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Abstract

This thesis addresses the problem of designing user interfaces to support creating, editing, and viewing
security and privacy policies. Policies are declarations of who may access what under which conditions.
Creating, editing, and viewing—in a word, authoring—accurate policies is essential to keeping resources
both available to those who are authorized to use them and secure from those who are not. User interfaces
for policy authoring can greatly affect whether policies match their authors’ intentions; a bad user interface
can lead to policies with many errors, while a good user interface can ensure that a policy matches its
author’s intentions. Traditional methods of displaying security and privacy policies in user interfaces are
deficient because they place an undue burden on policy authors to interpret nuanced rules or convoluted
natural language.

We introduce the Expandable Grid, a novel technique for displaying policies in a user interface. An
Expandable Grid is an interactive matrix visualization designed to address the problems that traditional
policy-authoring interfaces have in conveying policies to users. This thesis describes the Expandable Grid
concept, then presents three pieces of work centered on the concept:

• a design, implementation, and evaluation of a system using an Expandable Grid for setting file per-
missions in the Microsoft Windows XP operating system;

• a description and evaluation of a file-permissions policy semantics that complements the Expandable
Grid particularly well for reducing policy-authoring errors; and

• a design, implementation, and evaluation of a system using an Expandable Grid for displaying website
privacy policies to Web users.

The evaluations of the Expandable Grid system for setting file permissions and its associated policy seman-
tics show that the Expandable Grid can greatly improve the speed and accuracy with which policy authors
complete tasks compared to traditional policy-authoring interfaces. However, the evaluation of the Expand-
able Grid system for displaying website privacy policies suggest some limitations of the Grid concept. We
conclude that the Expandable Grid is a beneficial promising approach to policy-authoring interface design,
but that it must be applied with care and tailored to each domain to which it is applied.
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CHAPTER 1

Introduction

Policies are fundamental to providing security and privacy in a wide variety of applications including file
systems, Web browsing, file-sharing networks, firewalls, online social networks, online health databases, and
location sharing. Such applications provide control over security and privacy through policy-based systems
that take requests for resources and grant or deny access to those resources according to a policy. Since
policy-based systems govern the tradeoff between system functionality and data security or privacy, policies
must be accurate in order to ensure that this tradeoff is made as desired. Inaccurate policies can lead to denial
of service on the one hand and to compromised resources on the other. Since humans author these policies,
it is important to provide usable interfaces that allow human users to create accurate and comprehensive
policies. However, research and everyday experience have demonstrated that the user interfaces we have
today for policy authoring are not usable.

At the same time that many have acknowledged the inadequacy of today’s policy-authoring interfaces,
the need for usable policy-authoring interfaces is on the rise. As computing becomes increasingly col-
laborative, distributed, and pervasive, data becomes more available, and authoring and understanding the
policies that control access to this data becomes both more necessary and more challenging. While making
data available enables many beneficial applications, the very availability of data creates opportunities for
abuse. Policies must be in place to prevent parties with ill intentions from accessing data and other com-
puting resources. However, as more applications require policies to be in place, there are fewer experts,
such as system administrators, relative to demand to author these policies. As a result, policy authoring
increasingly falls to end users or non-technical people, groups of users who are novice or occasional policy
authors. While dedicated system administrators might be able to invest the time to learn and use complex
user interfaces, this rising class of novice and occasional policy authors cannot be expected to do the same.
User interface designers must find designs that enable these policy authors to create their intended policies
without investing significant time and building significant skills.

Despite the need for usable policy-authoring interfaces, there is evidence that today’s widely-used
policy-authoring interfaces are prone to serious errors. The “Memogate” scandal, in which staffers from
one political party on the United States Senate Judiciary Committee stole the opposing party’s confidential
memos from a file server that the two parties shared, was caused in part by an inexperienced system admin-
istrator’s error using the Windows NT interface for setting file permissions [132]. A study we conducted
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showed cases in which users of the Windows XP file permissions interface made errors that exposed files to
unauthorized access [85]. Good and Krekelberg showed that users unwittingly shared confidential personal
files due to usability problems with the KaZaA peer-to-peer file-sharing application’s interface for speci-
fying shared files [55]. Herzog and Shahmehri revealed numerous usability problems with policytool, a
policy-authoring interface for setting permissions for Java programs [57]. In the domain of website privacy
policies, a number of studies have shown that natural language interfaces are a poor means for conveying
privacy policies to website visitors [7, 64, 100, 91].

1.1 Problem: Usability of policy-authoring interfaces
This thesis seeks to improve upon two of today’s dominant paradigms for presenting policies to policy
authors. First is what we call the list-of-rules paradigm, which is widely used in interfaces for authoring
policies in domains such as file access control, firewall, enterprise privacy, and location disclosure policies.
Second is natural language, particularly as it is used to present privacy policies to website visitors.

The main problem with list-of-rules policy-authoring user interfaces is that they force policy authors to
focus on individual rules, which are only a portion of a policy, rather than being centered around the policy
as a whole. A policy can be thought of as a set of rules that dictate what requests for resources will be
granted in a computing system. Authoring a policy is a matter of specifying this set of rules, so it is natural
to center an interface around a list of rules. A list-of-rules interface allows an author to select one rule to
create or edit and presents the author with information about that rule. However, list-of-rules interfaces
hide contextual information from authors as they are authoring a specific rule, even though users often need
such contextual information to author rules correctly. For example, rules may conflict with one another, so
authors need information about other rules to understand how a given rule will be affected by others. As
another example, policies usually have a default rule, i.e., a rule that applies to any requests not explicitly
covered by written rules. Users need to understand default rules in order to know what cases they need to
write rules for. In past work, I have shown both that a lack of needed information is responsible for user
errors in policy authoring and that providing this information in an easily accessible form can prevent many
errors [85].

There are also several potential usability problems with natural language policy presentations. Although
presenting privacy policies to consumers in a comprehensible manner is important from both consumer pro-
tection [45] and commercial [27, 91, 131] perspectives, privacy policies are usually presented in legalistic,
convoluted language [100], and are often written at a college or higher reading level [7, 64]. To make matters
worse, presentations vary from website to website; thus, from the Web user’s point of view, every privacy
policy is as hard to read as the last one, and it is very difficult to compare privacy policies across competing
websites.

1.2 Proposed solution: the Expandable Grid
To address some of the deficiencies of today’s policy-authoring interfaces, we propose a new design paradigm:
the Expandable Grid. The Expandable Grid is an interactive matrix visualization of a policy. A implementa-
tion of the Expandable Grid concept in an interface for setting file permissions is shown in Figure 1.1. The
motivation behind the Expandable Grid concept is to center policy-authoring interfaces around a standard-
ized, graphical visualization of the entire effective policy. The visualization-centered approach we advocate
applies many of the principles of information visualization to provide quick access to the decision a policy
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would make for any access request—not just the immediate rule that a user is editing. Providing this quick
access allows the interface to show all the contextual information relevant to a given rule. By showing
effective policy, our approach does the work of combining rules together, thus relieving policy authors of
the burden of figuring out the results of rule conflicts (which occur when multiple rules apply to an access
request) and default rules (which take effect when no rule applies to an access request) in their heads. Using
a standardized graphical layout also promises to prevent problems associated with natural language such as
convoluted language and to allow for different websites’ policies to be compared easily.

1.3 Applications of the Expandable Grid concept
The Expandable Grid concept could conceivably be applied to a wide variety of policy domains, but this
thesis focuses on two: file permissions in the Windows XP operating system and website privacy poli-
cies. These two domains were chosen because their respective policy-authoring interfaces are widely used
and because they are very different from each other. In this latter respect, they provide a test of the gen-
eralizability of the Expandable Grid concept. We designed and implemented a user interface based on the
Expandable Grid concept for each of these applications. We conducted user studies to evaluate the interfaces
over a broad range of policy-authoring tasks. We discuss each of the two applications and their respective
Expandable-Grid-based interfaces below.

1.3.1 An Expandable Grid for file permissions
In a basic file access-control system, there are resources, principals, and actions. Resources include files and
folders, the data to which access is to be controlled. Principals are system users and groups of system users.
Actions are operations that may be performed on resources, such as “read,” “write,” “execute,” and “delete.”
A file permissions policy is a set of rules that state what principals may perform what actions on which
resources. Rules may allow or deny access. For example, a rule may state that the user “jsmith” is allowed
to read the file “budget.xls,” or that the user “mary” is denied access to write to the file “privateData.txt.”
Since a file system may have many principals, file access control systems typically provide a means for
constructing groups, which are collections of users. For instance, users might be placed into groups or roles
according to their position in an organization, such as “Managers,” and “Employees.” Similarly, files may
be grouped into hierarchical folders. Groups and folders allow policy authors to write rules that apply to all
components of a composite value, such as a rule that denies delete capability to all employees for files in a
folder called “Critical files.”

The Windows XP file permissions interface provides a good example of a list-of-rules policy-authoring
interface and its limitations. To describe the limitations of the list-of-rules approach, it is convenient to start
with an example task. Here, we describe the Jana task, one of the 20 tasks we designed for the user study
described in Chapter 6. Our statement of the Jana task reads as follows:

Jana, a Theory 101 TA, complained that when she tried to change the Four-part Harmony hand-
out to update the assignment, she was denied access.

Set permissions so that Jana can read and write the Four-part Harmony.doc file in the Theory
101\Handouts folder.

Figure 1.2 shows the state of the Windows XP file permissions interface after a common error that
policy authors make. Authors create a rule stating that Jana is allowed read and write access to the Four-part
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Figure 1.1: Our Expandable Grid interface for setting file permissions in Windows XP. The interface shows
principals along the upper axis, resources along the left-hand axis, and the effective policy applying to the
principals and resources in the colored squares in the grid itself.
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Figure 1.2: The Windows XP file permissions interface, an example of a list-of-rules policy-authoring
interface. These screenshots give an example of why it is difficult for users to understand an effective policy
in the presence of a rule conflict.

Harmony.doc file. Looking at the interface as pictured in the left-hand screenshot in Figure 1.2, it appears
Jana is now allowed to read and write the file. What policy authors miss, however, is that Jana is a member
of the group Theory 101 TAs 2006; there is a rule, as can be seen in the right-hand screenshot in Figure 1.2
that denies this group access to read and write the file. Thus, two rules apply to Jana, one allowing her
access and one denying her access; this situation is a rule conflict. In Windows, rules that deny access take
precedence in conflicts with rules that allow access, so in Jana’s case, she is denied access to the file. To
understand Jana’s situation, the policy author must understand three things: first, that Jana is in the group
Theory 101 TAs 2006; second, that Theory 101 TAs 2006 are denied write access to the file; and third,
that Deny permissions take precedence over allow permissions. Once these three items are understood, they
need to be remembered and applied to determine the correct method for completing this task: removing
the deny rule for Theory 101 TAs 2006 so that the rule allowing Jana access will become operative, while
the other members of the group will still be denied access to the file by default. However, the Windows
list-of-rules interface makes it difficult for the policy author to obtain these three pieces of information.
Group membership information is only available in the Computer Management application, which is wholly
separate from the file permissions interface, and thus rarely found; the rule applying to Theory 101 TAs
2006 is easily overlooked; and the deny-takes-precedence rule essentially has to be inferred. It is difficult
for novice or occasional policy authors to complete this task correctly, even though it is a fairly typical
scenario.

The XP file-permissions interface has the following drawbacks:

• It only shows the policy for one resource at a time;
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• It shows rules, not how the rules combine to form the actual access that will be allowed to users;

• It can only show one rule at a time;

• It gives no indication of what happens by default when no rule applies to a particular user;

• It gives no indication of when rules conflict or how conflicts are resolved;

• It does not show group membership information.

The XP file-permissions interface is perhaps the most widely distributed list-of-rules interface and it is
the one on which we concentrate in this thesis, but it is by no means the only representative of the list-of-
rules paradigm. The paradigm has also been adopted by a Linux open source file-permissions interface [60],
the file-permissions interface in the Mac OS X Server [9], a research interface for location disclosure poli-
cies [76], and interfaces for setting firewall policies [6].

A screenshot of our Expandable Grid interface for setting file permissions can be seen in Figure 1.1.
The tree along the vertical axis at the left of the interface shows the resources in a file system. The rotated
tree along the horizontal axis at the top of the interface shows the principals. At the intersection of these two
trees is a grid that shows the access each principal has to each resource. Grid cells each correspond to one
principal and one resource. Each grid cell is further subdivided into a “subgrid,” a large square divided into
smaller boxes. The subgrids allow the interface to show a third policy dimension, as long as that dimension
has only a handful of values. In our interface, the subgrid represents five different types of access. The
upper left box in each group of five boxes indicates read access, the upper right box indicates write access,
the middle left box indicates execute access, the middle right box indicates delete access, and the lower box
indicates administrate access. Green boxes (which appear as a medium grey in greyscale) indicate access
that is allowed, red boxes (which appear dark grey in greyscale) indicate access that is denied, and yellow
boxes (which appear light grey in greyscale) indicate that items lower in one or both trees have a mixture of
allowed and denied access.

The screenshot in Figure 1.1 shows an intermediate state the interface would be in when the Jana task
has been half-completed. The grid cell at the intersection of “jana” and the “Four-part Harmony.doc” file is
highlighted in the crosshairs. In the highlighted grid cell, the upper-left box is green, indicating that Jana
has already been given read access to the “Four-part Harmony.doc” file, while the upper-right box is red,
indicating that Jana does not yet have write access. Clicking on the upper-right box will give Jana write
access and cause the box to turn green. In contrast to the checkboxes in the Windows file permissions
interface, the colored boxes of the grid indicate the actual access a user will have to a resource, after all
policy settings have been taken into account. When a red box is clicked on, the policy is changed so that
Jana is now allowed access, and the box turns green; there is no need to be aware of other rules that may
interfere with the intention to allow her access. Thus, it is much easier to complete the Jana task using the
Expandable Grid interface and to be certain that it has been completed correctly.

The Expandable Grid interface addresses the drawbacks of the list-of-rules approach:

• It shows the whole policy, for all resources and all principals, in one view;

• It shows the effective policy, which consists of the actual access decisions that will be made;

• By showing effective policy, it shows the combined effect of all rules;
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• By showing effective policy, it shows how rule conflicts are resolved;

• It shows group membership information in the tree of principals.

We conducted a user study comparing our Expandable Grid interface with the Windows XP file permis-
sions interface for a broad range of policy-authoring tasks and found the Grid interface vastly outperformed
the Windows interface in speed and accuracy across most of the tasks. For example, in one task, the Grid
achieved a 100% accuracy rate compared to 6% for Windows; in another task, the Grid achieved a 70%
reduction in the time required to complete the task. The Grid interface for file permissions and the user
study results are covered in detail in Chapter 6.

1.3.1.1 Policy semantics in the Expandable Grid
One of the key aspects to the Expandable Grid for file permissions is showing the effective policy. In the
Jana task, Jana is initially in two groups: the group Theory 101 TAs 2007, which is allowed read and write
access to the “Four-part Harmony.doc” file, and the group Theory 101 TAs 2006, which is denied that access.
Thus, Jana has conflicting rules on the file. According to the policy semantics used by Windows, when rules
conflict, the rule denying access takes precedence. The Grid allows policy authors to see that although Jana
has one rule allowing her read and write access to the file and another rule denying her that access, she is
actually denied access, as indicated by the red squares.

The Grid maintains the focus on the effective policy when it comes to changing the policy. Policy
authors can click on a red square and turn it green. This operation was so simple that 100% of participants
using the Grid in our user study successfully completed the Jana task. However, enabling the Grid to simply
turn Jana’s square green required a small trick—we had to change the policy semantics so that when an
author clicks the red square corresponding to Jana’s access to the “Four-part Harmony.doc” file, it sets a rule
allowing access, and that rule takes precedence over the existing rule denying her access. We changed the
semantics so that the most recently set rule takes precedence.

The success of the Expandable-Grid-based interface for setting file permissions in Windows XP led to
the question of whether this success was due primarily to the Grid as a presentation technique or to the
Grid’s new semantics. In a followup study, described in Chapter 7 we show that the answer is both: the
Grid with Windows semantics performs better than the native Windows interface, and the Grid with the new
semantics performs even better.

Given that our altered semantics did in fact lead to a usability gain, we asked what semantics was
best from a policy-authoring usability perspective. Our recency semantics appears to have some drawbacks,
especially when group memberships change and files can be moved from one folder to another. In Chapter 7,
we propose a specificity semantics in which the most specific rule—i.e., the rule applying to a specific user
instead of a group, or a specific file or subfolder instead of a higher-level folder—takes precedence in a
rule conflict. We implemented this semantics in our Expandable Grid, and in Chapter 7 we describe the
semantics and a user study comparing the Grid interface with the specificity semantics to the Grid interface
with XP semantics and to the Windows XP file permissions interface. Although there has been prior work
on using specificity to resolve conflicts [54], we believe we are the first to evaluate a semantics with an
actual user study.



10 CHAPTER 1: INTRODUCTION

Figure 1.3: A screenshot of our P3P Expandable Grid for displaying website P3P privacy policies.

1.3.2 An Expandable Grid for P3P
The Platform for Privacy Preferences (P3P) is a formal, machine-readable language for expressing privacy
policies in a manner that is standardized across websites. P3P makes it possible to display policies in
a standardized way. We have developed an Expandable-Grid-based interface for presenting website P3P
privacy policies to Web end users.

P3P defines a set of data practices in which an organization might engage, and a P3P policy specifies
which of those practices a specific organization engages in. For example, one potential data practice is
collecting a consumer’s email address and sharing it with other companies to contact the consumer for
marketing purposes. Each potential data practice defined by P3P consists of three primary attributes: data
category, recipient, and purpose. So, in the example data practice, “online contact information” is the data
category, “other companies” is the recipient, and “contact for marketing” is the purpose.

Our P3P Expandable Grid can be seen in Figure 1.3. Since P3P data practices are defined by the three
primary data-specific assertions, we used the P3P data categories, purposes, and recipients as the labels
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along the axes of our P3P Expandable Grid. Colored squares in the grid cells indicate those data practices in
which the organization issuing the represented policy engages; teal (dark grey in greyscale) squares indicate
practices in which the organization does engage, and light grey squares indicate practices in which the
organization does not engage. Teal squares with a white dot indicate data practices in which the organization
engages unless a website users opts out of the practice.

We conducted a user study over the Web comparing the P3P Expandable Grid with natural language
as a means for presenting privacy policies to Web users. The study showed that participants performed no
better on a set of comprehension questions using the P3P Expandable Grid presentation than they did using
the natural language presentation. This result was somewhat surprising, given the Grid success in a file-
permissions interface. In a follow-up lab study, we identified several specific reasons our implementation of
the Expandable Grid for P3P did not work well. The studies and their results are discussed in Chapter 8.

1.4 Thesis statement
The objective of this thesis is to test the hypothesis:

Policy-authoring user interfaces using techniques centered on visualization of a full,
effective policy lead to faster, more accurate performance on policy-authoring and policy-
viewing tasks than do today’s list-of-rules and natural-language policy-authoring inter-
faces.

Results of our user studies partially support the hypothesis. Specifically, our Expandable-Grid-based
user interface for setting file permissions vastly outperformed a list-of-rules-based interface, but our Expandable-
Grid-based user interface for presenting website privacy policies did not outperform a natural-language-
based presentation. We discuss reasons the Grid worked well in one domain but not the other and draw
conclusions about how and when to apply the Expandable Grid concept.

1.5 Outline of the thesis
This chapter has introduced some of the problems around policy-authoring interface design and our solution,
the Expandable Grid. Chapter 2 reviews related work in policy-authoring interface design, usable security,
information visualization, and policy languages. Chapters 3 and 4 present some of our preliminary work
that led to the Expandable Grid concept and the other ideas in this thesis. Chapter 5 presents the Expandable
Grid concept, lists characteristics of various policy domains, and discusses how these characteristics make
some policies suited and others not suited to being displayed in an Expandable Grid. Chapter 6 describes the
file-permissions Expandable Grid interface in detail and presents the results of the user study we conducted
to evaluate the interface. Chapter 7 describes the file permissions policy semantics we developed to best take
advantage of the Grid’s properties and presents results of user studies we conducted to evaluate the effect
of the semantics on the usability of the Grid. Chapter 8 describes the P3P Expandable Grid in detail and
presents results of a Web-based study we conducted to compare the P3P Expandable Grid policy presentation
with a natural-language-based policy presentation. Chapter 9 reviews some additional applications of the
Expandable Grid beyond file permissions and P3P. Chapter 10 summarizes results of the individual studies,
discusses what these results say about when and how the Expandable Grid concept can best be applied, and
mentions future directions for work on applying the Expandable Grid and creating usable policy-authoring
interfaces in general.



12 CHAPTER 1: INTRODUCTION



CHAPTER 2

Background and Related Work

This thesis is about using the Expandable Grid concept to build user interfaces to help policy authors write
policies accurately and efficiently. Here, we discuss related work, which falls into four broad areas:

1. Policy-authoring interface design. This area includes the work most directly related to this thesis and
includes approaches to developing usable interfaces in a variety of specific policy-authoring domains.

2. HCISEC (human-computer interaction for security). This area includes work generally related to
usability issues around computer security applications. We discuss how our work on policy-authoring
user interfaces fits into the broad themes of HCISEC.

3. Cognitive science. Work in the study of human cognition provides a theoretical basis to explain why
our approach of presenting a visualization of the full, effective policy might help policy authors with
their tasks.

4. Information visualization. Information visualization is a sub-discipline of human-computer interac-
tion that has produced a variety of interactive techniques for displaying large amounts of data. Some
of our work in policy visualization has borrowed from the principles and techniques of information
visualization.

2.1 Policy-authoring interface design
Past work in designing user interfaces for policy-authoring applications has focused on specific domains.
While researchers have produced some successful designs, prior work has not produced general techniques
applicable to a variety of policy-authoring domains. Tabular visualization approaches similar to the Ex-
pandable Grid have been included as part of at least two systems for enterprise security and privacy policy
authoring (SPARCLE and HP Select Access, described below), but they have not been evaluated in user
studies nor generalized to policy-authoring domains aside from enterprise policy authoring.

The HP Select Access Policy Builder is an application for authoring enterprise security and privacy
policies [94]. It includes a user interface that provides a visualization of a policy in a matrix indexed

13
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by principals on one axis and resources on the other. This is very similar to the idea of the Expandable
Grid. However, the HP Policy Builder is limited to showing principals and resources along the axes; there
is apparently no provision for showing any other policy attributes, such as actions (one of the common
attributes in file access control) or purposes (one of the common attributes in privacy policies). Moreover,
no user study evaluating the HP Policy Builder has been published.

Karat et al.’s SPARCLE system is concerned with the problem of enterprise privacy policy authoring
[69, 68]. SPARCLE provides a natural-language input mechanism for authors to write privacy policy rules in
English, and also provides a mechanism for authors to select rule elements from structured lists. SPARCLE
provides a matrix-based full-policy visualization. SPARCLE’s matrix visualization is limited, however, to
displaying policies with no more than about five element values in each dimension without scrolling. The
present work on the Expandable Grid concept was conceived as a means to make the SPARCLE policy
visualization scale to much larger policies.

Zurko et al. designed the Adage system, a policy-based access control system for distributed computing
systems [129, 153]. The Adage designers put a premium on usability, so Adage included the Visual Policy
Builder (VPB), a graphical user interface for supporting policy authoring. Adage and the VPB supported
operations fundamental to policy authoring: viewing and changing policies, viewing group memberships,
and detecting and resolving conflicts. In its presentation of policies to users, however, Adage was a list-
of-rules interface. Users could view single rules or lists of rules, but not the full policy implied by the
rules. Zurko’s usability testing revealed the need for a policy overview, and she suggested that research in
“dynamic visualization” could be applied to policy visualization [152]. A visualization-centered interface
was neither implemented nor tested in Adage, however.

Cao and Iverson presented Intentional Access Management (IAM) systems for access control [29]. They
define IAM systems as systems that take a user’s intention for a specific policy decision, convert that inten-
tion into possible rules that would result in the decision, and present the possible rules to the user. Thus, the
user is freed from having to figure out when a rule conflict will occur. Cao and Iverson demonstrate that an
implementation of IAM for WebDAV, a Web-based distributed file system, is an advance over the standard
WebDAV Access Control List editor. However, Cao and Iverson’s interface remains rule-centered; it does
not provide a means for visualizing the full policy.

Balfanz developed the ESCAPE Web server, which provided an easy-to-use access control system for
content published on the Web [11]. His system allowed a person to put content on the Web and send email
announcements to people who were allowed to view the content. The ESCAPE server would automatically
give access to the recipients of the emails. The ESCAPE server provided a user interface for viewing
directories of Web content and the people who had access to those directories. The ESCAPE server, while
not evaluated, would probably make Web access control policy authoring easier. However, its usability
gains were due to simplifications of the access control model, namely, having only two input dimensions—
users and folders—and not allowing for user grouping. These simplifications were probably appropriate for
end-user Web publishing, but would not be appropriate for all policy-authoring applications.

The IBM P3P Policy Editor is typical of a list-of-rules policy authoring interface [40]. It presents
Platform for Privacy Preferences (P3P) policies as lists of textual rules. While it is an excellent tool for
experienced P3P policy authors, its design does not lend itself to finding a particular decision or verifying a
property of the policy. To do so, one would have to read through the list of rules and assemble the policy in
one’s head.

Cranor et al. developed an interface for allowing people to specify what privacy practices they prefer
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in websites with which they interact [41]. Their approach to making their interface usable was to limit the
choices available to a few that had been shown to be most important to people, such as how their health and
medical information could be used and whether they would allow websites to contact them by telephone.
Their approach was very successful, but is very specific to the Web-based privacy preferences domain.

Lederer et al. developed user interface prototypes for setting location-disclosure policies in a pervasive
computing environment [76]. Their first prototype was rule-centered, but a study showed the prototype to
be confusing. A second prototype, using a design drawn from instant messaging clients, listed every friend
who had access to a user’s location information. This latter prototype allowed users to view policies in a
friend-centered way, but not by any other attribute, such as situation (users may want to reveal their location
when they are at work, but not when they are out partying, for example). This limitation was probably
acceptable for location-disclosure applications, as Lederer et al. found [77], but, in general, policy authors
may want to view policies according to more than one attribute.

The Role Control Center (RCC) is an application for managing role-based access control policies [23,
48]. It includes a graphical user interface that shows the assignment of users to roles in a directed graph and
allows for viewing policy either by principal or by resource. The assignment of users to roles is equivalent
to what we have referred to as group memberships, so RCC supports viewing group memberships very well.
RCC’s ability to show policy by principal or by resource is an improvement over access-control interfaces,
like the Windows XP file-permissions interface, that only allow for viewing policy by resource, but it still
shows policy only in lists of rules. It does not have a single full-policy visualization.

In the domain of firewall policy-authoring interfaces, Mayer et al. developed Fang, a firewall analysis
tool, and Bartal et al. (including some of the Fang authors) developed Firmato, a firewall management
toolkit [86, 14]. Fang includes a user interface for querying the effective policy of a firewall, but it does
not include a visualization of the full policy. Firmato includes a user interface that the authors call a “rule
illustrator.” The rule illustrator presents a firewall policy in a graph in which host-groups are the nodes
and rules are indicated by edges. The rule illustrator’s graph-based presentation is limited in how much of
the policy it can legibly represent on screen without becoming “spaghetti-like” (as the authors note) and it
does not explicitly show negative rules. In a field deployment, the authors found a need for more advanced
visualization techniques like zooming and/or filtering.

Rode et al. designed Impromptu, an file sharing application [108]. Impromptu includes a visualization-
based user interface for specifying file sharing policies. The Impromptu visualization depicts users, files,
and actions on a pie chart. Its primary limitation seems to be that it was designed for small groups of users
(on the order of 6), and cannot scale to show policies with many users. An evaluation of the Impromptu in-
terface showed that the visualization-based approach held promise for the small-group file-sharing domain;
however, the evaluation did not give any evidence as to generalizability of the Impromptu visualization
approach.

Lipford et al. designed a user interface for specifying privacy policies in Facebook, a social-networking
application [82]. They note that the Facebook site’s privacy settings interface was centered around a list of
rules and provided minimal feedback on the effects of privacy settings. Lipford et al. designed an “audience
view interface” in which Facebook users could view their privacy policies by selecting different audiences
(e.g., “friends,” “inside network,” “outside network”) and viewing the profile information that that audience
would see. In this respect, Lipford et al. recognize, as we have, the importance of showing policy authors
the effects of their policy settings.

Kapadia et al.’s Know system is not a user interface per se, but does address usability for policy-based
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systems [67]. Know sits within an access control system and provides feedback when access is denied.
The feedback can explain why access was denied and how access might be obtained. Although Kapadia et
al. discuss what portions of a policy should be revealed in providing feedback, they do not discuss how to
design a user interface to present feedback to users.

Lampson was the first to describe access control matrices, in which computer security policies are laid
out in a matrix with resources along one axis, principals along the other axis, and the actions allowed those
principals for those resources indicated in the matrices’ cells [73]. However, Lampson was concerned with
describing a security model rather than presenting a user interface, so his matrices were meant more as a
pedagogical concept rather than an actual interface to a policy. For example, Lampson did not discuss how
his matrices might be scaled to display large policies.

2.2 HCISEC
Our work on policy-authoring interface design is part of the broader usable security movement, also known
as HCISEC, to address widespread usability problems in user interfaces for computer security and privacy
applications. Here, we discuss how our work fits into the larger themes of HCISEC.

2.2.1 Whitten and Tygar’s “problematic properties of security”
Whitten and Tygar, in their seminal work on user interfaces for security applications, laid out five “prob-
lematic properties of security” that pose problems for interface designers [139]. Whitten and Tygar’s five
properties are:

1. The unmotivated user property;

2. The abstraction property;

3. The lack of feedback property;

4. The barn door property; and

5. The weakest link property.

Our work addresses three of these properties:

• The unmotivated user property. Security is a secondary goal; most users have a primary goal they
wish to complete and do not want to spend their time setting up security and privacy policies. Our
work addresses this property by offering interface techniques that allow for fast policy authoring. We
do not address how to motivate, educate, or coerce users into performing security tasks; we leave that
to others, and merely hope to make the most of the time users are willing to spend authoring policies.

• The lack of feedback property. Since a policy is set up to govern access attempts that will happen in
the future, there is no natural way for a policy author to receive immediate feedback on whether their
policy will allow authorized accesses and prevent undesired accesses. Our work attempts to remedy
this situation by providing immediate visual feedback on what decisions a policy will and will not
issue.
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• The barn door property. One undesired access may compromise a resource entirely. Thus, it is
essential to get policy settings correct from the start. Our work strongly emphasizes accuracy rate as
a metric in evaluation of our policy-authoring interfaces.

2.2.2 Explicit versus implicit policy creation
Policy can be created explicitly through authoring it or implicitly through inferring it. A system adminis-
trator manipulating access control lists or a chief privacy officer writing out a company privacy policy are
examples of the explicit approach. Granting Excel access to a spreadsheet when a user opens the spreadsheet
is an example of the implicit approach. There is no consensus within the HCISEC community on whether
one approach is superior; most likely, both approaches are needed to achieve high levels of usability and
security. In line with Whitten and Tygar’s observation that security is a secondary goal, numerous authors in
HCISEC have pointed out that people tend to avoid performing security tasks and even circumvent security
mechanisms to accomplish their primary goals [1, 22, 146]. The implication of these works is that designing
systems to support implicit policy setting would more likely lead to “better” policies (“better” in the sense of
giving only as much access as is needed to accomplish a policy author’s goals). Indeed, Yee argues for “se-
curity by designation,” in which users grant access to resources implicitly in the course of their work when
they request that a system carry out an action [147]. Yee gives as examples an application automatically
getting access to the CPU when a user executes it or recipients of email attachments automatically receiving
access to the attachment because the sender sent it. The Polaris system puts Yee’s idea into practice [126].

Our approach addresses explicit policy creation, so it is grounded in the assumption that there is some
value in explicit policy creation. If all policy creation and management could be done implicitly, there
would be no need for an Expandable Grid policy-authoring interface. However, it is unrealistic to expect
that implicit policy creation alone is sufficient in most cases. Explicit policy creation may be needed when
responsibility for security is delegated away from end users, as when dedicated system administrators con-
figure access control or firewall policies for end users. Explicit policy creation is needed when a policy is
created for communication to others, as when an enterprise authors a privacy policy. Moreover, explicit pol-
icy creation provides assurance that a policy is configured the way it is meant to be; implicit policy, since it
is not visible, may not provide such assurance. Indeed, Yee agrees that there are situations in which security
by designation is insufficient [147] and he promotes the “Principle of Visibility,” which calls for a display of
relevant policy [146]. Whalen et al. found that people in an office work environment do in fact explicitly set
file permissions, and they, like Yee, argue for making access control decisions visible [138]. We maintain
that while implicit policy creation is an interesting and valuable approach, there remains a need for good
tools for explicit policy creation.

Related to the question of whether policy should be created explicitly or implicitly is the question of
whether it should be created proactively or reactively. Proactive policy creation occurs absent any requests
for access to resources and is essentially the same as explicit policy creation. Reactive policy creation occurs
in response to and at the time of a request (reactive policy creation is different from implicit policy creation
in that it requires explicit action on the part of a policy author to approve or deny a request). We designed the
Expandable Grid to address proactive policy creation, but some authors question whether proactive config-
uration is appropriate in some policy-authoring scenarios. In the domain of privacy, for example, Palen and
Dourish point out that privacy preferences are a “dynamic response to circumstance,” implying privacy pref-
erences are not easily codified into a static policy [97]. Similarly, Lederer et al. warn against emphasizing
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“configuration” (i.e., proactive policy creation) in designing privacy into interactive systems [75]. However,
proactive policy creation is likely needed in most policy domains for the reasons we mentioned above in
arguing for explicit policy creation. Some systems, such as the smartphone interface to the Grey system for
building access control, offer both proactive and reactive policy creation capabilities [17].

2.3 Cognitive science
Our idea to create a user interface that graphically represents policies to authors is grounded in cognitive
theory of external problem representation. Cognitive science has shown us that it is important to provide
external representations (text, graphics, charts, etc.) of problems to relieve cognitive burden [118, 96]
and that choosing a good external representation of a problem can significantly improve performance on
cognitive tasks [12, 95, 143, 144, 151, 149, 150]. Indeed, the entire field of information visualization is
predicated on the idea that good external representations of data aid cognitive tasks that are difficult with
poor external representations or no external representations, and that they enable cognitive tasks that were
impossible before [31]. Our notion that policy authoring will be easier when the user interface allows authors
to work directly with effective policy instead of with arcane rules is consistent with Shneiderman’s principle
of direct manipulation for user interface design [121].

2.4 Information visualization
Information visualization began at the confluence of computer graphics, human-computer interaction, per-
ceptual psychology, and databases [30, 32, 135]. Research in information visualization has produced a wide
variety of techniques for displaying large multidimensional datasets on a computer screen and allowing users
to quickly pick out patterns in multidimensional data. Here we review those techniques that most closely
resemble the Expandable Grid, a two-dimensional interactive table with expandable tree views along its
axes.

2.4.1 Interactive tabular visualizations
Rao and Card’s Table Lens is a focus+context [33] technique for visualizing large multidimensional data
sets in a table[101]. The Table Lens shows a massive data set by showing a few selected rows and columns
in full detail while reducing the display size of the remaining rows to show them all in the remaining space.
The Table Lens does not include the idea of adding or removing grid cells as a corresponding tree view along
one of the axes is expanded or contracted, nor has the Table Lens been adapted specifically to visualizing
policy data.

Shneiderman et al. describe Dotfire, an information visualization tool using discrete variables and hi-
erarchical axes to merge searching and browsing (also known as GRIDL (GRaphical Interface for Digital
Libraries), that includes a grid with a hierarchically-labeled axis [123]. However, Dotfire only displayed the
nodes of a single level of a hierarchy at one time along an axis.

FOCUS is an interactive table (a spreadsheet) that displays product information to help with purchasing
decisions [125]. It shows a list of products along the horizontal axis, a hierarchy of features along the vertical
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axis, and information about which products have which features in the table. It uses an expandable tree view
to show the feature hierarchy, and is the first visualization we are aware of to use an expandable tree view
along one of its axes. It only has a tree view along one axis, however, and was not used to display policy
data.

Other visualization systems built around the idea of spreadsheets whose cells contain images or sub-
visualizations rather than simply numerical or textual data include systems by Piersol [98], Levoy [81],
Varshney and Kaufman [134], and Chi et al. [59]. Besides being tabular in layout, however, these systems
have little in common with the Expandable Grid.

2.4.2 Hierarchical displays
Visualizations that are farther afield include a variety of means for displaying hierarchies such as Johnson
and Shneiderman’s TreeMaps [66], Lamping and Rao’s Hyperbolic Browser [72], Robertson et al.’s Cone
Trees [107], and Kumar et al.’s PDQ Tree-browser [71]. These visualizations describe novel ways to display
a single hierarchy, but are not concerned with displaying data at the intersection of two hierarchies, as we
are.

2.4.3 Security visualizations
Besides the policy-authoring interfaces already reviewed, there have been other efforts to develop informa-
tion visualization interfaces to help humans manage computer security problems. Conti describes many such
systems in his book on security visualizations [36]. Conti covers systems for applications such as viewing
network traffic, viewing firewall and intrusion detection logs, and detecting port scans. Stoll et al. designed
SESAME, a visualization designed to provide enough information to help end users make security decisions
to prevent attacks like phishing, spyware, and bot infections [127]. McLachlan et al. designed LiveRAC,
a reorderable matrix visualization of system management data, such as CPU usage and traffic volume, for
many network devices [87]. These works do not describe any visualizations of policy, however.
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CHAPTER 3

Salmon: Showing Effective Policy

This chapter is largely a reproduction of a paper co-authored with Roy A. Maxion and published in a special issue
of the Internation Journal on Human-Computer Studies [85]. We gratefully acknowledge contributions from Fahd
Arshad, David Banks, Patricia Loring, and Rachel Roberts.

One locus of vulnerability in a computer system is an undependable user interface—one that does not meet
its specification in terms of the speed or accuracy with which users should complete tasks. One reason
why some user interfaces fail to meet their speed and accuracy specifications is human error. Researchers
have long recognized that human error has causes and manifestations that are similar across all domains
of human endeavor, from aviation, to power plant operation, to making a cup of tea [96, 102, 119, 141].
In the domain of software user interfaces, human error leads people off the path of correctly completing
a task and on to lengthy task delays or total task failure. There is a need for user-interface designers to
understand the common types and causes of human error, and the ways in which they may be prevented.
When interfaces are designed to eliminate the conditions that lead people to make mistakes, interfaces will
be more dependable, and the applications they serve will be more secure.

One domain in which user-interface accuracy is critically important is computer security. Inaccurate
security settings can have a high cost—they can make sensitive data vulnerable, or they can leave an entire
system open to attack. Adding to this cost, security problems have what Whitten and Tygar [139] have called
the “barn door property”—once a system has had a vulnerability for any length of time, there may be no
way to know if the vulnerability has been exploited, so the system will have to be considered compromised,
whether it has been or not.

The present work investigates user-interface dependability and human error in the security context of
setting file permissions under Microsoft’s Windows XP operating system, which uses Microsoft’s NT file
system (NTFS). NTFS file permissions were chosen as the domain of study because a significant amount of
anecdotal evidence suggests that setting NTFS file permissions is a particularly error-prone task for which
the consequences of failure can be severe. For example, there is the so-called “Memogate” scandal, in which
staffers from one political party on the United States Senate Judiciary Committee stole confidential memos
from the opposing party [132]. The memos were stored on a shared NTFS server. The theft was possible
in part because an inexperienced system administrator had failed to set permissions correctly on the shared
server. As another example, a Windows network administrator at Carnegie Mellon University reports that

23
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many users want to share their files so they can access them both at work and at home; they accidentally
make their private files accessible to all (several hundred) users on the network, because it is too confusing
to set permissions as actually desired [124]. Finally, Microsoft publishes a list of “best practices” for NTFS
security that advises users not to use several of the provided features of the NTFS permissions model,
such as negative (i.e. deny) permissions and the ability to set permissions on individual files as opposed
to folders [89]. The best-practices document states that use of these features “... could cause unexpected
access problems or reduce security.” Providing access to features which are apparently problematic is bound
to lead to errors.

As these anecdotes indicate, setting and checking permissions cannot always be left to expert system
administrators—users in many environments need or want to take responsibility for protecting their own
files. However, setting file permissions is not an everyday task; it may need to be done only every few weeks
or months. Thus, those setting file permissions will often not be expert system administrators; they will
be novice or occasional users who, from time to time, want to restrict access to data or to grant access for
only a limited number of associates. They will not readily remember arcane details about how to operate a
file-permissions-setting interface. The present work adopts the underlying assumption that file-permissions-
setting interfaces should accommodate novice and occasional users.

