
High-Performance Database Management
System Design for Efficient Query Scheduling

Deepayan Patra

CMU-CS-22-155
December 2022

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Andy Pavlo, Chair

Justine Sherry

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science.

Copyright © 2022 Deepayan Patra

Keywords: Scheduling, Query Execution, Memory

Abstract

Decades of research in the field of database management systems (DBMSs) have focused on im-
proving system performance. Modern analytical systems leverage innovative execution methods,
such as vectorization and compilation, or enable parallelizing execution at the operator level to
reduce single-query runtimes. Unfortunately, further developments to improve single-query exe-
cution performance have failed to yield significant improvements and are providing diminishing
performance returns.

To extend beyond the limits of single-query performance improvements, we propose a co-
design method to align database and queueing theory research in workload and architecture-
aware scheduling policies. In this work, we present the addition of a scheduling component to
a highly optimized execution engine and the design of new scheduling algorithms combining
awareness of query characteristics and the execution hardware. Our proposed scheduling poli-
cies order and assign query sub-tasks to compute resources to enhance performance on analytical
workloads in a modern, in-memory execution environment. Further improvements to the execu-
tion framework address imbalanced data access patterns and enable locality-aware execution.
By optimizing for resource efficiency, our developments decrease the average system latency by
over 30%.

iii

iv

Acknowledgement

I am privileged to have known Andy Pavlo for almost five years now. Andy is not just my advisor
for my Master’s Thesis but the catalyst for my interest in computer science and systems research.
I first met Andy when he served as my project advisor in a high school summer program. In the
time since, Andy not only taught me about databases and all aspects of computer systems, but
guided me in my career path, helped me make critical academic decisions, and initiated my
involvement in the research that evolved into my Master’s thesis. On top of being an exceptional
educator and supportive advisor, Andy is also one of the kindest and most wonderful people I
know. In various ways, since our first meeting, Andy has always looked out for my personal
and professional development. No other person has provided me with so many opportunities and
belief in my abilities. I am grateful that I have had and always will have Andy as a valued and
trusted mentor.

I am incredibly fortunate not only to have had one research advisor but three! I learned a
great deal about the principles and practice of queueing theory from Ben Berg and Mor Harchol-
Balter. As a person who loves systems but appreciates theory, I’m constantly in awe of their
theoretical work’s effective and applicable results. Ben, my research mentor, has a great penchant
for learning and applying his work to new domains — in working closely with him on this
system, I had the opportunity to see this quality firsthand, one I hope to one day match myself.
I particularly appreciate his help and feedback in preparing me to present this work and others.
I found Mor an excellent guide to exploring queueing theory at a time when I had no prior
background or expertise in this area. Her teachings were always helpful, and she made learning
about a brand-new area of research very approachable.

I also want to thank Justine Sherry for taking the time to serve on my thesis committee. I
had the incredible opportunity to publish my first research paper as a primary co-author due in
significant part to Justine’s guidance. Justine not only helped us ideate the basis of our project
but helped transform it into a paper worthy of conference consideration.

I have many more people to thank for helping me on my journey as a part of this degree.
First and foremost, I want to thank Emmanuel Eppinger for being the very best research partner
I could have asked for. I loved the time we spent working together to build out our threading
ideas in NoisePage and seeing our work grow into a research project. I owe a debt of gratitude to
Tanuj Nayak, Wan Shen Lim, Matt Butrovich, William Zhang, Prashanth Menon, and Lin Ma.
Thank you all sincerely for welcoming me with open arms to the CMU Database Group. You
helped me learn about systems, programming, debugging, and research techniques. I appreciate
all you do for the research group, and your advice and support are some of the things I’ll cherish
most from my time here.

v

I am thankful to Tracy Farbacher, Sara Golembiewski, Karen Lindenfelser, and Joan Digney
for helping me in so many ways in this program. Because of your support, I had some wonderful
opportunities to share my work with audiences inside and outside CMU. I also want to thank
Mark Stehlik and Matt Fredrikson for supporting my decision to consider this program as I
evaluated potential future career paths.

And the most important thank you of all. Words cannot express the appreciation I have for
my family. My mother, Debjani Baksi, and father, Angshuman Patra, have been part of my
educational journey from the very beginning. I developed my passion for learning and devotion
to work by seeing the effort they put into raising me and providing for me. I would not have
gotten where I am today without their care, love, guidance, and support. Thank you for all the
warm embraces, patient company, and meaningful advice through my life’s happiest and most
challenging moments. You both are always a part of every single thing I do. I love you.

vi

Contents

1 Introduction 1
1.1 Analytical In-Memory Databases . 2

1.1.1 Vectorization . 2
1.1.2 Compilation . 2

1.2 Parallelism and Queueing . 3
1.2.1 Parallel Execution and Architecture Awareness 4
1.2.2 Queueing for Databases . 5

1.3 Contributions . 5

2 Background 7
2.1 The NoisePage Execution Engine: Vectorized and JIT-Compiled 11
2.2 Queueing Theory . 12

2.2.1 First-Come First-Served . 12
2.2.2 Equitable Division . 13
2.2.3 Shortest Remaining Processing Time 13
2.2.4 Comparison . 14

2.3 Policies and Parallelism in Database Scheduling 15
2.3.1 First-Come First-Served . 16
2.3.2 Equitable Division . 17
2.3.3 Shortest Remaining Processing Time 18

3 Methodology 19
3.1 Query Parallelism and Scheduling . 19
3.2 Scheduling Policies . 22

3.2.1 Traditional Scheduling Approaches . 22
3.2.2 Inelastic-First Shortest Remaining Processing Time 22

3.3 Architecture Aware Execution . 24
3.3.1 Data Layout and Representation . 25
3.3.2 Locality-Aware Scheduling . 25

4 Evaluation 27
4.1 Characteristics of the Star Schema Benchmark 28
4.2 Baseline . 30
4.3 Resolving Access Skew . 34

vii

4.4 Increasing Block Sizes . 35
4.5 Performance Tuning . 36
4.6 NUMA-Aware Scheduling . 38
4.7 Summary . 42

5 Related Work 43
5.1 Database Scheduling . 43
5.2 NUMA Awareness . 44
5.3 Compilation and Vectorization . 44

6 Future Work 47
6.1 Scheduling with Diverse Workloads . 47
6.2 Scheduling and Vertical Scalability . 47
6.3 Scheduling and Horizontal Scalability . 48
6.4 Scheduling Beyond Execution . 48

7 Conclusion 49

Bibliography 51

Appendix A: Moving Averages 59
7.1 NUMA-Aware Allocations with Hybrid Data Layout 60
7.2 Increasing Block Sizes . 61
7.3 Tackling Performance Metrics . 62
7.4 Supporting NUMA-Aware Scheduling . 63

viii

List of Figures

1.1 SIMD instruction example . 3
1.2 NUMA system architecture . 4

2.1 Star Schema Benchmark Query 4.2 Plan . 9
2.2 FCFS scheduling policy . 12
2.3 EQUI/PS scheduling policies . 13
2.4 SRPT scheduling policy . 14
2.5 Scheduling policy comparison . 15

3.1 Star Schema Benchmark speedups . 20
3.2 Star Schema Benchmark Query 4.2 phase parallelizability 20
3.3 Scheduler architecture . 21
3.4 IFSRPT scheduling insight . 23
3.5 Updated data layout . 26

4.1 Star Schema Benchmark schema . 29
4.2 Baseline average query latency . 31
4.3 Baseline throughput moving averages per policy 32
4.4 Baseline max throughput per policy . 33
4.5 NUMA-striping max throughput per policy . 34
4.6 Hugepage allocation max throughput per policy 35
4.7 Performance tuning max throughput per policy 37
4.8 Bottleneck mitigation average query latency . 38
4.9 NUMA-aware scheduling max throughput per policy 39
4.10 NUMA-aware scheduling average query latency 40

7.1 NUMA-striping throughput moving averages 60
7.2 Hugepage allocation throughput moving averages 61
7.3 Bottleneck mitigation throughput moving averages 62
7.4 NUMA-aware queueing throughput moving averages 63

ix

x

List of Tables

2.1 Scheduling policy summary table . 16

4.1 Baseline data traffic patterns per socket . 30
4.2 Baseline memory access patterns . 31
4.3 Spin benchmark stability periods per policy . 33
4.4 Hugepage allocation data traffic patterns per socket 36
4.5 Hugepage allocation addressing metrics . 36
4.6 Performance tuning addressing metrics . 37
4.7 Performance tuning memory access patterns . 38
4.8 NUMA-aware memory access patterns . 40
4.9 NUMA-aware caching and memory access metrics 41
4.10 NUMA-aware scheduling addressing metrics 41
4.11 NUMA-aware scheduling data traffic patterns per socket 41
4.12 Summary of average query latency changes . 42

xi

xii

List of Listings

1 Star Schema Benchmark Query 4.2 . 8
2 Partial TPL sample from Star Schema Benchmark Query 4.2 10

xiii

xiv

Chapter 1

Introduction

From initial usage and popularization, database management systems (DBMSs) have been criti-
cal software systems supporting data applications. The first database software were built in the
1960s, with popularity rising in the 1970s and 1980s using E. F. Codd’s relational model [39].
These systems set up data stores as relations accessible by a declarative programming frame-
work, separating the language interface from internal data retrieval operations. In the decades
since, DBMSs have expanded to various domains, with an ever-growing set of features, inter-
face dialects, and architectures and a heavy focus on applications in data storage, analytics, and
information retrieval.

The relational model’s declarative framework allowed database developers to independently
design the language frontend and execution backend in a database. A user’s query specifies
their data request without instructing the DBMS how to retrieve the data. The system internally
converts each query received into an execution plan consisting of operators implemented by
the execution engine. The backend can then execute the resulting plan according to an internal
processing model.

Execution continues to be a first-order concern for many DBMSs to effectively support
performance-sensitive applications. Decades of research in this area have resulted in perfor-
mant data structures (tree indexes [44, 78], hash tables [26]), result precomputation (material-
ized views [24]), new query execution techniques (vectorization [35, 49, 61, 62, 66, 80] and
compilation [61, 62, 63]), and new data processing algorithms (parallel execution [28, 71]).

Unfortunately, optimizing single-query execution performance no longer achieves the same
factors of improvement realized by the aforementioned techniques. Comparisons of the most
performant operator algorithms demonstrate similarities at the levels of instructions and instruc-
tions per cycle [71]. Comparisons of alternative execution frameworks also demonstrate limited
improvement depending on query characteristics [49, 61].

As a result, our work focuses on taking a broader viewpoint on performance optimization by
looking at workload-level metrics. In particular, we consider applying and improving scheduling
approaches in databases as a potential solution for the limitations of single-query performance.

We first present background on the types of DBMSs we aim to improve. We focus on key
developments in execution techniques that have improved single-query performance as a foun-
dation for further work. We then introduce concepts of parallelism and scheduling in the context
of databases.

1

1.1 Analytical In-Memory Databases
Analytical applications, analyzing data to construct dashboards and reports, are a common class
of workloads. These workloads are processing-intensive, issuing high-cardinality reads, com-
putations, and transformations. To improve user experience, databases attempt to achieve low
latency and high throughput. Although these types of queries often rely on reading a relatively
large amount of data for their operations, significant advancements in memory technologies now
allow large datasets to reside entirely in memory. Today, high memory capacity machines are
also more easily accessible on cloud providers, reducing the cost and maintenance barriers of on-
premises hardware. AWS, for example, supports instances with 24TB of memory [30]. Needing
less interaction with network drives or disks for storage, single-node in-memory systems are not
bottlenecked by data access costs. As such, performance optimizations in such systems have
focused further on eliminating CPU and memory bandwidth bottlenecks.

Recent research literature has focused on two main avenues for query performance gains:
vectorization and compilation.

1.1.1 Vectorization
A database backend applies an internally defined processing model to process data and respond
to a user’s query. The processing model executes the operator tree of a query plan by performing
the corresponding operations. The traditional implementation approach in many disk-oriented
systems processes a tuple at a time and is known as the iterator processing model [43]. Each
operator in the plan tree will call a next() function on its children to retrieve and process the
subsequent tuple to process. An alternative model, the materialization model, instead requires
each operator to process all inputs to emit a complete set of outputs, executing the plan one
operator at a time.

The iterator and materialization models both have high overheads, with the former requiring
many operator invocations and the latter requiring large intermediate result buffers. The vec-
torization model addresses these issues by expanding the iterator model to act upon a batch of
tuples, reducing the invocation costs of retrieving tuples while maintaining reasonable dataset
sizes.

This approach also enables CPU-level parallelism, simultaneously allowing operation on
multiple tuples with SIMD instructions for many database operations. Adding two arrays element-
wise, for example, can be processed in a data-parallel fashion. Figure 1.1 shows this procedure
for 64-bit numerics, computing the output array four elements at a time with the vpaddq in-
struction. Compilers may be able to optimize some internal operations, but researchers have
developed targeted SIMD algorithms for supporting other internal functionality [61, 62, 66].

1.1.2 Compilation
Another execution approach for faster evaluation is to specialize code on a per-query basis. After
other database system components generate a query plan for the execution engine to operate on,
a compilation framework will generate machine code kernels for the operators composing the
plan. These machine code kernels are specialized to the types and operations of the query but

2

=

X1

X2

X3

X4

Y1

Y2

Y3

Y4

X1+Y1

X2+Y2

X3+Y3

X4+Y4

+
vpaddq

Figure 1.1: The AVX2 SIMD instruction vpaddq sums packed quad word values in a pair of
vector registers to an output register [48].

can be reused across multiple data segments or repeated invocations of the same query. This
technique attempts to elide the indirection necessary in a generic operator for different data types
or execution paths and optimize the evaluation of predicates. Systems often choose between
transpiling to an alternative imperative source language, such as C or C++, and then generating
machine code [51, 64, 72], or converting to an alternative intermediate representation or domain-
specific language, which the database can construct machine code from [61, 62, 63, 64].

Query compilation also enables pipelining a series of operations on a data segment. Certain
sequences of operators can be applied in order without stalls or can be combined together. For
example, operator fusion enables computing a scan operating with a filter predicate or a pair of
arithmetic aggregations as a single operation. Doing so reduces cache and memory pressures as
operations will not swap their working set as frequently.

1.2 Parallelism and Queueing
Parallel execution in database systems enhances the aforementioned execution frameworks to
operate closer to the memory bandwidth and maximum CPU load on a single machine. Parallel
processing leverages modern multi-core compute architectures to break down operations and
execute these components across independent processors concurrently. Most modern databases
support the parallelization of query tasks, taking advantage of improved CPU resource utilization
to significantly reduce single-query latency and increase throughput.

