
A Counterexample Guided Abstraction

Refinement Framework for Verifying

Concurrent C Programs

Sagar J. Chaki
CMU-CS-05-102

May 24, 2005

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee
Prof. Edmund M. Clarke, CMU, Chair

Prof. Randal E. Bryant, CMU
Prof. David Garlan, CMU

Dr. Sriram K. Rajamani, Microsoft Research

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Copyright c© 2005 Sagar J. Chaki

This research was sponsored by the Department of Defense under Naval Research Laboratory grant
no. N000140110796, the National Science Foundation under grant nos. CCR-0098072 and CCR-
9803774, and the Microsoft Corporation through a graduate fellowship.

The views and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or implied, of the
sponsoring institutions, the U.S. Government or any other entity.

Keywords: Software verification, Concurrency, Compositionality, C programs,
Process algebra, Simulation, State/Event formalism, Deadlock, Temporal logic,
Model checking, Predicate abstraction, Abstraction refinement, Computers, Science.

�����������	����
����
����������������������

Abstract

This dissertation presents a framework for verifying concurrent
message-passing C programs in an automated manner. The methodology
relies on several key ideas. First, programs are modeled as finite
state machines whose states are labeled with data and whose transitions
are labeled with events. We refer to such state machines as labeled
Kripke structures (LKSs). Our state/event-based approach enables
us to succinctly express and efficiently verify properties which involve
simultaneously both the static (data-based) and the dynamic (reactive
or event-based) aspects of any software system. Second, the framework
supports a wide range of specification mechanisms and notions of
conformance. For instance, complete system specifications can be
expressed as LKSs and simulation conformance verified between such
specifications and any C implementation. For partial specifications, the
framework supports (in addition to LKSs) a state/event-based linear
temporal logic capable of expressing complex safety as well as liveness
properties. Finally, the framework enables us to check for deadlocks
in concurrent message-passing programs. Third, for each notion of
conformance, we present a completely automated and compositional
verification procedure based on the counterexample guided abstraction
refinement (CEGAR) paradigm. Like other CEGAR-based approaches,
these verification procedures consist of an iterative application of model
construction, model checking, counterexample validation and model
refinement steps. However, they are uniquely distinguished by their
compositionality. More precisely, in each of our conformance checking
procedures, the algorithms for model construction, counterexample
validation and model refinement are applied component-wise. The state-
space size of the models are controlled via a two-pronged strategy: (i)
using two complementary abstraction techniques based on the static
(predicate abstraction) and dynamic (action-guided abstraction) aspects
of the program, and (ii) minimizing the number of predicates required for
predicate abstraction. The proposed framework has been implemented
in the magic tool. We present experimental evaluation in support of
the effectiveness of our framework in verifying non-trivial concurrent C
programs against a rich class of specifications in an automated manner.

ii

Contents

1 Introduction 1

1.1 Software Complexity . 2

1.2 Software Development . 2

1.3 Software Verification . 3

1.4 Model Checking . 4

1.5 Predicate Abstraction . 5

1.6 Abstraction Refinement . 6

1.7 Compositional Reasoning . 8

1.8 State/event based Analysis . 9

1.9 Deadlock Detection . 10

1.10 Summary . 11

2 Preliminaries 15

3 C Programs 25

3.1 Expressions . 27

3.1.1 Expression Evaluation . 27

3.1.2 Expressions as Formulas . 29

3.1.3 Propositions and Expressions 31

3.2 Component . 31

3.2.1 Component Semantics . 34

3.2.2 Transition Relation of [[C]] . 39

3.3 Restrictions on C Programs . 41

3.4 Symbolic Representation of States . 43

iii

3.4.1 Restriction . 46

3.4.2 Pre-image . 47

3.5 Program . 47

4 Abstraction 49

4.1 Abstraction mapping . 49

4.2 Predicate . 50

4.3 Predicate Mapping . 53

4.4 Predicate Abstraction . 54

4.4.1 Transition Relation of [[[C]]] . 56

4.5 Predicate Inference . 62

5 Simulation 65

5.1 Simulation Games . 66

5.2 Strategy Trees as Counterexamples 69

5.3 Checking Simulation . 70

5.3.1 Computing Multiple Counterexample Trees 73

5.4 Simulation using N-HORNSAT . 74

5.4.1 Definitions . 74

5.4.2 Reducing Simulation to N-HORNSAT 75

5.4.3 Computing W inPos and Chal 77

5.5 Witnesses as Counterexamples . 79

6 Refinement 85

6.1 Witness Validation . 85

6.2 Abstraction Refinement . 95

6.3 CEGAR for Simulation . 100

6.4 The magic Tool . 102

6.4.1 A Simple Implementation . 103

6.4.2 A Simple Specification . 103

6.4.3 Running magic . 110

6.4.4 A Concurrent Example . 111

6.4.5 Other Keywords . 112

iv

6.4.6 Drawing with magic . 114

6.5 Experimental Results . 114

7 Predicate Minimization 119

7.1 Related work . 120

7.2 Pseudo-Boolean Constraints . 121

7.3 Predicate Minimization . 122

7.4 CEGAR with Predicate Minimization 126

7.5 Experimental Results . 126

7.5.1 The Greedy Approach . 127

7.5.2 Benchmarks . 128

7.5.3 Results Summary . 129

7.5.4 Optimality . 133

8 State-Event Temporal Logic 135

8.1 Related Work . 138

8.2 Preliminaries . 141

8.3 The Logic SE-LTL . 142

8.3.1 Automata-based Verification 143

8.3.2 The Logic LTL . 144

8.3.3 Product Automaton . 146

8.3.4 State/Event Product . 147

8.3.5 SE-LTL Counterexamples . 149

8.4 A Surge Protector . 152

8.5 SE-LTL Verification of C Programs 156

8.5.1 Compositional Lasso Validation 156

8.5.2 Abstraction Refinement . 157

8.6 CEGAR for SE-LTL . 159

8.7 Experimental Results . 161

9 Two-Level Abstraction Refinement 165

9.1 Introduction . 166

9.2 Related Work . 168

v

9.3 Abstraction . 171

9.4 Counterexample Validation and Refinement 172

9.4.1 Splitting Equivalence Classes 173

9.4.2 Checking Validity of a Counterexample Witness 174

9.4.3 Refining an Action-Guided Abstraction 175

9.4.4 Overall Action-Guided Abstraction Refinement 178

9.5 Two-Level CEGAR . 179

9.6 Experimental Results . 180

9.6.1 Unix Kernel Benchmarks . 181

9.6.2 OpenSSL Benchmarks . 182

10 Deadlock 185

10.1 Introduction . 186

10.2 Related Work . 189

10.3 Background . 190

10.4 Abstraction . 193

10.5 Counterexample Validation . 199

10.6 Abstraction Refinement . 200

10.7 Overall Algorithm . 202

10.8 Experimental Results . 204

11 Future Directions 207

A OpenSSL Example 223

A.1 Server Source . 223

A.2 Server Library Specifications . 233

A.3 Client Source . 237

A.4 Client Library Specifications . 245

A.5 Complete OpenSSL Specification . 249

vi

List of Figures

2.1 A simple LKS. 16

2.2 Two LKSs demonstrating simulation. 18

2.3 Two LKSs demonstrating weak simulation. 19

2.4 Two LKSs showing that weak simulation does not preserve liveness properties. 20

2.5 Three LKSs demonstrating parallel composition. 23

3.1 Syntax of a simple component. We will use this as a running example. 32

3.2 Component for the C procedure shown in Figure 3.1. We will use this as a

running example. 34

3.3 The EFSM corresponding to the library routine from Example 8. The initial

state is indicated by an incoming transition with no source state. 36

3.4 The EFSMs corresponding to the context from Example 9. 37

4.1 The component from Example 9. 59

4.2 The LKS obtained by predicate abstraction of the component in Figure 4.1. . 60

4.3 The component of Figure 4.1 with each statement labeled by inferred predicates

computed by PredInfer from the set of seed branches {3, 4}. 63

5.1 Two simple LKSs. 68

5.2 Counterexample Tree for a simulation game. 70

5.3 An implementation Im and a specification Sp. Im is the LKS from Figure 4.2. 81

5.4 A CounterexampleTree and CounterexampleWitness corresponding to the

simulation game between Im and Sp from Figure 5.3. Each state of the

CounterexampleWitness is labeled by the corresponding state of Im which

simulates it. 82

6.1 The component from Figure 4.1 and CounterexampleWitness from Figure 5.4.

Note that the CounterexampleWitness is spurious. 95

vii

6.2 On the left is the refined abstraction of the component from Figure 6.1 using

states {3, 4} as seeds. The empty valuation ⊥ is written as “()”. On the right is

the specification from Figure 5.3. Note that the refined abstraction is simulated

by the specification. 98

6.3 Comparison between simulation and trace containment in terms of time and

number of iterations. 116

6.4 Time, iteration and memory requirements for different number of

Counterexample Trees. 117

8.1 The LKS of a surge protector . 152

8.2 The Kripke structure of a surge protector 153

9.1 On the left is a simulation map θ between M1 and M2. On the right is a

simulation map θ ◦ ν between M1 and M3. 176

10.1 (a) Sample LKSs M1 and M2; (b) M1 ‖ M2. 192

10.2 Four sample LKSs demonstrating the non-compositional nature of deadlock. . 194

viii

List of Algorithms

4.1 PredInfer computes a predicate mapping for component C that is compatible

with a context γ using a set of seed branches. It continues as long as some

condition continue holds. 62
5.1 ComputeWinPos computes the set W inPos of winning positions for the

implementation Im; the challenges are stored in Ch. 71
5.2 SimulCETree checks for simulation, and returns a Counterexample Tree in

case of violation. 72
5.3 ComputeStrategy recursively computes a winning strategy for showing that

(sIm, sSp) ∈ W inPos; it outputs the root of the strategy tree. 74
5.4 GenerateHORN to generate φ(Im,Sp). 76
5.5 TreeToWitness computes a Counterexample Witness corresponding to a

Counterexample Tree CT . 80
5.6 SimulWitness checks for simulation, and returns a Counterexample Witness

in case of violation. 80
6.1 WeakSimul returns true iff CW - [[C]]γ 93
6.2 CanSimul computes the set of states of [[C]]γ which can weakly simulate the

sub-LKS of CW with initial state s. 94
6.3 AbsRefine returns a refined abstraction for C that eliminates a set of spurious

Counterexample Witness projections CW and error on failure. 96
6.4 AbsCanSimul computes the set of states of M̂ which can weakly simulate

the sub-LKS of CW with initial state s. 97
6.5 SimulCEGAR checks simulation conformance between a program P and a

specification Sp in a context Γ. 101
7.1 AbsRefMin returns a refined abstraction for C based on a minimal set of

branches that eliminates a set of spurious Counterexample Witness projections

and error on failure. The parameter φ initially expresses constraints about

branches which can eliminate all previous spurious Counterexample Witness

projections. AbsRefMin also updates φ with the constraints for the new

spurious Counterexample Witness projection CW 125
7.2 SimulCEGARMin checks simulation conformance between a program P

and a specification Sp in a context Γ. 127
7.3 GreedyMin returns a greedily computed refined abstraction for C that

eliminates every spurious Counterexample Witness projection in CW 128

ix

8.1 WeakSimLasso returns true iff CE - [[C]]γ 157
8.2 AbsRefSELTL returns a refined abstraction for C that eliminates a spurious

Lasso projection CE and error on failure. The parameter φ initially expresses

constraints about branches which can eliminate all previous spurious Lasso

projections. AbsRefSELTL also updates φ with the constraints for the new

spurious Lasso projection CE. 158
8.3 AbsSimLasso returns true iff M̂ can weakly simulate CE. 159
8.4 SELTL-CEGAR checks entailment between a program P and an SE-LTL

specification φ in a context Γ. 160
9.1 WeakSimulAG returns true if CW - M and false otherwise. 174
9.2 CanSimulAG returns the set of states of M which can weakly simulate s. . 175
9.3 ValidateAndRefineAG checks the validity of CW at the action-guided

abstraction level. It returns false if CW is found to be valid. Otherwise

it properly refines some equivalence relation Ri and returns true. 178
9.4 TwoLevelCEGAR checks simulation conformance between a program P and

a specification Sp in a context Γ. 179
10.1 IsFailure returns true if (θ, F) ∈ Fail(M) and false otherwise. 200
10.2 AbsRefine for doing abstraction refinement. 201
10.3 IterDeadlock for iterative deadlock detection. 203

x

List of Tables

3.1 BNF grammars for Expr and LV alue. 28

3.2 Definition of function Add which maps lvalues to addresses. Note that the

function Address takes either a single variable argument or a pair of arguments,

the first of which is an element of D and the second is a structure field. . . . 29

3.3 Definition of function V al which maps expressions to values. 29

7.1 Comparison of magic with the greedy approach. ‘*’ indicates run-time longer

than 3 hours. ‘×’ indicates negligible values. Best results are emphasized. . . 129

7.2 Results for magic with and without minimization. ‘*’ indicates run-time longer

than 3 hours. ‘×’ indicates negligible values. Best results are emphasized. . . 130

7.3 Results for blast and magic with predicate minimization. ‘*’ indicates run-

time longer than 3 hours. ‘×’ indicates negligible values. Best results are

emphasized. 131

7.4 Results for optimality. ELM = MAXELM, SUB = MAXSUB, Ti = Time in

seconds, It = number of iterations, Br = number of branches, M = Memory,

T = total number of eliminating subsets generated, and G = maximum size of

any eliminating subset generated. 133

7.5 Results for optimality. SUB = MAXSUB, Time is in seconds, It = number of

iterations, Br = number of branches, T = total number of eliminating subsets

generated, M = maximum size of subsets tried, and G = maximum size of

eliminating subsets generated. 134

8.1 Comparison of pure state-based, pure event-based and state/event-based

formalisms. Values of c and m range between 0 and Range. St and Tr

respectively denote the number of states and transitions of the Büchi automaton

corresponding to the specification. B-T is the Büchi construction time and T-

T is the total verification time. All times are reported in milliseconds. A ∗

indicates that the Büchi automaton construction did not terminate in 10 minutes.155

xi

8.2 Experimental results with OpenSSL and µC/OS-II. St(B) and Tr(B) =

respectively the number of states and transitions in the Büchi automaton;

St(Mdl) = number of states in the model; T(Mdl) = model construction

time; T(BA) = Büchi construction time; T(Ver) = model checking time;

T(Total) = total verification time. All reported times are in milliseconds.

Mem is the total memory requirement in MB. A * indicates that the model

checking did not terminate within 2 hours and was aborted. In such cases, other

measurements were made at the point of forced termination. A - indicates that

the corresponding measurement was not taken. 162

9.1 Summary of results for Linux Kernel code. LOC and Description denote the

number of lines of code and a brief description of the benchmark source code.

The measurements for PIter and LIter have been omitted because they are

insignificant. All times are in milliseconds. 182

9.2 Summary of results for sequential OpenSSL examples. The first eight are

server benchmarks while the last eight are client benchmarks. Note that for

the PredOnly case, LIt is always zero and PIt = It. All times are in seconds.

The improvement in state-space size is shown in bold. 183

9.3 Summary of results for concurrent OpenSSL examples. Note that for the

PredOnly case, LIt is always zero and PIt = It. All times are in seconds

and memory is in MB. Best times and the improvement in memory requirement

is shown in bold. 184

10.1 Experimental results. SM = maximum # of states; SR = # of reachable states;

I = # of iterations; T = time in seconds; M = memory in MB; time limit =

1500 sec; - indicates negligible value; * indicates out of time; notable figures

are highlighted. 205

xii

Glossary of Terms

Note: Several symbols are used in multiple contexts and their meaning depends on
both the symbol and the type of the subscript. For instance, the symbol S is used to
denote the set of states of labeled Kripke structures, Büchi automata, as well as Kripke
structures. Therefore, SM denotes the set of states of a labeled Kripke structure or
Kripke structure M , while SB denotes the set of states of a Büchi automaton B.
Similarly, AP M denotes the set of atomic propositions of a labeled Kripke structure
M , while AP γ denotes the set of atomic propositions specified by a context γ. Some
other symbols with multiple connotations are Init, Σ, L, T (which are used for both
labeled Kripke structures and Büchi automata) and � (which is used for both labeled
Kripke structures and traces).

Chapter 2 : Preliminaries

AP denumerable set of atomic propositions.

SM set of states of LKS M .

InitM set of initial states of LKS M .

APM set of atomic propositions of LKS M .

LM propositional labeling of the states of LKS M .

ΣM alphabet of LKS M .

TM transition relation of LKS M .

s
α

−→M s′ transition in LKS M from state s to s′ labeled by α.

SuccM(s, α) successors of state s of LKS M on action α.

PSuccM(s, α, P) successors of state s of LKS M on action α labeled with set of
propositions P .

ObsAct S ilAct set of observable and silent actions respectively.

LKS set of LKSs.

xiii

4 - simulation and weak simulation preorder over LKS respectively.

Chapter 3 : C Programs

V ar F ield set of C variables and fields respectively.

D domain of C variable and address values.

Type set of types of C variables and structures.

Address address, a mapping from variables and structure fields to
addresses.

Store set of all stores. a store is a mapping from addresses to values.

Expr LV alue set of C expressions and lvalues respectively.

Add(σ, e) address of lvalue e under store σ.

V al(σ, e) value of expression e under store σ.

σ � e store σ satisfies expression e, i.e., V al(σ, e) 6= 0.

C oncrete concretization bijection between propositions and expressions.

T set of statement types {ASGN, CALL, BRAN, EXIT}.

S tmtC set of statements of component C.

TypeC map from statements of component C to set of types T.

entryC initial or entry statement of component C.

C ondC map from branch statements of component C to branch
conditions.

LHSC maps assignment statements of component C to left-hand-sides.

RHSC maps assignment statements of component C to right-hand-sides.

ThenC map from statements of component C to then-successors.

E lseC map from statements of component C to else-successors.

InitCondγ expression qualifying initial states specified by context γ.

AP γ set of propositions specified by context γ.

Σγ alphabet specified by context γ.

xiv

S ilentγ silent action specified by context γ.

FSMγ map from call statements to EFSMs specified by context γ.

[[C]]γ semantic LKS of component C under context γ.

Restrict(S, P) set of states in S labeled by set of propositions P .

PreImage(S, α) set of predecessors of states in S on action α.

[[P]]Γ semantics of program P under program context Γ.

Chapter 4 : Abstraction

B set of Boolean values {true, false}.

PropV al(AP) set of valuations of the set of propositions AP .

C oncrete(V) expression for the concretization of valuation V .

V
 e valuation V and expression e are admissible.

V
 V ′ valuations V and V ′ are admissible.

WP [a](e) weakest precondition of expression e with respect to assignment
a.

[[[C]]]Πγ predicate abstraction of component C under context γ and with
respect to predicate mapping Π.

[[[P]]]ΠΓ predicate abstraction of program P under program context Γ
and with respect to program predicate mapping Π.

BC set of branch statements of component C.

Chapter 5 : Simulation

Game(sIm, sSp) simulation game with (sIm, sSp) as the initial position.

Counterexample Tree Counterexample Witness counterexample tree and witness
LKS respectively for simulation.

Pos set of all simulation game positions.

Response(c) set of game positions that can result after the specification has
responded to challenge c.

Child(n) set of of children of Counterexample Tree node n.

W P (sIm, sSp) (sIm, sSp) is not a winning position in a simulation game.

xv

HG hypergraph corresponding to N-HORNSAT formula φ.

Nb node of HG corresponding to Boolean variable b.

Ntrue Nfalse special nodes of HG corresponding to true and false

respectively.

Chapter 6 : Refinement

M � Σ′ projection of LKS M on alphabet Σ′.

Chapter 8 : State-Event Temporal Logic

KS BA Kripke Structure and Büchi Automaton respectively.

|= entailment between a path, KS or LKS and SE-LTL or LTL
formula.

SM SB set of states of KS M and BA B respectively.

InitM InitB set of initial states of KS M and BA B respectively.

APM APB set of atomic propositions of KS M and BA B respectively.

LM LB propositional labeling of the states of KS M and BA B
respectively.

TM TB transition relation of KS M and BA B respectively.

AccB set of accepting states of BA B respectively.

M × B standard product of KS M and BA B.

M ⊗ B state/event product of LKS M and BA B.

Lasso lasso-shaped counterexample to an SE-LTL formula.

Chapter 9 : Two-Level Abstraction Refinement

[s]R equivalence class of state s induced by equivalence relation R.

MR quotient LKS induced by LKS M and equivalence relation R.

Ŝucc(s, α) set of abstract successors of state s under action α.

Split(M,R, [s]R, A) refined equivalence relation obtained from equivalence relation
R by splitting the equivalence class [s]R.

Chapter 10 : Deadlock

xvi

Ref(s) refusal of state s, i.e., set of actions refused by s.

Fail(M) set of all failures of LKS M .

θ � i projection of trace θ on alphabet of LKS Mi.

R̂ef(α) abstract refusal of state α.

AbsFail(M̂) set of all abstract failures of LKS M̂ .

xvii

Chapter 1

Introduction

The ability to reason about the correctness of programs is no longer a subject of

primarily academic interest. With each passing day the complexity of software

artifacts being produced and employed is increasing dramatically. There is hardly

any aspect of our day-to-day lives where software agents do not play an often silent

yet crucial role. The fact that many of such roles are safety-critical mandates that

these software artifacts be validated rigorously before deployment. So far, however,

this goal has largely eluded us.

In this chapter we will first layout the problem space which is of concern to this

thesis, viz., automated formal verification of concurrent programs. We will present

the core issues and problems, as well as the major paradigms and techniques that have

emerged in our search for effective solutions. We will highlight the important hurdles

that remain to be scaled. The later portion of this chapter presents an overview of

the major techniques proposed by this thesis to surmount these hurdles. The chapter

ends with a summary of the core contributions of this dissertation.

1

1.1 Software Complexity

Several factors hinder our ability to reason about non-trivial concurrent programs in

an automated manner. First, the sheer complexity of software. Binaries obtained

from hundreds of thousands of lines of source code are routinely executed. The

source code is written in languages ranging from C/C++/Java to ML/Ocaml.

These languages differ not only in their flavor (imperative, functional) but also in

their constructs (procedures, objects, pattern-matching, dynamic memory allocation,

garbage collection), semantics (loose, rigorous) and so on.

This sequential complexity is but one face of the coin. Matters are further

exacerbated by what can be called parallel complexity. State of the art software

agents rarely operate in isolation. Usually they communicate and cooperate with

other agents while performing their tasks. With the advent of the Internet, and

the advance in networking technology, the scope of such communication could range

from multiple threads communicating via shared memory on the same computer to

servers and clients communicating via SSL channels across the Atlantic. Verifying

the correctness of such complex behavior is a daunting challenge.

1.2 Software Development

Another, much less visible yet important, factor is the development process employed

in the production of most software and the role played by validation and testing

methodologies in such processes. A typical instance of a software development cycle

consists of five phases - (i) requirement specification, (ii) design, (iii) design validation,

(iv) implementation and (v) implementation validation. The idea is that defects found

in the design (in phase iii) are used to improve the design and those found in the

2

implementation (in phase v) are used to improve the implementation. The cycle is

repeated until each stage concludes successfully.

Usually the design is described using a formal notation like UML. The dynamic

behavior is often described using Statecharts (or some variant of it). The design

validation is done by some exhaustive technique (like model checking). However,

what matters in the final tally is not so much the correctness of the design but

rather the correctness of the implementation. Nevertheless, in reality, verification of

the implementation is done much less rigorously. This makes it imperative that we

focus more on developing techniques that enable us to verify actual code that will be

compiled and executed. A major fraction of such code has been written, continues to

be written and, in my opinion, will continue to be written in C.

Present day code validation falls in two broad categories - testing and formal

verification. The merits and demerits of testing [88] are well-known and thus it is

unnecessary to dwell on them in detail here. It suffices to mention that the necessity

of being certain about the correctness of a piece of code precludes exclusive reliance on

testing as the validation methodology, and forces us to adopt more formal approaches.

1.3 Software Verification

State of the art formal software verification is an extremely amorphous entity.

Originally, most approaches in this field could be categorized as belonging to either

of two schools of thought: theorem proving and model checking. In theorem proving

(or deductive verification [70]), one typically attempts to construct a formula φ (in

some suitable logic like higher-order predicate calculus) that represents both the

system to be verified and the correctness property to be established. The validity

3

of φ is then established using a theorem prover. As can be imagined, deductive

verification is extremely powerful and can be used to verify virtually any system

(including infinite state systems) and property. The flip-side is that it involves a lot

of manual effort. Furthermore it yields practically no diagnostic feedback that can be

used for debugging if φ is found to be invalid.

1.4 Model Checking

Where theorem proving fails, model checking [39] shines. In this approach, the

system to be verified is represented by a finite state transition system M (often

a Kripke structure) and the property to be established is expressed as a temporal

logic [81] (usually CTL [32] with fairness or LTL [78]) formula φ. The model checking

problem is then to decide whether M is a model of φ. Not only can this process

be automated to a large degree, it also yields extremely useful diagnostic feedback

(often in the form of counterexamples) if M is found not to model φ. Owing to these

and other factors, the last couple of decades have witnessed the emergence of model

checking as the eminent formal verification technique. Various kinds of temporal logics

have been extensively studied [59] and efficient model checking algorithms have been

designed [35, 99]. The development of techniques like symbolic model checking [21],

bounded model checking [11, 12], compositional reasoning [34] and abstraction [36] have

enabled us to verify systems with enormous state spaces [22].

One of the original motivations behind the development of model checking was to

extract and verify synchronization skeletons of concurrent programs, a typical software

verification challenge. Somewhat ironically, the meteoric rise of model checking

to fame was largely propelled by its tremendous impact on the field of hardware

4

verification. I believe that a major factor behind this phenomenon is that model

checking can only be used if a finite model of the system is available. Also since real

system descriptions are often quite large, the models must be extracted automatically

or at least semi-automatically. While this process is often straightforward for

hardware, it is much more involved for software. Typically software systems have

infinite state spaces. Thus, extracting a finite model often involves a process of

abstraction as well.

1.5 Predicate Abstraction

For a long time, the applicability of model checking to software was somewhat

handicapped by the absence of powerful automated model extraction techniques. This

scenario changed with the advent of predicate abstraction [63] (a related notion called

data type abstraction used by systems like Bandera [8, 58] can be viewed as a special

instance of predicate abstraction). Even though predicate abstraction was quickly

picked up for research in hardware verification as well [49, 50], its effect on code

verification was rather dramatic. It forms the backbone of two of the major code

verifiers in existence, slam [6, 107] and blast [13, 66].

Predicates abstraction is parameterized by a set of predicates involving the

variables of the concrete system description. It also involves non-trivial use of theorem

provers (in fact the its original use [63] was to create abstract state transition graphs

using the theorem prover PVS). Thus it has triggered a more subtle effect - it has

caused the boundary between model checking and theorem proving to become less

distinct.

Challenge 1 Predicate abstraction essentially works by aggregating system states

5

that are similar in terms of their data valuations. It is insensitive to the events that a

system can perform from a given state. Can we develop other notions of abstraction

that leverage the similarities between system states in terms of their dynamic (event-

based) behavior? Such abstractions would complement predicate abstraction and lead

to further reduction of state-space size.

1.6 Abstraction Refinement

Even with progress in automated model extraction techniques, verifying large software

systems remains an extremely tedious task. A major obstacle is created by the

abstraction that happens during model extraction. Abstraction usually introduces

additional behavior that is absent in the concrete system. Suppose that the model

check fails and the model checker returns a counterexample CE. This does not

automatically indicate a bug in the system because it is entirely possible that CE

is an additional behavior introduced by abstraction (such a CE is often called a

spurious counterexample). Thus we need to verify whether CE is spurious, and if

so we need to refine our model so that it no longer allows CE as an admissible

behavior. This process is called abstraction refinement. Since the extracted models

and counterexamples generated are quite large, abstraction refinement must be

automated (or at least semi-automated) to be practically effective.

The above requirements lead naturally to the paradigm called counterexample

guided abstraction refinement (CEGAR). In this approach, the entire verification

process is captured by a three step abstract-verify-refine loop. The actual details of

each step depend on the kind of abstraction and refinement methods being used. The

steps are described below in the context of predicate abstraction, where Pred denotes

6

the set of predicates being used for the abstraction.

1. Step 1 : Model Creation. Extract a finite model from the code using

predicate abstraction with Pred and go to step 2.

2. Step 2 : Verification. Check whether the model satisfies the desired property.

If this is the case, the verification successfully terminates; otherwise, extract a

counterexample CE and go to step 3.

3. Step 3 : Refinement. Check if CE is spurious. If not we have an actual bug

and the verification terminates unsuccessfully. Otherwise we improve Pred and

go to step 1. Let us refer to the improved Pred as Pred. Then Pred should be

such that CE and all previous spurious counterexamples will be eliminated if

the model is extracted using Pred.

Challenge 2 Software model checking has focused almost exclusively on the

verification of safety properties via some form of trace containment. It would be

desirable to extend its applicability to more general notions of conformance such as

simulation and richer class of specifications such as liveness.

Challenge 3 The complexity of predicate abstraction is exponential in the number

of predicates used. The naive abstraction refinement approach keeps on adding new

predicates on the basis of spurious counterexamples. Previously added predicates

are not removed even if they have been rendered redundant by predicated discovered

subsequently. Can we improve this situation?

7

1.7 Compositional Reasoning

CEGAR coupled with predicate abstraction has become an extremely popular

approach toward the automated verification of sequential software, especially C

programs [13] such as device drivers [107]. However, considerably less research has

been devoted to-wards the application of these techniques for verifying concurrent

programs.

Compositional reasoning has long been recognized as one of the most potent

solutions to the state-space explosion which plagues the analysis of concurrent

systems. Compositionality appears explicitly in the theory of process algebras such

as CSP [69], CCS [85] and the π-Calculus [86]. A wide variety of process algebraic

formalisms have been developed with the intention of modeling concurrent systems

and it is therefore natural [9] to investigate whether process algebraic concepts are

useful in the verification domain as well.

One of the key concepts arising out of the process algebraic research is the need to

focus on communication [85] when reasoning about concurrent systems. For instance

CSP advocates the use of shared actions as the principal communication mechanism

between concurrent components of a system. Moreover, shared action communication

can model message-passing C programs such as client-server systems and web-services

in a very natural manner.

Challenge 4 The CEGAR paradigm has been used with considerable success on

sequential programs. Can we also use it to compositionally verify concurrent

programs? What, if any, are the restrictions that we might need to impose in order

to achieve this goal?

8

1.8 State/event based Analysis

A major difficulty in applying model checking for practical software verification

lies in the modeling and specification of meaningful properties. The most common

instantiations of model checking to date have focused on finite-state models and either

branching-time (CTL [32]) or linear-time (LTL [78]) temporal logics. To apply model

checking to software, it is necessary to specify (often complex) properties on the

finite-state abstracted models of computer programs. The difficulties in doing so are

even more pronounced when reasoning about modular software, such as concurrent or

component-based sequential programs. Indeed, in modular programs, communication

among modules proceeds via actions (or events), which can represent function calls,

requests and acknowledgments, etc. Moreover, such communication is commonly

data-dependent. Software behavioral claims, therefore, are often specifications defined

over combinations of program actions and data valuations.

Existing modeling techniques usually represent finite-state machines as finite

annotated directed graphs, using either state-based or event-based formalisms. It

is well-known that the two frameworks are interchangeable. For instance, an

action can be encoded as a change in state variables, and likewise one can equip

a state with different actions to reflect different values of its internal variables.

However, converting from one representation to the other often leads to a significant

enlargement of the state space. Moreover, neither approach on its own is practical

when it comes to modular software, in which actions are often data-dependent:

considerable domain expertise is then required to annotate the program and to specify

proper claims.

Challenge 5 Can we develop a formalism for succinctly expressing and efficiently

9

verifying state/event-based properties of programs? In particular we should be able

to verify a state/event system directly without having to translate it to an equivalent

pure-state or pure-event version. Further, can we combine state/event-based analysis

with a compositional CEGAR scheme?

1.9 Deadlock Detection

Ensuring that standard software components are assembled in a way that guarantees

the delivery of reliable services is an important task for system designers. Certifying

the absence of deadlock in a composite system is an example of a stringent requirement

that has to be satisfied before the system can be deployed in real life. This is especially

true for safety-critical systems, such as embedded systems or plant controllers, that

are expected to always service requests within a fixed time limit or be responsive to

external stimuli.

In addition, many formal analysis techniques, such as temporal logic model

checking [32, 39], assume that the systems being analyzed are deadlock-free. In order

for the results of such analysis to be valid, one usually needs to establish deadlock

freedom separately. Last but not least, in case a deadlock is detected, it is highly

desirable to be able to provide system designers and implementers with appropriate

diagnostic feedback.

However, despite significant efforts, validating the absence of deadlock in systems

of realistic complexity remains a major challenge. The problem is especially acute in

the context of concurrent programs that communicate via mechanisms with blocking

semantics, e.g., synchronous message-passing and semaphores. The primary obstacle

is the well-known state space explosion problem whereby the size of the state space

10

of a concurrent system increases exponentially with the number of components.

As mentioned before, two paradigms are usually recognized as being the most

effective against the state space explosion problem: abstraction and compositional

reasoning. Even though these two approaches have been widely studied in the

context of formal verification [36, 64, 67, 84], they find much less use in deadlock

detection. This is possibly a consequence of the fact that deadlock is inherently non-

compositional and its absence is not preserved by standard abstractions. Intuitively,

the fundamental problem here is that deadlock is an existential safety property.

Therefore, a compositional CEGAR scheme for deadlock detection would be especially

significant.

Challenge 6 In the light of the above discussion, can we develop a compositional

CEGAR-based procedure for deadlock detection?

1.10 Summary

This dissertation presents a framework for verifying concurrent message-passing C

programs with specific emphasis on addressing the challenges enumerated earlier in

this chapter. Among other things, we addresses Challenge 5 by enabling both state-

based and action-based properties to be expressed, combined, and efficiently verified.

To this end we propose the use of labeled Kripke structures (LKSs) as the modeling

formalism. In essence, an LKS is a finite state machines in which states are labeled

with atomic propositions and transitions are labeled with events (or actions). In the

rest of this chapter we will refer to a concurrent message-passing C program as simply

a program.

Our state/event-based modeling methodology is described in two stages. We first

11

present a semantics of programs in terms of LKSs (cf. Chapter 3). We then develop a

generalized form of predicate abstraction to construct conservative LKS abstractions

from programs (cf. Chapter 4) in an automated manner. We provide formal

justification for our claim that the extracted LKS models are indeed conservative

abstractions of the concrete programs from which they have been constructed.

Subsequently we address Challenge 2 and Challenge 4 by presenting a

compositional CEGAR procedure for verifying simulation conformance between a

program and an LKS specification. We define the notion of witness LKSs as

counterexamples to simulation conformance and present algorithms for efficiently

constructing such counterexamples upon the failure of a simulation check (cf.

Chapter 5). We next present algorithms for checking the validity of witness LKSs and

refining the LKS models if the witness is found to be spurious (cf. Chapter 6). The

entire CEGAR procedure is compositional in the sense that the model construction,

witness validation and abstraction refinement are performed component-wise. Note

that we do not delve into the compositional nature of the model checking step.

Compositional model checking has been the focus of considerable research and we

hope to leverage the significant breakthroughs that have emerged from this effort.

Moving on, we propose the use of predicate minimization as a solution to

Challenge 3 (cf. Chapter 7). Our approach uses pseudo-Boolean constraints to

minimize the number of predicates used for predicate abstraction and thus eliminates

redundant predicates as new ones are discovered. We also present an action-

guided abstraction refinement scheme to address Challenge 1 (cf. Chapter 9). This

abstraction works by aggregating states based on the events they can perform and

complements predicate abstraction naturally. Both these solutions are seamlessly

integrated with the compositional CEGAR scheme presented earlier.

12

In Chapter 8 we present the logic SE-LTL, a state/event derivative of the

standard linear temporal logic LTL. We present efficient SE-LTL model checking

algorithms to help reason about state/event-based systems. We also present

a compositional CEGAR procedure [23, 26, 37] for the automated verification of

concurrent C programs against SE-LTL specifications. SE-LTL enriches our

specification mechanism by allowing state/event-based liveness properties and is thus

relevant to both Challenge 2 and Challenge 5.

Finally, in Chapter 10 we address Challenge 6 by presenting a compositional

CEGAR scheme to perform deadlock detection on concurrent message-passing

programs [27]. In summary, the demand for better formal techniques to verify

concurrent and distributed C programs is currently overwhelming. This dissertation

identifies some notable stumbling blocks in this endeavor and provides a road map to

their solution.

13

14

Chapter 2

Preliminaries

In this chapter we present preliminary notations and definitions that will be used in

the rest of the thesis. We assume a denumerable set of atomic propositions AP.

Definition 1 (Labeled Kripke Structure) A Labeled Kripke Structure (LKS) is

a 6-tuple (S, Init,AP ,L, Σ,T) where: (i) S is a non-empty set of states, (ii) Init ⊆ S

is a set of initial states, (iii) AP ⊆ AP is a finite set of atomic propositions, (iv)

L : S → 2AP is a propositional labeling function that maps every state to a set of

atomic propositions that are true in that state, (v) Σ is a set of actions, also known

as the alphabet, and (vi) T ⊆ S × Σ × S is a transition relation.

Important note: In the rest of this thesis we will write F ieldTup to mean

the field F ield of a tuple Tup. Thus, for any LKS M = (S, Init,AP ,L, Σ,T), we

will write SM , InitM , APM , LM , ΣM and TM to mean S, Init, AP , L, Σ and T

respectively. Also we will write s
α

−→M s′ to mean (s, α, s′) ∈ TM . When M is clear

from the context we will write simply s
α

−→ s′.

Example 1 Figure 2.1 shows a simple LKS M = (S, Init,AP ,L, Σ,T) with five

15

states {1, 2, 3, 4, 5}. The alphabet Σ is {α, β, χ, δ} and the set of atomic propositions

is AP = {p, q, r}. Transitions are shown as arrows labeled with actions. The initial

state 1 is indicated by an incoming transition with no source state. The propositional

labellings are shown beside the respective states.

M

{q}

{p}

{r}

{p,r}{p,q}

1

2 3

4 5

α α

β χ

δ

Figure 2.1: A simple LKS.

Intuitively, an LKS can model the behavior of a system in terms of both states and

events. We denote the set of all LKSs by LKS. The successor function Succ maps a

state s and an action α to the set of α-successors of s. Additionally, the propositional

successor function PSucc maps a state s, an action α and a set of atomic propositions

P to the (possibly empty) set of α-successors of s that are labeled with P . We now

present these two functions formally.

Definition 2 (Successor Functions) Let M = (S, Init,AP ,L, Σ,T) be an LKS.

The successor functions Succ : S × Σ → 2S and PSucc : S × Σ × 2AP → 2S are

defined as follows:

Succ(s, α) = {s′ ∈ S | s
α

−→ s′}

PSucc(s, α, P) = {s′ ∈ S | s
α

−→ s′ ∧ L(s′) = P}

16

Example 2 For the LKS M shown in Figure 2.1, we have the following:

• Succ(1, α) = {2, 3}, Succ(1, β) = Succ(1, χ) = ∅.

• Succ(2, α) = Succ(2, χ) = ∅, Succ(2, β) = {4}.

• PSucc(1, α, {p}) = ∅, PSucc(1, α, {q}) = {2}, PSucc(1, α, {p, q}) = ∅.

• PSucc(2, β, {p}) = ∅, PSucc(2, β, {q}) = ∅, PSucc(2, β, {p, q}) = {4}.

Note that both the set of states and the alphabet of an LKS can in general

be infinite. Also, an LKS can be non-deterministic, i.e., an LKS M =

(S, Init,AP ,L, Σ,T) could have a state s ∈ S and an action α ∈ Σ such that

|Succ(s, α)| > 1. However, M is said to have finite non-determinism if for any state

s ∈ S and any action α ∈ Σ, the set Succ(s, α) is always finite. In the rest of this

thesis we will only consider LKSs with finite non-determinism.

Actions are used to model observable or unobservable behaviors of systems.

Accordingly, we assume that observable actions are drawn from a denumerable set

ObsAct, while unobservable (or silent) actions are drawn from a denumerable set

S ilAct. We assume a distinguished action τ ∈ S ilAct.

Definition 3 (Simulation) Let M1 = (S1, Init1,AP 1,L1, Σ1,T1) and M2 =

(S2, Init2,AP 2,L2, Σ2,T2) be two LKSs such that AP 1 = AP 2 and Σ1 = Σ2. A

relation R ⊆ S1 × S2 is said to be a simulation relation iff it obeys the following two

conditions:

1. ∀s1 ∈ S1 � ∀s2 ∈ S2 � s1Rs2 =⇒ L1(s1) = L2(s2)

2. ∀s1 ∈ S1 � ∀s2 ∈ S2 � ∀α ∈ Σ1 � ∀s′1 ∈ S1�

(s1Rs2 ∧ s1
α

−→ s′1) =⇒ ∃s′2 ∈ S2 � s2
α

−→ s′2 ∧ s′1Rs′2

17

We say that M1 is simulated by M2, and denote this by M1 4 M2, iff there exists

a simulation relation R such that the following condition holds:

∀s1 ∈ Init1 � ∃s2 ∈ Init2 � s1Rs2

{p}

{r}{r}

M

{q}

{p} 1

2 3

4 5 {r}{r}

{q}

M1 2

8 9

{q}

6

7

α α

β

δ δ

α

δ δ

χ β χ

Figure 2.2: Two LKSs demonstrating simulation.

Example 3 Consider the LKSs M1 and M2 shown in Figure 2.2. It is clear that

M1 4 M2 since the the following is a simulation relation that relates the pair of

initial states (1, 6).

R = {(1, 6), (2, 7), (3, 7), (4, 8), (5, 9)}

On the other hand M2 64 M1. Intuitively this is because of state 7 of M2. Note that

state 7 can do both actions β and χ, but no state of M1 can do both β and χ. Hence

no state of M1 can correspond to state 7 in accordance with a simulation relation.

Definition 4 (Weak Simulation) Let M1 = (S1, Init1,AP 1,L1, Σ1,T1) and M2 =

(S2, Init2,AP 2,L2, Σ2,T2) be two LKSs such that AP 1 = AP 2 and Σ1 = Σ2∪{τ}. A

relation R ⊆ S1 × S2 is said to be a weak simulation relation iff it obeys the following

three conditions:

18

1. ∀s1 ∈ S1 � ∀s2 ∈ S2 � s1Rs2 =⇒ L1(s1) = L2(s2)

2. ∀s1 ∈ S1 � ∀s2 ∈ S2 � ∀s′1 ∈ S1�

(s1Rs2 ∧ s1
τ

−→ s′1) =⇒ s′1Rs2

∨
∃s′2 ∈ S2 � s2

τ
−→ s′2 ∧ s′1Rs′2

3. ∀s1 ∈ S1 � ∀s2 ∈ S2 � ∀α ∈ Σ1 \ {τ} � ∀s′1 ∈ S1�

(s1Rs2 ∧ s1
α

−→ s′1) =⇒ ∃s′2 ∈ S2 � s2
α

−→ s′2 ∧ s′1Rs′2

Note that if τ 6∈ Σ2 then condition 2 above is equivalent to the following:

∀s1 ∈ S1 � ∀s2 ∈ S2 � ∀s′1 ∈ S1 � (s1Rs2 ∧ s1
τ

−→ s′1) =⇒ s′1Rs2

We say that M1 is weakly simulated by M2, and denote this by M1 - M2, iff there

exists a weak simulation relation R such that the following condition holds:

∀s1 ∈ Init1 � ∃s2 ∈ Init2 � s1Rs2

M

{p} 1

2 3

4 5

M1 2

{p} {p}

{q} {q} {q} {q}7 8

τ τ

{p} 6

α β

χ χ

α β

χ χ

Figure 2.3: Two LKSs demonstrating weak simulation.

Example 4 Consider the LKSs M1 and M2 shown in Figure 2.3. It is clear that

M1 - M2 since the the following is a weak simulation relation that relates the pair of

initial states (1, 6).

R = {(1, 6), (2, 6), (3, 6), (4, 7), (5, 8)}

19

On the other hand M2 6- M1. Intuitively this is because of state 6 of M2. Note that

state 6 can do both actions α and β, but no state of M1 can do both α and β. Hence no

state of M1 can correspond to state 6 in accordance with a weak simulation relation.

Note the important difference between simulation and weak simulation. Clearly

M1 64 M2 since the initial state 1 of M1 can do the τ action while the initial state

6 of M2 cannot. In general, weak simulation allows M2 to simply ignore τ actions

performed by M1.

Our notion of weak simulation is derived from that of CCS [85] and differs critically

from notions of weak simulation presented by others [39]. In particular, our notion of

weak simulation does not preserve liveness properties since it is completely insensitive

to (even infinite sequences of) τ actions. For example, consider the the two LKSs

shown in Figure 2.4. Clearly M1 - M2. Now consider the liveness property φ that

“eventually action α occurs”. Clearly M2 satisfies φ while M1 does not. However the

non-preservation of liveness properties by our notion of weak simulation will not be

a problem since we will use weak simulation only for compositional validation of

counterexamples. Further details will be presented in Chapter 6.

M2

{p}

{q}

α

β

3{p} 1

{q}

α

β
2

τ

M1

4

Figure 2.4: Two LKSs showing that weak simulation does not preserve liveness properties.

20

The following two results about simulation are well-known and will be used

crucially in the later part of the thesis.

Theorem 1 (Transitivity) The following statement is valid:

∀M1 ∈ LKS � ∀M2 ∈ LKS � ∀M3 ∈ LKS � M1 4 M2 ∧ M2 4 M3 =⇒ M1 4 M3

Proof. Let M1 = (S1, Init1,AP 1,L1, Σ1,T1), M2 = (S2, Init2,AP 2,L2, Σ2,T2) and

M3 = (S3, Init3,AP 3,L3, Σ3,T3). Let R12 ⊆ S1 × S2 be a simulation relation such

that ∀s1 ∈ Init1�∃s2 ∈ Init2�(s1, s2) ∈ R12 and R23 ⊆ S2×S3 be a simulation relation

such that ∀s2 ∈ Init2 � ∃s3 ∈ Init3 � (s2, s3) ∈ R23. Define a relation R13 ⊆ S1 × S3

as follows:

R13 = {(s1, s3) | ∃s2 � (s1, s2) ∈ R12 ∧ (s2, s3) ∈ R23}

Show that R13 is a simulation relation and ∀s1 ∈ Init1 � ∃s3 ∈ Init3 � (s1, s3) ∈ R13.

�

Theorem 2 (Witness) The following statement is valid:

∀M1 ∈ LKS � ∀M2 ∈ LKS � ∀M3 ∈ LKS � M1 4 M2 ∧ M1 64 M3 =⇒ M2 64 M3

Proof. This is a direct consequence of Theorem 1.

�

Theorem 1 states that simulation is a transitive relation on LKS. Theorem 2

provides a notion of a witness to the absence of simulation between two LKSs.

Essentially it states that an LKS M1 is a witness to M2 64 M3 iff M1 is simulated

by M2 but not simulated by M3. We will use a witness LKS as a counterexample to

simulation later in this thesis.

