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Abstract

Problems related to computing optimal paths have been abundant in computer science since its
emergence as a field. Yet for a large number of such problems we still do not know whether the
state-of-the-art algorithms are the best possible. A notable example of this phenomenon is the
all pairs shortest paths problem in a directed graph with real edge weights. The best algorithm
(modulo small polylogarithmic improvements) for this problem runs in cubic time, a running time
known since the 1960s (by Floyd and Warshall). Our grasp of many such fundamental algorithmic
questions is far from optimal, and the major goal of this thesis is to bring some new insights into
efficiently solving path problems in graphs.

We focus on several path problems optimizing different measures: shortest paths, maximum
bottleneck paths, minimum nondecreasing paths, and various extensions. For the all-pairs versions
of these path problems we use an algebraic approach. We obtain improved algorithms using reduc-
tions to fast matrix multiplication. For maximum bottleneck paths and minimum nondecreasing
paths we are the first to break the cubic barrier, obtaining truly subcubic strongly polynomial algo-
rithms. We also consider a nonalgebraic, combinatorial approach, which is considered more efficient
in practice compared to methods based on fast matrix multiplication. We present a combinatorial
data structure that maintains a matrix so that products with given sparse vectors can be computed
efficiently. This allows us to obtain good running times for path problems in unweighted sparse
graphs.

This thesis also gives algorithms for some single source path problems. We obtain the first
linear time algorithm for the single source minimum nondecreasing paths problem. We give some
extensions to this, including an algorithm to find cheapest minimum nondecreasing paths.

Besides finding optimal paths, we consider the related problem of finding optimal cycles. In
particular, we focus on the problem of finding in a weighted graph a triangle of maximum weight
sum. We obtain the first truly subcubic algorithm for finding a maximum weight triangle in a
node-weighted graph. We also present algorithms for the edge-weighted case. These algorithms
immediately imply good algorithms for finding maximum weight k-cliques, or arbitrary maximum
weight pattern subgraphs of fixed size.
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Chapter 1

Introduction

Problems related to computing optimal paths are abundant in computer science; they have been
studied since the emergence of computer science as a field, and are at the heart of the vast majority
of applications in the real world. Yet for many of these problems we still do not know how far our
techniques can go, and whether the state-of-the-art algorithms are the best possible. A notable
example of this phenomenon is the shortest paths problem. For instance, for finding a shortest
path between two fixed nodes in a directed graph with nonnegative real weights on the edges, there
might exist an algorithm with running time only linear in the size of the input graph. Yet, the best
known algorithm for the problem in a general computational model (Dijkstra’s) has a logarithmic
multiplicative overhead. Furthermore, the best algorithm for finding shortest paths between all
pairs of nodes in a directed graph with real edge weights runs (modulo small polylogarithmic
improvements) in cubic time, a running time known since the 1960s (by Floyd and Warshall). Our
grasp of many fundamental algorithmic questions is far from optimal, and the major goal of this
thesis is to find some new insights into efficiently solving different path problems in graphs.

A path in a graph is a sequence of nodes, every consecutive two linked by an edge. A path
problem in a graph has three variants:

1. single source–single destination (also called s− t): given a graph and two nodes s and t, find
an optimal path from s to t,

2. single source: given a graph and node s, for every node t find an optimal path from s to t,

3. all pairs: given a graph, for every two nodes s and t find an optimal path from s to t.

There are many measures for path optimality, depending on the problem. In the simple reach-
ability problem, any path is optimal, as long as it exists. In the shortest paths problem, one is
given a graph with real weights on the edges and a path between two nodes is optimal if it has the
minimum weight sum over all paths between the nodes. An obvious application of this problem
is automatically finding driving directions between physical locations. Another often used mea-
sure is the minimum edge on a path – the so called bottleneck. Maximizing this measure defines
the maximum bottleneck paths problem. One application of this is finding directions between two
locations for which all tunnels have as high a clearance as possible. The problem of minimizing
the largest weight edge, on the other hand, can be applied to find the least congested route in a
graph representing traffic patterns. A third measure for optimal paths is the weight of the last
edge on a path, the edge weights on which form a nondecreasing sequence. Minimizing this last
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edge weight defines the minimum nondecreasing or earliest arrival paths problem. The primary
application for this problem is finding an itinerary for a trip between two physical locations that
gets you to your destination as early as possible. In theoretical computer science, these problems
have been studied alongside since the 1950s. They are also very real and applicable today. Other
applications of path problems include robot motion planning, highway and power line engineering,
network connection routing, various scheduling problems, sequence alignment in molecular biology,
length-limited Huffman coding, and many many others.

In the most general setting, a path problem on an edge-weighted graph G is characterized by
a function that maps the set of edges of each path to a number, so that the path problem on two
nodes s and t seeks to optimize its function over all paths from s to t in G. We formalize this
further in Chapter 2. All of the problems we consider in this thesis are solvable in polynomial time.
NP-hard path problems such as Hamiltonian path do not fall into our framework.

We consider a known algebraic approach to all-pairs path problems that links the path problem
to computing a matrix product over a semiring. We extend the framework to allow slightly more
general algebraic structures, and outline an approach to reducing a given algebraic structure matrix
product to matrix multiplication over a ring. We then focus on some particular path problems and
obtain exciting new algorithms for them using this algebraic framework. Using algorithms for fast
matrix multiplication [28] we are the first to break the cubic barrier for maximum bottleneck paths
and minimum nondecreasing paths, obtaining truly subcubic strongly polynomial algorithms. This
resolves two 40–year old open problems.

We also consider a nonalgebraic, combinatorial approach, which is considered more efficient in
practice compared to methods based on fast matrix multiplication. We present a combinatorial
data structure that maintains a matrix so that products with given sparse vectors can be computed
efficiently. This allows us to obtain good running times for many path problems in sparse graphs
by improving the running times of existing algorithms using our data structure.

This thesis also gives algorithms for some single source path problems. We obtain the first
linear time algorithm for the single source minimum nondecreasing paths problem. We give some
extensions to this, including algorithms to find shortest minimum nondecreasing paths and cheapest
minimum nondecreasing paths.

Besides finding optimal paths, we consider the related problem of finding optimal cycles of a
given fixed size. In particular, we focus on the problem of finding a triangle of maximum weight
sum in a weighted graph. We obtain the first truly subcubic algorithm for finding a maximum
weight triangle in a node-weighted graph, resolving a 30–year old open problem. We also present
algorithms for the edge-weighted case. These algorithms immediately imply good algorithms for
finding maximum weight k-cliques, or arbitrary maximum weight pattern subgraphs of fixed size.

1.1 Organization of the Thesis

Chapter 2 introduces the algebraic framework for matrix products and path problems. Chapter
3 focuses on particular matrix products and presents efficient algorithms for them. Chapter 4
considers problems related to efficiently finding cycles (e.g. triangles) and fixed size k-cliques
or other small subgraphs. Chapter 5 focuses on the maximum bottleneck paths problem and
some extensions. Chapter 6 considers the minimum nondecreasing path problem and its variants.
Chapter 7 presents our nonalgebraic, combinatorial algorithms based on our efficient data structure
for matrix–sparse vector products. Chapter 8 concludes the thesis, presenting some open problems.
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1.2 Preliminaries and Notation

All of the graphs we consider in this thesis are directed, unless stated otherwise. We use the terms
node and vertex interchangeably. For directed graphs we use the terms edge and arc interchangeably.
The variables m and n refer to the number of edges and nodes in a graph, respectively. Each graph,
unless stated otherwise, is considered to be weakly connected, so that m ≥ n− 1. A DAG refers to
a directed acyclic graph. A clique is a complete graph, and a clique on k nodes is often referred to
as a Kk.

For a positive integer k, we let [k] := {1, . . . , k}. We use MT to denote the transpose of a matrix
M . Õ(·) suppresses polylogarithmic factors, i.e. Õ(f(n)) = O(f(n)polylog(n)). Z and R refer to
the set of integers and reals, respectively.

Models of computation. We use the addition-comparison and word RAM models in different
parts of the thesis. We use the standard addition-comparison computational model, along with
random access to registers in all of our algebraic algorithms for path problems. The O(log n)-word
RAM model is used partially when discussing combinatorial algorithms, though the majority of our
combinatorial algorithms work on the pointer machine model as well. The w-word RAM model is
only used in our linear time algorithm for minimum nondecreasing paths, discussed in Chapter 6.

11
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Chapter 2

Matrix Multiplication and Path
Problems

In all branches of mathematics one can find some form of matrix multiplication. The ordinary,
algebraic matrix product over a ring (such as the real numbers) is the most prevalent type of
matrix product. The algebraic product of two n × n matrices A and B is an n × n matrix C so
that for every pair of indices i, j ∈ [n], C[i, j] is given by the dot product of row i of A and column
j of B. Computing the product of two matrices efficiently is a central problem in computational
linear algebra and scientific computing; problems such as solving linear systems, inverting a matrix
or computing a matrix determinant are intimately related to computing matrix-matrix products.
Moreover, matrix multiplication has surprising applications in many areas of computer science with
no immediate relation to linear algebra. Valiant [93] showed that given a context free grammar
and a length n string, deciding if the string can be generated by the grammar can be done in
asymptotically the same time as n× n matrix multiplication. Itai and Rodeh [54] showed that one
can use fast matrix multiplication to vastly improve the complexity of clique finding. Alon, Galil
and Margalit [3] showed that matrix multiplication can be used to obtain a truly subcubic running
time for all pairs shortest paths in directed graphs with weights in {−1, 0, 1}. Vaidya [92] showed
that even linear programming can be sped-up by using a subcubic algorithm for matrix products.

Because of its plentiful applications, matrix multiplication is widely studied in computer sci-
ence. Until 1969, it was believed that matrix multiplication requires a cubic number of steps.
Strassen’s discovery of his O(n2.81) time algorithm [85] was an exciting development in the field of
algorithms and spawned a long series of new improvements to the running time of matrix multipli-
cation algorithms, culminating in the current best of O(n2.376) by Coppersmith and Winograd [28].
Interestingly, there is no better lower bound known than the trivial O(n2), the time that it takes
to write down the output matrix.

Besides the algebraic matrix product of two matrices one could consider matrix products using
different operations instead of integer sums and products. One such example is the so called
distance product which instead of + uses a min operation on integers and instead of · uses +
on integers. This chapter introduces an algebraic framework for matrix products using different
operations. In particular, we focus on matrix products that correspond to all pairs path problems.
Such frameworks have been proposed before, e.g. the semiring framework, which we describe late
in this chapter. However, the known frameworks do not encompass all path problems in this thesis.
In particular, they cannot capture the product corresponding to the all pairs nondecreasing paths
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Figure 2.1: Improving the bound on ω.

problem. Our framework is slightly more general than the semiring framework and unifies the path
problems considered in this thesis.

We begin with an overview of the algorithmic results on algebraic matrix products which we
refer to simply by matrix multiplication. This nice progress on matrix multiplication algorithms
allows us to obtain better algorithms for the rest of the products in this thesis, and it gives a
motivation that other matrix products can have good algorithms.

2.1 A Brief History of Matrix Multiplication Algorithms

The study of the algorithmic complexity of (algebraic) matrix multiplication is really about deter-
mining the optimal value of the exponent ω for which n×n matrix multiplication is in Õ(nω) time.
Clearly, ω ≥ 2 and Strassen showed that ω < 2.81. The first progress on improving the upper bound
on ω after Strassen’s algorithm was obtained by Pan in 1978 who showed that ω < 2.79 [71]. Bini
et al. [9] decreased this bound slightly to 2.78. In 1981, Schönhage [80] made another breakthrough
proving the so called asymptotic sum inequality for tensors which lead to the bound ω < 2.55.
Further research [72, 78, 27] showed ω < 2.50. The laser method of Strassen [86] was the next
big development. Strassen used it to improve the bound on ω to 2.48, and in 1990 Coppersmith
and Winograd used it to achieve the current best known bound of ω < 2.376. In 2003 Cohn and
Umans [25] developed a new group-theoretic framework for designing algorithms for matrix mul-
tiplication. This framework led to some interesting new algorithms by Cohn et al. [24], the best
of which has the same complexity as Coppersmith and Winograd’s algorithm. The authors made
some group-theoretical conjectures which would imply that ω = 2. A more detailed survey on the
history of matrix multiplication algorithms can be found in the book by Bürgisser et al. [13], or in
Pan’s survey [70]. Figure 2.1 shows how the bound on ω has changed between 1969 and now.
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2.2 Generalized Matrix Product

In many applications one needs matrix products which use different operations instead of + and ·.
One example is the so called Boolean matrix product in which the matrices A and B have entries
in {0, 1} and the output matrix C is given by C[i, j] =

∨
k(A[i, k]∧B[k, j]), where ∨ and ∧ are the

Boolean OR and AND operators respectively. In general, we can define a matrix product over a
general algebraic structure as follows.

Let R be a set of elements equipped with two operations ⊕ : R × R → R and � : R × R → R.
Let ⊕ be commutative and associative: for all x, y, z ∈ R, x⊕y = y⊕x and (x⊕y)⊕z = x⊕(y⊕z).
Then for any finite set S ⊆ R,

⊕
a∈S a is well-defined – we do not have to specify the order in which

the elements are summed.
Let n, d, e be positive integers. Let A be an n × d matrix with entries from R and let B be a

d × e matrix with entries from R. We define the (⊕,�)- product of A and B as the n × e matrix
C given by

C[i, j] =
⊕
k∈[d]

(A[i, k]�B[k, j]),∀i ∈ [n], j ∈ [e].

Fact 1 Let T be an upper bound on the time to evaluate � or ⊕ on any two elements of R. Then
the (⊕,�)-product of an n× d by a d× e matrix can be computed in O(ndeT ) time.

Examples. Table 2.1 gives some examples. Two ≤ operators are used:

1. ≤b: R ∪ {−∞,∞}× R ∪ {−∞,∞} → {0, 1} is given by x ≤b y = 1 iff x ≤ y;

2. ≤r: R ∪ {−∞,∞} × R ∪ {−∞,∞} → R ∪ {−∞,∞} is given by x ≤r y = y if x ≤ y and ∞
otherwise.

Similar ≥ operators can also be defined.

1. ≥b: R ∪ {−∞,∞}× R ∪ {−∞,∞} → {0, 1} is given by x ≥b y = 1 iff x ≥ y;

2. ≥r: R ∪ {−∞,∞}×R ∪ {−∞,∞} → R ∪ {−∞,∞} is given by x ≥r y = y if x ≥ y and −∞
otherwise.

Many of the above matrix products have symmetric ones obtained by “inverting” the operators:
(∧,∨)-product, (min,max)-product, (max,≥r)-product.

2.3 Matrix Products and Graph Paths

A path or walk in a graph is a sequence of vertices every consecutive two of which are linked by an
edge. If the path does not contain any repeating nodes it is called simple. The length of a path is
the number of edges in the path. We give a connection between paths and matrix products.

2.3.1 Three-layered graphs

A three-layered graph G = (V,E) is a directed tripartite graph on partitions L = {`1, . . . , `|L|},
M = {m1, . . . ,m|M |} and Q = {q1, . . . , q|Q|}, V = L ∪M ∪ Q. The edge set E of G consists of
L×M and M ×Q. Figure 2.2 shows an example.

15



Product R ⊕ � 0 1
Algebraic R + · 0 1
Boolean {0, 1} ∨ ∧ 0 1
Distance R+ ∪ {0,∞} min + ∞ 0
Reliability [0, 1] max · 0 1
MaxMin R ∪ {−∞,∞} max min −∞ ∞
Dominance R ∪ {−∞,∞} + ≤b 0 N/A
(min,≤r) R ∪ {−∞,∞} min ≤r ∞ −∞
(+,min) R ∪ {∞} + min 0 ∞

Table 2.1: Some (⊕,�)-products appearing in the literature. This thesis discusses all products in
the table except the reliability product.

L

M

Q

Figure 2.2: An example of a three-layered graph with |L| = 4, |M | = 2, and |Q| = 3.
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Suppose that G has a weight function w : E → R defined on its edges. Let (R,⊕,�) be an
algebraic structure defined on R as given in the previous section. For every pair of nodes `i ∈ L
and qj ∈ Q, define the length `(`i, qj) of the shortest path from `i to qj as

⊕
k∈[|M |](w(`i,mk) �

w(mk, qj)).
Let A be an |L| × |M | matrix with entries A[i, j] = w(`i,mj). Similarly, let B be an |M | × |Q|

matrix with entries B[j, k] = w(mj , qk). Then the (i, j)th entry of the (⊕,�)-product C of A and
B is exactly

C[i, j] =
⊕

k∈[|M |]

(w(`i,mk)� w(mk, qj)) = `(`i, qj).

Hence we have shown a relationship between shortest paths in three-layered graphs with weights
from an algebraic structure and matrix products over the same structure.

2.3.2 Paths in general graphs

Let us now consider a general directed graph with edge weights from R. We use the following
relatively straightforward notation using “→”: for a path P ending and node p and path Q starting
at p, we denote by P → Q the path formed by first taking P and then continuing with Q; for
nodes x0, x1, . . . , xk such that there is an edge (xi, xi+1) for all i = 1, . . . , k − 1, we denote by
x1 → x2 → . . . → xk the path that goes through each xi consecutively, following the edges
(xi, xi+1).

We define the weight of a path inductively as follows. If the path has length 0, it has weight
0. If path P is just an edge (x, y), its weight w(P ) is defined to be w(x, y). If path P has length
t > 1, i.e. P = x0 → x1 → . . .→ xt, then its weight is given by

w(P ) = (w(x0 → . . .→ xt−1))� w(xt−1, xt).

Let Pxy denote the set of all finite paths between node x and node y. We would like to
define the shortest distance between x and y as D[x, y] =

⊕
P∈Pxy

w(P ). Unfortunately, as Pxy is
infinite, D[x, y] might not be well-defined. We will give some restrictive properties of (R,⊕,⊗) for
which D[x, y] is well-defined. We note that there has been a lot of work on path algebra/semiring
frameworks for path problems (see e.g. [61, 65]) that investigates a restriction of our current setting.
See Section 2.4 for more details.

Additive identity and multiplicative annihilator. Suppose that there is an element 0 ∈ R
such that (R,⊕, 0) is an Abelian monoid: ⊕ is commutative and associative, and 0 is an identity
element, i.e. x ⊕ 0 = 0 ⊕ x = x for all x ∈ R. Moreover, suppose that 0 � x = x � 0 = 0 for all
x ∈ R, i.e. that 0 is a multiplicative annihilator.

Given a directed graph G = (V,E) with edge weights from R, we will construct a complete
graph G′ = (V, V × V ) with edge weights w′ : (V × V ) → R such that paths in G′ consisting of
edges only from E will have the same weights in G′ as in G. Paths containing at least one edge
from (V × V ) \ E will have weight 0. This means that

⊕
P from x to y w′(P ) =

⊕
P from x to y w(P )

for all x, y ∈ V , and shortest distances are preserved. We call (G′, w′) the R-completion of G.
This is relatively easy to accomplish. We let w′(e) = w(e) if e ∈ E and w′(e) = 0 otherwise.

Then clearly any path with edges in E will have the same weight as in G. Consider a path P with
at least one edge not in E. Let (xi, xi+1) be the first edge in P that is not in E. Then P ′ = x0 →
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x1 → . . . xi has weight w(Pi). The weight of P ′ → xi+1 is (w(P ′)) � w(xi, xi+1) = w(P ′) � 0 = 0.
If path P consists of a path P ′ of weight 0 followed by a single edge e, then

w′(P ) = (w′(P ′))� w′(e) = 0� w′(e) = 0,

Hence any path containing at least one edge not in E has weight 0.

Left multiplicative identity. A left multiplicative identity of an algebraic structure (R,⊕,�)
is an element 1 from R such that for all x ∈ R, 1 � x = x. Table 2.1 states left multiplicative
identities for all structures mentioned until now. Notice that it is not necessary that x � 1 = x.
For instance, the element −∞ is a left multiplicative identity for (R ∪ {−∞,∞},min,≤r), but for
all x ∈ R ∪ {∞} x ≤r −∞ =∞.

Let R̄ = (R,⊕,�, 0, 1) refer to an algebraic structure (R,⊕,�) with left multiplicative identity
1 and additive identity 0, such that (R,⊕) is a commutative monoid, and 0 is a multiplicative
annihilator.

Suppose that R̄ = (R,⊕,�, 0, 1) is given. Let G be a directed graph on n nodes and edge
weights w from R. Let (G′, w′) be the R-completion of G. We define the adjacency matrix A of G
as the n× n matrix with entries from R so that for every i, j ∈ [n]:

A[i, j] :=
{

w′(i, j) if i 6= j
1 otherwise.

We can also define the n× n left identity matrix I over R as follows.

I[i, j] :=
{

0 if i 6= j
1 otherwise.

Let M(n, R) be the set of n×n matrices over R. Recall that multiplication of two n×n matrices
A,B ∈M(n, R) is defined as follows. For every i, j ∈ [n],

(A�B)[i, j] =
⊕
k∈[n]

(A[i, k]�B[k, j]).

Clearly, for any n× n matrix B over R, and every i, j ∈ [n], (I �A)[i, j] = I[i, i]�A[i, j] = A[i, j],
and hence (I �A) = A.

We define matrix addition under ⊕ as componentwise ⊕-addition, i.e. for all i, j ∈ [n] and any
two n × n matrices A,B over R, we have (A ⊕ B)[i, j] = (A[i, j] ⊕ B[i, j]). For M(n, R) this ⊕
operation inherits the properties of the ⊕ operation for R: ⊕ is still associative and commutative.
If Z is the n × n matrix of all 0s, then Z is an additive identity for M(n, R). Furthermore, for
any A ∈ M(n, R), Z � A = A � Z = Z. Hence (M(n, R),⊕,�, Z, I) inherits all the properties of
(R,⊕,�, 0, 1).

Paths of length 2 and squaring the adjacency matrix. We will now investigate the rela-
tionship between paths of length 2 and the square of the adjacency matrix of a general graph. This
is somewhat similar to the three-layered graph case.
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A2[i, j] =
⊕

k

(A[i, k]�A[k, j]) = (2.1)

= (A[i, i]�A[i, j])⊕ (A[i, j]�A[j, j])⊕
⊕
k 6=i,j

(A[i, k]�A[k, j]) = (2.2)

= (1�A[i, j])⊕ (A[i, j]� 1)⊕
⊕
k 6=i,j

(A[i, k]�A[k, j]) = (2.3)

= (A[i, j]⊕ (A[i, j]� 1))⊕
⊕
k 6=i,j

(A[i, k]�A[k, j]). (2.4)

The first thing we notice is that A2[i, j] is exactly the distance between i and j if we only
consider paths of length 2.

Definition 2.3.1 We say that R̄ = (R,⊕,�, 0, 1) is 1-monotone if (x⊕ (x�1)) = x for all x ∈ R

Using equality (2.4) we also get that if R̄ is 1-monotone, then A2[i, j] gives the distance between i
and j when only considering simple paths of length at most 2.

Right distributivity and additive idempotence. We say that R̄ = (R,⊕,�, 0, 1) is right-
distributive if for all x, y, z ∈ R, (x⊕ y)� z = (x� z)⊕ (y � z). R̄ is idempotent if for all x ∈ R,
x⊕ x = x.

Assume from now on that R̄ has all the properties described above and is also right-distributive
and idempotent. In the standard definitions of abstract algebra, R̄ is an idempotent non-associative
near-semiring with a left multiplicative identity, and in which 0 is both a left and a right annihilator.
We will call R̄ an algebraic path structure. Formally:

Definition 2.3.2 An algebraic path structure is an algebraic structure R̄ = (R,⊕,�, 0, 1) with
the following properties:

• (closure) for all x, y ∈ R, x⊕ y ∈ R and x� y ∈ R

• (additive commutativity) for all x, y ∈ R, x⊕ y = y ⊕ x

• (additive associativity) for all x, y, z ∈ R, (x⊕ y)⊕ z = x⊕ (y ⊕ z)

• (additive identity) for all x ∈ R, x⊕ 0 = 0⊕ x = x

• (multiplicative annihilator) for all x ∈ R, x� 0 = 0� x = 0

• (left multiplicative identity) for all x ∈ R, 1� x = x

• (right distributivity) for all x, y, z ∈ R, (x⊕ y)� z = (x� z)⊕ (y � z)

• (idempotence) for all x ∈ R, x⊕ x = x
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Let P t
xy be the set of paths from x to y in G of length at most t, for t ≥ 2. For t ≥ 2, define

Dt[x, y] =
⊕

P∈P t
xy

w(P ). Then for t > 2,

Dt[x, y] =
⊕

P∈P t
xy

w(P ) =

 ⊕
P∈P t−1

xy

w(P )

⊕
⊕

z∈V

⊕
P ′∈P t−1

xz

(
w(P ′)� w′(z, y)

) (2.5)

=

 ⊕
P∈P t−1

xy

w(P )

⊕
⊕

z∈V

 ⊕
P ′∈P t−1

xz

w(P ′)

� w′(z, y)

 (2.6)

= Dt−1[x, y]⊕
⊕
z∈V

(
Dt−1[x, z]� w′(z, y)

)
. (2.7)

It is tempting to define the shortest distance between two nodes x and y as D[x, y] = D[x, y]⊕
(
⊕

z(D[x, z]�w′(z, y))), but unfortunately D[x, y] = 0 for all x, y ∈ V is a solution to this equation.
We can use idempotence to obtain a better definition.

Because of our definition of the adjacency matrix, I ⊕ A = A. For t ≥ 2, let Dt be the n × n
matrix with x, y entry Dt[x, y]. Then equation 2.7 is equivalent to Dt = Dt−1 ⊕ (Dt−1 � A). Let
D1 = A. Then we also have D2 = A⊕ (A�A) = D1 ⊕ (D1 �A).

Notice that for all t ≥ 2,

Dt−1 ⊕Dt = Dt−1 ⊕Dt−1 ⊕ (Dt−1 �A) = Dt−1 ⊕ (Dt−1 �A) = Dt.

We show that Dt = I ⊕ (Dt−1 �A) for all t ≥ 2.
By induction on t. The base case is t = 2: D2 = A ⊕ (A � A) = I ⊕ (I � A) ⊕ (A � A) =

I ⊕ (I ⊕A)�A = I ⊕ (A�A) = I ⊕ (D1 �A).
Suppose Dt−1 = I ⊕ (Dt−2 �A). Since we have

Dt = Dt−1 ⊕ (Dt−1 �A) = I ⊕ (Dt−2 �A)⊕ (Dt−1 �A) (2.8)
= I ⊕ ((Dt−2 ⊕Dt−1)�A) = I ⊕ (Dt−1 �A). (2.9)

Now we can give a better definition which is exactly the definition used when using path
algebras [61]:

Definition 2.3.3 The shortest distance problem for a graph with adjacency matrix A over an
algebraic path structure is to find a solution (if it exists) of the equation D = I ⊕ (D � A) . We
refer to such a solution as a shortest distance matrix of the graph.

If D = I ⊕ (D �A) has two solutions D1 and D2, then D1 ⊕D2 is also a solution:

D1 ⊕D2 = I ⊕ I ⊕ (D1 �A)⊕ (D2 �A) = I ⊕ (D1 ⊕D2)�A.

