
Making Contribution-Aware

Peer-Assisted Content Distribution

Robust to Collusion

Using Bandwidth Puzzles

Michael K. Reiter1, Vyas Sekar2,
Chad Spensky1, Zhenghao Zhang3

May 28, 2009
CMU-CS-09-1364

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

1Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
2Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
3Computer Science Department, Florida State University, Tallahassee, FL, USA
4This report supersedes Computer Science Technical Report CMU-CS-08-156. It is an updated version

of the report of September 2008.

Keywords: Peer-to-peer systems, Collusion, Shilling, Client puzzles

Abstract

Many peer-assisted content-distribution systems reward a peer based on the amount of data
that this peer serves to others. However, validating that a peer did so is, to our knowledge, an
open problem; e.g., a group of colluding attackers can earn rewards by claiming to have served
content to one another, when they have not. We propose a bandwidth puzzle mechanism to
make contribution-aware peer-assisted content distribution robust to such collusion. Our
construction both ties solving the puzzle to possession of content and, by issuing puzzle
challenges simultaneously to all parties claiming to have the same content, prevents one
content-holder from solving many others’ puzzles. We bound (in the random oracle model)
the adversaries’ ability to defeat our puzzle scheme. We also describe our integration of
bandwidth puzzles into a fully operational media streaming system, and demonstrate the
attack resilience offered by bandwidth puzzles through simulations of both streaming and
file-sharing systems.

1 Introduction

Many systems that distribute content with the help of peer-to-peer (P2P) overlays measure
peer contribution and incentivize participation. Peers who contribute more are rewarded
with better performance via higher priority in the distribution overlay (e.g., [38, 32, 28])
or priority service through server-assisted downloads (e.g., [37]), or with other mechanisms
(e.g., discount coupons [37]). We refer to such systems as contribution-aware peer-assisted
content distribution systems.

Unfortunately, mechanisms for demonstrating how much data a peer has served are vul-
nerable to a simple form of “shilling” [12, 7], where colluding attackers report receiving
service from each other without actually transferring content among themselves. In some
systems, these attackers can degrade the system, e.g., by gaining a powerful position in the
distribution overlay and then launching a denial-of-service attack [38, 32]. In others, this en-
ables them to get higher priority service while contributing only a limited amount of upload
bandwidth. Such attacks are not merely hypothetical, but occur frequently in widely used
P2P systems (e.g., [28, 36, 29, 1]). Fundamentally, what makes the problem difficult is that
with today’s network infrastructure, it is impossible for a third party to verify if a specific
data transfer occurred between two colluding entities.

We propose a bandwidth puzzle mechanism to make contribution-aware P2P content dis-
tribution robust to collusion attacks. With this mechanism, a verifier can confirm that
claimed transfers of content actually occurred. For example, in P2P media streaming from
a distinguished server (e.g., [38, 11, 32, 22]), or in P2P systems that have a distinguished
node for tracking content-transfer transactions (e.g., [28, 37, 18]), this distinguished node
can naturally play the role of the verifier.

There are two key insights behind our design. First, to those peers (or “provers”) claiming
to have content, the verifier presents puzzles for which the solution depends on the content.
That is, the solution is computationally simple for a prover who has the content, but more
difficult for a prover who does not. In this respect, our puzzle design is related to proofs
of data possession (e.g., [3, 17]) and similar mechanisms; we detail the differences of our
design in Section 2. Second, the verifier simultaneously presents these puzzles to all peers
who currently claim to have the content, so as to make it difficult for a few peers who have
the content to quickly solve both their own puzzles and puzzles for collaborators who do
not. This simultaneity is a strategy borrowed from detectors for Sybil attacks [13]; again, we
detail the differences of our design in Section 2. The verifier checks the puzzle solutions and
also notes the time taken by the provers to report the solutions. Any peer whose solution is
incorrect or whose solution time is greater than a threshold θ is a suspect for engaging in fake
transactions. The verifier can either deny or revoke credits granted in these transactions.

Our design is relatively simple, though its security analysis is more subtle than it might
at first suggest. An analysis must account for any strategy by which adversaries might
allocate portions of each puzzle’s search space so as to optimally utilize the time θ that
each has to invest and, more importantly, the content bits that each possesses. We provide
(in the random oracle model) a bound on the expected number of puzzles that a collection
of adversaries can solve in θ time (using any such strategy), as a function of the number

1

of content bits each possesses at the time the puzzles are issued and the numbers of hash
computations and additional content bit retrievals that each adversary can perform in θ
time. For example, this bound implies that for content of size n, an instance of our puzzle
construction ensures that all adversaries claiming to have the content must download Ω(n)
content bits to solve their puzzles in expectation, even if they retrieve up to nǫ bits on
average before the puzzles are issued, for some constant ǫ < 1. Moreover, this puzzle
construction is efficient: It enables the verifier to construct each puzzle in n ln n

n−nβ + O(1)
pseudorandom function computations in expectation and two hash function computations,
for a configurable constant 0 < β < 1, and to verify each puzzle in one comparison of hash
function outputs. (Note that ln n

n−nβ = o(1), and so n ln n
n−nβ = o(n).) An honest prover

invests 1
2
n1+α ln n

n−nβ + O(nα) time in expectation to solve this puzzle, for a configurable
constant α > 0 such that α + β > 1.

We demonstrate the viability of bandwidth puzzles by integrating them into a func-
tional multimedia streaming application. We demonstrate that a single verifier can scale to
challenging thousands of peers simultaneously with puzzles, even while streaming content
to other clients, and that puzzle distribution and solving introduce minimal jitter into the
stream. We demonstrate the benefits of bandwidth puzzles against attacks in a simulated
large-scale P2P streaming deployment, where we show that puzzles improve the legitimate
clients’ stream quality 40-300% (depending on the number of attackers) and reduce the at-
tackers’ quality by more than 2×. Moreover, the puzzle scheme limits the impact of such
attacks by providing legitimate clients with performance nearly identical to the scenario when
there are no attackers in the system. Finally, we describe simulations of a large-scale P2P
file-sharing application in which bandwidth puzzles increased the legitimate client requests
satisfied by 11-70%, and decreased the attackers’ by 60-95%. Also, the mean download time
of legitimate client requests decreased by 12-50%, and increased for attackers by 60-200%.

To summarize, the contributions of this paper are: (i) the design of bandwidth puz-
zles (Section 4), a practical defense against a documented form of attack on P2P systems;
(ii) an analysis of our construction (in the random oracle model) that bounds the success
attainable by adversaries against it (Section 5, Appendix A); (iii) implementation and evalu-
ation of our construction in a functional peer-assisted streaming application (Section 6); and
(iv) a demonstration of the benefits of puzzles on a simulated large-scale P2P deployments
(Sections 8, 9).

2 Related Work

Incentives in P2P systems: Several works have demonstrated the limitations of P2P
protocols in the presence of selfish or malicious users [16, 36]. Rewarding peer contributions
has been suggested to overcome these limitations (e.g., [38, 16]), but these mechanisms can-
not prevent colluding attackers from freely granting each other credits for fake transactions.
Bilateral (tit-for-tat) mechanisms such as BitTorrent appear robust to collusion attacks.
However, several studies (e.g, [16, 31, 26, 2]) have pointed out the limitations of bilateral
mechanisms, and make the case for designing more global contribution-aware mechanisms.

2

By equating peers’ debit and credit amounts for receiving and providing service, respectively,
collusion can be made to yield no net gain (e.g., [37]). However, there are valid reasons to
not equate the debit and credit amounts, such as asymmetries in upload and download band-
width, and social considerations (e.g., [28]). Some global contribution-awareness schemes use
pricing mechanisms (e.g., [5]), some of which are theoretically collusion-resistant (e.g., [2]).
Currency management presents practical challenges for these schemes, however, requiring
mechanisms to bootstrap new users in a Sybil-proof manner and to always ensure that there
is appropriate currency in the system despite churn to achieve rapid price convergence and
sufficient liquidity. Bandwidth puzzles are an alternative to implement collusion resistance
that avoids currency management challenges, by seeking instead to directly detect when
collusion (including with Sybils) occurs.
Failure to report transactions or solve puzzles: Clients are responsible for reporting
transactions and solving puzzles in order to grant uploaders credits for the transaction. This
raises the possibility of downloaders failing to report transactions or solving the puzzles and
thus not giving adequate credit to their uploaders. This problem is orthogonal to the collusion
attacks we consider and can be addressed by using fair-exchange [37] or proof-of-service [27]
mechanisms.
Client puzzles: Client puzzles (e.g., [15, 23, 14]) force clients to demonstrate a certain
proof-of-work to a server. This is used to throttle the number of requests that a client can
issue to defend against spam and denial-of-service attacks. Our bandwidth puzzle scheme is
an adaptation of this approach, in order to “throttle” the reward that a client can receive
for claimed content transfers, by tying puzzle solving to the content transferred and issuing
puzzle challenges simultaneously.
Sybil attacks: Our adversary model – colluding attackers claiming to have contributed
more resources than they actually have – is similar to a Sybil attack, which Douceur [13]
suggests can be detected using simultaneous puzzle challenges. These puzzles validate that
each claimed “identity” owns a certain amount of computation resources. Bandwidth puzzles
instead validate that each client has expended a certain amount of communication resources.
Proofs of data possession (PDP) and retrievability (POR): Proofs of data posses-
sion (e.g., [3, 17, 4]) and proofs of retrievability (e.g., [24, 9, 35]) enable a user to verify that
a remote store has not deleted or modified data the user had previously stored there. There
are several conceptual differences between the goals of a PDP/POR scheme and our puzzle
scheme. First, PDP/POR schemes only focus on the interaction between a single prover
and verifier, and do not deal with colluding adversaries claiming credit for fake transactions.
Second, PDP schemes minimize the communication between the prover and the verifier,
without requiring that there be an asymmetry in the computation effort they expend. How-
ever, such an asymmetry and the ability to tune that asymmetry is crucial for our scheme.
In particular, the solving cost must be sufficiently high — even with the claimed content
— to prevent one prover with the content from solving puzzles for many others, and at the
same time puzzle generation and verification must be very efficient since the verifier must
do these simultaneously for many provers.