Computational tasks generally have varying degrees of parallelism. Operations within a task
may have strict dependency orderings which force serial execution. Others may be executed
independently in parallel. We describe the parallelizability behaviors of a task as its parallelism
characteristics [32].

The parallelism characteristics of queries in databases raise interesting questions regarding
resource allocation to optimize system metrics. Queueing theory provides a framework to evalu-

3

Socket 0 Socket 1

Interconnect

Core

Core

Core

CoreCore

Core

Core

Core

M
em

or
y M

em
ory

Figure 1.2: A NUMA architecture has asymmetric access speeds to the main memory segments
on the chip. CPUs can access local memory efficiently while taking a performance hit to access
data on a separate socket [48].

ate the performance characteristics of different scheduling approaches to take advantage of query
behaviors.

1.2.1 Parallel Execution and Architecture Awareness

Prior database research has proposed many parallel algorithms for the different operators a
database must support. However, the nature of operations for various computations leads to
different parallelizability characteristics for each operator [28, 42, 71, 79]. Execution engine
implementations can easily partition scan operators to read disparate data segments in parallel,
but certain aggregation computations, for example, the median computation, may be more chal-
lenging to parallelize. Parallelism characteristics may also depend on the size of datasets, as
small dataset sizes may cause the overheads of parallelization to outweigh the approach’s ben-
efits. Data synchronization and result coalescing may have non-negligible impacts that become
more significant when operating on small data batches.

With modern CPU architectures supporting multiple sockets, each having a separate set of
cores and memory hierarchies, data placement-aware operation also becomes more important.
This layout, known as a non-uniform memory access (NUMA) architecture, has an increased
cost of accessing non-local data as compared to local data. In a NUMA architecture, accessing
data from a remote socket takes a latency hit as the request must traverse through the interconnect
to the remote socket, retrieve the data, and return this to the requesting core. Figure 1.2 presents
a diagram of a two-socket architecture connected via an interconnect, with each socket having
independent memory and CPU cores. A well-behaved data placement and access pattern may
avoid data access misses and interconnect traffic. All else equal, a system with an improvement
in the number of remote accesses is expected to have higher overall performance [28, 54, 68, 71].

4

1.2.2 Queueing for Databases
Queueing theory presents a variety of solutions to analyze and solve scheduling problems in
computer systems. Prior results from the theoretical community have optimized for metrics like
mean latency or satisfied fairness considerations in a variety of settings [11, 70].

The database setting provides interesting insights and challenges where scheduling accord-
ing to system knowledge potentially realizes significant performance improvements beyond prior
system optimizations. For the theory community, the combination of sensitivity to performance
results, interesting job parallelizability characteristics, and insights into job runtimes make databases
an intriguing system of study to apply and develop queueing policies [32].

From a parallelizability perspective, Amdahl’s law generally asserts that speedup is not per-
fect when work cannot be completely parallelized [46]. This behavior leads to diminishing re-
turns for increased resource allocations of parallel tasks. Restrictions on performance gains
from parallelization implies fine-grained system resource allocation can avoid resource wastage,
which leads to our consideration of overall resource efficiency.

The ability to further determine job sizes or provide job size estimations increases the in-
formation scheduling components can work with. Certain applications will repeatedly run the
same or similar queries, which allows for measurement and estimation to determine their run-
time characteristics. A significant amount of research has otherwise focused on improving the
capability of database system components to improve query size estimations without significant
query knowledge [27, 55, 58, 59, 60].

1.3 Contributions
This thesis focuses on effectively implementing and evaluating scheduling policies in the NoiseP-
age execution engine [61, 62]. We conduct a survey of scheduling policies applied in real-world
DBMSs to establish the basis of prior work in this area. We then present new scheduling ap-
proaches to achieve performance improvements over some of the most commonly applied poli-
cies in databases. These techniques focus on resource efficiency by combining awareness of
query execution behavior and execution hardware. We describe the details of recent theoretical
work in this area and implement a series of updates to the system component to manage data
layout imbalances and enable NUMA-aware query execution.

In Chapter 2, we provide background on our developments by describing salient features of
NoisePage’s execution engine and the scheduling approaches taken by various open-source and
commercial databases. In Chapter 3, we present changes to NoisePage’s query evaluation frame-
work, newly proposed scheduling approaches, and architecture-aware advancements to address
remaining performance overheads of query execution. In Chapter 4, we present an evaluation of
scheduling algorithms applied to our system and demonstrate the benefits of our developments.
We finally present related and future work in Chapter 5 and Chapter 6, respectively, and conclude
the consideration of our subject of study in Chapter 7.

5

6

Chapter 2

Background

External architectural trends have made large in-memory databases a reality. As we claimed
in Section 1.1, an in-memory DBMS shifts the bottlenecks of query processing. The most sig-
nificant of these changes is eliminating the overhead of paging. When the working dataset of
a DBMS fits in memory, there is no I/O stall time from accessing data. In this environment,
improving the performance of query execution creates a measurable impact on the system at
large. Research has correspondingly placed a greater emphasis on the optimizations necessary
for high-performance query execution.

The execution engine is the key processing component in a DBMS. Once other internal com-
ponents parse and transform a query into a query plan, an execution engine executes the opera-
tions specified by the plan to generate output. A great deal of work has resulted in performant
algorithms for operations and processing models. We focus our developments on strengthening
the complete execution pipeline, considering scheduling an area of potential improvement.

We begin this chapter by introducing the system we build upon, NoisePage, in Section 2.1.
Our description serves to contextualize the state-of-the-art in optimized execution engines. We
particularly highlight the research developments in query execution that enable the system’s ef-
fective performance characteristics.

Section 2.2 introduces the intuition behind several scheduling techniques commonly appear-
ing in the queueing theory literature. We emphasize the benefits and drawbacks of some of the
most popular approaches implemented in real-world systems.

We then provide a survey of scheduling policies adopted in DBMSs in Section 2.3. This
investigation provides a better understanding of the capabilities and scope of work of existing
systems. Of the systems we considered, including many open-source and commercial databases,
we find the vast majority prefer FCFS policy variants, with a few implementing other traditional
policy variants. Our findings motivate further development in considering alternative scheduling
approaches.

7

SELECT d_year,
s_nation,
p_category,
SUM(lo_revenue - lo_supplycost) AS profit

FROM date,
customer,
supplier,
part,
lineorder

WHERE lo_custkey = c_custkey
AND lo_suppkey = s_suppkey
AND lo_partkey = p_partkey
AND lo_orderdate = d_datekey
AND c_region = 'AMERICA'
AND s_region = 'AMERICA'
AND (d_year = 1997 OR d_year = 1998)
AND (p_mfgr = 'MFGR#1' OR p_mfgr = 'MFGR#2')

GROUP BY d_year,
s_nation,
p_category

ORDER BY d_year,
s_nation,
p_category;

Listing 1: This snippet depicts Query 4.2 from the Star Schema Benchmark, a benchmark com-
monly used to evaluate the performance of analytical databases [65].

8

πsupplier

πcustomer

πpart lineorder

σ

σ

σ

πdateσ

γ

τ

Figure 2.1: This diagram is a simplified query plan corresponding to Query 4.2 in Listing 1. In
particular, we condense the representation filter and projection operators in the query plan and do
not directly specify query parameters. Each individual color represents a pipeline of execution,
the sequence of operations that can be run together. The role compilation plays in extending
pipelines is more visible in this query plan, for example, in scanning through lineorder to join
against hash tables constructed on the supplier, customer, and part tables before feeding
into another join with the date table [48].

9

struct P5_State {
join_hash_table5: JoinHashTable
filter_manager1: FilterManager

}

fun Query0_Pipeline5_FilterClause(vp: *VectorProjection, tids:

*TupleIdList, context: *uint8) -> nil {↪→

@filterEq(vp, 5, @stringToSql("AMERICA"), tids)
return

}

fun Query0_Pipeline5_ParallelWork(q_state: *QueryState, p_state:

*P5_State, tvi1: *TableVectorIterator) -> nil {↪→

for (@tableIterAdvance(tvi1)) {
var vpi1 = @tableIterGetVPI(tvi1)
@filterManagerRunFilters(&p_state.filter_manager1, vpi1)
for (; @vpiHasNext(vpi1); @vpiAdvance(vpi1)) {

var hash_val = @hash(@vpiGetInt(vpi1, 0))
var row2 = @ptrCast(*BuildRow_Compact2,

@joinHTInsert(&p_state.join_hash_table5,
hash_val))

↪→

↪→

@csWriteInteger(&row2.member0, BitCast(&row2.nulls),
0, @vpiGetInt(vpi1, 0))↪→

}
}
return

}
fun Query0_Pipeline5_pre(q_state: *QueryState) -> nil {

@iterateTableParallel("ssbm.customer", q_state,
@execCtxGetTLS(q_state.exec_ctx),
Query0_Pipeline5_ParallelWork)

↪→

↪→

return
}

fun Query0_Pipeline5_post(q_state: *QueryState) -> nil {
@joinHTBuildParallel(&q_state.join_hash_table1,

@execCtxGetTLS(q_state.exec_ctx), @offsetOf(P5_State,
join_hash_table5), q_state)

↪→

↪→

return
}

Listing 2: This snippet depicts the TPL generated to construct the join hash table on the
customer table from the query plan in Figure 2.1. customer is scanned with a filter only
selecting tuples with a region of ‘AMERICA.’ These tuples are then directly hashed and inserted
into the hash table constructed for the subsequent join with lineorder. The source code corre-
sponding to this generated IR is then compiled via an LLVM backend into machine code.

10

2.1 The NoisePage Execution Engine: Vectorized and JIT-
Compiled

NoisePage combines some of the most influential research ideas in query performance into a sin-
gle system: pipelining, compilation, and vectorization. Prior work establishes NoisePage’s ex-
ecution engine as competitive compared against other state-of-the-art in-memory DBMSs when
measuring single query execution time [62]. We choose to work on such a highly performant
system to show the opportunity for further gains as incremental improvements in single-query
performance grow limited [49, 61, 71].

NoisePage implements a query compilation framework inspired by developments in the Hy-
Per DBMS [63]. The query plan operators define the composing units of work and their depen-
dencies, which are organized into pipelines and then compiled into an internal, domain-specific
language we name TPL.

NoisePage fuses the sequence of operators within a pipeline into an encompassing operation
kernel without requiring the materialization of intermediate results. These sequences end at
pipeline breakers that force the materialization of tuples before further computation; the most
recognizable pipeline breakers are SORT and HASH JOIN operators.

Listing 1, Figure 2.1, and Listing 2 together present a sample of the transformation from
a query to the system’s intermediate representation. Listing 1 provides a sample query from a
commonly evaluated analytical benchmark. This query transforms into the internal query plan
visualized in Figure 2.1, highlighting the fusion of operators into pipelines. Listing 2 depicts a
sample of the imperative intermediate representation generated by the engine.

The imperative intermediate representation generated from the query plan can then be exe-
cuted in one of three forms:

• An interpreted mode where an internal VM processes bytecodes corresponding to the op-
erations.

• A JIT-compiled mode in which the intermediate representation is recompiled to machine
code by an LLVM backend.

• An adaptive mode where a potentially time-consuming compilation happens in the back-
ground while interpreting the query. Once the compiled function implementations are
ready, they are swapped in.

This document focuses on the JIT-compiled approach, which maximizes the raw execution per-
formance when excluding compilation time. In our example, NoisePage would compile the
generated TPL code shown in Listing 2 into machine code.

NoisePage also integrates a vectorized processing model on top of the compiled engine by
introducing staging points within pipelines. Intermediate results may be materialized at these
staging points to enable vectorization and SIMD on batches of tuples, increasing performance
compared to the tuple-at-a-time processing typical in compiled engines.

11

Q0

Q2Q1

Queue

Q1

Q2

Queue

Q2

Queue

t = 0 t = 1 t = 2

Figure 2.2: An FCFS policy serves jobs in the order they appear with the complete resources of
the system. In this diagram, the system serves Q0 exclusively while Q1 and Q2 wait in a queue.
The query having control of the system points to the core [48].

2.2 Queueing Theory

Although there is limited prior work on applying scheduling approaches to databases, the queue-
ing theory literature provides many scheduling policies to improve system performance metrics
including latency and fairness. This section describes the most common scheduling policies
implemented in databases. For simplicity, we introduce scheduling policies in the context of a
single-core system serving arbitrary compute tasks, or jobs. In the context of databases, jobs
correspond to the smallest unit of work assignable to a scheduler. In some systems, this may be
a complete query. In others, they may be smaller fragments such as operators or sequences of
operators. We provide a survey of approaches taken in databases in Section 2.3 and describe our
implementation of many of these policies in NoisePage in Section 3.2.

2.2.1 First-Come First-Served

Often, the most straightforward scheduling policy to implement is first-come-first-served (FCFS)
due to minimal engineering and processing overhead. An FCFS policy serves jobs in the order of
arrival [45]. A simple FCFS scheduling approach would allocate all of the processing system’s
resources to one job at a time, as demonstrated in Figure 2.2. Unfortunately, the FCFS policy
may cause extensive queueing time for any jobs arriving after a long-running one [45].

12

t = 0 t = 5

Q0

Q2Q1

Queue

Q1

Q0Q2

Queue

Q2

Q1Q0

Queue

t = 10

Q0

Q2Q1

Queue

t = 15

Figure 2.3: An EQUI policy divides system resources among jobs active in the system. A PS
policy will instead time-share complete control of system resources when dynamic resource di-
vision is challenging or not possible. This diagram shows a PS policy applied to a system serving
Q0, Q1, and Q2 concurrently where each query receives exclusive control for a 5s quantum. The
query having control of the system in each quantum points to the core [48].

2.2.2 Equitable Division

Another common approach is to equally divide system resources among all jobs running in the
system at any given moment. We will refer to this policy as EQUI [33]. When dividing resources
among jobs is not possible, the system may look more like a time-sharing system, a policy known
as processor sharing (PS). Under a PS policy, each job has complete control of system resources
for a short “quantum” of time before letting the next job run, demonstrated in Figure 2.3 [45].
The procedure will continue in a round-robin fashion until all jobs complete. Although these
policies are different in resource allocation behavior, they both prioritize fairness in the system.
However, optimizing for fairness does not always correspond with optimizing for performance
considerations.

2.2.3 Shortest Remaining Processing Time

Although the aforementioned approaches are independent of job sizes, the Shortest Remaining
Processing Time (SRPT) scheduling policy attempts to reduce queueing time for shorter jobs by
prioritizing their execution [45]. This policy will always prioritize running jobs with the least
time left to run, reducing their latency at the cost of other jobs in the system. Queueing theory
tells us that SRPT generally reduces average latency [45, 70]. This policy, however, can be
challenging to implement due to significant additional instrumentation and estimation, limiting
its usage.

