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1 Introduction

Access control today is characterized by an expanse of mechanisms that do not interoperate and
that are highly inflexible. Access to physical resources (e.g., home, office) is most commonly tied
to the possession of a hardware key, and in office environments possibly a swipe card or proxim-
ity/RFID card. By contrast, access to virtual resources is most commonly tied to the knowledge
of a password and/or possession of a physical token (e.g., SecureID) for producing time-varying
passwords, particularly in the case of virtual private network access.

In this paper we introduce the Grey system, which utilizes converged mobile devices, or
“smartphones”, as the technology of choice for unifying access control to both physical and vir-
tual resources. We focus on smartphones for two central reasons. First, their nearly ubiquitous
adoption is inevitable: Gartner predicts shipment of 20 million smartphones already in 2006 (ver-
sus 13 million for PDAs) [33], and in the long term they stand to inherit the vast cellular phone
market, which in 2004 shipped over 648 million units [45], or more than one phone per ten people
in the world.1 Second, the hardware capabilities of smartphones and the maturity of application
programming environments for them have advanced to a stage that enables applications to take full
advantage of rich computation, communication, and interface capabilities (e.g., a camera).

It is this convergence of market trends and technological advances that points to a not-too-
distant future marked by pervasive adoption of highly capable and always-in-hand smartphones.
Grey is an effort to enhance this platform to build a ubiquitous access-control technology spanning
both physical and virtual resources. This vision is not ours alone; e.g., several groups have exper-
imented with the use of mobile phones as digital keys [11, 38]; NTT Docomo is conducting trials
on the use of mobile phones to authorize entry to apartments2; and mobile phones can already be
used to purchase items from vending machines in several countries. However, to the extent that the
capabilities of these systems can be inferred, we believe that Grey presents a more sound and flex-
ible platform for building a ubiquitous access-control system and, eventually, for experimenting
with advanced mobile applications.

As an example of the type of flexibility not possible in these other solutions, with Grey a user
will be able to easily create and lend to her friend a temporary, virtual key to her car or apartment;
this will happen seamlessly regardless of whether the user and her friend are standing next to each
other or thousands of miles apart. Similarly, a manager could give to her secretary temporary
access to her email without revealing any information (such as passwords) that could be used at a
later time or to access a different resource. Going further, a user could specify, for example, that
his office may be accessed by any three of his colleagues acting together, but at least three would
have to cooperate to gain access. A detailed usage scenario will be given in Section 4.

The Grey platform is a novel integration of several technologies that results in a single tool
for exercising and delegating authority that we believe is far more secure, flexible and usable
than any alternative available today. At the core of Grey is a flexible and provably sound au-
thorization framework based on proof-carrying authorization (PCA) [5, 9], extended with a new
distributed proving technique that offers significant efficiency and usability advances [10]. In ad-
dition to enabling a user to exercise her authority, PCA provides a framework in which users can
delegate authority in a convenient fashion. These techniques rely on sound cryptographic key

1The July 2004 estimate of world population by the The World Factbook (see http://www.cia.gov/cia/
publications/factbook/geos/xx.html) is just over 6.379 billion.

2http://www.i4u.com/article960.html
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management. For protection of phone-resident cryptographic keys in the event of phone capture,
Grey incorporates capture resilience [29, 30]. And, on the user-interface front, we employ a tech-
nique for conveying key material and user identifiers in support of access management, and even
for conveying network addresses, that is as simple as taking a picture with the phone’s built-in
camera [32, 44]. Phone-to-phone and phone-to-infrastructure data communication is conducted
through an asynchronous messaging layer that we have developed to take advantage of the myr-
iad networking technologies available to modern smartphones, including Bluetooth, cellular data
service (e.g., GPRS), and messaging protocols (e.g., SMS and MMS).

In this paper we survey these component technologies, their implementations in Grey, and
their performance on modern smartphones. In addition, we detail two applications of Grey that we
are presently developing for deployment starting in March 2005, which coincides with the comple-
tion of a new building on our university campus. One of the applications involves instrumenting
the physical space of this building, roughly 30,000 square feet, with infrastructure needed to con-
trol access to approximately 65 doors by roughly 150 people carrying Grey-enabled phones. A
second application involves the use of Grey for accessing Windows XP sessions. In both of these
applications, we argue that Grey offers a more secure, flexible and convenient basis for access
control than existing solutions.

2 Related Work

Biometrics are one class of technologies commonly advocated for unifying access control across
resources. Like a password or PIN, however, biometrics are exclusively a user-authentication tech-
nology, providing no inherent capability for computation or storage. As such, they are useful only
for authenticating a user to a trusted platform where computation (e.g., cryptographic operations,
policy creation and evaluation) can be done; indeed, our focus in this paper is designing such a
platform and supporting architecture.

A smartcard (or RFID card) could serve as this platform, but there are numerous reasons why
we believe smartphones offer a superior solution. First, a smartcard’s inability to interact with the
user directly (due to a lack of a keypad and display) typically limits its use to performing crypto-
graphic operations, and indirectly to a second factor for two-factor user authentication. Richer uses
have driven researchers to advocate the extension of smartcards with entry keypads and displays
(e.g., [34]) or to abandon the smartcard format and move to PDA-class devices (e.g., [8]). Our
work can be viewed as a continuation of this trend, highlighting the use of modern smartphones
with additional capabilities still (e.g., a camera, diverse communication capabilities, and signif-
icant computational power) and their application to access control. Second, trends in smartcard
technology have not kept pace with smartphones, in that smartphones now offer dramatically bet-
ter capabilities and programming environments. Third, smartcard adoption pales in comparison
to that of mobile phones, and this gap will only widen in the future. Finally, while a smartcard’s
tamper-resistance is often cited as a necessary feature, the communication and user-input capabil-
ities of the smartphone enable us to nullify this advantage for a wide range of attacks through the
use of capture resilience [29, 30].3

3We do not intend to overstate this case, however: due to its emphasis on security, a smartcard may offer physical
protections against side-channel attacks, notably electromagnetic analysis [36], whereas defending against these at-
tacks on commodity smartphones would presumably require significant modifications to the cryptographic algorithms.
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Our use of smartphones to control physical environments evokes visions of ubiquitous or
pervasive computing, and in this context there have been a number of works on access control,
e.g., due to Al-Muhtadi et al. [3, 4], Covington et al. [16, 15], Hengartner and Steenkiste [23],
Tripathi et al. [46] and Wullens et al. [48]. These works primarily focus on accommodating novel
types of context in access control (e.g., a user’s current activities and location) that are expected to
be available in future pervasive-computing environments. More importantly from our perspective,
these efforts are largely agnostic to the vehicle by which the user interacts with the computing
environment. Thus, these efforts focus mostly on infrastructure in which policy is created, stored
and/or interpreted, in some cases using centralized servers. In contrast, our focus is the vehicle
(the smartphone) itself and its supporting software and architecture, and the decentralized creation,
storage and interpretation of policy it enables.

