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Abstract

Over the past decade, deep learning has demonstrated state-of-the-art accuracy on challenges
posed by computer vision and natural language processing, revolutionizing these �elds in the
process. Deep learning models are now a fundamental building block for applications such as
autonomous driving, medical imaging, and neural machine translation. However, many chal-
lenges remain when deploying these models in production. Researchers and practitioners must
address a diversity of questions, including how to e�ciently design, train, and deploy resource-
intensive deep learning models and how to automate these approaches while ensuring robustness
to changing conditions.

This dissertation provides and evaluates new ways to improve the e�ciency of deep learning
training and inference, as well as the underlying systems’ robustness to changes in the envi-
ronment. We address these issues by focusing on the many hyperparameters that are tuned to
optimize the model’s accuracy and resource usage. These hyperparameters include the choice
of model architecture, the training dataset, the optimization algorithm, the hyperparameters of
the optimization algorithm (e.g., the learning rate and momentum) and the training time budget.
Currently, in practice, almost all hyperparameters are tuned once before training and held static
thereafter. This is suboptimal as the conditions that dictate the best hyperparameter value change
over time (e.g., as training progresses or when hardware used for inference is replaced). We apply
dynamic tuning to hyperparameters that have traditionally been considered static. Using three
case studies, we show that using runtime information to dynamically adapt hyperparameters that
are traditionally static can increase the e�ciency of machine learning training and inference.

First, we propose and analyze Selective-Backprop, a new importance sampling approach that
prioritizes examples with high loss in an online fashion. In Selective-Backprop, the examples
considered challenging is a tunable hyperparameter. By prioritizing these challenging examples,
Selective-Backprop trains to a given target error rate up to 3.5x faster than static approaches.

Next, we explore AdaptSB, a variant of Selective-Backprop that dynamically adapts how we
prioritize challenging examples. In Selective-Backprop, the priority assigned to examples of dif-
fering degrees of di�culty is held static. In AdaptSB, we treat the priority assigned to di�erent
classes of examples as a tunable hyperparameter. By dynamically tailoring example prioritization
to the dataset and stage in training, AdaptSB outperforms Selective-Backprop on datasets with
label error.

Finally, we propose and analyze Mainstream, a video analysis system that adapts concurrent
applications sharing �xed edge resources to maximize aggregate result quality. In Mainstream,
we consider the degree of application sharing to be a tunable parameter. Mainstream automat-
ically determines at deployment time the right trade-o� between using more specialized DNNs
to improve per-frame accuracy and keeping more of an unspecialized base model. We show
that Mainstream improves mean event detection F1-scores by up to 87x, compared to static ap-
proaches.
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Chapter 1

Introduction

In the past decade, there has been a resurgence of interest in the use of deep neural networks
(DNNs) for emerging and sometimes critical applications like autonomous driving, medical imag-
ing, and neural machine translation. Such networks often have hundreds of layers and millions
of parameters, and are only possible due to the vastly greater computational resources available
today. To adequately train such large networks without over-�tting requires a vast amount of
labeled data, made possible through developments in big data techniques and crowd sourcing
e�orts. Despite the computational and training challenges, the payo� is signi�cant for applica-
tions. For example, DNNs have achieved human-level or better accuracy in some image recogni-
tion tasks [41, 115], and they vastly outperform most other recognition approaches in computer
vision.

Despite the astonishing progress made in machine learning and its supporting infrastructure,
there are still many obstacles to designing and deploying DNNs for real applications. While initial
research focused primarily on advancing the state-of-the-art accuracy achieved by deep learning,
researchers and practitioners are now tackling an array of issues arising from the end-to-end
use of a DNN. These issues include reducing the cost of training and inference, and increasing
the interpretability, fairness and security of deployed networks. This dissertation provides and
evaluates new ways to improve the e�ciency and robustness of DNN training and inference,
discussed next.

1.1 E�ciency and robustness for DNNs in production

Training E�ciency DNNs are much more computationally demanding than traditional ma-
chine learning (ML) approaches, making DNN training time-consuming and �nancially expen-
sive. A single model that performs neural translation between English and German took Google
engineers 250,000 GPU hours to train, about a $200,000 price on Google Compute Engine [11].
Training BERT, a state-of-the-art language model, took four days using four TPU pods running
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16 TPU chips each [25]. Dettmers et al. [24] estimate that training would take 10–17 days on 8
GPUs. These prices only capture a fraction of the resources needed to prepare a DNN because
training is not a one time cost. Training a model requires iterations from debugging, tuning of
hyperparameters and retraining with new labeled data. Hence, training models of production
scale is prohibitively expensive for many practitioners.

Inference E�ciency Deep learning models are larger than traditional ML models, thus re-
quiring more computational resources to run. State-of-the-art object detection networks, such as
Faster-RCNN, operate as slowly as 1 frame per second (FPS) on a modern GPU [52]. Inference
e�ciency is often a �rst-class design goal of production models as DNNs are often used for low-
latency tasks, requiring sub-millisecond response times for some applications like autonomous
driving. Inference often runs in edge computing further tightens the latency budget available
for inference by reducing the network latency between end users and the inference servers. In
addition, serving inference requests from edge datacenters pushes the limits of inference hard-
ware. This is because although datacenters can use tens or hundreds of GPUs or even TPUs for
inference, edge deployments often have only a few servers, a single mini-PC, or an embedded
device.

Robustness Machine learning practitioners optimize DNN models and systems infrastructure
to take into account a variety of application-speci�c conditions. These include assumptions about
the distribution of the training dataset, deployment conditions, and application service level ob-
jectives (SLOs). Incorrect assumptions can lead to higher training cost and suboptimal models
and applications. For example, a model designed to run in a datacenter may have too large a
memory requirement for a low-power edge device. Importantly, optimizing once for application-
speci�c conditions may not be adequate. In a production environment, conditions are constantly
in �ux. Incoming data changes over time (e.g., seasonal shifts exhibited in a tra�c camera); but
upstream applications require di�erent latency SLOs, and deployment hardware changes. ML
systems should allow for adaptation of application-speci�c optimizations in order to provide ro-
bustness to real-world changes.

1.2 The case for dynamic hyperparameter optimization

Machine learning practitioners must tune a variety of hyperparameters to improve the task’s
accuracy and to reduce resources used during training. Examples include the choice of DNN
model architecture, the training dataset, the optimization algorithm, the hyperparameters of the
optimization algorithm (e.g., the learning rate and momentum) and the training time budget. Cur-
rently, in practice, almost all hyperparameters are static. They are tuned once during training,
for instance using a grid search or a Bayesian hyperparameter optimizer. Such a static approach
has low robustness to changing conditions, such as changes in the dataset or the available com-
putational resources. In this thesis, we show that, to improve the e�ciency of ML processes of
DNN training, one should consider making static hyperparameters dynamic, thus allowing them
to adapt to changes based on the state of training and deployment conditions.
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Historically, one hyperparameter that has seen heavy optimization is the learning rate [64,
86, 87, 99, 107, 112, 113, 116, 122]. This is because of the high impact of learning rate on the
model’s �nal accuracy and its training speed. Adaptive learning rate schedulers such as Adam
[64], AMSGrad [99], and AdamW [87] are now commonplace in DNN training and show the
e�ectiveness of adapting to the current state of training. We apply adaptive hyperparameter
tuning more broadly, extending this principle to other hyperparameters besides the learning rate,
that have traditionally been considered static. In our work, we aim to provide evidence to support
the following thesis statement:

Thesis: Using runtime information to dynamically adapt hyperparameters that are traditionally
static, such as the emphasis on individual training examples and the weights updated during

transfer learning, can increase the e�ciency of machine learning training and inference

1.3 Case studies

In support of this thesis statement, we describe our experience with three case studies:

1.3.1 Training time adaptation of challenging example identi�cation

First, we propose and analyze Selective-Backprop, a technique that accelerates deep learning
training by prioritizing examples with high loss in an online fashion. Traditional machine learn-
ing methods consider all examples equally useful. As a result, algorithms like stochastic gradient
descent (SGD) train on each example in the dataset, every epoch. In Selective-Backprop, we relax
this constraint by focusing our training on examples that are relatively more useful. We hypoth-
esize that challenging examples should be prioritized as they have more to teach the network
(i.e. they lead to a larger gradient to apply). However, it is di�cult to know in advance which
examples will be challenging for our network to classify. Further the set of challenging examples
will �uctuate over the course of training.

In Selective-Backprop, we consider the examples considered challenging as a tunable hyper-
parameter. We use the loss calculated from a training example as a signal of its usefulness during
training. Selective-Backprop then decides for each example whether to use it to compute gradi-
ents and update parameters, or to skip immediately to the next example. Consequently, Selective-
Backprop prioritizes examples that have more to teach the network. This choice is adaptive be-
cause which examples are considered to be “useful" will vary over time. Evaluation on CIFAR10,
CIFAR100, and SVHN, across a variety of modern image models, shows that by reducing the
number of computationally-expensive backpropogation steps, Selective-Backprop converges to
target error rates up to 3.5x faster than with standard SGD and between 1.02–1.8x faster than a
state-of-the-art importance sampling approach. We also demonstrate further acceleration of 26%
by using stale losses to determine example selection.
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1.3.2 Prioritization of challenging examples during training

Next, we explore AdaptSB, a variant of Selective-Backprop that dynamically adapts how we pri-
oritize challenging examples. In Selective-Backprop, the prioritization for di�erent degrees of
example di�culty is �xed (i.e., an example with a loss in the 50th percentile of historical losses
is always chosen 50% of the time). However, the optimal prioritization depends on the dataset
and the training time. For example, Selective-Backprop assumes that the more challenging an
example is, the more it should be prioritized. This holds true for well-curated datasets, where
even high-loss examples are informative and representative. However, datasets with noise or
mislabeling contain misleading examples that should be de-emphasized during training.

In AdaptSB, we treat the priority assigned to di�erent classes of examples as a tunable hy-
perparameter. We model the prioritization assignment as a function between how challenging
the example is, speci�cally the percentile of historical losses an example’s loss represents, and its
likelihood for selection. We �nd that by adapting the priority function to the training dataset,
AdaptSB outperforms Selective-Backprop on datasets with label error. We also show that the pri-
ority function should be adapted over time. The priority function that leads to the most sample
e�ciency changes over the course of training, as suggested by techniques proposed in the �eld
of curriculum learning [9, 70].

1.3.3 Inference time adaptation of the degree of DNN specialization

Finally, we explore Mainstream, a new video analysis system that jointly adapts concurrent ap-
plications sharing �xed edge resources to maximize aggregate result quality. In Mainstream, we
introduce a technique for identifying and eliminating redundant computation between concur-
rently deployed applications. Each application relies partly on a DNN shared between the other
applications as well as a specialized, task-speci�c, DNN. We show that the optimal allocation of
resources and processing rate of each application depends on deployment conditions (e.g., com-
pute capabilities of the edge device and the currently deployed applications).

Based on the available resources and mix of applications running on an edge node, Main-
stream automatically determines at deployment time the right trade-o� between using more
specialized DNNs to improve per-frame accuracy, and keeping more of an unspecialized base
model (shared between all deployed applications) to reduce resource contention and process more
frames per second. Experiments with several datasets and event detection tasks on an edge node
con�rm that Mainstream greatly improves mean event detection F1-scores relative to a static ap-
proach of retraining only the last DNN layer and sharing all others (“Max-Sharing") by 71%, or to
the common approach of using fully independent per-application DNNs (“No-Sharing") by 29X.
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1.4 Thesis contributions and outline

We make three key contributions in this thesis.

1. Our �rst contribution improves training e�ciency by reducing the time spent in the com-
putationally expensive backwards pass. Big data and deep learning have brought the emer-
gence of ever-larger labeled training datasets. While larger datasets enable models that to
better generalize and that are robust to over�tting, it is no longer feasible to manually sani-
tize production datasets or to train through entire datasets in a brute force fashion. Instead,
many design decisions are arising to determine which examples to include in the dataset
[29, 29, 31, 106, 106, 108, 117], which examples to prioritize [6, 9, 13, 32, 54, 55, 57, 60, 70, 78,
85, 89, 101, 105, 109, 126], and which examples to augment [22, 37, 44, 69, 72]. We present
the design and evaluation of Selective-Backprop and its variants StaleSB and AdaptSB, tech-
niques for practical and lightweight importance sampling that automate many of the afore-
mentioned design decisions. We include measurements showing that, compared to tradi-
tional training, Selective-Backprop and StaleSB reduce the time required to achieve target
errors on CIFAR10, CIFAR100, and SVHN by up to 3.5x and 5x, respectively and 1.02–
1.8x and 1.3–2.3x compared to a state-of-the-art importance sampling approach introduced
by [61]. We also show that AdaptSB is more robust to label error than Selective-Backprop
and StaleSB

2. Our second contribution improves application performance of real-time video analysis ap-
plication . Real-time video analytics poses unique deployment constraints. Inference is
typically run on high-frame rate videos and often use resource constrained edge devices to
reduce end-to-end latency. Furthermore, these edge devices can be shared across tenants
and applications. Designing DNNs for real-time video analysis requires careful optimiza-
tion to the deployment conditions. We present the design and evaluation of Mainstream,
a video analytics framework for automatically deploying the right degree of specializa-
tion for a DNN. This dissertation highlights the critical importance of reducing aggregate
per-frame CPU work of multiple independently developed video processing applications
via stem-sharing and identi�es the goodness trade-o� between per-frame quality and the
frame sampling rate dictated by the degree of DNN specialization (and thus the amount of
sharing).

3. Our third contribution is the analysis of three case studies on the importance of dynami-
cally optimizing hyperparameters to changing conditions in the context of deep learning
training and inference. These case studies use Selective-Backprop to show the e�cacy of
dynamically determining what examples from the training dataset are challenging to the
network; AdaptSB to show what to do with those challenging examples; and Mainstream
to show how much of the DNN to specialize during training. In all three cases we see a
signi�cant bene�t to dynamically optimizing the hyperparameters to changes in training
and inference conditions.

The remainder of this dissertation is organized as follows. Chapter 2 provides background on the
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current state of deep learning, an overview of deep learning training, and describes the applica-
tion of image classi�cation to edge video analytics. Chapter 3 describes Selective-Backprop and
Chapter 4 describes its variant AdaptSB. In Chapter 5, we switch gears to optimizing for DNN in-
ference, and describe Mainstream. Finally, Chapter 6 concludes the dissertation with a discussion
on lessons learned and possible future research directions.
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Chapter 2

Background

Deep learning refers to a family of machine learning methods based on arti�cial neural networks,
a class of machine models vaguely inspired by biological neural networks. A machine learning
model is a parameterized function that performs a task. Training is the process of learning param-
eter values (called weights) such that the model will approximate the desired function with some
measure of accuracy (Section 2.2.1). For example, when training an image classi�er, one might
examine labeled input images and use gradient descent to �nd a set of weights that minimizes a
loss function over the labels. Using the trained model to �nd the function’s output given a new,
unlabeled input is called inference (Section 2.2.4).