21

Definition 5 (Parallel Composition) Let M1 = (S1, Init1,AP 1,L1, Σ1,T1) and

M2 = (S2, Init2,AP 2,L2, Σ2,T2) be two LKSs such that AP 1 ∩ AP 2 = ∅.

Then the parallel composition of M1 and M2, denoted by M1 ‖ M2, is an LKS
(
S‖, Init‖,AP ‖,L‖, Σ‖,T‖

)
such that: (i) S‖ = S1 × S2, (ii) Init‖ = Init1 × Init2,

(iii) AP ‖ = AP 1 ∪ AP 2, (iv) Σ‖ = Σ1 ∪ Σ2, and the state labeling function and

transition relation are defined as follows:

• ∀s1 ∈ S1 � ∀s2 ∈ S2 � L‖(s1, s2) = L1(s1) ∪ L2(s2).

• ∀s1 ∈ S1 � ∀s2 ∈ S2 � ∀α 6∈ Σ2 � ∀s′1 ∈ S1�

s1
α

−→ s′1 =⇒ (s1, s2)
α

−→ (s′1, s2)

• ∀s1 ∈ S1 � ∀s2 ∈ S2 � ∀α 6∈ Σ1 � ∀s′2 ∈ S2�

s2
α

−→ s′2 =⇒ (s1, s2)
α

−→ (s1, s
′
2)

• ∀s1 ∈ S1 � ∀s2 ∈ S2 � ∀α ∈ Σ1 ∩ Σ2 � ∀s′1 ∈ S1 � ∀s′2 ∈ S2�

s1
α

−→ s′1 ∧ s2
α

−→ s′2 =⇒ (s1, s2)
α

−→ (s′1, s
′
2)

Example 5 Figure 2.5 shows two LKSs M1 and M2 and their parallel composition

M1 ‖ M2. Note that in general parallel composition leads to more states and

transitions.

The above notion of parallel composition is central to our approach. We assume

that when several components are executed concurrently, they synchronize on shared

actions and proceed independently on local actions. We will see later that the LKSs

we compose will not contain the τ action in their alphabet. Hence we do not need

to define parallel composition specially for τ . This notion of parallel composition

has been used in, e.g., CSP [68, 69, 100], and by Anantharaman et. al. [3]. Parallel

composition is commutative and associative. In addition, both simulation and weak

22

M1

χ
4’

φ

M1

M2

M2

3’
εα

1’ 2’1
α β χ

2 3 4

δ

||

{q}{p} {r} {s} {p’} {q’} {r’} {s’}

{p,p’} {q,q’}

{r,q’}

{q,r’}

{r,r’}

{s,s’}
α χ

1,1’ 2,2’

3,2’

2,3’

3,3’ 4,4’

β

ε

ε

β φ

δ

Figure 2.5: Three LKSs demonstrating parallel composition.

simulation are congruences with respect to parallel composition, as stated by the

following result.

Theorem 3 Let M1, M ′
1, M2 and M ′

2 be LKSs. Then the following holds:

M1 4 M ′
1 ∧ M2 4 M ′

2 =⇒ (M1 ‖ M2) 4 (M ′
1 ‖ M ′

2)

M1 - M ′
1 ∧ M2 - M ′

2 =⇒ (M1 ‖ M2) - (M ′
1 ‖ M ′

2)

23

24

Chapter 3

C Programs

In this chapter we provide a formalization of a C component and a C program. Our

goal is to present formally the syntax and semantics of components and programs.

The semantics will be defined in an operational manner using LKSs. The correctness

of the rest of this thesis depends critically on this semantics. In particular, this

semantics will be used in the next chapter to show that the models we construct from

C programs via predicate abstraction are conservative in a very precise sense.

In the rest of this thesis we will write program and component to mean a C

program and a C component, respectively. Each component will correspond to a single

non-recursive C procedure. This procedure will be obtained by automatically inlining

all library routines except the ones used for communication and synchronization with

other components. This is always possible if the component is non-recursive and the

source code for library routines to be inlined is available. We assume that components

of a C program communicate with each other via blocking message-passing. We will

also assume several other restrictions on our C programs. We discuss these restrictions

further in Section 3.3.

25

We assume that all program variables are drawn from a denumerable set V ar and

that structure fields are drawn from a denumerable set F ield. We will write Dom(ϕ)

and Range(ϕ) to denote the domain and range respectively of a function ϕ. We will

write D ↪→ R to denote a partial function from a domain D to a range R.

We will assume that every variable and address value is drawn from a domain D.

The only requirement on this domain D is that the familiar arithmetic, bitwise and

logical operators be defined on it. For instance D could be the set of 32-bit integers.

Furthermore, every variable and structure field has a type. The set of types is denoted

by Type and consists of a single base type D and struct types. An object of struct

type is a record containing fields of other types. Therefore, the set of types can be

defined by the following BNF grammar:

Type := D | struct(F ield × Type)+

We denote the type of any variable v by Type(v). We assume an injective address

function Address whose domain is V ar ∪ (D × F ield), whose range is D, and which

obeys the following additional constraints:

• Let v be any variable such that Type(v) = struct〈(f1, t1) , . . . , (fk, tk)〉. Then:

∀1 ≤ i ≤ k � (Address(v), fi) ∈ Dom(Address)

This ensures that for any structure variable v with a field f , Address assigns

an address to the location v.f .

• Let f be any field such that (i) ∃z ∈ D � (z, f) ∈ Dom(Address) and (ii)

Type(f) = struct〈(f1, t1) , . . . , (fk, tk)〉. Then:

∀1 ≤ i ≤ k � (Address((z, f)), fi) ∈ Dom(Address)

26

This ensures that for every location v.f which is itself a structure with a field

f ′, Address assigns an address to the location v.f.f ′.

Intuitively, the above two constraints ensure that every location has a well-defined

address. Then a store is simply a mapping from addresses to values. A store is

intended to model the memory configuration at any point during the execution of a

C program.

Definition 6 (Store) A store is a mapping σ : D → D from addresses to values.

The set of all stores is denoted by Store.

3.1 Expressions

Let Expr denote the set of all side-effect free expressions over V ar. In addition,

expressions (such as variables and structure fields) that correspond to some valid

memory location are called lvalues and form a subset of Expr denoted by LV alue.

Intuitively an lvalue is an expression on which the address-of (&) operator can be

applied. The syntaxes of a Expr and LV alue are given by the BNF grammars shown

in Table 3.1.

3.1.1 Expression Evaluation

The function V al : Store × Expr → D maps a store σ and an expression e to the

evaluation of e under σ. Similarly the function Add : Store × LV alue → D maps

a store σ and an lvalue l to the address of l under σ. Add is defined inductively as

shown in Table 3.2. Similarly, V al is defined inductively as shown in Table 3.3. The

definition of V al requires the following functions over integers:

27

Expr := D | V ar | LV alue � F ield |

& LV alue | * Expr |

- Expr | Expr + Expr | Expr - Expr |

Expr * Expr | Expr / Expr |

! Expr | Expr && Expr | Expr || Expr |

~ Expr | Expr & Expr | Expr | Expr |

Expr ^ Expr | Expr << Expr | Expr >> Expr

LV alue := V ar | *Expr | LV alue.F ield

Table 3.1: BNF grammars for Expr and LV alue.

• +, −, ×, ÷ are the standard arithmetic functions of type D × D → D.

• Neg : D → D is the logical negation function that maps 0 to 1 and any non-zero

integer to 0.

• And : D × D → D is the logical conjunction function that maps any pair of

non-zero integers to 1 and any other pair of integers to 0.

• Or : D × D → D is the logical disjunction function that maps the pair (0, 0) to

0 and any other pair of integers to 1.

• BNeg : D → D is the bitwise negation function.

• BAnd, BOr, BXor, BLsh, and BRsh are the bitwise AND, OR, exclusive-OR, left-

shift and right-shift functions of type D → D.

Example 6 Let v be a variable. Let us denote the address of v, i.e., Address(v)

by A. Let σ be a store such that σ(A) = 5. Then we want the expression

(* & v) to evaluate to 5 under the store σ. Let us see how this happens. First,

28

Add(σ, v) = Address(v) = A. Hence, V al(σ, & v) = Add(σ, v) = A. Finally,

V al(σ, * & v) = σ(V al(σ, & v)) = σ(A) = 5 which is what we want.

Add(σ, v) = Address(v)
Add(σ, * e) = V al(σ, e)
Add(σ, e�f) = Address(Add(σ, e), f)

Table 3.2: Definition of function Add which maps lvalues to addresses. Note that the function

Address takes either a single variable argument or a pair of arguments, the first of which is an

element of D and the second is a structure field.

V al(σ, v) = σ(Add(v)) V al(σ, z) = z
V al(σ, e�f) = σ(Add(σ, e�f)) V al(σ, - e) = 0 − V al(σ, e)
V al(σ, ~ e) = BNeg(V al(σ, e)) V al(σ, ! e) = Neg(V al(σ, e))
V al(σ, & e) = Add(σ, e) V al(σ, * e) = σ(V al(σ, e))

V al(σ, e1+ e2) = V al(σ, e1) + V al(σ, e2)
V al(σ, e1- e2) = V al(σ, e1) − V al(σ, e2)
V al(σ, e1* e2) = V al(σ, e1) × V al(σ, e2)
V al(σ, e1/ e2) = V al(σ, e1) ÷ V al(σ, e2)
V al(σ, e1&& e2) = V al(σ, e1) And V al(σ, e2)
V al(σ, e1|| e2) = V al(σ, e1) Or V al(σ, e2)
V al(σ, e1& e2) = V al(σ, e1) BAnd V al(σ, e2)
V al(σ, e1| e2) = V al(σ, e1) BOr V al(σ, e2)
V al(σ, e1^ e2) = V al(σ, e1) BXor V al(σ, e2)
V al(σ, e1<< e2) = V al(σ, e1) BLsh V al(σ, e2)
V al(σ, e1>> e2) = V al(σ, e1) BRsh V al(σ, e2)

Table 3.3: Definition of function V al which maps expressions to values.

3.1.2 Expressions as Formulas

As we have seen before, expressions in C always evaluate to integers. The ANSI C

standard does not define a separate class of Boolean expressions for use in contexts

where a Boolean value is required, e.g., in branch conditions. Instead C adopts the

following convention to handle such situations. The integer zero represents the truth

29

value false while any non-zero integer represents true. This means that whenever

an expression e is used in a Boolean context, it is implicitly compared to zero and

promoted to true if it is non-zero and to false otherwise.

In the rest of this thesis we will follow the same convention and use C expressions

freely even in situations where formulas are normally expected. For instance, we

will soon define the weakest precondition operator which takes a C expression

and an assignment statement as arguments and returns a C expression. In the

literature, weakest preconditions have been traditionally defined for formulas and not

expressions. In the case of C however, expressions can also be interpreted as formulas

as we have just seen. Hence a weakest precondition operator on C expressions makes

perfect sense.

If you find this use of expressions in the place of formulas unsettling, it might help

to mentally convert expressions to formulas by comparing with zero. For example,

if you see the sentence “the weakest precondition of the expression e with respect to

the assignment statement a”, read it instead as the following sentence: “the weakest

precondition of the formula e 6= 0 with respect to the assignment statement a”. In the rest

of this thesis we will usually omit such explicit comparisons with zero for the sake of

brevity.

We will carry this idea of the promotion of C expressions to formulas a little bit

further. Recall that a C expression e evaluates to V al(σ, e) under a store σ. Since e

can be viewed as a formula, we can also view σ as an interpretation in the traditional

logical sense. Thus, for instance, we can say that σ satisfies (is a model of) e iff

V al(σ, e) 6= 0. We will denote the satisfaction of an expression e by a store σ by

σ � e to make this correspondence even more explicit.

30

3.1.3 Propositions and Expressions

We wish to think of atomic propositions and expressions as counterparts in the

abstract and concrete domains. Intuitively, a proposition is an abstract representative

of its corresponding expression while an expression is a concrete version of its

corresponding proposition. To make this notion more formal, recall that atomic

propositions are drawn from a denumerable set AP while the set of expressions Expr

is also denumerable.. The correspondence between the abstract propositions and the

concrete expressions is captured by a concretization bijection C oncrete : AP →

Expr. In this chapter, we will use the correspondence between propositions and

expressions to determine which atomic propositions hold in a concrete state of a

component. In Chapter 4 we will use it additionally to present predicate abstraction.

3.2 Component

At at very high level, a component can be thought of as the control flow graph of a C

procedure such as the one shown in Figure 3.1. Thus, it is essentially a directed graph

whose nodes correspond to statements, and whose edges model the possible flow of

control between statements. Every statement of a component has a type drawn from

the set T = {ASGN, CALL, BRAN, EXIT}. Intuitively, ASGN represents an assignment

statement, CALL represents the invocation of a library routine, BRAN represents an

if-then-else branch statement, and EXIT represents the exit point of a component’s

execution. Also, statements are associated with branch conditions, left and right

hand sides, and with appropriate successor statements. We now define a component

formally.

Definition 7 (Component) A component is a tuple with eight components

31

void component() {

int x,y,z;

x = y;

if(z) {

if(x) alpha();

else chi();

} else {

if(y) beta();

else delta();

}

}

Figure 3.1: Syntax of a simple component. We will use this as a running example.

(S tmt,Type, entry,C ond,LHS,RHS,Then,E lse) where : (i) S tmt is a finite

non-empty set of statements, (ii) Type : S tmt → T is a function mapping each

statement to a type, (iii) entry ∈ S tmt is the initial or entry statement, (iv) C ond is

a partial function of type S tmt ↪→ Expr which maps branch statements to their

branch conditions, (v) RHS is a partial function of type S tmt ↪→ Expr which

maps assignments to their right-hand-sides, (vi) LHS is a partial function of type

S tmt ↪→ LV alue which maps assignments to their left-hand-sides, and (vii) Then

and E lse are partial successor functions of type S tmt ↪→ S tmt which map statements

to their then and else successors respectively.

Let C be a component. In order to be valid, C must satisfy certain sanity

conditions. For instance, the type-labeling function TypeC must obey the following

condition:

• (COMP1) There is exactly one exit statement.

∃s ∈ S tmtC � TypeC(s) = EXIT ∧ ∀s′ ∈ S tmtC � TypeC(s
′) = EXIT =⇒ s′ = s

Moreover the expression-labeling functions C ondC,LHSC and RHSC must obey

the following conditions:

32

• (COMP2) The if-then-else statements and only the if-then-else statements

have branch conditions.

Dom(C ondC) = {s ∈ S tmtC | TypeC(s) = BRAN}

• (COMP3) The assignment statements and only the assignment statements

have left-hand-sides and right-hand-sides.

Dom(LHSC) = Dom(RHSC) = {s ∈ S tmtC | TypeC(s) = ASGN}

Let us denote the set of call statements (statements of type CALL) of C by Call(C).

Call(C) = {s ∈ S tmtC | TypeC(s) = CALL}

Note that we have disallowed library routine calls that return values. This is

because, as mentioned before, in our framework a library routine is expected to

perform externally observable actions without altering the data state of the program.

Finally, the successor-labeling functions ThenC and E lseC must obey the following

conditions:

• (COMP4) Every statement except the exit point has a then successor.

Dom(ThenC) = {s ∈ S tmtC | TypeC(s) 6= EXIT}

• (COMP5) The if-then-else statements and only the if-then-else statements

have else successors.

Dom(E lseC) = {s ∈ S tmtC | TypeC(s) = BRAN}

In the rest of this thesis we will only consider valid components, i.e., components

that obey conditions COMP1–COMP5.

33

if (x) if (y)

chi () beta ()alpha () delta ()

Type(5) = CALL

if (z)2

3 4

5

6 7

8

9

Cond (2)= z

EXIT

x = y1

Then(1) = 2

Else(2) = 4Then(2) = 3

Type(9) = EXIT

RHS(1) = y
LHS(1) = x

Type(1) =
Type(2) =

ASGN
BRAN

Figure 3.2: Component for the C procedure shown in Figure 3.1. We will use this as a running

example.

Example 7 Figure 3.2 shows the component C corresponding to the C procedure

shown in Figure 3.1. The set of statements of C is S tmtC = {1, . . . , 9} and its

initial statement is entryC = 1. Some of the statements are labeled with their types,

associated expressions and successors. The set of library routines invoked by C is

{alpha, beta, chi , delta}. Note that C satisfies conditions COMP1–COMP5.

3.2.1 Component Semantics

In this section, we will present the concrete semantics of a component in terms

of an LKS, which we will refer to as a semantic LKS. Intuitively, a component

C by itself only represents the control flow structure along with the assignments,

branch conditions and library routines that are invoked at each control point. In

order to describe the semantic LKS, we need information about the behavior of the

library routines invoked by C and information about the initial states, set of atomic

propositions, and alphabet of the semantic LKS. This information will be provided

by a context. Therefore we will first describe contexts before going into the details of

34

the semantic LKS.

In general, a library routine may perform externally observable actions and also

alter the data state of a component. Additionally, such behavior may be guarded by

certain conditions on the data state of the component. Thus, we need a formalism

that can finitely summarize the behavior of a routine, and yet is powerful enough

to express guarded actions and assignments. The natural alternative is an extended

finite state machine which is essentially a finite automata whose transitions are labeled

with guarded commands, where a command is either an action or an assignment. We

now present extended finite state machines formally:

Definition 8 (Extended Finite State Machine) Let Σ be an alphabet. Then an

extended finite state machine (EFSM for short) over Σ is a triple (S, Init, ∆) where

(i) S is a finite set of states, (ii) Init ⊆ S is a set of initial states, and (iii)

δ ⊆ (S × Expr ×Σ × S) ∪ (S × Expr × LV alue× Expr × S) is a transition relation.

The only subtle aspect of above definition is the description of the transition

relation. As can be seen, the transition relation ∆ consists of two kinds of elements.

The first kind of element is a 4-tuple of the form (s1, g, α, s2). This represents a

transition from state s1 to state s2 guarded by the expression g with the command

being the action α. We will denote such a transition by s1
g/α
−→ s2. The second kind of

element is a 5-tuple of the form (s1, g, l, r, s2). This represents a transition from state

s1 to state s2 guarded by the expression g with the command being the assignment

l := r. We will denote such a transition by s1
g/l:=r
−→ s2.

The set of all EFSMs is denoted by FSM. Let F ∈ FSM be any EFSM. Then F

has a distinguished state STOP which has no outgoing transitions. Intuitively, STOP

represents the termination of a library routine.

35

Example 8 For example, consider a library routine l ib with a single parameter p.

Suppose that the behavior of l ib can be described as follows:

• If l ib is invoked with a true (non-zero) argument, it either does action α and

assigns 1 to variable v or does action β and assigns 2 to variable v.

• If l ib is invoked with a false (zero) argument, it assigns 0 to variable v.

Then the behavior of l ib can be expressed by the EFSM shown in Figure 3.3.

(p != 0) /

(p != 0) / β

α

STOP
(p == 0) / v := 0

true / v := 1

true / v := 2

Figure 3.3: The EFSM corresponding to the library routine from Example 8. The initial state

is indicated by an incoming transition with no source state.

A context for a component C will employ EFSMs to express the behavior of the

library routines invoked by C. However, in order to describe the semantics of C, we

need to also know about the initial states, set of atomic propositions and alphabet

of the semantic LKS. As mentioned before, this information will also be provided by

the context. We now define a context formally.

Definition 9 (Component Context) A context for a component C is a 5-tuple

(InitCond,AP , Σ, S ilent,FSM) where (i) InitCond ∈ Expr is an initial condition,

(ii) AP ⊆ AP is a finite set of atomic propositions, (iii) Σ ⊆ ObsAct is a

set of observable actions, (iv) S ilent ∈ S ilAct \ {τ} is a silent action, and (v)

36

FSM : Call(C) → FSM is a function mapping call statements of C to EFSMs

over the alphabet Σ ∪ {S ilent}.

Example 9 Recall the component C from Figure 3.2. Now we let γ be the context

for C such that: (i) InitCondγ = true, (ii) AP γ = ∅, (iii) Σγ = {α, β, χ, δ},

(iv) S ilentγ = τ1, and (v) recall that C has four call statements {5, 6, 7, 8} which

invoke library routines alpha, chi, beta and delta respectively; then FSM γ maps the

call statements {5, 6, 7, 8} respectively to the EFSMs Fα, Fχ, Fβ and Fδ shown in

Figure 3.4. Intuitively this means that these routines simply perform the actions

α, χ, β and δ respectively.

Fα

STOP

STOP STOP

STOP

F F

Fβ

δ

true / true /

true / true /

α β

χ

χ δ

Figure 3.4: The EFSMs corresponding to the context from Example 9.

Note that a context is specific to C since it must provide EFSMs for only the call

statements of C. Let γ = (InitCond,AP , Σ, S ilent,FSM) be any context for C.

Then the semantics of C under γ is denoted by [[C]]γ . In the rest of this section the

context γ will be fixed and therefore we will often omit it when it is obvious. For

example, we will write [[C]] to mean [[C]]γ . Formally, [[C]] is an LKS such that:

• [[C]] has two kinds of states - normal and inlined. A normal state is simply a

pair consisting of a statement of C and a store.

Snormal = S tmtC × Store

37

An inlined state is obtained by inlining EFSMs at corresponding call statements.

Recall that for any call statement s, FSM (s) denotes the EFSM corresponding

to s. Therefore, an inlined state is simply a triple (s, σ, ι) where s is a call

statement, σ is a store and ι is a state of FSM (s). More formally the set of

inlined states Sinlined is defined as:

Sinlined = {(s, σ, ι) | s ∈ Call(C) ∧ σ ∈ Store ∧ ι ∈ SFSM (s)}

where SF denotes the set of states of an EFSM F . Finally, a state of [[C]] is

either a normal state or an inlined state.

S[[C]] = Snormal ∪ Sinlined

• An initial state of [[C]] corresponds to the entry statement of C and a store that

satisfies the initial condition InitCond specified by the context γ.

Init[[C]] = {(entryC, σ) | σ � InitCond}

• Recall that AP is the set of atomic propositions specified by the context γ. The

atomic propositions of [[C]] are the same as those specified by γ.

AP [[C]] = AP

• The labeling function L[[C]] of [[C]] is consistent with the expressions corresponding

to the atomic propositions. Recall that the bijection C oncrete maps atomic

propositions to expressions. Since the propositional labeling does not depend

on the inlined EFSM state, its definition will be identical for normal and inlined

states. More formally:

L[[C]](s, σ) = L[[C]](s, σ, ι) = {p ∈ AP [[C]] | σ � C oncrete(p)}

38

• The alphabet of [[C]] contains the specified observable and silent actions. Recall

that Σ is the set of observable actions associated with the context γ and S ilent

is the silent action associated with the context γ.

Σ[[C]] = Σ ∪ {S ilent}

Note that τ 6∈ Σ[[C]] . This fact will be used crucially for the compositional

verification technique presented later in this thesis.

• The transition relation of the semantics [[C]] is defined in the following section.

3.2.2 Transition Relation of [[C]]

In the rest of this section we will write Type, Then, E lse, C ond, LHS and RHS to

mean TypeC, ThenC, E lseC, C ondC, LHSC and RHSC respectively. We will describe

outgoing transitions from normal and inlined states separately.

Normal States. Let (s, σ) be a normal state of [[C]]. Recall that s ∈ S tmtC is a

statement of C and σ ∈ Store. We consider each possible value of the type Type(s)

of s separately.

• Type(s) = EXIT. In this case (s, σ) has no outgoing transitions.

• Type(s) = BRAN. Recall that C ond(s) is the branch condition associated

with s while Then(s) and E lse(s) are the then and else successors of s.

In this case (s, σ) performs the S ilent action and moves to either Then(s)

or E lse(s) depending on the satisfaction of the branch condition. The store

remains unchanged. Formally:

σ � C ond(s) =⇒ (s, σ)
S ilent
−→ (Then(s), σ)

39

σ 2 C ond(s) =⇒ (s, σ)
S ilent
−→ (E lse(s), σ)

• Type(s) = ASGN. In this case (s, σ) performs the S ilent action and moves to

the then successor while the store is updated as per the assignment. Formally,

for any assignment statement a, let σ[a] be the store such that the following

two conditions hold:

∀x ∈ D � x 6= Add(σ,LHS(s)) =⇒ σ[a](x) = σ(x)

σ[a](Add(σ,LHS(s))) = V al(σ,RHS(s))

In other words, σ[a] is the store obtained by updating σ with the assignment a.

Recall that LHS(s) and RHS(s) are the left and right hand side expressions

associated with s. Then:

(s, σ)
S ilent
−→ (Then(s), σ[LHS(s) := RHS(s)])

• Type(s) = CALL. In this case (s, σ) performs the S ilent action and moves to

an initial state of the EFSM FSM (s) corresponding to s. The store remains

unchanged. Recall that InitFSM (s) denotes the set of initial states of FSM (s).

Then:

∀ι ∈ InitFSM (s) � (s, σ)
S ilent
−→ (s, σ, ι)

Inlined States. Let s ∈ Call(C), σ ∈ Store and (s, σ, ι) be an inlined state. Recall

that in this case ι must be a state of the EFSM FSM (s) corresponding to s. Also

recall that the transitions of FSM (s) are labeled with guarded commands of the form

g/α or g/l := r. We consider four possible types of outgoing transitions of FSM (s)

from the state ι.

40

• ι
g/α
−→ ι′ and ι′ 6= STOP. If the store σ satisfies the guard g, then (s, σ, ι)

performs action α and moves to the inlined state corresponding to ι′. The store

remains unchanged. Formally:

σ � g =⇒ (s, σ, ι)
α

−→ (s, σ, ι′)

• ι
g/α
−→ ι′ and ι′ = STOP. If the store σ satisfies the guard g, then (s, σ, ι)

performs action α and returns from the library routine call. The store remains

unchanged. Formally:

σ � g =⇒ (s, σ, ι)
α

−→ (Then(s), σ)

• ι
g/l:=r
−→ ι′ and ι′ 6= STOP. If the store σ satisfies the guard g, then (s, σ, ι)

performs S ilent and moves to the inlined state corresponding to ι′. The store

is updated as per the assignment l := r. Recall that σ[l := r] denotes the new

store obtained by updating σ with l := r. Then:

σ � g =⇒ (s, σ, ι)
S ilent
−→ (s, σ[l := r], ι′)

• ι
g/l:=r
−→ ι′ and ι′ = STOP. If the store σ satisfies the guard g, then (s, σ, ι)

performs S ilent and returns from the library routine call. The store is updated

as per the assignment l := r. Recall that σ[l := r] denotes the new store

obtained by updating σ with l := r. Then:

σ � g =⇒ (s, σ, ι)
S ilent
−→ (Then(s), σ[l := r])

3.3 Restrictions on C Programs

We assume that our input C programs are in the cil [92] format. This can be easily

achieved by preprocessing the input C programs using the cil [30] tool developed

41

by Necula et. al. The cil format is essentially a very simple subset of C with

precise semantics. For instance, the format does not allow procedure calls inside the

argument of another procedure call. Also, expressions with side-effects (such as x++)

and shortcut evaluations (such as a && b) are disallowed. However cil is expressive

enough so that any valid C program can be tranlated into an equivalent cil program.

This is precisely what the cil tools achieves.

Additionally we disallow pointer dereferences on the left-hand-sides of assignments

as well as the use of function pointers in making indirect library routine calls. This

can be achieved using alias information about the pointers being dereferenced. For

instance suppose we have the following expression:

*p = e;

*fp();

Given that the pointer p can point to either variables x or y.z, and the pointer fp

can point to either routines foo or bar, we can rewrite the above code fragment into

the following while preserving its semantics:

if (p == & x) x = e;

else y.z = e;

if (fp == & foo) foo();

else bar();

Note that we could also include such aliasing information in a component’s context

since the semantics of a component clearly depends on its aliasing scenario. However,

we chose not to do this for two main reasons. First, aliasing scenarios are more integral

to a component’s definition than information which should be present in a context.

While a context is like a component’s environment, aliasing information is usually

embedded more directly in the actual source code and could be extracted, e.g., via

alias analysis. More importantly, the code transformation above converts aliasing

42

possibilities into branch conditions. These branch conditions can be subsequently

used to infer appropriate predicates for abstraction refinement. The abstraction

refinement procedure in magic is presented in further detail in Chapter 6. Finally,

preprocessing away pointer dereferences on the left-hand-sides of assignments will

simplify our presentation of predicate abstraction in Chapter 4. In particular, it

will enable us to use a standard version of the weakest precondition operator (cf.

Definition 15) instead of an extended version. This usually leads to simpler theorem

prover queries while performing admissibility checks.

3.4 Symbolic Representation of States

Let State denote the set of all states of the concrete semantics [[C]] of component

C with respect to context γ. At several points in the rest of this thesis, we will

require the ability to manipulate (possibly infinite) subsets of State. In this section

we present such a framework. The basic idea is to represent the statements explicitly

and to model the stores symbolically using C expressions.

Consider any subset S of the set of states State of [[C]]. Recall that each element

of S is either a normal state of the form (s, σ) or an inlined state (s, σ, ι) where s is

a statement of C, σ is a store and ι is an inlined EFSM state. Since both s and ι are

finitary, we can easily partition S into a finite number of equivalence classes where

all the elements of a particular equivalence class agree on their s and ι components.

In other words, for a fixed s and ι, the equivalence class S(s, ι) is defined as follows:

S(s, ι) = {(s′, σ) ∈ S | s′ = s} ∪ {(s′, σ, ι′) ∈ S | s′ = s ∧ ι′ = ι}

Clearly, the states within a particular equivalence class differ only in their σ

components. Now suppose that for each equivalence class S(s, ι) there exists an

43

expression e such that (s, σ) ∈ S ⇐⇒ σ � e and (s, σ, ι) ∈ S ⇐⇒ σ � e. Then we

can represent the equivalence class S(s, ι) symbolically using the triple (s, ι, e) and

hence we can represent the entire set S using a collection of such triples, one for each

value of s and ι.

Clearly not all subsets of State are representable (or expressible) by the above

scheme. This follows from a simple counting argument – only countably many S’s

are expressible while the set of all possible S’s, i.e., 2State, is clearly uncountable.

However, as we shall see in the rest of this section, the expressible S’s form an

important subset of 2State which we shall denote by E . A set S ⊆ State is said to be

expressible if it belongs to E . We now present this notion formally.

Recall that S tmtC denotes the set of statements of C and for any call statement

s of C, FSM (s) denotes the EFSM corresponding to s. Instead of using triples of

the form (s, ι, e) we will represent an expressible set of states using a function. In

particular, let D be the set of all valid statements s and pairs (s, ι) of statements and

inlined EFSM states. In other words:

D = S tmtC ∪ {(s, ι) | s ∈ Call(C) ∧ ι ∈ SFSM (s)}

where SF denotes the set of states of an EFSM F . Then a representation R : D →

Expr is a function from the set D to the set of expressions.

Definition 10 A representation is a function D → Expr. A representation R

corresponds to a set S, of concrete states iff the following two conditions holds:

∀s ∈ D � ∀σ ∈ Store � (s, σ) ∈ S ⇐⇒ σ � R(s)

∀ (s, ι) ∈ D � ∀σ ∈ Store � (s, σ, ι) ∈ S ⇐⇒ σ � R(s, ι)

Let us denote the set of all representations by Rep. Recall that State denotes the set

44

of all states of [[C]]. For any R ∈ Rep and any S ⊆ State, we will write R ≡ S to

mean that R corresponds to S.

A set of concrete states S ⊆ State is said to be expressible iff there exists a

representation R such that R ≡ S. We denote the set of all expressible subsets of

State by E . In other words:

E = {S ⊆ State | ∃R ∈ Rep � R ≡ S}

Theorem 4 We note below a set of simple results about expressible sets of states.

1. The set State of all states of [[C]] is expressible.

2. The set Init[[C]] of initial states of [[C]] is expressible.

3. If S is expressible then so is its complement State \ S.

4. If S1 and S2 are expressible then so are S1 ∪ S2 and S1 ∩ S2.

5. For any proposition p the set of states labeled with p is expressible.

Proof. Recall that D denotes the domain of any representation.

1. The following representation R corresponds to State: ∀d ∈ D � R(d) = true.

2. Recall that any initial state of [[C]] is of the form (entryC, σ) where entryC is

the entry statement and the store σ satisfies the initial guard InitCond of the

context γ. Hence the following representation R corresponds to the set Init[[C]]

of initial states of [[C]].

R(entryC) = InitCond
∧

∀d ∈ D � d 6= entryC =⇒ R(d) = false

45

3. Let R be a representation corresponding to S. Then the following representation

R′ corresponds to State \ S: ∀d ∈ D � R′(d) = ¬R(d).

4. Let R1 and R2 be representations corresponding to S1 and S2 respectively. Then

the following representations R∪ and R∩ correspond to S1 ∪ S2 and S1 ∩ S2

respectively.

∀d ∈ D � R∪(d) = R1(d) ∨ R2(d)

∀d ∈ D � R∩(d) = R1(d) ∧ R2(d)

5. Recall that the bijection C oncrete maps atomic propositions to expressions.

Let p be any proposition. Then the following representation R corresponds to

the set of states labeled with p: ∀d ∈ D � R(d) = C oncrete(p).

�

In the rest of this thesis we will manipulate sets of concrete states using their

representations. In particular, we will use the following two functions for restriction

with respect to a set of atomic propositions and pre-image computation with respect

to an action.

3.4.1 Restriction

The function Restrict : E×2AP → E restricts an expressible set of states with respect

to a propositional labeling. Intuitively, Restrict(S, P) contains every state in S with

propositional labeling P . Formally:

Restrict(S, P) = {s ∈ S | L[[C]](s) = P}

46

3.4.2 Pre-image

The function PreImage : E×Σ → E maps an expressible set of states to its pre-image

under a particular action. Intuitively, PreImage(S, α) contains every state which has

an α-successor in S. Formally:

PreImage(S, α) = {s ∈ S[[C]] | Succ[[C]](s, α) ∩ S 6= ∅}

We note that due to Theorem 4 both Restrict and PreImage are effectively

computable in the sense that if a representation corresponding to the argument

S is available, then we can also compute a representation corresponding to the

final result. Pre-image computation is possible since we are only concerned with

assignments, if-then-else’s etc. and not, for example, with while statements.

Similar approaches for representing and manipulating sets of states symbolically have

been used previously by, among others, Clarke [31] and Cook [43]. Finally, emptiness

and universality of an expressible set of states S can be checked using a theorem prover

if, once again, we have a representation corresponding to S. Of course, emptiness and

universality are undecidable in general.

3.5 Program

A program consists of a set of components. The execution of a program involves the

concurrent execution of its constituent components.

Definition 11 (Program) A program P is a finite sequence 〈C1, . . . , Cn〉 where each

Ci is a component.

Naturally, a context for P must consist of a sequence of component contexts, one

for each Ci. In addition, the silent actions of each of these component contexts must

47

be different. This prohibits the components from synchronizing with each other on

their silent actions during execution.

Definition 12 (Program Context) A context Γ for a program P = 〈C1, . . . , Cn〉 is

a sequence of component contexts 〈γ1, . . . , γn〉 such that: (i) ∀i ∈ {1, . . . , n} � γi is

a context for component Ci, and (ii) ∀i ∈ {1, . . . , n} � ∀j ∈ {1, . . . , n} � i 6= j =⇒

S ilentγi
6= S ilentγj

.

The semantics of a program is obtained by the parallel composition of the

semantics of its components.

Definition 13 (Program Semantics) Let P = 〈C1, . . . , Cn〉 be a program and

Γ = 〈γ1, . . . , γn〉 be a context for P. The semantics of P under Γ, denoted by [[P]]Γ,

is an LKS defined as follows:

[[P]]Γ = [[C1]]γ1
‖ · · · ‖ [[Cn]]γn

48

Chapter 4

Abstraction

In this chapter we will present our abstraction scheme used for obtaining finite LKS

models from C programs. An LKS M̂ is said to be an abstraction of an LKS M if

M 4 M̂ . Therefore, for our purposes, the concepts of abstraction and simulation

are synonymous. First, we will present a general notion of abstraction based on

abstraction mappings. Later on we will describe a specific abstraction technique

called predicate abstraction [63] which we actually employ for model construction.

This abstraction technique has also been used by others for the verification of both

hardware [33] and software [6, 66] systems.

4.1 Abstraction mapping

Let M and M̂ be two LKSs. A function H : SM → SM̂ is said to be an abstraction

mapping iff it obeys the following conditions:

• ∀s ∈ SM � LM(s) = LM̂(H(s))

• ∀ (s, α, s′) ∈ TM � (H(s), α,H(s′)) ∈ TM̂

49

• ∀s ∈ InitM � H(s) ∈ InitM̂

The following well-known result [36] captures the relationship between abstraction

mappings and abstractions. Abstractions obtained via abstraction mappings,

particularly in the context of hardware verification, are often referred to in the

literature as existential abstractions.

Theorem 5 Let M and M̂ be two LKSs such that: (i) AP M = AP M̂ , (ii) ΣM = ΣM̂ ,

and (iii) there exists an abstraction mapping H : SM → SM̂ . Then M 4 M̂ .

Proof. Define the relation R = {(s,H(s)) | s ∈ SM}. Prove that (i) R is a simulation

relation, and (ii) ∀s ∈ InitM � ∃ŝ ∈ InitM̂ � sRŝ.

�

4.2 Predicate

A predicate is simply a C expression. Recall that any C expression can also be viewed

as a formula (cf. Section 3.1.2). Hence our use of expressions as predicates is perfectly

natural. Let us denote the set of Boolean values {true, false} by B. Let Pred be

a set of predicates. Recall that AP denotes the set of atomic propositions and that

the bijection C oncrete maps atomic propositions to expressions. Let us denote the

inverse of C oncrete by Prop. In other words, Prop : Expr → AP is a bijection

defined as follows:

∀e ∈ Expr � Prop(e) = p ∈ AP ⇐⇒ C oncrete(p) = e

We extend the function Prop to operate over sets of expressions in the natural manner.

Prop(Pred) = {Prop(e) | e ∈ Pred}

50

Prop(Pred) can be thought of as the set of propositions obtained from the set

of predicates Pred by replacing each predicate in Pred with its corresponding

proposition.

Let AP = {p1, . . . , pk} be a set of propositions. Since each element of AP

can be assigned a Boolean value, a valuation of AP is simply a mapping from

AP to B. The set of all valuations of AP is denoted by PropV al(AP). Given a

proposition p and a Boolean value b, let us define pb as follows: if b = true then

pb = C oncrete(p) else pb = !C oncrete(p). Then the induced concretization function

C oncrete : PropV al(AP) → Expr is defined as follows:

C oncrete(V) = p
V (p1)
1 && . . . && p

V (pk)
k

where V (p) denotes the value of proposition p according to the valuation V . As a

special case, if AP = ∅, then it has just one valuation which we denote by ⊥ and we

adopt the convention that C oncrete(⊥) = 1. Recall that 1 represents true as per

the C expression semantics. This means that an empty valuation always concretizes

to true.

The key idea behind predicate abstraction is that sets of concrete stores

are abstractly represented by propositional valuations. In particular, a valuation V

abstractly represents the set of stores σ which satisfy the concretization C oncrete(V)

of V . Moreover, just as there is a notion of satisfaction � of expressions by stores,

there is a notion of abstract satisfaction of expressions by valuations. Intuitively,

a valuation V abstractly satisfies an expression e iff there is a store σ such that

V abstractly represents σ and σ � e. We call this notion of abstract satisfaction

admissibility and present it formally next.

Definition 14 (Admissibility) Let AP be a set of propositions, V ∈ PropV al(AP)

51

be a valuation of AP and e ∈ Expr be an expression. Recall that the C expression

C oncrete(V) denotes the concretization of the valuation V . Then V is said to be

admissible with e, denoted by V
 e, iff the following condition holds:

∃σ ∈ Store � σ � C oncrete(V) && e

If V ′ ∈ PropV al(AP ′) is a valuation of another set of propositions AP ′, then we

write V
 V ′ to mean V
 C oncrete(V ′).

Admissibility and Satisfaction. We have intentionally used a symbol for

denoting admissibility (
) which is similar to that used to denote satisfaction (�)

of an expression by a store. Our intention is to highlight the fact that admissibility

is essentially a form of consistency between a valuation and an expression or between

two valuations. At an abstract level, admissibility plays a role similar to that of

satisfaction or logical entailment. This correspondence is further highlighted by

the similarity between the description of the concrete and abstract semantics of a

component presented in Chapter 3 and Chapter 4 respectively.

Checking Admissibility in Practice. In order to perform predicate abstraction

it will be essential to perform several admissibility checks. Suppose we wish to

check admissibility between a valuation V and an expression e (or between two

valuations V and V ′). This boils down to checking the satisfiability of the expression

C oncrete(V) && e (or C oncrete(V) && C oncrete(V ′)). We will use a theorem prover

to discharge this satisfiability check. However the problem is undecidable in general

and hence the theorem prover might time-out with an “I don’t know”. In such

inconclusive cases, to guarantee the soundness of our predicate abstraction we must

52

make a conservative decision, i.e., assume that V and e (or V and V ′) are indeed

admissible.

Definition 15 (Weakest Precondition) Given an expression e, and an

assignment a of the form lhs = rhs, the weakest precondition [54, 70] of e

with respect to a, denoted by WP [a](e), is the expression obtained from e by

simultaneously replacing each occurrence of lhs with rhs.

4.3 Predicate Mapping

In order to do predicate abstraction, we need to know the set of predicates associated

with each statement of a component. This association is captured by a predicate

mapping. Let C be a component and γ be a context for C. Recall that AP γ is the

set of atomic propositions specified by γ. Then a predicate mapping is a function

from the statements of C to sets of predicates such that we have sufficient predicates

to determine whether an atomic proposition p ∈ AP γ holds or does not hold at

any abstract state. Recall that C oncrete(p) denotes the expression associated with

any atomic proposition p. Therefore, for any p ∈ AP γ, and for any statement s, a

predicate mapping must associate the expression C oncrete(p) as a predicate at s. We

now give a more formal definition.

Definition 16 (Predicate Mapping) Let C be a component and γ be a context for

C. Recall that S tmtC denotes the set of statements of C, AP γ denotes the set of atomic

propositions specified by γ, and C oncrete is a mapping from the atomic propositions

to expressions. A function Π : S tmtC → 2Expr is said to be a predicate mapping for C

53

compatible with γ iff the following condition holds:

∀s ∈ S tmtC � ∀p ∈ AP γ � C oncrete(p) ∈ Π(s)

In other words, Π is compatible with γ iff the set of predicates associated by

Π with every statement s of C contains the predicates corresponding to the atomic

propositions specified by the context γ. The predicate mapping Π will be fixed in the

rest of this chapter. Hence, for any statement s we will simply write PropV al(s) to

mean PropV al(Prop(Π(s))) where Prop(Π(s)) denotes the set of atomic propositions

corresponding to the set of predicates associated with s by Π.

4.4 Predicate Abstraction

We are now ready to present predicate abstraction formally. We first present predicate

abstraction for a component and then extend it to a program. The reader is advised

to perform a comparative study of the remainder of this section and Section 3.2.1.

This will enable him to get a clearer picture of the relationship between component

semantics and predicate abstraction, and grasp at an intuitive level the significance

and correctness of Theorem 6.

Let C be a component, γ = (InitCond,AP , Σ, S ilent,FSM) be any context

for C and Π be a predicate mapping for C compatible with γ. Then the predicate

abstraction of C under γ and with respect to Π is denoted by [[[C]]]Πγ . In the rest of

this section the context γ and the predicate mapping Π will be fixed and therefore

we will often omit them when they are obvious. For example, we will write [[[C]]] to

mean [[[C]]]Πγ . Formally, [[[C]]] is an LKS such that:

• [[[C]]] has two kinds of states - normal and inlined. A normal state is simply a

54

pair consisting of a statement of C and a valuation.

Snormal = {(s, V) | s ∈ S tmtC ∧ V ∈ PropV al(s)}

where PropV al(s) denotes the set of valuations of the propositions

corresponding to the set of predicates associated with the statement s. An

inlined state is obtained by inlining EFSMs at corresponding call statements.

Recall that for any call statement s, FSM (s) denotes the EFSM corresponding

to s. Therefore, an inlined state is simply a triple (s, V, ι) where s is a call

statement, V is a valuation and ι is a state of FSM (s). More formally, the set

of inlined states Sinlined is defined as:

Sinlined = {(s, V, ι) | s ∈ Call(C) ∧ V ∈ PropV al(s) ∧ ι ∈ SFSM (s)}

where PropV al(s) denotes the set of valuations of the propositions

corresponding to the set of predicates associated with the statement s, and

SF denotes the set of states of an EFSM F . Finally, a state of [[[C]]] is either a

normal state or an inlined state.

S[[[C]]] = Snormal ∪ Sinlined

• An initial state of [[[C]]] corresponds to the entry statement entryC of C and a

valuation that is admissible with the initial condition InitCond specified by the

context γ.

Init[[[C]]] = {(entryC, V) | V
 InitCond}

• Recall that AP is the set of atomic propositions specified by the context γ. The

atomic propositions of [[[C]]] are the same as those specified by γ.

AP [[[C]]] = AP

55

• The labeling function L[[[C]]] of [[[C]]] is consistent with the valuations. Since the

propositional labeling does not depend on the inlined EFSM state, its definition

will be identical for normal and inlined states. More formally:

L[[[C]]] (s, V) = L[[[C]]] (s, V, ι) = {p ∈ AP | V (p) = true}

Note that in the above definitions, the value V (p) is always well-defined because

the predicate mapping Π is compatible with the context γ. This ensures that

for any atomic proposition p, and any statement s of the component C, the

concretization C(p) of p always belongs to the predicate set Π(s) associated

with the statement s by the predicate mapping Π.

• The alphabet of [[[C]]] contains the specified observable and silent actions. Recall

that Σ is the set of observable actions associated with the context γ and S ilent

is the silent action associated with the context γ.

Σ[[[C]]] = Σ ∪ {S ilent}

Note once again that τ 6∈ Σ[[[C]]] and that this fact will be used for the

compositional verification technique presented later in this thesis.

• The transition relation of the predicate abstraction [[[C]]] is defined in the

following section.

4.4.1 Transition Relation of [[[C]]]

In the rest of this section we will write Type, Then, E lse, C ond, LHS and RHS to

mean TypeC, ThenC, E lseC, C ondC, LHSC and RHSC respectively. We will describe

outgoing transitions from normal and inlined states separately.

56

Normal States. Let (s, V) be a normal state of [[[C]]] . Recall that s ∈ S tmtC is a

statement of C and V ∈ PropV al(s) is a valuation of the propositions corresponding

to the set of predicates associated with s. We consider each possible value of Type(s)

separately.

• Type(s) = EXIT. In this case (s, V) has no outgoing transitions.