Then, for some algebraic path structures we can restrict the transitive closure definition as follows

Definition 2.3.4 Let R̄ = (R,⊕,⊗, 0, 1) be an algebraic path structure for which
⊕

x∈S x is well-
defined for all (finite or infinite) sets S ⊆ R. Let A be a matrix over R̄, such that A is the adjacency
matrix of a graph G. Let ∆ ⊆M(n, R) be the set of all matrices that are solutions to the equation
D = I ⊕ (D � A). Then the shortest distance matrix of G with adjacency matrix A is the matrix
D̄ with

D̄ =
⊕
D∈∆

D.
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In many cases (such as for min and max), ⊕ has the property that for all x, y ∈ R, x ⊕ y ∈
{x, y}. This defines a total order on R by x ≤ y iff x ⊕ y = x. If ∆ contains an infimum with
respect to this ordering, then the definition above can be applied even if R is not well-ordered.
Under Definition 2.3.4 the shortest distance matrix is also referred to as the minimum solution
to D = I ⊕ (D � A). In general, however, we will not use Definition 2.3.4. It will suffice to use
Definition 2.3.3.

Transitive closure and the path condition. The transitive closure T of a matrix A is defined
as a solution of the equation T = I ⊕ (T � A) in a similar way to the definition of the shortest
distance matrix (2.3.3, 2.3.4). Hence, when A is the adjacency matrix of a graph as in the previous
context, T is also the shortest distance matrix of the graph. The transitive closure of A might not
be defined but there are many cases in which it is. Some examples can be found in Section 2.4.

Definition 2.3.5 Let R̄ = (R,⊕,�, 0, 1) be an algebraic path structure. R̄ is said to satisfy the
path condition if for all x, y ∈ R,

x⊕ (x� y) = x.

The path condition generalizes the notion of 1-monotonicity. Even though this condition seems
like a huge restriction, notice that the distance, reliability, MaxMin and (min,≤r)-products all
satisfy the path condition. These are exactly the products we will employ for path problems.

We will prove the following.

Theorem 2.3.1 Let R̄ = (R,⊕,�, 0, 1) be an algebraic path structure satisfying the path condition.
Then for any graph G on R̄:

• the shortest distance matrix D of G is well-defined, and

• D can be computed in O(n(M(n, n)+S(n, n))) time, where M(n, n) and S(n, n) are the time
to multiply and sum (respectively) two n× n matrices over R̄.

Proof. Consider a path P from x to y composed of a path P1 from x to z, followed by a path
C from z back to z, followed by a path P2 from z to y. Let C = z → z1 → . . . → zp → z, and
P2 = z → y1 → . . .→ yk → y. Then the weight of P is

w(P ) = (((w(P1 → C))� w(z, y1))� . . .)� w(yk, y).

Consider w(P1 → P2)⊕ w(P ). This equals

(((w(P1)⊕ w(P1 → C))� w(z, y1))� . . .)� w(yk, y).

From the path condition we have the following base case for our induction on j:

w(P1) = w(P1)⊕ ((w(P1))� w(z, z1)).

Assume that

w(P1) = w(P1)⊕ (((w(P1))� w(z, z1))� . . .)� w(zj−1, zj).
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Then by the path condition and the above assumption,

w(P1) = w(P1)⊕ (((w(P1))� w(z, z1))� . . .)� w(zj−1, zj) (2.10)
= w(P1)⊕ [(((w(P1))� w(z, z1))� . . .)� w(zj−1, zj)]⊕ (2.11)
⊕ [((((w(P1))� w(z, z1))� . . .)� w(zj−1, zj))� w(zj , zj+1)] (2.12)
= w(P1)⊕ ((((w(P1))� w(z, z1))� . . .)� w(zj , zj+1). (2.13)

By the above inductive argument we obtain that

w(P1) = w(P1)⊕ w(P1 → C).

By the distributive property we also obtain that

w(P1 → P2) = w(P1 → P2)⊕ w(P1 → C → P2).

Then for any two nodes x, y, their distance can be defined as

D[x, y] =
⊕

P∈Pxy

w(P ) =
⊕

P∈SP x,y

w(P ),

where SP x,y is the set of all simple paths from x to y. As the number of simple paths from x to y
is finite (it is at most (n− 2)!), the distance is always well-defined.

Since any simple path has length at most n, in order to compute D, it suffices to compute
Dn, i.e. starting from D1 = A, for i ranging from 2 to n, compute Di = I ⊕ (Di−1 � A). This
computation requires doing n sums and products of n× n matrices. �

2.4 Semiring Frameworks

We give a brief summary of some results on path problems using the so called semiring or path
algebra framework. Most of this can be found in the wonderful survey by Bernd Mahr [61]. Semir-
ings are more restricted algebraic structures than the ones we considered in the previous section.
Lengauer and Theune [60] considered converting some weaker algebraic structures into semirings
by adding the properties of associativity and distributivity. Although this approach is very general,
it increases the running times of the transitive closure algorithms. From now on we only consider
semirings.

A semiring or path algebra is an algebraic structure (R,⊕,�, 0, 1), such that (R,⊕, 0) and
(R,�, 1) are both monoids, ⊕ is commutative, � distributes over ⊕ (both from the right and from
the left), and 0 is both a right and a left multiplicative annihilator. A semiring is idempotent if for
all x ∈ R, x ⊕ x = x. An algebraic path structure is an idempotent semiring that is missing the
following properties: �-associativity, left �-distributivity over ⊕, and right multiplicative identity.

An idempotent semiring does not need the path condition in order to guarantee that shortest
distances are well-defined. Instead, it is sufficient if it is closed.

Closed semirings. A semiring is closed if there is a unary operation ∗ so that a∗ = 1⊕ (a� a∗)
for all a ∈ R. For closed idempotent semiring there is always a solution to the shortest distance
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equation D = I ⊕ (D � A). This solution is called the Kleene matrix A∗. For graphs on n nodes,
A∗ = A(n), where A(0) = A, and for r > 0 and i, j ∈ [n],

A
(r)
ij = A

(r−1)
ij ⊕

(
A

(r−1)
ir � (A(r−1)

rr )∗ �A
(r−1)
rj

)
.

The algorithms textbook by Aho, Hopcroft and Ullman [1] gives a theorem concerning the
algorithmic complexity of computing the transitive closure of a matrix over a closed semiring.
Informally, this theorem, originally due to Fischer and Meyer [39], Furman [45, 46], and Munro [67],
states that the transitive closure of such a matrix A can be computed in approximately the same
time as the time to multiply two matrices of the same size as A over the same semiring.

Theorem 2.4.1 ([39, 46, 67], [1], pp. 204–206) Let T (n) be the time to compute the transitive
closure of an n× n matrix over a closed idempotent semiring R̄. Let M(n) be the time to compute
the product of two n × n matrices over R̄. If M(2n) ≥ 4M(n) and T (3n) ≤ 27T (n), then T (n) =
Θ(M(n)).

The theorem makes two assumptions that are very reasonable, as we expect M(n) = Ω(n2) (we
need to write the output matrix), and T (n) = O(n3) (with closed semirings we can use the Floyd-
Warshall algorithm for transitive closure, see below). Furthermore, with some work these assump-
tions can be weakened to M(3n) = Ω(M(n)) and T (3n) = O(T (n)).

Matrix stability. There is even a weaker condition for the transitive closure to be well-defined
for matrices over idempotent semirings. This condition is not on the semiring itself but on the
given matrix. It requires that there is a constant q > 0, so that the matrix is q-stable.

Definition 2.4.1 A matrix A is q-stable if

q⊕
r=0

Ai =
q+1⊕
r=0

Ai,

where A0 = I and Ai = Ai−1 �A for i > 0.

The following theorem due to Floyd and Warshall [40, 99], among others, asserts that q-stability
is a sufficient condition for the transitive closure of a matrix to be well-defined.

Theorem 2.4.2 ([40, 99]) Let R be an idempotent semiring. Let A be a q-stable square matrix
over R, then A∗ =

⊕q
i=0 Ai is a solution to the shortest distance equation D = I ⊕ (D �A).

Theorem 2.4.2 also gives an O(n3) time algorithm for finding the transitive closure of an n× n
q-stable matrix A. This algorithm is the immediate generalization of the Floyd-Warshall algorithm
for the shortest paths problem:

for all i, j = 1 to n,
D[i][j] := A[i][j];

for all k, i, j = 1 to n,
D[i][j] := D[i][j]⊕ (D[i][k]�D[k][j]);
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Various conditions imply the stability of a matrix. For instance, A is (n− 1)-stable if A is the
adjacency matrix of a DAG, or if A is over an idempotent semiring and for all r, Ar

ii ⊕ 1 = 1. A
special case of this second condition is when A is the adjacency matrix of a graph G with real
weights on its edges such that G has no cycles of negative weight sum. Then A is considered to
be over the so called tropical semiring (R ∪ {−∞,∞},min,+,∞, 0). This ends our discussion of
semirings. The next chapter will present good algorithms for most algebraic structure products
given in Table 2.1.
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Chapter 3

Efficient Algorithms for Some Matrix
Products

In the following sections we discuss algorithms for the (⊕,⊗) matrix products defined in the previous
chapter. Our algorithms are made asymptotically efficient using the subcubic results on fast matrix
multiplication [28]. We use the following general techniques.

1. Bucketting: This technique deals with preprocessing the entries of each input matrix and
assigning them in a 1-to-1 fashion to some number of buckets, so that each bucket has a small
number of entries. After this, for each input matrix X and each bucket b, one creates a new
matrix Xb. This bucketting allows later computations to narrow the search space.

2. Bucket Processing: For each fixed bucket b, one takes the matrices Ab and Bb created
by the bucketting step and multiplies them using a different matrix product (⊕′,⊗′). The
algorithm for this different matrix product might use these techniques recursively, or if it is
just the algebraic matrix product, fast matrix multiplication is used.

3. Exhaustive Search: The bucket processing step provides some information which allows
us to choose a small number of buckets on which the problem is solved by exhaustive search.
Because the buckets are small by construction, this step takes less time than exhaustive search
on the original input.

In all of our matrix product algorithms below the above techniques are used repeatedly.

3.1 Dominance Product

We begin with the dominance product, which will be used in all of the rest of our matrix product
algorithms. Recall that this product is over the algebraic structure (R ∪ {−∞,∞},+,≤b), where
on input the ordered pair (x, y), the ≤b operation returns 1 if x ≤ y and 0 otherwise.

Given a set of points {v1, . . . , vn} in Rd, the well-known dominating pairs problem in compu-
tational geometry is to find all pairs of points (vi, vj) such that for all k = 1, . . . , d, vi[k] ≤ vj [k].
This problem has many applications, for instance, in VLSI circuit design and databases.

When the number of dimensions of the space is linear in the number of points, one can compute
the dominating pairs by employing the dominance product. In particular, the points are laid out
as rows in a matrix A for which the columns are the coordinates. The dominance product of A
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with its transpose At counts for each pair of points vi, vj the number of coordinates in which vj

dominates vi. Then, (vi, vj) is a dominating pair if and only if the i, j entry in A�At is exactly n.
Matousek [62] gave an elegant algorithm computing the dominance product. This algorithm

uses practically the same techniques described in the beginning of this chapter.

Theorem 3.1.1 (Matousek [62]) Let A and B be real n × n matrices. The dominance product
C = (A�B) can be computed in O

(
n

3+ω
2

)
time.

Proof. We outline Matousek’s approach. Consider the rows of A and columns of B together as
2n points in n-dimensional space. Let the rows of A be the first n points, {v1, . . . , vn}, and the
columns of B be the second n points, {vn+1, . . . , v2n}. For each coordinate j = 1, . . . , n, sort the
points {vi, i = 1, . . . , 2n} by coordinate j. This takes O(n2 log n) time.

Define the jth rank of point vi, denoted as rj(vi), to be the position of vi in the sorted list for
coordinate j. Let s ∈ [log n, n] be a parameter to be determined later. This parameter corresponds
to a bound on the size of a bucket, in our techniques. We have a bucket for each k ∈ [n/s]. Define
n/s pairs of (0, 1) matrices (A1, B1), . . ., (An/s, Bn/s) as follows:

Ak[i, j] = 1 ⇐⇒ rj(vi) ∈ [ks, ks + s),

Bk[i, j] = 1 ⇐⇒ rj(vi+n) ≥ ks + s.

This concludes the bucketting step.
Now, multiply Ak with BT

k , obtaining a matrix Ck for each bucket k = 1, . . . , n/s. Then Ck[i, j]
equals the number of coordinates c such that vi[c] ≤ vj [c], rc(vi) ∈ [ks, ks + s), and rc(vj) ≥ ks + s.
Therefore, letting

C =
n/s∑
k=1

Ck,

we have that C[i, j] is the number of coordinates c such that brc(vi)/sc < brc(vn+j)/sc. This
concludes the bucket processing step.

Suppose we compute a matrix E such that E[i, j] is the number of coordinates c such that
vi[c] ≤ vj [c] and brc(vi)/sc = brc(vn+j)/sc. Then, defining D := C + E, we will have the desired
dominance product matrix

D[i, j] = |{k | vi[k] ≤ vj [k]}|.

To compute E, we use the n sorted lists. For each pair (i, j) ∈ [n] × [n], we look up vn+i’s
position p in the sorted list for coordinate j. By reading off the adjacent points less than vn+i in
this sorted list (i.e. the points at positions p− 1, p− 2, etc.), and stopping when we reach a point
vk such that brj(vk)/sc < brj(vn+i)/sc, we obtain the list vi1 , . . . , vi` of ` ≤ s points such that
ix ∈ [n], vix [j] ≤ vn+i[j] and brj(vn+i)/sc = brj(vix)/sc. For each x = 1, . . . , `, if ix ≤ n, we add a
1 to E[ix, i]. Assuming constant time lookups and constant time probes into a matrix, this entire
process takes only O(n2s) time. This concludes the exhaustive search step.

The runtime of the above procedure is O(n2s + n
s nω). Choosing s = n

ω−1
2 , the time bound

becomes O(n
3+ω

2 ). �
We note that the dominance product allows us to easily obtain a subcubic algorithms for the

(+, <), (+, >) and (+,=)-products, where <,>,= on input a, b return 1 if a < b, a > b and a = b
respectively, and 0 otherwise.
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Corollary 3.1.1 If the dominance product of two arbitrary real n × n matrices can be computed
in O(D(n)) time, then the (+,=), (+, <) and (+, >)-products of two arbitrary real n× n matrices
can all be computed in O(D(n)) time. Hence these products are all computable in O(n

3+ω
2 ).

Proof. Let A and B be the matrices for which we want to compute C,C> and C> such that for
all i, j ∈ [n]

C=[i, j] =
n∑

k=1

(A[i, k] = B[k, j]),

C<[i, j] =
n∑

k=1

(A[i, k] < B[k, j]),

C>[i, j] =
n∑

k=1

(A[i, k] > B[k, j]).

Compute the dominance product C≤ of A and B and the dominance product C≥ of B and A.
For every i, j ∈ [n], let

C=[i, j] = C≤[i, j] + C≥[i, j]− n,

C<[i, j] = C≤[i, j]− C=[i, j],
C>[i, j] = C≥[i, j]− C=[i, j].

�
There has been no progress on obtaining faster algorithms for the dominance product since

Matousek’s algorithm. Since no lower bounds for the problem are known it is still possible that
there is an O(nω) algorithm for the dominance product of two n × n matrices. It is also possible
that the (+,=)-product of two matrices is computationally easier than the dominance product. We
currently also do not know a better algorithm for the so called existence-dominance product which
has a 1 in the i, j entry if the dominance product in that entry is n and 0 otherwise. In the following
pages we give better algorithms for the dominance product for two special cases.

The low dimensional case. Here we give a slight but useful extension of the Matousek’s algo-
rithm that uses rectangular matrix multiplication to get an improved time bound, when the points
are in Rd with d << n. This result appears in [95].

Theorem 3.1.2 Given an n×d matrix A and a d×n matrix B, the dominance matrix C of A and
B can be computed in O(n1.898 ·d0.696 +n2+ε) time for all ε > 0 if d = O(n

ω−1
2 ), or in O(n ·d2 +nω)

time for all d.

So for example, when d = o(n0.688), we can compute the dominance matrix in o(nω).
Let ω(n, d, m) denote the exponent of multiplying an n × d by a d × m matrix. We recall a

Lemma by Huang and Pan [53] also appearing in [106]:

Lemma 3.1.1 ([53]) Let α = sup{0 ≤ r ≤ 1 | w(n, nr, n) = 2 + o(1)} > 0.294. Then for all
d ≥ nα, one can multiply an n× d by a d× n matrix in time

O(d
ω−2
1−α · n

2−ωα
1−α ) = O(d0.533n1.844).
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Proof of Theorem 3.1.2. We begin analogous to Matousek’s approach. The rows of A and
columns of B are considered as 2n points in d-dimensional space: the rows of A are the first n
points, {v1, . . . , vn}, and the columns of B are the second n points, {vn+1, . . . , v2n}. As before,
for each coordinate j = 1, . . . , d, sort the points {vi, i = 1, . . . , 2n} by coordinate j. This takes
O(nd log n) time.

Recall, the jth rank of point vi, denoted as rj(vi), is the position of vi in the sorted list for
coordinate j. Let s ∈ [log n, n] be a parameter corresponding to a bound on the size of a bucket.
Define n/s pairs of n×d (0, 1) matrices (A1, B1), . . ., (An/s, Bn/s) as follows. For k ∈ [n/s], i ∈ [n],
j ∈ [d],

Ak[i, j] = 1 ⇐⇒ rj(vi) ∈ [ks, ks + s),

Bk[i, j] = 1 ⇐⇒ rj(vi+n) ≥ ks + s.

This concludes the bucketting step.
The bucket processing step differs from the original Matousek approach. Instead of defining

matrices Ck, we simply compute

C =
[

A1 A2 · · · An/s

]
·


B1

B2
...

Bn/s

 ,

that is, we are multiplying an n × dn/s and a dn/s × n matrix. This concludes the bucket
processing step.

As in the Matousek approach we compute a matrix E such that E[i, j] is the number of coor-
dinates c such that vi[c] ≤ vj [c] and brc(vi)/sc = brc(vj)/sc. Then, defining D := C + E, we will
have the desired dominance product matrix

D[i, j] = |{k | vi[k] ≤ vj [k]}|.

Computing E in this situation proceeds as before and can be verified to take O(n · d · s) time. This
concludes the exhaustive search step.

As before, our goal is to choose s optimally so that this runtime is minimized. Results of Huang
and Pan [53] (see Lemma 3.1.1) on rectangular matrix multiplication, coupled with the optimal
choice of s show that we can either compute the dominance matrix in

O(n
2ω−ωα−2

ω−α−1 · d
2ω−4

ω−α−1 + n2+ε) ≤ O(n1.898d0.696)

time for all ε > 0. We can only make this choice of s when d = O(n
ω−1

2 ). By a slight modification
of the algorithm we can obtain an O(n · d2 + nω) runtime for all d = O(n). To do this, again sort
the columns of A and rows of B but now bucket the sorted lists into buckets of size d. Create
two matrices A′ and B′, both n× n. The columns of A′ and rows of B′ are labeled by pairs (j, b)
where j is a column of A (row of B) and b is a bucket from 1 to n/d. (There are at most n such
pairs.) A′[i, (j, b)] is 1 if A[i, j] is in bucket b of the jth sorted list, and A′[i, (j, b)] = 0 otherwise.
B′[(j, b), k] is 1 if there is some b′ > b such that B[j, k] is in bucket b′ of the jth sorted list, and
B′[(j, b), k] = 0 otherwise. Within buckets we do exhaustive search in overall O(nd2) time and to
count between buckets we compute A′ ·B′ over the integers in O(nω) summing the results. �
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The sparse case. In some of our applications that use a dominance product, we only want to
perform comparisons with certain entries of the matrices. For example, suppose matrices A and B
are over R∪ {−∞,∞}, such that A has mostly ∞ entries, while B has mostly finite entries. Then,
in the computation of the dominance product A � B, many of the comparisons (A[i, k] ≤ B[k, j])
are false; it only makes sense to compare the finite entries of A with entries in B. To this end,
we design a special algorithm for dominance product in the case where one wishes to ignore large
portions of the A-matrix. The algorithm again uses the techniques described in the beginning of
this chapter. It was published in [97].

Theorem 3.1.3 (Sparse Dominance Product) Let A and B be n×n matrices over R∪{−∞,∞}.
Let S ⊆ [n]× [n] such that |S| = m ≥ n. Let C be the matrix such that

C[i, j] = |{k | (i, k) ∈ S and A[i, k] ≤ B[k, j]}|.

There is an algorithm SD that, given A, B, and S, outputs C in O(
√

m · n
1+ω

2 ) time.

Proof. Call the entries of A with coordinates in S the relevant entries of A. For every j = 1, . . . , n,
let Lj be the sorted list containing the relevant entries from A in column j, along with the entries
from BT in column j. Let gj be the number of relevant entries of A in Lj , for all j. Clearly,∑

j gj = m. Pick a parameter r and partition each Lj into r consecutive buckets, such that every
bucket contains at most dgj/re relevant entries of A. Note that the bucket sizes are not necessarily
uniform.

To conclude the bucketting step, for every bucket number b = 1, . . . , r, create Boolean matrices
Ab and Bb:

Ab[i, j] :=
{

1 if A[i, j] is in bucket b of Lj

0 otherwise,

Bb[j, k] :=
{

1 if B[j, k] is in bucket b′ of Lj and b′ > b
0 otherwise.

For each bucket number b, compute Cb = Ab · Bb. This step takes O(rnω) time and computes
for every pair i, k and bucket number b, the number of j such that A[i, j] ≤ B[j, k], where A[i, j] is
in bucket b of Lj , and B[j, k] is in a different bucket of Lj . This concludes the bucket processing
step.

Initialize an n × n matrix D to be all zeros. In every bucket b of Lj , there are at most dgj/re
relevant entries of A and some number tjb of entries from B. Compare every A-entry with every
BT -entry in bucket b of column j in O(tjb · dgj/re) time; in particular, for each A[i, j] ≤ BT [k, j]
where A[i, j] and BT [k, j] are in bucket b, increment D[i, k]. Over all j and b, this takes time on
the order of ∑

j

∑
b

tjb · dgj/re ≤
∑

j

(1 + gj/r)
∑

b

tjb

=
∑

j

(1 + gj/r)n

= n2 +
∑

j

gjn/r

= n2 + mn/r.
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After all buckets of all lists are processed, D[i, k] contains the number of j such that A[i, j] ≤ B[j, k],
where A[i, j], BT [k, j] are in the same bucket of Lj . This concludes the exhaustive search step.

Finally, set C =
∑r

b=1 Cb + D. It is easy to verify from the above that the algorithm returns
the desired C. The overall runtime of the above procedure is O(n2 + mn/r + rnω). Choosing
r =
√

m · n
1−ω

2 , the runtime is minimized to O(
√

m · n
1+ω

2 ). �

Corollary 3.1.2 There is an O(min{(|SA| · |SB|)
ω−2

ω−α−1 n
(2−αω)
ω−α−1 , nω +

√
|SA| · |SB| ·n

ω−1
2 )} algorithm

for sparse dominance product, where SA and SB are subsets of [n] × [n], and the resulting matrix
has C[i, j] = |{k | A[i, k] ≤ B[k, j], (i, k) ∈ SA, (k, j) ∈ SB}|.

Proof. Suppose A has m1 relevant entries and B has m2. Sort each column k of A and row k
of B together. For each k, let Lk be the sorted list for column/row k. Bucket each list Lk into
consecutive buckets, so that each bucket has at most m1/D elements of A. Compare elements
within bucket b of list k in ∑

b

gbkdm1/De

where gbk is the number of B-elements in bucket b of Lk. Overall, the runtime is O(m2 +m1m2/D).
To handle comparisons between buckets we do the following (similar to our approach for rectangular
dominance product). Create matrices C and C ′ where C is n × O(D) and C ′ is O(D) × n. The
columns of C and rows of C ′ have indices (k, b) for bucket b of Lk, provided Lk has at least 2
buckets. We set C[i, (k, b)] to be 1 if A[i, k] is in bucket b of Lk. We set C ′[(k, b′), j] to be 1 if
B[k, j] is in some bucket b > b′ of Lk. Then clearly C[i, (k, b)] · C ′[(k, b), j] = 1 iff there is some
b′ > b such that B[k, j] is in bucket b′ of Lk but A[i, k] is in bucket b < b′ of Lk and when we sum
these we always count different comparisons. The number of coordinates (k, b) is at most∑

k: Lk has ≥ 2 buckets

(dm1kD/me) ≤ D + D = 2D.

If D ≥ n, we can compute the product of C and C ′ in O((D/n)nω) time. For this case, the best
value for D is

m1m2/D = Dnω−1 =⇒ D =
√

m1m2/n
ω−1

2

The final runtime is then O(
√

m1m2n
ω−1

2 ).

If D = o(n), then the product of C and C ′ can be computed in O(D
ω−2
1−α n

2−αω
1−α ) time by

Lemma 3.1.1 where the current best value for α is 0.294. The best value for D is then

m2m1/D = D
ω−2
1−α n

2−αω
1−α =⇒ D =

(m1m2)
1−α

ω−α−1

n
(2−αω)
ω−α−1

.

The final runtime becomes asymptotically

(m1m2)
ω−2

ω−α−1 n
(2−αω)
ω−α−1 = (m1m2)0.33n1.21.

�
The runtime of the corollary above can be further improved for

√
m1m2 = o(n

ω+1
2 ) using the

fast sparse matrix multiplication of Yuster and Zwick [104].
One can combine Theorem 3.1.3 and the rectangular matrix multiplication from Lemma 3.1.1

to obtain a more general result.
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Corollary 3.1.3 Let A be an n × d matrix and B be a d × n matrix over R ∪ {−∞,∞}. Let
S ⊆ [n]× [d] such that |S| = m with n ≤ m ≤ nω/d. Let C be the matrix such that

C[i, j] = |{k | (i, k) ∈ S and A[i, k] ≤ B[k, j]}|.

There is an algorithm that, given A, B, and S, outputs C in O(
√

md0.267n1.422) time.

Proof. The matrices Ab and Bb in the proof of Theorem 3.1.3 are now n×d and d×n respectively.
Hence computing Cb = Ab ·Bb takes

O(rd
w−2
1−α n

2−ωα
1−α ) = O(rd0.533n1.844)

time by Lemma 3.1.1. The exhaustive search portion of the algorithm takes O(nd + mn/r) time.
We minimize the runtime:

rd
w−2
1−α n

2−ωα
1−α = mn/r =⇒ r =

√
m/(d

ω−2
2(1−α) n

1+α−ωα
2(1−α) ).

The runtime becomes
O(
√

md
ω−2

2(1−α) n
3−α−ωα
2(1−α) ) = O(

√
md0.267n1.422).

�

3.2 (+, min)-Product

The proof approach of Theorem 3.1.1 can be extended to obtain a similar algorithm for the (+,min)-
product.

Theorem 3.2.1 Given two n× n matrices A and B over R ∪ {∞}, their (+,min)-product C can
be computed in O

(
n

3+ω
2

)
time.

Proof. The proof is a slight generalization of the proof of Theorem 3.1.1. As before, consider the
rows of A and columns of B together as 2n points in n-dimensional space: be the first n points,
{v1, . . . , vn} are the rows of A and the second n points, {vn+1, . . . , v2n} are the columns of B. Again,
for each coordinate j = 1, . . . , n, sort in O(n2 log n) time {vi, i = 1, . . . , 2n} by coordinate j.

We will first compute C1[i, j] =
∑

c: A[i,c]≤B[c,j] A[i, c], then C2[i, j] =
∑

c: A[i,c]>B[c,j] B[c, j] and
then sum them in O(n2) time. We will only consider C1 in the following as computing C2 is
analogous.