13

t = 0 t = 1

Q0

Priority
Queue

size 11 Q1

Q0

Priority
Queue

size 6 Q2

Q0Q1

Priority
Queue

size 1

t = 2
interrupt! interrupt!

Figure 2.4: An SRPT policy prioritizes jobs with minimal work left. This policy may interrupt
previously executing jobs for new, shorter jobs. This policy demonstrates that Q0 was interrupted
by a smaller Q1, which was subsequently interrupted by an even smaller Q2. The query having
control of the system points to the core [48].

2.2.4 Comparison

To understand the merits of each of these policies, we examine a brief example. We first introduce
a few variables corresponding to concrete attributes of these policies:

TS: the time spent executing a job (2.1)
TQ: the time a job spends queueing (2.2)

T = TS + TQ: the total response time of a job (2.3)

S =
T

TS

: the slowdown of a job (2.4)

To compare these policies in one specific scenario, consider a system that receives two jobs.
The first job has a runtime (or size) of 3 units and arrives at time 0. Another, which has a size of
1 unit, arrives at time 1. Figure 2.5 demonstrates the system’s state at each time point under the
various scheduling policies.

FCFS queueing would force the second, smaller job to wait until the larger job has finished
resulting in an overall E[T] = 3 and E[S] = 2.

In comparison, consider a PS policy where the quantum size is one unit, and newly arriving
jobs will only start processing after all previously existing jobs receive a time slice. Such a policy
allows the shorter job to complete before the larger job does, reducing the overall slowdown, with
E[T] = 3 and E[S] = 5

3
.

14

2 1

11

3

𝐸[𝑇]!"!# =
3 + 3
2

= 3

𝐸[𝑆]!"!# =
1 + 3
2

= 2
1

t = 0 t = 1 t = 2 t = 3 t = 4

(a) An FCFS policy will execute jobs in the order of arrival, so the bottom job will complete before the
top job starts.

2 1

11

13

𝐸[𝑇]!"#$ =
4 + 2
2 = 3

𝐸[𝑆]!"#$ =
4
3+ + 2
2 =

5
3

t = 0 t = 1 t = 2 t = 3 t = 4

(b) A PS policy will allow for jobs to time-share system resources. In this example, we use a quantum
size of one time unit with jobs sharing resources in the order of their arrival. The top job will be able to
complete before the bottom job does.

2

1

13 2

𝐸[𝑇]!"#$ =
4 + 1
2 =

5
2

𝐸[𝑆]!"#$ =
4
3- + 1
2 =

7
6

t = 0 t = 1 t = 2 t = 3 t = 4

(c) An SRPT policy will prioritize jobs with shorter remaining runtimes so the top job will be prioritized
and run before the bottom job on arrival.

Figure 2.5: A comparison of different scheduling policies in a simple system where one job of
size 3 arrives at time 0, and the second job of size 1 arrives at time 1.

Finally, SRPT, by prioritizing shorter jobs at each time step, cuts down on the total response
time of the system and further decreases the average slowdown of the jobs. Both metrics improve,
with E[T] = 5

2
and E[S] = 7

6
.

Though this demonstration is a tailored example, the comparison shows the potential benefits
of policy changes and provides intuition behind why systems typically choose EQUI/PS or SRPT
as a “next step.”

2.3 Policies and Parallelism in Database Scheduling

To better understand the state-of-the-art of scheduling policies in DBMSs, we surveyed various
open-source, commercial, and research-oriented databases. For each system, we outline the capa-

15

Table 2.1: This table summarizes the scheduling policies implemented of various open-source,
commercial, and research-oriented databases.

FCFS PS SRPT
PostgreSQL Databricks Umbra
MySQL SQL Server Amazon Redshift
ClickHouse ClickHouse (background)
IBM Db2
Oracle Database
Snowflake
HyPer

bilities of systems to modify query execution orders and other unique implementation attributes
of their query execution procedures. We utilized this analysis to better scope the potential for
developments in this subdomain of query execution. For the remainder of this section, men-
tions of parallelism refer to intra-query parallelism, the parallelization of individual operators.
Most databases support inter-query parallelism, the concurrent execution of multiple independent
queries.

Our analysis shows a clear preference among the systems we considered for implementing
more straightforward scheduling policies, particularly variations of FCFS scheduling. Only a
few systems have adopted other approaches in supporting EQUI-like and SRPT-like policies. We
present the systems considered that fall under each of these categories. Table 2.1 summarizes the
findings of this section.

2.3.1 First-Come First-Served
Some of the most popular DBMSs today utilize FCFS scheduling. Among open-source sys-
tems, both older systems developed since the 1990s and newer systems utilize variants of FCFS
scheduling. Several commercial, closed-source systems describe their scheduling policies as
variants of FCFS as well.

MySQL implements a variation of FCFS. The DBMS supports two priority levels that the
user can specify in queries [2, 3, 4]. Unlike most other databases, MySQL does not support
executing a single query in parallel, so each query is limited to a single thread [4].

PostgreSQL (Postgres) is similarly a well-known, older open-source DBMS. Postgres exe-
cutes queries in the order of arrival but does not natively support query priorities during execu-
tion. Unlike most other systems supporting parallel execution, Postgres uses processes instead
of threads [7]. This parallelism approach does make the use of alternative scheduling approaches
slightly more challenging, as switching processes is a heavier-weight procedure at the OS-level
than switching threads of the same process, limiting the flexibility of scheduling procedures [74].

ClickHouse is a relatively new open-source DBMS developed to support fast analytical ap-
plications. This system primarily executes queries in FCFS order but can support query priorities
with any integer value [1, 38].

IBM Db2 is one of the first commercial databases: the system was first released in the 1980s
but is still actively developed. Db2’s most recent release executes queries in FCFS order but

16

allows granting priority levels on a per-session basis [14, 15, 16].
Oracle Database is another actively-developed, early commercial DBMS from the late 1970s.

The database’s scheduling policy defaults to FCFS, but the system does expose knobs for greater
user control, among them queue timeouts, query priorities, and probabilistic execution, where
queries are consumed from queues with a user-defined distribution [6]. Oracle’s parallel execu-
tion framework determines per-query parallelization based on the amount of data to process and
the degree of parallelism available on the system at runtime. Internally, the system assigns ranges
based on the size of the datasets consumed and maximum parallelism level configured [5].

Snowflake is a data warehouse built for the cloud-computing era that focuses on supporting
analytical workloads. Snowflake’s execution model serves queries in FCFS order [12]. As a user
can provision compute cluster resources independently for each workload, there is no internal
concept of priority at the workload or query level [10].

HyPer was a research system built at the Technical University of Munich and subsequently
acquired by Tableau. The initial version of HyPer executed queries in FCFS order and did not
support concepts of query priority. HyPer, however, did take a unique approach to query paral-
lelism. The system executes query pipelines on small data divisions in a locality-aware fashion.
The system preferentially assigns operations and corresponding data segments to cores on the
same NUMA node as the segment’s location in memory. This approach, named “morsel-driven”
parallelism, improves performance [54].

Among the systems mentioned above, many support user-specified query prioritization. This
feature allows users to manually take a fine-grained approach to scheduling which specific
queries or query groups have higher importance than others. Although varying resource pri-
orities provides interesting resource-performance tradeoffs and a helpful customer feature, we
assume that all queries have equal priority in our development. Doing so simplifies the resource
and target modeling constraints of our solutions.

2.3.2 Equitable Division
Databricks is a cloud data platform supporting warehousing and analytical applications. The
scheduling policy for tasks running on the Apache Spark scheduler in Databricks enforces ap-
proximate processor sharing for all queries running in the system. The scheduler periodically
preempts query operations that exceed their runtime timeouts, with parameters for the policy
made available for user management [13]. The open-source version of Apache Spark defaults to
a scheduling policy of FCFS prioritization, with similar support for fair sharing [8].

Microsoft has developed its DBMS offering, SQL Server, since the late 1980s. SQL Server
includes an internal layer, named SQLOS, to manage many resources typically handled by the
operating system a database runs on, including scheduling [41]. This system enables SQL Server
to take a cooperative, time-sharing scheduling approach for query execution. In SQL Server’s
scheduler framework, query tasks run for up to a quantum of 4ms, subsequently yielding to other
tasks in the system [21, 41].

Interestingly, some aspects of ClickHouse’s execution pipeline support a variant of PS: cer-
tain background storage layer operations break up each “task” into executable “steps” that exe-
cute in a round-robin fashion across all tasks. However, as the steps are not necessarily of equal
size, the algorithm presented does not quite represent equitable sharing of resources. That said,

17

the presented algorithm does expect tasks with shorter step sequences to complete before those
with longer step sequences [1, 38].

2.3.3 Shortest Remaining Processing Time
Umbra is the successor to HyPer, under development at the Technical University of Munich [9].
Umbra’s parallel execution framework is similar to HyPer’s in using a morsel-based parallelism
approach. However, Umbra augments this framework with an internal scheduling policy. Um-
bra uses an optimized approach to a technique known as stride scheduling, defining the query
priorities in this algorithm inversely proportional to the expected query size. In particular, query
priorities decay the longer queries take, with self-tuned or user-defined hyperparameters guid-
ing the re-prioritization process [77]. This approach matches the goals of prioritizing queries
expected to have shorter remaining runtimes.

Amazon Redshift is a cloud data warehouse built to support analytical workloads. Redshift
supports an SRPT-like query scheduling framework with a feature named Short Query Accel-
eration. This technique prioritizes queries with an expected runtime less than a dynamically-
determined threshold, where the expected runtime is calculated with internal statistics and pre-
dictive models [19, 27]. The system additionally exposes the acceleration threshold and query
prioritization classes for user specification [18, 20].

18

Chapter 3

Methodology

In this chapter, we focus on the technical details of supporting new scheduling policies in NoiseP-
age. Our work to better understand query parallelization behaviors led to the development of new
scheduling policies in queueing theory. These policies interleave the execution order of pipelines
across queries to enable greater workload-level efficiency. To enable these query behavior-aware
scheduling techniques, we present the design and implementation of a scheduling component
built into NoisePage.

We also describe techniques to add resource awareness to the system, focusing on NUMA
architecture awareness. NUMA awareness is an established performance solution in the database
research literature [54, 68]. However, the NoisePage system was not previously resource-aware.
We detail the benefits of our combined NUMA architecture-aware scheduling approaches in
further improving scheduling efficiency and system performance.

3.1 Query Parallelism and Scheduling

Even in an analytical workload consuming large amounts of data, queries are not perfectly par-
allelizable. Considering the parallelization characteristics of the composing pipeline operations
largely explains query-level parallelizability. Regardless of the processing mode of the system,
different database operations typically have different execution properties. Some operations,
such as sequentially scanning through a large table with an associated filter, can easily be highly
parallelized. Others, such as median aggregations, are quite challenging to implement in a par-
allel manner. Some operations fall somewhere in between, like many join algorithm implemen-
tations. For example, in a parallel hash-join algorithm, the probe phase may require minimal
coordination, with each thread independently searching the hash table for a portion of the input.
However, the build or partition phases often involve more coordination to finalize the hash ta-
ble, which limits parallelization. Frequently, many operations consume small datasets which do
not require the degree of parallelism offered by the system architecture. Borrowing terms from
queueing theory, we refer to parallel work as elastic and non-parallelizable work as inelastic.

Figure 3.1 demonstrates the speedups observed for various queries from the Star Schema
Benchmark as implemented in our system, none of which have perfect parallelism characteristics
[32]. Our experiment measured query execution times in NoisePage while scaling the maximum

19

0

10

20

30

40

0 10 20 30 40
Threads

S
pe

ed
up

SSB Query
Ideal
Query 3.1
Query 4.2
Query 2.2
Query 4.1
Query 2.1

Figure 3.1: Queries in the Star Schema Benchmark are not perfectly parallelizable. A query’s
runtime does not scale linearly with the number of threads given to the query [32].

Figure 3.2: Of Query 4.2’s sequence of operator pipelines, many are inelastic while some are
elastic [34].

allowed parallelism of all operations in the system from 1 to 40. Though we present the results
for NoisePage here, we found that other open-source and commercial systems have similar query
speedup characteristics.

We instrumented NoisePage to inspect pipeline parallelization further, recording runtimes for
each individual pipeline to analyze offline. Some pipelines exhibit inelastic behaviors due to the
algorithms that implement their operators or because of limited dataset sizes. As an example,
we depict the parallelizability characteristics of pipelines from Query 4.2 in Figure 3.2. These
pipelines vary in behavior; some are highly elastic, some partially elastic, and some completely
inelastic.

NoisePage’s execution engine was primarily built to show single-query performance gains.
The system executes pipelines generated by the compilation engine as a series of steps. Each
pipeline consists of an initialization routine, often setting up state, a core logic routine, fulfilling
the operation, and a teardown routine, releasing any unneeded state. Parallel execution under
this framework takes the approach of fork-join parallelism on certain operations, including parts
of table scans, aggregations, joins, and sorts. The system internally utilizes data parallelism in
this setting by relying on an external module to partition data containers consisting of table data
or intermediate results and invoke lambdas on these partitions independently. This approach was
first implemented using Intel’s Thread Building Blocks [22].

In placing a greater emphasis on fine-grained control of the execution pipeline with schedul-
ing, we make two major changes: we break the original three-routine pipelines into a longer

20

λ POLICY: {$1}

ParallelSequential Sequential

_λ() λ() λ()

λ

λ

λ

λ

λ

Q_Y(): λ λ

λ

λ

λsubmit! submit! submit!

Figure 3.3: Our scheduling architecture adds staging points where parallelism levels change dur-
ing which the scheduler finds the right resources for execution. Scheduler submission typically
happens at the start of a query, right before the query executes a parallel step, and when contin-
uing after a parallel step. The scheduler will assign compute resources to the tasks it receives
based on the policy defined [48].

sequence of functions and directly manage all scheduling decisions in the runtime.

The former modification involves splitting the core logic of the pipeline into multiple code
blocks, separating parallel components from any operator post-processing. Though this particu-
lar change may affect potential performance gains from compiler optimizations by limiting the
scope of analysis provided to the compiler, doing so allows us greater introspection into the
performance characteristics of each subsequence of operations. These characteristics are then
maintained as additional query metadata and used in scheduling decisions.

Our latter change consists of building an internal scheduler to transform the query-level fork-
join parallelism into more precise task parallelism. Previously, parallel operations submitted a
data container to the external scheduling module and reserved the system’s complete compute
resources. Instead, the new task parallelism model submits computational tasks and associated
data partitions to the scheduler, which the scheduler then manages. The scheduler can thus
maintain a global view of running tasks across all active queries and dynamically allocate work
to individual resources. The final subtask of a parallel component spawns a new successor task
to the scheduler on completion to continue processing remaining query operations. Figure 3.3
provides a visual representation of the aforementioned scheduling architecture.