• Type(s) = BRAN. Recall that C ond(s) is the branch condition associated

with s while Then(s) and E lse(s) are the then and else successors of s. In

this case (s, V) performs the S ilent action and moves to Then(s) or E lse(s)

depending on the satisfaction of the branch condition. The new valuation

must be admissible with the old one. Let V ′
then ∈ PropV al(Then(s)) and

V ′
else ∈ PropV al(E lse(s)). Then:

V
 C ond(s) ∧ V
 V ′
then =⇒ (s, V)

S ilent
−→ (Then(s), V ′

then)

V
 !C ond(s) ∧ V
 V ′
else =⇒ (s, V)

S ilent
−→ (E lse(s), V ′

else)

• Type(s) = ASGN. In this case (s, V) performs the S ilent action and moves to

the then successor while the valuation is updated as per the assignment. Recall

that LHS(s) and RHS(s) are the left and right hand side expressions associated

with s. Formally, let V ′ ∈ PropV al(Then(s)) and e be the expression

WP [LHS(s)= RHS(s)](C oncrete(V ′)). Then:

V
 e =⇒ (s, V)
S ilent
−→ (Then(s), V ′)

• Type(s) = CALL. In this case (s, V) performs the S ilent action and moves to an

initial state of the EFSM FSM (s) corresponding to s. The valuation remains

unchanged. Recall that InitFSM (s) denotes the set of initial states of FSM (s).

Then:

∀ι ∈ InitFSM (s) � (s, V)
S ilent
−→ (s, V, ι)

57

Inlined States. Let s ∈ Call(C), V ∈ PropV al(s) and (s, V, ι) be an inlined state.

Recall that in this case ι must be a state of the EFSM FSM (s) corresponding to s.

Also recall that the transitions of FSM (s) are labeled with guarded commands of

the form g/α or g/l := r. We consider four possible types of outgoing transitions of

FSM (s) from the state ι.

• ι
g/α
−→ ι′ and ι′ 6= STOP. If the valuation V is admissible with the guard g,

(s, V, ι) performs action α and moves to the inlined state corresponding to ι′.

The valuation remains unchanged. Formally:

V
 g =⇒ (s, V, ι)
α

−→ (s, V, ι′)

• ι
g/α
−→ ι′ and ι′ = STOP. If the valuation V is admissible with the guard

g, (s, V, ι) performs action α and returns from the library routine call. The

new valuation must be admissible with the old one. Formally, let V ′ ∈

PropV al(Then(s)). Then:

V
 g ∧ V
 V ′ =⇒ (s, V, ι)
α

−→ (Then(s), V ′)

• ι
g/l:=r
−→ ι′ and ι′ 6= STOP. If the valuation V is admissible with the guard

g, (s, V, ι) performs S ilent and moves to the inlined state corresponding to

ι′. The valuation is updated as per the assignment l := r. Formally, let

V ′ ∈ PropV al(s) and e be the expression WP [l := r](C oncrete(V ′)). Then:

V
 g ∧ V
 V ′ =⇒ (s, V, ι)
S ilent
−→ (s, V, ι′)

• ι
g/l:=r
−→ ι′ and ι′ = STOP. If the valuation V is admissible with the guard g,

(s, V, ι) performs S ilent and returns from the library routine call. The valuation

58

is updated as per the assignment l := r. Formally, let V ′ ∈ PropV al(Then(s))

and e be the expression WP [l := r](C oncrete(V ′)). Then:

V
 g ∧ V
 V ′ =⇒ (s, V, ι)
S ilent
−→ (Then(s), V ′)

if (x) if (y)

chi () beta ()alpha () delta ()

if (z)2

3 4

5

6 7

8

9

x = y1

EXIT

Figure 4.1: The component from Example 9.

Example 10 Recall the component C and the context γ from Figure 4.1 and

Example 9. The key thing to remember is that according to γ, the library routines

alpha, beta, chi and delta perform the actions α, β, χ and δ respectively and terminate.

Let Π be the predicate mapping of C which maps every statement of C to ∅. Hence the

set of valuations for the propositions corresponding to the set of predicates associated

with each statement of C is simply {⊥}.

Figure 4.2 shows the reachable states of the LKS [[[C]]]Πγ . Since the valuations are

always ⊥ we omit them for simplicity. Thus the normal states are only labeled by the

associated component statement. The inlined states are also labeled by the state of the

EFSMs associated with their corresponding library routine calls. In particular these

are the initial states of the EFSMs Fα, Fχ, Fβ and Fδ shown in Figure 3.4, and are

denoted by Initα, Initβ, Initχ and Initδ respectively.

59

τ1τ1

τ1 τ1τ1 τ1

τ1 τ1
τ1τ1

1
τ1

Initα Init Init Initχ β δ

α
χ β δ

2

3 4

5 6 7 8

5, 6, 7, 8,

9

Figure 4.2: The LKS obtained by predicate abstraction of the component in Figure 4.1.

The fact that a predicate abstraction is indeed an abstraction is captured by the

following theorem.

Theorem 6 Let C be a component, γ be a context for C and Π : S tmtC → 2Expr be a

predicate mapping for C compatible with γ. Then [[C]]γ 4 [[[C]]]Πγ .

Proof. The key idea is to define an abstraction mapping from the concrete states

of [[C]]γ to the abstract states of [[[C]]]Πγ . The mapping must reflect the fact that

abstract states are obtained from concrete states by representing stores abstractly

using valuations. In other words, the correspondence between concrete and abstract

states must be captured by the correspondence between the stores and the valuations.

This is achieved by the function H : S[[C]]γ → S[[[C]]]Πγ
. Intuitively, H maps a concrete

state s to an abstract state ŝ iff the store associated with s satisfies the concretization

of the valuation associated with ŝ. Formally, H is defined as follows:

H (s, σ) = (s, V) � σ � C oncrete(V)

H (s, σ, ι) = (s, V, ι) � σ � C oncrete(V)

60

We can prove that H is an abstraction mapping. Then the result follows from

Theorem 5.

�

The fact that simulation is a congruence with respect to parallel composition

means that predicate abstraction can be performed on a program component-wise.

To present this idea formally we need to extend the notion of predicate mapping and

predicate abstraction to programs.

Definition 17 (Program Predicate Mapping) Let P = 〈C1, . . . , Cn〉 be a

program and Γ = 〈γ1, . . . , γn〉 be a context for P. A predicate mapping for P

compatible with Γ is a sequence 〈Π1, . . . , Πn〉 such that Πi is a predicate mapping

for Ci compatible with γi for i ∈ {1, . . . , n}.

Definition 18 (Program Predicate Abstraction) Let P = 〈C1, . . . , Cn〉 be a

program, Γ = 〈γ1, . . . , γn〉 be a context for P and Π = 〈Π1, . . . , Πn〉 be a predicate

mapping for P compatible with Γ. Then the predicate abstraction of P under Γ and

with respect to Π, denoted by [[[P]]]ΠΓ , is the LKS defined as follows:

[[[P]]]ΠΓ = [[[C1]]]
Π1

γ1
‖ · · · ‖ [[[Cn]]]Πn

γn

Theorem 7 Let P be a program, Γ be a context for P and Π be a predicate mapping

for P compatible with Γ. Then the following holds:

[[P]]Γ 4 [[[P]]]ΠΓ

Proof. Immediately from Theorem 3 and Theorem 6.

�

61

4.5 Predicate Inference

Recall that the predicate abstraction of a component C is parameterized by a

predicate mapping Π for C. In the framework being presented in this thesis, Π is

constructed on the basis of a set of seed branches of C via a process of predicate

inference. Let us denote by BC the set of branch statements of C. Formally,

BC = {s ∈ S tmtC | T(s) = BRAN}. Further, for any EFSM F , let Guard(F) denote

the set of guards associated with the transitions of F .

Procedure 4.1 PredInfer computes a predicate mapping for component C that is

compatible with a context γ using a set of seed branches. It continues as long as some condition

continue holds.

Algorithm PredInfer(C, γ, B)

let C = (S tmt,Type, entry,C ond,LHS,RHS,Then,E lse);

let γ = (InitCond,AP , Σ, S ilent,FSM);

for each s ∈ S tmt let Π[s] := {C oncrete(p) | p ∈ AP γ};

for each s ∈ B let Π[s] := Π[s] ∪ {C ond(s)};

for each s ∈ Call(C) let Π[s] := Π[s] ∪ Guard(FSM γ(s));

while (continue) do

for each s ∈ S tmt case Type(s) of

ASGN : let a = LHS(s) := RHS(s);

Π[s] := Π[s] ∪ {WP [a](p) | p ∈ Π[Then(s)]};

CALL : Π[s] := Π[s] ∪ Π[Then(s)];

BRAN : Π[s] := Π[s] ∪ Π[Then(s)] ∪ Π[E lse(s)];

return Π;

Algorithm PredInfer, presented in Procedure 4.1, takes as input a component C,

a context γ for C and a set of branches B ⊆ BC. It computes and returns a predicate

mapping for C compatible with γ. Essentially, PredInfer works as follows. First it

initializes Π with the expressions corresponding to propositions. This is crucial to

ensure that the final result is compatible with γ. Then PredInfer seeds Π using the

branch conditions of the seed branches B and guards from the EFSMs corresponding

62

if (x) if (y)

chi () beta ()alpha () delta ()

if (z)

EXIT

{x}

x = y {y}

{x,y}

{y}

{ }

{ }

{ } { }{ }

Figure 4.3: The component of Figure 4.1 with each statement labeled by inferred predicates

computed by PredInfer from the set of seed branches {3, 4}.

to the call statements of C. Finally it iteratively adds new predicates to the statements

of C on the basis of the predicates that have been already inferred at their successor

statements.

Intuitively, whenever a predicate p is inferred at a statement s, the weakest

precondition of p is inferred at every predecessor statement of s. If s is an

assignment statement, the weakest precondition of p is computed in the obvious

manner. Otherwise the weakest precondition of p is p itself. This iterative procedure

might not terminate in general but can be terminated on the basis of some criterion

(represented in Procedure 4.1 as continue) such as the size of Π.

Example 11 Recall the component C from Figure 4.1 and the context γ from

Example 10. Let B be the set of branch statements {3, 4}, i.e., the two branch

statements of C with conditions x and y respectively. Then Figure 4.3 shows C with

each statement labeled by the set of predicates inferred by PredInfer when invoked

with arguments C, γ and B.

63

64

Chapter 5

Simulation

As mentioned before, in our approach, verification amounts to checking that

the specification LKS simulates the implementation LKS. Therefore, we consider

simulation in more detail. In this chapter we will write Im to denote the

implementation, Sp to denote the specification, Σ to denote ΣSp and AP to denote

AP Sp. Recall that in general the implementation LKS will be obtained by predicate

abstraction of a program. In other words, Im = [[[P]]]ΠΓ (cf. Definition 18) where Γ

is a program context (cf. Definition 12) and Π is a program predicate mapping (cf.

Definition 17). Also recall that ΣIm = ΣSp and AP Im = AP Sp. Further, we will

assume that Im and Sp have a single initial state each, i.e., |InitIm| = |InitSp| = 1.

The extension to multiple initial states is straightforward. Finally, we will write

InitIm and InitSp to denote the initial state of Im and Sp respectively.

65

5.1 Simulation Games

Consider an implementation Im = (SIm, InitIm,AP Im,LIm, ΣIm,TIm) and a

specification Sp = (SSp, InitSp,AP Sp,LSp, ΣSp,TSp) such that ΣIm = ΣSp and

AP Im = AP Sp. Suppose we want to determine whether Im 4 Sp. It is

well-known [110] that this can be verified using a two-player game between the

implementation Im and the specification Sp. In each round of the game, the

implementation poses a challenge and the specification attempts to provide a response.

Each player has one pebble located on some state of his LKS which he can move along

transitions of his LKS. The location of the pebbles at the start of each round is called

a game state, or position, and is denoted by (sIm, sSp) where sIm and sSp are the

locations of the implementation’s and specification’s pebbles respectively.

A game position (sIm, sSp) is said to be admissible iff the corresponding

implementation and specification states agree on the set of atomic propositions, i.e.,

LIm(sIm) = LSp(sSp). We will only consider admissible game positions. Further we

will assume that the position (InitIm, InitSp) is admissible. If (InitIm, InitSp) is not

admissible, Im 64 Sp holds trivially. From a given admissible position (sIm, sSp), the

game proceeds as follows:

• Implementation Challenge. The implementation picks an action α and a

successor state s′Im ∈ SuccIm(sIm, α) and moves its pebble to s′Im. We denote

such a challenge as simply (sIm, sSp)
α

−→ (s′Im, ?).

• Specification Response. Recall that LIm(s′Im) denotes the propositional

labeling of state s′Im. The specification responds by moving its pebble to a state

s′Sp such that s′Sp is an α-successor of sSp and s′Sp has the same propositional

labeling as s′Im. In other words, s′Sp ∈ PSuccSp(sSp, α,LIm(s′Im)). Thus, the

66

specification completes the challenge (sIm, sSp)
α

−→ (s′Im, ?) into a transition

(sIm, sSp)
α

−→ (s′Im, s′Sp).

The game continues into the next round from position (s′Im, s′Sp). Note that the

response must involve the same action (α) and atomic propositions (LIm(s′Im))

as the corresponding challenge. In particular, as per the definition of PSucc

(cf. Definition 2), LSp(s
′
Sp) = LIm(s′Im) and hence position (s′Im, s′Sp) is once

again admissible.

• Winning Condition. The implementation wins iff the specification is unable

to respond to some move of the implementation.

A simulation game is completely defined by Im, Sp and the initial position. Let us

denote the simulation game with (sIm, sSp) as the initial position by Game(sIm, sSp).

A position (sIm, sSp) is called a winning position iff Im has a well-defined strategy to

win Game(sIm, sSp). The relationship between simulation and simulation games is

well-known and is captured by Theorem 8.

Theorem 8 Im 4 Sp iff the implementation Im does not have a strategy to win

Game(InitIm, InitSp), i.e., if (InitIm, InitSp) is not a winning position.

As the implementation Im can only win after a finite number of moves, it is easy

to see that every winning strategy for Im in any simulation game can be described

by a finite tree with the following characteristic. For each position (sIm, sSp), the tree

explains how Im should pick a challenge (sIm, sSp)
α

−→ (s′Im, ?) in order to ultimately

win. Each such tree constitutes a counterexample for the simulation relation and will

be referred to as a Counterexample Tree. In general, for each game position, there

may exist several ways for Im to challenge and still win eventually. This element of

choice leads to the existence of multiple Counterexample Trees.

67

We will now give a formal framework which describes the game in such a way

that Counterexample Trees can be easily extracted. We will write Pos to mean the

set of all game positions, i.e., Pos = SIm × SSp. Let Challenge denote the set of all

challenges. We begin by defining the functions Response : Challenge → 2Pos which

maps a challenge c to the set of all new game positions that can result after Sp has

responded to c.

Response((sIm, sSp)
α

−→ (s′Im, ?)) = {s′Im} × PSuccSp(sSp, α,LIm(s′Im))

a
b

b

a

a

b

b
b

b

b

b

Im Sp

c

c

S1 S2

S3

S4

T1

T2

T3

T4

T5

Figure 5.1: Two simple LKSs.

Example 12 Let Im and Sp be the LKSs from Figure 5.1. From position (S2, T2),

Im can pose the following two challenges due to two possible moves from S2 on action

b.

(S2, T2)
b

−→ (S3, ?) and (S2, T2)
b

−→ (S4, ?)

For each of these challenges Sp can respond in two ways due to two possible moves

from T2 on action b.

Response((S2, T2)
b

−→ (S3, ?)) = {(S3, T4), (S3, T5)}

Response((S2, T2)
b

−→ (S4, ?)) = {(S4, T4), (S4, T5)}

68

5.2 Strategy Trees as Counterexamples

Formally, a Counterexample Tree for Game(sIm, sSp) is given by a labeled tree

(N,E, r, S t,Ch) where:

• N, the set of nodes, describes the states of the winning strategy

• E ⊆ N × N, the set of edges, describes the transitions between theses states

• r ∈ N is the root of the tree

• S t : N → Pos maps each tree node to a game position

• Ch : N → Challenge maps each tree node n to the challenge that Im must

pose from position S t(n) in accordance with the strategy

Note that, for a given node n, if S t(n) = (sIm, sSp) then Ch(n) = (sIm, sSp)
α

−→

(s′Im, ?) for some action α and successor state s′Im ∈ SuccIm(sIm, α). Also,

let Child(n) denote the set of children of n. Then the Counterexample Tree

(N,E, r, S t,Ch) has to satisfy the following conditions:

CE1 The root of the tree is mapped to the initial game state, i.e., S t(r) =

(InitIm, InitSp).

CE2 The children of a node n cover Response(Ch(n)), i.e., the game positions to

which the response of Sp can lead. In other words:

Response(Ch(n)) = {S t(s) | c ∈ Child(n)}

CE3 The leaves of the tree are mapped to victorious challenges, i.e., challenges from

which the specification has no response. In other words, a leaf node l has to

obey the following condition: Response(Ch(l)) = ∅.

69

Example 13 Consider again Im and Sp from Figure 5.1. Figure 5.2 shows a

Counterexample Tree for Game(S1, T1). Inside each node n we show the challenge

Ch(n).

(S3,T4) (S3,?)
c c

(S3,T5) (S3,?) (S3,T4) (S3,?)
c c

(S3,T5) (S3,?)

(S2,T2) (S3,?)
b (S2,T3) (S3,?)

b

(S1,T1) (S2,?)
a

Figure 5.2: Counterexample Tree for a simulation game.

5.3 Checking Simulation

In this section we describe a verification algorithm that checks whether Im 4 Sp and

computes a Counterexample Tree if Im 64 Sp. Recall that a CounterexampleTree

describes a winning strategy for the implementation Im to win the the simulation

game. We will first describe the algorithm ComputeWinPos which computes the

set of winning positions along with their associated challenges; this data is then used

to construct a CounterexampleTree.

The Algorithm ComputeWinPos is described in Procedure 5.1. It collects

the winning positions of Im in the set W inPos. Starting with W inPos = ∅, it

adds new winning positions to W inPos until no more winning positions can be

found. Note that in the first iteration W inPos = ∅, and therefore the condition

Response(c) ⊆ W inPos amounts to Response(c) = ∅. The latter condition in turn

expresses that c is a victorious challenge.

70

Procedure 5.1 ComputeWinPos computes the set W inPos of winning positions for the

implementation Im; the challenges are stored in Ch.

Algorithm ComputeWinPos(Im, Sp)

W inPos,Chal := ∅;

forever do

find challenge c := (sIm, sSp)
α

−→ (s′Im, ?) such that Response(c) ⊆ W inPos

// all responses are winning positions

if not found return (W inPos,Chal);

W inPos := W inPos ∪ {(sIm, sSp)};

Chal(sIm, sSp) := c;

In Procedure 5.2 we present the verification algorithm SimulCETree that works

as follows: it first invokes ComputeWinPos to compute the set W inPos of

winning positions. If the initial position (InitIm, InitSp) is not in W inPos, then

the implementation cannot win the simulation game Game(InitIm, SSp). In this

case, SimulCETree declares that “Im 4 Sp” (recall Theorem 8) and terminates.

Otherwise, it invokes algorithm ComputeStrategy (presented in Procedure 5.3) to

compute a Counterexample Tree for Game(InitIm, InitSp).

Theorem 9 Algorithm SimulCETree is correct.

Proof. The correctness of SimulCETree follows from the fact that the maximal

simulation relation between Im and Sp is a greatest fixed point and SimulCETree

effectively computes its complement.

�

Algorithm ComputeStrategy takes the following as inputs: (i) a winning

position (sIm, sSp), (ii) the set of all winning positions W inPos, and (iii) additional

challenge information Chal. It constructs a Counterexample Tree for the simulation

71

game Game(sIm, sSp) and returns the root of this Counterexample Tree. Note that

at the top level, ComputeStrategy is invoked by SimulCETree with the winning

position (InitIm, InitSp). This call therefore returns a Counterexample Tree for the

complete simulation game Game(InitIm, InitSp).

Procedure 5.2 SimulCETree checks for simulation, and returns a Counterexample Tree

in case of violation.

Algorithm SimulCETree(Im, Sp)

(W inPos,Chal) := ComputeWinPos(Im, Sp);

if (InitIm, InitSp) 6∈ W inPos return “Im 4 Sp”;

else return ComputeStrategy(InitIm, InitSp,W inPos,Chal);

When ComputeStrategy is invoked with position (sIm, sSp), it first creates a

root node r and associates position (sIm, sSp) and challenge Chal(sIm, sSp) with r.

It then considers all the positions reachable by responding to Chal(sIm, sSp), i.e.,

all the positions with which the next round of the game might begin. For each of

these positions, ComputeStrategy constructs a Counterexample Tree by invoking

itself recursively. Finally, ComputeStrategy returns r as the root of a new tree, in

which the children of r are the roots of the recursively computed trees. Note that if

Response(Chal(sIm, sSp)) = ∅, i.e., if Chal(sIm, sSp) is a victorious challenge, then r

becomes a leaf node as expected from condition CE3 above.

As described in Procedure 5.1, ComputeWinPos is essentially a least fixed

point algorithm for computing the set of winning positions W inPos and additional

challenge information Chal . In fact, ComputeWinPos can be viewed as the dual

of the greatest fixed point algorithm for computing the maximal simulation relation

between Im and Sp. Since fixed point computation is quite expensive in practice,

ComputeWinPos is quite naive and is presented for its simplicity and ease of

understanding. In practice, ComputeWinPos is implemented by: (i) reducing it to

72

a satisfiability problem for weakly negated HORNSAT (N-HORNSAT) formulas and,

(ii) using an N-HORNSAT algorithm that not only checks for satisfiability but also

computes W inPos and Chal. This procedure is presented in detail in Section 5.4.

5.3.1 Computing Multiple Counterexample Trees

For given Im and Sp, the set of winning positions W inPos computed by

ComputeWinPos is uniquely defined, i.e., each position (sIm, sSp) is either the

root of some winning strategy (i.e., (sIm, sSp) ∈ W inPos) or not (i.e, (sIm, sSp) 6∈

W inPos). There may, however, be multiple winning strategies from position

(sIm, sSp), simply because there may be different challenges Im can pose, which all

will ultimately lead to Im’s victory.

In the algorithm ComputeWinPos, this is reflected by the fact that at each

time when the algorithm selects a challenge c, there may be several candidates for c,

and only one of them is stored in Ch(sIm, sSp). The challenge information stored in

Ch is subsequently used by ComputeStrategy, the algorithm which constructs the

winning strategy. Thus, depending on ComputeWinPos’s choices for the challenges

c, ComputeStrategy will output different winning strategies. While all these

strategies are by construction winning strategies for Im, they may differ in various

aspects, for example, the tree size or the actions and states involved. In Section 6.5,

we will see that in our experiments, using a set of different winning strategies instead

of one indeed helps to save time and memory.

73

Procedure 5.3 ComputeStrategy recursively computes a winning strategy for showing

that (sIm, sSp) ∈ W inPos; it outputs the root of the strategy tree.

Algorithm ComputeStrategy(sIm, sSp,W inPos,Chal);

// (sIm, sSp) is a winning position in W inPos

create new tree node r with S t(r) := (sIm, sSp) and Ch(r) := Chal(sIm, sSp);

for all (cIm, cSp) ∈ Response(Chal(sIm, sSp))

create tree edge r −→ ComputeStrategy(cIm, cSp,W inPos,Chal);

return r;

5.4 Simulation using N-HORNSAT

Given two LKSs Im and Sp we can verify whether Im 4 Sp efficiently by reducing

the problem to an instance of Boolean satisfiability [103] or SAT. Interestingly the

SAT instances produced by this method always belong to a restricted class of SAT

formulas known as the weakly negated HORN formulas. The satisfiability problem for

such formulas is also known as N-HORNSAT. In contrast to general SAT (which has

no known polynomial time algorithm), N-HORNSAT can be solved in linear time [57].

In this section we present the N-HORNSAT based simulation check algorithm.

We also describe a procedure to compute the set of winning positions W inPos

and associated challenge information Chal that can be used subsequently by

ComputeStrategy to compute a Counterexample Tree in case the simulation is

found not to exist. We begin with a few preliminary definitions.

5.4.1 Definitions

A literal is either a boolean variable (in which case it is said to be positive) or its

negation (in which case it is said to be negative). A clause is a disjunction of literals,

i.e., a formula of the form (l1 ∨ · · · ∨ lm) where li is a literal for 1 ≤ i ≤ m. A formula

74

is said to be in conjunctive normal form (CNF) iff it is a conjunction of clauses, i.e.,

of the form (c1 ∧ · · · ∧ cn) where ci is a clause for 1 ≤ i ≤ n.

Recall that B denotes the set of Boolean values {true, false}. A valuation is a

function from boolean variables to B. A valuation V automatically induces a function

V from literals to B as follows: (i) V(l) = V(b) if l is of the form b and (ii) V(l) = ¬V(b)

if l is of the form ¬b. A valuation V automatically induces a function V from clauses

to B as follows. Let c = (l1 ∨ · · · ∨ lm) be a clause. Then V(c) =
∨m

i=1 V(li). In the

same spirit, a valuation V automatically induces a function V from CNF formula to

B as follows. Let φ = (c1 ∧ · · · ∧ cn) be a CNF formula. Then V(φ) =
∧n

i=1 V(ci).

A CNF formula φ is said to be satisfiable iff there exists a valuation V such that

V(φ) = true.

A CNF formula (c1 ∧ · · · ∧ cn) is said to be a weakly negated HORN (N-HORN)

formula iff each ci contains at most one negative literal for 1 ≤ i ≤ n. The problem of

checking the satisfiability of an arbitrary N-HORN formula is known as N-HORNSAT.

There exists a well-known algorithm [4] for solving the N-HORNSAT problem that

requires linear time and space in the size of the input formula. We are now ready to

present the N-HORNSAT based simulation checking algorithm.

5.4.2 Reducing Simulation to N-HORNSAT

Let Im and Sp be two LKSs such that ΣIm = ΣSp. Our goal is to create an

N-HORN formula φ(Im, Sp) such that φ(Im, Sp) is satisfiable iff Im 4 Sp. For

each sIm ∈ SIm and sSp ∈ SSp we introduce a boolean variable that we denote

W P (sIm, sSp). Intuitively, W P (sIm, sSp) stands for the proposition that (sIm, sSp) is

not a winning position. We then generate a set of clauses that constrain the various

boolean variables in accordance with the rules of a simulation game.

75

In particular suppose W P (sIm, sSp) is true. Then (sIm, sSp) is not a winning

position. Now suppose sIm
α

−→Im s′Im. Then according to the rules of a simulation

game, there must exist a successor game state which is also not a winning position.

In other words, there must exist some state s′Sp such that: (i) sSp
α

−→Sp s′Sp, (ii)

LSp(s
′
Sp) = LIm(s′Im), and (iii) (s′Im, s′Sp) is not a winning position. But this argument

can be expressed formally by the following clause:

W P (sIm, sSp) =⇒
∨

s′
Sp∈PSuccSp(sSp,α,LIm(s′

Im))

W P (s′Im, s′Sp)

In essence, most of our target formula φ(Im, Sp) is composed of such clauses

(which we shall call the transition clauses), one for each appropriate choice of

sIm, sSp, α and s′Im. As a special case, when PSuccSp(sSp, α,LIm(s′Im)) = ∅, the

generated clause is simply ¬W P (sIm, sSp). In addition to the transition clauses,

φ(Im, Sp) contains a single clause W P (InitIm, InitSp) which expresses the constraint

that (InitIm, InitSp) is not a winning position. Let us call this clause the initial clause.

The algorithm to generate φ(Im, Sp) is called GenerateHORN and is shown in

Procedure 5.4. Note that the generated φ(Im, Sp) is a N-HORN formula.

Procedure 5.4 GenerateHORN to generate φ(Im,Sp).

Algorithm GenerateHORN (Im, Sp)

for each sIm ∈ SIm, for each sSp ∈ SSp

for each α ∈ ΣIm, for each s′Im ∈ SuccIm(sIm, α)

output clause W P (sIm, sSp) =⇒
∨

s′
Sp∈PSuccSp(sSp,α,LIm(s′

Im)) W P (s′Im, s′Sp)

//generate transition clause

output clause W P (InitIm, InitSp) //generate initial clause

The above method of checking simulation via N-HORNSAT is well-known [103].

Further, N-HORNSAT can be solved in linear time and space [57]. This yields

extremely efficient algorithms for checking simulation between two LKSs. In addition,

76

our CEGAR framework requires a counterexample if the simulation check fails.

As part of magic we have implemented an extended version of the N-HORNSAT

algorithm presented by Ausiello and Italiano [4] to achieve precisely this goal. In

other words, not only does our algorithm check for satisfiability of N-HORN formulas,

but it also constructs a counterexample for the simulation relation if the formula is

found to be unsatisfiable. To the best of my knowledge, this is the first attempt to

construct counterexamples in the context of simulation using SAT procedures.

5.4.3 Computing W inPos and Chal

Recall that in order to check simulation between Im and Sp, we first construct an N-

HORNSAT formula φ(Im, Sp) such that φ(Im, Sp) is satisfiable iff Im 4 Sp. In this

section we describe an algorithm to check for the satisfiability of φ(Im, Sp). We also

describe a procedure to compute the set of winning positions W inPos and associated

challenge information Chal that can be used subsequently by ComputeStrategy to

compute a Counterexample Tree.

In the rest of this section we shall denote φ(Im, Sp) as simply φ. The satisfiability

check occurs in two phases. In the first phase, a directed hypergraph, HG is

constructed on the basis of the clauses in φ. The nodes of HG correspond to the

Boolean variables in φ. We shall denote the node corresponding to Boolean variable

b as simply Nb. Additionally there are two special nodes called Ntrue and Nfalse.

The edges of HG are constructed as follows:

• For each clause of the form ¬b in φ, we add a hyper-edge from the hyper-node

{Nfalse} to node Nb.

• For each clause of the form (b1 ∨ · · · ∨ bk) in φ, we add a hyper-edge from the

77

hyper-node {Nb1 , . . . ,Nbk
} to node Ntrue.

• Finally, for each clause of the form (¬b0∨b1∨· · ·∨bk) in φ, we add a hyper-edge

from the hyper-node {Nb1 , . . . ,Nbk
} to node Nb0 .

Essentially the edges of HG represent the logical flow of falsehood as forced by the

clauses of φ. Suppose we define the notion of reachability of nodes in HG from Nfalse

as follows: (i) Nfalse is reachable from Nfalse, and (ii) a hyper-node {Nb1 , . . . ,Nbk
}

is reachable from Nfalse iff each of the nodes Nb1 , . . . ,Nbk
is reachable from Nfalse,

and (iii) a node n is reachable from Nfalse iff there is a hyper-node h such that h is

reachable from Nfalse and there is a hyper-edge from h to n.

In the second phase of our N-HORNSAT satisfiability algorithm, we compute the

set of nodes of HG, denoted by Reach, that are reachable from Nfalse. Reach can

be computed using linear time and space in the size of HG (and hence φ). It can

be shown that a node NW P (sIm,sSp) belongs to Reach iff in order to satisfy φ the

variable W P (sIm, sSp) must be assigned false. As a consequence, φ is satisfiable

iff Ntrue 6∈ Reach. In addition, Reach has the following significance. Recall that

the boolean variables in φ are of the form W P (sIm, sSp). It can be shown that the

following holds:

∀sIm ∈ SIm � ∀sSp ∈ SSp � NW P (sIm,sSp) ∈ Reach ⇐⇒ (sIm, sSp) ∈ W inPos

In other words, the elements in Reach\{Ntrue,Nfalse} are exactly those nodes

that correspond to boolean variables W P (sIm, sSp) such that (sIm, sSp) is a winning

position. Therefore, once Reach has been computed it is trivial to compute W inPos.

To compute Chal we note the following. Suppose that a node NW P (sIm,sSp) gets added

to Reach at some point. This means that the following two conditions must hold:

78

CH1 A transition clause of the following form was added to φ at line 3 of

Procedure 5.4.

W P (sIm, sSp) =⇒
∨

s′
Sp∈PSuccSp(sSp,α,LIm(s′

Im))

W P (s′Im, s′Sp)

CH2 Every node of HG of the form NW P (s′
Im,s′

Sp) such that s′Sp ∈

PSuccSp(sSp, α,LIm(s′Im)) must already be contained in Reach. In other words

every such (s′Im, s′Sp) must be a winning position.

From conditions CH1 and CH2 above, it is clearly appropriate to set

Chal(sIm, sSp) := (sIm, sSp)
α

−→ (s′Im, ?). Therefore, as soon as NW P (sIm,sSp) gets

added to Reach, one can compute the clause postulated by condition CH1 above

and set Chal(sIm, sSp) appropriately using this clause. Since this can be done for

every node added to Reach, we can effectively compute the challenge information

Chal associated with every winning position in W inPos.

5.5 Witnesses as Counterexamples

Counterexample Trees provide a natural notion of counterexamples to simulation

conformance. However, we introduce witness LKSs since they enable us to prove

some key results more easily. In the rest of this thesis we will refer to witness

LKSs as Counterexample Witnesses. Recall from Theorem 2 that a Counterexample

Witness to Im 64 Sp is an LKS CW such that: (i) CW 4 Im and (ii) CW 64 Sp.

Fortunately a Counterexample Witness can be obtained from a Counterexample

Tree in a straightforward manner using the recursive algorithm TreeToWitness,

presented in Procedure 5.5.

The inputs to TreeToWitness are a Counterexample Tree CT , a node n of CT ,

79

Procedure 5.5 TreeToWitness computes a Counterexample Witness corresponding to a

Counterexample Tree CT .

Algorithm TreeToWitness(CT , n, Im, s)

let CT = (N,E, r, S t,Ch) and Ch(n) = (sIm, sSp)
α

−→ (s′Im, ?);

create state s′;

S := {s′}; T := {s
α

−→ s′}; L(s′) := LIm(s′Im);

for each c ∈ Child(n)

(S′,T′,L′) := TreeToWitness(CT , c, Im, s′);

S := S ∪ S′; T := T ∪ T′; L := L ∪ L′;

return (S,T,L);

the implementation Im, and a state s. TreeToWitness computes and returns the

set of states, transitions and propositional labellings of the Counterexample Witness

corresponding to the subtree of CT rooted at n. Intuitively the state s can be

viewed as the initial state of the computed Counterexample Witness. We note any

Counterexample Witness is a tree if we view its states as nodes and its transitions as

edges.

Procedure 5.6 SimulWitness checks for simulation, and returns a Counterexample

Witness in case of violation.

Algorithm SimulWitness(Im, Sp)

if (SimulCETree(Im, Sp) = “Im 4 Sp”) return “Im 4 Sp”;

else let CT := SimulCETree(Im, Sp);

create state init ; (S,T,L) := TreeToWitness(CT , rCT , Im, init);

S := S ∪ {init}; L(init) := LIm(InitIm);

return (S, {init},AP Im,L, ΣIm,T);

Algorithm SimulWitness, presented in Procedure 5.6, is similar to

SimulCETree except that it returns a Counterexample Witness as a counterexample.

In fact, it first invokes SimulCETree. If SimulCETree returns “Im 4 Sp”, so

does SimulWitness. Otherwise, it invokes TreeToWitness to compute and return

80

the Counterexample Witness corresponding to the Counterexample Tree returned by

SimulCETree. The following two results prove the correctness of SimulWitness.

τ1τ1

τ1 τ1τ1 τ1

τ1 τ1
τ1τ1

τ1

α
χ β δ

Impl

M

I J K L

HGFE

C D

B

A

S1τ1 τ1

τ1 τ1
S2 S3

S4 S5 S6 S7

β χα δ

Spec

Figure 5.3: An implementation Im and a specification Sp. Im is the LKS from Figure 4.2.

Example 14 Figure 5.3 once again shows the LKS Im obtained by predicate

abstraction in Chapter 4 (cf. Figure 4.2). It also shows a specification LKS Sp. Note

that Im 64 Sp. Figure 5.4 shows a CounterexampleTree returned by SimulCETree

when invoked with Im and Sp and also the CounterexampleWitness obtained from

the CounterexampleTree by invoking TreeToWitness. For ease of understanding,

each state of the CounterexampleWitness is labeled by the corresponding state of Im

which simulates it.

Theorem 10 Let CW be a Counterexample Witness returned by

SimulWitness(Im, Sp). Then the following holds: (i) CW 4 Im, and (ii)

CW 64 Sp.

Proof. Recall that SimulWitness invokes TreeToWitness in order to construct

the Counterexample Witness CW . We begin by defining a mapping H : SCW → SIm

81

τ1

τ1τ1

τ1

τ1

τ1

τ1

τ1

τ1τ1

τ1 τ1

τ1 τ1

(B,S3) (C,?)

(C,S3) (E,?)

(E,S3) (I,?)

(I,S3) (M,?)

(D,S2) (H,?)

(H,S2) (L,?)

(L,S2) (M,?)

Counterexample Tree

(A,S1) (B,?)

(B,S2) (D,?)

δα

B

A

C D

E H

I L

M M

α δ

Witness

Figure 5.4: A CounterexampleTree and CounterexampleWitness corresponding to

the simulation game between Im and Sp from Figure 5.3. Each state of the

CounterexampleWitness is labeled by the corresponding state of Im which simulates it.

from the states of CW to the states of the implementation Im as follows. Suppose

TreeToWitness was invoked by SimulWitness with arguments (CT , n, Im, s)

where CT is a Counterexample Tree for Game(Im, Sp). Let CT = (N,E, r, S t,Ch)

and S t(n) = (sIm, sSp). Then H(s) = sIm. It is easy to see that H is well-defined.

Further one can show that H is also an abstraction mapping. This completes the

proof of CW 4 Im.

To prove that CW 64 Sp we show how to create a Counterexample Tree

CT ′ = (N′, E′, r′, S t′,Ch′) for Game(CW, Sp). This is done on the basis of the

Counterexample Tree CT = (N,E, r, S t,Ch) for Game(Im, Sp). Formally, the

components of CT ′ obey the following constraints:

• The nodes, edges and root of CT ′ are the same as those of CT .

N′ = N E′ = E r′ = r

82

• The state labeling of CT ′ is defined as follows. Suppose TreeToWitness was

invoked with arguments (CT , n, Im, s). Recall that CT = (N,E, r, S t,Ch).

Let S t(n) = (sIm, sSp). Then S t′(n) = (s, sSp).

• The challenge labeling of CT ′ is defined as follows. Suppose TreeToWitness

was invoked by SimulWitness with arguments (CT , n, Im, s). Recall that

CT = (N,E, r, S t,Ch). Suppose Ch(n) = (sIm, sSp)
α

−→ (s′Im, ?) and s′ was

the new state created during this invocation. Then Ch ′(n) = (s, sSp)
α

−→ (s′, ?).

Finally, we show that CT ′ is a valid Counterexample Tree for Game(CW, Sp).

This can be done by showing that CT ′ satisfies conditions CE1–CE3 described in

Section 5.2.

�

Theorem 11 Algorithm SimulWitness is correct.

Proof. By Theorem 9 and Theorem 10.

�

83

84

Chapter 6

Refinement

In this chapter we describe the process of counterexample validation and abstraction

refinement in the context of simulation. Once a Counterexample Witness CW

has been constructed, we need to perform two steps: (i) check if CW is a valid

Counterexample Witness, and (ii) if CW is spurious then refine Im so as to prevent

CW from reappearing in future iterations. We now describe these two steps in more

detail. We end this chapter with a description of the complete CEGAR algorithm in

the context of simulation conformance.

6.1 Witness Validation

Recall that checking the validity of CW means verifying whether CW is a valid

Counterexample Witness for Game([[P]]Γ, Sp), where [[P]]Γ is the concrete program

semantics and Sp is the specification. Further this means we have to show that the

following two conditions are satisfied: (i) CW 4 [[P]]Γ and (ii) CW 64 Sp. Since

CW is a Counterexample Witness for Game(Im, Sp), the condition CW 64 Sp is

85

automatically satisfied. Hence we have to only verify that CW 4 [[P]]Γ.

In this section we present a compositional (component-wise) algorithm to achieve

this goal. We assume that P = 〈C1, . . . , Cn〉 and that Γ = 〈γ1, . . . , γn〉 is the context

for P which was used for the simulation check. We begin with the notion of projection

of an LKS on an alphabet.

Definition 19 (LKS Projection) Let M = (S, Init,AP ,L, Σ,T) be an LKS such

that τ 6∈ Σ, and Σ ⊆ Σ be an alphabet. Then the projection of M on Σ, denoted by

M � Σ, is the LKS M ′ = (S, Init,AP ,L′, Σ ∪ {τ},T′) such that L′ and T′ are defined

as follows:

• ∀s ∈ S′ � L′(s) = L(s) ∩ AP

• ∀(s, α, s′) ∈ T � α ∈ Σ =⇒ (s, α, s′) ∈ T′

• ∀(s, α, s′) ∈ T � α 6∈ Σ =⇒ (s, τ, s′) ∈ T′

Note that M � Σ has the same states, initial states and atomic proposition as M .

Let γ = (InitCond,AP , Σ, S ilent,FSM) be a context for a component C. Then

we write M � γ to mean M � (AP ∪ {S ilent}). Let CW be a CounterexampleWitness

LKS. Intuitively, the projection CW � γ retains the contribution of C toward CW and

eliminates the contributions of the other components. We note that since CW has

a tree structure, so does CW � γ. Also note that τ 6∈ ΣCW but τ ∈ ΣCW �γ . This

fact enables us to derive Theorem 12 which will allow us to verify CW 4 [[P]]Γ in a

component-wise manner using weak simulation and the projections of CW . Recall

that we write M1 - M2 to mean that LKS M1 is weakly simulated by LKS M2.

86

Theorem 12 (Compositional Validation) Let M1 = (S1, Init1,AP 1,L1, Σ1,T1)

and M2 = (S2, Init2,AP 2,L2, Σ2,T2) be two LKSs such that τ 6∈ Σ1 and τ 6∈ Σ2.

Let M = (S, Init,AP ,L, Σ,T) be another LKS such that Σ = Σ1 ∪ Σ2. Then the

following holds:

M 4 M1 ‖ M2 ⇐⇒ ((M � Σ1) - M1)
∧

((M � Σ2) - M2)

Proof. For the forward implication, let R ⊆ S × (S1 × S2) be a simulation relation

such that:

∀s ∈ Init � ∃s1 ∈ Init1 � ∃s2 ∈ Init2 � sR(s1, s2) (6.1)

Recall that the set of states of M � Σ1 is S and that the set of initial states of

M � Σ1 is Init. Define relation R1 ⊆ S × S1 as follows:

R1 = {(s, s1) | ∃s2 � sR (s1, s2)} (6.2)

From 6.1 and 6.2 we have directly:

∀s ∈ Init � ∃s1 ∈ Init1 � (s, s1) ∈ R1 (6.3)

Now we need to prove that R1 is a weak simulation. Consider any two states

s ∈ S and s1 ∈ S1 such that (s, s1) ∈ R1. From 6.2 we know that:

∃s2 � sR (s1, s2) (6.4)

Suppose that M � Σ1 contains the following transition where α ∈ Σ1:

s
α

−→ s′ (6.5)

The following commutative diagram explains the basic idea behind the proof.

87

s
α

−→ s′

R ↓ ↓ R

(s1, s2)
α

−→ (s′1, s
′
2)

R1 ↓ ↓ R1

s1
α

−→ s′1

From 6.5 and Definition 19 we can conclude that M contains the following

transition:

s
α

−→ s′ (6.6)

Since R is a simulation relation, from 6.4 and 6.6 we know that:

∃s′1 ∈ S1 � ∃s′2 ∈ S2 � (s1, s2)
α

−→ (s′1, s
′
2)
∧

s′R(s′1, s
′
2) (6.7)

From 6.2 and the fact that s′R(s′1, s
′
2) (cf. 6.7), we have:

(s′, s′1) ∈ R1 (6.8)

Then from the fact that (s1, s2)
α

−→ (s′1, s
′
2) (cf. 6.7) and that α ∈ Σ1, we have:

s1
α

−→ s′1 (6.9)

From 6.8 and 6.9 we conclude that R1 is a weak simulation relation.

Now suppose that M � Σ1 contains the following transition:

s
τ

−→ s′ (6.10)

From 6.10 and Definition 19 we can conclude that there exists β 6∈ Σ1 such that

M contains the following transition:

s
β

−→ s′ (6.11)

The following commutative diagram explains the basic idea behind the proof.

88

s
β

−→ s′

R ↓ ↓ R

(s1, s2)
β

−→ (s1, s
′
2)

R1 ↓ ↓ R1

s1 −→ s1

Since R is a simulation relation, from 6.4 and 6.11 and the fact that β 6∈ Σ1 and

the definition of parallel composition we know that:

∃s′2 ∈ S2 � (s1, s2)
β

−→ (s1, s
′
2)
∧

s′R(s1, s
′
2) (6.12)

From 6.2 and the fact that s′R(s1, s
′
2) (cf. 6.12), we have:

(s′, s1) ∈ R1 (6.13)

From 6.13 we can again conclude that R1 is a weak simulation relation. This

completes the proof that (M � Σ1) - M1. We can show in a similar manner that

(M � Σ2) - M2 and hence we have the proof of the forward implication.

For the reverse implication let R1 ⊆ S × S1 be a weak simulation relation such

that:

∀s ∈ Init � ∃s1 ∈ Init1 � (s, s1) ∈ R1 (6.14)

Similarly let R2 ⊆ S × S2 be a weak simulation relation such that:

∀s ∈ Init � ∃s2 ∈ Init2 � (s, s2) ∈ R2 (6.15)

Define relation R ⊆ S × (S1 × S2) as follows:

R = {(s, (s1, s2)) | (s, s1) ∈ R1 ∧ (s, s2) ∈ R2} (6.16)

89

From 6.14, 6.15 and 6.16 we get immediately the following:

∀s ∈ Init � ∃s1 ∈ Init1 � ∃s2 ∈ Init2 � sR(s1, s2) (6.17)

Now we need to show that R is a simulation relation. Consider any states s ∈ S,

s1 ∈ S1 and s2 ∈ S2 such that:

sR(s1, s2) (6.18)

From 6.16 and 6.18 we can conclude that:

(s, s1) ∈ R1

∧
(s, s2) ∈ R2 (6.19)

Now suppose that M contains the following transition:

s
α

−→ s′ (6.20)

Then we need to show the following:

∃s′1 ∈ S1 � ∃s′2 ∈ S2 � (s1, s2)
α

−→ (s′1, s
′
2)
∧

s′R(s′1, s
′
2) (6.21)

From 6.16 and 6.21 it is clear that we need to find an s′1 ∈ S1 and an s′2 ∈ S2 such

that the following holds:

(s1, s2)
α

−→ (s′1, s
′
2)
∧

(s′, s′1) ∈ R1

∧
(s′, s′2) ∈ R2 (6.22)

We will first show the existence of such an s′1. Suppose α ∈ Σ1. Then from

Definition 19 and 6.20 we know that M � Σ1 contains the following transition:

s
α

−→ s′ (6.23)

The following commutative diagram explains the basic idea behind the proof.

90

s
α

−→ s′

R ↓ ↓ R

(s1, s2)
α

−→ (s′1, s
′
2)

R1 ↓ ↓ R1

s1
α

−→ s′1

Since R1 is a weak simulation relation and since (s, s1) ∈ R1 (cf. 6.19) we have

from 6.23:

∃s′1 ∈ S1 � s1
α

−→ s′1
∧

(s′, s′1) ∈ R1 (6.24)

Clearly the s′1 above meets the requirement of 6.22.

