 13% is low in absolute terms, we saw in Section 4.6 that reasoning about
temporal sequences of photographs could raise performance dramatically. Specifically, [50]
showed that for each of the 20 test sequences, the geolocation accuracy tends to increase by
a factor of four once sequence information is considered.

We have several good lower bounds for geolocation performance, but it is unclear what a
reasonable upper bound is? Many of the photos, especially in the 2k random test set, are
hopeless. But many others contain clear geographic cues – architecture, writing, clothing,
plant and animal species – that the scene matching is not sensitive enough to leverage.

Future Work. Lazy learning is an instance of transductive (as opposed to inductive)
learning – we are only interested in classifying a specific query point and we get to see
that point before building our classifiers. If the classifier knows that it should only try to
minimize classification error at one point instead of the entire space it can sometimes perform
better. There exist algorithms for transductive SVMs which have been shown to improve
performance in the text domain [47], and which could improve performance in this domain
as well.
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p(vertical) p(vegetation)

Query Scene p(ground) p(sky) 1NN, im2gps features 1NN, new features

Figure 6.3: For each geometric class we build separate color and texton histograms. Scene
matching is improved by restricting the histogram comparisons to corresponding geometric
regions.

6.2 Additional Features

This section describes additional scene matching features which are intended to be more
robust. These features are used with lazy learning in the previous section to improve ge-
olocation performance. These features are intended to improve upon the “base” im2gps
features described in Chapter 4. Two shortcomings of the im2gps features are 1) lack of
invariance to scene layout and 2) poor performance at instance-level recognition. To address
these problems we describe additional geometry derived and SIFT derived features.

6.2.1 Geometry Derived Features

The scene descriptors used in Scene Completion (Chapter 3) and im2gps (Chapter 4) are
all “global”– encompassing statistics of the entire image or built rigidly on top of the entire
image. This means that scene transformations which, for most applications, are not mean-
ingful (e.g. cropping the image, shifting the horizon) produce huge changes in the global
descriptors and thus huge distances according to our distance metrics. This lack of invariance
effectively reduces the size of any database we use, because inconsequential image differences
will prevent otherwise good scene matches from being retrieved. We introduce several new
features to measure scene statistics in a more robust, content aware manner which can help
“see through” these transformations.
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Geometry Specific Color and Texton Histograms

Global color and texture histograms are effective features for scene matching but they do
have drawbacks – semantically unrelated images can coincidentally have similar histograms,
and semantically similar images with viewpoint variations can have very different histograms.
To address both of these and try and make the histogram comparisons more meaningful we
build histograms for each geometric class in an image. For example, texture histograms for
vertical surfaces in an image. By restricting texture and color comparisons to geometrically-
like regions of images we expect their distances to be more reliable.

We use geometric context [40] to estimate the probability of each image region being “ground”,
“vertical”, “sky”, or “porous” (i.e. vegetation). For any pixel, the probability of “ground”,
“sky”, and “vertical” sums to one, while “porous” is a subset of “vertical”. We build color
and texture histograms for each geometric class by weighting each pixel’s contribution to
each histogram according to the geometric class probabilities. We also build global texture
and color histograms in which the “vertical” pixels get much higher contribution (the intu-
ition being that the appearance of vertical image content is more likely to be correlated with
geolocation than the sky or ground). Our approach is similar to the “illumination context”
proposed in Photo Clip Art [59] in which scenes are matched with color histograms built
from ground, sky, and vertical image regions.

The geometric context classification is not entirely reliable, especially for unusual scenes, but
the mistakes tend to be fairly consistent which is arguably more important than accuracy
in this task (e.g. if clouds were 100% classified as “vertical”, our feature distances would
still be reasonable because the scenes would be decomposed into consistent, although mixed,
semantic groups). The geometric context probability maps are themselves resized to 8x8
image features.4

Geometric Region of Interest Gist

We introduce a variant of the scene gist descriptor (the single most successful feature in
im2gps). The gist descriptor is very sensitive to the alignment of scene structures, which is a
useful property if we want to retrieve scenes with the same “spatial envelope”, but a limiting
factor for geolocation where we would rather be invariant to the location of the horizon, the
focal length of the camera, or whether the photograph is landscape or portrait oriented. To
make the gist robust to the transformations, we try to consistently build it centered on the

4im2gps explored such a geometric context probability map, but for computational reasons it was com-
puted at lower resolution and thus less accurate.
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horizon and ignoring empty “negative space”. We build the gist descriptor over the square
region of interest that maximizes the following score:

score(xmin, ymin, width) = mean(pgnd)
λgnd ∗mean(pvrt)

λvrt ∗mean(psky)
λsky

∗std(pgnd) ∗ std(psky) (6.1)

Where pgnd, pvrt, and psky are vectors containing the per-pixel ground, vertical, and sky
probabilities within the region and λgnd = .25, λvrt = 2, λsky = .25. There is also a bias
towards larger, more centered regions of interest. A homogenous region of sky or ground
would score badly, while a geometrically diverse region with equal amounts of sky and ground
would score well. Figures 6.2.1 and 6.2.1 show examples of the regions of interest found with
this heuristic.