21

3.2 Scheduling Policies
We considered a variety of scheduling algorithms to implement in NoisePage, including those
we previously presented in Section 2.2. We describe the implementations of these policies in
NoisePage before introducing the novel Inelastic-First Shortest Remaining Processing Time (IF-
SRPT) policy.

3.2.1 Traditional Scheduling Approaches
We add variants of the FCFS and SRPT scheduling policies to NoisePage. All scheduling al-
gorithms use relatively similar architectures, differing mainly in their prioritization schemes, to
isolate the performance effects of the policies themselves.

Our FCFS scheduler prioritizes query execution in the order of arrival. On startup, a thread
is spawned and pinned to each physical core. Each thread processes its own corresponding min-
heap, and submitted tasks join the heap with the shortest length across all cores. This approach
enables cores to process approximately equal amounts of work with a coarse, low-compute esti-
mation. The submission process adds tasks to the appropriate heap with a priority value of the
start time of the corresponding query. Threads will then select the task with the earliest query
start time in their heap, enforcing the FCFS execution order.

The SRPT scheduler has a similar startup approach, pinning a thread to each core but instead
maintains two heaps: one for elastic tasks and another for inelastic tasks. On task submission,
tasks will again join the appropriate heap with the least remaining work. However, tasks in
this scheme instead have a priority value equal to the estimated remaining runtime of the query.
When selecting a new task to process, threads will look at both heaps and select the task with the
highest priority, thus preserving the SRPT execution order.

When using the SRPT scheduling algorithm, we determine phase-based estimations of the
remaining query runtime with pre-processing. Our pre-processing step consists of running each
query in a single-threaded fashion and recording the execution times for each pipeline. During
experiments, these measurements can then be reused in parallel environment to estimate the
amount of work left. Doing so allows us to maintain a relative ordering of queries based on size
without adding significant statistics collection overhead during query processing.

We do not currently implement the EQUI algorithm. Our data-driven parallelism technique
does introduce a natural level of partitioning. However, as implemented currently, our internal
scheduling algorithms have no concept of queries, only the queues containing lambda tasks they
execute. As such, there is no per-query compute tracking and, thus, no way to enforce fairness
across queries. The data-parallel execution framework is otherwise not particularly amenable to
equitable time-based execution partitioning, which depends on the flexibility of interruption dur-
ing execution. An alternative threading architecture, setting up threads per query with runtime-
based preemption, may be more amenable to such an implementation.

3.2.2 Inelastic-First Shortest Remaining Processing Time
We next present the insights guiding a new scheduling approach first implemented in NoisePage
as part of a related line of work in developing query-characteristic aware scheduling policies.

22

Q0

Q1

Inelastic

tnt0 ...

t0 t1

Elastic

run elastic tasks
until tn complete

t0 t1 t2

t3 t4 t5

t6 t7 t8

t0 t1

t = 0 to j t = j +1

(a) A low-efficiency transition leaves cores unused. Running the elastic job first leaves resources under-
utilized while running the inelastic job.

t0 t1 t2

t3 t4 t5

t6 t7 t8

Q0

Q1

Inelastic

tnt0 ...

t0 t1

Elastic

run elastic tasks
until tn complete

t15 t16 t17

t9 t10 t11

t12 t13 t14

t = 0 t = 1 to k

(b) A high-efficiency transition will keep the system utilized. Deferring the elastic job will allow more
effective resource utilization.

Figure 3.4: Prioritizing the execution of inelastic work improves the utilization of a system by
avoiding low resource efficiency transitions whenever possible.

23

The Inelastic-First Shortest Remaining Processing Time (IFSRPT) extends the SRPT algorithm
to first consider parallelizability [34].

IFSRPT prioritizes inelastic pipeline tasks over elastic pipeline tasks. We previously in-
troduced the benefits of the SRPT scheduling algorithm in Section 2.2. The added benefit of
prioritizing inelastic tasks optimizes overall system utilization.

Figure 3.4 demonstrates the argument in favor of deferring parallelizable work. Consider a
simplified system processing two jobs. One job is very parallelizable; it can easily use up all
the compute resources in the system. The other job is not parallelizable beyond a small degree,
a degree far smaller than the system resource limit. If the system were to prioritize the elastic
job, many resources would remain idle as the inelastic job runs. On the other hand, if the system
prioritizes the inelastic job, the elastic job could easily consume all extra resources and flexibly
expand when the inelastic job finishes. The latter scenario optimizes to maintain system high
utilization system by deferring elastic work whenever possible. Elastic work is effectively more
valuable because it can be processed at any time to increase system utilization in a way that
inelastic work cannot.

Our implementation of IFSRPT shares startup and size estimation characteristics with the
SRPT algorithm but changes the task selection approach. Instead of choosing tasks across both
the elastic and inelastic queues, the processing threads always exhausts the inelastic queue first.
This procedure prioritizes the inelastic phases of queries and defers parallelizable work.

We also implement one additional scheduling algorithm that chooses between the IFSRPT
and SRPT policies based on the load exhibited in the system. There may be no benefit to parallel
work at very high load points if the system has enough inelastic work to utilize all resources fully.
In these situations, IFSRPT may not increase system efficiency. A thresholding approach, which
we call THRESHOLD, instead allows the scheduler to choose between these two algorithms
based on the observed system load, which we estimate with the number of jobs in the inelastic
queue. Each thread will use the SRPT algorithm when an excessive number of jobs are in the
inelastic queue and otherwise use the IFSRPT algorithm.

3.3 Architecture Aware Execution

The central theme of our research contributions focuses on improving system efficiency to in-
crease performance. One aspect of efficiency we look to improve upon in this system is an
awareness of data placement.

NUMA systems resemble a mini-distributed system in that remote operations are less per-
formant than local operations. The HyPer DBMS previously highlighted the effects of using a
data-parallel execution method with NUMA locality. NUMA awareness improved system per-
formance, obtaining significant speedups on their multi-socket benchmarking architecture [54].

In considering NUMA architectures, we took two performance aspects characteristics into
account in developing our system:

1. Poor data layouts cause inefficiencies from access pattern skew [68]. Heavy access to
remote data may trigger interconnect bandwidth bottlenecks or memory bandwidth bottle-
necks on the remote node.

24

2. Any access to remote data is less efficient than local data due to additional incurred latency.
Our results, presented later in Chapter 4, shows that NUMA-aware accesses improves
cache efficiency.

3.3.1 Data Layout and Representation

The first of our aforementioned concerns suggests that altering the data layout may partially mit-
igate performance issues. Operating systems often expose control over memory placement with
low-level libraries. In Linux, this is done with the libnuma library, which reports information
about the memory layout of the system and allows fine-grained control over memory allocation
[76]. NUMA allocations are fulfilled with a granularity of a system page. We modify the table
data representation in the DBMS to store a roughly equal segment of data on each NUMA node
with a round-robin partitioning strategy, alternating the node each data segment is placed on.

NoisePage previously stored data in a largely columnar fashion, allocating a large chunk of
data for each column in a batch of tuples with a predefined batch size. An external container
then maintained pointers to the columns for each batch of tuples, representing a data block. We
modify the NoisePage storage format to store data in a hybrid fashion similar to PAX, allocating
all attributes for a set of tuples onto a single virtual memory page but organizing attributes in a
columnar fashion [25]. We additionally maintain a count of the number of tuples in each batch
and internal memory management metadata per block.

The PAX hybrid storage model lowered execution overheads of DSM, or columnar storage,
while improving cache efficiency over NSM, or row-based storage [25]. In a main-memory
database, there is no interaction with persistent storage, so we do not incur the overheads of pag-
ing. Our primary motivation for using a PAX-like format was to more naturally align with the
NUMA allocation methods, which require page-sized aligned regions. Since multiple columns
in a tuple will likely be accessed together in the same task, we wanted them stored in the same
NUMA region. A natural approach is to allocate these tuples together as part of the same block.
A block size equivalent to a page size would automatically align with the NUMA-aware allo-
cation specification and introduce more flexible partitioning. We present a diagram of our data
layout in Figure 3.5.

As we will later present in Section 4.4, we also enabled the usage of hugepages in the DBMS.
Operating system hugepages are pages of size larger than the default 4KB. Increasing the size of
pages used in the database increases the amount of data that can be allocated together in a single
page. Doing so improves the vectorization batch size compared to the default page size on our
execution architecture and is expected to reduce the overhead of address translation.

3.3.2 Locality-Aware Scheduling

Our latter NUMA architecture concern additionally requires the use of data awareness during
execution. We expect that augmenting operator implementations to execute queries in a locality-
optimized manner will improve query performance.

We modified the scheduling approaches introduced in the previous section to additionally be
locality aware. From a scheduling perspective, one can model locality-sensitive jobs as having

25

bool nulls[ct] T vals[ct]

T vals[ct]bool nulls[ct]

⋮ ⋮

uint ct int metadata

attribute 1

attribute N

Figure 3.5: Our data layout stores tuples in a hybrid fashion, keeping attribute values contiguous
in memory but storing all attributes for a batch of tuples together. In addition to the data itself,
we maintain a count of tuples and some additional implementation-specific metadata per block.
A table will be composed of multiple such blocks [48].

varying sizes depending on their assignment to system resources. Jobs will be “larger” as they
take more time when scheduled onto suboptimal resources.

Implementing locality awareness involved tracking allocation metadata and integrating this
information into the execution pipeline to prefer operating on local data. In this work, we im-
plement locality-aware execution only for table scan operations, which compose a significant
proportion of query execution. However, we envision augmenting allocations for intermediate
materialized tuples or data structures in the future.

We augment the preexisting container of data blocks for each internal table structure with
a map from the NUMA region to the blocks allocated in that region. Our updated table scan
operations take advantage of this representation by creating executable tasks that only operate
on chunks of data allocated within a single NUMA region, which then get submitted to the
scheduler. The scheduler, now aware of the optimal NUMA region for execution, assigns each
task to a queue on one of the cores corresponding to this region.

We also added a modified version of work-stealing in the scheduling algorithms to reduce the
risk of workload imbalance. The scheduler submits query tasks to a core on an alternative socket
if the queues for this core are far shorter than the local queue.

26

Chapter 4

Evaluation

This chapter presents the performance characteristics of the policies and system modifications we
implemented in NoisePage as detailed in Chapter 3. We describe the attributes of the analytical
benchmark we use in our evaluation, discuss the performance statistics that guided our explo-
ration into system optimizations and development, and demonstrate the performance benefits of
improving system efficiency.

Our experiments focus on measuring query execution-related performance changes in a DBMS.
As introduced in Section 2.1, the in-memory database NoisePage neither incurs overheads of
parsing and optimization nor those of persistent storage during execution. In addition, we do not
consider data generation or loading costs in our benchmarks.

We run all our experiments on a dual-socket system with two 20-core Intel Xeon Gold 5218R
CPUs (2.10GHz, 27.5 MiB L3 cache, with AVX512) and 187GiB of DRAM, roughly equally
split across the two sockets. A remote socket has roughly 2x the distance of a local socket.
NUMA regions/nodes in this system correspond directly with the sockets, so we use the terms
interchangeably.

Our benchmarks are hand-written C++ programs that submit queries from the Star Schema
Benchmark to NoisePage to measure the system’s completion rate and the average latency of
queries in the system. We additionally use profiles collected with the Linux tool perf and Intel’s
Performance Counter Monitor (PCM) to determine architectural bottlenecks and overheads by
investigating CPU, memory, caching, and interconnect metrics in our experiments [17, 40, 57].

We conduct statistical testing to ascertain the significance of our results. On all plotted results
with error bars aside from the baseline, we use Welch’s t-test to determine a statistically signifi-
cant change in mean values. All statistical tests compare the active experiment against both the
baseline and the previous experiment of the same type. All results are statistically significant
with a p-value < 0.05 for both tests unless otherwise noted.

Our evaluation demonstrates the value of architecture awareness in combination with query-
aware scheduling policies grounded in queueing theory, achieving over a 30% performance im-
provement over the baseline. The performance experiments in this chapter will build up to this
result step-by-step, going through the design decisions of our implementation and their cumula-
tive impact.

27

4.1 Characteristics of the Star Schema Benchmark
DBMSs support workloads with highly variable characteristics, from short-lived point queries to
long-running analytical analyses. This work focuses on determining performance on analytical,
or OLAP, workloads. This category of workloads primarily consists of read-heavy queries that
consume a significant amount of data and have relatively high scalability.

Our benchmarks utilize queries from the Star Schema Benchmark, a benchmark intended to
simulate data warehousing applications [65]. This benchmark consists of 13 queries selecting
data across tables from a uniformly generated dataset. We present the database schema in Fig-
ure 4.1 and a sample query in Listing 1. Additionally, we previously showed in Section 3.1 that
queries from this benchmark are not perfectly parallelizable and that individual pipelines may be
elastic or inelastic depending on implementation behaviors and dataset sizes. Our observations
indicate an opportunity for performance improvement on this workload.

We use two benchmarks in our analyses to capture salient performance measures. Both
benchmarks only use queries from the Star Schema Benchmark, which we configure with a
scale factor of 10 (∼10GB of data). As such, the workload dataset fits in memory and does
not encounter disk or network-based overheads. For both benchmarks, we evaluate the schedul-
ing policies FCFS, IFSRPT, SRPT, and THRESHOLD, with implementations as described in
Chapter 3.

Spin Benchmark The first benchmark measures the maximum system throughput, the overall
number of queries the system can process in a given time. To do so, we must overload the system
by ensuring that the queue of queries to process is never empty.

We implement this benchmark by creating a closed-loop batch system where 2000 threads
continuously send a new query to the system as the previously submitted job from that thread
completes. To minimize interactions with query processing, we pin all task submission and
benchmark measurement threads to a single core on the system. We record the number of com-
pletions at each second, which we then process to determine a measure of system throughput.

We set up this first benchmark to run for a total of 30 minutes per experiment to allow the
system to stabilize before we capture metrics, which we empirically observe completes well
within this period across all our experiments. We inspect the moving average of completions per
second to determine the stability range of each experiment. Over this period, we use the average
completion rate of the system as a measure of the max throughput.