DNNs refer to a type of neural network architecture, used for problems which require a large
input space, such as the pixels of an image. A DNN can be represented by a graph where nodes
are organized into layers; each node computes a function of its inputs, which are outputs from
the previous layer. The “deep” in DNNs refers to their many hidden layers. The example DNN
in Figure 2.3 represents an DNN that performs image classi�cation (Section 2.1.1). It takes an
image as input, consists of three hidden layers, and outputs the likelihood the example belongs
to each of four di�erent classes. Increasingly, successful applications of DNNs have largely been
the result of building models with more layers that take larger vectors of inputs [42, 68, 111, 114].

In this section, we describe the relevant background for our work. We start with an overview
of deep learning training (Section 2.2.1) and inference (Section 2.2.4), including a description of
modern approaches to DNN training and where the computational bottlenecks lie (Section 2.2.1).
We also introduce our motivating applications of image classi�cation, video analysis, and event
detection (Section 2.1) and discuss the trade-o�s of performing these applications in centralized
datacenters or on edge devices near the data source.
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Architecture
Number
of Layers

ImageNet
Top-1

Accuracy (%)

InceptionV3 314 78.0
MobileNets-224 84 70.7
ResNet-50 177 75.6

Table 2.1: Top-1 accuracy of three neural networks architectures trained on the ImageNet dataset.

2.1 Motivating applications

DNNs are used in a variety of tasks such as human action recognition [110], object detection [34],
scene geometry estimation [30], face recognition [115] and neural machine translation [121].
While we believe that the technique of dynamically tuning hyperparameters should be applied
broadly to deep learning, in our case studies we focus on the applications of image classi�cation
and streaming event detection on edge devices.

2.1.1 Image classi�cation

Image classi�cation aims to assign one label from a set of categories or classes to each image.
For example, a 4-class classi�er takes an input image and returns a 4-item vector of probabili-
ties representing the likelihood that the image belongs to each class (Figure 2.3). Top-N accuracy
is the probability that the correct label is among the top-N highest probability output labels.
So, Top-1 accuracy indicates the fraction of images that the model classi�es correctly. We refer
to this metric as the per-frame accuracy in the context of video classi�cation. Popular neural
network architectures for image classi�cation include ResNet [42], InceptionV3 [114], and Mo-
bileNets [46]. Table 2.1 describes these three neural networks and their Top-1 accuracy achieved
on the ImageNet dataset [23]. Networks trained on ImageNet are popular base-DNNs for image
classi�cation tasks.

2.1.2 Streaming event detection

The increasing rate of video acquisition, combined with rapid progress in the �eld of computer vi-
sion, makes video analytics a fundamental building block of emerging applications such as smart
cities, autonomous vehicles, and search-and-rescue drones. The volume of video data generated
prohibits manual discovery as a scalable solution. Instead, computer vision powered by deep
learning automates the process of extracting value and insights from video.

This dissertation focuses on applications that use image-classi�cation DNNs to perform event
detection. We de�ne an event as a contiguous group of frames containing some visible phe-
nomenon that we are trying to identify: e.g., a cyclist passing by, or a pu� of smoke being emitted.
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Figure 2.1: Example computation pipeline for event detection.

One way of doing event detection is to perform image classi�cation across a sequence of frames.
An event is detected if at least one of the contiguous frames is sampled, analyzed, and correctly
labeled. Previous works [73] have also used this existence metric to measure recall and precision
of range-based queries. (Event detection is not to be confused with object detection, where the
goal is to locate an object in a single frame. Indeed, object detection is another way of performing
event detection.) We evaluate event classi�cation applications by measuring the event F1-score,
the harmonic mean between event recall and event precision. The event recall reports the propor-
tion of ground truth events identi�ed. The event precision reports the proportion of classi�ed
events that are true positives. Note that these metrics are relative to the detection of events across
multiple frames and are distinct from per-frame metrics (e.g., Top-1 accuracy).

Figure 2.1 shows a typical computation pipeline for an image classi�cation application. The
sensor or camera generates frames and sends them to the edge device for processing. The frame
is decoded and then preprocessed with image transformation such as cropping and color normal-
ization. The processed frame is then inputted into the DNN for classi�cation. Although frame
ingest and image preprocessing are necessary stages of computation, they are low cost and easily
shared between concurrent applications. DNNs, on the other hand, are typically unique to each
application and computationally expensive: in one image classi�cation application we run, the
DNN inference incurs 25X more latency than the preprocessing steps.

2.1.3 Video processing at the edge

Video analytics bring about two systems challenges. First, analyzing a high-frame rate video in
real-time requires high throughput from our inference engine. Second, many applications require
low response times (e.g. for real-time actuation). These goals are in tension given the nature of
video camera deployments (Figure 2.2). In a typical deployment, cameras and sensors capture
videos on the edge and have access to closeby compute with limited computational resources.
The edge nodes can send data to a datacenter, which has heavy computational resources but is
far away.

Back-hauling video from the edge to the datacenter gains advantages from resource avail-
ability, centralization, and economies of scale that come with cloud computing. However, the
bandwidth required and the latency cost is often prohibitive. For example, HD cameras for
intersections and other key points in a medium-sized city may generate tens of gigabytes of
highly-compressed video every second. Only infrastructure-rich deployments have the capacity
to ship this video back to the datacenter. A deployment of HD video cameras at every inter-
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Figure 2.2: Example video analytics edge deployment.

section, police vehicle, and public bus in a medium-sized city may generate tens of gigabytes of
highly-compressed video every second. Furthermore, if the analysis cannot tolerate lossy video
compression artifacts [27], the bandwidth requirements swell to terabytes per second. Though it
may be technically possible to provide such ingress data rates to a datacenter, it is impractical to
deploy and dedicate a network with such high bandwidth from widely distributed sources to the
data center. Mobile nodes (e.g., drones and cars) that rely on wireless communication have even
less bandwidth at their disposal. Shipping data to the datacenter can also be prohibitively slow.
Applications like autonomous driving require sub-millisecond latency for actuation and cannot
tolerate a roundtrip between the edge and the cloud.

Moving compute to the data is a classic alternative to moving large amounts of data. Comput-
ing at the edge can also reduce cost: placing additional processing at the cameras may be cheap
relative to the total deployment cost, including acquiring rights-of-way, truck-rolls/installation
labor, and high-quality weather-proof cameras. A key challenge remaining is to run computation-
intensive DNNs at a high throughput on resource-constrained edge devices.

To achieve the e�ciency and scaling on edge deployments of DNNs, one must take into ac-
count form factor, cost, and energy consumption of the network as well as the hardware resources
available. A variety of software optimizations can make inference more e�cient, including the de-
sign of lightweight networks [46, 53], post-processing networks via weight quantization, weight
sharing, and network pruning [38, 39, 63]. On the hardware side, edge devices for deep learning
are emerging such as the Coral Accelerator from Google and Intel’s Neural Compute Stick 2. At
the time of writing, Google Coral Edge TPU is capable of performing 4 trillion operations per sec-
ond (TOPS), using 0.5 watts for each TOPS [82]. While these approaches reduce the end-to-end
latency and power consumption of inference, another complementary goal is to provide scalabil-

10



.1

.1

.2

.6

Input
layer

Hidden
layers

Output
layer

OutputInput

Figure 2.3: Example image classi�cation neural network.

ity in edge deployments. Scalability of DNN deployments is increasingly important as a modern
edge setup are expected to support more and more applications at a given time (Figure 2.2). For
instance, a smart camera deployed in an intersection of a smart city may be used simultaneously
for tra�c analysis, infrastructure monitoring, and pollution monitoring. New applications which
take advantage of the generated camera stream may continue to arise. As more applications are
deployed, resources become further contended and application performance su�ers. We thereby
target reducing the marginal cost of introducing additional applications to the edge device.

2.2 Selected performance aspects of deep learning

2.2.1 DNN training

Deep learning training requires solving a large, nonconvex optimization problem. The goal is to
learn the millions of weights that parameterize a deep model. The optimization problem is for-
mulated as a loss minimization problem, often minimizing the cross-entropy loss summed across
a set of training examples, between the model’s predictions and the ground truth labels. Most
commonly, mini-batch stochastic gradient descent is used to perform the optimization. The train-
ing process iterates over a labeled dataset, with items being passed forward through the network
to determine losses; gradients derived from these losses are then backpropagated to adjust DNN
model weights. The process of deriving and applying the gradients is termed the backwards pass
or backpropagation. Traditionally, all examples in the dataset are used every epoch, and training
progresses over many epochs. After several epochs, the model is able to produce accurate outputs
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Network Batch size Forward
conv (ms)

Backward
convs (ms)

% training spent
in conv kernels

Resnet18 32 31.7 53.7 76.3
Resnet18 64 53.3 99.5 86.3
Resnet18 128 99.6 193.2 92.8
Resnet18 256 191.5 382.5 96.5
Resnet18 512 371.7 990.6 98.3

Squeezenet 32 33.8 56.2 81.4
Squeezenet 64 62.2 105.8 88.6
Squeezenet 128 120.1 209.8 93.5

Densenet121 32 115.0 193.8 74.5

Resnet101 32 156.3 277.4 84.1
Resnet101 64 278.4 535.3 90.6

Table 2.2: Time spent in executing convolutions during ImageNet training running on a NVIDIA TitanX.
Setup using PyTorch 0.4.0 and NVIDIA cuDNN 7.

for many items in the training set.

2.2.2 Backwards pass bottleneck

For general-purpose hardware and training frameworks, the backwards pass is typically the com-
putational bottleneck. A standard image classi�cation network is primarily composed of convo-
lutional layers. Each layer performs a convolution operation, which essentially calculates dot
products between a set of weights known as �lters or kernels, and local regions of the input. The
operation can be implemented as a single large matrix multiply, and thus can be parallelized using
a GPU. We pro�le the time spent performing three convolutions (one for the forward pass and
two for the backwards pass) on a modern deep learning setup. We train various modern DNN
models using ImageNet on a NVIDIA TitanX. For large batch sizes, performing convolutions on
the GPU can account for 98% of the time in training ImageNet (Table 2.2). The backwards pass
incurs approximately twice the forward pass cost. This is because during the forward pass, we
calculate one convolution per convolutional layer, whereas in the backwardw pass we perform
two: one convolution to calculate the gradients with respect to the input data and another with
respect to the layer weights [8]. Forward passes can be performed either for training or inference,
the former requiring storing data to perform the subsequent backwards pass. The latency of the
two types of inference are comparable (Table 2.3).
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Network Batch size Forward training
conv (ms)

Forward inference
convs (ms)

Resnet18 32 31.7 30.1
Resnet18 64 53.3 52.2
Resnet18 128 99.6 98.6
Resnet18 256 191.5 189.4
Resnet18 512 371.7 368.5

Table 2.3: Comparison between the latency of an training vs. inference forward pass where data is not
kept for a subsequent gradient calculation.

2.2.3 Transfer learning vs. training from scratch

Training deep models with millions of parameters is notoriously hard. The success of these mod-
els has hinged critically upon the arrival of very large, labeled datasets for training [3, 23, 77].
However, one often lacks su�cient labeled data or computational resources to train such a model.
Therefore, most developers of applications using DNNs do not design their own networks. Rather
they reuse published networks that have been shown e�ective in the general domain, and retrain
them for the speci�c task at hand. In fact, the general practice is not to fully train weights from
scratch (i.e., starting with randomized weights), but to adapt a network model that was previ-
ously trained on a similar task. This approach, called transfer learning, can reduce the amount
of labeled data needed for training as well as total training time by several orders of magni-
tude relative to fully training the network from scratch. As an example, transfer learning helps
achieve 73% accuracy on human action recognition as opposed to 53% accuracy when training
from scratch [110].

The intuition behind transfer learning is that a DNN which has, for example, been trained to
classify cars in images, actually devotes most of the earlier stages to transforming the raw pixel
inputs into some hidden internal feature representations that are robust to perspective, lighting,
distortions, and occlusions. These are combined in various ways to �nally perform the task-
speci�c car detection in the �nal layers. Much of this machinery, with little change, may also be
very useful in detecting other objects, such as buses, requiring mostly modi�ed parameters in the
�nal layers to perform the new task. Thus, for example, transfer learning a bus detector from a
car detector can use far fewer training examples and training time than training from scratch.

2.2.4 DNN inference

After training, the DNN model is deployed for inference, whereby data is inputted into the trained
model to infer a result. While inference is not as computationally expensive as training, it still
requires more compute relative to traditional machine learning models. Furthermore, training
is done in the datacenter with access to many GPUs or even TPUs, whereas inference is often

13



performed on an edge device with only a low power GPU, CPU, or embedded device. The chal-
lenge with inference then is to meet often strict latency and throughput service level agreements
on a variety of hardware and deployment setups. Inference using InceptionV3, a popular image
classi�cation network, runs close to 10x faster on a NVIDIA 1080ti compared to an Intel i7-8700k
CPU and 30x faster than using the Intel Neural Compute Stick [76].
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Chapter 3

Adaptive Importance Sampling for Training Large
Datasets

Next, we explore Selective-Backprop, a technique that accelerates the training of deep neural net-
works (DNNs) by prioritizing examples with high loss at each iteration. Selective-Backprop uses
the output of a training example’s forward pass to decide whether to use that example to com-
pute gradients and update parameters, or to skip immediately to the next example. By reducing
the number of computationally-expensive backpropagation steps performed, Selective-Backprop
accelerates training. Evaluation on CIFAR10, CIFAR100, and SVHN, across a variety of modern
image models, shows that Selective-Backprop converges to target error rates up to 3.5x faster
than with standard SGD and between 1.02–1.8x faster than a state-of-the-art importance sam-
pling approach. Further acceleration of 26% can be achieved by using stale forward pass results
for selection, thus also skipping forward passes of low priority examples. The implementation of
Selective-Backprop is open-source.

3.1 Overview

While training neural networks (e.g., for classi�cation), computational e�ort is typically appor-
tioned equally among training examples, regardless of whether the examples are already scored
with low loss or if they are mis-predicted by the current state of the network [45]. In practice,
however, not all examples are equally useful. As training progresses, the network begins to clas-
sify some examples accurately, especially redundant examples that are well-represented in the
dataset. Training using such samples may provide little to no bene�t; hence, limited computa-
tional resources may be better spent training on examples that the network has not yet learned
to predict correctly.