As an alternative to parameterizing features with respect to geometry, we attempted to build
features with respect to the horizon. Inspired by [41], we manually labelled the horizon in
6500 random scenes and estimated the horizon for a novel scene from the k nearest neighbors
according to the gist descriptor. Whereas [41] worked within the LabelMe database, we
work with more diverse Flickr images. Even after labelling 6500 scenes, the non-parametric
horizon estimation was not accurate enough to be useful. Flickr images require vastly more
training examples before scenes can be matched reliably. One indicator of the amount of
non-traditional scenes in our Flickr data is that for 37% of the Flickr scenes we labelled, the
horizon was ambiguous (e.g. a close up of an object) or out of frame (e.g. looking up at
a skyscraper). Another horizon estimation heuristic is proposed in [58] – select the y value
halfway between the lowest sky pixel and highest ground pixel in the geometric context map.
Our geometric region of interest is similarly derived from a geometric context map, although
with 3 degrees of freedom (x, y, scale) rather than 1 (y).

6.2.2 Bags of SIFTs

SIFT [65] derived features have been used for scene matching with spatial pyramids com-
posed of sparsely [60] or densely [64] sampled SIFTs.5 In these cases the quantization of
visual words is typically rather coarse (500 visual words). These scene matching strategies
are potentially advantageous over the gist descriptor because they can cope with moderate

5Histograms of densely sampled, quantized SIFT features are arguably capturing the same information as
texton histograms. However, sparse SIFT features, sampled only at interest points, are capturing something
qualitatively different than texture.
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Figure 6.4: Geometric Regions of Interest. The regions of interest tend to center on the
horizon. However, if the horizon is near the top or bottom of the image this requires the
region of interest to become quite small because its aspect ratio is fixed.
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Figure 6.5: Additional Geometric Regions of Interest.
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misalignments between otherwise similar scenes more easily than the fixed spatial binning
of the gist. Quantized SIFT features have also been shown to work well for instance-level
recognition in large data sets [88]. Larger vocabularies (1 million visual words) and geomet-
ric verification of candidate matches improve performance further [77]. Recent landmark
geolocation works [17,119] have relied entirely on these types of features.

Inspired by these successes, we compute SIFT features at image locations and scales of in-
terest detected by Hessian-affine and MSER [68] interest point detectors. For each interest
point detector, we build vocabularies of 1,000 and 50,000 visual words based on a random
subset of the database.6 The intuition is that a vocabulary of 1,000 captures texture qual-
ities of the scene while a vocabulary of 50,000 captures instance specific (landmark) image
elements.

6.2.3 Feature Results

In total, including the features from im2gps, we have an over-complete set of 22 elementary
features.7, The hope is that learning will be able to focus on the appropriate feature set
for any query. As we showed in the previous section, lazy learning dramatically improved
geolocation accuracy when using these additional features. But as a baseline we evaluate
the use of all of the features in unison for the image geolocation task. We use L1 distance
for all image features (gist, geometric context maps) and χ2 (chi squared) measure for all
histograms (texture, color, lines, SIFT). The distances are scaled so that on average they
have equal standard deviation among the top 1000 matches and thus influence the ranking
equally. The scene matching process is implemented hierarchically – first, 2000 nearest
neighbors are found with the im2gps features and then distances are computed for the new
geometry derived and SIFT features and the matches are reranked.

Compared to the im2gps features, the new features perform significantly better at instance
level recognition, as would be expected from the new large-vocabulary SIFT histograms.
Scene matches for more “generic” scenes are also improved. Figures 6.2.3 and 6.2.3 show
cases where the first nearest neighbor with the new features is dramatically improved from

6To build the visual vocabularies, we use 20 million SIFTS sampled from roughly 1 million images. To
build the 50,000 entry vocabularies a two level hierarchy is used, as k-means would otherwise be prohibitively
slow. The hierarchy is only used to construct the vocabulary after which the leaf nodes are treated as a
flat vocabulary. We use “soft assignment” as described in [78], assigning each SIFT descriptor to its nearest
5 vocabulary centers, inversely weighted by distance. Because we use soft assignment, the 50,000 entry
histograms are not sparse enough to merit an inverted file system search.

7The im2gps features total 2201 dimensions, while the features proposed in this chapter total 109,436
dimensions (dominated by the two, 50 thousand entry SIFT histograms).
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the im2gps features. For common scene types under canonical viewpoints the difference is
less noticeable.

Using the 237 image im2gps test set and base im2gps features, the first nearest neighbor is
within 200km of a query 16.5% of the time. Using the 4 SIFT histograms by themselves (after
the initial hierarchical search) gives an accuracy 18.6%. Using all features raises accuracy
to 21.1%. With the more challenging 2k random image test set, the im2gps 1NN is correct
only 6.35%, SIFT features 8.05%, and all features 8.85%.
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1NN, im2gps features Query Scene 1NN, new features

1NN, im2gps features Query Scene 1NN, new features

Figure 6.6: Scene Matches with New Features. The new features are dramatically better
at landmark recognition, especially when the viewpoints do not match, as in the top row.
This is to be expected from the SIFT features. The remaining figures show non-landmark
scenes for which the matches are much better. The last row is an ideal case – even though
an exact, instance-level match can not be found, the new features have found a scene that
is architecturally very similar. Even more impressive, both photos are in Mongolia where
there are few photos to match to.
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1NN, im2gps features Query Scene 1NN, new features