There are fewer works focused on user devices and their use for exercising authority in
pervasive-computing scenarios. Perhaps the most closely related such works are those of Beaufour
and Bonnet [11] and Ravi et al. [38]. Both consider the use of smartphones for implementing
physical access control (c.f., Section 6.1), and Ravi et al. also provide an approach for integrating
payment and access control with service discovery via smartphones. However, neither develops
a general framework for implementing access control across applications or offering convenient
delegation, as we do here. Moreover, our advances in user interfaces for smartphones, and our
development of techniques to defend the cryptographic keys they hold, have no parallel in their
works. More distantly related work is due to Sailer and Giles, who develop protocols for a single
user device, called the Personal Authentication Gateway, to temporarily permit other devices to
utilize the user’s authority [42] so that, e.g., the user’s watch could display information from a ser-
vice for which the gateway holds credentials. Multiple user devices are not required in our work,
though if a user employs multiple devices, then her authority can easily be transfered among these
devices as a consequence of the general authorization framework we employ.

3 Component Technologies

Grey is a novel integration of a number of recently-developed technologies that utilize the capabil-
ities of modern smartphones. In the interest of providing background to the reader, we summarize
these component technologies here.

3.1 Graphical Identifiers

A common feature of modern smartphones is a camera. In Grey we utilize this camera as a data
input device for the smartphone, i.e., by asking the user to take a picture of an item or person
she intends to interact with. Information conveyed by photographing two-dimensional barcodes is
a theme common to several ubiquitous computing efforts (e.g., [28, 31, 40]), typically to convey
service information or a URL where such information can be obtained. Our use of the camera
in Grey is not limited to (but does include) two-dimensional barcodes, and is primarily a user-
friendly means for importing identifiers into the system. More specifically, there are three types of
identifiers that are commonly input via the camera:

• An identifier for a person. A photograph of a person is used as an identifier for the person,
in lieu of or in addition to a text string name, in credentials such as certificates (c.f., [43]).
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In the absence of unique and standardized names for all persons, pictures provide a less
failure-prone way for identifying a person. For example, a user can have more confidence in
a credential giving rights to a person with a picture that she recognizes, than in one giving
rights to the string “Bob”, which may be interpreted as different persons by different peo-
ple. Of course, in some cases this picture should be accompanied with text (e.g., “Bob”) to
disambiguate persons with similar appearances (e.g., twins).

• An identifier for a public key. A useful identifier for a key is the collision-resistant hash of
the key (e.g., [26]). In Grey, a two-dimensional barcode is used to encode the hash of a public
key and can be displayed on a sticker attached to an item (e.g., on a door) or, for a device
with a display (e.g., smartphone or computer), presented on the display. A camera-equipped
smartphone can then be used to photograph this identifier and authenticate the public key
obtained by any other means (e.g., over a wireless link) [32]. This provides a more natural
and user-friendly way for obtaining an authentic public key than other alternatives.

• A network address. Similar to encoding a hash of a public key in a two-dimensional bar-
code, a barcode can also be used to encode a network address. As above, a camera-equipped
smartphone can then obtain the network address by photographing the barcode. This idea
has been utilized in order to circumvent high-latency device discovery in Bluetooth [44],
and we use it similarly in Grey. In addition, this idea offers similar usability advantages to
that above, as it is an intuitive operation for a user to photograph the device with which she
intends to communicate.

The pervasiveness of graphical identifiers in Grey lends itself well to purely graphical man-
agement interfaces for collecting identifiers and managing access. We will provide an overview of
the interfaces we have developed in Section 5.

3.2 Capture-Resilient Cryptography

A user’s Grey-enabled smartphone utilizes a private signature key in the course of exercising
the user’s authority. The capture of a smartphone thus risks permitting an attacker who reverse-
engineers the smartphone to utilize this private key and, as a result, the user’s authority. To defend
against this threat, Grey capture protects the phone’s private key [29, 30]. At a high level, capture
protection utilizes a remote capture-protection server to confirm that the device is being held by
the person who initialized the device (e.g., using a PIN, face recognition via the phone’s camera,
or other biometric if the phone supports it), before it permits the key on the phone to be used. This
server can also disable the use of the key permanently when informed that the device has been lost,
or temporarily to protect the key from an online dictionary attack on the PIN (or other authenti-
cation technique). At the same time, this capture-protection server is untrusted in that it gains no
information about the user’s key.

In keeping with the theme that Grey is a wholly decentralized system, the capture-protection
server is not a centralized resource. That is, each user can utilize her own capture-protection server
(e.g., her desktop computer), and indeed there is no management required of this server in the
sense of establishing user accounts. Rather, this server need only have a public key that is made
available to the user’s phone when the phone’s key is created—perhaps by taking a picture of it
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displayed on the server’s screen, as described in Section 3.1—and must to be reachable when the
phone needs to utilize its private key.

A concern that arises with the use of a phone for exercising personal authority is the sheer
inconvenience of losing one’s phone, in the sense of being unable to exercise one’s own authority.
While this can occur with any form of access control that utilizes a token or other hardware, we
note that capture protection provides a remedy. Since the capture-protection server ensures that a
key can be used only by a device in possession of the person present when the key was created, a
user may back up her key material with little risk of exposing it in an indefensible way.

3.3 Proof-Carrying Authorization

Underpinning any distributed access-control system must be a scheme for expressing and reasoning
about authority. In computer systems, the key building block of such a scheme is the digital
certificate, by which a signer expresses his belief that the content of the certificate is true. The
typical use of digital certificates is to bind a person’s name to her public key [24], but certificates
can be used as arbitrary credentials, including to express the signer’s intention or permission to
access a resource, to delegate authority, and to describe resources.

