Vulnerability-Specific Execution Filtering
for Exploit Prevention on Commodity Software

James Newsome David Brumley Dawn Song
May 2005
Last modified November 2005
CMU-CS-05-169

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Keywords: Worms, exploits, antibodies, vulnerability-specific exéan fil-
tering, VSEF

Abstract

Exploits for new vulnerabilities, especially when incorgied within a fast spread-
ing worm, can compromise nearly all vulnerable hosts withishort amount of
time. This problem demonstrates the need for fast defenbeghwan react to a
new vulnerability quickly. In addition, a realistic defensystem should (a) not
require source code since in practice most vulnerable st not have source
code access nor is there adequate time to involve the seftveandor, (b) be accu-
rate, i.e., have a negligible false positive rate and losdgfalegative rate, and (c) be
efficient, i.e., add little overhead to normal program exiecu

We propose vulnerability-specific execution-based fitigr(VSEF) — a new
approach for automatic defense which achieves a lower eterand wider appli-
cability than input filters and has better performance thdinefikecution monitor-
ing. VSEF is arexecution-based filtaewhich filters out attacks on a specific vul-
nerability based on the vulnerable program’s executiocetralNe present VSEF,
along with a system for automatically creating VSEF filtensl @ hardened pro-
gram without access to source code. In our system, the tinakds to create
the filter and generate the hardened program is negligiblee dverhead of the
hardened program is only a few percent in most cases. The falsitive rate is
zero in most cases, and the hardened program is resilieimsagalymorphic vari-
ants of exploits on the same vulnerability. VSEF therefareieves the required
performance, accuracy, and response speed requiremetgfetal against current
fast-spreading exploits.

1 Introduction

The number of new vulnerabilities reported each year caasirto grow. Accord-
ing to CERT/CC, in 1995 171 new vulnerabilities were repiriehile less than
a decade later in 2004 over 3700 new vulnerabilities wereosiered [9]. A new
exploit for a single vulnerability can readily be turnedanvorms which com-
promise hundreds of thousands of machines within only a femutas [22, 35].
Thus, after a vulnerability is discovered it is importangtackly develop effective
mechanisms to protect vulnerable hosts so that (1) theyneilbe compromised
by exploits of the vulnerability, and (2) provide servicehaut disruption.

The speed at which new vulnerabilities are discovered aptbix created ne-
cessitates new defenses that meet several goals simulsyre@l) Fast defense
development and deploymenrhere is often very little reaction time, especially
when the exploit comes in the form of a fast propagating woithus, we need
to be able to develop and deploy defense mechanisms exyremiekly after the
detection of a vulnerability. (2o requirement for source codeany vulnerable
programs are commodity software for which the source cogeaprietary. To
respond quickly to new vulnerabilities, we need to be abldeeelop a defense
mechanism without access to source code, so we do not rehearobperation of
the software vendor. (3)ligh accuracy and effectivenedhie defense mechanism
should protect against the vulnerability and should noehawy undesirable side
effect on normal execution. It should have a low false pasitate (not blocking
legitimate requests) and a low false negative rate (evectdfé against polymor-
phic attacks). (4how performance overheathe defense mechanism should have
low performance overhead, so a vulnerable host deployiagl¢fiense mechanism
can still provide critical services with little performamdegradation.

Many defense mechanisms have been proposed to protecteaatlim host af-
ter a vulnerability has been discovered. Previous work basws drawbacks and
do not satisfy all the above requirements. One popular &gprs to automatically
generate network-basatput filtersto filter out known exploits [16, 34, 18, 27, 26].
However, the accuracy and effectiveness of the networkeasput filtering ap-
proach is fundamentally limited to syntactic propertieshaf input string and can-
not take into account application-specific semantic andestrinformation. In
particular, there may be no syntax-based classifier to cityrdistinguish between
malicious and innocuous traffic for certain applicationsvoinerabilities due to
polymorphic attacks; and the lack of context informatiométwork-based input
filtering can have high false positive rate for certain aggilons. Input filters also
have difficulty recognizing semantically equivalent irgutuch as alternate URL
encodings, which leads to false negatives. In the extresewaere an input filter
is used on an encrypted protocol, it must somehow be suppitbdhe decryption

key, which is awkward and application-specific. Costa eprpose automatically
generatedhost-basednput filters [11], which has greater accuracy than network-
based input filters, and can correctly recognize some sérafyntequivalent in-
puts. However, the approach still suffers difficulty whea ttorrect classification
rule is complex and needs program state information, or vilgut is encrypted.
Therefore the input filtering approach is not a completetsmiu

On the other hand, various host-based approaches have tmmsed which
are more accurate, but fail to meet the other requirements.efample, previ-
ous approaches have focused on: Fajching patching a new vulnerability can
be a time-consuming task—generating high quality patchies oequire source
code, manual effort, and extensive testing. Applying pedcto an existing sys-
tem also often requires extensive testing to ensure thahehe patches do not
lead to any undesirable side effects on the whole systemBi(@ry-based full
execution monitoringmany approaches have been proposed to add protection to
a binary program. However, these previous approaches thier émaccurate and
only defend against a small classes of attacks [6, 31, 17¢2Bjquire hardware
modification or incur high performance overhead when usqutdtect the entire
program execution [14, 27, 36, 11].

In this paper, we propose a new approach for automatic defeakerability-
specific execution-based filteringvSEF). At a high-level, VSEF filters out ex-
ploits based on the program’s execution, as opposed tarfttéased solely upon
the input string. However, instead of instrumenting and iooimg the full exe-
cution, VSEF only monitors and instruments the part of pragexecution which
is relevant to the specific vulnerability. VSEF thereforketathe best of both
input-based filtering and full execution monitoring: it isiom more accurate than
input-based filtering and much more efficient than full excrumonitoring.

We also develop the first system for automatically creatidp&F filter for a
known vulnerabilitygiven only a program binaryand a sample input that exploits
that vulnerability. Our VSEF Filter Generator automaficaljenerates a VSEF
filter which encodes the information needed to detect fuaitacks against the
vulnerability. Using the VSEF filter, the vulnerable hoshaszse our VSEF Bi-
nary Instrumentation Engine to automatically add instmtaton to the vulnera-
ble binary program to obtain a hardened binary program. Hnddmed program
introduces very little overhead and for normal requestiopes just as the original
program. On the other hand, the hardened program detectfiltensl out attacks
against the same vulnerability. Thus, VSEF protects valolerhosts from attacks
and allow the vulnerable hosts to continue providing aitgervices.

Contributions. The central contribution of this paper is a new approach tito-a
matic defense against known vulnerabilities, called wahb#gity-specific execution-

based filtering. Using the execution trace of an exploit ofuinerability, our

VSEF automatically generates a hardened program which efamdl against fur-
ther (polymorphic) exploits of the same vulnerability. SEchieves three im-
portant goals: low performance overhead, fast generatiad, a low error rate.
Specifically:

e Our VSEF is an extremely fast defense. In general, it takesvanfillisec-
onds for our VSEF to generate the hardened program from daiespecu-
tion trace.

e Our VSEF filtering techniques provide a way of detecting eiplof a vul-
nerability more accurately than input-based filters andensdficiently than
full execution monitoring.

e Our techniques do not require access to source code, arlaLgrapiplicable
in realistic environments.

e We provide two VSEF filtering mechanisms for detecting ovéenattacks,
including buffer overflows, double-free attacks, and farstaing vulnera-
bilities. The first mechanism, taint-based VSEF, is the raostirate and re-
quires potentially a longer filter. The second mechanismtimigtion-based
VSEF, is more efficient and is still highly accurate. Both imatisms have
zero false positives in most cases, and are effective agahsnorphic vari-
ants of the exploit of the vulnerability. Note that our apgeb is general, and
could potentially be applied to other faults such as inteyerflow, divide-
by-zero,etc.

e Our experiments show that the performance overhead of ttiehad pro-
gram is usually only a few percent.