One driving consideration in PDP/POR design is that the verifier no longer possesses

3

the file about which it is querying. We present our bandwidth puzzle scheme in a framework
in which the verifier possesses the content at the time it creates the bandwidth puzzle.
However, in cases where this is undesirable, we can borrow an idea exploited in some PDPs
to precompute puzzles and their solutions and either save them locally or outsource their
storage, encrypted and authenticated, of course (e.g., [4]). When our approach is applied to
a P2P file-sharing system, a natural realization of this idea would be to store the encrypted
puzzles with the file itself. Once precomputed puzzles are exhausted, the file could be
retrieved in full and more created. We emphasize, however, that many settings in which
we are interested (e.g., multimedia streaming of live events, P2P CDNs) lend themselves to
having a verifier with access to the content being transferred.

3 System Model and Goals

Our system model consists of a designated verifier and a collection of untrusted peers,
also called provers. Any node can act as a verifier, provided that it can obtain the list
of peers that purport to possess certain content and it has access to that content. P2P-
assisted CDNs (e.g., [18], www.pandonetworks.com/cdn-peering), P2P assisted file-hosting
(e.g., www.vipeers.com), and P2P streaming (e.g., [11, 38, 32]) have a central authority that
can serve this role.

We are agnostic to how peers choose other peers for downloading. We require that
peers report to the verifier the content they claim to have downloaded from others, and
consequently the content that each has. Note that these requirements are already satisfied
by many of the contribution-aware P2P systems we seek to protect (e.g., [38, 28]). The goal
of our mechanism is to enable the verifier to ensure that the claimed bandwidth expenditures
to transfer that content actually occurred.

The verifier does this by simultaneously presenting puzzles to the peers claiming to have
certain content, and then recording the durations required by each prover to report its solu-
tion. We presume that the network latencies for transmitting puzzles and solutions between
the verifier and the provers are stable over the timescales involved in puzzle solving [42]. On
the basis of solution correctness and the puzzle-solving time that it records and compares
to a threshold θ, the verifier generates a list of peers suspected of not having the claimed
content. The verifier can then take appropriate actions to ensure that the uploaders for these
transfers do not receive credits for these transactions.

These puzzles should have properties typical of puzzle schemes: (i) Provers should be
unable to precompute puzzle solutions, or use previous puzzle solutions to generate new
puzzle solutions. (ii) The verifier should incur low computational costs to generate puzzles
and check puzzle solutions, and should incur low bandwidth costs to send the puzzles and
receive the solutions. (iii) The verifier should be able to adjust the difficulty of the puzzle,
as appropriate.

Unlike previous puzzle constructions, however, bandwidth puzzles must also ensure that
for colluding provers to solve their puzzles within time θ, the content each receives in doing so,
on average (possibly before receiving the puzzle itself), is of size roughly proportional to the

4

full content size. Were it not for the simultaneity in issuing puzzles, this would be impossible
to achieve: each challenged prover could forward its puzzle to a designated solving prover
who had the content, who could solve the puzzle and return it to the challenged prover. By
(ii) above, the puzzle and solution would be small, implying that the bandwidth exchanged
between the challenged prover and the solving prover would be small. Simultaneous puzzle
challenges preclude such a strategy, since the solving prover is limited in the number of
puzzles it can solve in time θ.

The above goal comes with two caveats. First, without network support, it is not possible
for the verifier to ascertain which (if any) of the colluders actually has the content, even if
it detects one or more of them as colluders via our scheme. For example, a prover with the
content could invest its time in solving another prover’s puzzle, at the expense of solving
its own. As such, the verifier detects provers who collude, but cannot detect who has the
content. Second, it is necessary that the content not be substantially compressible. If it
were, then provers could exchange the compressed version in lieu of the original, and our
goal could not be achieved. As such, in the rest of this paper we treat the content as random,
i.e., in which each bit is selected uniformly at random.

4 The Construction

We use “ ← ” to denote assignment, and “x
R

← X” to denote the selection of an element from
the set X uniformly at random and its assignment to x. Concatenation is denoted by “||”.
Security parameters: There are three security parameters that play a role in our con-
struction. We use κ to denote the length of hash function outputs and keys to pseudorandom
functions (see below). A reasonable value today might be κ = 160. The other two security
parameters are denoted k and L, and together combine to dictate the difficulty of puzzle
solving, and the costs that the verifier and prover incur in generating and solving puzzles,
respectively.
Hash functions: We use two hash functions: hash : {0, 1}κ ×{1 . . . L}× {0, 1}k → {0, 1}κ

and ans : {0, 1}k → {0, 1}κ. (Hash functions typically take a single string as input; we can
encode the three inputs to hash in an unambiguous fashion as a single string input.) To
prove security of our construction in Section 5, we model hash as a random oracle, though
collision-resistance of ans suffices.1

Pseudorandom functions: A pseudorandom function family {fK} is a family of functions
parameterized by a secret key K ∈ {0, 1}κ. Informally, it is infeasible to distinguish between

an oracle for fK where K
R

←{0, 1}κ, and an oracle for a perfectly random function with the
same domain and range; see [19] for a formal definition. We use families {f 1

K : {1 . . . L} →
{0, 1}κ} and {f 2

K : {1 . . . k} → {1 . . . n}}. We require that each f 2
K be injective, and thus

that k ≤ n, where n is the content size in bits. We will discuss efficient implementations for
f 2 below.

1Minimizing reliance on random oracles is desirable, since they are not a standard cryptographic assump-
tion [10].

5

Construction: The puzzle verifier generates puzzles to challenge a collection of provers
simultaneously. Generally, we assume that the verifier generates one puzzle per prover,
though there is no obstacle to sending multiple puzzles per prover. Each puzzle consists of
a hash value ĥ output from hash and, intuitively, a collection of index-sets I1 . . . IL. Each
index-set is a set of k random content indices, i.e., uniformly random samples from {1 . . . n},
without replacement. The verifier computes ĥ as the hash of the content bits indexed by a
randomly chosen index-set, appended together in an unambiguous order. Solving the puzzle
means finding which of the L index-sets has this property and, more specifically, the string
that hashes to ĥ. This requires at most L computations of hash for a prover who possesses
the content, but could require substantially more for a prover who is missing some of the
content indexed by the index-sets in the puzzle.

verifier prover

K1
R

← {0, 1}κ

ℓ̂
R

←{1 . . . L}

K̂2 ← f1
K1

(ℓ̂)
ˆstr ← content(f2

K̂2

(1))|| . . .

. . . ||content(f2
K̂2

(k))

ĥ ← hash(K1, ℓ̂, ˆstr)
â ← ans(ˆstr)

K1,ĥ
-

measure
this

duration
dur



















































for ℓ ∈ {1 . . . L}
K2 ← f1

K1
(ℓ)

str ← content(f2
K2

(1))|| . . .
. . . ||content(f2

K2
(k))

if (hash(K1, ℓ, str) = ĥ)
a ← ans(str)
return a

a
¾

if (a 6= â ∨ dur > θ)
suspect prover

Figure 1: One bandwidth puzzle

This construction, as described,
would be inefficient. First, sending
L index-sets of k indices each would
require computation proportional
to kL to generate the sets and then
communication costs proportional
to kL log2 n to transmit them. To
reduce these costs, the verifier gen-
erates index-sets pseudorandomly;
see Figure 1. First, it randomly se-
lects a key K1 for the family f 1 and

an index ℓ̂
R

←{1 . . . L} to denote
the index-set from which the chal-
lenge ĥ will be generated. Second,
it generates a key K̂2 ← f 1

K1
(ℓ̂)

from which it generates index-set
Iℓ̂ = {f 2

K̂2

(1) . . . f 2
K̂2

(k)}. Note that

the verifier never needs to generate
the other L−1 index-sets, reducing
its costs proportional to k alone.
Simply sending K1 and ĥ suffices
to enable the prover to search for
ℓ̂, and incurs communication costs
proportional only to κ. Because f 1

and f 2 are pseudorandom, the prover is unable to predict the index-sets better than random
guessing prior to receiving K1. Another way in which we reduce the communication costs
is for the prover to return ans(str) for the string str satisfying ĥ = hash(K1, ℓ̂, str)2, rather
than str itself. As we will see, it is generally necessary for k (and hence str) to grow as a
function of n, whereas there is no such need for κ (the size of ans outputs).