Results of an investigation into and a solution for one type of human error encountered in file-permissions
setting interfaces are reported here. First, an existing interface for setting NTFS permissions, the Windows
XP File Permissions interface (hereafter abbreviated XPFP), was evaluated in a laboratory user study and
shown to have accuracy rates as low as 25% on file-permissionssetting tasks. Errors made by users in the
XPFP interface were identified and categorized into types according to an established human-error frame-
work. Goal errors, the failures of users to understand what to do, were identified as the dominant type of
error. A primary cause of goal errors, namely poor external representation of task-relevant information,
was identified. A design principle, external subgoal support, was proposed to reduce goal errors and was
implemented in a new interface, called Salmon, for setting NTFS file permissions. The design principle
was evaluated in a laboratory user study identical in design to the XPFP study but employing the new inter-
face. Salmon achieved a success rate of 100% on a task for which XPFP had achieved a 25% accuracy rate,
achieved a 94% reduction in the number of goal errors users made on the same task, and achieved a nearly
3× task-performance speed-up in another task, compared to XPFP.

3.1 Objective
The objective of the present work is to understand the causes of user error in user interfaces generally, and
file-permissions interfaces in particular. It is a further objective to find a design method that can be applied
to new generations of user interfaces so that the same user errors are not encountered again and again and
again in future user interfaces.

A specific problem, poor external representation, was observed in the XPFP interface. It was expected
that poor external representation would lead to user goal errors, i.e., the incorrect establishment or omission
of cognitive goals. A solution was proposed to reduce the occurrence of goal errors. This solution, called
external subgoal support (ESS), led to this work’s hypothesis:

Use of ESS in user-interface design reduces the likelihood that users will commit goal er-
rors, thus improving task accuracy rates, and reduces time spent looking for information, thus
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reducing time to task completion. The combined improvements to speed and accuracy make
the interface more dependable for quick and accurate accomplishment of tasks.

Task success rates, goal-error occurrences, and times to task completion were compared between the XPFP
and Salmon studies to determine whether ESS as implemented in Salmon was an effective means of improv-
ing success, reducing goal errors, and improving task-completion speed.

3.2 Background and related work
Related work falls into three areas. The first is prior work on usable file permissions and usable access
control. The second, a superset of the first, is work in the emerging field of human-computer interaction and
security, also known as HCISEC. The third is the traditional literature on human-computer interaction and
cognitive science.

File permissions are an instance of the broader area of access control, including evaluation of interfaces
for setting file access. Zurko et al. [153] conducted a user study on the Visual Policy Builder, a graphical user
interface for specifying access control policies for their Adage system. Good and Krekelberg [55] showed
that the Kazaa peer-to-peer file-sharing service’s interface misled many users into unintentionally sharing
confidential files. Long et al. [83] evaluated a preliminary, paper-based interface for limiting applications’
access to system resources. While these three interface evaluations were interesting in their specific task
domains, none appear to lead to any conclusion about design principles for security interfaces in a larger
context. Other work in usable access control in various domains includes Dewan and Shen [42], Sampemane
et al. [114], and Balfanz [11]. With the exception of the Adage project and Long et al., work in this area
involves outlining access control models, not evaluating access control interfaces, as the present work sets
out to do.

In the broader human-computer interaction and security literature, those who have acknowledged the
challenges of designing dependable user interfaces in security-related domains and have proposed principles
for better security interface design include Zurko and Simon [154], Adams and Sasse [1], Whitten and
Tygar [139], Yee [146], and Besnard and Arief [22]. Such papers propose ideas for making security tasks
easier to perform accurately, but do not evaluate their ideas empirically. Whitten and Tygar [140], in another
paper, present user-study results to validate a design principle for security interfaces, but their principle,
“safe staging,” is not related to ESS, nor does it appear to be grounded in a theory of human error.

The traditional human-computer interaction and cognitive science literature contains a substantial amount
of material on the importance of external representations in supporting problem-solving tasks [143, 96, 144,
95, 151, 12, 149, 150]. External representations are information displays (e.g., notes on paper, graphics on
a monitor, etc.) that reside outside the mind; they complement internal mental representations by providing
additional memory capacity, cues to internal processes, and information structures that allow patterns to be
easily perceived. Good external representations can facilitate fast and accurate problem solving, while poor
external representations can impede it. Mitchell and Miller [92], for example, suggest a methodology for
information display design, although their method is intended mainly for industrial domains with expert
users, rather than for novice and occasional users.
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3.3 Example problem
The XPFP interface serves to illustrate the problem with user interfaces that offer poor external representa-
tions of task-relevant information. Some background on the NTFS file-permissions model is necessary to
fully understand the XPFP interface and the errors it causes.

A computer system using NTFS will be populated with entities and objects. The entities are individual
users and groups of users on the system. The objects are the files and folders on the system. NTFS defines
13 atomic permissions (Note that NTFS documentation uses the term special permission where atomic
permission is used here. The latter term makes it clearer that these are indivisible permissions, the lowest-
level permissions in the system.) that correspond to actions that users can perform on files and folders. The
precise meanings of the 13 NTFS atomic permissions are not relevant to this work, but are described in a
Microsoft Technet article [88]. For purposes of this work, it is sufficient to note that NTFS permissions
can be grouped into five disjoint sets: READ, WRITE, EXECUTE, DELETE, and ADMINISTRATE. (Note
that the XPFP interface and NTFS documentation use a different, non-disjoint grouping of the 13 atomic
permissions into six composite sets. The disjoint grouping discussed here is the authors’ own, and is used
for clarity of presentation to those readers not already familiar with the NTFS permissions model.) NTFS
uses an Access Control List (ACL) model of file permissions. Under the ACL model, each file and folder in
the file system has an associated list of users and groups who have permissions on that file or folder.

For each file and for each permission for that file, each user and group on the file’s ACL has a permission
value explicitly granted to them for that file and that permission. Permissions are tri-valued, and can take
on any of the following values: ALLOW, DENY, or NOTSET; the NOTSET value indicates that neither AL-
LOW nor DENY has been set. Under the rule of group inheritance, each user also inherits permissions from
the groups of which they are members. A user’s actual access to a file is computed according to a formula
that sums the user’s explicit permissions and their inherited permissions according to precedence rules. The
precedence rules state that any DENY permission value takes precedence over all other permission values,
and any ALLOW permission value takes precedence over any NOTSET permission value; NOTSET acts to
deny access by default. Group inheritance leads to the distinction between stated permissions, the explicit
permissions granted to each user, and effective permissions, the actual access a user will be allowed accord-
ing to the combination of stated and inherited permissions.

It is the distinction between stated permissions and effective permissions that makes setting NTFS
file permissions a difficult task. The person setting permissions operates directly on the low-level stated-
permissions bits, which do not necessarily translate directly into the effective access that will be allowed
to system files. Actual access in NTFS is determined by the nuanced formula alluded to above. However,
users setting file permissions are ultimately concerned with who can access what, not with low-level bits and
nuanced formulas. Thus users need to view the effective permissions in order to evaluate when they have
fully completed their primary goal, and when they still have additional work to do to complete their goal.

Casual observation of the XPFP interface (see Figure 3.1) reveals that XPFP does not provide ready
access to needed information. Firstly, not all of the NTFS permissions are visible in the main XPFP window.
ADMINISTRATE and DELETE permissions are notably absent, and are hidden two screens away. Without
ADMINISTRATE and DELETE permissions visible on the main window, some users may not even realize
they exist. Secondly, XPFP does not provide the group membership data to indicate what groups individual
users belong to. For example, in Figure 3.1, Wesley is in the group ProjectF, but there is no indication of this
in the XPFP window. In fact, users need to use an entirely different application to view group membership
in Windows XP. Without group membership information, even those few users who understand the group
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Figure 3.1: A screenshot of the XPFP interface, showing information and functionality for setting permis-
sions bits. Effective permissions are not visible, nor is group-membership information provided, making it
virtually impossible for users to verify the completion status of their goals.
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inheritance rules will not be able to figure out whether Wesley is inheriting permissions from ProjectF or not.
Finally, the XPFP main window contains the checkboxes necessary for setting the permissions bits that will
be used to determine effective permissions, but effective permissions themselves are nowhere to be seen. In
fact, XPFP has an effective-permissions display, but it is two screens away, where hardly any non-expert user
will find it. The difficulty of accessing essential taskrelevant information in XPFP is likely to lead users into
incorrectly determining when they have completed their goals, or to leave them not knowing how to proceed
toward task completion. Without a salient external representation of task-relevant information to cue users
toward proper behavior, users will be able to complete tasks only if they already have the information stored
internally, or if they are fortunate enough to happen upon the information elsewhere. Those who do not have
the needed information are likely to commit errors.

3.4 Solution—external subgoal support
External subgoal support (ESS) is an interface design method rooted in cognitive principles regarding the
importance of external representations: see Woods and Roth [144], Zhang and Norman [151], Ballard et
al. [12], and Zhang [149, 150]. ESS was developed to ensure that all task-relevant information is represented
saliently by the user interface, allowing users to check goal completion status and set appropriate subgoals.
When users do not set appropriate subgoals, they commit goal errors, one of several specific types of human
error. ESS mitigates one cause of goal errors by providing external cues as to what to do. Goal errors are
discussed in more detail in Section 3.6.4.

3.4.1 Description
For an understanding of the cognitive causes of goal errors, the present work relies on Pocock et al.’s
THEA—Technique for Human Error Assessment [99]. THEA was developed to analyze a user-interface
design for areas of potential user difficulty without conducting costly user studies. It includes an error
framework which is based on Norman’s well-known seven-stage execution-evaluation model of human in-
formation processing [96]. THEA condenses Norman’s seven stages down to four stages of information
processing during which human error can occur. These four stages are the combination of perception, in-
terpretation, and evaluation; goal formulation; plan formulation; and action execution. According to the
Norman/THEA models, human information processing starts with a problem, the primary goal, and pro-
ceeds in the following loop:

1. Perceive and interpret information from the environment, and evaluate whether the problem is solved.

2. If the problem remains unsolved, formulate a subgoal, according to perceived information, for solving
all or part of the problem; if the problem is solved, exit the loop.

3. Formulate a plan to achieve the subgoal.

4. Execute the actions in the plan.

Goal errors occur when the second step goes wrong. If the perceived information consulted in the
second step is incorrect or is misinterpreted, the wrong subgoal may be set. If the wrong information is used
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to check whether the problem has been solved in the second step, either an unnecessary subgoal may be
added (if the problem is assumed unsolved when it is already solved) or a necessary subgoal may be omitted
(if the problem is assumed solved when it is not). Thus, the availability of information to check progress
toward the primary goal is critical to correct selection of subgoals.

If incorrect, misleading, or missing information causes goal errors, the logical solution is to make the
necessary information available in a correct, easily interpretable form. Indeed, researchers in cognitive sci-
ence have shown the significant effects that external (i.e., external to the human problem-solver) problem
representations can have on human performance: see Woods and Roth [144], Zhang and Norman [151], Bal-
lard et al. [12], and Zhang [149, 150]. External representations not only serve as memory aids, but also play
a central role in shaping cognitive behavior [151]. Some representations of a problem lead to incorrect or
slow problem-solving behavior, while other representations facilitate correct and efficient problem-solving
behavior. Section 3.8 discusses how each of the user interfaces tested in the present study influences users to
engage either more or less in activities like information-gathering, based on the information representations
made available to the users.

3.4.2 Design method
A prerequisite for implementing ESS is a careful task analysis. Kirwan [70], an excellent reference on
how to perform task analyses, describes the Hierarchical Task Analysis (HTA) method, which includes a
convenient representation of the results of a formal task analysis. An HTA represents the task as a hierarchy
of goals and the operations that are needed to achieve them. At the root of an HTA hierarchy is a primary
goal to be accomplished. Beneath the root are nodes that represent the subgoals necessary to achieve the
primary goal, and each subgoal may have a tree of subgoals beneath it. At the leaf nodes of the hierarchy are
the actionable operations necessary to achieve each of the lowest-level subgoals. Once the HTA is complete,
and its corresponding hierarchy of subgoals has been created, the method for designing according to ESS
can begin. It proceeds in two phases as shown below. The Salmon interface, shown in the next section, was
designed according to this method.

• Phase 1—Identify information required.

1. For each goal, starting with the primary goal and proceeding through all subgoals in the HTA,
identify the information a user will need:
(a) To determine when the goal has been completed.
(b) To set the subgoals beneath the goal.

2. For each operation at the leaf nodes of the HTA, determine what information will be needed to
execute the operation. This is usually:
(a) Procedural knowledge—information about how to execute the operation.
(b) Declarative knowledge—any parameters that must be supplied to the operation (e.g., the

name of a user being added to an ACL).

• Phase 2—Provide Phase-1 information in the interface.

1. Incorporate, in the designed interface, an accurate, clear, and salient representation of the nec-
essary information, as determined by the above steps. (External representation design is a large
topic and is not covered in detail here; see Card [30] or Woods [144] for more on this topic.)
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3.4.3 Salmon interface with ESS
The Salmon interface (see Figure 3.2) was designed according to the ESS method. Phase 1 of the ESS
method identified the following information as necessary for establishing the right subgoals and executing
the right operations in a file-permissions interface:

1. The full list of 13 atomic permissions, with no permission values hidden.

2. Stated permissions for all users and groups on the ACL.

3. Group membership data, and how the data combine to form a user’s effective permissions.

4. Effective permissions for all users on the ACL.

The Salmon main window contains all of this information. The window is split into two panes, upper and
lower. In the upper pane, the 13 atomic permissions are listed across the top; immediately below them
are the checkboxes necessary for setting the stated permissions for each user or group on the ACL. In the
lower pane is an effective permissions display. For any individual user selected, the effective-permissions
display shows the groups of which that user is a member, the permissions inherited from those groups, the
user’s individual stated permissions, and the combination of all these permissions, i.e., the user’s effective
permissions.

3.5 User study and experimental method
A laboratory user study was conducted to observe and document errors in filepermissions- setting tasks. Two
user interfaces were compared: XPFP and Salmon, a new interface for setting file permissions, designed in
accordance with the principles of external subgoal support.

3.5.1 Participants
Twenty-four students and research staff at Carnegie Mellon University voluntarily participated in the study.
Participants were recruited randomly. All participants’ academic backgrounds were in science and engineer-
ing disciplines, and all were daily computer users. While a few usually used UNIX-based computer systems
in their daily work, all had at least some experience using Windows, with 21 out of 24 claiming they used
Windows at least a few times a week. Nineteen reported having some experience setting file permissions,
on Windows or another operating system, while 5 reported having no experience setting file permissions
whatsoever. All but four reported setting file permissions a few times a month or less.

3.5.2 Apparatus
All participants solved a series of permission-setting tasks on a computer running Windows XP, Version
2002, Service Pack 1, using either the XPFP or Salmon permission-setting user interface. Timestamped
screen video and mouse and keyboard actions were recorded with a software tool developed for user study
data collection. Participants’ initial and final permissions settings were recorded for each task instance.
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Figure 3.2: The Salmon interface (screenshot) was designed to provide external subgoal support by having
all 13 atomic permissions be settable in the upper pane, and by showing effective permissions in the lower
pane.
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3.5.3 Task descriptions
To simulate real permission-setting conditions, a hypothetical scenario was designed in which the participant
worked in a generic “organization,” shared her computer with other workers in the organization, and had
to restrict access to the files and folders on her computer. On the laboratory Windows XP machine, the
hypothetical organization’s computer environment was created and populated with individual users, groups
(containing users), files, and folders. The environment included 27 individual users, named for each letter
of the alphabet (Ari, Bill, Catherine, Dave, Evelyn, etc.), plus one user named Tux, which represented the
participant her/himself. The environment also included 6 groups named ProjectA through ProjectF, each
of which contained 6 members drawn from the 27 users. No group contained another group as a member.
There were also files and folders on which participants were to set permissions.

Participants were given three permission-setting tasks, called Jack, Wesley and Tux, and one training
task called the Hakim task. The Hakim (training) task simply required the participant to add a user to
the ACL, and to give that user READ permission. This training task gave participants experience with the
mechanics of adding users and setting permissions—actions which were common to the experimental tasks.

The Jack and Wesley permission-setting tasks were chosen because they involved group inheritance, a
feature of the NTFS permissions model that was expected to lead to a great deal of user error. These two tasks
required participants to set permissions on a text file so that users Jack or Wesley could read the file, but not
change it. The Tux task was chosen to determine how easily participants could find the DELETE permission
checkbox if it were hidden, as it is in the XPFP interface, as opposed to being immediately visible, as it is in
the Salmon interface. The Tux task required participants to set permissions on a text file so that Tux would
not be able to delete the file by accident.

The task statements for the four tasks are shown below:

• Hakim (training) task: You (username: tux) have just created the folder Stuff for Hakim, so that you
can share private data with your friend Hakim (username: hakim). Set permissions on the folder
so that Hakim will be able to read anything you put in the folder. Make sure no one else can read
anything in the folder. i

• Jack task: The group ProjectE is working on projectEdata.txt, so everyone in ProjectE can read, write,
or delete it. Jack (username: jack) has just been reassigned to another project and must not be allowed
to change the file’s contents, but should be allowed to read it. Make sure that effective now, Jack can
read the file projectEdata.txt, but in no way change its contents.

• Wesley task: The group ProjectF is working on projectFdata.txt, so everyone in ProjectF can read,
write, or delete it. Wesley (username: wesley) has just been reassigned to another project and must
not be allowed to change the file’s contents, but should be allowed to read it. Make sure that effective
now, Wesley can read the file projectFdata.txt, but in no way change its contents.

• Tux task: You (username: tux) have a checkbook-balancing program that writes to a file called my-
Checkbook.dat. You do not want to accidentally delete this file. Deny yourself the permission to
delete it. Of course, you want all other permissions to remain unchanged.

In the Wesley and Jack tasks, there was one group that was already on the ACL for the file, and the
operative individual user was a member of that group. The difference between the Wesley and Jack tasks
was that in the Wesley task, Wesley was inheriting READ and WRITE permissions from ProjectF, but not
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ADMINISTRATE permission, while in the Jack task, Jack was inheriting READ and WRITE as well as AD-
MINISTRATE permissions from ProjectE.

The simple solution to the Wesley task was to add Wesley to the ACL and explicitly deny him WRITE per-
mission; he was already allowed READ permission from ProjectF. However, this simple solution would not
work for Jack, since Jack was inheriting ADMINISTRATE permission as well as READ and WRITE permis-
sion. If Jack was denied WRITE permission, but not explicitly denied ADMINISTRATE permission, he would
have been able to restore his WRITE permission. The task statement presented to users did not mention this
nuance; it was left to the interfaces to provide the cues needed to understand that Jack’s ADMINISTRATE per-
mission had to be removed.

3.5.4 Rules for completing tasks
Participants were asked to abide by certain rules to ensure as realistic an environment as possible without
compromising the experimental comparison between XPFP and Salmon. First, they were allowed to check
group memberships in the XP Computer Management application, which is a separate application from the
file-permissions interfaces. However, in order to prevent users from completing tasks without using the file-
permissions interfaces, they were asked not to use the Computer Management application to change group
memberships. Thus, users were not allowed to complete the Wesley and Jack tasks by removing Wesley or
Jack from their respective groups. Second, to compensate for the first restriction, participants were told that
if a task statement did not explicitly mention a given user, any permission setting was permissible for that
user. Thus, participants could change the group ProjectE’s or the group ProjectF’s permissions and not be
concerned about the effects on members of those groups besides Wesley or Jack. Finally, users were allowed
to access a selected set of Windows Help files that pertained specifically to file permissions, but they could
not browse the full set of Help files at random.

3.5.5 Procedure
Participants were assigned randomly to use either the XPFP or Salmon interface. Each participant used only
the single assigned interface for all tasks; no one used both interfaces. Twelve participants were assigned to
each interface. Participants were asked to “think aloud” throughout the course of the experiment, and were
instructed in thinking aloud according to directions adapted from Ericsson and Simon [44]. Participants
were shown how to view system users, groups, and group memberships using the Computer Management
interface and how to access the limited set of Windows Help files. Participants were given no instruction in
using the XPFP or Salmon interfaces. The experimenter brought up the interface the participant was to use.
Task statements were presented in text in a Web browser, and remained available to the participant through-
out the task. All participants were given the same training task first, after which the presentation order of
the remaining tasks was counterbalanced among participants using a full factorial design. Participants were
given 8 minutes to complete each task. After each task was completed, participants were asked to rate their
confidence on a 1-7 scale (7: very confident) that the task had been completed correctly.
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3.6 Analytical procedures
This section presents the procedures for data analysis, the results of which are presented in Section 3.7. Data
were logged from user sessions automatically by custom software. Separate, but consistently timestamped,
files were kept for keyboard, mouse, video and verbal protocols (digital video and audio). These data sets
needed to be analysed to recover task-relevant information regarding speed (timing), accuracy (task success
or failure), and errors (discrete actions, classification of action as error or non-error, and classification of
errors into one of four types). Measuring elapsed times of events is straightforward, and will not be discussed
in detail. Other analytical aspects of the experiment are discussed below.

3.6.1 Accuracy—determining task success or failure
Accuracy was measured in terms of whether or not the participant succeeded in correctly executing the task.
To determine task success or failure, participants’ final permission settings were examined. For the Wesley
and Jack tasks, a task instance was deemed successful if the individual (Wesley or Jack) had effective permis-
sions allowing him READ permission and denying him WRITE and ADMINISTRATE permissions. A Wesley
or Jack task instance was deemed a failure if the individual had effective permissions denying READ per-
mission, or allowing WRITE and/or ADMINISTRATE permission. EXECUTE and DELETE permissions and
all permissions for other entities were ignored. For the Tux task, a task instance was deemed successful if
Tux had effective permissions denying DELETE and allowing both READ and WRITE permissions. A Tux
task instance was deemed a failure if Tux had effective permissions allowing DELETE, or denying READ or
WRITE permission.

3.6.2 Actions
Actions need to be defined so that user data can be divided into discrete units for error analysis. An action
is defined as any change to the ACL, namely adding an entity to or removing an entity from the ACL, or
altering the permissions of an entity already on the ACL.

3.6.3 Classifying actions as errors
An action is classified as an error if it is discrepant with a model of correct actions. A model of correct actions
for each task was constructed by HTA [70]. An example HTA for the Jack task is shown in Figure 3.3; HTAs
for other tasks were similarly constructed. The HTA for each task consists of the goals, plans and actions
required to complete the task.

Each discrepancy between user actions and HTA model actions was classified as an error of commission,
an error of omission, or a non-error. A user action was an error of commission if it was unnecessary
according to the HTA. It was an error of omission if it was a necessary action according to the HTA, but the
user failed to complete it. Non-errors included user actions that matched actions in the HTA and unnecessary
but innocuous actions, such as changing permissions in an interface to “see what happens” and then changing
them back.
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Goal:  Jack should be allowed to read but not change the file

Subgoal 1:  Allow jack 
effective read permission

Subgoal 2: Override or 
eliminate ProjectE's

Allow write permission

Subgoal 3:  Override or 
eliminate ProjectE's Allow 

administrate permission

1.1 Add 
jack

2.2 Deny 
jack write

3.2 Deny jack 
administrate

1.2 Allow 
jack read

2.4 Remove 
ProjectE

2.3 Unset or Deny 
ProjectE’s write 

permission

3.3 Deny (or leave unset) 
ProjectE’s administrate 

permission

1.3 Let jack inherit 
read permission from 

ProjectE

2.1 Add 
jack

3.4 Remove 
ProjectE

3.1 Add 
jack

PLAN: 1.1-1.2 
in order OR 1.3

PLAN: 2.1-2.2 in 
order OR 2.3 OR 2.4

PLAN: Any order

PLAN: 3.1-3.2 in 
order OR 3.3 OR 3.4

Figure 3.3: Hierarchical task analysis (HTA) for the Jack task.
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3.6.4 Classifying errors by type
Actions that were classified as errors were further classified according to error type: goal, plan, action, and
perception errors. These four types were drawn from Pocock et al.’s THEA which describes four stages of
human information processing [99]. There are many other frameworks that could have been used to classify
human error. THEA was chosen because it was specifically designed for evaluating user interfaces, and
because of its grounding in the familiar work of Norman [96].

Goal errors, the focus of the present work, are described forthwith. Similar criteria were used to classify
action, plan, and perception errors. An error was classified as a goal error if it was either: (1) an error of
commission that was due to the user’s establishing a wrong subgoal; or (2) an error of omission that was
due to the user’s failure to establish a necessary subgoal. An example of a common goal error from the
Wesley task was a user failing to explicitly deny Wesley WRITE permission. In the Jack task, both failing to
explicitly deny Jack WRITE permission (omitting Subgoal 2 in Figure 3.3) and failing to explicitly deny Jack
ADMINISTRATE permission (omitting Subgoal 3 in Figure 3.3) were goal errors. In the Tux task, denying
Tux WRITE permission was a goal error.

3.7 Results
This section presents the results of the study, including details of speed, accuracy and propensity for miti-
gating errors for each of the two interfaces under scrutiny. The results show that Salmon performed better
than XPFP did.

3.7.1 Speed
Figure 3.4 shows the average task completion times for each of the two interfaces and three tasks. The solid
bars show times for all participants, whether they succeeded or failed in the task; the striped bars show times
only for participants who completed the tasks accurately. For Wesley and Jack, these results are of interest,
because they show that the success of Salmon users was not due to having spent more time on task. In
fact, those who completed the tasks successfully took less time using the Salmon interface. The difference
between times for the two interfaces is not statistically significant (one-sided t-test for Wesley: t = .3942,
df = 14.39, p = .3496; for Jack: t = .8973, df = 9.367, p = .1961). For the Tux task, successful Salmon
users spent, on average, significantly less time (M = 60.8s, SD = 23.0) than the successful XPFP users
did (M = 178.0s, SD = 108.6). A one-sided t-test showed this difference to be statistically significant at
the .05 level (t = 3.183, df = 8.538, p = .006).

3.7.2 Accuracy
Table 3.1 shows the percentage of participants who successfully (accurately) completed the tasks on the
XPFP and Salmon interfaces. In testing whether or not Salmon gives superior performance in terms of ac-
curacy (measured as task completions), a null hypothesis was posited: the proportion of task completions
under Salmon was less than or equal to the proportion under XPFP; the alternative hypothesis is that the pro-
portion for Salmon was greater. To test whether two sample proportions are equal, let p̂S be the proportion of
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Figure 3.4: Average time to complete Wesley, Jack, and Tux tasks. Successful Salmon users took less time
on average than successful XPFP users did, suggesting that Salmon’s accuracy gains were not due simply
to a speed-accuracy tradeoff.
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Table 3.1: Percent of accurate task completions for Jack and Wesley tasks on XPFP and Salmon interfaces.
Salmon outperformed XPFP in both tasks.

XPFP Salmon
Wesley 58% 83%
Jack 25% 100%
Tux 75% 100%

completions for Salmon and let p̂X be the proportion for XPFP. The test statistic is ts = p̂S−p̂X√
p(1−p)( 1

nS
+ 1

nX
)
,

where p is the total number of completions divided by the total number of subjects (e.g., for Jack, there were
15 (3+12) completions by 24 (12+12) subjects; thus p = 15

24 ).
A one-sided z-test was done for the equality of proportions. Since the null hypothesis specifies equality,

one uses the pooled estimate of the standard error of the difference between the two proportions to calculate
the likely size of the chance error in estimating the true difference between the proportions. The test statistic,
ts, for the results of the Jack task was 3.795, which on referral to a z-table has significance probability less
than .0001. Thus the null hypothesis can be strongly rejected; for the Jack task the Salmon interface is
superior. Salmon is also superior for the Tux task, with a test statistic of 1.852 and significance probability
.032; the Wesley task test statistic of 1.347 is weakly significant, with a significance probability of .089.

Recall that participants were asked to state their confidence in their work. Curiously, there was no
significant difference between interfaces in participants’ confidence ratings, on any task, as to whether tasks
were completed correctly or not. XPFP users gave slightly higher confidence ratings than Salmon users for
the Wesley (XPFP: M = 5.58, SD = 1.56; Salmon: M = 4.83, SD = 1.53) and Jack (XPFP: M = 5.58,
SD = 1.39; Salmon: M = 5.17, SD = 1.64) tasks, and gave slightly lower confidence ratings for the
Tux task (XPFP: M = 5.50, SD = 1.45; Salmon: M = 6.17, SD = 1.11). One-sided, unpaired t-tests
show Wesley (t = 1.19, df = 21.99, p = .88); Jack (t = .67, df = 21.36, p = 0.75); and Tux (t = 1.26,
df = 20.66, p = 0.11) with no significant differences between XPFP and Salmon with respect to user
confidence. This is interesting in view of the very different actual outcomes; that is, Salmon facilitated
much better success than XPFP did, and yet the perception of participants regarding their success was about
the same. This bears investigation, but is not further addressed here.

3.7.3 Errors
Table 3.2 shows results of the error analysis for the three tasks; XPFP dominated in terms of total errors
and goal errors. For the Wesley task, 5 of 9 XPFP-user errors were goal errors; 1 of 4 Salmon-user errors
was a goal error. For the Jack task, 15 of 16 XPFP-user errors were goal errors; 1 of 6 Salmon-user errors
was a goal error. For the Tux task, 2 of 3 XPFP user errors were goal errors; Salmon users made no errors.
In testing whether or not Salmon gives superior performance in terms of reducing the likelihood of goal
errors, a null hypothesis was posited: the proportion of goal errors under Salmon was greater than or equal
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Table 3.2: Count of errors by type for Wesley and Jack tasks on XPFP and Salmon interfaces. Users made
significantly fewer goal errors with Salmon than with XPFP on the same tasks.

Goal Plan Action Perception
Wesley
XPFP 5 1 0 3
Salmon 1 2 1 0
Jack
XPFP 15 0 0 1
Salmon 1 3 2 0
Tux
XPFP 2 1 0 0
Salmon 0 0 0 0

to the proportion under XPFP; the alternative hypothesis is that the proportion for Salmon was smaller.
As described in Section 3.7.2, a one-sided z-test was done for the equality of proportions. Since the null
hypothesis specifies equality, one uses the pooled estimate of the standard error of the difference between
the two proportions to calculate the likely size of the chance error in estimating the true difference between
the proportions. The test statistic, ts, for the results of the Wesley task was -1.885, which on referral to
a z-table has a significance probability of .0297. Thus one can reject the null hypothesis at the .05 level;
the Salmon interface is superior for Wesley. For the Jack task, ts = −3.312, and the z-table significance
probability is .0005, which is highly significant. For the Tux task, ts = −1.477, and the z-table significance
probability is .0698, which is mildly significant. It can be concluded that in terms of mitigating goal errors,
the Salmon interface performs better than the XPFP interface does.

3.8 Discussion
A straightforward comparison of accuracy results shows that Salmon outperformed XPFP in all three tasks.
The causes for XPFP’s poor performance and Salmon’s improved performance can be inferred from the
error classification data, which shows a substantial reduction in goal errors amongst Salmon users. For
some insight into whether Salmon’s improved external representation was responsible for the improved
performance, users’ protocols were analysed to determine the amount of time spent on each of 10 high-level
behaviors. The analysis implies that Salmon’s external representation of task-relevant data leads users more
readily toward finding the information they need.
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3.8.1 Goal errors in XPFP
Goal errors were common amongst XPFP users and led to high failure rates. The preponderance of goal
errors observed in XPFP is not surprising; as noted in Section 4, the XPFP interface lacks information vital
to the file-permissions problem solver (see Figure 3.1). In the main XPFP window, there is no display of
effective permissions, no way to access group membership information, and no indication of the existence
of ADMINISTRATE permissions. Without effective permissions, progress toward the primary goal cannot be
checked accurately. Many users, unaware of the distinction between stated and effective permissions, used
the stated permissions to determine whether the primary goal had been completed. For example, during
the Wesley task, many users saw the XPFP window in the state shown in Figure 3.1. From this display, it
appeared to many users that Wesley was allowed READ permission because his ALLOW-READ checkbox is
checked, but not allowed WRITE permission, because his ALLOW-WRITE checkbox is not checked. They
did not realize that he has effective WRITE permission from ProjectF. Users hence were misled into thinking
they had completed the task, even though they had not.

3.8.2 Fewer goal errors in Salmon
The improvement in task-completion successes and the dramatic reduction in goal errors achieved in the
Salmon study can be accounted for primarily by the use of ESS in the design of the Salmon interface.
Users of Salmon were able to track their progress and identify the subgoals necessary to complete tasks
using the effective permissions display, which provided an external representation supporting subgoaling.
Although Salmon’s design contains numerous superficial changes from the XPFP design (such as different
fonts, labels, icons, colors, and layout), observation of participants’ protocols strongly suggests that it was
the effective permissions display that led users to formulate the correct goals. For example, one Salmon
participant, about to commit an incorrect solution to the Jack task, said, “I see Jack over here now [pointing
to Jack’s stated permissions], and he doesn’t have any access rights... Oh, wait! Jack has access rights over
here [pointing to Salmon’s effective permissions display].” After noticing the effective permissions display,
the participant was able to correctly complete the task. In contrast, one typical XPFP participant, looking
at Wesley’s stated permissions in the XPFP window as shown in Figure 3.1, said, “And apparently his per-
missions are just READ. That’s what we want.” He had not explicitly denied WRITE permission to Wesley,
and implemented an incorrect solution. In the absence of correct information to confirm that the task was
complete, the participant used incorrect information, the stated permissions, to “confirm” that he had cor-
rectly completed the task. As opposed to the XPFP interface, Salmon’s external representation enables the
user to avoid having to build and maintain an internal mental representation of a complex permission-setting
structure. The Salmon display provided the necessary goal cues by holding the representation externally,
making it more accessible to the user.

3.8.3 Less time searching for information in Salmon
To determine in more detail how users spent their time, and to address the hypothesis that Salmon users’
improvement was due to improved external representations, users’ protocols were analysed for time spent
on specific behaviors. This kind of analysis reveals how an interface shapes users’ behavior, by drawing
attention to activities where users spent the bulk of their time. Ten behaviors were identified, and each
user protocol was segmented into portions of time spent on each of the 10 behaviors. Objective criteria
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determined whether a given segment of protocol matched a particular behavior. For example, a “Read task”
behavior was identified any time a user had the Web browser with the task statement in the foreground.
As another example, a “Learn interface” behavior was identified as the time between first reading the task
statement and starting to enact a plan, or any action that followed a user statement like “Let’s see what
this does.” Figure 3.5 shows the average amount of time users spent on each of these ten behaviors for the
Wesley task; results for the Jack task are similar, and are not shown. Figure 3.6 shows the average amount
of time that users spent on each of these 10 behaviors for the Tux task. Each set of four bars shows, from left
to right, the average times for all XPFP users, all Salmon users, successful XPFP users only, and successful
Salmon users only. Descriptions and discussion of each of the 10 behaviors is included below.

Figure 3.5: Average time spent on each of 10 behaviors identified in the Wesley task by all XPFP and
Salmon users combined, whether successful or not, and only successful XPFP and Salmon users. Salmon
users spent less time on information-gathering behaviors like check-groups, learn-interface, and consult-
help.
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• Read task: This behavior consists of reading the task statement in the Web browser. Since the task
statements were presented in the same manner to all users, it is to be expected that users of both
interfaces would take about the same amount of time, on average, to read them and refer to them
while working.

• Plan task: This behavior is assumed to occur when the user is not engaged in any of the other nine
behaviors on this list; it consists of thinking and trying to formulate a plan. Notice that, for the
Wesley task, successful XPFP users and Salmon users spent more time planning than did all XPFP
users. This can be explained by noting that those XPFP users who failed to complete the Wesley task
typically failed by omitting a subgoal, and hence finished more quickly than those who successfully
completed all subgoals. Notice, too, that XPFP users in the Tux task spent more than twice as much
time planning, since without a visible DELETE permission-setting checkbox, it was harder to decide
what to do.

• Manage windows: The manage-windows behavior includes the activities of moving, opening, clos-
ing, minimizing, or otherwise manipulating interface windows. Time spent on the dialog windows
for Check groups, Read task, Consult Help, and Add to ACL behaviors is not included within man-
agewindows. Salmon users did not exhibit managing-windows behavior, since Salmon only has one
interface window, while XPFP has as many as four. Consequently, it takes XPFP users longer to
navigate through the multiple windows to find information. Salmon does take up more space on the
screen, however, in order to display all the relevant information in one window.

• Check work: This behavior consists of reviewing the interface to confirm that permissions look cor-
rect; it occurs after setting permissions and before ending the task or revising work. It is interesting
to note that although users spent roughly the same amount of time checking work on both interfaces
for all three tasks, there were still more failures amongst those using XPFP. This is likely because the
information needed to check work, the effective permissions, is not visible in XPFP, so users employ
the wrong information, the stated permissions, to check their work.

• Check groups: This behavior consists of checking group membership with the XP Computer Man-
agement interface. XPFP does not display group membership information, so it requires users to view
the separate Computer Management application to check group membership. Salmon’s lower pane
displays group information, so it is not necessary to go to another application to check group member-
ship. (Some users did anyway, because they had not yet noticed that the information was available in
Salmon). Unsurprisingly, Salmon users spent less time checking group memberships than did XPFP
users in the Wesley task. Since groups were not relevant to the Tux task, no users spent time checking
groups.

• Learn interface: This behavior consists of either looking over the interface at the beginning of the
task to see what can be done with it, or experimenting with the interface by clicking on interface
elements whose function is unknown or confusing. Novice users spend time surveying a new interface
and testing out its functionality to see how it works. Often, when at an impasse, users may test
an unfamiliar interface function to see if it helps them accomplish their goal. Since Salmon was a
completely new interface, while some users had already used the XPFP interface before participating
in the study, it was expected that users would spend more time learning the Salmon interface. This
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Figure 3.6: Average time spent on each of 10 behaviors identified in the Tux task by all XPFP and
Salmon users, whether successful or not, and all successful XPFP and Salmon users. Salmon users
spent less time on information-gathering behaviors like plan-task, learn-interface, and consult-help.
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does not appear to have been the case; apparently confusion led many XPFP users to experiment more
with that interface. This phenomenon was especially apparent in the Tux task, where XPFP users
spent, on average, six times longer than Salmon users exploring and experimenting with the interface.

• Consult Help: This behavior consists of browsing or reading the Help files. Users consult Help when
confused about what to do next or about how an interface works. XPFP users spent far more time
consulting Help than did Salmon users, presumably because they were having more difficulty using
the XPFP interface.

• Set permissions: This behavior consists of reading permissions labels and clicking on their corre-
sponding checkboxes. In the Wesley task, after users had added Wesley to the ACL, they would scan
through the list of permissions labels in the interface. Salmon lists all 13 atomic permissions labels,
while XPFP lists only 6 composite permissions on its main window. Since there are fewer labels to
scan in XPFP, those users set permissions faster, on average. However, the added efficiency in XPFP
comes at a price; all of the users who failed at the Jack task failed in part because they did not notice
that Jack had ADMINISTRATE permission. They failed because the ADMINISTRATE permission is
hidden two screens away. Furthermore, in the Tux task, XPFP users spent far more time searching for
the DELETE permission, since it is hidden in XPFP, but readily visible in Salmon.

• Add to ACL: This behavior consists of selecting a user or group, and adding it to the ACL. Salmon
uses essentially the same dialog as XPFP does for adding users to the ACL, so little difference in the
behavior times between the two interfaces is expected here.

• Remove from ACL: This behavior consists of selecting a user or group, and removing it from the ACL.
The Remove operation was essentially the same in both interfaces, and was rarely used.

As this detailed behavior analysis shows, Salmon users spent less time than XPFP users on the behaviors
related to information gathering (Check groups, Learn interface, and Consult Help) and spent a greater
proportion of their time on essential task behaviors (Add to ACL, Set permissions, and Check work). This
observation supports the hypothesis that an improved external representation of task-relevant information—
due to the use of ESS in the design of Salmon—leads users to spend less time looking for information and
leads users to find more readily the information they need to complete tasks.

3.9 Conclusion
In the course of completing tasks with a user interface, users look for information to formulate goals and
to check progress. When the necessary information is misleading or absent, users fail to establish the
correct goals and hence make goal errors. Goal errors may lead to total task failure, and thus impinge
on interface dependability. Many goal errors can be prevented by providing an accurate, clear and salient
external representation of the information needed to achieve the user’s primary goal. A design method for
producing such a representation has been named external subgoal support (ESS).