Now suppose that α 6∈ Σ1. Then from Definition 19 and 6.20 we know that M � Σ1

contains the following transition:

s
τ

−→ s′ (6.25)

The following commutative diagram explains the basic idea behind the proof.

s
α

−→ s′

R ↓ ↓ R

(s1, s2)
α

−→ (s1, s
′
2)

R1 ↓ ↓ R1

s1 −→ s1

Since R1 is a weak simulation relation and since (s, s1) ∈ R1 (cf. 6.19) and since

τ 6∈ Σ1, we have from 6.25:

(s′, s1) ∈ R1 (6.26)

Then clearly s1 itself can be used as the s′1 that meets the requirement of 6.22.

Thus we have shown the existence of an s′1 which satisfies 6.22 irrespective of whether

91

α ∈ Σ1 or not. In a completely symmetric manner we can show the existence of an

s′2 which satisfies 6.22 irrespective of whether α ∈ Σ2 or not. Thus we have shown

that R is a simulation relation. This completes the proof of the reverse implication

and hence of the theorem.

�

Theorem 12 essentially allows us to discharge a simulation obligation by

performing weak simulation checks between Counterexample Witness projections and

components. It is easy to see that due to the associativity and commutativity of

parallel composition, Theorem 12 can be extended to any finite number of LKSs. In

other words, Theorem 12 still holds if we replace 〈M1,M2〉 with any finite sequence

of LKSs 〈M1, . . . ,Mn〉.

Algorithm WeakSimul, presented in Procedure 6.1, takes as input a

Counterexample Witness projection CW , a component C and a context γ. Recall that

[[C]]γ denotes the concrete semantics of C with respect to γ. Algorithm WeakSimul

returns true if CW - [[C]]γ and false otherwise.

Given two LKSs M1 = (S1, Init1,AP 1,L1, Σ1,T1) and M2 =

(S2, Init2,AP 2,L2, Σ2,T2), we say that a state s2 ∈ S2 (weakly) simulates a

state s1 ∈ S1 iff there exists a (weak) simulation relation R ⊆ S1 × S2 such

that s1Rs2. Intuitively, WeakSimul invokes algorithm CanSimul (presented in

Procedure 6.2) to compute the set of states of [[C]]γ that can weakly simulate the

initial state of CW . Then CW - [[C]]γ iff some initial state of [[C]]γ can weakly

simulate the initial state of CW .

The recursive algorithm CanSimul takes as input a projected Counterexample

Witness CW , a state s of CW , a component C, and a context γ for C. Recall that

92

Procedure 6.1 WeakSimul returns true iff CW - [[C]]γ .

Algorithm WeakSimul(CW, C, γ)

- CW : is a Counterexample Witness

- C : is a component, γ : is a context for C

let CW = (S1, Init1,AP 1,L1, Σ1,T1);

let [[C]]γ = (S2, Init2,AP 2,L2, Σ2,T2);

//[[C]]γ is the concrete semantics of C with respect to γ

S := CanSimul(CW, Init1, C, γ);

//S = states of [[C]]γ which can weakly simulate initial state of CW

return (S ∩ Init2) 6= ∅;

CW has a tree structure and hence no marking of the states of CW is required to

avoid revisiting them. CanSimul computes the set of states of [[C]]γ which can weakly

simulate the sub-LKS of CW with initial state s. It manipulates sets of states of [[C]]γ

using the symbolic techniques presented in Section 3.4. In particular it uses the

functions PreImage and Restrict to compute pre-images and restrict sets of states

with respect to propositions.

Theorem 13 Algorithms CanSimul and WeakSimul are correct.

Proof. From the definition of weak simulation, the correctness of Restrict and

PreImage, and the fact that τ 6∈ ΣCγ .

�

Note that the ability to validate a Counterexample Witness using its projections

enables us to avoid exploring the state-space of P . Not only does this compositional

approach for Counterexample Witness validation help us avoid state-space explosion,

it also identifies the particular component whose abstraction has to be refined in order

to eliminate a spurious Counterexample Witness.

93

Procedure 6.2 CanSimul computes the set of states of [[C]]γ which can weakly simulate

the sub-LKS of CW with initial state s.

Algorithm CanSimul(CW, s, C, γ)

- CW : is a Counterexample Witness, s : is a state of CW

- C : is a component, γ : is a context for C

let CW = (S1, Init1,AP 1,L1, Σ1,T1);

let [[C]]γ = (S2, Init2,AP 2,L2, Σ2,T2);

//[[C]]γ is the concrete semantics of C with respect to γ

S := Restrict(S2,L1(s));

//S is the subset of S2 with same propositional labeling as s

for each s
α

−→ s′ ∈ T1 //s′ is a successor state of s

S ′ := CanSimul(CW, s′, C, γ); //compute result for successor

if (α 6= τ) then S ′ := PreImage(S ′, α); //take non-τ pre-image

S := S ∩ S ′; //update result

return S;

In particular, suppose that CW is a spurious Counterexample Witness. Recall

that our program consists of n components {C1, . . . , Cn}. Then according to

Theorem 12 there exists a minimum i ∈ {1, . . . , n} such that the projection of CW

on γi is not weakly simulated by the concrete semantics of Ci. Therefore, we can

eliminate CW by refining our abstraction for Ci to obtain a new abstraction Abs such

that the projection of CW on γi is not weakly simulated by Abs. This refinement

process is presented in the next section.

Example 15 Figure 6.1 shows the component C and the CounterexampleWitness

CW from our running example. Recall that the actions α, β, χ and δ are performed

by the library routines alpha, beta, chi and delta respectively. Since there is only one

component, the projection of CW is CW itself. Note that CW is not weakly simulated

by [[C]]γ. Intuitively this is because CW can perform actions α and δ along the two

branches of its computation tree but [[C]]γ cannot. This is because for [[C]]γ to perform

α and δ, variable x has to be true while variable y has to be false. However this is

94

τ1

τ1τ1

τ1 τ1

τ1 τ1

if (x) if (y)

chi () beta ()alpha () delta ()

if (z)2

3 4

5

6 7

8

9

x = y1

EXIT

B

A

C D

E H

I L

M M

α δ

Component Witness CW

Figure 6.1: The component from Figure 4.1 and CounterexampleWitness from Figure 5.4.

Note that the CounterexampleWitness is spurious.

clearly impossible due to the initial assignment of y to x. Therefore CW is a spurious

counterexample.

6.2 Abstraction Refinement

Let C be a component, γ be a context for C and CW be a set of projections of

Counterexample Witnesses on γ. Recall, from Section 4.5, that in our framework a

predicate abstraction is determined by a predicate mapping. The predicate mapping,

in turn, is obtained from a set of seed branches (cf. Section 4.5) and a context

using predicate inference (cf. Section 4.5). The abstraction refinement process is

encapsulated by algorithm AbsRefine, presented in Procedure 6.3. Essentially, it

works as follows.

Recall the algorithm PredInfer from Procedure 4.1 which starts with a set of

95

Procedure 6.3 AbsRefine returns a refined abstraction for C that eliminates a set of

spurious Counterexample Witness projections CW and error on failure.

Algorithm AbsRefine(CW, C, γ)

- CW : is a set of spurious Counterexample Witnesses

- C : is a component, γ : is a context for C

let CW = {CW 1, . . . ,CW k};

for each B ⊆ BC //BC is the set of branches in C

Π := PredInfer(C, γ, B);

//Π is set of predicates inferred from B

let M̂ := [[[C]]]Πγ =
(
Ŝ, Înit, ÂP , L̂, Σ̂, T̂

)
;

//M̂ is the predicate abstraction of C using Π

flag := true;

//flag records if B can eliminate every element of CW

for i = 1 to k

let CW i = (Si, Initi,AP i,Li, Σi,Ti);

S := AbsCanSimul(CW i, Initi, M̂);

//S = states of M̂ which can weakly simulate initial state of CW i

if ((S ∩ Înit) 6= ∅) then flag := false;

//CW i - M̂ and hence B cannot eliminate CW i

if flag then return M̂ ;

return error;

seed branches and populates each statement of a component with a set of predicates

which can be used subsequently for predicate abstraction. We consider subsets of

branches of C in increasing order of size. For each set B of branches we compute the

predicate mapping Π = PredInfer(C, γ, B) for C. Next we compute the abstraction

M̂ = [[[C]]]Πγ . Let CW i = (Si, Initi,AP i,Li, Σi,Ti) for each CW i ∈ CW . Now for

each CW i ∈ CW , we invoke algorithm AbsCanSimul (presented in Procedure 6.4)

to compute the set of states of M̂ which can weakly simulate Initi. If, for each

CW i ∈ CW , no initial state of M̂ can weakly simulate Initi, then for each

CW i ∈ CW , CW i 6- M̂ . In this case we report M̂ as the refined abstraction for C

and stop. Otherwise, we move on with the next set of branches under consideration.

96

Procedure 6.4 AbsCanSimul computes the set of states of M̂ which can weakly simulate

the sub-LKS of CW with initial state s.

Algorithm AbsCanSimul(CW, s, M̂)

- CW : is a Counterexample Witness, s : is a state of CW

- M̂ is an LKS obtained by predicate abstraction

let CW = (S, Init,AP ,L, Σ,T);

let M̂ =
(
Ŝ, Înit, ÂP , L̂, Σ̂, T̂

)
;

Ŝ ′ := {ŝ ∈ Ŝ | L̂(ŝ) = L(s)};

//Ŝ ′ is the subset of Ŝ with same propositional labeling as s

for each s
α

−→ s′ ∈ T //s′ is a successor state of s

Ŝ ′′ := AbsCanSimul(CW, s′, M̂); //compute result for successor

if (α 6= τ) then Ŝ ′′ := {ŝ ∈ Ŝ | Succ(ŝ, α) ∩ Ŝ ′′ 6= ∅}; //take non-τ pre-image

Ŝ ′ := Ŝ ′ ∩ Ŝ ′′; //update result

return Ŝ ′;

Theorem 14 Algorithm AbsRefine is correct.

Proof. It is obvious that AbsRefine either returns error or a refined abstraction

M̂ such that ∀i ∈ {1, . . . , k} � CW i 6- M̂ .

�

Recall the component C and the spurious CounterexampleWitness CW from

Figure 6.1. Note that both branch statements 3 (with branch condition x) and 4 (with

branch condition y) are required as seeds in order to obtain a predicate abstraction

that is precise enough to eliminate CW . Neither branch 3 nor branch 4 is adequate

by itself. This is because the spuriousness of CW relies on the direct correlation

between the truth and falsehood of variables x and y. Any abstraction must capture

this correlation in order to eliminate CW . In our framework, this can only be achieved

by using both 3 and 4 as seed branches for the predicate inference and subsequent

predicate abstraction.

97

S1τ1 τ1

τ1 τ1
S2 S3

S4 S5 S6 S7

β χα δ

3,(true)

Initα5,(), Initδ8,(),

8,()
τ1 τ1 τ1 τ1

5,()

τ1 τ1 τ1 τ1

τ1 τ1 τ1 τ1

1,(true) 1,(false)
τ1 τ1

Initβ7,(), Initχ6,(),

Spec

α δ
9,()

4,(true) 3,(false) 4,(false)

2,(true,true) 2,(false,false)

Refined Impl

χβ

7,() 6,()

Figure 6.2: On the left is the refined abstraction of the component from Figure 6.1 using states

{3, 4} as seeds. The empty valuation ⊥ is written as “()”. On the right is the specification

from Figure 5.3. Note that the refined abstraction is simulated by the specification.

Example 16 Recall from Figure 4.3 the predicate mapping obtained by using states

{3, 4} as seeds. Figure 6.2 shows the refined abstraction using the resulting predicate

mapping. The empty valuation ⊥ is written as “()”. It also shows the specification of

our running example from Figure 5.3. Note that the refined abstraction is simulated

by the specification.

It is well known that simulation is preferred over trace containment because it

does not require the complementation (and hence potential exponential blowup in

size) of the specification. Our running example illustrates an additional advantage

of simulation conformance over trace containment in the context of CEGAR-based

verification. In particular, the additional structure (and hence information) conveyed

by tree counterexamples obtained in the context of simulation conformance can aid

in quicker predicate discovery and termination.

Suppose we had attempted to check trace containment on our example. We

98

know that at least the two branches 3 and 4 are required for successful verification.

Also note that these two branches cannot appear simultaneously in the same trace

counterexample since they appear in disjoint fragments of the control flow of the

component. Hence we would have required at least two refinement steps in order to

successfully verify trace containment. In contrast, as we have already seen, verification

of simulation conformance requires just a single refinement step. We will provide

experimental evidence supporting this intuitive argument in Section 6.5.

Another approach to speed-up the termination of the CEGAR loop is to generate

multiple counterexamples at the end of each unsuccessful verification step. The

idea is that more counterexamples convey more information and will lead to quicker

realization of an abstraction that is precise enough to either validate the existence of

conformance or yield a non-spurious counterexample. However, manipulating a large

number of counterexamples is expensive and will only provide diminishing returns

beyond a certain threshold. We will also provide experimental justification of this

argument in Section 6.5.

Note that our algorithm for constructing predicate mappings is restricted in

the sense that it can only derive predicates from branch conditions. Therefore, in

principle, we might be unable to eliminate a spurious Counterexample Witness. In

the context of algorithm AbsRefine, this means that we could end up trying all

sets of branches without finding an appropriate refined abstraction M̂ . In such a

case we return error. We note that this scenario has never transpired during our

experiments. Moreover, any abstraction refinement technique must necessarily suffer

from this limitation since the problem we are attempting to solve is undecidable in

general.

Also AbsRefine attempts to eliminate a set of spurious Counterexample Witness

99

projections instead of a single projection. This will be necessary in the context of

the complete CEGAR algorithm presented in the next section. In fact, AbsRefine

iterates through the subsets of BC (the set of all branches in C) in increasing order

of size. Therefore the refined abstraction returned by AbsRefine corresponds to a

minimal set of branches that can eliminate the entire set of spurious Counterexample

Witness projections passed to it. This is an important feature because the size of an

abstraction is, in the worst case, exponential in the number of branches used in its

construction.

However, AbsRefine is also naive in the following sense. As we shall see shortly,

the set of Counterexample Witness projections passed to AbsRefine by the top-

level CEGAR algorithm will increase monotonically across successive invocations.

Nevertheless, AbsRefine naively recomputes AbsCanSimul(CW i, InitCW i
, M̂)

even though it might already have encountered CW i in a previous invocation. In

Chapter 7 we shall present a more sophisticated approach that avoids this redundant

computation without compromising on the minimality of the number of branches used

in the computation of the refined abstraction.

6.3 CEGAR for Simulation

The complete CEGAR algorithm in the context of simulation conformance, called

SimulCEGAR, is presented in Procedure 6.5. It invokes at various stages algorithms

PredInfer, the predicate abstraction algorithm, SimulWitness, WeakSimul and

AbsRefine. It takes as input a program P , a specification LKS Sp and a context Γ for

P and outputs either “P 4 Sp” or “P 64 Sp” or error. Intuitively SimulCEGAR

works as follows.

100

Procedure 6.5 SimulCEGAR checks simulation conformance between a program P and

a specification Sp in a context Γ.

Algorithm SimulCEGAR(P , Sp, Γ)

- P : is a program, Γ : is a context for P

- Sp : is a specification LKS

let P = 〈C1, . . . , Cn〉 and Γ = 〈γ1, . . . , γn〉;

for each i ∈ {1, . . . , n}, Πi := PredInfer(Ci, γi, ∅) and M̂i := [[[Ci]]]
Πi

γi
and CW i := ∅;

//initialize abstractions with empty set of seed branches

forever do

let M̂ = M̂1 ‖ · · · ‖ M̂n;

//M̂ is the composition of predicate abstractions

if (SimulWitness(M̂, Sp) = “M̂ 4 Sp”) return “P 4 Sp”;

//if the property holds on M̂ it also holds on P

let CW = Counterexample Witness returned by SimulWitness;

find i ∈ {1, . . . , n} such that ¬WeakSimul(CW � γi, Ci, γi);

//check compositionally if CW is spurious

if (no such i found) return “P 64 Sp”;

//CW is valid and hence P is not simulated by Sp

else CW i := CW i ∪ {CW � γi};

//update the set of spurious Counterexample Witnesses

if (AbsRefine(CW i, Ci, γi) = error) return error;

M̂i := AbsRefine(CW i, Ci, γi); //refine the abstraction and repeat

Let P = 〈C1, . . . , Cn〉. Then SimulCEGAR maintains a set of abstractions

M̂1, . . . , M̂n where M̂i is a predicate abstraction of Ci for i ∈ {1, . . . , n}. It also

maintains a set of spurious Counterexample Witness projections {CW 1, . . . ,CW n}

which are all initialized to the empty set. Note that by Theorem 7, M̂ = M̂1 ‖ · · · ‖

M̂n is an abstraction of P . Initially each M̂i is set to the predicate abstraction of

Ci corresponding to an empty set of seed branches. Next SimulCEGAR iteratively

performs the following steps:

1. (Verify) Invoke algorithm SimulWitness to check if M̂ is simulated by Sp. If

SimulWitness returns “M̂ 4 Sp” then output “P 4 Sp” and exit. Otherwise

101

let CW be the Counterexample Witness returned by SimulWitness. Go to

step 2.

2. (Validate) For i ∈ {1, . . . , n} invoke WeakSimul(CW � γi, Ci, γi). If every

invocation of WeakSimul returns true then CW is a valid Counterexample

Witness. In this case, output “P 64 Sp” and exit. Otherwise let i be the

minimal element of {1, . . . , n} such that WeakSimul(CW � γi, Ci, γi) returns

false. Go to step 3.

3. (Refine) Update CW i by adding CW � γi to it. Invoke

AbsRefine(CW i, Ci, γi). If AbsRefine returns error, output error

and stop. Otherwise set M̂i to the abstraction returned by AbsRefine. Repeat

from step 1.

Theorem 15 Algorithm SimulCEGAR is correct.

Proof. When SimulCEGAR returns “P 4 Sp” its correctness follows from

Theorem 7, Theorem 11 and Theorem 1. When SimulCEGAR returns “P 64 Sp”

its correctness follows from Theorem 12, Theorem 13 and Theorem 14.

�

6.4 The magic Tool

We have implemented the game semantics based refinement approach within the

magic [25, 80] tool. In this section we give a brief overview of how magic can be

used. This is essentially a copy of the tutorial of version 1.0 of magic available

online at http://www.cs.cmu.edu/~chaki/magic/tutorial-1.0.html, and should

be a good starting point.

102

6.4.1 A Simple Implementation

The goal of magic is to ascertain that an implementation conforms to a specification.

The implementation is always a (possibly concurrent) C program, with each

sequential component being a C procedure. Let us begin with a simple sequential

implementation.

int my_proc(int x)

{

int y;

if(x == 0) {

y = foo();

if(y > 0) return 10;

else return 20;

} else {

y = bar();

if(y < 0) return 30;

else return 40;

}

}

6.4.2 A Simple Specification

We shall now try to construct an appropriate specification for my_proc and then

verify it. Note that we are intentionally proceeding in the reverse direction for ease

of understanding. Normally, if standard software engineering practices have been

followed, the specification always comes into existence before the implementation.

So what could be a good specification for my_proc? In a kind of pseudo-code, one

might make the following claim about my_proc:

1. If the first argument to my_proc is equal to zero:

• my_proc calls the library routine foo.

103

• Depending on whether the value returned by foo is greater than zero or

not, my_proc returns either 10 or 20.

2. Otherwise, if the first argument to my_proc is not equal to zero:

• my_proc calls the library routine bar.

• Depending on whether the value returned by bar is less than zero or not,

my_proc returns either 30 or 40.

It is clear that any specification of my_proc must take into account its calling

context, since the behavior of my_proc is dependent on the value of its first argument.

Further, the behavior of my_proc in the first case (i.e. when its first argument is equal

to zero) can be expressed by the following simple LKS.

call_foo

return {$0 == 10}

return {$0 == 20}

S1 S2 STOP

Writing down LKSs

magic uses an extended FSP [79] notation to specify LKSs. The above LKS can be

expressed in magic’s notation as follows:

S1 = (call_foo -> S2),

S2 = (return {$0 == 10} -> STOP | return {$0 == 20} -> STOP).

Note that the name of an LKS is simply the name of its initial state. Also note

that the transitions of the LKS are labeled with actions. The transition from the

104

initial state (S1) is labeled by an action call_foo. This action encapsulates the

externally observable event of library routine foo being invoked. Such actions, with

only names, are also called basic actions.

Return actions

As anyone familiar with the FSP will realize, we extend the FSP notation to express

a special class of actions called return actions. Return actions are of the form

return {expression} or return {} where the former expresses the return of an

integer value and the latter expresses returning a void value. In a return action of the

form return {expression}, the expression represents a condition satisfied by the

return value. The return value itself is represented by the dummy variable $0. For

instance, the action return {$0 < 5}. represents the return of an integer value less

than 5.

Procedure Block

We are now ready to express the fact that S1 specifies the behavior of my_proc when

the first argument of my_proc is equal to zero. In magic, this can be achieved by the

following procedure block:

cproc my_proc {

abstract { abs_1 , ($1 == 0) , S1 };

}

Note the keywords cproc and abstract. The block keyword cproc indicates that

we are going to say something about a C procedure. It is followed by the name of the

procedure and then by a set of statements enclosed within a pair of curly braces. Each

such statement typically consists of an statement keyword followed by other terms.

The procedure whose name follows cproc is often referred to as the scope procedure.

105

One such statement keyword is abstract.This keyword indicates that we are

expressing an abstraction relation between the scope procedure and an LKS. Note

the guard ($1 == 0) where $1 refers to the first argument. In general $i can be

used to refer to the i-th argument of the scope procedure. Finally note that the

abstraction statement has a name, abs_1. For procedure blocks, the abstraction

names are just placeholders and have no special significance. However, soon we will

discuss program blocks and for them, the names of abstraction statements will be of

crucial importance.

The following LKS expresses the behavior of my_proc when its first argument is

not equal to zero:

S3 = (call_bar -> S4),

S4 = (return {$0 == 30} -> STOP | return {$0 == 40} -> STOP).

Thus we can have another procedure block to specify the relation between my_proc

and S3.

cproc my_proc {

abstract { abs_2 , ($1 != 0) , S3 };

}

In general, multiple procedure blocks can be combined into one as long as they

have the same scope procedure. Also the order of statements within a procedure

block is irrelevant. Thus, the above two procedure blocks together is equivalent to

the following single procedure block:

cproc my_proc {

abstract { abs_2 , ($1 != 0) , S3 };

abstract { abs_1 , ($1 == 0) , S1 };

}

magic requires that the guards of abstraction statements for any scope procedure

be mutually disjoint and complete (i.e. cover all possibilities of argument valuations).

106

This is necessary to enable magic to unambiguously identify the applicable

abstraction in any given calling context of the scope procedure.

Specifying Library Routines

In order to construct a proper model for my_proc magic must know about the

behavior of the library routines called by my_proc. Let us assume that the actual

code for foo and bar are unavailable. In such a case, magic requires that the user

supply appropriate abstractions for these two routines. In particular, suppose that

foo and bar are respectively abstracted by the LKSs FOO and BAR described below:

FOO = (call_foo -> return {$0 == -1} -> STOP).

BAR = (call_bar -> return {$0 == 50} -> STOP).

Then the following program blocks can be used to express the relation between

foo, bar and their abstractions.

cproc foo {

abstract { abs_3 , (1) , FOO };

}

cproc bar {

abstract { abs_4, (1), BAR };

}

Note that the guard in both abstraction statements is 1, which denotes true

according to C semantics. This therefore means that under all calling contexts, foo

and bar are abstracted by FOO and BAR respectively. Also note that specifications and

abstractions are syntactically identical. This makes sense because both abstractions

and specifications are essentially asserting the same thing viz. that under a certain

calling context, a procedure’s behavior is subsumed by the behavior of an LKS. The

only difference is that the assertion made by an abstraction can be assumed to be

107

true while the assertion made by a specification needs to be validated. This has at

least two significant consequences:

• Verifying Incomplete Code: In practice, one cannot assume that the actual

code for each and every library routine used by a program will be available to

the verifier. Hence being able to provide abstractions allows magic to analyze

such incomplete implementations. In effect, abstractions allow us to specify

assumptions about the environment in which a program operates.

• Compositionality: Often programs are simply too big to be analyzed as

a monolithic piece of code. Abstractions allow us to decompose such large

implementations into smaller, more manageable fragments. Fragments can

be verified one at a time. While verifying one fragment, the abstractions of

other fragments can be used as assumptions. The fact that specifications and

abstractions are identical implies that they can naturally switch from one role

to the other depending on which fragment is being verified.

Program Block

It is now time to specify the entire program that we want to verify. In our case

the program is sequential, i.e. it has a single component consisting of the procedure

my_proc. The following program block expresses the relation between our program

and its specification:

cprog my_prog = my_proc {

abstract abs_5, {($1 == 0)}, S1;

abstract abs_6, {($1 != 0)}, S3;

}

This looks a lot like a procedure block but there are some crucial differences. First,

it begins with the keyword cprog and not cproc. This is followed by the name of

108

the program (which is again a placeholder and does not serve any other purpose), an

equal to sign and then a list of procedure names. Intuitively these are the names of

the procedures which execute in parallel and constitute the program. In the above

block this list has a single procedure name viz. my_proc, signifying that our program

has just one component that executes my_proc.

Following the list of procedure names we have a sequence of statements enclosed

within curly braces. Just like procedure blocks, abstraction statements are used

to provide specifications. But abstraction statements for program blocks are

syntactically different. They do begin with the abstract keyword, but the rest of it

them is not enclosed within curly braces. Instead there are three components. The

first is the name of the abstraction statement. This is used by magic to identify

the target abstraction to be validated. The second is a list of guards, one for each

component of the program. Each guard in the list expresses the beginning state of

the corresponding component. In the above block, the list has just one element that

expresses the starting context of my_proc. Note that the list of guards is enclosed

within curly braces. The third and final component is the name of the LKS which

specifies the program.

Comments

You can use either C-style or C++ style comments in specification files.

/* this is a comment */

// so is this one

109

6.4.3 Running magic

We are now ready to try out magic. First save the C program in a file whose name

must end with “.pp”, say my_proc.pp. Next save the specifications in another file

whose name ends with “.spec”, for example my_spec-1.0.spec. Finally run magic:

$ magic --abstraction abs_5 my_proc.pp my_spec-1.0.spec --optPred

magic will try to validate the abstraction statement with name abs_5. The

--optPred options tells magic to perform counterexample guided abstraction

refinement with predicate minimization. It is usually a good idea to always use

this option. For details on other options that magic can accept, look at the user’s

manual. If all goes well, magic should be able to successfully verify the abstraction

and produce an output that ends with something like this:

conformance relation exists !!

abstraction abs_5 is valid ...

Simplify process destroyed ...

terminating normally ...

Similarly you can try to verify abs_6 and magic should be able to do it. If

you look again at my_spec-1.0.spec you will notice that we have added two more

abstraction statements, abs_7 and abs_8, to the my_prog block. They are similar

to abs_5 and abs_6 except that the guard conditions have been switched. Clearly

they are invalid specifications and magic should be able to detect this. Try verifying

abs_7 by typing the following:

$ magic --abstraction abs_7 my_proc.pp my_spec-1.0.spec

--optPred --ceShowAct

magic should tell you that this is an invalid specification and further provide you

with a counterexample. The output should look something like the following:

110

branch (P0::x == 0) : [P0::x == 0] : TRUE

############ P0::epsilon ############

P0::y = foo () : []

############ P0::epsilon ############

P0::y = foo () : []

############ call_foo ############

P0::y = foo () : []

############ {P0::y = [-1]} ############

branch (P0::y > 0) : [] : TRUE

############ P0::epsilon ############

return (10) : []

############ return { 30 } ############

CE dag projections analysed ...

conformance relation does not exist !!

abstraction abs_7 is invalid ...

Simplify process destroyed ...

terminating normally ...

6.4.4 A Concurrent Example

Let us now verify a concurrent program. Our concurrent program will be very

simple. It will be two copies of my_proc executing in parallel. This is easy to

understand because the resulting parallel program should behave exactly like a single

copy of my_proc (since our notion of parallel composition is idempotent). All we

need to do is create a new program block specifying our example. Here is a sample

my_conc-1.0.spec. Notice that it has four abstraction statements abs_9, abs_10,

abs_11 and abs_12 out of which the first two are valid while the last two are invalid.

We can try to verify abs_9 by the following command:

$ magic --abstraction abs_9 my_proc.pp my_conc-1.0.spec --optPred

This should succeed. Likewise magic should be able to prove that abs_10 is also

valid while abs_11 and abs_12 are both invalid.

111

6.4.5 Other Keywords

In addition to abstract, there are several other keywords that can be used in

procedure blocks for performing specific tasks. In this section we mention a few

important ones.

Supplying predicates

The user can manually supply predicates to guide magic’s predicate abstraction.

Often this is useful when magic fails to discover a satisfactory set of predicates in

a reasonable amount of time. Predicates are supplied in a per-procedure basis. An

important feature of magic is that all user-supplied predicates for a procedure proc

must be syntactically equivalent to some branch condition in proc.Otherwise that

predicate will be simply ignored by magic. For example consider the following C

procedure:

int proc()

{

int x = 5;

if(x < 10) return -1;

else return 0;

}

Suppose we want to prove using magic that proc is correctly specified by the

following LKS:

PROC = (return {$0 == -1} -> STOP).

Normally we would do this by simply asking magic to perform automated

abstraction refinement (using the --optPred option). However suppose we have

a good idea about which predicate magic will need to complete successfully. For

example, in this case (x < 10) is the required predicate (note that this corresponds

112

to a branch condition in proc). Then we can simply tell magic to use this predicate

by using the predicate keyword. The following procedure block shows how to do

this:

cproc proc {

predicate (x < 10);

}

magic will look for branch statements in proc which have a branch condition

(x < 10). If it finds any such branch, it will use the corresponding branch condition

as a seed predicate. Otherwise it will ignore the user supplied predicate. Multiple

predicates can be supplied in one statement using a comma-separated list or they can

be supplied via multiple predicate statements. Also the order in which predicates

are supplied is irrelevant. For example the two following procedure blocks each have

the same effect as the procedure block above:

cproc proc {

predicate (y == 10) , (w == 5) , (z +w > 20) ,

(x < 10) , (x+y != 5);

}

cproc proc {

predicate (x+y != 5);

predicate (z+w > 20) , (y == 10);

predicate (x < 10) , (w == 5);

}

Inlining Procedures

Suppose procedure foo calls procedure bar. Normally magic will not inline bar

within foo even if the code for bar is available. It has to be told explicitly to do

this via the inline keyword. Here’s a procedure block that demonstrates how to

do this. Once again inlining has to be done on a procedure-to-procedure basis. For

example the following procedure block will not cause bar to be inlined within some

other procedure baz.

113

cproc foo {

inline bar;

}

6.4.6 Drawing with magic

magic can be used to output control flow graphs, LKSs and intermediate data

structures as postscript files. This is very useful for visualization and understanding.

For example, using the following command line on draw.pp and draw-1.0.spec files

produces a draw-1.0.ps file.

$ magic --abstraction abs_1 draw.pp draw-1.0.spec --optPred

--drawPredAbsLTS --drawFile draw-1.0.ps

Also, using the following command line on my_proc.pp and my_spec-1.0.spec

yields my_proc-1.0.ps.

$ magic --abstraction abs_5 my_proc.pp my_spec-1.0.spec --optPred

--drawPredAbsLTS --drawFile my_proc-1.0.ps

Please look at the user’s manual for more details on command line options that

control magic’s drawing capabilities. Also note that in order to draw its figures

magic requires the graphviz package, and in particular the dot tool. However,

if you do not want to use magic’s drawing capabilities, there is no need to install

graphviz. At this point, you should be more or less familiar with magic and ready

to play around with it. Have fun !!

6.5 Experimental Results

We validated the game semantics based refinement approach experimentally using

magic. As the source code for our experiments we used version 0.9.6c of OpenSSL [95],

114

an open source implementation of the SSL [109] protocol used for secure exchange of

information over the Internet. In the rest of this thesis we will refer to version 0.9.6c

of OpenSSL as simply OpenSSL. In particular, we used the code that implements the

server side of the initial handshake involved in SSL. The source code consisted of

about 74000 lines including comments and blank lines. In Appendix A we present

our OpenSSL benchmark in greater detail.

All our experiments were carried out on an AMD Athlon 1600 XP machine with

900 MB RAM running RedHat 7.1. Our experiments were carried out to achieve two

broad objectives. First, we wanted to verify the advantages of simulation conformance

over trace-containment conformance. Second, we wanted to evaluate the effect of using

multiple spurious Counterexample Trees for abstraction refinement in every iteration

of the CEGAR loop.

As we shall see shortly, our experimental results indicate that compared to

trace containment, on average, simulation leads to 6.62 times faster convergence

and requires 11.79 times fewer iterations. Furthermore, refining on multiple

Counterexample Trees per iteration leads to up to 25% improvement in performance.

However, using more than four Counterexample Trees is counterproductive.

We manually designed a set of eleven specifications by reading the SSL

documentation. Each of these specifications was required to be obeyed by any

correct SSL implementation. Each specification captured critical safety requirements.

For example, among other things, the first specification enforced the fact that any

handshake is always initiated by the client and followed by a correct authentication

by the client. Each specification combined with the OpenSSL source code yielded one

benchmark for experimentation.

First, each benchmark was run twice, once using simulation and again using trace

115

1 2 3 4 5 6 7 8 9 10 11
Benchmark #

10

20

30

40

50

60

70

80

90

T
im

e
(1

00
0

se
co

nd
s)

Simulation

1 2 3 4 5 6 7 8 9 10 11
Benchmark #

5

10

15

20

25

It
er

at
io

ns
 (

10
0)

Trace Containment

Figure 6.3: Comparison between simulation and trace containment in terms of time and number

of iterations.

containment as a notion of conformance. For each run, we measured the time and

number of iterations required. The resulting comparison is shown in Figures 6.3.

These results indicate that simulation leads to faster (on average by 6.62 times)

convergence and requires fewer (on average by 11.79 times) iterations.

Recall also that during the refinement step we use a Counterexample Tree to

create a more refined predicate abstraction of some component. It is possible that in

each iteration of the CEGAR loop, we generate not one but a set of Counterexample

Trees ĈW . Using our benchmarks, we investigated the effect of increasing the size of

ĈW . In particular, the measurements for total time were obtained as follows. The

size of ĈW was varied from 1 to 15 and for each value of |ĈW |, the time required

to check simulation as well as trace containment for each benchmark was measured.

Finally the geometric mean of these measurements was taken. The measurements for

iterations and memory were obtained in a similar fashion.

The graphs in Figure 6.4 summarize the results we obtained. The figures indicate

that it makes sense to refine on multiple counterexamples. We note that there is

consistent improvement in all three metrics up to |ĈW | = 4. Increasing |ĈW |

116

0 5 10 15
|CW|

8000
8500
9000
9500

10000
10500

T
im

e
in

 s
ec

on
ds

0 5 10 15
|CW|

160

180

200

220

240
N

um
be

r
of

 it
er

at
io

ns

0 5 10 15
|CW|

260

280

300

320

M
em

or
y

in
 M

B

Figure 6.4: Time, iteration and memory requirements for different number of Counterexample

Trees.

beyond four appears to be counterproductive. This supports our earlier intuition that

manipulating a large number of counterexamples is expensive and will only provide

diminishing returns beyond a certain threshold.

117

118

Chapter 7

Predicate Minimization

As we have already seen, predicate abstraction is in the worst case exponential (in both

time and memory requirements) in the number of predicates involved. Therefore, a

crucial requirement to make predicate abstraction effective is to use as few predicates

as possible. Traditional approaches to counterexample guided predicate discovery

analyze each new spurious counterexample in isolation and accumulate predicates

monotonically. This may lead to larger than necessary sets of predicates, which may

result in an inability to solve certain problem instances.

For example, consider a scenario where the first counterexample, CW 1, can be

eliminated by either predicate {p1} or {p2}, and the predicate discovery process

chooses {p1}. Now the CEGAR algorithm finds another counterexample CW 2, which

can only be eliminated by the predicate {p2}. The CEGAR algorithm now proceeds

with the set of predicates {p1, p2}, although {p2} by itself is sufficient to eliminate

both CW 1 and CW 2. This is clearly undesirable.

In Chapter 6 we presented a naive algorithm AbsRefine for finding a minimal

sufficient predicate set from a given set of candidate predicates. In the above

119

scenario, AbsRefine would indeed choose {p2} as the new set of predicates after

encountering both CW 1 and CW 2. However it will perform redundant computation

involving CW 1. In this chapter we will present a more sophisticated abstraction

refinement algorithm called AbsRefMin which avoids the redundant computation

without sacrificing the minimality of the result.

We have implemented AbsRefMin in the magic tool. Our experimental results

show that AbsRefMin can significantly reduce the number of predicates and

consequently the amount of memory required in comparison to the naive AbsRefine

algorithm as well as existing tools such as blast.

7.1 Related work

Predicate abstraction was introduced by Graf and Saidi in [63]. It was subsequently

used with considerable success in both hardware and software verification [6, 50, 66].

The notion of CEGAR was originally introduced by Kurshan [76] (originally termed

localization) for model checking of finite state models. Both the abstraction and

refinement techniques for such systems, as employed in his and subsequent [37, 38]

research efforts, are essentially different from the predicate abstraction approach

we follow. For instance, abstraction in localization reduction is done by non-

deterministically assigning values to selected sets of variables, while refinement

corresponds to gradually returning to the original definition of these variables.

More recently the CEGAR framework has also been successfully adapted for

verifying infinite state systems [102], and in particular software [7, 66]. The problem

of finding small (but not minimal) sets of predicates has also been investigated in the

context of hardware designs in [33]. The work most closely related to ours, however,

120

is that of Clarke, Gupta, Kukula and Strichman [40] where the CEGAR approach

is combined with integer linear programming techniques to obtain a minimal set of

variables that separate sets of concrete states into different abstract states.

7.2 Pseudo-Boolean Constraints

A pseudo-Boolean (PB) formula is of the form
∑n

i=1 ci · bi ./ k, where: (i) bi is a

Boolean variable, (ii) ci is a rational constant for 1 ≤ i ≤ n, (iii) k is a rational

constant and (iv) ./ represents one of the inequality or equality relations from the

set {<,≤, >,≥, =}. Each such constraint can be expanded to a CNF formula (hence

the name pseudo-Boolean). Hence a naive way to solve for the satisfiability of a

PB formula is to translate it to a CNF formula and then use a standard CNF SAT

solver [87, 104–106, 114].

Example 17 A typical PB formula is φ1 ≡ (2/3)x + 5y − (3/4)z < 6. This formula

is equivalent to the much simpler φ2 ≡ 8x + 60y − 9z < 72. Now we can convert φ2

into a purely propositional form. A common way to do this is to assume each variable

appearing in φ2 to be a bit-vector of some fixed width w. We can then encode each

variable using w Boolean propositions and use standard Boolean encodings for the

arithmetic and relational operators appearing in φ2 to complete the transformation.

However the expanded CNF form of a PB formula ϕ can be exponential in the

size of ϕ. The Pseudo-Boolean Solver (PBS) [2] does not perform this expansion, but

rather uses an algorithm designed in the spirit of the Davis-Putnam-Loveland [51, 52]

algorithm that handles these constraints directly. PBS accepts as input standard

CNF formulas augmented with pseudo-Boolean constraints. Given a standard CNF

121

formula φ and an objective function ϕ, PBS finds an optimal solution sopt for φ. The

objective function ϕ is usually an arithmetic expression over the variables of φ treated

as having a value of either zero or one. The result sopt is optimal in the sense that it

minimizes the value of ϕ. PBS achieves this by repeatedly tightening the constraint

over the value of ϕ until φ becomes unsatisfiable.

More precisely, PBS first finds a satisfying solution s to φ and calculates the value

of ϕ according to s. Let this value be ϕ(s). PBS then updates φ by adding a constraint

that the value of ϕ should be less than ϕ(s) and re-solves for the satisfiability of φ.

This process is repeated until φ becomes unsatisfiable. The output sopt is then the

last satisfying solution for φ. Note that a possible improvement on this process is

to perform a binary (rather than a linear) search over the value of ϕ. However, the

performance of PBS was not a bottleneck in any of our experiments.

7.3 Predicate Minimization

We now describe the algorithm AbsRefMin (presented in Procedure 7.1) for

computing a refined abstraction based on a minimal set of branches that can eliminate

a set of spurious Counterexample Witness projections. Essentially AbsRefMin

works as follows. Let BC = {b1, . . . , bk} be the set of branches of the component

C as usual. Suppose we introduce Boolean variables BV = {v1, . . . , vk}, where each

vi corresponds to the branch bi. The arguments to AbsRefMin are: (i) a spurious

Counterexample Witness projection CW , (ii) a component C, (iii) a Boolean formula

φ over BV , and (iv) a context γ for C.

Intuitively, φ captures the information about the sets of branches which

can eliminate all the spurious Counterexample Witness projections encountered

122

previously. More precisely, suppose CW ′ is a spurious Counterexample Witness

projection seen before. Suppose that the set of sets of branches which can eliminate

CW ′ are {B1, . . . , Bl} and for 1 ≤ i ≤ l, let Bi = {bi,1, . . . , bi,ni
}. Let us then define

the formula φCW ′ as follows:

φCW ′ ≡
∨

1≤i≤l

(∧

1≤j≤ni

vi,j

)

Note that since the elements of each Bi are branches of C, the Boolean variables

in φCW ′ are from the set BV described earlier. Now consider any satisfying solution s

to φCW ′ such that s assigns the variables {v1, . . . , vm} to true. It should be obvious

from the above definition that the set of branches {b1, . . . , bm} suffices to eliminate

CW ′. Now suppose that the set of all spurious Counterexample Witness projections

seen previously is ĈW . Then the formula φ is defined as:

φ ≡
∧

CW ′∈ĈW

φCW ′

Now consider any satisfying solution s to φ such that s assigns the variables

{v1, . . . , vm} to true. Once again, it should be obvious from the above definition

that the set of branches {b1, . . . , bm} suffices to eliminate every element of ĈW .

Example 18 Suppose C has four branches {b1, b2, b3, b4}. Hence there are four

Boolean variables {v1, v2, v3, v4}. Consider a Counterexample Witness projection

CW 1 such that CW 1 is eliminated by either branch b1 alone or by branches b2, b3

and b4 together. Hence the Boolean formula φCW 1
is (v1)

∨
(v2 ∧ v3 ∧ v4).

Again consider another Counterexample Witness projection CW 2 such that CW 2

is eliminated by either branch b4 alone or by branches b1, b2 and b3 together. Hence

the Boolean formula φCW 2
is (v4)

∨
(v1 ∧ v2 ∧ v3).

123

Let the set of Counterexample Witness projections under consideration be ĈW =

{CW 1,CW 2}. Then the formula φ = φCW 1

∧
φCW 2

= ((v1)∨ (v2 ∧ v3 ∧ v4))
∧

((v4)∨

(v1 ∧ v2 ∧ v3)).

There are many satisfying solutions to φ. For instance one solution is

(v1 = false, v2 = true, v3 = true, v4 = true). This means that the set of branches

{b2, b3, b4} is sufficient to eliminate both CW 1 and CW 2.

Yet another solution is (v1 = true, v2 = false, v3 = false, v4 = true)

indicating that the set of branches {b1, b4} is also sufficient to eliminate both

CW 1 and CW 2. In fact this is a minimal such set.

Algorithm AbsRefMin first updates φ by adding clauses corresponding to the

new spurious Counterexample Witness projection CW . It then solves for the

satisfiability of φ along with the pseudo-Boolean constraint ϕ ≡ Σk
i=1vi. Since the

solution satisfies φ and minimizes ϕ, it clearly corresponds to a minimal set of branches

which can eliminate all previous spurious Counterexample Witness projections as well

as CW .

Note that φ is updated in place so that the next invocation of AbsRefMin uses

the updated φ. Also note that if φ is unsatisfiable, it means that there is at least one

spurious Counterexample Witness projection which cannot be eliminated by any set

of branches. In other words, there is some CW for which φCW is equivalent to false.

In this case AbsRefMin returns error.

In order to compute φCW , AbsRefMin naively iterates over every subset of BC.

However this results in its complexity being exponential in the size of BC. Below we

list several ways to reduce the number of subsets attempted by AbsRefMin:

• Limit the cardinality or number of attempted subsets to a small constant, e.g.

124

Procedure 7.1 AbsRefMin returns a refined abstraction for C based on a minimal set of

branches that eliminates a set of spurious Counterexample Witness projections and error on

failure. The parameter φ initially expresses constraints about branches which can eliminate all

previous spurious Counterexample Witness projections. AbsRefMin also updates φ with the

constraints for the new spurious Counterexample Witness projection CW .

Algorithm AbsRefMin(CW, C, φ, γ)

- CW : is a spurious Counterexample Witness, φ : is a Boolean formula

- C : is a component, γ : is a context for C

let CW = (S, Init,AP ,L, Σ,T);

φCW := false;

for each B ⊆ BC //BC is the set of branches in C

Π := PredInfer(C, γ, B); //Π is set of predicates inferred from B

let M̂ := [[[C]]]Πγ =
(
Ŝ, Înit, ÂP , L̂, Σ̂, T̂

)
;

//M̂ is the predicate abstraction of C using Π

if (AbsCanSimul(CW, Init, M̂) ∩ Înit = ∅) then φCW := φCW ∨
∧

bi∈B vi;

//CW 6- M̂ , and hence B can eliminate CW

φ := φ ∧ φCW ; //update φ with the constraints for CW

invoke PBS to solve (φ, Σk
i=1vi);

if φ is unsatisfiable then return error; //no set of branches can eliminate CW

else let sopt = solution returned by PBS;

let {v1, . . . , vm} = variables assigned true by sopt and B = {b1, . . . , bm};

Π := PredInfer(C, γ, B); //Π is the set of predicates inferred from B

return [[[C]]]Πγ ; //return the predicate abstraction of C using Π

5, assuming that most Counterexample Witness projections can be eliminated

by a small set of branches.

• Stop after reaching a certain size of subsets if any eliminating solutions have

been found.

• Break up the control flow graph of C into blocks and only consider subsets of

branches within blocks (keeping subsets in other blocks fixed).

• Use data flow analysis to only consider subsets of related branches.

125

• For any CW , if a set p eliminates CW , ignore all supersets of p with respect

to CW (as we are seeking a minimal solution).

In our experiments we used some of the above techniques. Details are presented in

Section 7.5. In conclusion, we note that other techniques for solving this optimization

problem are also possible, including minimal hitting sets and logic minimization. The

PBS step, however, has not been a bottleneck in any of our experiments.

7.4 CEGAR with Predicate Minimization

In this section we present the complete CEGAR algorithm for simulation conformance

that uses AbsRefMin instead of AbsRefine for abstraction refinement. The

algorithm is called SimulCEGARMin and is presented in Procedure 7.2. It is

similar to SimulCEGAR except that instead of maintaining the set of spurious

Counterexample Witness projections CW i for each component Ci it maintains the

formula φi. The proof of its correctness is also similar to that of SimulCEGAR.

