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Abstract

Textiles are familiar and pervasive materials, making them natural candidates for
ubiquitous sensing. Recent research efforts on textile-based sensors span a variety of ap-
plications. However, it is challenging to manufacture these deformable and stretchable
sensors at scale. On the other hand, industrial textile manufacturing is an established
process. Efforts such as Project Jacquard by Google and Levis turned woven fabrics
into interactive multi-touch surfaces using standard looms and processes. In contrast
to these touch-sensitive fabric surfaces, knitted fabrics can be manufactured into com-
plex objects (e.g. seam-free sweaters) at scale with minimal post-processing. Moreover,
they are more stretchable and breathable than woven fabrics. In this thesis, I convert
these knitted fabrics into sensors using an off-the-shelf resistive yarn and industrial
knitting machines to fabricate sensing textiles. These sensors are scalable, stretchable,
parameterizable, and customizable. They measure electrical properties of the conduc-
tive areas to sense contact, pressure, strain, proximity, and even its own orientations. I
prototyped a multi-layer matrix-style resistive pressure sensor with robust ON/OFF be-
haviors and applied them to be robotic skins. Though this sensor could be instrumented
on humans as well, humans are in much more diverse contexts doing different activi-
ties, so the needs for sensors vary often. Thus for humans, I prototyped a gaiter-scarf
inspired multi-purpose reconfigurable accessory using electrical impedance tomography
for on-body location detection, gesture recognition, and passive monitoring. Fabrica-
tion techniques proposed in this work can be further generalized beyond sensing with
functional fibres to augment traditional textiles with new purposes towards a future of
pervasive smart textiles.
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1 Introduction

When Mark Weiser envisioned the computer for the 21st Century, he said that ”The most pro-
found technologies are those that disappear. They weave themselves into the fabric of every-
day life until they are indistinguishable from it” [Weiser(1999)]. Let’s take the word of “fab-
ric” literally. Textiles are pervasive in everyday life, from clothing to object coverings (e.g.,
sofa covers). Metallic threads have been used for decorating garments for centuries. As early
as 1883, an illuminated hair accessory was part of a ballet costume [bal(1842)]. Researchers
started prototyping electronic textiles in the 1990s [Post and Orth(1997), Gopalsamy et al.(1999)].
Thanks to recent research efforts, smart textile can now be augmented with many capabili-
ties including sensing, displaying [Devendorf et al.(2016), Cherenack et al.(2010)], mechani-
cally actuating [Albaugh et al.(2021)], self-cleaning [Bell et al.(2021)], wireless communicat-
ing [Jiang et al.(2019)], and energy harvesting capabilities [Jost et al.(2014)]. When inte-
grating functional materials, textiles become natural candidates for technologies that “disap-
pear”. Early works on E-textiles prototyping methods, such as sewing [Parzer et al.(2018)],
embroidery [Aigner et al.(2020)], and ironing [Klamka et al.(2020)], demands a lot of time
and efforts. But in the very-well established textile industries, there are scalable manufacture
processes. If we could just use the same processes, but make the pervasive textiles “smart”
by integrating functional materials and components, that would augment all the existing
textiles into smart textiles.

Project Jacquard [Poupyrev et al.(2016)] from Google was one of the first to do so. They
invented a solderable yarn that looks, feels, and works the same as normal yarn. Using
standard looms and processes, woven fabrics are transformed into interactive multi-touch
surfaces. Their Jeans jacket collaboration with Levis showed great promises for seamless
integration. In contrast to woven fabrics, constructed with many horizontal and vertical
yarn interleaved, knitted fabrics are constructed with continuous yarn forming stacked loops.
The differences in structures makes knitted fabric a lot more stretchable and breathable.
Furthermore, thanks to recent research efforts [Narayanan et al.(2019)], industrial knitting
machines can be used as a 3D printer for soft goods. Then, by integrating functional materials
and components, industrial knitting machines can 3D print smart textiles at scale.

In this thesis, I present scalable and deformable Machine-knitted Sensors. All
textile sensors are manufactured using an industrial knitting machine and off-the-shelf yarns.
Using these textiles sensors, I prototyped novel sensing systems for humans (uKnit) and
robots (robotSweater). In making these sensing systems, I found similarities and differences
between designing textile-based sensors for humans and robots. Along with system limita-
tions, they are useful considerations that pave the way for future smart textiles research.

1.1 Contributions and Organization

The thesis document is organized as follows. I first introduce the related work on sensing
with smart textiles and machine knitted sensors in Chapter 2. I then describe the main
contributions:
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• Three different machine-knitted sensor layouts (Chapter 3)

• Two different connectors for machine-knitted sensors (Chapter 4)

• uKnit : A sensing system prototype for humans (Chapter 5)

• robotSweater: A sensing system prototype for robots (Chapter 6)

Next, I discuss considerations and limitations when designing and fabricating machine-knitted
sensing systems, along with future work directions in Chapter 7.
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2 Related

In this chapter, we will discuss prior works on machine-knitted sensors, reconfigurable user
interface (like uKnit), electrical impedance tomography (sensing technique used in uKnit),
and tactile skin (like robotSweater).

2.1 Machine-knitted Sensors

Textile technologies opened up opportunities for wearable devices, soft robotics, and au-
tonomous garments [Sanchez et al.(2021)]. Many sensing techniques can be incorporated
into textiles [Wu et al.(2020b), Jin et al.(2018), Sugiura et al.(2012)]. Capacitive sensing
on e-textiles allows for gesture recognition[Poupyrev et al.(2016), Wu et al.(2020a)], prox-
imity sensing [Olwal et al.(2018)], nutrition monitoring [Cheng et al.(2013)], contact-based
object recognition [Wu et al.(2020c)], motion tracking [Atalay et al.(2017)], etc. Using ca-
pacitive sensing and standard weaving looms, Project Jacquard realized inexpensive and
scalable interactive multi-touch textile that appear and feel the same as conventional wo-
ven cloths [Poupyrev et al.(2016)]. Resistive textile sensors are used to sense deforma-
tions [Aigner et al.(2020)]. When combining various sensing techniques, smart textile has
more potentials. Project Tasca combines inductive sensing, capacitive sensing, resistive sens-
ing, and NFC to create a smart pocket that can take user inputs and recognize objects[Wu et al.(2021)].

Recent efforts in computational design tools [Jones et al.(2021), Narayanan et al.(2019),
Kaspar et al.(2021)] and scheduling algorithms [Narayanan et al.(2018)] allow researchers to
easily program industrial knitting machines. Knitted fabric is intrinsically soft, flexible,
stretchable, conformal and comfortable. Knitting with functional yarn can augment textiles
with sensing [Ou et al.(2019)] and actuating [Kilic Afsar et al.(2021)] capabilities while pre-
serving the above qualities. Conductive yarn and the loop structures of knitted fabric enable
strain [Atalay et al.(2014)], pressure [Zlokapa et al.(2022)], proximity [Wijesiriwardana et al.(2005)]
sensing supported by resistive [Luo et al.(2021b)], capacitive [Ou et al.(2019)], inductive [Kiener et al.(2022)]
and impedance [Alirezaei et al.(2009)] sensing. Applications span health monitoring [Fan et al.(2020)],
user interfaces [Luo et al.(2021b)], tactile sensing [Yoshikai et al.(2009), Luo et al.(2021a)],
choreomusical carpet [Wicaksono et al.(2022)], etc.