These properties make VSEF an attractive approach towaldintguan auto-
matic worm defense system that can react to extremely fashsio

2 Approach: Vulnerability-Specific Execution-based Fil-
tering

Overview. We propose a new approach for automatically defending appist-
discovered attacksjulnerability-specific execution-based filteriG(gSEF). VSEF
is based on the observation that for a specific vulnerahilitly the part of the
program execution that is relevant to the exploit of the gtéibility need be moni-
tored. VSEF monitoring has full context and semantic infation, as opposed to
input-based filters which are limited to syntactic progertilnstrumenting the bi-
nary to perform the vulnerability-specific execution filtgy results in a hardened
binary. As a result, VSEF is much more accurate than netiasded filtering,

4

and much more efficient than full execution monitoring. Tlenbination of ac-
curacy and low overhead makes the VSEF approach very ategdot automatic
deployment schemes.

The main research questions for enabling VSEF include (Btwhrt of the
program should we monitor/instrument, (2) how can we detadt filter out the
attack when we only monitor/instrument part of the programd (3) how can
we minimize the overhead of the VSEF defense. In this papeaddeess these
guestions. In particular, we propose an architecture tlilhautomatically create
VSEF filters and harden the vulnerable program given an égtecution trace.

VSEF Architecture. Figure 1 shows the overall architecture. Our architecture
contains two main components: the VSEF Filter Generatorth@d/SEF Binary
Instrumentation Engine. To enable VSEF, we assume that plsaawploit has
been detected by some exploit detector which outputs arixgdecution trace.
The exploit execution trace contains the information atltbatprogram execution
up to the detected exploit of the vulnerability. The expkiecution trace can be
a simple instruction trace dump of the program executiorooresmore intelligent
output from the exploit detector. The VSEF Filter Generatses the exploit exe-
cution trace to create a VSEF filter which encodes the inftionaneeded for the
monitoring to detect future attacks on the vulnerabilitheTVSEF filter can then
be disseminated.

Vulnerable hosts use the VSEF Binary Instrumentation Eengirapply a VSEF
filter to a binary. The result is a hardened binary programne fAdrdened program
functions like the original program for normal requests aricbduces very little
overhead. The hardened program, however, detects and fii¢rattacks against
the same vulnerability. Thus, VSEF protects vulnerableshéem attacks and
allows the vulnerable hosts to continue to provide critg=lvices.

VSEF Requirements. The vulnerability-specific execution filtering architectu
should have the following properties:

e Robust VSEF filters. A VSEF filter should be vulnerabilityesfgic but ex-
ploit agnostic. For example, it should be able to detect Hreple exploit
even when a polymorphic engine has been used to encrypt fieapd 37].
Note that input filters are particularly vulnerable to pobmwhism, as there
may not be enough syntactic information in the input to kdjiaetect poly-
morphic variants.

o Efficient generation of VSEF filters. Once a vulnerabilitydiscovered, it
often takes days or months to prepare a suitable patch. Howeagt worms
may be able to infect the entire Internet in under a few mmuWe should
be able to generate filters quickly enough to allow an effectesponse to
such flash events.

Exploit

Execution VSEF fil Hardened
Exploit Trace ; er | vSEF Binary ardene
Sample) g | VSEFFilter — 8 — - Bi
i’ Detector Instrumentation Binary
Exploit Generator gt Program
ngine
\ I /

Vulnerable
Binary
Prograt

Figure 1. VSEF architecture. Once an exploit is detectedexatution log is
produced. The VSEF Filter Generator produces a filter thaigeizes execution
patterns that exploit the vulnerability. These filters dagrntbe disseminated. The
VSEF Filter Generator takes the filter and instruments tharito recognize exe-
cution sequences that exploit the vulnerability, the teseing a hardened binary.

o Efficient detection. The vulnerability-specific executidtering should add
as little overhead as possible to program execution.

3 Taint-based and Stack-based VSEF

In this section, we present two concrete examples of our VSEEM: the taint-
based VSEF and the destination-based VSEF. The taint-B&SE® is based on
dynamic taint analysis and has high accuracy. The desiméathsed VSEF is an
optimistic version of taint-based that usually requiresde instructions instru-
mented.

3.1 Taint-based VSEF
3.1.1 Overview

One effective method recently proposed to detect memdgtyshased attacks is
dynamic taint analysis [14, 27, 36, 11]. Dynamic taint asmynarks data coming
from untrusted sources (such as the netwtaik)ted and then keeps track of what
data becomes tainted by untrusted input data by inserstgumentatiorinstruc-
tions to propagate the taint attribute. For example, it adsisumentation to each
data movement instructiomfv, push, pop, etc), and data arithmetic instruction
(add, sub, xor, etc), so that the result of the instruction will be marked taihte
if and only if any operand of the instruction is tainted. Dygmia taint analysis also
inserts extra instrumentation before every point whera tatsed in a sensitive
way (such as return addresses, function pointers, and {@tnirags) to ensure that
the data is not tainted. Dynamic taint analysis has beenshowaccurately detect

6

a wide range of exploit attacks including buffer overrunpat string, and double
free attacks [14, 27, 36, 11], making it one of the most coimgmsive protection
mechanisms that does not require access to source code.

However, dynamic taint analysis requires instrumentingynastructions. Ev-
ery data movement, arithmetic, and control transfer istvns that could poten-
tially touch a tainted memory location must be instrumertegkrder to accurately
propagate the taint attribute and detect when tainted datdsused. Such exten-
sive instrumentation can add significant performance @aath— up to a factor of
30 or more in some cases [27].

We observe that when exploiting a particular vulnerahitiyly a handful of in-
structions are involved in propagating the tainted inpuh&sensitive location that
is overwritten. When we know what those instructions arecareinstrumenonly
thoseinstructions to propagate the taint attribute, and theicion that unsafely
uses the tainted data, and still successfully detect ati@against that vulnerability.

Thus, in taint-based VSEF, we automatically identify anstriiment the in-
struction positions that need to be instrumented to praeatea taint attribute and
to detect the misuse of tainted data to detect exploits ofriécpiar vulnerability.
As a result, taint-based VSEF can detect exploits of the sanmerability much
more efficiently than full execution monitoring.

3.1.2 Taint-based VSEF Filter Generation

A taint-based VSEF filter includes two parts: (1) the list métruction positions
that we need to add instrumentation to for taint propagatod (2) the instruction
position to which we need to add instrumentation to deteetntisuse of tainted
data. Instruction positions can be expressed as absoldtess#s, or as the name
of a shared library and offset into that library for incregertability.

The instruction position that we need to add instrumentatinto detect the
misuse of tainted data is simply the instruction positiorevehtainted data was
detected being misused. The list of instruction positidra tve need to add in-
strumentation to for taint propagation is the list of instrans that propagated the
taint attribute from the original malicious input to the pbivhere it was detected
being misused in the exploit execution trace.