Some of the scheduling policies we support prioritize shorter queries, which may inflate the
reported throughput in this benchmark by increasing the number of short queries considered. We
considered an alternative benchmark design to measure maximum throughput: pre-generating a
large number of queries and determining throughput from the time necessary to complete all sub-
missions. However, this alternative design gives the benchmark complete awareness of incoming
queries. This design is reasonable when the execution order is FCFS but makes a significant dif-
ference when evaluating alternative priority schemes. Our short-query prioritizing policies force
the completion rate to take a step-like distribution across time. This benchmark effectively clas-
sify queries into job size buckets, which will be drained one at a time, with the short job size
buckets cleared first. We found the spin benchmark more reasonable to estimate maximum sys-
tem throughput when queries have arbitrary arrival patterns and utilize it for this purpose.

28

Figure 4.1: The Star Schema Benchmark contains a single fact table, lineorder, referenced
by the four dimension tables part, supplier, customer, and date. This schema form is
commonly used in data warehouses [47].

29

Table 4.1: A sample data traffic measurement over 20 seconds while running the Poisson bench-
mark with the IFSRPT policy. Socket 0 has significantly greater outgoing traffic than socket 1,
and socket 1 has significantly greater incoming data.

Socket Incoming Data Traffic Outgoing Data and Non-Data Traffic
Socket 0 80G 242G

Socket 1 130G 193G

The second performance metric we are interested in is query latencies in a system under
high load. This metric is the goal of our optimizations, as improved scheduling policies can
significantly reduce average query latency in a stable system.

Poisson Benchmark We set up a second benchmark to submit queries with an open-system
configuration. We configure a Poisson arrival process with a rate approximately corresponding
to a baseline system load of 95%. We again pin task submission and benchmark measurement
threads to a single core on the system. However, we now record the total latency of each query
in the system, including both execution time and queueing time.

This benchmark’s design defines an arrival process for queries. Instead of running the bench-
mark for a fixed period, we set up the benchmark to run 45000 queries to completion and exclude
the first 15000 queries as a warmup phase.

Section 4.2 through Section 4.5 will focus on the performance insights which guided our
development process. Section 4.6 will summarize the changes to average latency and system
metrics as a result of our complete set of improvements.

4.2 Baseline
We motivate our system improvements by discussing the initial latency results for the Poisson
benchmark experiment depicted in Figure 4.2. We determined the arrival rate based on the results
of the spin experiment described later in this section.

The best policy in this graph is IFSRPT, which has an ∼8.5% performance improvement
over the naive FCFS policy. These results did not match the expectations from query simulations
based on NoisePage, which predicted a performance increase of up to 47% in comparing these
policies [34]. The clear performance gap necessitated further investigation.

We began by considering system metrics observed for the IFSRPT policy in this benchmark.
We utilize the Intel PCM tool to monitor interconnect usage, with which we observe an imbalance
in the data traffic across sockets. The traffic samples during the experiment, one presented in
Table 4.1, consistently indicates a clear skew towards accessing data from socket 0. Additionally,
when inspecting internal system counters with perf, we found a significant number of remote
memory accesses, nearly matching the count of local accesses. We show these counter values in
Table 4.2. These insights led us to consider the overheads of remote data in our experiment.

To compute the maximum throughput for our baseline Poisson experiment and to compare
against future results, we also ran the spin benchmark for all policies. We first plot a moving

30

Figure 4.2: The average latency of queries across policies running the baseline Poisson bench-
mark shows a limited performance improvement over the naive scheduling order. The error bars
indicate 2 ∗ SEM (n = 30000).

Table 4.2: Per-minute average local and remote memory accesses measuring the Poisson bench-
mark with the IFSRPT policy for four minutes.

Metric Raw Counts Relative Percentages
Local DRAM 1,535,689,325 57.01%

Remote DRAM 1,157,844,401 42.99%

31

Figure 4.3: The moving averages of completions per second with a 100s window for each
scheduling policy considered in the baseline spin benchmark.

average of completions per second in Figure 4.3 to determine the period of stability for each
queueing policy. The moving average uses a minimum window size of 100s. The policies IF-
SRPT, SRPT, and THRESHOLD all have an initial spike in completion rate before stabilizing
within the first 750s. As such, we take the stable region for these policies to be the 1000-second
time frame from 750s to 1750s. However, the FCFS policy is stable through more of the ex-
periment, noting the different axes ranges presented in the figure. Accordingly, we consider an
extended, 1500-second stability region from 250s to 1750s for this policy.

The stability periods we extract from this experiment similarly apply to our further experi-
ments, so we defer the presentation of similar moving average plots to Chapter 7.

Using the stability periods defined in Table 4.3, we show the maximum throughput calcu-
lated per policy for the baseline in Figure 4.4. We observe that most policies have a maximum
throughput of approximately 13 queries per second. We use this max load across all Poisson
benchmark experiments to compare performance at the same load point as the baseline.

32

Table 4.3: The stability periods in the spin benchmark for each policy as determined from the
moving average of completion rate. The stability periods are shared across experiments as they
follow the same stability pattern.

Policy Stability Period Length (s) Start Timestamp (s) End Timestamp (s)
FCFS 1500 250 1750

IFSRPT 1000 750 1750

SRPT 1000 750 1750

THRESHOLD 1000 750 1750

Figure 4.4: The maximum throughput per policy running the spin benchmark using the baseline
system. The error bars indicate 2 ∗ SEM, n as defined in Table 4.3.

33

Figure 4.5: The maximum throughput per policy running the spin benchmark when striping data
across NUMA nodes. The system throughput decreased by increased operation overheads from
moving to our PAX-like layout and allocating data at a 4KB block size. The error bars indicate
2 ∗ SEM, n as defined in Table 4.3.

4.3 Resolving Access Skew

Our first step in addressing our baseline metric profiles was considering alternative allocation
behavior. Our interconnect bandwidth numbers in Table 4.2 indicated a potential hotspot on
socket 0. The default system allocation behavior would load the entire dataset onto the same
NUMA region. Instead, we altered the loading behavior to stripe allocated data in 4KB page-
size blocks across the two sockets to address this potential hotspot. We also modified the data
organization to the PAX-like format described in Section 3.3.1.

However, our changes detrimentally impacted the performance of all queries in the system.
In running the spin benchmark, we notice a sharp throughput drop across policies depicted in
Figure 4.5 with our changes compared to the baseline, falling by over 2x.

The CPU profiles of the FCFS policy in this experiment show a higher function call overhead
than the baseline, which we link to reducing the batch size. Using a page-sized block in the
interest of finer granularity and alignment to the numa_alloc_onnode system call significantly
reduced the number of tuples processed together [76]. For example, in the customer SSB table
batches went from containing 10k tuples to containing just 35 tuples on a 4096-byte page. As a
result, the internal function iterating lost some benefits of vectorization and grew from consuming
43% of cycles to 61% of cycles.

34

Figure 4.6: The maximum throughput per policy running the spin benchmark when using 2MB
hugepages as data blocks. The system recovered the performance losses incurred from our previ-
ous modifications and even slightly improved. In this experiment, the FCFS and THRESHOLD
policy max throughput changes are not statistically significant with respect to the baseline. The
error bars indicate 2 ∗ SEM, n as defined in Table 4.3.

4.4 Increasing Block Sizes

Given the insight from our aforementioned tuples-per-block analysis, we next increase the stor-
age capacity of our blocks by using hugepages, which we introduced in Section 3.3.1. Modifying
the system to use 2MB hugepages, we were able to track ∼18k tuples of the customer table in
a single block.

Figure 4.6 demonstrates that using hugepages recouped most of the performance degradation
observed in Section 4.3. By processing data in larger batch sizes in this experiment, our CPU
profiles indicate the CPU consumption of the block iteration function lowered, consuming 45%
of cycles. Additionally, in spreading data across the sockets, we find that the traffic patterns
of the two sockets approached similarity. Both incoming and outgoing traffic are closer across
sockets 0 and 1 in Table 4.4 than in Table 4.1.

However, using hugepages when striping data across NUMA regions triggered three related
metric regressions, potentially suggesting unresolved overheads: context switches, page faults,
and TLB flushes, as shown in Table 4.5.

35

Table 4.4: A sample data traffic measurement over 20 seconds while running the Poisson bench-
mark with the IFSRPT policy with NUMA-aware data striping and the use of hugepages. Socket
0 and socket 1 now have far more similar traffic patterns.

Socket Incoming Data Traffic Outgoing Data and Non-Data Traffic
Socket 0 54G 130G

Socket 1 62G 122G

Table 4.5: Per-minute average counts for regressing metrics measuring the Poisson benchmark
with the IFSRPT policy for four minutes.

Metric Baseline Hugepage Allocations
Context Switches 76,581 83,138

Page Faults 633,410 745,074

STLB Flushes 16,088,330 16,877,881

DTLB Flushes 311,604 346,936

ITLB Flushes 15,855,552 16,299,495

4.5 Performance Tuning

We implemented three memory-related changes to target some of the remaining observed metric
disparities. Correspondence with OS experts suggested the following steps [75]:

• We turned off hyperthreading to avoid Spectre/Meltdown mitigations which may affect
TLB flush rates.

• We changed our NUMA-aware allocations to request preallocated hugepages instead of
using madvise.

• We avoided invocations of mmap for small allocations.
These alterations resolved most of the metric spikes from our previous development, except

the number of page faults while running the benchmark. We present the improvement in these
metrics in Table 4.6. These changes also slightly affect the max throughput of the system across
policies, depicted in Figure 4.7.

We plot our re-evaluated latency metrics on the Poisson benchmark with the changes applied
thus far in Figure 4.8. With hotspot alterations and OS-level performance tuning, in this ex-
periment, the IFSRPT and THRESHOLD policies achieve a ∼9.6% and ∼15.2% performance
improvement over FCFS, respectively. However, the FCFS result in this experiment had worse
performance than the baseline, and the IFSRPT result did not exhibit a statistically significant
difference. When compared with the baseline FCFS result, THRESHOLD achieves a ∼13.4%
performance improvement. In all, our changes thus far did not improve upon our baseline result.
We disproved suspicions that memory and interconnect bottlenecks were restricting performance
with these results and subsequent measurements.

36

Table 4.6: Per-minute average counts for formerly regressed metrics measuring the Poisson
benchmark with the IFSRPT policy for four minutes. Performance tuning resolved most of the
degradations across metrics.

Metric Baseline Hugepage Allocations Performance Tuning
Context Switches 76,581 83,138 26,345

Page Faults 633,410 745,074 681,913

STLB Flushes 16,088,330 16,877,881 13,053,544

DTLB Flushes 311,604 346,936 214,439

ITLB Flushes 15,855,552 16,299,495 12,461,092

Figure 4.7: The maximum throughput per policy running the spin benchmark after applying
our performance tuning changes, which slightly impacted the system. In this experiment, the
IFSRPT and SRPT policy max throughput changes are not statistically significant with respect
to the previous experiment. The error bars indicate 2 ∗ SEM, n as defined in Table 4.3.

37

Figure 4.8: The average latency of queries in the Poisson benchmark after our performance
tuning changes were applied continues to show limited performance improvement over the naive
scheduling order. In this experiment, only the IFSRPT policy average latency is not statistically
significant with respect to the baseline. The error bars indicate 2 ∗ SEM (n = 30000).

Table 4.7: Per-minute average local and remote memory accesses measuring the Poisson bench-
mark with the IFSRPT policy for four minutes.

Metric Raw Counts Relative Percentages
Local DRAM 1,453,727,874 56.88%

Remote DRAM 1,101,951,249 43.12%

We still had one more metric to optimize: locality. The latest round of experiments had
a similar pattern in local and remote accesses to our baseline. We again note a remote-heavy
access pattern in Table 4.7.

4.6 NUMA-Aware Scheduling
Our prior developments and experiments made it clear that the system would need to support
NUMA-aware scheduling of query tasks to optimize acting on local data, thereby avoiding the
overheads of remote accesses.

As mentioned in Section 3.3, we implemented internal tracking structures to the database
to maintain the NUMA node of each allocation and, during execution, process sequential scan
operators in a locally-optimized manner. NUMA-aware scheduling noticeably impacts the max

38

Figure 4.9: The maximum throughput per policy running the spin benchmark when using
NUMA-aware scheduling. In this experiment, only the FCFS policy max throughput change
is not statistically significant with respect to the previous experiment. The error bars indicate
2 ∗ SEM, n as defined in Table 4.3.

throughput of the system, demonstrated in Figure 4.9.
Applying NUMA-aware scheduling improved the average latency of the system when run-

ning the Poisson benchmark, as shown in Figure 4.10. Compared to the baseline FCFS result,
IFSRPT achieves a ∼34.1% performance improvement in this experiment. FCFS also sees a
∼26.8% performance improvement over the policy’s baseline performance.

DRAM access patterns do not directly explain the performance benefits of utilizing NUMA-
aware scheduling policies. Our implementation did not dramatically affect the proportion of
memory accessed locally. The proportions in Table 4.8 are similar to those in Table 4.7 and Ta-
ble 4.2. Rather, NUMA-aware policies allow the system to take advantage of improved caching
characteristics when optimizing most operations to act on local data. An expanded Table 4.9
demonstrates an increased hit rate in the cache hierarchy correlated with the performance im-
provements we observe. We hypothesize that region-independent caching can reduce cache ef-
ficiency when duplicating data in the caches of multiple regions. By consistently maintaining
data locally, the caches may instead avoid data replication across sockets, improving caching ef-
fects in the system. We additionally speculate that the prioritizing scheduling policies can better
take advantage of shared data requests for pipelines across invocations of the same query and
potentially across several queries executed in succession due to the prioritization scheme.

Prior metrics we investigated continue improving: the values in Table 4.10 all are better than
the results presented in Table 4.6. Interconnect traffic patterns also remain relatively similar,

39

Figure 4.10: The average latency of queries running the Poisson benchmark with NUMA-aware
scheduling shows a marked performance improvement on all policies other than FCFS. The error
bars indicate 2 ∗ SEM (n = 30000).

Table 4.8: Per-minute average local and remote memory accesses measuring the Poisson bench-
mark with the IFSRPT policy for four minutes.

Metric Raw Counts Relative Percentages
Local DRAM 988,338,178 53.92%

Remote DRAM 844,624,098 46.08%

40

Table 4.9: Per-minute average counts for cache and memory metrics measuring the Poisson
benchmark with the IFSRPT policy for four minutes. Increased cache efficacy results in signif-
icantly fewer memory accesses, potentially contributing to the policy’s performance improve-
ment.

Metric Baseline Performance Tuning NUMA-Aware Scheduling
L1 Cache Hit 967,936,706,093 969,387,392,256 1,026,996,656,882

L1 Cache Miss 29,945,235,199 30,479,332,002 31,023,064,344

L2 Cache Hit 16,531,638,342 16,832,982,220 17,449,109,121

L2 Cache Miss 13,336,222,568 13,646,477,477 13,846,426,909

L3 Cache Hit 9,974,854,449 10,533,353,630 11,605,222,231

L3 Cache Miss 2,931,819,490 2,761,672,642 2,012,850,592

Local DRAM 1,535,689,325 1,453,727,874 988,338,178

Remote DRAM 1,157,844,401 1,101,951,249 844,624,098

Table 4.10: Per-minute average counts for address translation metrics measuring the Poisson
benchmark with the IFSRPT policy for four minutes.