Figure 3.2 illustrates the redundancy di�erence between “easy” examples and “hard” exam-
ples. Figure 3.2a shows examples from CIFAR10 that consistently produce low losses over the
course of training. Compared with examples that generate high losses (Figure 3.2b), the classes
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Figure 3.1: Comparison and breakdown of training time by Traditional training and proposed Selective-
Backprop approaches, for training Wide-Resnet on SHVN until 1.72% error rate is achieved (1.2 times the
�nal error of Traditional). SB accelerates training by reducing the number of computationally expensive
backward passes. StaleSB further accelerates training by sometimes reusing losses calculated in the prior
epoch for example selection.

of low-loss examples are easily distinguishable. Qualitatively, we �nd that low-loss examples
consist of objects that are taken at common camera angles (e.g. taken from the front-right cor-
ner of a car, or the broadside of a ship). High-loss examples are challenging for even humans
to classify. In the �fth image of Figure 2b., the image of the truck is obstructed by two people.
There are also many birds, ships, and planes represented in high-loss examples as they are hard
to distinguish from each other.

Motivated by the hinge loss [102], which provides zero loss whenever an example is correctly
predicted by su�cient margin, this chapter introduces Selective-Backprop (SB), a simple and ef-
fective sampling technique for prioritizing high-loss training examples throughout training. We
suspect, and con�rm experimentally, that examples with low loss correspond to gradients with
small norm and thus contribute little to the gradient update. Thus, Selective-Backprop uses the
loss calculated during the forward pass as a computationally cheap proxy for the gradient norm,
enabling us to decide whether to apply an update without having to actually compute the gra-
dient. Selective-Backprop prioritizes gradient updates for examples for which a forward pass
reveals high loss, probabilistically skipping the backward pass for examples exhibiting low loss.

By reducing computation spent on low-loss examples, Selective-Backprop reaches a given
target accuracy signi�cantly faster. Figure 3.1 shows this e�ect for one experiment in our evalua-
tion. As seen in the �rst stacked bar (“Traditional”), in which every example is fully trained on in
each epoch, backpropagation generally consumes approximately twice the time of forward prop-
agation [16]. In this experiment, Selective-Backprop (second stacked bar) reduces the number of
backpropagations by ≈70% and thereby cuts the overall training time in half. Across a range of
models and datasets, our measurements show that Selective-Backprop speeds training to target
errors by up to 3.5x.
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Figure 3.2: Example images from CIFAR10

Given Selective-Backprop’s reduction of backpropagations, over half of the remaining train-
ing time is spent on forward passes, most of which correspond to non-selected examples. These
forward passes do play an important role, though, because the loss order of examples varies
throughout training and varies more with Selective-Backprop. A model might generate relatively
low loss on a given example after some training, but progressively higher losses on the same ex-
ample if it is ignored for several epochs [45]. Selective-Backprop evaluates sampling probabilities
on the basis of an up-to-date forward pass, ensuring its assessment of the network’s performance
on the example is out of date.

The number of forward passes can be reduced, however, by allowing for some staleness in
the selection process. One simple approach, for which we call the corresponding SB variant
StaleSB (third stacked bar), is to perform forward passes to inform selection only every nth epoch.
In intervening epochs, StaleSB uses the results of the most recent previous forward pass of an
example for selection, though it needs an up-to-date forward pass for the training of selected
examples. For n=3, Figure 3.1 shows that StaleSB avoids approximately half of all forward passes,
reducing training time by 26% relative to Selective-Backprop with minimal loss in �nal accuracy.
Although our experiments show StaleSB captures most of the potential reduction, we also discuss
other approaches to reducing selection-associated forward pass time.

Selective-Backprop requires minimal modi�cations to existing training protocols, applies broadly
to DNN training, and works in tandem with data augmentation, cutout, dropout, and batch nor-
malization. Our experiments show that, without changing initial hyperparameters, Selective-
Backprop and StaleSB can decrease training times needed to achieve target error rates. Across
a wide range of con�guration options, including training time budgets, Selective-Backprop and
StaleSB provide most of the Pareto-optimal choices. Sensitivity analyses also show that Selective-
Backprop is robust to label error and e�ective across a range of selectivity settings.

This section makes three primary contributions: (1) The design and evaluation of Selective-
Backprop and StaleSB, practical and e�ective sampling techniques for deep learning; (2) Measure-
ments showing that, compared to traditional training, SB and StaleSB reduce the time required to
achieve target errors on CIFAR10, CIFAR100, and SVHN by up to 3.5x and 5x, respectively; and
(3) Comparison to a state-of-the-art importance sampling approach introduced in [61], showing
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that SB and StaleSB reduce training times needed to achieve target accuracy by 1.02–1.8x and
1.3–2.3x, respectively.

3.2 Related work

Several papers propose to reduce variance and accelerate neural network training. The key idea
of these techniques is to bias the selection of examples from the training set, selecting some ex-
amples with higher probability than others. A common approach is to use importance sampling,
where the goal is to more frequently sample rare examples that might correspond to large up-
dates. Classic importance sampling techniques weight the items inversely proportional to the
probability that they are selected, producing an unbiased estimator of the stochastic gradient.
Previous approaches use importance sampling to reduce the number of training steps to reach
a target error rate in classi�cation [32, 57, 85], reinforcement learning [105], and object detec-
tion [78, 109]. These works generate a distribution over a set of training examples and then train
a model by sampling from that distribution with replacement. They maintain historical losses for
each example, requiring at least one full pass on all data to construct a distribution, which they
subsequently update over the course of multiple training epochs. Consequently, these approaches
must maintain additional state proportional to the training set in size and rely on hyperparam-
eters to modulate the e�ects of stale history. In contrast, the base Selective-Backprop approach
does not require such state, though some optimization options do.

The approach most related to ours [61] also removes the requirement to maintain history,
providing a fully-online approach to importance sampling for classi�cation. Similar to Selective-
Backprop, it uses extra forward passes instead of relying on historical data, allowing it to scale
more easily to large datasets, and it also makes decisions based on an up-to-date state of the
network. Their sampling approach, however, predetermines the number of examples selected
per batch, so example selection is dictated by the distribution of losses in a batch. It also relies on
a variable starting condition. We compare against this technique in Section 3.6.

Importance sampling and curriculum learning are common techniques for generalizing DNNs.
Di�ering philosophies motivate these approaches: supplying easy or canonical examples early
in training as in self-paced learning [9, 70], emphasizing rare or di�cult examples to acceler-
ate learning, or avoiding over�tting [6, 54, 60], targeting marginal examples that the network
oscillates between classifying correctly and incorrectly [13], or taking a black-box, data-driven,
approach [55, 89, 101]. These works improve target accuracy on image classi�cation tasks, and
datasets with high label error [55, 101]. These techniques, however, do not target and analyze
training speedup [9, 13, 60, 70], often adding overhead to the training process by, e.g., training an
additional DNN [55, 60, 126] or performing extra training passes on a separate validation set [101].
For instance, [126] requires running an additional DNN asynchronously on separate hardware
to speed up training.
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3.3 Loss-based sampling with Selective-Backprop

3.3.1 Background

Selective-Backprop can be applied to standard mini-batch stochastic gradient descent (SGD), and
is compatible with variants such as AdaGrad, RMSprop, and Adam that di�er only in learning
rate scheduling. The goal of SGD is to �nd parameters w∗ that minimize the sum of the losses L
for a model f (w) with d parameters over all points (indexed by i) in a dataset D consisting of n
examples (xi , yi ).

w∗ = argminw∈Rd

n∑
i=1

L( fw(xi ),yi )
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Figure 3.5: Similarity between gradients calculated on the original batch and subsampled batches when
training MobilenetV2 on CIFAR10. After the �rst epoch, high-loss examples are more similar than random
subsampling by both cosine similarity and fraction of weights with same sign.

SGD proceeds in a number of iterations, at each step selecting a single example i and updating
the weights by subtracting the gradient of the loss multiplied by a step-size parameter η.

wt+1 = wt − ηt∇wL( fwt (xi ),yi )

In minibatch gradient descent, at each step, one selects a subset of examplesMt , often by sampling
from D at random without replacement, traversing the full training set once per epoch, applying
the update

wt+1 = wt − ηt
∑

xi ,yi∈Mt

∇wL( fwt (xi ),yi )

We refer to this approach as Traditional.

3.3.2 Selective-Backprop

Selective-Backprop also traverses the training set once per epoch, but, like other selection-based
acceleration techniques, it generates batches using a non-uniform selection criteria designed to
require fewer backward pass calculations to reach a given loss. To construct batches, Selective-
Backprop selects each example with a probability that is a function of its current loss as deter-
mined by a forward pass through the network: P(L( fw(xi ),yi )).

In each epoch, Selective-Backprop randomly shu�es the training examples D and iterates
over them in the standard fashion. However, for each example i , after computing a forward pass
to obtain its loss L( fw(xi ),yi ), Selective-Backprop then decides whether to include the example
for a gradient update by selecting it with probability P(L) that is a function of the current loss.
Selecting a su�cient number of examples for a full batch (Mt ) for a gradient update typically
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Algorithm 1 Selective-Backprop training loop.
function train_epoch(data, bSize)

batchbp ← []
for all batchfp in data.getBatches(bSize) do

losses ← net .Forward(batchfp)
for i ← 0 to bSize − 1 do

example ← batchfpi
prob ← sb .CalcProb(lossesi ) . See Eqn. 3.1
if choose (prob) then

batchbp .append(example, lossesi )
end if
if batchbp .size == bSize then

net .Backward(batchbp )
batchbp ← []

end if
end for

end for
end function

requires forward pass calculations on more than Mt examples. After collecting a full batch, SB
updates the network using gradients calculated based on this batch. Alg. 1 details this algorithm.

Setting the selection probability to 1 for all examples expresses standard minibatch SGD. For
Selective-Backprop, we develop an intuitive heuristic whereby examples with higher loss are
more frequently included in updates (Figure 3.2b), while those with the lower losses (Figure 3.2a)
are included less frequently. Our experiments show that suppressing gradient updates for low-
loss examples has surprisingly little impact on the updates. For example, we empirically �nd that
the sign of over 80% of gradient weights is maintained, even when subsampling only 10% of the
data with the highest losses (Fig. 3.5b). Since recent research has demonstrated that the sign of the
gradient alone is su�cient for e�cient learning [10], this bodes well for our method. Moreover,
gradients calculated with only the highest loss examples maintain higher cosine similarity to
those calculated with all examples as compared to randomly subsampling examples in a batch
(Fig. 3.5a).

Alg. 1 also details our heuristic for settingP(L). We setP(L) to be a monotonically increasing
function of the CDF of losses across the example set. In Figure 3.3, we show an example of
historical losses snapshotted during training. Because recomputing the complete CDF after each
update is not practical, we approximate the current CDF using a running tally of the losses of the
last R examples, denoted by CDFR :

P
(
L( fw(xi ),yi )

)
=

[
CDFR

(
L( fw(xi ),yi )

)]β
, (3.1)

where β > 0 is a constant that determines Selective-Backprop’s level of selectivity and thus
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allows us to modulate the bias towards high-loss examples where larger values produce greater
selectivity (Figure 3.4). We include a sensitivity analysis of β in Section 3.6.

3.4 Reducing selection overhead

3.4.1 StaleSB reuses previous losses

Selective-Backprop accelerates training by reducing the number of backward passes needed to
reach given levels of loss. In our experiments (Section 3.6), we �nd that after reducing backward
passes with Selective-Backprop, the largest remaining fraction of training time is the full (original)
complement of forward passes used to select the Selective-Backprop batches. We distinguish
these forward passes from the forward passes used for training by referring to them as “selection
passes” in the rest of the chapter. This section describes four approaches to reducing the time
spent in selection passes of Selective-Backprop training, thereby further reducing overall training
time.

Re-using previous losses. Selective-Backprop’s selection pass uses the latest model param-
eters to compute up-to-date losses for all training examples considered. We de�ne and evaluate
a Selective-Backprop variant called StaleSB that executes selection passes every nth epoch. The
subsequent (n − 1) epochs reuse the losses computed by the previous selection pass to create
the backprop batch. The losses are reused in the following epoch(s), but only for batch forma-
tion. Intuitively, if an example is deemed important in a given selection pass, it will also have
a high probability of being selected in the next (n − 1) epochs. StaleSB with n = 1 is Selective-
Backprop. We evaluate StaleSB in Section 3.6 and �nd that, typically, it reduces selection pass
cost signi�cantly without impacting �nal accuracy.

3.4.2 Further optimizations

Using predicted losses. Rather than simply re-using the loss from an earlier epoch for selecting
examples, one could construct a Selective-Backprop variant that predicts the losses of examples
using historical loss values. To make the problem easier, instead of predicting the loss directly, one
could predict whether the loss is high enough to cross the threshold for selection. We evaluated
various prediction approaches, including tracking a exponentially weighted average of historical
losses and using historical losses to train a Gaussian process predictor. None outperformed the
simpler StaleSB approach.

Pipelining loss computation. Given multiple computation engines, one could construct
a Selective-Backprop variant that selects examples for batch N + 1 on a separate engine while
training with batch N is ongoing. Such an approach would require using losses computed from
stale versions of the model, but could mask nearly all training delays for selection and could do so
without the “history size” concerns that would arise for the above approaches when training with
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Figure 3.6: Select probabilities of �ve examples when training MobilenetV2 on CIFAR10. Each line rep-
resents one image. Likelihood of selection �uctuates more when sampling is introduced.

giant or continuous datasets. Running a separate model for loss computation would, however,
introduce a new overhead of occasionally syncing the selection model to re�ect changes to the
training model.1 This introduces a new trade-o� between frequency of syncing the selection
model and the amount of staleness introduced to the selection process.

Although one could use equivalent GPUs for such pipelining, it is unclear that this would
be better than data-parallel training. Rather, we think the natural application of the pipelining
approach would be in combination with the inference accelerators discussed next—that is, a low-
cost inference accelerator could be used to compute losses for example selection, and then a
powerful compute engine could be used for training on batches of selected examples.