The Windows XP file permissions interface, which does not use ESS, was shown to have unacceptably
low success rates—58%, 25% and 75%—on three representative file permission-setting tasks. Salmon,
an alternative interface designed in accordance with the ESS principle, was shown to increase percentage
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of successes to 83%, 100% and 100% on the same tasks. Furthermore, user tests with Salmon showed a
dramatic reduction in the occurrence of goal errors compared to XPFP, with 80% fewer goal errors on one
task, 94% fewer goal errors on another, and 100% fewer on a third. In addition, Salmon maintained or
substantially reduced time to task completion for all three tasks. These improvements in successful task
completion, reductions in goal error occurrence, and time to task completion were due primarily to ESS.
These speed and success rates far more closely approach what is needed for dependable user interfaces in
mission-critical systems like those required for setting security-related configurations of servers, firewalls,
personal workstations, etc.
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CHAPTER 4

Usability Challenges in Security and
Privacy Policy-Authoring Interfaces

This chapter is largely a reproduction of a paper co-authored with Clare-Marie Karat, John Karat, and Carolyn
Brodie and published at INTERACT 2007 [104].

Despite the need for usable policy-authoring interfaces, numerous studies and incidents have shown that
several widely-used policy-authoring interfaces are prone to serious errors. The “Memogate” scandal, in
which staffers from one political party on the United States Senate Judiciary Committee stole confidential
memos from an opposing party, was caused in part by an inexperienced system administrator’s error using
the Windows NT interface for setting file permissions [132]. Maxion and Reeder showed cases in which
users of the Windows XP file permissions interface made errors that exposed files to unauthorized access
[85]. Good and Krekelberg showed that users unwittingly shared confidential personal files due to usability
problems with the KaZaA peer-to-peer file-sharing application’s interface for specifying shared files [55].
This evidence suggests that designing a usable policy-authoring interface is not trivial, and that designers
could benefit from a list of potential vulnerabilities of which to be aware.

This chapter reports the results of a user study which had the goal of identifying common usability
challenges that all policy-authoring interface designers must address. The study employed SPARCLE [68],
an application designed to support enterprise privacy policy authoring. However, the study was not intended
to evaluate SPARCLE itself, but rather to reveal challenges that must be addressed in policy authoring in
general. SPARCLE-specific usability issues aside, the study revealed five general usability challenges that
any policy-authoring system must confront if it is to be usable:

1. Supporting object grouping;

2. Enforcing consistent terminology;

3. Making default rules clear;

4. Communicating and enforcing rule structure;

5. Preventing rule conflicts.

47
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These challenges are explained in detail in the discussion in Sect. 4.5. Although these challenges have
been identified from a user study in just one policy-authoring domain, namely enterprise privacy policies,
a review of related work, presented in Sect. 4.6, confirms that the challenges identified here have been
encountered in a variety of other policy-authoring domains, including file access control, firewalls, website
privacy, and pervasive computing. This work, however, is the first we are aware of to describe policy-
authoring applications as a general class and present usability challenges that are common to all.

4.1 Policy Authoring Defined
“Policy” can mean many things in different contexts, so it is important to give a definition that is germane
to the present work on security and privacy policies. For the purposes of this work, a policy is defined
as a function that maps sets of elements (tuples) onto a discrete set of results, typically the set {ALLOW,
DENY} (however, other result sets are possible; for example, Lederer et al. describe a policy-based privacy
system in which tuples representing requests for a person’s location are mapped to the set {PRECISE,
APPROXIMATE, VAGUE, UNDISCLOSED} [78]). Elements are defined as the attributes relevant to a
specific policy domain; the values those attributes can take on are referred to as element values. Element
values may be literal values, such as the username “jsmith,” or they may be expressions, such as “if the
customer has opted in.” Policies are expressed through rules, which are statements of specific mappings of
tuples to results. Policy authoring is the task of specifying the element values in a domain, specifying rules
involving those elements, and verifying that the policy comprised by those rules matches the policy that is
intended.

In the privacy policy domain, for example, a policy maps tuples of the form (<user category>, <action>,
<data category>, <purpose>, <condition>) to the set {ALLOW, DENY} [10]. Here, user category, action,
data category, purpose, and condition are elements. ALLOW and DENY are results. An example privacy
policy rule would map the tuple (“Marketing Reps,” “use,” “customer address,” “mailing advertisements,”
“the customer has opted in”) to the value ALLOW, indicating that marketing representatives can use the
customer address data field for the purpose of mailing advertisements if the customer has opted in. Here,
“Marketing Reps,” “use,” “customer address,” “mailing advertisements,” and “the customer has opted in”
are element values.

To take another example, in the file permissions domain, a policy maps tuples of the form (<principal>,
<action>, <file>) to the set ALLOW, DENY. An example rule might map (“jsmith,” “execute,” “calcula-
tor.exe”) to the value DENY, indicating that the user jsmith cannot execute the program calculator.exe.

Since the rules in a policy may not cover all possible tuples, policy-based security and privacy systems
typically have a default rule. For example, the SPARCLE system has the default rule that all 5-tuples
of (<user category>, <action>, <data category>, <purpose>, <condition>) map to DENY. Additional
rules are specified by policy authors and all author-specified rules map a 5-tuple to ALLOW. The default rule
need not necessarily be a default DENY; a default ALLOW is also possible (policies with a default ALLOW
rule are often called “blacklists,” because any element value listed explicitly in the policy is denied access),
or the default can vary according to some values in the tuples (for instance, a default rule might state that all
accesses to shared files on a computer are allowed by default to local users but denied by default to remote
users). Similarly, user-specified rules need not necessarily map exclusively to ALLOW or exclusively to
DENY; it is possible to allow users to specify rules that map to either ALLOW or DENY. However, policy
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systems that allow users to specify both types of rules introduce the potential for rule conflicts, which can
be a significant source of user difficulty [6, 29, 85].

4.2 The SPARCLE Policy Workbench
In the present work, policy authoring usability was investigated through a user study in which participants
used the SPARCLE Policy Workbench application. SPARCLE is a Web-based application for enterprise pri-
vacy policy management. The application includes a front-end user interface for authoring privacy policies
using a combination of natural language and structured lists. While the current embodiment of SPARCLE is
tailored for the privacy policy domain, the user interface was designed with an eye toward supporting policy
authoring in other domains such as file access control. From a research perspective, the two interaction
paradigms supported by SPARCLE, natural language and structured list entry, can as easily be applied to
privacy policy management as to file, network, system, email, or other policy management. Thus SPARCLE
is a suitable tool for studying policy authoring in the general sense. Portions of the SPARCLE user interface
relevant to the present study are described below; a more complete description of the SPARCLE system can
be found elsewhere [69].

One way to write policy rules in SPARCLE is to use the natural language interface on the Natural Lan-
guage Authoring page. The Natural Language Authoring page contains a rule guide, which is a template
that reads, “[User Category(ies)] can [Action(s)] [Data Category(ies)] for the purpose(s) of [Purpose(s)] if
[(optional) Condition(s)].” This template indicates what elements are expected in a valid rule. The Nat-
ural Language Authoring page further contains a large textbox for entering rule text. Policy authors can
type rules, in natural language, directly into the textbox. For example, a rule might read, “Customer Ser-
vice Reps, Pharmacists, and Billing Reps can collect and use customer name and date of birth to confirm
identity.” SPARCLE has functionality for parsing an author’s rules so that it can extract rule element val-
ues automatically from the author’s text. When parsing has completed, the user proceeds to the Structured
Authoring page to see the structured format of the policy.

The Structured Authoring page, shown in Fig. 4.1, shows the results of parsing each policy rule. When
SPARCLE parses each policy rule, it saves the elements (i.e., user categories, actions, data categories,
purposes, and conditions) found in that rule. The elements are reconstructed into sentences and shown next
to radio buttons in a list of rules. The lower half of the Structured Authoring page contains lists of element
values, one list for each of the five elements of a privacy policy rule. These lists contain some pre-defined,
common element values (e.g., “Billing Reps” as a user category, “collect” as an action, or “address” as a data
category) as well as all element values defined by the policy author and found by the parser in rules written
on the Natural Language Authoring page. Policy authors can also alter these element value lists directly
by adding or deleting elements. When a rule is selected from the list of rules at the top of the Structured
Authoring page, all of the element values in that rule are highlighted in the lists of element values. Policy
authors can edit rules by selecting different element values from the lists. It is also possible to create rules
from scratch on the Structured Authoring page.
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Figure 4.1: SPARCLE’s Structured Authoring page. Policy authors can create or edit rules on this page
by selecting from the lists of element values in the lower half of the page.

4.3 Policy Authoring Usability Evaluation
We conducted a laboratory user study using the SPARCLE application to identify usability problems expe-
rienced by users in policy-authoring tasks.

4.3.1 User Study Method
Participants
We recruited twelve participants, consisting of research staff and summer interns at a corporate research
facility, for the user study. Participants varied in age from 20 to 49; four were female. Since participants did
not have experience authoring privacy policies or using SPARCLE, we considered them novice users for our
purposes. Participants were compensated for their participation with a certificate for a free lunch.



4.3: POLICY AUTHORING USABILITY EVALUATION 51

Table 4.1: The task statement given to participants for the DrugsAreUs task, one of three tasks used in the
user study.

The Privacy Policy for DrugsAreUs
Our business goals are to answer customer questions when they call in (Customer Service), fulfill orders for
prescriptions while protecting against drug interactions (Pharmacists), and to provide customers valuable
information about special offers (Marketing). In order to make sure our customers’ privacy is protected,
we make the following promises concerning the privacy of information we collect at DrugsAreUs. We
will only collect information necessary to provide quality service. We will ask the customers to provide us
with full name, permanent address and contact information such as telephone numbers and email addresses,
and a variety of demographic and personal information such as date of birth, gender, marital status, social
security number, and current medications taken. On occasions where we need to verify a customer’s identity,
Customer Service Reps will only use the social security number to do so. Our pharmacists will use the
current medication information when processing new orders to check for drug interactions.

We will make reports for our internal use that include age and gender breakdowns for specific drug prescrip-
tions, but will not include other identifying information in the reports and will delete them after five years.
For example, our research department might access customer data to produce reports of particular drug use
by various demographic groups.

Apparatus
Participants accessed SPARCLE through the Internet Explorer web browser on a computer running Windows
XP. SPARCLE ran on a server on a local intranet, so users experienced no network delays. We set up a
camera and voice recorder in the laboratory to record participants’ actions and words.

Training Materials
We presented participants with a 4-page paper tutorial on how to use SPARCLE to give them a basic intro-
duction to the SPARCLE system. The tutorial walked participants through the SPARCLE Natural Language
Authoring and Structured Authoring pages as it had participants write and edit a two-rule policy. The tutorial
took about 15 minutes to complete.

Tasks
We wrote three task scenarios: the “DrugsAreUs” task, the “Bureau of the Public Debt” task, and the “First
Finance” task. The three scenarios describe medical, government, and finance enterprises, respectively, and
thus cover a broad range of the types of enterprises that require privacy policies in the real world. Each task
scenario described an enterprise and its privacy policy requirements in language that did not explicitly state
rules to be written into SPARCLE, but suggested content that might go into explicit rules. The intent of the
scenarios was to give participants an idea of what to do, but to have them come up with their own language
for their rules. An example of one of the three task scenarios, the “DrugsAreUs” task, is listed in Table 4.1.

Procedure
We asked participants to complete a demographic survey before beginning the user study. We then gave
participants the SPARCLE tutorial and asked them to complete it. We provided help as needed as the
participants worked through the tutorial. After they had completed the tutorial, we instructed participants
to think aloud during the study [44]. We then presented participants with tasks. Each participant was
presented with two of the three task scenarios and asked to complete them one at a time. We instructed
participants to imagine they were the Chief Privacy Officer of the enterprise described in each scenario and
to use SPARCLE to author the rules they thought were necessary to protect personal information held by
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the enterprise while still allowing the enterprise to carry out its business. We counter-balanced the selection
and presentation of the scenarios across participants so that each scenario was presented to eight participants
and each scenario was the first scenario presented to four participants and the second scenario presented to
four other participants.

Data Collection
The data we collected included text of rules written, video of participants and the computer screen on which
they worked, think-aloud audio, and results of the demographic survey.

4.3.2 Data Analysis Method
We performed two data analyses. In the first analysis, we looked at the rules participants wrote to find
errors in rules. In the second analysis, we reviewed videos and think-aloud audio data to find any additional
incidents of errors and usability problems not found in the first analysis.

First Analysis: Errors in Rules
In the first analysis, we read through participants’ final rules and considered their implementability. An
implementable privacy rule was defined as a rule that can be unambiguously interpreted by an implementer,
which is a human or machine that produces the actionable code to carry out automated enforcement of a
policy’s intentions. With respect to implementability, we identified seven errors. Two of these errors, unde-
tected parser errors and unsaved rule changes, are system-specific issues to SPARCLE, and are not further
discussed here, because the objective of this work was to identify errors that might occur in any interface
for policy-authoring. The five non-system-specific errors we found were group ambiguities, terminology
mismatches, negative rules, missing elements, and rule conflicts. We identified and counted occurrences of
each type of error. The five errors, criteria used to identify each type of error, and examples of each error
are below:

1. Group ambiguity: Composite terms, i.e., terms that represented a set of other terms, were used in the
same policy as the terms they apparently represented. This was considered an error for implementa-
tion because it was often not clear exactly which terms were represented by the composite term. For
example, one rule said, “DrugsAreUs can collect necessary information...,” in which “necessary infor-
mation” is a composite term presumably representing data referred to in other rules such as “customer
mailing address,” and “current medications taken.” However, it is not immediately clear just what
data is referred to by “necessary information.” As another example, one rule contained both the terms
“contact information” and “permanent address.” This would imply that, contrary to common usage,
“permanent address” is not part of “contact information.” An implementer could easily be confused
as to whether the term “contact information” used in a different rule included permanent address data
or not.

2. Terminology mismatch: Multiple terms were used to refer to the same object within the same pol-
icy. Examples of terminology mismatches included “email address” and “email addres;” “Financial
control” and “Finacial control;” “gender” and “gender information;” “properly reporting information
to the IRS” and “providing required reports to the IRS.”
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3. Negative rule: A rule’s action contained the word “not.” Although SPARCLE is a default-deny policy
system, implying that it is only necessary to specify what is allowed, some participants attempted to
write negative rules, i.e., rules that prohibited access. These rules are unnecessary, and can lead
to confusion on the part of an implementer who is expecting only positive rules. An example of a
negative rule was, “Bureau of the Public Debt can not use persistent cookies....”

4. Missing element: A rule was missing a required element. The missing element was usually purpose.
An example of a rule with no purpose was “Customer Service Reps can ask full name, permanent
address, and medication taken.”

5. Rule conflict: Two different rules applied to the same situation. Only one rule conflict was observed
in our study. SPARCLE’s policy semantics avoid most potential for rule conflict by taking the union
of all access allowed by the rules except in the case of conditions, for which the intersection of
all applicable conditions is taken. The one observed example of a rule conflict included the rules,
“Customer Service Reps can access customer name for the purpose of contacting a customer if the
customer has submitted a request,” and “Customer Service Reps can access customer name for
the purpose of contacting a customer if the customer has expressed a concern.” Since the user
category (“Customer Service Reps”), action (“access”), data category (“customer name”), and purpose
(“contacting a customer”) all match in these rules, taking the intersection of conditions would imply
that “Customer Service Reps can access customer name for the purpose of contacting a customer”
only when both “the customer has submitted a request” and “the customer has expressed a concern”
are true. Thus, in the case that the customer has submitted a request but not expressed a concern, the
first rule would seem to apply but is in conflict with the latter rule.

Second Analysis: Review of Video and Think-Aloud Data
In the second analysis, we reviewed video of user sessions and transcripts of user think-aloud data for
critical incidents which indicated errors or other usability problems. We defined critical incidents in the
video as incidents in which users created a rule with one of the errors indicated in the first analysis but
subsequently corrected it. We defined critical incidents in the think-aloud data as incidents in which users
expressed confusion, concern, or an interface-relevant suggestion. Once we had identified critical incidents,
we classified them according to the error or usability problem that they indicated. While critical incidents
were caused by a variety of SPARCLE-specific usability problems, only those incidents relevant to the five
general policy-authoring rule errors identified in the first data analysis are reported here. There were no
critical incidents that indicated general rule errors not already identified in the first data analysis; thus, the
second data analysis simply served to confirm the results of the first through an independent data stream.

Below are some typical examples of user statements classified as critical incidents, followed by the error
under which we classified them in parentheses:

• “I don’t want to have to write out a long list of types of information without being able to find a
variable that represents that information to be able to label that information. In this case the label
might be personal information defined to include customer name, address, and phone number.” (Group
ambiguity)

• “I’m not sure how to do negations in this template.” (Negative rule)
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Figure 4.2: Results of first and second data analyses, showing instances of five types of errors, broken
down by task scenario in which they were observed. There were 24 total task-sessions, 8 sessions for each
of the three tasks.

• “It says I must specify at least one purpose, and I say, ‘why do I have to specify at least one purpose?’"
(Missing element)

4.4 Results
Results from the two data analyses, combined by adding the unique error instances found in the second
analysis to those already found in the first analysis, are shown in Fig. 4.2. The errors in Fig. 4.2 are listed
according to total frequency of occurrence, and within each error, are broken down by the task scenario in
which they occurred. Since 2 of the 3 task scenarios were presented to each of 12 participants, there were
24 total task-sessions, 8 of each of the three scenarios. Thus, for example, the “group ambiguity” bar in Fig.
4.2 indicates that group ambiguity errors occurred in 11 of 24 task-sessions, including 5 of 8 “DrugsAreUs”
sessions, 1 of 8 “Bureau of the Public Debt” sessions, and 5 of 8 “First Finance” sessions.

Of the five errors, group ambiguity errors were observed most frequently; a total of 11 instances of
group ambiguity errors were found. The other errors, in order of frequency of occurrence, were terminology
mismatches, negative rules, missing elements, and rule conflicts.

4.5 Discussion
The errors that participants made in this study suggest the five general policy-authoring usability challenges
listed in the introduction to this paper. The challenges arise from inherent difficulties in the task of articulat-
ing policies; however, good interface design can help users overcome these difficulties. Group ambiguities
suggest that users have a need for composite terms, but also need support to define these terms unambigu-
ously. Terminology mismatches suggest the need for the interface to enforce, or at least provide some
support for, consistent terminology. Negative rules are not necessary in SPARCLE’s default-deny policy-
based system, so users’ attempts to write negative rules suggest that they did not know or did not understand
the default rule. Missing elements are caused by users’ failure to understand or remember the requirement
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for certain rule elements. Finally, rule conflicts are a known problem that a good interface can help address.
The identification of these five policy-authoring usability challenges is the primary result of this study.

One of these challenges, communicating and enforcing rule structure, had already been anticipated, and
SPARCLE’s rule guide on the Natural Language Authoring page was designed to guide policy authors to
write rules with correct structure. Rule conflicts, a well-known problem in policy-authoring domains, were
also anticipated. SPARCLE, in fact, was designed to prevent rule conflicts by using a default-deny system
and requiring that policy authors only write rules that mapped exclusively to ALLOW. It is only in the
optional condition element that a conflict is possible in SPARCLE rules, so it was not surprising that only
one rule conflict was observed in the present study. The remaining three usability challenges observed were
largely unanticipated when SPARCLE was designed. Because of the fairly common failure to anticipate
some of the five challenges, in SPARCLE and in other designs discussed above in the Introduction and
below in the Related Work, the identification of these challenges is a significant contribution.

Before discussing the usability challenges observed, it is worth considering one methodological concern.
Some of the errors revealed, particularly group ambiguities and negative rules, and the frequency with which
they were observed in the present study, may have been influenced by the specific task scenarios presented
to users. However, errors, except for the one instance of a rule conflict, are distributed fairly evenly across
the three tasks, so it does not appear that any one task was responsible for eliciting a particular error type.
Furthermore, the task scenarios were written based on experience with real enterprise policy authors and
real enterprise scenarios, so the errors revealed are very likely to come up in the real world. However, the
frequency values reported here should not be taken as necessarily indicative of the relative frequency of
occurrence of these errors in real-world policy work.

Having identified five usability challenges for policy-authoring domains, it is worth discussing how these
challenges might be addressed. Each challenge is discussed in turn below.

4.5.1 Supporting Object Grouping
Group ambiguities were caused by users not understanding what terms covered what other terms. Many
solutions already exist to help users with tasks that involve grouped elements. Perhaps the most promi-
nent grouping solution is the file system hierarchy browser. A hierarchy browser allows users to create
groups, name groups, add objects to and remove objects from groups, and view group memberships. Hier-
archy browsers may often be appropriate for policy-authoring tasks. However, hierarchical grouping may
not always be sufficient. In file permissions, for instance, system users often belong to multiple, partially-
overlapping groups. Any of a variety of means for visualizing sets or graphs may be useful here; also needed
is a means for interacting with such a visualization to choose terms to go into policy rules. What visualiza-
tions and interaction techniques would best support grouping for policy authoring is an open problem.

4.5.2 Enforcing Consistent Terminology
Ambiguous terminology is nearly inevitable, but there are certainly ways to mitigate the most common
causes, which, in this study, included typos and users’ forgetting what term they had previously used to
refer to a concept. A spell-checker could go a long way toward eliminating many typos, like “socail security
number,” in which “social security number” was obviously intended. A domain-specific thesaurus could
help resolve abbreviations, aliases, and cases in which the same object necessarily has multiple names. For
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example, a thesaurus could indicate that “SSN” expands to “social security number,” and that “e-mail,”
“email,” and “email address” all represent the same thing. A display of previously used terms for an object
might help users remember to reuse the same term when referring to that object again; SPARCLE’s struc-
tured lists are an example of such a display. In some policy-authoring domains, the terminology problem
may be resolved for the policy author by pre-defining terms. For example, in file permissions, the actions
that can be performed on a file are typically pre-defined by the file system (e.g., read, write, and execute).

4.5.3 Making Default Rules Clear
Showing default rules may be a trivial matter of including the default rule in interface documentation or in
the interface display itself. However, the concept of a default rule and why it exists may itself be confusing.
One method of illustrating the default rule to users is to present a visualization showing what happens in
unspecified cases [85]. SPARCLE includes such a visualization, although it is not onscreen at the same time
a user is authoring rules [25].

4.5.4 Communicating and Enforcing Rule Structure
SPARCLE already does a fairly good job of enforcing rule structure. Participants in the present study
recovered from forgotten purpose elements in 2 out of 5 cases due to SPARCLE’s prominent display of the
phrase “None Selected” as the purpose element when no purpose was specified; a corresponding “Missing
Purpose” error dialog also helped. Other interaction techniques like wizards, in which users are prompted
for each element in turn, would likely get even higher rates of correct structure. Which of these techniques
or combination of techniques leads to the fewest missed elements will be the subject of future work.

4.5.5 Preventing Rule Conflicts
Rule conflicts were rare in this study; the one observed conflict can be attributed to a lack of awareness about
the semantics of the condition element. However, rule conflicts have been shown to be a serious usability
problem in past work in other policy-authoring domains [6, 29, 85]. Clearly, interfaces need to make users
aware of conflicts, and if possible, show them how conflicts can be resolved.

Rule conflicts have been the focus of some non-interface-related theoretical work [2, 50]; algorithms
exist for detecting conflicts in a variety of policy contexts. This work could be leveraged by interface
designers. However, the means for presenting policy conflicts to authors have yet to be evaluated. A few
visualizations and interfaces have attempted to do this, such as those discussed below in the Related Work
[6, 29, 85], but it is not clear whether they succeed at conveying conflicts, the need to resolve them, and the
means to resolve them to users.

4.6 Related Work
Although the present study looked for usability challenges in just one policy-authoring domain, related work
in other domains confirms that the usability challenges identified here are general problems encountered in
a variety of policy-authoring domains. However, past work has only identified the challenges as unique to
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specific domains, rather than as part of the more general policy-authoring problem.
A need for supporting groups of element values has been found in several domains. Lederer et al.

found a need for supporting groups of people in a user interface for setting location-disclosure policies
in a pervasive computing environment so that policies could be scaled to environments with many people
[76]. They present an interface for setting location-disclosure policies, but mention support for grouping
as future work. The IBM P3P Policy Editor is a policy-authoring interface that uses hierarchical browsers
to show users how Platform for Privacy Preferences (P3P) element values are grouped [40]. Zurko et al.’s
Visual Policy Builder, an application for authoring access-control policies, allowed authors to create and
label groups and to set constraints on groups to prevent conflicts due to group overlaps [153].

Finding good terminology and using it consistently has long been recognized as a problem for virtually
every user interface [93]. In the policy-authoring area, Cranor et al. acknowledged the difficulty of finding
comprehensible terminology in developing an interface for allowing users to specify what privacy practices
they prefer in websites with which they interact [41]. Good and Krekelberg found that the use of four
different terms for the same folder confused users in an interface for specifying shared folders in the KaZaA
peer-to-peer file-sharing application [55].

Communicating default rules has been shown to be a problem in setting file permissions by both Maxion
and Reeder [85] and Cao and Iverson[29]. Cranor et al. also discuss their efforts to come up with an
appropriate default rule and communicate that rule to users [41]. Good and Krekelberg found that that
KaZaA did not adequately communicate default shared files and folders to users [55].

The above-referenced independent studies of file-permissions-setting interfaces, Maxion and Reeder
[85] and Cao and Iverson [29], also found that users have difficulty detecting, understanding, and correcting
rule conflicts in access control systems. Zurko et al. considered the problem of conveying rule conflicts to
users in their design of the Visual Policy Builder [153]. Al-Shaer and Hamed acknowledge the difficulties
that rule conflicts cause for authors of firewall policies [6]. Besides human-computer interaction work, some
theoretical work has acknowledged the problem of rule conflicts and found algorithms for detecting conflicts
in policies [2, 50].

Lederer et al. report five design pitfalls of personal privacy policy-authoring applications that do not in-
clude the same usability challenges listed here, but do raise the important question of whether configuration-
like policy-authoring interfaces are needed at all [75]. They argue that in personal privacy in pervasive
computing environments, desired policies are so dependent on context, that users cannot or will not specify
them in advance. While their argument is undoubtedly correct for some domains, there remains a need for
up-front policy authoring in many situations: the system administrator setting up a default policy for users,
the policy maker in an enterprise writing a privacy policy to govern how data will be handled within the
organization, and even the end-user who does not want to be bothered with constant requests for access, but
prefers to specify up-front what access is allowed.

4.7 Conclusion
In order to be usable, policy-authoring interfaces, which are needed for a wide variety of security and privacy
applications, must address the five usability challenges identified in the user study described in this paper:
supporting object grouping, enforcing consistent terminology, making default policy rules clear, communi-
cating and enforcing rule structure, and preventing rule conflicts. Some of these issues have been addressed
before in domain-specific policy-authoring interfaces and elsewhere, but all might benefit from novel, gen-
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eral interaction techniques. As more policy authoring interfaces for users are created to fit the variety of
applications that depend on accurate policies, researchers and designers would benefit from considering the
five usability challenges discussed in this paper and creating innovative interaction techniques to address
them.
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CHAPTER 5

Policy Authoring and the Expandable
Grid Concept

In this chapter, we describe policy authoring, give definitions of its concepts, and list four fundamental
policy-authoring operations that policy-authoring interfaces should support. We then describe the Expand-
able Grid concept as it applies to policy authoring in general. Finally, we list features of different policy
domains and discuss which of these features make a policy domain suitable or not suitable for display in an
Expandable Grid interface.

5.1 Definitions of policy-authoring concepts
The concepts surrounding policy authoring are perhaps most easily understood by example. We will use file
access control as an example of a specific domain within the general domain of policy authoring, then we
will explain how the concepts behind file access control policies can be generalized to other policy-authoring
domains.

5.1.1 File access control as an example policy-authoring domain
In a basic file access control system, there are resources, principals, and actions. Resources are files and
folders, the data to which access is to be controlled. Principals are system users, processes, computers,
and other entities that may attempt to access resources. Actions are operations that may be performed on
resources, such as “read,” “write,” “execute,” and “delete.” A request is an attempt by a principal to perform
an action on a resource. A request can be represented as a set of principal, action, and resource. We call the
components of a request, i.e., principal, action, and resource, attributes, and specific values for principal,
action, and resource values. To give an example of these concepts, a request by a user named jsmith to
execute a file called calculator.exe could be represented as the tuple (“jsmith,” “execute,” “calculator.exe”).
The values would be “jsmith,” “execute,” and “calculator.exe.”

A policy is a function that maps requests to results, which are drawn from the result set {ALLOW,
DENY}, indicating whether the request is granted or not. We call a specific mapping of values to a result
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a decision. The actual decisions that will be issued by a policy are specified by policy authors, or simply
authors, who are people authorized to control resources. Policy authors might be system administrators
who control many resources for an organization or end users who may control files or personal information
belonging to them that resides on organizational systems or in their own pervasive devices.

Policy authors often specify policies as a set of rules. A rule is a statement of a specific mapping of one
or more requests (each consisting of a principal, action, and resource) to a result. For example, a rule might
map the request (“jsmith,” “execute,” “calculator.exe”) to the decision DENY, indicating that the user jsmith
cannot execute the program calculator.exe. If a policy author put this rule into place, then if the request
(“jsmith,” “execute,” “calculator.exe”) were made, the access control system’s decision would be to output
DENY.

Because a given set of rules may not apply to all possible requests, a file access control system will
have a default rule that indicates whether requests are allowed or denied by default. A typical default rule
is default-deny, which states that all requests not explicitly granted by other rules are denied. A default-
allow is also possible (spam or firewall “blacklists” are examples of default-allow policies) or the default
rule can produce both ALLOW and DENY decisions depending on input values (for instance, a default rule
might state that all accesses to shared files on a computer are allowed by default to local users but denied by
default to remote users).

Since a file system may have thousands of principals and files, file access control systems typically
provide a means for constructing composite values, which are collections of values. Values that are not
composite are atomic values). For instance, in hierarchical file systems, files are naturally aggregated into
folders and folders into higher-level folders. Principals might be placed into groups or roles according to
their position in an organization, such as “Executives,” “Managers,” and “Employees.” (The term “role”
comes from role-based access control, in which a role is a construct for associating principals with actions
and resources according to organizational functions [115].) Specific files and users are atomic values while
folders and groups or roles are composite values. Groups and folders allow policy authors to write rules
that apply to all components of a composite value, such as a rule that denies access to all employees to
delete files in a folder called “Critical files.” Composite values thus allow for more succinct policies, since
a single rule can apply to many input values, such as any of multiple employees. Composite values also
allow for policies that cover as-yet-unknown input values; the example rule above would apply to any future
employees or future files added to the “Critical files” folder.

Use of composite values can lead to rule conflicts, which are situations in which more than one rule
applies to a given request. To give an example of a rule conflict, suppose there is Rule 1 that states that
the group “Employees” can read a file called “CompanyData.” Now suppose there is a Rule 2, concerning
an untrustworthy employee named “Jack,” that states that Jack is not allowed to read the “CompanyData”
file. If Jack tries to read the file, these two rules will both apply: Rule 1 because Jack is a member of
the “Employees” group, and Rule 2 because it applies directly to Jack. To resolve rule conflicts, access
control systems have precedence rules, which dictate which rules take precedence in case of a conflict.
Several precedence rules are possible. A typical precedence rule is deny-takes-precedence, in which any rule
mapping a request to DENY takes precedence. In the Jack example, Rule 2 would take precedence under
a deny-takes-precedence rule. Another possible precedence rule is order-precedence, in which precedence
goes to the rule the policy author has specified earliest. In the Jack example, Rule 1 would take precedence
under order precedence.

It is possible for an access control system to avoid rule conflicts by only allowing policy authors to
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specify exceptions to the default rule, and not allowing exceptions to the exceptions. For example, if the
default-deny rule is in effect and policy authors can only specify requests that should be allowed, no conflicts
will arise (in fact, there would be “conflicts” with the default rule, but the conflicts would be resolved
because author-specified rules always take precedence over the default rule). However, such a system can be
unwieldy in certain situations. For example, if all members of a large group of principals except one is to be
allowed access to a file (as in the Jack example), it would be necessary to form a new “all-but-the-exception”
group or to specify a rule allowing access for every single member of the large group except for the one.
Access control systems where situations such as these may arise typically allow policy authors to specify
rules that either allow or deny access; hence, rule conflicts may arise in which author-specified rules conflict
with each other.

5.1.2 Generalizations to other policy-authoring domains
The example of file access control illustrates all of the concepts behind policy-authoring domains in general.
However, it should be noted that other policy-authoring domains may have different input dimensions or
different result sets.

Enterprise privacy policies are a policy-authoring domain with more attributes than file access control.
Requests in systems using enterprise privacy policies may have purposes, obligations, and conditions in
addition to principals, actions, and resources [10]. Purposes are reasons for making a request, such as
“sending marketing materials,” obligations are requirements on data usage that must be completed after the
request, such as “data must be deleted within one year,” and conditions are miscellaneous properties that
must hold prior to a request in order for the request to be granted, such as “it is before 5PM on a weekday.”
Several policy-authoring domains have time as an input dimension. For instance, Grey [18], a building-
access system in which cell phones are used to open office doors, allows a user to give access to their office
to another user for a limited duration (e.g., one week). In a future version of Grey, it might be possible to
allow access to a door only between 9am and 5pm, for example.

It is possible to have a policy-based system in which requests can be partially or conditionally granted,
in which case the result set may be more than just {ALLOW, DENY}. For example, Lederer et al. describe
a policy-based privacy system in which requests for a person’s location are mapped to the set {PRECISE,
APPROXIMATE, VAGUE, UNDISCLOSED} [78]. As another example, APPEL, A P3P Preference Exchange
Language, matches a user’s privacy preferences to a website’s practices and returns results from the set
{REQUEST, LIMITED, BLOCK} (which are equivalent to allow, allow with conditions, and deny). APPEL
can also return text strings to the user explaining its decisions.

5.1.3 Notes on the definitions of policy and policy authoring
One could define a policy as a set of rules. However, we have intentionally defined a policy as a function,
and stated that a set of rules is merely a means for specifying a policy rather than the definition of a policy.
We make this distinction because many of today’s list-of-rules policy-authoring user interfaces imply that
a policy is merely the sum of a set of rules, and fail to make users aware that because of default rules,
composite values, rule conflicts, and precedence rules, a policy is actually more than the sum of the rules
a user specifies. With our visualization-centered approach to policy-authoring interface design, a policy is
presented to users as a function that maps requests to results, so users will see exactly what decisions their
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policies will result in, rather than have to reconstruct policies in their heads by taking their own rules, default
rules, composite values, and precedence rules into account. We sometimes use the term effective policy to
clearly distinguish our notion of policy as a function from the notion of a set of rules. Effective policy is the
function that results from a set of rules after the application of defaults and the resolution of conflicts.

The description of file access control we give above is an adaptation of the access matrix model first
described by Lampson [73]. The access matrix model is very general, so many policies can be represented
in a matrix. Other well-known access-control models, such as the Bell-LaPadula [21], Chinese Wall [24],
and role-based access control [115] models, can be thought of as implementations of the access matrix
model, or at least can be represented by an access matrix [74].

5.2 Policy-authoring operations to support
While different policy-authoring domains may vary in their objective and in the specific mechanics of how
their policies work, they have certain fundamental operations in common. Listing these fundamental opera-
tions is important in testing the ideas in this thesis, since by demonstrating that a visualization-centered user
interface effectively supports a fundamental operation, we can be more confident that the technique will be
effective in any policy domain that involves the operation, and thus make more general claims about when
the visualization-centered approach is effective.

We have observed people authoring security and privacy policies in two laboratory studies we con-
ducted [85, 104]. The fundamental policy-authoring operations we have identified are:

1. Viewing policy decisions. Policy-authoring interfaces should make it easy to look up what decision
will result from a given request for access. Thus, they should show effective policy, which is the
mapping of requests to decisions, rather than merely showing the rules that combine to make the
effective policy. Furthermore, they should include the ability to check general properties the author
would like the policy to have, such as “no one should be allowed to delete this file,” or “no remote
users should have access to this folder.”

2. Changing policy decisions. Naturally, policy-authoring interfaces should allow for making rules,
which alter the decisions a policy will make. In addition, a policy should be editable, since policy
authoring is often done in response to some situation, such as access being denied to someone who
needs it.

3. Viewing composite value memberships. Composite values (e.g., groups of users, folders of files,
collections of actions, etc.) make it much easier to specify policy rules that apply to many individual
values, such as “All of my friends are allowed to read files in my ‘Music’ folder.” When a policy
author is setting a rule involving one or more composite values, it is important to know just what
the composite values contain. A policy-authoring interface should show the individual members of
composite values.

4. Detecting and resolving conflicts. Rule conflicts occur when two rules apply to a particular request
for resources. This may happen, for example, if a user is explicitly denied access to a resource, but
is a member of a group that is explicitly allowed to access that resource. While policy-based systems
typically adopt some means of resolving such conflicts, some of our past work has shown that users
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have difficulty understanding how conflicts are resolved [85]. A policy-authoring interface should
show conflicts to authors and help them resolve them.

Some other operations, including adding or removing resources or users, creating or deleting groups,
changing group memberships, and controlling who has the authority to read, write, edit, and delete policy
rules are certainly relevant to policy-authoring tasks, but they are generally supported by interfaces outside
the policy-based system, such as a file system browser, an administrative console, or a content-authoring
application. Thus, we do not consider them fundamental to policy-authoring as we are defining it. However,
in Chapter 7, we discuss how we added some functionality to the basic file permissions Expandable Grid
interface for moving files, creating groups, and changing group memberships.

5.3 The Expandable Grid concept
An Expandable Grid is a two-dimensional interactive matrix display. When displaying a policy in an Ex-
pandable Grid, two of the policy’s attributes can be selected for display along the Expandable Grid’s two
axes. The attributes’ values become the labels along the horizontal and vertical axes of the Expandable Grid.
The labels define columns and rows that constitute a grid. At the intersection of each column and each row
is a grid cell, which contains a graphical representation (such as a colored square) of the policy’s decision
for the values corresponding to the column and row labels. For an Expandable Grid to be truly expandable,
and not just a static table, at least one of the two displayed attributes should have its values arranged in a
hierarchy, which can be displayed along an Expandable Grid axis in an interactive tree, such as a Java Swing
JTree component [84]. The interactive tree or trees along the axes of an Expandable Grid can be expanded
to show more of a hierarchy’s values or contracted to show fewer. When such expansion or contraction takes
place, rows or columns are added to or removed from the grid, so that each visible hierarchy node always
has a corresponding visible row or column (see Figure 5.1).

5.3.1 Benefits of the Expandable Grid
A policy-authoring interface based on an Expandable Grid offers several benefits over existing design
paradigms. These benefits include visual pop-out effects to enable searches for anomalies in policy data,
scalability for displaying a large policy in a small space, and a full-policy visualization that facilitates certain
policy-authoring tasks. We discuss these benefits here.

5.3.1.1 Pop-out effects
“Visual pop-out” is a perceptual phenomenon in which a object in a visual search space is immediately
distinguishable to a viewer from other objects in the space [130, 109, 136]. Pop-out may occur because
an object’s orientation, shape, color, motion, or other visual feature is different from most objects in the
visual scene. In an Expandable Grid in which colored squares are used to represent policy decisions, visual
pop-out makes it easy to spot anomalies. For example, if, in a file permissions policy, a particular group is
meant to be denied access to all files in a particular folder, and red squares represent DENYdecisions in an
Expandable Grid display of the policy, any green squares representing errant ALLOW decisions would pop
out and be easily recognized by a policy author.
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Figure 5.1: Our file-permissions Expandable Grid interface before (left) and after (right) expanding the
“Instructors” group node and the “Admin” folder node. When tree nodes are expanded, rows or columns
are added to the grid so that each visible tree node has a corresponding row or column in the grid.

5.3.1.2 Scalability
The expandability aspect of the Expandable Grid provides a degree of scalability for displaying large policies
in a small space. Scaling to large datasets is one of the main challenges in the information visualization
field [47], and a number of techniques have been designed for achieving scalability, such as distortion [80,
52, 116, 117], filtering [5, 49], zooming [20], searching, and aggregation [33, 63]. The Expandable Grid
allows for scaling through aggregation; a grid cell that corresponds to a composite value on one or both axes
displays a representation of the aggregate of the decisions for all the atomic values beneath the composite
value. This aggregate representation may be all that a policy author needs to see, thus making it unnecessary
to expand parts of the trees along the Grid axes and thus allowing the Grid to take up less visual space.
For example, in Figure 5.1, the grid cell at the intersection of the Instructors group and the Admin folder
is green, indicating that all decisions for members of the Instructors group are ALLOW for all files in the
Admin folder. Thus, expanding the Instructors group and the Admin folder tree nodes is not necessary; the
policy author already knows that all newly revealed grid cells will also be green, as shown in the figure.