Metric Baseline Performance Tuning NUMA-aware Scheduling
Context Switches 76,581 26,345 25,664

Page Faults 633,410 681,913 623,400

STLB Flushes 16,088,330 13,053,544 11,599,572

DTLB Flushes 311,604 214,439 207,466

ITLB Flushes 15,855,552 12,461,092 10,517,490

Table 4.11: A sample data traffic measurement over 20 seconds while running the Poisson bench-
mark with the IFSRPT policy with NUMA-aware scheduling policies. Socket 0 and socket 1
continue to have similar traffic patterns.

Socket Incoming Data Traffic Outgoing Data and Non-Data Traffic
Socket 0 54G 128G

Socket 1 62G 120G

shown in Table 4.11.
However, within the NUMA-aware Poisson latency benchmark, IFSRPT outperforms FCFS

by ∼10%, still far short of the ∼47% mark hoped for from simulations. In optimizing noticeable
system metrics, addressing potential bottlenecks, and augmenting the scheduling algorithms for
local performance, we hoped we could resolve behavior that simulations did not capture. That

41

Table 4.12: We summarize our mean latency results across experiments in this table. We report
the mean latency in ms as well as the percentage change from the baseline FCFS result. Our
results show the performance gains achieved by NUMA awareness as well as the benefits of
query characteristic aware scheduling.

Policy Baseline Performance Tuning NUMA-aware Scheduling
FCFS 1175.54 (N/A) 1199.73 (+2.1%) 861.00 (-26.8%)

IFSRPT 1075.49 (-8.5%) 1084.52 (-7.7%) 774.97 (-34.1%)

SRPT 1133.97 (-3.5%) 1075.95 (-8.5%) 833.80 (-29.1%)

THRESHOLD 1091.54 (-7.1%) 1017.65 (-13.4%) 867.59 (-26.2%)

said, our results for NUMA-aware IFSRPT in Figure 4.10 outperform the baseline FCFS policy
by well over 30%, and IFSRPT outperforms the next most performant scheduling algorithm by
∼ 7.1%, so we do see significant value in designing efficient scheduling algorithms combining
queueing theoretic principles with architecture awareness.

4.7 Summary
We present a summary of our experimental results in Table 4.12. Our initial experiments demon-
strated the value of scheduling in NoisePage, achieving up to an 8.5% mean latency improve-
ment with the IFSRPT policy over FCFS. Our data layout changes and subsequent choices to
utilize hugepages and address memory-related metrics did not drastically change this result. The
THRESHOLD policy attains the best result in this experiment with a 13.4% performance im-
provement over the baseline FCFS result. Finally, adding architecture awareness to the schedul-
ing framework allows the IFSRPT policy to achieve a performance improvement of 34.1% over
the baseline FCFS policy.

Our experiments support the hypothesis that resource efficiency is an important consideration
in query execution which can be improved with the application of scheduling and awareness of
the system architecture. In addition to the technical details derived in this work, we contribute a
methodology for evaluating performance results derived from scheduling in databases.

Our work presented a targeted insight into the Star-Schema Benchmark. This analytical
benchmark is one of many, and the benchmark itself can be configured with varying dataset
sizes. Our work may have even more favorable performance characteristics when increasing the
variability of job sizes, for example, when interleaving SSB instances with scale factors 10 and
100, respectively. We believe the query characteristic-aware scheduling policies would further
outperform the baseline as the workload variability increases. We leave these investigations to
future experimentation and analysis.

42

Chapter 5

Related Work

Our work in applying theoretical and architectural principles to DBMS design builds upon a sig-
nificant history of work in the field. We discuss a brief history of research in database scheduling,
resource awareness, and query processing frameworks in this chapter.

5.1 Database Scheduling

We previously outlined scheduling policies implemented by open-source, commercial, and aca-
demic DBMSs in Chapter 2. Wagner et. al. presented developments in scheduling in the Umbra
DBMS, also building upon the data-parallel and compilation-based execution model introduced
by the HyPer system. Their scheduling implementation shows a stride scheduling approach with
self-tuned hyperparameters to both outperform alternative scheduling policies implemented in
Umbra and the default behaviors of other systems. Like ours, their component evaluated perfor-
mance characteristics of scheduling policies in a system under high load [54, 77]. To the best of
our knowledge, Amazon Redshift is the only other system to utilize a performance-based prioriti-
zation scheme applied to query scheduling [19, 27]. These developments similarly demonstrated
the value of an SRPT-like algorithm. Psaroudakis et. al. present a scheduler infrastructure that
supports user-defined priorities, but this work focuses on on dynamically determining task con-
currency than on prioritization [67].

Scheduling considerations have more recently been considered in optimizing system metrics
beyond performance. Landgraf et. al. pressent work on search algorithms to determine pipeline
execution orders to minimize memory consumption [52].

Effective models for query performance prediction can replace the naive and restrictive ap-
proach to job size estimations taken in this work. QPPNet introduced query plan-structured
neural networks assembling individual operator models to predict query performance. The plan-
structured architecture allows the model to reflect the behavior of query evaluation and achieves
greater accuracy and efficiency through operator-level model reuse [59]. MB2 presented an of-
fline modeling architecture implemented for the NoisePage database. The performance modeling
system decomposes database operations into miniature performance models and an overarching
interference model to determine interactions of these individual components [58]. Redshift also
notes the use of machine learning to estimate query performance utilized in their query acceler-

43

ation module [19, 27].

5.2 NUMA Awareness
Our engine improvements are inspired by the parallelism approach implemented in the HyPer
DBMS by Leis et. al. “Morsel-driven” parallelism was designed to improve system efficiency by
increasing query elasticity, allowing compute resources to be efficiently reassigned, maintaining
locality, and avoiding straggler effects [54]. Liu et. al. present a NUMA-aware execution engine,
Zen+, to support transactional workloads on non-volatile memory. Zen+ takes a similar approach
to our NUMA-aware partitioning and execution scheme, but supports dynamically reassigning
partitions to alternative nodes [56].

Psaroudakis et. al. focus on data partitioning and task assignment strategies to fully extract
NUMA awareness’s benefits, showing that naive partitioning approaches leave room for growth.
Their work demonstrates the potential pitfalls of excessive partitioning and work-stealing and
introduces principles for automated workload-aware tuning [68].

Schuh et. al. and Balkesen et. al. took a focused approach in evaluating various database join
algorithms. These works considered and took advantage of NUMA effects to improve the perfor-
mance of hash and sort-merge joins and in turn improve overall execution performance. Among
their contributions was a discussion on how to adjust many of the algorithms they considered to
be NUMA-aware. Their takeaways indicated memory awareness was a significant contributor to
performance [28, 71].

Bang et. al. more recently presented resource partitioning beyond architectural design, high-
lighting potential pitfalls when software access patterns are left unconsidered. Their approach
provisions resources to individual data structure instances rather than tasks based on measure-
ments of performance under different resource allocations [29].

5.3 Compilation and Vectorization
NoisePage similarly builds upon a large body of prior work in query compilation and vector-
ization. Compilation has a long history in database development, starting with IBM’s System
R, which compiled SQL queries by assembling machine code fragments [37]. In the modern
era, work on compilation began with the development of HIQUE by Krikellas et. al., an engine
transpiling a query plan into a C program. The system’s code generation component gener-
ates query-specific source code for each operator and a composing method to evaluate these in
sequence. The generated code is then compiled and linked into the execution component for
evaluation [51]. Neumann et. al. introduced the concept of operator pipelining to query com-
pilation to generate more expressive kernels. A pipelined execution model reduces the costs of
materialization and function calls. The choice of the LLVM framework as a compilation back-
end additionally provides more desirable optimization behavior than alternative targets [63, 64].
In situations where compilation is expensive with respect to the runtime of the query, interpre-
tation may be a better choice. Kohn et. al. and Menon et. al. have implemented an adaptive
execution mode in HyPer and NoisePage, respectively, dynamically allowing the choice between

44

interpretation and compilation to address this issue [50, 62].
Boncz et. al. were the first to demonstrate the benefits of vectorized processing with the in-

troduction of MonetDB/X100. Vectorized processing demonstrates magnitudes of performance
improvement over prior work by significantly reducing interpretation overheads and enabling
batch optimizations [35]. IBM DB2 adopted vectorized processing with the BLU Acceleration
layer, a columnar processing engine. BLU combined several optimizations in columnar process-
ing, including compression, the use of SIMD instructions, and parallelism [69]. Polychroniou et.
al. have since developed SIMD implementations for various operators to extract further perfor-
mance gains using SIMD instructions [66]. Lang et. al. extended this prior work in presenting
new, performant algorithms to take advantage of the AVX-512 instruction set [53].

Behm et. al. presented a native, vectorized query engine developed at Databricks, Photon.
Photon set a performance record for the TPC-DS benchmark on a 100TB dataset [31]. The
principles of vectorization also lend well to GPU hardware, which are optimized for SIMD op-
erations. Shanbhag et. al. present a performant execution engine build for modern GPUs which
can greatly outperform CPU execution [73].

Kersten et. al. also compared the performance of vectorized and compiled query engines
to determine their strengths and weaknesses. Although neither approach was a clear winner
over the other, both had favorable performance situations. Among other attributes, compilation
techniques were shown to be more performant on compute-intensive queries, while vectorization
offered lower cache miss rates [49].

Menon et. al. showed that compilation and vectorization could be effectively combined in a
single engine to extract greater performance gains in building NoisePage [61].

45

46

Chapter 6

Future Work

We believe this work to be part of a fascinating line of future research in applying queueing
theory to databases. We will discuss lines of future investigation based on trends gleaned from
this work, a rapidly changing hardware landscape, and interesting open problems our work raises.

6.1 Scheduling with Diverse Workloads

Another open area of interest is scheduling in a transactional environment. Transactional work-
loads, or OLTP workloads, typically involve far shorter operations than analytics but may sig-
nificantly interfere across transactions from query conflicts. These workloads raise interesting
scheduling questions about optimizing system performance by relieving resource contention.

Working with query deadlines and SLAs has the potential to be an exciting area of future
work. Most commercial DBMSs discussed in Section 2.3 have some notion of user-defined pri-
ority. Interesting scheduling decisions arise when considering query characteristics in addition to
user-defined priorities or deadlines. Phase awareness, dynamic configuration of query scalability,
and practical size estimations may improve system performance without sacrificing performance
targets or tiers. Prior work also suggests interest in deadlines and priorities on transactional
workloads but was primarily conducted in a different computational era [23, 36].

6.2 Scheduling and Vertical Scalability

Today, the highest core count systems offer exceptional opportunities for high-performance par-
allel execution. System efficiency becomes more important as the resource capabilities of a single
system scale. With more resources, there is a greater risk of underutilization and inefficiency, the
key targets of our optimizations in NoisePage. In particular, we expect that as the number of
cores increases, IFSRPT will become more performant compared to alternative algorithms. Sim-
ilarly, as the number of sockets and performance disparities increase, locality-aware scheduling
will play a more significant role.

47

6.3 Scheduling and Horizontal Scalability
In addition to the benefits of more powerful hardware, the attractive pricing models of lower-
capability hardware have made distributed query processing attractive. Scheduling on a cluster
of such nodes may achieve the high resource capacity hoped from a large instance at a far lower
cost. In doing so, the same resource inefficiency risks of vertical scalability arise: increasing
resources increases the opportunity for inefficiency. However, the performance overheads of
distributed systems are far more significant, making locality-aware execution paramount.

There are also other interesting theoretical and modeling questions in working with a dis-
tributed system. The parallelization models of query components may change drastically from
those observed from a single-node system when dealing with communication costs and different
execution algorithms. New query performance models may lead to more targeted theoretical
results to address these changing behaviors.

6.4 Scheduling Beyond Execution
Query execution is but one part of a full-featured DBMS. We focus on in-memory systems in this
document. However, the majority of databases today are still depend on disk or network com-
munication. These environments increase performance overheads and may drastically change
execution models. Scheduling algorithms may improve by being aware of these additional re-
sources and their interactions with query processing.

Further, many databases also perform background tasks not typically on the critical path for
execution. Many systems support garbage collection, checkpointing in the background or on
demand, and logging for durability. Work on alternative scheduling algorithms may successfully
address new challenges for each of these functions.

48

Chapter 7

Conclusion

With limited prior investigation into scheduling in state-of-the-art analytical systems, this work
makes inroads into a relatively unexplored subdomain in database research. We presented schedul-
ing advancements to an in-memory execution engine to improve analytical workloads. Our ex-
ecution engine modifications demonstrate the value of designing scheduling algorithms to com-
bine query characteristics and architecture awareness, achieving average workload latency im-
provements of 30%. We consider our work a first step in empowering future research to explore
and investigate new approaches in performant DBMS design beyond the techniques learned over
decades of work in optimizing single-query performance.