Prior research in distributed authorization has produced a number of systems [39, 18, 19, 12]
that provide ways to implement and use complex security policies that are distributed across mul-
tiple entities. The process of gaining access to a resource typically involves locating and gathering
credentials and verifying that a set of credentials satisfies some access-control policy. Both the
gathering and the verification is typically carried out by the entity or host that is trying to decide
whether to allow or deny access.

These credentials and the algorithms for deciding whether a set of credentials satisfies some
security policy can be described using formal logics (e.g., [1, 21]). Such logics provide a foun-
dation for expressing rich access-control mechanisms including roles, groups, delegation, etc.,
as extensions of a few basic concepts, including a fundamental speaks-for relation between princi-
pals [26]; for example, a certificate might indicate the public key that “speaks for” a named person.
In early work in this vein, the design of access-control systems starts with the specification of a
security logic, after which a system is built that implements as exactly as possible the abstractions
and algorithms that the logic describes [47, 7]. While this approach can dramatically increase
confidence in the systems’ correctness [2], at best the system emulates the access-control ideal as
captured in the formal logic. That is, since the correspondence between the formal logic and the
implementation is only informal, any guarantees derived from the formal logic might fail to extend
to the implemented system.

An alternative introduced in the concept of proof-carrying authorization (PCA) [5, 9] is to
utilize this formal logic directly in the implementation of the system. In PCA the system directly
manipulates fragments of logic that represent credentials; the proofs of access are likewise con-
structed directly in formal logic. This integration of formal logic into the implemented system
provides increased assurance that the system will behave as expected. This is the high-level ap-
proach that we adopt in Grey. As such, each Grey component (including a smartphone) includes
an automated theorem prover for generating proofs in the logic, and a checker for verifying proofs.

A fundamental tension in access control is that the more expressive a system is (that is, the
greater the range of security policies that its credentials can describe), the more difficult it becomes
to make access-control decisions. To ensure that the access-control decision can always be made,
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most systems restrict the range of security policies that can be expressed, ruling out many poten-
tially useful policies. Since Grey is meant to be used in a highly heterogeneous environment and
supports ad-hoc creation of policy components, this type of inflexibility could be very limiting. An
insight behind PCA is that the access-control policy concerning any particular client is likely to
be far simpler to reason about than the sum of all the policies of all clients. PCA takes advantage
of this insight by making it the client’s responsibility to prove that access should be granted. To
gain access, a client must provide the server with a logical proof that access should be allowed; the
server must only verify that the proof is valid, which is a much simpler task. The common language
in which proofs are expressed is a higher-order logic [13]; when constructing proofs, each client
uses only a tractable subset of the higher-order logic that fits its own needs. The mechanism for
verifying proofs is lightweight, which increases confidence in its correctness [6] and also enables
even computationally impoverished devices to be protected by Grey.

4 A Usage Scenario

Grey’s integration of the technologies described in Section 3 (and others) enables a range of inter-
actions that enhance access control to render it more user friendly, decentralized and flexible. To
illustrate this, we describe an example scenario that utilizes several of the pieces we have intro-
duced.

The scenario we consider begins with two researchers, Alice and Bob, who meet at a con-
ference and begin a research collaboration. Anticipating communicating electronically when they
return to their home institutions, each enters the other in his/her smartphone “address book”. The
address book interface is such that creating the entry for Bob requires Alice to snap two pictures
with her smartphone: one of Bob and one of a two-dimensional barcode displayed on his smart-
phone that encodes Bob’s public key (or a collision-resistant hash thereof). Bob does similarly.
After Alice returns to her home institution, her phone automatically synchronizes its address book
with her PC. This could permit her, for example, to authenticate electronic mail from Bob using
standard protocols (e.g., [37]).

Figure 1: Bob and Alice exchange public keys. The phones’ displays and cameras serve as a
secondary validation channel.

As their submission deadline approaches, Alice and Bob decide that a face-to-face meeting
would be warranted, and so Bob makes plans to visit Alice. On the day that Bob arrives at Alice’s
institution, Alice is delayed at home. Bob thus arrives to Alice’s locked office door. Inside the glass
next to Alice’s door is a barcode sticker that encodes the Bluetooth address of a computer that can
actuate Alice’s door to open, if convinced to do so. Bob photographs the barcode, prompting his
smartphone to connect to the computer, which challenges Bob’s phone to prove his rights to access
the door—a feat which his phone cannot do alone, since Bob lacks the needed credentials. The
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theorem prover in his phone, however, discerns that Alice’s phone could assist, and initiates a
communication with it.

Upon receiving Bob’s phone’s request, the theorem prover in Alice’s phone automatically
generates several options by which Alice can permit Bob to enter the door, based on credentials
that she has previously created and that are stored in the phone: she can (i) simply grant him a
credential to open the door only this time; (ii) add him to a group visitors that she previously
created and granted rights to, among other things, open her door; or (iii) give him the rights of her
secretary, to whom she also granted the ability to open her door. Alice’s phone presents this list
to Alice, who selects (ii). The phone then signs a credential to this effect and returns it to Bob’s
phone, enabling it to complete the proof of access.

Figure 2: Bob entering Alice’s office. In the course of proving access, Bob’s phone contacts Alice’s
phone for help.

It is worthwhile to reflect on the presentation of this process to each of Alice and Bob. Bob,
upon photographing the door barcode, is asked to enter a PIN in order to utilize his private key to
sign a request to open the door—an operation protected by capture protection; see Section 3.2—
and the door opens with no further interaction (albeit with some waiting while Alice makes her
decision). Alice is consulted merely with a list offering her several options by which she can
permit Bob to enter her office. Upon selecting one and also typing her PIN—again to activate her
capture-protected key—her task is completed.

Bob’s credential indicating that he is a member of Alice’s visitors group turns out to be
handy while he awaits Alice’s arrival. In addition to permitting him to open Alice’s office, it could
grant his laptop access to the campus 802.11 network, to the floor printer, and to a back room
where there is a vending machine with snacks and sodas. All these privileges are afforded to Bob
due to Alice’s prior creation of credentials that grant these privileges to her visitors.