5.3.1.3 Full policy visualization
The Expandable Grid shows the full policy in one view. The view may not all be visible on a display at once
(our Expandable Grid implementations, for example, may require scrolling to see the entire policy), but it
is readily available. Having the full policy in the same view enables policy authors to complete tasks that
require searching large portions of the policy or making comparisons across parts of the policy. For example,
finding all files accessible by a specific user is simply a matter of searching visually down a column in our
file-permissions Expandable Grid. As another example, giving a new user the same permissions as some
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existing user is made easier by allowing both users’ columns of policy data to be visible at the same time.
Contrast the full policy view of the Grid with the file permissions list-of-rules approach, in which only a
single rules or a few rules for a single resource can be viewed at the same time. Operations requiring searches
of large portions of the policy or comparison across different parts of the policy are at least unwieldy, if not
virtually impossible.

5.3.2 Problems common to Expandable Grid applications
The basic Expandable Grid must be adapted to a specific policy domain to make a fully functional policy-
authoring interface, but some common problems may come up for many of the domains to which the Grid
concept may be applied. We list those problems and suggested solutions here.

5.3.2.1 Mixed aggregate representation
In grid cells corresponding to composite values, an Expandable Grid can show a representation of an aggre-
gate of the decisions of the atomic values beneath the composite values in the respective hierarchies. For
example, a grid cell corresponding to a folder may show an aggregate of the decisions applying to all files
in the folder. A common problem for the Expandable Grid interface designer is deciding what aggregate
representation to use when the decisions applying to the atomic values are mixed. For example, in the file-
permissions Expandable Grid, if decisions for all files beneath a folder are all ALLOW (or all DENY) (for a
fixed principal and action), the natural aggregate representation for the folder’s grid cell is green (or red)—
the same as the ALLOW or DENY representation for a grid cell corresponding to atomic values. However, if
the decisions are ALLOW for some files in a folder and DENY for others, it is unclear what representation
should go in the folder’s grid cell. In our file-permissions Expandable Grid, we used yellow squares to
indicate such cases of “mixed decisions.” A yellow square in a grid cell indicates that the policy author must
expand nodes in one or both trees to see specifically what decisions apply to the atomic values beneath the
composite values corresponding to the grid cell. In our P3P Expandable Grid, we used a color gradient to
represent a mix of REQUIRED and NOT-USED decisions beneath a data category (the attribute shown along
the vertical axis) and a black triangle (or “dog-ear”) to indicate a mix of decisions beneath a purpose or
recipient category (the attributes shown along the horizontal axis).

While the yellow squares, gradients, and dog-ears seemed to work adequately as mixed aggregate rep-
resentations, we did observe some participants in our studies failing to expand the Grid interfaces, so the
representations may not have been enough to suggest expansion to participants. We have not discovered
better representations, however. Besides merely suggesting expansion, more could be done with mixed ag-
gregate representations. For example, yellow squares in the file-permissions Grid could indicate the ratio of
ALLOW decisions to DENY decisions they represent by their color saturation—light yellow might indicate
a higher mix of ALLOW decisions, while a dark yellow might indicate a higher mix of DENY decisions.

5.3.2.2 Non-hierarchical attributes
The Expandable Grid was designed to show policies with attributes whose values are hierarchically struc-
tured, but it may be desirable to represent policy attributes whose values are not strictly hierarchical. For
example, in file permissions, one user may belong to multiple groups. In our file-permissions Expandable
Grid, we handle this issue simply by copying a username to every group to which the user belongs. See
Figure 5.2.
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Figure 5.2: A screenshot of our file-permissions Expandable Grid interface showing the user “jana” under
two different groups.
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5.3.2.3 More than two attributes
The Expandable Grid can accommodate two policy attributes on each of its two axes, but when a policy
has more than two attributes, other solutions must be devised. In our file-permissions Expandable Grid, the
principal and resource attributes are displayed along the axes, but a third attribute, action, had to be displayed
as well. Our solution was to use a subgrid, which is a set of small squares within the larger square of each
grid cell. Each square of the subgrid represents an action—for example, for the five-square subgrids in the
grid cells shown in Figure 5.2, the upper left square of each subgrid represents “read,” the upper right square
represents “write,” the middle left square represents “execute,” the middle right square represents “delete,”
and the lower square represents “administrate,” as indicated in the interface’s legend. The subgrids can
create visual clutter, but our interface allows the policy author to select only a subset of actions to show in
the subgrid. For example, Figure 5.3 shows subgrids of two squares that only show “read” and “write.” The
subgrid solution is not scalable; although we did not test its limits, it cannot be expected to show attributes
with more than 10 or so values.

In our P3P Expandable Grid, we juxtaposed two attributes on the same axis; all recipients were shown
on the left side of the horizontal axis, followed by all purposes on the right side. This juxtaposition of
attributes did not work well, and we do not recommend it. The juxtaposition and its problems are discussed
in detail in Chapter 8.

Although the P3P Expandable Grid’s juxtaposition approach did not work, it is still possible to combine
two attributes on the same axis by replicating the labels for one attribute under each of the labels for the
other attribute. We tried this approach in an Expandable Grid for displaying Grey building access-control
policies, shown in Figure 5.4. Principals and resources are combined along the horizontal axis in the Grey
Expandable Grid interface. In the figure, notice the hierarchy of users, with the users “Prof Alice” and “Prof
Bob” and groups “Students,” “Visitors,” and “Class” are copied under each of the resources “Cube,” “Office,”
“Lab,” (all under the expanded resource group “CUPS”) “Kitchen,” “Windows Computer,” “Lounge,” and
“Classroom.” We did not test the approach in user studies, so although it seems promising, we cannot make
any claims about its usability.

Another approach to showing multiple attributes is to choose fixed values for some attributes and show
only portions of the policy corresponding to those fixed values. This approach of setting fixed values for
those dimensions not explicitly shown has been called slicing [63, 133]. A policy-authoring interface could
provide a means (such as a dialog) for an author to choose fixed values for some attributes and could display
the cross-section of the policy that remains after those attributes have been fixed. For example, in a privacy
policy that has user category, action, data category, purpose, and condition attributes, the purpose could be
fixed as “Marketing” and condition could be fixed as “if the customer has opted in,” and an Expandable Grid
interface could show the policy for all user categories (on one axis), data categories (on the other axis), and
actions (in a subgrid) for those fixed values of purpose and condition.

Yet another approach is to simply show aggregate representations in grid cells, where aggregates are
computed over all attributes that are not shown on the Expandable Grid axes [33, 63]. For example, in our
file-permissions Expandable Grid, we could use this approach instead of using the subgrid to show actions.
If a principal was allowed all five actions—“read,” “write,” “execute,” “delete,” and “administrate”—for a
given resource, the corresponding grid cell would be green; it would be red if the principal were denied all
actions to the resource; and it would be yellow if the principal were allowed some actions but not others.
Combo boxes or other user interface widgets could be provided to allow the policy author to decide which
attributes would actually be displayed along the axes.
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Figure 5.3: A screenshot of our file-permissions Expandable Grid interface with two-square subgrids in
each grid cell showing decisions for “read” and “write” actions.
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Figure 5.4: A screenshot of our Grey Expandable Grid interface showing two policy attributes, resources
and principals, combined on the horizontal axis.

5.3.2.4 Vertical column labels
Rotated English text is harder to read than horizontally oriented text [28]. In our Expandable Grid designs,
however, we have used vertically rotated labels for column headings. The vertically rotated text was, in fact,
a usability problem, as discussed in Chapter 6. Moreover, we have seen people tilting their heads to read
the column headings. Solving this problem may be harder than it first seems. Rotating text from vertical to
45 degrees may yield little readability improvement, and rotating the text any more toward the horizontal
starts to make the column widths consume too much horizontal space. One possibility might be to rotate
only those labels of the highest interest to full horizontal, while keeping labels in the periphery vertical. For
example, we might rotate labels to horizontal when the mouse is hovering over them. Our research on this
problem is ongoing.

5.3.2.5 Composite values as both containers and objects
Sometimes composite values in policies can serve both as containers of the values located beneath them in
a hierarchy and as objects in their own right. For example, folders in a file system act as containers of files,
but may also have their own permissions associated with them. This raises an issue for the Expandable Grid
interface designer: how are we to show, at the folder level, both the policy associated with the files within the
folder and the policy associated with the folder itself? We addressed this problem with a simple solution in
our file permissions Expandable Grid interface: each folder contained a file called “.” which is the common
symbol for a folder self-reference. The row in the Grid corresponding to the “.” file showed policy for the
folder as an object, while the row corresponding to the folder itself showed policy for the objects the folder
contained. See Figure 5.5. Unfortunately, participants in our user studies did not come across the “.” in any
of the tasks, so we do not yet know if it is an effective means for solving this problem.
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Figure 5.5: Our file-permissions Expandable Grid interface uses the “.” symbol to represent policy data
for a folder as an object in its own right.
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5.3.2.6 Policy sandboxing
In general, it is undesirable for policy changes to go into effect immediately as an author makes them. It is
better to allow an author to change policy in a safe “sandbox.” With a sandboxing approach, the author can
make a series of changes, see how they will affect the overall policy, decide that the policy is as it should
be, and then put them into effect. Although our Expandable Grid interface designs have not addressed this
issue, it could be addressed easily using the well-known “Apply” button idea, in which changes do not go
into effect until the author clicks an “Apply” or “OK” button.

5.4 Applying the Expandable Grid concept
The fundamental ideas behind the Expandable Grid concept would seem, in theory, to apply to interface
design for a wide range of policy domains. In practice, details of an Expandable Grid interface design need
to be tailored to the specific domain, but with proper tailoring, the concept could be used in many domains.
In this section, we discuss just what policy domains may be amenable to an Expandable-Grid-based policy
display.

5.4.1 Characteristics of policy domains
We have already described in Section 5.1 our abstract concept of a policy, a function that maps attribute
values to decisions. Here, we list some of the characteristics that vary amongst policy domains that may
affect a domain’s suitability for Expandable-Grid-based policy display:

• Number of attributes. The Expandable Grid is a 2-dimensional tabular display, so it is naturally suited
to showing policies with two attributes. We have described how it can represent three attributes using
a subgrid (if one of the attributes has only a handful of values). There are a number of techniques,
described in Section 5.3.2.3, that could be used to adapt the Expandable Grid to show more than three
attributes. However, the Grid in the embodiments shown in this thesis is best suited to displaying
policies of no more than three attributes.

• Label length. A key feature of the Grid is that it summarizes a policy using graphical representations
of policy data in the grid. This summarization may not be effective, however, if the labels of the rows
and columns of the Grid are too long to both fit in a small space and to be comprehended at a glance.
We discuss problems we ran into with long labels in Chapter 8.

• Amount and importance of metadata. Metadata is information about a policy that does not fit neatly
into the Grid format. In designing our P3P Expandable Grid, we ran into problems finding a place to
put metadata where it could be found when needed. Policies with a great deal of metadata may be
best displayed in a format other than an Expandable Grid.

• Type of decision. As discussed in Section 5.1.2, policy decisions are not always binary. As the
number of different decisions that have to be represented grows, an Expandable-Grid-based interface
may grow more confusing. In our design of the P3P Expandable Grid, we ran into some problems with
iconography—there were so many symbols to represent the four decisions of P3P plus aggregates of
those decisions that study participants viewing the Grid became confused with the iconography.
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• Type of attributes. The Expandable Grid was originally envisioned to display policies with hierarchical
attributes, but not all attributes are hierarchical. Some attributes, such as action in file permissions or
purpose in P3P, are flat categorical attributes, and some, such as time, are continuous. An Expandable
Grid can display values for flat categorical attributes along its axes, but the flat structure will not
take advantage of the Grid’s scalability feature. As for continuous attributes, we have developed a
prototype Expandable-Grid-based interface to show a continuous dimension along one of its axes. We
present the prototype in Chapter 9.

5.4.2 Policy domains suitable for an Expandable Grid
Given our discussion of these policy domain characteristics, we can see which policy domains might be
well-suited and which not well-suited to display in an Expandable Grid. Access-control policies are well-
suited to display in an Expandable Grid: they have two or three attributes, short labels (usernames and file
names), little metadata, binary decisions, and hierarchically structured attributes. Access-control policies,
of course, are the focal application of the Expandable Grid in this thesis. Other policy domains that have
similar characteristics and might be suitable Expandable-Grid-based policy displays include firewalls [6, 56,
145, 86, 15], enterprise privacy [26, 69, 104], location-disclosure [76, 110], and social networking [82].

5.4.3 Policy domains not suitable for an Expandable Grid
Other policy domains may not be well-suited to Expandable-Grid-based policy displays. Some charac-
teristics that might make a policy domain ill-suited to Expandable-Grid displays include extensive natural
language descriptions that are not easily summarized in grid form; long, flat categorical attributes; and very
simple or very small policies for which a Grid would be overkill. Natural language website privacy policies
without an accompanying P3P version would be one example of a policy domain ill-suited to display in
an Expandable Grid. Examples of very small or simple policies include a coarse-grained location-sharing
policy in which sharing is either “on” or “off,” or a file system in which no files are shared except those
placed in a particular “Public” folder. Such very small or very simple policies might be better summarized
in a few sentences of text than displayed in an Expandable Grid.



CHAPTER 6

Expandable Grid Interface for Windows
XP File Permissions

This chapter is largely a reproduction of a paper co-authored with Lujo Bauer, Lorrie Cranor, Mike Reiter, Kelli
Bacon, Keisha How, and Heather Strong and published at CHI 2008 [103]. We thank Julie Downs, Joel Greenhouse,
Bob Kraut, Howard Seltman, Steve Sheng, and an anonymous reviewer for help with our statistical analyses.

We implemented an interface based on the Expandable Grid concept for setting file permissions in the Win-
dows NTFS file system. We ran a user study to compare authoring performance on a wide range of authoring
tasks between our interface and the native Windows XP file-permissions interface. The Expandable Grid
interface performed vastly better in our study; for example, the Expandable Grid interface achieved a 100%
accuracy rate versus a 6% accuracy rate for the Windows interface for one task, and, on another task where
accuracy rates were similar, achieved a 70% reduction in time-to-task-completion compared to Windows.
We show specifically why the Expandable Grid interface performed better and conclude that it is likely a
better option than the list-of-rules model for policy-authoring interface designs for file permissions and other
security-related applications.

6.1 File-permissions Expandable Grid
We have already described the shortcomings of the list-of-rules model and particularly of the Windows
XP file-permissions interface in Section 1.3.1, and we have introduced our solution, the file-permissions
Expandable Grid in the same section. Here, we further discuss the features of the file-permissions Grid.

6.1.1 New policy semantics
One of the advantages of the file-permissions Grid is that when a policy author clicks on a green square,
it turns red, and vice versa. Moreover, when policy is set at the group level, its effects are immediately
propagated to the members of the group, so that the access indicated in the grid is always the access that will
be given. For example, again referencing Figure 6.1, if the upper-right box in the grid cell at the intersection
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Figure 6.1: Screenshot of our Expandable Grid interface when the Jana task has been half-completed.



6.1: FILE-PERMISSIONS EXPANDABLE GRID 77

of the group “Theory 101 TAs 2006” and the “Four-part Harmony.doc” file were clicked to change it from
red to green, the upper-right boxes for all the group’s users—“chan,” “edna,” “henry,” “jana,” and “kavita”—
would all turn green.

In order to ensure that clicking on the colored boxes in the Expandable Grid interface consistently has
the same effect, we changed some of the semantics of Windows file permissions policies. Specifically, we
changed the means by which rule conflicts are resolved. In Windows, when Jana is part of one group that is
allowed access to a file and another that is denied access to that file, the deny rule takes precedence. If we
were to retain the Windows semantics, clicking on a red box where a deny rule applies would leave the box
red, rather than changing it to green as the policy author would expect. Even though clicking on the red box
would add an allow rule, the box would stay red because the existing deny rule would still take precedence
over the new allow rule. By our revised semantics, the most recently created rule takes precedence. Thus,
if the box corresponding to Jana’s read access for the “Four-part Harmony.doc” file is red because of her
membership in Theory 101 TAs 2006, but a policy author clicks on the box to make a rule that allows Jana
access, this new rule will take precedence over the deny rule from the group and the box will turn green;
Jana will now be allowed to access the file.

Our revised semantics makes for much easier resolution of rule conflicts than is possible in Windows.
In Windows, resolving the Jana task requires either removing the deny permission not only for Jana, but
also for all the other users in the Theory 101 TAs 2006 group, or removing Jana from the group entirely.
Neither solution may be desirable, and in any case, policy authors find this dilemma confusing, if they even
understand it at all [85].

Our semantics does have a potential drawback, however. The Imani task we designed for our study,
which is described below, illustrates this drawback. Our description of the Imani task reads as follows:

....Two weeks ago, a scandal erupted in the Music Department... someone had been selling
exam answers to the students! You suspected Imani, your fellow TA. Like the responsible
administrator you are, you set file permissions so that Imani could not access the Answers
folder under any circumstances.

Now, it’s exam grading time, and your fellow TAs need access to the answers. Make sure they
have access to the Answers folder, but be sure not to let Imani have access.

Set permissions so that TAs 2007 (except for Imani) can read the Answers folder.

We set up the policy beforehand to have a deny rule applying to Imani for the Answers folder. In the
Windows semantics, if a participant set a rule allowing the group TAs 2007 (which includes Imani) to read
the Answers folder, Imani would still be denied access to the folder, even if the participant completely forgot
to make an exception for Imani. In our semantics, if the participant set a rule allowing the group TAs 2007
to read the Answers folder, this rule would override the pre-existing rule denying Imani access, and, unless
the participant went back and restored the rule denying Imani access, Imani would be allowed access.

6.1.2 Summary of Expandable Grid features
Our Expandable Grid interface has several features that we expect to provide advantages over the list-of-
rules Windows XP file permissions interface. In particular, the Grid interface has these features:

• Whole policy. The Grid shows the whole policy, including principal/resource combinations for which
there is no explicit rule.
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• Effective policy. The Grid shows the effective policy, while Windows merely shows component rules.

• Group membership information. The Grid integrates group membership information into the file per-
missions display, while Windows puts it in a separate application from the file permissions interface.

• Simple changes. The Grid requires a simple click on a colored box to change a permission, while the
Windows interface requires adding a new rule to its list.

• New policy semantics. The Grid’s new policy semantics allows for easy conflict resolution by simply
clicking on a colored box, the same way any other policy change would be made.

• Visual pop-out. The Grid allows for easy detection of anomalous permissions that visually pop out
from the rest of the policy display.

6.1.3 Additional functionality
Our implementation of the Expandable Grid includes two additional functions worth mentioning: highlight-
ing and search. Highlighting can be seen in Figure 6.1. The crosshairs follow the mouse pointer when it
is positioned over the grid to help authors line up a grid cell with the principal and resource for which they
wish to view or edit a rule. The search function can help users navigate a potentially large policy. Names of
principals or resources can be typed into the search box. If the search term matches all or part of the name
of a principal or resource, the principal or resource will be highlighted. If there are multiple search hits, the
first will be highlighted, and other hits can be stepped through using the “Prev” and “Next” buttons beneath
the search box.

6.2 User study method
We ran a laboratory user study with 36 participants to compare our Expandable Grid interface against the
native Windows XP file permissions interface. We used a between-participants design, so 18 participants
used the Grid and 18 used Windows; participants were randomly assigned to an interface condition. Each
participant completed 20 tasks related to viewing or changing file permissions for a hypothetical Windows
NTFS file server. The tasks are described in the “Task design” section below. We measured accuracy and
time-to-task completion for each task.

6.2.1 Participants
We recruited 36 undergraduates in technical majors (science, engineering, and mathematics) to participate
in the study. Ten were female. Participants were all daily computer users, but had never served as system ad-
ministrators. Thus, our participant pool was consistent with our target demographic of novice or occasional
access-control-policy authors, and was of a similar demographic as the system administrator of the Mem-
ogate scandal. While we believe it is important to make access-control interfaces usable for non-technical
users as well as technical users, we leave testing the Grid on non-technical users as future work.
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6.2.2 Experimental setup
Participants worked on a laptop running the Windows XP Professional operating system. Task statements
were presented in a Web browser and were available on screen throughout the task. For participants using
Windows, we started the Computer Management interface in a state that allowed for viewing system users
and groups and opened Windows Help files related to setting file permissions. For participants using the
Expandable Grid, the Grid application window was started at an initial size of 800x740 pixels. The laptop
screen resolution was 1280x768.

The data we collected included the policies people created and screen video and audio of participants
thinking aloud.

6.2.3 Task design
We designed a broad range of tasks to test each of the fundamental policy-authoring operations discussed
in Section 5.2 in a variety of contexts and for both small- and large-scale policies. We created a scenario
in which the participant was a teaching assistant (TA) in a music department, and was assigned to be the
administrator of a file server that stored materials for classes in the department. We chose this scenario
because it would be familiar to our participants while allowing for plausible tasks involving file permissions
policies. The 20 tasks were designed around this scenario. Of these 20 tasks, 10 involved “small-scale”
file permissions policies (involving roughly 50 principals and 50 resources) and 10 involved “large-scale”
policies (roughly 500 principals and 500 resources). Each small-scale task had a large-scale parallel, so there
were 10 pairs of tasks that varied in difficulty and in the fundamental operation they were testing. Also, each
task pair tested one or more of the specific advantages or drawbacks we expected the Grid interface to have
compared to the Windows interface. The following list describes what each of the ten task pairs required
participants to do and which features (with reference to labels listed in the “Summary of Expandable Grid
features” section above) of the Grid interface were tested by each:

1. Training: Make a simple policy change. The two tasks in this pair served to help the participant learn
the interface they were using and get used to the scenario.

2. View-simple: Determine a user’s access to a file when the user was inheriting access from a group.
These tasks tested the Grid’s whole policy and group membership information features.

3. View-complex: Determine a user’s access to a file when a rule conflict is present. In this rule conflict,
one rule applying to a specific user and one rule applying to a group of which that user is member
were in conflict. These tasks tested the Grid’s effective policy feature.

4. Change-simple: Change a principal’s access to a resource. These tasks tested the Grid’s simple
changes feature.

5. Change-complex: Make multiple changes to a policy, including one involving a rule conflict. These
tasks tested several of the Grid’s features in one task, including the whole policy, effective policy,
group membership information, simple changes, and new policy semantics features.

6. Compare-groups: Search for the intersection between two groups’ members. These tasks tested the
Grid’s group membership information feature.

7. Conflict-simple: Detect and resolve a conflict in which the allow access a user is inheriting from a
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Table 6.1: Task statements given to participants for the small-scale conflict-complex and change-complex
tasks, 2 of 20 tasks used in the user study.

Conflict complex
Nigel, another TA, has complained that when he was trying to edit
the course calendar to change the due date for an assignment, he was
denied access.
Set permissions so that Nigel can read and write the calendar.scd
file.

Change complex
The gradebook file is highly sensitive. Instructors and TAs should
be allowed to read it or write to it, but not delete it. And of course
no students should be allowed to access the gradebook in any way.
Make sure instructors and TAs 2007 can read and write the grade-
book.xls file.
Make sure instructors and TAs 2007 cannot delete the gradebook.xls
file.
Make sure Students 2007 cannot access the gradebook.xls file in any

way.

group should be overridden with an explicit deny rule. These tasks tested the Grid’s effective policy
and simple changes features.

8. Conflict-complex: Detect and resolve a conflict in which a user is allowed access through one group
but denied access through another. The Jana task, discussed above, was the large-scale conflict-
complex task. These tasks tested the Grid’s effective policy, simple changes, and new policy semantics
features.

9. Memogate: Detect that an unauthorized group has been given access to a resource. Our configuration
for these tasks mimicked the vulnerability that made the Memogate scandal possible by including a
policy rule that gave full access to all users for all files. These tasks tested the Grid’s visual pop-out
feature, because the unauthorized access causes the Grid to show a large area of green squares where
red is expected, while Windows requires stepping through all rules to find the offending one.

10. Precedence: Allow a group to access a resource, but make an exception for one individual in the
group. The purpose of these tasks was to demonstrate the drawback of our new policy semantics (the
Imani task, discussed above, was the small-scale precedence task).

Examples of the text of task statements presented to participants can be seen in Table 6.1.
Some tasks, such as the tasks that involved viewing policy or group memberships, were multiple choice

questions, so scoring was straightforward. The other tasks required making policy changes. For some of
these tasks, there were multiple approaches to completing the task; in all cases, we scored a participant’s final
policy for a task according to whether they gave the access specified in the task statement; any extraneous
policy settings were ignored.

6.2.4 Procedure
Our experimenter read instructions for our teaching-assistant scenario to participants. After reading these
instructions, our experimenter read brief training materials that explained how to search for users and files,
how to view permissions, and how to change permissions using the interface to which a participant was
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assigned. The experimenter also walked the participant through one full task as part of the training. For
Windows participants, the training also covered how to use the Computer Management application and how
to use the Windows Help files, since we considered those part of the file permissions interface; no help files
were available to Grid participants. Training took about 3.5 minutes for Grid participants and about 5.5
minutes for Windows participants.
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Figure 6.2: Accuracy results, showing proportion of participants correctly completing each task with Grid
and Windows interfaces.
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Figure 6.3: Time-to-task-completion results, showing mean time-to-task-completion, in seconds, for par-
ticipants who successfully completed each task with Grid and Windows interfaces. Error bars show +/- one
standard deviation.

Participants then began completing tasks. Before each task, the experimenter brought up the interface
in a preconfigured state tailored to each task. Task statements were then presented to participants in a Web
browser on screen. Participants were asked to think aloud while they worked on the tasks. Participants
completed the 10 small-scale tasks first, then the 10 large-scale tasks. Each set of 10 tasks always started
with the training task, but the order of the remaining 9 tasks were counterbalanced across participants using
a Latin square design to guard against ordering effects.

6.3 Results
Our results are in the form of accuracy rates and mean time-to-task-completion for each interface condition
and for each task. Accuracy rates represent the proportion of participants in each condition who correctly
completed the task. The mean time-to-task-completion is computed only over the task completion times of
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those participants who successfully completed each task. Accuracy results can be seen in Figure 6.2. Timing
results can be seen in Figure 6.3. Note that results are only shown for 18 tasks, 9 at each scale, because we
excluded the two training tasks from analysis.

6.3.1 Experiment-wide results
For each metric, accuracy and time-to-task-completion, we performed an experiment-wide test of the hy-
pothesis that the Grid interface performed better than the Windows interface over all tasks. We used logistic
regression to test for a significant difference in accuracy scores between the Grid (overall accuracy 83.6%)
and Windows (overall accuracy 56.5%) interfaces across all tasks. Logistic regression is a statistical tech-
nique used to test for effects of both numerical and categorical independent variables on a binary dependent
variable [4]. In our case, interface, scale, and their interaction are our independent variables (also referred to
as factors) and accuracy is our dependent variable (also referred to as a response). In using logistic regres-
sion, we fit a function to our data, just as we do in the more-familiar linear regression, but logistic regression
uses the logistic function instead of a line. The logistic function is f(x) = 1

1+e−β0−βx , where β0 is the in-
tercept, x is a vector of the independent variables and β is a vector of coefficients. Logistic regression finds
the values of β0 and β that allow the logistic function to best fit the observed data. Precise interpretation
of the β’s can be complicated. For binary independent variables, like ours for interface and scale, the β’s
are the log-odds ratio between the two values of the binary variable. A log-odds ratio is simply the natural
logarithm of the odds ratio, so e−βi gives us the odds ratio for the ith independent variable. The odds ratio
is the proportional increase in the odds of getting a response of 1 when we move the independent variable’s
value from 0 to 1. Thus, if the odds ratio for an independent variable is r, we are r times more likely to see
a response of 1 when the independent variable is 1 than when it is 0. To test for whether a given indepen-
dent variable has a statistically significant effect on the dependent variable, we can test whether the β’s for
the independent variable is significantly different from 0. We use the Wald test to do so [137]. The Wald
test simply takes a normally distributed test statistic and compares it to a constant value (0, in our case).
The Wald test uses the z-distribution (i.e., the standard normal distribution), to determine the probability
that the true value of the test statistic is greater than the constant value. We used a general linear model
to analyze our time-to-task-completion results. The general linear model encompasses familiar techniques
like ANOVA and linear regression, but maintains greater generality. As with logistic regression, the general
linear model technique finds coefficients that best fit a function to observed data and then tests whether those
coefficients are statistically significant from 0.

We included interface, scale, and an interface*scale interaction as factors in our logistic regression
model. The model gave an intercept of 1.52 and coefficients for interface, scale, and interface*scale of -1.22,
0.23, and -0.30. The corresponding odds ratios were 0.29, 1.25, and 0.74. A Wald test of the hypothesis
that the interface coefficient was not equal to 0 was significant at the 0.05 level (Z = 7.43, p < 0.001),
suggesting that there is an effect of interface on accuracy. The direction of the interface coefficient indicates
that higher accuracy scores were achieved with the Grid interface. Wald tests of the hypothesis that the other
coefficients were not equal to 0 were not significant (Z = 0.75, p = 0.45;Z = −0.80, p = 0.42), suggesting
that the Grid interface’s superior accuracy rates compared to the Windows interface are not affected by scale.

We used a general linear model with log-transformed time-to-task-completion as the response and in-
terface, scale, and an interface*scale interaction as factors in the model and found significant effects of
interface (F (1, 450) = 91.15, p < 0.001), scale (F (1, 450) = 49.27, p < 0.001), and interface*scale
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(F (1, 450) = 20.81, p < 0.001) on time-to-task-completion. The directions of the effects indicate that us-
ing the Grid (M=53.0 seconds, σ=37.5) led to faster task completion than using Windows (M=88.3 seconds,
σ=62.7), that large-scale tasks (M=79.4 seconds, σ=51.8) took longer to complete than small-scale tasks
(M=55.2 seconds, σ=49.7), and that the slowdown from small-scale tasks to large-scale tasks was greater
for the Grid than for Windows.

6.3.2 Task-by-task results
We followed up the experiment-wide tests with a series of planned tests for significant differences in the
accuracy rate and mean time-to-task-completion between the Grid interface and the Windows interface for
selected tasks. We conducted these tests based on our hypotheses as to which interface would perform better
in each task. Specifically, we hypothesized that we would see more accurate performance using the Grid for
the view-simple, view-complex, change-complex, conflict-simple, conflict-complex, and Memogate tasks.
We hypothesized that we would see more accurate performance using Windows for the precedence tasks,
which were designed to test the drawback in the Grid’s new policy semantics. We expected the change-
simple and compare-groups tasks to be easy to complete with both interfaces, so we did not test for sig-
nificant differences in accuracy for those tasks. For the time-to-task-completion data, we hypothesized that
the Grid would perform better for all tasks except the precedence tasks, for which we conducted no test
because we expected the Grid’s drawback to affect accuracy, but to have little effect on time. In all, we
had 30 hypotheses to test, but could only test 27 due to insufficient timing data for tasks that were correctly
completed by too few Windows participants.

To test our hypotheses, we conducted 14 one-sided Fisher’s Exact Tests on the accuracy rates and 13
one-sided t-tests on the mean times-to-task-completion. We log-transformed the time data before testing to
ensure that it was normally distributed, as assumed by the t-test. Since we applied 27 total statistical tests,
we applied the Benjamini-Hochberg multiple testing correction to keep down the probability of a Type I
error in our testing. The correction gave an adjusted per-test α of 0.024, so we considered only tests with
p-values at or below this adjusted threshold to be significant.

Results of the tests are summarized in Tables 6.2 and 8.2. The 27 tests yielded 14 significant results,
all in favor of the Grid. The 14 significant results included 6 significant differences in accuracy rates and 8
significant differences in mean time-to-task-completion. There was at least one significant result for every
task pair except the precedence task pair.

6.4 Discussion
Our results demonstrate that the Expandable Grid interface allows authors to complete tasks more accurately
and faster than does the Windows file permissions interface. Because the tasks selected span the range of
fundamental policy-authoring operations and cover policies of different sizes, we believe that these results
will hold over a broad range of contexts, tasks, and policy sizes in real applications.

Our expectations about the advantages of the Grid’s features were borne out by the statistical results of
our user study. In particular, our study demonstrates higher accuracy for the Grid compared to Windows for
the view-complex, change-complex, and conflict-complex tasks that tested the Grid’s whole policy, effective
policy, group membership information, simple changes, and new policy semantics features. The study also
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Table 6.2: Summary of statistical tests for significant differences in accuracy rate for Grids (aG) and
accuracy rate for Windows (aW ) for each task. For all tests except precedence task tests, the hypothesis
tested was aG > aW . For the precedence tests, the hypothesis tested was aG < aW . The p-values shown
are from one-sided Fisher’s Exact Tests; p-values below the α = 0.024 rejection threshold are shaded and
highlighted in bold, indicating significant tests.

Small-scale Large-scale
Task pair aG aW p-value aG aW p-value

View-simple 0.89 0.56 p = 0.03 0.61 0.56 p = 0.50

View-complex 0.94 0.17 p< 0.001 1.00 0.39 p< 0.001

Change-simple 0.89 0.94 No test 1.00 1.00 No test

Change-complex 0.61 0.00 p< 0.001 0.67 0.17 p= 0.003

Compare-groups 0.89 0.83 No test 0.67 0.83 No test

Conflict-simple 0.67 0.61 p = 0.5 0.72 0.61 p = 0.36

Conflict-complex 0.89 0.00 p< 0.001 1.00 0.06 p< 0.001

Memogate 1.00 0.94 p = 0.5 0.94 0.78 p = 0.17

Precedence 0.89 0.94 p = 0.5 0.78 0.78 p = 0.65

demonstrates faster times-to-task-completion for tasks that tested these features as well as the small-scale
Memogate task, which tested the visual pop-out feature.

The precedence tasks were designed to test the drawback (explained above in the “New policy seman-
tics” section) to the Grid’s new policy semantics, but we did not see significantly poorer performance with
the Grid in these tasks. In these tasks, participants had to allow access to a group but keep an exception
that denies access to an individual. Our results suggest that the Grid’s policy visualization may mitigate the
drawback by helping policy authors realize when they are overriding an exception they wish to keep and
allowing them to restore the exception easily.

Our results suggest that the Grid accuracy gains hold up for both small- and large-scale policies. How-
ever, our statistical analysis did reveal an interface*scale effect that shows Grid performance slowing down
more than Windows performance as policies move from the small to the large scale. We see at least two
possible explanations for this effect. First, it may be that Windows participants gained more fluency with
their interface than Grid participants did during the small-scale tasks, which, due to limitations in our study
design, always came before the large-scale tasks. Second, Windows has in place more advanced search
functionality, which may show greater gains as policies get larger. The first explanation may be a point in
the Grid’s favor, because it suggests that policy authors gained fluency with the Grid quite quickly, so there
was little gain to be had through experience. The second explanation suggests that more effort should be put
into developing more advanced search functionality for the Grid. Accurately interpreting the interface*scale
effect requires further investigation.

While we have shown that Grids outperform the Windows interface for accuracy and speed, it is worth
considering some of the limitations of our study method. We gave participants artificial goals in a fictitious
scenario with which they were not already familiar. However, in real policy-authoring scenarios, goals often
arise intermittently and relate to the author’s own environment, with which they are familiar. Thus, some
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Table 6.3: Summary of statistical tests for significant differences in mean time-to-task-completion, in sec-
onds, between successful Grid (G) and Windows (W) participants for each task. For each test, the table
shows means (M) and standard deviations (σ) for each interface, and t-statistics (with degrees of freedom
(df)) and p-values resulting from one-sided t-tests; p-values at or below the α = 0.024 rejection threshold
are shaded and highlighted in bold, indicating significant tests.

Small-scale Large-scale
Task pair M(σ) t(df) p M(σ) t(df) p

View-simple G:28.8(9.5) −4.37(14) 0.001 G:42.3(9.9) −2.17(14) 0.024
W:64.6(39.9) W:61.3(25.3)

View-complex G:34.8(19.0) −1.64(2) 0.12 G:39.1(13.7) −5.11(18) 0.001
W:55.0(28.0) W:67.4(13.7)

Change-simple G:29.6(29.6) −3.72(25) 0.001 G:50.4(40.3) 0.13(25) 0.55
W:52.8(24.2) W:42.4(14.4)

Change-complex G:69.9(19.1) – – G:100.4(34.6) −3.27(9) 0.005
W: Insufficient data W:143.7(18.3)

Compare-groups G:38.6(14.0) −8.54(28) 0.001 G:111.0(35.8) 0.43(23) 0.33
W:102.6(36.8) W:126.5(60.0)

Conflict-simple G:54.7(24.6) −3.23(20) 0.002 G:72.8(41.0) −1.25(18) 0.11
W:104.1(81.0) W:103.1(64.0)

Conflict-complex G:29.4(12.2) – – G:52.4(37.3) – –
W: Insufficient data W: Insufficient data

Memogate G:19.8(15.3) −5.41(32) 0.001 G:105.1(42.0) −0.46(28) 0.33
W:66.1(49.5) W:116.5(72.0)

Precedence G:42.3(24.6) No test No test G:70.6(29.3) No test No test
W:117.6(108.2) W:115.4(59.7)
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usability problems that arose in our study, such as searching for files, may not be significant problems in
real scenarios, because, for example, authors may already know where all of their own files are stored. On
the other hand, real policy authors might encounter usability problems, such as difficulty refining goals, that
were not revealed in our study, since we gave participants very specific goals. Another limitation of our
study method is that it measures accuracy relative to an artificial goal; a better metric for the efficacy of
a policy-authoring interface might be whether it allows authors to write policies that match their own true
intentions. In scoring our data to determine accuracy, we ignored any extraneous rules authors made on
their way to completing a task (e.g., allowing or denying some access to a user not mentioned in the task
statement), because such extraneous rules were rare in our study and usually came about when a participant
misinterpreted a task statement. Grid participants created extraneous rules in 8 of 271 tasks that were scored
as correct, and Windows participants created extraneous rules in 4 of 183 tasks that were scored as correct,
so these extraneous rules would have had little effect on our results if we had scored them as incorrect. In
reality, however, such extraneous rules might create serious security vulnerabilities.

In spite of its apparent advantages over the Windows interface, the Grid interface does have room for
improvement. We observed three main types of errors participants made with the Grid interface. First were
off-by-one errors, in which the participant had lined up the mouse in a desired column, then moved it to find
the desired row, only to have the mouse slip, unnoticed, from the desired column into an adjacent column.
Participants then made the right changes to the wrong principal. The second common type of error, which
was responsible for the lower-than-expected Grid accuracy scores in the conflict-simple tasks, occurred in
searching for resources. Some resources in our teaching assistant scenario had similar names, for example,
a folder called “Assignment 1” and a file called “assignment1.pdf.” Some participants, when searching for
the keyword “assignment,” came across the “assignment1.pdf” file first and assumed they had found the
correct resource, although the task required changes to the folder. The third common type of error resulted
from the 90-degree angle of the text in the tree at the top of the Grid interface. Participants reported that this
rotated text was difficult to read. This error occurred, for example, in our small-scale compare-groups task,
in which participants had to see if there was any overlap between 2007’s TAs and 2006’s students. Some
participants correctly read who the TAs were, and correctly opened the students group to view its members,
but simply overlooked the name of the overlapping member, even though it was visible.

These three errors suggest improvements that could be made to the Grid interface. Several participants
explicitly asked for the ability to lock the Grid interface’s crosshairs on a given row or column, so that
they could then find a desired item in the other dimension without the mouse slipping off the locked row
or column. Also helpful in this regard might be some variant on a focus + context visualization, in which
a desired region of the grid could be made much larger than its surroundings. A focus region would make
for a larger mouse target, and hence for more accurate mouse positioning. The second error could be
addressed with improved search features. Although our Grid interface has a search bar and supports search,
its display of multiple search hits is inconspicuous, and was overlooked by many users. If they searched
for the keyword “assignment,” there would be two hits, but they may have noticed only one. In contrast,
Windows has a much better developed search feature for displaying multiple search hits—it shows all search
hits in a list with summary details of each hit. Only one Windows participant made the error of mistaking
the “assignment1.pdf” file for the “Assignment 1” folder compared with five Grid participants who made
this error. Finally, the vertical text in the Grid interface is too difficult to read. A number of solutions may
address this problem: changing the angle to 45 degrees would probably help somewhat, the letters could be
rotated so that words could be read top-to-bottom, or there could be an option to rotate the whole tree to be
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horizontal when it is not needed to label the grid columns.