Recall, rj(vi) is the position of vi in the sorted list for coordinate j. Let s ∈ [log n, n] be a
parameter to be determined later, corresponding to a bound on the size of a bucket. Define the
n/s pairs of matrices (A1, B1), . . ., (An/s, Bn/s) as follows:

Ak[i, j] =
{

A[i, j] if rj(vi) ∈ [ks, ks + s),
0 otherwise.

Bk[i, j] =
{

1 if rj(vn+i) ≥ ks + s,
0 otherwise.

Notice that this is the first place where the algorithm differs from that in Theorem 3.1.1. This
concludes the bucketting step.
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Now, multiply Ak with BT
k , obtaining a matrix Ck for each bucket k = 1, . . . , n/s. Then

Ck[i, j] equals the sum of entries A[i, c] over coordinates c such that rc(vi) ∈ [ks, ks + s), and
rc(vn+j) ≥ ks + s. In particular, for all such c we have A[i, c] ≤ B[c, j]. Therefore, letting

C ′ =
n/s∑
k=1

Ck,

we have that C ′[i, j] is the sum of A[i, c] over all c such that A[i, c] ≤ B[c, j], brc(vi)/sc <
brc(vn+j)/sc. This concludes the bucket processing step.

Suppose we compute a matrix E such that E[i, j] is the sum of A[i, c] over all coordinates c
with A[i, c] ≤ B[c, j], and brc(vi)/sc = brc(vn+j)/sc. Then, defining C1 := C ′+E, we will have the
desired product matrix

C1[i, j] =
∑

c: A[i,c]≤B[c,j]

A[i, c].

To compute E, we use the n sorted lists, as in Theorem 3.1.1. For each pair (i, j) ∈ [n]× [n], we
look up vn+i’s position p in the sorted list for coordinate j. By reading off the adjacent points less
than vn+i in this sorted list (i.e. the points at positions p− 1, p− 2, etc.), and stopping when we
reach a point vk such that brj(vk)/sc < brj(vn+i)/sc, we obtain the list vi1 , . . . , vi` of ` ≤ s points
such that vix [j] ≤ vn+i[j] and brj(vn+i)/sc = brj(vix)/sc. For each x = 1, . . . , `, if ix ≤ n, we add
A[ix, j] to E[ix, i]. Assuming constant time lookups and constant time probes into a matrix, this
entire process takes only O(n2s) time. This concludes the exhaustive search step.

The runtime of the above procedure is O(n2s + n
s nω). Choosing s = n

ω−1
2 , the time bound

becomes O(n
3+ω

2 ). �
Results similar to Theorems 3.1.2 and 3.1.3 are also possible for the (+,min)-product.

An application of the (+,min)-product. In the following application, we show how the domi-
nance and (+,min)-products can be used to improve the runtime for solving a problem arising in
computational economics. Suppose we have a set C = {1, . . . , k} of commodities, a set B of buyers
and a set S of sellers. Let |C| = k, |B| = |S| = n. Each buyer bi ∈ B has a set of commodities
Ci ⊆ C. Buyer i also has a maximum price pij that i is willing to pay for item j in Ci. Each seller
si ∈ S owns a set Si ∈ C of commodities that he is willing to sell, but for each commodity j he has
a reserve price rij that needs to be met in order for the item to be exchanged.

Let us imagine that each buyer wants to do business with only one seller, and each seller wants
to target a single buyer. Each of them wish to be matched up so that they maximize the number
of transactions. Buyer i prefers seller j to seller j′, if j has more cheap items than j′ does, with
respect to the values of i. Formally, the number of commodities k for which rjk ≤ pik exceeds the
number of commodities k for which rj′k ≤ pik.

More generally, the preferences of a buyer (or seller) may depend on more than just the number
of items that can be exchanged. These preferences may depend on both the sums of maximum
prices that the buyer has for the items, and on the sums of reserves that the seller has for them.

Ideally, each buyer wants to talk to the seller from whom he can obtain the cheapest large set of
items. Unfortunately, this is not always possible for all buyers, even when the prices and reserves
are all equal. This is evidenced by the following example: Buyer 1 wants to buy item 2, buyer 2
wants to buy items 1 and 2, seller 1 has item 1, seller 2 has items 1 and 2. When the preferences
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are only according to the number of items that can be exchanged, buyer 1 will not be able to get
any items.

In a realistic setting, we want to find a buyer-seller pairing so that there is no pair (b, s) for
which buyer b is not paired with seller s, such that both b and s would benefit from breaking their
matches and pairing among each other. This is the stable matching problem, for which optimal
algorithms are known when the preferences are known (e.g., Gale-Shapley [48] can be implemented
to run in O(n2)). However, for large k, the major bottleneck in our setting is that of computing
the preference lists of the buyers and sellers.

The obvious approach gives an O(kn2) algorithm. Using the dominance product we can compute
a matrix C so that Cij is the number of items k for which pik ≥ rjk, i.e. the number of items
that can be exchanged if i and j were paired. Then the rows and columns of C can be sorted in
order to obtain a preference list for each buyer or seller. The entire procedure then would take
O(n

√
kM(n, k) + n2 log n) where M(n, k) is the time required to multiply an n × k by a k × n

matrix.
To do this, for each buyer i we create a k-dimensional vector bi = {bi1, . . . , bik} so that bij = pij if

j ∈ Ci, and bij = −∞ if j /∈ Ci. For each seller i we create a k-dimensional vector si = {si1, . . . , sik}
so that sij = rij if j ∈ Si, and sij =∞ if j /∈ Si. Let S be the matrix with rows si and let B be the
matrix with columns bi. Computing the dominance product matrix of S and B computes exactly
the number of items ` which buyer i wants to buy, seller j wants to sell, and pi` ≥ rj`.

By using the (+,min)-product instead we can actually compute, for all buyers i and seller j,
both

• the sum of prices of all items that each i and j can exchange (compute and negate the
(+,min)-product of (−B) with (−S)), and

• the sum of reserve prices for these exchange items (compute the (+,min)-product of S with
B).

Doing this will allow us to compute any preference function on these two values, and will give a way
to solve the more general buyer-seller stable matching problem fast. In particular, the preference
lists for all buyers and sellers can be determined in O(n

√
kM(n, k) + n2 log n + n2T ), where T is

the maximum time to compute the preference functions of the buyers/sellers, given the buyer price
and seller reserve sums for a buyer-seller pair. For instance, if k = n and T = O(log n), the runtime
of finding a buyer-seller stable matching is O(n

3+ω
2 ) = O(n2.688).

3.3 Generalized Dominance Product

Let (⊕,�) be a matrix product of n × n matrices over some algebraic structure R containing
an element 0 ∈ R such that for all x ∈ R, 0 � x = x � 0 = 0 and x ⊕ 0 = 0 ⊕ x = x. The
(⊕,�)-dominance product is defined as follows.

Definition 3.3.1 Let A and B be two n × n matrices. The entries of A and B are pairs of
elements: A[i, k] = (A1[i, k], A2[i, k]) and B[i, k] = (B1[i, k], B2[i, k]) such that A1[i, k], B1[i, k] ∈ R
and A2[i, k], B2[i, k] ∈ R. The (⊕,�)-dominance product matrix C is given by

C[i, j] =
⊕

k∈[n],A2[i,k]≤B2[k,j]

(A1[i, k]�B1[k, j]).
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Clearly, an O(t(n)) time algorithm for the (⊕,�)-dominance product of two n×n matrices can
be used to compute the (⊕,�)-product of two n × n matrices in O(t(n)) time by simply adding
a second component equal to 1 to all matrix entries. We show that an efficient algorithm for the
(⊕,�)-product can be used to obtain an efficient algorithm for the (⊕,�)-dominance product.

Theorem 3.3.1 Suppose there is an O(T (n)) time algorithm for the (⊕,�)-product of two n× n
matrices. Then there is an O(n1.5

√
T (n)) time algorithm for the corresponding (⊕,�)-dominance

product.

In particular, when T (n) = o(n3), the algorithm from the theorem is also o(n3).
Proof of Theorem 3.3.1. The proof proceeds just as in Matousek’s proof of Theorem 3.1.1.
Let A and B be the matrices with entries (A1[i, j], A2[i, j]) and (B1[i, j], B2[i, j]). We sort for each
k the k-th column of A and k-th row of B together in nondecreasing order of their second entry
components. We bucket the sorted lists Lk into buckets of size roughly s, for a parameter s to be
set later. For each bucket b = 1, . . . , dn/se, create matrices Ab and Bb with

Ab[i, j] =
{

A1[i, j] if A[i, j] is in bucket b of Lj ,
0 otherwise,

Bb[i, j] =
{

B1[i, j] if B[i, j] is in some bucket b′ > b of Lj ,
0 otherwise.

We compute the (⊕,�)-product of Ab and Bb over all b and compute the componentwise ⊕ of
all the results to obtain a matrix C. This takes O(nT (n)/s) time, provided T (n) = Ω(n2). Now, for
every entry A[i, k], let b be the bucket of Lk in which it lies. Go through all roughly s other entries
B[k, j] in that bucket and if A2[i, k] ≤ B2[k, j], add (using the ⊕ operation) (A1[i, k]�B1[k, j]) to
C[i, j]. This takes O(n2s) time overall provided that the ⊕ and ⊗ operations take O(1) time. To
minimize the runtime we set s =

√
nT (n)/n2 and we obtain an O(n1.5

√
T (n)) time algorithm for

the (⊕,�)-dominance product. �

3.4 MaxMin Product and (min,≤r)-Product

Recall the MaxMin product of two n×n matrices A and B over R∪{−∞,∞} is defined as the matrix
C such that C[i, j] = maxk min{A[i, k], B[k, j]} for i, j ∈ [n]. The MaxMin product is a natural gen-
eralization of the Boolean matrix product to totally ordered sets of arbitrary size. In mathematics,
this product is defined over the so called subtropical semiring ((R ∪ {−∞,∞}),max,min,−∞,∞).
In computer science the MaxMin product has been studied mostly in the context of all pairs max-
imum bottleneck paths (e.g. [74]), a flow problem which we will discuss in Chapter 6. Besides its
importance in flow problems, the MaxMin product is also an important operation in fuzzy logic,
where it is known as the composition of relations ([35], pp.73).

As we showed in the previous chapter, there is an easy O(n3) algorithm for the MaxMin product
of two n × n matrices. Obtaining a truly subcubic algorithm (i.e. running in O(n3−δ) time for
constant δ > 0) was given as an explicit goal by Shapira, Yuster and Zwick [83]. We resolve this open
problem by showing how to reduce the MaxMin product of two n × n matrices to computing two
(min,≤r)-products of n × n matrices. We then give a truly subcubic algorithm for the (min,≤r)-
product of two matrices. Recall that the (min,≤r)-product of two matrices A and B over R ∪
{−∞,∞} is the matrix C ′ with C ′[i, j] = min{B[k, j] | A[i, k] ≤ B[k, j]} (C ′[i, j] = ∞ if A[i, k] >
B[k, j]∀k ∈ [n]) for i, j ∈ [n].
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Lemma 3.4.1 Suppose the (min,≤r)-product of any two n×n matrices over R∪{−∞,∞} can be
computed in T (n) time. Then the MaxMin product of any two n × n matrices over R ∪ {−∞,∞}
can be computed in O(T (n)) time.

Proof. Suppose we are given n × n matrices A and B and we wish to compute their MaxMin
product. We create the matrices (−A) and (−B) in O(n2) time. We then compute and negate the
(min,≤r)-product of (−B) and (−A) to produce a matrix A′. For every pair i, j, entry A′[i, j] gives
us the maximum A[i, k] (over all k) such that A[i, k] ≤ B[k, j]. Afterwards, we compute and negate
the (min,≤r)-product of (−A) and (−B) to produce a matrix B′. For every pair i, j, entry B′[i, j]
gives us the maximum B[k, j] (over all k) such that B[k, j] ≤ A[i, k]. This entire computation takes
O(n2 +T (n)) time. We can assume that T (n) = Ω(n2) as one would at least have to read the input.
Finally, we create a matrix C in O(n2) time with

C[i, j] = max{A′[i, j], B′[i, j]}, ∀i, j ∈ [n].

�
We now show how one can compute the (min,≤r)-product in truly sub-cubic time, reducing it

to sparse dominance with bucketting.

Theorem 3.4.1 ((min,≤r)-Product) Given two n×n matrices A and B, their (min,≤r)-product
matrix C can be computed in O(n2+ω

3 ) time. Moreover, for each pair i, j, the algorithm returns a
witness k such that A[i, k] ≤ B[k, j] = C[i, j].

Proof. We begin with the bucketting phase. For every row i of matrix A, make a sorted list
Ri of the entries in that row. Pick a parameter g. Partition the entries of each sorted list Ri into
buckets, so that for every Ri there are dn/ge buckets with at most g entries in each bucket. For
every bucket value b = 1, . . . , dn/ge, set up an instance (A,B, Sb) of the sparse dominance product
from Theorem 3.1.3, where

Sb = {(i, j)| A[i, j] is in bucket b of Ri}.

This completes the bucketting phase. The bucket processing phase consists of actually computing
the sparse dominance product and of returning some information for the exhaustive search phase.
Notice that for every bucket value b, we have |Sb| ≤ ng. By Theorem 3.1.3, all matrices Cb =
SD(A,B, Sb) can be computed in

O

(
n

g
· √ng · n

1+ω
2

)
= O

(
n2+ω

2

√
g

)
.

For every pair i, j, we determine the largest bucket bi,j in Ri for which there exists a k such
that A[i, k] ≤ B[k, j]. (This is obtained by taking the largest bi,j such that Cbi,j

[i, j] 6= 0. Note we
can easily compute bi,j during the computation of the Cb.) This concludes the bucket processing
phase.

In the exhaustive search phase, for every i, j we examine the entries in bucket bi,j of Ri to
obtain the maximum A[i, k] (and hence the corresponding k) such that A[i, k] ≤ B[k, j]. Since
there are at most g entries in a bucket, each pair i, j can be processed in O(g) time. Therefore, this
last step takes O(n2g) time.
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To pick a value for g that minimizes the runtime, we set n2g = n2+ω/2
√

g , obtaining g = n
ω
3 . The

running time is hence O(n2+ω
3 ). �

Plugging in the current best value for ω by Coppersmith and Winograd [28], the above time
bound becomes O(n2.79). If ω = 2, then the above algorithm can run in O(n2.67). Using Lemma 3.4.1
we also obtain the following corollary.

Corollary 3.4.1 The MaxMin product C of two n × n matrices A and B can be computed in
O(n2+ω

3 ) = O(n2.79) time. Furthermore, for each pair i, j ∈ [n], the algorithm returns a witness k
such that min{A[i, k], B[k, j]} = C[i, j].

3.5 Distance Product

Let A and B be two n × n matrices with entries in R ∪ {∞}. Recall that the distance product
C := A ? B is an n × n matrix with C[i, j] = mink=1...,n A[i, k] + B[k, j]. Clearly, C can be
computed in O(n3) time in the addition-comparison model, as noted in the previous chapter. In
fact, Kerr [57] showed that the distance product requires Ω(n3) on a straight-line program using +
and min. However, Fredman [42] showed that the distance product of two square matrices of order
n can be performed in O(n3(log log n/ log n)1/3) time. Following a sequence of improvements over
Fredman’s result, Chan [18] gave an O(n3(log log n)3/ log2 n) time algorithm for distance products.

Computing the distance product quickly has long been considered as the key to a truly sub-cubic
APSP algorithm, since it is known that the time complexity of APSP is no worse than that of the
distance product of two arbitrary n×n matrices. Practically all APSP algorithms with runtime of
the form O(nα) have, at their core, some form of distance product. Therefore, any improvement
on the complexity of distance product is interesting.

Seidel [82] and Galil and Margalit [50] developed Õ(nω) algorithms for APSP in undirected
unweighted graphs. However, for arbitrary edge weights, the best published algorithm for APSP
and hence for the distance product is a recent O(n3 log log3 n/ log2 n) time algorithm by Chan [18].
When the edge weights are integers in [−M,M ], the problem is solvable in Õ(Mnω) by Shoshan
and Zwick [84], and Õ(M0.681n2.575) by Zwick [106], respectively. Earlier, a series of papers in the
70’s and 80’s starting with Yuval [105] attempted to speed up APSP directly using fast matrix
multiplication. Unfortunately, these works require a model that allows infinite-precision operations
in constant time.

Here we show that for some nontrivial value of K, the K most significant bits of the distance
product A ? B can be computed in sub-cubic time, again with no exponential dependence on edge
weights. In previous work, Zwick [106] shows how to compute approximate distance products. Given
any ε > 0, his algorithm computes distances dij such that the difference of dij and the exact value
of the distance product entry is at most O(ε). The running time of his algorithm is O(W

ε ·n
ω log W ).

Unfortunately, guaranteeing that the distances are within ε of the right values, does not necessarily
give any of the bits of the distances. Our strategy is to use the dominance matrix product.

Proposition 3.5.1 Let A,B ∈ (Z ∪ {∞})n×n. The k most significant bits of all entries in A ? B

can be determined in O(2k · n
3+ω

2 log n) time, assuming a comparison-based model.

Proof. For a matrix M , let M [i, :] be the ith row, and M [:, j] be the jth column. For a constant
K, define the set of vectors

ML(K) := {(M [i, 1]−K, . . . ,M [i, n]−K) | i = 1, . . . , n}.
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Also, define
MR(K) := {(−M [1, i], . . . ,−M [n, i]) | i = 1, . . . , n}.

Now consider the set of vectors S(K) = AL(K) ∪ BR(K). Using a dominance product compu-
tation on S(K), one can obtain the matrix C(K) defined by

C(K)[i, j] :=
{

0 if ∃k s.t. ui[k] < vj [k], ui ∈ AL(K), vj ∈ BR(K)
1 otherwise

Then for any i, j,

min
k
{A[i, k] + B[k, j]} ≥ K ⇐⇒ C(K)[i, j] = 1.

Let W be the smallest power of 2 larger than maxij{A[i, j]} + maxij{B[i, j]}. Then C(W
2 ) gives

the most significant bit of each entry in A ? B. To obtain the second most significant bit, compute
C(W

4 ) and C(3W
4 ). The second bit of (A ? B)[i, j] is given by the expression:

(¬C(W )[i, j] ∧ C(3W
4 )[i, j]) ∨ (¬C(W

2 )[i, j] ∧ C(W
4 )[i, j]).

In general, to recover the first k bits of (A ? B), one computes C(·) for O(2k) values of K. In
particular, to obtain the `-th bits, compute

2`−1−1∨
s=0

[¬C(W (1− s

2`−1
)) ∧ C(W (1− s

2`−1
− 1

2`
))].

To see this, notice that for a fixed s, if (for any i, j ∈ [n])

W (1− s

2`−1
− 1

2`
) ≤ min

k
A[i, k] + B[k, j] < W (1− s

2`−1
),

then the `-th bit of mink A[i, k] + B[k, j] must be 1, and if the `-th bit of mink A[i, k] + B[k, j] is 1,
then there must exist an s with the above property.

The values for C(W (1− s
2`−1 )) for even s are needed for computing the (`− 1)-st bits, hence to

compute the `-th bits, at most 2`−2 + 2`−1 dominance computations are necessary. To obtain the
first k bits of the distance product, one needs only O(2k) dominance product computations. �

3.6 Parallel Algorithms

It is well known that on an EREW-PRAM one can compute matrix multiplication with O(nω)
processors in O(log n) time. We show the following.

Theorem 3.6.1 Let (⊕,�) be a matrix product for which we have obtained an O(nα) algorithm in
this chapter. Then this (⊕,�)-product can be computed with O(nα) processors on a EREW-PRAM
in O(log n) time.

Proof. Each of our algorithms followed three steps:
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1. Bucketting: The preprocessing step in this chapter sorts O(n2) elements and then creates B
pairs of new matrices for some value B. The sorting step can be done on an EREW-PRAM
using Cole’s mergesort algorithm with O(n2) processors and O(log n) time. Each pair of
matrices creates a new problem instance so we have Bn2 processors, each holding an entry of
an instance.

2. Bucket Processing: For each fixed bucket instance b ∈ [B], one takes the matrices Ab

and Bb created by the bucketting step and multiplies them using a different matrix product
(⊕′,⊗′). We assume that this product can be computed using O(nβ) processors and O(log n)
time for some appropriate β (β = ω for Boolean matrix multiplication). Hence we have
O(Bnβ) processors solving this step in O(log n) time.

3. Exhaustive Search: We can add a processor computing each step of the exhaustive search
in parallel. Each exhaustive search step in our algorithms is an element comparison which is
independent from the other comparisons, and hence this can be done. After the comparisons,
the best result from all comparisons is returned. This can be accomplished in O(log n) time
and O(n3/B) processors by a binary search approach: add processors comparing disjoint pairs
of results, then processors comparing disjoint pairs of the next results and so on; the number
of new processors halves at each step and we get an asymptotic number of n3/B (this is like
a binary tree circuit).

The final number of processors is minimized when B = n
3−β

2 and the number of processors is
O(n

3+β
2 ), which is the sequential running time that we would obtain for the (⊕,�)-product using

these techniques. �
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Chapter 4

Finding Small Subgraphs

Finding cliques or other types of subgraphs in a larger graph is a classical problem in complexity
theory and algorithmic combinatorics. Finding large cliques has many applications, for instance in
computational biology, classification theory, coding theory, computer vision, economics, information
retrieval, signal transmission theory etc. For detailed example applications, see [14].

Finding a maximum clique is NP-Hard, and also hard to approximate [51]. This problem is also
conjectured to be not fixed parameter tractable [33]. The problem of finding (induced) subgraphs on
k vertices in an n-vertex graph has been studied extensively (see, e.g., [4, 5, 22, 37, 58, 68, 73, 103]).
All known algorithms for finding an induced subgraph on k vertices have running time nΘ(k). Many
of these algorithms use fast matrix multiplication to obtain improved exponents.

In this chapter (as in the rest of the thesis) we only consider polynomial time solvable problems.
We give efficient algorithms for instances of the following general problem:

Definition 4.0.1 Let H be a fixed graph of constant size k. The H-subgraph problem on instance
G is defined as follows: Given an input graph G, find a subgraph H ′ of G isomorphic to H.

If H ′ is to be an induced subgraph of G, we refer to the problem as the induced H-subgraph
problem. If G has real weights on its vertices or edges, we further require that H ′ is an induced
subgraph of G of maximum weight sum over all such induced subgraphs of G isomorphic to H. The
problem is then called the maximum H-subgraph problem.

We note that finding a maximum k-clique is at least as hard as finding a maximum induced
H-subgraph, but the opposite is not necessarily true, as we show in the section on finding k-cliques.

Lemma 4.0.1 Suppose one can find a maximum weight k-clique in an n node graph in O(T (n))
time. Then, for any fixed graph H on k nodes, one can find a maximum induced H-subgraph of an
n node graph in O(n2 + T (n)) expected time.

Proof. Let G = (V,E) be the given graph. Let G have weights wV : V → R and wE : E → R.
Create k sets S1, . . . , Sk initially empty. For every node v of the input graph G, with probability
pi = 1/k place v in Si. In expectation, we add each node to 1 set Si. We will create a graph G′

based on G and H. G′ will have O(n) nodes in expectation.
We will first define the edges of G′. Let H = (VH , EH) have nodes h1, . . . , hk. Consider every

pair of indices i, j ∈ [k], i 6= j. For every two nodes u ∈ Si, v ∈ Sj , place an edge between u and v
in G′ if (hi, hj) ∈ EH and (u, v) ∈ E, or if (hi, hj) /∈ EH , (u, v) /∈ E and u 6= v. This transformation
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takes expected O(n2) time as k is fixed and for every node of G there are only a constant number
expected copies in G′.

Consider a subgraph H ′ = (VH′ , EH′) of G isomorphic to H so that the isomorphism maps node
h′i of H ′ to node hi of H. Then with probability at least 1/kk for every i = 1, . . . , k, node h′i of
H ′ is in set Si. Furthermore, the nodes corresponding to the h′i in G′ form a clique as for every
i, j ∈ [k], i 6= j, (h′i, h

′
j) ∈ EH′ if and only if (hi, hj) ∈ EH as H and H ′ are isomorphic.

Now suppose that a subgraph H ′ of G′ is a clique. Since no two nodes in the same set Si are
linked by an edge, the nodes h′1, . . . , h

′
k are in different sets Si. Suppose for i = 1, . . . , k, node

h′i ∈ Si. As H ′ is a clique, it must be the case that all h′i correspond to distinct nodes of G.
Furthermore, because of the construction of G′, since (h′i, h

′
j) is an edge in G′, then (h′i, h

′
j) is an

edge in G if and only if (hi, hj) is an edge in H. Thus H and H ′ must be isomorphic and H ′ is an
induced H-subgraph in G.

We now define the weights of G′. We let every node u of G′ inherit its weight wV (u) from G.
If (u, v) is an edge in G′ with u ∈ Si and v ∈ Sj such that (hi, hj) ∈ EH , then let (u, v) inherit its
weight wE(u, v) from G. Otherwise, set its weight to 0. In this way, k-cliques of G′ have the same
weight sum as their corresponding H-subgraphs in G. �

4.1 Unweighted Subgraphs

We first investigate the H-subgraph problem in the unweighted setting.

4.1.1 Cycles

We consider the H-subgraph problem when H is Ck, a cycle on k nodes. We give some reductions
between the directed and undirected versions of the problem obtaining Figure 4.1.1.

A major result on the Ck-subgraph problem was proven by Yuster and Zwick who showed that
an undirected even cycle in an n node graph can be found in O(n2) time:

Theorem 4.1.1 (Yuster and Zwick [102]) Let k > 1 be a constant. Given an undirected graph
G on n nodes, a (not necessarily induced) cycle subgraph C2k on 2k nodes, if it exists, can be found
in O(n2) time.

Interestingly, for fixed k, the best known runtime bound for finding an odd Ck in an undirected
graph, or an even directed Ck in a directed graph is O(nω). Hence the problems of finding even
directed cycles, and finding odd undirected cycles seem more difficult than the problem of finding
an even undirected cycle. Our reductions in this section give some intuition about why this might
be the case.

We will denote an undirected cycle on k nodes by Ck and a directed cycle on k nodes by
−→
Ck.

We first show that finding a directed k-cycle is at least as hard as finding an undirected k-cycle. We
then show that finding an odd undirected k-cycle is at least as hard as finding a directed k-cycle.
Finally we note that finding a k-cycle is at least as hard as finding a k − 1-cycle. Our results are
shown pictorially in Figure 4.1.1.

Theorem 4.1.2 Let k be fixed. Suppose that there is an algorithm which given a directed n node
graph G finds a

−→
Ck subgraph of G (if it exists) in O(T (n)) time. Then there is an O(n2 + T (n))

expected time algorithm which given an undirected n node graph G′, finds a Ck subgraph of G′, if
it exists.
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−→
C4

−→
C3

C3

−→
C2k

−−−→
C2k−1

−→
C5

C5 C2k−1 C2k+1

. . .

. . .

−−−→
C2k+1

. . .

. . .

Figure 4.1: An arrow from cycle C of length k to cycle C ′ means that there is an expected O(f(k)n2)
time reduction from the C-subgraph problem on n node graphs to the C ′-subgraph problem on
O(n) node graphs for some computable function f . Theorem 4.1.2 proves Ck → ~Ck. Theorem 4.1.3
proves ~C2k+1 → C2k+1. Theorem 4.1.4 proves ~Ck → ~Ck+1. The arrows are composable, and we
also obtain C2k−1 → C2k+1.

Proof. Given an undirected graph G′ on n nodes in which we want to find a Ck, we will construct
in expected O(n2) time an O(n) node graph G such that finding a

−→
Ck in G corresponds to finding

a Ck in G′.
Suppose we have k colors labeled 1, . . . , k. Then, for every node v of G′, color v with color i

with probability 1/k. If a node does not get any colors, flip its coins again. We expect that after
O(1) coin flips per node each node will have at least one color, and an expected O(1) colors.