49

50

Bibliography

[1] Overview of clickhouse architecture. URL https://clickhouse.com/docs/en/
development/architecture/. 2.3.1, 2.3.2

[2] 13.2.6 insert statement, . URL https://dev.mysql.com/doc/refman/8.0/en/
insert.html. 2.3.1

[3] 13.2.10 select statement, . URL https://dev.mysql.com/doc/refman/8.0/
en/select.html. 2.3.1

[4] 5.6.3.3 thread pool operation, . URL https://dev.mysql.com/doc/refman/8.
0/en/thread-pool-operation.html. 2.3.1

[5] 8.1 parallel execution concepts, . URL https://docs.oracle.
com/en/database/oracle/oracle-database/21/vldbg/
parallel-exec-intro.html. 2.3.1

[6] 8.4 parallel statement queuing, . URL https://docs.oracle.
com/en/database/oracle/oracle-database/21/vldbg/
about-parallel-queuing.html. 2.3.1

[7] 15.2. when can parallel query be used? URL https://www.postgresql.org/
docs/current/when-can-parallel-query-be-used.html. 2.3.1

[8] Job scheduling. URL https://spark.apache.org/docs/latest/
job-scheduling.html. 2.3.2

[9] Umbra. URL https://umbra-db.com/. 2.3.3

[10] Snowflake challenge: Concurrent load and query,
2015. URL https://www.snowflake.com/blog/
snowflake-challenge-concurrent-load-and-query/. 2.3.1

[11] Scheduling for efficiency and fairness in systems with redundancy. Perform. Eval., 116
(C):1–25, nov 2017. ISSN 0166-5316. doi: 10.1016/j.peva.2017.07.001. URL https:
//doi.org/10.1016/j.peva.2017.07.001. 1.2.2

[12] How to: Understand queuing, 2020. URL https://community.snowflake.com/
s/article/Understanding-Queuing. 2.3.1

[13] Task preemption, 2021. URL https://docs.databricks.com/clusters/
preemption.html. 2.3.2

[14] Methods of parallel processing, 2022. URL https://www.ibm.com/docs/en/
db2-for-zos/11?topic=processing-methods-parallel. 2.3.1

51

https://clickhouse.com/docs/en/development/architecture/
https://clickhouse.com/docs/en/development/architecture/
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/thread-pool-operation.html
https://dev.mysql.com/doc/refman/8.0/en/thread-pool-operation.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/vldbg/parallel-exec-intro.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/vldbg/parallel-exec-intro.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/vldbg/parallel-exec-intro.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/vldbg/about-parallel-queuing.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/vldbg/about-parallel-queuing.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/vldbg/about-parallel-queuing.html
https://www.postgresql.org/docs/current/when-can-parallel-query-be-used.html
https://www.postgresql.org/docs/current/when-can-parallel-query-be-used.html
https://spark.apache.org/docs/latest/job-scheduling.html
https://spark.apache.org/docs/latest/job-scheduling.html
https://umbra-db.com/
https://www.snowflake.com/blog/snowflake-challenge-concurrent-load-and-query/
https://www.snowflake.com/blog/snowflake-challenge-concurrent-load-and-query/
https://doi.org/10.1016/j.peva.2017.07.001
https://doi.org/10.1016/j.peva.2017.07.001
https://community.snowflake.com/s/article/Understanding-Queuing
https://community.snowflake.com/s/article/Understanding-Queuing
https://docs.databricks.com/clusters/preemption.html
https://docs.databricks.com/clusters/preemption.html
https://www.ibm.com/docs/en/db2-for-zos/11?topic=processing-methods-parallel
https://www.ibm.com/docs/en/db2-for-zos/11?topic=processing-methods-parallel

[15] Session priority, 2022. URL https://www.ibm.com/docs/en/db2/11.5?
topic=environment-session-priority. 2.3.1

[16] Activity queuing, 2022. URL https://www.ibm.com/docs/en/db2/11.5?
topic=thresholds-activity-queuing. 2.3.1

[17] PERF(1) perf Manual, 2022. 4

[18] Query priority, 2022. URL https://docs.aws.amazon.com/redshift/
latest/dg/query-priority.html. 2.3.3

[19] Working with short query acceleration, 2022. URL https://docs.aws.amazon.
com/redshift/latest/dg/wlm-short-query-acceleration.html.
2.3.3, 5.1

[20] Workload management, 2022. URL https://docs.aws.amazon.com/
redshift/latest/dg/c_workload_mngmt_classification.html. 2.3.3

[21] Thread and task architecture guide, 2022. URL https://
learn.microsoft.com/en-us/sql/relational-databases/
thread-and-task-architecture-guide?view=sql-server-ver16.
2.3.2

[22] oneapi threading building blocks. https://github.com/oneapi-src/oneTBB,
2022. 3.1

[23] Robert K. Abbott and Hector Garcia-Molina. Scheduling real-time transactions: A per-
formance evaluation. ACM Trans. Database Syst., 17(3):513–560, sep 1992. ISSN 0362-
5915. doi: 10.1145/132271.132276. URL https://doi.org/10.1145/132271.
132276. 6.1

[24] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Automated selection of ma-
terialized views and indexes in sql databases. In Proceedings of the 26th International
Conference on Very Large Data Bases, VLDB ’00, page 496–505, San Francisco, CA,
USA, 2000. Morgan Kaufmann Publishers Inc. ISBN 1558607153. 1

[25] Anastassia Ailamaki, David J. DeWitt, and Mark D. Hill. Data page layouts for relational
databases on deep memory hierarchies. The VLDB Journal, 11(3):198–215, nov 2002.
ISSN 1066-8888. doi: 10.1007/s00778-002-0074-9. URL https://doi.org/10.
1007/s00778-002-0074-9. 3.3.1

[26] Victor Alvarez, Stefan Richter, Xiao Chen, and Jens Dittrich. A comparison of adaptive
radix trees and hash tables. In 2015 IEEE 31st International Conference on Data Engineer-
ing, pages 1227–1238, 2015. doi: 10.1109/ICDE.2015.7113370. 1

[27] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh Chainani, Ki-
ran Chinta, Venkatraman Govindaraju, TJ Green, Monish Gupta, Sebastian Hillig, Eric
Hotinger, Yan Leshinksy, Jintian Liang, Michael McCreedy, Fabian Nagel, Ippokratis Pan-
dis, Panos Parchas, Rahul Pathak, Orestis Polychroniou, Foyzur Rahman, Gaurav Sax-
ena, Gokul Soundararajan, Sriram Subramanian, and Doug Terry. Amazon redshift re-
invented. In SIGMOD/PODS 2022, 2022. URL https://www.amazon.science/
publications/amazon-redshift-re-invented. 1.2.2, 2.3.3, 5.1

52

https://www.ibm.com/docs/en/db2/11.5?topic=environment-session-priority
https://www.ibm.com/docs/en/db2/11.5?topic=environment-session-priority
https://www.ibm.com/docs/en/db2/11.5?topic=thresholds-activity-queuing
https://www.ibm.com/docs/en/db2/11.5?topic=thresholds-activity-queuing
https://docs.aws.amazon.com/redshift/latest/dg/query-priority.html
https://docs.aws.amazon.com/redshift/latest/dg/query-priority.html
https://docs.aws.amazon.com/redshift/latest/dg/wlm-short-query-acceleration.html
https://docs.aws.amazon.com/redshift/latest/dg/wlm-short-query-acceleration.html
https://docs.aws.amazon.com/redshift/latest/dg/c_workload_mngmt_classification.html
https://docs.aws.amazon.com/redshift/latest/dg/c_workload_mngmt_classification.html
https://learn.microsoft.com/en-us/sql/relational-databases/thread-and-task-architecture-guide?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/thread-and-task-architecture-guide?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/thread-and-task-architecture-guide?view=sql-server-ver16
https://github.com/oneapi-src/oneTBB
https://doi.org/10.1145/132271.132276
https://doi.org/10.1145/132271.132276
https://doi.org/10.1007/s00778-002-0074-9
https://doi.org/10.1007/s00778-002-0074-9
https://www.amazon.science/publications/amazon-redshift-re-invented
https://www.amazon.science/publications/amazon-redshift-re-invented

[28] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Özsu. Multi-core, main-
memory joins: Sort vs. hash revisited. Proc. VLDB Endow., 7(1):85–96, sep 2013. ISSN
2150-8097. doi: 10.14778/2732219.2732227. URL https://doi.org/10.14778/
2732219.2732227. 1, 1.2.1, 1.2.1, 5.2

[29] Tiemo Bang, Ismail Oukid, Norman May, Ilia Petrov, and Carsten Binnig. Robust per-
formance of main memory data structures by configuration. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, SIGMOD ’20, page
1651–1666, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450367356. doi: 10.1145/3318464.3389725. URL https://doi.org/10.
1145/3318464.3389725. 5.2

[30] Jeff Barr. Ec2 high memory update – new 18 tb and 24 tb instances, Oct 2019. URL
EC2HighMemoryUpdateNew18TBand24TBInstances. 1.1

[31] Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David Cash-
man, Ankur Dave, Todd Greenstein, Shant Hovsepian, Ryan Johnson, Arvind Sai Kr-
ishnan, Paul Leventis, Ala Luszczak, Prashanth Menon, Mostafa Mokhtar, Gene Pang,
Sameer Paranjpye, Greg Rahn, Bart Samwel, Tom van Bussel, Herman van Hovell,
Maryann Xue, Reynold Xin, and Matei Zaharia. Photon: A fast query engine for lake-
house systems. In Proceedings of the 2022 International Conference on Management
of Data, SIGMOD ’22, page 2326–2339, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450392495. doi: 10.1145/3514221.3526054. URL
https://doi.org/10.1145/3514221.3526054. 5.3

[32] Benjamin Berg. A Principled Approach to Parallel Job Scheduling. PhD thesis, 2022. URL
https://bsb20.github.io/bsberg_phd_csd_2022.pdf. 1.2, 1.2.2, 3.1, 3.1

[33] Benjamin Berg, Jan-Pieter Dorsman, and Mor Harchol-Balter. Towards optimality in par-
allel job scheduling. SIGMETRICS Perform. Eval. Rev., 46(1):116–118, jun 2018. ISSN
0163-5999. doi: 10.1145/3292040.3219666. URL https://doi.org/10.1145/
3292040.3219666. 2.2.2

[34] Benjamin Berg, Justin Whitehouse, Benjamin Moseley, Weina Wang, and Mor Harchol-
Balter. The case for phase-aware scheduling of parallelizable jobs. Performance Eval-
uation, 153:102246, 2022. ISSN 0166-5316. doi: https://doi.org/10.1016/j.peva.2021.
102246. URL https://www.sciencedirect.com/science/article/pii/
S0166531621000638. 3.2, 3.2.2, 4.2

[35] Peter A. Boncz, Marcin Zukowski, and Niels Nes. Monetdb/x100: Hyper-pipelining query
execution. In CIDR, 2005. 1, 5.3

[36] A. Buchmann, D. McCarthy, M. Hsu, and U. Dayal. Time-critical database
scheduling: a framework for integrating real-time scheduling and concurrency con-
trol. In Proceedings. Fifth International Conference on Data Engineering, pages
470,471,472,473,474,475,476,477,478,479,480, Los Alamitos, CA, USA, feb 1989.
IEEE Computer Society. doi: 10.1109/ICDE.1989.47251. URL https://doi.
ieeecomputersociety.org/10.1109/ICDE.1989.47251. 6.1

[37] Donald D. Chamberlin, Morton M. Astrahan, Michael W. Blasgen, James N. Gray,

53

https://doi.org/10.14778/2732219.2732227
https://doi.org/10.14778/2732219.2732227
https://doi.org/10.1145/3318464.3389725
https://doi.org/10.1145/3318464.3389725
EC2 High Memory Update – New 18 TB and 24 TB Instances
https://doi.org/10.1145/3514221.3526054
https://bsb20.github.io/bsberg_phd_csd_2022.pdf
https://doi.org/10.1145/3292040.3219666
https://doi.org/10.1145/3292040.3219666
https://www.sciencedirect.com/science/article/pii/S0166531621000638
https://www.sciencedirect.com/science/article/pii/S0166531621000638
https://doi.ieeecomputersociety.org/10.1109/ICDE.1989.47251
https://doi.ieeecomputersociety.org/10.1109/ICDE.1989.47251

W. Frank King, Bruce G. Lindsay, Raymond Lorie, James W. Mehl, Thomas G. Price,
Franco Putzolu, Patricia Griffiths Selinger, Mario Schkolnick, Donald R. Slutz, Irving L.
Traiger, Bradford W. Wade, and Robert A. Yost. A history and evaluation of system r. Com-
mun. ACM, 24(10):632–646, oct 1981. ISSN 0001-0782. doi: 10.1145/358769.358784.
URL https://doi.org/10.1145/358769.358784. 5.3

[38] Inc. ClickHouse. Clickhouse. URL https://github.dev/ClickHouse/
ClickHouse. 2.3.1, 2.3.2

[39] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM, 13
(6):377–387, jun 1970. ISSN 0001-0782. doi: 10.1145/362384.362685. URL https:
//doi.org/10.1145/362384.362685. 1

[40] Intel Corporation. Intel® performance counter monitor. URL https://github.com/
intel/pcm. 4

[41] Kalen Delaney and Craig Freeman. Microsoft SQL Server 2012 Internals. Microsoft Press,
2013. 2.3.2

[42] David DeWitt and Jim Gray. Parallel database systems: The future of high performance
database systems. Commun. ACM, 35(6):85–98, jun 1992. ISSN 0001-0782. doi: 10.1145/
129888.129894. URL https://doi.org/10.1145/129888.129894. 1.2.1

[43] G. Graefe. Volcano/spl minus/an extensible and parallel query evaluation system. IEEE
Transactions on Knowledge and Data Engineering, 6(1):120–135, 1994. doi: 10.1109/69.
273032. 1.1.1

[44] Goetz Graefe and Harumi Kuno. Modern b-tree techniques. In 2011 IEEE 27th Inter-
national Conference on Data Engineering, pages 1370–1373, 2011. doi: 10.1109/ICDE.
2011.5767956. 1

[45] Mor Harchol-Balter. Performance Modeling and Design of Computer Systems: Queueing
Theory in Action. Cambridge University Press, 2013. doi: 10.1017/CBO9781139226424.
2.2.1, 2.2.2, 2.2.3

[46] John L Hennessy and David A Patterson. Computer architecture: a quantitative approach.
Elsevier, 2011. 1.2.2

[47] Holistics. dbdiagram.io, 12 2022. URL https://dbdiagram.io/. 4.1

[48] JGraph. diagrams.net, draw.io, 12 2022. URL https://www.diagrams.net/. 1.1,
1.2, 2.1, 2.2, 2.3, 2.4, 3.3, 3.5

[49] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo, and Peter
Boncz. Everything you always wanted to know about compiled and vectorized queries but
were afraid to ask. Proc. VLDB Endow., 11(13):2209–2222, sep 2018. ISSN 2150-8097.
doi: 10.14778/3275366.3284966. URL https://doi.org/10.14778/3275366.
3284966. 1, 2.1, 5.3

[50] André Kohn, Viktor Leis, and Thomas Neumann. Adaptive execution of compiled queries.
In 2018 IEEE 34th International Conference on Data Engineering (ICDE), pages 197–208,
2018. doi: 10.1109/ICDE.2018.00027. 5.3

[51] Konstantinos Krikellas, Stratis Viglas, and Marcelo H. Cintra. Generating code for holistic

54

https://doi.org/10.1145/358769.358784
https://github.dev/ClickHouse/ClickHouse
https://github.dev/ClickHouse/ClickHouse
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
https://github.com/intel/pcm
https://github.com/intel/pcm
https://doi.org/10.1145/129888.129894
https://dbdiagram.io/
https://www.diagrams.net/
https://doi.org/10.14778/3275366.3284966
https://doi.org/10.14778/3275366.3284966

query evaluation. 2010 IEEE 26th International Conference on Data Engineering (ICDE
2010), pages 613–624, 2010. 1.1.2, 5.3