1NN, im2gps features Query Scene 1NN, new features

Figure 6.7: Additional Scene Matches with New Features. In the last row, the query and new
feature 1NN are both in Toronto, but it is not the same physical scene.
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Query Photograph Top scene matches Top cluster after learning

Figure 6.8: Results 1. All results were generated from K = 200 nearest neighbors clustered
with a mean shift bandwidth of 200km and a minimum cluster size of 3. The scene match
montages are scanline ordered according to scene match distances. The colors of scene match
borders and globe markers indicate cluster membership. The coloring of the clusters indicates
their ordering by cardinality – yellow is largest, then cyan, magenta, red, green, and blue.
The geolocation estimate from learning is indicated by the red and white concentric rings.
The ground truth location is marked by concentric green rings of radius 200km, 750km, and
3000km. The density of scene matches on the globe is indicated by a jet colormap overlay.
Scene matches without a cluster are plotted as black rings.
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Query Photograph Top scene matches Top cluster after learning

Query Photograph Top scene matches Top cluster after learning

Figure 6.9: Results 2.
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Query Photograph Top scene matches Top cluster after learning

Query Photograph Top scene matches Top cluster after learning

Figure 6.10: Results 3.
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Query Photograph Top scene matches Top cluster after learning

Query Photograph Top scene matches Top cluster after learning

Figure 6.11: Results 4.
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Query Photograph Top scene matches Top cluster after learning

Query Photograph Top scene matches Top cluster after learning

Figure 6.12: Results 5.
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Query Photograph Top scene matches Top cluster after learning

Query Photograph Top scene matches Top cluster after learning

Figure 6.13: Results 6.
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Query Photograph Top scene matches Top cluster after learning

Query Photograph Top scene matches Top cluster after learning

Figure 6.14: Results 7.
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Query Photograph Top scene matches Top cluster after learning

Query Photograph Top scene matches Top cluster after learning

Figure 6.15: Results 8.
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Query Photograph Top scene matches Top cluster after learning

Query Photograph Top scene matches Top cluster after learning

Figure 6.16: Results 9.
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Query Photograph Top scene matches Top cluster after learning

Query Photograph Top scene matches Top cluster after learning

Figure 6.17: Results 10.
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Chapter 7

Human Geolocation of Images

Chapter Summary In this chapter, we examine human photo geolocation accuracy and
compare that to our computational methods. Our goals are 1) to learn about human scene
understanding strategies and capabilities and 2) to gain a point of comparison to help us
understand our computational methods.

7.1 Introduction

Previously, both human and computer vision researchers have mostly been interested in scene
classification as it relates to rigid semantic categories (e.g. kitchen, bedroom, forest, city,
etc...). It turns out that in this regime, simple gist or texture features can classify scenes
almost as well as humans [82, 105], even with a small amount of training data. However,
the success of computational methods might simply be due to the small number of scene
categories, and the ease with which these hand-designed categories can be separated by low-
level features. Here we investigate a much harder task. We examine human performance at
organizing scenes according to geographic location on the Earth rather than hand-defined
semantic categories. Participants are shown novel images and asked to pick the location on
a globe where the photograph was taken. This is a difficult, memory intensive task – many
scenes are geographically ambiguous while others require high-level scene understanding and
knowledge of cultural or architectural trends across the Earth.

In addition to gaining some insight into human scene understanding strategies and capabili-
ties, human performance gives us a benchmark that will help us understand our data-driven

115



computational method, im2gps (Chapter 4). This helps us overcome one difficulty in evalu-
ating the im2gps – that we don’t necessarily have an intuition for how challenging the photo
geolocation task is.

7.2 Perceptual Study

Our first task is to design a test set to present to both human participants and computational
methods. We want each participant to view the entire test set so that the per-image perfor-
mance statistics are robust. We also want the test set to be small enough such that humans
do not become fatigued during the study. Therefore we limit ourselves to 64 photographs.
The test set is built by manually filtering 1000 random images from the im2gps data set. We
ensure that the test set is roughly geographically uniform, spanning all continents, and that
indoor, landscape, and urban scene types are evenly represented. Because human studies
are time consuming and expensive, we did not want to waste time with images that would
be impossible to geolocate. Such images could also frustrate the participants in our study.
Therefore we remove images which are deemed to have very little geographic information.
But as you can see in Figure 7.1, the test set is still very challenging.

The interface that participants used to geolocate images is shown in Figure 7.2. The interface
design hinges on the sticky, somewhat philosophical, issue of “What does it mean to know
where a photo was taken?”. For example, one could argue that knowing the name of the
location is enough (e.g. “Oh, that’s the Forbidden Palace in Beijing”). But what if the
participant has no idea where Beijing is? One could instead argue that a participant needs
to point to a specific location on a map without relying on labels. In the extreme, one could
say that any map is providing assistance and the human task should be the exact same as
the computational task – provide GPS coordinates. In the end, we believe that the relevant
issues for this study are visual scene understanding and visual memory, not spatial memory,
so we provide a fairly detailed map. Participants see a 3d globe, textured with a political
map with light pollution and elevation cues. To simplify the interface there is no zooming,
which means that city names do not fit on the map and country names are often illegible.
When shown a photograph, participants rotate the globe with mouse dragging until a fixed
crosshair is over the location where they think the photo was taken. The users then click an
on-screen button to finalize their choice. When participants start the study they undergo a
supervised training session to ensure that they are comfortable with the interface.
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Alaska Antigua Argentina Arizona Athens Australia Bahrain Bangkok
Barcelona Beijing Berlin Bombay Botswana Cairo Cambodia Canada