Inference accelerators. For general-purpose hardware and training frameworks, the cost
of the backward pass is approximately twice the forward pass cost. This is because during the
forward pass, we calculate one convolution per convolutional layer, whereas in the backward
pass we perform two: one convolution to calculate the gradients w.r.t the input data and another
w.r.t to the layer weights [8]. But, a variety of inference acceleration approaches, such as reduced
precision or quantization, may enable specialized hardware accelerators to run forward passes
≈10x faster than a backward pass on a modern GPU [58]. Since SB selects examples by running
a forward pass, it can use such accelerators. Although aggressive forward-pass acceleration can
a�ect the outcome of training, use of inference acceleration for Selective-Backprop’s selections
may not have the same negative consequences. We leave exploration of this approach to reducing
selection time to future work, but include it in this list for completeness.

1Using modern deep learning frameworks such as PyTorch, we found that copying a new model and moving it
to a second device can take up to a minute.
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3.5 Implementation

We built prototypes of SB for PyTorch 0.4.1 and Keras 2.2.4; the Section 3.6 evaluation is based
on the former.

To add SB into existing training code, we introduce a mathematically simple probabilistic
�ltering step to training, which down-selects examples used for updates. Filtering starts by cal-
culating the loss for each example using a forward pass. SB adds the loss to CDFR (implemented
using a bounded queue), and calculates what percentile of losses it represents. Using this per-
centile, SB calculates the selection probability P, and probabilistically adds this example to the
minibatch for training. We measure the overhead introduced by SB’s selection step, excluding
time spent in selection passes, to ≈3% of overall training time.

Selective-Backprop’s lightweight �ltering step is simple to implement and requires few changes
to existing training code. In traditional setups, data is formed into minibatches for training. In SB,
data is formed into selection minibatches and fed into SB’s �ltering mechanism. SB performs for-
ward passes of selection minibatches (“selection passes”), forms a training minibatch of selected
data examples, and passes it to the original training code. Therefore, the training code can be
agnostic to SB’s �ltering mechanism, allowing SB to work in tandem with any training optimizer
(e.g., SGD, Adam) and common optimizations such as batch normalization, data augmentation,
dropout, and cutout.

Future implementation optimizations. Our SB implementation minimizes changes to ex-
isting code, and some obvious potential optimizations are not currently incorporated. For in-
stance, in our implementation, two forward passes are performed for each selected example: one
for selection and one for training. Unless selection passes are accelerated using reduced precision
or quantization, which is not the case in our implementation, a more optimized SB implementa-
tion could cache the activations obtained from the selection passes to avoid doing extra forward
passes for training, and thus eliminate the time spent in “Forwards (training)” for SB shown in
Figure 3.1. Another optimization would use a minibatch size for selection that is larger than that
of training, to reduce the number of selection passes needed to populate a training minibatch.

3.6 Evaluation

We evaluate Selective-Backprop’s e�ect on training with modern image classi�cation models us-
ing CIFAR10, CIFAR100, and SVHN. The results show that, compared to traditional training and a
state-of-the-art importance sampling approach [61], SB reduces wall-clock time needed to reach
a range of target error rates by up to 3.5x (Section 3.6.2). We show that by reducing the time
spent in example selection, one can further accelerate training by on average 26% (Section 3.6.3).
Additional analyses show the importance of individual SB characteristics, including selection of
high-loss examples and robustness to label error (Section 3.6.4). Throughout the evaluation, we
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also show that the speedup achieved by a SB depends the learning rate schedule, sampling selec-
tivity, and target error. Section 3.6.5 shows that, across a sweep of con�gurations, the majority
of Pareto-optimal trade-o� points come from Selective-Backprop and StaleSB. We also provide
a sensitivity analysis for SB in Section 3.6.4 and the results from two additional learning rate
schedules in the appendix.

3.6.1 Experimental setup

We train Wide Resnet, ResNet18, DenseNet, and MobileNetV2 [43, 50, 104, 124] using SB, Tradi-
tional as described in Section 3.3, and our implementation of Kath18 [61] with variable starting, no
bias reweighting, and using loss as the importance score criteria. We tune the selectivity of SB and
Kath18 individually for each dataset. In our evaluation, we present the results of training Wide
Resnet. To train Wide Resnet, we use the training setup speci�ed by [26], which includes stan-
dard optimizations including cutout, batch normalization and data augmentation. We observe
similar trends when using ResNet18, DenseNet, and MobileNetV2, and present those results in
the appendix. In each case, we do not retune existing hyperparameters. We report results using
the default batch size of 128 but con�rm that the trends remain when using batch size 64.

CIFAR10. The CIFAR10/100 datasets [67] contain 50,000 training images and 10,000 test
images, divided into 10 and 100 classes, respectively. Each example is a 32x32 pixel image. We
use batch_size = 128 and cutout of length 16. We use an SGD optimizer with decay = 0.0005. We
train with two learning rate schedules. In the �rst schedule, we start with lr = 0.1 and decay by
5x at 60, 120, and 160 epochs. In the second schedule, we decay at 48, 96, and 128 epochs. We use
33% selectivity for SB, StaleSB, and Kath18. Training ends after 12 hours.

CIFAR100. We train on CIFAR100 using the setup speci�ed by Devries [26]. We use batch_size =
128. and cutout of length 8. We train with two learning rate schedules. First, we start with lr = 0.1
and decay by 10x at 60 and 120. In the second learning rate schedule, we decay at 48 and 96 epochs.
We use 50% selectivity for SB, StaleSB, and Kath18. Training ends after 12 hours.

SVHN. SVHN has 604,388 training examples and 26,032 testing examples of digits taken from
Street View images [92]. We initialize the learning rate to 0.1 and decay to 0.01 and 0.001 at epochs
5 and 10, respectively. We use batch_size = 128 and cutout of length 20. We use 25% selectivity
for SB and StaleSB, and 33% selectivity for Kath18. Training ends after 96 hours.

Hardware. We train CIFAR10 and CIFAR100 on servers equipped with 16-core Intel Xeon
CPUs, 64 GB RAM and NVIDIA TitanX GPUs. We train SVHN on servers with four 16-core AMD
Opteron CPUs, 128 GB RAM, and NVIDIA Tesla K20c GPUs.

3.6.2 Selective-Backprop speeds up training

SB reduces training iterations to target error. SB probabilistically skips the backward passes
of examples with low loss in order to learn more per example. Figure 3.7 shows that SB reaches
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Figure 3.7: SB reduces training iterations to target error. S is the selectivity used, and Err is the �nal test
error reached.
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�nal or non-�nal target error rates with fewer training iterations (updates to the network). This
can be seen by comparing the x-axis points at which lines for each approach reach a particular
y-axis value. Note that we plot di�erent y-axes for di�erent datasets. Although the savings
depends on the speci�c target test error rate chosen, one way to visualize the overall speedup
across di�erent target accuracy is by comparing the area under the three curves. SB reaches
nearly every test error value with signi�cantly fewer training iterations.

SB reduces wall-clock time to target error. Figure 3.8 shows error rate as a function of
wall-clock time. SB speeds up time to target error rates by reducing backward passes, without
optimizations to reduce selection time discussed in Section 3.6.3. Table 3.1 shows that for CI-
FAR10, SB reaches within 10%, 20%, and 40% of Traditional’s �nal error rate 1.2–1.5x faster. For
SVHN, SB provides a 3.4–5x speedup to reach 1.8%, 2.1%, and 2.4% error.

Intuitively, SB is most e�ective on datasets with many redundant examples or examples that
are easy to learn. CIFAR100 is a more challenging dataset for sampling as there are fewer examples
per class and therefore likely less redundancy. Despite this, SB reaches within 20% and 40% of the
Traditional’s �nal error rate 20% faster. However, it sacri�ces a small amount of �nal accuracy
for these speedups and does not reach within 10% of Traditional’s �nal error rate in the allotted
training time. Kath18 also accelerates training over Traditional by 0.8–3.4x. Similarly to SB, it is
most e�ective on SVHN and least e�ective on CIFAR100, even leading to a small slowdown to
certain target error rates. SB provides a speedup over Kath18 of 1.02–1.8x.

Selective-Backprop performs better on challenging examples. SB converges faster than
Traditional by outperforming Traditional on challenging examples. Figure 3.9 shows an inverse
CDF of the network’s con�dence in each ground truth label of the test set; the data represents
a snapshot in time after training SB or Traditional for ten epochs. For each percentile, we plot
the target con�dence on the y-axis (e.g., the 20th percentile of target con�dences for SB is 55%).
The network’s classi�cation is the class with the Top-1 con�dence (using argmax). Therefore,
we cannot infer the classi�cation accuracy of an example solely from its target con�dence (if
the target con�dence is ≤ 50%). In Figure 3.10, we also plot the accuracy of each percentile
of examples. Generally, examples at lower percentiles are harder for the network to accurately
classify. Using SB, the network has higher con�dence and accuracy in these lower percentiles. For
instance, among the examples at the 20th percentile of target con�dences, 29% of these examples
are classi�ed correctly using SB while only 3% are classi�ed correctly by Traditional. While this
comes at the cost of con�dence in higher percentile examples, test accuracy is not sacri�ced. In
fact, SB is able to generalize better across all examples of all di�culty levels.

3.6.3 Reducing selection times further speeds training

In Figure 3.11, we see that SB reduces total time to target error rates compared to Traditional by
reducing the time spent in the backward pass. In Figure 3.11a and Figure 3.11b, both Traditional
and SB take the same number of epochs to reach the target error rate. However, SB performs
more overall forward passes. As described in Section 3.5, this is because we perform one selection
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Dataset Strategy Final error
of Traditional

Speedup to
�nal error × 1.1

Speedup to
�nal error × 1.2

Speedup to
�nal error × 1.4

CIFAR10 SB 2.96% 1.4x 1.2x 1.5x
CIFAR10 StaleSB 2.96% – 1.5x 2.0x
CIFAR10 Kath18 2.96% 1.4x 1.1x 1.3x

CIFAR100 SB 18.21% 1.2x 1.2x 1.2x
CIFAR100 StaleSB 18.21% 1.5x 1.0x 1.6x
CIFAR100 Kath18 18.21% 1.1x 0.8x 0.8x

SVHN SB 1.72% 3.4x 3.4x 3.5x
SVHN StaleSB 1.72% 4.3x 4.9x 5.0x
SVHN Kath18 1.72% 1.9x 2.8x 3.4x

Table 3.1: Speedup achieved by SB and Kath18 over Traditional
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Figure 3.8: SB reduces wall-clock time to target error. S is the selectivity used, and Err is the �nal test
error reached.

28



Figure 3.9: SB has higher con�dence in harder ex-
amples with almost no cost of con�dence in easy
examples.
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Figure 3.10: SB increases accuracy of harder ex-
amples, without sacri�cing accuracy of easy exam-
ples.
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Figure 3.11: SB reduces time spent in the backward pass in order to speed up time to the target error rate
(in this case, 1.4x of Traditional’s �nal error rate). StaleSB further accelerates training by reducing the time
spent performing selection passes.
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forward pass for each candidate example, plus one training forward pass for each selected exam-
ple. The “Other” bar shown for each run includes per-run overheads (e.g., loading the dataset into
memory and the network onto the GPU) and per-epoch overheads (e.g., evaluating test accuracy).

Using stale losses to reduce selection passes. After SB’s reduction of backward passes
performed, over half of the remaining training time is spent on forward passes. We evaluate
StaleSB, which uses the losses of forward passes from previous epochs to perform selection. With
StaleSB, we run fewer selection passes, running them only every n = 2 or n = 3 epochs. That is,
if n = 2, an example that incurs a high loss has a high chance of being trained on in the next two
epochs, instead of just one. In Figure 3.11, we see that StaleSB with n = 3 reduces the time spent
performing selection passes by two-thirds, thereby further reducing the total wall-clock time. In
Figure 3.12, we see that the reduced number of total forward passes in StaleSB has little e�ect on
�nal error. StaleSB’s ability to reduce selection passes while maintaining test accuracy leads to
the end-to-end speedups shown in Table 3.1. On average, StaleSB with n = 3 reaches target error
rates 26% faster than SB. With n = 3, we believe StaleSB captures most of the bene�ts of reducing
selection passes, though we have not yet experimented with values of n > 3.

3.6.4 Selective-Backprop sensitivity analysis

SB is robust to modest amounts of label error. One potential downside of SB is that it could
increase susceptibility to noisy labels. However, we show that on SVHN, a dataset known to
include label error [95], SB still converges faster than Traditional to almost all target error rates.
We also evaluate SB on CIFAR10 with manually corrupted labels. Following the UniformFlip
approach in [101], we randomly �ip 1% (500 examples), 10% (5000 examples) and 20% (10000
examples).

Fig 4.2 shows that SB accelerates training for all three settings. With 1% and 10% of examples
corrupted, SB reaches a comparable �nal test accuracy. With 20% corruption, SB over�ts to the
incorrect labels and increases the �nal test error. So, while SB is robust to modest amounts of
label error, it is most e�ective on relatively clean, validated datasets.

Higher selectivity accelerates training, but increases �nal error. Tuning β in Equa-
tion 3.1 changes SB’s selectivity. In Figure 3.14, we see that increasing SB’s selectivity, focusing
more on harder examples, increases the speed of learning but can cause result in higher �nal
error. For CIFAR10, SB reaches within 0.92% of Traditional’s �nal error rate with 20% selectiv-
ity. For CIFAR100, it reaches within 2.54% of the �nal error rate with 25% selectivity. As with
other hyperparameters, the best selectivity depends on the target error and dataset. Overall, we
observe that SB speeds up training with a range (20–65%) for selectivity.

SB using additional learning rate schedules. We train SB using the provided learning
rate schedule in [26] which reproduces state-of-the-art accuracies on CIFAR10, CIFAR100, and
SVHN for Wide Resnet with Cutout. We also train using a static learning rate schedule to adjust
for confounding factors, as well as an accelerated learning rate schedule. In both cases, we see
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the same trends as with the initial learning rate. We include the con�gurations in Section 3.6.5
and the training curves in the appendix.

3.6.5 Putting it all together

The optimal training setup to reach a certain target error rate depends on a variety of factors.
In the previous sections, we compared Traditional, SB, StaleSB, and Kath18 using a variety of
di�erent con�gurations. In Figure 3.15, we plot the wall-clock time needed to reach a range of
target error rates for all four strategies, each trained with two learning rate schedules and run
with di�erent selectivities. A small subset of con�gurations make up the Pareto frontier, which
represent the best strategy for a given target error rate. Points on the Pareto frontier are colored
in bold whereas suboptimal points are shown with transparency.