2Including K1 and ℓ̂ as inputs to hash ensures that the results of one puzzle-solving process cannot be
used for another puzzle, regardless of the content, k, and L.

6

Finally, a subtle but important implementation challenge arises for f 2, because our se-
curity analysis in Section 5 requires that f 2 be injective.3 A natural approach to implement
f 2, then, would be as a pseudorandom permutation (PRP) on {1 . . . n}, but known con-
structions of PRPs for small domains from ones for larger domains (e.g., AES) are relatively
quite expensive (e.g., [8]). The approach we use here exploits the fact that for any given key
K, f 2

K is evaluated in our construction on all of 1 . . . k anyway. Specifically, for a pseudoran-
dom function family {f 3

K : {1, 2, . . .} → {1 . . . n}}, we define f 2
K(k′) to be the k′-th distinct

value in the sequence f 3
K(1), f 3

K(2), . . .; i.e., we “skip over” repeat outputs from f 3
K . For this

implementation, we prove the following in Appendix A:

Theorem 4.1 The construction of Figure 1 has (i) expected puzzle generation cost of one
hash computation, one ans computation, and n ln n

n−k
+O(1) pseudorandom function compu-

tations, and (ii) expected puzzle solution cost (by an honest prover) of 1
2
L hash computations,

one ans computation, and 1
2
Ln ln n

n−k
+ O(L) pseudorandom function computations.

When interpreting Theorem 4.1, it is important to note that ln n
n−k

= o(1) for any

k = o(n), e.g., k = nβ for 0 < β < 1, as discussed in Section 5. So, the cost of puzzle
generation is sublinear in n.

5 Security

For proving the security of our construction, first recall that we assume that {f 1
K} and

{f 2
K} are pseudorandom function families [19], and that ans is a collision-resistant hash

function. These primitives achieve their desired properties — indistinguishability from a
random function in the first case, and collision-resistance in the second — with all but
negligible probability as a function of κ.4 As such, for the rest of this paper, we assume that
these properties hold, ignoring events that occur with probability negligible in κ.

The hash primitive is modeled as a random oracle in our proof, which enables us to
quantify the security of our scheme as a function of the number of hash computations. That
is, we cap the number qhash of hash queries that any prover can complete in θ time, and then
quantify the probability with which the prover returns â as a function of qhash. Moreover,
modeling hash as a random oracle enables us to exploit the property in our proof that one
such computation provides no information about the computation of hash on any other value.

Of course, the probability that an adversarial prover succeeds in returning â within θ time
(i.e., after making at most qhash queries to hash) also depends on the number of content bits it
receives before and during the puzzle-solving process. To model the receipt of content bits in
our proof, it is also convenient to model a prover’s retrieval of content bits as calls to a random
oracle content : {1 . . . n} → {0, 1}. As discussed in Section 3, our construction requires

3Relaxing this would introduce a term of P 2L k̂(k̂−1)
2n to the bound of Theorem 5.1 in Section 5, which is

substantial for the values of n that we consider in Section 6.
4A function g(·) is negligible if for any positive polynomial p(·), there is a κ0 such that g(κ) ≤ 1/p(κ) for

all κ ≥ κ0.

7

that the content being exchanged have sufficient empirical entropy to be incompressible, as
otherwise adversaries could “defeat” our verification by exchanging (in full) the compressed
content. Thus, we model the content as a random string of length n, and track the number
of bits that an adversary retrieves prior to returning a puzzle solution by the number of
queries it makes to its content oracle.

In Appendix A, we present a proof of the following theorem, where Ψ(x, m, p) = P [X ≥ x]
for any binomially distributed random variable X ∼ B(m, p).

Theorem 5.1 Let hash and content be random oracles. Consider A collaborating adver-
saries, who are (i) collectively challenged to solve P puzzles; (ii) each permitted qhash queries
to hash; and (iii) collectively permitted Aqpre queries to content before the distribution of the

puzzles and Aqpost after. For any s and k̂ satisfying 1 ≤ s ≤ PL and log2(qhash+L)+2 ≤ k̂ ≤
k

(

1 − qpre

n

)

− 1, the expected number of puzzles that these adversaries can solve collectively
is at most

AP

L

(

sqpost

k̂ − log2(qhash + L) − 1
+ 1

)

+ PnΨ

(

s, PL,
k

n

)

+ P 2LΨ

(

k − k̂, k,
Aqpre

n

)

(1)

19 20 21 22 23 24 25 26 27 28 29 30
0

10

20

30

40

50

A = 1
A = 5

A = 10

A = 20

A = 30

A = 40

A = 50

log
2
(n)

M
in

(P
,U

pp
er

 B
ou

nd
(1

))

Figure 2: An example of Theorem 5.1

To see a consequence of Theorem 5.1,
consider a constant number A of adversaries
(i.e., constant as a function of n) challenged
with a constant number P of puzzles (typ-
ically P = A) and that seek to each re-
trieve some qpre ≤ nǫ content bits on aver-
age, where 0 ≤ ǫ < 1, before the puzzles
are issued. Suppose that qhash = L, and con-
sider setting L = nα for some α > 0 and
k = nβ for some 0 < β < 1 where α+β > 1.
Consider setting k̂ = k − k(δ + Aqpre

n
) for

any constant 0 < δ < 1, in which case
log2(qhash + L) + 2 ≤ k̂ ≤ k

(

1 − qpre

n

)

− 1
for sufficiently large n and we can show (us-

ing a Hoeffding bound5) that P 2LΨ
(

k − k̂, k, Aqpre

n

)

→ 0 as n → ∞. Setting s = (1 + δ′)PLk
n

for δ′ > 0 (and using a Chernoff bound6) implies PnΨ
(

s, PL, k
n

)

→ 0 as n → ∞. For this
value of s, Theorem 5.1 implies that qpost = Ω(n) in order for the adversaries to solve P (or
any constant number of) puzzles in expectation. This, in our opinion, is a strong result: to
solve the P puzzles in expectation, each adversary must retrieve, on average, an amount of
the content roughly proportional to its size, even if each retrieves, on average, up to nǫ bits
of the content before the puzzles are issued.

5P [X ≥ E [X] + δm] ≤ e−2δ2m for X ∼ B(m, p) [21].

6P [X ≥ (1 + δ′)E [X]] ≤
(

eδ′

/(1 + δ′)(1+δ′)
)E[X]

for X ∼ B(m, p) [30, Theorem 4.4].

8

Examples of Theorem 5.1 for values of A and n are shown in Figure 2, which plots the
minimum of P and the bound (1) for P = A, L = 1

12
n71/100, k = 1

4
n3/10, qpre = n3/10,

qpost = n3/10, s = 21An1/100, and k̂ chosen optimally in the range log2(qhash + L) + 2 ≤ k̂ ≤
k

(

1 − qpre

n

)

−1. For these parameters, presenting puzzles every n = 222 bits ≈ 520KB suffices
to detect half of five collaborating adversaries in expectation, and presenting puzzles for each
n = 225 bits ≈ 4MB suffices to detect half of 50 collaborating adversaries in expectation.
Moreover, our bound is loose in several respects, and so the detection capability of this
approach is even better than shown in Figure 2.

6 Evaluation in a Media Streaming System

We implemented and evaluated a contribution-aware peer-assisted content distribution sys-
tem augmented with bandwidth puzzles. The system is designed for streaming real-time
media, e.g., a live broadcast of an event (c.f., [11, 38, 32]). It uses a real-time transport
protocol (RTP [34], jlibrtp.org) to stream media to a set of seed clients; these clients can
then stream this to other clients over a P2P overlay. The server also acts as the verifier.
In this role, it maintains a persistent TCP connection with each client (including the seeds)
over which puzzle challenges and responses are communicated for each n bits of the media
stream. Each client solves puzzles using a separate thread from that which handles the
stream. Our puzzle implementation uses AES to implement f 1 and f 3 (and hence f 2), and
SHA-256 to implement hash and ans.

We evaluate our system on Emulab [40] using five classes of machines: 600MHz Pentium
III with 256MB of memory (Class A); 850MHz Pentium III with 256MB of memory (Class
B); 2GHz Pentium 4 with 512MB of memory (Class C); 3GHz 64-bit Xeon with 2GB of
memory (Class D); and 2.4GHz Pentium Core 2 Duo with 2GB of memory (Class E). The
server/verifier was a Class E machine. The server sends a 768Kbps stream7 to 50 seed clients8

over a 100Mb/s network. In addition, we configured the network with wide-area parameters
in certain tests, as described below. In all our experiments, we fixed L = 1

12
n71/100 and

k = 1
4
n3/10, and so the security bounds in Figure 2 are representative for our experiments.

We address the following questions:

• Can we set a suitable θ to accommodate heterogeneity in client capabilities?

• Does the puzzle solving overhead impact the user’s quality of service?

• How many simultaneous puzzle challenges can the server handle?

• How do wide-area effects (e.g., latency, loss) affect the choice of θ?