China Czech Repub. Dhaka Egypt France Greenland Hawaii Hongkong
Indonesia Iraq Ireland Istanbul Japan Kenya London Maine

Mexico City Minnesota Montenegro Morocco Netherlands Nevada New York City New Zealand
Nor. Carolina Norway Oklahoma Paris Pennsylvania Philippines Rome Russia

Saigon San Francisco South Africa Spain Tennessee Texas Thailand Tokyo
Turkey Uganda Venezuela Florence Pisa Scotland Seattle Venice.

Figure 7.1: Human Geolocation Test Set. How well can you do? The rough location of each
photo is indicated by the corresponding table of geographic place names. The test set was
filtered by hand such that all images had some hint of geographic information, although
many photos are still quite ambiguous.



Figure 7.2: Human Geolocation Interface. Photographs are shown with the maximum di-
mension resized to 650 pixels. The globe is rotated by dragging with the mouse.

After each geolocation guess, participants are presented with the actual location of the
photo and the amount of error in their estimate. If their error is less than 400km they
get a congratulatory message. We believe this feedback is very important – it makes the
study seem like a game and increases participant attention. After finishing the study many
participants volunteered that it was fun and intellectually challenging. In fact, Google’s
Picasa photo sharing service has an analogous game on their web site.

In order to gain deeper insight into what strategies and cues participants are using to ge-
olocate images, the study consists of two separate photo viewing conditions – ‘’long” or
“100ms”. In the ‘long’ condition, participants have unlimited time to view the photograph.
In the “100ms” condition, there is a three second countdown, then the photograph is flashed
for only 100 milliseconds followed by a gray blank (See Figure 7.3). In both conditions
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Figure 7.3: “100ms” Viewing Condition. The last 32 images for each participant are flashed
for only 100ms after a countdown. This is long enough to get a very good “gist” of the scene,
but not long enough to fixate on any details.

participants have unlimited time to make their decision and use the interface. The short
viewing condition is inspired by numerous psychophysics and neuroscience studies showing
that humans gain some degree of scene understanding very rapidly and under very short
viewing conditions. For example, Thorpe’s well known animal vs non-animal study showed
that with a 20ms presentation, participants were 94% accurate at saying whether or not a
photo contained an animal [99]. With a presentation time of 100ms it is not possible for
a viewer to perform a saccade and fixate anywhere in the image beyond the initial focal
point (which in our case will be the center of the image where the countdown is displayed).
Therefore this viewing condition is interesting because it strongly inhibits that ability of
participants to scrutinize an image for subtle cues such a text, car manufacturers, clothing
styles, etc. We claim that it reduces the geolocation task to a more memory-based decision
dependent on scene statistics. This would be more analogous with our computational meth-
ods, which cannot understand scenes as well as humans and instead rely on scene statistics
and a huge visual memory.

Participants see the first 32 photos under the ‘long’ viewing condition and the last 32 under
the ‘100ms’ viewing condition. We wanted to make sure participants were comfortable with
the study before giving them the more challenging viewing condition. The order of the
presentation is randomized, but we ensure that every photo is seen an equal number of times
in each viewing condition.
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7.3 Results

A total of 20 participants completed the study. No learning or fatigue effects were observed
with the viewing condition blocks. After the main portion of the study the participants com-
pleted an 11 question computer survey. Question topics included age, sex, level of education,
amount of domestic and international travel, number of languages spoken, amount of na-
ture or travel television watched, and photography experience. None of the responses were
strongly correlated with geolocation performance, although travel experience was weakly
positively correlated.

The geolocation accuracy of each participant, sorted by performance, is shown in Figure 7.4.
A geolocation is considered correct if it is within 400km of the ground truth location, which
is a larger threshold than we have used previously. This increased tolerance is to account
for some users being imprecise with the interface. There is a large variance in performance
between participants. This is not too surprising – the geolocation task is very dependent on
prior visual memory, and if a participant unfamiliar with the geographic cues (architecture,
vegetation, etc.) then it is hard to narrow down the most likely geolocation.

The per-image performance of the base im2gps system described in Chapter 4 is correlated
with human performance (r = .51). In general, the images that are computationally difficult
are also difficult for humans. Exceptions are highlighted in Figures 7.5 and 7.6 which show
cases where humans are better and worse, respectively, than the baseline im2gps method.
The new features and lazy learning (Chapter 6) increase performance dramatically – The
size of the “memory” of the computational method hasn’t changed, but its ability to “un-
derstand” scenes has.

In Figure 7.7, performance is examined with increasingly large spatial thresholds for geoloca-
tion accuracy. In this figure the human accuracies for different viewing conditions are plotted
separately. As expected, longer viewing durations increase geolocation accuracy. But the
effect is surprisingly small (and not statistically significant at the 400km threshold). This
is one of the most interesting results of the study. It suggests that participants weren’t so
much “playing detective” with each image to decipher subtle geographic cues, but instead
performance was heavily memory dependent and they either knew it or they didn’t. This is
not to suggest that more careful examination of the images could not provide useful informa-
tion. The participants only spent an average of 7 additional seconds per image on the “long”
viewing condition photographs. They might have simply been lazy, although we hoped the
game-like design of the study encouraged them to sincerely try.