5 Software Architecture

At a high level of abstraction, every Grey host or device is composed of some subset of the fol-
lowing elements: a compact and trustworthy verifier that mediates access to a protected resource;
an extensible prover that attempts to construct proofs of access; a lightweight, asynchronous com-
munication framework that facilitates the distributed construction of proofs and management of
certificates; and a collection of graphical interfaces that allows the convenient and seamless inte-
gration of Grey into everyday life. Grey is implemented in Java, which allows it to easily extend
across multiple platforms (workstations, smartphones, embedded PCs, etc.) and operating systems.
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5.1 Graphical User Interfaces

An emphasis in Grey is usability. In this subsection we describe the primary user interfaces in-
volved in Grey at the time of this writing.

In order to maximize our user population, we have targeted Grey for the widest range of
smartphones possible, including those of modest size—and correspondingly modest screen size.
For example, our primary development platform to date has been the Nokia 6620, a smartphone
with dimensions 4.28×2.29×0.93 inches and a 176×208 pixel display. Due to the limited screen
size on this class of smartphones, we have divided tasks into those performed on the phone by
necessity, and those that can be offloaded to a companion tool run on a personal computer, after
which the necessary state can be transferred to the phone via a synchronization operation. At a
high level, tasks such as the creation of groups and roles (as defined in [26]), and proactive policy
creation, are offloaded to the companion tool. Because these tasks are standard in a variety of
access-control settings, here we focus on the phone-resident interfaces, as these are the ones that
we believe to be more innovative.

The tasks performed on the smartphone with user interaction include: collecting identifiers
(of persons, keys, or addresses) and creating speaks-for relationships [26] among them to create
an “address book”; making an access request to a resource; and reactive policy creation, i.e.,
responding to a request for a credential to permit another person to complete an access proof.

Address book The first of these tasks, building an address book of identifiers and bindings
among them, is performed using the camera and, to a lesser extent, the keypad of the phone.
As described in Section 3.1, the identifiers that can be input via the camera include pictures of
persons and of public keys (and of network addresses, but these are not involved in address-book
creation). The keypad permits the input of text strings, which we refer to as names. The address-
book interface presently enables the creation of speaks-for relationships of the following forms:
(i) a key speaks for a picture (person); (ii) a key speaks for a name; and (iii) a name speaks for a
picture. Relationship (ii) is a typical certificate, and (i) serves a similar purpose. (iii) is a way to
provide a local name to a photograph of a person. Grey does not support a means to specify that
a photograph speaks for a name. While this has an intuitive meaning, we eschew this possibility
to avoid confusion with group creation (not discussed here), which involves issuing credentials
authorizing an identifier (which in our case includes a photo) to speak for a group name.

The manner of creating these speaks-for relationships differs depending on the type of rela-
tionship being created. In case (i) or (ii), the speaks-for relationship is created by photographing
the key and then either selecting an already-present identifier for which it speaks or inputting the
identifier at that time. In particular, after photographing the two-dimensional barcode encoding the
key, the key is permanently hidden from the user. While user-friendly representations of keys using
“snowflakes” [20, 27], flags [17] or random art [35] have been proposed, we believe that exposing
keys in the interface is unnecessary and potentially confusing. This is different from names and
pictures of persons, which are identifiers that appear in menus and can be used to create speaks-for
relationships of type (iii) at any time.

Requesting access to a resource A user requesting access to a resource for the first time must
obtain the network address of the computer that controls access to that resource. Collecting this net-
work address can presently be done in two ways: either with Bluetooth discovery or, as discussed
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Figure 3: Alice’s entry in Bob’s address book.

in Section 3.1, using the phone’s camera to photograph a two-dimensional barcode encoding the
Bluetooth address (Figure 4). The latter technique is more reliable, since Bluetooth discovery can
net multiple devices, and selecting the proper device is a user choice that is vulnerable to misinter-
pretation or the user being misled. Once the network address for a resource is captured, it is kept
in a resource menu on the phone. A single click on a resource in this menu initiates an attempt to
connect to the corresponding computer and start the sequence to access the resource (see Figure 5).

Figure 4: New Grey resources can be found via the camera or through Bluetooth discovery. Bob
learns the Bluetooth address of Alice’s door by taking a picture of the two-dimensional barcode
visible near Alice’s door.

Perhaps the most innovative aspect of this part of the user interface is its use of learned patterns
of resource accesses. Most users exhibit a pattern of accesses, and this is particularly true for
physical resources; e.g., a typical workday begins with the user opening a building door, then a
door on the floor on which she works, then her office door, and finally logging into her desktop
computer. If all these resources are accessed using Grey, the user’s smartphone will learn the
temporal proximity and order of these accesses as a pattern, and can offer this pattern as an option
when the user initiates the first access in the pattern (e.g., Work Garage to HH D202 PC in
Figure 5 is such a pattern). If the user selects the pattern, the phone will attempt to connect to
and access each of the resources in sequence, with each step contingent on the previous access in
the pattern succeeding. In this way, merely two clicks and a PIN entry as the user approaches her
building will enable her to reach her office and will log her into her desktop.
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Figure 5: Resource list on Bob’s phone.

Reactive policy creation The third type of interface presented by the phone to the user permits
the reactive creation of policy. This interface is launched by the prover in the user’s smartphone
after the prover has generated a list of credentials to which the user could consent to enable an
access that is being attempted by another person. For example, in the usage scenario of Section 4,
this is the interface by which Alice adds Bob to her visitors group by selecting this option
from the menu generated by the prover (see Section 5.2).

Because this interface interrupts the user (unlike the other interfaces, which are user driven), it
is important that the user can apply access control to this step and silence these interrupts at times
she prefers to not be interrupted. For the former (access control), we employ the same access-
control infrastructure that we use for other resources, utilizing a default, but user-configurable,
policy that permits only those in the phone’s address book to request assistance. The latter, i.e.,
silencing all such requests, is a simple toggle, and, once activated, received requests will be silently
queued for the user to handle later. The party requesting credentials from her will simply time out
awaiting her response, and will not be able to access the requested resource (or at least not with
her help). However, if she later consents to the request, the appropriate credential will still be sent
to the requester for use in the future.