Client heterogeneity and choice of n: We first examine the impact of n on puzzle-solving
time and specifically the advantage that faster computers have over slower ones, since the
threshold θ must allow for slower computers to reliably solve their puzzles. Figure 3 shows

7For example, ESPN360 requires 400Kbps and recommends 768Kbps, see espn.go.com/broadband/

espn360/faq#21.
8As a point of comparison, the server in the popular P2P streaming system PPLive supports 25 seed

clients at 400Kbps [22].

9

the ratio of the 95th percentile time for a Class-X machine (X ∈ {A, B, C, D, E}) to the 50th
percentile time for a Class-E machine. If the slowest clients that the server accommodates
are of Class X, and the fastest are of Class E, then Figure 3 shows the number of puzzles
that the Class-E client can solve in θ time, if θ is set so that the Class-X client can solve one
puzzle reliably.

21 22 23 24 25
0

5

10

15

20

25 A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

A

B

C

D

E

log
2
(n)

R
at

io
Figure 3: Ratio of 95th percentile puzzle-
solving time for Class-X machine (X ∈ {A,
B, C, D, E}) to 50th percentile puzzle-solving
time for Class-E machine during live stream-
ing experiments.

Figure 3 shows a large gap in puzzle-
solving ability between the slowest and
fastest machines. That said, the slowest
machines would presumably not meet the
minimum system requirements for viewing
a live stream anyway; e.g., of the classes
we consider, only D and E meet ESPN360’s
minimum requirements (see espn.go.com/

broadband/espn360/faq#21). So, we dis-
card Classes A and B (and conservatively
include Class C) for the rest of our evalua-
tion. Figure 3 then shows that an attacker
with a Class-E machine can successfully im-
personate roughly seven Class-C machines,
and so could inflate his claimed transfers by
7×. While not ideal, this provides a limit on
the extent to which an adversary can game
the system. With this choice made, we further narrow our attention to puzzles for each
n = 223 bits for the rest of our evaluation.

C+P C D+P D E+P E
0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Machine Class

Ji
tte

r

Figure 4: Jitter per machine class. “+P” in-
dicates with puzzles.

Application impact: We now consider
the impact on jitter of introducing puzzle
solving into media streaming. Jitter [34] is
an estimate of the statistical variance of the
RTP (application layer) data packet interar-
rival time. Figure 4 shows the distribution
of jitter of the media stream at clients for a
duration including 100 puzzle challenges, for
different machine classes. Figure 4 is a box-
and-whiskers plot; each box shows the 25th
percentile, median and 75th percentile val-
ues, and the whiskers extend to the 1st and
99th percentile values. As this figure shows,
puzzles have little impact on jitter for any of
Classes C–E.
Verifier scalability: To test scalability, we fixed the number of clients to which a Class
E server streams content at 50, but had it simultaneously generate and send puzzles to a
number of clients (in addition to these 50) ranging from 0 to 10000. Due to limits on the

10

50 2050 4050 6050 8050 10050
40

50

60

70

80

90

100

Number of Clients

%
C

P
U

 U
sa

ge

(a) CPU usage for Class-E verifier node

1 2050 4050 6050 8050 10050
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Clients

Ji
tte

r

(b) Jitter for one Class-E client

Figure 5: Scalability tests in which 50 clients receive stream from verifier, and a variable
number of clients receive puzzle challenges from verifier.

number of available Emulab computers, we co-located the puzzle-receiving clients on a few
machines, but still established an independent TCP connection to each one. We sampled
the CPU and memory usage of the verifier (both user and system) during the tests at
half-second intervals using top. Figure 5(a) shows the distribution of CPU usage for the
verifier in such a test. The verifier’s median and even 75th percentile utilization is largely
unchanged by challenging 10050 clients, and also sending the stream to 50 of them. The
99th percentile does increase, though it never reaches 100%. (Memory utilization exhibited
moderate growth, and far less variance. It topped out at less than 75% in the 10050-client
case.) We also confirmed the simultaneity of puzzle distribution in these tests: the time
between sending the first puzzle and receiving an application-level acknowledgement from
the last client to which a puzzle was sent (i.e., the 10050th) was at most 450ms. It is clear
that even a moderately well-provisioned verifier machine should scale beyond 10000 clients,
and a machine with more cores and memory should easily scale far beyond that.

We also monitored one of the 50 clients receiving the media stream during these tests, to
see the impact on its jitter as the number of puzzle-solving clients is increased. Figure 5(b)
shows that the median jitter at this client when the server challenges 10050 (including this
one) is within 50% of the median jitter when this client is served in isolation. This suggests
that increasing the number of puzzle-solving clients has little impact on individual clients’
stream quality.
Wide-area effects: The primary concerns with streaming in a wide-area setting are la-
tency and packet loss. Uniformly increased latency simply means that the verifier waits
correspondingly longer to receive puzzle solutions. If there is significant diversity across
provers in the latencies to reach them, the verifier can send puzzles to more distant provers
first, to increase simultaneity of distribution. (Geolocation by IP address can provide latency
estimates that would be difficult for a prover to mislead.) Also, more puzzles or more diffi-
cult puzzles (i.e., by increasing n or L) can be used to minimize the effects of both latency
variance across provers and transient latency variations per prover.

11

0 1 2 3 4

0

200

400

600

800

%Packet Loss

S
ol

vi
ng

 T
im

e
(m

s)

Figure 6: Puzzle-solving time for a Class-E
client as a function of packet loss.

The more significant impact of wide-area
streaming is the risk of increased packet loss.
Distribution of puzzles over TCP helps to
deliver puzzles and their solutions reliably,
but the UDP-based RTP stream does not
guarantee reliable delivery of stream pack-
ets. Consequently, during periods of high
packet loss, an honest prover might be miss-
ing some of the content bits indexed in an
index-set; if so, it searches through all possi-
bilities for them. The effect of this searching
on puzzle-solving time is shown in Figure 6,
where the network packet loss rate ranges
from 0% to 4%. Even 2% represents an unusual packet loss rate that, e.g., justifies a “warn-
ing” indication at a real-time monitoring site like www.internetpulse.net; a 4% packet loss
rate is “critical”. This figure shows that even at 2% loss, nearly 75% of the puzzle-solving
times experienced are within those observed with 0% loss, and the 99th percentile is within
twice those observed with 0% loss. So, doubling θ during periods of 2% loss (as indicated
at, e.g., www.internetpulse.net) should allow adequate puzzle-solving time, or θ could be
permanently doubled with the cost of allowing adversaries a more slack with which to gain
slightly more advantage.

7 Simulation Framework

We demonstrate the benefits of using bandwidth puzzles in P2P streaming systems (Sec-
tion 8) and in file-sharing applications representative of P2P-assisted file-hosting and CDN
systems (Section 9). To this end, we implement an event-driven simulation framework to
model such systems. There are three types of events in the simulation model: content
exchanges, transaction reports, and puzzle challenges.
Incentive mechanism: We use an incentive scheme similar to Maze [28]. Content is trans-
ferred in chunks of 1MB in size, and we assume the existence of a central server to which
peers authenticate and periodically report transactions on a per-chunk basis. This server
maintains a per-peer “points system”. Each peer earns 1.5 points for every chunk uploaded
and consumes 1 point per chunk downloaded. In a system augmented with bandwidth puz-
zles, this server additionally plays the role of the verifier to issue and check puzzle challenges.
New peers are given initial points to allow some free downloads before they can contribute.
Each peer queues incoming requests (i.e., asking it to upload some content) in increasing
order of rqsttime − 3 log ρ, where rqsttime is the request arrival time and ρ is the current
number of points the requester has. Intuitively, requests that arrived earlier and requests
from peers with more points are served earlier. We can configure the system to either allow
lower priority service to free-riders (clients with zero points) or simply deny their requests.
Adding bandwidth puzzles: In a traditional contribution-aware P2P system, on re-

12

ceiving a report of a completed transaction involving a specific content chunk, the server
subtracts points from the downloader and credits points to the uploader. With a system
augmented with bandwidth puzzles, handling transactions is slightly different. The server
debits points from the downloader’s account as before. However, it does not immediately
credit the uploader for the transaction. Instead, it records a pending transaction specifying
the identifiers of the uploader, downloader, and the content of which this chunk is a part
(e.g., a filename or a segment of a video stream).

The server sends puzzle challenges in the role of the verifier. These puzzles are issued at a
logical content granularity appropriate to the application (file-sharing or streaming) instead
of at chunk granularity. We refer to the time between puzzle challenges as a puzzle epoch, and
assume that the duration of a puzzle epoch is significantly larger than the per-puzzle timeout
θ. At the start of each puzzle epoch, for each content for which an exchange was reported
during the previous puzzle epoch, the server retrieves the set of all peers that currently claim
to have this content and generates puzzles for these clients. The server issues puzzles for
this content to these clients simultaneously. (The server can also issue puzzles for other
content that a disjoint set of clients claim to possess. The requirement of disjointedness is to
ensure that no client is tasked with solving two puzzles at the same time.) Upon receiving
a response for a puzzle sent to a peer x for content content, the server verifies if the answer
is correct and if the response came within the puzzle-specific timeout θ. If so, the server
validates the pending transactions pertaining to content in which x was the downloader and
credits the uploaders of these pending transactions for transferring the content’s chunk(s).9

Attack model: We specify attacks by a collusion graph. A collusion graph is a directed
graph, where each vertex is a malicious peer (either an actual or Sybil node). An edge
x → y represents an fake uploader relationship, where peer x reports “fake” transactions to
the server on behalf of peer y. In other words, x requests the server to credit y for uploading
content, even though y does not actually spend any bandwidth for the transfer. Each such
x periodically reports fake transactions to the server in addition to its actual (legitimate)
transactions, if any.