Two common approaches for machine-knitted user interfaces are resistive and capaci-
tive sensing. KnitUI [Luo et al.(2021b)] is a portable and customizable user inferface using
resistive pressure-sensitive sensing units. Short-rows, a knitting technique used to induce
curvatures, is used to increase the sensitivity. Read-outs are directly knitted to minimize
post processing. Vallett et al. [Vallett et al.(2020)] use Bode analysis to measure changes
in signals caused by capacitive touches to improve touch location representation on knitted
interface. The two sensing approaches can be combined for multimodal interaction like the
knitted music keyboard [Wicaksono and Paradiso(2020)].

Matrix style textile-based tactile sensors commonly have a three-layer structure: a piezore-
sistive layer sandwiched between two layer with orthogonal conductive traces for readouts.
Luo et. al [Luo et al.(2021a)] proposed a novel coaxial piezoresistive fibre to achieve a two-
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layer design. Use the inlay knitting technique, functional fibre is integrated into garments
to collect spatially dense tactile learning information with AI-based workflow. Electrical
impedance tomography (EIT) can further reduce the number of wires and layers by placing
electrodes on the borders of sensing area [Park et al.(2021)], but increasing resolution spatial
and temporal resolution remains an opened research problem. Alirezaei et al. used EIT on
knitted fabric that has conductive paint sprayed as a post process [Alirezaei et al.(2009)].

2.2 Reconfigurable Interfaces

Many everyday objects are reconfigurable and inspire reconfigurable user interfaces [Kim et al.(2018)].
Many shape-configurable interfaces are modular and involves disassembling: game con-
trollers [Nintendo(2021)], screens [Goguey et al.(2019)], haptic devices [Whitmire et al.(2018)],
smartwatches [Khurana et al.(2019)], soft wearable prototyping kits [Jones(2019), Lambrichts et al.(2020)],
etc. Researchers developed techniques to make on-body electronic fabrication for customiz-
able and stretchable wearable interactive interfaces[Markvicka et al.(2019)]. SensorNets is a
soft multimodal electronic skin composed of distributed sensor networks [Wicaksono et al.(2020)].
It can sense the environments in ways our sensor cannot and it can be easily customized to
adapt to curvatures, but it requires fabricating sensors for different applications. Our work
achieves shape reconfigurations by deformation, an intrinsic property of textiles. Somewhat
similar to uKnit, the smart handkerchief [han(2021)] is a deformable user interface (DUI)
that can recognize its physical form and allow simple gestural interactions. It is designed to
lay flat, folded along a certain axis and/or held in hands to sense touch and strain changes.

Reconfigurable wearable device should be contextually aware of the physical configuration
information [Wicaksono et al.(2021)], and body placement locations [Strachan et al.(2007)].
Prior work on on-body localization used IMU sensors to recognize the position without a
known priori[Kostikis et al.(2020), Sztyler and Stuckenschmidt(2016)]. For a reconfigurable
wearable, the placement decides the form. From the localization perspective, the form can
predict the placement.

2.3 Electrical Impedance Tomography

Electrical impedance tomography (EIT), a non-invasive imaging technique to infer internal
conductivity characteristics, was first proposed for medical imaging [Henderson and Webster(1978)]
and geophysical imaging [Pelton et al.(1978)]. In recent years, EIT gained traction in the
human-computer interaction(HCI) community and becoming more accessible [Zhu et al.(2021)]
for hand gesture recognition [Zhang and Harrison(2015), Zhang et al.(2016)], paper-based in-
terfaces [Zhang and Harrison(2018)], touch localization on irregular objects [Zhang et al.(2017),
Alirezaei et al.(2007)] etc. In soft robotics research, EIT is used to create artificial skin that
senses deformation and tactile distributions [Kato et al.(2007), Nagakubo et al.(2007)]. Mul-
tiSoft uses a multi-layer soft and stretchable sensor with silicon substrate for real-time contact
localization and deformation classifications [Yoon et al.(2018)]. MultiSoft is a customizable
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soft sensing approach, but different sensors still need to be fabricated for different applica-
tions.

2.4 Tactile Skin

Among many functions of robot skin [Shah et al.(2019), Heng et al.(2021), Kawai et al.(2022)]
such as shape changing, self-healing, enabling locomotion, tunable stiffness, etc., tactile
sensing allows robots to learn and react to the physical environment. More specifically,
pressure sensing methods include using functional (piezoresistive, piezocapacitive, triboelec-
tric, iontronic, magnetic, biomimetic, or fiber optic) material based and vision based ap-
proaches [Pang et al.(2021)]. One challenge in adopting these innovative technologies is the
lack of scalable manufacturing methods that generalizes to different robot shapes [Wang et al.(2018)].
Rigid tactile sensors can cover large areas using modular approaches [Cheng et al.(2019)].
Flexible tactile sensors can be bent to fit cylindrical surfaces [Liu et al.(2020)], but for
more complex and uneven shapes, stretchable tactile skin is needed [Alirezaei et al.(2009),
Luo et al.(2021a)]. Prior work on large-area flexible e-skin commonly use printing technique[Senthil Kumar et al.(2019)]
with flexible printed circuit and nanomaterial synthesis [Dahiya et al.(2019)]. Manufactur-
ing techniques from the textiles industry can be used to make stretchable tactile skin at
scale. Alirezaei et al. used highly conductive knitted fabric to make a strain-sensitive
stretch-insensitive tactile sensor by measuring the contact impedance between the knitted
fabric and another layer of highly resistive yarn traces [Alirezaei et al.(2009)]. Day et. al
[Day et al.(2018)] proposed a scalable fabric tactile resistive array with a 3-layer design of
sandwiching resistive fabric between non-conductive fabrics with ironed-on conductive read-
outs.
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3 Knitted Patterns

Figure 1: Knitted artifacts using the three different layout designs. Left-to-right: a
patch layout sensor, a multi-layer matrix layout sensor, and a grid layout sensor.

Figure 2: A brief introduction on machine knitting. llustrations taken and modified
with permission from Albaugh et al [Albaugh et al.(2019)]. The front and the back
beds of the machine are aligned to each other. rack can be used to offset the alignment.
Yarn is brought to needles by yarn carriers between the two beds to needles. Needles
can manipulate and form loops using operations like tuck, knit, and xfer.

This chapter explains the fabrication method of three different knitting structures. Read-
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ers interested in sensing principals, evaluations and applications can skip to Chapter 5.
We include a brief introduction on machine knitting using knitout [McCann(2017)] here

in Figure 2, and readers can refer to [McCann et al.(2016)] for more details. On a v-bed
knitting machine, there are two beds : front and back beds. The alignment between the two
beds can be offset using the rack operation. Yarn is brought to needles by yarn carriers
between the two beds. Each bed consists a row of hook-shaped needles. Each needle can
form and manipulate yarn loops, using knit and tuck operations. Each needle can also pass
loops from one bed to another, using xfer and split operations. Using this small set of
primitive operations, one can program the knitting machine to knit complex and interesting
patterns and shapes. We do not do 3D shaping in this work, and instead, we focus on different
ways to program 2D fabric: sensor sheets. Note that because knitted fabric is flexible and
stretchable, 2D fabric can be stretched and wrapped to fit 3D shapes like tubes, shapes found
in humans and robots body parts.

Definition 1. Plating. A knitting technique used to run two yarn carriers over the same
stitch.

Definition 2. Intarsia. A knitting technique used to incorporate areas of color.

Definition 3. Entrelac. A knitting technique used to create diagonal basketweave pattern.