The VSEF Filter Generator can identify this list using 1) axploit detector
that can identify the tainted data that was misused and whk#tiction misused it,
and 2) a log of instructions that have been executed, andalbbes of dynamically
calculated addresses. The latter can be logged in softeagenerated efficiently
using hardware support [7, 32]. The VSEF Filter Generatameres the trace
in a backward manner to determine which instructions pragtainted data that
reached the vulnerability detection point. It begins atghe of the trace, called the

C source

IA-32 assembly

Taint propagation

1 struct dummyt {

2 char buf[16];

3 void (*fnptr)(void);

4 4

5

6 void vuln(struct dummyt *dummy)

7 A

8 char bigbuf[100];

9 inti=0;

10 int count = 0;

11 void (*fnptr)(void) = NULL;

12

13 fgets(bigbuf, 100, stdin); A int $0x80 0x3a966010— stdin
B repz movsb %ds:(%esi),%es:(%oediPxafefea80— 0x3a966010

14 strecpy(dummy- >buf, bigbuf); | C movzbl (%edx),%eax al — Oxafefea80
D mov %al,(%ecx,%edx,1) 0x80ad1b0— al

15 fnptr = dummy- >fnptr; E mov 0x10(%eax),%eax eax«+ 0x80ad1b0
F mov %eax,0xffffffcc(%6ebp) Oxafefea64— eax

16 fnptr(); G mov Oxffffffcc(%ebp),%eax eax« Oxafefea64
H call *%eax illegal use of tainted eax

17 }

Table 1: Overwrite example: A piece of vulnerable code, ddinstructions that
propagated and misused the tainted data when the vulrigrains exploited. In-
struction positiorD is the overwrite point, where tainted data overwrites afionc
pointer. Instruction positiofid is the exploit point, where the tainted data is mis-

used.

exploit point, where the exploit was detected. The sourera to this instruc-
tion must have been tainted by some previous instructiohdrtrace (since this is
an overwrite attack using tainted data); and the sourceaopeof that instruction
must have been tainted by some other previous instructton, Ehe VSEF Filter
Generator continues performing the analysis recursivety i reaches the initial
instructions for reading the original untrusted input ia #gample exploit.

By following the chain of tainted operations backwards, WgEF Filter Gen-
erator can identify the list of instructions in the execntimace which were in-
volved in propagating the taint attribute from the originatrusted input to the
exploit point. This list of instructions is used in the fili&s the list of instructions

to be instrumented to propagate the taint attribute. THiuation is an instance
of flowback analysis [5], a well studied and efficient proaedj38].

An obvious choice for the exploit detector is a taint-basqulat detector [14,
27, 36, 11]. In particular, TaintCheck [27] already keepsraaded acyclic graph
(DAG) of where tainted data was propagated from, and at att wiséruction
points. That is, each time tainted data is propagated, a rodenerated that
contains the position of the currently executing instiuttiand pointers to nodes
corresponding to each tainted operand. In this approac¢healhformation needed
to calculate the filter is already on hand. The VSEF Filteré&ator simply follows
the DAG from the point(s) where tainted data was misusedd@tint(s) where it
was originally input, and records all the instruction piasis on that path.

Table 1 shows an example of code that is vulnerable to an oiterattack, in
this case a buffer overflow that overwrites a function painténe second column
shows the assembly instructions that are involved in prappag tainted data to
the point where it is misused. The third column shows theagtmopagation,
with the data addresses as resolved at run time. In this drariiqe exploit is
detected at instructioR, where tainted data ieax is misused. The VSEF Filter
Generator traces backwards in the execution log (or the DAGIng TaintCheck)
and finds that instructio was the last instruction to write teax, and so on,
back to instructiomA which performed & ead system call. Hence, the taint-based
VSEF filter consists of positioRl, where tainted data was misused, and positions
A throughG, which propagated the tainted data to that point.

3.1.3 Taint-based VSEF Binary Instrumentation

The Taint-based VSEF Filter Generator instruments eadhuizt®on in the taint-
based VSEF filter to propagate taint information, and irsstie appropriate safety
check at the exploit point. The instrumentation conceptuaeps a list of tainted
memory locations. When an instruction listed in the VSEFcekes, the added
instrumentation checks to see if any source operand is gethlocation. If so,
it marks the destination as also tainted. The Taint-baseBF/Silter Generator
inserts instrumentation at the exploit point to detect & #ensitive value being
used is tainted, signifying an attack, and if so to take gpfate action. Here,
we assume the appropriate action is exiting the programer®tiave investigated
other actions, such as returning an error code and congrexecution [30, 33].
The resulting program with the added instrumentation ishdrelened binary.

When the hardened binary is run, the instrumentation preaghe taint at-
tribute throughout the program as would have been done bi taiot-based ex-
ploit detector. If the exploit point is reached, and the dming used in a sensitive
way has been marked tainted, execution is aborted.

Since the VSEF Filter Generator does not instrument all dedeement and
arithmetic instructions, tainted locations are not mandethinted when overwrit-
ten with untainted data by uninstrumented instructionss €auld potentially lead
to false positives in some cases. For example, supposekalsiaed buffer marked
as tainted is popped off the stack, and is later overwrittiéh av(legitimate) return
address, without being marked untainted.

We address this problem by having the hardened binary rabergalue that
a location takes on when it is marked as tainted. When anatsgumented in-
struction later checks to see if that location is taintedalsb checks to see if it
still has the same value. If not, then it has been overwritiean uninstrumented
instruction, and is marked as no longer tainted. This ambraalds little overhead,
but there is still some potential for false positives. If amnstrumented instruction
overwrites tainted data witthe same valu¢hat was already there, this heuristic
will not correctly untaint that location.

An alternative approach is to use existing memory watciMpi@chniques to
monitor tainted locations, and untaint them when otherirsibns write to them.
On the 1A-32 architecture the debug registers can be usedhiton up to 4 mem-
ory locations (up to 4 bytes each). We can also use pageetimietechniques
(e.g., setting tainted memory pages to be read-only) to bifietbof writes to
tainted memory. Moreover, when available, we can also usé EB€mory to be
notified of writes to tainted memory similar to techniquegdisn [28]. All of
these technigues generate a trap when the watched memamgeissad (or mem-
ory near the watched memory), allowing our code to untaietwhtched location
if it has been rewritten by untainted data. The cost of gdmgydraps when data
is untainted can be reduced by reducing the amount of datgéts tainted. One
way to achieve this is to modify the instrumentation of eatthe data propaga-
tion instruction in the VSEF filter, so that it will only tairthe destination when
executing in the same call-stack context as during theraigixploit. This tech-
nigue comes with a trade-off of false negatives when dataifiged by the same
instructions, but in a different context, until the altemaontexts are discovered
and added to the VSEF filter. While we are unaware of existimghanisms to
watch for writes to processor registers, we expect that egssor register will not
remain tainted for long before being overwritten with unted data. Hence, when
a register becomes tainted, we can switch to monitoringiattiictions until it be-
comes untainted again. We show how to efficiently turn futttanalysis on and
off at run time in [25].

10

3.1.4 Analysis and Combining Filters

Performance. By design the taint-based VSEF filter can be created withrinfo
mation already on hand to a Taint-based detector. As a rd#idt generation is
almost instantaneous. The length of the filter is propodida the number of in-
structions that propagate tainted data from the input t@¥pdoit point. Similarly,
the execution overhead of the hardened program is propattim this number
of instructions. By design, most programs attempt to miménannecessary data
copying, so this will intuitively be a small set of instrumtis. We verify this in our
experimental results.

Note that it is likely that one or more of the instructionsttheopagate tainted
data in the attack belong to a commonly used data movemeantidunsuch as
strcpy or nencpy, and hence the instrumentation will be executed any time
that function is called. In our evaluation this was true,uidjio we did not find it
to be a performance problem. If it were, we could use the igcies described in
Section 3.2 so that the instrumentation is only executedwie function is called
in the vulnerable context.