5.2 Prover

As described in the example in Section 4, after arriving in front of Alice’s office, Bob instructs his
phone to unlock the door. The door’s first reply contains a challenge—a statement, in logic, of the
theorem that Bob’s phone must prove before the door will unlock. The challenge that typically
needs to be proved is that the door’s owner believes that it is OK for access to be granted. In this
case, expressed in logic, the challenge is Alice says goal(A-111), i.e., Bob must prove that Alice
believes that it is OK to access her office, A-111.4

The straightforward way for Bob to answer the door’s challenge would be to scour the network
for useful credentials and then attempt to form them into a proof; most distributed authorization
systems use a close facsimile of this approach. There are some inherent problems, however, with
this method of constructing a proof. Bob might guess, for example, that Alice has credentials that

4In order to enforce the timeliness of Bob’s response and to protect against replay attacks, the logical statement
that must be proved also contains a nonce. This and other low-level details that are not novel are described in related
work; we omit them from this paper in order to focus on the more abstract ideas.
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he could use, but he does not know exactly which of the credentials that she possesses will be
helpful for this particular proof. It would be inefficient for Alice to send Bob all her credentials,
since she might have hundreds. Moreover, sending all her credentials to Bob would reveal exactly
the extent of Alice’s authority, which is unlikely to meet with Alice’s approval. Finally, there may
be cases, such as in our example, when the credential that Bob needs has not yet been created; in
these situations a simple search, no matter how thorough, would fail to yield sufficient credentials
for Bob to access Alice’s office.

An answer to these problems can be found in distributed proving—a scheme in which Bob’s
phone does not just search for individual credentials, but also solicits help in proving simpler
subproofs that he can assemble into a proof of the challenge [10]. Using this approach, Bob’s phone
might ask Alice’s phone to prove a theorem like Bob says goal(...) → Alice says goal(...).
Alice’s phone now has the opportunity to decide which of her credentials to use or which new
credentials to create in order to prove this theorem; these credentials will be returned to Bob’s
phone along with the proof. This scheme of farming out subproofs to other entities spans two
extremes: eager proving, in which a client farms out a theorem only if he is completely unable
to make progress on it himself; and lazy proving, in which the client asks for help as soon as
he isolates a theorem that someone else might be able to help with. Distributed proving can be
combined with several optimizations, including caching of credentials and subproofs and deriving
proof strategies based on the shape of previously encountered proofs [10].

Figure 6: When a proof cannot be generated locally, the user is asked to approve a help request,
which can be annotated with an audio clip.

The use of distributed proving in Grey and the details of constructing proofs in general are
largely out of the view of the user. Bob’s phone processes the door’s challenge until it arrives at
a potentially useful subtheorem; at that point, the phone consults the address book to determine
how Alice can be reached (by phone or by URL, for example). Since Bob might have to pay for
the communication (typically, some combination of SMS and GPRS connectivity is needed, and
use of either may incur some cost) and to prevent other users from being unintentionally disturbed,
Bob’s phone prompts Bob to approve the help request. Alice may need reminding or convincing
before she will be willing to help, and so Bob is given the option of annotating his request for a
subproof with a recorded or text message (see Figure 6).

Upon receiving Bob’s request, Alice’s phone first verifies that Alice is in fact willing to help
Bob (Figure 7). If Alice agrees, her phone begins to compute the subproof, which can in many
cases be done without further input from Alice. Sometimes, however, construction of the sub-
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Figure 7: A phone seeks approval before replying to a help inquiry. Alice is given the opportunity
to chose the type of credential that she is willing to grant to Bob.

proof will require Alice to generate a new credential. In these cases, Alice is shown a list of the
credentials that can be used to complete the subproof. Alice can either choose the credential she
wishes to create, or decide that none of them are appropriate. When Alice makes her selection,
her smartphone finishes constructing the subproof and sends it to Bob. Bob’s phone incorporates
Alice’s subproof into the main proof and sends the proof to the door (Figure 8).

Figure 8: Bob is kept apprised of the proving process.

Although a single help request is sufficient for our example with Alice and Bob, Bob’s phone
may in general need to request subproofs from several other users; in addition, each of those
users may in turn also need to solicit help. Through a combination of optimizations derived from
observing both successful and unsuccessful past behaviors, a user’s Grey smartphone can guide
proof search to minimize the number of times help is requested. If multiple avenues can lead to
constructing a proof, the ones most likely to be successful and quick will be the ones pursued
first [10].

Figure 9 depicts the structure of the Grey application that runs on Bob’s phone. The entire
application is implemented in Java Micro Edition (J2ME)5, the restricted flavor of Java that runs
on many smartphones. The process of generating proofs is managed by different components
depending on whether Bob is trying to access a resource himself (ProofTalker) or help another user
(HelpTalker). In addition to directing a Prolog engine (JIProlog6) to traverse the space of possible

5http://java.sun.com/j2me
6http://www.ugosweb.com/jiprolog
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Figure 9: The structure of the Grey application that runs on smartphones.

proofs, these components manage communication with the resource Bob is trying to access and
with other users via the communication framework. They also create and manage credentials using
the Crypto module, perhaps employing two-dimensional barcodes captured by the phone’s camera
as an unspoofable channel (2D Barcode).

Grey makes use of a rich set of standard extensions to the core J2ME APIs to enable use
of Bluetooth and other communications protocols (JSR-82 and JSR-120) and the phone’s camera
(JSR-135). In addition, we use the BouncyCastle libraries7 to implement the higher-level Grey
cryptographic primitives.

5.3 Verifier

One of the goals of Grey is to encompass many diverse resources that a user might wish to access.
Some of these resources, such as doors and computer logins, we traditionally associate with the
need for access control. Others, like thermostats, are not normally thought of the same way. How-
ever, with the ability to actuate such resources remotely, via the network or via a smartphone, also
comes the need to regulate access. For example, Alice may want to adjust her office temperature
before she arrives at work, but she most likely does not want passers-by to do the same.

To enable Grey to conveniently apply to a wide range of devices, it was necessary for its
verification module—the component that mediates access to resources—to be simple, relatively
lightweight, and device independent. At the same time, we wanted to maintain a high level of
assurance that access is not granted improperly. The proof-carrying authorization paradigm fit our
needs well; in proof-carrying authorization, access to a resource is allowed if the client presents a
proof that he is authorized to use it. The verification of such proofs is a straightforward mechan-
ical process, with none of the complexity and potential intractability of generating proofs. This
distinction is fortunate, since the verifier is in the trusted computing base, while proof generation
is not. Moreover, the verification process itself is independent of the security policy protecting the
resource, and so also of the resource’s type (e.g., door, thermostat).