In Figure 7.8, accuracy is broken down between landmark, landscape, and urban scene types.
There were a few images in the test set that did not fit into these categories (indoor and
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Figure 7.4: Human Geolocation Performance, by Participant. There is a large variance
in performance among the participants. On average, participants do slightly better than
im2gps, but far worse than geolocation with new features and learning.
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Figure 7.5: Examples Where Human Geolocation is Better than im2gps. Magenta markers
are im2gps nearest neighbors. Yellow markers are human geolocations under ‘100ms’ viewing
conditions. Cyan markers are human geolocations under ‘long’ viewing conditions. While
im2gps fails to recognize this San Francisco landmark, the new features and learning do not.
Humans, especially under ‘long’ viewing condition, are exceptionally good at recognizing a
generic Midwest U.S. scene.
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Figure 7.6: Examples Where Human Geolocation is Worse than im2gps. Magenta markers
are im2gps nearest neighbors. Yellow markers are human geolocations under ‘100ms’ view-
ing conditions. Cyan markers are human geolocations under ‘long’ viewing conditions. The
Gaudi mosaic is often photographed and visually distinct, making it easy for the computa-
tional methods. The Tokyo subway was confused with other metropolitan areas under the
‘100ms’ viewing condition. However, under ‘long’ viewing, Oriental characters are noticeable
and all of the guesses are in Asia (although many times still wrong).
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object photos). For all methods, the relative difficulty of these categories is the same –
landmarks are easiest, then urban, then landscape. Landscape images are especially vexing
for the humans and im2gps method, although still well above chance (which would be near
1%). The dramatic gain on landmark images for the new features and learning is not entirely
surprising – bag of SIFT features have been shown to do well at instance level recognition.
The large gains in the the other types of scenes show that the increase in performance goes
beyond landmark recognition, though. See Chapter 6 for more examples of geolocation
results.

We hypothesized that the short viewing condition might cause the human geolocation per-
formance to be more correlated with the computational performance, because the statistics
a human gathers under short viewing conditions more closely resembles the features used
by our computational method. This was not the case, though. The correlation of im2gps
performance to human performance was similar for both viewing conditions.
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Figure 7.7: Human Geolocation Performance vs Scale. Chance is calculated in two ways. 1)
Random Scenes. This is chance if geolocation estimates are the locations of random scenes
in the im2gps database. 2) Random Locations. This is chance if the geolocation estimates
are random locations on land.
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Figure 7.8: Human Geolocation Performance, by Scene Type.
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Chapter 8

Conclusion

In this thesis, we showed that scene matching can effectively leverage Internet scale image
collections with keyword, temporal, and GPS metadata for numerous graphics and vision
tasks. We used scene matching to advance the state-of-the-art in image completion and
object detection and to enable previously unapproachable types of image understanding
such as global image geolocation. We showed that lazy learning together with a rich set of
image features can dramatically improve scene matching. Overall, this thesis suggests that
the quantity of imagery on the Internet is large enough to push back against the complexity
of our visual world and make computer vision and computer graphics easier.

However, while this thesis concretely demonstrates the effectiveness of scene matching for
many tasks, it does not rigorously explain why scene matching works at all. Unfortunately,
there is no simple answer to this question. Below, we speculate about many of the relevant
factors. In the final section we map out potentially interesting future research directions
related to this thesis.

8.1 Why Does Scene Matching Work?

The intrinsic dimensionality of a scene according to our definition (Section 1.1) is quite high.
Because of this complexity, several million images can not provide a dense sampling of the
space of scenes. Instead, all of the applications in this thesis rely critically on the space of
likely scenes being much smaller than the space of possible scenes. This dependency means
that the performance of our algorithms is not just a function of our visual world, but a
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function of our visual experience as influenced by numerous factors, many of them social in
nature. We work exclusively with photographs captured by humans which by itself provides
a strong bias because of the physical constraints imposed by the real world. But imagine a
mobile robot that captured random photographs of the world – this would be a tremendously
different space of scenes than the one we’ve sampled from Flickr. The multitude of factors
that influence whether or not someone takes a picture and uploads it to Flickr all change
the distribution of scenes that we observe. Some of these factors are social (People tend
to photograph other people), cultural (Is it acceptable to capture and share photographs of
this situation?), technological (Are cameras and Internet connections widely available in this
region?), aesthetic (Is this subject matter or subject matter interesting and attractive? Is this
photograph reasonably composed and oriented?), etc. Most of these factors tend to narrow
the range of observed scenes and make our tasks easier. The aesthetic factors, though, can
sometimes push in the other direction by compelling people to capture a typical experience
in a very unusual manner. This all means that our large photo collections are measuring
not just the real, visual world but also the human factors involved in photo capturing and
sharing. This is potentially an advantage – we can use our data to learn about humans, as
we did in Image Sequence Geolocation (Section 4.6) where we built a prior on human travel
from Flickr data. But it can also be a hindrance – we might not expect our algorithms to
generalize to random robot imaging.