7.5 Experimental Results

We implemented our technique inside magic and experimented with a variety of

benchmarks. Each benchmark consisted of an implementation (a C program) and a

specification (provided separately as an LKS). All of the experiments were carried out

on an AMD Athlon 1600 XP machine with 900 MB RAM running RedHat 7.1. In this

section we describe our results in the context of checking the effectiveness of predicate

minimization. We also present results comparing our predicate minimization scheme

with a greedy predicate minimization strategy implemented on top of magic.

126

Procedure 7.2 SimulCEGARMin checks simulation conformance between a program P

and a specification Sp in a context Γ.

Algorithm SimulCEGARMin(P , Sp, Γ)

- P : is a program, Γ : is a context for P

- Sp : is a specification LKS

let P = 〈C1, . . . , Cn〉 and Γ = 〈γ1, . . . , γn〉;

for each i ∈ {1, . . . , n}

Πi := PredInfer(Ci, γi, ∅) and M̂i := [[[Ci]]]
Πi

γi
and φi := true;

//M̂i = initial predicate abstractions of Ci with empty set of seed branches

forever do

let M̂ = M̂1 ‖ · · · ‖ M̂n;

//M̂ is the composition of predicate abstractions

if (SimulWitness(M̂, Sp) = “M̂ 4 Sp”) return “P 4 Sp”;

//if the property holds on M̂ it also holds on P

let CW = Counterexample Witness returned by SimulWitness;

find i ∈ {1, . . . , n} such that ¬WeakSimul(CW � γi, Ci, γi);

//check compositionally if CW is spurious

if (no such i found) return “P 64 Sp”;

//CW is valid and hence P is not simulated by Sp

if (AbsRefMin(CW � γi, Ci, φi, γi) = error) return error;

//no set of branches can eliminate CW � γi

M̂i := AbsRefMin(CW � γi, Ci, φi, γi); //refine the abstraction and repeat

7.5.1 The Greedy Approach

In each iteration, this greedy strategy first adds predicates sufficient to eliminate the

spurious Counterexample Witness to its candidate branch set B. Then it attempts

to reduce the size of the resulting B by using the algorithm GreedyMin described

in Procedure 7.3. The advantage of this approach is that it requires only a small

overhead (polynomial) compared to AbsRefMin, but on the other hand it does not

guarantee an optimal result. Further, we performed experiments with the blast [66]

tool. blast also takes C programs as input, and uses a variation of the standard

CEGAR loop based on lazy abstraction, but without minimization. Lazy abstraction

127

Procedure 7.3 GreedyMin returns a greedily computed refined abstraction for C that

eliminates every spurious Counterexample Witness projection in CW .

Algorithm GreedyMin(CW, C, γ)

- CW : is a set of Counterexample Witnesses

- C : is a component, γ : is a context for C

B := BC; //start with the set of all branches in C

//repeatedly try to remove elements from B while maintaining the invariant that

//every spurious Counterexample Witness projection in CW can still be eliminated

Loop:

Create random ordering {b1, . . . , bk} of B;

for i = 1 to k

B′ := B \ {bi}; //check if bi is redundant

if B′ can eliminate all elements of CW

B := B′; //bi is redundant and can be eliminated

goto Loop;

Π := PredInfer(C, γ, B); //Π is set of predicates inferred from B

return [[[C]]]Πγ ; //return the predicate abstraction of C using Π

refines an abstract model while allowing different degrees of abstraction in different

parts of a program, without requiring recomputation of the entire abstract model in

each iteration. Laziness and predicate minimization are, for the most part, orthogonal

techniques. In principle a combination of the two might produce better results than

either in isolation.

7.5.2 Benchmarks

We used two kinds of benchmarks. A small set of relatively simple benchmarks were

derived from the examples supplied with the blast distribution and regression tests

for magic. The difficult benchmarks were derived from the C source code of OpenSSL.

A critical component of this protocol is the initial handshake between a server and

a client. We verified different properties of the main routines that implement the

128

magic + GREEDY magic + MINIMIZE
Program Time Iter Pred Mem Time Iter Pred Mem

funcall-nested 6 2 10/9/1 × 5 2 10/9/1 ×
fun lock 5 5 8/3/3 × 6 4 8/3/3 ×
driver.c 5 5 6/2/4 × 5 5 6/2/4 ×
read.c 6 3 15/5/1 × 5 2 15/5/1 ×

socket-y-01 5 3 12/4/2 × 6 3 12/4/2 ×
opttest.c 150 5 4/4/4 63 247 25 4/4/4 63
ssl-srvr-1 * 103 16/3/5 51 226 14 5/4/2 38
ssl-srvr-2 2106 62 8/4/3 34 216 14 5/4/2 38
ssl-srvr-3 * 100 22/3/7 53 200 12 5/4/2 38
ssl-srvr-4 8465 69 14/4/5 56 170 9 5/4/2 38
ssl-srvr-5 * 117 23/5/9 56 205 13 5/4/2 36
ssl-srvr-6 * 84 22/4/8 337 359 14 8/4/3 89
ssl-srvr-7 * 99 19/3/6 62 196 11 5/4/2 S 38
ssl-srvr-8 * 97 19/4/7 142 211 10 8/4/3 40
ssl-srvr-9 8133 99 11/4/4 69 316 20 11/4/4 38
ssl-srvr-10 * 97 12/3/4 77 241 14 8/4/3 38
ssl-srvr-11 * 87 26/4/9 65 356 24 8/4/3 38
ssl-srvr-12 * 122 23/4/8 180 301 17 8/4/3 42
ssl-srvr-13 * 106 19/4/7 69 436 29 11/4/4 38
ssl-srvr-14 * 115 18/3/6 254 406 20 8/4/3 52
ssl-srvr-15 2112 37 8/4/3 118 179 7 8/4/3 40
ssl-srvr-16 * 103 22/3/7 405 356 17 8/4/3 58
ssl-clnt-1 225 27 5/4/2 20 156 12 5/4/2 31
ssl-clnt-2 1393 63 5/4/2 23 185 18 5/4/2 29
ssl-clnt-3 * 136 29/4/10 28 195 21 5/4/2 29
ssl-clnt-4 152 29 5/4/2 20 191 19 5/4/2 29

TOTAL 163163 1775 381/102 2182 5375 356 191/107 880
/129 /67

AVERAGE 6276 68 15/4/5 104 207 14 7/4/3 42

Table 7.1: Comparison of magic with the greedy approach. ‘*’ indicates run-time longer than

3 hours. ‘×’ indicates negligible values. Best results are emphasized.

handshake. The names of benchmarks that are derived from the server routine and

client routine begin with ssl-srvr and ssl-clnt respectively. In all our benchmarks,

the properties are satisfied by the implementation. Note that all these benchmarks

involved purely sequential C code.

7.5.3 Results Summary

Table 7.1 summarizes the comparison of our predicate minimization strategy with

the greedy approach. Time consumptions are given in seconds. For predicate

minimization, instead of solving the full optimization problem, we simplified the

129

magic magic + MINIMIZE
Program Time Iter Pred Mem Time Iter Pred Mem

funcall-nested 5 2 10/9/1 × 5 2 10/9/1 ×
fun lock 5 4 8/3/3 × 6 4 8/3/3 ×
driver.c 6 5 6/2/4 × 5 5 6/2/4 ×
read.c 5 2 15/5/2 × 5 2 15/5/1 ×

socket-y-01 5 3 12/4/2 × 6 3 12/4/2 ×
opttest.c 145 5 7/7/8 63 247 25 4/4/4 63
ssl-srvr-1 250 12 56/5/22 43 226 14 5/4/2 38
ssl-srvr-2 752 16 72/6/30 72 216 14 5/4/2 38
ssl-srvr-3 331 12 56/5/22 47 200 12 5/4/2 38
ssl-srvr-4 677 14 63/6/26 72 170 9 5/4/2 38
ssl-srvr-5 71 5 22/4/8 24 205 13 5/4/2 36
ssl-srvr-6 11840 23 105/11/44 1187 359 14 8/4/3 89
ssl-srvr-7 2575 20 94/7/38 192 196 11 5/4/2 S 38
ssl-srvr-8 130 8 32/5/14 58 211 10 8/4/3 40
ssl-srvr-9 2621 15 65/8/28 183 316 20 11/4/4 38
ssl-srvr-10 561 16 75/6/30 73 241 14 8/4/3 38
ssl-srvr-11 4014 19 89/8/36 287 356 24 8/4/3 38
ssl-srvr-12 7627 22 102/9/42 536 301 17 8/4/3 42
ssl-srvr-13 3127 17 75/9/32 498 436 29 11/4/4 38
ssl-srvr-14 7317 22 102/9/42 721 406 20 8/4/3 52
ssl-srvr-15 615 15 81/28/5 188 179 7 8/4/3 40
ssl-srvr-16 3413 21 98/8/40 557 356 17 8/4/3 58
ssl-clnt-1 110 10 43/4/18 25 156 12 5/4/2 31
ssl-clnt-2 156 11 53/5/20 31 185 18 5/4/2 29
ssl-clnt-3 421 13 52/7/24 58 195 21 5/4/2 29
ssl-clnt-4 125 10 35/5/18 27 191 19 5/4/2 29

TOTAL 46904 322 1428/185 4942 5375 356 191/107 880
/559 /67

AVERAGE 1804 12 55/7/22 235 207 14 7/4/3 42

Table 7.2: Results for magic with and without minimization. ‘*’ indicates run-time longer

than 3 hours. ‘×’ indicates negligible values. Best results are emphasized.

problem as described in section 7.3. In particular, for each trace we only considered

the first 1,000 combinations and only generated 20 eliminating combinations. The

combinations were considered in increasing order of size. After all combinations

of a particular size had been tried, we checked whether at least one eliminating

combination had been found. If so, no further combinations were tried. In the smaller

examples we observed no loss of optimality due to these restrictions. We also studied

the effect of altering these restrictions on the larger benchmarks and we report our

findings later.

Table 7.2 shows the improvement observed in magic upon using predicate

minimization while Table 7.3 shows the comparison between predicate minimization

130

blast magic + MINIMIZE
Program Time Iter Pred Mem Time Iter Pred Mem

funcall-nested 1 3 13/10 × 5 2 10/9/1 ×
fun lock 5 7 7/7 × 6 4 8/3/3 ×
driver.c 1 4 3/2 × 5 5 6/2/4 ×
read.c 6 11 20/11 × 5 2 15/5/1 ×

socket-y-01 5 13 16/6 × 6 3 12/4/2 ×
opttest.c 7499 38 37/37 231 247 25 4/4/4 63
ssl-srvr-1 2398 16 33/8 175 226 14 5/4/2 38
ssl-srvr-2 691 13 68/8 60 216 14 5/4/2 38
ssl-srvr-3 1162 14 32/7 103 200 12 5/4/2 38
ssl-srvr-4 284 11 27/5 44 170 9 5/4/2 38
ssl-srvr-5 1804 19 52/5 71 205 13 5/4/2 36
ssl-srvr-6 * 39 90/10 805 359 14 8/4/3 89
ssl-srvr-7 359 11 76/9 37 196 11 5/4/2 S 38
ssl-srvr-8 * 25 35/5 266 211 10 8/4/3 40
ssl-srvr-9 337 10 76/9 36 316 20 11/4/4 38
ssl-srvr-10 8289 20 35/8 148 241 14 8/4/3 38
ssl-srvr-11 547 11 78/11 51 356 24 8/4/3 38
ssl-srvr-12 2434 21 80/8 120 301 17 8/4/3 42
ssl-srvr-13 608 12 79/12 54 436 29 11/4/4 38
ssl-srvr-14 10444 27 84/10 278 406 20 8/4/3 52
ssl-srvr-15 * 31 38/5 436 179 7 8/4/3 40
ssl-srvr-16 * 33 87/10 480 356 17 8/4/3 58
ssl-clnt-1 348 16 28/5 43 156 12 5/4/2 31
ssl-clnt-2 523 15 28/4 52 185 18 5/4/2 29
ssl-clnt-3 469 14 29/5 49 195 21 5/4/2 29
ssl-clnt-4 380 13 27/4 45 191 19 5/4/2 29

TOTAL 81794 447 1178/221 3584 5375 356 191/107 880
/67

AVERAGE 3146 17 45/9 171 207 14 7/4/3 42

Table 7.3: Results for blast and magic with predicate minimization. ‘*’ indicates run-time

longer than 3 hours. ‘×’ indicates negligible values. Best results are emphasized.

and blast. Once again, time consumptions are reported in seconds. The column Iter

reports the number of iterations through the CEGAR loop necessary to complete the

proof. Predicates are listed differently for the two tools. For blast, the first number

is the total number of predicates discovered and used and the second number is the

number of predicates active at any one point in the program (due to lazy abstraction

this may be smaller). In order to force termination we imposed a limit of three hours

on the running time. We denote by ‘*’ in the Time column examples that could

not be solved in this time limit. In these cases the other columns indicate relevant

measurements made at the point of forceful termination.

For magic, the first number is the total number of expressions used to prove the

131

property. The number of predicates (the second number) may be smaller, as magic

combines multiple mutually exclusive expressions (e.g., x == 1, x < 1, and x > 1)

into a single, possibly non-binary predicate, having a number of values equal to the

number of expressions (plus one, if the expressions do not cover all possibilities). The

final number for magic is the size of the final set of branches. For experiments in

which memory usage was large enough to be a measure of state-space size rather than

overhead, we also report memory usage (in megabytes).

For the smaller benchmarks, the various abstraction refinement strategies do

not differ markedly. However, for our larger examples derived from OpenSSL, the

refinement strategy is of considerable importance. Predicate minimization, in general,

reduced verification time (though there were a few exceptions to this rule, the average

running time was considerably lower than for the other techniques, even with the

cutoff on the running time). Moreover, predicate minimization reduced the memory

needed for verification, which is an even more important bottleneck. Given that the

memory was cutoff in some cases for other techniques before verification was complete,

the results are even more compelling.

The greedy approach kept memory use fairly low, but almost always failed to

find near-optimal predicate sets and converged much more slowly than the usual

monotonic refinement or predicate minimization approaches. Further, it is not clear

how much final memory usage would be improved by the greedy strategy if it were

allowed to run to completion. Another major drawback of the greedy approach is its

unpredictability. We observed that on any particular example, the greedy strategy

might or might not complete within the time limit in different executions. Clearly,

the order in which this strategy tries to eliminate predicates in each iteration is

very critical to its success. Given that the strategy performs poorly on most of our

132

benchmarks using a random ordering, more sophisticated ordering techniques may

perform better.

ssl-srvr-4 ssl-srvr-15
ELM SUB Ti It Br M T G Ti It Br M T G
50 250 656 8 2 64 34 1 1170 15 3 72 86 1
100 250 656 8 2 64 34 1 1169 15 3 72 86 1
150 250 657 8 2 64 34 1 1169 15 3 72 86 1
200 250 656 8 2 64 34 1 1170 15 3 72 86 1
250 250 656 8 2 64 34 1 1168 15 3 72 86 1

ssl-clnt-1
ELM SUB Ti It Br M T G
50 250 1089 13 2 67 66 1
100 250 1089 13 2 67 66 1
150 250 1090 13 2 67 66 1
200 250 1089 13 2 67 66 1
250 250 1090 13 2 67 66 1

Table 7.4: Results for optimality. ELM = MAXELM, SUB = MAXSUB, Ti = Time in seconds,

It = number of iterations, Br = number of branches, M = Memory, T = total number of

eliminating subsets generated, and G = maximum size of any eliminating subset generated.

7.5.4 Optimality

We experimented with two of the parameters that affect the optimality of our

predicate minimization algorithm: (i) the maximum number of examined subsets

(MAXSUB) and (ii) the maximum number of eliminating subsets generated (MAXELM)

(that is, the procedure stops the search if MAXELM eliminating subsets were found,

even if less than MAXSUB combinations were tried). We first kept MAXSUB fixed and

took measurements for different values of MAXELM on a subset of our benchmarks

viz. ssl-srvr-4, ssl-srvr-15 and ssl-clnt-1. Our results, shown in Table 7.4, clearly indicate

that the optimality is practically unaffected by the value of MAXELM.

Next we experimented with different values of MAXSUB (the value of MAXELM

was set equal to MAXSUB). The results we obtained are summarized in Table 7.5. It

appears that, at least for our benchmarks, increasing MAXSUB leads only to increased

133

ssl-srvr-4 ssl-srvr-15
SUB Time It Br Mem T/M/G Time It Br Mem T/M/G
100 262 8 2 44 34/2/1 396 12 3 50 62/2/1
200 474 7 2 57 27/2/1 917 14 3 65 81/2/1
400 1039 9 2 71 38/2/1 1110 8 3 76 45/2/1
800 2182 7 2 165 25/2/1 2797 9 3 148 51/2/1
1600 6718 9 2 410 35/3/1 10361 11 3 410 76/3/1
3200 13656 9 2 461 40/3/1 14780 9 3 436 50/3/1
6400 26203 9 2 947 31/3/1 33781 10 3 792 51/3/1

ssl-clnt-1
SUB Time It Br Mem T/M/G
100 310 11 2 40 58/2/1
200 683 12 2 51 63/2/1
400 2731 13 2 208 67/3/1
800 5843 14 2 296 75/3/1
1600 13169 12 2 633 61/3/1
3200 36155 12 2 1155 67/4/1
6400 > 57528 4 1 2110 22/4/1

Table 7.5: Results for optimality. SUB = MAXSUB, Time is in seconds, It = number of

iterations, Br = number of branches, T = total number of eliminating subsets generated, M =

maximum size of subsets tried, and G = maximum size of eliminating subsets generated.

execution time without reduced memory consumption or number of predicates. The

additional number of combinations attempted or constraints allowed does not lead

to improved optimality. The most probable reason is that, as shown by our results,

even though we are trying more combinations, the actual number or maximum size of

eliminating combinations generated does not increase significantly. Indeed, if this is

a feature of most real-life programs, it would allow us, in most cases, to achieve near

optimality by trying out only a small number of combinations or only combinations

of small size.

134

Chapter 8

State-Event Temporal Logic

In this chapter, we present an expressive linear temporal logic called SE-LTL for

specifying state-event based properties. We also discuss a compositional CEGAR

framework for verifying concurrent software systems against SE-LTL formulas.

Control systems ranging from smart cards to automated flight controllers are

increasingly being incorporated within complex software systems. In many instances,

errors in such systems can have catastrophic consequences, hence the urgent need to

be able to ensure and guarantee their correctness. In this endeavor, the well-known

methodology of model checking [32, 35, 39, 99] holds much promise. Although most

of its early applications dealt with hardware and communication protocols, model

checking is increasingly being used to verify software systems [5, 6, 13, 23, 24, 44, 65,

66, 98, 107, 111, 112] as well.

Unfortunately, applying model checking to software is complicated by several

factors, ranging from the difficulty to model computer programs—due to the

complexity of programming languages as compared to hardware description

languages—to difficulties in specifying meaningful properties of software using the

135

usual temporal logical formalisms of model checking. A third reason is the state space

explosion problem, whereby the complexity of verifying an implementation against a

specification becomes prohibitive.

The most common instantiations of model checking to date have focused on finite-

state models and either branching-time (CTL [32]) or linear (LTL [78]) temporal

logics. To apply model checking to software, it is necessary to specify (often complex)

properties on the finite-state abstracted models of computer programs. The difficulties

in doing so are even more pronounced when reasoning about modular software,

such as concurrent or component-based sequential programs. Indeed, in modular

programs, communication among modules proceeds via actions (or events), which

can represent function calls, requests and acknowledgments, etc. Moreover, such

communication is commonly data-dependent. Software behavioral claims, therefore,

are often specifications defined over combinations of program actions and data

valuations.

Existing modeling techniques usually represent finite-state machines as finite

annotated directed graphs, using either state-based or event-based formalisms. It is

well-known that theoretically the two frameworks are interchangeable. For instance,

an action can be encoded as a change in a state variable, and likewise one can

equip a state with different actions to reflect different values of its internal variables.

However, converting from one representation to the other often leads to a significant

enlargement of the state space. Moreover, neither approach on its own is practical

when it comes to modular software, in which actions are often data-dependent:

considerable domain expertise is then required to annotate the program and to specify

proper claims.

This chapter, therefore, presents a framework in which both state-based and

136

action-based properties can be expressed, combined, and verified. The modeling

framework consists of labeled Kripke structures (LKS), which are directed graphs in

which states are labeled with atomic propositions and transitions are labeled with

actions. The specification logic is a state/event derivative of LTL. This allows

us to represent both software implementations and specifications directly without

any program annotations or privileged insights into program execution. We further

show that an efficient model checking algorithm can be applied to help reason about

state/event-based systems. Significantly, our model checking algorithm operates

directly on the LKS models and is thus able to avoid the extra cost involved in

translating state/event systems into systems that are based purely either states or

events. We have implemented our approach within the C verification tool magic [23,

24, 80], and report promising results in the examples which we have tackled.

The state/event-based formalism presented here is suitable for both sequential and

concurrent systems, and is also amenable to the compositional abstraction refinement

procedures [23] presented earlier. These procedures are embedded within a CEGAR

framework [37], one of the core features of magic. CEGAR lets us investigate the

validity of a given specification through a sequence of increasingly refined abstractions

of our system, until the property is either established or a real counterexample

is found. Moreover, thanks to compositionality, the abstraction, counterexample

validation, and refinement steps can all be carried out component-wise, thereby

alleviating the need to build the full state space of the distributed system.

We illustrate our state/event paradigm with a current surge protector example,

and conduct further experiments with the source code for OpenSSL and µC/OS-II (a

real-time operating system for embedded applications). In the case of the latter, we

discovered several bugs, one of which was unknown to the developers of µC/OS-II. We

137

contrast our approach with equivalent pure state-based and event-based alternatives,

and demonstrate that the state/event methodology yields significant gains in state

space size and verification time.

This chapter is organized as follows. In Section 8.1, we review and discuss related

work. Section 8.2 presents the basic definitions and results needed for the presentation

of our compositional CEGAR verification algorithm. In Section 8.3, we present

our state/event specification formalism, based on linear temporal logic. We review

standard automata-theoretic model checking techniques, and show how these can be

adapted to the verification task at hand.

In Section 8.4, we illustrate these ideas by modeling a simple surge protector.

We also contrast our approach with pure state-based and event-based alternatives,

and show that both the resulting implementations and specifications are significantly

more cumbersome. We then use magic to check these specifications, and discover

that the non-state/event formalisms incur significant time and space penalties during

verification.

Section 8.5 details our SE-LTL verification algorithm for C programs while

Section 8.6 presents the complete compositional CEGAR scheme for SE-LTL

verification of concurrent C programs. Finally, in Section 8.7, we report on case

studies in which we checked specifications on the source code for OpenSSL and

µC/OS-II, which led us to the discovery of a bug in the latter.

8.1 Related Work

Counterexample guided abstraction refinement [37, 76], or CEGAR, is an iterative

procedure whereby spurious counterexamples to a specification are repeatedly

138

eliminated through incremental refinements of a conservative abstraction of the

system. CEGAR has been used, among others, in [90] (in non-automated form),

and [6, 23, 29, 40, 66, 77, 98].

Compositionality, which features centrally in our work, is broadly concerned with

the preservation of properties under substitution of components in concurrent systems.

It has been extensively studied, among others, in process algebra (e.g., [69, 85, 100]), in

temporal logic model checking [64], and in the form of assume-guarantee reasoning [41,

67, 84]. The combination of CEGAR and compositional reasoning is a relatively

new approach. In [10], a compositional framework for (non-automated) CEGAR

over data-based abstractions is presented. This approach differs from ours in that

communication takes place through shared variables (rather than blocking message-

passing), and abstractions are refined by eliminating spurious transitions, rather than

by splitting abstract states.

The idea of combining state-based and event-based formalisms is certainly not

new [14]. De Nicola and Vaandrager [94], for instance, introduce doubly labeled

transition systems, which are very similar to our LKSs. From the point of view

of expressiveness, our state/event version of LTL is also subsumed by the modal mu-

calculus [16, 74, 97], via a translation of LTL formulas into Büchi automata. However

all these approaches are restricted to finite state systems.

Kindler and Vesper [73] propose a state/event-based temporal logic for Petri

nets. They motivate their approach by arguing, as we do, that pure state-based

or event-based formalisms lack expressiveness in important respects. Huth et. al. [72]

also propose a state/event framework, and define rich notions of abstraction and

refinement. In addition, they provide may and must modalities for transitions, and

show how to perform efficient three-valued verification on such structures. They do

139

not, however, provide an automated CEGAR framework, and it is not clear whether

they have implemented and tested their approach. Giannakopoulou and Magee [62]

define fluent propositions within a labeled transition system (LTS – essentially an LKS

with an empty set of atomic propositions) context to express action-based linear-time

properties. A fluent proposition is a property that holds after it is initiated by an

action and ceases to hold when terminated by another action. This work exploits

partial-order reduction techniques and has been implemented in the ltsa tool.

In a comparatively early paper, De Nicola et. al. [93] propose a process

algebraic framework with an action-based version of CTL as specification formalism.

Verification then proceeds by first translating the underlying LTSs of processes into

Kripke structures and the action-based CTL specifications into equivalent state-based

CTL formulas. At that point, a model checker is used to establish or refute the

property. Dill [55, 56] defines trace structures as algebraic objects to model both

hardware circuits and their specifications. Trace structures can handle equally well

states or events, although usually not both at the same time. Dill’s approach to

verification is based on abstractions and compositional reasoning, albeit without an

iterative counterexample-driven refinement loop.

In general, events (input signals) in circuits can be encoded via changes in state

variables. Browne makes use of this idea in [18], which features a CTL∗ specification

formalism. Browne’s framework also features abstractions and compositional

reasoning, in a manner similar to Dill’s. Burch [20] extends the idea of trace

structures into a full-blown theory of trace algebra. The focus here however is the

modeling of discrete and continuous time, and the relationship between these two

paradigms. This work also exploits abstractions and compositionality, however once

again without automated counterexample guided refinements. Finally, Bultan [19]

140

proposes an intermediate specification language lying between high-level Statechart-

like formalisms and transition systems. Actions are encoded as changes in state

variables in a framework which also focuses on exploiting compositionality in model

checking.

8.2 Preliminaries

Recall, from Definition 1, that an LKS is a 6-tuple (S, Init,AP ,L, Σ,T). In this

section we present a few preliminary definitions that will be used in the rest of the

chapter.

Definition 20 (Infinite Path and Trace) Let M be an LKS. An infinite path of

M is an infinite sequence 〈s0, α0, s1, α1, . . . 〉 such that: (i) s0 ∈ InitM and (ii)

∀i ≥ 0�si
αi−→M si+1. In such a case, the infinite sequence 〈LM(s0), α0,LM(s1), α1, . . . 〉

is called an infinite trace of M .

In the rest of this chapter we will only restrict our attention to infinite paths and

traces. We will also assume that the transition relation of every LKS is total, i.e.,

every state has at least one outgoing transition. The notion of paths leads naturally

to that of languages.

Definition 21 (Language) Let M be an LKS. The language of M , denoted by

L(M), is defined as: L(M) = {π | π is a path of M}.

141

8.3 The Logic SE-LTL

We now present a logic enabling us to refer easily to both states and events when

constructing specifications. Given an LKS M , we consider linear temporal logic

state/event formulas over the sets AP M and ΣM . Suppose p ranges over AP M and α

ranges over ΣM . Then the syntax of SE-LTL can be defined inductively as follows:

φ ::= p | α | ¬φ | φ ∧ φ | Xφ | Gφ | Fφ | φ U φ

We write SE-LTL to denote the resulting logic, and in particular to distinguish it

from (standard) LTL. Let π = 〈s0, α0, s1, α1, . . .〉 be a path of M . For i ≥ 0, let πi

denote the suffix of π starting in state si. We then inductively define path-satisfaction

of SE-LTL formulas as follows:

π |= p iff p ∈ LM(s0)

π |= α iff α = α0

π |= ¬φ iff π 6|= φ

π |= φ1 ∧ φ2 iff π |= φ1 and π |= φ2

π |= Xφ iff π1 |= φ

π |= Gφ iff ∀i > 0 � πi |= φ

π |= Fφ iff ∃i > 0 � πi |= φ

π |= φ1 U φ2 iff ∃i > 0 � πi |= φ2 and ∀0 6 j < i � πj |= φ1

We then let M |= φ iff, for every path π ∈ L(M), π |= φ. We also use the derived

(weak until) W operator: φ1 W φ2 ≡ (Gφ1) ∨ (φ1 U φ2). As a simple example,

consider the following LKS M . It has two states, the leftmost of which is the sole

initial state. Its set of atomic state propositions is {p, q, r}; the first state is labeled

142

with {p, q} and the second with {q, r}. M ’s transitions are similarly labeled with sets

of events drawn from the alphabet {a, b, c, d}.

p,q q,r

a,b

c

d

As the reader may easily verify, M |= G(c =⇒ Fr) but M 6|= G(b =⇒ Fr).

Note also that M |= G(d =⇒ Fr), but M 6|= G(d =⇒ XFr).

8.3.1 Automata-based Verification

We aim to reduce SE-LTL verification problems to standard automata-theoretic

techniques for LTL. Note that a standard—but unsatisfactory—way of achieving this

is to explicitly encode actions through changes in (additional) state variables, and

then proceed with LTL verification. Unfortunately, this technique usually leads to a

significant blow-up in the state space, and consequently yields much larger verification

times. The approach we present here, on the other hand, does not alter the size of the

LKS, and is therefore considerably more efficient. We first recall some basic results

about LTL, Kripke structures, and automata-based verification.

A Kripke structure is simply an LKS minus the alphabet and the transition-

labeling function; as for LKSs, the transition relation of a Kripke structure is required

to be total. An LTL formula is an SE-LTL formula which makes no use of events as

atomic propositions.

Definition 22 (Kripke Structure) A Kripke Structure (KS for short) is a 5-tuple

(S, Init,AP ,L,T) where: (i) S is a non-empty set of states, (ii) Init ⊆ S is a set

143

of initial states, (iii) AP is a set of atomic propositions, (iv) L : S → 2AP is a

propositional labeling function that maps every state to a set of atomic propositions

that are true in that state, and (v) T ⊆ S × S is a total transition relation.

The notion of paths, traces and languages for Kripke Structures is analogous to

those of Labeled Kripke Structures.

Definition 23 (Path and Trace) Let M be a KS. A path of M is an infinite

sequence 〈s0, s1, . . . 〉 such that: (i) s0 ∈ InitM and (ii) ∀i ≥ 0, si−→Msi+1. In

such a case, the infinite sequence 〈LM(s0),LM(s1), . . . 〉 is called a trace of M .

Definition 24 (Language) Let M be a KS. The language of M , denoted by L(M),

is defined as: L(M) = {π | π is a path of M}.

8.3.2 The Logic LTL

Given a KS M , we consider linear temporal logic (LTL) formulas over the set AP M .

Suppose p ranges over AP M . Then the syntax of LTL can be defined inductively as

follows:

φ ::= p | ¬φ | φ ∧ φ | Xφ | Gφ | Fφ | φ U φ

144

Let π = 〈s0, s1, . . .〉 be a path of M . For i ≥ 0, let πi denote the suffix of π starting

in state si. We then inductively define path-satisfaction of LTL formulas as follows:

π |= p iff p ∈ LM(s0)

π |= ¬φ iff π 6|= φ

π |= φ1 ∧ φ2 iff π |= φ1 and π |= φ2

π |= Xφ iff π1 |= φ

π |= Gφ iff ∀i > 0 � πi |= φ

π |= Fφ iff ∃i > 0 � πi |= φ

π |= φ1 U φ2 iff ∃i > 0 � πi |= φ2 and ∀0 6 j < i � πj |= φ1

We then let M |= φ iff, for every path π ∈ L(M), π |= φ. We also use the derived

(weak until) W operator: φ1 W φ2 ≡ (Gφ1) ∨ (φ1 U φ2). We now define a Büchi

automaton formally.

Definition 25 (Büchi Automaton) A Büchi Automaton (BA for short) is a 6-

tuple (S, Init,AP ,L,T,Acc) where: (i) S is a finite set of states, (ii) Init ⊆ S

is a set of initial states, (iii) AP is a finite set of atomic state propositions, (iv)

L : S → 22AP
is a state-labeling function, (v) T ⊆ S × S is a transition relation, and

(vi) Acc ⊆ S is a set of accepting states.

Note that the transition relation is not required to be total, and is moreover

unlabeled. Note also that the states of a Büchi automaton are labeled with arbitrary

functions over the set of atomic propositions AP . The idea is that each state of the

BA corresponds to a set of valuations to AP . For example, suppose AP = {p1, p2, p3}

and suppose that a state s of the BA is labeled with the function p1 ∧ ¬p2. Then

the state s can match any state of a Kripke structure where p1 is true and p2 is

145

false (the value of p3 can be either true or false). Thus a labeling of the state of

a BA is a constraint and not an actual valuation to all the propositions. The ability

to specify constraints enables us to construct Büchi automata with fewer number of

states. The notion of paths and languages for Büchi automata are quite natural and

we define them formally next.

Definition 26 (Path and Language) Let B be a BA. A path of B is an infinite

sequence 〈s0, s1, . . . 〉 such that: (i) s0 ∈ InitB and (ii) ∀i ≥ 0, si−→Bsi+1. For a

path π of B we denote by Inf(π) ⊆ SB the set of states of B which occur infinitely

often in π. Then the language of B, denoted by L(B), is defined as: L(B) = {π | π

is a path of B ∧ Inf(π) ∩ AccB 6= ∅}.

8.3.3 Product Automaton

Let M be a Kripke structure and B be a Büchi automaton such that AP M = APB.

We define the standard product M × B as a Büchi automata such that:

• SM×B = {(s, b) ∈ SM × SB | LM(s) ∈ LB(b)}

• InitM×B = {(s, b) ∈ SM×B | s ∈ InitM ∧ b ∈ InitB}

• APM×B = APB and ∀(s, b) ∈ SM×B � LM×B(s, b) = LB(b)

• ∀(s, b) ∈ SM×B � ∀(s′, b′) ∈ SM×B � (s, b)−→M×B(s′, b′) iff s−→Ms′ and b−→Bb′

• AccM×B = {(s, b) ∈ SM×B | b ∈ AccB}

The non-symmetrical standard product M ×B accepts exactly those paths of M

which are consistent with B. Its main technical use lies in the following result of

Gerth et. al. [61]:

146

Theorem 16 Given a Kripke structure M and LTL formula φ, there is a Büchi

automaton B¬φ such that M |= φ ⇐⇒ L(M × B¬φ) = ∅.

Theorem 16 is the core result that enables efficient LTL model checking. Given a

Kripke structure M and an LTL formula φ we first construct the Büchi automaton

B¬φ. We then check if L(M × B¬φ) = ∅ using a highly optimized double-depth-first-

search algorithm [46, 71]. Finally, if L(M × B¬φ) = ∅, we conclude that M |= φ.

Otherwise we conclude that M 6|= φ.

An efficient tool to convert LTL formulas into optimized Büchi automata is

Somenzi and Bloem’s wring [108, 113]. We now turn our attention back to labeled

Kripke structures. Recall that SE-LTL formulas allow events in ΣM to stand for

atomic propositions. Therefore, given an SE-LTL formula φ over AP M and ΣM , we

can interpret φ as an LTL formula over AP M ∪ ΣM ; let us denote the latter formula

by φ[. φ[is therefore syntactically identical to φ, but differs from φ in its semantic

interpretation.

8.3.4 State/Event Product

We now define the state/event product of a labeled Kripke structure with a Büchi

automaton. Let M be an LKS, and B be a Büchi automaton such that AP B =

APM ∪ΣM . The state/event product M ⊗B is a Büchi automaton that satisfies the

following conditions:

• SM⊗B = {(s, b) ∈ S × SB | ∃α ∈ ΣM � LM(s) ∪ {α} ∈ LB(b)}.

• InitM⊗B = {(s, b) ∈ SM⊗B | s ∈ InitM ∧ b ∈ InitB}

• APM⊗B = APB and ∀(s, b) ∈ SM⊗B � LM⊗B(s, b) = LB(b)

147

• ∀(s, b) ∈ SM⊗B � ∀(s′, b′) ∈ SM⊗B � (s, b)−→M⊗B(s′, b′) iff

∃α ∈ ΣM � s
α

−→M s′ ∧ b−→Bb′ ∧ (LM(s) ∪ {α}) ∈ LB(b)

• AccM⊗B = {(s, b) ∈ SM⊗B | b ∈ AccB}

The usefulness of a state/event product is captured by the following theorem.

Note that the state/event product does not require an enlargement of the LKS M ,

even though we consider below just such an enlargement in the course of the proof of

Theorem 17.

Theorem 17 For any LKS M and SE-LTL formula φ, the following holds:

M |= φ ⇐⇒ L(M ⊗ B¬φ[) = ∅

Proof. Observe that a state of M can have several differently-labeled transitions

emanating from it. However, by duplicating states (and transitions) as necessary,

we can transform M into another LKS M ′ having the following two properties: (i)

L(M ′) = L(M), and (ii) for every state s of M ′, the transitions emanating from s

are all labeled with the same action. As a result, the validity of an SE-LTL atomic

event proposition α in a given state of M ′ does not depend on the particular path

to be taken from that state, and can therefore be recorded as a propositional state

variable of the state itself. Formally, this gives rise to a Kripke structure M ′′ over

atomic state propositions AP M ∪ ΣM . We now claim that:

L(M ⊗ B¬φ[) = ∅ ⇐⇒ L(M ′′ × B¬φ[) = ∅. (8.1)

To see this, notice first that there is a bijection between µ : L(M) → L(M ′′).

Next, observe that any path in L(M ⊗ B¬φ[) can be decomposed as a pair (π, β),

where π ∈ L(M) and β ∈ L(B¬φ[); likewise, any path in L(M ′′ × B¬φ[) can be

148

decomposed as a pair (π′′, β), where π′′ ∈ L(M ′′) and β ∈ L(B¬φ[). A straightforward

inspection of the relevant definitions then reveals that (π, β) ∈ L(M ⊗ B¬φ[) iff

(µ(π), β) ∈ L(M ′′ × B¬φ[), which establishes our claim.

Finally, we clearly have M |= φ iff M ′ |= φ iff M ′′ |= φ[. Combining this with

Theorem 16 and Equation 8.1 above, we get M |= φ ⇐⇒ L(M ⊗ B¬φ[) = ∅, as

required.

�

The significance of Theorem 17 is that it enables us to make use of the highly

optimized algorithms [46, 71] and tools [108] available for verifying LTL formulas on

Kripke structures to verify SE-LTL specifications on labeled Kripke structures, at no

additional cost.

8.3.5 SE-LTL Counterexamples

In case an LKS M does not satisfy an SE-LTL formula φ we will need to construct a

counterexample so as to perform abstraction refinement. In this section, we present

the notion of a counterexamples to an SE-LTL formula formally. We begin with a

few well-known results.

Theorem 18 Let M1 and M2 be two LKSs and φ be an SE-LTL formula. Then the

following statement holds:

M1 4 M2 ∧ M2 |= φ =⇒ M1 |= φ

Proof. Follows directly from the following two facts:

M1 4 M2 =⇒ L(M1) ⊆ L(M2)

149

M2 |= φ =⇒ ∀π ∈ L(M2) � π |= φ

�

Theorem 19 Let M1 and M2 be two LKSs and φ be an SE-LTL formula. Then the

following statement holds:

M1 4 M2 ∧ M1 6|= φ =⇒ M2 6|= φ

Proof. Directly from Theorem 18.

�

Theorem 19 leads to the notion of a witness for the non-entailment of a SE-LTL

formula φ by an LKS M2. It essentially says that an LKS M1 is a witness for M2 6|= φ

iff M1 4 M2 and M1 6|= φ. Alternately such a witness M1 can be viewed as a

counterexample to M2 |= φ. In the rest of this chapter we will write Lasso to mean a

counterexample for SE-LTL since such counterexamples are shaped like a lasso. We

now present an algorithm for constructing Lassos.

Let M be an LKS and φ be an SE-LTL formula such that M 6|= φ. From

Theorem 17 we know that L(M ⊗ B¬φ[) 6= ∅. Let π⊗ = 〈(s0, b0), (s1, b1), . . . 〉 be

an arbitrary element of L(M ⊗ B¬φ[). Clearly there exists a sequence of actions

〈α0, α1, . . . 〉 such that the following two conditions hold: (i) 〈s0, α0, s1, α1, . . . 〉 ∈

L(M), and (ii) ∀i ≥ 0 � LM(si) ∪ {αi} ∈ LB
¬φ[

(bi). Let us denote the sequence

〈s0, α0, s1, α1, . . . 〉 by π. Since M has a finite number of states and a finite alphabet

(recall that in general M will be obtained by predicate abstraction of a program), π

induces an LKS CE such that:

• SCE = {si | i ≥ 0} InitCE = {s0} APCE = APM ΣCE = ΣM

150

• ∀s ∈ SCE � LCE(s) = LM(s) TCE = {(si, αi, si+1) | i ≥ 0}

The significance of CE is captured by the following result which essentially states

that CE is a Lasso for M 6|= φ.

Theorem 20 Let M be an LKS and φ be an SE-LTL formula. Suppose that M 6|= φ

and let CE be the LKS as described above. Then the following holds:

CE 4 M ∧ CE 6|= φ

Proof. To prove that CE 4 M we show that the relation R = {(s, s) | s ∈ SCE}

satisfies the following two conditions: (i) R is a simulation relation, and (ii) ∀s1 ∈

InitCE � ∃s2 ∈ InitM � (s1, s2) ∈ R.

Recall that π⊗ = 〈(s0, b0), (s1, b1), . . . 〉 was the arbitrary element of L(M ⊗ B¬φ[)

used to construct CE. To prove that CE 6|= φ we show that π⊗ ∈ L(CE ⊗ B¬φ[)

and hence L(CE ⊗ B¬φ[) 6= ∅.

�

Let us denote by ModelCheck an algorithm which takes as input an LKS M

and an SE-LTL formula φ. The algorithm checks for the emptiness of L(M ⊗ B¬φ[).

If L(M ⊗ B¬φ[) is empty, it returns “M |= φ”. Otherwise it computes (as described

above) and returns a Lasso CE for M 6|= φ.

Theorem 21 Algorithm ModelCheck is correct.

Proof. Follows from Theorem 17 and Theorem 20.

�

151

8.4 A Surge Protector

We describe a safety-critical current surge protector in order to illustrate the

advantages of state/event-based implementations and specifications over both the

pure state-based and the pure event-based approaches. The surge protector is meant

at all times to disallow changes in current beyond a varying threshold. The labeled

Kripke structure in Figure 8.1 captures the main functional aspects of such a protector

in which the possible values of the current and threshold are 0, 1, and 2. The threshold

value is stored in the variable m and the value of the current is stored in variable

c. Changes in threshold and current values are respectively communicated via the

events m0, m1, m2, and c0, c1, c2.

Note, for instance, that when m = 1 the protector accepts changes in current

to values 0 and 1, but not 2 (in practice, an attempt to hike the current up to

2 should trigger, say, a fuse and a jump to an emergency state, behaviors which

are here abstracted away). The reader may object that we have only allowed for

Boolean variables in our definition of labeled Kripke structures; it is however trivial

to implement more complex types, such as bounded integers, as boolean encodings,

and we have therefore elided such details here.

m=1m=0 m=2
m0
c0

m2

c0

m1

m0

m2

m1

m0

m1 c1

m2
c0

c2
c1

Figure 8.1: The LKS of a surge protector

152

The required specification is neatly captured as the following SE-LTL formula:

φse = G((c2 =⇒ m = 2) ∧ (c1 =⇒ (m = 1 ∨ m = 2))).

By way of comparison, Figure 8.2 represents the (event-free) Kripke structure

that captures the same behavior as the LKS of Figure 8.1. In this pure state-

based formalism, nine states are required to capture all the reachable combinations

of threshold (m = i) and last current changes (c = j) values. Note that the surge

protector does not guarantee c ≤ m. Indeed states where c > m (e.g., m = 1 and

c = 2) are reachable since the value of m can be decreased while keeping the value of

c unchanged.

m=0 m=1 m=2
c=2 c=2 c=2

m=0 m=1 m=2
c=1 c=1 c=1

m=0 m=1 m=2
c=0 c=0 c=0

Figure 8.2: The Kripke structure of a surge protector

The data (9 states and 39 transitions) compares unfavorably with that of the

LKS in Figure 8.1 (3 states and 9 transitions). Moreover, as the allowable current

ranges increase, the number of states of the LKS will grow linearly, as opposed to

quadratically for the Kripke structure. The number of transitions of both will grow

153

quadratically, but with a roughly four-fold larger factor for the Kripke structure.

These observations highlight the advantages of a state/event approach, which of

course will be more or less pronounced depending on the type of system under

consideration.

Another advantage of the state/event approach is witnessed when one tries to

write down specifications. In this instance, the specification we require is

φs = G(((c = 0 ∨ c = 2) ∧ X(c = 1)) =⇒ (m = 1 ∨ m = 2))∧

G(((c = 0 ∨ c = 1) ∧ X(c = 2)) =⇒ m = 2),

which is arguably significantly more complex than φse. The pure event-based

specification φe capturing the same requirement is also clearly more complex than

φse:

φe = G(m0 =⇒ ((¬c1) W (m1 ∨ m2)))∧

G(m0 =⇒ ((¬c2) W m2))∧

G(m1 =⇒ ((¬c2) W m2)).

The greater simplicity of the implementation and specification associated with

the state/event formalism is not purely a matter of aesthetics, or even a safeguard

against subtle mistakes; experiments also suggest that the state/event formulation

yields significant gains in both time and memory during verification. We implemented

three parameterized instances of the surge protector as simple C programs, in one

case allowing message passing (representing the LKS), and in the other relying solely

on local variables (representing the Kripke structure). We also wrote corresponding

specifications respectively as SE-LTL and LTL formulas (as above) and converted

these into Büchi automata using the tool wring [113]. Table 8.1 records the number

of Büchi states and transitions associated with the specification, as well as the time

154

Range Pure State Pure Event State/Event
St Tr B-T T-T St Tr B-T T-T St Tr B-T T-T

2 4 5 253 383 6 10 245 320 3 4 184 252
3 8 12 270 545 12 23 560 674 4 6 298 407
4 14 23 492 1141 20 41 1597 1770 5 8 243 391
5 22 38 1056 2326 30 64 3795 4104 6 10 306 497
6 32 57 2428 4818 42 92 12077 12660 7 12 614 962
7 44 80 6249 10358 56 125 54208 55064 8 14 930 1321
8 58 107 17503 24603 72 163 372784 374166 9 16 2622 3133
9 74 138 55950 67553 ∗ ∗ ∗ ∗ 10 18 8750 9488
10 92 173 195718 213969 ∗ ∗ ∗ ∗ 11 20 33556 34503
11 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 12 22 135252 136500
12 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 13 24 534914 536451
13 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 8.1: Comparison of pure state-based, pure event-based and state/event-based formalisms.