Figure 10 shows the components and control flow of the verification module, which are de-
scribed in more detail in the following paragraphs. The process of gaining access to a resource
is initiated by a user request. In response to the request, a challenge is generated. The challenge
is the statement, in formal logic, of the theorem whose proof a potential user must provide. As

7http://www.bouncycastle.org
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Figure 10: Flow of the verification process.

described in Section 3.3, the challenge is specified in higher-order logic; this in turn is encoded in
LF, the notation of one of the most widely used frameworks for specifying logics [22].

When Bob attempts to access Alice’s office, the verification module generates a challenge that
includes the name of the resource, A-111, and a nonce. This challenge is sent to Bob, but also
recorded for use in later stages of verification.

Bob’s eventual reply to the challenge will contain a set of credentials (e.g., Bob is a member
of visitors), and a proof, in formal logic, that the credentials satisfy the door’s challenge.
The first step of verifying the proof is to ensure that it has arrived within a brief period after the
door issued the challenge. Next, the credentials, which are X.509v3 certificates with customized
extensions, are verified: their digital signatures and expiration times are checked. Finally, the
formal proof is passed to an LF type checker, which ensures that the structure of the proof is valid
(e.g., that it contains no false implications) and that the correct theorem (the one that was issued as
the challenge) was proved. This algorithm is widely studied and well understood, providing high
assurance that an invalid proof will never be accepted [14, 6]. If this proof is successfully verified,
the LF checker signals an actuator to open the door.

Some resources are simpler to manage than others. Alice’s door, for example, has a single
security policy and a binary actuator. Other resources, like computer logins, are likely to have
multiple security policies (e.g., one for each computer account) and different ways of actuating
(e.g., “log in Alice”, instead of just “log in”). For this reason we provide the challenge generator
and actuator with the name of the resource being accessed. Note that these two components are
the only ones that are customized to a particular type of Grey device; the other components of the
verification module can be reused without any modification.

5.4 The Communication Framework

One of the components critical to Grey’s success is a flexible and reliable framework for managing
communications in a network of both mobile (e.g., smartphones) and fixed devices (e.g., comput-
ers controlling access to fixed resources). In designing and developing Grey’s communications
infrastructure we had the following goals.

Support for multiple transport layers Smartphones have at their disposal a plethora of messag-
ing protocols—SMS, MMS, voice calls, Bluetooth—that are highly heterogenous in terms
of latency, reliability, and capacity, and yet all need to be seamlessly integrated into a single
framework.

Reliable, flexible message routing Some Grey devices will have access to only a subset of the
possible messaging protocols (e.g., only Bluetooth); other devices will experience periods of

14



limited connectivity (e.g., while in the basement of an office building). The communication
framework must compensate by routing messages via whichever protocols are available.

Light user burden Our emphasis on usability demands that the user remain oblivious, whenever
possible, to any decisions regarding ad-hoc routing, retrying failed transmissions, etc. For
this reason, the communication framework needs more than ordinary insight into the charac-
teristics of messaging protocols and the communications abilities of various Grey devices.

Figure 11 depicts the structure of the communication framework and its integration with other
components of a Grey application. The communication framework is comprised of three main
parts: a Talker interface for accepting messages from the application and returning diagnostic in-
formation; the message queue and carrier “management layer”; and a collection of carrier modules
for the different messaging protocols.

JSR-82

Message Queue and Carrier Management

BluetoothL2CAP

providers

...

Application

core
framework
functions

application

JSR-120 Other GCF providers...

GSMS SMS HTTP
carrier

modules

Protocol "Talkers"

Figure 11: Structure of the multi-platform communication framework.

Application layer The Talker exports an asynchronous, message-based communications API to
the client application. An application typically instantiates an extension of Talker for each protocol
or function that the application wishes to implement. For example, the Grey application that runs
on smartphones uses a ProofTalker to encapsulate the protocol for accessing a resource on behalf
of the user. Any replies to messages dispatched by a particular Talker are automatically routed to
that Talker’s event handler by the communication framework. In addition, a Talker can explicitly
register with the communication framework to receive particular types of messages, where the type
can be specified by source, content, or carrier. From the standpoint of the application, this allows
all communication relevant to a particular process to be automatically routed to the appropriate
Talker (e.g., the ProofTalker). Two other Talkers commonly used by Grey applications are the
HelpTalker, which manages help requests sent out by other users, and the AdminTalker, which
handles synchronization between the smartphone and a workstation. A feature often implemented
by Talkers is end-to-end encryption using symmetric or public-key techniques.

In addition to dispatching and receiving messages, Talkers also receive feedback from the
underlying communication layers about the successful or unsuccessful receipt of the message by
the addressee, as well as diagnostic information indicating the status of the message (e.g., that
the transit time is expected to be long, that the preferred carrier is unavailable). This diagnostic
information can be safely ignored, but Talkers may choose to use it to adjust their protocol (e.g., by
asking a different device for help) or to inform the user (e.g., by displaying the expected waiting
time).
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Management layer The middle layer of the communication framework is a database manage-
ment system that allows the communication framework to track and manage its messages and
active carriers. The queue- and carrier-management tasks generally take the form of mediation
between the requester (Talker) and the provider (carrier).

All messages dispatched by Talkers are added to a message queue and then processed in
turn. Processing a message involves determining the exact address to which it should be sent
and the carrier that should be used. Determining the exact address could be trivial, since the
address (e.g., the Bluetooth address of a door) is in many cases provided by the Talker. However,
a Talker may identify the addressee of a message only abstractly (e.g., “Alice”). In this case, the
communication framework must first consult the user’s address book to determine the possible
destination addresses (e.g., Bob’s address book may contain Alice’s phone number, the URL of
her workstation, and the Bluetooth address of her smartphone). Hints from the Talker assist the
communication framework in selecting the most appropriate address.