6.5 Conclusion
The results of our user study demonstrate that our Expandable Grid interface for authoring file permissions
policies is superior to the Windows XP native file-permissions interface. The results also strongly suggest
that the Grid’s superior performance was due to its features that were designed to overcome deficiencies
in the list-of-rules model. We have thus provided strong evidence that, from a usability perspective, the
Expandable Grid approach to policy-authoring interface design is preferable to the list-of-rules approach.
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CHAPTER 7

Policy Semantics for the File
Permissions Expandable Grid Interface

The policy semantics that underlies a policy-authoring user interface may be as important to usability as
the interface itself [23, 138]. A policy semantics is the method by which rules are converted into policy.
In our design of the file permissions Expandable Grid interface, we changed the way rule conflicts are
resolved in policies authored with our interface (see Section 6.1.1). This change to the semantics, in which
conflicts are resolved by choosing the most recently created rule, allowed authors in the Jana task to simply
click on the red boxes corresponding to Jana’s READ and WRITE permissions to turn them green. The
Grid interface, combined with the semantics change, led to 100% accuracy for the Jana task in our user
study amongst participants using the Grid interface compared to 6% amongst those using the Windows
interface. This result raises the question, however, of whether the Grid’s improved accuracy rates were the
result of the Grid’s presentation aspects (namely, the interactive matrix display of the full, effective policy),
the revised semantics, or both. The first of two studies described in this chapter finds that the answer is,
in fact, both. The study was an extension of the study described in Chapter 6. In the extension study,
we observed 18 participants performing the same tasks in a new condition: an Expandable Grid interface
with the Windows semantics. We found that for tasks that do not involve rule conflicts, for which the
semantics makes no difference, performance with the Grid with Windows semantics was still better than
performance with the Windows interface. For tasks in which the semantics does make a difference, the Grid
with Windows semantics performed better than the Windows interface but not as well as the Grid with our
revised semantics.

The extension study result raises an interesting question: if usability can be improved by changing the
semantics, what semantics is best from a usability perspective? In this chapter, we shed some light on
this question. We describe a specificity semantics, in which rules applying to more specific entities take
precedence over rules applying to less specific entities. The specificity semantics includes some of the
dynamic aspects that were missing from the revised semantics we used in the prior study, namely, how the
policy changes when users are added to or removed from groups or files are added to or removed from
folders. We then describe a second user study that compared three interface conditions: the Expandable
Grid with the specificity semantics, the Expandable Grid with the Windows semantics, and the Windows
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interface (with the Windows semantics, of course). The user study involved new tasks, not included in the
prior study, that exercise some of the dynamic aspects of the specificity semantics. Results of the study
indicate that which semantics is better depends on the specific task an author is trying to perform, but that,
no matter which semantics is in use, the Grid presentation leads to better performance than the Windows
presentation.

7.1 Problem description
Our objective is to find a semantics that makes sense to policy authors. By “a semantics that makes sense,”
we mean a semantics for which the output decisions most closely match those intended by the author. The
Jana task, as described in Section 1.3.1, is an example of a situation in which the Windows DENY decisions
do not match those intended by the author. In the Jana task, Jana is a member of two groups, one of which
is allowed and the other of which is denied access to a file she is supposed to be able to access. When
participants in our study created an explicit rule stating that Jana is allowed access, they expected she then
actually had access. In fact, because of the deny-precedence semantics, the group rule denying Jana access
was still in effect.

It is not possible to create a consistent semantics that always matches authors’ intentions, since authors
may want different outputs in situations that, from a syntactic point of view, are indistinguishable. For
example, an author may want rule conflicts for one user to be resolved by always issuing DENY decisions,
but rule conflicts for another user to be resolved by always issuing ALLOW decisions. However, we believe
authors may have systematic biases in their intentions and that it is possible to adapt a semantics to such
biases.

It may be the case that different semantics are best suited to different policy-authoring user interfaces.
Our objective is to find a semantics that is well suited to the file permissions Expandable Grid interface.

7.1.1 Access-control model
Policy semantics can only be considered within the context of an access-control model. In this section, we
introduce our file-system access-control model, which is a simplified version of the Windows NTFS file
system and is similar to other file and access-control systems in real use.

Our access-control model is built on top of a file-system model. The file-system model has resources,
which include both files and folders that contain files, and principals, which include both users and groups
that contain users. Principals may access resources in different ways, which we call actions. Actions in our
file-system model include READ, WRITE, EXECUTE, DELETE, and ADMINISTRATE. The access-control
system is that part of the file-system model that determines which principals may perform what actions on
which resources. An access-control system receives requests for access to resources and issues decisions
in response. Requests are 3-tuples consisting of a user, file, and action (e.g., (jsmith, “file.txt,” READ)).
A folder serves both as a container of files and as an accessible resource in its own right. In our model,
we consider each folder to contain a file called ‘.’, which represents the folder in its role as an accessible
resource. This special file could be used as the resource in a request, but folders as containers cannot.
Hereafter, when we refer to a folder, we mean a folder in the container sense. Decisions are literals from
the set {ALLOW, DENY} and indicate whether access will be granted or not. The access-control system
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maintains a rule base, which is a set of access rules, group rules, and folder rules. The access-control
system reaches access decisions by an algorithm that takes a request and a rule base as input, consults the
rule base, and issues a decision as output.

Access rules (or simply rules) state that some 3-tuple consisting of a principal, resource, and action
should be mapped to either ALLOW or DENY. If an access rule’s principal is p, we say the access rule
covers p; similarly, if the access rule’s resource is r, we say the access rule covers r. Note that valid 3-
tuples in access rules are a superset of valid requests: a valid request cannot contain a group or a folder,
but the 3-tuple in a rule can. Access rules whose decision is ALLOW are called ALLOW rules and access
rules whose decision is DENY are called DENY rules. Group rules state that a user is a member of a group.
Folder rules state that a file (or subfolder) is contained within a folder. Note that, in our model (as well as
in Windows), groups cannot contain other groups, but a single user can appear in any number of groups,
so group memberships may overlap. The file structure, however, is strictly hierarchical, so a file may only
appear in one folder; each file and each folder has exactly one parent, except the root, which has no parent.

If the rule base simply consisted of exactly one access rule for each request, mapping a request to
a decision would be a simple matter of looking up the rule for the request and outputting the specified
decision. In reality, however, specifying an access rule for every possible request would be a huge burden
on an access-control policy author, so the rule base will have access rules whose principals are groups (we
call such access rules group access rules) and access rules whose resources are folders (we call such access
rules folder access rules). Group access rules apply to all users in the specified group and folder access rules
apply to all subfolders and files in the specified folder. Note that a rule can be both a group access rule and
a folder access rule.

When the access-control system receives a request, it consults the rule base to find all access rules that
apply to the request. An access rule applies to a request if:

• The access rule’s principal is the same as the request’s user, or is a group containing the request’s user;
and

• The access rule’s resource is the same as the request’s file, or is a folder containing the request’s file;
and

• The access rule’s action is the same as the request’s action.

It may rarely be the case that exactly one rule applies to a request. Sometimes, no rule will apply. The
access-control system has a default rule that determines the decision that will be issued when no access rule
applies. In our model, the default rule is a default DENY, so a DENY decision will be issued when no access
rule applies.

Sometimes more than one access rule may apply to a request, in which case access rules can be in
conflict with each other. If two access rules apply to a request and one access rule’s decision is ALLOW and
the other’s decision is DENY, the rules are in conflict. A conflict may arise, for example, when a user is
a member of two groups, say, GroupA and GroupB. If one access rule states that GroupA is allowed read
access to a file and another access rule states that GroupB is denied read access to the file, there is a conflict.

By semantics, we mean the algorithm that maps requests to decisions to form the effective policy. We
call the mapping of all possible requests to decisions the effective policy. A single mapping of a request to
a decision is an effective permission. In this chapter, we will discuss multiple semantics, but all are variants
on the following algorithm that takes a request req as input and returns a decision:
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1. Create a set ruleset and add to it all rules in the rule base that apply to req;

2. If ruleset is empty, return DENY;

3. If ruleset contains exactly one rule, return that rule’s decision;

4. If all rules in ruleset have the same decision, return the rules’ common decision;

5. If there are conflicting rules in ruleset:

(a) For each ALLOW rule in ruleset:

i. For each DENY rule in ruleset:
A. Match the ALLOW rule against the DENY rule according to a conflict-resolution method,

which will vary by semantics;
B. If the ALLOW rule loses the match, break and proceed to the next ALLOW rule;
C. If the ALLOW rule wins the match, continue with the next DENY rule;

ii. If an ALLOW rule wins its match against every DENY rule, return ALLOW;

(b) If no ALLOW rule wins against every DENY rule, return DENY.

When a rule wins the match in step 5(a)iA, we say it takes precedence over the rule it was matched
against. When the algorithm returns a rule’s decision for a request, we say the rule is in effect for that
request.

The interesting part of the algorithm outlined above is the conflict-resolution method that chooses a win-
ner between two rules in conflict. The conflict-resolution method is the main aspect in which the semantics
we propose in this chapter differs from the Windows semantics.

7.1.2 Desired properties in a semantics
We have identified the following desirable properties in a policy semantics for a policy that is to be authored
with an Expandable Grid. The first of these properties, direct manipulation, is based on our user studies
that have demonstrated usability problems when the property does not hold (for example, notice results for
the Jana task in Section 6.3); the second and third of the properties, exception-rule preservation and order
independence, are based on our intuition about how to minimize policy-authoring errors and their impact;
and the fourth, fail safety, is a widely accepted computer security design principle.

• Direct manipulation: Direct manipulation is a user-interface design principle stating that interfaces
should allow users to operate directly on objects or data of interest [121]. In policy-authoring inter-
faces, direct manipulation translates to allowing authors to change effective policy directly whenever
possible. For a Grid-based interface to support direct manipulation, the author should be able to go to
the cell corresponding to the principal, resource, and action for which they wish to set policy, and set
the policy right in that cell, without having to go elsewhere. Put another way, when the author clicks
on a green cell, it should turn red and when the author clicks on a red cell it should turn green.

• Exception-rule preservation: We define an exception rule of an access rule as another access rule that
covers a subset of the principals and resources covered by the first and that has a different decision
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from the first. For exception-rule preservation to hold, exception rules should stay in effect even when
rules covering a superset of the exception rules’ resources and principals are specified. We designed
the Imani task, described in Section 6.1.1, to illustrate the problem that can arise with exception rules.
In the Imani task, Imani is a TA who was suspected of selling answers on an exam and was denied
access to the Answers folder. The Imani task then asks the participant to grant all of the TAs access
to the Answers folder, but, of course, Imani should still not be given access. In other words, the rule
denying Imani access to the Answers folder is an exception rule to a new rule that should grant all
the TAs access. The Imani task calls for the exception rule to stay in effect. In semantics that violate
exception-rule preservation, new rules might take precedence over existing rules. If the Imani task
were attempted with such a semantics, a new rule allowing all of the TAs access to the Answers folder
might override the existing exception rule, in which case Imani would be allowed access unless the
author remembered to explicitly re-assert the exception rule. In our study, most participants had no
difficulty completing the Imani task, since we explicitly told participants to preserve the exception
rule. However, to see how serious this situation could be in a real scenario, imagine an author who
set an important exception rule weeks earlier but has forgotten about it, and now sets a new rule that
overrides it. The author may not remember the existence of the exception rule and would likely fail to
notice it is now being overridden.

• Order independence: The order in which operations (such as setting access rules or changing group
or folder memberships) are performed should not affect the effective policy. It may be difficult for
authors to remember to perform operations in a particular order, and the Grid does not indicate the
order in which operations have been or should be performed, so if effective policy depends on order,
it may be difficult for authors to know how to achieve the effective policy they want. For example,
consider trying to complete the Imani task with a semantics in which rule conflicts are resolved by
letting the most recently set rule take precedence over the other rules in conflict. Now if an author
sets a rule stating that TAs have access to the Answers folder, then sets the exception rule stating that
Imani is denied access, the author correctly completes the task, because the more recent rule applying
to Imani will take precedence over the original rule applying to the group. If, however, the author first
sets the exception rule stating that Imani is denied access, then sets the rule stating that the TAs are
allowed access, the author incorrectly completes the task, because the more recent rule applying to
the group will take precedence over the original rule applying to Imani. If an author is unaware that
order matters, and sets rules in an arbitrary order, errors are very likely. Moreover, even an author
aware that order matters may have forgotten the order in which rules were set previously. In this case,
the author may not know why the effective policy turned out the way it has or how to fix it.

• Fail safety: In general, false rejects (cases where authorized access is denied) should be preferred to
false accepts (cases where unauthorized access is allowed). False rejects can be corrected by chang-
ing the policy to allow the desired access, but once a false accept has caused data to be released to an
unauthorized party, the data cannot be taken back. Saltzer and Schroeder, in a seminal work on com-
puter security, list fail safety as one of their eight design principles for protection mechanisms [113].
For a semantics, preserving fail safety means favoring DENY rules over ALLOW rules in the absence
of any better reason to favor ALLOW rules.

Note that no semantics can satisfy all properties in all situations, since some of the properties would lead
to contradictory decisions in the same situation. For example, fail safety will always call for conflicts to be
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resolved by issuing DENY decisions, but direct manipulation and exception-rule preservation may call for
some conflicts to be resolved by issuing ALLOW decisions.

7.1.3 Conflict-resolution methods
To resolve rule conflicts, there must be a method for unambiguously choosing a decision. Most conflict-
resolution methods in practice choose one of the rules in conflict to take precedence over the others. (Other
methods are possible, however, such as “majority rules”—choosing the decision of the majority of the rules
in conflict. It is also possible to disallow conflicts through the use of static checking, in which any changes to
the rule base that introduce rule conflicts are recognized and disallowed at the time the rule is added. While
static checking is a possible approach to improving policy-authoring usability, we leave consideration of
static checking to future work.) Some of the possible conflict-resolution methods for choosing rules to take
precedence are:

• Specificity precedence: A rule that covers a more specific entity takes precedence over a rule that
covers a more general entry. For example, a rule that covers a user takes precedence over a rule that
covers a group, or a rule that covers a subfolder or file takes precedence over a rule that covers the
subfolder’s or file’s parent.

• Deny precedence: Rules whose decision is DENY take precedence over rules whose decision is AL-
LOW.

• Order precedence: Rules are totally ordered, usually by the policy author, so the author can explicitly
state which rules take precedence over others. This method is commonly used in firewall policies.

• Recency precedence: Rules specified more recently in time take precedence over rules specified less
recently in time. Note that recency precedence is equivalent to order precedence where order is
determined by the time at which each rule was set.

These conflict-resolution methods may be used in combination. It is possible to use different conflict-
resolution methods depending on whether conflicting rules differ in the principals they cover, the resources
they cover, or both. For example, the Windows NTFS semantics uses deny precedence if conflicting rules
differ in principals, but specificity precedence if conflicting rules differ in resources or in both resources and
principals. It may also be necessary to resort to multiple conflict-resolution methods when one method fails
to resolve a conflict. For example, when conflicting rules cover groups, but those groups are peers of each
other, specificity precedence cannot resolve the conflict.

It is worth noting that conflicts are not inevitable in a rule-based access-control system. It is possible
for an access-control system to avoid rule conflicts by only allowing policy authors to specify exceptions to
the default rule, and not allowing exceptions to the exceptions. For example, if the default rule is DENY,
and policy authors can only specify requests that should be allowed, no conflicts will arise. However, such
a system can be unwieldy [120]. For example, if all members of a large group of principals except one
are to be allowed access to a file, it would be necessary to form a new “all-but-the-exception” group or to
specify a rule allowing access for every single member of the large group except for the one. Access-control
systems where situations such as these may arise typically allow policy authors to specify both ALLOW and
DENY rules; hence, rule conflicts may arise in which author-specified rules conflict with each other.
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7.1.3.1 Pros and cons of different conflict-resolution methods
Each of the listed conflict-resolution methods has pros and cons. Pros take the form of desired seman-
tics properties from section 7.1.2 that the method supports, and cons take the form of desired semantics
properties that the method does not support. We discuss the pros and cons of each method below.

Specificity precedence
Specificity precedence supports exception-rule preservation and order independence, but it can lead to viola-
tions of direct manipulation and fail safety. Exception rules are more specific versions of the rules that cover
a superset of the exception rules’ principals and resources, so specificity precedence naturally ensures that
exception rules will stay in effect. Specificity precedence does not depend on the order in which rules were
set, so it maintains order independence. When a DENY rule and an ALLOW rule conflict, specificity prece-
dence makes it possible for the ALLOW rule to take precedence, so if the ALLOW rule was not intended to
apply, a false accept could occur, violating fail safety. Specificity precedence maintains direct manipulation
for whenever a rule is being specified at the user or file level, but direct manipulation may be violated when
a rule is being set at the group or folder level. For example, if a policy author intends to allow all users in
a group to read a file f , but the group contains one user u covered by a DENY rule for f , then the author’s
attempt to turn the group’s Grid square for f green will fail—the square will remain yellow, indicating that
the effective policy has both ALLOW (for most users in the group) and DENY (for u) decisions for users in
the group.

Deny precedence
Deny precedence emphasizes fail safety over all the other properties, although it also maintains order inde-
pendence. When DENY rules always take precedence over ALLOW rules, unintended false accepts as the
result of rule conflicts cannot occur, so fail safety is maintained. However, direct manipulation in the Grid
can be violated. For example, suppose a DENY rule covers a group g and a file f , but the author wishes
for a user u within g to be allowed to access f . Now, if the author clicks on the Grid square for u and f ,
intending to turn the square green, the square will remain red, since the group DENY rule will take prece-
dence. Exception-rule preservation may be violated in a similar, but chronologically reversed, situation. For
example, suppose there is an ALLOW rule that covers a user u and a file f , and the author wishes to set a
DENY rule that applies to a group g containing u, but to allow the ALLOW rule at the user level to remain in
effect. The ALLOW rule cannot remain in effect under deny precedence.

Order precedence
Order precedence places the burden of resolving rule conflicts in the hands of the policy author, so it is
possible for any of the four properties to be violated. The Grid does not currently have a mechanism to
support direct ordering of rules by the author, so we do not further consider order precedence here, since
our objective is to find a semantics that is well suited to the Grid. Order precedence is perhaps best suited
to list-of-rules interfaces, since a list naturally shows rules in order. If order precedence must be used for a
particular policy domain (perhaps because it gives authors a high degree of flexibility to resolve conflicts),
a list-of-rules interface might be best. Even so, list-of-rules interfaces for policies using order precedence
might be enhanced by a Grid-based display of the effective policy.
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Recency precedence
Recency precedence supports direct manipulation but can lead to violations of exception-rule preservation,
fail safety, and order independence. By definition, under recency precedence, when the author specifies
a rule, it immediately takes precedence over existing rules, so direct manipulation is naturally supported
while exception-rule preservation is naturally violated. Recency precedence can result in a more recent
ALLOW rule taking precedence over an intended DENY rule, so can lead to false accepts, violating fail
safety. Recency precedence also orders rules based on the chronological order in which they were specified,
so it violates order independence. Section 7.1.2 explained how recency precedence can violate fail safety
and order precedence.

7.1.4 Weaknesses of Windows NTFS semantics
The Windows NTFS access-control semantics combines specificity and deny precedence. When conflicting
rules differ only in the resources they cover, specificity precedence is used. When conflicting rules differ
only in the principals they cover, deny precedence is used. When conflicting rules differ in both the principals
and the resources they cover, specificity precedence is used.

The Windows semantics has three primary weaknesses we seek to improve upon. First, it violates direct
manipulation and makes it very difficult to resolve certain rule conflicts; second, it behaves in a non-intuitive
way in the presence of what we call two-dimensional conflicts, where rules in conflict differ in both the
principal and resource dimensions; finally, it behaves in a potentially unexpected way following a file move.

Since the Windows semantics has the weaknesses of both specificity and deny precedence, it can lead
to violations of direct manipulation, exception-rule preservation, and fail safety. We focus on improving the
Windows violations of direct manipulation in the semantics we propose below, because these violations are
the most difficult part of the Windows semantics for authors to deal with. The Jana task is a good example
of where the Windows semantics leads to violations of direct manipulation. Jana is a member of two groups,
one of which is allowed access to a file and the other of which is denied access to that file. The Windows
semantics uses deny precedence to resolve the conflict, so Jana is effectively denied access to the file. There
are two ways to grant Jana access: the DENY rule applying to the latter group can be removed, or Jana
can be removed from the group. Direct manipulation is violated because the task cannot be completed by
simply manipulating rules applying to Jana; the task requires making a change at the group level. Moreover,
both potential solutions may be unsatisfactory. Removing the DENY rule may change policy for the other
members of the group and for members added to the group in the future. Removing Jana from the group may
be undesirable since it may affect Jana’s permissions on other resources. The Windows semantics provides
no entirely satisfactory way to complete the Jana task.

Besides violations of direct manipulation in the presence of rule conflicts, we seek to improve upon
another aspect of the Windows semantics conflict resolution—behavior in the presence of a two-dimensional
conflict. A two-dimensional conflict occurs when two rules are in conflict and one rule is more specific in the
principal dimension while the other is more specific in the resource dimension. For example, in the Lance
task we describe in Section 7.5.1.3, one rule denies Lance access to an Admin folder, but another rule allows
a group he is in access to the gradebook.xls file contained in the Admin folder. Since neither rule is strictly
more specific than the other, specificity precedence cannot resolve this conflict. Windows resolves such
conflicts by favoring the resource dimension over the principal dimension, so the rule that is more specific
in the resource dimension will take precedence. Favoring the resource dimension seems arbitrary, however,
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and may confuse policy authors.
Finally, we seek to improve upon the Windows semantics’ behavior following a file or folder move.

In NTFS file systems, when a file or subfolder is moved from one parent folder to a new parent folder
on the same volume, the moved resource continues to inherit rules from the old parent folder instead of
immediately inheriting the rules of the new parent [90]. Only when a change is made to the access-control
list of the moved resource or the new parent does the moved resource inherit rules from the new parent folder.
This resource-move semantics could lead to confusion when an author assumes that a moved resource will
inherit its new parent’s permissions, which seems an intuitive assumption to make. Even more confusing is
that making a change to one principal’s access rules for a folder could suddenly and unexpectedly change
the access for another principal to a file or subfolder within the folder. For an example of what can go wrong
with the Windows semantics in the presence of a resource move, see the description of the Assignment task
in Section 7.5.1.3.

7.2 Proposed solution
We have already tried to address some of the weaknesses of the Windows semantics with the semantics we
described in Section 6.1.1. However, that semantics, which uses recency precedence, also has drawbacks.
It violates order independence and, worse, its behavior in the presence of dynamic changes to principal and
resource structure (such as file moves and group membership changes) was unspecified. In this section,
we describe a semantics based on specificity precedence that we believe retains the primary advantage of
recency precedence (namely, its direct-manipulation solution to the Windows rule-conflict problem) while
maintaining exception-rule preservation and order independence. We also specify the behavior of our new
semantics in the presence of dynamic principal and resource structure changes.

7.2.1 Our proposed specificity semantics
We propose a semantics that we believe will address the weaknesses of the Windows semantics and will
make sense to policy authors using the Grid. We intend for the semantics to make sense not only when the
principal structure and the file hierarchy are static, but also in the presence of group membership changes,
user and file creation and deletion, and file moves.

7.2.1.1 Conflict-resolution method
We propose to use specificity precedence to resolve conflicts when possible and to resort to deny prece-
dence only when specificity precedence fails. By using specificity precedence, we address the rule-conflict
weakness in Windows in which the semantics violates direct manipulation. Specificity ensures support for
direct manipulation for rules that cover users and files. Thus, tasks like the Jana task are easily completed
using the Grid with specificity semantics. The rule-conflict weakness in Windows where either a group
access rule has to be changed or Jana has to be removed from the group is solved by allowing a specific
rule that applies to Jana to take effect. Specificity precedence also supports exception-rule preservation and
order independence, so it has advantages over recency precedence, which does not support these properties.
Specificity’s support for exception-rule preservation comes at the cost of direct manipulation at the group
and folder level, but we believe these problems with direct manipulation can be mitigated with the interface
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solutions described in Section 7.2.2.2. Specificity precedence’s advantages in exception-rule preservation
and user- and folder-level direct manipulation come at the cost of potential violations of fail safety (since a
more specific ALLOW rule can take precedence over a less specific DENY rule), but this tradeoff is unavoid-
able. Our proposed semantics does its best to maintain fail safety by resorting to deny precedence when
specificity precedence is insufficient to resolve conflicts, as when peer group-level rules are in conflict.

To address the weakness of the Windows semantics in the case of a two-dimensional conflict, our pro-
posed semantics uses deny precedence for two-dimensional conflicts. Since there is no natural way to
resolve such conflicts using specificity, we ensure fail safety by using deny precedence. We believe the
Windows semantics’ use of specificity in the resource dimension is arbitrary and likely to be confusing to
policy authors. Our choice of deny precedence may or may not be confusing, but at least it is safe and, in
any case, it is easily overridden by creating a rule that is more specific in both resources and principals than
the rules in conflict.

7.2.1.2 Dynamic changes
The behaviors of our semantics for all possible dynamic principal and resource changes are as follows:

• Create group or user: New groups and users start initially with no access rules, so all decisions default
to DENY.

• Delete user: A deleted user is denied access to everything, and its access rules are removed from the
rule base.

• Delete group: When a group is deleted, all of its access rules are removed from the rule base, so they
no longer apply to users who were in the group.

• Add user to group: When a user is added to a group, the user inherits all of the group’s access rules.

• Remove user from group: When a user is removed from a group, the group’s access rules no longer
apply to the user.

• Create file or folder: New files and folders inherit rules applying to their parent in the file hierarchy.

• Delete file: When a file is deleted, its access rules are removed from the rule base and the file can no
longer be accessed.

• Delete folder: When a folder is deleted, its contents are also deleted, so no one can access the folder
or the files it contained.

• Move file or subfolder to new parent folder: When a file or subfolder is moved to a new parent folder,
it immediately inherits the new parent folder’s access rules.

Note the behavior in response to a moved file or folder, which is different from the Windows semantics’
behavior. A moved file or subfolder immediately inherits rules applying to its new parent and gives up
rules inherited from its old parent. This behavior addresses what we believe is a confusing and potentially
error-inducing aspect of the Windows semantics.

Our semantics is fairly straightforward in the presence of dynamic principal and resource changes. This
straightforwardness is in contrast to (and, we believe, an improvement upon) a recency precedence seman-
tics, in which it is unclear in what access rules will take precedence. To give an example of an ambiguous
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case that arises when using a recency semantics: If a user is added to a group, should that group’s access
rules immediately take precedence over all of the user’s existing access rules? Or should the group’s access
rules only take precedence if they were set more recently than the user’s existing rules? In our semantics,
the chronological ordering of rules does not matter, so ambiguities as to what where to place a rule in order
do not arise.

7.2.2 New Grid interface features
Our new semantics requires some new features to be added to the file-permissions Expandable Grid inter-
face. First, we need functionality for making dynamic changes, i.e., creating and deleting users, groups,
files, and folders, changing group memberships and moving files and subfolders. Second, since we allow
these dynamic changes, it is necessary to show which principals and resources rules have been set for.

7.2.2.1 Dynamic changes
We added functionality to our file-permissions Expandable Grid interface to allow policy authors to create
and delete users and groups, edit group memberships, and move files between folders. Dialogs to create
and delete users and groups can be accessed from the menu bar and the dialog to edit group memberships
(see Figure 7.1) can be accessed by right-clicking on a principal. Files can be dragged and dropped to move
them from one folder to another.

7.2.2.2 Showing rules explicitly
In the file-permissions Grid developed for the study in Chapter 6, the Grid showed effective policy only—
rules existed in the rule base, but were not shown to authors. However, in the presence of dynamic changes,
authors may need to know what will happen to the effective policy when they add a user to a group or
create a file within a folder, for example. Moreover, showing the rules explicitly may help mitigate the
primary drawback of our proposed semantics, which is that direct manipulation is violated at the group- and
folder-level. For example, if the author is trying to set a new rule that covers a group, but there are existing
exception rules to the new rule, the new rule will not take precedence over the existing rules. The effective
policy will issue the group access rule decision for some group members but the exception-rule decisions
for other group members. Thus, there will be a difference in the decision for the group access rule and the
the effective policy for the group—the decision will be ALLOW or DENY, but the effective policy may be
mixed ALLOW and DENY. The Grid, if it were to show only one square of color per group, resource, and
action, would have to choose between showing the group access rule—which authors may need to see in
order to know that they have specified a group access rule they wanted—or showing effective policy—which
the Grid was designed to show. We get around this problem by showing two colors in subgrid squares where
an access rule has been set.

In subgrid squares corresponding to a principal, resource, and action for which an access rule has been
set, we draw a small triangular tab in the lower left-hand corner. We refer to this tab as a “dog-ear.” The
dog-ear is light green to represent an ALLOW rule or light red to represent a DENY rule set for the specific
tuple of principal, resource, and action. We color the remainder of the subgrid square according to the
effective permission, as usual. We added a new legend to the Grid to show all possible combinations of
effective permission color (green, red, or yellow) and dog-ear color (light green, light red, or none). Note
that a square can have a light green dog-ear on a red background if there is an ALLOW rule for the group,
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Figure 7.1: A screenshot of the Grid interface with the edit group membership dialog showing. The dialog
allows the policy author to add users to a group or remove them from the group.
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Figure 7.2: A screenshot of the Grid interface for the Charles task, after Charles has been moved to the
Alumni group. Dog-ears are visible in 9 squares in this screenshot, such as the squares corresponding to
Charles’s READ access to the Bass.pdf and Tenor.pdf files.
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but all members of the group have been explicitly denied access. Similarly, a square can have a light red
dog-ear on a green background. Dog-ears and the new legend can be seen in Figure 7.2.

The new legend presented at least one design challenge of note, namely deciding on terminology for
“access rule.” The legend shown in Figure 7.2 uses the terms “default allow rule,” “default deny rule,” “de-
fault,” and “default permission” to refer to what we have called “ALLOW rule,” “DENY rule,” and “access
rule” (the term “default” is simply a shortened form of “default permission,” and both refer to access rules)
in this document. We did not use the same terms in the legend that we have used in this document because
we expected our targeted demographic of novice and occasional policy authors to be confused by the dis-
tinction between access rules and effective permissions. We thought, for example, that the use of the term
“ALLOW rule” for requests where access may not actually be allowed would be very confusing. We hoped
that the idea of a “default” rule would help clarify the confusion by suggesting a rule that will take effect
unless another rule overrides it. (Note, therefore, that the use of the term “default rule” in the legend is not
the same as its use in this document, where it refers to the decision that will be issued when no access rule
applies to a situation.) Nevertheless, in a user study to be described below, many participants using the Grid
with the new legend remained confused about the distinction between access rules and effective permissions,
so our use of “default” in the legend seems not to have been effective. We have yet to determine a better
alternative; we propose “set rule,” “explicit rule,” and “stated rule” as possibilities to try in future work.

7.2.3 Summary of differences between our semantics and Windows
Our specificity semantics is different from the Windows semantics in three primary ways. First, our seman-
tics allows a rule with a more specific principal to take precedence over a rule with a less specific principal.
Second, our semantics uses deny precedence in two-dimensional conflicts. Finally, our semantics propagates
rules from a new parent to a moved resource immediately upon the move. The first two of these differences
can be seen in Table 7.1, which lays out the entire space of rule conflicts with respect to the structural rela-
tions between principals and resources of the rules in conflict. In a conflict, there will be an ALLOW rule in
conflict with a DENY rule. The differences between our semantics and the Windows semantics can be seen
in two of the table cells: first, where the ALLOW rule’s principal is contained by (and thus is more specific
than) the DENY rule’s principal, but the two rule’s resources are the same; second, where the ALLOW rule’s
principal contains the DENY rule’s principal, but the ALLOW rule’s resource is contained by the DENY rule’s
resource.

7.3 Related work
There is an extensive body of work describing formal access-control models and languages for various
contexts. The authors of these models and languages necessarily describe a semantics and usually address
conflict resolution. Most of these works are concerned with describing the formal aspects of their models
and proving theoretical properties about them. A few of these works address ease of policy-authoring under
their semantics, but none that we are aware of actually ran user studies to evaluate their semantics empirically
as we have. We survey some of these works on formal access-control models below, with an emphasis on
those that address usability issues and conflict-resolution methods.

Shen and Dewan present an access control model for collaborative environments [120]. They list, as one
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Table 7.1: Table showing which rule, of an ALLOW rule and a DENY rule in conflict, will take precedence
for our specificity semantics (S) and Windows semantics (W). The table shows the relevant cases defined by
the rules’ principals and resources. Each cell shows which rule takes precedence and the conflict-resolution
method in play: specificity in the resources, specificity in the principals, specificity in both resources and
principals, or deny precedence. In the case where both rules’ resources and principals are the same, there
will be no conflict, since the more recently set rule will have overwritten the other.

Relationship between ALLOW rule’s principal and DENY rule’s principal
Contains Peer Same Contained by

Relationship
between AL-
LOW rule’s
resource and
DENY rule’s
resource

Contains DENY (both) DENY (resources) DENY (resources)
S:DENY (deny)
W:DENY (resources)

Same
S:DENY (principals)

DENY (deny) no conflict
S:ALLOW (principals)

W:DENY (deny) W:DENY (deny)
Contained
by

S:DENY (deny)
ALLOW (resources) ALLOW (resources) ALLOW (both)

W:ALLOW (resources)

of their requirements for their access-control model, “easy specification” of access-control policies. Their
model includes both ALLOW and DENY rules (which they call “positive rights” and “negative rights”), thus
it can have conflicts. They provide an argument that including DENY rules in their model improves usabil-
ity; their argument is similar to our argument that some policy-specification tasks become quite unwieldy
without DENY rules. For conflict resolution, they use specificity precedence when possible and order prece-
dence otherwise. Dewan and Shen present a similar access control model for multiuser interfaces [42].
Dewan and Shen provide for specification of an inference function that controls how conflicts are resolved
and allows for much flexibility in specifying a conflict-resolution method. Deny precedence, specificity
precedence, and allow precedence (in which ALLOW rules take precedence over DENY rules) are all possi-
ble under this model. They acknowledge the two-dimensional conflict issue. They suggest resolving such
conflicts by choosing a prime dimension and a subordinate dimension, and allowing the prime dimension’s
conflict-resolution method to be applied first.

Kapadia et al.’s Know system addresses usability for policy-based systems [67]. Know sits within an
access control system and provides feedback when access is denied. The feedback can improve policy-
authoring usability by explaining why access was denied and how access might be obtained. Kapadia et al.
provide for meta-policies that control what portions of a policy can be revealed in providing feedback.

Sampemane et al. describe an access control system for interactive physical environments, such as
rooms enhanced with multimedia equipment [114]. Their model is an adaptation of role-based access control
(RBAC) to the interactive physical environment domain. Their work has a focus on usability in that it is
intended to foster collaboration between users, but they still call for administrators to maintain policies in
their model.

Agrawal et al. criticize the preference language APPEL, which was designed to allow Web users to
specify their preferences for the privacy practices of websites they interact with. Agrawal et al. point out
some drawbacks to the APPEL language that cause usability problems for users trying to specify their pref-
erences. Agrawal et al. then go on to suggest a solution that allows Web users to specify privacy preference
in the XPath language. However, Agrawal et al. do no usability testing to evaluate their solution [3].

Works addressing the general access-control conflict-resolution methods we have addressed here include
Fundulaki and Marx [51], Jajodia et al. [62], Fisler et al. [50], the XACML 1.0 standard [53], Dougherty
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et al. [43], and Goldberg et al. [54]. Fundulaki and Marx describe an access-control model for eXtensi-
ble Markup Language (XML) documents. They acknowledge three conflict-resolution methods: priority
precedence, in which a policy author specifies a priority for each rule; deny precedence (which they call
“deny overwrites”); and allow precedence (which they call “grant overwrites”). Their semantics uses deny
precedence. Jajodia et al. describe an access-control policy framework that accommodates a number of
conflict-resolution methods, including specificity, deny, and allow precedence. Their framework also ac-
commodates “no conflicts allowed,” in which policies are statically checked for conflicts and conflicts are
flagged as errors. Fisler et al. describe Margrave, an RBAC policy-analysis tool, that supports the three
conflict-resolution methods outlined in XACML standard: allow precedence (called “permit-overrides”
in the standard), deny precedence (called “deny-overrides” in the standard), and order precedence (called
“first-applicable” in the standard). The standard can also be extended to accommodate application-specific
conflict-resolution methods. Dougherty et al. are concerned with proving properties of safety and availabil-
ity in access-control policies, comparing policies to each other, and understanding the effects of dynamic
changes to the policy environment. They discuss “combiners,” the term used in the XACML standard for
conflict-resolution methods, as a factor contributing to policy and policy-authoring complexity. Goldberg
et al. describe a module they built for restricting access to system calls by untrusted browser helper appli-
cations, like document viewers. They use specificity precedence as the conflict-resolution method in their
module.

Several works present policy analysis tools that detect conflicts with the goal of helping policy authors
resolve them. Al-Shaer and Hamed describe the Firewall Policy Advisor, a tool that detects a variety of
firewall policy anomalies, including conflicts [6]. They state that firewall policies traditionally use order
precedence to resolve rule conflicts. The Firewall Policy Advisor presents a list-of-rules user interface
for analyzing policy conflicts. Yuan et al. present FIREMAN, a toolkit for performing static analysis of
firewall policies to check for misconfigurations [148]. Jaeger et al. are concerned not with rule conflicts but
with constraint conflicts, which they describe as conflicts in constraints that specify inviolable properties of
policies [61]. They present the Gokyo policy analysis tool for constraint conflict detection, analysis, and
resolution.

7.4 Policy Semantics Study #1: Do semantics affect us-
ability?

To determine whether policy semantics has an effect on usability, we conducted an extension of the user
study described in Chapter 6. The extension study, hereafter referred to as Policy Semantics Study #1,
employed the same method as the original, except for the interface condition tested. To isolate the effects of
semantics, we implemented an Expandable Grid interface identical to that described in Chapter 6, but using
the Windows semantics. (We were able to implement the Grid-with-Windows-semantics condition because
our implementation of the file-permissions Expandable Grid interface includes a simulated Windows file
access-control system. The simulated system serves as the backend to the Grid interface. Since we wrote
the simulated system, we are able to control its semantics.) We compared the performance of 18 participants
using the Grid-with-Windows-semantics interface with the performance we observed amongst participants
using the Grid (with the recency semantics described in Section 6.1.1) interface in the original study.

We added a dialog box, shown in Figure 7.3, with “Allow” and “Deny” checkboxes to the Grid interface
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Figure 7.3: Screenshot of the Grid-with-Windows-semantics interface used in Policy Semantics Study #1.
Since direct manipulation is not possible with the Windows semantics, the interface shows a dialog box to
allow a policy author to set an access rule.
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to allow authors to set explicit access rules. This dialog box, which appears when the author clicks on a
subgrid square, enables the Grid to work with the Windows semantics. The Windows semantics makes
it impossible to implement a Grid interface in which clicking a red square always turns it green, i.e., the
Windows semantics violates direct manipulation. Because of this characteristic of the Windows semantics,
it no longer made sense to hide access rules from authors as we did in the design of the original Grid
interface. Moreover, in the Windows semantics, there are three possible access-rule states for each request:
ALLOW, DENY, and blank (i.e., no rule set). In the original Grid design, a click on a square only allowed for
toggling between two states. The dialog box makes the three states explicit. Note that the dialog box does
not allow the invalid state in which both the “Allow” and “Deny” checkboxes are checked. The Grid-with-
Windows-semantics still shows effective permissions and shows no explicit representation of the access
rules except through the dialog box.

7.4.1 Method
The experimental setup, task design, and procedure for Policy Semantics Study #1 were identical to those
of the original study (see Section 6.2). We also recruited 18 participants, nine female, from the same
demographic pool (undergraduates in technical majors) and using the same methods (fliers and a local
university study-recruitment website) as in the original study, but since we conducted it roughly four months
later than the original, it is possible our participant pool had changed somewhat.

7.4.2 Results and discussion
Complete accuracy and time-to-task-completion results for Policy Semantics Study #1, shown with the
results from the original study, can be seen in Figures 7.4, 7.5, 7.6, and 7.7. The objective of the study was
to determine whether the choice of semantics can have an effect on usability, so we were primarily interested
in the results from the tasks in which the semantics comes into play: the change-complex, conflict-complex,
and precedence tasks. Note that the semantics does not come into play in any task without a rule conflict or
an exception rule. Also, note that the semantics does not come into play in the conflict-simple tasks, since
in those cases, the conflict is a DENY exception to an ALLOW rule, which both semantics handle identically.
In this study, we were primarily interested in comparisons between the two Grid conditions and not between
Grid conditions and Windows, since the Grid conditions offer a controlled comparison between semantics.

If it is true that semantics can affect usability, we would expect to observe differences in performance
between the two Grid conditions on the change-complex, conflict-complex, and precedence tasks. Accord-
ingly, we tested for statistically significant differences in accuracy rate and time-to-task-completion between
the two Grid conditions on the small- and large-scale change-complex, conflict-complex, and precedence
tasks. We used one-sided Fisher’s exact tests to test for significant differences in accuracy rates and one-
sided t-tests to test to significant differences in times-to-task-completion. We corrected for multiple testing
using the Benjamini-Hochberg method, which gave an adjusted α of 0.001 for both accuracy and time-to-
task-completion testing. Results of our tests can be seen in Tables 7.2 and 7.3.