Values of c and m range between 0 and Range. St and Tr respectively denote the number

of states and transitions of the Büchi automaton corresponding to the specification. B-T is

the Büchi construction time and T-T is the total verification time. All times are reported in

milliseconds. A ∗ indicates that the Büchi automaton construction did not terminate in 10

minutes.

taken by magic to construct the Büchi automaton and confirm that the corresponding

implementation indeed meets the specification.

A careful inspection of the table in Table 8.1 reveals several consistent trends.

First, the number of Büchi states increases quadratically with the value of Range for

both the pure state-based and pure event-based formalisms. In contrast, the increase

is only linear when both states and events are used. We notice a similar pattern

among the number of transitions in the Büchi automata. The rapid increase in the

sizes of Büchi automata will naturally contribute to increased model checking time.

However, we notice that the major portion of the total verification time is required

to construct the Büchi automaton. While this time increases rapidly in all three

formalisms, the growth is observed to be most benign for the state/event scenario.

The net result is clearly evident from Table 8.1. Using both states and events allows

us to push the limits of c and m beyond what is possible by using either states or

events alone.

155

8.5 SE-LTL Verification of C Programs

In this section we present a compositional CEGAR framework for verifying C

programs against SE-LTL specifications. Our framework for SE-LTL will have the

same general structure as that for simulation presented in earlier chapters. The

crucial difference from simulation arises due to the difference in the structure of the

counterexamples. Recall that a Counterexample Witness for simulation always has a

tree-like structure and hence is acyclic. In contrast a Lasso always has an infinite path

and hence must also necessarily have a cycle. Thus we have to modify our algorithms

for counterexample validation and abstraction refinement to take into account the

cyclic structure present in Lassos.

8.5.1 Compositional Lasso Validation

The notion of projections for Lassos is exactly the same as that for Counterexample

Witnesses since projections are defined on LKSs and are unaffected by the presence

or absence of cycles. The algorithm for validating Lasso projections is called

WeakSimLasso and is presented in Procedure 8.1. WeakSimLasso takes as input

a projected Lasso CE, a component C, and a context γ for C. It returns true if

CE - [[C]]γ and false otherwise. WeakSimLasso manipulates sets of states of

[[C]]γ using the symbolic techniques presented in Section 3.4. In particular it uses the

functions PreImage and Restrict to compute pre-images and restrict sets of states

with respect to propositions.

WeakSimLasso iteratively computes for each state s of CE, the set of states

Sim(s) of [[C]]γ which can weakly simulate s. It returns true if Sim(InitCE) ∩

Init[[C]]γ 6= ∅, otherwise it returns false. Note that the process of computing Sim

156

Procedure 8.1 WeakSimLasso returns true iff CE - [[C]]γ .

Algorithm WeakSimLasso(CE, C, γ)

- CE : is a Lasso, C : is a component, γ : is a context for C

let CE = (S1, Init1,AP 1,L1, Σ1,T1);

let [[C]]γ = (S2, Init2,AP 2,L2, Σ2,T2);

//[[C]]γ is the concrete semantics of C with respect to γ

for each s ∈ S1, Sim(s) := Restrict(S2,L1(s));

//Sim is a map from S1 to 2S2

//intuitively, Sim(s) contains the states of [[C]]γ which can weakly simulate s

//initially, Sim(s) = subset of S2 with same propositional labeling as s

forever do

if Sim(Init1) ∩ Init2 = ∅ then return false;

OldSim := Sim;

for each s
α

−→ s′ ∈ T1 //s′ is a successor state of s

if (α = τ) then Sim(s) := Sim(s) ∩ Sim(s′);

else Sim(s) := Sim(s) ∩ PreImage(Sim(s′), α);

if Sim = OldSim then return true;

essentially involves the computation of a greatest fixed point and might not terminate

in general. Hence WeakSimLasso is really a semi-algorithm. But this situation can

hardly be improved since checking if CE - [[C]]γ is an undecidable problem in general.

Theorem 22 Algorithm WeakSimLasso is correct.

Proof. From the definition of weak simulation, the correctness of Restrict and

PreImage, and the fact that τ 6∈ ΣCγ .

�

8.5.2 Abstraction Refinement

Algorithm AbsRefSELTL, presented in Procedure 8.2 refines an abstraction on the

basis of a spurious Lasso projection. It is very similar to algorithm AbsRefMin

157

(Procedure 7.1) and we will not explain it further here. In order to check if a set of

branches B can eliminate a spurious Lasso CE, it first creates a predicate abstraction

M̂ using B as the set of seed branches. It then invokes procedure AbsSimLasso to

check if M̂ can weakly simulate CE. As we already know, B can eliminate CE iff M̂

cannot weakly simulate CE.

Note that, as in the case for simulation conformance, our algorithm for

constructing predicate mappings can only derive predicates from branch conditions.

Therefore, in principle, we might be unable to eliminate a spurious Lasso. In the

context of algorithm AbsRefSELTL, this means that we could end up trying all

sets of branches without finding an appropriate refined abstraction M̂ . In such a case

we return error.

Procedure 8.2 AbsRefSELTL returns a refined abstraction for C that eliminates a spurious

Lasso projection CE and error on failure. The parameter φ initially expresses constraints

about branches which can eliminate all previous spurious Lasso projections. AbsRefSELTL

also updates φ with the constraints for the new spurious Lasso projection CE.

Algorithm AbsRefSELTL(CE, C, φ, γ)

- CE : is a spurious Lasso, φ : is a Boolean formula

- C : is a component, γ : is a context for C

φCE := false;

for each B ⊆ BC //BC is the set of branches in C

Π := PredInfer(C, γ, B); //Π is set of predicates inferred from B

M̂ := [[[C]]]Πγ ; //M̂ is the predicate abstraction of C using Π

if ¬AbsSimLasso(CE, M̂) then φCE := φCE ∨
∧

bi∈B vi;

//M̂ cannot weakly simulate CE, hence B can eliminate CE

φ := φ ∧ φCE; //update φ with the constraints for CE

invoke PBS to solve (φ, Σk
i=1vi);

if φ is unsatisfiable then return error; //no set of branches can eliminate CE

else let s = solution returned by PBS;

let {v1, . . . , vm} = variables assigned true by sopt and B = {b1, . . . , bm};

Π := PredInfer(C, γ, B); //Π is the set of predicates inferred from B

return [[[C]]]Πγ ; //return the predicate abstraction of C using Π

158

Procedure 8.3 AbsSimLasso returns true iff M̂ can weakly simulate CE.

Algorithm AbsSimLasso(CE, M̂)

- CE : is a Lasso, M̂ : is an LKS obtained by predicate abstraction

let CE = (S, Init,AP ,L, Σ,T);

let M̂ =
(
Ŝ, Înit, ÂP , L̂, Σ̂, T̂

)
;

for each s ∈ S, Sim(s) := {ŝ ∈ Ŝ | L̂(ŝ) = L(s)};

//Sim is a map from S to 2Ŝ

//intuitively, Sim(s) contains the states of M̂ which can weakly simulate s

//initially, Sim(s) = subset of Ŝ with same propositional labeling as s

forever do

if Sim(Init) ∩ Înit = ∅ then return false;

OldSim := Sim; //save old map for subsequent fixed point detection

for each s
α

−→ s′ ∈ T //s′ is a successor state of s

if (α = τ) then Sim(s) := Sim(s) ∩ Sim(s′);

else Sim(s) := {ŝ ∈ Sim(s) | Succ(ŝ, α) ∩ Sim(s′) 6= ∅};

if Sim = OldSim then return true;

//fixed point reached, hence M̂ weakly simulates CE

Theorem 23 Algorithm AbsRefSELTL is correct.

Proof. It is obvious that AbsRefSELTL either returns error or a refined

abstraction M̂ such that for all spurious Lasso projections CE seen so far, CE 6- M̂ .

�

8.6 CEGAR for SE-LTL

The complete CEGAR algorithm in the context of SE-LTL conformance, called

SELTL-CEGAR, is presented in Procedure 8.4. It invokes at various

stages algorithms PredInfer, the predicate abstraction algorithm, ModelCheck,

WeakSimLasso and AbsRefSELTL. It takes as input a program P , an SE-LTL

159

specification LKS φ and a context Γ for P and outputs either “P |= φ” or “P 6|= φ”

or error. Intuitively SELTL-CEGAR works as follows.

Procedure 8.4 SELTL-CEGAR checks entailment between a program P and an SE-LTL

specification φ in a context Γ.

Algorithm SELTL-CEGAR(P , φ, Γ)

- P : is a program, Γ : is a context for P , φ : is an SE-LTL formula

let P = 〈C1, . . . , Cn〉 and Γ = 〈γ1, . . . , γn〉;

for each i ∈ {1, . . . , n}

Πi := PredInfer(Ci, γi, ∅) and M̂i := [[[Ci]]]
Πi

γi
and φi = true;

//M̂i = initial predicate abstractions of Ci with empty set of seed branches

forever do

let M̂ = M̂1 ‖ · · · ‖ M̂n;

//M̂ is the composition of predicate abstractions

if (ModelCheck(M̂, φ) = “M̂ |= φ”) return “P |= φ”;

//if M̂ satisfies φ then so does P

let CE = Lasso returned by ModelCheck;

find i ∈ {1, . . . , n} such that ¬WeakSimLasso(CE � γi, Ci, γi);

//check compositionally if CE is spurious

if (no such i found) return “P 6|= φ”; //CE is valid and hence P 6|= φ

if (AbsRefSELTL(CE � γi, Ci, φi, γi) = error) return error;

//no set of branches can eliminate CE � γi

M̂i := AbsRefSELTL(CE � γi, Ci, φi, γi); //refine the abstraction and repeat

Let P = 〈C1, . . . , Cn〉. Then SELTL-CEGAR maintains a set of abstractions

M̂1, . . . , M̂n where M̂i is a predicate abstraction of Ci for i ∈ {1, . . . , n}. Note that

by Theorem 7, M̂ = M̂1 ‖ · · · ‖ M̂n is an abstraction of P . Initially each M̂i is set

to the predicate abstraction of Ci corresponding to an empty set of seed branches.

Also for each Ci, SELTL-CEGAR maintains a boolean formula φi (initialized to

true) used for predicate minimization. Next SELTL-CEGAR iteratively performs

the following steps:

1. (Verify) Invoke algorithm ModelCheck to check if M̂ satisfies φ. If

160

ModelCheck returns “M̂ |= φ” then output “P |= φ” and exit. Otherwise

let CE be the Lasso returned by ModelCheck. Go to step 2.

2. (Validate) For i ∈ {1, . . . , n} invoke WeakSimLasso(CE � γi, Ci, γi). If

every invocation of WeakSimLasso returns true then output “P 6|= φ”

and exit. Otherwise let i be the minimal element of {1, . . . , n} such that

WeakSimLasso(CE � γi, Ci, γi) returns false. Go to step 3.

3. (Refine) Invoke AbsRefSELTL(CE � γi, Ci, φi, γi). If AbsRefSELTL

returns error, output error and stop. Otherwise set M̂i to the abstraction

returned by AbsRefSELTL. Repeat from step 1.

Theorem 24 Algorithm SELTL-CEGAR is correct.

Proof. When SELTL-CEGAR returns “P |= φ” its correctness follows from

Theorem 7, Theorem 21 and Theorem 1. When SELTL-CEGAR returns “P 6|= φ”

its correctness follows from Theorem 12, Theorem 22 and Theorem 23.

�

8.7 Experimental Results

We experimented with two broad sets of benchmarks. All our experiments were

performed on an AMD Athlon XP 1600+ machine with 900 MB RAM running RedHat

Linux 7.1. The first set of our examples were based on OpenSSL. This is a popular

protocol used for secure exchange of sensitive information over untrusted networks.

The target of our verification process was the implementation of the initial handshake

required for the establishment of a secure channel between a client and a server.

161

Name St(B) Tr(B) St(Mdl) T(BA) T(Mdl) T(Ver) T(Total) Mem
srvr-1-ss 4 5 5951 213 32195 1654 34090 -
srvr-1-se 3 4 4269 209 18116 1349 19674 -

srvr-2-ss 11 23 4941 292 31331 2479 34102 -
srvr-2-se 3 4 4269 196 17897 1317 19410 -

srvr-3-ss 37 149 5065 1147 26958 4031 32137 -
srvr-3-se 3 4 4269 462 17950 1908 20319 -

srvr-4-ss 16 41 5446 806 29809 7382 39341 28.6
srvr-4-se 7 14 4333 415 21453 3513 25906 24.1

srvr-5-ss 25 47 7951 690 48810 6842 56888 39.3
srvr-5-se 20 45 4331 497 18808 2925 22765 24.2

clnt-1-ss 16 41 4867 793 24488 1235 26953 25.8
clnt-1-se 7 14 3693 376 17250 583 18683 22.1

clnt-2-ss 25 47 7574 699 43592 1649 46444 38.1
clnt-2-se 18 40 3691 407 15304 1087 17269 21.2

ssl-1-ss 25 47 24799528 874 65585 * * 850.5
ssl-1-se 20 45 13558984 655 33091 2172139 2206983 162.4

ssl-2-ss 25 47 32597042 836 66029 * * 346.6
ssl-2-se 18 40 15911791 713 34641 4148550 4185068 320.7

UCOS-BUG 8 14 873 205 3409 261 3880 -
UCOS-1 8 14 873 194 3365 2797 6357 -
UCOS-2 5 8 873 123 3372 2630 6127 -

Table 8.2: Experimental results with OpenSSL and µC/OS-II. St(B) and Tr(B) =

respectively the number of states and transitions in the Büchi automaton; St(Mdl) = number

of states in the model; T(Mdl) = model construction time; T(BA) = Büchi construction

time; T(Ver) = model checking time; T(Total) = total verification time. All reported times

are in milliseconds. Mem is the total memory requirement in MB. A * indicates that the model

checking did not terminate within 2 hours and was aborted. In such cases, other measurements

were made at the point of forced termination. A - indicates that the corresponding measurement

was not taken.

From the official SSL specification [109] we derived a set of nine properties that

every correct SSL implementation should satisfy. The first five properties are relevant

only to the server, the next two apply only to the client, and the last two properties

refer to both a server and a client executing concurrently. For instance, the first

property states that whenever the server asks the client to terminate the handshake,

it eventually either gets a correct response from the client or exits with an error code.

The second property expresses the fact that whenever the server receives a handshake

request from a client, it eventually acknowledges the request or returns with an error

code. The third property states that a server never exchanges encryption keys with

162

a client once the cipher scheme has been changed.

Each of these properties were then expressed in SE-LTL, once using only states

and again using both states and events. Table 8.2 summarizes the results of our

experiments with these benchmarks. The SSL benchmarks have names of the form

x-y-z where x denotes the type of the property and can be either srvr, clnt or ssl,

depending on whether the property refers respectively to only the server, only the

client, or both server and client. y denotes the property number while z denotes the

specification style and can be either ss (only states) or se (both states and events).

We note that in each case the numbers for state/event properties are considerably

better than those for the corresponding pure-state properties.

The second set of our benchmarks were obtained from the source code of µC/OS-II

version 2.70 (which we will refer to simply as µC/OS-II in the rest of this thesis).

This is a popular, lightweight, real-time, multi-tasking operating system written in

about 6000 lines of ANSI C. µC/OS-II uses a lock to ensure mutual exclusion for

critical section code. Using SE-LTL we expressed two properties of µC/OS-II: (i) the

lock is acquired and released alternately starting with an acquire and (ii) every time

the lock is acquired it is eventually released. These properties were expressed using

only events.

We found four bugs in µC/OS-II that causes it to violate the first property. One

of these bugs was unknown to the developers while the other three had been found

previously. The second property was found to be valid. In Table 8.2 these experiments

are named UCOS-BUG and UCOS-2 respectively. Next we fixed the bug and

verified that the first property holds for the corrected µC/OS-II. This experiment is

called UCOS-1 in Table 8.2.

163

164

Chapter 9

Two-Level Abstraction Refinement

In this chapter, we attempt to address the state-space explosion problem in the

context of verifying simulation conformance between a concurrent (message-passing)

C program and an LKS specification. More specifically, we present a fully

automated compositional framework which combines two orthogonal abstraction

techniques (operating respectively on data and events) within a counterexample

guided abstraction refinement (CEGAR) scheme. In this way, our algorithm

incrementally increases the granularity of the abstractions until the specification is

either established or refuted. Our explicit use of compositionality delays the onset

of state space explosion for as long as possible. To our knowledge, this is the first

compositional use of CEGAR in the context of model checking concurrent C programs.

We describe our approach in detail, and report on some very encouraging preliminary

experimental results obtained with our tool magic.

165

9.1 Introduction

As mentioned before, there has been a tremendous amount of research and

advancement over the years devoted to the abstract modeling and validation of

concurrent systems and their specifications. However, the majority of these advances

target specific—and often orthogonal—aspects of the problem, but fail to solve it as

a whole. The work we present here attempts to provide a more complete approach to

efficiently verify global specifications on concurrent C programs in a fully automated

way. More specifically, we focus on reactive systems, implemented using concurrent C

programs that communicate with each other through synchronous (blocking) message-

passing. Examples of such systems include client-server protocols, web services [15],

schedulers, telecommunication applications, etc. As in previous chapters, we consider

specifications expressed as LKSs.

We propose a fully automated compositional two-level counterexample guided

abstraction refinement scheme to verify that a concurrent C program P conforms to

an LKS specification Sp in a context Γ. Let us assume that our program P consists of

a set of components 〈C1, . . . , Cn〉. Naturally, our program context Γ must also consist

of a set of component contexts 〈γ1, . . . , γn〉, one for each component Ci.

We first transform each Ci into a finite-state predicate abstraction Ĉi. Since

the parallel composition of these predicate abstractions may well still have an

unmanageably large state space, we further reduce each Ĉi by conservatively

aggregating states together, based on the actions they can perform, yielding a smaller

action-guided abstraction Ai; only then do we explicitly build the global state space

of the much coarser parallel composition A = A1 ‖ . . . ‖ An.

Recall that [[P]]Γ denotes the concrete semantics of our program P . We know that

166

by construction, [[P]]Γ 4 A, i.e., A exhibits all of P ’s behaviors, and usually many

more. We check A 4 Sp. If successful, we conclude that [[P]]Γ 4 Sp. Otherwise,

we must examine the Counterexample Witness obtained to determine whether it is

valid or not. It is important to note that this validation can be carried out not only

component-wise (as in previous chapters), but also level-wise. Furthermore, we are

able to avoid constructing in full the large state space of P .

A valid Counterexample Witness shows P 64 Sp and thus terminates the

procedure. Otherwise, a (component-specific) refinement of the appropriate

abstraction is carried out, eliminating the spurious Counterexample Witness, and

the algorithm proceeds with a new iteration of the verification cycle. The crucial

features of our approach therefore consist of the following:

• We leverage two very different kinds of abstraction to reduce a concurrent C

program to a very coarse parallel composition of finite-state processes. The

first (predicate) abstraction partitions the (potentially infinite) state space

according to the possible values of variables, whereas the second (action-guided)

abstraction groups these resulting states together according to the actions that

they can perform.

• A counterexample guided abstraction refinement scheme incrementally refines

these abstractions until the right granularity is achieved to decide whether

the specification holds or not. We note that while termination of the entire

algorithm obviously cannot be guaranteed1, all of our experimental examples

could be handled without requiring human input.

• Our use of compositional reasoning, grounded in standard process algebraic

1This of course follows from the fact that the halting problem is undecidable.

167

techniques, enables us to perform most of our analysis component by

component, without ever having to construct global state spaces except at the

most abstract level.

The verification procedure is fully automated, and requires no user input beyond

supplying the C programs and the specification to be verified. We have implemented

the algorithm within our tool magic [24, 80] and have carried out a number of case

studies, which we report here. To our knowledge, our algorithm is the first to invoke

CEGAR over more than a single abstraction refinement scheme (and in particular over

action-based abstractions), and also the first to combine CEGAR with fully automatic

compositional reasoning for concurrent systems.

The experiments we have carried out range over a variety of sequential and

concurrent examples, and yield promising results. The two-level approach constructs

models that are often almost two orders of magnitude smaller than those generated

by predicate abstraction alone. This also translates to over an order of magnitude

reduction in actual memory requirement. Additionally, the two-level approach is

faster, especially in the concurrent benchmarks where it often reduces verification

time by a factor of over three. Full details are presented in Section 9.6.

9.2 Related Work

Predicate abstraction was introduced in [63] as a means to transform conservatively

infinite-state systems into finite-state ones, so as to enable the use of finitary

techniques such as model checking [32, 39]. It has since been widely used—see, for

instance [5, 42, 44, 48, 50, 89].

The formalization of the more general notion of abstraction first appeared in [47].

168

We distinguish between exact abstractions, which preserve all properties of interest

of the system, and conservative abstractions—used in this chapter—which are only

guaranteed to preserve safety properties of the system (e.g., [36, 75]). The advantage

of the latter is that they usually lead to much greater reductions in the state space

than their exact counterparts. However, conservative abstractions in general require

an iterated abstraction refinement mechanism (such as CEGAR [37]) in order to

establish specification satisfaction.

The abstractions we use on finite-state processes essentially group together states

that can perform the same set of actions, and gradually refine these partitions

according to reachable successor states. Our refinement procedure can be seen as

an atomic step of the Paige-Tarjan algorithm [96], and therefore yields successive

abstractions which converge in a finite number of steps to the bisimulation quotient

of the original process.

CEGAR has been used, among others, in non-automated [90], and automated [6,

29, 40, 66, 77, 98] forms. Compositionality, which features crucially in our work,

is broadly concerned with the preservation of properties under substitution of

components in concurrent systems. It has been most extensively studied in process

algebra (e.g., [69, 85, 100]), particularly in conjunction with abstraction. In [10], a

compositional framework for (non-automated) CEGAR over data-based abstractions

is presented. This approach differs from ours in that communication takes place

through shared variables (rather than blocking message-passing), and abstractions are

refined by eliminating spurious transitions, rather than by splitting abstract states.

A technique closely related to compositionality is that of assume-guarantee

reasoning [64, 67, 84]. It was originally developed to circumvent the difficulties

associated with generating exact abstractions, and has recently been implemented

169

as part of a fully automated and incremental verification framework [41].

Among the works most closely resembling ours we note the following. The Bandera

project [44] offers tool support for the automated verification of Java programs

based on abstract interpretation; there is no automated CEGAR and no explicit

compositional support for concurrency. Păsăreanu et. al. [98] import Bandera-derived

abstractions into an extension of Java PathFinder which incorporates CEGAR.

However, once again no use is made of compositionality, and only a single level of

abstraction is considered. Stoller [111, 112] describes another tool implemented in

Java PathFinder which explicitly supports concurrency; it uses data-type abstraction

on the first level, and partial order reduction with aggregation of invisible transitions

on the second level. Since all abstractions are exact it does not require the use of

CEGAR. The slam project [5, 6, 107] has been very successful in analyzing interfaces

written in C. It is built around a single-level predicate abstraction and automated

CEGAR treatment, and offers no explicit compositional support for concurrency.

Lastly, the blast project [13, 65, 66] proposes a single-level (i.e., only predicate

abstraction) lazy (on-the-fly) CEGAR scheme and thread-modular assume-guarantee

reasoning. The blast framework is based on shared variables rather than message-

passing as the communication mechanism.

The next section presents a series of standard definitions that are used throughout

the rest of this chapter. Section 9.5 then describes the two-level CEGAR algorithm.

Finally, Section 9.6 summarizes the results of our experiments.

170

9.3 Abstraction

Recall, from Definition 1, than an LKS is a 6-tuple (S, Init,AP ,L, Σ,T). In this

section we present our notion of abstraction. Our framework employs quotient LKSs

as abstractions of concrete LKSs. Given a concrete LKS M , one can obtain a quotient

LKS as follows. The states of the quotient LKS are obtained by grouping together

states of M such that all states in a particular group agree on their propositional

labeling. Alternatively, one can view these groups as equivalence classes of some

equivalence relation on SM . Transitions of the quotient LKS are defined existentially.

We now present a formal definition of these concepts.

Definition 27 (Propositional Compatibility) Let M = (S, Init,AP ,L, Σ,T) be

any LKS. An equivalence relation R ⊆ S × S is said to be propositionally compatible

iff the following condition holds:

∀s1 ∈ S � ∀s2 ∈ S � (s1, s2) ∈ R =⇒ L(s1) = L(s2)

Definition 28 (Quotient LKS) Let M = (S, Init,AP ,L, Σ,T) be an LKS and

R ⊆ S × S be a propositionally compatible equivalence relation. For an arbitrary

s ∈ S we let [s]R denote the equivalence class of s. M and R then induce a quotient

LKS MR =
(
SR, InitR,AP R,LR, ΣR,TR

)
where: (i) SR = {[s]R | s ∈ S}, (ii)

InitR = {[s]R | s ∈ Init}, (iii) AP R = AP , (iv) ∀[s]R ∈ SR � LR([s]R) = L(s) (note

that this is well-defined because R is propositionally compatible), (v) ΣR = Σ, and

(vi) TR = {([s]R, α, [s′]R) | (s, α, s′) ∈ T}.

In the rest of this chapter we will only restrict ourselves to propositionally

compatible equivalence relations. We write [s] to mean [s]R when R is clear from

the context. MR is often called an existential abstraction of M . The states of M are

171

referred to as concrete states while those of MR are called abstract states. Quotient

LKSs have been studied in the verification literature. In particular, the following

result is well-known [39].

Theorem 25 Let M = (S, Init,AP ,L, Σ,T) be an LKS, R an equivalence relation

on S, and MR the quotient LKS induced by M and R. Then M 4 MR.

9.4 Counterexample Validation and Refinement

Recall that our program P consists of a set of components 〈C1, . . . , Cn〉 and our

program context Γ consists of a set of component contexts 〈γ1, . . . , γn〉, one for each

Ci. Our goal is to verify whether P 4 Sp.

For i ∈ {1, . . . , n}, let us denote by Mi the LKS obtained by predicate

abstraction of Ci, and let Ri be an equivalence relation over SMi
. Suppose CW is

a Counterexample Witness for (MR1

1 ‖ · · · ‖ MRn
n) 4 Sp. We would now like to verify

in a component-wise manner whether CW is a valid Counterexample Witness. Recall

that this involves checking whether CW � γi - Ci for i ∈ {1, . . . , n}.

However we want to perform our validation check also in a level-wise manner. In

other words we first check, for i ∈ {1, . . . , n}, whether CW � γi - Mi. If this is

not the case for some i ∈ {1, . . . , n}, we refine the abstraction MRi
i and repeat the

simulation check. Otherwise we proceed with checking CW � γi - Ci and subsequent

refinement (if required) as described in earlier chapters.

In our framework, refinement of action-guided abstractions involves computing

proper refinements of equivalence relations based on abstract successors. We now

present this refinement scheme, beginning with a few preliminary definitions.

172

Definition 29 (Equivalence Refinement) Let R1 and R2 be two equivalence

relations over some set S. Then R1 is said to be a refinement of R2 iff the following

condition holds:

∀s ∈ S � [s]R1 ⊆ [s]R2

R1 is said to be a proper refinement of R2 iff the following condition holds:

(
∀s ∈ S � [s]R1 ⊆ [s]R2

)
∧
(
∃s ∈ S � [s]R1 ⊂ [s]R2

)

Definition 30 (Abstract Successor) Let M = (S, Init,AP ,L, Σ,T) be an LKS,

and R ⊆ S × S be an equivalence relation. Let MR =
(
SR, InitR,AP R,LR, ΣR,TR

)
,

s ∈ S and α ∈ Σ. Then the function Ŝucc : S × Σ → 2SR

is defined as follows:

Ŝucc(s, α) = {[s′]R ∈ SR | s′ ∈ Succ(s, α)}

In other words, [s′]R ∈ SR is an abstract successor of s under action α iff M has

an α-labeled transition from s to some element of [s′]R.

9.4.1 Splitting Equivalence Classes

Given M , R, [s]R ∈ SR and A ⊆ Σ, we denote by Split(M,R, [s]R, A) the equivalence

relation obtained from R by sub-partitioning the equivalence class [s]R according to

the following scheme: ∀s1, s2 ∈ [s]R, s1 and s2 belong to the same sub-partition of

[s]R iff ∀α ∈ A � Ŝucc(s1, α) = Ŝucc(s2, α).

Note that the equivalence classes (abstract states) other than [s]R are left

unchanged. Recall Definition 29 of refinement between equivalence relations. It is easy

to see that Split(M,R, [s]R, A) is a refinement of R. In addition, Split(M,R, [s]R, A)

is a proper refinement of R iff [s]R is split into more than one piece, i.e., if the following

173

condition holds:

∃α ∈ A � ∃s1 ∈ [s]R � ∃s2 ∈ [s]R � ∃[s′]R ∈ SR�

[s′]R ∈ Ŝucc(s1, α) ∧ [s′]R 6∈ Ŝucc(s2, α) (9.1)

The correctness of the above claim is easy to see since if Condition 9.1 holds, then

according to our definition, s1 and s2 must belong to different sub-partitions of [s]R

after the application of Split.

9.4.2 Checking Validity of a Counterexample Witness

Let M be an LKS obtained by predicate abstraction from a component and R be

an equivalence relation on the states of M . Let CW be a Counterexample Witness

projection such that CW - MR where MR is the quotient LKS induced by M

and R. Recall that we are interested to check if CW - M . This is achieved

by algorithm WeakSimulAG shown in Figure 9.1. WeakSimulAG first invokes

algorithm CanSimulAG (shown in Figure 9.2) to compute the set S of states of M

which can weakly simulate the initial state Init of CW . It then returns true if some

initial state of M belongs to S and false otherwise.

Procedure 9.1 WeakSimulAG returns true if CW - M and false otherwise.

Algorithm WeakSimulAG(CW,M)

- CW : is a Counterexample Witness projection, M : is an LKS

let Init = initial state of CW ;

S := CanSimulAG(CW, Init,M);

let Init′ = set of initial states of M ;

return (S ∩ Init′ 6= ∅);

174

Procedure 9.2 CanSimulAG returns the set of states of M which can weakly simulate s.

Algorithm CanSimulAG(CW, s,M)

- CW : is a Counterexample Witness projection, s : is a state of CW

- M : is an LKS

let CW = (S1, Init1,AP 1,L1, Σ1,T1);

let M = (S2, Init2,AP 2,L2, Σ2,T2);

S := Restrict(S2,L1(s)); //S = subset of S2 with same propositional labeling as s

for each s
α

−→ s′ ∈ T1 //s′ is a successor state of s

S ′ := CanSimulAG(CW, s′,M); //compute result for successor

if (α 6= τ) then S ′ := {s′ ∈ S2 | Succ(s′, α) ∩ S ′ 6= ∅}; //take non-τ pre-image

S := S ∩ S ′; //update result

return S;

9.4.3 Refining an Action-Guided Abstraction

In the previous section we described an algorithm to check if a Counterexample

Witness projection CW is weakly simulated by an LKS M . If this is the case then we

know that CW is a valid Counterexample Witness projection. However, if CW 6- M

then we need to properly refine our equivalence relation R so as to obtain a more

precise quotient LKS for the next iteration of the CEGAR loop. In this section we

present an algorithm to refine R given that CW 6- M .

We begin with the notion of a simulation map. Intuitively, given two LKSs M1

and M2, a simulation map is a function that maps each state of M1 to a state of M2

which weakly simulates it.

Definition 31 (Simulation Map) Let M1 = (S1, Init1,AP 1,L1, Σ1,T1) and M2 =

(S2, Init2,AP 2,L2, Σ2,T2) be two LKSs such that: (SM1) M1 has a tree structure,

(SM2) τ ∈ Σ1, and (SM3) τ 6∈ Σ2. Then a function θ : S1 → S2 is said to be a

simulation map between M1 and M2 iff it obeys the following conditions:

∀s ∈ S1 � L1(s) = L2(θ(s))

175

∀s ∈ Init1 � θ(s) ∈ Init2

∀α ∈ Σ1 \ {τ} � ∀s ∈ S1 � ∀s′ ∈ S1 � s
α

−→ s′ =⇒ θ(s)
α

−→ θ(s′)

∀s ∈ S1 � ∀s′ ∈ S1 � s
τ

−→ s′ =⇒ θ(s) = θ(s′)

Clearly, if conditions SM1–SM4 above are satisfied, then there exists a simulation

map θ between M1 and M2 iff M1 - M2. Figure 9.1 shows such a simulation map θ on

the left. Moreover, suppose we have another LKS M3 = (S3, Init3,AP 3,L3, Σ3,T3)

and suppose that there is a function ν : S2 → S3 such that the following conditions

hold:

(NU1) ∀s ∈ S2 � L2(s) = L3(ν(s))

(NU2) ∀s ∈ Init2 � ν(s) ∈ Init3

(NU3) ∀α ∈ Σ2 � ∀s ∈ S2 � ∀s′ ∈ S2 � s
α

−→ s′ =⇒ ν(s)
α

−→ ν(s′)

Then it is obvious that the composition of θ and ν, i.e., θ ◦ ν, is a simulation map

between M1 and M3. Figure 9.1 shows such a composition simulation map on the

right.

M1 M1M2 M2

α

τ

θ

θ

θ

α

ν

ν

θ ο ν

θ ο ν

θ ο ν
α

α

τ

θ

θ

θ

α

M3

Figure 9.1: On the left is a simulation map θ between M1 and M2. On the right is a simulation

map θ ◦ ν between M1 and M3.

176

Let M be an LKS obtained by predicate abstraction from a component and R be

an equivalence relation over the states of M . Let CW be a Counterexample Witness

projection such that CW - MR. Clearly there exists a simulation map θ between

CW and MR, where MR is the quotient LKS induced by M and R.

Now suppose that CW 6- M . Then we claim that there exists a state [s] ∈

Range(θ) and an outgoing action α from [s] such that splitting the equivalence class

[s] on the basis of α (cf. Section 9.4.1) will yield a proper refinement of R.

To understand why this claim is true, consider the converse. In other words

suppose that for every [s] ∈ Range(θ) and for every outgoing action α from [s],

splitting [s] on the basis of α does not yield a proper refinement. This means that

every element of [s] must have the same set of abstract successors (cf. Definition 30)

on α. But then, it follows that we can define a mapping ν from Range(θ) to the

states of M which satisfies conditions NU1–NU3 above. This would mean of course

that θ ◦ν would be a simulation map from CW to M which would further imply that

CW - M . This is clearly a contradiction.

The summary of the above paragraph is that if CW 6- M , then there exists

a state [s] ∈ Range(θ) and an outgoing action α from [s] such that splitting the

equivalence class [s] on the basis of α will yield a proper refinement of R. Our

algorithm AbsRefineAG to refine R is therefore very simple. For each equivalence

class [s] ∈ Range(θ), and for each outgoing action α from [s], AbsRefineAG

attempts to split [s] on the basis of α. AbsRefineAG stops as soon as a proper

refinement of R is obtained.

177

9.4.4 Overall Action-Guided Abstraction Refinement

Our algorithm to check the validity of CW at the action-guided abstraction

level is called ValidateAndRefineAG and is presented in Figure 9.3.

ValidateAndRefineAG takes as input a composition of quotient LKSs M̂ = M̂1

R1

‖

· · · ‖ M̂n

Rn

and a Counterexample Witness CW . For each i ∈ {1, . . . , n}, it attempts

to either verify that CW � γi - M̂i or refine the abstraction M̂i

Ri

.

To do this it first invokes WeakSimulAG to check if CW � γi - M̂i. Is

WeakSimulAG returns true, it proceeds with the next index i. Otherwise it

invokes AbsRefineAG to construct a proper refinement of the equivalence relation

Ri. ValidateAndRefineAG returns true if the some abstraction M̂i

Ri

was refined

and false otherwise.

Procedure 9.3 ValidateAndRefineAG checks the validity of CW at the action-guided

abstraction level. It returns false if CW is found to be valid. Otherwise it properly refines

some equivalence relation Ri and returns true.

Algorithm ValidateAndRefineAG(M̂,CW)

- M̂ : is a composition of quotient LKSs

- CW : is a Counterexample Witness

let M̂ = M̂1

R1

‖ · · · ‖ M̂n

Rn

; //components of M̂

for i = 1 to n //try to refine one of the Ri’s using CW

if (¬WeakSimulAG(CW � γi, M̂i))

AbsRefineAG(M̂i

Ri

);

return true;

return false; //none of the quotient LKSs was refined

178

9.5 Two-Level CEGAR

Algorithm TwoLevelCEGAR, presented in Procedure 9.4, captures the complete

two-level CEGAR algorithm for simulation conformance. It is very similar to

SimulCEGAR other than the invocation of ValidateAndRefineAG to perform

Counterexample Witness validation and refinement at the level of action-guided

abstractions. We now give a line-by-line explanation of TwoLevelCEGAR.

Procedure 9.4 TwoLevelCEGAR checks simulation conformance between a program P

and a specification Sp in a context Γ.

Algorithm TwoLevelCEGAR(P , Sp, Γ)

- P : is a program, Γ : is a context for P

- Sp : is a specification LKS

1: let P = 〈C1, . . . , Cn〉 and Γ = 〈γ1, . . . , γn〉;

2: for each i ∈ {1, . . . , n}

3: M̂i := predicate abstraction of Ci with empty set of predicates;

4: Ri := largest propositionally compatible equivalence on M̂i’s states;

5: Loop:

6: let M̂ = M̂1

R1

‖ · · · ‖ M̂n

Rn

;

7: if (SimulWitness(M̂, Sp) = “M̂ 4 Sp”) return “P 4 Sp”;

8: let CW = Counterexample Witness returned by SimulWitness;

9: if (ValidateAndRefineAG(M̂,CW)) goto Loop;

10: find i ∈ {1, . . . , n} such that ¬WeakSimul(CW � γi, Ci, γi);

11: if (no such i found) return “P 64 Sp”;

12: else CW i := CW i ∪ {CW � γi};

13: if (AbsRefine(CW i, Ci, γi) = error) return error;

14: M̂i := AbsRefine(CW i, Ci, γi);

15: Ri := largest propositionally compatible equivalence on M̂i’s states;

16: goto Loop;

Let the input program P consist of the sequence of n components 〈C1, . . . , Cn〉

(line 1). For each i ∈ {1, . . . , n}, (line 2) TwoLevelCEGAR constructs (line 3)

a predicate abstraction M̂i of Ci with an empty set of predicates. It also maintains

179

a sequence of equivalence relations 〈R1, . . . , Rn〉 such that Ri is a relation over the

states of M̂i. It initializes (line 4) each Ri to be the largest propositionally compatible

equivalence relation over the states of M̂i.

Now TwoLevelCEGAR begins a loop (line 5) where it first constructs the

complete abstract model M̂ (line 6) by composing the quotient LKSs M̂1

R1

, . . . , M̂n

Rn

.

It then checks (line 7) whether M̂ is simulated by the specification Sp. If so, we

know that the original programs P is also simulated by Sp and TwoLevelCEGAR

terminates successfully. Otherwise (line 8) let CW be a Counterexample Witness to

M̂ 4 Sp.

Now TwoLevelCEGAR validates CW (line 9) at the action-guided abstraction

level by invoking algorithm ValidateAndRefineAG. If ValidateAndRefineAG

returns true at line 9 means that some Ri was refined. In this case

TwoLevelCEGAR repeats the loop from line 5. Otherwise it attempts to refine

one of the predicate abstractions. This is done in lines 10–16 and exactly as in

Procedure SimulCEGAR. The final result is either (i) the production of a real

counterexample (line 11), or (ii) an error report (line 13), or (iii) a refinement of

some predicate abstraction Mi (line 14–15) and the repetition of the loop (line 16).

The correctness of TwoLevelCEGAR follows from that of SimulCEGAR and of

ValidateAndRefineAG.

9.6 Experimental Results

Our experiments were carried out with two broad goals in mind. The first goal

was to compare the overall effectiveness of the proposed two-level CEGAR approach,

particularly insofar as memory usage is concerned. The second goal was to verify

180

the effectiveness of our LKS abstraction scheme by itself. To this end, we carried

out experiments on 39 benchmarks, of which 26 were sequential programs and 13

were concurrent programs. Each example was verified twice, once with only predicate

abstraction, and once with the full two-level algorithm. Tests that used only the low-

level predicate abstraction refinement scheme are marked by PredOnly in our tables.

In contrast, tests that also incorporated our action-guided abstraction refinement

procedure are marked by BothAbst. Both schemes started out with the same initial

sets of predicates.

For each experiment we measured several quantities: (i) the size of the final state-

space on which the property was proved/disproved; note that, since our abstraction-

refinement scheme produces increasingly refined models, and since we reuse memory

from one iteration to the next, the size of the final state-space is a good indicator

of the maximum memory used, (ii) the number of predicate refinement iterations

required, (iii) the number of action-guided refinement iterations required, (iv) the

total number of refinement iterations required, and (v) the total time required. In the

tables summarizing our results, these measurements are reported in columns named

respectively St, PIt, LIt, It and T. For the concurrent benchmarks, we also measured

actual memory requirement and report these in the columns named Mem. Note that

predicate minimization (cf. Chapter 7) was turned on during all the experiments

described in this section.

9.6.1 Unix Kernel Benchmarks

The first set of examples was designed to examine how our approach works on a

wide spectrum of implementations. The summary of our results on these examples

is presented in Table 9.1. We chose ten code fragments from the Linux Kernel 2.4.0.

181

LOC Description PredOnly BothAbst
St It T St It T

27 pthread mutex lock (pthread) 26 1 52 16 3 54
24 pthread mutex unlock (pthread) 27 1 51 13 2 56
60 socket (socket) 187 3 1752 44 25 2009
24 sock alloc (socket) 50 2 141 14 4 154
4 sys send (socket) 7 1 92 6 1 93
11 sock sendmsg (socket) 23 1 108 14 3 113
27 modified pthread mutex lock 23 1 59 14 2 61
24 modified pthread mutex unlock 27 1 61 12 2 66
24 modified sock alloc 47 1 103 9 1 106
11 modified sock sendmsg 21 1 96 10 1 97

Table 9.1: Summary of results for Linux Kernel code. LOC and Description denote

the number of lines of code and a brief description of the benchmark source code. The

measurements for PIter and LIter have been omitted because they are insignificant. All times

are in milliseconds.

Corresponding to each code fragment we constructed a specification from the Linux

manual pages. For example, the specification in the third benchmark2 states that the

socket system call either properly allocates internal data structures for a new socket

and returns 1, or fails to do so and returns an appropriate negative error value.

9.6.2 OpenSSL Benchmarks

The next set of examples was aimed at verifying larger pieces of code. Once again we

used OpenSSL handshake implementation to design a set of 29 benchmarks. However,

unlike the previous OpenSSL benchmarks, some of these benchmarks were concurrent

and comprised of both a client and a server component executing in parallel. The

specifications were derived from the official SSL design documents. For example, the

specification for the first concurrent benchmark states that the handshake is always

initiated by the client.

The first 16 examples are sequential implementations, examining different

2This benchmark was also used as socket-y in the predicate minimization experiments described

in the previous section.

182

PredOnly BothAbst Gain
St(S1) It T St(S2) PIt LIt It T S1/S2
597 4 141 114 7 193 200 180 5.24
1038 10 191 114 11 275 286 210 9.11
849 14 229 135 13 431 444 243 6.29
525 1 18 3 1 0 1 19 175

55363 48 762 2597 32 4432 4464 1813 21.3
3672 14 256 930 14 1009 1023 390 3.95
60570 120 3388 636 8 508 516 274 95.24
3600 14 251 750 11 662 673 322 4.80

1242 19 222 186 16 463 479 226 6.68
1029 18 246 252 18 978 996 303 4.08
705 12 196 213 12 644 656 226 3.31
1038 16 206 213 14 509 523 216 4.87
2422 16 230 483 8 366 374 190 5.01
2338 15 218 658 16 726 742 273 3.55
2366 19 250 665 15 716 731 269 3.56
2422 20 257 609 15 710 725 274 3.98

Table 9.2: Summary of results for sequential OpenSSL examples. The first eight are server

benchmarks while the last eight are client benchmarks. Note that for the PredOnly case, LIt

is always zero and PIt = It. All times are in seconds. The improvement in state-space size is

shown in bold.

properties of SrvrCode and ClntCode separately. Each of these examples contains

about 350 comment-free LOC. The results for these are summarized in Table 9.2.

The remaining 13 examples test various properties of SrvrCode and ClntCode

when executed together. These examples are concurrent and consist of about 700

LOC. The results for them are summarized in Table 9.3. All OpenSSL benchmarks

other than the seventh server benchmark passed the property.

In terms of state-space size, the two-level refinement scheme outperforms the one-

level scheme by factors of up to 175. The fourth server benchmark shows particular

improvement with the two-level approach. In this benchmark, the property holds on

the very initial abstraction, thereby requiring no refinement and letting us achieve

maximum reduction in state-space. The two-level approach is also an improvement in

terms of actual memory usage, particularly for the concurrent benchmarks. In most

instances it reduces the memory requirement by over an order of magnitude.

Finally, the two-level approach is also faster on most of the concurrent benchmarks.

183

PredOnly BothAbst Gain
St It T Mem(M1) St(S2) PIt LIt It T Mem(M2) M1/M2

157266 12 886 1023 15840 13 742 755 1081 122 8.39
201940 18 1645 1070 6072 10 547 557 500 64 16.72
203728 12 1069 1003 20172 13 908 921 1805 130 7.72
201940 17 1184 640 7808 11 439 450 482 69 9.28
184060 16 1355 780 6240 8 384 392 407 64 12.19
158898 11 695 426 2310 5 195 200 219 56 7.61
103566 10 447 250 7743 11 513 524 472 74 3.38
161580 14 1071 945 4617 11 464 475 387 64 14.77
214989 13 1515 1475 13800 8 471 479 716 106 13.92
118353 10 628 663 3024 12 550 562 402 60 11.05
204708 8 794 1131 8820 5 306 311 446 79 14.32
121170 5 303 373 2079 5 152 157 204 56 6.66
152796 12 579 361 3780 10 404 414 349 60 6.02

Table 9.3: Summary of results for concurrent OpenSSL examples. Note that for the PredOnly

case, LIt is always zero and PIt = It. All times are in seconds and memory is in MB. Best times

and the improvement in memory requirement is shown in bold.

In many instances it achieves a speedup by a factor of over three when compared to

the one-level scheme. The savings in time and space for the concurrent examples are

significantly higher than for the sequential ones. We expect the two-level approach

to demonstrate increasingly improved performance with the number of concurrent

components in the implementation.

184

Chapter 10

Deadlock

In this chapter, we present an algorithm to detect deadlocks in concurrent message-

passing programs. Even though deadlock is inherently non-compositional and its

absence is not preserved by standard abstractions, our framework employs both

abstraction and compositional reasoning to alleviate the state space explosion problem.

We iteratively construct increasingly more precise abstractions on the basis of spurious

counterexamples to either detect a deadlock or prove that no deadlock exists. Our

approach is inspired by the counterexample guided abstraction refinement paradigm.

However, our notion of abstraction as well as our schemes for verification and

abstraction refinement differ in key respects from existing abstraction refinement

frameworks. Our algorithm is also compositional in that abstraction, counterexample

validation, and refinement are all carried out component-wise and do not require the

construction of the complete state space of the concrete system under consideration.