The machine knitted sensor designs are largely motivated by applications and sensing
principles (Chapter 5, 6). In this work, we present three different layout designs (Figure 1):
a patch layout, a multi-layer matrix layout, and a grid layout. All three designs have an overall
rib structure for good stretchability. All the parameterizable patterns are generated in the
knitout language [McCann(2017)] by JavaScript programs and can be visualized using a web-
based tool1 [?]. Then the knitout instructions are translated to machine-specific instructions

1https://textiles-lab.github.io/knitout-live-visualizer/

Figure 3: Overview of the three knitted patterns.
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and executed on an industrial v-bed knitting machine (Shima Seiki SWG091N2, 15 gauge)
with conductive yarn, Baekert BK 90361292, a Bekinox-polyester blend in 50/2Nm with a
specified resistance of 20 Ω/cm..

Overview 3 for the sections in this chapter:

• Patch (Section 3.1) layout for a large sensing area where spatial accuracy is not crucial
and minimal wire connections

• Multi-layer matrix layout (Section 3.2): for sensing areas where spatial accuracy is
crucial and minimal wire connections

• Grid Layout (Section 3.3): or sensing areas where spatial & reading accuracies are
crucial

3.1 Patch Layout

wire⇔sensor board connections

electrode ⇔ fabric connections
wire routing

pins for patch 1

pins for patch 2

pins for patch 3

pins for patch 4

Figure 4: Layout of the connections between the a sensing board and the fabric elec-
trodes.

For some applications and sensing principles, a small number of sensing units are needed.
This layout is also useful for prototyping to experiment with different stitch types and set-
tings. In a high level, this layout simply places disjoint sensing patches in a row along with
non-conductive margins.

2Though this is an old catalog number, with BK 9028098 being the substantially similar current replace-
ment.
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Figure 5: A small (0.2x) version of the knitting program for the 4-patch design, visu-
alized with [Yu and McCann(2020)]. Each color represents yarn from a single carrier,
showing the intarsia technique used to knit the conductive-yarn patches.

Figure 6: Left: The resistive yarn (grey),
non-conductive acrylic yarn (green), and
decorative rayon yarn (blue) used in
producing the scarf. Right: The be-
ginning of the machine knitting pro-
gram once converted for use in Knit-
Paint [Shima Seiki(2011)].

Figure 7: The low-level knit
structure of the patch pat-
tern. Conductive yarn patches
(a) are connected to non-
conductive patches (c) by
columns of plated stitches (b).
Plating is also used in the bor-
der (d) for decorative effects.
The entire scarf is 2x2 rib for
stretchiness.

The overall knitting program and the yarns used are shown in Figure 6. For non-
conductive yarn we use Tamm Petit 2/30 in Lime (T4285), a basic acrylic yarn. For decora-
tion, we use a thin, blue rayon yarn from Winning.

The scarf is knit in courses along its long axis, using the intarsia technique – assigning
one carrier to each block of same-type yarn, for a total of nine carriers, five threaded with
insulating yarn, four with conductive – to fabricate the electrode patches. Plating is used for
decoration in the border and to connect the conductive and non-conductive patches together
at course-wise edges. The overall scarf structure is 2×2 rib – an alternating pattern of two
front- and two back-bed knit wales – for stretchability while keeping the loops tight enough to
reduce hysteresis in sensing. These structures and techniques are shown up-close in Figure 7.
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The knitting program uses two different stitch size settings3 for the majority of the pat-
tern: 35 (with leading 25) for non-conductive knits and 25 (with leading 20) for conductive
knits. The stitch settings are different because the yarn diameters are different, leading to
different overall loop sizes with the same stitch size setting.

3.2 Multi-layer Matrix Layout

Multi-layer matrix style read-outs on a piezoresistive sheet is a popular approach [Liu et al.(2020),
Wicaksono et al.(2022)]. We take a similar multi-layer matrix style layout, but instead of
sandwiching a piezoresistive sheet in between two orthogonal layers of conductive stripes, we
sandwich a insulating sheet in between two orthogonal layers of piezoresistive stripes. Such
design ensures a robust ON/OFF behavior.

There are three machine-knitted layers in our sensor design (Figure 8). The top and
the bottom resistive stripes layers have the same knitting structures, and a middle layer of
insulating mesh is sandwiched in between. Eyelets are placed along the borders of each layer
for alignment and read-out purposes.

3Numbers in machine-specific units that correspond to loop sizing on the machine, with large numbers
resulting in larger loops.

machine-knitted 
horizontal 

resistive stripes

machine-knitted  
insulating 

mesh

machine-knitted  
vertical 

resistive stripes

eyelets for alignment

eyelets for read-outs

Nylon Stretch Yarn
Bekinox-polyester Resistive Yarn
Acrylic Yarn
Rayon Yarn

Figure 8: An exploded view of the three-layer design: a porous insulating mesh layer
is sandwiched between two orthogonal layers of resistive stripes. Eyelets are placed
along the borders for alignment and read-outs purposes.
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Resistive Stripes Layers. We chose a 1x1 rib structure for high extension potential, good
elastic recovery, and minimal strain-induced hysteresis [?]. The insulating stripes separate
neighboring rows/columns of resistive stripes. Insulating stripes are knitted with acrylic
yarn (Tamm Petit 2/30). Resistive stripes are co-knitted with nylon stretch yarn (Maxi
Lock Stretch Textured Nylon) and the conductive yarn. The high-elastic nylon stretch yarn
lowers the hysteresis effect [Bozali et al.(2021)]. The resistive yarn is plated outside of the
nylon yarn (top left in Figure 8) to maximize conductive contacts when pressure applied
and sensitivity ranges. The resistive stripes have a smaller stitch setting than the insulating
stripes do due to the different yarn diameters.

Insulating Mesh Layer. We used a lace structure(bottom left in Figure 8) to create the
insulating mesh, and a stockinette stitch (denser than the lace) for borders so that the eyelets
are surrounded by dense stitches to avoid ambiguities. A rayon yarn (Winning) is used to
knit the middle layer. The diameter of the yarn and the size of the mesh holes affect the
sensing performance. From our early experiments, sensors with thinner yarn and smaller
holes perform better on flat surfaces, and sensors with thicker yarn and bigger holds perform
better on curved curved surfaces.

Eyelets. Eyelets (right in Figure 8), small holes in fabrics, are machine knitted by trans-
ferring loops from one needle to the neighboring one. Aligning eyelets on different fabric
layers helps with consistent layer alignment. Eyelets on conductive stripes allow repeatable
connection points for read-outs.

3.3 Grid Layout

Many disjoint sensing units on a single layer of fabric can be useful in designing machine
knitted sensors. Drawbacks of using the resistive matrix are the ghosting and cross-talking
effects [Shu et al.(2014)]. To knit a grid using the conventional intarsia technique (used
in 3.1) requires one carrier per disjoint area. With a 10-carrier machine, one can knit at max
4 grids per row like shown in Figure 6: 4 carriers threaded with conductive yarn and 5 carriers
thread with insulating yarn. This limitation further constraints the use of other techniques
like plating as it requires additional carriers. Learning from entrelac this algorithm allows
making M × N disjoint grids on a V-bed knitting machine using only 2 carriers. It can be
further generalized to make non-uniform disjoint shapes.