Beyond these issues related to sampling the space of scenes, one could also ask if scenes are
somehow a privileged unit of representation in our visual world. It it easier to reason about
scenes than objects, geometries, poses, and other visual phenomena? This is a difficult
question to rigorously answer, but it does seem that scenes have fewer ambiguities and
polysemes1 than these other phenomena, at least when imaged by human photographers.
With a large enough database and simple image features, it is rarely the case that a nearest
neighbor scene will be semantically unrelated to a query photograph. It might simply be a
property of our visual world that scenes are easy to reason about, which provides further
motivation for a vision pipeline in which scene reasoning precedes and assists more difficult
difficult cases of visual reasoning, as is the case with human vision (Section 2.2).

1In the computer vision literature, polysemy refers to the phenomena of the same visual signal having
multiple meanings. This differs from the linguistic definition of polysemy, in which a word has different related
meanings, often branching from the same etymological origin. In computer vision, there is no expectation
that the ambiguities are semantically related.
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8.2 Future Areas of Investigation

Since the publication of the first parts of this thesis, several other authors have published
complementary research (Section 2.1.4) and there is undoubtedly a rich set of future work
concerning the efficient use of large scale data for graphics and vision problems.

For many applications, the “limiting reactant” for large scale scene matching is not the quan-
tity or quality of image data, but the quantity and quality of image annotation. With better
annotation, large scale imagery can be utilized to tackle core computer vision problems such
as scene parsing, object recognition, single view geometry, and pose estimation. There are
numerous potential source for annotation – relying on the social motivations of photogra-
phers (this thesis), making a game out of image labelling [3], offering 3d visualizations after
labelling [85], and, of course, paying people [91]. There is no clear winner yet among these
possibilities – each offers advantages and disadvantages related to quality, scale, versatility,
and cost. Further investigation is warranted.

This thesis has been exclusively concerned with images, but analogous methods might be
effective in the video domain. Videos are higher dimensional than images, but like scenes the
space of likely videos is a very small manifold of the space of possible videos. The general
trend of using ever-larger data sets, which this thesis continues, will undoubtedly continue
in all relevant computer vision and graphics research domains.
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Appendix A

How Heavy-Tailed is Our Visual
World?

The frequency of scenes and objects is heavy-tailed and thus brute-force approaches
are infeasible. – David Forsyth, Jitendra Malik (paraphrased)

The frequency of scenes and objects follows Zipf ’s Law and makes im2gps per-
formance with respect to database size questionable. – Antonio Torralba (para-
phrased)

Within the computer vision community there is something of a philosophical debate con-
cerning the recent emergence of massively data driven scene understanding methods such
as those described in this thesis. Our visual world is massively complex and varied. The
expectation of data-driven methods – that you’ve seen it all before – cannot be realistic or
workable, one could argue. How diverse is our visual experience, and how hard is it to sample
exhaustively? In this appendix we touch on these fundamentally difficult questions.

We begin with a discussion of “Zipf’s law” which states that the frequency of a word in
any natural language corpus is inversely proportional to its rank when sorted by decreasing
frequency (Pn ∝ 1/na where Pn is the probability of the nth most likely item and a is a
constant particular to the data set). This implies that the distribution follows a the power
law and is heavy-tailed. When category frequency is plotted against category rank in log-
log space, such a “Zipfian” distribution will appear linear. Figure A.1 shows a linguistic
example – the distribution of words on the English version of Wikipedia in November 2006.
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Figure A.1: Word frequency vs rank on Wikipedia. On the x-axis is the rank of each word,
on the y-axis is the frequency. Both axes are in the log domain. The most frequent words
are “the”, “of”, and “and”. The distribution is not perfectly “Zipfian” because the slope is
not constant. Credit to Victor Grishchenko, licensed under LGPL.

It is claimed that Zipf’s law extends to many other real-world, categorical data distributions,
including visual data such as object and scene frequencies.

If a set of data follows Zipf’s law (or any other heavy-tailed distribution) it is generally
thought to be discouraging to data driven approaches because there is a long tail of categories
that are not represented frequently enough to sample densely. For example, in Figure A.1,
84% of words appear less than 10 times. If a data driven method could not function with
less than 10 samples of each category (for instance visual examples of objects or scene types,
or motion capture examples of actions), then this specific distribution would imply that the
algorithm fails on 84% of (thus far) observed categories. On the other hand, if the test set
frequencies are the same as in the training set, 99.1% of the test cases are from categories
that are sampled densely enough. The important thing for this thesis is the question of
whether or not our data distribution follows Zipf’s law and is heavy-tailed.

A.1 Measuring the “heavy-tail”.

Scenes that are too rare for us to sample densely yet still show up in test data are likely to
cause our algorithms to fail. The work in this thesis relies on sampling the space of scenes
densely with respect to geographic location, visual appearance, and object presence.
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Figure A.2: Photo density in im2gps data set, linear scale (top) and natural log scale (bot-
tom). The height of each bar is proportional to the density of geotagged photos in each equal
area region. The bars are colored according to the Matlab “jet” color scheme. Regions with
zero photos have no bar.