SB provides the majority of Pareto-optimal con�gurations. As an approximate signal
for robustness of our strategy, we calculate the fraction of Pareto points provided by SB and
StaleSB, Kath18 and Traditional. For a majority of training time budgets, SB gives the lowest
error rates. For CIFAR10, CIFAR100, and SVHN, SB and its optimized variant StaleSB account for
72%, 47% and 80% of the Pareto-optimal choices, respectively. The exception is cases with very
large training time budgets, where Traditional reaches lower �nal error rates than SB. Overall,
Traditional accounts for 10%, 43% and 6% of Pareto points in CIFAR10, CIFAR100 and SVHN,
respectively. As shown in Table 3.1, SB is also faster than Kath18, a state-of-the-art importance
sampling technique for speeding up training, while achieving the same �nal error rate. Kath18
provides 10%, 8% and 14% of Pareto-optimal points.

Practicality. Selective-Backprop reduces training iterations and wall-clock time needed to
achieve a target error rate with little programmer e�ort. We evaluated Selective-Backprop with
a diverse set of network architectures and datasets. In each case, we did not retune initial hyper-
parameters from canonical setups. Most of these training setups included traditional accuracy-
boosting techniques, including data augmentation, cutout, dropout, and batch normalization.
Selective-Backprop still improved training atop these existing optimizations. Selective-Backprop
is also mathematically lightweight and simple to add to code.
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Figure 3.12: Increasing loss staleness reduces number of forward passes with little loss in accuracy.
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Figure 3.13: SB reaches similar test error rates compared to Traditional with 1% and 10% shu�ed labels.
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Figure 3.14: SB accelerates training for a range of selectivities. Higher selectivity gives faster training but
can increase error.
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Figure 3.15: Pareto-optimal points for training time vs error trade-o� are opaque and �lled. SB and StaleSB
o�er the majority of Pareto-optimal options for trading o� training time and accuracy.
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Chapter 4

Adapting Selective-Backprop’s Prioritization
Function

In this chapter, we address a fundamental limitation of the Selective-Backprop approach pre-
sented in the previous chapter. Although Selective-Backprop dynamically determines which ex-
amples are challenging, it keeps the mapping of loss percentile to selection probability as static.
For example, a training example that exhibits a loss in the 50th percentile of historical losses will
always be backpropped 50% of the time. Although this static heuristic used in Selective-Backprop
works well on a variety of datasets, it su�ers on datasets with label error, often performing worse
than traditional training.

The intuition behind the worse performance of Selective-Backprop is that by our current def-
inition of challenging examples (i.e., examples with high loss), mislabeled examples are challeng-
ing and thus prioritized. This is a fundamental drawback of static prioritization. In this chapter,
we show that dynamically adapting the prioritization function to the dataset increases robustness
to label error. In addition, we also adapt the prioritization function during training time and show
that doing so improves training sample e�ciency.

Our intuition for tuning the degree of prioritization is that the usefulness of challenging ex-
amples varies based on the dataset and the time in training. For instance, although prioritizing
challenging examples is useful when high-loss examples are informative, it is harmful when these
examples are noisy or mislabeled. We test this intuition by tuning Selective-Backprop’s degree
of prioritization to the dataset and during di�erent times in training, using a variant of Selective-
Backprop that we term AdaptSB. AdaptSB generalizes Selective-Backprop by relaxing the as-
sumption that high-loss examples should always be prioritized. Instead, we allow for arbitrary
prioritization functions that map an example’s relative loss compared to historical examples, to
the probability of selecting that example. We �nd that tailoring this prioritization function to the
dataset makes AdaptSB applicable to more datasets than Selective-Backprop (Section 4.3).

Di�erent degrees of example di�culty have di�erent utility at di�erent stages of training. For
example, related work in curriculum learning shows that it is useful to �rst train on examples
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Figure 4.1: AdaptSB accelerates training compared to Selective-Backprop and Traditional by tailoring the
prioritization function to the dataset and training time.

that are easy for the network to classify and then gradually introduce harder examples [9]. We
explore this idea in AdaptSB: We optimize the prioritization function multiple times over the
course of training. We �nd that dynamically adapting the prioritization function during training
time reduces the number of samples needed to reach a target error (Section 4.4).

4.1 Related work

AdaptSB uses importance sampling to bias the training dataset towards useful examples, while de-
prioritizing mislabels. We contextualize AdaptSB’s approach amongst other importance sampling
and re-weighting techniques that mitigate these kinds of dataset bias. AdaptSB also determines
what examples are useful at di�erent stages of training, and samples those disproportionately.
This idea has been well studied in the literature of curriculum learning. We provide an overview
of the work done.

Mitigating training set bias. When using AdaptSB, there exists a tension between two op-
posing factors. On the one hand, AdaptSB should prioritize high-loss examples to learn from
challenging, out-of-distribution examples. On the other hand, high-loss examples could be mis-
labeled examples that AdaptSB should de-prioritize. This tension also applies to prior loss-based
sampling approaches [14, 85, 90, 109]; Selective-Backprop is one such approach. These techniques
prioritize examples with larger training losses, increasing their sensitivity to label error [101].

Techniques that tackle the problem of noisy labels [7, 35, 54, 75, 81, 100] do not bene�t from
prioritizing out-of-distribution examples. Some of these techniques use sampling to prioritize
examples with lower training losses [81]; others re-weight losses, or change the DNN model to
increase its robustness.
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AdaptSB balances the presence of both out-of-distribution challenging examples and misla-
beled examples in the same dataset. Similar to AdaptSB, Ren et al. [101] improve training on
datasets with both types of biases, albeit with a di�erent goal than ours. Their approach re-
weights examples based on their performance on a small, unbiased validation set and aims to
improve model generalization. In contrast, in AdaptSB, we use an importance sampling approach
with the goal of improving training e�ciency.

Curriculum learning. In the �eld of curriculum learning, DNNs are trained using heuristics
designed to emphasize di�erent examples at di�erent times in training. Di�ering philosophies
motivate these approaches, such as supplying easy or canonical examples early in training as in
self-paced learning [9, 70]; and emphasizing rare and di�cult examples to accelerate learning
or to avoid over�tting [6, 54, 60]. Our work takes a data-driven approach instead of applying a
heuristic, by testing the usefulness of examples of di�erent degrees of di�culty with a hyperpa-
rameter search.

4.2 AdaptSB

AdaptSB is a variant of Selective-Backprop that dynamically prioritizes di�erent example dif-
�culties when encountering di�erent datasets and stages of training. For example, challenging
examples may be useful when training on a sanitized dataset, but could be detrimental when they
include mislabeled examples.

4.2.1 Prioritization functions

We control the relative prioritization of examples with di�ering degrees of di�culty using a pri-
oritization function, F. A prioritization function maps the relative loss of an example to the
probability of selection for training. Formally, we de�ne it as:

P
(
L( fw(xi ),yi )

)
= F

[
CDFR

(
L( fw(xi ),yi )

)]
CDFR is a running tally of the losses of the last R examples and P is the probability that

example i is selected for backprop. L is our loss function used to compare the output of model
fw on example xi and the ground truth, yi . F maps from [0,1] to [0,1]. In Selective-Backprop,
we chose F to be an exponential transform so that low values of CDFR have a low probability of
selection. In AdaptSB, we relax this constraint, and optimize F to accelerate training on a given
dataset or stage of training.
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4.2.2 Optimizing the prioritization function

We search the space of possible Fs with a hyperparameter search. The goal is to �nd a function
that minimizes the �nal error rate given a training time budget. During the search, a Gaussian
process algorithm proposes candidate functions. Compared to using a random search algorithm,
we found that a Gaussian process was more e�cient at �nding functions that minimized �nal
error. AdaptSB uses the prioritization for training for a time budget and reports the �nal error to
the search algorithm. These results are used to inform the next candidate prioritization until the
search is completed.

We design the structure ofF to be expressive but also tractable for our hyperparameter search.
For instance, the exponential transforms used in Selective-Backprop are not expressive enough
to represent prioritization functions that deemphasize the most challenging examples. On the
other hand, a function where each Y-value is independently determined may be representative,
but not tractable to optimize. We use a function that falls in the middle.

We represent F with a linear interpolation of a �xed number of points, where the X-values are
set in advance and the Y-values are experimentally determined. In our experiments, we found
that a linear interpolation performed similarly to a cubic interpolation. We used four points,
because doing so allowed our optimization process to converge after trying ≈300 proposed Fs.
However, more points can be used if the computational resources and search time budget allow.
We chose to �x our X-values to 0, 0.5, 0.8, and 1. Intuitively, the �rst Y-coordinate dictates the
probability of selection for the example with the lowest loss. The second Y-coordinate dictates the
selection probability for the example with the median loss. We chose these X-values as it allowed
us to map all the points between 0 and 1, while focusing our degrees of freedom towards more
challenging examples. Figure 4.3 shows an example prioritization function. We found that with
this setup, optimizing F is both tractable and improves training (Section 4.3 and 4.4). However,
there are possible alternatives to F that may reduce the search time and further improve training.
We discuss some of these potential functions in Section 4.5.

4.2.3 AdaptSB end-to-end

We believe AdaptSB could be used for training end-to-end, as a replacement for Selective-Backprop.
AdaptSB has the same online training process as SB. It uses an example’s loss to determine its
likelihood of being sampled for training. However, while Selective-Backprop prioritizes high loss
examples, AdaptSB searches for and uses a tailored prioritization function, F. Compared to SB,
AdaptSB requires an additional step of searching for a prioritization function that minimizes er-
ror given a training time budget. In order to realize the end-to-end bene�t of AdaptSB, we need
to minimize the relative cost of its hyperparameter search.

If AdaptSB’s prioritization function is optimized once per dataset, the hyperparameter search
can be run o�ine before training starts. AdaptSB uses the training dataset (or a subset), and trains
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with di�erent prioritization functions. The best performing con�guration replaces the default
prioritization function and training then proceeds identically to that of Selective-Backprop.

AdaptSB can also adapt F over the course of training. In this case, the hyperparameter search
should be performed asynchronously and in parallel to training. That way, AdaptSB can �nd new
prioritization functions without disrupting training. Once the search is complete, the system will
dynamically update its prioritization function to the latest found con�guration. In order to run the
search asynchronously, AdaptSB uses a snapshot of the model. Since training doesn’t stop for the
hyperparameter search, the model used for optimization is stale. One way to minimize staleness
is to complete the hyperparameter search faster. However, both model staleness and reducing
the search time budget could adversely impact the �nal result. A future research direction is to
determine the trade-o� between stopping the hyperparameter search early and reducing model
staleness.

4.3 Evaluation: Dynamically adapting to datasets

By tailoring the prioritization function to the dataset, AdaptSB accelerates training on datasets
that Selective-Backprop does not perform well on. In particular, we �nd that Selective-Backprop
struggles to train models on datasets with label error because mislabeled examples, which gener-
ate high loss, are over-emphasized during training. For these datasets, AdaptSB learns to ignore
mislabels and trains more e�ciently than Selective-Backprop and traditional training with SGD.

Selective-Backprop is robust to small amounts of label error. We observe that Selective-
Backprop can increase susceptibility to noisy labels. On SVHN, a dataset known to include label
error [95], Selective-Backprop still converges faster than Traditional to almost all target error
rates (Chapter 3). In this section, we evaluate Selective-Backprop on CIFAR10 with manually
corrupted labels. Following the UniformFlip approach in [101], we randomly �ip 1% (500 exam-
ples), 10% (5000 examples) and 20% (10000 examples). Selective-Backprop accelerates training for
all three settings. While with 10% of examples corrupted, Selective-Backprop reaches a compa-
rable �nal test accuracy, with 20% corruption, Selective-Backprop over�ts to the incorrect labels
and increases the �nal test error (Figure 4.2). So, while Selective-Backprop is robust to modest
amounts of label error, it is most e�ective on relatively clean, validated datasets.

AdaptSB is more robust to label error. We use AdaptSB to train on CIFAR10 and CIFAR10
with injected mislabels. For each dataset, we run a hyperparameter search using a hold-out vali-
dation set. The search tries 300 potential con�gurations, training for two hours for each con�g-
uration. We use a Gaussian process algorithm to �nd con�gurations that maximize the average
accuracy of the last three epochs of training. The search took 40 hours to complete on 15 ma-
chines.

The best prioritization function found by AdaptSB de-prioritizes challenging examples for
datasets with mislabels (Figure 4.3). For CIFAR10 with 0% label error, AdaptSB prioritizes the
challenging examples that represent the 80th percentile of losses or higher. (Interestingly, it pri-
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Figure 4.2: Training diverges with Selective-Backprop on datasets with large amounts of label error.

oritizes the easiest examples over the 50th percentile of examples. We have not yet diagnosed why
this is the case.) When 10% of labels are randomized, AdaptSB de-prioritizes the most challenging
examples, only using them 40% of the time. When 20% of labels are randomized, the most chal-
lenging examples become the least used, only being selected for training less than 20% of the time.
We validate AdaptSB’s e�cacy by training using the chosen con�gurations for two hours on a
di�erent test set. On CIFAR10, AdaptSB achieves 0.15%, 4.06%, and 12.24% lower error compared
to Selective-Backprop with 0%, 10%, and 20% of test labels randomized (Figure 4.1), respectively.
While Selective-Backprop performs worse than Traditional on datasets with label error, AdaptSB
achieves a 1.82% and 4.06% lower error rate when 10% and 20% of labels are shu�ed, respectively.

While our experiments use randomly-injected label error, in real datasets with label error,
these mislabels are likely to be correlated. For example, it is more likely to mislabel a plane as a
ship than as a dog. While we believe that datasets with injected label error is a good starting point
to understanding the e�ect of increasingly more mislabels on training, an interesting direction
for future work is to analyse AdaptSB on datasets with true label error.

4.4 Evaluation: Dynamically adapting during training

We next apply AdaptSB’s hyperparameter search at di�erent stages of training to determine how
the optimal prioritization function changes over time. This is analogous to other adaptive hy-
perparamater schedulers (e.g., for setting the learning rate), which tune hyperparameters based
on the current state of training. We call this approach AdaptSB-Multi. Our analysis of AdaptSB-
Multi further supports the hypothesis of curriculum learning that di�erent examples are useful
at di�erent stages of training. We make the following observations.