For every node v of G′ and color i with which v is colored, create a node vi in G. For each
i = 1, . . . , k, create a directed edge (ui, vi+1) in G, if (u, v) is an edge of G′ and u is colored i and
v is colored i + 1. Here the indices are taken mod 2k.

Any directed k-cycle of G, v1
1 → v2

2 → . . . → vk
k → v1

1 corresponds to an undirected k-cycle of
G′, v1 → v2 → . . .→ vk → v1.

Suppose v1 → v2 → . . .→ vk → v1 is an undirected k-cycle of G′. Then with probability 1/kk,
for each i = 1, . . . , k, vi received color i. Hence with probability 1/kk, v1

1 → v2
2 → . . . → vk

k → v1
1

is a directed cycle in G′. In expectation we need to repeat this reduction kk = O(1) times in order
for the directed cycle to appear in G′. �

If we consider only odd cycles, the converse of Theorem 4.1.2 also holds:

Theorem 4.1.3 Let k > 0 be fixed. Suppose that there is an algorithm that given an undirected
n node graph G finds a C2k+1 subgraph of G (if it exists) in O(T (n)) time. Then there is an
O(n2 + T (n)) time algorithm that given a directed n node graph G′, finds a

−−−→
C2k+1 subgraph of G′,

if it exists.

Proof. We proceed very similarly to Theorem 4.1.2. Given a directed graph G′ on n nodes in
which we want to find a

−−−→
C2k+1, we will construct in expected O(n2) time an O(n) node graph G

such that finding a C2k+1 in G corresponds to finding a
−−−→
C2k+1 in G′.

Suppose we have 2k + 1 colors labeled 1, . . . , (2k + 1). Then, for every node v of G′, color v
with color i with probability 1/(2k + 1). If a node does not get any colors, flip its coins again. We
expect that after O(1) coin flips per node each node will have at least one color, and an expected
O(1) colors.

For every node v of G′ and color i with which v is colored, create a node vi in G. For each
i = 1, . . . , (2k + 1), create an undirected edge (ui, vi+1) in G, if (u, v) is a directed edge of G′ and
u is colored i and v is colored i + 1. Here the indices are taken mod (2k + 1).

41



First consider a (2k + 1)-cycle of G′, say v1 → v2 → . . . → v2k+1 → v1. With probability
1/(2k + 1)2k+1 this cycle appears in G as the (2k + 1)-cycle v1

1 → v2
1 → . . .→ v2k+1

2k+1 → v1
1.

Now, consider any (2k + 1)-cycle C of G. Suppose that there is some i ∈ [2k + 1] such that
C does not contain any edge (ui, vi+1 mod (2k+1)). Then C must be even. Hence the only possible
undirected (2k + 1)-cycles in G are of the form v1

1 → v2
1 → . . .→ v2k+1

2k+1 → v1
1, and they correspond

to directed cycles v1 → v2 → . . .→ v2k+1 → v1 of G′.
We expect to repeat the reduction (2k)2k = O(1) times for a (2k + 1) cycle to appear in G if a

−−−→
C2k+1 in G′ exists. The reduction itself takes O(n2) time. �

Finally, we show that as k grows the time complexity of finding a Ck and a
−→
Ck grows.

Theorem 4.1.4 Let k > 2 be fixed. Suppose that there is an algorithm that given a directed n node
graph G finds a Ck+1 subgraph of G (if it exists) in O(T (n)) time. Then there is an O(n2 + T (n))
time algorithm which given a directed n node graph G′, finds a

−→
Ck subgraph of G′, if it exists.

Proof. We proceed very similarly to Theorems 4.1.3 and 4.1.2. Given a directed graph G′ on n

nodes in which we want to find a
−→
Ck, we will construct in expected O(n2) time an O(n) node graph

G such that finding a Ck+1 in G corresponds to finding a
−→
Ck in G′.

Suppose we have k colors labeled 1, . . . , k. Then, for every node v of G′, color v with color i
with probability 1/(k). If a node does not get any colors, flip its coins again. We expect that after
O(1) coin flips per node each node will have at least one color, and an expected O(1) colors.

For every node v of G′ and color i with which v is colored, create a node vi in G. For each
i = 1, . . . , k − 1, create an undirected edge (ui, vi+1) in G, if (u, v) is a directed edge of G′ and u
is colored i and v is colored i + 1. Here the indices are not taken mod k, so that we do not have
edges (uk, v1).

For every node v1 of G, add a new node v′1 to G and an edge (v′1, v1). For every two nodes uk

and v′1 of G such that (u, v) is a directed edge of G′, add an edge (uk, v
′
1) to G.

Clearly, any directed (k+1)-cycle of G has the form v1
1 → v2

2 → . . .→ vk
k → v′11 → v1

1 and hence
corresponds to a k-cycle v1 → v2 → . . .→ vk → v1 of G′.

Conversely, a k-cycle of G′ appears in G with probability 1/kk. Hence we expect that after
O(1) repetitions of this reduction that if G′ has a k-cycle, then G will contain a (k + 1)-cycle. The
reduction takes expected O(n2) time. �

It is likely that our above two results can be derandomized, perhaps using perfect hash families,
as in [4]. The dependence on k in our algorithms can also probably be improved.

4.1.2 k-Clique and Related Problems

The k-clique problem is one of the fundamental problems in computer science. It is one of Karp’s
original NP-complete problems [56]. In parametrized complexity k-clique plays a central role: one
of the major problems in this area is to resolve whether W [1] = FPT , and k-clique is W [1]-
complete [34]. Furthermore, results by Chen et al. [20] imply that if there is an no(k) algorithm for
k-clique 1, then many of the classical NP-complete problems are solvable in subexponential time.

The naive algorithm for k-clique runs in O(nk) time by examining all k-tuples of vertices. In
1978, Itai and Rodeh [54] showed that a 3-clique (triangle) in an n-node graph can be found in the
same time as n×n Boolean matrix multiplication. Nowadays this means that there is an O(n2.376)

1here k is assumed to be any unbounded function of n
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algorithm [28] for 3-clique; we denote this exponent by ω. In 1984 ([64], p. 46), László Lovász asked
if there is an O(n0.01k) algorithm for general k-clique. He noted that Fan Chung and Richard Karp
had used Strassen’s fast matrix multiplication [85] to obtain better algorithms for 100-clique. In
the next year, Nešetřil and Poljak [69] showed how to generalize Itai and Rodeh’s [54] reduction to
obtain an O(nωk) time algorithm for 3k-clique. Since that result very little progress has been made.
In 2004 Eisenbrand and Grandoni [37] used rectangular matrix multiplication to obtain improved
running times for some values of k, e.g. for k ≥ 5 such that k = 2 mod 3.

Although these algebraic matrix product approaches yield good theoretical time bounds, the
known fast matrix multiplication algorithms that run in O(n3−ε) time for ε > 0 ([85, 28]) are very
inefficient in practice. Another issue is that all of the above mentioned algorithms for k-clique use
nΩ(k) space. In fact, in the same 1984 article ([64], p.46), László Babai asked if there exists an o(nk)
algorithm for k-clique using O(nc) space for some constant c independent of k. This question has
until now remained unanswered. In fact, the problem of designing better time and space efficient
k-clique algorithms has been recently reraised by Woeginger [101].

Combinatorial, nonalgebraic algorithms based on preprocessing and table look-up offer less
impressive asymptotic improvements but seem to be much more practical than algorithms based
on algebraic fast matrix multiplication (see Chapter 7 for combinatorial algorithms in sparse graphs).
Using a “Four Russians” type approach for combinatorial matrix multiplication [6, 79, 7, 17] one
can obtain an O(nk/(k log2 n)) time algorithm for k-clique that hides no enormous constant factors
in its runtime. Nevertheless, even this algorithm is space-inefficient – it requires Ω(n2k/3) space.

In this section we answer Babai’s question in the affirmative. We give a combinatorial algorithm
for k-clique that runs in O(nk/ logk−1 n) time for every fixed k ≥ 3 and uses O(knε) space, for any
constant ε > 0 independent of k. This algorithm is not only space-efficient but also: (a) it beats
the runtimes of the current best combinatorial algorithms for finding k-clique for k > 3, and (b) it
can be adapted easily to obtain an algorithm for maximum node-weighted k-clique with identical
runtime. (We will give an algebraic algorithm for the node-weighted k-clique problem in the next
section. Also note that Czumaj and Lingas [30] have shown that maximum weighted 3k-clique can
be found in O(nωk+ε) for all ε > 0 but we cannot apply their method here because of the extra
O(nε) factor.)

In the second part of the section we consider finding k-node subgraphs that are almost cliques:
induced subgraphs that are cliques missing one edge. This scenario is a generalization of the well-
studied recognition problem for P3-free or diamond-free graphs. A folklore result shows that an
induced P3 in a graph can be found in O(n2) time. Kloks, Kratsch and Müller [58] show that an
induced diamond in a graph can be found in O(nω +m3/2) time and Eisenbrand and Grandoni [37]
improve this running time to O(m3/2) by a combinatorial algorithm. We generalize these results to
show that a Kk − e in a graph can be found (if it exists) combinatorially in O(m(k−1)/2) time and
O(m+n) space. This running time is better than any known combinatorial algorithm for k-clique.

Algorithm for k-Clique. We begin with a small-space combinatorial algorithm which given a
node-weighted graph finds a k-clique of maximum weight sum. The basic idea used in the algorithm
is to reduce the problem to finding maximum node-weighted (k−1)-cliques in many small O(log n)
size subgraphs, and then attempt to complete these cliques by adding an extra node. To use small
space, our algorithm proceeds in iterations so that each new iteration reuses the space used by the
previous ones.

Theorem 4.1.5 Let ε > 0 and k ≥ 3. Let g(k) = (2(k − 1))k−1. Let G = (V,E) be a given graph.
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There is an algorithm for k-clique that runs in O
(
g(k) · nk

(ε log n)k−1

)
time and uses O(knε) space.

Proof. Let G = (V,E), ε > 0 and k be given. Let ε′ = ε/(2(k − 1)).
Partition the nodes into n/(ε′ log n) parts of ε′ log n nodes each. The partition is chosen by

grouping consecutive nodes according to the order of the columns in the adjacency matrix. This
ensures that any k chunks of a row corresponding to k of the (ε′ log n)-size parts can be concatenated
in O(k) time, assuming constant time look-ups and an O(log n)-word RAM.2

We will process all (k − 1)-tuples of parts as follows. Fix a (k − 1)-tuple of parts. Obtain
the union U of these parts, and create a look-up table TU with (ε′(k − 1) log n)-bit keys. For all
2ε′(k−1) log n subsets of U determine whether the corresponding induced subgraph of G contains
a (k − 1) clique. Store the result for each subset (a k-clique, if found) in TU , with the binary
(ε′(k − 1) log n)-length vector representing the subset as the key. When a new union is processed,
the look-up table information is overwritten.

Now, for every node v ∈ V , concatenate the portions of the neighborhood vector for v corre-
sponding to U in O(k) time to obtain a (ε′(k − 1) log n)-bit key. Look up in TU using this key
whether the induced neighborhood of v in U contains a (k−1)-clique. If this is so, return the union
of the clique and v.
Creating all tables TU takes

O((n/(ε′ log n))k−1 · nε′(k−1) · (ε′(k − 1) log n)k−1) = O(n(1+ε′)(k−1) · (k − 1)k−1)

time, and O(k log n2ε′(k−1) log n) space over all. The entire procedure (assuming O(1) time look-ups
in TU ) takes O(n · (n/(ε′ log n))k−1)) time, i.e.

O(n(1+ε′)(k−1) · (k − 1)k−1 + nk/(ε′ log n)k−1)

time overall. Since we set ε′ = ε/(2(k− 1)), the runtime becomes O((2(k− 1))k−1 ·nk/(ε log n)k−1).
The space usage becomes asymptotically

k log n2ε′(k−1) log n = knε/2 log n = O(knε).

�
One can modify the algorithm so that a maximum weight clique can be found: for every

(ε′(k − 1) log n)-node subgraph of a union of (k − 1)-tuples of node partitions, compute the the
maximum weight (k − 1) clique and store that clique in the look-up table for the union. Since
the algorithm goes over all possible choices for a k-th node, the maximum weight clique can be
returned.

Corollary 4.1.1 Let ε > 0 and k ≥ 3. Let g(k) = (2(k − 1))k−1. Let G = (V,E) be a graph with
arbitrary real weights on its nodes. There is an algorithm for maximum node-weighted k-clique that
runs in O

(
g(k) · nk

(ε log n)k−1

)
time and uses O(knε) space.

We can use the algorithm of Theorem 4.1.5 to obtain an algorithm with a running time depend-
ing on the number of edges in the graph. We use an idea used in many other results (e.g. [5]) –
either the clique has all high degree vertices, or it has a low degree vertex. In both cases we can
reduce the problem to finding a clique in a strictly smaller subgraph.

2The same can be accomplished on a pointer machine using some tricks.
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Theorem 4.1.6 Let k ≥ 5 and ε > 0. Let g(k) = (2(k−1))k−1. There is an algorithm for k-clique

that runs in O(kmε/2) space and O

(
g(k) · m

k
2

(ε log m)
(k−2− 1

k−1
)

)
time on graphs with m edges.

Proof. Let D be a parameter. Consider the set S of all nodes of degree at least D. There are
at most m/D such nodes. Use the algorithm of Theorem 4.1.5 to find a k-clique contained in S if
one exists in O(g(k)(m/D)k/(ε log(m/D))k−1) time. If no k-clique is found in S, any k-clique in
the graph must contain a node of degree < D. Go through all edges (u, v) incident on low degree
nodes, and look for a (k−2)-clique in the intersection of the neighborhoods of u and v, again using
Theorem 4.1.5. This takes time O(mg(k − 2)Dk−2/(ε log D)k−3).

To minimize the final running time of the clique algorithm, we set

mDk−2/(ε log D)k−3 = Θ((m/D)k/(ε log(m/D))k−1),

and hence D =
√

m/(ε log m)
1

k−1 suffices. When we plug back in, the running time becomes
O(g(k)mk/2/(ε log m)(k−2− 1

k−1
)). The space usage is O(k(m/D)ε) in the first part of the procedure,

and O((k− 2)Dε) in the second part. The space usage in the first part dominates and is O(kmε/2).
�

Finding an induced Kk−e. In graph theory, we use Kk−e to denote a k-clique missing one edge.
A K3− e is also called a P3 (a path on 3 nodes), and a K4− e is a diamond. Diamond-free graphs,
graphs containing no induced K4 − e, are well studied in graph theory, in particular in connection
to the strong perfect graph theorem [23] which was shown by Tucker [91] to hold for these graphs.
In terms of the computational complexity of recognizing diamond-free graphs, Kloks et al. [58]
showed that an induced diamond in a graph can be found in O(nω + m3/2) time. Eisenbrand and
Grandoni [37] improved this running time to O(m3/2) combinatorially. We generalize this result by
showing that finding an induced Kk − e in a given graph, or recognizing (Kk − e)-free graphs can
be done combinatorially in O(m(k−1)/2) time and O(m + n) space on graphs with m edges. Our
proofs are really short and simple. We include this result to show that removing even just one edge
from a k-clique seems to make finding an induced subgraph easier: our algorithm is faster than any
known combinatorial algorithm for k-clique.

We begin by a lemma that gives a linear time algorithm for finding a P3. To our knowledge, the
previous best algorithm had a running time of O(n2). The following lemma also gives an example of
a case for which finding a k-clique seems harder than finding a not necessarily induced H-subgraph
on k nodes. Recall that in the beginning of the chapter we showed that finding a k-clique is at least
as hard as finding an H-subgraph on k nodes.

Lemma 4.1.1 One can find an induced P3 or determine that the graph is P3-free in O(m + n)
time.

Proof. We will label nodes by their first processed neighbor. Give an ordering to the nodes. Begin
with node 1. When processing node i, if i has not been labeled yet, label it i and go through all its
neighbors. Label all unlabeled neighbors i. If some neighbor x is labeled j, then j, x, i form a P3.

Suppose node i is already labeled with j. Then, if deg(i) 6= deg(j), find a node x that is in the
difference of their neighborhoods and return x, i and j as a P3. Otherwise, suppose deg(i) = deg(j).
Check whether all the neighbors of i are labeled j. If so, move on to node i+1. On the other hand,
if some neighbor x of i is labeled with j′ 6= j, then
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• if j′ > j, then when j′ was processed, there was no edge between x and j and hence j, i, x
form a P3;

• if j > j′, then when j was processed, there was no edge between i and j′ and hence i, x, j′

form a P3.

If some neighbor x does not have a label, then x does not have an edge to j and hence j, i, x form a
P3. If by the end of the procedure no P3 was returned, then the graph is a disjoint union of cliques
and hence contains no induced P3. This is because every node i has the same neighbors as its first
encountered neighbor. This entire labeling procedure takes O(m + n) time. �

Because finding induced P3 and K4−e can be done efficiently, we can give an inductive procedure
to find induced Kk − e for general k ≥ 3.

Theorem 4.1.7 An induced Kk − e in a graph with m edges can be found in O(m(k−1)/2) time,
for any k ≥ 3.

Proof. If k = 3, then use the algorithm from Lemma 4.1.1 to find a K3− e in O(m) time. If k = 4,
use Eisenbrand and Grandoni’s algorithm to find a K4 − e in O(m3/2) time. In both cases this is
O(m(k−1)/2).

Suppose k > 4. Let i = k mod 2, i ∈ {0, 1}. Consider all (k − 4 + i)-cliques in the graph.
There are at most m(k−4+i)/2 such cliques as each such clique can be represented as a (k− 4+ i)/2-
matching. For each (k− 4 + i)-clique, in O(km) time find the intersection N of the neighborhoods
of the nodes in the clique. Then, in O(m(3−i)/2) time find an induced K4−i − e in N , or determine
that it does not exist. (Note, K4−i − e is either K3 − e or K4 − e.) The overall running time
becomes O(km(k−2+i)/2 + m(k−4+i+3−i)/2) = O(km(k−1)/2). When k is even, the running time is
O(m(k−1)/2). �

The algorithm from Theorem 4.1.7 runs in linear space because both Eisenbrand and Grandoni’s
algorithm for finding diamonds and our algorithm from Lemma 4.1.1 use linear space, and each of
the separate recursive calls to these algorithms are on smaller graphs.

4.2 Weighted Subgraphs

In this section we present algorithms for solving the maximum (induced) H-subgraph problem in
a real vertex-weighted or edge-weighted graph. Some of our algorithms are based, in part, on
fast matrix multiplication, just as in previous chapters. In several cases, our algorithms use fast
rectangular matrix multiplication algorithms of Coppersmith [26] and Huang and Pan [53]. All of
our results are applicable to both directed and undirected graphs. Likewise, all of our results on
the maximum H-subgraph problem hold for the analogous minimum H-subgraph problem. In most
of our algorithms, we use the addition-comparison model for handling real numbers. That is, real
numbers are only allowed to be compared or added. In particular, these algorithms are strongly
polynomial.

Prior to this work, for h-node graphs H, the only known algorithm for maximum H-subgraph
in the vertex-weighted case (moreover, the All-Pairs version of the problem) was the näıve O(nh)
algorithm. In general, reductions to fast matrix multiplication tend to fail miserably in the case of
real-weighted graph problems. The most prominent example of this is the famous All-Pairs Shortest
Paths (APSP) problem, for which no truly subcubic algorithm is known.
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For simplicity, we present our results only for the case when |V (H)| = 0 mod 3. The results
are easily extendable for general H. We use the following folklore lemma.

Lemma 4.2.1 (Folklore) If a maximum weight triangle in an edge- or node-weighted undirected
graph can be found in T (n) time, then for any 3h-node directed graph H, a maximum H-subgraph
of an edge- or node-weighted graph can be found in O(T (nh)) time.

Proof. Let H = (V (H), E(H)) be a constant size 3h-node subgraph with V (H) = {x1, . . . , x3h}.
Let G = (V,E) be given graph with edge weights we : E → R and node weights wv : V → R;
|V | = n. We construct a new, undirected, graph G′ on ≤ nh nodes with edge weights w′

e : E → R
and node weights w′

v : V → R as follows. G′ will be a tripartite graph with partitions P0, P1 and
P2.

For every ordered h-tuple of distinct nodes (v1, . . . , vh) of G and for each partition Pi, create a
node of G′ in Pi if the following condition holds: for every k = 1, . . . , h, ` = 1, . . . , h, (xih+k, xih+`) ∈
E(H) iff (vk, v`) ∈ E.

G′ has ≤ 3nh nodes. Let the weight w′
v(t) of a node t = (v1, . . . , vh) of G′ be defined as

w′
v(t) :=

h∑
i=1

wv(vh) +
∑

(vk,v`)∈E

we(vk, v`).

We now define the edge relation for G′. We add an edge between two nodes t = (v1, . . . , vh) and
t′ = (v′1, . . . , v

′
h) of G′ if the following is true:

• t ∈ Pi, t′ ∈ Pj and i 6= j;

• for every k = 1, . . . , h, ` = 1, . . . , h: vk 6= v′`;

• for every k = 1, . . . , h, ` = 1, . . . , h: (xih+k, xjh+`) ∈ E(H) if and only if (vk, v
′
`) ∈ E and

(xjh+k, xih+`) ∈ E(H) if and only if (v′k, v`) ∈ E;

The weight of an edge in G′ between t = (v1, . . . , vh) and t′ = (v′1, . . . , v
′
h) is given by

w′
e(t, t

′) :=

 ∑
(vk,v′`)∈E

we((vk, v
′
`))

+

 ∑
(v′k,v`)∈E

we((v′k, v`))

 .

G′ has the property that its triangles correspond exactly to the H-subgraphs of G. In particular,
a maximum weight triangle in G′ is a maximum weight H-subgraph of G. Hence, if a maximum
weight triangle can be found in T (n) time in an undirected graph on n nodes. Then a maximum
H-subgraph of an n-node graph can be found in O(T (3nh)) time. �

Because of the previous lemma, in the remainder of the chapter we focus on finding maximum
weight triangles. The running times for maximum H-subgraph easily follow.

Another folklore result states that finding a maximum edge-weighted triangle is as hard as the
general case of finding a maximum triangle in a node- and edge-weighted graph.

Lemma 4.2.2 (Folklore) One can reduce the problem of finding a maximum triangle in a general
weighted graph to the case in which the graph has only edge weights.
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Proof. Suppose G = (V,E, we, wv) is given. We simply transform it to G′ = (V,E, w) where
w : E → R is given by w(u, v) = we(u, v) + (wv(u) + wv(v))/2. �

We obtain truly subcubic algorithms for finding a maximum weight triangle in a node-weighted
graph. The edge-weighted case of triangle finding seems genuinely harder than the node-weighted
case. We are only able to relate its time complexity to the time to compute the distance product
of two matrices.

4.3 Maximum Triangles in Edge Weighted Graphs

We first show how to reduce the maximum H-subgraph problem in edge-weighted graphs to the
problem of computing a distance product. In particular, we prove the following.

Theorem 4.3.1 If G = (V,E) is a graph with n vertices, and w : E → R is a weight function, then
a maximum weight triangle of G (if one exists) can be found in O(D(n)) time where D(n) is the
time to compute the distance product of two n× n real matrices, D(n) = O(n3 log log3 n/ log2 n).

Proof. Let A be the negative of the adjacency matrix of G, i.e. for all i, j ∈ [n],

A[i, j] =
{
−w(i, j) if (i, j) ∈ E
∞ otherwise.

Let C be the negative of the distance product of A and A, i.e.

C[i, j] = − min
k∈[n]

(A[i, k] + A[k, j]) = − min
k∈[n]

(−w(i, k)− w(k, j)) = max
k∈[n]

(w(i, k) + w(k, j)).

Go through all i, j ∈ [n] and compute in O(n2) additional time

W = max
i,j

[w(j, i) + C[i, j]] = max
i,j,k

[w(j, i) + w(i, k) + w(i, k)].

W is the weight of the maximum weight triangle in G, and the i, j pair for which it is achieved
can be used to find the actual triangle in O(n) time. The overall runtime is hence O(D(n) + n2)
where D(n) is the runtime to compute the distance product of A and A. The current best known
algorithm for the distance product is by Chan [18] and runs in O(n3 log log3 n/ log2 n) time. �

The above theorem actually also shows that all pairs maximum weight triangles in edge-weighted
graphs can be computed in O(n3 log log3 n/ log2 n) time. The all pairs version of the problem is
actually just as hard as computing the distance product as the distance product of two n × n
matrices A and B can be viewed as an instance of all pairs maximum weight triangles in an edge-
weighted tripartite graph (V1 ∪ V2 ∪ V3, E, w) such that |V1| = |V2| = |V3| = n: let vj

i be the ith
vertex of Vj for j = 1, 2, 3, i ∈ [n]; then for all i, j ∈ [n], (v1

i , v
2
j ) ∈ E, and w(v1

i , v
2
j ) = −A[i, j]; for

all i, j ∈ [n], (v2
i , v

3
j ) ∈ E, and w(v2

i , v
3
j ) = −B[i, j]; for all i, j ∈ [n], (v3

i , v
1
j ) ∈ E, and w(v3

i , v
1
j ) = 0.

Corollary 4.3.1 Computing the distance product of two n × n matrices and computing all pairs
maximum weight triangles in an edge weighted graph on n nodes are computationally asymptotically
equivalent.
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4.4 Maximum Node-Weighted Triangle in Sub-Cubic Time

We begin by deriving algorithms for the maximum node weighted triangle problem based on the
dominance product. Afterwards we show how one can use rectangular matrix multiplication to
reduce the running time.

4.4.1 A dominance product based approach

We first present a weakly polynomial deterministic algorithm, then a randomized strongly polyno-
mial algorithm.

Theorem 4.4.1 On graphs with integer weights, a maximum vertex-weighted triangle can be found
in O(n(ω+3)/2 · log W ) time, where W is the maximum weight of a triangle. On graphs with real
weights, a maximum vertex-weighted triangle can be found in O(n(ω+3)/2 ·B) time, where B is the
maximum number of bits in a weight.

Proof. The idea is to obtain a procedure that, given a parameter K, returns an edge (i, j) from
a triangle of weight at least K. Then one can binary search to find the weight of the maximum
triangle, and try all possible vertices k to get the triangle itself.

We first explain the binary search. Without loss of generality, we assume that all edge weights
are at least 1. Let W be the maximum weight of a triangle. Start by checking if there is a triangle
of weight at least K = 1 (if not, there are no triangles). Then try K = 2i for increasing i, until
there exists a triangle of weight 2i but no triangle of weight 2i+1. This i will be found in O(log W )
steps. After this, we search on the interval [2i, 2i+1) for the largest K such that there is a triangle
of weight K. This takes O(log W ) time for integer weights, and O(B) time for real weights with B
bits of precision.

We now show how to return an edge from a triangle of weight at least K, for some given K.
Let V = {1, . . . , n} be the set of vertices. We will create two n× n matrices, A and B. For every
i ∈ V , we make a row of A, Ai = (e(1), . . . , e(n)), where

e(j) =

{
K − w(i) if there is an edge from i to j

∞ otherwise.

(In implementation, we can of course substitute a sufficiently large value in place of ∞.) We also
make a column of B, Bi = (e′(1), . . . , e′(n))T , where

e′(j) =

{
w(i) + w(j) if there is an edge from i to j

−∞ otherwise.