Once a concrete destination address is identified, the communication framework selects the
best carrier for dispatching the message. In the typical case this is, again, straightforward. For
example, if a message is addressed to the Bluetooth address of a door’s embedded computer, the
communication framework will instantiate the Bluetooth carrier (BluetoothL2CAP) and send the
message. However, if the addressee cannot be contacted directly (e.g., the destination address is a
phone number but the sender is out of reach of a wireless carrier) then, if configured to do so, the
communication framework will attempt to send the message to other willing Grey devices. These
devices will in turn forward the message to the desired recipient, subject to hop-count limitations.

The tasks of selecting the destination address and the carrier are not always independent; for
example, if Bob’s address book contains three addresses for Alice and all of the corresponding
carriers are currently able to send messages, Grey chooses which carrier to use in order of speed
of delivery—in general, Bluetooth first, followed by GSMS or SMS, followed finally by indirect
routing of a message via other Grey nodes, if configured to do so.

In addition to simple message dispatch, the management layer of the communication frame-
work performs a variety of other housekeeping tasks, such as confirming message receipt by send-
ing and waiting for acknowledgments, resending messages if the original dispatch fails, discarding
duplicate messages, etc.

Carriers Each carrier handles one type of point-to-point communication link. A Grey device
may have multiple instances of the same type of carrier. The modular approach allows us to
simply “plug” new carriers into Grey as new communications capabilities become available to
smartphones in the future. Likewise, this approach allows a Grey application to use only the
carriers it needs or that are supported by the underlying hardware.

One of the challenges in designing the carriers was to create a single interface that could
encompass very different behaviors—some carriers, like SMS, are inherently message based and
can have very high latency, while others, like HTTP, are connection based and have lower latency
and higher capacity. A testament to the soundness of our communication framework design is that
adding carriers, even complex ones that use several communications protocols (e.g., the GSMS
carrier, which emulates multimedia messaging by using a combination of SMS, GPRS, and HTTP
communication) has proven straightforward.
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Access Time (s) Variance
Door Access 5.36 0.33
Windows XP Login 9.31 2.20

Table 1: User-level benchmarks in seconds.

5.5 Performance on Modern Smartphones

In this section we provide performance measurements for certain tasks in Grey. Our primary
interest is measuring delays as experienced by the user to access a resource in the common case. We
report such numbers here, and additionally measure costs associated with underlying operations to
shed light on the sources of these delays.

Our first macrobenchmark is the time required to open a door. The computer controlling the
door lock was an embedded PC with a 1.4GHz Pentium M processor; more detail on this pilot
application is given in Section 6.1. Each timing was measured starting when the user selected the
door from the resource list on her phone (a Nokia 6620), and ended when the door unlocked. As
shown in Table 1, this delay was approximately six seconds excluding any user interaction (more
on this below), with a small variance resulting from background work on the phone, such as alarms,
housekeeping, and other applications. The second macrobenchmark is the time required for a user
to log into a 2GHz Windows XP workstation. The methodology in this experiment was similar to
that for the door, with timing beginning when the user selected the resource in her resource list on
the phone, and ending when the “Start” menu became available to the user. As shown in Table 1,
this delay is roughly nine to eleven seconds. The bulk of the extra time was taken up by the load
time for explorer.exe and desktop preparation.

We emphasize that these are common-case numbers in three senses. First, neither of these
tests involved a remote help request. Help requests can take significantly longer (e.g., a minute),
and vary depending on cellular network conditions and user responsiveness. Second, these mea-
surements did not involve the use of a capture-resilient signing key on the phone, and as such the
signing operation by the phone did not involve user input (i.e., a PIN) or interaction with a capture-
protection server. In our present implementation, we have adopted a design by which the user
can configure the frequency with which she is prompted for her PIN (and the capture-protection
server is contacted), rather than being prompted per resource access. Her capture-resilient key is
then used at these intervals to create a short-lived certificate for a non-capture-resilient public key
(a step which does require PIN entry) that is used to sign access requests. As such, the common
case incurs only the latency of a signature with this non-capture-resilient key; the measurements
in Table 1 reflect this. Third, the network address for each of the computers regulating access was
already stored in the resource list of the phone and so, e.g., the one-time barcode-processing over-
head incurred if it is first captured via the camera (roughly 1.5 seconds) is not reflected in these
numbers.

Typical latencies of under six seconds to open a door and roughly nine seconds to complete a
computer login are already comparable to the latencies of these processes using more traditional
access control (e.g., physical keys and passwords), particularly considering that much of the la-
tency for the XP login is due to login steps that follow the access-control decision. However, we
emphasize that Grey permits these latencies to be hidden from the user more effectively than al-
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ternatives. Our current systems utilize class 2 Bluetooth devices, meaning that, e.g., a smartphone
could initiate an access once it is within 10 meters of the resource (the door or computer). By
the time the user reaches the resource in order to make use of it, the access typically would have
completed. In our own experience with using the system, access is consequently far quicker than
with the alternatives that Grey replaces.

Nokia 6620 Audiovox SMT 5600
Action Time (ms) Variance Time (ms) Variance

RSA PSS 1780 480 1260 30
RMS Read (1.5KB) 697 100 60 4
RMS Write (1.5KB) 480 88 170 3
RMS Read (30KB) 900 115 90 20
RMS Write (30KB) 1109 78 200 28

Table 2: Microbenchmarks in milliseconds.

The microbenchmarks shown in Table 2 illustrate some of the performance bottlenecks of us-
ing a resource-constrained platform such as the smartphone. Among the most significant sources
of delay are RSA signatures and accessing the Record Management Store (RMS), which is a sim-
plified file system and the only long-term storage available to the Java VM. The left columns of
Table 2 describe these costs for the Nokia 6620, the device used in the experiments described in
Table 1. The 30KB RMS read and write benchmarks measure the time it takes to read and write a
standard address-book picture, each about 30KB in size. In the case of the RSA signature [41], the
RSA modulus was 1024 bits in length.

In light of Table 2, an obvious approach to optimize the signature cost is to employ a signa-
ture algorithm for which signing is less expensive, such as DSA [25]. However, trends in device
technology are reducing these costs, across the board, at a dramatic pace. As an example, the right
columns of Table 2 provide the same measurements for an Audiovox SMT 5600, a more modern
smartphone with an even smaller form factor than the Nokia 6620. Our measurements show a
30% improvement in RSA signing times, a threefold or more improvement in RMS write times,
and nearly an order of magnitude improvement in RMS read times. Sadly, we cannot yet use the
Audiovox model, because it does not currently support JSR-82 (Bluetooth).