The notion of a collusion graph is general and can capture different collusion patterns.
For example, in the Maze measurement study [28], the authors find that most collusion
patterns comprise two or three mutually colluding nodes. This is represented as a directed
clique. In our notation, for example, Clique(100,10) denotes that there are 100 attackers
organized in cliques each of size 10 attackers that collude with one another. Other forms of
observed collusion patterns include star topologies, each comprised of a real attacker and
a collection of Sybil identities for that attacker. The only role of the Sybil identities is to
grant points to their master node and they do not generate any real transfer requests. In our
notation, for example, a Star(200,19) graph denotes that there are 200 nodes in the graph
organized in 10 star graphs, each having 19 leaf nodes representing the fake (Sybil) identities
and the actual attacker as the “center” of the star. We focus on collusions of moderate size
since the Maze measurement study [28] found that most collusion patterns involved a small

9Detecting downloaders that habitually refuse to solve puzzles is a separate problem that can be solved
using fair-exchange or proof-of-service mechanisms; see Section 2.

13

3 3.5 4 4.5 5 5.5
0

0.2

0.4

0.6

0.8

1

Client quality index

F
ra

ct
io

n
of

 c
lie

nt
s

No puzzle
With puzzle
No attack

(a) Legitimate clients

1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

Client quality index

F
ra

ct
io

n
of

 a
tta

ck
er

s

No puzzle
With puzzle

(b) Attackers

Figure 7: Benefits in a P2P streaming system

0 200 400 600 800 1000
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of attackers

A
ve

ra
ge

 c
lie

nt
 q

ua
lit

y

NoPuzzle
WithPuzzle

Figure 8: Varying the number
of attackers

number of attackers.
Simplifying assumptions: We make some simplifying assumptions to make our simu-
lation framework scalable. In particular, we do not model network congestion effects, and
instead assume that the only bandwidth bottleneck is the upstream bandwidth bottleneck
of the peers [6]. Also, we assume that all content is split into 1MB chunks, and that all
content exchanges and transaction reports happen at the granularity of this chunk size. To
simplify the request queue dynamics, each peer queues content transfer requests based on
the downloader’s points using the prioritization mechanism described above and serves these
requests one at a time, without preemption.

8 Benefits in P2P Streaming Systems

In this section, we show via simulation the benefits of using bandwidth puzzles in a contribution-
aware peer-assisted streaming application (e.g., [11, 38, 32]).
System description: We assume that the multimedia stream is divided into discrete
epochs of size 1000 units of simulation time where each unit corresponds to 100ms of real
time. The content within each epoch is divided into suitably encoded stripes [11, 38]. This
encoding (e.g., [20]) has the property that a client can access the original content as long as it
is able to download at least one stripe and it receives better performance (e.g., higher video
quality) if it downloads more stripes. As discussed in Section 7, each stripe is broken into
1MB chunks and peers download the chunks corresponding to each stripe using a suitable
lookup mechanism.

In the context of the simulation framework discussed in Section 7, the puzzle epoch
coincides naturally with the streaming epoch and the puzzle challenges happen at a per
stripe granularity. In this setup, each client caches the stripes it received in the previous
epoch to answer puzzles. The storage overhead for caching the stripes is quite low — only
2MB per stripe in our simulations.
Simulation parameters: Each streaming session lasts 50 epochs with all clients and
attackers arriving at the start of the session. We assume that there are 10 stripes, each

14

of size 2MB. In each epoch, the server bootstraps 5 seed nodes in the system with the 10
stripes for the next epoch. Some clients initially download stripes from these seed nodes and
subsequently serve these to others. For each result, we repeat the simulation five times and
present the averages across the multiple runs.

We consider a scenario where attackers create fake identities that pretend to receive the
stream. This helps attackers download more stripes (higher stream quality) and receive
content directly from the seed nodes (higher priority service). We assume that a puzzle sent
to a peer who does not have the stripe for which the puzzle was generated (or a fake peer)
is solved with a fixed probability 0.1. In the Star(200,19) case, for example, this means that
if the 19 Sybil identities in one star each report one stripe transfer from the node at the
center, then in expectation 19 stripes× 2 chunks

stripe
× 0.1 = 3.8 of these fake chunk transfers get

validated.10

Performance benefits: We define the user quality to be the average number of stripes
received by a client per epoch in the streaming session. Figure 7(a) shows the CDF of the
client quality in a streaming system with 100 legitimate clients under three scenarios: no
attack, under a Star(200,19) attack without the puzzle scheme, and under a Star(200,19)
attack with the puzzle scheme in place. We see that when the puzzle scheme is used the
client quality with an attack is very close to a system without attackers. In Figure 7(b),
there is more than 2× reduction in the median attacker quality when bandwidth puzzles are
used. Figure 8 shows the average legitimate client quality as a function of the attack size.
Each attack is of the form Star(X,19) where X is the number of attackers. As the number of
attackers grows, the decrease in quality is less severe when the puzzle scheme is used. These
results confirm that bandwidth puzzles can improve legitimate client performance and deter
attackers in P2P streaming systems.

9 Benefits in File-sharing and P2P-CDN Systems

There are several P2P file-sharing applications that can incorporate and benefit from band-
width puzzles: peer-assisted CDNs (e.g., [18, 25], www.pandonetworks.com/cdn-peering),
and peer-assisted file-hosting services (e.g., [41], www.vipeers.com). These satisfy the re-
quirement for a central distinguished node to serve the role of a verifier, having access to the
content being shared, a list of active peers, and the content they host.
System description: As representative evaluations, we show the benefits in file-sharing
(representing file-hosting and CDN services) in the context of a Maze-like [41] P2P system.
Our choice of Maze was motivated by two factors. First, Maze uses a centralized authority
for auditing peer contributions. This is a natural choice to serve as the verifier in charge of
issuing and verifying puzzles. Second, Maze incentivizes peers to upload content based on
the points system described in Section 7. Such incentive mechanisms are important for the
viability of P2P systems to encourage uploaders. However, a subsequent measurement study

10Since 190 identities are fake, the attackers’ resources correspond to A = 10. Because the verifier issues
puzzles per stripe (log2(n) ≈ 24), the value of (1) for A = 10, P = 200, and, e.g., L = 5

3n71/100 and

qpost = n1/10 (and otherwise the same parameters used for Figure 2) is consistent with this choice.

15

demonstrated a wide range of collusion attacks [28]. Our goal is to minimize the impact of
collusion in such systems using bandwidth puzzles.

In the context of our simulation framework (Section 7), puzzle challenges occur periodi-
cally over a suitable puzzle epoch size at a per file granularity.
Simulation parameters: We evaluate two configurations: one in which peers allow free-
riders (but give their requests very low priority), and another in which peers deny service
to free-riders. Each of our simulations runs for 105 units of simulation time where each unit
of simulation time corresponds to 100ms of real time. There are 100 files shared with file
request popularity following a Zipf distribution. Each file is an integral number of chunks
in size, chosen uniformly at random from the range [4, 10]. The simulation consists of 1000
legitimate clients. Each legitimate client chooses an arrival time uniformly at random in
[0, 105] and has an average lifetime of 20, 000 units. Each client is bootstrapped on arrival
with an initial set of files. Attackers arrive at time 20, 000 and persist until the end of
the simulation. Unless stated otherwise, we assume that a puzzle sent to a peer who does
not have the file for which the puzzle was generated (or a fake peer) is solved with a fixed
probability 0.1. For each result, we repeat the simulation five times and present the averages
across the multiple runs.
Performance benefits: We focus on two metrics in our simulations: number of file re-
quests satisfied and the average request completion time. In each case, we measure the metric
for both legitimate clients and for attackers. Attackers impact the performance of legitimate
clients in two ways. First, each attacker request served decreases the total bandwidth avail-
able to legitimate client requests. Second, attackers can get faster service by boosting their
points via fake transactions. This means that requests from legitimate clients may end up
with lower priority. The goal of the bandwidth puzzle scheme in the context of Maze is to
ensure that attackers do not degrade the performance of legitimate clients and attackers do
not receive undue advantage from fake transactions.

Figure 9(a) shows the number of legitimate clients’ requests satisfied. Bandwidth puzzles
boost the performance by 11-70%. The benefit is slightly better when free-rider requests
are not serviced. Also, across Clique(100,10) and Clique(200,20), as the number of attackers
increases, the benefit provided by the puzzle mechanism increases two-fold. In Figure 9(b)
we see that bandwidth puzzles decrease the total number of attackers’ requests satisfied by
50-75% when free-riders are allowed, and by 60-95% when free-rider requests are denied.11

Figures 10(a) and 10(b) show the average completion time for legitimate and attacker
requests. Bandwidth puzzles improve the mean download time of legitimate client requests
by 12-50%. Figure 10(b) shows that in the allow free-rider configuration, the mean download
time for attacker requests increases by 60-200%. Surprisingly, for some deny-free-rider con-
figurations, the average attacker completion time is lower when bandwidth puzzles are used.
This anomaly can be explained by referring back to Figure 9(b) and the Maze system design.
Recall that in Maze, each peer is given some initial credits that it can use to download files.