Compute the dominance product matrix D(K) of the matrices A and B. For all edges (i, j) in
the graph, check if there exists a k such that Ai[k] ≤ Bj [k] by examining entry D(K)[i, j]. If such
a k exists, then we know there is a vertex k such that

K − w(i) ≤ w(j) + w(k) =⇒ K ≤ w(i) + w(k) + w(j),

that is, there exists a triangle of weight at least K using edge (i, j). Observe that the above works
for both directed and undirected graphs. �

49



In the above, the binary search over all possible weights prevents our algorithm from being
strongly polynomial. We would like to have an algorithm that, in a comparison-based model, has a
runtime with no dependence on the bit lengths of weights. Here we present a randomized algorithm
that achieves this.

Theorem 4.4.2 On graphs with real weights, a maximum vertex-weighted triangle can be found in
O(n(ω+3)/2 · log n) expected worst-case time.

We would like to somehow binary search over the collection of triangles in the graph to find the
maximum. As this collection is O(n3), we would then have our strongly polynomial bound. Ideally,
one would like to pick the “median” triangle from a list of all triangles, sorted by weight. But as
the number of triangles can be Ω(n3), forming this list is hopeless. Instead, we shall show how
dominance computations allow us to efficiently and uniformly sample a triangle at random, whose
weight is from any prescribed interval (W1,W2). If we pick a triangle at random and measure its
weight, there is a good chance that this weight is close to the median weight. In fact, a binary
search that randomly samples for a pivot can be expected to terminate in O(log n) time.

Let W1,W2 ∈ R ∪ {−∞,∞}, W1 < W2, and G be a vertex-weighted graph.

Definition 4.4.1 C(W1,W2) is defined to be the collection of triangles in G whose total weight
falls in the range [W1,W2].

Lemma 4.4.1 One can sample a triangle uniformly at random from C(W1,W2), in O(n(ω+3)/2)
time.

Proof. From the proof of Theorem 4.4.1, one can compute a matrix D(K) in O(n(ω+3)/2) time,
such that D(K)[i, j] 6= 0 iff there is a vertex k such that (i, k) and (k, j) are edges, and w(i)+w(j)+
w(k) > K. In fact, the i, j entry of D(K) is the number of distinct vertices k with this property.

Similarly, one can compute matrices E(K) and L(K) such that E(K)[i, j] and L(K)[i, j] contain
the number of vertices k such that (i, k) and (k, j) are edges, and w(i) + w(j) + w(k) ≤ K (for E)
or w(i) + w(j) + w(k) < K (for L). (This can be done by flipping the signs on all coordinates in
rows Ai of A and columns Bi of B from Theorem 4.4.1, then computing dominances, disallowing
equalities for L.)

Therefore, if we take F = E(W2)− L(W1), then F [i, j] is the number of vertices k where there
is a path from i to k to j, and w(i) + w(j) + w(k) ∈ [W1,W2].

Let f be the sum of all entries F [i, j]. For each (i, j) ∈ E, choose (i, j) with probability F [i, j]/f .
By the above, this step uniformly samples an edge from a random triangle. Finally, we look at the
set of vertices S that are neighbors to both i and j, and pick each vertex in S with probability
1
|S| . This step uniformly samples a triangle with edge (i, j). The final triangle is therefore chosen
uniformly at random. �
Observe that there is an interesting corollary to the above.

Corollary 4.4.1 In any graph, one can sample a triangle uniformly at random in O(nω) time.

Proof. (Sketch) Multiplying the adjacency matrix with itself counts the number of 2-paths from
each vertex to another vertex. Therefore one can count the number of triangles and sample just as
in the above. �

We are now prepared to give the strongly polynomial algorithm.
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Proof of Theorem 4.4.2: Start by choosing a triangle t uniformly at random from all triangles.
By the corollary, this is done in O(nω) time.

Measure the weight W of t. Determine if there is a triangle with weight in the range (W,∞),
in O(n(ω+3)/2) time. If not, return t. If so, randomly sample a triangle from (W,∞), let W ′ be its
weight, and repeat the search with W ′.

It is routine to estimate the runtime of this procedure, but we include it for completeness. Let
T (n, k) be the expected runtime for an n vertex graph, where k is the number of triangles in the
current weight range under inspection. In the worst case,

T (n, k) ≤ 1
k

k−1∑
i=1

T (n, k − i) + c · n(ω+3)/2

for some constant c ≥ 1. But this means

T (n, k − 1) ≤ 1
k − 1

k−2∑
i=1

T (n, k − i) + c · n(ω+3)/2,

so

T (n, k) ≤
(

1
k

+
k − 1

k

)
· T (n, k − 1)

+
(

1− k − 1
k

)
cn(ω+3)/2

= T (n, k − 1) +
c

k
n(ω+3)/2,

which solves to T (n, k) = O(n(ω+3)/2 log k).

4.4.2 A rectangular matrix product based approach

We reduce finding a maximum weight triangle in a node-weighted graph to computing the maximum
witness product of two matrices. The maximum witness product of two n× n Boolean matrices A
and B is the n× n matrix C with entries

C[i, j] = max {{k | A[i, k] ·B[k, j] = 1} ∪ {−∞}} , ∀i, j ∈ [n].

We can in fact reduce the more general All Pairs Maximum Weights Triangle problem (APMWT)
to computing a maximum witness product as follows. Suppose we are given a node-weighted graph
G = (V,E, w) and we want to find for all pairs of nodes u, v ∈ V a triangle going through u and v
of maximum weight sum. First sort all nodes in nondecreasing order of their weights. We obtain a
sorted list u1, . . . , un. Create an n× n adjacency matrix A for G as follows: for all i, j ∈ [n],

A[i, j] =
{

1 if (i, j) ∈ E
0 otherwise.

Then computing the maximum witness product of A and its transpose AT gives for every pair
of nodes u, v the maximum weight node x (if any) for which u, v, x form a triangle.

The following result was proven initially by Kowaluk and Lingas [59], but we discovered it
independently. It follows by some bucketting and rectangular matrix product.
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Theorem 4.4.3 ([59]) The maximum witness product of two n×n Boolean matrices can be com-
puted in O(n2.575) time.

Proof. Let A and B be the two given matrices. Let r be a parameter. Create dnr e pairs of n× r
matrices At and Bt (for t = 0, . . . , dnr e−1) as follows. For all i ∈ [n] and j ∈ [r], At[i, j] = A[i, tr+j]
and Bt[j, i] = B[tr + j, i]. In other words, we let At contain the t-th block of r consecutive columns
of A and Bt contain the t-th block of r consecutive rows of B.

For all t, compute the Boolean product of At and Bt using a rectangular matrix product
algorithm [53]. By Lemma 3.1.1 this takes O(r0.533n1.844 n

r ) time.
After doing this we know for every i, j ∈ [n] the maximum index block Bij of r columns of

A that contains a column k such that A[i, k] · B[k, j] = 1. Since each Bij contains at most r
columns, we can try each one of them by brute force and find the maximum k ∈ Bij for which
A[i, k] ·B[k, j] = 1. Over all i, j ∈ [n] this takes O(n2r) time.

To minimize the runtime, we set

n2r = r0.533n1.844 n

r
=⇒ r1.467 = n0.844 =⇒ r = n0.575.

The overall runtime becomes O(n2.575). �
The below corollary should be contrasted with the fact that APMWT in edge-weighted graphs

is as hard to compute as the distance product for which no truly subcubic algorithm is known.

Corollary 4.4.2 All Pairs Maximum Weight Triangles in a node-weighted graph can be computed
in O(n2.575) time.

4.4.3 The Czumaj and Lingas approach and applications

Czumaj and Lingas [30] found a way to justify the intuition that finding one maximum node-
weighted triangle should be easier than computing the maximum triangle for all pairs of nodes.
They present a clever idea of reducing the problem of finding a maximum weight triangle to that
of determining whether there is a triangle in the graph. Their algorithm is roughly as follows:

Let T (n) be the runtime of determining the existence of a triangle in an unweighted n-node
graph. Let G = (V,E, w) be a given node-weighted graph for which we want to find the maximum
weight triangle. We begin by creating a sorted list of the nodes (in nondecreasing order of w(·)).

Our algorithm will be given 3 lists A, B, C of nodes from V in sorted order by their weights.
The edges between nodes are induced from E. We will be guaranteed that there is a triangle with
one node in each of A, B and C. Initially, A = B = C = V where V is the vertex set in sorted
order of w. We have checked in T (n) time that there is a triangle in G.

We want to find a maximum weight triangle with endpoints in A,B, C. Let g be a (constant)
parameter. If A,B and C have ≤ g nodes in them, then we can find a triangle with endpoints
in A,B, C in O(1) time. Otherwise, we begin by bucketting the nodes of A into g roughly equal
consecutive lists A1, . . . , Ag. We do the same to B and C obtaining {B1, . . . , Bg} and {C1, . . . , Cg}.
Then, for all triples {Ai, Bj , Ck} we check in O(g3T (3n/g)) time whether there is a triangle with
endpoints in Ai, Bj , and Ck. We now have a list of all triples {Ai, Bj , Ck} for which there is a
triangle. If for some triple {Ai, Bj , Ck} there exists another triple {Ai′ , Bj′ , Ck′} in the list with
i′ ≥ i, j′ ≥ j and k′ ≥ k, then we remove {Ai, Bj , Ck} from the list. Czumaj and Lingas show that
there will be ≤ O(g2) triples left in the list after this processing. We can then do O(g2) recursive
steps.
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The running time recurrence becomes

F (n) ≤ g3T (3n/g) + g2F (n/g).

Suppose T (n) = nc for some 2 ≤ c < 2.376. Then the recurrence can be viewed as

F (n) ≤ g3−cnc + g2F (n/g).

Czumaj and Lingas show that one can set g = O(1) so that if c > 2, then F (n) = O(nc) and
if c = 2, F (n) = O(n2 log n). In particular, a maximum node-weight triangle can be found in
O(nω) = O(n2.376) time.

We show that their approach can be extended to find for all pairs of nodes u, v in a node-
weighted graph a triangle (if it exists) of weight sum ≥ K, for a given global parameter K. This
shows that the approach is powerful enough to handle some all-pairs problems, yet it is unclear
whether it can be used to compute the maximum witness product.

Theorem 4.4.4 Given a node-weighted graph G = (V,E, w) and a parameter K, in O(nω) one
can compute for all nodes u, v ∈ V the number of triangles with weight sum ≥ K going through u
and v.

Proof. For proof simplicity we will omit the big-O notation. Just as in the maximum triangle
algorithm, suppose we are given three lists of nodes A, B and C, each of size n. We are also given
K, and we will return an n× n matrix which for every ai ∈ A, ci ∈ C gives the number of bi ∈ B
such that there is a triangle {ai, bi, ci} of weight at least K.

As before, bucket A,B, C each into g buckets of size dn/ge, {A1, . . . , Ag}, {B1, . . . , Bg}, {C1, . . . , Cg}.
Create an all zero result matrix R.

For all triples Ai = (a′′, . . . , a′′′), Bj = (b′′, . . . , b′′′), Ck = (c′′, . . . , c′′′) of buckets do:

• if either w(a′′) = w(a′′′) or w(c′′) = w(c′′′) (W.L.O.G. assume the former; the latter is
analogous)

– create two dn/ge × dn/ge matrices X and Y . X is the adjacency matrix of A→ B, i.e.
for all a ∈ A, b ∈ B,

X[a, b] =
{

1 if (a, b) ∈ E
0 otherwise.

For all b ∈ B, c ∈ C,

Y [b, c] =
{

1 if (b, c) ∈ E and w(b) + w(c) ≥ K − a′′

0 otherwise.

Multiply X and Y in O((n/g)ω) time. After this, add all edges which are determined
to be parts of a triangle, entry by entry, to the corresponding entries in R; we are done
with the triple.

• otherwise, create the adjacency matrices X and Y of A → B and B → C respectively.
Compute the product D of X and Y in O((n/g)ω) time.

– if w(b′′) = w(b′′′), for all (i, j) ∈ E such that w(i) + w(j) ≥ K − b′′, add D[i, j] to R[i, j];
we are done with the triple.
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• Now consider all remaining triplies Ai = (a′′, . . . , a′′′), Bj = (b′′, . . . , b′′′), Ck = (c′′, . . . , c′′′)
with w(b′′) 6= w(b′′′), w(a′′) 6= w(a′′′), w(c′′) 6= w(c′′′). No two of these triples share the same
weights in any of the A, B or C node components. By Czumaj and Lingas’ argument, the
number of such triples for which a′′ + b′′ + c′′ ≤ K < a′′′ + b′′′ + c′′′ is at most O(g2). Recurse
on these triples in O(g2F (n/g)) time to obtain g2 matrices which can be added to R. For
triples with a′′ + b′′ + c′′ ≥ K we do not need to recurse. We can just add the corresponding
entries from D to R because any triangle in such a triple would be of weight at least K. For
triples with a′′′ + b′′′ + c′′′ < K we do nothing since they cannot contain relevant triangles.
After all triples are processed, we return R.

The runtime is recurrence is

F (n) ≤ g3(n/g)ω + g2F (n/g) =⇒ F (n) = O(n2 log n + nω) for some g = O(1).

�
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Chapter 5

Bottleneck Paths

While we are still unable to give a bona fide sub-cubic algorithm for APSP, we do present such
an algorithm for an intimately related problem: computing all-pairs bottleneck paths (APBP) in
general graphs. In this problem, one is given a directed graph with (arbitrary) capacities on its
edges, and the problem is to report, for all pairs of vertices s, t, the maximum amount of flow that
can be routed from s to t along any single path. (This amount is given by the smallest capacity
edge on the path, a.k.a. the bottleneck edge.)

Definition 5.0.2 Given a graph G = (V,E, w) with w : E → R, the bottleneck edge of a path
between vertices u and v is the edge on that path of smallest weight. A maximum bottleneck path
between u and v is a path whose bottleneck edge weight is maximum over the bottleneck edge weights
of all paths from u to v.

The APBP problem has been studied alongside APSP in several contexts over the years. Pol-
lack [74] introduced APBP (calling it the maximum capacity route problem), and showed how the
cubic APSP algorithms of that time could be modified to solve it. Hu [52] proved that in undi-
rected graphs, maximum capacity paths can be obtained by simply taking the paths in a maximum
spanning tree. Therefore the problem on undirected graphs on n nodes can actually be solved in
O(n2) time. The directed case of the problem has remained open until now, and recently appeared
as an explicit goal in [83]. Prior to our work, the best known algorithm for the general case of
APBP had been O(mn + n2 log n) time (obtained by using Fredman and Tarjan’s implementation
of Dijkstra [43]).

Subramanian [87] proved that on random (Erdös-Renyi) graphs, both APBP and APSP can be
solved in O(n2 log n) time. Very recently, Shapira, Yuster, and Zwick [83] have given algorithms
for APBP in the special case where the vertices have weights, but not the edges. Their algorithms
use rectangular matrix multiplication, running in O(n2.58) time. Note that the vertex-weight case
can be easily reduced to the edge-weight case, by setting the weight of an edge to be the minimum
weight of its two endpoints. Shapira, Yuster, and Zwick’s algorithm relies on the linearity of the
number of weights. As the number of weights in the vertex-weight case is only n, but the number
in the edge-weight case can be Ω(n2), their techniques do not seem to apply to the latter case.

We also consider the single source bottleneck paths problem (SSBP). In this version, we are
given a source vertex s and we are asked to find maximum bottleneck paths from s to all other
nodes in the graph. As in undirected graphs a maximum spanning tree solves the all pairs version
of the problem, in particular SSBP can be solved in O(mα(n)) time by using Chazelle’s minimum
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spanning tree algorithm [19]. Here, α(·) is the inverse-Ackermann function. If randomization is
allowed, SSBP in undirected graphs can be computed in linear time by Karger, Klein and Tarjan’s
linear time minimum spanning tree algorithm [55]. Dijkstra’s algorithm [32] can also be adapted
to solve SSBP, and with Fredman and Tarjan’s Fibonacci Heaps [43] this gives an O(m + n log n)
algorithm for SSBP. This is currently the fastest algorithm for general SSBP.

5.1 All Pairs Bottleneck Paths

We begin by investigating the all pairs bottleneck path problem on general graphs. We first note
how to compute just the weights of the bottlenecks for all pairs of vertices, from now on referred
to as all pairs bottleneck distances. We will then devote most of the rest of the chapter on how to
obtain actual paths.

Our method for APBP is based on the O(n2+ω/3) algorithm (from Chapter 3) for comput-
ing the MaxMin product of two n × n matrices with arbitrary entries from R ∪ {∞,−∞}. Since
(R,max,min,−∞,+∞) is a closed semiring, we immediately obtain the following corollary of The-
orem 2.4.1 from Chapter 2.

Corollary 5.1.1 If the MaxMin product of two arbitrary real n×n matrices is computable in M(n)
time, then all pairs bottleneck distances of an n vertex graph is computable in O(M(n)) time.

Therefore, by Corollary 5.1.1 it follows that all pairs bottleneck distances can be computed in
O(n2.792) time by setting the adjacency matrix of the graph (as in Chapter 2) to be

A[u, v] :=


∞ if u = v
−∞ if (u, v) /∈ E
w(u, v) otherwise,

and then computing its transitive closure under the (R,max,min,−∞,+∞) closed semiring.

5.1.1 Computing explicit maximum bottleneck paths

By Corollary 5.1.1 we can obtain a matrix representing all pairs bottleneck paths in an edge weighted
directed graph in O(n2+ω

3 ) time. To compute the actual paths, a bit more work is necessary. We take
an approach analogous to that used by Zwick [106] in computing all pairs shortest paths. First, we
compute APBP by repeatedly squaring the original adjacency matrix via MaxMin product, instead
of the approach in Aho et al. [1]. We also record, for every pair of vertices i, j, the last iteration
T [i, j] of the repeated squaring phase in which the bottleneck edge weight was changed, together
with a witness vertex wij on a path from i to j, provided by the MaxMin product computation in
that iteration.

Given an iteration matrix T and a witness matrix wij (derived from a shortest path compu-
tation), Zwick [106] gives a procedure which computes a matrix of successors in O(n2) time, and
another procedure that, given a matrix of successors and a pair of vertices, returns a simple short-
est path between the vertices. Applying his procedures to our setting, we get simple maximum
bottleneck paths. The major difference here is that our iteration values are obtained by repeated
squaring, whereas Zwick’s iteration values come from his random sampling algorithm for finding
witnesses. We review Zwick’s algorithm in Figure 5.1.1.
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algorithm wit-to-suc(W,T ):
S ← 0
for ` = 0 to log n do T` = {(i, j) | T [i, j] = `}
for every (i, j) ∈ T0 do S[i, j] = j
for ` = 1 to log n do

for each (i, j) ∈ T` do
k = wij

while S[i, j] = 0 do
S[i, j]← S[i, k], i← S[i, j]

return S

Figure 5.1: Algorithm wit-to-suc converts the witness matrix into a successor matrix.

Theorem 5.1.1 The all pairs bottleneck paths problem can be computed in O(n2+ω
3 ) time. Fur-

thermore, in O(n2+ω
3 · log n) time algorithm wit-to-suc computes a successor matrix from which

for any i, j a simple maximum bottleneck path between i and j can be recovered in O(`) time, where
` is the length of the returned path.

Proof. Let wij and T [i, j] for all vertex pairs i, j be provided by repeated squaring of the adjacency
matrix using MaxMin product.

Consider algorithm wit-to-suc. Let S be the matrix of successors that the algorithm computes.
The algorithm processes vertex pairs (i, j) in increasing order of their iteration numbers T [i, j]. The
idea is that if k is a witness for (i, j), then T [i, k] is an earlier iteration of the squaring than T [i, j],
and hence S[i, k] would be set before S[i, j] is processed.

We claim by induction that after a value S[i, j] is set, matrix S stores a simple maximum
bottleneck path from i to j which can be recovered by following successors one by one. Our
argument is similar to that of Zwick [106].

At iteration 0 of the algorithm, all pairs whose maximum bottleneck path is an edge are fixed.
Suppose that at the iteration in which vertex pair (i, j) is processed, the claim holds for all vertex
pairs (k, `) that have been processed before (i, j) (and hence which have a nonzero S[k, `] value).
Now consider the iteration in which (i, j) is processed. Let k = wij . Since S[i, k] is set, we can
use its successor value to set S[i, j] since we know that a maximum bottleneck path goes through
k. We then take S[i, j] and if its successor on the path to j has not been set. we set it to match
S[S[i, j], k]. We continue processing consecutive successors similarly, until we encounter some i0
for which S[i0, j] is set (i0 exists as k is such a vertex). Since it is set, and the path from i to k
is simple (by induction), S[i0, j] must have been set before (i, j) is processed. Hence by induction,
the path from i0 to j is simple and all successors for vertices on that path to j are set. But since
no successors for vertices between i and i0 were set, then the paths i to i0 and i0 to j are simple
and nonoverlapping, and the overall path is simple and a maximum bottleneck path. Furthermore,
now the successors of all vertices on the simple path are set in the S matrix.

The algorithm for obtaining successors from witnesses takes O(n2) time. Given a matrix of
successors, obtaining the actual path from i to j is straightforward: find S[i, j] and then recursively
obtain the path from S[i, j] to j. This clearly takes time linear in the length of the path. �
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5.2 All Pairs Bottleneck Shortest Paths

Consider a scenario in which we want to get from location u to location v in as few hops as possible,
and subject to this, we wish to maximize the flow the we can route from u to v. In other words,
we want to compute for each pair of vertices, the shortest (unweighted) distance d(u, v) and the
maximum bottleneck weight b(u, v) of a path of length d(u, v) from u to v. This is the all pairs
bottleneck shortest paths problem (APBSP). This problem was considered by Shapira, Yuster and
Zwick [83] who gave a truly subcubic algorithm in the node-weighted graph case.

5.2.1 The “Short Paths, Long Paths” method

Shapira, Yuster and Zwick used the well-known short path-long path method [106, 49, 18] which we
will use again in the next chapter. The method proceeds to first design a single source algorithm
for the path problem, running in O(T (n)) time for some T (n). Then one picks a parameter ` < n.
One iterates a matrix product on the adjacency matrix ` times to obtain best paths between ≤ n2

pairs of vertices. This takes, say, O(M(n)`) time, where M(n) is the time to compute the matrix
product.

Then one uses the following lemma to obtain in O(n2`) time a set of n log n
` vertices hitting all

shortest paths between vertices at distance `.

Lemma 5.2.1 ([106, 49, 18]) Given a collection of N subsets of {1, . . . , n}, each of size `, one
can find in O(N`) time a set of n log n

` elements of {1, . . . , n} hitting every one of the subsets.

One way to prove the lemma is by random sampling, another is by the greedy approximation to
hitting set.

After obtaining the hitting set, one argues that for any pair of vertices some best path of length
≥ ` (if one exists) must contain a node from the hitting set. Then one runs the single source
algorithm from all nodes in the hitting set in O(nT (n) log n

` ) time. Finally, one combines the results
in O(n3 log n

` ) time by considering every pair of nodes and every possible midpoint from the hitting
set. Suppose T (n) = O(n2) as is with most problems for which Dijkstra’s algorithm applies. Then
the overall running time is minimized when

M(n)` =
n3 log n

`
, ` =

√
n3

M(n)
log n,

and the runtime becomes
O
(
n1.5

√
M(n) log n

)
.

We will apply the method once in the following section and once in the next chapter when
discussing all pairs nondecreasing paths.

5.2.2 APBSP

Following the short path-long path approach just as in [83] we can obtain the following.

Theorem 5.2.1 APSBP on an n node graph can be found in O(n2.896) time.

We first give a single source algorithm for bottleneck shortest paths.
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Lemma 5.2.2 SSSBP on a graph with m edges and n nodes can be found in O(m + n) time.

Proof. The algorithm is an adaptation of breadth first search. Let G = (V,E) be the given
directed graph, w : E → R and s be the source node. We will maintain a set Qi which at each
stage i which will contain nodes at (unweighted) distance i from s. The set needs to support insert,
pop an element, go through the elements one by one. A linked list suffices to support all of these
operations in O(1) time.

Every node v in the graph has a bit visited(v) which is set if and only if an edge from an
in-neighbor of v to v has been traversed. Node v has values d(v) and b(v) associated with it. Value
d(v) will be the (unweighted) shortest distance from s to v and b(v) will be the maximum bottleneck
edge on a shortest path from s to the v. Originally, d(v) =∞ for v 6= s and d(s) = 0, b(v) = −∞
for all v 6= s and b(s) =∞, visited(v) = 0 for all v 6= s, visited(s) = 1.

We begin by inserting each out-neighbor v of s into Q1. We set d(v) = 1, b(v) = w(s, v) and
visited(v) = 1. We then process Q1.

To process Qi, repeat: pop a node v from Qi; for all out-neighbors u of v:

• if u is not visited, insert u into Qi+1, set d(u) = i + 1, b(u) = max{b(u),min{b(v), w(v, u)}},
and visited(u) = 1.

• else if u is visited and if d(u) = i + 1, set b(u) = max{b(u),min{b(v), w(v, u)}}.

When Qi is empty, process Qi+1 if Qi+1 is nonempty.
Correctness follows by induction: if the bottlenecks for nodes in Qi−1 are correct, then since

every path of length i from s to u must be of the form Psv followed by (v, u) where Psv is a
path of length i − 1 and (v, u) ∈ E, going through all nodes v ∈ Qi−1 and setting b(u) =
max{b(u),min{b(v), w(v, u)}} computes the correct bottleneck weight.

The running time of the algorithm is O(m+n) since we go through each edge at most once and
a node is only accessed via an incoming edge or when popping it from a set Qi. �

Now we can apply the short path-long path method to prove Theorem 5.2.1.
Proof.[Theorem 5.2.1] In our application of the method, the matrix product we use is the MaxMin
product, taking M(n) = O(n2+ω

3 ) per iteration. Recall that the adjacency matrix A is defined as
follows for j, k ∈ [n]:

A[j, k] =


∞ if j = k
w(j, k) if (j, k) ∈ E
−∞ otherwise.

For a parameter `, we iterate the MaxMin product on the adjacency matrix ` times as follows: for
i = 2, . . . , `, compute Ci = Ai−1 �A (where � is the MaxMin product). Here for j, k ∈ [n]:

A1[j, k] =
{

w(j, k) if (j, k) ∈ E
−∞ otherwise.

At iteration 1 we have an n× n matrix D with D[i, i] = 1 for all i ∈ [n], and for i 6= j:

D[i, j] =


1 if (i, j) ∈ E
0 if i = j
∞ otherwise.
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Matrix D contains the unweighted distance between any two nodes at distance at most `. After
computing Ci, set for all j, k ∈ [n]

D[j, k] =


D[j, k] if D[j, k] <∞
i if Ci[j, k] > −∞ and D[j, k] =∞
∞ otherwise.

After D is updated, we create Ai by setting for all j, k ∈ [n]

Ai[j, k] =
{

Ci[j, k] if D[j, k] = i
−∞ otherwise.

Ai[j, k] is the maximum bottleneck edge weight on a path from j to k of length i if i is the shortest
distance between j and k. Over all i = 1, . . . , `, computing all Ai and D takes O(`n2+ω

3 ) time.
The short path-long path method requires that we find a hitting set S in O(`n2) time and do

SSBSP from all nodes in S. By Lemma 5.2.2 this takes O(n3 log n/`) time. We obtain all distances
and bottlenecks by combining the results in O(n3 log n/`) as given by the method. We set

` =

√
n3

M(n)
log n = n

3−ω
6 ,

and the runtime becomes

O
(
n1.5

√
M(n) log n

)
= O(n

15+ω
6 log n) = O(n2.896).