From Tables 7.2 and 7.3, we see that four of 12 tests turned out to be statistically significant. Notably,
three of the significant tests were on the conflict-complex tasks. This result is not surprising, since the
conflict-complex tasks represent precisely the case for which we designed the Grid’s recency semantics—
the large-scale conflict-complex task is the Jana task we have used as an example of where the Windows
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Figure 7.4: Accuracy results for small-scale tasks for Policy Semantics Study #1, showing proportion
of participants correctly completing each task using original Grid (with recency semantics), Grid-with-
Windows-semantics, and Windows interfaces. Results for original Grid and Windows interfaces are the
same as those presented in Chapter 6.
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Figure 7.5: Accuracy results for large-scale tasks for Policy Semantics Study #1, showing proportion
of participants correctly completing each task using original Grid (with recency semantics), Grid-with-
Windows-semantics, and Windows interfaces. Results for original Grid and Windows interfaces are the
same as those presented in Chapter 6.
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Figure 7.6: Time-to-task-completion results for small-scale tasks for Policy Semantics Study #1, showing
mean time-to-task-completion, in seconds, for participants who correctly completed each task using original
Grid (with recency semantics), Grid-with-Windows-semantics, and Windows interfaces. Results for original
Grid and Windows interfaces are the same as those presented in Chapter 6. Error bars show +/- one
standard deviation.
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Figure 7.7: Time-to-task-completion results for large-scale tasks for Policy Semantics Study #1, showing
mean time-to-task-completion, in seconds, for participants who correctly completed each task using original
Grid (with recency semantics), Grid-with-Windows-semantics, and Windows interfaces. Results for original
Grid and Windows interfaces are the same as those presented in Chapter 6. Error bars show +/- one
standard deviation.

Table 7.2: Summary of statistical tests for significant differences in accuracy rate for Grid with recency
semantics (aGRS) and Grid with Windows semantics (aGWS) for each task. For all tests except precedence
task tests, the hypothesis tested was aGRS > aGWS . For the precedence tests, the hypothesis tested was
aGRS < aGWS . The p-values shown are from one-sided Fisher’s exact tests; p-values below the α = 0.001
rejection threshold are shaded and highlighted in bold, indicating significant tests.

Small-scale Large-scale
Task pair aGRS aGWS p-value aGRS aGWS p-value

Change-complex 0.61 0.50 0.43 0.67 0.67 0.64

Conflict-complex 0.89 0.22 < 0.001 1.00 0.17 < 0.001

Precedence 0.89 0.94 0.50 0.78 0.72 0.78

Table 7.3: Summary of statistical tests for significant differences in mean time-to-task-completion, in sec-
onds, between successful Grid with recency semantics (GRS) and Grid with Windows semantics (GWS) par-
ticipants for each task. For each test, the table shows means (M) and standard deviations (σ) for each inter-
face, and t-statistics (with degrees of freedom (df)) and p-values resulting from one-sided t-tests; p-values at
or below the α = 0.001 rejection threshold are shaded and highlighted in bold, indicating significant tests.

Small-scale Large-scale
Task pair M(σ) t(df) p M(σ) t(df) p

Change-complex GRS:70(19) −5.44(17) < 0.001 GRS:100(35) −0.01(17) 0.49
GWS: 133(27) GWS:110(50)

Conflict-complex GRS:29(12) −10.89(13) < 0.001 GRS:52(37) −2.51(3) 0.05
GWS: 116(19) GWS: 136(93)

Precedence GRS:42(25) −1.87(29) 0.96 GRS:71(29) −1.67(25) 0.95
GWS: 55(26) GWS: 88(30)
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semantics causes usability problems. In our result for the conflict-complex tasks, we see strong evidence
supporting the hypothesis that semantics affect usability.

We did not observe statistically significant differences in the change-complex tasks. We expect the
Grid as a presentation technique helps improve authoring performance, even in the presence of an ill-fitted
semantics. We did see a significant difference in the times-to-task-completion for the small-scale change-
complex task that was likely due to the awkwardness of making policy changes using the Window semantics.

We did not observe statistically significant differences in either accuracy rates or times-to-task-completion
for the precedence tasks. This result was not surprising in light of the similar result we saw in Chapter 6,
in which there was little difference between the Grid and Windows interfaces on the precedence tasks. As
we discussed in Chapter 6, the Grid’s policy visualization may mitigate the disadvantage of the recency
semantics on the precedence tasks. We also note that the precedence task design is not entirely realistic. In a
real policy-authoring scenario, an author would not be explicitly prompted to preserve an exception to a new
group access rule, but would have to remember their (or another author’s) intent to preserve an exception
that was set potentially weeks or months before.

We only compared 12 of 36 measurements we took between the Grid with recency semantics and the
Grid with Windows semantics because we were only interested in analyzing tasks in which the semantics
came into play. Nevertheless, it is worth looking briefly at the other results to be sure none are awry. As
we expect, we see that accuracy rates and times-to-task-completion for the two Grid interfaces are very
close to each other. There appears to be a possible performance gain for the Grid with Windows semantics
on the conflict-simple tasks. In fact, if we were to test the difference in accuracy rates for the large-scale
conflict-simple task for statistical significance, we would achieve a nearly significant result (p = 0.05). We
caution against doing so, however, as there are bound to be some apparently (but not actually) significant
results amongst the many possible significance tests that one could perform. We attribute the apparent
performance advantage of the Grid with Windows semantics in the conflict-simple tasks to random variation
in our participant pool, not to the semantics.

In summary, we conclude that the policy semantics does affect usability. We base this conclusion on
the results from tasks involving rule conflicts, for which the recency semantics led to higher accuracy rates
compared to the Windows semantics.

7.5 Policy Semantics Study #2: Evaluating our proposed
semantics

The strong evidence from Policy Semantics Study #1 suggesting that semantics can affect usability led us
to design our specificity semantics. We then ran a second user study to evaluate our new semantics and the
concomitant new features of our Grid interface.

7.5.1 Method
We ran a laboratory user study with 54 participants, who each performed 12 policy-authoring tasks using one
of three interfaces. Interface was a between-participants variable, so 18 participants used each interface. We
measured accuracy and time-to-task-completion for each task. The three interface conditions we compared
were:
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1. the Grid interface with our specificity semantics, which we henceforth call GS;

2. the Grid interface with Windows semantics, which we henceforth call GW (note that GW is different
from GWS because of the new features we added to the Grid, as discussed in Section 7.2.2); and

3. the Windows interface with the Windows semantics, which we henceforth call WW.

The WW interface served as the control in our study; it was the condition on which we hoped to improve.
The GS interface is our best effort at improving upon WW, because GS has both the visual presentation
advantages of the Expandable Grid and the expected advantages of our specificity semantics. The GW
interface serves to help us separate the effects of the Grid as a presentation technique from the effects of
the semantics. When we observe differences between the GW and WW conditions, we attribute them to the
Grid presentation, and when we observe differences between the GW and GS conditions, we attribute them
to the semantics. Differences between the GS and WW conditions are the cumulative effect of the Grid
presentation and the specificity semantics.

As in Policy Semantics Study #1, we were able to implement the two different Grid conditions because
our implementation of the file-permissions Expandable Grid interface includes a simulated Windows file
access-control system. The simulated system serves as the backend to the Grid interface. Since we wrote
the simulated system, we are able to control its semantics. We implemented both the Windows semantics and
our specificity semantics in the simulated system, so the Grid interface can run on top of either semantics.

7.5.1.1 Participants
We recruited 54 students, undergraduate and graduate, in technical disciplines (science, engineering, or
mathematics) to participate in the study. Eighteen were female. Participants were all daily computer users,
but had never served as system administrators. Like our participant pool from the study described in Chap-
ter 6, our participant pool was consistent with our target demographic of novice and occasional policy au-
thors. However, the participant pool in the present study did include graduate students (27 of 54 participants
were graduate students), so may be a more advanced group than that in the prior study.

7.5.1.2 Experimental setup
Participants worked on a laptop running the Windows XP Professional operating system. Task statements
were presented in a Web browser and were available on screen throughout the task. For participants using
Windows, we started the Computer Management interface in a state that allowed for viewing system users
and groups and opened Windows Help files related to setting file permissions. For participants using the
Expandable Grid, the Grid application window was started at an initial size of 800x740 pixels. The laptop
screen resolution was 1280x768.

The data we collected included the policies people created and screen video and audio of participants
thinking aloud.

7.5.1.3 Task design
We designed 12 tasks to test the advantages and disadvantages of each of the two semantics as well as the
overall usability of each interface. All tasks were based on the same teaching-assistant scenario used in the
study described in Chapter 6, but tasks in this study used only “large-scale” policies (containing roughly
500 principals and 500 resources). Each task is defined by its task statement (i.e., the text we presented to



7.5: POLICY SEMANTICS STUDY #2: EVALUATING OUR PROPOSED SEMANTICS 111

participants in the study) and its initial configuration, including existing access rules, group memberships,
and file locations. Task statements asked participants to make changes to the initial configuration. We
describe each of the tasks below.

Charles
The Charles task involves adding a user to a group, and that user has several ALLOW permissions on some
files, the group has DENY permissions on those files, and the goal is to keep the user’s ALLOW permissions.

The Charles task statement presented to participants was:

Charles has just graduated, but is going to come back to sing in the choir with his friends.

Add Charles to the Alumni group, but make sure he can still read the same files in the Choir
1\Lyrics folder that his good friend Carl can read.

In the initial configuration, there are rules stating that Charles is allowed READ access to four files in the
Choir 1\Lyrics folder. These are the same files that Carl can read, so in the final state, we want Charles to be
allowed READ access to the four files. There are rules stating that the Alumni group is denied READ access
to the same files. When Charles is moved into the Alumni group, he will inherit the group DENY rules,
and under the Windows semantics deny-precedence, he will be denied access to the files. However, under
specificity semantics, his rules are more specific than the group rules, so he will still be allowed to read the
files (see Figure 7.2). Thus, the specificity semantics makes this task easier, and we expect the GS interface
to perform better than GW and WW in the Charles task.

Kent
The Kent task was structured similarly to the Charles task, but the goal was inverted to give the advantage
to the Windows semantics.

The Kent task statement presented to participants was:

Kent was a terrible TA for Choir 1 so the instructor demoted him to the level of student. While
Kent previously had permissions to read and write the attendance and gradebook files, as a
student he should no longer have access to that information.

Remove Kent from Choir 1 TAs 2008 and add him to Choir 1 Students 2008. For files in
the Classes\Choir 1\Admin folder, make sure he only has the same permissions as the other
Choir 1 students.

In the initial configuration, there are rules stating that Kent is allowed READ and WRITE access to the
attendance.xls and gradebook.xls files in the Classes\Choir 1\Admin folder, but there are rules stating that
the group Choir 1 Students 2008 is denied READ and WRITE access to those files. So, when Kent is added
to Choir 1 Students 2008, he will inherit the group’s DENY rules. Under the Windows semantics, the group
DENY rules will take precedence, but under specificity semantics, he will still be allowed to read and write
the files. Thus, the task is done after moving Kent out of the TA group and into the student group in the GW
and WW conditions, but extra action is required to complete the task in the GS condition. So, we expect the
Windows semantics, embodied in GW and WW, to perform better on the Kent task. However, we expect the
Grid’s visual presentation advantages over the Windows list-of-rules presentation at least partially to offset
the semantics disadvantage.
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Lance
The Lance task introduces a two-dimensional conflict, in which there are conflicts in both the principals and
resources.

The Lance task statement presented to participants was:

Lance was hired by the New York Philharmonic and can no longer serve as Head TA this year.

Remove Lance from the group Head TAs 2008, but make sure you don’t remove him from
Head TAs 2007. Then make sure he is not allowed to access any files in the Music 101\Admin
folder.

In the initial configuration, there is a rule stating that Lance is denied READ access to the Music
101\Admin folder, and there are rules stating that the Head TAs 2007 group is allowed READ access to
the Music 101\Admin\gradebook.xls file, but that the Head TAs 2008 group is denied READ access to the
file. When Lance is removed from Head TAs 2008, a two-dimensional conflict is revealed, since the rule
applying to Lance on the Admin folder is more specific in its principal, but the rule applying to Head TAs
2007 on the gradebook.xls file is more specific in its resource. In the Windows semantics, the rule that is
more specific in the resource takes precedence, so Lance will be allowed to read the gradebook.xls file, but
in specificity semantics, the DENY rule takes precedence, so Lance will not be allowed to read the grade-
book.xls file. Since the task calls for Lance not to be allowed to access any files in the Admin folder, the
specificity semantics requires less work to complete the task correctly, and we expect the GS interface to
perform best here.

Adria
Just as the Kent task is similar to the Charles task with the inverse goal, the Adria task is similar to the Lance
task with the inverse goal.

The Adria task statement presented to participants was:

Adria, an Opera Instructor, was not getting along with the other instructor and left the class.
You need to remove her from the Opera Instructors group. She is still a Music 101 instructor,
though, and the Music 101 instructors need access to the Music 101 Lecture Notes.

Remove Adria from the Opera Instructors group. Make sure she has the same permissions
on the files in the Music 101\Lecture Notes folder as the other Music 101 instructors.

As in the Lance task, when Adria is removed from a group, a two-dimensional conflict involving another
group is revealed. In the initial configuration, there is a rule stating that Adria is denied READ access
to the Music 101\Lecture Notes folder and there is a rule stating that the Music 101 Instructors group is
allowed READ access to the Music101\Lecture Notes\Bach.ppt file. This latter group access rule is initially
suppressed in both semantics by a rule stating that the Opera Instructors group is denied READ access to the
Bach.ppt file, but when Adria is removed from Opera Instructors, a two-dimensional conflict is revealed (see
Figure 7.8). In the Windows semantics, the group access rule, which is more specific in its resource, will
take precedence and Adria will be allowed to read the Bach.ppt file as soon as she is removed from Opera
Instructors. In our specificity semantics, deny-precedence is used to resolve two-dimensional conflicts, so
Adria will not be allowed to read the Bach.ppt file without some extra work. We thus expect the GW and
WW conditions to perform better than the GS condition for the Adria task. However, the extra work required
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Figure 7.8: A screenshot of the Grid interface from the Adria task after Adria has been removed from the
Opera Instructors group. There is a two-dimensional conflict for Adria’s READ permission for the Bach.ppt
file.
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in the GS condition is quite simple. With the specificity semantics, simply setting an access rule explicitly
allowing Adria to read the Bach.ppt file is sufficient, as the rule applying to Adria and Bach.ppt will be
more specific than the rules in conflict. We thus expect that the GS’s presentation advantages over the WW
condition combined with the ease of overcoming the two-dimensional conflict might counteract the WW
semantics advantage.

Pablo
The Pablo task, like the Jana task described in Chapter 6 presents a group conflict in which a user is a
member of two groups, one of which has a rule allowing it access to a file and the other of which has a rule
denying it access to the same file.

The Pablo task statement presented to participants was:

Pablo, a student in Music 101, tried to download the homework file, assignment4.pdf, but
couldn’t.

Set permissions so that Pablo can read the file assignment4.pdf in the Music 101\Handouts
folder. Make sure you don’t change any other students’ permissions. (Hint: If you need to, you
can add Pablo to a new group or remove Pablo from a group he’s already in.)

In the initial configuration, Pablo is a member of the group Music 101 Students 2008, for which there
is a rule allowing the group READ access to the assignment4.pdf file, and he is a member of the group
Troublemakers, for which there is a rule denying the group READ access to the assignment4.pdf file. In both
semantics, deny-precedence is in effect for conflicts between groups. The difference between the semantics
comes into play when participants try to resolve the conflict. In the specificity semantics, authors can simply
create a rule allowing Pablo to read assignment4.pdf, and it will take precedence because it will be more
specific than either of the group rules. In the GS interface, creating such a rule is a simple matter of clicking
on the square corresponding to Pablo, assignment4.pdf, and READ. In the Windows semantics, such a rule
would not take precedence; completing the task requires either removing Pablo from the Troublemakers
group or removing the rule that denies Troublemakers READ access to the file. In either solution, care must
be taken not to change the effective permissions of other members of the Troublemakers group. Because
there are more steps involved in the solution for the Windows semantics, we expect better performance with
the GS interface for the Pablo task.

Piano
The Piano task tests the interfaces’ group-creation functionality and introduces a group conflict.

The Piano task statement presented to participants was:

A new seminar on piano performance was just started.

Create a group called Piano Students 2008 and add the following students to it: Aaron,
Camilla, Thor, and Uzi. Set permissions so that these students and any students added to
Piano Students 2008 in the future will be able to read the Piano\Handouts folder.

We expect creating the group, adding users to it, and giving it READ access to the Handouts folder to be
easy, but there is a trick in our configuration. The user Thor is a member of the Troublemakers group, for
which there is a rule that denies it READ access to the Handouts folder. In both semantics, the DENY rule
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takes precedence in the presence of the group conflict. However, as in the Pablo and Jana tasks, the conflict is
much more easily resolved with the specificity semantics, because resolving the conflict is a simple matter
of creating a rule stating that Thor is allowed READ access to the Handouts folder. With the Windows
semantics, it is necessary to either remove Thor from the Troublemakers group or remove the rule denying
Troublemakers access to the Handouts folder. We expect the GS interface to perform best for the Piano task.

In addition, we expect the GW interface to perform better than the WW interface. Correctly completing
the task requires noticing that Thor does not have READ access to the Handouts folder. We expect it to
be easier to read Thor’s effective permissions with the Grid’s full, effective policy presentation than with
the Windows list-of-rules presentation, in which effective policy is three mouse clicks away from the main
interface display.

Troublemakers
The Troublemakers task tests the ability of the interfaces to reveal an undesired exception to a rule.

The Troublemakers task statement presented to participants was:

The music department is full of pranksters. These people have been put in the Troublemakers
group.

Set permissions so that no one in the Troublemakers group has access to anything.

In the initial configuration, there are rules denying all access to the root Classes folder to members of
the Troublemakers group, but there is one user who has access to a folder two levels below the root folder.
The Windows interface only allows the author to check the effective policy for one user for one resource
at a time. In our configuration, there are seven users in the Troublemakers group and 29 folders one or
two levels below the root, so it could take up to 7x29=203 operations to ensure that no members of the
Troublemakers group have access to any of those folders using the Windows interface. The Grid interfaces
show the aggregate effective policy for READ and WRITE for the Troublemakers at the root folder as mixed
(yellow squares with red dog-ears), thereby providing the author a clue that some member of Troublemakers
has access to something. Expanding the group reveals that Marie is the user with access to something within
the Opera folder, and expanding the Opera folder reveals two rules stating that Marie has access to read
and write the Opera\Admin folder. See Figure 7.9. Because of the relative ease of spotting exceptions to
the desired DENY rule in the Grid interfaces, we expect them to perform better in the Troublemakers task
compared to the Windows interface. The semantics does not play a role in the Troublemakers task.

Assignment
The assignment task tests the semantics in the presence of file moves and illustrates a potentially confusing
aspect of the Windows semantics.

The Assignment task statement presented to participants was:

The Music 101 Assignment 1 had some mistakes and needs to be edited. Students should be
able to read the file while it is being edited, and TAs will need to read and write the file.

Move the assignment1.pdf file from the Classes\Music 101\Handouts folder to the Classes\Music
101\Drafts folder. Then set permissions so that:

• Music 101 Students 2008 can read the assignment1.pdf file; and
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Figure 7.9: A screenshot of the Grid interface for the Troublemakers task, showing the user “marie” with
an exception to the group’s DENY rule on the root Classes folder.
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• Music 101 TAs 2008 can read and write the assignment1.pdf file.

In the Windows semantics, when a file is moved from one parent folder to another, it retains the rules
it inherited from its old parent. When a change is made to the file’s or its new parent’s access control list,
the file then inherits all rules from the new parent, and loses rules from the old parent. In our specificity
semantics, a moved file inherits rules from its new parent immediately.

In the initial configuration for the Assignment task, relevant rules state that:

• Music 101 Students 2008 are allowed READ access to files in the Handouts folder;

• Music 101 Students 2008 are denied READ access to files in the Drafts folder;

• Music 101 TAs 2008 are allowed READ access but denied WRITE access to files in the Handouts
folder; and

• Music 101 TAs 2008 are allowed READ and WRITE access to files in the Drafts folder.

From the rules, we see that if the assignment1.pdf file is moved and inherits rules from its new parent folder
Drafts, the task will be correctly completed. Thus, under our semantics, the Assignment task is complete
as soon as the participant has moved the file. Under the Windows semantics, though, participants may be
tricked by the rule that the file retains its old parent’s rules, but may suddenly inherit all of its new parent’s
rules if the participant makes a change. So, under the Windows semantics, after the participant has moved
the assignment1.pdf file, they may check to see that Music 101 Students 2008 can read the file. Because
students are allowed to read files in the old parent folder Handouts, the participant will note that the students
have the correct access. The participant may then proceed to check what access the Music 101 TAs 2008
have to the assignment1.pdf file, and note that they have can read but not write the file. However, when the
participant creates a rule allowing the TAs WRITE access to the file, the file will inherit all rules from its
new parent, including the rule that the students are denied READ access to files in the Drafts folder. Unless
the participant goes back and checks the students’ access again, they will end up with the wrong access
and the task will not be completed correctly. Thus, we expect that the GS interface will perform best in the
Assignment task.

Syllabus
The syllabus task is structured similarly to the Assignment task but with the inverse goal, so it gives the
advantage to the Window semantics.

The Syllabus task statement presented to participants was:

The Music 101 syllabus was in draft form, but is now complete and ready for students to read.

Move the syllabus.doc file from the Classes\Music 101\Admin folder to the Classes\Music
101\Handouts folder. Then set permissions so that all members of Music 101 Students 2008
can read the syllabus.doc file.

In the initial configuration, there is a rule stating that all students have READ access to the syllabus.doc
file, but there are rules stating that four of the students are denied READ access to files in the Handouts
folder. Under the Windows semantics, moving the file does not change the students’ access, and since they
all already have READ access to the file, the task is complete as soon as the participant moves the file into
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the Handouts folder. In our semantics, when the participant moves the file, it inherits its new parents’ rules,
so the rules denying READ access to the four students go into effect. The participant must make the extra
effort to check the effective policy for those students and explicitly grant them READ access to correctly
complete the task. Thus, we expect the GW and WW interfaces with the Windows semantics to perform
better in the Syllabus task.

Jana
The Jana task was described in Chapter 6, and, as mentioned above, is similar in structure to the Pablo task.

The Jana task statement presented to participants was:

Jana, a Theory 101 TA, complained that when she tried to change the Four-part Harmony hand-
out to update the assignment, she was denied access.

Set permissions so that Jana can read and write the Four-part Harmony.doc file in the Theory
101\Handouts folder.

As explained in the description of the Pablo task above, we expect specificity semantics to perform better
for the Jana task than the Windows semantics. Moreover, we have already seen in Chapter 6 that a recency
semantics, which is equivalent to our specificity semantics as far as the Jana task is concerned, outperformed
the Windows semantics. We expect the specificity semantics in the GS interface to outperform the GW and
WW interfaces with the Windows semantics for the Jana task.

Clayton
The Clayton task is the large-scale Conflict-simple task from the study described in Chapter 6.

The Clayton task statement presented to participants was:

Clayton, a Theory 101 TA, is going away on a trip and cannot grade the Simple Solo assignment.
Because of this he will be put in charge of grading the Simple Harmony assignment. Clayton
will need read and write access to the Simple Harmony assignment. He also may wish to refer
to the Simple Solo assignment, so he should be allowed to read the Simple Solo submissions
folder. However, you don’t want him to accidentally overwrite the submissions to Simple Solo
when viewing them.

Set permissions so that Clayton can read and write the Simple Harmony subfolder in the
Theory 101\Submissions folder.

Set permissions so that Clayton can read, but not write, the Simple Solo subfolder in the
Theory 101\Submissions folder.

We observed little difference between the GS and WW interfaces in the study reported in Chapter 6, and
we expect little difference here.

Quincy
The Quincy task is the large-scale Precedence task from the study described in Chapter 6.

The Quincy task statement presented to participants was:

Students in the Choir class are going to sing the War Requiem, so the Choir instructor, Savanna,
has asked you to give them access to the War Requiem lyric sheets. However, you remember
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that last week she asked you to prevent Quincy from accessing any tenor parts, because, al-
though he obnoxiously insists he is a tenor, Savanna wants him to sing baritone. You asked, and
she confirmed that Quincy should not have access to the tenor part. Other students should have
access to all the parts.

Set permissions so that Choir 1 Students 2008 can read the files in the War Requiem subfolder
of the Choir 1\Lyrics folder. But remember that Quincy should not be allowed to read the tenor
part.

We designed the Quincy task to test a weakness of our recency semantics. In a recency semantics, a rule
at the group and folder level can override an exception at the user and file level that was intended to be kept.
In the initial configuration for the Quincy task, there is rule denying Quincy READ access to the Tenor.pdf
file in the War Requiem folder. Under a recency semantics, when a rule is created to allow all students
READ access to all files in the War Requiem folder, the DENY rule applying to Quincy will be overridden.
However, under both the Windows semantics and our specificity semantics, the exception will stay in place
because it is more specific than the new rule applying to students and the War Requiem folder. Thus, we
expect similar performance amongst the interfaces for the Quincy task.

7.5.1.4 Procedure
At the start of each study session, participants filled out a demographic survey so that we could ensure they
were students in technical disciplines. Following the survey, our experimenter read instructions explaining
our teaching-assistant scenario to participants. After reading these instructions, our experimenter read inter-
face training materials. Training for this study was more extensive than that for Policy Semantics Study #1
and the original study described in Chapter 6, since performing dynamic changes required participants to
understand more functionality. For each interface, training covered how to perform the following operations:

• viewing files and folders;

• moving a file;

• viewing group memberships;

• adding a user to a group;

• removing a user from a group;

• creating a new group;

• checking an access rule;

• checking effective permissions;

• creating an access rule;

• searching for a file or principal.



120 CHAPTER 7: POLICY SEMANTICS

During training, the experimenter also explained that effective permissions may differ from access rules
because of the way rules combine, but did not explain the precise workings of the semantics. After these op-
erations had been explained to participants, the experimenter walked them through a practice task. Training
took about 10 minutes.

Participants then began completing tasks. Before each task, the experimenter brought up the interface
in a preconfigured state tailored to each task. Task statements were then presented to participants in a Web
browser on screen. Participants were asked to think aloud while they worked on the tasks. Task order was
counterbalanced across participants using a pseudo-random Latin square design to guard against ordering
and sequence effects.

7.5.2 Results and discussion
Our results are in the form of accuracy rates and mean time-to-task-completion for each interface condition
and for each task. Accuracy rates represent the proportion of participants in each condition who correctly
completed the task. The mean time-to-task-completion is computed only over the task completion times
of those participants who successfully completed each task. Accuracy results can be seen in Figure 7.10.
Time-to-task-completion results can be seen in Figure 7.11.
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Figure 7.10: Accuracy results, showing proportion of participants correctly completing each task with GS,
GW, and WW interfaces.
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Figure 7.11: Time-to-task-completion results, showing mean time-to-task-completion, in seconds, for par-
ticipants who successfully completed each task with GS, GW, and WW interfaces. Error bars show +/- one
standard deviation.
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Experiment-wide results
For each metric, accuracy and time-to-task-completion, we performed an experiment-wide test of the hy-
pothesis that GS performed better than GW and WW and that GW performed better than WW over all
tasks. The accuracy rates over all tasks do show that GS performed best (overall accuracy 76.4%), followed
by GW (overall accuracy 53.2%) and then WW (overall accuracy 45.4%). We used logistic regression to
test for statistical significance of the effects of interface on accuracy. The fitted model gave an intercept
of 1.17 for the GS condition and gave coefficients of -1.04 for the GW condition and -1.36 for the WW
condition. Wald tests of the hypotheses that the intercept (Z = 7.33, p < 0.001) and the coefficients
(Z = −4.96, p < 0.001;Z = −6.46, p < 0.001) were not equal to zero were all strongly significant at the
0.05 level, suggesting that interface has an effect on accuracy.

We used an ANOVA with interface as the independent variable and log-transformed time-to-task- com-
pletion as the dependent variable. We found a statistically significant effect of interface (F(2,375)=32.17,
p<0.001) on time-to-task-completion. The mean times-to-task-completion (measured in seconds) show GS
leading to fastest task completion (M=121, σ=63), followed by GW (M=130, σ=78) and WW (M=207,
σ=106).

Both the analysis of overall accuracy and overall time-to-task-completion show the result we expected,
which is best performance from GS, medium performance by GW, and worst performance by WW. However,
results of the overall analysis should be interpreted with some caution since we did not design the set of tasks
to be a balanced representation of all tasks a policy author might do in practice. Instead, we designed each
task to test a specific aspect of the specificity semantics or of the Grid interface. Following are the task-by-
task results, which address the effects of specific aspects of the semantics and the Grid on policy-authoring
performance.

Task-by-task analysis method
We designed our 12 tasks to reveal strengths and weaknesses of the specificity and Windows semantics and
the Grid and Windows policy presentations. In Sections 7.5.2.1 through 7.5.2.11, we state our hypotheses for
each task and the results of statistical testing of the hypotheses, and discuss the results. A broader discussion
of the overall results of the study follows the task-by-task presentation of results.

Our hypotheses for each task express our expectations, based on each task design, about how the accu-
racy and time-to-task-completion results would turn out. We tested hypotheses regarding accuracy rates by
using two-sided Fisher’s exact tests with the null hypothesis that the difference in accuracy rates was zero.
We tested hypotheses regarding time-to-task-completion by using two-sided t-tests on log-transformed mean
times-to-task-completion with the null hypothesis that the difference in mean time-to-task-completion was
zero. Although our hypotheses are often directional (i.e., we expect better performance from one condition
than another) we used two-sided tests in all cases. The decision to use two-sided tests is safe since two-sided
tests are more conservative than one-sided tests.

Because we tested 24 hypotheses regarding accuracy and 19 regarding time-to-task-completion, we
applied a multiple testing correction to our α = 0.05 significance threshold. We used the Benjamini-
Hochberg correction which gave us adjusted α values of 0.007 for the accuracy tests and 0.01 for the time-
to-task-completion tests.

We use the notation aGS , aGW , and aWW to represent the accuracy rates for the GS, GW, and WW
conditions and ttcGS , ttcGW , and ttcWW to represent mean time-to-task-completion over successful partic-
ipants for the three conditions.
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Results of all hypothesis tests of accuracy rates can be seen in Table 7.4. Results of hypothesis tests of
times-to-task-completion can be seen in Table 7.5.

Table 7.4: Summary of statistical tests for significant differences in accuracy rate for Grid with specificity
semantics (aGS), Grid with Windows semantics (aGW ), and Windows (aWW ). For each task, the table shows
accuracy rates for the three interfaces, hypotheses tested, and p-values from two-sided Fisher’s exact tests;
p-values below the α = 0.007 rejection threshold are shaded and highlighted in bold, indicating significant
tests.

Task aGS aGW aWW hypothesis p-value

Charles 0.61 0.11 0.00 aGS > aGW 0.004
aGS > aWW 0.001

Kent 0.50 1.00 0.94 aGS < aGW 0.001
aGS 6= aWW 0.007

Lance 1.00 0.39 0.00
aGS > aGW 0.001
aGS > aWW 0.001
aGW > aWW 0.007

Adria 0.78 0.83 0.56 aGS < aGW 1.00
aGS 6= aWW 0.29

Pablo 0.94 0.22 0.39
aGS > aGW 0.001
aGS > aWW 0.001
aGW > aWW 0.47

Piano 0.44 0.33 0.11
aGS > aGW 0.73
aGS > aWW 0.061
aGW > aWW 0.23

Troublemakers 0.56 0.39 0.00 aGS > aWW 0.001
aGW > aWW 0.007

Assignment 0.89 0.22 0.33 aGS > aGW 0.001
aGS > aWW 0.002

Syllabus 0.72 0.94 1.00 aGS 6= aGW 0.17
aGS 6= aWW 0.05

Jana 0.89 0.17 0.56
aGS > aGW 0.001
aGS > aWW 0.06
aGW > aWW 0.035

Clayton 0.94 0.89 0.78 No test

Qunicy 0.89 0.89 0.78 No test

Scoring methods for accuracy
In computing accuracy rates, we identified two possible methods for scoring a participant’s solution to a task
as correct or incorrect. Participants sometimes made extraneous changes to policies that were unnecessary
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Table 7.5: Summary of statistical tests for significant differences in mean time-to-task-completion, in sec-
onds, between successful participants in GS (ttcGS), GW (ttcGW ), and WW (ttcWW ) conditions. For each
task, the table shows means (M) and standard deviations (σ) for each interface, the hypotheses tested, and
t-statistics (with degrees of freedom (df)) and p-values resulting from two-sided t-tests; p-values at or below
the α = 0.01 rejection threshold are shaded and highlighted in bold, indicating significant tests. “Ins.
data” indicates places where insufficient data was available to compute a statistic.

Task GS: M(σ) GW: M(σ) WW: M(σ) test t(df) p

Charles 184(87) 320(117) Ins. data
ttcGS < ttcGW -2.04(1.89) 0.19
ttcGS < ttcWW Ins. data

Kent 155(53) 113(31) 202(79) ttcGS > ttcGW 2.26(13.2) 0.04
ttcGS > ttcWW -1.55(19.2) 0.14

Lance 87(44) 118(52) Ins. data
ttcGS < ttcGW -1.35(10.6) 0.20
ttcGS < ttcWW Ins. data
ttcGW < ttcWW Ins. data

Adria 119(61) 120(84) 202(101) ttcGS > ttcGW 0.09(27.0) 0.92
ttcGS > ttcWW -2.75(21.2) 0.01

Pablo 115(63) 240(154) 185(97)
ttcGS < ttcGW -1.88(3.9) 0.14
ttcGS < ttcWW -1.69(9.8) 0.12
ttcGW < ttcWW 0.57(5.8) 0.59

Piano 175(58) 217(73) 336(209)
ttcGS < ttcGW -1.05(10.0) 0.32
ttcGS < ttcWW -1.21(1.1) 0.42
ttcGW < ttcWW -0.77(1.2) 0.56

Troublemakers 127(53) 158(100) Ins. data No test

Assignment 103(42) 98(3) 194(60) ttcGS < ttcGW -0.18(15.8) 0.86
ttcGS < ttcWW -3.93(11.2) 0.002

Syllabus 156(54) 77(25) 101(60) ttcGS 6= ttcGW 4.97(26.0) 0.001
ttcGS 6= ttcWW 3.20(28.0) 0.003

Jana 60(23) 201(118) 253(94)
ttcGS < ttcGW -2.40(2.1) 0.13
ttcGS < ttcWW -10.1(19.2) 0.001
ttcGW < ttcWW -0.74(2.3) 0.53

Clayton 116(56) 113(52) 280(92) No test

Quincy 127(58) 138(66) 243(118) No test
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to complete the tasks. For example, some participants in the Adria task changed the DENY rule for Adria’s
READ access to the entire Music 1\Lecture Notes folder to an ALLOW rule. Doing so accomplishes the
task’s explicit goal of allowing Adria to read the Bach.ppt file. However, changing the folder-level rule
could have undesirable side effects, since it affects Adria’s access to other files in the folder. So, while
the task statement did not explicitly prohibit changing Adria’s permissions on the folder, changing these
permissions could have undesirable consequences in a real scenario.

One of the two scoring methods scores a solution as correct as long as the final effective policy fulfills all
explicitly stated goals of a task, regardless of any extraneous policy changes. Under this method, the solution
of changing Adria’s DENY rule on the Lecture Notes folder was scored as correct. A stricter scoring method
scores a solution as correct if it not only fulfills the explicit goals of the task, but also does not change
any other parts of the effective policy. Under this method, changing Adria’s folder-level rule was scored as
incorrect.

In the results reported here, we used the first, less strict scoring method for consistency with the method
we used in the study in Chapter 6. The proportions by which accuracy would change using the other scoring
method are shown in Table 7.6. We note that extraneous policy changes were relatively rare, and using a
different scoring method would make little difference in our results. Applying the stricter scoring method
would change the statistical significance of only three results: (1) the accuracy difference between GS and
WW for the Kent task would not be statistically significant; (2) the accuracy difference between GS and
WW for the Pablo task would not be statistically significant; and (3) the difference between GS and WW
for the Jana task would be statistically significant.

Table 7.6: Proportion of otherwise-correct solutions with extraneous changes by interface condition and
task. If we were to use a stricter accuracy scoring method, we would subtract the proportions in columns
2-4 from the corresponding accuracy rates in Table 7.4.

Proportion of solutions with
extraneous changes

Task GS GW WW

Charles 0.06 0.06 0.00

Kent 0.00 0.11 0.17

Lance 0.06 0.00 0.00

Adria 0.17 0.00 0.17

Pablo 0.22 0.00 0.00

Piano 0.00 0.06 0.00

Troublemakers 0.00 0.00 0.00

Assignment 0.00 0.00 0.06

Syllabus 0.00 0.00 0.11

Jana 0.00 0.06 0.11

Clayton 0.17 0.17 0.39

Quincy 0.00 0.06 0.22



7.5: POLICY SEMANTICS STUDY #2: EVALUATING OUR PROPOSED SEMANTICS 125

Error analysis
To gain more insight into the reasons why accuracy rates turned out as they did, we performed an error
analysis for each task. After watching several participants complete the study, we developed categories
of error types. Then, for each incorrectly completed task in the study, our experimenter categorized the
error that led to incorrect completion. For most tasks, we expected participants to make specific errors.
For example, we expected participants doing the Jana task with WW to fail to realize that there was a rule
conflict. Most errors we observed were the ones we expected, but we did observe some unexpected errors,
like participants finding the wrong Handouts folder in the Piano task or creating a new user named “charles”
instead of using the existing “charles” in the Charles task.

7.5.2.1 Charles
Hypotheses
We designed the Charles task to show the advantage our specificity semantics has over the Windows seman-
tics when ALLOW rule exceptions to a group DENY rule are desired. Our hypotheses are:

1. GS will have a higher accuracy rate than GW or WW.

2. GS will have a shorter mean time-to-task-completion than GW or WW.

Results
GS had a higher accuracy rate (61%) than both GW (11%) and WW (0%). Fisher’s exact tests showed
these differences to be statistically significant (aGS > aGW , p = 0.004; aGS > aWW , p < 0.001). GS
had a shorter mean time-to-task-completion (M=184, σ=87) than GW (M=320, σ=117). A t-test showed
this result not to be statistically significant (t(1.89) = −2.04, p = 0.19), but the lack of significance is not
surprising given that only 2 GW participants correctly completed the task. No WW participants correctly
completed the task, so we cannot compute a mean time-to-task-completion.

Discussion
The superior accuracy rate observed in GS for the Charles task compared to GW and WW illustrates the
semantics advantage that comes with an individual being able to have exceptions to the group rules.

The 61% accuracy rate amongst GS participants is notably low, given how simple the task should be for
participants in this condition. An analysis of the errors made in the Charles task indicates they are largely due
to a combination of misinterpreting the task statement and failing to understand that the background color
of subgrid squares indicates effective permissions. Of the seven participants who incorrectly completed the
Charles task, five set rules allowing READ access to the entire Lyrics folder to both Charles and Carl. These
participants apparently misinterpreted the instruction, “...make sure [Charles] can still read the same files ...
that his good friend Carl can read,” to mean that Charles and Carl should both be allowed to read all files in
the Lyrics folder, rather than the intended meaning that Charles’s access should match Carl’s existing access.
In any case, since Carl has some individual DENY exceptions on files within the Lyrics folder, his file-level
exceptions take precedence over the folder-level ALLOW rule, and he and Charles end up with different
permissions. Participants could have noticed that Charles and Carl had different effective permissions, but
apparently either failed to notice or misunderstood the meaning of the subgrid square background color.
The other two incorrect completions were due to an off-by-one-row error and an error adding Charles to the
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Alumni group, in which the participant created a new user named “charles” instead of using the existing
“charles” as we intended.

7.5.2.2 Kent
Hypotheses
We designed the Kent task to show a drawback our specificity semantics has when ALLOW exceptions to a
group DENY rule are not desired. We expect our semantics not to perform as well as the Windows semantics
for the Kent task, but we expect the Grid to help participants notice that the ALLOW exceptions are present.
On balance, we are not sure how much the Grid presentation will serve to overcome the drawback of the
semantics. Our hypotheses are:

1. GS will have a lower accuracy rate than GW. (Since GS has a semantics disadvantage but no presen-
tation advantage over GW.)