6 Pilot Applications

In this section we provide greater detail on the pilot applications that we are developing for de-
ployment with Grey.

6.1 Office Access

Our primary pilot application for Grey, which has been discussed throughout this paper, is enabling
access to office doors. The required physical infrastructure is relatively minimal: a standard elec-
tric door strike actuated by an embedded PC located in the wall near each door. Our prototype
embedded PC measures 4.55×3.75×1.70 inches—small enough to fit within each door, an option
we seriously considered. It is equipped with a Bluetooth adapter and an RS-485 relay controller,
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and to improve reliability has no moving parts (i.e., cooling is passive, and flash memory is used
for non-volatile storage). The prototype embedded PC uses a commodity Pentium M on a PC-
104+ mainboard; for a wide deployment of Grey a significantly more compact, custom embedded
system could be designed.

Java 1.5

Bouncy Castle

Comm Framework

BluetoothL2CAP

J2SE

3rd party

...

Crypto

DoorTalker StrikeController

core

application

Checker

JSR-82 Java COMM

ChallengeGen

Figure 12: The structure of the Java application that allows office doors to be Grey-enabled.

Figure 12 shows the structure of the Grey application that controls access to a door. The appli-
cation is constructed in a modular fashion—the bulk of it are the communications and verification
components discussed in Sections 5.4 and 5.3, and the only customization necessary was the front
end (DoorTalker) that encapsulates these modules and the actuator module (StrikeController) that
sends commands specific to the relay controller we use.

Enabling a door with Grey does not preclude legacy access technologies (e.g., keys, proximity
cards) from being used; Grey merely provides a parallel way to unlock the door. Of course, Grey
can also be used as the sole method of controlling access.

6.2 Windows XP Login

The second of our two pilot applications was integrating Grey with the Windows XP login archi-
tecture to enable Grey users to login to their workstations from a smartphone. The structure of
the verification module in this application remains unchanged. However, unlike access to doors
where the actuator performs a binary action (i.e., either unlocking the door or not), in this case the
actuator presents the desired username to the Windows component that starts a new user session.

The Windows XP login architecture and Grey’s integration into it are shown in Figure 13. The
regular method of starting a user session on Windows XP is as follows: After the workstation boots
(or a previous user logs out), Winlogon.exe starts the GINA, a GUI module that is responsible
for all authentication-related interaction with the user. The GINA collects a user’s credentials
(normally a username and password) and sends them to the Local Security Authority (LSA). The
LSA uses an authentication package to verify the credentials and starts a user session (i.e., logging
the user in).

In the door-access-control application, the entire verification module, from the challenge gen-
erator to the actuator, lives in “trusted” space. One of the difficulties of integrating Grey into the
Windows XP login architecture was that Windows enforces a strict division between untrusted
modules (the GINA) and trusted modules (the LSA and its authentication packages), which re-
quired us to separate the Grey communications components from the rest of the verification mod-
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Figure 13: The integration of Grey into the Windows authorization architecture.

ule.8

One component resides in “untrusted space” and enables the display of barcodes and Bluetooth
communication with the user device. A customized GINA allows this module to be used in parallel
with the standard login dialog window. Both the generation of the challenge and the verification of
the proof must be carried out correctly to prevent users from logging in without authorization, and
so those components reside in trusted space and are accessed by the LSA as another authentication
package. A small interface module (Grey Interface) mediates communication between the standard
Windows components, which are written in C/C++, and the Grey components that are written in
Java.

This boundary between untrusted execution and trusted execution space is crossed twice.
First, the communications component (Winlogon.jar) requests a challenge from the verifi-
cation module (WinlogonChecker.jar). Second, the communications component passes the
user’s proof to the verification module.

Note that Grey-enabling the Windows XP login does not prevent users from continuing to
login with a username and password or any other token (e.g., smartcard) they had previously been
using. In addition, the functionality of gaining access via Grey is available whenever the Windows
login architecture is used, for example, when the screen is locked while a user is still logged in.

To continue our example from Section 4: After Bob has proved access and entered Alice’s
office, he can use his smartphone to login to the “guest” account on Alice’s workstation. To start
the process, Bob uses his phone’s camera to take a picture of the barcode embedded in the otherwise
standard Windows XP login dialog box (Figure 14). Alice has delegated permission to login via
the “Guest” account to everyone in her visitors group. This delegation credential was part of
the proof of access that Bob constructed to enter Alice’s office; hence, Bob’s smartphone already
has a copy of the credential. Without further ado, Bob’s smartphone locally constructs a proof of
access and sends it to the computer, which starts a new login session.

8The major difficulty was the lack of provision in the Windows XP architecture for adding third-party authorization
modules.
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Figure 14: The Windows XP login interface, modified for use by Grey.

7 Conclusion and Status

Smartphones offer a number of features that make them attractive as a basis for pervasive-computing
applications, not the least of which is their impending ubiquity. Grey is an effort to leverage these
devices beyond the games, personal information management, and basic communication (voice,
email) for which they are primarily used today. We believe, in particular, that these devices can
form the basis of a sound access-control infrastructure offering both usability and unparalleled
flexibility in policy creation.

Grey is a collection of software extensions to commodity mobile phones that forms the basis
for such an infrastructure. At the core of Grey is the novel integration of several new advances
in areas ranging from device technologies (e.g., cameras) and applications thereof, to theorem
proving in the context of access-control logics. This integration yields, we believe, a compelling
and usable tool for performing device-enabled access control to both physical and virtual resources.
We briefly described two such applications that we have implemented, namely access to doors and
to Windows XP logins, and the novel forms of reactive delegation that this tool enables.

Grey is being deployed to control access to the physical space on two floors of a building
currently under construction on our university campus. Construction of this building is planned to
be completed in March 2005, after which Grey will be phased into the building on an opt-in basis.
At the time of this writing, Grey is already sufficiently mature to permit our group members to
use it on a daily basis to access a door that serves as a prototype of those being deployed in this
building. In addition, we continue to refine a prototype of the Grey-enabled Windows XP login,
which is operational in our laboratory. We will continue to mature these prototypes as we approach
deployment.
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