133



0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Geographic Region Rank (Sorted By Number of Photographs)

N
u
m

b
e
r 

o
f 
P

h
o
to

g
ra

p
h
s

Total Regions = 3186

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Geographic Region Rank (Sorted by Number of Photographs)

N
u

m
b

e
r 

o
f 

P
h

o
to

g
ra

p
h

s

Total Regions = 3186

Figure A.3: Photograph density versus rank in the im2gps database. The geographic dis-
tribution is appears heavy-tailed (left), but in the log-log plot (right) we can see that the
distribution is less heavy-tailed than Zipf’s law would predict.

Geographic Distribution of Photos. Im2gps benefits from a high density of photographs
at all locations across the Earth. Section 4.5.1 shows that im2gps performs very poorly when
asked to geolocate images from undersampled regions. Figure A.2 visualizes the density of
our Flickr photographs across the world. For this analysis, the Earth’s surface is tesselated
with 3,186 roughly equal area quadrilaterals which are ∼ 400km on edge. While some
regions are much more heavily sampled, the natural log scale visualization shows that very
few regions are completely devoid of photographs (mostly the Arctic, Antarctic and parts
of Siberia and the Sahara desert). Unsurprisingly, there are almost no photographs in the
open oceans. The geographic categorization that we have created with this tessellation is
arguably not semantically meaningful – Boston and New York City have fallen into a single
region while the Taiga of Siberia spans fifty. But the evaluation used in im2gps does not
take the semantics of geographic areas into account either. It uses the same radius (often
200km, thus the 400km quads) to evaluate geolocation estimates anywhere on the globe.

Figure A.3 plots the distribution of geographic region photo densities in the same frequency
vs rank log-log format used for Figure A.1. The distribution does not appear to follow Zipf’s
law – it is saturating near approximately 1,000 categories (a bit less than the number of
regions containing land). As we collect more data, we expect regions to reach sufficient
density faster than new categories emerge. Furthermore, there is a clear upper bound on
how many categories can emerge unlike, for instance, language.

Visual Distribution of Scenes. The geographic distribution of photographs is amenable
to data driven methods, but can we say anything about the visual distribution of scenes?
If we trust that the distance our scene matching algorithm attributes to a pair of scenes
is semantically meaningful, we could say something about the density of similar scenes for
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Figure A.4: Object category frequency versus rank in “Tiny Images” and “LabelMe”. On
the x-axis is the rank of each object category, on the y-axis is the frequency. Both axes are
in the log domain. Credit to Antonio Torralba. The most popular object descriptions in
LabelMe as of August 26th, 2008 are “person walking” (28718), “window” (22789), “tree”
(10023), “head” (8548), “building” (8309), “car” (7895), “sky” (6238), “leg” (5716), “arm”
(4764), “trees” (4563), “sidewalk” (4211), “wall” (4189), “road” (3940), “torso” (3095),
“sign” (3064), “car occluded” (2539), “door” (2441), “chair” (2179), “needle crystal” (2063),
and “person” (1943).

a large sampling of scenes and thus get some measure of how heavy-tailed the distribution
of scenes is without having to define categories. An example result might be of the form
“10% of scenes have no neighbors within some distance threshold”, but no single threshold or
kernel will produce semantically meaningful results. Whether or not two scenes are visually
“similar enough” is task specific.

Thus one of the attractions of scene matching applications like im2gps is that they provide
a quantitative way to evaluate large scale scene matching. Plotting the performance of
geolocation against database size shows an encouraging rate of growth (Figure 4.4), but
there are many other phenomena influencing the performance of our geolocation algorithm
such as the dependence on geographic sampling density discussed above, the presence of
landmarks, and the self-similarity of the earth (thus perfect scene matches with trillions
of reference photos could still fail the geolocation task). These factors might explain why
Figure 4.4 shows performance growth faster than large scale data driven tasks analyzed
in [100].
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Figure A.5: Description frequency versus rank for groups of synonyms in “LabelMe”. On the
x-axis is the rank of each object description, on the y-axis is the frequency. Both axes are
in the log domain. For each visual concept, there seems to be a Zipf-like distribution due to
the English language. Credit to Bryan Russell.

Distribution of Objects. The number [7] and frequency [84,93,100] of visual categories in
our world has been studied in the psychology and computer vision literature. [7] estimates
from linguistics, child development, and dictionary counting that there are less than 1,500
basic level object categories on the level of “penguin”, “sparrow”, “lamp”, “cup”, and “type-
writer”. From this, Biederman arrives at an upper bound of 30,000 visual object categories
by doubling 1,500 and hypothesizing that there are an average of 10 visual exemplars for
each object category (e.g. different types of lamps, cups, or penguins). [100] analyzes ob-
ject name distributions in the “Tiny Images” and “LabelMe” databases (Figure A.4). Both
distributions appear to be heavy-tailed and follow Zipf’s law.