In Figure 9, we illustrate a small example of a 3×2 grid. On the top left, it is the knitted
artifact using the algorithm: teal areas are the non-conductive margins, and grey areas are the
conductive grids. The ribbed stretchable direction is along the horizontal axis. The algorithm
splits the design into five vertical chunks (bottom left), and the order of operations start form
left to right. For a M×N grid, there are be 2M+1 chunks. As indicated by the dotted order
of operations line, Within the chunk, the other of operations are scheduled vertically; among
the chunks, the other of operations alternate between top-to-bottom and bottom-to-top. In
the middle, it is a screenshot of the knitting program visualized using the web-based knitout
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Figure 9: Top Left: a 3 × 2 conductive grid knitted using the algorithm; Bottom
Left: order of operations w.r.t. the knitted output; Middle: screenshots from the
knitout visualizer [Yu and McCann(2020)]; Right: close-up views of the visualization
explaining the algorithm. The green, blue, yellow, grey and pink shaded areas in the
bottom left and middle figures are final patterns corresponding to the instructions.
The green, blue, yellow, grey, and pink solid lines in the bottom left and right figures
are borders in final patterns corresponding to the instructions.

visualizer4 [Yu and McCann(2020)]. Going from bottom to top in the close-up views of the
visualization:

• align knit stitches; keep tuck stitches for connections: After each row of stitches,

4https://textiles-lab.github.io/knitout-live-visualizer/
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the entire row of the knit stitches is shifted (first transfer to the other bed and then
transfer back) by 1 needle. The direction of the offset depends on the current chunk; The
tuck stitch at the end, is kept in place and remain on the needle for later connections.
In this area, the tucks along the green line are later connected to the knits along the
blue line.

• border bind-offs and cast-ons: At the beginning of each chunk, cast-ons are used
to start. The number of stitches to cast on is the width of the chunk. Bind-offs are
used to end the chunk;

• conductive area: The conductive yarn is brought in/out at the start/end of each
conductive area so that the conductive areas are disjoint without any post process-
ing. Because the conductive yarn is weak, additional non-conductive tucks are used to
alleviate the strain on conductive yarn; and

• customizable rib structure: the customizable rib structure is preserved throughout
the process.
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4 Connectors

One of the challenges in working with any soft electronics project is making hard-soft con-
nections [Stanley et al.(2021)]. In this work, we present conductive-glued connectors and
buttoned connectors. In this chapter, we will first describe the two different connectors and
then compare the then.

4.1 Conductive-glued Connectors

Figure 10: Attaching a wire to our sensor. Left-to-right: a washer from a ring terminal,
wrapped with enameled wire, soldered, and conductive-epoxied to the fabric.

For the conductive-glued connectors , we settled on the following strategy, Figure 10:

• Electrode ↔ Wire connections : We first solder a thin enameled wires (Remington
PN155 28AWG) to conductive washers harvested from ring terminals (Wirefy Heat
Shrink Ring Terminals #6), Figure 10.

• Fabric ↔ Electrode connections : We then glue these electrodes to the edges of the
conductive fabric patches with conductive epoxy (MG Chemicals 8331D) for a strong
and consistent connection. We placed eight electrodes on each resistive patch, four on
the corners and four in the midpoints of the edges.5

• Wire Routing : We then route the thin enameled wires from the electrodes to the
EIT sensing board connectors by hand-stitching in serpentine traces.

• Wire ↔ Sensing Board connections : Finally, to minimize the noise introduced by
changes in capacitance in the wires between the sensing board and the scarf, we used
short connection wires, held in place with silicone(GE Supreme Silicone) for insulation
and strain relief.

In addition, we used silicone to glue sewable hidden magnets onto the prototype to allow
the scarf to connect to itself mechanically in various configurations when worn.

4.2 Buttoned Connectors

Snap fasteners, commonly used to fasten cloths, are good candidates for e-textile connec-
tors [wir(2011)]. We stick the snap fastener cap through the read-out hole and the ring

5Note that conventional wisdom for EIT suggests avoiding corners [Gray and Lutz(1990)], still our proto-
type seems to work well in its current configuration regardless.

22



ring 
terminal

silicone 
wire

snap 
button

male 
pin

Figure 11: Left: ring terminal, male pin, snap buttons, and silicone wires are used to
connect the fabric to the sensing board; Right: an assembled connection.

terminal, and then connect to the socket/stud. This way, robust and stable contacts between
the conductive fabric and ring terminals are established.

4.3 Comparisons

The two designs have their own characteristics. The glued connectors use small rigid compo-
nents. The solid core enameled wire has minimal AC noise as it remains mostly stationary.
And the soldered and glued connections allow consistent contact impedance even when the
sensor is moved a lot. The buttoned connectors, on the other hand has strong wire connec-
tions. Stranded silicone wire are flexible. And the buttons allow easy assembly. The contact
impedance is consistent when there is little movements.

Their differences make them suitable for different applications. The glued connector
should be used when textile shape changes frequently and is good for working with AC
signals. The buttoned connector should be used when textile shape changes infrequently and
is good for working with DC signals for purely resistive sensing.
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5 Machine Knitted Sensors for Humans: uKnit

Our clothes are soft, comfortable, and familiar to us. Thus, textile-based soft wearables
also feel natural, seamless, and are widely popular (e.g., [Poupyrev et al.(2016)]). Textile-
based wearable devices can sense gestures, postures, and health outcomes, while remaining
soft and comfortable. Their familiarity and seamlessness affords continuous, always-on in-
teractions and, over the years, researchers have proposed many different form factors (e.g.,
[Markvicka et al.(2019), Wu et al.(2020b), Jin et al.(2018), Kim et al.(2018), Lambrichts et al.(2020)]).
One challenge that still remains is that most soft wearables are rigid in their form-factor
and utility. A glove (e.g., [Whitmire et al.(2017)]) can only be effectively used when worn on
hands. Similarly, a smart sock has limited utility when the user wears shoes. Given the wear-
ables’ potential, there is a need for soft wearables that can deform and adapt to the user’s
context and requirements. A user should be able to customize their wearables and reconfigure
them to their exact use case. The idea of customizable wearables is not new. Jarusariboonchai
and Häkkilä [Jarusriboonchai and Häkkilä(2019)] studied the space of commercial wearables
that afford some form of customizability. Similarly, Seyed et al. [Seyed et al.(2016)] and
Khurana et el. [Khurana et al.(2019)] have explored the reconfigurability of smartwatches.
However, a reconfigurable wearable that is soft, comfortable, and conforms to the user’s body
can be significantly more customizable than a watch and can offer a wide range of capabilities.

Figure 12: uKnit is a scarf-like reconfigurable wearable which can recognize its current
body location placement and perform a variety of gesture recognition and sensing tasks.

We draw inspiration from reconfigurable accessories – gaiter scarves. Gaiter scarves are
multi-functional tubular scarves that can be wrapped, folded, and scrunched to put on dif-
ferent places of human bodies. We present uKnit, a knitted scarf that is a universal and
reconfigurable soft sensor/input device. uKnit is able to duplicate many of the interactions
enabled by textile interfaces with a single reconfigurable knitted sensor that is location-aware
and adapts to the configurations (Figure 12). It recognizes several touch and deformation
gestures, body postures, and physiological signals such as breathing patterns. The sensor
is machine knitted, and thus can be manufactured at scale. This knitted fabric is also
lightweight, stretchable, and breathable and thus is comfortable to wear for a long time.