�

5.3 Single Source Bottleneck Paths

We investigate the single source bottleneck paths problem (SSBP). We first note that the problem
is hard in constant degree graphs in the following sense.

Lemma 5.3.1 If SSBP can be computed in O(T (n)) time in n-node graphs of O(1) maximum
degree, then SSBP can be computed in O(m + n + T (3m)) time in general graphs on n nodes and
m edges.

Lemma 5.3.1 is a simple corollary of the following general lemma on semiring path problems.

Lemma 5.3.2 Let P be a path problem over a semiring (R,⊕,�, 0, 1). If P can be computed in
O(T (n)) time in n-node graphs of O(1) maximum degree, then P can be computed in O(m + n +
T (3m)) time in general graphs on n nodes and m edges.

Proof. We prove the lemma by a reducing P in a general graph with m edges and n nodes to P in
an m-node m-edge graph with outdegree ≤ 2 and indegree ≤ 2.

Let G = (V,E, w) be the input of the P problem such that |E| = m and |V | = n. Create a
graph G′ = (V ′, E′, w′) as follows.

Consider each node v ∈ V . Let Nin(v) and Nout(v) be the in-neighbors and out-neighbors
of v respectively. For every node u ∈ Nin(v) create a node vin

u ∈ V ′. Likewise, for every node
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u ∈ Nout(v) create a node vout
u ∈ V ′. Pick any ordering on the nodes in Nin(v) and one on the

nodes in Nout(v), so that
Nin(v) = {i1, . . . , i|Nin(v)|},

Nout(v) = {o1, . . . , o|Nout(v)|}.

According to this ordering, add an edge
(
vin
ij

, vin
ij+1

)
to E′ for every j = 1, . . . , |Nin(v)| − 1, and an

edge
(
vout
oj

, vin
oj+1

)
to E′ for every j = 1, . . . , |Nout(v)|−1. If Nin(v) and Nout(v) are nonempty, also

add edges
(
vout
o|Nout(v)|

, vin
i1

)
and

(
vin
i|Nout(v)|

, vout
o1

)
. If Nin(v) is empty, add an edge

(
vout
o|Nout(v)|

, vout
o1

)
,

and if Nout(v) is empty, add an edge
(
vin
i|Nin(v)|

, vin
i1

)
. The edges we have added form a cycle on

the nodes corresponding to v. Let the weights of all the cycle edges be 1. Finally, for every edge
(u, v) ∈ E, create an edge euv =

(
uout

v , vin
u

)
∈ E′ with weight w′(euv) = w(u, v). An example of this

construction is shown in Figure 5.2.
Now we show that for any two nodes u, v ∈ V there is a path of weight w in G if and only if

there is a path of weight w between some node uout
x and some node vin

y . Let u → x1 → . . . →
xt → v be a path with weight w in G. Then consider the following path in G′. Start with
uout

x1
→ x1

in
u , then follow the path around the cycle of G′ corresponding to x1 to x1

out
x2

, then follow
edge

(
x1

out
x2

, x2
in
x1

)
. Inductively, follow the cycle corresponding to xj from xj

in
xj−1

to xj
out
xj+1

and then

the edge
(
xj

out
xj+1

, xj+1
in
xj

)
. The cycle edges have 1 weights and hence do not contribute to the path

weight, as � is associative and 1 � x = x � 1 = x for all x ∈ R. The rest of the edges are in one
to one correspondence with the edges of the path from G and hence this path in G′ has weight w.
On the other hand, any path in G′ is composed of paths within a cycle linked by edges between
cycles. Moreover, any path which takes a path through the cycle of u1, goes through some edge(
u1

out
u2

, u2
in
u1

)
, then through the cycle of u2 etc., corresponds to a path in G which starts from u1,

takes the edge (u1, u2) etc. The weights of the two paths must be equal since the only difference is
in the weights of cycle edges which are 1.

We have thus reduced G to a graph G′ on 2m nodes and 3m edges such that there is a mapping
from paths in G to paths in G′ such that weights are preserved. Our reduction took O(m+n) time.
Hence if the P problem in G′ can be solved in O(T (|V ′|) = O(T (3m)) time, then P in G can be
solved in O(n + m + T (3m)) time. �

The above lemma implies that if one can solve SSBP in constant degree graphs in linear time,
then SSBP is in linear time for general directed graphs (this of course holds for all single source
semiring path problems, e.g. for SSSP). We do not know however of a faster algorithm for SSBP
than the easy O(m + n log n) time modification of Dijkstra’s algorithm. We hence consider the
seemingly easier problem of finding the maximum bottleneck path between two given vertices in
the graph. This is the so called single source-single destination bottleneck paths problem. It is also
referred to as the maximum capacity path problem [74].

5.3.1 Single source-single destination bottleneck paths

The Single Source-Single Destination Bottleneck Paths, also referred to as the s-t maximum bottle-
neck path problem (s-t BP), is mainly studied in relation to the maximum flow problem. Edmonds
and Karp [36] showed that if s-t BP in an m-edge graph can be computed in O(T (m)) time, then the
maximum flow in any m-edge graph with integral edge weights can be computed in O(mT (m) log C)
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Figure 5.2: An example transformation of a graph with maximum outdegree 3 into one with
maximum indegree and outdegree 2.

time where C is the maximum edge weight in the graph. They proceeded to show an O(m2 log C)
algorithm for maximum flow based on the above observation. Of course, s-t BP requires Ω(m) time
just to read the input, and hence we cannot trivially beat the O(m2 log C) algorithm for maximum
flow by improving the known s-t BP algorithms. Nevertheless, efficient algorithms for s-t BP are
still of interest, as bottleneck paths have other applications. Moreover, a really good algorithm for
s-t BP may also give some intuition into the maximum flow problem.

s-t BP in Undirected Graphs. In the beginning of the chapter we noted that for undirected
graphs one can even solve the all-pairs bottleneck paths problem in O(m+n) randomized time. The
best deterministic runtime for the single source version of the problem however is O(mα(n)) [19]
where α(n) is the inverse-Ackermann function. We give a simple linear time deterministic algorithm
for the single source-single destination version of the problem. This solution turned out to be
folklore. It was published by Camerini [15] in 1978 and later by Punnen [76] in 1991.

Theorem 5.3.1 Let G be an undirected graph with real weights and s and t be two given vertices.
Then the maximum bottleneck path between s and t can be found in O(m + n) time, where m and
n are the number of edges and the number of vertices in G respectively.

We will do a binary search for the maximum bottleneck weight between s and t. We need two
results:

Lemma 5.3.3 (Median Finding [11]) Given m elements from a totally ordered set, their me-
dian can be found in O(m) time.

Lemma 5.3.4 (Connected Components [88]) All connected components consisting of at least
two nodes in a graph on m edges can be found in O(m) time.

Proof.[Theorem 5.3.1] We assume without loss of generality that the edge weights are distinct,
otherwise, define a new weight w(e) for each edge so that w(e) = (w′(e), `(e)) where w′(e) is the
old weight and `(e) is a unique label for edge e from 1, . . . ,m. The total order on these weights is
defined as follows: w(e) < w(e′) if w′(e) < w′(e′) or if w′(e) = w′(e′) and `(e) < `(e′).
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At each point we will work with an edge range [e′, e′′] with w(e′) < w(e′′), so that we initially
have that e′ is the edge of minimum weight and e′′ is the edge of maximum weight in G. We will
assume that the maximum bottleneck edge between s and t is in the edge range [e′, e′′].

Let m′ be the number of edges e with weights w(e′) ≤ w(e) ≤ w(e′′). In O(m′) time find the
median edge em of the range [e′, e′′]. Then, in O(m′) time find the connected components of the
graph G′ induced in G by the edges in [em, e′′]. If s and t are in the same connected component
of G′, then any maximum bottleneck path between s and t in G is also in G′. We can recurse on
range [em, e′′].

Otherwise, suppose that s and t are in different connected components of G′. Then we create a
graph G′′ in O(m′) time: we create a node vC in G′′ for each connected component C of G′ (there
are at most m′ of these); we then go through the edges of G′ and for any edge (u, v) with u ∈ C
and v ∈ C ′ with C 6= C ′ we add an edge (vC , vC′) in G′′. Let Cs and Ct be the components of
G′ containing s and t respectively. Then we search in the same way as above for the maximum
bottleneck path in G′′ from vCs to vCt . The number of edges in G′′ is ≤ m′/2 as all edges in [em, e′′]
were merged to form connected components.

The running time recurrence becomes

T [m] ≤ c ·m + T [m/2],

for some constant c. Hence the algorithm runs in O(m) time. �

5.3.2 Single source-single destination bottleneck paths in directed graphs

The binary search approach above which we used for undirected graphs does not work immediately
for directed graphs. If we try to adapt the approach trivially, we could replace finding connected
components by finding strongly connected components. However, in this way we cannot guarantee
that we would reduce the number of edges a lot by shrinking components since by shrinking the
components, instead of isolated vertices we would obtain a DAG which may still contain many
edges.

We get around this problem by changing the algorithm. We begin a lemma which asserts that
if we have sorted edge weights, the problem can be solved in linear time.

Lemma 5.3.5 Let G = (V,E) be a graph with edge weights w : E → {1, . . . ,m}, then SSBP from
source s ∈ V in G can be solved in O(m + n) time.

Proof. Our algorithm is very similar to Dial’s [31, 2] implementation of Dijkstra’s algorithm.
For every edge weight c ∈ {1, . . . ,m} we create a bucket Bc. Let cm′ , cm′−1, . . . , c1 be the edge

weights in decreasing order (m′ ≤ m). Then we maintain the buckets in a linked list with pointers
from each ci to ci−1. Each bucket itself will be a linked list, initially empty. For each

We maintain a value b[v] for each node which will be the maximum bottleneck weight for a path
from s to v discovered so far. Initially, b[s] =∞ and b[v] = −∞ for all other nodes.

The algorithm begins by going through all edges out of s. For every such edge e = (s, v), place
v in Bw(e) by putting it at the front of the linked list. We remove e from the graph. Assuming that
given e we can access Bw(e) in O(1) time this assignment of the neighbors of s to buckets takes
O(d(s)) where d(s) is the outdegree of s.

After this, starting with i = m′ and decreasing i we find the largest i such that Bi is nonempty.
We process each node u ∈ Bi as follows. Set w = min{d[u], w(u, v)}. place each outneighbor v of u
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in Bw and remove edge (u, v). After finishing Bi we move on to the next nonempty bucket in the
linked list of buckets etc. Since we remove each edge when it is accessed, each edge is accessed at
most once and the runtime is O(m + n).

The correctness of the algorithm follows from the correctness of Dijkstra’s algorithm as the
nodes are processed in the (reverse) sorted order of their maximum bottleneck distances.

The algorithm can be implemented in O(m + n) time on a pointer machine provided the edges
of G are provided in their (reverse) sorted order, say in a linked list. �

Single source-single destination. We now give an easy O(m log log n) algorithm for single
source-single destination maximum bottleneck problem: Let G = (V,E, w) be given with two
nodes s and t. W.L.O.G. assume that the each edge has distinct weight. We can ensure that
by tacking on an O(log n) bit edge label to the end of the edge weight. Pick a parameter p. In
O(m log p) time find p edges e1, . . . , ep so that there are at most m/p + 1 edges between ei and
ei+1 in the sorted order. This can be done by the linear time median finding algorithm of Blum et
al. [11]. Then, for every edge e between ei and ei+1 let w′(e) = i. Solve the maximum bottleneck
problem from s to t in G′ = (V,E, w′) in O(m+n) time using Lemma 5.3.5. Let j be the weight of
the maximum bottleneck edge between s and t in G′. Then the maximum bottleneck edge between
s and t in G is between ej and ej+1 in the sorted order of the edges.

We remove all edges smaller than ej . The rest of the edges form a set E′′. For all edges e after
ej+1 in the sorted order, set w′′(e) =∞. Sort all edges between ej and ej+1 in O(m/p log m) time
setting their weights w′′ as their rank in the sorted order. Then apply Lemma 5.3.5 again to solve
the problem for G′′ = (V,E′′, w′′) in O(m + n) time.

The overall runtime is O(m/p log m + m log p) and is minimized for p = log m/ log log m, giving
O(m log log n) time.

We discovered the above algorithm and then noticed that it is known. In fact, Gabow and
Tarjan [47] discovered it in 1988 also showing that using a clever recursive technique one can bring
the running time down to O(min{m log∗ n, m+n log n}) where log∗ n is the number of times we do
k := 2k starting with k = 2 until we exceed n (their algorithm also works for bottleneck spanning
tree). Punnen [75] gave the same runtime for the problem also noting that any bottleneck problem
which can be solved in linear time when the input weights are given in sorted order, can be solved
in O(m log∗ n) time.

Theorem 5.3.2 (Gabow and Tarjan [47]) Single source-single destination maximum bottleneck
path can be computed in O(m log∗ n) time.

Proof. In recursive step i, set pi = 2pi−1 with p1 = 2. Let there be mi edges in the graph
Gi = (V,Ei, wi) of stage i with finite weights. Initially m1 = m and we will have mi = mi−1/pi−1.

In O(mi log pi) time find pi edges e1, . . . , ep so that there are at most m/pi + 1 finite weight
edges between ei and ei+1 in the sorted order. Then, for every edge e between ei and ei+1 let
w′(e) = i, and for all infinite weight edges set w′(e) =∞. Solve the maximum bottleneck problem
from s to t in G′ = (V,Ei, w

′) in O(m + n) time using Lemma 5.3.5. Let j be the weight of the
maximum bottleneck edge between s and t in G′. Then the maximum bottleneck edge between s
and t in Gi is between ej and ej+1 in the sorted order of the edges.

We remove all edges smaller than ej . The rest of the edges form the set Ei+1. For all infinite
edges and all edges e after ej+1 in the sorted order, set wi+1(e) = ∞. For all edges e between ej
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and ej+1 set wi+1(e) = wi(e). Move on to stage i+1 with graph Gi+1 = (V,Ei+1, wi+1). Note that
the number of finite weight edges in Gi+1 is mi+1 ≤ mi/pi by construction.

The running time of stage i is O(mi log pi + m + n). As mi log pi = (mi−1/pi−1) · pi−1 = mi−1

we have that ∑
i

(mi log pi) ≤ m1 +
∑
i≥1

mi < m1 +
∑

i

(mi/2i) = O(m).

Hence the runtime is dominated by the linear time runs of the algorithm of Lemma 5.3.5. There
are O(log∗ m) such runs as we can stop the recursion when mi = 1. The overall runtime is then
O(m log∗ n) (here we are assuming that m ≥ n−1 as we only need to consider the weakly connected
component containing s and t). �

One weakness of the above algorithm is that it always goes through the infinite edges. One could
imagine that there is a way to store some information with each recursive call which would allow
us to shortcut some of these infinite edges. Such a result would lead to a runtime improvement.
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Chapter 6

Nondecreasing Paths

We consider the problem of planning a train trip so that we arrive at our destination as early as
possible. The travel booking office has a timetable with departure and arrival times for all scheduled
trains, together with their origins and destinations. From this data, we wish to extract the best
choice of train connections possible, given our start city and preferred departure time. While this
is an old problem, it is of course still interesting and relevant today. To our knowledge, the problem
was first studied in the theory of algorithms in 1958 in a paper by Minty [63]. Minty reduced it to
a problem on edge-weighted graphs as follows. The train stops are mapped to vertices. If there is a
train scheduled from city A to city B leaving A at time t1 and arriving at B at time t2, one creates
a vertex v for the scheduled train and adds an edge from A to v with weight t1 and an edge from
v to B with weight t2. A train trip from a start S to a destination T is only valid if one can take
each consecutive train on the trip without missing a connection. In particular, this means that for
any two consecutive trains, the arrival time of the first one must be no later than the scheduled
departure time of the second one. In the graph this corresponds to a nondecreasing path from S
to T , i.e. a path, the weights on which form a nondecreasing sequence. In order to find the route
which gets us to T at the earliest possible time, we must find a nondecreasing path minimizing the
last edge weight on the path.

Minty [63] also defined a generalization of the problem: given an edge weighted graph G =
(V,E, w) and a source s ∈ V , report for every t ∈ V , the minimum last edge weight on a nonde-
creasing path from s to t (∞ if such a path does not exist). We call this the single source minimum
nondecreasing paths problem (SSNP).

SSNP is a variant of the popular single source shortest paths problem (SSSP). In SSNP the
sum operation from SSSP is replaced by an inequality (≤) constraint. SSNP was studied alongside
SSSP and many of the algorithms for the two problems are quite similar. Minty gave an algorithm
for SSNP running in O(mn) time, where n = |V | and m = |E|. In the following year, Moore [66]
gave a similar O(mn) time algorithm for SSSP and showed how to transform it into one for SSNP.
Incidentally, Moore’s algorithm strikingly resembles the Bellman-Ford algorithm [8, 41].

Nowadays much faster solutions are known for both problems. Dijkstra’s algorithm [32] using
Fredman and Tarjan’s implementation [43] solves SSSP with nonnegative weights in O(m+n log n)
time. A folklore modification of that same algorithm also gives an O(m + n log n) time algorithm
for SSNP in the comparison-based model of computation.

The restriction of SSNP for nonnegative weights has been studied in the algorithmic applications
community under the name the earliest arrival problem. It seems that most of the research has been
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devoted to analyzing different graph representations and various heuristics to optimally implement
Dijkstra’s algorithm (e.g. [12, 77, 81]). Yet no asymptotically better algorithm for the problem has
been presented, to our knowledge.

In the word RAM (transdichotomous) model of computation, Thorup [90] gave a linear time
algorithm for SSSP on undirected graphs with nonnegative weights. In this paper we how that in the
word RAM model of computation there is a linear time algorithm for SSNP, even for directed graphs
with arbitrary weights. In contrast, there is no known linear time algorithm for SSSP on weighted
directed graphs. Our algorithm can be implemented to run in O(m log log n) time in the comparison
based model of computation. This is better than Dijkstra’s algorithm for m = o(n log n/ log log n).

We also consider an all pairs version of the minimum nondecreasing paths problem. In the
all pairs nondecreasing paths problem (APNP) one is given an edge-weighted graph and one must
return for all pairs of vertices s and t the minimum last weight on a nondecreasing path from
s to t. We give a truly subcubic (in n) algorithm for APNP. Our runtime is O(n2.896). Recall
that although some truly subcubic algorithms (i.e. O(n3−δ) for constant δ > 0) are known for
certain interesting restrictions of the all pairs shortest paths (APSP) problem [82, 49, 84, 106, 18],
there is no known truly subcubic algorithm for APSP. In the previous chapter we showed that the
related all pairs maximum bottleneck paths problem (APBP) is solvable in truly subcubic time. In
retrospect, one can say that the algorithm for APBP in [97] was based on solving a special case
of APNP. In particular, one can show that APNP is at least as hard as APBP. APNP is also at
least as hard as finding dominating pairs in Rn, solvable in O(n2.688) time by Matousek’s algorithm.
Any improvement to this running time would imply better algorithms for many problems such as
computing the most significant bits of the distance product [95].

The results on SSNP and APNP appear in our paper in SODA08 [94]. In this chapter we also
present an extension which did not appear in the original paper: an efficient algorithm for cheapest
increasing paths.

6.1 All Pairs Nondecreasing Paths

In the all pairs version of the nondecreasing paths problem, we are interested in an algorithm with
running time which is subcubic in terms of n, preferably O(n3−δ) for some constant δ > 0. Observe
that obtaining a cubic running time is easy - just run the SSNP algorithm from the next section
on all vertices.

We begin with a motivating example. Consider the variant of APNP in which the weights are
on the vertices instead of on the edges. In this case, the last weight on a path from s to t is defined
as the weight of the node just before t on the path, or −∞ if s = t. This is clearly a restriction
of APNP since we can convert the node weights into edge weights by setting the weight of an edge
(u, v) to the weight of u. A subcubic algorithm for vertex weighted APNP is as follows: first go
through the graph and create a restricted adjacency matrix A such that A[i, j] = 1 if w(i) ≤ w(j)
and (i, j) ∈ E, and A[i, j] = 0 otherwise. Compute the transitive closure of A in O(nω) time. This
gives a matrix T such that T [i, j] = 1 if and only if there is a nondecreasing path from i to j
with the property that the last weight on the path is ≤ w(j). Now, create the actual adjacency
matrix B of the graph such that B[i, j] = 1 if (i, j) ∈ E and B[i, j] = 0 otherwise. W.L.O.G.
assume that the vertices are sorted by their weights so that i ≤ j iff w(i) ≤ w(j). Now use the
minimum witness algorithm for boolean matrix multiplication [59] to find for every pair of vertices
i, j for which (TB)ij = 1 the minimum value w(k) such that TikBkj = 1. The overall algorithm
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runs in O(n2.575) time. Furthermore, vertex weighted APNP is at least as hard as the problem of
finding minimum witnesses of boolean matrix multiplication, since the latter is just the restriction
of vertex weighted APNP on tripartite graphs with −∞ weights in the first partition. Hence, the
above runtime cannot be improved unless there is a better algorithm for minimum witnesses.

Now we consider the more general edge weighted case. We will use Theorem 3.4.1. Recall, the
theorem states that the (min,≤r)-product C = A 4 B of two n × n matrices A and B can be
computed in O(n2+ω

3 ) = O(n2.792) time, so that in the same time, for each pair i, j, if C[i, j] <∞,
a witness k is returned. The (min,≤r)-product allows us to solve all pairs minimum nondecreasing
paths in three-layered graphs. We will use a slight variant of the short path-long path method
given in the previous chapter. Because APNP is not a problem over a semiring, instead of giving
a single source algorithm, we need to give a single midpoint algorithm for minimum nondecreasing
paths:

Lemma 6.1.1 Given an edge weighted directed graph G = (V,E, w) and a vertex s ∈ V there is
an algorithm which in O(n2 log n) time computes for all pairs of vertices i, j the minimum last
edge weight of a nondecreasing path from i to j passing through s. Moreover, the algorithm can
give predecessor/successor information for each node so that the best path can be recovered in time
linear in its length.

Proof. We first compute for every vertex t ∈ V the minimum weight last edge ml(t) on a nonde-
creasing path from t to s.

We initialize for all in-neighbors v of s, ml(v) = w(v, s), and for all other v, ml(v) = ∞. We
begin the actual algorithm by sorting all in-edges for each node v and inserting them in order of
their weights in a balanced binary search tree Sv (splay tree, treap etc.). This takes O(m log n) time.
We then go through the in-edges of s in nondecreasing order of their weights, calling procedure
Process(e) on each of them. For e = (v, x) procedure Process(e) accesses using Sv all edges into
v with weights ≤ w(e). For every such edge (u, v) it removes (u, v) from the graph and Sv, sets
ml(u) = min{ml(u),ml(v)} and calls Process((u, v)). All accesses of edges in binary search trees
take O(m log n) time as each edge is deleted once it is accessed. At the end of the algorithm, ml(v)
is the minimum last weight of a nondecreasing path from v to s.

Once all weights ml(u) are computed, for every vertex u we create a balanced binary tree Tu on
n−1 leaves as follows. The leaves from left to right contain the edges out of s sorted by their weight
(for nodes which are not out-neighbors of s the weights are ∞). Each node in the tree contains
two numbers. The first number q1(t) of a tree node t represents the minimum over all weights of
edges stored in the subtree rooted at t. This number can be filled in at the creation of the tree
which takes O(n log n) for each vertex u. The second number q2(t) of a tree node t represents the
minimum weight of a last edge on a nondecreasing path from s to u beginning at an edge stored in
the subtree rooted at t. The second number is initialized as ∞ at creation.

We start another search for nondecreasing paths as follows. We first insert for every node v
its out-edges in a balanced binary search tree S′

v. Then, we process the edges (s, v) out of s in
nonincreasing sorted order of their weights by calling Process((s, v), (s, v)). The processing step
is now as follows. For e = (x, v), Process(e, (s, j)) uses S′

v to access all edges (v, u) with weights
≥ w(e). For every such edge (v, u), we remove (v, u) from S′

v and then access the leaf ` of Tu

containing (s, j). If the current stored minimum end weight q2(`) is greater than w(v, u), update
q2(`) = w(v, u). Go up Tu from ` to the root updating minimum weights q2(·) if necessary.

At the end of this process, for each node u, take the minimum last edge weight w = ml(u) over
all nondecreasing paths from u to s (computed in the first part of the algorithm). For each node v,
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go down the binary search tree Tv from the root to the leaf holding the first edge with weight w.
Look at the set Rv of all right children of the nodes on this path together with the leaf ending the
path. Find the minimum out of q2(x) over all x ∈ Rv. This finds the minimum last edge weight of
a nondecreasing path from u to v going through s. If this weight corresponds to some edge (j, v),
one can also set the predecessor of v on the path from u to be j. The overall running time of the
algorithm is O(n2 log n). �

We again use the hitting set Lemma 5.2.1 proven for example by [106, 49, 18]. We combine
Theorem 3.4.1 and Lemmas 6.1.1 and 5.2.1 into an algorithm for APNP. The running time for this
algorithm is the same as our running time for APBSP (Theorem 5.2.1) because we use the same
short path-long path approach and our running times of computing MaxMin and (min,≤r)-products
are the same.

Theorem 6.1.1 There is a strongly polynomial algorithm computing APNP in O(n
15+ω

6 log n) =
O(n2.896) time.

Proof. Let ` be a parameter to be set later. Let A be the matrix for which A[i, i] = −∞, and
if i 6= j, A[i, j] = w(i, j) for (i, j) ∈ E and A[i, j] = ∞ otherwise. First set B = A and then
repeat B = B 4 A for ` − 1 times. This gives for each i, j the minimum weight of a last edge on
a nondecreasing path from i to j of length at most `. The running time for this portion of the
algorithm is O(`n2+ω

3 ).
When running the above, keep for each pair of vertices i, j, an actual minimum nondecreasing

path of length ≤ ` found between i and j. A subset L of these paths are of length exactly `
(otherwise we have found all minimum nondecreasing paths). Using Lemma 5.2.1, in O(n2`) time
obtain a set S of O(n log n

` ) vertices hitting each of the ≤ n2 paths in L. For each s ∈ S run the
algorithm from Lemma 6.1.1 to obtain for every pair i, j the minimum last edge on a nondecreasing
path from i to j going through S. This part of the algorithm takes O(n2` + n3 log2 n

` ) time.
Taking the minimum of the above two path values for each pair gives the result. The running

time is minimized when ` = n
3−ω

6 log n and is O(n
15+ω

6 log n). We note that our algorithm above is
strongly polynomial because the only operations we perform on the weights are comparisons. �

6.2 Single Source Nondecreasing Paths

We now consider the single source version of nondecreasing paths, SSNP. The best known algorithm
for SSNP is the following folklore modification of Dijkstra’s algorithm.

Algorithm A: Initialize d[s] = −∞ and d[v] =∞ for all v 6= s. Extract the vertex u minimizing
d[u], setting it as completed. Then for all uncompleted neighbors v of u, if w(u, v) ≥ d[u], set
d[v] = min{d[v], w(u, v)}. Recurse on the remaining uncompleted vertices until there are no more.

It is not hard to verify that at the completion of the algorithm d[v] contains the minimum last
weight edge on a nondecreasing path from s to v. Using Fibonacci heaps this algorithm runs in
O(m + n log n).

We mention one more algorithm which resembles DFS. It takes a node v and a weight wt
corresponding to an edge into v. Initially, (v, wt) = (s,−∞). For each vertex v, a value d[v] is
stored as before. Initially, d[v] =∞ for v 6= s and d[s] = −∞.