Accuracy. The VSEF-hardened binary has no false positives when mewettch-
point techniques are used to ensure locations are cormettiged untainted when
written to by uninstrumented instructions. There is naghinarked as tainted by
the instrumentation that was not actually derived fromustrd input, and during
detection we already determined that the attacker shouldenable to write to the
sensitive value being guarded. Note that without using nrgmatchpoint sup-
port, the untaint heuristic will not correctly untaint déte. has been overwritten by
untainted data with the same value, which could lead to fadsitives. However,
we have not encountered any in practice and expect them t&rée r

A false negative is when the same vulnerability is exploitethout being re-
ported. This can occur if the tainted input is propagated@bdifferent code path
than in the sample exploit, or if the overwritten sensitiadue is misused at a dif-
ferent location. Note polymorphic variants created bysmich as MetaSploit [3]
will be detected from a single filter. The reason is such paolgphic variants dif-
fer in the payload, which would be executed strictly aftex &xploit point. Only
an exploit that is polymorphic in the execution path exgditould be missed.
Specifically, it would be missed if and only if different ingttions propagate the
tainted data to the exploit point, or there is a differentlexgoint. We expect that
there is a relatively small number of such possible variforta particular vulnera-
bility, and that the attacker must identify them manuallypstatic analysis of the
vulnerable binary. Naturally, we can apply the same statayais techniques to
preemptively identify the other paths that should be imarnted. This is discussed

11

further in Section 3.3.

Combining filters. We may want to combine several different taint-based VSEF
filters. For example, a single binary may have several valniéties that are not all
discovered simultaneously. We want to harden the binargels mew vulnerability

is discovered. Another example is vulnerabilities that lsarexercised via several
different code paths. We want to be able to re-harden theybasmeach new code
path is discovered by the detector.

We combine taint-based VSEF filters by a simple union: antyaction listed
in either of the filters should be instrumented. The simpieind efficiency of
combining filters is a nice property for defense systemsgusimr approach since
it means the system does not become complex as new vulnieakaind attackers
are discovered.

3.2 Destination-based VSEF

Overview. We next consider an optimistic filter that focuses on insgntimg
the point where sensitive data was illegitimately ovenrit rather than the point
where tainted data was illegitimately used. Conceptualtgint-based VSEF filter
consists of a chain of data movement operations, and theiatisin at the exploit
point, which misuses the tainted data. The taint-based flEFdetects when the
tainted data is misused, which is a very accurate detectiethad. However, the
actual security violation is the data movement instructiothe chain that wrote to
an illegitimate destination, copying the tainted data todberwrite target. We refer
to this instruction as the overwrite point. Therefore, wegase destination-based
VSEF, which monitors only the overwrite poirite., the specific instruction that
illegitimately wrote to a specific destination (such as acfmefunction pointer).
We use the term optimistic because of cases where destiradged VSEF may
have false positives. Destination-based VSEF is basededdéia that an overwrite
attack results in the instruction at the overwrite pointting to a destination that it
would not normally write to. This idea is supported by Zkeiual.[44], who built
a system that successfully detects many memory faults (egwvate attacks) by
detecting when an instruction writes to a destination thiaasn’t written to during
normal execution.

It is not enough to specify the overwrite point only by theipos of the in-
struction that performed the overwrite. For example, seppbat the instruction
that performed the overwrite wasm@v insidenmentpy. Because of a bug in the
way mentpy was called, it wrote past the end of a buffer and overwrotena se
sitive value, such as a function pointer. However, a differ@ll to mencpy in
another part of the program may be used to intentionally degifimate data to

12

the same location. Therefore, we specify the overwrite tpasrthe position of the
instruction that performed the overwrite, plus tlantextin which it was executed,
which we call thevulnerable contextWe specify the context to be the list of return
addresses on the stack, which indicates the sequence dibfuralls that led to
the exploit.

Destination-based VSEF Filter Generation. To generate a destination-based
VSEF filter, the VSEF Filter Generator needs to determinemiirh data move-
ment instruction illegitimately wrote to a sensitive Idoat (the overwrite point),
(2) the vulnerable stack configuration when that data mowmerades place (the
vulnerable context), and (3) what destination(s) shouldbeooverwritten by that
instruction, in that context. The VSEF Filter Generator eamact this information
from an execution log of a general purpose detector, or upeciaized detector
that makes this information immediately available.

To identify the data movement instruction that performeglilllegitimate write,
the VSEF Filter Generator first identifies the chain of ingiens that propagated
the tainted data to the exploit point, in the same manner gsrterate a taint-based
VSEF filter. The VSEF Filter Generator then identifies whitkhe instructions in
that taint propagation chain is the overwrite point.

When available, the VSEF Filter Generator can use debugniation com-
piled into the program to help identify the overwrite poiBebug information can
be used to determine the allocated size of a buffer. Hencdyuiber overflows,
the VSEF Filter Generator can identify the overwrite posbalata movement in-
struction that calculates an address as a base plus an affee the offset causes
the calculated address to point outside of the buffer tteb#se pointer points to.

Debug information also provides information about tiyge of each memory
object. Hence, the VSEF Filter Generator can use this irdtion to identify the
overwrite point as the the data movement instruction thased a type violation,
e.g, a string copied over a function pointer. For programs thetehnot been
compiled with debug information, type information can stimes be inferred at
run time. For example, return addresses can be identifiedrémrams that obey
normal stack conventions. It is possible to infer the typlestioer locations based
on how the data is used during normal execution [8].

When neither debug information nor type information is &lde, the VSEF
Filter Generator identifies the overwrite point as the lastriiction in the propaga-
tion chain that writes to a dynamically calculated memorgirads. Heuristically
this will usually be true, given the assumptions that ovéenattacks are the result
of such a memory address taking on an unintended value, anhth#ére are not any
other such copies that occur between the overwrite pointtaéxploit point.

Using our previous example in Table 1, any of these techsigoerectly iden-

13

tifies the overwrite point as instructid. Using buffer size information: While the
base address used at that point pointduamy- >buf , the offset causes the cal-
culated address to point tunmy - >f npt r . Using type information: Instruction
D is the first instruction in the chain where tainted data igtemi to a data type
that should not be tainted. Using neither: Instructidis the last instruction in the
chain to write to a dynamically calculated address. Insimas E andG write to
processor registers. Instructiéhwrites to a hard-coded offset within the current
stack frame.

Once the overwrite point has been identified, the vulnerabidext in which
it was executed can be found by examining the calls and retyprio that point in
the exploit execution trace. Alternatively, a specialidetiector such as TaintCheck
can log the call-stack state along with each tainted dajsggation, so that the call-
stack is already on-hand when the overwrite point is reaghtte backwards trace
of the exploit execution trace. In our previous example fiable 1, the stack con-
text at the overwrite point (instructidD) is [main + 47, vuln + 68, strepy + 25).
That is, the instruction at offset 47 from the startnafi n calledvul n, the in-
struction at offset 68 from the start wtil n calledst r cpy, and the instruction at
offset 25 from the start oft r cpy is thenov that overwrote the function pointer.
This example demonstrates why we need to keep track of thmeerable context,
and not just the overwrite point instruction. Here, as in yneases, there is noth-
ing wrong with the instruction at the overwrite point, or Bw@e function it is in
(strcpy). The problem is thatul n calledst r cpy in an unsafe way.

The sensitive value overwritten is the destination operdnide data movement
instruction at the overwrite point. We express this logaiio a robust way in our
filter. For example, this can be done by denoting as an offset fan activation
record for stack-based locations, or as an offset from abaffocated in a certain
stack-context for heap-based locations. In the exampta frable 1, the location
is offset 16 indummy. This is expressed as offset 16 from the buffer allocated at
context[main + 14].