11It may appear anomalous that Star(1000,19) has fewer attacker requests satisfied even though the total
number of attackers is greater. However, recall that the Star(1000,19) attack has only 50 active nodes
generating file requests. The fake identities are passive peers and do not generate any requests.

16

No Attack Clique 100,10 Clique 200,20 Star 1000,19
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
N

um
be

r
of

 r
eq

ue
st

s
sa

tis
fie

d

Allow, NoPuzzle
Allow, WithPuzzle
Deny, NoPuzzle
Deny, WithPuzzle

(a) Legitimate clients

Clique 100,10 Clique 200,20 Star 1000,19
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

N
um

be
r

of
 r

eq
ue

st
s

sa
tis

fie
d

Allow, NoPuzzle
Allow, WithPuzzle
Deny, NoPuzzle
Deny, WithPuzzle

(b) Attackers

Figure 9: Number of requests satisfied

No Attack Clique 100,10 Clique 200,20 Star 1000,19
0

100

200

300

400

500

600

700

800

A
ve

ra
ge

 fi
le

 d
ow

nl
oa

d
tim

e

Allow, NoPuzzle
Allow, WithPuzzle
Deny, NoPuzzle
Deny, WithPuzzle

(a) Legitimate clients

Clique 100,10 Clique 200,20 Star 1000,19
0

500

1000

1500

2000

2500

3000

3500

4000

4500

A
ve

ra
ge

 fi
le

 d
ow

nl
oa

d
tim

e

Allow NoPuzzle
Allow, WithPuzzle
Deny, NoPuzzle
Deny, WithPuzzle

(b) Attackers

Figure 10: Mean file download time

Results for file-sharing workload tests. Each bar represents one of four configurations. We
can either “Allow” or “Deny” free-riders and can choose to implement/not implement

bandwidth puzzles. Each cluster represents a specific attack configuration.

In the deny free-rider configuration (with bandwidth puzzles), the only attacker requests
satisfied correspond to these initial free downloads. Since attackers have credits initially,
these requests see smaller queueing delays.

Figures 9(a) and 10(a) also show the results when there are no attackers. When band-
width puzzles are used, the number of legitimate client requests satisfied and the mean
download time with and without the attack are almost identical. This shows that attackers
have little or no impact on the performance of legitimate clients in a system with bandwidth
puzzles.
Sensitivity to attack parameters: In additional simulations, we varied the number of
clique and star attackers to evaluate the impact on legitimate clients. For the clique attack,
we set each clique size to 10 and for the star attack we set the star size to 19; i.e., for
attack size = X, the attack is Clique(X,10) and Star(X,19). Figure 11 shows the average
download time for legitimate clients as a function of the attack size. We observe that without
bandwidth puzzles, legitimate clients see a more drastic drop in performance and the average

17

0 200 400 600 800 1000
200

400

600

800

1000

1200

1400

1600

1800

2000

Number of attackers

A
ve

ra
ge

 d
ow

nl
oa

d
tim

e

Allow, NoPuzzle
Deny, NoPuzzle
Allow, WithPuzzle
Deny, WithPuzzle

(a) Clique

0 200 400 600 800 1000
380

390

400

410

420

430

440

450

460

470

Number of attackers

A
ve

ra
ge

 d
ow

nl
oa

d
tim

e

Allow, NoPuzzle
Deny, NoPuzzle
Allow, WithPuzzle
Deny, WithPuzzle

(b) Star

Figure 11: Average download time

0 200 400 600 800 1000
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

4

Number of attackers

N
um

be
r

of
 r

eq
ue

st
s

sa
tis

fie
d

Allow, NoPuzzle
Deny, NoPuzzle
Allow, WithPuzzle
Deny, WithPuzzle

(a) Clique

0 200 400 600 800 1000
1.4

1.45

1.5

1.55

1.6

1.65
x 10

4

Number of attackers

N
um

be
r

of
 r

eq
ue

st
s

sa
tis

fie
d

Allow, NoPuzzle
Deny, NoPuzzle
Allow, WithPuzzle
Deny, WithPuzzle

(b) Star

Figure 12: Number of requests served

Varying the number of attackers in the file-sharing workload.

download time increases quite significantly. With puzzles, however, larger attacks have lesser
impact. Similarly, in Figure 12, the number of legitimate client requests satisfied degrades
more gracefully when bandwidth puzzles are used.

We also considered variations of the puzzle-solving probability for attackers. The effec-
tive puzzle solving probability is ultimately determined by a variety of factors: e.g., the
computation power of the adversaries, how effectively the adversaries are able to divide the
puzzle solving responsibilities among themselves, and the ability to utilize the natural churn
in a file-sharing system to use “hidden” solvers as discussed at the end of this section. In
order to understand the effect of increasing the attackers’ puzzle solving capabilities, in
Figure 13 we fix the attack to be Clique(200,10) and examine the impact of increasing the
puzzle solving probability on the average download time and number of requests served to
legitimate clients. The result shows that as long as the per-puzzle probability is less than
0.5, the impact of the attack on a system with puzzles is quite low. This is encouraging since
it means that even if determined attackers were able to utilize these external factors, as long
as their effective solving probability is within reasonable bounds, they cannot impact the

18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
400

410

420

430

440

450

460

470

480

490

Puzzle solving probability

A
ve

ra
ge

 d
ow

nl
oa

d
tim

e

Allow, WithPuzzle
Deny, WithPuzzle

(a) Average download time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1.35

1.4

1.45

1.5

1.55

1.6
x 10

4

Puzzle solving probability

N
um

be
r

of
 r

eq
ue

st
s

sa
tis

fie
d

Allow, WithPuzzle
Deny, WithPuzzle

(b) Number of requests served

Figure 13: Varying the puzzle solving probability in the file-sharing application with a
Clique(200,10) attack

performance of legitimate clients.
Verifier scaling: The verifier maintains state for client contributions, pending transac-
tions, and outstanding puzzles. Assuming a large workload of one million clients, pending
transactions, and outstanding puzzles, the memory overhead per type of state was 28, 36,
and 72 MB, respectively. Even if we assume that the server maintains these data struc-
tures in memory, these are modest requirements for commodity desktops today. A million
transactions or puzzles in a single epoch (say 100 seconds) is large by the standards of many
current P2P systems. For example, the Maze measurement study [41] showed that there were
roughly 10000 simultaneous users, 3000 transactions, and 200K registered users. A similar
measurement study on Gnutella [33] reported 40000 active nodes in a given snapshot.
Discussion: Adversaries in a static-file sharing system (e.g., versus a streaming system
for live events) can use client churn to their advantage: they share a file among themselves,
“leave” the system, and then solve puzzles to validate other claimed transfers from one
collaborator remaining in the system to new, Sybil identities that they periodically insert
into the system. Our puzzles limit the transfers for which the adversaries can gain credit to
roughly the number of such “hidden” collaborators per puzzle-issuing period. Note that this
attack is ineffective in the live multimedia streaming case: the content initially shared among
the “hidden” adversaries becomes obsolete, both for viewing and gaining transfer credits.

10 Conclusions

Peer-assisted content distribution systems continue to be subject to adversaries exploiting
weaknesses in the underlying incentive mechanisms. In particular, a group of colluding adver-
saries can implement a “shilling” attack, i.e., by reporting service from one another without
spending any actual resources, to get preferential service. Our work provides a simple, yet
powerful primitive to thwart such collusion attacks in peer-assisted content distribution sys-

19

tems. It is based on simultaneously challenging peers with bandwidth puzzles to demonstrate
that the purported data transfers actually took place. We quantified the security of our
scheme in the random oracle model. We also showed via an implementation in a functional
streaming system that our puzzles cost little in terms of scalability or perceived stream qual-
ity. Finally, we showed by simulations that bandwidth puzzles prevent colluding attackers
from gaining undue advantage via shilling attacks and from impacting the performance of
honest peers.

Acknowledgements

We are grateful to Katie Benedetto for useful discussions, and to anonymous conference
reviewers for various comments. This work was supported in part by NSF awards CNS-
0326472, CT-0756998, and ANI-0331653.

References

[1] E. Adar and B. A. Huberman. Free riding on Gnutella. First Monday, 5, 2000.

[2] C. Aperjis, M. J. Freedman, and R. Johari. Peer-Assisted Content Distribution with
Prices. In Proc. CoNeXT, 2008.

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song.
Provable data possession at untrusted stores. In Proc. ACM CCS, 2007.

[4] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik. Scalable and Efficient Provable
Data Possession. http://eprint.iacr.org/2008/114.pdf, 2008.

[5] M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, A. Küpçü, A. Lysyanskaya, and
E. Rachlin. Making P2P accountable without losing privacy. In Proc. ACM WPES,
2007.