Algorithm B(v, wt): Go through the edges (v, u) going out of v, and if w(v, u) ≥ wt, remove
(v, u) from the graph, set d[u] = min{d[u], w(v, u)} and call B(u, w(v, u)).
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It can be verified that algorithm B also computes SSNP correctly. Its running time is O(mn),
but this can be improved by using good data structures. The bottleneck of the algorithm is going
through the outgoing edges of v every time v is accessed. Yet we only need to access those edges
whose weight is greater than the incoming weight. If we first store a successor search data structure
at every vertex to maintain the outgoing edge weights, we could directly access only the necessary
edges at each access of v. For instance, if before running the algorithm, we insert the outgoing
edges of each vertex in a binary search tree achieving O(log n) time per operation, we can reduce
the running time to O(m log n). 1

Our idea is to employ the right data structures so that interleaving algorithms A and B yields a
linear time algorithm for SSNP. In particular we prove the following.

Theorem 6.2.1 In the word RAM model of computation there is a linear time algorithm for SSNP
on directed weighted graphs.

Q-Heaps. The data structure which we use to store the weights of the edges going out of each
node is a successor search data structure based on the Q-Heaps of Fredman and Willard [44]. As
pointed out by Thorup [90], the Q-Heaps result can be summarized as follows.

Lemma 6.2.1 ([44]) Given O(n) preprocessing time and space for the construction of tables, there
are data structures called Q-Heaps maintaining a family {Si} of word-sized integers multisets, each
of size at most O(log1/4 n), so that each of the following operations can be done in constant time:
insert x in Si, delete x from Si, and find the rank of x in Si, returning the number of elements of
Si that are strictly smaller than x.

Using a 4-level indirection (bucketing elements similarly to the AF-heaps of Fredman and
Willard) and a small modification of the above we can obtain a data structure for successor queries
which can dynamically maintain O(log n) elements with O(1) amortized time per operation.

Corollary 6.2.1 Given O(n) preprocessing time and space for the construction of tables, there are
data structures maintaining a family (Ui) of disjoint sets, each of size at most O(log n) , so that
each of the following operations can be done in constant amortized time: insert x in Ui, delete x
from Ui, and given some integer y (not necessarily in

⋃
i Ui) find x ∈ Ui such that x ≥ y and x is

closest to y from all elements of Ui.

We call the data structures presented in the corollary FW-heaps (for Fredman and Willard).

Linear Time Algorithm for SSNP. This section is devoted to proving Theorem 6.2.1. Let
N be the smallest power of 2 greater than n. For our linear time algorithm we first transform
every edge weight w(u, v) into a weight w′(u, v) = N2w(u, v) + Nv + u, where As noted in the
preliminaries vertex v is identified with a unique integer from 1 to n. These new weights allow
us to distinguish between edges with the same weight. The size of the integers in consideration
increases only by O(log n), as in the binary representation we simply concatenate w(u, v) and v.
From now on we consider both w′ and w weights where the w weights are assumed to have 2dlog ne
zero bits concatenated at the end. The w′ weights are used solely by the FW-heaps data structure.

1Alternatively, one can presort the outgoing edges in nonincreasing order and then access this list when a node is
processed.

71



The idea of the algorithm is to handle low and high outdegree nodes differently. Define a low
degree node to be one with outdegree at most log n. A high degree node has outdegree at least
log n. Note that there are at most m/ log n high degree nodes. We put all high degree nodes into
a Fibonacci heap F with weights ∞. We insert s in F with weight −∞. The source s is treated
as a high degree node. Its key in F will never be decreased and it will be extracted from F first.
We create FW-heaps maintaining the sets of outgoing edge weights for each low degree vertex. In
particular, for a low degree vertex v we store each edge (v, u) with key w′(v, u). In this way the
sets stored are disjoint. The FW-heaps data structure allows us, when given any incoming edge, to
extract the successor edge in the sorted order of the outgoing edges in (amortized) constant time.
Since insertions also take constant amortized time, preparing these FW-heaps takes O(m) time
overall.

The nondecreasing paths algorithm works in stages. First an algorithm AlgoLow just like
algorithm B is run on the low degree nodes starting from the neighbors of the source until no more
low degree nodes can be reached via nondecreasing paths. Algorithm AlgoLow can visit nodes more
than once, but no edge is accessed more than once since edges are removed from the graph once
they are visited. During the run of the algorithm, every reached high degree node is updated in
the Fibonacci heap F just like in algorithm A, i.e. if the edge taken to reach it has a smaller weight
than the value stored in F , the value is replaced with this weight.

When no more low degree nodes can be reached, just as in algorithm A, the minimum weight
high degree node is extracted from the Fibonacci heap and a new run of algorithm AlgoLow is
started from it. We call this part of our algorithm AlgoHigh. This process alternates between
AlgoLow and AlgoHigh until we have either gone through all edges, or the Fibonacci heap is empty.

Let M be the set of visited nodes, initially ∅. Let for a low degree node v, Nv be the subset
maintained in the FW-heaps data structure storing its incident out-edges. For each t ∈ V and weight
w, Nt.successor(w) returns the lexicographically smallest neighbor v of t for which w(t, v) ≥ w and
there is no other neighbor u for which w(t, v) > w(t, u) ≥ w. Let for any vertex v, d[v] represent
the current minimum weight of an edge used to get to v. For the current unvisited high degree
nodes, d[v] is stored in the Fibonacci heap F . Recall that at the start, d[s] = −∞ and d[v] =∞ for
v 6= s. Let for every vertex v 6= s, π[v] be the predecessor of v on the current best nondecreasing
path from s to v. The initial value is π[v] =null for every v; π[v] remains null if v is not reachable
from s via a nondecreasing path. Pseudocode for AlgoLow, AlgoHigh and the final algorithm for
SSNP is given in Figure 6.1.

Running time. We first handle the getMin calls on the Fibonacci heap, because they are the
most expensive unit operations. The number of elements in F is at most m/ log n so there can be at
most m/ log n getMin calls. Their overall cost is thus O(log n×m/ log n) = O(m). Other than that,
each edge is examined at most once in constant amortized time since FW-heaps allow each edge to
be found quickly. When an edge is looked at, a constant number of other O(1) time operations are
performed. Thus the overall time is linear: O(m). We note that if instead of FW-heaps one uses
binary search trees, then the algorithm would run in O(m log log n) time in the comparison model.

Correctness. We need to show that at the end of the algorithm, a vertex v is in M if and only if
there is a nondecreasing path from s to v, and that furthermore d[v] is the minimum weight of the
last edge on a nondecreasing path from s to v. We prove three claims which imply the final proof
of correctness.
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AlgoLow(t,w):
Add t to M
If t is a low degree node:

u_0<- N_t.successor(w)
do until u_0 = null:
remove (t,u_0) from the graph
remove u_0 from N_t
if w(t,u_0)<d[u_0] then

d[u_0] = w(t,u_0)
pi[u_0]=t
AlgoLow(u_0, w(t,u_0))

u_0<- N_t.successor(w(t,u_0))
Else t is a high degree node:

If w<d[t], then
F.decreaseKey(t, w).

AlgoHigh():
z<- F.getMin()
for all neighbors u of z:

remove (z,u) from graph
if w(z,u)>=d[z], then

if w(z,u)<d[u] then
d[u] = w(z,u)
pi[u]=z
AlgoLow(u, w(z,u))

findSSNP(s):
M={}; d[s]=-infty
d[v]= infty for all v!=s
PrepareDataStructures()
While F and E are nonempty:

AlgoHigh()

Figure 6.1: The AlgoLow and AlgoHigh algorithms handle low and high degree nodes respectively.
The final algorithm FindSSNP finds the minimum nondecreasing paths from s.

Claim 1 If a node v is in M , then it can be reached by a nondecreasing path, and d[v] = w(π(v), v)
is the weight of a last edge of some path from s to v.

Proof. Follows by induction and because the value of a node in F gives a weight of an edge which
is the end of a nondecreasing path from s to the node. �

The last two claims show that if a node z 6= s can be reached by a nondecreasing path from s,
then it is in M . For any nondecreasing path from s to z with last edge weight w, d[z] ≤ w. Our
algorithm maintains an invariant that for any v 6= s, d[v] = w(π(v), v). Hence our proofs disregard
π(v). We note that using the π values one can recover actual minimum nondecreasing paths from
s to any vertex t in time linear in their lengths.

Claim 2 Consider a run of algorithm AlgoLow starting from a high degree vertex z with weight
d[z] and finishing when no more vertices can be reached via a nondecreasing path using only low
degree vertices. If v is reachable from z via a path of only low degree vertices, then at the end of
this run d[v] is at most the minimum last edge weight on any nondecreasing path from z to v with
first edge at least d[z].

Proof. Let us first prove the claim for low degree vertices. This setting is almost the same as
running algorithm B with z as a source and ignoring edges out of z with weights smaller than d[z].
The only real difference is that the algorithm might never recurse on some low degree vertices v
reachable from z via such a nondecreasing path because their d[v] values are already smaller or equal
to the last edge weight of any nondecreasing path from z to v with first weight ≥ d[z]. However, this
can only happen if there is a path from s to v which is at least as good as any nondecreasing path
from z to v with first weight ≥ d[z]. Hence v need not be considered in the search. Furthermore,
any low degree paths going through such a v would have been considered when the best path to v
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was traversed. Hence the claim holds for all low degree vertices. Because the d[v] values are also
updated when a high degree vertex can be reached from z, the claim also holds for high degree
vertices reachable from z via a low degree nondecreasing path with first weight at least d[z]. �

The remainder of the argument bears similarities to the proof of correctness for Dijkstra’s SSSP
algorithm.

Claim 3 At any point of our algorithm let S contain all high degree vertices which have already
been extracted from F . For each high degree node v ∈ S the value of d[v] when v is extracted from
F is equal to the minimum last edge weight of a nondecreasing path from s to v. Furthermore, for
all high degree nodes v /∈ S, d[v] is the minimum last edge weight of a nondecreasing path using
only vertices in S and low degree vertices in M .

Proof. We do induction on the size of S. The base case is when |S| = 1. Then S consists only of
s, and d[s] is −∞. Inductive step: suppose the statement holds for |S| < k. After the k − 1st high
degree node z is added to S, AlgoLow is called on all of z’s neighbors whose edge weight is greater
than d[z]. Until the kth high degree node is to be added, all low degree nodes reachable from z by
a nondecreasing path with edge weights greater than d[z] are added to M . Their d[v] value is at
most the the best value for paths first using vertices in S and low degree nodes in M , then going
through z and finally using only low degree nodes. Moreover, for every high degree v /∈ S, if there
is a nondecreasing path from s to v using only nodes from S and low degree nodes from M , going
through z and using only low degree nodes, then the ending edge weight of that path is at least
d[v].

Suppose now that there is a nondecreasing path P from s to v using vertices in S, low degree
vertices in M and z such that there is some high degree node (from S) between z and v on P . Let
y ∈ S be the last such high degree node. By the induction hypothesis when y was extracted from
F it had the minimum value Y of a last edge on any nondecreasing path from s to a high degree
node. After y was extracted, all low degree nodes reachable from it with nondecreasing paths with
edge weights ≥ Y were explored (either by AlgoLow on y or by a previous run of AlgoLow). In
particular, if v has a low degree predecessor in P , then AlgoLow(v, wt) was run, where wt is at most
the minimum end weight of a nondecreasing path from y with weights ≥ Y . Otherwise, y is v’s
predecessor in P . Either way, there is a path from s to v using only high degree nodes in S \ {z}
and low degree nodes in M of last edge weight at most that of P . And hence P does not need to
be considered and d[v] is indeed the minimum last edge weight of a nondecreasing path using only
vertices in S and low degree vertices in M .

Now we need to show that when the kth high degree node v is added to S, d[v] is equal
to the minimum last edge weight of a nondecreasing path from s to v. Suppose not and let
Q := s→ y1 → . . .→ yk−1 → v be a minimum nondecreasing path from s to v that contains high
degree vertices not in S. Let yi be the first high degree vertex on Q which is not in S. d[yi] is the
minimum last edge weight of a nondecreasing path using high degree vertices only from S. Because
yi appears before v in Q, we must have that d[yi] ≤ w(yi−1, yi) ≤ w(yk−1, v). But since v is to be
extracted from F before yi, d[v] ≤ d[yi] and hence d[v] ≤ w(yk−1, v) and there is a path Q′ from s
to v using high degree vertices only from S such that the last edge weight of Q′ is at most that of
Q, making d[v] equal to the minimum value of the last edge weight of a nondecreasing path from
s to v. The induction step is completed. �

Claim 3 ensures that the values of the high degree nodes are minimized. By Claim 2 all values
of low degree nodes reachable by nondecreasing paths are also minimized. Inductively, at the end
of the algorithm all d[·] and π[·] values are correct.
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6.3 Cheapest Nondecreasing Paths

Consider a traveler who wants to obtain a valid itinerary from one city to another but their major
objective is to minimize their expenses. The travel agency has information about all flights –
departure and arrival times and a price for each segment. In the graph context, one is given a
directed graph G = (V,E) with two weight functions t : E → R∪{−∞,∞} and p : E → R+∪{0,∞}.
One wishes to find a path from a source s to a destination t (or to all possible destinations t) which
minimizes the sum of p(e) weights of edges e on the path over all paths with nondecreasing t(e)
weights. More formally:

Definition 6.3.1 (Cheapest Nondecreasing Path) Given a directed graph G = (V,E, t, p) with
weights t : E → R ∪ {−∞,∞} and p : E → R+ ∪ {0,∞}, a path P = v1 → v2 . . . vk−1 . . . vk is a
nondecreasing path between nodes s and t if

• (vi, vi+1) ∈ E for all i < k, s = v1 and t = vk

• t(vi, vi+1) ≤ t(vi+1, vi+2) for all i = 1, . . . , k − 2.

P is a cheapest nondecreasing path between s and t if

• P is a nondecreasing path from s to t and

• for all other nondecreasing paths P ′ = v′1 → v′2 . . . v′k′−1 . . . v′k′ from s to t,

k−1∑
i=1

p(vi, vi+1) ≤
k′−1∑
i=1

p(v′i, v
′
i+1).

We note that computing shortest paths in a graph G = (V,E, w) can be easily reduced to
computing cheapest nondecreasing paths in the graph G′ = (V,E, t, p): just set p = w and t(e) = 1
for all e ∈ E.

Proposition 6.3.1 If SSCNP in an n node graph can be computed in O(T (n)) time, then so can
SSSP in an n node graph. Likewise, if APCNP in an n node graph can be computed in O(T (n))
time, then so can APSP in an n node graph.

We will consider the single source cheapest nondecreasing paths problem (SSCNP): given a
graph G = (V,E, p, t) as above and a source node s ∈ V , compute for all vertices t ∈ V a cheapest
nondecreasing path from s to t, if one exists.

The following simple algorithm was communicated to us by Tarjan [89].

Theorem 6.3.1 ([89]) SSCNP in an m-edge, n-node graph can be computed in O(m log n) time.

Proof. Sort the edges by weight t(·) in O(m log n) time. The sorted list of edges consists of buckets
of edges of the same weight. That is, the list looks like B1, . . . , Bm′ with m′ ≤ m such that each
Bi is a list of edges of the same weight wi and for i < j, wi < wj .

We note that for any nondecreasing path in the graph there is some way to reorder the edges
within the buckets Bi so that the nondecreasing path is a subsequence of the sorted list. This
suggests the following approach. We maintain a value d[u] for every node u which is the current
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minimum price sum of a nondecreasing path from s to u. Initially, d[u] = ∞ for all u 6= s and
d[s] = 0.

Beginning with i = 1, process bucket Bi as follows. For every edge (u, v) ∈ Bi, insert u into a
priority queue Qi, initially empty. The priority of u in Bi is d[u]. While Qi is nonempty, extract the
minimum priority node u from Qi and set d[v] = min{d[v], d[u] + p(u, v)} for all edges (u, v) ∈ Bi

(if v ∈ Qi, this also updates Qi). When Qi is emptied, move on to Bi+1, if any.
The running time of the algorithm is O(m log n) because of the original sorting and as a priority

queue is only updated if an edge is accessed, and each edge is accessed at most once. �
The algorithm can be adapted to handle negative p(·) weights and to detect negative cycles.

Cheapest Increasing Paths in Low Degree Graphs. We consider a restriction of the cheap-
est nondecreasing paths problem, the cheapest increasing paths problem. Instead of minimizing
the price sum over nondecreasing paths, one minimizes it over increasing paths. This restriction
makes single source version of the problem, SSCIP, seemingly easier to solve than SSCNP. For
instance Tarjan’s approach from Theorem 6.3.1 becomes significantly simpler. In particular, one
does not need to use Dijkstra’s algorithm and sorting is practically all that is necessary to obtain an
O(m log n) time algorithm. We show that in fact with some bookkeeping one can obtain a runtime
which varies with the maximum degree of the graph. When the graph has constant degree the
algorithm runs in linear time. Such a runtime is not known for SSSP and hence for SSCNP (by
Proposition 6.3.1).

Theorem 6.3.2 Given a directed graph G = (V,E, p, t) with maximum degree ∆, n nodes and m
edges, and a source s ∈ V , one can compute for all nodes v ∈ V a cheapest increasing path from s
to v in O(m log ∆) time.

Proof. First we do some preprocessing on the graph. We compute in O(m log ∆) time single
source increasing paths from s using a slight modification of algorithm B from the beginning of the
chapter. Let the computed last edge weights be le(v) for nodes v ∈ V . Then remove from the
graph all edges (u, v) with w(u, v) ≤ le(u). After this removal all edges in the graph are part of
some increasing path from s, and the edges that were removed were not part of any increasing path
from s.

For every node u ∈ V , sort the edges incident on u in nondecreasing order of their weights. The
sorted list of edges incident on u consists of alternating groups of edges, some from the incoming
edges, and some from the outgoing edges, i.e. this ordered list Nu looks like

In1(u), Out1(u), In2(u), Out2(u), . . . ,

where Ini(u) is a list of edges going into u and Outi(u) is a list of edges coming out of u. Up to
some K > 1, for all 1 ≤ i < K, Outi(u) is nonempty, and for all 1 < i < K, Ini(u) is nonempty,
and for all j > K, Inj(u) = ∅, and for all j ≤ K, Outj(u) = ∅.

When creating Ini(u), Outi(u) we break ties in the sorted order as follows: edges coming into
u with weight w are considered to be larger than edges coming out of u of weight w. In this way if
(x, u) ∈ Ini(u) and (u, y) ∈ Outj(u) with j ≥ i, then x → u → y is an increasing path. Moreover,
all increasing paths x→ u→ y have the property that if (x, u) ∈ Ini(u) and (u, y) ∈ Outj(u) then
j ≥ i.

For accounting purposes we maintain a few values for every i = 1, . . . ,K:
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• a counter Counti(u) initially 0

– Counti(u) will equal the number of processed edges (x, u) with (x, u) ∈ Ini(u)

• a bit Donei(u) initially 0; also for completeness, set Done0(u) = 1.

– Donei(u) = 1 iff Countk(u) = |Ink(u)| for all k ≤ i.

• di(u) which is the cheapest price via a path with last edge in Ink(u) with k ≤ i; for complete-
ness di(s) = 0 for all i.

– if Donei(u) = 1 then all edges in Outi(u) can be processed using di(u) as the current
price sum to u.

We now give some pseudocode for the edge processing algorithm:

Process edge (v, u):
If (v, u) is Ini(u) and Outt(v):

di(u) = min(di(u), dt(v) + p(v, u))
Counti(u)+ = 1
If Counti(u) = |Ini(u)| and Donei−1(u) = 1

Set Donei(u) = 1, di(u) = min(di−1(u), di(u))
for all e ∈ Outi(u), Process edge(e)
for all k > i while Countk(u) = |Ink(u)|

Set Donek(u) = 1, dk(u) = min(dk−1(u), dk(u))
for all e ∈ Outk(u), Process edge(e)

To continue the algorithm for SSCIP after the edge sorting phase, go through the edges e going
out of s in nondecreasing order and run Process edge(e).

First we show that every edge in the graph is processed at most once. Let (u, v) be the
first edge to be processed a second time. Then at least two calls Process edge(x1, u) and
Process edge(x2, u) for x1 6= x2 must have caused a call to Process edge(u, v).

Suppose Process edge(x1, u) was called first. Let (u, v) ∈ Outj(u). In order for Process edge(u, v)
to have been called, Counti(u) = |Ini(u)| for all i ≤ j. Since Counti(u) is only incremented when
an edge from Ini(u) is processed and since every edge smaller than (u, v) was processed at most
once, this means that all edges from Ini(u) for all i ≤ j must have been processed. Since (x2, u)
was processed after (x1, u), then (x2, u) ∈ Int(u) for t > j. This contradicts the assumption that
Process edge(x2, u) caused a call to Process edge(u, v).

Since every edge is processed at most once, the running time of this portion of the algorithm
is O(m). The major overhead in the overall algorithm is the original sorting of the edges which
makes the running time O(m log ∆).

Now we show that every edge in the graph is processed at least once. This is done again by
contradiction. All edges (s, v) are processed. Let (u, v) for u 6= s be the smallest edge which was
not processed. Let (u, v) ∈ Outj(u). Then all edges (x, u) ∈ Ini(u) with i ≤ j must have been
processed since they are all smaller than (u, v). Also, there must be at least one such edge (x, u)
since (u, v) is part of an increasing path from s to v. Let (x, u) be the largest edge smaller than
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(u, v). Edge (x, u) has been processed. Whenever Process edge(x, u) was called, Donej(u) must
have been set and hence (u, v) was processed. Contradiction.

Lastly, we show that the algorithm computes the correct minimum price sums for all nodes.
First note that any di(u) which is ever computed is a price sum of some increasing path from s to
u. This is by induction and since we only process an edge (u, v) if some edge into u smaller than
(u, v) was processed. Consider node v ∈ V , and let P = s → u1 → . . . → uk → v be a cheapest
increasing path from s to v. Let ux ∈ {s = u0, u1, . . . , uk, v = uk+1} be the last node on the path
such that when (ux, ux+1) is processed, di(ux) (for (ux−1, ux) ∈ Ini(ux)) is at most the price sum of
path s→ u1 → ux. Such a node ux exists as di(s) = 0 for all i. If ux = v we are done. Otherwise,
when edge (ux, ux+1) is processed, the value of dj(ux+1) for (j such that (ux, ux+1) ∈ Inj(ux+1))
is set to min(dj(ux+1), dt(ux) + p(ux, ux+1)), where t is such that (ux, ux+1) ∈ Outt(ux). We have
dt(ux) ≤ di(ux) as t ≥ i and hence

dj(ux+1) ≤ di(ux) + p(ux, ux+1) ≤
x∑

y=0

p(uy, uy+1).

This contradicts the maximality of x. Hence dn(v) (the final price sum) is at most the price sum
of path P , and thus equals the price sum of P and is the cheapest price of an increasing path from
s to v. �

All Pairs Cheapest Increasing Paths and All Pairs Shortest Paths. We show that all
pairs cheapest increasing Paths (APCIP) is at least as hard as APSP. In particular, computing the
distance product of two n× n matrices A and B can be reduced to APCIP in an 3n node directed
graph as follows. Create a 3-layered graph G on 3n nodes and node partitions I, J and K. For
every i ∈ I, j ∈ J set p(i, j) = A[i, j] and t(i, j) = 1. For j ∈ J , k ∈ K, set p(j, k) = B[j, k]
and t(j, k) = 2. Even when G is undirected the only increasing paths in the graph are of the form
i → j → k with i ∈ I, j ∈ J, k ∈ K, and all such paths are increasing. Hence APCIP actually
computes the distance product of A and B, as for every i ∈ I, k ∈ K, the cheapest increasing path
between i and k has price sum minj(A[i, j] + B[j, k]). We obtain the following.

Theorem 6.3.3 If APCIP in an undirected graph on n nodes can be computed in O(T (n)) time,
then APSP in an arbitrary graph on n nodes can be computed in O(T (n)) time.
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Chapter 7

Combinatorial Algorithms for Path
Problems in Sparse Graphs

A large collection of graph problems in the literature admit essentially two solutions: an algebraic
approach and a combinatorial approach. Algebraic algorithms rely on the theoretical efficacy of fast
matrix multiplication over a ring, and reduce the problem to a small number of matrix multiplica-
tions. These algorithms achieve unbelievably good theoretical guarantees, but can be impractical
to implement given the large overhead of fast matrix multiplication. Combinatorial algorithms
rely on the efficient preprocessing of small subproblems. Their theoretical guarantees are typically
worse, but they usually lead to more practical improvements. Combinatorial approaches are also
interesting in that they have the capability to tackle problems that seem to be currently out of the
reach of fast matrix multiplication. For example, many sparse graph problems are not known be
solvable quickly with fast matrix multiplication, but a combinatorial approach can give asymptotic
improvements. (Examples are below.)

7.1 A Combinatorial Approach for Sparse Graphs

In this chapter we introduce a new combinatorial approach for path problems in sparse graphs.
All results presented here, together with some others, appear in [10]. We first present a new
combinatorial method for preprocessing an n×n dense Boolean matrix A in O(n2+ε) time (for any
ε > 0) so that sparse vector multiplications with A can be done faster, while matrix updates are
not too expensive to handle. In particular,

• for a vector v with t nonzeros, A · v can be computed in O( n
log n(t/κ + n/`)) time, where `

and κ are parameters satisfying
(

`
κ

)
≤ nε, and

• row and/or column updates to the matrix can be performed in O(n1+ε) time.

The matrix-vector multiplication can actually return a vector w of minimum witnesses; that is,
w[i] = k iff k is the minimum index satisfying A[i, k] · v[k] 6= 0. The data structure is simple, does
not use devious “word tricks” or hide any large constants, and can be implemented on a pointer
machine.1 We apply our data structure to three fundamental graph problems: transitive closure,

1When implemented on the w-word RAM, the multiplication operation runs in O( n
w

(t/k + n/`)). In fact, all of
the combinatorial algorithms mentioned in this chapter can be implemented on a w-word RAM in O(T (n)(log n)/w)
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all pairs shortest paths, and all pairs maximum weight triangles (as in Chapter 4). All three are
known to be solvable in n3−δ time for some δ > 0, but the algorithms are algebraic and do not
exploit the potential sparsity of graphs. With the right settings of the parameters ` and κ, our
data structure can be applied to all the above problems, giving the best runtime bounds for sparse
problems to date.

Transitive Closure: We have a directed graph on n nodes and m edges, and wish to find
all pairs of nodes (u, v) whether there is a path from u to v in the graph. Transitive closure has
myriad applications and a long history of ideas. The best known theoretical algorithms use O(M(n))
time [39, 67] where M(n) is the complexity of n×n Boolean matrix product, and O(mn/ log n+n2)
time [21, 16]. Algebraic matrix multiplication implies an O(nω) algorithm, where ω < 2.376 [28],
and combinatorial matrix multiplication gives an O(n3/ log2 n) runtime [6, 79, 100]. Our data
structure can be used to implement transitive closure in O(mn(log(n2

m )/ log2 n) + n2) time. This
constitutes the first combinatorial improvement on the bounds of O(n3/ log2 n) and O(mn/ log n +
n2) that follow from Four Russians preprocessing. In fact, it provides a smooth transition from the
running time for dense graphs (O(n3/ log2 n)) to the running time for graphs with m = O(n2−ε)
for ε > 0 (O(mn/ log n + n2)).