Finally, our approach is completely automated and provides diagnostic feedback in

case a deadlock is detected. We have implemented our technique in the magic

verification tool and present encouraging results (up to 20 times speed-up in time

185

and 4 times less memory consumption) with concurrent message-passing C programs.

We also report a bug in the real-time operating system µC/OS-II.

10.1 Introduction

Ensuring that standard software components are assembled in a way that guarantees

the delivery of reliable services is an important task for system designers. Certifying

the absence of deadlock in a composite system is an example of a stringent requirement

that has to be satisfied before the system can be deployed in real life. This is especially

true for safety-critical systems, such as embedded systems or controllers, that are

expected to always service requests within a fixed time limit or be responsive to

external stimuli. In addition, many formal analysis techniques, such as temporal

logic model checking [32, 39], assume that the systems being analyzed are deadlock-

free. In order for the results of such analysis to be valid, one usually needs to establish

deadlock freedom separately. Last but not least, in case a deadlock is detected, it

is highly desirable to be able to provide system designers and implementers with

appropriate diagnostic feedback.

However, despite significant efforts, validating the absence of deadlock in systems

of realistic complexity remains a major challenge. The problem is especially acute in

the context of concurrent programs that communicate via mechanisms with blocking

semantics, e.g., synchronous message-passing and semaphores. The primary obstacle

is the well-known state space explosion problem whereby the size of the state space

of a concurrent system increases exponentially with the number of components. Two

paradigms are usually recognized as being the most effective against the state space

explosion problem: abstraction and compositional reasoning. Even though these two

186

approaches have been widely studied in the context of formal verification [36, 64, 67,

84], they find much less use in deadlock detection. This is possibly a consequence

of the fact that deadlock is inherently non-compositional and its absence is not

preserved by standard abstractions (see Example 20). Therefore, a compositional

and abstraction-based deadlock detection scheme, such as the one we present in this

chapter, is especially significant.

Counterexample guided abstraction refinement [76] (CEGAR for short) is a

methodology that uses abstraction in an automated manner and has been successful

in verifying real-life hardware [37] and software [6] systems. A CEGAR-based

scheme iteratively computes more and more precise abstractions (starting with a

very coarse one) of a target system on the basis of spurious counterexamples until

a real counterexample is obtained or the system is found to be correct. The

approach presented in this chapter combines both abstraction and compositional

reasoning within a CEGAR-based framework for verifying the absence of deadlocks

in concurrent message-passing systems. More precisely, suppose we have a system

M composed of components M1, . . . ,Mn executing concurrently. Then our technique

checks for deadlock in M using the following three-step iterative process:

1. Abstract. Create an abstraction M̂ such that if M has a deadlock, then so

does M̂ . This is done component-wise without having to construct the full state

space of M .

2. Verify. Check if M̂ has a deadlock. If not, report absence of deadlock in M

and exit. Otherwise let π be a counterexample that leads to a deadlock in M̂ .

3. Refine. Check if π corresponds to a deadlock in M . Once again this is achieved

component-wise. If π corresponds to a real deadlock, report presence of deadlock

187

in M along with appropriate diagnostic feedback and exit. Otherwise refine M̂

on the basis of π to obtain a more precise abstraction and repeat from step 1.

In our approach, systems as well as their components are represented as LKSs.

Note that only the verification stage (step 2) of our technique requires explicit

composition of systems. All other stages can be performed one component at a time.

Since verification is performed only on abstractions (which are usually much smaller

than the corresponding concrete systems), this technique is able to significantly reduce

the state space explosion problem. Finally, when a deadlock is detected, our scheme

provides useful diagnostic feedback in the form of counterexamples.

To the best of our knowledge, this is the first counterexample guided,

compositional abstraction refinement scheme to perform deadlock detection on

concurrent systems. We have implemented our approach in our C verification tool

magic [80] which extracts LKS models from C programs automatically via predicate

abstraction [24, 63]. Our experiments with a variety of benchmarks have yielded

encouraging results (up to 20 times speed-up in time and 4 times less memory

consumption). We have also discovered a bug in the real-time operating system

µC/OS-II.

The rest of this chapter is organized as follows. In Section 10.2 we summarize

related work. This is followed by some preliminary definitions and results in

Section 10.3. In Section 10.4 we present our abstraction scheme, followed by

counterexample validation and abstraction refinement in Section 10.5 and Section 10.6

respectively. Our overall deadlock detection algorithm is described in Section 10.7.

Finally, we present experimental results in Section 10.8.

188

10.2 Related Work

The formalization of a general notion of abstraction first appeared in [47]. The

abstractions used in our approach are conservative. They are only guaranteed to

preserve safety properties of the system (e.g., [36, 75]). Conservative abstractions

usually lead to significant reductions in the state space but in general require

an iterated abstraction refinement mechanism (such as CEGAR) in order to

establish specification satisfaction. CEGAR has been used, among others, in non-

automated [90], and automated [6, 29, 40, 66, 77, 98] forms.

CEGAR-based schemes have been used for the verification of both safety [6, 24, 37,

66] (i.e., reachability) and liveness [28] properties. Compositionality has been most

extensively studied in process algebra (e.g., [69, 85, 100]), particularly in conjunction

with abstraction. Abstraction and compositional reasoning have been combined [23]

within a single two-level CEGAR scheme to verify safety properties of concurrent

message-passing C programs. None of these techniques attempt to detect deadlock.

In fact, the abstractions used in these schemes do not preserve deadlock freedom and

hence cannot be used directly in our approach.

Deadlock detection has been widely studied in various contexts. One of the

earliest deadlock-detection tools, for the process algebra CSP, was FDR [60]; see

also [17, 82, 83, 100, 101]. Corbett has evaluated various deadlock-detection methods

for concurrent systems [45] while Demartini et. al. have developed deadlock-detection

tools for concurrent Java programs [53]. However, to the best of our knowledge, none

of these approaches involve abstraction refinement or compositionality in automated

form.

189

10.3 Background

Recall, from Definition 1, than an LKS is a 6-tuple (S, Init,AP ,L, Σ,T). In this

section, we present some additional preliminary definitions and results (many of which

originate from CSP [69, 100]) that are used in the rest of the chapter. In this chapter,

we will only concern ourselves with finite paths and traces (which will be usually

represented with the letters π and θ respectively). The deadlocking behavior of a

system is dependent purely on the communication between its components. Since

communication in our framework is based purely on actions, our notion of a trace will

ignore atomic propositions. We now define paths and traces formally.

Definition 32 (Finite Path and Trace) Let M = (S, Init,AP ,L, Σ,T) be an

LKS. A finite path of M is a finite sequence 〈s0, a0, s1, a1, . . . , an−1, sn〉 such that:

(i) s0 ∈ Init and (ii) ∀0 ≤ i < n � si
ai−→ si+1. In such a case, the finite sequence

〈a0, a1, . . . , an−1〉 is called a finite trace of M .

Let M = (S, Init,AP ,L, Σ,T) be any LKS. We denote the set of all paths of M

by Path(M). A state s of M is said to refuse an action α iff Succ(s, α) = ∅. The

refusal of a state is the set of all actions that it refuses. Suppose θ ∈ Σ∗ is a finite

sequence of actions and F ⊆ Σ is a set of actions. Then (θ, F) is said to be a failure

of M iff M can participate in the sequence of actions θ and then reach a state whose

refusal is F . Finally, M has a deadlock iff it can reach a state which refuses the entire

alphabet Σ. We now present these notions formally.

Definition 33 (Refusal) Let M = (S, Init,AP ,L, Σ,T) be an LKS. Then the

function Ref : S → 2Σ is defined as follows:

Ref(s) = {α ∈ Σ | Succ(s, α) = ∅}

190

Definition 34 (Failure) Let M = (S, Init,AP ,L, Σ,T) be an LKS. A pair (θ, F) ∈

Σ∗ × 2Σ is a failure of M iff the following condition holds: if θ = 〈a0, . . . , an−1〉, then

there exist states s0, s1, . . . , sn such that (i) 〈s0, a0, s1, a1, . . . , an−1, sn〉 ∈ Path(M)

and (ii) F = Ref(sn). We write Fail(M) to denote the set of all failures of M .

Definition 35 (Deadlock) An LKS M = (S, Init,AP ,L, Σ,T) is said to have a

deadlock iff (θ, Σ) ∈ Fail(M) for some θ ∈ Σ∗.

Example 19 Figure 10.1(a) shows two LKSs M1 = (S1, Init1,AP 1,L1, Σ1,T1)

and M2 = (S2, Init2,AP 2,L2, Σ2,T2). Let Σ1 = {a, b, c} and Σ2 =

{a, b′, c}. Then M1 has seven paths: 〈P 〉, 〈P, a,Q〉, 〈P, a,R〉, 〈P, a,Q, b, S〉,

〈P, a,R, b, S〉, 〈P, a,Q, b, S, c, T 〉, and 〈P, a,R, b, S, c, T 〉. It has four traces: 〈〉, 〈a〉,

〈a, b〉, and 〈a, b, c〉, and four failures (〈〉 , {b, c}), (〈a〉 , {a, c}), (〈a, b〉 , {a, b}), and

(〈a, b, c〉 , {a, b, c}). Hence M1 has a deadlock. Also, M2 has four paths, four traces,

four failures and a deadlock. Finally, Figure 10.1(b) shows the LKS M1 ‖ M2 where

M1 and M2 are the LKSs shown in Figure 10.1(a).

Given a trace of a concurrent system M‖, one can construct projections by

restricting the trace to the alphabets of each of the components of M‖. In the

following, we will write θ1 • θ2 to denote the concatenation of two sequences θ1 and

θ2.

Definition 36 (Projection) Consider LKSs M1, . . . ,Mn with alphabets Σ1, . . . , Σn

respectively. Let M‖ = M1 ‖ · · · ‖ Mn and let us denote the alphabet of M‖ by Σ‖.

Then for 1 ≤ i ≤ n, the projection function Proj i : Σ∗
‖ → Σ∗

i is defined inductively as

follows. We will write θ � i to mean Proj i(θ):

1. 〈〉 � i = 〈〉.

191

M1 M2

a

a b

b

c
P

Q

R

S T

(a)

a cb’
X Y ZW

(b)

b

cb

b’

a

a

b’
b

b’

b

P,W

Q,X

R,X

S,X

Q,Y

S,Y T,Z

R,Y

Figure 10.1: (a) Sample LKSs M1 and M2; (b) M1 ‖ M2.

2. If a ∈ Σi then (〈a〉 • θ) � i = 〈a〉 • (θ � i).

3. If a 6∈ Σi then (〈a〉 • θ) � i = θ � i.

Definition 5 for the parallel composition of LKSs and Definition 36 immediately

lead to the following theorem, which essentially highlights the compositional nature

of failures. Its proof, as well as the proofs of related results, are well-known [100].

Theorem 26 Let M1, . . . ,Mn be LKSs and let M‖ = M1 ‖ · · · ‖ Mn. Then

(θ, F) ∈ Fail(M‖) iff there exist refusals F1, . . . , Fn such that: (i) F =
⋃n

i=1 Fi,

and (ii) for 1 ≤ i ≤ n, (θ � i, Fi) ∈ Fail(Mi).

192

10.4 Abstraction

In this section we present our notion of abstraction. Once again, we employ quotient

LKSs as abstractions of concrete LKSs. Recall that given a concrete LKS M , one can

obtain a quotient LKS as follows. The states of the quotient LKS are obtained by

grouping together states of M ; alternatively, one can view these groups as equivalence

classes of some equivalence relation on the set of states of M . Transitions of the

quotient LKS are defined existentially. We now present a formal definition of these

concepts.

Definition 37 (Quotient LKS) Let M = (S, Init,AP ,L, Σ,T) be an LKS and

R ⊆ S × S be an equivalence relation. For an arbitrary s ∈ S we let [s]R

denote the equivalence class of s. M and R then induce a quotient LKS MR =
(
SR, InitR,AP R,LR, ΣR,TR

)
where: (i) SR = {[s]R | s ∈ S}, (ii) InitR = {[s]R | s ∈

Init}, (iii) AP R = AP , (iv) ∀[s]R ∈ SR � LR([s]R) =
⋃

s′∈[s]R L(s′), (v) ΣR = Σ, and

(vi) TR = {([s]R, a, [s′]R) | (s, a, s′) ∈ T}.

Note that the crucial difference between Definition 28 and Definition 37 is that in

the latter we do not require equivalence relations to be propositionally compatible.

Instead we let the set of propositions labeling a state [s]R of MR be simply the union of

the propositions labeling the states of M belonging to the equivalence class [s]R. This

definition is somewhat arbitrary but suffices for our deadlock detection framework

since propositions do not play any role in the deadlocking behavior of a system.

As usual, we write [s] to mean [s]R when R is clear from the context. MR is often

called an existential abstraction of M . The states of M are referred to as concrete

states while those of MR are called abstract states. We will often use α to represent

abstract states, and continue to denote concrete states with s. The following result

193

concerning quotient LKSs is well-known [39].

Theorem 27 Let M = (S, Init,AP ,L, Σ,T) be an LKS, R an equivalence relation

on S, and MR the quotient LKS induced by M and R. If 〈s0, a0, s1, a1, . . . , an−1, sn〉 ∈

Path(M), then 〈[s0], a0, [s1], a1, . . . , an−1, [sn]〉 ∈ Path(MR).

Example 20 Note the following facts about the LKSs in Figure 10.2: (i) M1 and M2

both have deadlocks but M1 ‖ M2 does not; (ii) neither M3 nor M4 has a deadlock but

M3 ‖ M4 does; (iii) M1 has a deadlock and M3 does not have a deadlock but M1 ‖ M3

has a deadlock; (iv) M1 has a deadlock and M4 does not have a deadlock but M1 ‖ M4

does not have a deadlock; (v) M1 has a deadlock but the quotient LKS obtained by

grouping all the states of M1 into a single equivalence class does not have a deadlock.

M1 M2

M3 M4

a b
c c

b a

a
b

b
a

Figure 10.2: Four sample LKSs demonstrating the non-compositional nature of deadlock.

As Example 20 highlights, deadlock is non-compositional and its absence is

not preserved by existential abstractions (nor in fact is it preserved by universal

abstractions). So far we have presented well-known definitions and results to prepare

the background. We now present what constitute the core technical contributions of

this chapter.

We begin by taking a closer look at the non-preservation of deadlock by existential

abstractions. Consider a quotient LKS MR and a state [s] of MR. It can be proved

194

that Ref([s]) =
⋂

s′∈[s] Ref(s′). In other words, the refusal of an abstract state [s]

under-approximates the refusals of the corresponding concrete states. However, in

order to preserve deadlock we require that refusals be over-approximated. We achieve

this by taking the union of the refusals of the concrete states. This leads to the notion

of an abstract refusal, which we now define formally.

Definition 38 (Abstract Refusal) Let M = (S, Init,AP ,L, Σ,T) be an LKS,

R ⊆ S × S be an equivalence relation, and MR be the quotient LKS induced by

M and R. Let SR be the set of states of MR. Then the abstract refusal function

R̂ef : SR → 2Σ is defined as follows:

R̂ef(α) =
⋃

s∈α

Ref(s)

For a parallel composition of quotient LKSs, we extend the notion of abstract refusal

as follows. Let MR1

1 , . . . ,MRn
n be quotient LKSs. Let α = (α1, . . . , αn) be a state of

MR1

1 ‖ · · · ‖ MRn
n . Then R̂ef(α) =

⋃n
i=1 R̂ef(αi).

Next, we introduce the notion of abstract failures, which are similar to failures,

except that abstract refusals are used in place of refusals.

Definition 39 (Abstract Failure) Let M̂ = (S, Init,AP ,L, Σ,T) be an LKS for

which abstract refusals are defined (i.e., M̂ is either a quotient LKS or a parallel

composition of such). A pair (θ, F) ∈ Σ∗ × 2Σ is said to be an abstract failure of M̂

iff the following condition holds: if θ = 〈a0, . . . , an−1〉, then there exist α0, α1, . . . , αn

such that (i) 〈α0, a0, α1, a1, . . . , an−1, αn〉 ∈ Path(M̂) and (ii) F = R̂ef(αn). We

write AbsFail(M̂) to denote the set of all abstract failures of M̂ .

The following theorem essentially states that the failures of an LKS M are always

subsumed by the abstract failures of its quotient LKS MR.

195

Theorem 28 Let M = (S, Init,AP ,L, Σ,T) be an LKS, R ⊆ S×S be an equivalence

relation, and MR be the quotient LKS induced by M and R. Then for all (θ, F) ∈

Fail(M), there exists F ′ ⊇ F such that (θ, F ′) ∈ AbsFail(MR).

Proof. Here is a proof sketch. Let θ = 〈a0, . . . , an−1〉.

1. From (θ, F) ∈ Fail(M) and Definition 34: let 〈s0, a0, s1, a1, . . . , an−1, sn〉 ∈

Path(M) such that F = Ref(sn).

2. From 1 and Proposition 27: 〈[s0], a0, [s1], a1, . . . , an−1, [sn]〉 ∈ Path(MR).

3. From 2 and Definition 39: (θ, R̂ef([sn])) ∈ AbsFail(MR).

4. From Definition 38: R̂ef([sn]) ⊇ Ref(sn).

5. From 3, 4 and using F ′ = R̂ef([sn]) we get our result.

�

As the following two theorems show, abstract failures are compositional, In other

words, the abstract failures of a concurrent system M‖ can be decomposed naturally

into abstract failures of the components of M‖. Proofs of Theorem 29 and Theorem 30

follow the same lines as Theorem 26.

Theorem 29 Let MR1

1 , . . . ,MRn
n be quotient LKSs, and 〈α0, a0, . . . , ak−1, αk〉 ∈

Path(MR1

1 ‖ · · · ‖ MRn
n). Let the trace θ = 〈a0, . . . , ak−1〉 and the final state

αk = (α1
k, . . . , α

n
k). Then for 1 ≤ i ≤ n, (θ � i, R̂ef(αi

k)) ∈ AbsFail(MRi
i).

Theorem 30 Let MR1

1 , . . . ,MRn
n be quotient LKSs. Then (θ, F) ∈ AbsFail(MR1

1 ‖

· · · ‖ MRn
n) iff there exist abstract refusals F1, . . . , Fn such that: (i) F =

⋃n
i=1 Fi, and

(ii) for 1 ≤ i ≤ n, (θ � i, Fi) ∈ AbsFail(MRi
i).

196

In the rest of this chapter we often make implicit use of the following

facts. Consider LKSs M1, . . . ,Mn with alphabets Σ1, . . . , Σn respectively. Let

MR1

1 , . . . ,MRn
n be quotient LKSs. Let us denote the alphabet of M1 ‖ · · · ‖ Mn

by Σ‖ and the alphabet of MR1

1 ‖ · · · ‖ MRn
n by Σ̂‖. Then Σ̂‖ = Σ‖. This follows

directly from the fact the alphabet of MRi
i is Σi for 1 ≤ i ≤ n. The notion of abstract

failures leads naturally to the notion of abstract deadlocks.

Definition 40 (Abstract Deadlock) Let MR1

1 , . . . ,MRn
n be quotient LKSs and

M̂‖ = MR1

1 ‖ · · · ‖ MRn
n . Let Σ be the alphabet of M̂‖. Then M̂‖ is said to have

an abstract deadlock iff (θ, Σ) ∈ AbsFail(M̂‖) for some θ ∈ Σ∗.

Let MR1

1 , . . . ,MRn
n be quotient LKSs and M̂‖ = MR1

1 ‖ · · · ‖ MRn
n with alphabet Σ.

Clearly, M̂‖ has an abstract deadlock iff there exists a path 〈α0, a0, α1, a1, . . . , an−1, αn〉

of M̂‖ such that R̂ef(αn) = Σ. We call such a path a counterexample to abstract

deadlock freedom, or simply an abstract counterexample. It is easy to devise

an algorithm to check whether M̂‖ has an abstract deadlock and also generate a

counterexample in case an abstract deadlock is detected. We call this algorithm

AbsDeadlock.

Suppose the alphabet of M̂‖ if Σ. Then AbsDeadlock explores the reachable

states of M̂‖ in, say, breadth-first manner. For each state α of M̂‖, it checks if

R̂ef(α) = Σ. If so, it generates a counterexample from an initial state of M̂‖ to α,

reports “abstract deadlock” and terminates. If no state α with R̂ef(α) = Σ can be

found, it reports “no abstract deadlock” and terminates. Since M̂‖ has a finite number

of states and transitions, AbsDeadlock always terminates with the correct answer.

The following lemma shows that abstract deadlock freedom in the composition

of quotient LKSs entails deadlock freedom in the composition of the corresponding

197

concrete LKSs.

Lemma 1 Let M1, . . . ,Mn be LKSs and R1, . . . , Rn be equivalence relations on the

state of M1, . . . ,Mn respectively. If MR1

1 ‖ · · · ‖ MRn
n does not have an abstract

deadlock then M1 ‖ · · · ‖ Mn does not have a deadlock.

Proof. It suffices to prove the contrapositive. Let us denote M1 ‖ · · · ‖ Mn by M‖

and MR1

1 ‖ · · · ‖ MRn
n by M̂‖. We know that M‖ and M̂‖ have the same alphabet.

Let this alphabet be Σ. Now suppose M‖ has a deadlock.

1. By Definition 35: (θ, Σ) ∈ Fail(M‖) for some θ.

2. From 1 and Theorem 26: there exist F1, . . . , Fn such that: (i)
⋃n

i=1 Fi = Σ and

(ii) for 1 ≤ i ≤ n, (θ � i, Fi) ∈ Fail(Mi).

3. From 2(ii) and Theorem 28: for 1 ≤ i ≤ n, ∃F ′
i ⊇ Fi such that (θ � i, F ′

i) ∈

AbsFail(MRi
i).

4. From 2(i) and 3:
⋃n

i=1 F ′
i ⊇

⋃n
i=1 Fi = Σ.

5. From 3, 4 and Theorem 30: (θ, Σ) ∈ AbsFail(M̂‖).

6. From 5 and Definition 40: M̂‖ has an abstract deadlock.

�

Unfortunately, the converse of Lemma 1 does not hold (a counterexample is

not difficult to find and we leave this task to the reader). Suppose therefore that

AbsDeadlock reports an abstract deadlock for MR1

1 ‖ · · · ‖ MRn
n along with an

abstract counterexample π. We must then decide whether π also leads to a deadlock

in M1 ‖ · · · ‖ Mn or not. This process is called counterexample validation and is

presented in the next section.

198

10.5 Counterexample Validation

In this section we present our approach to check the validity of an abstract

counterexample returned by AbsDeadlock. We begin by defining the notion of

valid counterexamples.

Definition 41 (Valid Counterexample) Let MR1

1 , . . . ,MRn
n be quotient LKSs

and let π = 〈α0, a0, . . . , ak−1, αk〉 be an abstract counterexample returned by

AbsDeadlock on MR1

1 ‖ · · · ‖ MRn
n . Let the trace θ = 〈a0, . . . , ak−1〉 and the final

state αk = (α1
k, . . . , α

n
k). We say that π is a valid counterexample iff for 1 ≤ i ≤ n,

(θ � i, R̂ef(αi
k)) ∈ Fail(Mi).

A counterexample is said to be spurious iff it is not valid. Let M be an arbitrary

LKS with alphabet Σ, θ ∈ Σ∗ be a trace, and F ⊆ Σ be a refusal. It is easy to design

an algorithm that takes M , θ, and F as inputs and returns true if (θ, F) ∈ Fail(M)

and false otherwise. We call this algorithm IsFailure and give its pseudo-code

in Procedure 10.1. Starting with the initial state, IsFailure repeatedly computes

successors for the sequence of actions in θ. If the set of successors obtained at some

point during this process is empty, then (θ, F) 6∈ Fail(M) and IsFailure returns

false. Otherwise, if X is the set of states obtained after all actions in θ have been

processed, then (θ, F) ∈ Fail(M) iff there exists s ∈ X such that Ref(s) = F . The

correctness of IsFailure should be clear from Definition 34.

Lemma 2 Let MR1

1 , . . . ,MRn
n be quotient LKSs and let π be an abstract

counterexample returned by AbsDeadlock on MR1

1 ‖ · · · ‖ MRn
n . If π is a valid

counterexample then M1 ‖ · · · ‖ Mn has a deadlock.

199

Procedure 10.1 IsFailure returns true if (θ, F) ∈ Fail(M) and false otherwise.

Algorithm IsFailure(M, θ, F)

- M : is an LKS, θ : is a trace of M , F : is a set of actions of M

let M = (S, Init,AP ,L, Σ,T) and θ = 〈a0, . . . , an−1〉;

X := Init;

//simulate θ on M

for i := 0 to n − 1 do X :=
⋃

s∈X Succ(s, ai);

//simulation complete, now check if one of the end states refuses F

return ∃s ∈ X � Ref(s) = F ;

Proof. Let us denote M1 ‖ · · · ‖ Mn by M‖ and MR1

1 ‖ · · · ‖ MRn
n by M̂‖. Once again

we know that M‖ and M̂‖ have the same alphabet. Let this alphabet be Σ. Also let

π = 〈α0, a0, . . . , ak−1, αk〉, θ = 〈a0, . . . , ak−1〉, and αk = (α1
k, . . . , α

n
k).

1. Since π is an abstract counterexample: R̂ef(αk) = Σ.

2. From 1 and Definition 38:
⋃n

i=1 R̂ef(αi
k) = R̂ef(αk) = Σ.

3. Counterexample is valid: for 1 ≤ i ≤ n, (θ � i, R̂ef(αi
k)) ∈ Fail(Mi).

4. From 3 and Theorem 26: (θ,
⋃n

i=1 R̂ef(αi
k)) ∈ Fail(M‖).

5. From 2, 4 and Definition 35: M‖ has a deadlock.

�

10.6 Abstraction Refinement

In case the abstract counterexample π returned by AbsDeadlock is found to be

spurious, we wish to refine our abstraction on the basis of π and re-attempt the

deadlock check. Recall, from Chapter 9, Definition 29, Definition 30, the definition of

200

Ŝucc and Condition 9.1. For deadlock, abstraction refinement also involves computing

proper refinements of equivalence relations based on abstract successors. This is

achieved by the algorithm AbsRefine presented in Procedure 10.2.

Procedure 10.2 AbsRefine for doing abstraction refinement.

Algorithm AbsRefine(M,R, θ, F)

- M : is an LKS, θ : is a trace of M , F : is a set of actions of M

- R : is an equivalence relation over the states of M

1: let θ = 〈a0, . . . , ak−1〉;

2: find π = 〈α0, a0, . . . , ak−1, αk〉 ∈ Path(MR) such that F = R̂ef(αk);

// π exists because of condition AR1

3: X := α0;

4: for i := 0 to k − 1

5: X := (
⋃

s∈X Succ(s, ai)) ∩ αi+1;

6: if X = ∅ then return Split(M,R, αi, {ai});

7: return Split(M,R, αk, R̂ef(αk));

More precisely, AbsRefine takes the following as inputs: (i) an LKS M =

(S, Init,AP ,L, Σ,T), (ii) an equivalence relation R ⊆ S × S, (iii) a trace θ ∈ Σ∗,

and (iv) a set of actions F ⊆ Σ. In addition, the inputs to AbsRefine must

obey the following two conditions: (AR1) (θ, F) ∈ AbsFail(MR) and (AR2)

(θ, F) 6∈ Fail(M). AbsRefine then computes and returns a proper refinement

of R.We now establish the correctness of AbsRefine. We consider two possible

scenarios.

1. Suppose AbsRefine returns from line 6 when the value of i is l. Since

αl
al−→ αl+1 we know that there exists s ∈ αl such that αl+1 ∈ Ŝucc(s, al).

Let X ′ denote the value of X at the end of the previous iteration. For all

s′ ∈ X ′, αl+1 6∈ Ŝucc(s′, al). Note that X ′ 6= ∅ as otherwise AbsRefine would

have terminated with i = l − 1. Therefore, there exists s′ ∈ X ′ such that

201

αl+1 6∈ Ŝucc(s′, al). Hence the call to Split at line 6 satisfies Condition 9.1 and

AbsRefine returns a proper refinement of R.

2. Suppose AbsRefine returns from line 7. We know that at this point X 6= ∅.

Pick an arbitrary s ∈ X. It is clear that there exist s0, . . . , sk−1 such that

〈s0, a0, . . . , sk−1, ak−1, s〉 ∈ Path(M). Hence by condition AR2, Ref(s) 6= F .

Again s ∈ αk, and from the way π has been chosen at line 2, F = R̂ef(αk).

Hence by Definition 38, Ref(s) ⊆ F . Pick a ∈ ΣM such that a ∈ F and

a 6∈ Ref(s). Then Ŝucc(s, a) 6= ∅. Again since a ∈ R̂ef(αk) there exists s′ ∈ αk

such that a ∈ Ref(s′). Hence Ŝucc(s′, a) = ∅. Hence the call to Split at line 8

satisfies Condition 9.1 and once again AbsRefine returns a proper refinement

of R.

10.7 Overall Algorithm

In this section we present our iterative deadlock detection algorithm and establish

its correctness. Let M1, . . . ,Mn be arbitrary LKSs and M‖ = M1 ‖ · · · ‖ Mn. The

algorithm IterDeadlock takes M1, . . . ,Mn as inputs and reports whether M‖ has a

deadlock or not. If there is a deadlock, it also reports a trace of each Mi that would

lead to the deadlock state. Procedure 10.3 gives the pseudo-code for IterDeadlock.

It is an iterative algorithm and uses equivalence relations R1, . . . , Rn such that, for

1 ≤ i ≤ n, Ri ⊆ SMi
×SMi

. Note that initially each Ri is set to the trivial equivalence

relation SMi
× SMi

.

Theorem 31 The algorithm IterDeadlock is correct and always terminates.

202

Procedure 10.3 IterDeadlock for iterative deadlock detection.

Algorithm IterDeadlock(M1, . . . ,Mn) // M1, . . . ,Mn : are LKSs

1: for i := 1 to n, Ri := SMi
× SMi

;

2: forever do

// abstract and verify

3: x := AbsDeadlock(MR1

1 , . . . ,MRn
n);

4: if (x = “no abstract deadlock”) then report “no deadlock” and exit;

5: let π = 〈α0, a0, . . . , ak−1, αk〉 be the counterexample reported by AbsDeadlock;

6: let θ = 〈a0, . . . , ak−1〉 and αk = (α1
k, . . . , α

n
k);

// validate counterexample

7: find i ∈ {1, 2, . . . , n} such that ¬IsFailure(Mi, θ � i, R̂ef(αi
k));

8: if no such i then report “deadlock” and the (θ � i)’s as counterexamples;

//π is a valid counterexample, hence deadlock exists in M1 ‖ · · · ‖ Mn

9: let Ri := AbsRefine(Mi, Ri, θ � i, R̂ef(αi
k));

// refine abstraction and repeat

Proof. First we argue that both AR1 and AR2 are satisfied every time AbsRefine

is invoked on line 9. The case for AR1 follows from Theorem 29 and the fact that

〈α0, a0, . . . , ak−1, αk〉 ∈ Path(MR1

1 ‖ · · · ‖ MRn
n). The case for AR2 is trivial from

line 7 and the definition of IsFailure. Next we show that if IterDeadlock terminates

it does so with the correct answer. There are two possible cases:

1. Suppose IterDeadlock exits from line 4. Then we know that MR1

1 ‖ · · · ‖ MRn
n

does not have an abstract deadlock. Hence by Lemma 1, M1 ‖ · · · ‖ Mn does

not have a deadlock.

2. Otherwise, suppose IterDeadlock exits from line 8. Then we know that for

1 ≤ i ≤ n, (θ � i, R̂ef(αi
k)) ∈ Fail(Mi). Hence by Definition 41, π is a valid

counterexample. Therefore, by Lemma 2, M1 ‖ · · · ‖ Mn has a deadlock.

Finally, termination follows from the fact that the AbsRefine routine invoked on

line 9 always produces a proper refinement of the equivalence relation Ri. Since each

203

Mi has only finitely many states, this process cannot proceed indefinitely. (In fact, the

abstract LKSs converge to the bisimulation quotients of their concrete counterparts,

since AbsRefine each time performs a unit step of the Paige-Tarjan algorithm [96];

however in practice deadlock freedom is often established or disproved well before the

bisimulation quotient is achieved).

�

10.8 Experimental Results

We implemented our technique in the magic tool. magic extracts finite LKS models

from C programs using predicate abstraction. These LKSs are then analyzed for

deadlock using the approach presented in this chapter. Once a real counterexample

π is found at the level of the LKSs magic analyzes π and, if necessary, creates more

refined models by inferring new predicates. Our actual implementation is therefore

a two-level CEGAR scheme. We elide details of the outer predicate abstraction-

refinement loop as it is similar to our previous work [23].

Table 10.1 summarizes our results. The ABB benchmark was provided to us by

our industrial partner, ABB [1] Corporation. It implements part of an interprocess

communication protocol (IPC-1.6) used to mediate communication in a multi-

threaded robotics control automation system developed by ABB. The implementation

is required to satisfy various safety-critical properties, in particular, deadlock freedom.

The IPC protocol supports multiple modes of communication, including synchronous

point-to-point, broadcast, publish/subscribe, and asynchronous communication.

Each of these modes is implemented in terms of messages passed between queues

owned by different threads. The protocol handles the creation and manipulation of

204

Name Plain IterDeadlock
SM SR I T M SM SR I T M

ABB 2.1 × 109 * * * 162 4.1 × 105 1973 861 1446 33.3
SSL 49405 25731 1 44 43.5 16 16 16 31.9 40.8

UCOSD-2 1.1 × 105 5851 5 24 14.5 374 261 77 14.5 12.9
UCOSD-3 2.1 × 107 * * * 58.6 6144 4930 120 221.8 15

UCOSN-4 1.9 × 107 39262 1 18.1 14.1 8192 2125 30 8.1 10.5
UCOSN-5 9.4 × 108 4.2 × 105 1 253 52.2 65536 12500 37 80 12.7
UCOSN-6 4.7 × 1010 * * * 219.3 5.2 × 105 71875 44 813 30.8

RW-4 1.3 × 109 8369 4 6.48 10.8 5120 67 54 4.40 10.0
RW-5 9.0 × 1010 54369 4 35.1 15.9 24576 132 60 7.33 10.4
RW-6 5.8 × 1012 3.5 × 105 4 257 45.2 1.1 × 105 261 66 12.6 10.8
RW-7 1.5 × 1014 * * * 178 5.2 × 105 518 72 25.3 11.8
RW-8 * * * * * 2.4 × 106 1031 78 60.5 14.0
RW-9 * * * * * 1.7 × 107 2056 84 132 14.5

DPN-3 3.6 × 107 1401 2 .779 - 5832 182 27 .849 -
DPN-4 1.1 × 1010 16277 2 11.8 10.9 1.0 × 105 1274 34 7.86 9.5
DPN-5 3.2 × 1012 1.9 × 105 2 197 28.0 1.9 × 106 8918 41 84.6 11.4
DPN-6 9.7 × 1014 * * * 203 3.4 × 107 62426 48 831 26.1

DPD-9 3.5 × 1022 11278 1 22.5 12.0 5.2 × 109 13069 46 191 12.2
DPD-10 1.1 × 1025 38268 1 87.6 17.3 6.2 × 1010 44493 51 755 18.4

Table 10.1: Experimental results. SM = maximum # of states; SR = # of reachable states; I

= # of iterations; T = time in seconds; M = memory in MB; time limit = 1500 sec; - indicates

negligible value; * indicates out of time; notable figures are highlighted.

message queues, synchronizing access to shared data using various operating system

primitives (e.g., semaphores), and cleaning up internal state when a communication

fails or times out.

In particular, we analyzed the portion of the IPC protocol that implements the

primitives for synchronous communication (approximately 1500 LOC) among multiple

threads. With this type of communication, a sender sends a message to a receiver and

blocks until an answer is received or it times out. A receiver asks for its next message

and blocks until a message is available or it times out. Whenever the receiver gets

a synchronous message, it is then expected to send a response to the sender. magic

successfully verified the absence of deadlock in this implementation.

The SSL benchmark represents a deadlock-free system (approx. 700 LOC)

consisting of one OpenSSL server and one OpenSSL client. The UCOSD-n benchmarks

are derived from µC/OS-II, and consist of n threads executing concurrently. Access

205

to shared data is protected via locks. This implementation suffers from deadlock.

In contrast, the UCOSN-n benchmarks are deadlock-free. The RW-n benchmarks

implement a deadlock-free reader-writer system (194 LOC) with n readers, n writers,

and a controller. The controller ensures that at most one writer has access to

the critical section. Finally, the DPN-n benchmarks represent a deadlock-free

implementation of n dining philosophers (251 LOC), while DPD-n implements n

dining philosophers (163 LOC) that can deadlock. As Table 10.1 shows, even though

the implementations are of moderate size, the total state space is often quite large

due to exponential blowup.

All our experiments were carried out on an AMD Athlon XP 1600+ machine with

1 GB of RAM. Values under IterDeadlock refer to measurements for our approach

while those under Plain correspond to a naive approach involving only predicate

abstraction refinement. We note that IterDeadlock outperforms Plain in almost all

cases. In many cases IterDeadlock is able to establish deadlock or deadlock freedom

while Plain runs out of time. Even when both approaches succeed, IterDeadlock

can yield over 20 times speed-up in time and require over 4 times less memory (RW-

6). For the experiments involving dining philosophers with deadlock however, Plain

performs better than IterDeadlock. This is because in these cases Plain terminates

as soon as it discovers a deadlocking scenario, without having to explore the entire

state-space. In contrast, IterDeadlock has to perform many iterations before finding

an actual deadlock.

206

Chapter 11

Future Directions

The domain of software verification abounds with intriguing and imposing challenges.

In this dissertation I have presented a selected few of these problems along with their

possible solutions. It is now time to step back and look at the bigger picture. In this

chapter, I will attempt to point some significant directions that I was unable to delve

into while doing my thesis research. My aim is to answer the question: “What are

the next two or three Ph.D. theses to be written in this area” rather than “What

would I do if I had another six months to work on this”.

Security. One of the most relevant directions is the application of formal techniques

to detect security vulnerabilities in software. An important question to ask here is:

what do we mean by software security? It appears to me that at some level all

security problems are violations of either safety (e.g., buffer overflow) or liveness

(e.g., denial of service) requirements. Yet the current mechanisms for specifying

safety and liveness properties are inappropriate with respect to non-trivial security

claims. Perhaps state/event-based reasoning is an important avenue to investigate.

207

Another problem is the scalability of formal techniques to large programs running

into tens of thousands or even millions of lines of code. There is always a trade-

off between scalability and precision. It is possible to model check extremely large

programs using a very coarse abstraction such as the control flow graph. On the other

hand, coarser abstractions usually lead to numerous spurious counterexamples. It is

crucial to find the right balance between precision and scalability and a property-

driven approach like CEGAR seems to be quite promising in this regard.

Certification. The notion of proof or certification is essential for the wider

applicability of model checking to safety critical systems. A model checker is usually

an enormous untrusted computing base and hence of limited credibility if its results

is positive, i.e., if it says that a specification holds on a system. The notion of proof

carrying code (PCC) [91] aims to increase our confidence in any system analysis. The

idea is to generate a proof of correctness of the analysis results which can be checked

by a simple trusted proof checker.

The problem with PCC is that the proofs can be quite large even for simple

properties. This is similar to the state-space explosion problem in model checking.

In addition the original formulation of PCC was restricted to the certification of

properties such as memory safety. While considerable progress has been made on

limiting proof sizes, it is vital that we extend PCC-like technology to a richer class of

specifications.

Learning. Even with a sophisticated approach like compositional CEGAR, one

is left at the mercy of state-space explosion during the verification step in the

CEGAR loop. It is therefore imperative that our verification step be as efficient

as possible. One of the most promising techniques for compositional verification is

208

assume-guarantee (AG) style reasoning. However this approach usually involves the

manual construction of appropriate assumptions and hence is inherently difficult to

apply to large systems.

A very promising development [41] is the use of learning techniques to

automatically construct appropriate assumptions in the context of AG-style

verification. This approach has yielded encouraging results while verifying safety

properties on relatively simple programs. However, its effectiveness on a wide range

non-trivial benchmarks is yet to be evaluated. Moreover, the use of learning in the

context of non-safety specifications such as liveness and simulation is an area yet to

be explored.

I will stop with the above three important directions for future investigation. This

list is clearly non-exhaustive and I believe that as far as software analysis is concerned

we have simply scratched the surface. The gap between what we can do and what

we would like to achieve is quite staggering, and bridging this gap will be one of the

foremost problems to concern us in the foreseeable future.

Acknowledgments

We thank Rupak Majumdar and Ranjit Jhala for their help with blast.

209

210

Bibliography

[1] ABB website. http://www.abb.com.

[2] F. Aloul, A. Ramani, I. Markov, and K. Sakallah. PBS: A backtrack search
pseudo Boolean solver. In Proceedings of the 5th International Symposium on
the Theory and Applications of Satisfiability Testing (SAT ’02), pages 346–353,
May 2002.

[3] T. S. Anantharaman, Edmund M. Clarke, M. J. Foster, and B. Mishra.
Compiling path expressions into VLSI circuits. In Proceedings of the 12th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Langauges
(POPL ’85), pages 191–204. ACM Press, January 1985.

[4] Giorgio Ausiello and Giuseppe F. Italiano. On-line algorithms for polynomially
solvable satisfiability problems. Journal of Logic Programming, 10(1):69–90,
January 1991.

[5] Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Rajamani.
Automatic predicate abstraction of C programs. In Proceedings of the
ACM SIGPLAN 2001 Conference on Programming Language Design and
Implementation (PLDI ’01), volume 36(5) of SIGPLAN Notices, pages 203–
213. ACM Press, June 2001.

[6] Thomas Ball and Sriram K. Rajamani. Automatically validating temporal
safety properties of interfaces. In Matthew B. Dwyer, editor, Proceedings of the
8th International SPIN Workshop on Model Checking of Software (SPIN ’01),
volume 2057 of Lecture Notes in Computer Science, pages 103–122. Springer-
Verlag, May 2001.

[7] Thomas Ball and Sriram K. Rajamani. Generating abstract explanations of
spurious counterexamples in C programs. Technical report MSR-TR-2002-09,
Microsoft Research, Redmond, Washington, USA, January 2002.

[8] Bandera website. http://www.cis.ksu.edu/santos/bandera.

[9] BEHAVE! website. http://research.microsoft.com/behave.

211

[10] S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions of infinite
state systems compositionally and automatically. In Alan J. Hu and Moshe Y.
Vardi, editors, Proceedings of the 10th International Conference on Computer
Aided Verification (CAV ’98), volume 1427 of Lecture Notes in Computer
Science, pages 319–331. Springer-Verlag, June 1998.

[11] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and
Y. Zue. Bounded Model Checking, volume 58 of Advances in computers.
Academic Press, 2003. To appear.

[12] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Yhu.
Symbolic model checking without BDDs. In Rance Cleaveland, editor,
Proceedings of the 5th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS ’99), volume 1579 of Lecture
Notes in Computer Science, pages 193–207. Springer-Verlag, March 1999.

[13] blast website. http://www-cad.eecs.berkeley.edu/~rupak/blast.

[14] Christie Bolton, Jim Davies, and Jim Woodcock. On the refinement and
simulation of data types and processes. In Keijiro Araki, Andy Galloway,
and Kenji Taguchi, editors, Proceedings of the 1st International Conference
on Integrated Formal Methods (IFM ’99), pages 273–292. Springer-Verlag, June
1999.

[15] Business Process Execution Language for Web Services.
http://www.ibm.com/developerworks/library/ws-bpel.

[16] Julian Bradfield and Colin Stirling. Modal Logics and Mu-Calculi : An
Introduction, pages 293–330. Handbook of Process Algebra. Elsevier Science
Publishers B. V., 2001.

[17] S. D. Brookes and A. W. Roscoe. Deadlock analysis of networks of
communicating processes. Distributed Computing, 4:209–230, 1991.

[18] M. C. Browne. Automatic verification of finite state machines using temporal
logic. PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA,
1989. Technical report no. CMU-CS-89-117.

[19] T. Bultan. Action Language: A specification language for model checking
reactive systems. In Proceedings of the 22nd International Conference on
Software Engineering (ICSE ’00), pages 335–344. IEEE Computer Society
Press, June 2000.

[20] J. Burch. Trace algebra for automatic verification of real-time concurrent
systems. PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania,
USA, 1992. Technical report no. CMU-CS-92-179.

212

[21] J.R. Burch, Edmund M. Clarke, David E. Long, K.L. MacMillan, and David L.
Dill. Symbolic model checking for sequential circuit verification. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
13(4):401–424, April 1994.

[22] J.R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J.
Hwang. Symbolic Model Checking: 1020 States and Beyond. In Proceedings of
the 5th Annual IEEE Symposium on Logic in Computer Science (LICS ’90),
pages 1–33. IEEE Computer Society Press, 1990.

[23] S. Chaki, J. Ouaknine, K. Yorav, and Edmund M. Clarke. Automated
compositional abstraction refinement for concurrent C programs: A two-level
approach. In Proceedings of the 2nd Workshop on Software Model Checking
(SoftMC ’03), volume 89(3) of Electonic Notes in Theoretical Computer Science,
July 2003.

[24] Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, and Helmut Veith.
Modular verification of software components in C. In Proceedings of the 25th
International Conference on Software Engineering (ICSE ’03), pages 385–395.
IEEE Computer Society Press, May 2003.

[25] Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, and Helmut Veith.
Modular verification of software components in C. IEEE Transactions on
Software Engineering (TSE), 30(6):388–402, June 2004.

[26] Sagar Chaki, Edmund Clarke, Alex Groce, Joël Ouaknine, Ofer Strichman, and
Karen Yorav. Efficient verification of sequential and concurrent C programs.
Formal Methods in System Design (FMSD), 25(2–3):129–166, September –
November 2004.

[27] Sagar Chaki, Edmund Clarke, Joël Ouaknine, and Natasha Sharygina.
Automated, compositional and iterative deadlock detection. In Proceedings of
the 2nd ACM-IEEE International Conference on Formal Methods and Models
for Codesign (MEMOCODE ’04), pages 201–210. OMNI Press, June 2004.

[28] Sagar Chaki, Edmund M. Clarke, Joël Ouaknine, Natasha Sharygina, and
Nishant Sinha. State/event-based software model checking. In Eerke A. Boiten,
John Derrick, and Graeme Smith, editors, Proceedings of the 4th International
Conference on Integrated Formal Methods (IFM ’04), volume 2999 of Lecture
Notes in Computer Science, pages 128–147. Springer-Verlag, April 2004.

[29] P. Chauhan, Edmund M. Clarke, J. H. Kukula, S. Sapra, Helmut Veith, and
Dong Wang. Automated abstraction refinement for model checking large state
spaces using SAT based conflict analysis. In Mark Aagaard and John W.
O’Leary, editors, Proceedings of the 4th International Conference on Formal

213

Methods in Computer-Aided Design (FMCAD ’02), volume 2517 of Lecture
Notes in Computer Science, pages 33–51. Springer-Verlag, November 2002.

[30] CIL website. http://manju.cs.berkeley.edu/cil.