[52] Lukas Landgraf, Wolfgang Lehner, Florian Wolf, and Alexander Boehm. Memory effi-
cient scheduling of query pipeline execution. In 12th Conference on Innovative Data Sys-
tems Research, CIDR 2022, Chaminade, CA, USA, January 9-12, 2022. www.cidrdb.org,
2022. URL https://www.cidrdb.org/cidr2022/papers/p82-landgraf.
pdf. 5.1

[53] Harald Lang, Andreas Kipf, Linnea Passing, Peter Boncz, Thomas Neumann, and Alfons
Kemper. Make the most out of your simd investments: Counter control flow divergence
in compiled query pipelines. In Proceedings of the 14th International Workshop on Data
Management on New Hardware, DAMON ’18, New York, NY, USA, 2018. Association
for Computing Machinery. ISBN 9781450358538. doi: 10.1145/3211922.3211928. URL
https://doi.org/10.1145/3211922.3211928. 5.3

[54] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. Morsel-driven par-
allelism: A numa-aware query evaluation framework for the many-core age. In Pro-
ceedings of the 2014 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’14, page 743–754, New York, NY, USA, 2014. Association for Computing
Machinery. ISBN 9781450323765. doi: 10.1145/2588555.2610507. URL https:
//doi.org/10.1145/2588555.2610507. 1.2.1, 2.3.1, 3, 3.3, 5.1, 5.2

[55] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas
Neumann. How good are query optimizers, really? Proc. VLDB Endow., 9(3):204–215,
nov 2015. ISSN 2150-8097. doi: 10.14778/2850583.2850594. URL https://doi.
org/10.14778/2850583.2850594. 1.2.2

[56] Gang Liu, Leying Chen, and Shimin Chen. Zen+: a robust numa-aware oltp engine
optimized for non-volatile main memory. volume 32, pages 123–148, 2023. ISBN
0949-877X. doi: 10.1007/s00778-022-00737-1. URL https://doi.org/10.1007/
s00778-022-00737-1. 5.2

[57] LucaCanali. Notes and tools for measuring cpu-to-memory throughput in linux.
URL https://github.com/LucaCanali/Miscellaneous/blob/master/
Spark_Notes/Tools_Linux_Memory_Perf_Measure.md. 4

[58] Lin Ma, William Zhang, Jie Jiao, Wuwen Wang, Matthew Butrovich, Wan Lim, Prashanth
Menon, and Andrew Pavlo. Mb2: Decomposed behavior modeling for self-driving database
management systems. pages 1248–1261, 06 2021. doi: 10.1145/3448016.3457276. 1.2.2,
5.1

[59] Ryan Marcus and Olga Papaemmanouil. Plan-structured deep neural network models for
query performance prediction. Proc. VLDB Endow., 12(11):1733–1746, jul 2019. ISSN
2150-8097. doi: 10.14778/3342263.3342646. URL https://doi.org/10.14778/
3342263.3342646. 1.2.2, 5.1

[60] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh, and
Tim Kraska. Bao: Making learned query optimization practical. 2021. 1.2.2

[61] Prashanth Menon, Todd C. Mowry, and Andrew Pavlo. Relaxed operator fusion for in-

55

https://www.cidrdb.org/cidr2022/papers/p82-landgraf.pdf
https://www.cidrdb.org/cidr2022/papers/p82-landgraf.pdf
https://doi.org/10.1145/3211922.3211928
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1007/s00778-022-00737-1
https://doi.org/10.1007/s00778-022-00737-1
https://github.com/LucaCanali/Miscellaneous/blob/master/Spark_Notes/Tools_Linux_Memory_Perf_Measure.md
https://github.com/LucaCanali/Miscellaneous/blob/master/Spark_Notes/Tools_Linux_Memory_Perf_Measure.md
https://doi.org/10.14778/3342263.3342646
https://doi.org/10.14778/3342263.3342646

memory databases: Making compilation, vectorization, and prefetching work together at
last. Proceedings of the VLDB Endowment, 11:1–13, September 2017. URL https:
//db.cs.cmu.edu/papers/2017/p1-menon.pdf. 1, 1.1.1, 1.1.2, 1.3, 2.1, 5.3

[62] Prashanth Menon, Amadou Ngom, and Andrew Pavlo Lin Ma, Todd C. Mowry. Permutable
compiled queries: Dynamically adapting compiled queries without recompiling. Proc.
VLDB Endow., 14(2):101–113, 2020. URL https://db.cs.cmu.edu/papers/
2020/p101-menon.pdf. 1, 1.1.1, 1.1.2, 1.3, 2.1, 5.3

[63] Thomas Neumann. Efficiently compiling efficient query plans for modern hardware. Proc.
VLDB Endow., 4(9):539–550, jun 2011. ISSN 2150-8097. doi: 10.14778/2002938.
2002940. URL https://doi.org/10.14778/2002938.2002940. 1, 1.1.2, 2.1,
5.3

[64] Thomas Neumann. Evolution of a compiling query engine. Proc. VLDB Endow., 14(12):
3207–3210, oct 2021. ISSN 2150-8097. doi: 10.14778/3476311.3476410. URL https:
//doi.org/10.14778/3476311.3476410. 1.1.2, 5.3

[65] Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen, and Stephen Revilak. The Star Schema
Benchmark and Augmented Fact Table Indexing, page 237–252. Springer-Verlag, Berlin,
Heidelberg, 2009. ISBN 9783642104237. URL https://doi.org/10.1007/
978-3-642-10424-4_17. 1, 4.1

[66] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. Rethinking simd vector-
ization for in-memory databases. In Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’15, page 1493–1508, New York,
NY, USA, 2015. Association for Computing Machinery. ISBN 9781450327589. doi: 10.
1145/2723372.2747645. URL https://doi.org/10.1145/2723372.2747645.
1, 1.1.1, 5.3

[67] Iraklis Psaroudakis, Tobias Scheuer, Norman May, and Anastasia Ailamaki. Task schedul-
ing for highly concurrent analytical and transactional main memory workloads. 01 2013.
5.1

[68] Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelkader Sellami, and Anastasia Ail-
amaki. Scaling up concurrent main-memory column-store scans: Towards adaptive numa-
aware data and task placement. Proc. VLDB Endow., 8(12):1442–1453, aug 2015. ISSN
2150-8097. doi: 10.14778/2824032.2824043. URL https://doi.org/10.14778/
2824032.2824043. 1.2.1, 3, 1, 5.2

[69] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David Kalmuk, Vin-
cent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu, Guy M. Lohman, Tim
Malkemus, Rene Mueller, Ippokratis Pandis, Berni Schiefer, David Sharpe, Richard Si-
dle, Adam Storm, and Liping Zhang. Db2 with blu acceleration: So much more than
just a column store. Proc. VLDB Endow., 6(11):1080–1091, aug 2013. ISSN 2150-8097.
doi: 10.14778/2536222.2536233. URL https://doi.org/10.14778/2536222.
2536233. 5.3

[70] Linus Schrage. Letter to the editor—a proof of the optimality of the shortest remaining
processing time discipline. Operations Research, 16(3):687–690, 1968. doi: 10.1287/opre.

56

https://db.cs.cmu.edu/papers/2017/p1-menon.pdf
https://db.cs.cmu.edu/papers/2017/p1-menon.pdf
https://db.cs.cmu.edu/papers/2020/p101-menon.pdf
https://db.cs.cmu.edu/papers/2020/p101-menon.pdf
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/3476311.3476410
https://doi.org/10.14778/3476311.3476410
https://doi.org/10.1007/978-3-642-10424-4_17
https://doi.org/10.1007/978-3-642-10424-4_17
https://doi.org/10.1145/2723372.2747645
https://doi.org/10.14778/2824032.2824043
https://doi.org/10.14778/2824032.2824043
https://doi.org/10.14778/2536222.2536233
https://doi.org/10.14778/2536222.2536233

16.3.687. URL https://doi.org/10.1287/opre.16.3.687. 1.2.2, 2.2.3

[71] Stefan Schuh, Xiao Chen, and Jens Dittrich. An experimental comparison of thirteen rela-
tional equi-joins in main memory. In Proceedings of the 2016 International Conference on
Management of Data, SIGMOD ’16, page 1961–1976, New York, NY, USA, 2016. Associ-
ation for Computing Machinery. ISBN 9781450335317. doi: 10.1145/2882903.2882917.
URL https://doi.org/10.1145/2882903.2882917. 1, 1.2.1, 1.2.1, 2.1, 5.2

[72] Amir Shaikhha, Yannis Klonatos, and Christoph Koch. Building efficient query engines in
a high-level language. ACM Trans. Database Syst., 43(1), apr 2018. ISSN 0362-5915. doi:
10.1145/3183653. URL https://doi.org/10.1145/3183653. 1.1.2

[73] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. A study of the fundamental per-
formance characteristics of gpus and cpus for database analytics. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data, SIGMOD ’20,
page 1617–1632, New York, NY, USA, 2020. Association for Computing Machinery.
ISBN 9781450367356. doi: 10.1145/3318464.3380595. URL https://doi.org/
10.1145/3318464.3380595. 5.3

[74] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating System Concepts.
Wiley Publishing, 9th edition, 2012. ISBN 1118063333. 2.3.1

[75] Dimitrios Skarlatos and Kaiyang Zhao. private communication, May 2022. 4.5

[76] numa(3) perf Manual. SuSE Labs, 2007. 3.3.1, 4.3

[77] Benjamin Wagner, André Kohn, and Thomas Neumann. Self-tuning query scheduling for
analytical workloads. In Proceedings of the 2021 International Conference on Manage-
ment of Data, SIGMOD ’21, page 1879–1891, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450383431. doi: 10.1145/3448016.3457260. URL
https://doi.org/10.1145/3448016.3457260. 2.3.3, 5.1

[78] Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang, Michael Kamin-
sky, and David G. Andersen. Building a bw-tree takes more than just buzz words. In
Proceedings of the 2018 International Conference on Management of Data, SIGMOD
’18, page 473–488, New York, NY, USA, 2018. Association for Computing Machinery.
ISBN 9781450347037. doi: 10.1145/3183713.3196895. URL https://doi.org/
10.1145/3183713.3196895. 1

[79] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael Stonebraker.
Staring into the abyss: An evaluation of concurrency control with one thousand cores.
Proc. VLDB Endow., 8(3):209–220, nov 2014. ISSN 2150-8097. doi: 10.14778/2735508.
2735511. URL https://doi.org/10.14778/2735508.2735511. 1.2.1

[80] Marcin Zukowski, Niels Nes, and Peter Boncz. Dsm vs. nsm: Cpu performance tradeoffs in
block-oriented query processing. In Proceedings of the 4th International Workshop on Data
Management on New Hardware, DaMoN ’08, page 47–54, New York, NY, USA, 2008.
Association for Computing Machinery. ISBN 9781605581842. doi: 10.1145/1457150.
1457160. URL https://doi.org/10.1145/1457150.1457160. 1

57

https://doi.org/10.1287/opre.16.3.687
https://doi.org/10.1145/2882903.2882917
https://doi.org/10.1145/3183653
https://doi.org/10.1145/3318464.3380595
https://doi.org/10.1145/3318464.3380595
https://doi.org/10.1145/3448016.3457260
https://doi.org/10.1145/3183713.3196895
https://doi.org/10.1145/3183713.3196895
https://doi.org/10.14778/2735508.2735511
https://doi.org/10.1145/1457150.1457160

58

Appendix A: Moving Averages

We present here the moving maximum throughput averages for the spin benchmark for the ex-
periments conducted in Chapter 4.

59

7.1 NUMA-Aware Allocations with Hybrid Data Layout

Figure 7.1: The moving averages of completions per second with a 100s window for each of the
scheduling policies considered with NUMA-aware data allocation assignments and the use of a
PAX memory format in the spin benchmark.

The graphs in Figure 7.1 correspond to the maximum throughput experiments run in Sec-
tion 4.3. While the range of values on this experiment shifted, the stable regions still hold.

60

7.2 Increasing Block Sizes

Figure 7.2: The moving averages of completions per second with a 100s window for each of
the scheduling policies considered with 2MB hugepage-sized data blocks instead of default 4KB
pages in the spin benchmark.

The graphs in Figure 7.2 correspond to the maximum throughput experiments run in Sec-
tion 4.4.

61

7.3 Tackling Performance Metrics

Figure 7.3: The moving averages of completions per second with a 100s window for each of the
scheduling policies considered with additional performance mitigations in the spin benchmark.

The graphs in Figure 7.3 correspond to the maximum throughput experiments run in Sec-
tion 4.5.

62

7.4 Supporting NUMA-Aware Scheduling

Figure 7.4: The moving averages of completions per second with a 100s window for each of the
scheduling policies considered with NUMA-aware queueing in the spin benchmark.

The graphs in Figure 7.4 correspond to the maximum throughput experiments run in Sec-
tion 4.6.

63

	1 Introduction
	1.1 Analytical In-Memory Databases
	1.1.1 Vectorization
	1.1.2 Compilation

	1.2 Parallelism and Queueing
	1.2.1 Parallel Execution and Architecture Awareness
	1.2.2 Queueing for Databases

	1.3 Contributions

	2 Background
	2.1 The NoisePage Execution Engine: Vectorized and JIT-Compiled
	2.2 Queueing Theory
	2.2.1 First-Come First-Served
	2.2.2 Equitable Division
	2.2.3 Shortest Remaining Processing Time
	2.2.4 Comparison

	2.3 Policies and Parallelism in Database Scheduling
	2.3.1 First-Come First-Served
	2.3.2 Equitable Division
	2.3.3 Shortest Remaining Processing Time

	3 Methodology
	3.1 Query Parallelism and Scheduling
	3.2 Scheduling Policies
	3.2.1 Traditional Scheduling Approaches
	3.2.2 Inelastic-First Shortest Remaining Processing Time

	3.3 Architecture Aware Execution
	3.3.1 Data Layout and Representation
	3.3.2 Locality-Aware Scheduling

	4 Evaluation
	4.1 Characteristics of the Star Schema Benchmark
	4.2 Baseline
	4.3 Resolving Access Skew
	4.4 Increasing Block Sizes
	4.5 Performance Tuning
	4.6 NUMA-Aware Scheduling
	4.7 Summary

	5 Related Work
	5.1 Database Scheduling
	5.2 NUMA Awareness
	5.3 Compilation and Vectorization

	6 Future Work
	6.1 Scheduling with Diverse Workloads
	6.2 Scheduling and Vertical Scalability
	6.3 Scheduling and Horizontal Scalability
	6.4 Scheduling Beyond Execution

	7 Conclusion
	Bibliography
	Appendix A: Moving Averages
	7.1 NUMA-Aware Allocations with Hybrid Data Layout
	7.2 Increasing Block Sizes
	7.3 Tackling Performance Metrics
	7.4 Supporting NUMA-Aware Scheduling