All Pairs Shortest Paths (APSP): We want to construct a representation of a given graph,
so that for any pair of nodes, a shortest path between the pair can be efficiently obtained from
the representation. The work on APSP is deep and vast; here we focus on the simplest case where
the graph is undirected and unweighted. For this case, Galil and Margalit [50] and Seidel [82] gave
O(nω) time algorithms. These algorithms do not improve on the simple O(mn + n2) algorithm
(using BFS) when m = o(nω−1). The first improvement over O(mn) was given by Feder and Mot-
wani [38] who gave an O(mn log(n2

m )/ log n) time algorithm. Recently, Chan [17] presented new
algorithms that take O(n2+ε + mn/ log n) time for any ε > 0. We show that APSP on undirected
unweighted graphs can be computed in O(mn log(n2

m )/ log2 n) time, again providing a smooth tran-
sition from the known combinatorial runtimes of O(n3/ log2 n) ([38, 17]) and O(n2+ε + mn/ log n)
time. Our algorithm modifies Chan’s O(mn/ log n + n2 log n) time solution, implementing its most
time-consuming procedure efficiently using our data structure.

All Pairs Weighted Triangles: As in Chapter 4, we consider the problem of finding maximum
node-weighted triangles in a graph. Here we have a directed graph with an arbitrary weight
function w on the nodes. We wish to compute, for all pairs of nodes v1 and v2, a node v3 that
such that (v1, v3, v2, v1) is a cycle and

∑
i w(vi) is minimized or maximized. The problem has

applications in data mining and pattern matching. In Chapter chap:tria we uncovered interesting
algebraic algorithms for this problem (also see [98]), the current best being O(n2.575), but again
it is somewhat impractical, relying on fast rectangular matrix multiplication. (We note that the
problem of finding a single minimum or maximum weight triangle has been shown to be solvable
in nω+o(1) time [30].) The proof of the result in Chapter 4 also implies an O(mn/ log n) algorithm.
Our data structure lets us solve the problem in O(mn log(n2

m )/ log2 n) time.

time, where T (n) is the runtime stated.
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7.2 On the Optimality of our Algorithms

We have claimed that all the above problems can be solved in O(mn log(n2/m)/ log2 n) time. How
does this new runtime expression compare to previous work? It is easier to see the impact when
we let m = n2/s for a parameter s. Then

mn log(n2/m)
log2 n

=
n3

log2 n
· log s

s
(7.1)

Therefore, our algorithms yield asymptotic improvements on “medium density” graphs, where the
number of edges is in the range n2−o(1) ≤ m ≤ o(n2).

At first glance, such an improvement may appear small. We stress that our algorithms have
essentially reached the best that one can do for these problems, without resorting to fast matrix
multiplication or achieving a major breakthrough in combinatorial matrix algorithms. As all of
the above problems can be used to simulate Boolean matrix multiplication, (7.1) implies that an
O(mn log(n2/m)

f(n) log2 n
) algorithm for any of the above problems and any unbounded function f(n) would

entail an asymptotic improvement on combinatorial Boolean matrix multiplication, a longstanding
open problem. Note that an o(mn/ log n) combinatorial algorithm does not imply such a break-
through: let m = n2/s and observe o(mn/ log n) = o(n3/(s log n)); such an algorithm is still slow
on sufficiently dense matrices.

7.3 Related Work

Closely related to our work is Feder and Motwani’s ingenious method for compressing sparse graphs,
introduced in STOC’91. In the language of Boolean matrices, their method runs in Õ(mn1−ε) time
and decomposes an n×n matrix A with m nonzeros into an expression of the form A = (A1∗A2)∨A3,
where ∗ and ∨ are matrix product and pointwise-OR, A1 is n ×mnε, A2 is mnε × n, A1 and A2

have O(m log(n2/m)
log n ) nonzeros, and A3 has O(n1+ε) nonzeros. Such a decomposition has many

applications to speeding up algorithms.
While a (log n)/ log(n2/m) factor of savings crops up in both approaches, our approach is

markedly different from graph compression; in fact it seems orthogonal. From the above viewpoint,
Feder-Motwani’s graph compression technique can be seen as a method for preprocessing a sparse
Boolean matrix so that multiplications of it with arbitrary vectors can be done in O

(
m log(n2/m)

log n

)
time. In contrast, our method preprocesses an arbitrary matrix so that its products with sparse
vectors are faster, and updates to the matrix are not prohibitive. This sort of preprocessing leads
to a Feder-Motwani style improvement for a new set of problems. It is especially applicable to
problems in which an initially sparse graph is augmented and becomes dense over time, such as
transitive closure.

Our data structure is related to one given previously by Williams [100], who showed how to
preprocess a matrix over a constant-sized semiring in O(n2+ε) time so that subsequent vector
multiplications can be performed in O(n2/ log2 n) time. Ours is a significant improvement over this
data structure in two ways: (1) the runtime of multiplication now varies with the sparsity of the
vector (and is never worse than O(n2/ log2 n)), and (2) our data structure also returns minimum
witnesses for the multiplication. Both of these are non-trivial augmentations that lead to new
applications.
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7.4 Preliminaries and Notation

Define H(x) = x log2(1/x) + (1− x) log2(1/(1− x)). H is often called the binary entropy function.
All logarithms are assumed to be base two. We define δG(s, v) to be the distance in graph G from
node s to node v. We assume G is always weakly connected, so that m ≥ n− 1.

We denote the typical Boolean product of two matrices A and B by A · B. For two Boolean
vectors u and v, let u∧v and u∨v denote the componentwise AND and OR of u and v respectively;
let ¬v be the componentwise NOT on v.

A minimum witness vector for the product of a Boolean matrix A with a Boolean vector v is a
vector w such that w[i] = 0 if ∨j(A[i][j] · v[j]) = 0, and if ∨j(A[i][j] · v[j]) = 1, w[i] is the minimum
index j such that A[i][j] · v[j] = 1.

7.5 Combinatorial Matrix Products With Sparse Vectors

We begin with a data structure which after preprocessing stores a matrix while allowing efficient
matrix-vector product queries and column updates to the matrix. On a matrix-vector product
query, the data structure not only returns the resulting product matrix, but also a minimum
witness vector for the product.

Theorem 7.5.1 Let B be a d × n Boolean matrix. Let ` ≥ 1 and κ < ` be parameters. Then
one can create a data structure with O(dnκ

` ·
∑κ

b=1

(
`
b

)
) preprocessing time so that the following

operations are supported:

• given any n× 1 binary vector r, output B · r and a d× 1 vector w of minimum witnesses for
B · r in O(d log2 n + d

log n

(
n
` + mr

κ

)
) time, where mr is the number of nonzeros in r;

• replace any column of B by a new column in O(dκ
∑κ

b=1

(
`
b

)
) time.

The result can be made to work on a pointer machine as in [100]. Observe that the näıve
algorithm for B · r that simulates Θ(log n) word operations on a pointer machine would take
O( dmr

log n) time, so the above runtime gives a factor of κ savings provided that ` is sufficiently large.
The result can also be generalized to handle products over any fixed size semiring, similar to [100].
Proof of Theorem 7.5.1. Let 0 < ε < 1 be a sufficiently small constant in the following. Set
d′ = d d

dε log nee and n′ = dn/`e. To preprocess B, we divide it into block submatrices of at most
dε log ne rows and ` columns each, writing Bji to denote the j, i submatrix, so

B =

 B11 . . . B1n′

...
. . .

...
Bd′1 . . . Bd′n′

 .

Note that entries from the kth column of B are contained in the submatrices Bjdk/`e for j = 1, . . . , d′,
and the entries from kth row are in Bdk/`ei for i = 1, . . . , n′. For simplicity, from now on we omit
the ceilings around ε log n.

For every j = 1, . . . , d′, i = 1, . . . , n′ and every ` length vector v with at most κ nonzeros,
precompute the product Bji · v, and a minimum witness vector w which is defined as: for all
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k = 1, . . . ε log n,

w[k] =
{

0 if (Bji · v)[k] = 0
(i− 1)` + w′ if Bji[k][w′] · v[w′] = 1 and ∀w′′ < w′, Bji[k][w′′] · v[w′′] = 0.

Store the results in a look-up table. Intuitively, w stores the minimum witnesses for Bji · v with
their indices in [n], that is, as if Bji is construed as an n × n matrix which is zero everywhere
except in the (j, i) subblock which is equal to Bji, and v is construed as a length n vector which
is nonzero only in its ith block which equals v. This product and witness computation on Bji

and v takes O(κε log n) time. There are at most
∑κ

b=1

(
`
b

)
such vectors v, and hence this pre-

computation takes O(κ log n
∑κ

b=1

(
`
b

)
) time for fixed Bji. Over all j, i the preprocessing takes

O( dn
` log n · κ log n

∑κ
b=1

(
`
b

)
) = O(dnκ

`

∑κ
b=1

(
`
b

)
) time.

Suppose we want to modify column k of B in this representation. This requires recomputing
Bjdk/`e · v and the witness vector for this product, for all j = 1, . . . , n′ and for all length ` vectors
v with at most κ nonzeros. Thus a column update takes only O(dκ

∑κ
b=1

(
`
b

)
) time.

Now we describe how to compute B · r and its minimum witnesses. Let mr be the number of
nonzeros in r. We write r = [r1 · · · rn′ ]T where each ri is a vector of length `. Let mri be the
number of nonzeros in ri.

For each i = 1, . . . , n′, we decompose ri into a union of at most dmri/κe disjoint vectors rip of
length ` and at most κ nonzeros, so that ri1 contains the first κ nonzeros of ri, ri2 the next κ, and
so on, and ri = ∨prip. Then, for each p = 1, . . . , dmri/κe, rip has nonzeros with larger indices than
all rip′ with p′ < p, i.e. if rip[q] = 1 for some q, then for all p′ < p and q′ ≥ q, rip′ [q′] = 0.

For j = 1, . . . , d′, let Bj = [Bj1 . . . Bjn′ ]. We shall compute vj = Bj · r separately for each j
and then combine the results as v = [v1, . . . , vd′ ]T . Fix j ∈ [d′]. Initially, set vj and wj to be the
all-zeros vector of length ε log n. The vector wj shall contain minimum witnesses for Bj · r.

For each i = 1, . . . , n′ in increasing order, consider ri. In increasing order for each p =
1, . . . , dmri/κe, process rip as follows. Look up v = Bji · rip and its witness vector w. Com-
pute y = v ∧ ¬vj and then set vj = v ∨ vj . This takes O(1) time. Vector y has nonzeros in
exactly those coordinates h for which the minimum witness of (Bj · r)[h] is a minimum witness of
(Bji · rip)[h] but not of any (Bji′ · ri′p′)[h] with i′ < i or i′ = i and p′ < p. In this situation we say
that the minimum witness is in rip. In particular, if y 6= 0, rip contains some minimum witnesses
for Bj · r and the witness vector wj for Bj · r needs to be updated. Then, for each q = 1, . . . , ε log n,
if y[q] = 1, set wj [q] = w[q]. This ensures that after all i, p iterations, v =

∨
i,p (Bji · rip) = Bj · r

and wj is the product’s minimum witness vector. Finally, we output B · r = [v1 · · · vd′ ]T and
w = [w1 . . . wd′ ]. Updating wj can happen at most ε log n times, because each wj [q] is set at
most once for q = 1, . . . , ε log n. Each individual update takes O(log2 n) time. Hence, over all j,
the minimum witness computation takes O(d log2 n). Computing vj = Bj · r for a fixed j takes
O(
∑n′

i=1dmri/κe) ≤ O(
∑n′

i=1(1 + mri/κ)) time. Over all j = 1, . . . , d/(ε log n), the computation of
B · r takes asymptotically

d

log n

n/`∑
i=1

(
1 +

mri

κ

)
≤ d

log n

(n

`
+

mr

κ

)
.

In total, the running time is O(d log2 n + d
log n(n

` + mr
κ )). �

Let us demonstrate what the data structure performance looks like with a particular setting of
the parameters ` and k. From Jensen’s inequality we have:
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Fact 2 H(a/b) ≤ 2a/b log(b/a), for b ≥ 2a.

Corollary 7.5.1 Given a parameter m and 0 < ε < 1, any d × n Boolean matrix A can be
preprocessed in O(dn1+ε) time, so that every subsequent computation of AB can be determined in
O(de log2 n + md log(ne/m)

log2 n
) time, for any n× e Boolean matrix B with at most m nonzeros.

Proof. When m ≥ en
2 , the runtime in the theorem is Ω(end/ log2 n), and can be achieved via Four

Russians processing. Consider m ≤ en
2 . Apply Theorem 7.5.1 with ` = ε en

m · (log n)/ log(en/m),
and κ = ε(log n)/ log(en/m). Then by Fact 2, we can show that

(
`
κ

)
≤ nε. Hence the prepro-

cessing step takes O(dn1+εm/(ne)) = O(dn1+ε) time. Matrix-vector multiplication with a vector
of mi nonzeros takes O

(
d log2 n + d

log n

(
m log(en/m)

e log n + mi log(en/m)
log n

))
time. If mi is the number of

nonzeros in the ith column of B, as
∑

i mi = m, the full matrix product A · B can be done in

O
(
de log2 n + md log(en/m)

log2 n

)
time. �

It follows that Boolean matrix multiplication for n × n matrices can be done in O(n2+ε +
mn log n2

m / log2 n) time, provided that at least one of the matrices has only m nonzeros. We note
that such a result could also be obtained by construing the sparse matrix as a bipartite graph,
applying Feder-Motwani’s graph compression to represent the sparse matrix as a product of two
sparser matrices (plus a matrix with n2−δ nonzeros), then using an O(mn/ log n) Boolean matrix
multiplication algorithm on the resulting matrices. However, given the complexity of this procedure
(especially the graph compression, which is involved) we believe that our method is more practical.
Theorem 7.5.1 also leads to two other new results almost immediately.

Minimum Witnesses for Matrix Multiplication. The minimum witness product of two n×n
Boolean matrices A and B is the n× n matrix C defined as C[i][j] = minn

k=1{k | A[i][k] ·B[k][j] =
1}, for every i, j ∈ [n]. This product has applications to several graph algorithms. It has been
used to compute all pairs least common ancestors in DAGs [59, 29], to find minimum weight
triangles in node-weighted graphs [96], and to compute all pairs bottleneck paths in a node weighted
graph [83]. The best known algorithm for the minimum witness product is by Czumaj, Kowaluk
and Lingas [59, 29] and runs in O(n2.575) time. However, when one of the matrices has at most
m = o(n1.575) nonzeros, nothing better than O(mn) was known (in terms of m) for combinatorially
computing the minimum witness product. As an immediate corollary of Theorem 7.5.1, we obtain
the first asymptotic improvement for sparse matrices: an algorithm with O(mn log(n2/m)/ log2 n)
running time.

Corollary 7.5.2 Given n×n Boolean matrices A and B, where B has at most m nonzero entries,
all pairs minimum witnesses of A ·B can be computed in O(n2 + mn log(n2/m)/ log2 n) time.

Minimum Weighted Triangles. The problem of computing for all pairs of nodes in a node-
weighted graph a triangle (if any) of minimum weight passing through both nodes can be reduced
to finding minimum witnesses as follows ([96]). Sort the nodes in order of their weight in O(n log n)
time. Create the adjacency matrix A of the graph so that the rows and columns are in the
sorted order of the vertices. Compute the minimum witness product C of A. Then, for every
edge (i, j) ∈ G, the minimum weight triangle passing through i and j is (i, j, C[i][j]). From this
reduction and Corollary 7.5.2 we obtain the following.
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Corollary 7.5.3 Given a graph G with m edges and n nodes with arbitrary node weights, there
is an algorithm which finds for all pairs of vertices i, j, a triangle of minimum weight sum going
through i, j in O(n2 + mn log(n2

m )/ log2 n) time.

7.6 Transitive Closure

The transitive closure matrix of an n node graph G is the n × n Boolean matrix A for which
A[i][j] = 1 if and only if node i is reachable from node j in G. In terms of n, the complexity
of computing the transitive closure of an n node graph is equivalent to that of multiplying two
Boolean n × n matrices [1], thus the best known algorithm in terms of n is O(nω). However,
when the sparsity of G is taken into account, it is unclear how to use an algorithm for sparse matrix
multiplication to solve transitive closure in the same runtime. While Feder and Motwani’s [38] graph
compression implies an O(mn log(n2

m )/ log2 n) algorithm for sparse matrix product, this result gives
little insight on how to compute the transitive closure of a sparse graph—since the number of edges
in the transitive closure is independent of m in general, maintaining a graph compression will not
suffice. In contrast, the data structure of Theorem 7.5.1 is perfectly suited for use with a dynamic
programming algorithm for transitive closure.

Theorem 7.6.1 Transitive closure can be computed in O(n2 + mn log(n2

m )/ log2 n) time on graphs
with n nodes and m edges.

Proof. We first compute the strongly connected components of G in O(m + n) time. We then
contract them in linear time to obtain a DAG G′. Clearly, if we have the transitive closure matrix
of G′, we can recover the transitive closure matrix of G with an extra O(n2) additive overhead: for
every edge (u, v) in the transitive closure graph of G′, go through all pairs of vertices (i, j) such
that i is in u and j is in v and add 1 to the transitive closure matrix of G. Hence it suffices for us
to compute the transitive closure of a DAG G′.

First, we topologically sort G′ in O(m + n) time. Our transitive closure algorithm is based on
a dynamic programming formulation of the problem given by Cheriyan and Mehlhorn [21], later
also mentioned by Chan [16]. The algorithm proceeds in n iterations; after the kth iteration, we
have computed the transitive closure of the last k nodes in the topological order. At every point,
the current transitive closure is maintained in a Boolean matrix R, such that R[u][v] = 1 iff u
is reachable from v. Let R[·][v] denote column v of R. Let p be the (k + 1)st node in reverse
topological order. We wish to compute R[·][p], given all the vectors R[·][u] for nodes u after p in
the topological order. To do this, we compute the componentwise OR of all vectors R[·][u] for the
neighbors u of p.

Suppose R is a matrix containing columns R[·][u] for all u processed so far, and zeros otherwise.
Let vp be the outgoing neighborhood vector of p: vp[u] = 1 iff there is an arc from p to u. Construing
vp as a column vector, we want to compute R · vp. Since all outgoing neighbors of p are after p in
the topological order, and we process nodes in reverse order, correctness follows.

We now show how to implement the algorithm using the data structure of Theorem 7.5.1. Let
R be an n × n matrix such that at the end of the algorithm R is the transitive closure of G′. We
begin with R set to the all zero matrix. Let ` ≥ 1, and κ < ` be parameters to be set later. After
O((n2κ/`)

∑κ
b=1

(
`
b

)
) preprocessing time, the data structure for R from Theorem 7.5.1 is complete.

Consider a fixed iteration k. Let p be the kth node in reverse topological order. As before, vp

is the neighborhood column vector of p, so that vp has outdeg(p) nonzero entries. Let 0 < ε < 1 be

85



a constant. We use the data structure to compute rp = R · vp in O(n1+ε +n2/(` log n)+ outdeg(p) ·
n/(κ log n)) time. Then we set rp[p] = 1, and R[·][p] := rp, by performing a column update on
R in O(nκ

∑κ
b=1

(
`
b

)
) time. This completes iteration k. Since there are n iterations and since∑

p outdeg(p) = m, the overall running time is asymptotic to

n2κ

`

κ∑
b=1

(
`

b

)
+ n2+ε +

n3

` log n
+

mn

κ log n
+ n2κ

κ∑
b=1

(
`

b

)
.

To minimize the running time we need to set ` and κ. Similar to Corollary 7.5.1, we set n3

` log n =
mn

κ log n , (implying ` = κn2/m), and nε =
∑`m/n2

b=1

(
`
b

)
. For m ≤ n2/2,

∑m`/n2

b=1

(
`
b

)
= O(2`H(m/n2)) =

O(2` m
n2 log n2

m ). Hence we want ` m
n2 log n2

m = log nε, and ` = ε′ n2 log n
m log(n2/m)

, κ = ε′ log n
log(n2/m)

for ε′ < ε

suffices for a runtime of O(n2+ε + mn log(n2/m)/ log2 n). If m = Ω(n1+ε log2 n), then the second
term is Ω(n2+ε). On the other hand, if m = O(n1+ε log2 n), we can ignore the preprocessing step
and execute the original algorithm, in O(mn/ log n) ≤ O(mn log n2

m / log2 n) time. Therefore the
n2+ε overhead in running time can be ignored. �

7.7 APSP on Unweighted Undirected Graphs

Our data structure can also be applied to solve all pairs shortest paths (APSP) on unweighted
undirected graphs, yielding the fastest algorithm for sparse graphs to date. Chan [17] gave two algo-
rithms for this problem, which constituted the first major improvement over the O(mn log(n2/m)

log n +n2)
obtained by Feder and Motwani’s graph compression [38]. The first algorithm is deterministic run-
ning in O(n2 log n+mn/ log n) time, and the second one is Las Vegas running in O(n2 log2 log n/ log n+
mn/ log n) time on the RAM. To prove the following Theorem 7.7.1, we implement Chan’s first
algorithm, along with some modifications.

Theorem 7.7.1 The All Pairs Shortest Paths problem in unweighted undirected graphs can be
solved in O(n2+ε + mn log(n2/m)/ log2 n) time, for any ε > 0.

By running our algorithm when m = Ω(n1+ε log2 n) for some ε > 0 and Chan’s second algorithm
otherwise, we obtain the following result.

Theorem 7.7.2 On the probabilistic RAM, the APSP problem on unweighted undirected graphs
can be solved in O(n2 log2 log n/ log n + mn log(n2/m)/ log2 n) time, with high probability.

To be able to prove Theorem 7.7.1, let us focus on a particular part of Chan’s first algorithm
that produces the bottleneck in its runtime. The algorithm contains a subprocedure P (d), param-
eterized by an integer d < n. The input to P (d) is graph G = (V,E), a collection of n/d vertices
{s1, . . . , sn/d}, and a collection of n/d disjoint vertex subsets {S1, . . . , Sn/d}, such that ∀ i ∈ [n/d],
every s ∈ Si has distance at most 2 from si. P (d) outputs the | ∪i Si| × n matrix D, such that
for every s ∈ ∪iS

i and v ∈ V , D[s][v] = δG(s, v). Notice, | ∪i Si| ≤ n. This procedure P (d) is
significant for the following reason:

Lemma 7.7.1 (Implicit in Chan [17]) If P (d) can be implemented in O(T (P (d))) time, then
APSP on unweighted undirected graphs is in O(T (P (d)) + n2 · d) time.
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Setting d = nε, Theorem 7.7.1 is obtained from the following lemma.

Lemma 7.7.2 P (d) is implementable in O(n2+ε + mn
d + mn log(n2/m)

log2 n
) time, ∀ε > 0.

Proof. First, we modify Chan’s original algorithm slightly. As in Chan’s algorithm, we first do
breadth-first search from every si in O(mn/d) time overall. When doing this, for each distance
` = 0, . . . , n−1, we compute the sets Ai

` = {v ∈ V | δG(si, v) = `}. Suppose that the rows (columns)
of a matrix M are in one-to-one correspondence with the elements of some set U . Then, for every
u ∈ U , let ū be the index of the row (column) of M corresponding to u.

Consider each (si, S
i) pair separately. Let k = |Si|. For ` = 0, . . . , n − 1, let B` = ∪`+2

j=`−2A
i
`,

where Ai
j = {} when j < 0, or j > n− 1.

The algorithm proceeds in n iterations. Each iteration ` = 0, . . . , n − 1 produces a k × |B`|
matrix D`, and a k × n matrix OLD (both Boolean), such that for all s ∈ Si, u ∈ B` and v ∈ V ,

D`[s̄][ū] = 1 iff δG(s, u) = ` and OLD[s̄][v̄] = 1 iff δG(s, v) ≤ `.

At the end of the last iteration, the matrices D` are combined in a k × n matrix Di such that
D[s̄][v̄] = ` iff δG(s, v) = `, for every s ∈ Si, v ∈ V . At the end of the algorithm, the matrices Di

are concatenated to create the output D.
In iteration 0, create a k × |B0| matrix D0, so that for every s ∈ Si, D0[s̄][s̄] = 1, and all 0

otherwise. Let OLD be the k × n matrix with OLD[s̄][v̄] = 1 iff v = s.
Consider a fixed iteration `. We use the output (D`−1, OLD) of iteration ` − 1. Create a

|B`−1| × |B`| matrix N`, such that ∀u ∈ B`−1, v ∈ B`, N`[ū][v̄] = 1 iff v is a neighbor of u. Let N`

have m` nonzeros. If there are b` edges going out of B`, one can create N` in O(b`) time: Reuse an
n× n zero matrix N , so that N` will begin at the top left corner. For each v ∈ B` and edge (v, u),
if u ∈ B`−1, add 1 to N [ū][v̄]. When iteration ` ends, zero out each N [ū][v̄].

Multiply D`−1 by N` in O(k · |B`−1|1+ε + m`k log(n2

m )/ log2 n) time (applying Corollary 7.5.1).
This gives a k × |B`| matrix A such that for all s ∈ Si and v ∈ B`, A[s̄][v̄] = 1 iff there is a
length-` path between s and v. Compute D` by replacing A[s̄][v̄] by 0 iff OLD[s̄][v̄] = 1, for each
s ∈ Si, v ∈ B`. If D`[s̄][v̄] = 1, set OLD[s̄][v̄] = 1.

Computing the distances from all s ∈ Si to all v ∈ V can be done in

O(m +
n−1∑
`=1

(
k · |B`−1|1+ε + m`k log(n2/m)/ log2 n + b`

)
)

time. However, since every node appears in at most O(1) sets B`,
∑n−1

`=0 |B`| ≤ O(n),
∑

` b` ≤ O(m)
and

∑
` m` ≤ O(m). The runtime becomes O(kn1+ε + mk log(n2/m)/ log2 n + m). When we sum

up the runtimes for each (si, S
i) pair, since the sets Si are disjoint, we obtain asymptotically

n/d∑
i=1

(
m + |Si| ·

(
n1+ε +

m log(n2/m)
log2 n

))
=

mn

d
+ n2+ε +

mn log(n2/m)
log2 n

.

As the data structure returns witnesses, we can also return predecessors. �
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Chapter 8

Open Problems

This thesis introduced novel techniques for designing algorithms for path problems in weighted
graphs. The most pressing open question of this line of research is obtaining a truly subcubic
algorithm for the distance product of two real matrices. Even though we know how to obtain
such an algorithm for the case in which the maximum number of bits in any entry of the distance
product is < C log n for a small constant C, the solution to the general problem has evaded us.
Another, seemingly related open question is the maximum edge-weighted triangle problem. Our best
approach for this problem has been to find all-pairs maximum edge-weighted triangles and then to
take the maximum out of these. The all-pairs problem however is computationally equivalent to
computing the distance product. Finding just one maximum weighted triangle might be an easier
problem. Yet we do not even know an algorithm for finding a triangle in an unweighted graph
faster than by using the matrix multiplication method. A slightly more modest open problem is to
improve on the known results on dominance product. This would imply improved algorithms for
APBP and APNP.

Many of our results on all-pairs path problems rely on good algorithms for Boolean matrix
multiplication. Any improvements on the known bounds (algebraic or combinatorial) would imply
improved algorithms for many problems in this thesis. The major open problem on matrix multi-
plication is to determine the value of ω. If ω = 2 most of our algorithms would run in Õ(n2.5). In
the combinatorial algorithms setting, we would like to be able to find an O(n3/ log2+ε n) algorithm
for Boolean matrix multiplication for some ε > 0. This seems to be a modest goal, yet it has been
open for many years.

There are many open problems related to our work on single source path algorithms. One of
the most major open problems is determining the existence of a linear time algorithm for SSSP.
We also do not know whether there is a linear time algorithm for single source bottleneck paths
in directed graphs, or a deterministic linear time algorithm in undirected graphs. Another inter-
esting question is whether undirected single source bottleneck paths requires the same time as the
minimum spanning tree problem.
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