In the case of buffer overruns, we would ideally like to spethat the write
does not continue past the end of the buffer, so that futysis against the vul-
nerability are not able to overwrite data in between the dnithe buffer and the
data that was detected as being misused. The VSEF Filterr@enean do this
if the binary was compiled with debug information (henceldregth of the buffer
is known). When this information is not available, the VSEReF Generator can
still sometimes create a tighter bound for what area shootdb@ overwritten. For
example, it recognizes when the value overwritten was themeddress. Instead
of only protecting the return address, it also protects #vedebp, which is adja-
cent to the return address, and could be overwritten witbeetwriting the return
address.

14

Destination-based VSEF Binary Instrumentation. We instrument the binary
program to check that the data movement instruction at tleewoite point does

not write to the sensitive destination when it is in the valide stack context. Our
experiments in Section 4.2 show that this can be done byuimstinting a small

number of instructions- the data movement instruction, gmedcall instruction

corresponding to each activation record in the vulnerablgext. We also show
how this could be reduced to only instrumenting the data rmewg instruction by

making copies of each function in the vulnerable context.

Accuracy. When the program is run with the sample exploit, it will agagach the
overwrite point, in the vulnerable stack context. At thainpathe instrumentation
detects that the destination address is illegitimate adligig an attack.

As with taint-based VSEF filters, exploits that automaticalter their content
while using the same attack vector will still be caught. Heereit is possible that
an attacker could alter the exploit so that the vulnerahiditexploited in a different
vulnerable contextif. there may be multiple functions that call the vulnerable
function), or so that it overwrites a different sensitivduea There are unlikely
to be many such possible variations, and we may be able to dime ©f them
automatically using static analysis. For example, mamalais of the vulnerable
ATPhttpd shows that there are only two contexts in which thieerable function
is called in an exploitable way.

We expect that most destination-based VSEF filters will hzare false posi-
tives. There are a few cases where a destination-based VIgiay have false
positives, all of which we expect to be very rare. A destmatbased VSEF could
have false positives if 1) The VSEF Filter Generator idestifihe wrong instruc-
tion as the overwrite point, and hence the write to that afdoecurs in normal
usage. This problem should be straight-forward to detetfiarafter using the fil-
ter. 2) The instruction at the overwrite point dagitimatelywrite to the monitored
location in the vulnerable context. This can be true if theree is sometimes a
legitimate (non-tainted) value, or if the destination isalivays used in a sensitive
way (e.g, a Cuni on that could be a function pointer or a string buffer). In this
case a low-false-positive destination-based VSEF filtettfat vulnerability is not
possible, and a taint-based VSEF filter should be used ihstea

Combining Filters. It is straightforward to instrument a program with multiple
destination-based VSEF filters. The instrumentation fahddter can be added
independently of the other instrumentation. In some casasipte filters will
instrument the same instruction. Each filter can add its ewtrumentation inde-
pendently, without interfering with the other.

Performance. Destination-based VSEF allows the filter to be created alimes
stantaneously. The length of the filter (as well as the tatahlver of instructions

15

instrumented), however, is bound by the depth of the catlks&d the overwrite
point of sample exploit, plus the address of the overwritmtpglus the identi-
fier of the sensitive data to be guarded. In Section 4.2 weritbeshow we can
instrument even fewer instructions, further improvingfpenance.

3.3 Static analysis extensions

Our adversarial model requires filters be generated quiekigl requires them to
be small enough to distribute rapidly. As a result, filteratien for both schemes
relies only on information already on-hand when the expfottetected. However,
if we relax the speed requirement we may be able to generate acourate filters
by performing more analysis.

Backward slicing. The filter we create recognizes the sample exploit along with
variants polymorphic in the exploit payload. However, apleit may be poly-
morphic in the execution path followed. For example, the AT webserver
vulnerability we investigate can be exploited along twdeatént code paths: one
where the requested file is found but not readable and one ffilthis not found

at all. The destination-based VSEF filter generated fromwiflenot detect the
other, because the overwrite occurs in a different vulrerabntext. In this case,
the taint-based VSEF filter for oneill detect the other because the same instruc-
tions are involved in copying the tainted data in either casmvever, if ATPhttpd
had been implemented to usentpy to copy the tainted data on one path, and
st r cpy to copy the tainted data on the other path, then the taireebdSEF filter
generated from one path would not detect the other.

One can perform static analysis to recognize these aleegwde paths, and
identify the additional instructions that would need to stiumented to detect the
corresponding attacks. That is, alternate data propagptths can be identified
and instrumented in taint-based VSEF filters, and altemateerable contexts can
be identified and instrumented in destination-based VSHE#dil Note the static
analysis is sound but imprecise, so it is possible that muséLictions will be
instrumented than necessary. However, including instriatien for potential al-
ternate exploit paths, will result in a filter that detectgife exploits polymorphic
both in the path taken and in the exploit payload.

4 Implementation & Evaluation
In this section we present our implementation and experiah@valuation of the

taint-based and destination-based VSEF Filter GeneratwisVSEF Binary In-
strumentation Engines. In our experiments we use TainiCfix] as the Exploit

16

Detector, and to record the exploit execution trace.

4.1 Taint-based VSEF
4.1.1 Implementation

As discussed in Section 2, TaintCheck already records floeniration needed to
produce a taint-based VSEF filter. As the monitored progsaexecuting it keeps
a directed acyclic graph (DAG) that represents how taintgd evas propagated,
and what instructions propagated it. When an exploit isadetk part of the output
is the part of the DAG showing how the misused tainted data deaived. We
implemented the taint-based VSEF Filter Generator by modjf TaintCheck to
save the set of instruction addresses from that part of thé o a separate file,
along with the instruction address where the tainted datamiaused. This file is
the taint-based VSEF filter.

We also implemented the taint-based VSEF Binary Instruaigmt Engine as
an extension to TaintCheck. Normally TaintCheck adds {ainpagation instru-
mentation to every instruction that propagates data, wisichost instructions. It
also adds taint-assertions to every instruction that cpatdntially misuse tainted
data. In our extension, TaintCheck accepts a taint-basedFV8ter as input,
and then only adds taint-propagation to the propagatioiuictsons listed in the
VSEF filter, and taint-assertion instrumentation to theusésinstruction listed in
the VSEF filter.

Note that our current implementation of the taint-based V®&hary Instru-
mentation Engine is intended only as a prototype to showdtlagive difference
between monitoring nearly every instruction, and monitpronly the instructions
in the taint-based VSEF filter. However, TaintCheck is auifieimplemented on
Valgrind [24] (for Linux), and DynamoRIO [1] (for WindowsBoth of these tools
are well suited for when the entire program needs to be manitdut they each
add substantial overhead even when no instrumentatiordiedad more efficient
implementation could be done using a tool such as Dyninstv&jch is better
suited for adding instrumentation to specific points of ggpam. (We use Dyninst
to implement the destination-based VSEF Binary Instruatér Engine).

4.1.2 Evaluation

We evaluate the quality and efficiency of our taint-based ¥ $Eing real world
exploits. We have tested the effectiveness of our tainéthasSEF approach on
Windows against the SQL Slammer attack [22], and on Linuxresgshe ATPhttpd
exploit [29].

17

| [Avg Time (s) | Overhead|

Native 121.4 -
DynamoRIO 135.05 11%
+ Taint-based VSEF filtef] 138.35 14%

Table 2: SQL taint-based VSEF benchmark.