While prior work has demonstrated a rich set of soft wearable capabilities, each capability
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is specific to a device designed to be worn at a single location, so a user who needs a variety
of capabilities throughout the day will need to carry many devices. In contrast, we explore
the possibility of one-soft-wearable-for-all with machine knitting and electrical impedance
tomography. Our user study with 10 participants showed promise, detecting its location
(among 5 locations) with 88.0% and 78.2% accuracy for a per-user model and universal model
respectively, and identifying gestures (among 7 gestures) with 80.4% and 75.4% accuracy for
a per-user model and universal model, respectively. The main contribution of this work are:

• prototyping the first reconfigurable soft wearable sensor;

• describing how to fabricate this reconfigurable sensor from off-the-shelf yarn using ma-
chine knitting;

• demonstrating that electrical impedance tomography works with anisotropic knitted
resistive fabric; and,

• machine learning models that show the feasibility and accuracy of (a) identifying differ-
ent body placements, (b) gesture classification, (c) and passive monitoring with uKnit.

5.1 User Story and Design Requirements

We present an example user story here to convey how a reconfigurable soft wearable can be
multi-functional throughout a day. This example also highlights the design and technical
requirements for the wearable. Kate wakes up on a winter morning with the uKnit wrapped
around her waist, while she was sleeping, uKnit monitored her sleep quality by tracking her
movement and respiration rate. She gets out of the bed and stretches the wearable out to
start her coffee machine remotely. She relies on a deformation gesture here because simpler
touch gestures will be harder to discern as she wears uKnit to bed at night. Afterward,
she goes for a run and wears uKnit as a headband. While running, she changes songs on
her wireless earphones using directional swipes. As Kate prepares her breakfast, she puts
uKnit on her elbow so that when her hands get dirty, she can press her elbow against her
torso or head to scroll the recipe on her smart home hub. Then on her way to work, she
wears it as a scarf that not only keeps her warm but also functions as a hands-free music
player by tilting her head. After she gets to work, she puts it on her back like a shawl for
posture detection. After work, she goes to the gym, she puts uKnit on target body parts to
track muscle activation, and logs her exercise. Kate can also put uKnit around her waist to
monitor the respiratory rate while exercising. At the end of the day, she puts it back on her
waist before she goes to bed. If Kate has one device for each application, she would need
several distinct devices, but instead, she can have one device for all the applications.

To enable this vision, uKnit has following design requirements:

1. maximize the resemblance to an ordinary scarf so that the wearable remains
familiar and affords reconfigurability;
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2. ensure the wearable is optimally-sized, such that it is large enough to be worn
comfortably around the waist, but not become bulky after multiple wraps on smaller
body parts, e.g., wrist;

3. minimize the number and sizes of hard components so that the device remains
flexible and easily reconfigurable;

4. supports a wide range of sensing capabilities to enable different applications in
different configurations.

To satisfy these requirements, we chose machine knitting as the fabrication technique.
Many scarves are knitted, and thus meeting (1). Knitted fabrics are stretchable, and thus
meeting (2). Furthermore, knitted fabrics are breathable, and thus makes the device com-
fortable while performing different activities over a long time. To meet (3) and (4), we chose
electrical impedance tomography as the sensing technique to minimize the number of wires
while enabling a large interaction area with several sensing capabilities.

USB Serial

160 channels

ML 
models

Location 
Detection

Gesture 
Detection

Machine Knitted Sensor

EIT 
Sensing 
Board

Computer

Figure 13: The uKnit implementation includes a machine knitted sensor using resistive
yarn, sensed via electrodes attached to the borders of the resistive patches using EIT,
and machine learning models running on a laptop which interpret the EIT data to
detect the sensor location and recognize gestures.

5.2 Data Acquisition

Our prototype reconfigurable sensing scarf, Figure 13, consists of a machine-knitted struc-
ture(Section 3.1) connected to a EIT-based data acquisition circuit. In this section we provide
more detail on the knit structure, the connection methodology, and the data acquisition cir-
cuit.
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We use an existing EIT sensing board design originally developed by Zhang et al. for
interactive paper interfaces [Zhang et al.(2017)]. This sensing board uses a Voltage Con-
trolled Current Source (VCCS) and Direct Digital Synthesis (DDS) IC which produces 200
kHz sinusoidal waves. These signals are injected to VCCS to produce a constant AC current
that can drive up to 6 Vpp while outputting 3.3V AVDD with 1.65V bias between a pair
of electrodes selected by two multiplexers. Then it measures the voltage differences between
another pair of electrodes selected by another two multiplexers. We set up the sensing board
to use a four-pole EIT measurement scheme (Figure 14), injecting current into each pair of
neighboring electrodes (8 per patch) and measuring the impedance to all non-adjacent pairs
(5 per patch), for a total of 160 measurements (4 patches × 8 sources × 5 measurements) per
frame. We configured the device to wait 80 microseconds for each reading to stabilize and
to use 500 samples for its root-mean-square measurements; resulting in a 16Hz measurement
frame rate. The board sends these measurements via serial-over-USB to a host computer for
further analysis.

5.3 Sensing

Impedance, Z, is a complex number which relates the current in a circuit to the applied AC
voltage at a given frequency, ω and phase ϕ:

|V |ej(ωt+ϕV ) = Z|I|ej(ωt+ϕI) (1)

where j =
√
−1 denotes the complex unit and V and I are voltage and current phasors,

respectively. The inductance of a passive circuit with resistance R, capacitance C, and
inductance L is the sum of the resistance, capacitive reactance, and inductive reactance:

Z = R +
1

jωC
+ jωL (2)
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Figure 14: Our sensor uses the four-pole EIT sensing scheme. The EIT sensor board
injects alternating current into every adjacent pair of electrodes and measures the
voltage differences on the five other pairs of adjacent electrodes in the patch; this
results in 160 pair-pair impedance measurements.
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Our system works by measuring changes in impedance; we conjecture, Figure 15, that
these changes are primarily due to changing resistance in yarn-yarn contacts [Zhang and Tao(2012)],
which have lower resistance when force is applied.

However, knit fabric is not a simple, uniform, resistive sheet. Rather, it is an anisotropic
resistor network, Figure 16, having reasonably conductive paths along yarns in the course
direction and much higher resistance paths via yarn-yarn contacts in the wale direction.
Furthermore, the hysteresis effect in resistance caused by friction and structural changes
in the knitted fabric [Shyr et al.(2011)] makes it difficult to study the absolute impedance
values. And, finally, preliminary observations with an oscilloscope and signal generator do

Figure 15: Our conjecture as to why different gestures change impedance. From left-to-
right: touches compress stitch-stitch contacts, lowering contact impedance for a few
stitches; in-plane stretching lowers contact impedance and also drags yarn between
courses/wales, modifying along-the-yarn impedances; grabs apply pressure to many
stitch-stitch contacts, lowering contact impedance over many stitches; and pinch-and-
pull stretches yarn along both courses and wales, modifying contact and along-the-yarn
impedances over a large area. Note that the relative changes to stitch-stitch contact
impedance are much larger than along-the-yarn impedance because contact impedance
is initially much higher.

Figure 16: A circuit model of the fabric in our sensor. Impedance along yarns
(ZA, ZB) is generally much lower than between yarns (ZC), leading to lower impedance
in the course (horizontal) direction than the wale (vertical) direction. In use, lo-
cal impedances depend on contact forces (which lower ZC), and deformation (which
change the length of yarn between contact points, altering ZA, ZB).
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Figure 17: The effects of duration, spatial distribution, and magnitude on EIT signals
(only five of the 40 signals from one patch are shown for clarity). (a) Duration: longer
touches/gestures allow the signals to settle. (b) Spatial Distribution: our system is
more sensitive to changes in the wale direction owing to the higher starting resistance.
(c) Magnitude: larger strain creates larger signals; e.g., an empty paper cup produces
a more minor response than a full one.

show a phase shift, suggesting that some capacitive6 effects may also be in play.
Therefore, instead of using the traditional inverse tomography algorithms, which attempt

to reconstruct a distribution of resistance values, we use machine learning algorithms with
the measured voltages differences directly, and more specifically, we focus on the changes in
the measurements.