High-loss examples are more useful later in training. First, we train CIFAR10 using the
setup speci�ed in Section 3.6. To observe which examples are the most sample-e�cient during
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Figure 4.3: The prioritization function AdaptSB �nds for each dataset. AdaptSB deemphasizes hard ex-
amples as more mislabels are introduced into CIFAR10.
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Figure 4.4: The prioritization function AdaptSB �nds for each stage of training. AdaptSB emphasizes hard
examples as training progresses.
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di�erent stages of training, we train for 0 epochs, 30 epochs, 70 epochs, and 160 epochs using Tra-
ditional and tune the prioritization function using the resulting models. Unlike Bengio et al. [9],
we do not �nd that easy examples should be emphasized early in training. Even at the start of
training, AdaptSB prioritizes challenging examples over easy examples. The examples that result
in the lowest percentile of loss are backpropped less than 25% of the time. However, our results
support Bengio et al.’s hypothesis that high-loss examples should be increasingly prioritized as
training proceeds. After 30 epochs of training, AdaptSB ignores examples that result in the lowest
50% of losses altogether (Figure 4.4).

AdaptSB-Multi �nds sample-e�cient examples. To put it all together, in AdaptSB-Multi,
we train using AdaptSB and continuously update the prioritization function by running additional
hyperparameter searches during training. Since a hyperparameter search is relatively costly,
there is a tradeo� between performance and the frequency of recomputing the prioritization
function. As an initial experiment, we train using a time budget for two hours and recompute the
prioritization curve three times: before training, after 40 minutes of training, and after 80 minutes
of training. We run the hyperparameter searches on a holdout validation set and measure the
results on the test set. For CIFAR10 with 0%, 10% and 20% labels shu�ed, AdaptSB-Multi reaches
a 0.6%, 0.7%, and 1% lower test error in absolute terms than AdaptSB (Figure 4.1).

4.5 Future work: Towards a wall-clock speedup

In the previous sections, we have shown that the prioritization function con�gurations proposed
by AdaptSB and AdaptSB-Multi allow us to reach lower target errors for the same training time
budget. However, to achieve end-to-end wall-clock speedups, the time spent in AdaptSB’s hyper-
parameter search must be taken into account. We believe that the hyperparameter search can be
small relative to the overall training time. There are two ways to achieve this. First, when using
AdaptSB on a very large dataset, such as Google’s internal JFT dataset which includes over 300
million training examples, the relative cost of a hyperparameter becomes smaller. AdaptSB can
be run on a small holdout dataset which is representative of the rest of the dataset. Second, there
are potential optimizations to AdaptSB that would reduce the absolute value of the time taken.
We save trying and evaluating these for future work but list them here for completeness.

4.5.1 Reducing the search space

One approach to reducing the hyperparameter search time is to reduce the search space. We
propose three possible techniques for doing so.

Discretize the possible hyperparameter values. Currently, AdaptSB searches for four hy-
perparameters, representing the Y-values of four static X-axis points. Each value is a probability,
and is therefore constrained as a real-value between 0 and 1. However, in order to reduce the
search space, we could quantize the possible values, e.g., to be one of ten values between 0 and
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1. We expect this to reduce the number of trials needed, as currently many of the later trials of
the hyperparameter search are spent tweaking one or two parameters by less than 0.1. However,
this may sacri�ce the �nal accuracy improvement gained by this �ne-tuning. The e�cacy of this
approach therefore depends on the sensitivity of AdaptSB and the dataset used.

Use domain-speci�c knowledge. Another approach to constraining the search space is to
employ domain-speci�c knowledge about our problem. For instance, we could assume that at
least one of the prioritization function Y values should be equal to 1. This is because we are
interested in �nding the relative priority between di�erent types of examples. We can always
normalize the highest priority bucket to have a probability of 1. Another approach is that if
we knew a dataset was well-sanitized (e.g., CIFAR10), we could assume that high-loss examples
should be prioritized. We could use AdaptSB to determine the correct intensity of prioritization
by constraining the prioritization function to monotonically increase.

Use a di�erent prioritization function. In AdaptSB, we chose to represent our prioritiza-
tion function with four points splined together as it is simple and easy to interpret. This function
abstraction requires a hyperparameter search for four free hyperparameters. Instead, we can
reduce the search space by using a prioritization function de�nition which has fewer free param-
eters. For example, the beta distribution uses only two hyperparameters but can be even more
expressive.

4.5.2 Faster search

In addition to reducing the size of the search space, we also suggest approaches to improve search
e�ciency.

Sensitivity analysis. We can conduct sensitivity analyses on the e�ect of small changes in
hyperparameter values, in order to understand the need for many trials or longer training time
budgets. For instance, we can experimentally search for the minimum number of trials in a hyper-
parameter search needed to reach 99% of the accuracy gains. We can also minimize the training
time used to determine the e�cacy of each potential con�guration.

Hyperparameter search algorithms. AdaptSB uses the Gaussian process algorithm, imple-
mented in Sherpa [28]. We can explore other search algorithms or hyperparameter tuners. For
instance, we could use Hyperband [74], which employs early stopping and is therefore likely able
to tune the prioritization function more e�ciently.

4.6 Conclusion

AdaptSB delivers Selective-Backprop’s bene�ts with less sensitivity to label error. It dynamically
chooses which degrees of example di�culty to prioritize. On datasets with label error, AdaptSB
de-prioritizes challenging examples and trains faster than traditional training and Selective-Backprop.
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On CIFAR10 with 20% of training labels shu�ed, AdaptSB decreases the error rate by 12.24% com-
pared to Selective-Backprop. AdaptSB-Multi further improves sample e�ciency by increasing the
emphasis on challenging examples over the course of training. Using AdaptSB-Multi over time
on CIFAR10 with 20% of training labels shu�ed further decreases the error rate by 1%. This
provides evidence to the bene�ts of dynamically adapting the prioritization of di�erent example
di�culties to the dataset and stage of training.
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Chapter 5

Adaptive Stem-Sharing for Multi-Tenant Video
Processing

5.1 Overview

Mainstream is a new video analysis system that jointly adapts concurrent applications sharing
�xed edge resources to maximize aggregate result quality. Mainstream exploits partial-DNN
(deep neural network) compute sharing among applications trained through transfer learning
from a common base DNN model, decreasing aggregate per-frame compute time. Based on the
available resources and mix of applications running on an edge node, Mainstream automatically
determines at deployment time the right trade-o� between using more specialized DNNs to im-
prove per-frame accuracy, and keeping more of the unspecialized base model to increase sharing
and process more frames per second. Experiments with several datasets and event detection tasks
on an edge node con�rm that Mainstream improves mean event detection F1-scores by up to 47%
relative to a static approach of retraining only the last DNN layer and sharing all others (“Max-
Sharing”) and by 87X relative to the common approach of using fully independent per-application
DNNs (“No-Sharing”).

Video cameras are ubiquitous, and their outputs are increasingly analyzed by sophisticated,
online deep neural network (DNN) inference-based applications. The ever-growing capabilities
of video and image analysis techniques create new possibilities for what may be gleaned from any
given video stream. Consequently, most raw video streams will be processed by multiple anal-
ysis pipelines. For example, a parking lot camera might be used by three di�erent applications:
reporting open parking spots, tracking each car’s parking duration for billing, and recording any
fender benders.

Mainstream focuses on improving video processing on edge devices, which will be a common
way to address bandwidth limitations, intermittent connectivity (e.g., in drones), and real-time
requirements. Applications executing at the edge, though, face tighter bounds on resource avail-
ability than in datacenters. Naturally, optimal video application performance requires tuning for
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Figure 5.1: Mainstream Architecture. O�ine, for each task, M-Trainer takes a labeled dataset and outputs
an M-Package. M-Scheduler takes independently generated M-Packages, and chooses the task-speci�c
degree of specialization and frame rate. M-Scheduler deploys the uni�ed multi-task model to M-Runner,
performing inference on the edge.

the resources available [21, 40, 59, 125, 129].

Unfortunately, what resources will be available to the application at deployment time is often
unknown to the developer. Further, resource availability changes as additional applications arrive
and depart. Instead, individual application developers typically develop their models in isolation,
assuming either in�nite resources or a predetermined resource allotment. When a number of
separately tuned models are run concurrently, resource competition forces the video stream to
be analyzed at a lower frame rate—leading to unsatisfactory results for the running applications,
as frames are dropped and events in those frames are missed. However, due to the popularity of
transfer learning (Sec. 2) [94, 98, 110, 123], contention can be reduced by eliminating redundant
computation between concurrent applications [40].

Mainstream is a new system for video processing that addresses resource contention by dy-
namically tuning degrees of work sharing among concurrent applications. Speci�cally, it focuses
on sharing portions of DNN inference, which consumes the majority of video processing cycles.
Mainstream exploits the potential “shared stem” of computation that results from application de-
velopers’ use of the standard DNN training approach of transfer learning. In transfer learning,
training begins with an existing, pre-trained DNN, which is then re-trained for a di�erent task.
Typically, only a subset of the pre-trained DNN is specialized; when di�erent applications start
with the same pre-trained DNN, Mainstream identi�es the common layers and executes them
only once per frame.

A critical challenge of exploiting shared stems well is determining how much to share. Appli-
cation developers usually specialize as much of the pre-trained DNN as is necessary to achieve
high model accuracy. More specialization, however, means that less of the pre-trained DNN can
be shared. Thus, there is an explicit trade-o� between the bene�ts of greater per-frame accuracy
(via more-specialized DNNs) and processing more frames of the input video stream (via more
sharing of less-specialized DNNs). The right choice depends on the edge device resources, the
number of concurrent applications, and their individual characteristics.
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Deployment time model selection. Mainstream moves the �nal DNN model selection
step from application development time to deployment time, when the hardware resources and
concurrent application mix are known. By doing so, Mainstream has the necessary informa-
tion to select the right amount of DNN specialization (and thus sharing) for each application.
As applications come and go, Mainstream can dynamically modify its choices. Previous sys-
tems like VideoStorm [125] select models by considering each application independently. The
specialization-vs-sharing trade-o�, however, can only be optimized when considering applications
jointly. Joint optimization produces a combinatorial set of options, which Mainstream navigates
using application metadata and domain-speci�c models; the system uses this information to es-
timate the e�ects of DNN specialization and frame sampling rate on application performance.
Unlike black-box approaches, Mainstream can jointly optimize for stem-sharing without need-
ing to pro�le each combination.

Mainstream consists of three main parts (Figure 5.1). The M-Trainer toolkit helps application
developers manage their training process to produce the information needed to allow tuning
the degree of specialization at deployment time. Current standard practice is for developers to
experiment with di�erent model types, hyperparameters, and degrees of re-training to �nd the
best choice for an assumed resource allocation, discarding the trained DNN models not chosen.
M-Trainer instead keeps “less optimal” candidate DNN models, together with associated training-
time information (e.g., per-frame accuracy, event detection window). The M-Scheduler uses this
information, together with a pro�le of per-layer runtime on the target edge device, to determine
the best candidate for each application—including the degrees of specialization and, thus, sharing.
It e�ciently searches the option space to maximize application quality (e.g., average F1 score
among the applications). The M-Runner runtime system runs the selected DNNs, sharing the
identical unspecialized layers.

Experiments with several datasets and event detection tasks on an edge node con�rm the im-
portance of making deployment-time decisions and the e�ectiveness of Mainstream’s approach.
Results show that dynamic selection of shared stems can improve F1-scores by up to 87X relative
to the common approach of using fully-independent per-application DNNs (No-Sharing) and up
to 47% compared to a static approach of retraining only the last DNN layer and sharing all others
(Max-Sharing). Across a range of concurrent applications, Mainstream adaptively selects a bal-
ance between per-frame accuracy and frame sampling rate that consistently provides superior
performance over such static approaches.

Contributions. This chapter makes three main contributions. First, it highlights the criti-
cal importance of reducing aggregate per-frame CPU work of multiple independently developed
video processing applications via stem-sharing; No-Sharing is unable to support even three con-
current applications on our edge node deployment. Second, it identi�es the goodness trade-o�
between per-frame quality and the frame sampling rate dictated by the degree of DNN special-
ization (and thus the amount of sharing). Third, it describes and demonstrates the e�cacy of
the Mainstream approach for automatically deploying the right degree of specialization for each
submitted application’s DNN.
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Figure 5.2: Overview of environment Mainstream runs in.

In the context of Mainstream, we assume a live analytics platform (Figure 5.2), wherein em-
bedded processing is co-located with each camera to analyze the raw video and send out results.
A key issue with such a system is that a �xed, limited amount of computing capacity is avail-
able per camera stream; processing can not scale up and down as can happen in a shared data
center. Furthermore, as it is impractical to frequently upgrade the deployed infrastructure, such
platforms may remain in service for many years. So, the average embedded compute will likely
be older and less powerful hardware. Thus, analytics must be made to �t and should use the full
resource. Furthermore, since new applications will be developed over the life of a given platform,
the system must e�ciently handle multiple, concurrent, independently-developed analytics ap-
plications. We describe how Mainstream does so via adaptive sharing of computation among
DNN-based analytics applications.

.1
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(a) Base DNN model
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(d) As executed in MS

Figure 5.3: Figure 5.3a depicts a base DNN trained from scratch for its task. Figure 5.3b and Figure 5.3c
show two new task DNNs, �ne-tuned against the base DNN. App. #1 freezes more layers during training
than App. #2. Figure 5.3d shows how Mainstream runs the applications concurrently. Layers frozen by
both App. #1 and App. #2 can be shared.

5.2 Mainstream approach

Finetuning or transfer learning is an alternative to training a model from scratch where weights
are initialized randomly. Here, a model that has already been trained on a similar task (a base
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Figure 5.4: Con�icting consequences of DNN compute sharing. (a) shows the frame processing rate
for 1–8 concurrent event detection applications as a function of the fraction of the InceptionV3 DNN
they share, from No-Sharing on the left to sharing all but the last layer (Max-Sharing) on the right. The
experiments are run on the hardware described in Section 5.4. (b) shows Top-1 accuracy as a function of the
fraction of unspecialized layers for three popular DNN architectures (ResNet-50 [42], InceptionV3 [114],
and MobileNets-224 [46]) using six of the datasets described in Table 5.1. We trained each classi�er using
all three network architectures but omitted some curves for brevity. The horizontal axis starts from fully
specialized DNNs on the left to only the last layer being specialized on the right; recall that potential
computation sharing is limited to the unspecialized layers.

DNN as in Figurere 5.3a), is used as an initialization point or feature extractor for the new target
DNN. During training, a subset of the old parameters are frozen and do not change. The remain-
ing free parameters are then retrained on the new task with a new training dataset (Figurere 5.3b
and Figurere 5.3c). This process �ne-tunes these parameters to achieve a result comparable to
end-to-end training on the entire DNN, but does so with much less data and at a much lower
computational cost. In practice, few practitioners train networks from scratch, let alone develop
novel network architectures. Transfer learning via one of a few popular neural networks is stan-
dard practice. This work leverages the fact that many deployed DNNs will use transfer learning
to adapt a handful of existing, e�ective, published models to perform new related tasks. As we
will illustrate, the common structure and related origins between multiple di�erent DNNs will
enable computation sharing between these tasks, allowing very e�cient execution on limited
edge computing resources.