Latency (ms)| Overhead
Native .566 -
Valgrind 1.279 126%
+ Taint-based VSEF filtef 1.360 140%
Full TaintCheck 9.797 1631%
| Destination-based VSEH| .585 | 3% |

Table 3: ATPhttpd taint-based VSEF and destination-baseBR/benchmark. (1
KB pages)

Taint-based VSEF Filter Size.The filter generated for the ATPhttpd exploit con-
tains only 10 instructions that must be instrumented. Therfibr the vulnerabil-
ity exploited by the SQL Slammer worm contains 200 instiarti that must be
instrumented. Note that our Windows implementation ofttaesed VSEF Fil-
ter Generator, which is based on the less mature DynamoRp:inentation of
TaintCheck, currently addsveryinstruction that operates on the misused tainted
data to the VSEF filter, rather than refining it to only the iiastions that actu-
ally propagate the tainted data to the point where it is neidud his refinement is
straight-forward to implement, and should reduce the fdize by an order of mag-
nitude. For comparison, the ATPhttpd VSEF filter containgn®®uctions without
this refinement.

Taint-based VSEF Performance. The time to generate a VSEF and use it to
harden a binary is very small. For ATPhttpd it was 186 miccosels to generate
a VSEF from TaintCheck's DAG, and 195 ms to use the VSEF todratte AT-
Phttpd binary. Here, we measure the performance of the hedd#icrosoft SQL
Server and the hardened ATPhttpd server. For both testsssue iqueries to the
server process from the same machine so as to not introdtwerkdatency.

We subjected the Microsoft SQL server to the benchmark gdescribed
in [19]. We measured performance when the server was rumehatand when
it was run under DynamoRIO with and without the taint-bas&E¥ instrumen-
tation. Table 2 shows the results. The instrumentation édyethe taint-based
VSEF causes the server to run only 14% slower than nativepalyd2% slower

18

than running under DynamoRIO alone. Again, implementirgyfitter refinement
step for the Windows version of TaintCheck would reduce tinalmer of instruc-
tions instrumented, and further reduce the taint-basedP/8/rhead.

We used the Apache Flood tool [39] to measure the performahtiee hard-
ened ATPhttpd server when serving 1 KB files. Results are shiowable 3. Our
results show that the hardened server runs only 6% slowenthan running un-
der Valgrind alone. We also ran the same benchmark usingikeltp count how
often the instrumented instructions are executed. We fdosicthe 10 instructions
instrumented by the taint-based VSEF accounted for onlg4320of 746,419,783
instructions executed (.00437%). This suggests that im@iting the VSEF Bi-
nary Instrumentation Engine with more efficient instrunagion techniques (such
as DynamoRIO or Dyninst) should result in the taint-base@&N8aving very little
performance overhead.

Taint-based VSEF Accuracy. We verified that the hardened ATPhttpd and Mi-
crosoft SQL server were able to successfully defend ag#iesboriginal exploit.
For ATPhttpd, we also created synthetic polymorphic vasiar the exploit by re-
placing the code in the request with randomly generatedsbyi®e verified that
the hardened ATPhttpd successfully detected these modifissions of the ex-
ploit, thus demonstrating that our taint-based VSEF aptras effective against
polymorphic variants of the sample exploit.

During our benchmarks, neither hardened server had falsiéves. We also
sent the ATPhttpd server several anomalous requests thatigx similar code
paths as the exploit, without actually exploiting the ser¥ée hardened ATPhttpd
correctly did not identify these as attacks.

4.2 Destination-based VSEF
4.2.1 Implementation

We implemented the destination-based VSEF Binary Instniaten Engine us-
ing Dyninst [2], a binary instrumentation tool. Unlike Vailgd and DynamoRIO,
Dyninst performs static rewriting of the target binary.ttostions are instrumented
by overwriting them withj unps to trampoline functions that call our instrumen-
tation code, and then execute the overwritten instructiefore returning. This
approach was chosen to avoid the run-time overhead of dynlaimary rewriting.
Dyninst and our destination-based VSEF Binary InstrumanmtaEngine run on
both Linux and Windows.

The destination-based VSEF filter consists of the addregheofoverwrite
point, the activation records on the stack when the ovesvpaint was executed in
the original exploit, and the normalized address of the tdabwas overwritten.

19

Given the exploit execution trace generated by TaintChéekdestination-based
VSEF filter is generated using the algorithm from Sectiont8.®&entify which
instruction is the overwrite point, and pulling the rest lné information from the
exploit execution trace in a straight-forward manner. Wauase the most difficult
scenario, in which no debug or type information is availabldnelp identify the
overwrite point.

We observe that the overwrite instruction is usuallyt instruction, which
is usually too small to be overwritten byj ainp instruction by Dyninst. Dyninst
handles this case by instead overwriting it with a 1 byteruwdion to generate a
trap, which causes the operating system to deliver a sigrfiet process, and the
instrumentation code to be executed by the signal hahdiEhis is undesirable,
since this is a relatively expensive process. We observeinhmany cases, the
instrumentedov is called frequentlyi(e.,, it may be inst r cpy), but usually
not in the vulnerable context. Therefore we address thibleno by only having
the instrumentation be used when the function is calledérviiinerable context.
The most efficient way to do this is by copying the functionattmake up the
vulnerable context, and rewriting the correspondirgd | instructions so that the
instrumentedrov is only used in the vulnerable context. In cases where this is
infeasible, we can dynamically enable or disable itioey instrumentation when
the vulnerable context is entered or left.

We currently implement the latter approach. We implemetited/ SEF Binary
Instrumentation Engine to instrument thal | instruction corresponding to each
activation record in the vulnerable context. This instratadon incrementally
tracks which of the activation records of the vulnerabletexinare currently on the
stack. The instrumentation for the l&stl | of the vulnerable context dynamically
adds or removes the instrumentation at the overwrite polnathe vulnerable
context is entered or left. Note that if we instrumented dhig cal | instead of
eachcal | in the vulnerable context, the instrumentation would needdlk the
stack every time thatal | was executed to see if it was in the vulnerable context,
which would result in a higher performance cost.

The instrumentation at the overwrite point checks whetherimstruction is
about to write to the protected location. If so, an attackeiedted.

!Dyninst version 5, which is currently under developmengsua different method to insert in-
strumentation which should mostly eliminate the need tottggss. Unfortunately, we were not able
to test this version at the time of writing.

20

4.2.2 Evaluation

We evaluate the quality and efficiency of our destinatioseoaVSEF using the
ATPhttpd exploit?

Destination-based VSEF Filter Size.The filter generated for the ATPhttpd vul-
nerability consists of the addresses of 12 instructioresr{tiv that causes the over-
write, and the 1ZXall instructions corresponding to the vulnerable contexty, @n
range of offsets from the vulnerable stack frame to prot€be ATPhttpd exploit
overwrote the return address, so in this case we are prugettte return address,
which is located at offsets 4 to 7 in the vulnerable stack &a(in our implementa-
tion, we recognize this case and extend the range to 0 to gagabtect the frame
pointer). To clarify, if we were protecting data inside thack frame (such as a
local variable storing a function pointer), this offset uabbe negative.

Destination-based VSEF Performance. It takes a negligible amount of time
to create a destination-based VSEF filter from TaintCheldds and to use the
destination-based VSEF Binary Instrumentation Engineaialén the vulnerable
binary. Here, we measure the performance of the hardenettfid>server.

As in Section 4.1, we evaluate the performance of the hatdéddéhttpd
server using the Apache Flood tool to measure the time teseguests for 1
KB files. Our results are shown in Table 3. Our results showttheserver runs
only 3% slower than when the server is run without instruragon.

We also used Valgrind to count how often the instrumentettungons are
executed during the benchmark. The 12 instrumented iriginscaccounted for
6,070 of 746,465,052 instructions executed(.000813%).

Destination-based VSEF Accuracy. We verified that the hardened ATPhttpd
server was able to successfully defend against the origipabit. As in the taint-
based VSEF experiment, we also verified that server was aldefend against
polymorphic variations of the exploit, and that it corrgalid not identify similar
but non-exploiting requests as attacks.