5.3.1 Events

The EIT signals measured by our system depend on where, how much, and for how long the
sensor is deformed. We, therefore, find it useful to think about interaction events in terms
of three axis: spatial distribution, magnitude, and duration; Figure 17.

Definition 4. Spatial Distribution. The location and size of the area being impacted by the
event. A pin-point press has a small spatial distribution since only a tiny part of the scarf
is impacted; respiratory rate monitoring has a large spatial distribution because the entire
scarf is stretched.

Definition 5. Magnitude. How much deformation is induced by the event. A slice of angel
food cake resting on the sensor is a low magnitude event – the cake is airy and doesn’t press
the sensor very hard; a slab of cheesecake resting on the sensor is a high magnitude event –
it applies a much greater deformation owing to its greater weight.

6Both capacitors and inductors cause a phase shift as per (2); but the direction of the shift we observed
suggested that capacitance was the dominant effect.
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Definition 6. Duration. How long the event lasts. A quick tap is low duration, a long press
is higher duration.

Generally, events that are further along one or more of these axes are easier for our system
to detect; making them useful when thinking about potential applications.

5.3.2 Machine Learning

To distinguish different classes of the measured signals (i.e., location and gesture), we trained
a machine learning model. We use Scikitlearn’s Random Forest Classifier (default parameters,
1000 trees, 30 max depth). The measured data is a matrix of (the number of channels) ×
(the number of samples). For each row (i.e., time-series data per channel), we calculated
the following statistical nine features: mean, median, standard deviation, skewness, kurtosis,
max, min, argmax, and argmix.

5.4 Study 1: Location Detection

First, we conducted a study to verify the reconfigurability of our system, that is, whether
the system can identify where on the body it is attached. We collected data while the user
wore uKnit on different body parts and performed gestures with the device. We plan to use
these gestures as a calibration step where users perform a quick action (e.g., a swipe) to
let the system know the attached location on the body. We evaluated reconfigurability on
five different body parts: head, neck, waist, leg, and arm. The set of locations we chose are
informed by the form factor of our scarf device as well as prior works on-body localization
[Zeagler(2017), Lee et al.(2021)].

5.4.1 Procedure

The experiment used an Apple MacBook Pro 15”, and data was transmitted from the sensor
board using a USB serial connection. We recruited ten participants (five male and five female)
via online communication and word-of-mouth. They were all in their 20’s and right-handed.
For each of the five body parts, there are three sessions. For each session, there are three trials
for performing different gestures. We chose a set of four gestures (Figure 18): touch, swipe,
grab, and pinch. We first showed a brief demonstration of each gesture to the participants.

grabtouch pinch swipe

Figure 18: The four calibration gestures used for Study 1.
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For each session, we generated a randomized order of the body parts. By following the order,
participants put the device to the corresponding location. We then generated a randomized
order of the gestures and the participants performed them in order. After we repeated this
process three times for one location, we asked the participants to take off and attach the
device to the next body part. While performing gestures, the participants heard instructions
from the computer regarding when to start and end the gesture. We recorded 3 seconds for
each gesture and the instruction began and ended at the 0.5- and 2.5-seconds points within
the range. All data were collected while the participants were seated and they were free to
move between gesture trials. It took roughly 2 hours to complete the three sessions. The
participants were paid $15 for their participation.

5.4.2 Results

Figure 19: Accuracy of the within-/across-user models for the location detection by
different calibration gestures. Error bars indicate standard error.

For each calibration gesture, we trained and evaluated two models: within-user model
and across-user model. For the within-user model, we used a leave-one-session-out cross
validation to simulate a situation where users who have already completed a calibration step
put on the device to a body location later. For the across-user model, we used a leave-
one-participant-out cross validation to simulate a situation where new users who have not
done the calibration put on the device. Figure 19 presents the result. From this figure, we
concluded that “touch” is the best calibration gesture for the location detection (88.0 % for
the within-user model and 78.2 % for the across-user model). The confusion matrices can be
found in Figure 20.

5.5 Study 2: Gesture Recognition

Next, we conducted a study to examine the system’s ability to recognize gestures. Here, we
attached our device to participants’ wrists and collected data while they performed different
gestures. We tested gesture recognition on the wrist because this is a common location for
varied on-body interactions. Here, we included six gestures: top touch, middle touch, bottom
touch, swipe, pinch, and grab; as well as a no-gesture case, which we call “rest.” Top, middle,
and bottom touches are along the mid-line of the sensor, with top closest to the hand and
bottom furthest from the hand; grab and pinch happen at the center of the sensing patch;
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Figure 20: Confusion matrices of location detection using “touch” as the calibration
gesture. Within-user cross validation (left) achieves 88.0 % and across-user cross vali-
dation (right) achieves 78.2 %.

and swipe runs from the bottom touch area to the top touch area. These gestures are shown
in Figure 21.

touch

grabrest

top touch

pinch

middle touch

swipe

bottom touch

Figure 21: The seven gestures used for Study 2. Touch was performed at three different
points(indicated by the dots), shown in the bottom row.

5.5.1 Procedure

We recruited ten participants (five male and five female) in the same manner as Study 1. Two
of them had also participated in Study 1. They were all in their 20’s and right-handed. There
were three sessions in the data collection and each session consisted of ten trials. We showed
a brief demonstration of each gesture to the participants before the first session started. Note
that there were no explicit visual indications on the device for the gesture locations (e.g.,
dots) and the participants performed each gesture as they thought matched with the given
instructions.

We used the same apparatus as we used in Study 1. Before starting each session, the
participants attached or re-attached the device to their left wrist. Within a session, they
performed randomly-presented gestures in order until we obtained ten trials for each of the
seven gestures. In the same manner as Study 1, we recorded 3 seconds for each gesture
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and the participants were instructed to begin and end a gesture at the 0.5- and 2.5-seconds
points within the range. Throughout the data collection, we let the participants rest their
left forearm on a flat plane. The study took roughly 30 minutes and the participants were
paid $15 for their participation.

5.5.2 Results

In a manner similar to Study 1, we trained a within-user model and an across-user model,
both of which were evaluated using across session cross validation. When training the model,
we used the first 40 channels instead of the 160 channels to calculate features. The used 40
channels correspond to a single patch on which all gestures occurred during the study since
one patch is wide enough to wrap our wrist. The accuracy of the two models were 80.4 % and
75.4 %, respectively. The confusion matrices can be found in Figure 22. Additionally, the

Figure 22: Confusion matrices of gesture recognition. Within-user cross validation
(left) achieves 80.4 % and across-user cross validation (right) achieves 75.4 %.

within-user within-session model was introduced to see how much accuracy could be gained
in a scenario where a user is willing to provide calibration data after reconfiguring the sensor.
We trained this model by using a few samples from one session of the participant and all
data outside of that session, including the other participants’ data. Figure 23 presents how
the accuracy increases as we increase the number of trials for the calibration.

5.6 Other Capabilities

We think that a reconfigurable wearable like uKnit holds promise for a range of applications.
While many useful applications could already be built on the gestures from the studies (e.g.,
a music playback control headband which supports left and right taps to change tracks); we
also find it useful to think beyond these tested gestures.