2. GS might have a lower accuracy rate than WW.

3. GS will have a longer mean time-to-task-completion than GW or WW.

Results
GS had a lower accuracy rate (50%) than both GW (100%) and WW (94%). Fisher’s exact tests showed
these differences to be statistically significant (aGS < aGW , p = 0.001; aGS < aWW , p = 0.007). (Note,
however, that under the stricter accuracy scoring method, the difference between GS and WW would not be
statistically significant.) GS had a longer mean time-to-task-completion (M=155, σ=53) than GW (M=113,
σ=31), but a t-test showed this result not to be statistically significant (t(13.2) = 2.26, p = 0.04). GS had
a shorter mean time-to-task-completion (M=155, σ=53) than WW (M=202, σ=79), but a t-test showed this
result not to be statistically significant (t(19.2) = −1.55, p = 0.14).

Discussion
As expected, we observed a Windows semantics advantage in the higher accuracy rates for the GW and
WW conditions. The Grid’s presentation advantages over the Windows list-of-rules presentation did not
overcome the semantics disadvantage. Time-to-task-completion differences tell us little, as they were not
statistically significant.

7.5.2.3 Lance
Hypotheses
We designed the Lance task to test the behavior of our specificity semantics in the presence of a two-
dimensional conflict when a DENY decision is desired. We expected the GS interface to perform better
than the GW and WW interfaces, and expected GW to perform better than WW because of the presentation
advantages of the Grid. Our hypotheses are:

1. GS will have a higher accuracy rate than GW or WW.

2. GW will have a higher accuracy rate than WW.

3. GS will have a shorter mean time-to-task-completion than GW or WW.
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4. GW will have a shorter mean time-to-task-completion than WW.

Results
GS had a higher accuracy rate (100%) than both GW (39%) and WW (0%). Fisher’s exact tests showed
these differences to be statistically significant (aGS > aGW , p < 0.001; aGS > aWW , p < 0.001; aGW >
aWW , p = 0.007). GS had a shorter mean time-to-task-completion (M=87, σ=44) than GW (M=118,
σ=52), but a t-test showed this result not to be statistically significant (t(10.6) = −1.35, p = 0.21). No
WW participants correctly completed the task, so we cannot compute a mean time-to-task-completion.

Discussion
The superior accuracy rate observed in GS for the Lance task compared to GW and WW illustrates the
semantics advantage that comes when the semantics chooses the desired conflict resolution by default. The
0% accuracy in WW illustrates the presentation disadvantage of a list-of-rules interface compared to the
Grid, which, even with the Windows semantics, was able to achieve a 39% accuracy rate. Participants in the
WW condition did not notice that Lance’s effective permissions were incorrect.

7.5.2.4 Adria
Hypotheses
We designed the Adria task to test the behavior of our specificity semantics in the presence of a two-
dimensional conflict when an ALLOW decision is desired. Since the specificity semantics requires extra
steps for correct task completion in the Adria task, we expected the GS interface to perform worse than the
GW interface. As in the Kent task, we expected the GS interface’s presentation advantage might enable it to
overcome its semantics disadvantage compared to the WW interface. Our hypotheses are:

1. GS will have a lower accuracy rate than GW. (Since GS has a semantics disadvantage but no presen-
tation advantage over GW.)

2. GS might have a lower accuracy rate than WW.

3. GS will have a longer mean time-to-task-completion than GW or WW.

Results
GS had a lower accuracy rate (78%) than GW (83%), but a higher accuracy rate than WW (56%). Fisher’s
exact tests showed neither of these differences to be statistically significant (aGS < aGW , p = 1; aGS 6=
aWW , p = 0.29). GS had an essentially equal mean time-to-task-completion (M=119, σ=61) compared to
GW (M=120, σ=84), and a t-test showed the small difference not to be statistically significant (t(27.0) =
0.09, p = 0.92). GS had a shorter mean time-to-task-completion than WW (M=202, σ=101), and a t-test
showed this result to be statistically significant (t(21.2) = −2.75, p = 0.01).

Discussion
Surprisingly, GS did not perform significantly worse than GW or WW for the Adria task, despite a seman-
tics disadvantage. An analysis of errors made in the WW condition showed that the eight participants who
incorrectly completed the task added extraneous access rules for Adria. They apparently did not realize
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that, once Adria had been removed from the Opera Instructors group, her effective permissions were al-
ready set correctly. This is perhaps not surprising given how difficult it is to check effective permissions
in the Windows interface. Only three participants made the same error in the GW interface, which allowed
participants to see that Adria’s effective permissions were already correct after her removal from Opera In-
structors. The result showing no statistically significant difference in accuracy between GS and GW and GS
and WW suggests that, for the Adria task, the GS’s presentation advantage combined with the ease of over-
coming the two-dimensional conflict with our specificity semantics did allow GS to overcome its semantics
disadvantage.

7.5.2.5 Pablo
Hypotheses
We designed the Pablo task to test the behavior of our specificity semantics in the presence of a group
conflict. The Pablo task was structured similarly to the Jana task—Pablo is a member of two groups, one of
which is allowed access to a file and the other of which is denied access to that file. Detecting the conflict
is easier when effective permissions are visible, and resolving the conflict is easier with our specificity
semantics than with Windows. So, we expect GS to perform best, followed by GW, followed by WW. Our
hypotheses are:

1. GS will have a higher accuracy rate than GW or WW.

2. GW will have a higher accuracy rate than WW.

3. GS will have a shorter mean time-to-task-completion than GW or WW.

4. GW will have a shorter mean time-to-task-completion than WW.

Results
GS had a higher accuracy rate (94%) than GW (22%) and WW (39%), and Fisher’s exact tests showed the
differences between conditions to be statistically significant (aGS > aGW , p < 0.001; aGS > aWW , p <
0.001). (Note, however, that under the stricter accuracy scoring method, the difference between GS and WW
would not be statistically significant.) GW had a lower accuracy rate than WW, but the difference was not
statistically significant. GS had a shorter mean time-to-task-completion (M=115, σ=63) compared to GW
(M=240, σ=154) and WW (M=185, σ=97), but t-tests showed these differences not to be statistically sig-
nificant (ttcGS < ttcGW , t(3.9) = −1.88, p = 0.14; ttcGS < ttcWW , t(9.8) = −1.69, p = 0.12; ttcGW <
ttcWW , t(5.8) = 0.57, p = 0.59).

Discussion
As expected, GS performed best in accuracy and in mean time-to-task-completion (although the time-to-
task-completion differences were not statistically significant). Surprisingly, GW did not outperform WW.
An analysis of the errors participants made with the GW interface indicates participants would commonly
set an access rule stating that Pablo was allowed to read the assignment4.pdf file, but were confused by the
difference between the access rule (shown as a light green dog-ear in the subgrid square corresponding to
Pablo, READ, and assignment4.pdf) and the effective permission (shown as a red background in the subgrid
square). Of course, under specificity semantics, the specific rule applying to Pablo would take precedence
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over the existing group rules, so it would not be important for participants to understand the distinction
between access rule and effective permission, since both would be the same (i.e., both the subgrid dog-ear
and background would be green).

7.5.2.6 Piano
Hypotheses
We designed the Piano task to test the group creation functionality of the interfaces and the behavior of the
semantics in the presence of a group conflict. Our expectations for the Piano task were similar to those for
the Pablo task, except that we expected lower accuracy rates over all three conditions due to errors in the
group creation process. Our hypotheses are:

1. GS will have a higher accuracy rate than GW or WW.

2. GW will have a higher accuracy rate than WW.

3. GS will have a shorter mean time-to-task-completion than GW or WW.

4. GW will have a shorter mean time-to-task-completion than WW.

Results
GS had a higher accuracy rate (44%) than GW (33%) and WW (11%), but Fisher’s exact tests showed none
of the differences in accuracy rates amongst the conditions to be statistically significant (aGS > aGW , p =
0.73; aGS > aWW , p = 0.06; aGW > aWW , p = 0.23). GS had a shorter mean time-to-task-completion
(M=175, σ=58) compared to GW (M=217, σ=73) and WW (M=336, σ=209), but t-tests showed differ-
ences amongst the interfaces not to be statistically significant (ttcGS < ttcGW , t(10.0) = −1.05, p =
0.32; ttcGS < ttcWW , t(1.1) = −1.21, p = 0.42; ttcGW < ttcWW , t(1.2) = −0.77, p = 0.56).

Discussion
As expected, GS performed best in accuracy and in mean time-to-task-completion, although the results were
not statistically significant. Accuracy rates overall were quite low, below 50% in all conditions. We attribute
the low accuracy rates to the difficulty of the task. An error analysis showed that while most participants
successfully formed the new Piano Students 2008 group and created an access rule granting the group access
to the Piano\Handouts folder, eight GS participants, nine GW participants, and 16 WW participants failed
to notice that a group conflict existed, so never took steps to resolve it.

7.5.2.7 Troublemakers
Hypotheses
The troublemakers task was designed to show the Grid’s support for visual searches for anomalies in a large
section of the effective policy—a search for a “needle in a haystack.” We expect the Grid’s whole effective
policy display to enable such searches, and expected that the Windows display of one resource and principal
at a time to make such a search virtually impossible. Our hypotheses are:

1. GS and GW will have higher accuracy rates than WW. (Semantics did not come into play in the
Troublemakers task, so we did not expect a different between GS and GW.)
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2. WW will have a near-zero accuracy rate. (Hence, meaningful time-to-task-completion comparisons
will not be possible.)

Results
The accuracy rates for GS (56%) and GW (39%) were higher than the accuracy rate for WW (0%). Fisher’s
exact tests showed the differences in accuracy rates between GS and WW (p<0.001) and GW and WW
(p=0.007) to be statistically significant. The WW accuracy rate was, as expected, zero.

Discussion
As expected, the Grid interfaces enabled participants to find an anomaly in the effective policy and fix it,
and the Windows interface did not. Accuracy rates were still fairly low; an error analysis revealed that
GS and GW participants who did not correctly complete the task failed to realize they needed to expand
the Troublemakers group and the Opera\Admin folder to find the permissions anomaly. Most of these
participants set a DENY rule for the Troublemakers group on the root Classes folder, but failed to realize
that the yellow background color of the subgrid square corresponding to Troublemakers’ READ access to
the Classes folder meant that there was still an ALLOW exception to the group-level DENY rule.

7.5.2.8 Assignment
Hypotheses
We designed the Assignment task to test the semantics following a file move. Because of the potential
surprise changes to effective policy that can arise with the Windows semantics, we expected the specificity
semantics to be less confusing to participants and thus lead to better performance. Our hypotheses are:

1. GS will have higher accuracy rates than GW and WW.

2. GS will have shorter mean time-to-task-completion than GW and WW.

Results
The accuracy rate for GS (89%) was higher than the accuracy rates for GW (22%) and WW (33%). Fisher’s
exact tests showed the differences in accuracy rates between GS and GW (p<0.001) and GS and WW
(p=0.002) to be statistically significant. The mean time-to-task-completion for GS (M=103, σ=42) was
marginally longer than that for GW (M=98, σ=3), but the difference was not statistically significant (t(15.8) =
−0.18, p = 0.86). The GS mean time-to-task-completion was shorter than that for WW (M=194, σ=60),
and the difference was statistically significant (t(11.2) = −3.93, p = 0.002).

Discussion
As expected, the Windows semantics led to a surprise policy change that most participants did not notice.
Our semantics does not cause such a surprise, so GS participants completed the task correctly.

7.5.2.9 Syllabus
Hypotheses
We designed the Syllabus task to test the downside of the aspect of our semantics that led to the gains in the
Assignment task. In the Syllabus task, the task goal calls for a moved file to retain permissions it had under
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its prior parent. We expected the Windows semantics to perform best, but expected the Grid’s presentation
advantages would help the GS interface overcome at least part of its semantics disadvantage. Our hypotheses
are:

1. GS might have lower accuracy rates than GW and WW.

2. GS might have longer mean time-to-task-completion than GW and WW.

Results
The accuracy rate for GS (72%) was lower than the accuracy rates for GW (94%) and WW (100%). How-
ever, Fisher’s exact tests showed the differences in accuracy rates between GS and GW (p<0.17) and GS and
WW (p=0.05) not to be statistically significant. The mean time-to-task-completion for GS (M=156, σ=54)
was longer than that for GW (M=77, σ=25), and a t-test showed the difference to be statistically significant
(t(26.0) = 4.97, p < 0.001). The GS mean time-to-task-completion was longer than that for WW (M=101,
σ=60), and the difference was statistically significant (t(28.0) = 3.20, p = 0.003).

Discussion
With the Windows semantics, the Syllabus task is a simple matter of moving a file—no change to file
permissions is necessary. Thus, it is not surprising to see very high accuracy rates for GW and WW. It
is also not surprising to see that the mean times-to-task-completion for GW and WW were statistically
significantly shorter than those for GS. Interestingly, however, the GS accuracy rates were fairly high. They
were not statistically significantly different from the GW or WW accuracy rates (although there was a
nearly significant difference with WW). The dropoff in performance due GS’s semantics disadvantage in
the Syllabus task was not as great as the dropoff in performance due to WW’s semantics disadvantage in the
Assignment task. While we must be careful about making precise numerical comparisons between the tasks,
since their structure was not identical, it does appear that the Grid’s presentation advantages help mitigate
the downside of its semantics for the Syllabus task.

7.5.2.10 Jana
Hypotheses
Like the Pablo and Piano tasks, the Jana task tested the behavior of the two semantics in the presence of a
group conflict. As with those tasks, we expect GS to perform best, followed by GW, followed by WW. Our
hypotheses are:

1. GS will have a higher accuracy rate than GW or WW.

2. GW will have a higher accuracy rate than WW.

3. GS will have a shorter mean time-to-task-completion than GW or WW.

4. GW will have a shorter mean time-to-task-completion than WW.

Results
GS had a higher accuracy rate (89%) than GW (17%) and WW (56%). Fisher’s exact tests showed the
difference between GS and GW accuracy rates to be statistically significant (p<0.001), but showed the
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difference between GS and WW accuracy rates not to be significant (p=0.06). (Note, however, that under
the stricter accuracy scoring method, the difference between GS and WW would be statistically significant.)
GW had a lower accuracy rate than WW, and the difference was nearly, but not quite, statistically significant
after the correction for multiple testing (p=0.035). GS had a shorter mean time-to-task-completion (M=60,
σ=23) compared to GW (M=201, σ=118) and WW (M=253, σ=94). The difference in mean time-to-task-
completion between GS and GW was not statistically significant (t(2.1) = −2.40, p = 0.13), but the
difference between GS and WW was (t(19.2) = −10.1, p < 0.001). The difference in between GW and
WW was not significant (t(2.3) = −0.74, p = 0.53).

Discussion
GS performed best in accuracy and in mean time-to-task-completion. This result was expected, especially
in light of the results for the Jana task in the study described in Chapter 6, in which the Grid accuracy rate
was 100% compared to 6% for Windows. What is surprising here is that the Windows accuracy rate is as
high as it is, at 56%. We attribute the relatively high WW accuracy rate to the additional training we gave
participants (specifically the training in how to check effective permissions in WW), the ability to move
principals in and out of groups (which they were not allowed to do in the prior study), and the somewhat
more advanced participant pool.

As in the Pablo task, GW, somewhat surprisingly, did not outperform WW. Also as in the Pablo task,
an analysis of the errors participants made with the GW interface indicates they were confused by the
distinction between access rules and effective permissions. In Windows, participants were somewhat less
confused by the distinction because effective permissions are in a completely different view from access
rules.

7.5.2.11 Clayton and Quincy
We did not perform any specific statistical testing for the Clayton and Quincy tasks. The tasks were borrowed
from our prior study on the file-permissions Expandable Grid interface. We included them in this study
mainly to provide a wider variety of tasks over which to compute experiment-wide results. We did not
expect much difference between the interfaces for these tasks, and the tasks were not related to testing the
semantics or the new functionality of the Grid.

7.5.2.12 Experiment-wide discussion
Our results show that the policy semantics underlying a file-permissions interface has a significant effect on
task-completion accuracy. The precise effect of the semantics depends on what the task goals are. If task
goals are aligned with a semantics, such that the semantics yields the desired effective policy by default,
accuracy rates are likely to be higher than if the semantics requires an author to take additional action to
change the decision. In the Charles, Kent, Lance, Assignment, and Syllabus tasks, we saw that the semantics
that yielded the correct effective policy by default led to the highest accuracy rates.

No semantics can always yield the desired effective permissions, as we designed our inverse task pairs
(Charles/Kent, Lance/Adria, and Assignment/Syllabus) to show. However, we argue that our specificity
semantics is superior to the Windows semantics because, even in a situation where specificity semantics is
not yielding the desired effective permission, it is easy to change the effective permission with a specific
rule. Contrast this to the Windows deny-precedence semantics, which forces an author in some conflict
situations to remove a user from a group or change rules applying to the whole group. The Adria task shows
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a situation in which, although our specificity semantics does not yield the desired decision by default, getting
the task right is a simple matter of adding a rule more specific than those in conflict. The Pablo, Piano, and
Jana tasks further illustrate the advantage that a specificity semantics has over a deny-precedence semantics
in overcoming rule conflicts.

The Assignment and Syllabus tasks exercised a specific difference between our semantics and the Win-
dows semantics, namely, the timing of when a moved resource inherits its new parent’s access rules. The
Assignment task illustrates that, as we expected, the Windows semantics can cause surprises that lead to
errors. On the other hand, in the Syllabus task, GS accuracy rates remained fairly high even though the
semantics did not yield the desired effective permission by default. Since our semantics does not cause the
surprises that the Windows semantics does, but can still support high accuracy rates even when it does not
yield the desired effective permission by default, we conclude that allowing a moved resource to inherit
its new parent’s access rules immediately upon being moved is preferable, from a usability standpoint, to
delaying the rule inheritance until the next access-control policy change.

As we observed in the prior file-permissions Expandable Grid study described in Chapter 6, the Grid is
a better way to display a policy to authors than is a list of rules, at least in the scenarios that we tested. In the
Policy Semantics Study #2, the Grid’s presentation advantages helped GS overcome semantics disadvan-
tages in the Adria and Syllabus tasks. We also observed in the Lance task that although GW and WW were
both at the same semantics disadvantage, GW had a higher accuracy rate, which we attribute to the Grid’s
presentation advantages. The Troublemakers task, which requires a visual search through a large portion of
a policy, is an example of a task that is virtually impossible to complete correctly in Windows but is easily
completed using the Grid.

We did observe some usability problems with the Grid, some familiar from our prior study, some new.
Familiar problems included finding the wrong object when searching (finding a similarly named object,
e.g., the Music 101\Handouts folder instead of the Piano\Handouts folder) and mouse slippage (in which a
participant using the Grid would find a column they wanted, then while moving the mouse down the column
to find a row they wanted, the mouse would slip into an adjacent column without the participant noticing).

One new usability problem had to do with the new “dog-ear” feature. Participants often did not un-
derstand the distinction between access rules and effective permissions. They would frequently interpret
dog-ears as representations of the effective permissions and would ignore background colors. We antici-
pated this problem, and tried to mitigate it with a carefully designed legend. We referred to access rules
as “default rules” to suggest that they were inherited by default but could be overridden. In the legend, we
depicted every possible combination of dog-ear color on background color. Many participants did see and
use the legend, but not all understood it. We did not have this problem in our prior Grid study because
that Grid did not display access rules at all. While it would be nice not to display access rules at all, we
believe that when dynamic changes are allowed, it is necessary to represent access rules in some way. We
may need more work to determine the best way to convey the distinction between access rules and effective
permissions to policy authors.

Another new problem we observed was participants not understanding that, when seeing a yellow square,
it was necessary to expand one or both of the principal and resource trees to see specifically what permissions
underlay the yellow. Even though we had a footnote in the legend explaining that one or both trees should
be expanded to get detail on yellow squares, some participants did not notice the footnote in the legend. It is
somewhat surprising that we did not observe this problem in our prior study. Training in both the prior study
and this study explained the meaning of yellow squares, but the message about yellow squares may have
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been lost to some participants in this study because we presented much additional material in the training
for this study.

Our study design had some limitations that are worth considering. Our results tell us that the success of
any semantics depends largely on the requirements of the particular tasks that an author performs. Since we
do not have data on the frequency with which particular tasks are performed, we cannot say conclusively
that our specificity semantics is superior to the Windows semantics. We can only argue that its behavior
more closely follows the four desired semantics properties and makes it easier to fix situations in which its
default behavior is not what is desired compared to the Windows semantics.

Our study created scenarios that participants could complete within a few minutes in our lab. We were
not able to recreate certain real-life scenarios in which policy-authoring may happen periodically over long
periods of time. Particularly difficult to simulate in the lab are scenarios in which an author must remember
the intention behind a setting that may have been made weeks or months before.

7.6 Conclusion
We have demonstrated significant usability improvements from a file-system access-control semantics cen-
tered on specificity precedence compared to a semantics centered on deny precedence. Our specificity
semantics adheres to the properties of direct manipulation, exception-rule preservation, order independence,
and fail safety more closely than the Windows NTFS access-control semantics does. We have implemented
our new semantics in a simulated Windows file system and run the file-permissions Expandable Grid on
top of it. We have shown in a user study that the semantics provides substantial usability gains for tasks
involving rule conflicts, and that it may make certain operations, like file moves, less prone to access-control
policy errors.

No semantics can yield the right effective policy in all situations, but a specificity semantics should work
well in general because a specific rule would be unlikely to have been set unless it was meant to take effect.
Moreover, a specificity semantics makes it easier to overcome the situations in which the semantics does not
yield the desired effective policy by default.

We have argued that our specificity semantics is better than the Windows semantics for three reasons:
that specificity provides a better way to resolve a rule conflict than removing a user from a group or chang-
ing a group’s access rules; that defaulting to a DENY decision is safer than arbitrarily favoring the resource
dimension over the principal dimension in resolving two-dimensional conflicts; and that immediately al-
lowing a moved resource to inherit its new parent folder’s access rules is more predictable than deferring
inheritance until a change is made to the new parent’s or moved resource’s access control list.

Our results suggest that, whatever the underlying semantics, the Grid is a superior way to help policy
authors understand how the semantics works and complete tasks correctly than is the Windows list-of-rules
interface.



CHAPTER 8

Expandable Grid Interface for
Displaying P3P Policies

This chapter is largely a reproduction of a paper co-authored with Patrick Kelley, Aleecia McDonald, and Lorrie
Cranor and submitted to the 2008 Workshop on Privacy in the Electronic Society.

Presenting website privacy policies to consumers in a clear and concise manner is important from at least
two perspectives. First, from the perspective of consumer protection, fair information practice principles
require that consumers be informed of how websites will use consumers’ personal information. The United
States Federal Trade Commission (FTC) names notice/awareness, i.e., giving consumers notice of an entity’s
information practices, as the first of its five core principles of privacy protection [45]. Second, from the
perspective of websites trying to gain consumers’ trust, providing clear notice of privacy practices may help
allay consumer concerns about misuse of their personal data [27]. Moreover, for e-commerce websites,
consumers may be willing to pay a premium if presented with a prominent display of consumer-friendly
privacy practices [131].

However, despite the importance of clear presentation, privacy policies are usually presented in legalis-
tic, convoluted language [100], and are often written at a college or higher reading level [7]. Researchers,
industry groups, and privacy advocates have proposed other methods for presenting privacy policies, but
there is no consensus on an effective presentation format. To make matters worse, presentations vary from
website to website; thus, from the consumer’s point of view, every privacy policy is as hard to read as the
last one, and it is very difficult to compare privacy policies across competing websites.

The Platform for Privacy Preferences (P3P) was designed to address some of the drawbacks to natural
language privacy policies [39, 40]. P3P is an eXtensible Markup Language (XML) based machine-readable
language for expressing website privacy policies. It enables websites to specify policies in a uniform manner
that can be read and presented by user agents, such as a Web browser or a policy-display application like
Privacy Bird [41]. Many websites provide P3P policies; a 2007 study found that 28% of the top 75 dot-com
domains had been P3P-enabled [38]. The P3P specification does not specify a presentation format.

We introduce the P3P Expandable Grid, an interactive format for presenting P3P policies to website
visitors. The P3P Expandable Grid is based on the Expandable Grid concept, presented in Chapter 5. In
Chapter 6, we described our application of the Expandable Grid concept to a user interface for displaying
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and authoring file permissions policies and showed that our Expandable-Grid-based interface was very ef-
fective for a wide range of file-permissions policy-authoring tasks. Our result suggests that the Expandable
Grid idea might work similarly well for displaying P3P policies. We designed and implemented the P3P
Expandable Grid to see if the Expandable Grid would fulfill its promise as a P3P policy presentation format.

We evaluated the P3P Expandable Grid in two studies, one Web-based and one conducted in our lab. In
the Web-based study, 520 participants viewed website privacy policies either in natural language or in the
P3P Expandable Grid and were asked comprehension questions about the policies. Participant performance
was poor in both conditions, and, to our surprise, was generally worse with the P3P Expandable Grid. To
explain this unexpected result, we conducted a lab study in which we collected detailed video and think-
aloud audio data from 12 participants who viewed the same policies in both the natural language and P3P
Expandable Grid formats and answered the same comprehension questions. We identified specific usability
problems with the P3P Expandable Grid as a tool for displaying privacy policies to consumers. These
usability problems, such as lack of a focal point, unintuitive organization of policy elements, and confusing
icons and terminology, suggest both specific improvements that might make the P3P Expandable Grid an
effective tool and general lessons as to when and how to apply the Expandable Grid concept to other policy
domains. We discuss these suggested improvements and general lessons. We also note that while the current
implementation of the P3P Expandable Grid did not work well for conveying privacy policies to consumers
who had never seen the Grid before, it might be of use as an authoring tool for P3P experts or as the basis
for a standardized privacy policy presentation.

8.1 System description
Our system for displaying P3P policies, the P3P Expandable Grid, takes the elements of a P3P policy and
maps them onto the conceptual framework of the Expandable Grid visualization. Here we describe the
relevant elements of P3P, the Expandable Grid concept, and our implementation of the P3P Expandable
Grid.

8.1.1 P3P
P3P defines a set of data practices in which an organization with a website could potentially engage. A
specific organization’s P3P policy states which of these practices the organization actually engages in. For
example, one potential data practice is collecting a consumer’s online contact information (e.g., email ad-
dress) and sharing it with other companies to contact the consumer for marketing purposes. Another poten-
tial data practice is collecting a consumer’s web navigation patterns and using them to improve a website’s
layout. Each potential data practice defined by P3P consists of three primary data-specific assertions: data
category, recipient, and purpose. (Actually, P3P defines six types of data-specific assertions, but to simplify
this discussion, we leave out the infrequently-used non-identifiable assertion, the almost-invariant retention
assertion (i.e., websites with P3P policies almost invariably retain data “indefinitely”), and the free-text
human-readable consequence assertion.) So, in the first example data practice above, “online contact infor-
mation” is the data category, “other companies” is the recipient, and “contact for marketing” is the purpose.
P3P defines 17 data categories, 12 purposes, and six recipients. It also defines a hierarchy of 31 data ele-
ments, each of which can have numerous sub-elements (data elements are items within the data categories,
such as email address or home phone number). Any combination of data element (or category), purpose, and
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Figure 8.1: Screenshot of the P3P Expandable Grid in unexpanded form. The column groups labeled
“WHO” and “HOW” show P3P recipients and purposes, respectively. The rows show three P3P statements
with their header boxes and the roots of their data hierarchies (the roots are labeled “Types of information
collected”). The column headers and data hierarchies can be expanded and contracted to show more or
fewer P3P elements.

recipient constitutes a potential data practice. A P3P policy consists of one or more statements, which are
XML elements that each contains a group of data elements that are all to be handled similarly. A statement
thus declares a set of the potential data practices an organization actually engages in.

There are four distinct P3P policy outcomes that we name REQUIRED, NOT-USED, OPT-IN, and OPT-
OUT. A P3P statement maps each of the potential data practices to a policy outcome. REQUIRED outcomes
indicate data practices in which an organization engages; NOT-USED outcomes indicate data practices in
which an organization does not engage; OPT-IN outcomes indicate data practices in which an organiza-
tion engages if a consumer requests to be subjected in the practice; and OPT-OUT outcomes indicate data
practices in which an organization engages unless the consumer requests not to be subjected to the practice.

In the preceding description, we have simplified some of the details of P3P. A full description of the
language can be found in the book Web Privacy with P3P [40] or in the P3P standard [39].

8.1.2 P3P Expandable Grid design
Since P3P data practices are defined by the three primary data-specific assertions, we used hierarchical
structures of the P3P data categories, purposes, and recipients as the labels along the axes of our P3P
Expandable Grid. Our data hierarchy uses the data categories as high-level nodes, and places the P3P
data element hierarchy under the categories as per the P3P specification [39]. We put an expandable tree
representation of the data hierarchy along the vertical (left-hand) axis of our grid. P3P defines its purposes
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and recipients in flat lists of categories, but we added a layer of structure to simplify presentation. For
example, we grouped the P3P “contact” and “telemarketing” purposes into one higher-level “marketing”
category. Since, after putting data categories along the vertical axis, we had only one axis left to represent
two hierarchies, we put both the recipient and purpose hierarchies next to each other on the horizontal (top)
axis. The layout of the P3P Expandable Grid can be seen in Figures 8.1 and 8.2.

While putting recipient and purpose on the same axis would seem to restrict our ability to represent
certain policies, namely those in which both recipient and purpose vary for the same data element, P3P itself
has the same restriction, and requires multiple statements to represent such policies. Since our grid design
can represent multiple statements, we are able to get around this restriction in the same way the underlying
P3P language does. So, for example, a policy which allows email addresses to be collected by the company
issuing the policy for the purpose of site administration, but also allows email addresses to be collected and
shared with other companies for the purpose of marketing, will require multiple P3P statements.

The grid itself consists of squares at the intersections of each row representing a data element and each
column representing a recipient or a purpose. The squares are colored according to the P3P policy outcome
for each data practice defined by the combinations of data elements, recipients, and purposes. For each
data element, the grid squares corresponding to recipients who use the data element or to purposes for
which the element is used are colored teal; grid squares corresponding to recipients that do not use the data
element or purposes for which the data element is not used are colored grey. We chose teal as a neutral
color with no obvious conventional meaning; we were concerned that green or red might imply “good” or
“bad” judgments about policy content. Grid squares at the intersection of non-leaf nodes of the hierarchies
potentially represent multiple distinct outcomes of the leaf nodes beneath them, so they are colored with a
teal-white gradient if there are both teal and grey squares beneath them, just as yellow squares in the file
permissions Expandable Grid indicate a mixture of allow and deny access in the nodes beneath them. The
different colored squares are shown in Figure 8.2.

Teal and grey squares cover the REQUIRED and NOT-USED outcomes of P3P policies, but not the OPT-
IN and OPT-OUT outcomes, so we added a dot notation to indicate data practices for which the consumer
was given the choice to opt into or out of. Squares are colored with a teal dot on a white background to
indicate an OPT-IN outcome and a white dot on a teal background to indicate an OPT-OUT outcome. Dots
over gradients indicate squares corresponding to non-leaf nodes under which there are some OPT-IN or
OPT-OUT outcomes. Squares representing the OPT-OUT outcome can be seen in Figure 8.2.

All square designs may also contain a small black dog-ear symbol in the lower right-hand corner, indi-
cating the cell may be clicked to expand its column. The dog-ear symbol can be seen on some of the squares
in Figure 8.2.

Metadata associated with each P3P statement is contained in a header box of text above the data hierar-
chy. Multiple statements with header boxes and unexpanded data hierarchies can be seen in Figure 8.1.

Each data hierarchy is initially displayed in its fully collapsed form, i.e., only the root node of the
data hierarchy is shown, and a user has to click to expand the root node in order to see data categories
and elements (see Figure 8.1). The recipient and purpose hierarchies are also initially shown in their fully
collapsed states.

Metadata associated with the entire P3P policy, such as information on opt-out mechanisms and organi-
zational contact information, is in two places: a legend in the upper-left corner of the grid display contains
an opt-out link (visible in Figures 8.1 and 8.2), and text below all of the data statements shows organizational
contact information and any additional policy metadata (not shown in the figures).
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Figure 8.2: Screenshot of the P3P Expandable Grid in expanded form. In this screenshot, the Grid has
been scrolled to show just the third P3P statement in the policy. All column headers and some data hierarchy
headers have been expanded. Each square in the grid represents a potential P3P data practice. Grey (light
grey in greyscale print) squares indicate data practices in which the organization issuing the policy does not
engage; teal (dark grey in greyscale print) squares indicate data practices in which the organization does
engage; gradient-colored squares indicate non-leaf nodes, which, if their corresponding rows or columns
are expanded, will have both grey and teal squares beneath them; and teal squares with white dots indicate
data practices that consumers may opt out of.
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8.2 Related work
Prior work has shown that natural language policies are difficult to read, with an average Flesch Grade Level
of 14 (college level), even though only 27% of the US population has a college education [65]. A review
of 60 financial privacy policies found they were all “difficult” to read or worse on the Flesch Reading Ease
scale [58]. In addition to being difficult to understand, companies use textual ambiguity to obscure data
collection practices, for example, they might state they perform a given practice “from time to time” to
minimize its perceived importance [100].

The law firm Hunton & Williams took a leadership role in advocating layered online privacy policies as
a better format [79]. Layered policies present a one-page summary with a link to more detailed informa-
tion [35].

The Kleimann Communication Group studied Gramm-Leach-Bliley Act financial statements and de-
veloped improved designs for printed policies [105]. After extensive study of multiple presentations, they
found a “...table design worked far better in helping consumers easily access, understand, and compare
sharing practices” [105].

The Privacy Bird project uses P3P to create a standardized privacy report. The Privacy Bird report uses
bulleted lists to summarize information and has a hide/expand feature so Internet users can focus on a high-
level summary or drill down for full information about an online policy. Prior research has shown users like
the Privacy Bird format and are able to answer comprehension questions about privacy policies using the
format, but sometimes make errors because they fail to notice when information is collected on an opt-in or
opt-out basis [41].

With the Expandable Grid, we used a table format as suggested by the Kleimann report. The Grid
supports the ability to condense information by contracting the columns and rows, which is similar to the
design goals of layered policies and Privacy Bird. Grid icons clearly show when information is opt-out or
opt-in.

8.3 Method
We conducted two user studies to compare the P3P Expandable Grid format for presenting privacy policies
to the natural language format. Participants in our studies answered policy comprehension questions using
either a privacy policy written in natural language or the same privacy policy written in P3P and presented
with the P3P Expandable Grid.

8.3.1 Web-based user study
The first of our user studies was conducted over the Web. We used a between-participants design with two
factors: presentation format and policy length. Format had two levels: Grid and natural language, and length
had three levels: short, medium, and long, so there were a total of six conditions. (This study was part of a
larger study that included two other formats, layered natural language and Privacy Finder, in the comparison,
but we exclude those formats from our discussion here; those results are part of another researcher’s work.)
We assigned participants randomly to conditions.
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8.3.1.1 Participants
We posted advertisements to a variety of online forums to recruit participants to complete our study. Par-
ticipants received entry into a drawing for a $250 Amazon.com gift certificate. Online advertising forums
included the craigslist classified ad site, sweepstakes websites, mailing lists, and personal networks. We
also purchased Google adwords, although fewer than ten participants came through Google ads. The variety
of advertising venues we used was intended to attract our desired demographic of the general class of Web
users. We recruited 786 participants to start the study, of which 520 completed the study and 266 dropped
out (see Section 8.4.3 for an analysis of participant dropout rates).

8.3.1.2 Policies used
We presented the same privacy policy to participants in both the Grid and natural language conditions. The
policy we chose was a real privacy policy from a major publisher. We chose this policy for the following
reasons:

• It was real, and thus representative of a privacy policy a consumer might encounter in practice;
• It was published in both natural language and P3P versions;
• The P3P version had multiple data statements, and we wanted to be able to test the P3P Expandable

Grid’s ability to show a policy with multiple statements.

We changed references to the publisher’s company name in the policy to “Acme” to avoid any associations
with the real company from which the policy was taken. Since we were varying policy lengths, we wanted
to present long, medium, and short versions of the policy. We used the whole real P3P policy, consisting of
eight P3P data statements, as the long version, and we eliminated some of the statements from the whole
policy to create a two-statement medium version and a one-statement short version. We also created medium
and short versions of the natural language policy that corresponded to the medium and short versions of the
P3P policy. Since the real natural language policy organized its content into paragraphs corresponding one-
for-one to the P3P policy’s data statements, paring down the natural language policy to match the medium
and short P3P policies was simply a matter of eliminating the paragraphs that corresponded to the eliminated
data statements.

8.3.1.3 Questions used
We asked seven multiple-choice comprehension questions about the privacy policies:

1. Telemarketing: Will Acme collect your home phone number and use it for telemarketing?
2. Cookies: Does the Acme website use cookies?
3. Marketing Email: Does this privacy policy allow Acme to put you on an email marketing list?
4. Opt-out: How can you remove yourself from Acme’s email list?
5. Share: Does this privacy policy allow Acme to share your email address with a marketing company

that might put you on their email marketing list?
6. SSN: Does the Acme website collect your Social Security number?
7. Encryption: If you send your credit card number to Acme do they keep it encrypted to prevent data

theft?

For all questions except the Opt-out question, the multiple choice answers were “Yes,” “No,” or “The policy
does not say.” For the Opt-out question, multiple choice answers were “Call Acme’s customer service,”
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“Send email to Acme,” “Click a link to opt out,” “You cannot make any choices,” and “The policy does not
say,” and participants were asked to check as many answers as applied.

The Telemarketing question was always presented first and served as a question to allow participants to
gain some familiarity with the presentation format they were using. We excluded the Telemarketing question
from data analysis.

We took the next four questions, Cookies, Marketing Email, Opt-out, and Share, from Cranor et al. [41],
who found that they reflect common consumer privacy concerns.

We designed the last two questions, SSN and Encryption, specifically to test aspects of the Grid. The
SSN question tested whether participants could determine that the company does not engage in a particular
practice. In the policy we selected, Social Security number is not collected. One advantage of the Grid
over natural language is that it specifically shows data practices in which an organization does not engage
through the use of grey boxes. Natural language policies generally do not discuss practices in which the
organization does not engage, so it is often difficult to determine decisively from a natural language policy
that an organization does not engage in a practice. The Encryption question asked for information that
actually was not covered in the privacy policy; we expected participants using both formats to struggle to
answer the question, but expected it might be easier to see in the Grid layout that encryption is a security
feature, not a data practice defined by P3P.

8.3.1.4 Subjective satisfaction questions
After participants completed comprehension questions, we asked a series of questions regarding their sub-
jective satisfaction with the privacy policy presentation. We asked participants to rate their agreement on a
scale from 1 (Strongly Agree) to 7 (Strongly Disagree) with the following statements:

1. I feel secure about sharing my personal information with Acme after viewing their privacy practices.
2. I believe Acme will protect my personal information more than other companies.
3. Finding information in Acme’s privacy policy was a pleasurable experience.
4. I feel that Acme’s privacy practices are explained thoroughly in the privacy policy I read.
5. I feel confident in my understanding of what I read of Acme’s privacy policy.
6. This privacy policy was easier to understand than most policies.
7. It was hard to find information in Acme’s policy.
8. If all privacy policies looked just like this I would be more likely to read them.

8.3.1.5 Procedure
When participants visited our study website, they were randomly assigned to one of the two formats and
one of the three policy lengths. The two formats and three policy lengths made for six total conditions,
so we implemented random assignment by assigning each subsequent participant to the next condition in a
repeating sequence of the six conditions. After being assigned to a condition, participants were presented
a Web page with a comprehension question and a multiple-choice form for completing the question in
a frame at the top of the page, and a privacy policy presentation in the assigned format and length in a
frame beneath the comprehension question. All participants were presented the Telemarketing question first.
After participants answered the Telemarketing question, they were presented the remaining six questions in
random order to guard against learning and sequencing effects. Following completion of the comprehension
questions, participants were asked the questions listed in section 8.3.1.4 about their subjective satisfaction
with the format they used.
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8.3.1.6 Data collected
For each participant, we recorded their multiple-choice answers to comprehension questions, the time it
took them to answer each question, whether or not they finished the comprehension questions, when they
expanded rows or columns in the Grid, and their answers to the questions listed in section 8.3.1.4 regarding
subjective satisfaction. We scored each multiple-choice answer as correct or incorrect to compute accuracy
rates for each question and each condition.

8.3.2 Lab-based user study
We followed up the Web-based study with a similarly designed study in our laboratory that allowed us to
collect detailed qualitative data to help explain the quantitative results of the Web-based study. We recruited
12 participants via a local university newsgroup. Participants answered the same seven comprehension ques-
tions used in the Web-based study, but policy presentation conditions were somewhat different. Presentation
format was a within-participants variable, so each participant answered all seven comprehension questions
twice, once using the Grid format and once using the natural language format. Participants did not view
the same policy in both formats, however; if they viewed the short policy in the Grid, they viewed the long
policy in natural language, and vice versa. We dropped the medium policy length and used only the short
and long policy lengths. We alternated the order in which the two formats were presented, so that six of
the participants viewed a policy in the Grid first, and six viewed a policy in natural language first. We
asked participants to think aloud as they worked, and we recorded screen video and think-aloud audio for
all participants.