[31] E. M. Clarke. Programming language constructs for which it is impossible
to obtain “good” hoare-like axiom systems. In Proceedings of the 4th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Langauges
(POPL ’77), pages 10–20. ACM Press, January 1977.

[32] Edmund Clarke and Allen Emerson. Synthesis of synchronization skeletons
for branching time temporal logic. In Dexter Kozen, editor, Proceedings of
Workshop on Logic of Programs, volume 131 of Lecture Notes in Computer
Science, pages 52–71. Springer-Verlag, May 1981.

[33] Edmund Clarke, O. Grumberg, M. Talupur, and Dong Wang. Making predicate
abstraction efficient: eliminating redundant predicates. In Warren A. Hunt Jr.
and Fabio Somenzi, editors, Cav03, volume 2725 of Lecture Notes in Computer
Science, pages 126–140. Springer-Verlag, July 2003.

[34] Edmund Clarke, David Long, and Kenneth McMillan. Compositional model
checking. In Proceedings of the 4th Annual IEEE Symposium on Logic in
Computer Science (LICS ’89), pages 353–362. IEEE Computer Society Press,
June 1989.

[35] Edmund M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and System (TOPLAS), 8(2):244–
263, April 1986.

[36] Edmund M. Clarke, O. Grumberg, and David E. Long. Model checking
and abstraction. ACM Transactions on Programming Languages and System
(TOPLAS), 16(5):1512–1542, September 1994.

[37] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement. In E. Allen Emerson
and A. Prasad Sistla, editors, Proceedings of the 12th International Conference
on Computer Aided Verification (CAV ’00), volume 1855 of Lecture Notes in
Computer Science, pages 154–169. Springer-Verlag, July 2000.

[38] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking.
Journal of the ACM (JACM), 50(5):752–794, September 2003.

[39] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, Cambridge, MA, 2000.

214

[40] Edmund M. Clarke, A. Gupta, J. Kukula, and O. Strichman. SAT based
abstraction - refinement using ILP and machine learning techniques. In
Ed Brinksma and Kim Guldstrand Larsen, editors, Proceedings of the 14th
International Conference on Computer Aided Verification (CAV ’02), volume
2404 of Lecture Notes in Computer Science, pages 265–279. Springer-Verlag,
July 2002.

[41] J. M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Păsăreanu. Learning
assumptions for compositional verification. In Hubert Garavel and John
Hatcliff, editors, Proceedings of the 9th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS ’03), volume
2619 of Lecture Notes in Computer Science, pages 331–346. Springer-Verlag,
April 2003.

[42] M. Colón and T. E. Uribe. Generating finite-state abstractions of reactive
systems using decision procedures. In Alan J. Hu and Moshe Y. Vardi,
editors, Proceedings of the 10th International Conference on Computer Aided
Verification (CAV ’98), volume 1427 of Lecture Notes in Computer Science,
pages 293–304. Springer-Verlag, June 1998.

[43] S. A. Cook. Axiomatic and interpretative semantics for an Algol fragment.
Technical Report 79, Department of Computer Science, University of Toronto,
Toronto, Canada, 1975. to be published in SCICOMP.

[44] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu, Robby,
and H. Zheng. Bandera: extracting finite-state models from Java source code.
In Proceedings of the 22nd International Conference on Software Engineering
(ICSE ’00), pages 439–448. IEEE Computer Society Press, June 2000.

[45] James C. Corbett. Evaluating deadlock detection methods for concurrent
software. IEEE Transactions on Software Engineering (TSE), 22(3):161–180,
March 1996.

[46] Costas Courcoubetis, Moshe Y. Vardi, Pierre Wolper, and Mihalis Yannakakis.
Memory-efficient algorithms for the verification of temporal properties. Formal
Methods in System Design (FMSD), 1(2–3):275–288, October 1992.

[47] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints.
In Proceedings of the 4th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Langauges (POPL ’77), pages 238–252. ACM Press, January
1977.

[48] Dennis Dams and Kedar S. Namjoshi. Shape analysis through predicate
abstraction and model checking. In Lenore D. Zuck, Paul C. Attie,

215

Agostino Cortesi, and Supratik Mukhopadhyay, editors, Proceedings of the
4th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI ’03), volume 2575 of Lecture Notes in Computer
Science, pages 310–324. Springer-Verlag, January 2003.

[49] Satyaki Das and David L. Dill. Counter-example based predicate discovery
in predicate abstraction. In Mark Aagaard and John W. O’Leary, editors,
Proceedings of the 4th International Conference on Formal Methods in
Computer-Aided Design (FMCAD ’02), volume 2517 of Lecture Notes in
Computer Science, pages 19–32. Springer-Verlag, November 2002.

[50] Satyaki Das, David L. Dill, and Seungjoon Park. Experience with predicate
abstraction. In Nicolas Halbwachs and Doron Peled, editors, Proceedings of
the 11th International Conference on Computer Aided Verification (CAV ’99),
volume 1633 of Lecture Notes in Computer Science, pages 160–171. Springer-
Verlag, July 1999.

[51] Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem-proving. Communications of the ACM (CACM), 5(7):394–397, July
1962.

[52] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the ACM (JACM), 7(3):201–215, June 1960.

[53] C. Demartini, R. Iosif, and R. Sisto. A deadlock detection tool for concurrent
java programs. Software - Practice and Experience (SPE), 29(7):577–603, June
1999.

[54] Edsger Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[55] David L. Dill. Trace theory for automatic hierarchical verification of speed-
independent circuits. PhD thesis, Carnegie Mellon University, Pittsburgh,
Pennsylvania, USA, 1988. Technical report no. CMU-CS-88-119.

[56] David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. MIT Press, 1989.

[57] W. F. Dowling and J. H. Gallier. Linear time algorithms for testing the
satisfiability of propositional horn formula. Journal of Logic Programming,
1(3):267–284, October 1984.

[58] Matthew B. Dwyer, John Hatcliff, Roby Joehanes, Shawn Laubach, Corina S.
Pasareanu, Hongjun Zheng, and Willem Visser. Tool-supported program
abstraction for finite-state verification. In Proceedings of the 23rd International
Conference on Software Engineering (ICSE ’01), pages 177–187. IEEE
Computer Society Press, May 2001.

216

[59] E. Allen Emerson. Temporal and modal logic, volume B: formal models and
semantics of Handbook of Theoretical Computer Science, pages 995–1072. MIT
Press, 1990.

[60] Formal Systems (Europe) Ltd. website. http://www.fsel.com.

[61] R. Gerth, Doron Peled, Moshe Y. Vardi, and P. Wolper. Simple on-the-fly
automatic verification of linear temporal logic. In Piotr Dembinski and Marek
Sredniawa, editors, Proceedings of the Fifteenth IFIP WG6.1 International
Symposium on Protocol Specification, Testing and Verification XV, volume 38
of IFIP Conference Proceedings, pages 3–18. Chapman & Hall, Ltd., June 1996.

[62] Dimitra Giannakopoulou and J. Magee. Fluent model checking for event-based
systems. In Proceedings of the 11th ACM SIGSOFT Symposium on Foundations
of Software Engineering (FSE ’03), pages 257–266. ACM Press, September
2003.

[63] Susanne Graf and Hassen Säıdi. Construction of abstract state graphs with PVS.
In Orna Grumberg, editor, Proceedings of the 9th International Conference
on Computer Aided Verification (CAV ’97), volume 1254 of Lecture Notes in
Computer Science, pages 72–83. Springer-Verlag, June 1997.

[64] Orna Grumberg and David E. Long. Model checking and modular verification.
ACM Transactions on Programming Languages and System (TOPLAS),
16(3):843–871, May 1994.

[65] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Shaz Qadeer.
Thread-modular abstraction refinement. In Warren A. Hunt Jr. and Fabio
Somenzi, editors, Proceedings of the 15th International Conference on Computer
Aided Verification (CAV ’03), volume 2725 of Lecture Notes in Computer
Science, pages 262–274. Springer-Verlag, July 2003.

[66] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre.
Lazy abstraction. In Proceedings of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Langauges (POPL ’02), volume 37(1)
of SIGPLAN Notices, pages 58–70. ACM Press, January 2002.

[67] Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani. Decomposing
refinement proofs using assume-guarantee reasoning. In Proceedings of the 2000
International Conference on Computer-Aided Design (ICCAD ’00), pages 245–
252. IEEE Computer Society Press, November 2000.

[68] C. A. R. Hoare. Communicating sequential processes. Communications of the
ACM (CACM), 21(8):666–677, August 1978.

217

[69] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, London,
1985.

[70] C.A.R Hoare. An axiomatic basis for computer programming. Communications
of the ACM (CACM), 12(10):576–580, October 1969.

[71] G.J. Holzmann, Doron Peled, and M. Yannakakis. On nested depth first search.
In Proceedings of the 2nd International SPIN Workshop on Model Checking of
Software (SPIN ’96), pages 81–89, August 1996.

[72] M. Huth, R. Jagadeesan, and D. Schmidt. Modal transition systems:
A foundation for three-valued program analysis. In David Sands, editor,
Proceedings of the 10th European Symposium On Programming (ESOP ’01),
volume 2028 of Lecture Notes in Computer Science, pages 155–169. Springer-
Verlag, April 2001.

[73] Ekkart Kindler and Tobias Vesper. ESTL: A temporal logic for events and
states. In J. Desel and M. Silva, editors, Proceedings of the 19th International
Conference on Application and Theory of Petri Nets (ICATPN ’98), volume
1420 of Lecture Notes in Computer Science, pages 365–383. Springer-Verlag,
June 1998.

[74] Dexter Kozen. Results on the propositional mu-calculus. Theoretical Computer
Science (TCS), 27(3):333–354, December 1983.

[75] R. P. Kurshan. Analysis of discrete event coordination. In J. W. de Bakker,
Willem P. de Roever, and Grzegorz Rozenberg, editors, Proceedings of Stepwise
Refinement of Distributed Systems, Models, Formalisms, Correctness, REX
Workshop, volume 430 of Lecture Notes in Computer Science, pages 414–453.
Springer-Verlag, May–June 1989.

[76] Robert P. Kurshan. Computer-aided verification of coordinating processes: the
automata-theoretic approach. Princeton University Press, 1994.

[77] Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre. Incremental verification
by abstraction. In Tiziana Margaria and Wang Yi, editors, Proceedings of the
7th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS ’01), volume 2031 of Lecture Notes in Computer
Science, pages 98–112. Springer-Verlag, April 2001.

[78] O. Lichtenstein and A. Pnueli. Checking that finite-state concurrent programs
satisfy their linear specification. In Proceedings of the 12th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Langauges (POPL ’85),
pages 97–107. ACM Press, January 1985.

[79] J. Magee and J. Kramer. Concurrency: State Models & Java Programs. Wiley.

218

[80] magic website. http://www.cs.cmu.edu/~chaki/magic.

[81] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, New York, 1992.

[82] J. M. R. Martin and Y. Huddart. Parallel algorithms for deadlock and
livelock analysis of concurrent systems. In Proceedings of Communicating
Process Architectures, volume 58 of Concurrent Systems Engineering. IOS Press,
September 2000.

[83] J. M. R. Martin and S. Jassim. A tool for proving deadlock freedom. In
Proceedings of the 20th World Occam and Transputer User Group Technical
Meeting. IOS Press, April 1997.

[84] Kenneth L. McMillan. A compositional rule for hardware design refinement.
In Orna Grumberg, editor, Proceedings of the 9th International Conference
on Computer Aided Verification (CAV ’97), volume 1254 of Lecture Notes in
Computer Science, pages 24–35. Springer-Verlag, June 1997.

[85] Robin Milner. Communication and Concurrency. Prentice-Hall International,
London, 1989.

[86] Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge
University Press, 1999.

[87] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the
38th ACM IEEE Design Automation Conference (DAC ’01), pages 530–535.
ACM Press, June 2001.

[88] Glenford J. Myers. Art of Software Testing. John Wiley & Sons, Inc., 1979.

[89] Kedar S. Namjoshi and Robert P. Kurshan. Syntactic program transformations
for automatic abstraction. In E. Allen Emerson and A. Prasad Sistla,
editors, Proceedings of the 12th International Conference on Computer Aided
Verification (CAV ’00), volume 1855 of Lecture Notes in Computer Science,
pages 435–449. Springer-Verlag, July 2000.

[90] G. Naumovich, L. A. Clarke, L. J. Osterweil, and Matthew B. Dwyer.
Verification of concurrent software with FLAVERS. In Proceedings of the 19th
International Conference on Software Engineering (ICSE ’97), pages 594–595.
ACM Press, May 1997.

[91] George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Langauges
(POPL ’97), pages 106–119. ACM Press, January 1997.

219

[92] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer.
CIL: Intermediate language and tools for analysis and transformation of C
programs. In R. Nigel Horspool, editor, Proceedings of the 11th International
Conference on Compiler Construction (CC ’02), volume 2304 of Lecture Notes
in Computer Science, pages 213–228. Springer-Verlag, April 2002.

[93] R. De Nicola, A. Fantechi, S. Gnesi, and G. Ristori. An action-based framework
for verifying logical and behavioural properties of concurrent systems. Computer
Networks and ISDN Systems, 25(7):761–778, February 1993.

[94] R. De Nicola and F. Vaandrager. Three logics for branching bisimulation.
Journal of the ACM (JACM), 42(2):458–487, March 1995.

[95] OpenSSL website. http://www.openssl.org.

[96] R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM
Journal of Computing (SIAMJC), 16(6):973–989, December 1987.

[97] Amir Pnueli. Application of temporal logic to the specification and verification
of reactive systems: A survey of current trends. In J.W. de Bakker, W. P.
de Roever, and G. Rozenburg, editors, Current Trends in Concurrency, volume
224 of Lecture Notes in Computer Science, pages 510–584. Springer-Verlag,
1986.

[98] Corina S. Păsăreanu, Matthew B. Dwyer, and Willem Visser. Finding feasible
counter-examples when model checking abstracted Java programs. In Tiziana
Margaria and Wang Yi, editors, Proceedings of the 7th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
’01), volume 2031 of Lecture Notes in Computer Science, pages 284–298.
Springer-Verlag, April 2001.

[99] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems
in CESAR. In M. Dezani and U. Montanari, editors, Proceedings of the 5th
Colloquium of the International Symposium on Programming (ISP ’82), volume
137 of Lecture Notes in Computer Science, pages 337–351. Springer-Verlag,
April 1982.

[100] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall
International, London, 1997.

[101] A. W. Roscoe and N. Dathi. The pursuit of deadlock freedom. Information and
Computation, 75(3):289–327, December 1987.

[102] Vlad Rusu and Eli Singerman. On proving safety properties by integrating
static analysis, theorem proving and abstraction. In Rance Cleaveland, editor,
Proceedings of the 5th International Conference on Tools and Algorithms for the

220

Construction and Analysis of Systems (TACAS ’99), volume 1579 of Lecture
Notes in Computer Science, pages 178–192. Springer-Verlag, March 1999.

[103] S. K. Shukla. Uniform Approaches to the Verification of Finite State Systems.
PhD thesis, State University of New York, Albany, New York, USA, 1997.

[104] Joao P. Marques Silva and Karem A. Sakallah. GRASP - a new search
algorithm for satisfiability. In Proceedings of the 1996 International Conference
on Computer-Aided Design (ICCAD ’96), pages 220–227. IEEE Computer
Society Press, November 1996.

[105] Joao P. Marques Silva and Karem A. Sakallah. GRASP - a new search algorithm
for satisfiability. Technical report CSE-TR-292-96, University of Michigan, Ann
Arbor, Michigan, USA, April 1996.

[106] Joao P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Transactions on Computers, 48(5):506–521,
May 1999.

[107] slam website. http://research.microsoft.com/slam.

[108] Fabio Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae.
In E. Allen Emerson and A. Prasad Sistla, editors, Proceedings of the 12th
International Conference on Computer Aided Verification (CAV ’00), volume
1855 of Lecture Notes in Computer Science, pages 248–263. Springer-Verlag,
July 2000.

[109] SSL 3.0 Specification. http://wp.netscape.com/eng/ssl3.

[110] Colin Stirling. The Joys of Bisimulation. In Lubos Brim, Jozef Gruska,
and Jir Zlatuska, editors, Proceedings of the 23rd International Symposium on
Mathematical Foundations of Computer Science (MFCS ’98), volume 1450 of
Lecture Notes in Computer Science, pages 142–151. Springer-Verlag, August
1998.

[111] Scott D. Stoller. Model-checking multi-threaded distributed Java programs. In
Klaus Havelund, John Penix, and Willem Visser, editors, Proceedings of the
7th International SPIN Workshop on Model Checking of Software (SPIN ’00),
volume 1885 of Lecture Notes in Computer Science, pages 224–244. Springer-
Verlag, August–September 2000.

[112] Scott D. Stoller. Model-checking multi-threaded distributed Java programs.
International Journal on Software Tools for Technology Transfer (STTT),
4(1):71–91, October 2002.

[113] Wring website. http://vlsi.colorado.edu/~rbloem/wring.html.

221

[114] H. Zhang. SATO: An efficient propositional prover. In William McCune, editor,
Proceedings of the 14th International Conference on Automated Deduction
(CADE ’97), volume 1249 of Lecture Notes in Computer Science, pages 272–
275. Springer-Verlag, July 1997.

222

Appendix A

OpenSSL Example

In this chapter we describe the OpenSSL benchmark used in our experimental

evaluation of the CEGAR framework for simulation conformance (cf. Section 6.5).

Recall that the benchmark consists of two components - one for the server and the

other for the client. We will first present the server and then the client. We begin

with the server source code. Essentially, the source consists of a core C procedure

ssl3_accept. The procedure simulates a state machine via a top-level while loop

and a variable s->state to keep track of the current state of the machine. The

complete source code for ssl3_accept is presented next.

A.1 Server Source

int ssl3_accept(SSL *s)

{

BUF_MEM *buf ;

unsigned long l ;

unsigned long Time ;

unsigned long tmp ;

void (*cb)() ;

223

long num1 ;

int ret ;

int new_state ;

int state ;

int skip ;

int got_new_session ;

int *tmp___0 ;

int tmp___1 ;

int tmp___2 ;

int tmp___3 ;

int tmp___4 ;

int tmp___5 ;

int tmp___6 ;

int tmp___7 ;

long tmp___8 ;

int tmp___9 ;

int tmp___10 ;

tmp = (unsigned long)time((time_t *)((void *)0));

Time = tmp;

cb = (void (*)())((void *)0);

ret = -1;

skip = 0;

got_new_session = 0;

RAND_add((void const *)(& Time), (int)sizeof(Time), (double)0);

ERR_clear_error();

tmp___0 = __errno_location();

(*tmp___0) = 0;

if ((unsigned long)s->info_callback != (unsigned long)((void *)0)) {

cb = s->info_callback;

} else {

if ((unsigned long)(s->ctx)->info_callback != (unsigned long)((void *)0)) {

cb = (s->ctx)->info_callback;

}

}

s->in_handshake ++;

tmp___1 = SSL_state(s);

if (tmp___1 & 12288) {

tmp___2 = SSL_state(s);

if (tmp___2 & 16384) SSL_clear(s);

} else SSL_clear(s);

if ((unsigned long)s->cert == (unsigned long)((void *)0)) {

224

ERR_put_error(20, 128, 179, (char const *)"s3_srvr.c", 187);

return (-1);

}

while (1) {

state = s->state;

switch (s->state) {

case 12292:

s->new_session = 1;

case 16384: ;

case 8192: ;

case 24576: ;

case 8195:

s->server = 1;

if ((unsigned long)cb != (unsigned long)((void *)0)) {

((*cb))(s, 16, 1);

}

if (s->version >> 8 != 3) {

ERR_put_error(20, 128, 157, (char const *)"s3_srvr.c", 211);

return (-1);

}

s->type = 8192;

if ((unsigned long)s->init_buf == (unsigned long)((void *)0)) {

buf = BUF_MEM_new();

if ((unsigned long)buf == (unsigned long)((void *)0)) {

ret = -1;

goto end;

}

tmp___3 = BUF_MEM_grow(buf, 16384);

if (! tmp___3) {

ret = -1;

goto end;

}

s->init_buf = buf;

}

tmp___4 = ssl3_setup_buffers(s);

if (! tmp___4) {

ret = -1;

goto end;

}

s->init_num = 0;

if (s->state != 12292) {

tmp___5 = ssl_init_wbio_buffer(s, 1);

225

if (! tmp___5) {

ret = -1;

goto end;

}

ssl3_init_finished_mac(s);

s->state = 8464;

(s->ctx)->stats.sess_accept ++;

} else {

(s->ctx)->stats.sess_accept_renegotiate ++;

s->state = 8480;

}

break;

case 8480: ;

case 8481:

s->shutdown = 0;

ret = ssl3_send_hello_request(s);

if (ret <= 0) {

goto end;

}

(s->s3)->tmp.next_state = 8482;

s->state = 8448;

s->init_num = 0;

ssl3_init_finished_mac(s);

break;

case 8482:

s->state = 3;

break;

case 8464: ;

case 8465: ;

case 8466:

s->shutdown = 0;

ret = ssl3_get_client_hello(s);

if (ret <= 0) {

goto end;

}

got_new_session = 1;

s->state = 8496;

s->init_num = 0;

break;

case 8496: ;

case 8497:

ret = ssl3_send_server_hello(s);

226

if (ret <= 0) {

goto end;

}

if (s->hit) {

s->state = 8656;

} else {

s->state = 8512;

}

s->init_num = 0;

break;

case 8512: ;

case 8513: ;

if (((s->s3)->tmp.new_cipher)->algorithms & 256UL) {

skip = 1;

} else {

ret = ssl3_send_server_certificate(s);

if (ret <= 0) {

goto end;

}

}

s->state = 8528;

s->init_num = 0;

break;

case 8528: ;

case 8529:

l = ((s->s3)->tmp.new_cipher)->algorithms;

if (s->options & 2097152UL) {

(s->s3)->tmp.use_rsa_tmp = 1;

} else {

(s->s3)->tmp.use_rsa_tmp = 0;

}

if ((s->s3)->tmp.use_rsa_tmp) {

goto _L___0;

} else {

if (l & 30UL) {

goto _L___0;

} else {

if (l & 1UL) {

if ((unsigned long)(s->cert)->pkeys[0].privatekey ==

(unsigned long)((void *)0)) {

goto _L___0;

} else {

227

if (((s->s3)->tmp.new_cipher)->algo_strength & 2UL) {

tmp___6 = EVP_PKEY_size((s->cert)->pkeys[0].privatekey);

if (((s->s3)->tmp.new_cipher)->algo_strength & 4UL) {

tmp___7 = 512;

} else {

tmp___7 = 1024;

}

if (tmp___6 * 8 > tmp___7) {

_L___0:

_L:

ret = ssl3_send_server_key_exchange(s);

if (ret <= 0) {

goto end;

}

} else {

skip = 1;

}

} else {

skip = 1;

}

}

} else {

skip = 1;

}

}

}

s->state = 8544;

s->init_num = 0;

break;

case 8544: ;

case 8545: ;

if (s->verify_mode & 1) {

if ((unsigned long)(s->session)->peer != (unsigned long)((void *)0)) {

if (s->verify_mode & 4) {

skip = 1;

(s->s3)->tmp.cert_request = 0;

s->state = 8560;

} else {

goto _L___2;

}

} else {

_L___2:

228

if (((s->s3)->tmp.new_cipher)->algorithms & 256UL) {

if (s->verify_mode & 2) {

goto _L___1;

} else {

skip = 1;

(s->s3)->tmp.cert_request = 0;

s->state = 8560;

}

} else {

_L___1:

(s->s3)->tmp.cert_request = 1;

ret = ssl3_send_certificate_request(s);

if (ret <= 0) {

goto end;

}

s->state = 8448;

(s->s3)->tmp.next_state = 8576;

s->init_num = 0;

}

}

} else {

skip = 1;

(s->s3)->tmp.cert_request = 0;

s->state = 8560;

}

break;

case 8560: ;

case 8561:

ret = ssl3_send_server_done(s);

if (ret <= 0) {

goto end;

}

(s->s3)->tmp.next_state = 8576;

s->state = 8448;

s->init_num = 0;

break;

case 8448:

num1 = BIO_ctrl(s->wbio, 3, 0L, (void *)0);

if (num1 > 0L) {

s->rwstate = 2;

tmp___8 = BIO_ctrl(s->wbio, 11, 0L, (void *)0);

num1 = (long)((int)tmp___8);

229

if (num1 <= 0L) {

ret = -1;

goto end;

}

s->rwstate = 1;

}

s->state = (s->s3)->tmp.next_state;

break;

case 8576: ;

case 8577:

ret = ssl3_check_client_hello(s);

if (ret <= 0) {

goto end;

}

if (ret == 2) {

s->state = 8466;

} else {

ret = ssl3_get_client_certificate(s);

if (ret <= 0) {

goto end;

}

s->init_num = 0;

s->state = 8592;

}

break;

case 8592: ;

case 8593:

ret = ssl3_get_client_key_exchange(s);

if (ret <= 0) {

goto end;

}

s->state = 8608;

s->init_num = 0;

((*(((s->method)->ssl3_enc)->cert_verify_mac)))

(s, & (s->s3)->finish_dgst1, & (s->s3)->tmp.cert_verify_md[0]);

((*(((s->method)->ssl3_enc)->cert_verify_mac)))

(s, & (s->s3)->finish_dgst2, & (s->s3)->tmp.cert_verify_md[16]);

break;

case 8608: ;

case 8609:

ret = ssl3_get_cert_verify(s);

if (ret <= 0) {

230

goto end;

}

s->state = 8640;

s->init_num = 0;

break;

case 8640: ;

case 8641:

ret = ssl3_get_finished(s, 8640, 8641);

if (ret <= 0) {

goto end;

}

if (s->hit) {

s->state = 3;

} else {

s->state = 8656;

}

s->init_num = 0;

break;

case 8656: ;

case 8657:

(s->session)->cipher = (s->s3)->tmp.new_cipher;

tmp___9 = ((*(((s->method)->ssl3_enc)->setup_key_block)))(s);

if (! tmp___9) {

ret = -1;

goto end;

}

ret = ssl3_send_change_cipher_spec(s, 8656, 8657);

if (ret <= 0) {

goto end;

}

s->state = 8672;

s->init_num = 0;

tmp___10 = ((*(((s->method)->ssl3_enc)->change_cipher_state)))(s, 34);

if (! tmp___10) {

ret = -1;

goto end;

}

break;

case 8672: ;

case 8673:

ret = ssl3_send_finished(s, 8672, 8673,

((s->method)->ssl3_enc)->server_finished_label,

231

((s->method)->ssl3_enc)->server_finished_label_len);

if (ret <= 0) {

goto end;

}

s->state = 8448;

if (s->hit) {

(s->s3)->tmp.next_state = 8640;

} else {

(s->s3)->tmp.next_state = 3;

}

s->init_num = 0;

break;

case 3:

ssl3_cleanup_key_block(s);

BUF_MEM_free(s->init_buf);

s->init_buf = (BUF_MEM *)((void *)0);

ssl_free_wbio_buffer(s);

s->init_num = 0;

if (got_new_session) {

s->new_session = 0;

ssl_update_cache(s, 2);

(s->ctx)->stats.sess_accept_good ++;

s->handshake_func = (int (*)())(& ssl3_accept);

if ((unsigned long)cb != (unsigned long)((void *)0)) {

((*cb))(s, 32, 1);

}

} ret = 1;

goto end;

default:

ERR_put_error(20, 128, 255, (char const *)"s3_srvr.c", 536);

ret = -1;

goto end;

}

if (! (s->s3)->tmp.reuse_message) {

if (! skip) {

if (s->debug) {

ret = (int)BIO_ctrl(s->wbio, 11, 0L, (void *)0);

if (ret <= 0) {

goto end;

}

}

if ((unsigned long)cb != (unsigned long)((void *)0)) {

232

if (s->state != state) {

new_state = s->state;

s->state = state;

((*cb))(s, 8193, 1);

s->state = new_state;

}

}

}

}

skip = 0;

}

end:

s->in_handshake --;

if ((unsigned long)cb != (unsigned long)((void *)0)) {

((*cb))(s, 8194, ret);

}

return (ret);

}

A.2 Server Library Specifications

As discussed earlier, the essential idea behind magic is to model each library routine

call by an EFSM. For example, the call to ssl3_send_hello_request is modeled

by an EFSM SendHelloRequest which either does the action send_hello_request

and then returns the value 1 or simply returns −1. In magic one can specify this

information via the following syntax.

cproc ssl3_send_hello_request {

abstract {ssl3_send_hello_request_abs,1,SendHelloRequest};

}

SendHelloRequest =

(

send_hello_request -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

233

The complete input to magic for all the library routines invoked by ssl3_accept

and their corresponding EFSMs is as follows:

cproc ssl3_send_hello_request {

abstract {ssl3_send_hello_request_abs,1,SendHelloRequest};

}

cproc ssl3_get_client_hello {

abstract {ssl3_get_client_hello_abs,1,GetClientHello};

}

cproc ssl3_send_server_hello {

abstract {ssl3_send_server_hello_abs,1,SendServerHello};

}

cproc ssl3_send_server_certificate {

abstract {ssl3_send_server_certificate_abs,1,SendServerCertificate};

}

cproc ssl3_send_server_key_exchange {

abstract {ssl3_send_server_key_exchange_abs,1,SendServerKeyExchange};

}

cproc ssl3_send_certificate_request {

abstract {ssl3_send_certificate_request_abs,1,SendCertificateRequest};

}

cproc ssl3_send_server_done {

abstract {ssl3_send_server_done_abs,1,SendServerDone};

}

cproc ssl3_check_client_hello {

abstract {ssl3_check_client_hello_abs,1,CheckClientHello};

}

cproc ssl3_get_client_certificate {

abstract {ssl3_get_client_certificate_abs,1,GetClientCertificate};

}

cproc ssl3_get_client_key_exchange {

abstract {ssl3_get_client_key_exchange_abs,1,GetClientKeyExchange};

}

234

cproc ssl3_get_cert_verify {

abstract {ssl3_get_cert_verify_abs,1,GetCertVerify};

}

cproc ssl3_get_finished {

abstract {ssl3_get_finished_abs,1,GetFinished};

}

cproc ssl3_send_change_cipher_spec {

abstract {ssl3_send_change_cipher_spec_abs,1,SendChangeCipherSpec};

}

cproc ssl3_send_finished {

abstract {ssl3_send_finished_abs,1,SendFinished};

}

SendHelloRequest =

(

send_hello_request -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

GetClientHello =

(

exch_client_hello -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

SendServerHello =

(

exch_server_hello -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

SendServerCertificate =

(

exch_server_certificate -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

SendChangeCipherSpec =

235

(

send_change_cipher_spec -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

GetClientKeyExchange =

(

key_exchange_clnt_to_srvr -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

SendServerKeyExchange =

(

key_exchange_srvr_to_clnt -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

SendFinished =

(

finished_srvr_to_clnt -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

SendCertificateRequest =

(

certificate_request_srvr_to_clnt -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

CheckClientHello =

(

check_client_hello -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

GetClientCertificate =

(

exch_client_certificate -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

GetFinished =

236

(

finished_clnt_to_srvr -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

GetCertVerify =

(

cert_verify_clnt_to_srvr -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

SendServerDone =

(

send_server_done -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

A.3 Client Source

We have presented the input to magic as far as the server is concerned. We now

present the client component beginning with the source code. The client consists of a

core procedure called ssl3_connect whose structure is very similar to ssl3_accept.

In particular, it also simulates a state machine via a top-level while loop and a

variable s->state to keep track of the current state of the machine. The complete

source code for ssl3_connect is presented next.

int ssl3_connect(SSL *s)

{

BUF_MEM *buf ;

unsigned long Time ;

unsigned long tmp ;

unsigned long l ;

long num1 ;

void (*cb)() ;

int ret ;

int new_state ;

237

int state ;

int skip ;

int *tmp___0 ;

int tmp___1 ;

int tmp___2 ;

int tmp___3 ;

int tmp___4 ;

int tmp___5 ;

int tmp___6 ;

int tmp___7 ;

int tmp___8 ;

long tmp___9 ;

tmp = (unsigned long)time((time_t *)((void *)0));

Time = tmp;

cb = (void (*)())((void *)0);

ret = -1;

skip = 0;

RAND_add((void const *)(& Time), (int)sizeof(Time), (double)0);

ERR_clear_error();

tmp___0 = __errno_location();

(*tmp___0) = 0;

if ((unsigned long)s->info_callback != (unsigned long)((void *)0)) {

cb = s->info_callback;

} else {

if ((unsigned long)(s->ctx)->info_callback !=

(unsigned long)((void *)0)) {

cb = (s->ctx)->info_callback;

}

}

s->in_handshake ++;

tmp___1 = SSL_state(s);

if (tmp___1 & 12288) {

tmp___2 = SSL_state(s);

if (tmp___2 & 16384) {

SSL_clear(s);

}

} else {

SSL_clear(s);

}

while (1) {

state = s->state;

238

switch (s->state) {

case 12292:

s->new_session = 1;

s->state = 4096;

(s->ctx)->stats.sess_connect_renegotiate ++;

case 16384: ;

case 4096: ;

case 20480: ;

case 4099:

s->server = 0;

if ((unsigned long)cb != (unsigned long)((void *)0)) {

((*cb))(s, 16, 1);

}

if ((s->version & 65280) != 768) {

ERR_put_error(20, 132, 157, (char const *)"s3_clnt.c", 146);

ret = -1;

goto end;

}

s->type = 4096;

if ((unsigned long)s->init_buf == (unsigned long)((void *)0)) {

buf = BUF_MEM_new();

if ((unsigned long)buf == (unsigned long)((void *)0)) {

ret = -1;

goto end;

}

tmp___3 = BUF_MEM_grow(buf, 16384);

if (! tmp___3) {

ret = -1;

goto end;

}

s->init_buf = buf;

}

tmp___4 = ssl3_setup_buffers(s);

if (! tmp___4) {

ret = -1;

goto end;

}

tmp___5 = ssl_init_wbio_buffer(s, 0);

if (! tmp___5) {

ret = -1;

goto end;

}

239

ssl3_init_finished_mac(s);

s->state = 4368;

(s->ctx)->stats.sess_connect ++;

s->init_num = 0;

break;

case 4368: ;

case 4369:

s->shutdown = 0;

ret = ssl3_client_hello(s);

if (ret <= 0) {

goto end;

}

s->state = 4384;

s->init_num = 0;

if ((unsigned long)s->bbio != (unsigned long)s->wbio) {

s->wbio = BIO_push(s->bbio, s->wbio);

}

break;

case 4384: ;

case 4385:

ret = ssl3_get_server_hello(s);

if (ret <= 0) {

goto end;

}

if (s->hit) {

s->state = 4560;

} else {

s->state = 4400;

}

s->init_num = 0;

break;

case 4400: ;

case 4401: ;

if (((s->s3)->tmp.new_cipher)->algorithms & 256UL) {

skip = 1;

} else {

ret = ssl3_get_server_certificate(s);

if (ret <= 0) {

goto end;

}

}

s->state = 4416;

240

s->init_num = 0;

break;

case 4416: ;

case 4417:

ret = ssl3_get_key_exchange(s);

if (ret <= 0) {

goto end;

}

s->state = 4432;

s->init_num = 0;

tmp___6 = ssl3_check_cert_and_algorithm(s);

if (! tmp___6) {

ret = -1;

goto end;

}

break;

case 4432: ;

case 4433:

ret = ssl3_get_certificate_request(s);

if (ret <= 0) {

goto end;

}

s->state = 4448;

s->init_num = 0;

break;

case 4448: ;

case 4449:

ret = ssl3_get_server_done(s);

if (ret <= 0) {

goto end;

}

if ((s->s3)->tmp.cert_req) {

s->state = 4464;

} else {

s->state = 4480;

}

s->init_num = 0;

break;

case 4464: ;

case 4465: ;

case 4466: ;

case 4467:

241

ret = ssl3_send_client_certificate(s);

if (ret <= 0) {

goto end;

}

s->state = 4480;

s->init_num = 0;

break;

case 4480: ;

case 4481:

ret = ssl3_send_client_key_exchange(s);

if (ret <= 0) {

goto end;

}

l = ((s->s3)->tmp.new_cipher)->algorithms;

if ((s->s3)->tmp.cert_req == 1) {

s->state = 4496;

} else {

s->state = 4512;

(s->s3)->change_cipher_spec = 0;

}

s->init_num = 0;

break;

case 4496: ;

case 4497:

ret = ssl3_send_client_verify(s);

if (ret <= 0) {

goto end;

}

s->state = 4512;

s->init_num = 0;

(s->s3)->change_cipher_spec = 0;

break;

case 4512: ;

case 4513:

ret = ssl3_send_change_cipher_spec(s, 4512, 4513);

if (ret <= 0) {

goto end;

}

s->state = 4528;

s->init_num = 0;

(s->session)->cipher = (s->s3)->tmp.new_cipher;

if ((unsigned long)(s->s3)->tmp.new_compression ==

242

(unsigned long)((void *)0)) {

(s->session)->compress_meth = 0;

} else {

(s->session)->compress_meth = ((s->s3)->tmp.new_compression)->id;

}

tmp___7 = ((*(((s->method)->ssl3_enc)->setup_key_block)))(s);

if (! tmp___7) {

ret = -1;

goto end;

}

tmp___8 = ((*(((s->method)->ssl3_enc)->change_cipher_state)))(s, 18);

if (! tmp___8) {

ret = -1;

goto end;

}

break;

case 4528: ;

case 4529:

ret = ssl3_send_finished(s, 4528, 4529,

((s->method)->ssl3_enc)->client_finished_label,

((s->method)->ssl3_enc)->client_finished_label_len);

if (ret <= 0) {

goto end;

}

s->state = 4352;

(s->s3)->flags &= -5L;

if (s->hit) {

(s->s3)->tmp.next_state = 3;

if ((s->s3)->flags & 2L) {

s->state = 3;

(s->s3)->flags |= 4L;

(s->s3)->delay_buf_pop_ret = 0;

}

} else {

(s->s3)->tmp.next_state = 4560;

}

s->init_num = 0;

break;

case 4560: ;

case 4561:

ret = ssl3_get_finished(s, 4560, 4561);

if (ret <= 0) {

243

goto end;

}

if (s->hit) {

s->state = 4512;

} else {

s->state = 3;

}

s->init_num = 0;

break;

case 4352:

num1 = BIO_ctrl(s->wbio, 3, 0L, (void *)0);

if (num1 > 0L) {

s->rwstate = 2;

tmp___9 = BIO_ctrl(s->wbio, 11, 0L, (void *)0);

num1 = (long)((int)tmp___9);

if (num1 <= 0L) {

ret = -1;

goto end;

}

s->rwstate = 1;

}

s->state = (s->s3)->tmp.next_state;

break;

case 3:

ssl3_cleanup_key_block(s);

if ((unsigned long)s->init_buf != (unsigned long)((void *)0)) {

BUF_MEM_free(s->init_buf);

s->init_buf = (BUF_MEM *)((void *)0);

}

if (! ((s->s3)->flags & 4L)) {

ssl_free_wbio_buffer(s);

}

s->init_num = 0;

s->new_session = 0;

ssl_update_cache(s, 1);

if (s->hit) {

(s->ctx)->stats.sess_hit ++;

}

ret = 1;

s->handshake_func = (int (*)())(& ssl3_connect);

(s->ctx)->stats.sess_connect_good ++;

if ((unsigned long)cb != (unsigned long)((void *)0)) {

244

((*cb))(s, 32, 1);

}

goto end;

default: ERR_put_error(20, 132, 255, (char const *)"s3_clnt.c", 418);

ret = -1;

goto end;

}

if (! (s->s3)->tmp.reuse_message) {

if (! skip) {

if (s->debug) {

ret = (int)BIO_ctrl(s->wbio, 11, 0L, (void *)0);

if (ret <= 0) {

goto end;

}

}

if ((unsigned long)cb != (unsigned long)((void *)0)) {

if (s->state != state) {

new_state = s->state;

s->state = state;

((*cb))(s, 4097, 1);

s->state = new_state;

}

}

}

}

skip = 0;

}

end:

s->in_handshake --;

if ((unsigned long)cb != (unsigned long)((void *)0)) {

((*cb))(s, 4098, ret);

}

return (ret);

}

A.4 Client Library Specifications

The complete input to magic for all the library routines invoked by ssl3_connect

and their corresponding EFSMs is as follows:

245

cproc ssl3_client_hello {

abstract {ssl3_client_hello_abs,1,Ssl3ClientHello};

}

cproc ssl3_get_server_hello {

abstract {ssl3_get_server_hello_abs,1,Ssl3GetServerHello};

}

cproc ssl3_get_finished {

abstract {ssl3_get_finished_abs,1,Ssl3GetFinished};

}

cproc ssl3_get_server_certificate {

abstract {ssl3_get_server_certificate_abs,1,Ssl3GetServerCertificate};

}

cproc ssl3_send_change_cipher_spec {

abstract {ssl3_send_change_cipher_spec_abs,1,Ssl3SendChangeCipherSpec};

}

cproc ssl3_get_key_exchange {

abstract {ssl3_get_key_exchange_abs,1,Ssl3GetKeyExchange};

}

cproc ssl3_send_finished {

abstract {ssl3_send_finished_abs,1,Ssl3SendFinished};

}

cproc ssl3_get_certificate_request {

abstract {ssl3_get_certificate_request_abs,1,Ssl3GetCertificateRequest};

}

cproc ssl3_get_server_done {

abstract {ssl3_get_server_done_abs,1,Ssl3GetServerDone};

}

cproc ssl3_send_client_certificate {

abstract {ssl3_send_client_certificate_abs,1,Ssl3SendClientCertificate};

}

cproc ssl3_send_client_key_exchange {

abstract {ssl3_send_client_key_exchange_abs,1,Ssl3SendClientKeyExchange};

246

}

cproc ssl3_send_client_verify {

abstract {ssl3_send_client_verify_abs,1,Ssl3SendClientVerify};

}

Ssl3ClientHello =

(

exch_client_hello -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

Ssl3GetServerHello =

(

exch_server_hello -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

Ssl3GetFinished =

(

finished_srvr_to_clnt -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

Ssl3GetServerCertificate =

(

exch_server_certificate -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

Ssl3SendChangeCipherSpec =

(

send_change_cipher_spec -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

Ssl3GetKeyExchange =

(

key_exchange_srvr_to_clnt -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

247

Ssl3SendFinished =

(

finished_clnt_to_srvr -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

Ssl3GetCertificateRequest =

(

certificate_request_srvr_to_clnt -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

Ssl3GetServerDone =

(

ssl3_get_server_done -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

Ssl3SendClientCertificate =

(

exch_client_certificate -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

Ssl3SendClientKeyExchange =

(

key_exchange_clnt_to_srvr -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

Ssl3SendClientVerify =

(

cert_verify_clnt_to_srvr -> return {$0 == 1} -> STOP |

return {$0 == -1} -> STOP

).

248

A.5 Complete OpenSSL Specification

We have presented the input to magic for both the OpenSSL client and server

components. We now present the input for providing a specification against which

magic will check simulation conformance. Note that the actions appearing in the

specification must be the same as those in the alphabet of the EFSMs presented

earlier. Also note the specification is non-deterministic. This causes it to blowup

during determinization which contributes to the improved performance of simulation

when compared to trace containment (cf. Section 6.5).

cprog ssl3 = ssl3_accept,ssl3_connect {

abstract ssl3,

{$1->state == (0x110|0x2000),

$1->state == (0x04|(0x1000|0x2000))},Ssl3;

}

Ssl3 =

(

epsilon -> SrClntHelloA |

epsilon -> SwHelloReqA

),

SrClntHelloA =

(

exch_client_hello -> SwSrvrHelloA |

return {$0 == -1} -> STOP

),

SwHelloReqA =

(

send_hello_request -> SwFlushSwHelloReqC |

return {$0 == -1} -> STOP

),

SwFlushSwHelloReqC =

(

epsilon -> SwHelloReqC |

return {$0 == -1} -> STOP

249

),

SwHelloReqC =

(

epsilon -> Ok |

return {$0 == -1} -> STOP

),

Ok = (return {$0 == 1} -> STOP),

SwSrvrHelloA =

(

exch_server_hello -> SwSrvrHelloA1 |

return {$0 == -1} -> STOP

),

SwSrvrHelloA1 =

(

epsilon -> SwChangeA |

epsilon -> SwCertA |

return {$0 == -1} -> STOP

),

SwChangeA =

(

send_change_cipher_spec -> SwChangeA1 |

return {$0 == -1} -> STOP

),

SwChangeA1 =

(

epsilon -> SwFinishedA |

return {$0 == -1} -> STOP

),

SwCertA =

(

exch_server_certificate -> SwCertA1 |

epsilon -> SwCertA1 |

return {$0 == -1} -> STOP

),

250

SwCertA1 =

(

epsilon -> SwKeyExchA |

return {$0 == -1} -> STOP

),

SwKeyExchA =

(

key_exchange_srvr_to_clnt -> SwKeyExchA1 |

epsilon -> SwKeyExchA1 |

return {$0 == -1} -> STOP

),

SwKeyExchA1 =

(

epsilon -> SwCertReqA |

return {$0 == -1} -> STOP

),

SwFinishedA =

(

finished_srvr_to_clnt -> SwFinishedA1 |

return {$0 == -1} -> STOP

),

SwFinishedA1 =

(

epsilon -> SwFlushSrFinishedA |

epsilon -> SwFlushOk |

return {$0 == -1} -> STOP

),

SwFlushSrFinishedA =

(

epsilon -> SrFinishedA |

return {$0 == -1} -> STOP

),

SwFlushOk =

(

epsilon -> Ok |

return {$0 == -1} -> STOP

251

),

SwCertReqA =

(

epsilon -> SwSrvrDoneA |

certificate_request_srvr_to_clnt -> SwFlushSrCertA |

return {$0 == -1} -> STOP

),

SwFlushSrCertA =

(

epsilon -> SrCertA |

return {$0 == -1} -> STOP

),

SrCertA =

(

check_client_hello -> SrCertA1 |

return {$0 == -1} -> STOP

),

SrCertA1 =

(

epsilon -> SrClntHelloC |

exch_client_certificate -> SrKeyExchA |

exch_client_certificate -> return {$0 == -1} -> STOP |

return {$0 == -1} -> STOP

),

SrFinishedA =

(

finished_clnt_to_srvr -> SrFinishedA1 |

return {$0 == -1} -> STOP

),

SrFinishedA1 =

(

epsilon -> Ok |

epsilon -> SwChangeA |

return {$0 == -1} -> STOP

),

252

SrClntHelloC = (epsilon -> SrClntHelloA),

SrKeyExchA =

(

key_exchange_clnt_to_srvr -> SrCertVrfyA |

key_exchange_clnt_to_srvr -> return {$0 == -1} -> STOP |

return {$0 == -1} -> STOP

),

SrCertVrfyA =

(

cert_verify_clnt_to_srvr -> SrFinishedA |

cert_verify_clnt_to_srvr -> return {$0 == -1} -> STOP |

return {$0 == -1} -> STOP

),

SwSrvrDoneA =

(

send_server_done -> SwFlushSrCertA |

return {$0 == -1} -> STOP

).

253