The duration, spatial distribution, and magnitude axes that we discussed earlier provide
a good framework for understanding the feasibility of potential applications. For example, a
keyboard for text entry seems unlikely to work well (key presses have a short duration, small
spatial extent and require high spatial precision, and low magnitude); but a breath monitor
(long duration, wide spatial distribution, medium-low magnitude) would seem to be feasible,
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Figure 23: Gesture recognition becomes more accurate when calibration gestures are
added. For example, adding three calibration gestures results in a 5% accuracy in-
crease. Note that the Y-axis starts from 70%. Error bars indicate standard error.

and initial data collection supports this (Figure 24 top). Moreover, posture recognition could
be enabled. For example, when a person wears the scarf on their shoulder, uKnit knows
whether the person is sitting straight or slouched (Figure 24 bottom). Other applications that

chest

breathing
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breathing

inhale

exhale

straight

slouched

Figure 24: Top: When worn on the waist, uKnit’s outputs reflect respiration rate
and breathing style; Bottom: When worn as a shawl, uKnit’s outputs correlate with
posture.

seem practical given the axes along which the sensor excels are exercise tracking (medium-
high magnitude), posture detection (wide spatial extent), and sleep quality monitoring (long
duration). Given uKnit’s form, it can be a smart swaddle for babies. It can track the baby’s
movements, breathing, tell if their hands are out of the swaddle, and if the baby has rolled
over.
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6 Machine Knitted Sensors for Robots

Researchers have studied robot skins that can sense pressure, strain, shear force, temper-
ature, proximity, textures, humidity, etc. However, it remains a challenge to properly
cover robots of different and complex shapes using functional skin at scale and low costs.
Rigid sensors can partially cover a large area using a modular approach to form a skin net-
work [Cheng et al.(2019)], but fabrication and instrumentation at-scale is difficult. Flexible
robot skin can be arbitrarily shaped to cover robot arms [Liu et al.(2020)], but it is still less
comfortable compared with soft and stretchable human skin. Flexible, stretchable and de-
formable robot skin [Wang et al.(2018)] is ideal for applications like safe interactions if they
can be be reliable, scalable and generalizable.

Figure 25: robotSweater in use on a robot arm (left) and a mobile companion robot
(right) along with the tactile sensor readings visualized.

6.1 robotSweater

In this work, we propose a low-cost machine-knitted tactile sensor with pressure sensitivity,
robust ON/OFF switches, manufacturing scalability, and generality. Among other textile
fabrication techniques, knitting produces intrinsically stretchable fabric. Industrial knitting
machines can make large knitted skin that conform to complex 3D shapes with minimal
post-processing,[Narayanan et al.(2018), Jones et al.(2021)]. We machine knitted a multi-
layer parameterizable design using off-the-shelf conductive and non-conductive yarn. Unlike
prior matrix pattern resistive tactile sensors[Wicaksono et al.(2022), Day et al.(2018)] sand-
wiching a piezoresistive layer between two layers of orthogonal highly conductive traces,
our sensor design is sandwiching a porous insulating layer between two layers of orthogonal
piezoresistive traces. This design enables an open circuit at the taxel unit without pressure,
and a piezoresistor at the taxel unit when pressure applied. This robust ON/OFF switches
ensures accurate contact localization.
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The main contributions of this paper are:

• prototyping a parameterized machine-knitted resistive-matrix-style tactile sensor and
associated read-out circuitry;

• characterizing the sensor properties and and comparing with our simulation model on
both flat and curved surfaces; and,

• demonstrating the application on a robot arm with lead-through teaching, and a mobile
robot with motion guidance.

6.2 Sensing

Our sensor design includes: machine-knitted multi-layer sensing textiles (Figure 8), con-
nectors between the textile sensor to a sensing board (Figure 11), and a read-out circuit
(Figure 26).

To sense pressure, resistances at the intersections between the top and bottom layers are
measured (left in Figure 26). Without pressure, the top and bottom layers are separated
by the insulating layer so the circuit is open with infinite resistance values, When pressure
is applied, these resistance values change due to the changes in contact resistances between
the top and bottom resistive layers and the resistance changes caused by deformations in
resistive areas. When pressure increases: (a) the contact area between the two resistive layers
in crease, and thus the resistance decreases; and (b) strain and deformation on each resistive
layer increases, making tighter contacts between loops, and thus the resistance decreases.

6.3 Data Acquisition

To read these resistance values, we use a circuit (left in Figure 26) that read resistive sensing
matrices. The rows are equivalent to horizontal stripes, and the columns are equivalent to
the vertical stripes. Controlled by the row multiplexer, Vcc (5V) is switched to connect
to different rows. Controlled by the column multiplexer, GND is switched to connect to
different rows. Between the sensor and the ground, there is a reference resistor used as a
voltage divider. Finally, we use an Arduino internal ADC to read the voltage difference
across the reference resistor.

The power consumption for the systems were measured by measuring the system currents
and then multiply with the voltages. The systems were powered by 9V batteries. When
using an Arduino Uno with a 4x4 sensor grid, the power consumed is 0.39W. When using
an Arduino Nano with a 16x3 and 8x8 sensor grids, the power consumed are both 0.18W.
These measurements are very close to the ones measured when the micro-controllers are in
idle states.
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Figure 26: Top left: resistance decreases as pressure increases; Bottom left: at each
column-row intersection, resistance value depends on: contact resistance and resistance
change caused by deformation; Right: schematic of the read-out circuit.

Figure 27: Left: Testing setup using a 3D printer rig to apply loads to the fabric
sensor. Right: The relationship between loads and resistance of the sensing unit. As
load increases, the mean and standard deviation of the resistances decrease.

6.4 Characterization

To characterize the sensor, we fabricated a 4x4 gird. As shown in figure [?], we repurposed a
3D printer as a rig to apply load to the fabric sensor. An ATI Nano 17 Force Torque sensor
is used to measure the load applied using the 3D-printed indenter. The relationship between
the sensor resistance and the load applied is plotted on the right in figure [?]. As the load
increases, the mean and standard deviation of the resistance measured decreases because the
conductive layers are compressed and better connected.
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6.5 Applications

We fabricated a cylinder-shaped tactile sensor for the forearm link of Ur5E robot. The sensor
has an 8 by 8 matrix-like sensing grid fitting the robot arm link size as shown on the left in
Fig 25. Humans can interact with the tactile sensing area on the robot link and teach lead
the robot by controlling the 3 DoF translational movement of the end-effector (EE) of the
robot arm based on tactile feedback. We directly control the velocity of EE given the contact
locations and forces. We define the moving direction as the direction from the contact point
with maximum forced applied to the center of the cylinder. Then the magnitude of the
velocity is linearly correlated to the forced applied. We also implement the gripper control
based on gesture recognition from tactile reading. If the contact is pin-point contact, the
robot is guided by the velocity control of EE. If the contact is a large-area pressing, the
gripper is controlled to close or open for grasping based on the current gripper’s state. We
demonstrate the sensor usage on a robot arm by guiding the robot to grasp an object and
drop in a target location as shown in Fig 25.

We also fabricated a cone-shaped tactile sensor for the Kuri robot. The sensor has an 16
by 3 matrix-like sensing grid fitting the body Kuri as shown on the right in Fig 25. Humans
can interact with the tactile sensing area on Kuri’s body and Kuri will look at different
directions based on areas of contacts.
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7 Discussion

While designing, evaluating, and applying the knitted sensors, we summarized the following
knitted sensor design considerations (Section 7.1), limitations (Section 7.2), and scalability
challenges (Section 7.3). We hope the following discussion contributes to a future where
everyone will have a smart wardrobe, find smart textiles everywhere we go, and more of the
robots will have their customized smart sweaters.