[6] A. Bharambe, C. Herley, and V. Padmanabhan. Analyzing and improving a BitTorrent
network’s performance mechanisms. In Proc. INFOCOM, 2006.

[7] R. Bhattacharjee and A. Goel. Avoiding ballot stuffing in eBay-like reputation systems.
In Proc. ACM SIGCOMM P2P-ECON, 2005.

[8] J. Black and P. Rogaway. Ciphers with arbitrary finite domains. In CT-RSA ’02, pages
114–130, 2002.

[9] K. Bowers, A. Juels, and A. Oprea. Proofs of Retrievability: Theory and Implementa-
tion. http://eprint.iacr.org/2008/175.pdf, 2008.

[10] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. In
Proc. ACM STOC, 1998.

20

[11] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. Split-
Stream: High-bandwidth multicast in a cooperative environment. In Proc. ACM SOSP,
2003.

[12] C. Dellarocas. Immunizing online reputation reporting systems against unfair ratings
and discriminatory behavior. In Proc. ACM EC, 2000.

[13] J. Douceur. The Sybil attack. In Proc. IPTPS, 2002.

[14] C. Dwork, A. Goldberg, and M. Naor. On memory-bound functions for fighting spam.
In Proc. CRYPTO, 2003.

[15] C. Dwork and M. Naor. Pricing via processing, or, combatting junk mail. In Proc.
CRYPTO, 1993.

[16] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust Incentive Techniques for Peer-
to-Peer Networks. In Proc. ACM EC, 2004.

[17] D. L. G. Filho and P. S. L. M. Barreto. Demonstrating data possession and uncheatable
data transfer. http://eprint.iacr.org/2006/150.pdf, 2006.

[18] M. J. Freedman, E. Freudenthal, and D. Mazieres. Democratizing content publication
with Coral. In Proc. NSDI, 2004.

[19] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. J.
ACM, 33(4):792–807, 1984.

[20] V. K. Goyal. Multiple description coding: Compression meets the network. IEEE Signal
Processing Magazine, pages 74–93, Sept. 2001.

[21] W. Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer.
Stat. Assoc., 58(301):13–30, 1963.

[22] G. Huang. Keynote: Experiences with PPLive. In Proc. ACM SIGCOMM P2P-TV
Workshop, 2007.

[23] A. Juels and J. Brainard. Client puzzles: A cryptographic defense against connection
depletion attacks. In Proc. NDSS, 1999.

[24] A. Juels and B. S. Kaliski, Jr. PORs: Proofs of retrievability for large files. In Proc.
ACM CCS, 2007.

[25] K. Kong and D. Ghosal. Mitigating server-side congestion in the Internet through
pseudoserving. IEEE Transactions on Networking, 7(4):530–545, Aug. 1999.

[26] K. Lai, M. Feldman, I. Stoica, and J. Chuang. Incentives for cooperation in peer-to-peer
networks. In Proc. P2P Econ, 2004.

21

[27] J. Li and X. Kang. Proof of service in a hybrid P2P environment. In Proc. ISPA
Workshops, 2005.

[28] Q. Lian, Z. Zhang, M. Yang, B. Y. Zhao, Y. Dai, and X. Li. An empirical study of
collusion behavior in the Maze P2P file-sharing system. In Proc. ICDCS, 2007.

[29] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang. Exploiting BitTorrent for fun (but not
profit). In Proc. IPTPS, 2006.

[30] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, 2005.

[31] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson. One hop reputations for peer
to peer file sharing workloads. In Proc. NSDI, 2008.

[32] D. Purandare and R. Guha. BEAM: An Efficient Framework for Media Streaming. In
Proc. IEEE LCN, 2006.

[33] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the Gnutella Network: Properties of
Large-Scale Peer-to-Peer Systems and Implications for System Design. In Proc. IEEE
Internet Computing, 2002.

[34] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A transport protocol
for real-time applications. IETF RFC 3550, July 2003.

[35] H. Shacham and B. Waters. Compact Proofs of Retrievability. http://eprint.iacr.

org/2008/073.pdf, 2008.

[36] M. Sirivianos, J. H. Park, R. Chen, and X. Yang. Free-riding in BitTorrent networks
with the large view exploit. In Proc. IPTPS, 2007.

[37] M. Sirivianos, J. H. Park, X. Yang, and S. Jarecki. Dandelion: Cooperative Content
Distribution with Robust Incentives. In Proc. USENIX ATC, 2007.

[38] Y. Sung, M. Bishop, and S. Rao. Enabling Contribution Awareness in an Overlay
Broadcasting System. In Proc. ACM SIGCOMM, 2006.

[39] W. Uhlmann. Vergleich der hypergeometrischen mit der binomial-verteilung. Metrika,
10(1):145–158, 1966.

[40] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler,
C. Barb, and A. Joglekar. An integrated experimental environment for distributed
systems and networks. In Proc. OSDI, 2002.

[41] M. Yang, H. Chen, B. Y. Zhao, Y. Dai, and Z. Zhang. Deployment of a large-scale
peer-to-peer social network. In Proc. WORLDS, 2004.

[42] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker. On the Constancy of Internet Path
Properties. In Proc. IMW, 2001.

22

A Proofs

Proof of Theorem 4.1. The result is by a “coupon collector” analysis. When generating
f 2

K2
(1) . . . f 2

K2
(k) for the ℓ-th index-set (i.e., K2 ← f 1

K1
(ℓ)), let Xi be a random variable de-

noting the number of computations of f 3
K2

while having collected exactly i−1 distinct outputs
of f 3

K2
. Then, Xi is geometrically distributed with parameter pi = 1 − i−1

n
, and E [Xi] = 1

pi

= n
n−i+1

. So, the expected number of computations of f 3
K2

is E
[

∑k
i=1 Xi

]

=
∑k

i=1 E [Xi] =
∑k

i=1
n

n−i+1
= n

(

∑n
i=1

1
i
−

∑n−k
i=1

1
i

)

= n ln n
n−k

+ O(1) since the harmonic number H(n) =
∑n

i=1
1
i

satisfies H(n) = ln n + γ + O(1/n) for γ a constant. Given this, the puzzle genera-
tion cost can be calculated by counting up the other operations, and the puzzle solving cost
follows because the prover must generate 1

2
L index-sets in expectation and invoke hash once

per index-set to solve the puzzle. 2

Expt(A = (Apre,Apost)):

content
R

←Func({1 . . . n} → {0, 1})

hash
R

←Func({0, 1}κ × {1 . . .L}
×{0, 1}k → {0, 1}κ)

K1
R

← {0, 1}κ ; ℓ̂
R

← {1 . . .L} ; K̂2 ← f1
K1

(ℓ̂)
ˆstr ← content(f2

K̂2

(1))|| . . . ||content(f2
K̂2

(k))

ĥ ← hash(K1, ℓ̂, ˆstr); â ← ans(ˆstr)
c ←Acontent,hash

pre ()

a ←Acontent,hash
post (K1, ĥ, c)

if (a = â) return 1 else return 0

Figure 14: Experiment for Theorem A.1

In the proof of Theorem 5.1, a prop-
erty of a puzzle that influences how
easy it is for adversaries to solve is how
“spread out” the indices are that com-
prise its index-sets. Thus, we define
the event Spread(I, s), where I is a set
of index-sets, to be the event that no
i ∈ {1 . . . n} appears in s or more mem-
bers of I. Another such property is how
many bits the adversary obtains in each
index-set as a result of its qpre queries
to content before the puzzle is issued.
We define an event Remain(I, k̂) to be
the event that each I ∈ I contains at
least k̂ indices that were not queried of
content before the puzzle was issued. We abbreviate the event Spread(I, s) ∧ Remain(I, k̂)
as SR(I, s, k̂).

We begin by proving a result about the experiment in Figure 14 for a single adversary
A = (Apre,Apost). Aside from the random oracles content and hash, this experiment exactly
tracks the verifier’s actions in the protocol in Figure 1. Apre represents the adversary that
runs before the puzzle is issued, making qpre queries to content and outputting state c, and
Apost represents the adversary that runs after the puzzle is issued, being provided as input
the puzzle and c, and making qpost queries to content. qhash denotes the number of queries to
hash made by Apre and Apost, combined. In the experiment, let Func(Dom → Rng) be the
set of all functions with domain Dom and range Rng.

Theorem A.1 For any s such that 1 ≤ s ≤ PL and any k̂ ≥ log2(qhash + L) + 2,

P
[

Expt(A) = 1 | SR(I, s, k̂)
]

≤
1

L

(

sqpost

k̂ − log2(qhash + L) − 1
+ 1

)

23

where I = {I1 . . . IL} and Iℓ = {f 2
K2

(1) . . . f 2
K2

(k)} for K2 = f 1
K1

(ℓ).