8.4 Results
Our hypothesis for this work was:

The P3P Expandable Grid allows website visitors to answer questions about a website’s privacy
policy more accurately and faster than does a natural-language based policy presentation.

The objective of our data analysis was to test this hypothesis. We also addressed the corollary hypothesis
that the P3P Expandable Grid would lead to greater levels of satisfaction.

For the Web-based study, we measured accuracy rate and mean time-to-question-completion for each
of the six comprehension questions and for each of the six conditions. Accuracy rate is the proportion of
participants who correctly answered a comprehension question. Before computing accuracy rate and time-
to-question-completion, we checked the data for participants who may have gamed the study by clicking
as quickly as possible through the comprehension questions without putting effort into answering correctly.
We eliminated from analysis those participants who finished faster than two standard deviations below the
mean of the log-transformed time-to-question-completion data for three or more questions. We eliminated
seven participants for this reason, including six Grid participants and one natural language participant.

In addition to accuracy rate and mean time-to-question-completion, we computed dropout rates, defined
as the proportion of participants who started but did not complete the study in each condition, and scores on
the subjective satisfaction questions.

For the lab-based study, we analyzed video and audio for evidence of usability problems with the Grid.
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8.4.1 Accuracy results
We used logistic regression to test for an overall difference in accuracy rates across all six comprehension
questions between the Grid (overall accuracy = 0.59) and the natural language (overall accuracy = 0.68)
formats. We used format as the single factor in our logistic regression model. The model gave an intercept
of 0.27 and a coefficient for format of 0.25. A Wald test of the hypothesis that the format coefficient was
not equal to 0 was significant at the 0.05 level (Z = 3.62, p < 0.001), suggesting that there is an effect of
format on accuracy. The sign of the coefficient, as well as the actual overall accuracy rates, suggests that
over all questions, participants were more likely to correctly answer questions using the natural language
format.

To follow up the logistic regression and gain a more detailed picture of how the Grid compared to the
natural language format, we performed 18 pairwise comparisons of the Grid accuracy rate with the natural
language accuracy rate for each question and for each policy length. We used one-sided Fisher’s exact tests
of the hypothesis that the Grid accuracy rates were higher than natural language accuracy rates. Since our
experimental goal was to determine whether the Grid format was superior to the natural language format, we
did not test the hypothesis that the natural language accuracy rates were higher than the Grid accuracy rates,
even though, as it turns out, the natural language accuracy rates were in most cases higher. We corrected for
multiple testing using the Benjamini-Hochberg method, which gave an adjusted per-test alpha of 0.00008.

These pairwise comparisons showed that the Grid gave significantly higher accuracy rates for only one
question, the SSN question, at the short and medium policy lengths. The results of our pairwise comparisons
are shown in Table 8.1.

Table 8.1: Summary of pairwise statistical tests for significant differences in accuracy rate for the P3P
Expandable Grid (aG) and accuracy rate for natural language (aNL) for each comprehension question at
each policy length. For all tests, the hypothesis tested was aG > aNL against the null hypothesis aG = aNL.
The p-values shown are from one-sided Fisher’s exact tests; p-values below the α = 0.00008 adjusted
rejection threshold are shown in bold, indicating significant tests.

Short Medium Long
Task aG aNL p aG aNL p aG aNL p

Cookies 0.90 0.99 1.00 0.92 0.98 0.99 0.96 0.99 0.96
Marketing Email 0.84 0.78 0.25 0.76 0.69 0.21 0.70 0.65 0.31
Opt-out 0.12 0.66 1.00 0.15 0.62 1.00 0.15 0.67 1.00
Share Email 0.21 0.47 1.00 0.17 0.54 1.00 0.44 0.54 0.93
SSN 0.56 0.27 < 0.00008 0.71 0.27 < 0.00008 0.66 0.49 0.02
Encryption 0.85 0.91 0.92 0.77 0.91 1.00 0.86 0.87 0.67

We could have used two-sided tests to simply determine whether Grid and natural language accuracy
rates were different. Using two-sided tests could yield some statistically significant results in favor of
natural language. We maintain that our one-sided analysis is appropriate and correct given our hypothesis
that the Grid would lead to higher accuracy rates than natural language and our goal of developing better
privacy policy presentations, rather than worse ones. However, it might be of interest to some readers to
test the reverse hypothesis that the natural language accuracy rates are higher than Grid accuracy rates.
We performed an alternative data analysis in which we used two-sided Fisher’s exact tests for statistically
significant differences between Grid and natural language accuracy rates. Because the hypotheses we were
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testing in our alternative analysis are not consistent with our a priori hypotheses, we used the Bonferroni
multiple-testing correction, which is a very conservative correction (more conservative than the Benjamini-
Hochberg method used in our primary analysis) that ensures that the probability of even one false positive
from our testing is less than our chosen α of 0.05. The Bonferroni adjustment gives us a per-test α of
0.0028. Our alternative analysis shows the natural language accuracy rates for the Opt-out question for all
policy lengths (p < 0.001 for short, medium, and long policies) and the Share email question for the short
and medium policy lengths (p < 0.001 for the short and medium policies) to be statistically significantly
higher than the Grid accuracy rates. Although it hardly seems interesting to demonstrate that the natural
language format, which is known to be poor, is better than our mostly failed attempt to improve upon it, our
data do support the hypothesis that natural language is a better format for some questions than the Grid.

8.4.2 Time-to-question-completion results
To test the hypothesis that the Grid format would lead to faster performance on comprehension questions,
we computed mean time-to-question-completion for each question at each policy length and for each format.
Mean time-to-question-completion for a comprehension question included completion times only for those
participants who correctly answered the question, since we are interested in the time it takes to correctly
comprehend a policy. We also excluded data points that were more than three standard deviations above or
below the mean of the log-transformed time-to-question-completion data for any one question, policy length,
and format. We assumed that such data points were the result of participants taking a break from the study
in the middle of a question or rushing through the question, rather than merely the result of exceptionally
slow or fast performance on the question. We excluded 11 data points (of 3078, which is 520 participants
minus 7 eliminated for gaming the study times six questions), distributed across all six conditions.

An ANOVA comparing the overall hypothesis that the mean time-to-question-completion for all ques-
tions was different between the Grid (M = 44.7, sd = 90.0) and natural language (M = 23.2, sd = 27.0)
formats was significant at the α = 0.05 level (F (1, 1966) = 31.055, p < 0.001). The direction of the differ-
ence in means suggests the natural language format led to faster performance at completing comprehension
questions, and the results of the ANOVA show this result to be statistically significant.

We followed up the ANOVA with 18 pairwise comparisons of the mean time-to-question-completion
of each format for each question and policy length. We used one-sided t-tests to test the hypothesis that
Grid mean time-to-question-completion was less than natural language mean time-to-question-completion.
As with accuracy, we were not concerned with testing for significantly better performance by the natural
language format since our experimental goal was to determine when the Grid format is an improvement
on the natural language format. We corrected for multiple testing using the Benjamini-Hochberg method,
which gave an adjusted per-test α of 0.004. Results of the pairwise comparisons are shown in Table 8.2.

8.4.3 Dropout rate results
We compared dropout rates between participants who were assigned to the Grid format and those who were
assigned to the natural language format. We define dropout rate as the number of participants in a given
condition who did not finish the comprehension questions divided by the number who started the study in
that condition. In each condition, 393 participants started the study. In the Grid condition, 152 did not finish
and in the Natural Language condition, 114 did not finish, so the Grid dropout rate was 152/393 = 38.7% and
the natural language dropout rate was 114/393 = 29.1%. We tested for a statistically significant difference
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Table 8.2: Summary of statistical tests for significant differences in mean time-to-question-completion,
in seconds, between successful Grid (G) and natural language (NL) participants for each comprehension
question at each policy length. For each test, the table shows means (M) and standard deviations (sd) for
each interface, and t-statistics (with degrees of freedom) and p-values resulting from one-sided t-tests; one
p-value at the α = 0.004 adjusted rejection threshold is shown in bold, indicating a significant test.

Short Medium Long
Question M(sd) t(df) p M(sd) t(df) p M(sd) t(df) p

Cookies G:7(8) −2.6(154) 0.004 G:15(14) 1.4(121) 0.92 G:14(14) 0.4(145) 0.67
NL:9(6) NL:9(7) NL:11(9)

Marketing Email G:21(25) 1.0(120) 0.8 G:35(39) 3.5(102) 1.00 G:31(61) −0.6(110) 0.27
NL:14(16) NL:15(14) NL:30(46)

Opt-out G:81(79) 3.2(10) 0.99 G:72(56) 2.3(12) 0.98 G:72(70) 1.7(12) 0.94
NL:33(18) NL:36(20) NL:35(18)

Share G:53(43) 1.1(23) 0.86 G:33(42) −0.3(15) 0.36 G:47(103) −0.3(62) 0.38
NL:29(25) NL:26(22) NL:35(45)

SSN G:28(28) 2.2(45) 0.98 G:39(43) 4.4(66) 1.00 G:47(48) 3.3(93) 1.00
NL:17(16) NL:11(8) NL:18(15)

Encryption G:66(56) 7.2(121) 1.00 G:102(127) 6.8(98) 1.00 G:120(232) 5.2(135) 1.00
NL:22(15) NL:27(20) NL:44(55)

in dropout rates using Fisher’s exact test. We had no preconceived notion about the dropout rate, so we used
a two-sided test. Fisher’s exact test showed the difference in dropout rates to be significant at the α = 0.05
level (p = 0.005). More participants dropped out of the Grid condition, and this result is statistically
significant.

8.4.4 Subjective satisfaction results
We compared participants’ subjective satisfaction with each presentation format. We first normalized partic-
ipants’ responses from all of the subjective satisfaction questions listed in section 8.3.1.4 by putting them on
a scale from 1 to 7 where 1 indicates the most negative attitude and 7 indicates the most positive attitude. For
example, a response of 7, “Strongly disagree,” to the statement, “Finding information in Acme’s privacy pol-
icy was a pleasurable experience” would receive a 1, the most negative rating, on our normalized scale, while
a response of 7 to the statement, “It was hard to find information in Acme’s policy” would remain a 7 on our
normalized scale because of the negative wording of the question. After normalizing all responses, we took
the mean response across all questions for participants who used the Grid (M = 2.8, sd = 1.6) and natural
language (mean = 3.8, sd = 1.5). Two t-tests showed both the Grid (t = −32.9(1899), p < 0.0001) and
natural language (t = −5.8(2180), p < 0.0001) means to be statistically significantly less than 4.0, the
neutral score, at the α = 0.05 level. This result suggests that participants in both formats had negative atti-
tudes toward reading privacy policies. Another t-test showed the difference in means between the Grid and
natural language formats to be significant at the α = 0.05 level (t = −20.9(3927), p < 0.0001), suggesting
attitudes were more positive toward the natural language format.
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8.4.5 Lab-based study results
The objective of the data analysis for the lab-based study was to determine reasons why participants an-
swered comprehension questions incorrectly using the Grid. To this end, we performed three analyses of
the videos and think-aloud audio from the study. The three analyses together revealed eight usability prob-
lems that led to participants incorrectly answering comprehension questions. These analyses and usability
problems are described in this section.

8.4.5.1 Analysis of where answers were found
In instances where participants incorrectly answered questions, we attempted to determine where in the
Grid presentation the participant found the incorrect answer. It was sometimes possible based on what was
on the screen, what participants had recently clicked on or scrolled to, and what participants were saying
to pinpoint specific Grid squares, rows, or metadata from which they determined answers. Because this
process was somewhat subjective, we used two raters and only included data from cases in which both raters
agreed on where the participant had found an answer.

This analysis revealed four causes of incorrect answers. The causes were:

• Multiple statements. Answering comprehension questions for medium and long P3P policies was
difficult because the policies contained multiple P3P statements. For the Cookies and Acme Email
questions, the answers were only contained in a subset of the multiple statements, and for the Share
Email and SSN questions, it was necessary to check all the statements. We observed five instances of
participants finding an answer in the wrong statement or failing to check all statements.

• Metadata. Policy metadata that was out of the graphical region of the Grid was hard to find. Not
surprisingly, participants seemed to focus on the graphical portion of the Grid presentation. In the Opt-
out question, which required that participants read policy metadata, participants sometimes missed
all or part of the necessary metadata to answer the question. We observed seven instances of such
problems.

• Terminology. Participants generally seemed confused by P3P concepts and terminology. For exam-
ple, we observed two instances of participants looking in the “Companies who help us” recipient
column for the Share Email task, when they should have been looking in the “Other companies”
recipient column. In the P3P policy, “Companies who help us” indicates companies who receive
customer data to help complete orders but not for marketing purposes. “Other companies” indicates
companies that might receive customer data for marketing purposes. Other examples P3P terms we
found, informally, to be confusing included the “Opt-in” and “Opt-out” outcomes and the term “Profil-
ing” to cover P3P’s pseudo-analysis, pseudo-decision, individual-analysis, and
individual-decision purposes, all of which are related to creating profiles of users.

• Two dimensions, one axis. Because P3P policies have three primary data-specific assertions, it really
requires a three-dimensional table to represent a whole policy. In our design, we juxtaposed the
recipient and purpose assertions together on one axis. This juxtaposition caused errors. In the Share
Email question, participants had to find a row corresponding to “Email address” and then notice that
the “Other companies” recipient column had a grey square. However, we observed two instances of
participants thinking they found the answer in the “Marketing” purpose column. Had the purposes
been separate from recipients, this error likely would not have happened.
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8.4.5.2 Analysis of confusion statements.
We analyzed the think-aloud audio for instances in which participants expressed confusion. Two raters
listened to the think-aloud audio and noted statements that, in their judgment, indicated confusion. Examples
of such statements included:

• “The policy itself is not that – very clear at all.”
• “Yeah, I’m just confused right now what I’m looking at. OK, so there’s these color-coded things...”
• “I’m not sure how to find this, I’m just kind of looking around.”

We took the union of all confusion statements identified by the two raters, identified three candidate
problem categories that might be indicated by the statements, and then had two raters place the statements
into the three categories. The two raters identified 30 total confusion statements. The statements were
distributed across 11 of the 12 participants and five of the six tasks, so it does not appear that any one task or
any one participant was responsible for a disproportionate number of the statements. When categorizing the
statements, the raters agreed on categories for 21 of the 30 statements and agreed that six of the statements
fit into none of the three categories. The raters disagreed on the categorization of three of the statements.
Statements for which raters could not place into a category or for which they disagreed were eliminated
from analysis.

Problem categories with example confusion statements include:

• No focal point. Perhaps the most common problem with the Grid was its lack of a clear place to start
looking at it. The Grid contains a great deal of information, and can look visually cluttered. There is so
much to see that participants often missed the information they needed to answer questions correctly.
Example confusion statement: “This is a really convoluted presentation.”

• Multiple statements. As we found in the previous analysis, participants were confused by multiple
P3P statements. Example confusion statement: “There’s no mention of credit cards at all, which is
kind of strange, so I’m kind of playing the ‘is it under this heading [referring to statement header
boxes]’ game again.”

• Confusing icons. The Grid has fifteen distinct symbols that can be displayed in Grid squares, and
participants sometimes did not understand what they all meant. Example confusion statement: “Yeah,
I’m just confused right now what I’m looking at. OK, so there’s these color-coded things...”

8.4.5.3 Analysis of Grid expansions.
Analyzing data from both the Web-based and lab-based studies on when participants expanded the Grid, we
found two problems: first, that some participants seemed not to realize the Grid was interactive, and second,
that many participants did not understand the P3P data hierarchy.

Non-expansion
We observed participants’ expansions of the Grid’s rows and columns. From the expansion data we recorded
in the Web-based study, we observed that 35 of 241, or 14.5%, of Grid participants never expanded the
Grid. In the lab-based study, we observed that one of 12 Grid participants never expanded the Grid. Some
participants seem not to have realized the Grid is interactive.
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Excess expansion
We informally observed that some participants were not familiar with the P3P data hierarchy and had to do
quite a bit of searching to find some of the items they were looking for. For example, participants looking
for “Social Security number” in the SSN task did not know that P3P has a “Social Security numbers and
government IDs” category. They would scan the list of categories for one that seemed relevant to Social
Security numbers, find “Social and economic categories,” and click on that. Only later would they find what
they were looking for under “Social Security numbers and government IDs,” at the bottom of the list of data
categories.

To quantitatively confirm that lack of understanding of the P3P hierarchy was problem, we counted
the number of excess expansions of the P3P data hierarchy in the lab-based study. We defined an “excess
expansion” the expansion of a Grid row or column that only revealed Grid squares that were irrelevant to
answering the question at hand. Thus, if a participant expanded “Social and economic categories” during
the SSN task, this expansion was an excess expansion. We observed 13 excess expansions distributed across
five of the six questions and seven of the 12 participants.

8.5 Discussion
Our results strongly suggest that the P3P Expandable Grid, as currently implemented, is not an effective
means for presenting privacy policies to Web users. Except in two cases (the SSN question and the Cookies
question), participants using the Grid performed no better and no faster in correctly answering comprehen-
sion questions than participants using natural language. Moreover, the higher dropout rate amongst Grid
participants suggests participants found the Grid more frustrating to use, and subjective satisfaction scores
show participants strongly disliked the Grid.

Policy length did not have the effect we expected on our results. We expected the Grid to be a more
scalable format than natural language, but, if anything, we witnessed the opposite effect. Multiple statements
in the policy represented in the Grid led to the problem of checking the wrong statement or failing to check
all relevant statements.

Our results show two bright spots for the Grid. First, participants using the Grid did perform better, as
expected, on the SSN task, in which they were asked to determine that a website did not engage in a certain
data practice. In real tasks, users may want to reassure themselves that a company does not engage in some
objectionable practice. Second, participants answered the Cookies question faster for the short policy using
the Grid. While we cannot conclusively state the reason for the faster performance on the Cookies task,
informal observations from the lab-based study suggest some participants visually searched for the word
“Cookies,” and found it faster in the Grid because there were fewer words to search through.

However, our results are mostly negative with respect to the Grid, and this is somewhat surprising given
how well the Expandable Grid concept has been shown to work in a user interface for another policy domain,
file permissions [103]. Our lab-based study suggests eight reasons why the Grid was difficult to use:

1. No focal point. The Grid is visually busy, so it is hard to know where to start a visual search for
information.

2. Difficulty with hierarchy. Users are not familiar with the P3P data hierarchy and do not know how to
find relevant items in it.
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3. Multiple statements. Policies with multiple P3P statements may lead users to find information in the
wrong statement or to fail to check all relevant statements.

4. Metadata. Policy metadata is difficult to find.
5. Confusing icons. The meaning of some of the 15 possible icons is not apparent to some users.
6. Terminology. P3P privacy policy terminology is confusing and unfamiliar to many users.
7. Two dimensions, one axis. Juxtaposing two dimensions on one axis was confusing to users.
8. Non-expansion. Some users never realized the Grid is interactive and can be clicked to expand it.

8.5.1 Lessons for applying the Expandable Grid concept
The usability problems we observed suggest several lessons for how to design presentations of policies
based on the Expandable Grid concept. We list these lessons in this section.

Provide a starting point such as a search bar.
The most common problem and probably the biggest impediment to finding answers in the Grid was the
vast amount of visual information with no clear starting point. User interfaces using the Expandable Grid
concept should provide a starting point; a search feature may serve as a starting point. A search bar was part
of the successful file-permissions Expandable Grid design [103].

Provide a summary display.
The problems with lack of a focal point, difficulty with the P3P data hierarchy, and multiple statements
could all be mitigated by simplifying the display of P3P policies. To this end, a simple summary display
in which all statements are merged into one would be helpful. Also helpful would be a summary showing
only data practices of the highest concern to consumers, such as sharing of health data or sharing contact
information data for marketing purposes.

Use short labels.
The usability problems with terminology and metadata suggest some policies may not be well suited to
display in an Expandable Grid. The problem of finding terminology to describe privacy concepts to Web
users is known to be difficult. The P3P1.1 specification acknowledges the problem of finding concise,
human-readable descriptions for privacy concepts and offers some such labels for P3P elements [37]. In
our case, the problem was exacerbated by trying to find short terms that could be used as labels in the Grid.
The Expandable Grid may be best suited to showing policies in which the concepts can be summarized with
short labels on the axes (e.g., in file permissions, users have names that are generally around eight characters
long and files have names that are usually less than 30 characters). We tried using short labels and provided
longer descriptions when users moved their mouse over the labels, but participants in our lab study still
seemed confused by the concepts. There might be better labels for P3P concepts than those we used, but
natural language may be the most effective means for explaining nuanced policy concepts to users who
have never encountered those concepts before. Natural language may also be more effective for presenting
policies with large amounts of metadata that cannot be put into the matrix format required by the Grid.
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Answer common questions in one place.
Multiple statements in P3P policies make it necessary sometimes to check multiple grid squares to find the
answer to a simple, common question. Expandable Grid interfaces should be designed so that common
questions can be answered by looking in one place. A summary view in which the contents of multiple
statements are merged, as described above, could provide one place to look for answers to common ques-
tions.

Do not juxtapose two dimensions on one axis.
A tabular representation of a P3P policy requires three dimensions, one for each of the three P3P data-
specific assertions. To fit three dimensions into a two-dimensional display, we tried juxtaposing two di-
mensions together on the same axis. The approach did not work. Some solution is needed to fit policies
of more than two dimensions into a Grid presentation; while we do not know what solution is right, jux-
taposing two dimensions together seems to be wrong. A better solution might be to require participants to
choose a fixed cross-section of the policy to look at, e.g., to select “Marketing” as the purpose and then view
a two-dimensional grid of data-by-recipient. It might be possible to display two dimensions on one axis
by positioning a copy of one dimension’s values under each value of the other dimension; we have yet to
evaluate this approach.

Provide plenty of explanation for icons.
It is hard to help people understand a large number of icons. A legend helps, but may not be enough, since
it draws the eyes away from the icons of interest. Help might be provided by showing the meaning of an
icon when the mouse is moved over it. Also, reducing the number of icons needed to display a policy would
help.

Emphasize or eliminate interactivity.
Users may have difficulty learning that a Grid presentation is interactive. We provided many cues of inter-
activity, including labels that read, “click for more,” highlights on rows when the mouse was moved over
them, and “+” symbols to indicate expandability. Still, many study participants did not realize the Grid is
interactive. There might be even more indications we could provide to emphasize the Grid’s interactivity,
but another solution might be to eliminate interactivity altogether with a more compact policy representation
that could fit on the screen without requiring expansion.

8.5.2 Limitations of our studies
We tested the P3P Expandable Grid on participants who had never seen the Grid before and had probably
never encountered P3P before. While the Grid did not work well for displaying privacy policies to this class
of users, it may be well suited to other use cases we did not test.

In particular, the Grid may work well as a authoring tool for P3P experts who want to write a P3P privacy
policy. Indeed, our experience has been that we, as P3P experts, find it easier to understand the contents of
a P3P policy by viewing it in the Grid’s tabular form than in other common formats, such as a list of rules
or raw XML. The Grid could be made interactive, so that authoring a P3P policy would be a simple matter
of clicking on Grid squares to edit the policy. P3P policy authoring is currently done in raw XML or using
somewhat unwieldy tools like the IBM P3P Policy Editor [40].
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Another use case to which the Grid may be better suited is as a standardized privacy policy presentation.
Participants in our study had never seen the Grid format before. If Web users saw privacy policies presented
in a consistent format, such as the Grid, repeatedly across all websites, they might become more familiar
with that format over time and ultimately find it easy to read. A standardized format would also help
users compare privacy policies between websites. In contrast, comparing natural language policies across
websites can be extraordinarily difficult.

We tested the P3P Expandable Grid presentation format against the natural language presentation format
for a single organization. We believe the organization we chose may have an exceptionally well-written
natural language privacy policy. The Grid may perform better against average or poorly written privacy
policies.

8.6 Conclusion
We developed a means for graphically presenting website P3P privacy policies based on the Expandable Grid
concept and found that it did not generally improve Web users’ comprehension of privacy policies compared
to a natural language policy presentation. However, the Grid did perform well at indicating practices not
allowed by a policy, and it may hold promise for allowing P3P experts to navigate and author policies.
A simplified Grid presentation of P3P policies may be an effective means for presenting policies even to
general Web users in a standardized format. In future work, we will continue efforts toward designing such
a simplified P3P policy presentation.



CHAPTER 9

Other Applications of the Expandable
Grid

The Expandable Grid concept has been applied to displaying policies in other domains besides Windows
XP file permissions and website P3P privacy policies, although we have not tested it in these other do-
mains. Here, we describe applications of the Grid concept to three other domains: Grey, a distributed
building access-control system; Perspective, a distributed data storage system; and PeopleFinder, a location-
disclosure system. These applications collectively show the potential versatility of the Expandable Grid
concept for displaying policies in a variety of domains.

9.1 Grey
Grey is a distributed access-control system that allows people to use smartphones to control access to offices,
perimeter doors, other locked spaces, and computers in an office environment [18]. Grey has been deployed
to over 30 users in our university office building. Grey users who own resources, such as their offices, can
delegate access to those resources using their smartphone. In delegating access to others, Grey resource
owners create access-control policies [16]. We have designed and implemented an Expandable-Grid-based
user interface, the Grey Expandable Grid, for viewing and editing these access-control policies on a desktop
computer. A screenshot of our interface is shown in Figure 9.1.

The Grey Expandable Grid illustrates how we can display time as a policy attribute in an Expandable
Grid while still showing principals and resources. In the Grey Expandable Grid, time is shown on the
vertical axis on the left and resources and principals are combined in the horizontal axis along the top. A
dark horizontal line in the grid itself shows the current time, with past policy shown above the line and future
policy shown below. Time is shown in a sliding window that can be both zoomed (i.e., the window size can
be adjusted) and scrolled (i.e., the window can be slid) using the scrollbar on the right. We adapted this
approach to showing time from the DateLens system [19]. Resources are shown as the primary dimension
along the horizontal axis, with a copy of the entire structure of principals shown beneath each resource. Both
resources and principals can be grouped; “CUPS” is a group of resources that contains the resources “Cube,”

153



154 CHAPTER 9: OTHER APPLICATIONS OF THE EXPANDABLE GRID

Figure 9.1: A screenshot of our Grey Expandable Grid interface. The Grey Expandable Grid shows how
policies with a time attribute can be shown in an Expandable Grid.
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“Office,” and “Lab.” “Students” is a group of principals that contains “Cindy,” “Dwayne,” and “Edith.” (The
expanded version of the “Students” group can be seen beneath the “Lab” resource in Figure 9.1.)

In the grid, policy is shown using blue-shaded bars. A blue bar in the column corresponding to a resource
and principal indicates the principal is (or was) able to access the resource for the amount of time the bar
spans vertically. For example, in Figure 9.1, we see that Students were able to access the Lab from 9am to
5pm yesterday and will be able to access the lab from 9am to 5pm today. Bars with a thick border indicate
cases where all principals represented by the bar have access to all resources represented by the bar. Bars
with a light border serve the same function as yellow squares in the file-permissions Expandable Grid; they
indicate cases where some of the principals have access to some of the resources represented by the bar.
Green bands on bars indicate access that was explicitly granted through an access rule. Bars without green
bands indicate access that is inherited from a group.

Figure 9.2 shows an early mockup of the Grey Expandable Grid interface in which we included features
for helping resource owners audit past accesses to their resources. Tick marks in the bars above the dark
horizontal line indicate past access attempts. By mousing over each tick mark, a resource owner could get
specific data about each past access and why it was allowed or denied.

Although our Grey Expandable Grid design shows how a time attribute could be shown in an Expandable
Grid, we have not yet deployed the Grey Expandable Grid or tested it in user studies.

9.2 Perspective
Perspective is a data storage system targeted toward non-technical home users [112]. It is intended to help
users store, find, and manage their files by using a semantic file system, in which resources are organized
in intuitive, flexible structures according to metadata tags, as opposed to a strict file hierarchy. Perspective
also provides convenient distributed storage of resources across the multiple devices that may be found in
the home, such as desktops, laptops, and digital video recorders.

Salmon et al. used the Expandable Grid to design a user interface for managing data storage policies in
Perspective [111]. Their interface is shown in Figure 9.3. Resources, grouped into collections according to
metadata, are shown on the vertical axis and devices are shown along the horizontal axis. The grid squares
show which resources are stored on which devices. Perspective users can use the Grid interface to specify
where they would like a given resource or collection of resources stored.

Salmon et al. ran a user study to test the usability of the Grid for data storage management in Perspec-
tive [111]. Although they designed their study more to test their architecture than the Grid interface, they
did make some observations relevant to the interface. They found, as we did in our study on the P3P Ex-
pandable Grid, that the large amount of information contained in the Grid was overwhelming and confused
participants at first. However, they report that after completing several tasks, participants “felt quite com-
fortable” with the Grid. Salmon et al. report a higher-than-expected overall accuracy rate for study tasks, so
the combination of the Grid interface with the Perspective architecture seems to have been very effective.
The Perspective Grid interface shows that the Expandable Grid concept is not restricted to applications in
security and privacy policies, but is general enough to apply to policy management in a completely different
domain.
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Figure 9.3: An Expandable-Grid-based user interface for data storage management in the Perspective
data storage system. Image taken from Salmon et al. [111].
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9.3 PeopleFinder
PeopleFinder is a location-disclosure application that tracks people’s locations via their cell phones and
laptops [110]. PeopleFinder enables people to specify location-disclosure policies that express who can see
their location at what times and under what circumstances. We have designed an Expandable-Grid-based
interface for viewing and editing PeopleFinder policies. A mockup (by Madhu Prabaker) of the interface
can be seen in Figure 9.4. Like the Grey Expandable Grid, the PeopleFinder Grid interface shows time along
one axis, the horizontal in this case. The PeopleFinder Grid interface, however, is restricted to showing one
week of time; in the current system, PeopleFinder policies can only be set to times within a generic week,
not corresponding to specific dates. Principals and groups of principals are shown along the vertical axis.
The grid uses colored bars to show the times each principal is allowed access to the policy author’s location.
As shown in the mockup, the interface could also be used for auditing by showing past access attempts as
hash marks in the grid.
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editing PeopleFinder location-disclosure policies.
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CHAPTER 10

Conclusions and Future Work

This thesis has addressed policy-authoring interface usability. We have shown that today’s list-of-rules
paradigm for designing policy-authoring interfaces leads to error-inducing interfaces that do not support
policy authors’ needs. We have argued that the primary reason the list-of-rules paradigm leads to errors
is that it does not show effective policy to authors, but instead forces authors to translate access rules into
effective policy by applying obscure default and conflict-resolution rules in their heads. To improve the state
of policy-authoring interface design, we have presented the concept of the Expandable Grid, an interactive
matrix visualization of a policy. We applied the concept to the design of user interfaces for two policy
domains: Windows file permissions and website P3P privacy policies. We then tested the hypothesis:

Policy-authoring user interfaces using techniques centered on visualization of a full,
effective policy lead to faster, more accurate performance on policy-authoring and policy-
viewing tasks than do today’s list-of-rules and natural-language policy-authoring inter-
faces.

To test the hypothesis, we conducted user studies to evaluate the Expandable-Grid-based interfaces we
developed for file permissions and P3P. We found that the file-permissions Expandable-Grid interface sig-
nificantly improved performance across a broad range of policy-authoring tasks compared to the Windows
list-of-rules interface. In contrast to this result, we found that the P3P Expandable Grid, for the most part,
did not improve performance on policy-viewing tasks. We identified reasons for the Grid’s disappointing
performance and guidelines for how it should be applied. The hypothesis is partially supported by our work;
interfaces centered on the Expandable Grid’s visualization of full, effective policy can lead to faster, more
accurate performance on policy-authoring and viewing tasks, but only if applied carefully. We conclude that
the Expandable Grid concept is a promising approach to policy-authoring interface design across a wide
variety of policy domains if it is applied according to the lessons we have learned.

163



164 CHAPTER 10: CONCLUSIONS AND FUTURE WORK

10.1 Contributions
The original contributions of this thesis provide guidance for the design of usable policy-authoring inter-
faces. The original contributions are:

• Key insight: show effective policy: If there is one single message to take away from our work, it is that
policy-authoring interfaces should prominently show effective policy. Prominently showing effective
policy supports viewing the policy; to support changing policy, policy-authoring interfaces should, to
the extent possible, allow authors to directly manipulate the effective policy, rather than forcing them
to manage an arcane set of rules.

• Expandable Grid concept: The Expandable Grid concept can be applied to a wide variety of policy
domains. It provides a scalable means for viewing the full, effective policy.

• Expandable Grid implementation for file permissions: We have shown how the Expandable Grid
concept can be used in the design and implementation of an actual user interface for setting file
permissions.

• Evaluation of the file-permissions Expandable Grid: Our evaluation of the file-permissions Expand-
able Grid interface has shown that applying the Expandable Grid concept can greatly improve perfor-
mance on a broad range of policy-authoring tasks compared to a list-of-rules interface. Our results
suggest the reason for the Grid’s performance superiority are its display of the full, effective policy.

• Policy semantics for the file-permissions Expandable Grid: We have described a semantics for a file-
permissions access-control system that is well suited to use with an Expandable Grid. We have shown
that a semantics can have a significant effect on usability. We have argued that our semantics, which
is based on specificity precedence in both the principal and resource dimensions, can lead to usability
gains compared to the Windows access-control semantics by staying more faithful to the properties of
direct manipulation, exception-rule preservation, order independence, and fail safety.

• Expandable Grid implementation for P3P: We have applied the Expandable Grid concept to the do-
main of website P3P policies. We implemented an interface that presents P3P policies to website
visitors in a consistent, standardized, graphical format.

• Evaluation of the P3P Expandable Grid: Our evaluation of the P3P Expandable Grid showed that, for
the most part, it did not improve performance on policy-viewing tasks compared to a natural language
policy presentation. Our evaluation revealed several reasons why we did not observe the expected
improvement.

• Lessons for Expandable Grid application: Our evaluation of the P3P Expandable Grid suggested
lessons for how to apply the Expandable Grid concept successfully. These lessons, described in detail
in Chapter 8 are:

– Provide a starting point such as a search bar;

– Provide a summary display;

– Use short labels;
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– Answer common questions in one place;

– Do not juxtapose two dimensions on one axis;

– Provide plenty of explanation for icons; and

– Emphasize or eliminate interactivity.

10.2 Future work
Future work falls into two categories. First, Expandable Grid interfaces could potentially benefit from a
variety of features we have not yet explored. We list several of these potentially beneficial features here.
Second, our work in evaluating Expandable Grid interfaces has been limited to specific classes of policy
authors or policy consumers. We discuss a line of future work in developing policy-authoring interfaces for
a broader audience than the audience we considered in this thesis.

10.2.1 Improving the Expandable Grid
Many potential features could improve the usability of the Expandable Grid or allow it to be applied more
broadly. These features come largely from the information visualization literature and we have already
alluded to some of them in Section 5.3.2. We list some of these features here.

• Distortion: Our implementations of the Expandable Grid concept are quite limited in the amount of
a policy they can show on one screen without scrolling. Distortion could be employed to allow more
policy to fit on one screen [33, 52, 80, 116, 117]. In a Grid using distortion, rows of interest (such
as the row the mouse is pointing to) would be given more display height than other rows; columns
of interest would be given more display width than other columns [101]. Rows and columns not
deemed to be of interest would be given as little as one display pixel of height or width, thus allowing
potentially hundreds of rows and columns to be visible in low detail and a few to be visible in full
detail at one time. Geometrically, the distortion can be done in a variety of ways, as documented in
Leung and Apperley [80] and Carpendale et al. [34].

• More than two attributes: Policies often have more than two attributes, so showing them in a two-
dimensional space requires special techniques. We have discussed some of our solutions to the more-
than-two-attributes problem in Section 5.3.2.3, including subgrids and juxtaposition. Other methods
that could be applied to the Expandable Grid include slicing (showing a cross section of a policy
by setting fixed values for attributes not displayed) [63, 133], various forms of aggregation [33, 63],
placing grids within grids [8, 46], and zooming [20].

• Brushing: Brushing describes interactive techniques for selecting a set of items on which an operation
is to be performed [142, 106]. For example, using the mouse to draw a rectangle around a group of
grid cells would be an example of a brushing technique. The interesting aspect of brushing is that it
enables executing an operation on a collection of objects, instead of only executing operations on one
object at a time. Brushing might be employed in the Grid to enable changing multiple policy settings
at a time.
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• Filtering: Our Expandable Grid interfaces show a great deal of information, but authors may want
to limit the amount that is shown at one time. Filtering is one technique for limiting the amount of
information shown in a visualization [5, 49]. An Expandable Grid interface might use filtering to
allow an author to show only a relevant subset of a policy. For example, a file-permissions policy
author might want to see only users in a certain group or only files with modification dates within a
certain window.

• Displaying time: Since many policies have time as an attribute, it would be useful to develop a way to
show time in the Expandable Grid. In our implementation of an Expandable Grid interface for Grey
building access-control policies described in Chapter 9, we adopted Bederson et al.’s approach from
their DateLens system [19], but we have not evaluated the approach in user studies.

• Sorting by color: Since policies are often sparse (i.e., in access-control policies, most decisions in
a policy are DENY, with only a few ALLOW decisions), it may be desirable to collect all of the
interesting parts of a policy (e.g., the ALLOWdecisions in an access-control policy) in the same place.
We have implemented sort-by-color functionality in our file-permissions Expandable Grid, but we
leave evaluation of the feature to future work.

• Details on demand: It would be useful to be able to click on a cell in the Expandable Grid to get more
information about the policy data represented in that cell. Perhaps a dialog box could pop up to show
all the policy values and the decision represented by that cell plus an annotation about why the policy
was set the way it was. This idea is what Shneiderman calls “details on demand,” and it is a common
feature in information visualization interfaces [122].

• Label rotation: As mentioned in Section 5.3.2.4, displaying column labels in the Expandable Grid is
a problem. Vertical labels are hard to read, but horizontal labels take up too much space. A variety
of techniques could be used to mitigate this problem. We have ongoing work in one such technique,
rotating text to horizontal when it is moused over.

• Static checking for conflicts: In Section 7.1.3, we mentioned static checking as one means for resolv-
ing rule conflicts. With static checking, a policy-authoring application could analyze the rule base
for conflicts any time a rule is added or changed. If an added or changed rule causes a conflict, the
policy could be alerted immediately and required to change the policy so that the conflict goes away
or specify how the author would like the conflict to be resolved.

10.2.2 Usable policy authoring for all
Our conclusions about the usability and applicability of the Expandable Grid concept and a policy seman-
tics are limited to specific classes of policy authors and viewers. Participants in our user studies of the
file-permissions Expandable Grid interface and our specificity semantics were technically trained but non-
expert policy authors. These policy authors are an important class; they represent the kind of novice or
occasional policy authors we intended to design for. They are similar to novice system administrators like
the administrator involved in the Memogate scandal [132] or some of those studied by Barrett et al., who
report varying levels of skill and expertise amongst system administrators [13]. Nevertheless, the policy
authors we studied do not represent everyone who authors permissions policies. Our participants can be
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thought of as falling in the middle of a spectrum of policy-authoring skill. Authors at the extreme ends of
the spectrum may offer interesting challenges for policy-authoring interface design. At one end of the spec-
trum are novice, non-technical authors. Supporting this class of authors matters more and more as we move
into a computing world where every individual stores and shares personal information online and may want
to restrict access to that information. However, the Expandable Grid may simply show too much informa-
tion for this class of authors to handle. It may be that lists of rules or natural language policy presentations
are better suited to these novice policy authors. At the other end of the spectrum are highly experienced
system administrators. This class of policy authors may be suspicious of graphical user interfaces for sys-
tem administration tasks [128], so may be inclined to dislike an Expandable-Grid-based interface. In any
case, system administrators may manage systems with thousands of users and millions of resources, so they
need scripting and automation tools that scale to manage these extremely large policies. We believe the
Expandable Grid may have something to offer expert system administrators, but that it would require exten-
sive work to make it scale so that it is a convenient and efficient tool for viewing and managing very large
policies. In future work, we will elicit the needs of these two classes of policy authors—non-technical and
highly experienced—and design tools, possibly based on the Expandable Grid concept, to meet those needs.

Participants in our user studies of the P3P Expandable Grid were ordinary Web users. The Expandable
Grid presentation we gave them was overwhelming to many of them. In future work, we will design a
simpler website privacy policy presentation, possibly based on the Expandable Grid concept but with a
simpler layout and less visual clutter. Although the P3P Expandable Grid did not support these novice
policy viewers, we believe that even in its current form it may be very useful to a more advanced class of
users, namely, expert P3P policy authors. In future work, we will test the P3P Expandable Grid for its ability
to support P3P experts.
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