Sharing computation between DNNs. When supporting multiple inference applications
on a single infrastructure, the common approach is to execute every application’s DNN model in-
dependently. We refer to this as a “No Sharing” approach. To avoid redundant work, Mainstream
instead computes results for DNN layers common to multiple concurrent applications just once
and distributes the outputs of shared stems to the specialized layers of all sharing applications.
This is analogous to common subexpression elimination used in other domains, e.g., optimizing
compilers or database query planners.

Figure 5.3 illustrates how compute sharing can be leveraged when two DNNs are �ne-tuned
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Figure 5.5: Latency of shared and task-speci�c DNNs using di�erent amounts of sharing between appli-
cations. There is a larger latency when we share and transfer the output of convolution layers with large
intermediate activations.

from a common pre-trained model and have some unspecialized layers in common. Compute
sharing can signi�cantly a�ect per-frame computation cost and improve throughput for a given
CPU resource. Figure 5.4a quanti�es this e�ect. It shows the throughput achieved by Mainstream
running up to eight concurrent InceptionV3-based event detection pipelines, as a function of how
many DNN layers they have in common (i.e., their common degree of specialization). With no
sharing (the left-most points), adding a second application halves throughput, which continues to
degrade geometrically as more applications are added. Moving to the right, throughput improves
as more layers are shared. When all but the last layer are shared, additional applications can be
run at very low marginal cost.

On the other hand, there are costs to enabling sharing by leaving many layers unspecial-
ized. In particular, the per-frame accuracy of a model may be lower when only a few layers are
specialized. Figure 5.4b shows the e�ect of specialization on per-frame accuracy for several com-
binations of DNN architectures and classi�cation tasks. As expected, accuracy decreases slowly
as less-specialized networks are employed (and hence more sharing is enabled)— with a large
decrease occurring only when the fraction of the network specialized is very small. This charac-
teristic enables Mainstream to share large portions of the network with low accuracy loss.

Throughput and latency. Mainstream scales in terms of the number of applications that
can be run on resource constrained nodes. Figure 5.4a shows the throughput achieved running
up to eight tasks. The X-axis represents increasing amounts of sharing between applications from
deploying a full neural network for each task to sharing all but the last layer. Without sharing,
adding a second application halves throughput and additional applications continue degrading
throughput geometrically. Performance improves as we share more layers. When we share all
but the last layer, additional applications can be run at almost no cost.

Model accuracy. Mainstream’s extreme scalability comes at the potential cost of some re-
duction classi�cation accuracy. Figure 5.4b illustrates this cost as we freeze more NN-cells during
training. We show the image-level accuracy of two classi�cation tasks on three DNN architec-
tures. In practice, it is common to �ne-tune only the last layer of a task-speci�c neural network.
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This indicates that, in the real world, the bene�ts of minimal �ne-tuning often outweigh the ac-
curacy penalty. At the opposite extreme, freezing just a couple of NN-cells signi�cantly boosts
performance with minimal accuracy loss. As we’ve demonstrated, many of the points in between
are Pareto optimal, and we will show that they are often optimal con�gurations for maximizing
user’s objectives.

Adaptive management of the sharing opportunity. Since transfer learning is so com-
monly used by ML developers, and base models are shared within organizations and on the In-
ternet, there may be many opportunities to exploit inter-DNN redundancy in the unspecialized
layers. Most developers either use a popular default of specializing only the last layer (which is
great for sharing potential, at the potential cost of model accuracy) or determine the degree of
specialization based on the amount of training data available, since retraining too many layers
without su�cient training data leads to over-�tting. Notably, each developer decides indepen-
dently.

The problem with this approach is that the impact of sharing computation on application
quality depends on factors only known at deployment time: the set of concurrent applications
and the resources of the edge node on which they are run. Hence, Mainstream defers the decision
regarding how much specialization to employ from application development time to deployment
time.

Impact of sampling rate for event detection. Given the trade-o� between per-frame accu-
racy and frame processing throughput, picking the right degree of specialization is challenging.
Consider an application for monitoring environmental pollution from trains, which is being built
using a train detector we deployed. When the application detects a train coming into view, it
triggers the capture of high �delity frames of the train’s smoke stack (for subsequent pollution
analysis).

Increasing specialization to improve per-frame accuracy increases the probability of correctly
classifying frames containing trains— but reduces shared computation. This, in turn, leads to less
frequent sampling, which removes opportunities to analyze frames containing a particular view
of a train. A higher frame rate increases the probability that an event will be observed in more
frames, creating more opportunities for detection. So, the question becomes: should one sample
more frames using a less accurate model or sample fewer frames using a more accurate model?

Analytical model for event detection. The Mainstream scheduler (Sec. 5.3.3) navigates
this “accuracy vs. sampling rate” space by evaluating various candidate {specialization, frame rate}
tuples. To do so, however, the scheduler must be able to interpret the bene�t at the application
(not per-frame) level. Hence, we propose an analytical model (sketched in equations below) that
approximates the event F1-score for a given DNN, given estimates of (a) event length, (b) event
frequency, (c) the correlation between frames (discussed below), (d) per-frame DNN accuracy,
and (e) DNN analysis frame rate. The frame rate (e) comes directly from the scheduler’s proposed
tuple; similarly, the accuracy (d) associated with a given specialization proposal will be available
to the scheduler (see Sec. 5.3.1). Values for event length (a), frequency (b), and correlation (c) can
either be measured using representative video samples, or they can be estimated by the developer.
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We are able to predict the application’s F1-score by estimating the expected number of frames
per event that we will have the opportunity to analyze and computing the probability that ana-
lyzing the set of frames will result in a detection. The expected number of frames analyzed per
event is dependent on the event length and frame rate. The per-frame Top-1 accuracy represents
the probability that we will classify any individual frame correctly. However, this does not factor
in the fact that sequential frames of an event may be correlated in some way. We therefore intro-
duce and estimate the inter-frame correlation, which measures the marginal bene�t of analyzing
more frames of a single event.

The inter-frame correlation, corr , is based on conditional probabilities. It can be measured
empirically by looking at the subset of cases where the event wasn’t detected in the �rst frame,
and determining what percentage of those cases also didn’t detect the event in the second.

We �rst introduce some formalisms to model this issue, whereX andY are consecutive frames.

P (X ) = Chance of detecting event in frame X
P (¬X ) = Chance of not detecting event in frame X
P (Y ) = Chance of detecting event in frame Y

P (¬Y ) = Chance of not detecting event in frame Y
P (¬Y&¬X ) = Chance of not detecting event in either frame

Using the Kolmogorov de�nition, we can calculate the probability we miss the event in both
frame X and Y , with P (¬Y&¬X ) = P (¬Y | ¬X ) ∗ P (¬X ). Finally, the chance we detect the event
in at least one frame becomes the complement: 1 − P (¬Y | ¬X ) ∗ P (¬X ).

We use the event length and sample rate to derive how many frames of the event we encounter
in expectation. Knowing the number of frames analyzed, N , and the probability of detecting an
event given N tries, we are able to calculate the expected false negative rate.

Discussed earlier, the model accuracy and event length can come from application de�nition
and the training process (see, e.g., Figure 5.4b), whereas the frame sampling rate depends on the
set of concurrent applications and the edge hardware (see, e.g., Figure 5.4a). Given video clips of
event examples at training time, the inter-frame correlation can also be computed.

We use Equation 1 to calculate N , the expected number of frames of the event that the model
will process. Here, d is the event length, and stride is the inverse of the frame rate. Equation 3
estimates the probability the DNN misclassi�es all N analyzed frames. Recall is the complement:
the probability that we correctly classify at least one frame of the event.

To estimate the false positive rate, we repeat this calculation, except that d is the number of
frames between events (derived from the event frequency), and Pmiss_1 is the probability of true
negatives. The true positive rate, the false positive rate, and the event frequency are used to
calculate the precision. The F1-score is the harmonic mean between precision and recall.
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Figure 5.6: E�ect of sample-rate on recall, for di�erent inter-frame correlations. The dotted vertical lines
represent each train in the dataset, denoting 1
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one frame of that train is analyzed. The “Pro�led” line is measured directly from the Train video dataset,
and the other three are approximations based on di�erent inter-frame correlations (uncorrelated, fully
correlated, and the empirical correlation observed in the Train dataset).

To evaluate our model, we pro�le an application and measure the actual recall observed when
running the event detector application (e.g., train detection) on the video stream at di�erent
sampling rates. Figure 5.6 shows observations of how the sample-rate a�ects the recall of our
Train detection task. The train detector is run on a video dataset we collected of train tracks
that is described in Table 5.1. The “Pro�led” line shows the actual recall observed when running
the train detector on the video stream at di�erent sampling rates. The remaining three lines are
calculated using our analytical model.

The independent, dependent and correlation lines are calculated as described above, based on
assumed assumed conditional probabilities (1, 0, and 0.17, which is the average value observed
empirically). The dotted vertical lines represent each train in the dataset, denoting 1

trainlenдth ,
which is the sample rate required to ensure that one frame of the train is analyzed.

In the fully independent (uncorrelated) case, the false negative rate continues to decrease as
the sample rate increases. In the fully dependent (correlated) case, the false negative rate no
longer decreases once the model is guaranteed to see at least one frame of each event. In the
empirical case, we perform 10,000 trials of sampling at each sample rate, and measure the false
negative rates. By using the measured conditional probability of the dataset, Mainstream is able
to produce the “Mainstream prediction” line that approximates the empirical line closely.

We use Mainstream for event detection but believe its approach can be generally applied to
DNN-based tasks where application quality depends not only on its model, but also on its input
sampling rate (e.g., object tracking, action recognition.)

Switching models vs. sharing computation. There are many DNN architectures repre-
senting di�erent points in the throughput verses accuracy trade-o� space that we discuss above.
Interestingly, we �nd that Mainstream’s approach of sharing computation among partially-specialized
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Figure 5.7: Accuracy vs. throughput for 3 DNN architectures.

DNNs is typically best. (Also, Mainstream’s approach of �nding the right con�guration at ap-
plication deployment time will be more robust than relying on the developer to select without
knowing how much resource will be available based on competing applications.)

Figure 5.7 shows the Top-1 accuracy versus throughput when running inference for four con-
current applications. Each of the applications uses the same one of three popular DNN archi-
tectures. ResNet-50 [42] is the most accurate, and slowest; InceptionV3 [114] is somewhat less
time-consuming; and MobileNets-224 [46] is the fastest. For each architecture, the left-most point
is fully specialized (no sharing) and each successive point to the right shares more layers via
Mainstream. Sharing more layers allows for higher system-wide throughput. The dotted Pareto
e�cient frontier shows potentially optimal combinations of accuracy and throughput.

Each of the architectures o�ers some Pareto e�cient con�gurations, but the key take-away is
that sometime the more expensive architecture can provide higher accuracy at the same through-
put compared to a cheaper architecture with less sharing. For example, point A represents a
traditional no sharing approach without Mainstream, where four independent applications are
deployed on the edge node. That con�guration achieves lower accuracy than point B, a sharing
con�guration found by Mainstream. The only Pareto e�cient “no sharing” option is when max-
imum accuracy is desired at any cost to throughput (in which case, deploy four fully specialized
ResNet-50s).

5.3 Mainstream architecture

We have developed Mainstream, a training and runtime system for DNN-based live analytics of
camera streams, which (a) enables e�cient sharing of computation between detection applica-
tions, (b) maximizes event F1-score across all tasks, and (c) allows each task to be independently
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developed, trained, and deployed. Figure 5.1 shows the architecture of Mainstream, which con-
sists of three components: M-Trainer, M-Scheduler, and M-Runner.

To deploy a new application to Mainstream, the user provides a corresponding labeled train-
ing dataset to their local instance of M-Trainer (Step 1). M-Trainer uses the dataset to train a
number of potential models, with varying numbers of specialized layers. This Model Set and as-
sociated metadata are then assembled into an “M-Package” (Step 2). Note that these are o�ine
steps, performed just once per application prior to deployment, independent of all other tasks.
At runtime, M-Scheduler uses the M-Packages of all currently-deployed applications to deter-
mine, for each application, the degree of DNN sharing and sampling rate such that, across all
applications, the event F1-score is maximized, subject to the resource limits of the edge platform
(Step 3). M-Scheduler runs in the datacenter, and is executed once for each scheduling event
(e.g., a change in the deployed set of applications, or in available hardware resources). M-Runner
then executes the selected model con�guration on edge devices (Step 4) and returns app-speci�c
results in real-time (Step 5).

M-Runner is a relatively straightforward execution system for running visual processing
pipelines. It accepts a DAG, where each node represents a unit of independent computation,
and connections represent data �ow. Figure 2.1 illustrates the logical DAG for an image classi�-
cation application. Most of the computation is expected in the “DNN” process, which evaluates
the merged DNN of all concurrent tasks. This combined DNN, as illustrated in Figure 5.3d, repre-
sents the set of models selected by M-Scheduler across all tasks. This DNN is structured as a tree,
with sets of layers branching from the shared stem. M-Runner executes the shared stem once per
frame, reducing the total processing costs of the deployed tasks.

We next describe how M-Trainer independently trains model candidates for potential sharing
(Sec. 5.3.1) and how M-Scheduler dynamically chooses among them (Sec. 5.3.3).

5.3.1 Distributed sharing-aware training

M-Trainer produces a set of models for each task so that they can be combined dynamically at run-
time to maximize collective performance. Application developers use M-Trainer independently
at di�erent times and locations.

One approach to sharing computation between applications would be to jointly train them us-
ing a multi-task network. This, however, requires centralized training of applications. MCDNN [40]
proposed �ne-tuning models independently and sharing the unspecialized DNN layers. This
static approach prevents M-Scheduler from dynamically tailoring stem-sharing to the available
resources. In contrast, M-Trainer generates a set of models that vary in the number of specialized
layers. These models compose an application-speci�c Model Set. The generation of Model Sets
allows for the late binding of the degree of specialization to deployment time, when the platform
characteristics and co-deployed applications are known.

To construct a Model Set, M-Trainer �rst analyzes the structure of the base DNN to identify
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branchpoints, the potential boundaries between frozen and specialized layers. Our heuristic marks
branchpoints at layers which are connected to subsequent layers by a relatively small number of
activations. Using this heuristic, the chokepoints correspond well to boundaries between blocks
in modular network architectures such as ResNet and Inception, which are built from repeated
modules of tightly coupled network layers.