Of the 20 most popular LabelMe descriptions (Figure A.4), note that “person walking” and
“person”, as well as “car” and “car occluded” are separate categories. It may be reasonable
to break up these categories (for instance if they differ enough visually to require separate
detectors). However, “tree” and “trees” being two different categories points to different
labelling strategies more than different visual categories. In fact, LabelMe annotators fre-
quently use different vocabulary to describe the same visual phenomena. Figure A.5 shows
that several popular object categories have up to 100 synonyms, and that these synonyms
themselves follow a Zipf-like distribution [84].
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Examining the descriptions that make up the heavy-tail of LabelMe annotations (5390 of
the 9259 descriptions are used only once) is informative. Out of 100 random, once-used
descriptions1 there are many typos (“bacony”, ”windshiel”, and “electical cord”), compound
descriptions (“goat left near forest”, “counter/bench top”, “bowl of vegetables”), and unusual
phrases (“identifying parking”, “cute gal”, “freeze”). Only about 30% of the descriptions
indicate a clear, isolated visual object category. Of these, about half are synonyms or
more specific versions of more commonly used descriptions – “sewer lid” appears once, but
“manhole” appears 223 times and “manhole cover” appears 55 times. “bar of soap” appears
once, but “soap” appears 44 times. It’s not clear that these are actually new visual categories.
Perhaps 15% of the descriptions in the heavy-tail are unambiguously new object categories
with no more frequently used synonyms, for instance “leash”, “dam”, “money”, and “router”.
It may be that the overall object distribution appears to follow a power law because of noise
in the annotation process and the use of the heavy-tailed English language. Maybe that the
visual world is not so heavily tailed.

The issues of annotation noise and English language synonyms are addressed in [92]. The
authors analyze the visual variation of our world using image descriptions collected with
their “WhatWhere” game. In the “What” portion of the game, players are shown an image
and given points for every object they can name. A bonus is given for rarely used object
names such as “pupil” and “tine”. In the “Where” portion of the game, users given 5 objects
found by other users and asked to locate them in an image as a form of verification. The
authors correct misspellings by hand and use WordNet [33] to collapse all synonyms into the
same category. They observe that object category frequency follows a power law. However,
their data set is less extensive than LabelMe, covering only 250 images and totalling less
than 1000 objects, so it is hard to extrapolate and reason about the overall number and
frequency of object categories.

1“asphalt (road)”, “carback occluded”, “tea boxes”, “perso standing”, “park sign”, “prjection screen”,
“newpaper stand”, “antenna tower”, “carwindow”, “cdromdrive”, “calander”, “screen az150deg”, “moun-
tainside”, “line persons”, “dam”, “skly”, “freeze”, “bacony”, “motobikes side”, “light, street light, lamp”,
“money”, “windshiel”, “sec house”, “boat with rowers”, “persons sitting”, “coast line”, “chopping board”,
“bar of soap”, “seashell”, “toilette”, “tv screen”, “plate on stand”, “toy horse”, “butter dish”, “mixing
bowl”, “dish with lobsters”, “bowl of vegetables”, “crackers”, “cas”, “vegtables”, “bull skull”, “foosball
game”, “pato”, “lion right mid water”, “goat left near forest”, “bird front mid water”, “rear fender”, “per-
son walking back occluded”, “face (side view)”, “art object”, “airport buildings”, “roofs”, “stone steps”,
“field, grass”, “piece of wood”, “whiskers right”, “cheetah cub”, “wood carving”, “arbor”, “spoon oc-
cluded”, “cctv, camera”, “plastic bottle”, “vehicle occluded”, “walking lane”, “pedestrian person walking
crop”, “samuel adams statue”, “cute gal”, “identifying parking”, “electical cord”, “street sign back”, “fish-
ing boat”, “sewer lid”, “christmas wreath”, “silver colored hub cab-car”, “ car frontal”, “playboy sign”,
“card display”, “person walking crop az90deg”, “290”, “overhad projector arm”, “leash”, “chaild walking”,
“truck cropped”, “rock2”, “isa”, “sunset sky”, “ancient building”, “glass window”, “pedestrians (group-
ing)”, “drawers empty”, “piano crop”, “table salt”, “counter/bench top”, “vanity top”, “people art decor”,
“router”, “french press”, “mop handle”, “sink unit”, “chair arm”

137



Just as there are rare objects in our world there are undoubtedly rare scenes. Since there
is no clear visual categorization of scenes2 it is difficult to analyze their distribution in the
same way that object distributions were analyzed above. It is unclear how strongly correlated
the distribution of objects is to the distribution of scenes. Some rare objects (e.g. “metal
detector”, “x-ray machine”) belong to or define rare scenes (e.g. “security checkpoint”). On
the other hand, some rarely photographed objects (e.g. “leash”, “router”, and “money” from
above) occur in very common settings like homes and offices. Also, common objects could
be arranged in such as way as to constitute a rare scene (“cars” and “dirt” into “demolition
derby”). The frequency distributions of visual objects and scenes are still open questions.

The distribution of objects and scenes in our visual world might turn out to be irrelevant,
in practice, because the Internet provides us with an ever growing avalanche of data. For
instance, “Leash” might be a rare object category, and “Demolish Derby” might be a rare
event, but there are 13,000 and 17,000 examples on Flickr, respectively. Undoubtedly, some
objects are not well sampled. But if our ultimate goal is to give machines the type of
qualitative understanding of images that humans enjoy, the fact that we can find relatively
few annotated visual examples of a “maniple” is not likely to be a showstopper.3

2Visual scenes continuously transition from one category to another (“beach” to “lake”, “street” to “city”,
etc...) or occupy multiple categories (“forest” and “mountain” or “kitchen” and “bedroom” in the case of
Parisian apartments).

3Maniple, noun: a liturgical vestment draped over the left arm. Flickr examples: ∼ 20.
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