5 Deployment and Applications

Vulnerability-specific execution filtering meets three wnjant goals: fast filter

generation, accurate detection, and low performance eaerhThese requirements
address the most relevant threat to today’s Internet imfretsire: fast spreading
worms. Worms that exploit known vulnerabilities can causiians of dollars

2At the time of writing, the Windows implementation of Tairtt€ck does not log the correct
information to create a destination-based VSEF, so we weabla to evaluate our destination-based
VSEF for the Microsoft SQL server exploit. However, doingvsould be straight-forward.

21

N2
iz

&

|
3. VSEF filter ,//
~ . disseminated R4

1: New exploit received 2. Full instrumentation

detects exploit & creates
VSEF filter

009
5. Exploit fails
against hardened
binary A/ - \§
Q
E

’ X ina |§
4. VSEF binary GW

Instrumentation %
(on each host) o

Figure 2: The deployment scenario for vulnerability-speaexecution filtering.
Upon (1) receiving an exploit of a new vulnerability, the @)l instrumentation
engine detects it and creates an appropriate filter. The BI{8) disseminated to
all hosts, which then (4) use the filter to instrument and peeda hardened binary.
The hardened binary cannot be then exploited (5). Note bteaexploit in step 5
may be a polymorphic variant of step 1.

of damage. A worm exploiting an unknown vulnerability coddd much more
devastating.

Figure 2 shows our envisioned architecture for defendiragresy worms. Var-
ious full instrumentation detectors are placed acrosshterriet, for example on
honeypots or over-provisioned sites. When a new worm igisel@, the full instru-
mentation version detects the exploit and uses the VSEEr Blenerator to create
an execution filter. The filter is then distributed to othelmewable hosts across
the Internet (that have the same vulnerable binary, sirshared libraries, etc.),
which use VSEF Binary Instrumentation Engine to hardenr thigiaries against
subsequent infection. This hardening can be done withsténtng the server for
destination-based VSEF, because Dyninst is able to attaeh already running
program and instrument it without restarting. Taint-ba¥&EF could also be im-
plemented using Dyninst, which would also allow it to hardlesm program binary
without needing to restart the program.

Our architecture provides for completely automatic respamd containment,
and therefore can respond to a rapid worm outbreak. Ourrayalso works for
previously unknown vulnerabilities where the hardenedatyircan be used until
a proper patch can be installed. We note that sites may be tivateal to install
automatically generated network filters with suspect amurThe accuracy of our
filters make automatic installation much more attractive.

22

Our techniques and architecture also apply to other advarsaodels. Host-
based privilege escalation attacks are a serious thregpitaous automatic de-
fense systems have mostly ignored. Our scheme can be useddenhknown
vulnerable programs against such attacks until the proptahpcan be applied.
Note this is especially important for legacy systems whetgee code for the run-
ning applications may no longer exist or be accessible amsldlpermanent patch
may never be created.

We present a distributed architecture for efficiently ancusely generating,
using, and sharing VSEF filters in [25].

6 Related work

Sidiroglou et. al. proposed selective emulation as part refaative approach for
handling software failure [33]. Their selective emulatissimilar in some aspects
to our work. Like us, they note that partial instrumentato@m reduce total moni-
toring overhead. However their approach for defendingresjdiuffer overflow at-
tacks requires source code to instrument the binary, sinedased on a canary as
in StackGuard [12]. In addition, their instrumentation tiguaction call granular-
ity, and they use heuristics to find out what function callechto be instrumented.
They leave as an open problem how to determine more pregsaiimentation,
which we solve by using taint-based analysis.

Rinard et. al. has proposed using compiler extensions tbwi#fa writes
to unallocated memory. The approach allows a program toutesven in the
presence of buffer overflow attacks[30]. These techniquesianed at increasing
availability for services and are not necessarily safe &od inappropriate as a
defense mechanism.

Shield [40] provides vulnerability-specific exploit geiweprotection. How-
ever, it uses manually generated signatures.

Costa et. al. propose a concurrent work to automaticallegeadhost-based
input filters [11], which has greater accuracy than netwmaked input filters, and
can correctly recognize some semantically equivalenttmpiHowever, the ap-
proach still suffers difficulty when the correct classifioat rule is complex or
needs application state, or when input is encrypted.

IntroVirt [15] uses vulnerability-specific predicates tetect when a vulnera-
bility has been exploited. However, these predicates araually generated.

DAKODA [13] provides a quantitative analysis for a numbeegploit vectors.
Their results show that network-based filters are not speeifough for exploits
against many vulnerabilities, and that there are a numbeulokrabilities where
the attack vector is encrypted, making host-based inpetdilimpractical. The

23

paper also noted that return addresses are not suited teebdeasssignatures for
polymorphic worms which were used in several existing aattiersignature gen-
eration methods [27, 20, 42].

We benefit directly from the active research for increasimg efficiency of
emulation [21, 41, 2]. For example, we use Valgrind and DyoRi® for taint-
based instrumentation (on Linux and Windows, respectjyehhile Pin reports
emulation speeds 3.3x faster than Valgrind and 2x faster BhamamoRIO [21].

We use TaintCheck [27] to initially discover unknown vulaletiities. Other
fine-grained dynamic bug detection tools could be used duriitial filter cre-
ation, such as program shepherding [17], libsafe [4, 6], @thErcote-Fitzhardinge
bounds checking [23]. We chose TaintCheck because theltag®d approach de-
tects the widest variety of attacks and is easy to augmentoupe the taint log
needed for taint-based VSEF.

Slicing techniques [38, 43] can be used to help create oreréimVSEF filters,
as discussed in Section 3.3. We plan to investigate thisoapprin the future.

7 Conclusion

We propose vulnerability-specific execution filtering (M9Ea new type of filter

that recognizes and filters out execution patterns of aroexgtercising a known
vulnerability. VSEF is more accurate than input filteringdasignificantly faster

than full execution monitoring. We give two types of VSEFdik: taint-based
VSEF and destination-based VSEF. The former is more accwhile the latter

may require less instrumentation. We show how to autoribticeeate both filters

using a VSEF Filter Generator. The filters can then be usegttoraatically harden

a binary against the vulnerability via the VSEF Binary Instentation Engine. We
provide an implementation for both components under Wirgdand Linux, and

run experiments that confirm the accuracy, performancegeandration speed. In
most cases the overhead of VSEF binary hardening is only péeeent.

8 Acknowledgments

We would like to thank the following people: Jad Chamchan, ifoplement-
ing TaintCheck on DynamoRIO [10]; Xeno Kovah, for help rumniexperiments;
Drew Bernat, for feedback and assistance with using Dynifishothy Wong;
Emery Berger; and the anonymous reviewers for their inBigfgéedback.

24

References

[1]
[2]
[3]
[4]

[5]

Dynamorio.htt p: / / www. cag. | cs. mi t . edu/ dynanori o/ .
Dyninst. ww. dyni nst . org.
Metasploit.ht t p: / / ww. et aspl oit. org.

Kumar Avijit, Prateek Gupta, and Deepak Gupta. Tiedsdifeplus: Tools for
runtime buffer overflow protection. ISENIX Security Symposiymugust
2004.

R.M. Balzer. EXDAMS - extendable debugging and monitgrsystemPro-
ceedings of the AFIPS SJC84:567-586, 1969.

[6] Arash Baratloo, Navjot Singh, and Timothy Tsai. Tramgpe run-time de-

[7]

[8]

[9]

[10]

[11]

[12]

fense against stack smashing attacksUSENIX Annual Technical Confer-
ence 20002000.

P Bosch, A Carloganu, and D Etiemble. Complete x86 irt$ton trace gen-
eration from hardware bus collect. 23rd IEEE EUROMICRO Conference
1997.