Proof. To prove this, we rewrite P
[

Expt(A) = 1 | SR(I, s, k̂)
]

as
∑L

ℓ=1 P
[

Expt(A) = 1 | ℓ̂ = ℓ ∧ SR(I, s, k̂)
]

P
[

ℓ̂ = ℓ | SR(I, s, k̂)
]

, which equals

1

L

L
∑

ℓ=1

P
[

Expt(A) = 1 | ℓ̂ = ℓ ∧ SR(I, s, k̂)
]

(2)

We now focus on bounding P
[

Expt(A) = 1 | ℓ̂ = ℓ ∧ SR(I, s, k̂)
]

from above. Let confirm

be the event that the A performs a query to hash that returns the challenge value ĥ, within
the qhash oracle queries available to it. Then,

P
[

Expt(A) = 1 | ℓ̂ = ℓ ∧ SR(I, s, k̂)
]

=

P
[

Expt(A) = 1 | confirm ∧ ℓ̂ = ℓ ∧ SR(I, s, k̂)
]

P
[

confirm | ℓ̂ = ℓ ∧ SR(I, s, k̂)
]

+

P
[

Expt(A) = 1 | ¬confirm ∧ ℓ̂ = ℓ ∧ SR(I, s, k̂)
]

P
[

¬confirm | ℓ̂ = ℓ ∧ SR(I, s, k̂)
]

(3)

Let yℓ denote the number of queries of the form hash(K1, ℓ, ∗) that A makes. Let wℓi be a
binary random variable such that wℓi = 1 if i ∈ Iℓ and A queries content(i), and wℓi = 0
otherwise. Let wℓ =

∑n
i=1 wℓi. We now take

P
[

Expt(A) = 1 | confirm ∧ ℓ̂ = ℓ ∧ SR(I, s, k̂)
]

≤ 1 (4)

P
[

confirm | ℓ̂ = ℓ ∧ SR(I, s, k̂)
]

≤
yℓ

2k̂−wℓ

(5)

P
[

Expt(A) = 1 | ¬confirm ∧ ℓ̂ = ℓ ∧ SR(I, s, k̂)
]

≤
1

2k̂−wℓ − yℓ

(6)

P
[

¬confirm | ℓ̂ = ℓ ∧ SR(I, s, k̂)
]

≤
2k̂−wℓ − yℓ

2k̂−wℓ

(7)

(5) and (7) follow from A querying hash(K1, ℓ, str) for only yℓ values str of the 2k̂−wℓ such
possible values for the k̂ − wℓ bits it did not retrieve from content. In the event ¬confirm,
the probability that A produces â is simply that with which it guesses correctly from the
remaining 2k̂−wℓ − yℓ values and submits this str to ans, leading to (6). Plugging these into

(3), we get P
[

Expt(A) = 1 | ℓ̂ = ℓ ∧ SR(I, s, k̂)
]

≤ min
{

yℓ+1

2k̂−wℓ
, 1

}

and then plugging this

into (2), we get

P
[

Expt(A) = 1 | SR(I, s, k̂)
]

≤
1

L

L
∑

ℓ=1

min

{

yℓ + 1

2k̂−wℓ

, 1

}

=
1

L2k̂

L
∑

ℓ=1

min
{

(yℓ + 1)2wℓ, 2k̂
}

(8)

24

Consequently, we now focus on bounding

L
∑

ℓ=1

min
{

y′
ℓ2

wℓ, 2k̂
}

(9)

from above where y′
ℓ = yℓ + 1, subject to the constraints

∑L
ℓ=1 y′

ℓ ≤ qhash + L (which follows

from
∑L

ℓ=1 yℓ ≤ qhash) and
∑L

ℓ=1 wℓ ≤ sqpost. To do so, we first note that for any fixed
w1 . . . wL, a choice of y′

1 . . . y′
L that maximizes (9) is one that maximizes y′

ℓ for the largest

values wℓ. That is, if we order w1 . . . wL in nonincreasing order, then setting y′
ℓ = 2k̂−wℓ for

ℓ = 1 . . .m where
m

∑

ℓ=1

2k̂−wℓ ≤ qhash + L <
m+1
∑

ℓ=1

2k̂−wℓ (10)

and setting y′
m+1 = qhash + L−

∑m
ℓ=1 2k̂−wℓ maximizes (9), and the maximum value for (9) is

then
L

∑

ℓ=1

min
{

y′
ℓ2

wℓ , 2k̂
}

< (m + 1)2k̂ (11)

So, to bound (9) for a given qpost and qhash, it suffices to find w1 . . . wL that to maximize

m subject to
∑L

ℓ=1 wℓ ≤ sqpost and (10). For any fixed m,
∑m

ℓ=1 2−wℓ is minimized by setting
wℓ = ⌈sqpost/m⌉ for 1 ≤ ℓ ≤ (sqpost mod m) and wℓ = ⌊sqpost/m⌋ for (sqpost mod m) + 1 ≤
ℓ ≤ m. As such, the maximum value of m is

arg min
m>0

{

qhash + L − m2k̂−(sqpost/m) if m | sqpost

qhash + L − (2m − (sqpost mod m))2k̂−⌈sqpost/m⌉ otherwise

If the maximum such m divides sqpost, then m2k̂−(sqpost/m) ≤ qhash +L implies m ≤ sqpost/(k̂−

log2(qhash +L)), and otherwise m ≤ sqpost/(k̂− log2(qhash +L)−1). Combining this with (11),

we get that
∑L

ℓ=1 min
{

y′
ℓ2

wℓ, 2k̂
}

< (m + 1)2k̂ ≤
(

sqpost

k̂−log
2
(qhash+L)−1

+ 1
)

2k̂ and so combining

this with (8) gives the result. 2

For a binomially distributed random variable X with parameters m and p (denoted X ∼
B(m, p)), we have P [X = x] =

(

m
x

)

px(1 − p)m−x for 0 ≤ x ≤ m, and E [X] = mp. Let
Ψ(x, m, p) = P [X ≥ x].

Consider a set P of P puzzles (|P| = P), and let puzzle p, 1 ≤ p ≤ P , be denoted by
〈Kp

1 , ĥ
p〉. Define sets Ip

ℓ = {f 2
Kp

2

(1) . . . f 2
Kp

2

(k)} for Kp
2 = f 1

Kp
1

(ℓ); sets Ip = {Ip
1 . . . Ip

L}; and

set I =
⋃P

p=1 I
p.

Lemma A.2 For any s where 1 ≤ s ≤ PL, P [¬Spread (I, s)] ≤ nΨ
(

s, PL, k
n

)

.

Proof. The number of occurrences ci of i in I (i.e., ci = |I ∈ I : i ∈ I|) is binomially dis-
tributed, i.e., ci ∼ B(PL, k/n). So, P [¬Spread (I, s)] = P [

∨n
i=1(ci ≥ s)] ≤

∑n
i=1 P [ci ≥ s] ≤

nΨ
(

s, PL, k
n

)

. 2

25

Lemma A.3 ([39]) Let Y be hypergeometrically distributed with parameters m (draws with-
out replacement), N (total elements), and M (the success elements), denoted Y ∼ H(m, M, N).
If X ∼ B(m, M/N), then E [Y] = E [X] = mM

N
and for any x ≥ 1 + mM

N
, P [Y ≥ x] ≤

P [X ≥ x].

Lemma A.4 If an adversary makes qpre queries to content prior to puzzles P being issued,

P
[

¬Remain(I, k̂)
]

≤ PLΨ
(

k − k̂, k, qpre

n

)

for any k̂ ≤ k
(

1 − qpre

n

)

− 1.

Proof. Recall that each index set Ip
ℓ ∈ I is defined as a set {f 2

K(1) . . . f 2
K(k)} for some K.

Let cp
ℓ be the number of values k′ ∈ {1 . . . k} for which the adversary queries f 2

K(k′) prior

to puzzles being issued. ¬Remain(I, k̂) occurs only if cp
ℓ ≥ k − k̂ for some Ip

ℓ ∈ I. Because

cp
ℓ ∼ H(k, qpre, n), P

[

cp
ℓ ≥ k − k̂

]

≤ Ψ
(

k − k̂, k, qpre

n

)

by Lemma A.3. Since there are PL

index-sets in I, the result follows. 2

Proof of Theorem 5.1. Index the adversaries by 1 . . .A and the puzzles by 1 . . . P . Let Sap be
a binary random variable such that Sap = 1 if adversary a produces the solution for puzzle
p, and Sap = 0 otherwise. Letting S =

∑A
a=1

∑P
p=1 Sap, we want to bound E [S] from above.

For any s, 1 ≤ s ≤ PL, and any k̂ ≤ k
(

1 − qpre

n

)

− 1,

E [S] = E
[

S | SR(I, s, k̂)
]

P
[

SR(I, s, k̂)
]

+ E
[

S | ¬SR(I, s, k̂)
]

P
[

¬SR(I, s, k̂)
]

≤ E
[

S | SR(I, s, k̂)
]

+ P
(

P [¬Spread(I, s)] + P
[

¬Remain(I, k̂)
])

(12)

The result then follows by plugging in Lemmas A.2 and A.4, and the fact that for k̂ ≥
log2(qhash + L) + 2,

E
[

S | SR(I, s, k̂)
]

=

A
∑

a=1

P
∑

p=1

P
[

Sap = 1 | SR(I, s, k̂)
]

≤
AP

L

(

sqpost

k̂ − log2(qhash + L) − 1
+ 1

)

by Theorem A.1. 2

26