7.1 Considerations in Machine-knitted Sensors Design

Due to the intrinsic structures of knitted sensors and the unique properties of knitted fabrics,
we discuss important design considerations below.

Form Factor uKnit is a scarf-like prototype for humans. It only takes advantage of
wrapping and folding in our test gestures; however it is also natural to scrunch and twist a
scarf. A study of further affordances might turn up even more interesting use cases. uKnit’s
current implementation only measures EIT within electrodes on the same patch. It might be
interesting, in these scenarios, to switch to a mode that measures between-patch impedances
(giving, potentially, more useful signals for gesture recognition).

robotSweater is a skin-like prototype for robots. Even though it can be stretched and
wrapped around shapes that are more complex than a uniform cylinder, future works can in-
vestigate sensing skin for complicated 3D shapes using design systems like [Narayanan et al.(2019)]
and [Zlokapa et al.(2022)].

Historically, textiles are means of expressions for identities and cultures. As a wearable,
textile-based sensors should blend in with conventional clothing and accessories. As robot
skins, textile-based sensors can affect human-robot perception. On-demand machine knitting
enables customizable patterns. We already demonstrated that uKnit’s aesthetics can be
customized by using extra plating carriers; but perhaps this customization could also be
extended to the sensing capabilities, specializing a given application for a given use-case
(while still providing a general-purpose sensing device).

Applications & Sensing Principles Machine-knitted sensor designs are driven by ap-
plications and sensing principles. Resistive sensing can be used to sense deformations, and
capacitive sensing can be used to sense touch and proximity. Impedance sensing can cap-
ture both the resistive and capacitive effects. Project Tasca [Wu et al.(2021)] demonstrated
promising applications combining various sensing principles, and it would be exciting to see
how the unique properties of knitted fabrics could contribute.

One big difference between designing sensors for humans and for robots are behaviors
predictability. For example, humans change clothing and accessories routinely, but once
robot skins are instrumented, frequent removals are not expected. Human activity recogni-
tion research predicts what humans are doing to provide contexts that can improve sensing
accuracy, but many robots perform repeated tasks in controlled environments. And even
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when the robots have more “freedom”, the actuation mechanisms are still programmed and
thus known to the system, which gives more accurate contexts. Although designing machine
knitted sensors for humans and robots share many similarities, it is helpful to consider the
distinctions when transferring sensor designs among applications.

Once the application and sensing principles are finalized, the exact knitting structures
are to be considered. Discussed in Section 5.3.1, three axis can be used to think about
interaction events: (1) spatial distribution, (2) magnitude, and (3) duration. These axis are
useful for choosing sensing principles for different textile sensors applications. For example,
When spatial accuracy is critical, sensing approaches that directly infer locations, like the
matrix-layout and the grid-layout, are preferred over indirect ones like using the patch-layout
with EIT. In addition to sensing performances, how soft the sensor remains after adding the
rigid electronic components is a important factor. Sensing with tomography, like uKnit,
reduces the number of wires needed and the number of wires can be further reduced while
maintaining high accuracy [Ma et al.(2020)].

Materials In both uKnit and robotSweater, we use the same resistive yarn, a stainless
steel Bekinox-polyester blend by Baekert. It knits well on the knitting machine and showed
promising performances and results for both resistance and impedance sensing. Luo et al.
developed novel piezoresistive yarn [Luo et al.(2021a)] that effectively turned 3-layer sens-
ing structures into 2-layer sensing structures. The requirements (e.g. strengths, thickness,
stiffness) for inlayed yarn are much lower than for the yarns directly used to form loops.
The novel conductive yarn used in Project Jacquard [Poupyrev et al.(2016)] has great sens-
ing performance and is compatible with standard looms Future works could look into novel
fibre/yarn that are functional and compatible with knitting machine operations.

Stitch Patterns Different stitch settings and patterns yield different sensing performances.
We observed that when the knitted fabric is more stretched, the cleaner and more responsive
the signals are. Tomoaki et al. found that voltage-load performance for pressure sensing
decreases when the stitch density is too low. All of the sensor designs in this work use ribs, 1x1
when high stretchability is not required, and 2x2 when it is. Shyr et al. discovered that a mock
rib with less horizontal stretch minimizes hysteresis in knitted sensors [Shyr et al.(2011)]. A
systematic evaluation on different stitch patterns and stitch density will be valuable for
knitted sensor design.

7.2 Limitations for Machine-knitted Sensors

The easy scalability of machine-knitted sensors pave ways for wide adoptions of textile sen-
sors, but some limitations remain in sensing with machine-knitted sensors.

Anisotropy Knitted fabric is an anisotropic material, different from most soft sensors.
The yarn paths of the knitted fabric makes the course and wale directions have different me-
chanical and electrical performances. When designing matrix style readouts, knitted sensors
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employ multi-layer designs. When stacking layers together, the sensor becomes thicker and
inconsistent alignment could occur over time. It would be interesting to see whether are knit
patterns that can do matrix style readouts on a single layer.

On knitted fabric, equal physical distance does not correlate to equalr esistance/impedance
distribution, which makes the signals unsuitable for popular reconstruction algorithms. For
EIT, one potential solution was to try anisotropic EIT [Lee et al.(2017)]. For matrix-style
layout, two layers are placed orthogonally to form the matrix. Though the anisotropic prop-
erty appears to be a drawback, there could be applications and take advantage of it.

Hysteresis Like most textile sensors, knitted sensors also have hysteresis effect. But be-
cause knitted sensors are more stretchable, offering more freedom, there are more factors
that could contribute to the hysteresis. In robotSweater, we used a stretchable yarn to
co-knit with the conductive yarn for better restoration. Elastic yarns, harder to knit on the
machine for tensioning difficulties, help with further reducing hysteresis. Note that when
co-kniting non-conductive and conductive yarns, which yarn placed on the outside affects the
electrical performance[Bozali et al.(2021)]. Again, systematic evaluations on stitch patterns
and settings would be useful when designing knitted sensors.

Damage Textiles wear off, can get stained, and need to be washed. These expectations ap-
ply for machine-knitted sensors as well. Some knitted sensor designs cover the functional ar-
eas with conventional knitted fabrics to protect the sensing regions [Wicaksono et al.(2022)].
For robotSweater, additional top and bottom layers can be used for protections and to elim-
inate parasitic effects. Though we did not perform waterproof tests on our prototypes, the
conductive yarn we used can stand numerous washing cycles.

Connections Connecting soft materials with electronics remains a difficult mechanical
problem owing to the required stiffness gradients and the propensity of metals to fatigue. We
did encounter wire fatigue and breakage in testing our uKnit; and future revisions will need
to seek out more durable connection designs [Poupyrev et al.(2016), Stanley et al.(2021)].

7.3 Scalability for Textile-based Devices

One benefit of using machine knitting is that it is an established manufacturing technique –
so producing the knitted portion of our design could readily be done at scale. However, wire
routings are done manually by hand sewing for uKnit and attaching buttons for robotSweater.
Machine-sewing(e.g., [Parzer et al.(2017)]) could automate hand-sewing, but our early ex-
plorations revealed that a denser fabric is needed to avoid tension problems. Wash-away
stabilizer [Kao et al.(2018)] might be one solution to the problem. Future works could also
look into flexible and stretchable PCB technologies. Furthermore, E-textiles research will
benefit from comprehensive studies on soft-hard connectors for both prototyping and mass
manufacturing.
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