Michael Burrows, Stephen N. Freund, and Janet L. Wiefun-time type
checking for binary programs. International Conference on Compiler Con-
struction April 2003.

CERT/CC. CERT/CC statistics 1988-200%ht t p: / / www. cert. or g/
stats/cert_stats.htnl.

Jad Chamcham. Dynamic taint analysis: Protecting \Mivilagainst worms
and zero-day attacks. Master’s Thesis, Carnegie Mellonéysity, 2005.

Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rtnon, Lidong
Zhou, Lintao Zhang, and Paul Barham. Vigilante: End-to-eadtainment

of internet worms. IrProceedings of the twentieth ACM symposium on Op-
erating systems principles (SO$B)ctober 2005.

Crispin Cowan, Calton Pu, Dave Maier, Jonathon WalpB&at Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heathetod. Stack-
Guard: automatic adaptive detection and prevention ofebufferflow at-
tacks. InProceedings of the 7th USENIX Security Symposianuary 1998.

25

[13] Jedidiah Crandall, Zhendong Su, S. Felix Wu, and Fiedénhong. On de-
riving unknown vulnerabilities from zero-day polymorplaind metamorphic
worm exploits. InProc. 12th ACM Conference on Computer and Communi-
cations Security (CCS2005.

[14] Jedidiah R. Crandall and Fred Chong. Minos: Architeatsupport for soft-
ware security through control data integrity. To appear in International
Symposium on MicroarchitectyrBecember 2004.

[15] Ashlesha Joshi, Samuel T. King, George W. Dunlap, aridré¢. Chen. De-
tecting past and present intrusions through vulneraksiitgcific predicates.
In Proceedings of the twentieth ACM symposium on Operatirtgrsgsprin-
ciples (SOSR)October 2005.

[16] Hyang-Ah Kim and Brad Karp. Autograph: toward autongatdistributed
worm signature detection. Iroceedings of the 13th USENIX Security Sym-
posium August 2004.

[17] VlIadimir Kiriansky, Derek Bruening, and Saman Amaragie. Secure exe-
cution via program shepherding. Rroceedings of the 11th USENIX Security
SymposiumAugust 2002.

[18] Christian Kreibich and Jon Crowcroft. Honeycomb - ¢ig intrusion de-
tection signatures using honeypots. Aroceedings of the Second Workshop
on Hot Topics in Networks (HotNets-INovember 2003.

[19] Gregory Larsen. Benchmarking performance of a quenart o elapsed
time. http://ww. dat abasej our nal . coni f eat ures/ nssql /
article.php/ 3298411, 2004.

[20] Zhenkai Liang and R. Sekar. Fast and automated geoeratiattack signa-
tures: A basis for building self-protecting servers.Piroc. of the 12th ACM
Conference on Computer and Communications Security (C(ZD8).

[21] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Pa#ittur Klauser, Ge-
off Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Haazed. Pin:
Building customized program analysis tools with dynamistimmentation.
In Programming Language Design and Implementation (PL.R0P5.

[22] David Moore, Vern Paxson, Stefan Savage, Colleen Stran8tuart Stani-
ford, and Nicholas Weaver. Inside the slammer wormlEEBE Security and
Privacy, volume 1, 2003.

26

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

Nicholas Nethercote and Jeremy Fitzhardinge. Bowisking entire pro-
grams without recompiling. liProceedings of the Second Workshop on Se-
mantics, Program Analysis, and Computing Environmentdfemory Man-
agement (SPACE 20Q4Yenice, Italy, January 2004. (Proceedings not for-
mally published.).

Nicholas Nethercote and Julian Seward. Valgrind: Agpamn supervision
framework. InProceedings of the Third Workshop on Runtime Verification
(RV’'03), Boulder, Colorado, USA, July 2003.

James Newsome, David Brumley, Dawn Song, Mark R. Ptjeand
Theocharis Kampouris. Efficient and effective self-haglfor defending
against exploit attacks on commodity software. Techniegdrt CMU-CS-
05-191, Department of Computer Science, Carnegie Mellamddsity, May
2005.

James Newsome, Brad Karp, and Dawn Song. Polygraphomatically
generating signatures for polymorphic worms. Aroceedings of the IEEE
Symposium on Security and Privadfay 2005.

James Newsome and Dawn Song. Dynamic taint analys&fomatic detec-
tion, analysis, and signature generation of exploits onmodity software.
In Proceedings of the 12th Annual Network and Distributed eéys$ecurity
Symposium (NDSSyebruary 2005.

Feng Qin, Shan Lu, and Yuanyuan Zhou. SafeMem: ExplgittCC-
memory for detecting memory leaks and memory corruptiomndyproduc-
tion runs. InProceedings of the 11th International Symposium on High-
Performance Computer Architectyr2005.

Yann Ramin. ATPhttpd. http://www.redshift.comyframin/atp/atphttpd/.

Martin Rinard, Cristian Cadar, Daniel Dumitran, Ddri®®y, Tudor Leu, and
William Beebee Jr. Enhancing server availability and sigthrough failure-
oblivious computing. IOperating System Design & Implementation (OSDI)
2004.

Tim J Robbins. libformat. http://ww. securityfocus. com
t ool s/ 1818, 2001.

P. A. Sandon, Y.C. Liao, T.E. Cook, D.M. Schultz, and Priifede Nicolas.
Nstrace: A bus-driven instruction trace tool for powerp@improcessors.
IBM Journal of Research and Developmetit(3), 1997.

27

[33]

[34]

[35]

[36]

[37]
[38]

[39]
[40]

[41]

[42]

[43]

[44]

Stelios Sidiroglou, Michael E. Locasto, Stephen W. 8osnd Angelos D.
Keromytis. Building a reactive immune system for softwaeevices. In
USENIX Annual Technical Conferen@905.

Sumeet Singh, Cristian Estan, George Varghese, arfdrSf&avage. The
EarlyBird system for real-time detection of unknown wornigchnical Re-
port CS2003-0761, University of California, San Diego, Aag2003.

Stuart Staniford, Vern Paxson, and Nicholas Weavew koOwn the Internet
in your spare time. Ii1th USENIX Security Symposiug®02.

G. Edward Suh, Jaewook Lee, and Srinivas Devadas. &¢rogram exe-
cution via dynamic information flow tracking. IRroceedings of ASPLQS
2004.

Peter Szor. Hunting for metamorphic. Wirus Bulletin Conferenge2001.

Frank Tip. A survey of program slicing techniquegurnal of programming
languages, 3, September 1995.

Apache Flood Toolht t p: // ht t pd. apache. org/test/fl ood.

Helen J Wang, Chuanxiong Guo, Daniel Simon, and Alf Zugaier. Shield:
Vulnerability-driven network filters for preventing knowrulnerability ex-
ploits. INACM SIGCOMM August 2004.

Chadd Williams and Jeffrey Hollingsworth. Interagibinary instrumenta-
tion. In Second International Workshop on Remote Analysis and Measu
ment of Software Systems (RAMS84.

Jun Xu, Peng Ning, Chongkyung Kil, Yan Zhai, and ChrisoBioolt. Auto-
matic diagnosis and response to memory corruption vuliléied 2005.

Xiangyu Zhang and Rajiv Gupta. Cost effective dynamiogpam slicing.
In 2004 Programming Language Design and Implementation (Ptbfer-
ence 2004.

Pin Zhou, Wei Liu, Fei Long, Shan Lu, Feng Qin, Yuanyudrod, Sam Mid-
kiff, and Josep Torrellas. AccMon: Automatically detegtimemory-related
bugs via program counter-based invariants.The Proceedings of 37th An-
nual IEEE/ACM International Symposium on Micro-architeet (Micro’04),
December 2004.

28