Using the app-speci�c training data provided by the developer, M-Trainer generates a set of
�ne-tuned DNN models, one per branchpoint, where layers up to the branchpoint are frozen, and
the rest are specialized. Only the models at the Pareto-optimal frontier with respect to number
of layers specialized and estimated accuracy are actually included in the M-Package. This elimi-
nates from consideration models that reduce accuracy, while requiring more specialization. For
example, an over�tted model, caused by specializing too many layers with insu�cient training
data, will not be included.

Model Sets are bundled together with application metadata into an M-Package. This metadata
includes the measured per-frame accuracy of each model (we use a portion of the data as the
validation dataset.) The expected minimum event duration, event frequency, and inter-frame
correlation are optionally measured from the training data and included in the M-Package, or
directly provided by the application developer.

The construction of the M-Package is an o�ine operation, which is run just once per applica-
tion. For each application, M-Trainer must train multiple models. Although training a model from
scratch can be very resource intensive, �ne-tuning is much quicker. M-Trainer creates Model Sets
with 15 model options in 8 hours on a single GPU (Sect. 5.4). Note that the computation for gen-
erating all of the models is easily parallelized in a datacenter setting, and may not be signi�cantly
higher than traditional �ne-tuning. For example, to �nd the right number of layers to specialize
in order to maximize accuracy, one may need to generate these models anyway. The key di�er-
ence here is that intermediate runs are not discarded, and the �nal selection is made at run time
by M-Scheduler.

As each application’s models are independently trained and analyzed, no coordination or
sharing of training data is needed between developers of di�erent tasks. The resulting M-Package,
however, contains enough information that M-Scheduler, at run time, can optimize across the
independently-developed tasks.

5.3.2 Hyperparameters and over�tting

During training, a user is required to tune the hyperparameters used (e.g. learning rate, de-
cay). Hyperparameters are tunable knows chosen so as to prevent over�tting and ensure that
the learned model converges. Training deep networks requires attention to hyperparameters
and over�tting.

In practice, a single set of hyperparameters is e�ective across tasks when the same archi-
tecture is used. For the design of M-Trainer, we do a parameter sweep of di�erent optimizers,
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learning rates and decays. We �nd that the Adam optimizer, a learning rate of 0.0001 and a de-
cay of 0.5 work well for M-Trainer using InceptionV3. To improve training, M-Trainer could be
equipped to use dynamic hyperparameters or future improved optimizers. To reduce over�tting,
our model includes batch normalization and dropout [93]. We use early-stopping so that we stop
training once the validation loss stops decreasing.

5.3.3 Dynamic sharing-aware scheduling

At each scheduling event (typically, an application submission or termination), M-Scheduler uses
the M-Packages created by the various per-application M-Trainers to produce a new overall
schedule that optimizes some global objective function, subject to resource constraints (currently,
M-Scheduler maximizes average event F1-score across applications). The schedule consists of a
DNN model selection (indicating the degree of sharing) and target frame-rate for every running
application.1 The �nal schedule is a tree-like model with applications splitting from a shared stem
at potentially di�erent branch points, with each application able to run at its own frame rate.

M-Scheduler optimization algorithm. With N applications to schedule, S possible special-
ization settings per application, and R frame-rate settings per application, the number of possible
schedules is (S · R)N . Although this space is large (e.g., N ≈ 10, R ≈ 10, and S ≈ 10 in our experi-
ments), M-Scheduler can e�ciently determine a good schedule using a greedy heuristic (Algo. 2).
We compare the schedules generated by our greedy scheduler to those of an exhaustive scheduler
in >4,800 workloads each consisting of up to 10 applications, and �nd that the greedy schedules
are on average within 0.89% of optimal.

Algorithm 2 Scheduler optimization algorithm
function GetNextMove(schedule)

. Finds change to schedule with the highest bene f it
cost

end function
function Schedule(budget)

sched← Get Schedule(max_sharing, min_fps)
while True do

next_move← GetNextMove(sched)
cost← cost + GetCost(next_move)
if cost < budget then

sched← Update Schedule(next_move)
else return sched
end if

end while
end function

1Here, we assume that some admission control policy (outside the scope of this work) has been applied to ensure
that some schedule is feasible for the set of running applications.
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Figure 5.8: Latency per layer per frame, used to calculate schedule cost.

Essentially, at each step of our iterative algorithm, the scheduler considers making a move
which improves the application quality of a single application by tweaking its frame rate and/or
model specialization. The algorithm greedily selects the move that yields the best ratio of bene�t
to cost, de�ned below. Naturally, before this iterative re�nement, the schedule is initialized to the
lowest cost con�guration— Max-Sharing with minimum frame rate. At any iteration step, the
number of possible moves is bounded by S · R · N . The total number of moves per invocation of
the scheduler is similarly bounded by S ·R ·N , but in practice is much fewer as the set of potential
moves that �t within the computational budget is exhausted.

Measuring the Bene�t of a Move. The bene�t associated with a move captures the im-
provement in F1-score for the application associated with that move. This value is calculated us-
ing the analytical model presented in Section 5.2 and the application metadata in the M-Package.

Measuring the Cost of a Move. The cost value considered represents the computational re-
sources (e.g., CPU-seconds per second) consumed by a given schedule arrangement and depends
on the number of shared subgraphs, the number of task-speci�c subgraphs, and the intended
throughput (frame-rate) of each subgraph. The relative cost of a schedule is the sum of the ex-
ecution time of each model layer, multiplied by the desired throughput. Consider for example
a schedule with two applications, both executing at F FPS. Assume they share a compute stem
A, and then branch to specialized subgraphs B1 and B2. If CA represents the execution cost (in
CPU-seconds per frame, say) of A, and CB the execution cost of B1 and B2, then the total cost of
the schedule is F ·CA + 2F ·CB . Adding a third application based on the same network, using the
same branchpoint and frame rate will add another factor of F ·CB to the schedule cost.

To most accurately model the compute costs (e.g., CA and CB), a forward pass execution of
the base DNN should be executed and measured once on the target hardware. Note that as cost
is relatively insensitive to the assigned model weights, each base DNN need only run one time
(ever) per target hardware, not once per trained application. Examples of the subgraph latency
costs of InceptionV3, MobileNets-224 and ResNet-50 on an Intel NUC are shown in Figure 5.8.

Max-Min Fairness Among Applications. Although stem-sharing improves overall system
e�ciency, maximizing a global objective may lead to an inequitable allocation of resources for
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individual applications. Thus, M-Scheduler can also be run in max-min fairness mode, which
maximizes the minimum bene�t among applications, instead of the average. Max-min fairness is
scheduled by searching the space using dynamic programming.

Potential Threat Model We also brie�y discuss the adversarial weaknesses of our resource
allocator. Using the analytical model of M-Trainer, each application must supply the estimated
accuracy, given how many of the specialized layers are used for inference. However, application
developers could falsify parameters in order to gain an unfair share of the available resources. A
potential future line of research is to monitor the discordent classi�cations of models with dif-
ferent levels of specialization, and use di�erences in model behavior to justify increased resource
consumption.

X-Voting To Improve Precision. Mainstream uses voting across frames to improve preci-
sion, and consequentially F1-score. With X-voting, Mainstream requires X consecutive positives
to identify an event. While X-voting decreases false positives, it is not guaranteed to increase pre-
cision. For X-voting to improve precision, it must decrease false positives at a higher rate than
true positives. The ideal X-voting con�guration again depends on the applications and the re-
sources available. A higher X incurs fewer false positives, but requires more cost to sustain high
recall (either by increasing FPS or increasing specialization). We evaluate the e�ect of various
X-voting con�gurations in Sect. 5.5.

5.4 Experimental setup

To evaluate our system, we implement seven di�erent event detection applications. We refer to
the set of applications as 7-Hybrid. These are listed in Table 5.1, along with the datasets we used
to train and test them. A pedestrian-detection application (Pedestrian) is trained based on the
fully-labeled, publicly-available Urban Tracking video dataset [56]. Our application to classify
car models (Car) uses the Stanford Cars image dataset [66]. Train detection (Train) is based on
video of nearby train tracks that we have captured in our camera deployment, and have hand
labeled. The remaining classi�ers are trained on a video of a nearby intersection, also captured
in our camera deployment. We have obtained the necessary permissions and plan to make our
Trains and Intersection video dataset available publicly. We reserve a portion of these datasets to
create synthetic video workloads for testing.

We use M-Trainer to produce a task-speci�c M-Package for each application. Model can-
didates are �ne-tuned using the MobileNets-224 model pretrained on ImageNet as a base DNN
(implemented in Keras [17] using TensorFlow [2]). Each M-Package contains several models with
di�erent degrees of �ne-tuning as described in Section 5.3.1. We evaluate Mainstream using the
M-Packages and hold-out validation sets from our datasets. Our experiments use the applications
in Table 5.1.

Hardware. Training is performed on nodes equipped with Intel® Xeon® E5-2698Bv3 proces-
sors (2.0 GHz, 16 cores) and an Nvidia Titan X GPU. All end-to-end experiments use an Intel®
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Detection Dataset Number Avg Event Min Event Event
Task Description of Images Length Length Frequency
Pedestrians Urban Tracker atrium video 4538 59 2 0.63
Bus Intersection near CMU video 4762 1039 141 0.27
Red Car Intersection near CMU video 9172 228 46 0.08
Scramble Intersection near CMU video 1500 412 382 0.16
Schoolbus Intersection near CMU video 2600 854 92 0.03
Trains Train tracks near CMU video 3066 132 20 0.01
Cars Images of 23 car models 3042 — — —

Table 5.1: Labeled datasets used to train classi�ers for event detection applications. Average and minimum
event lengths are reported in number of frames. Event length and event frequency only apply to video
datasets and not Cars.

NUC with an Intel® Core™ i7-6770HQ processor and 32 GiB DRAM, which is intended to repre-
sent an edge processing device. The Train and Intersection videos were captured using an Allied
Vision Manta G-1236 GigE Vision camera.

5.5 Evaluation

We evaluate our system in the context of independent DNN-based video processing applications
sharing a �xed-resource edge computer. In our evaluation, we show that Mainstream’s dynamic
approach outperforms static solutions in all of our experimental settings, across various applica-
tion workloads, computational budgets, and numbers of concurrent applications. Mainstream’s
X-voting is capable of improving F1-score but, like model specialization, must also be dynami-
cally con�gured to the resources available. In addition to our benchmarked applications, we show
an end-to-end Mainstream deployment of a train detection application used for environmental
pollution monitoring.

5.5.1 Mainstream improves video analysis application quality

Our goal in event detection is to maximize per-event F1-score. We compare the F1-score achieved
by Mainstream with two baselines: No-Sharing and Max-Sharing. No-Sharing is the default be-
havior for a multi-tenant environment and is the approach taken by systems like TensorFlow
Serving [1] and Clipper [21]. No-Sharing maximizes classi�cation accuracy at the cost of a re-
duced sampling rate and requires no coordination between tenants. Max-Sharing is the sharing
approach used by MCDNN [40]. It uses partial-DNN sharing by �ne-tuning the �nal layer of
concurrent DNNs. In many cases, Max-Sharing provides better F1-score relative to No-Sharing
when a non-trivial number of applications share the infrastructure; it sacri�ces classi�cation ac-
curacy to maximize the number of frames processed. We show, however, that Max-Sharing is less
e�ective than making deliberate runtime decisions about how much sharing to use.
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Figure 5.9: Mainstream improves F1-scores vs. No-Sharing between applications or conservatively shar-
ing all layers but the last one. “Frame Rel Acc” is the relative image-level accuracy of the model deployed,
compared to the best performing model candidate. “FPS” is the average observed throughput of the de-
ployed applications.

In order to observe the e�ects of increasingly constrained resources without a large num-
ber of distinct applications, we generate additional applications by augmenting our application
set. Each of the seven classi�cation tasks in Table 5.1 has a corresponding “accuracy-tradeo�
curve”, which represents the relationship between per-frame accuracy and the shared stem size
(Figure 5.4b). For each application in our experiments, we randomly choose one of the seven
classi�ers (and its corresponding accuracy-tradeo� curve) and parameterize it with a di�erent
event length, event frequency and inter-frame correlation. To capture the e�ects of diverse ap-
plication characteristics, the parameters are uniformly sampled from a range of possible values.
Each workload consists of up to 30 concurrent applications. In most experiments, we show the
behavior averaged across 100 workloads. Our video capture rate for all experiments is 10 FPS.

Mainstream outperforms static approaches. M-Scheduler maximizes per-event F1-score
by varying the sampling rate and amount of sharing. Each additional application introduces
more resource contention, forcing the system to pick a di�erent balance between accuracy and
sampling rate to achieve the best average F1-score.

Figure 5.9 compares Mainstream with our baseline strategies. Mainstream delivers as much
as a 87X higher per-event F1-score than No-Sharing and as much as a 47% higher score vs Max-
Sharing. Figure 5.9 reports F1-scores averaged across 100 workloads. The relationship between
the three schedulers holds when examining individual workloads. No-Sharing exhibits low recall
because of its low throughput—the system has fewer opportunities to detect the event. Max-
Sharing has high throughput but a worse precision because the underlying model accuracy is
lower—it evaluates many frames but does so inaccurately. Mainstream outperforms by striking a
balance, sometimes choosing a more accurate model, and sometimes choosing to run at a higher
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Figure 5.10: The average event F1-score (Figure 5.10a), recall (Figure 5.10b) and precision (Figure 5.10c)
across 100 deployed workloads are shown (solid lines) alongside the average frame-rate across applications
(dotted lines). Mainstream dynamically balances recall and precision to maximize aggregate F1-score. With
high numbers of concurrent applications, Mainstream sacri�ces small amounts of both specialization and
frame-rate.

throughput.

Mainstream dynamically balances precision and recall. Figure 5.10 delves into the sys-
tem e�ects of Mainstream more deeply. F1-score, recall, and precision are plotted. The average
application frame rate is plotted, showing how Mainstream dynamically tailors resource usage
to the workload. (Not shown is the varying model accuracy.) Optimizing for precision requires
careful tuning of the application frame rate. While higher FPS always leads to higher recall, it
does not always lead to higher precision. (A high frame rate may only increase false positives
without increasing expected true positives.) For instance, No-Sharing’s low frame rate and high
per-frame accuracy allows it to have the highest precision of the three approaches. When given
just a few applications, Mainstream runs specialized models, while throttling the stream rate to
avoid unnecessary false positives. As resources become scarce, many applications begin to share
more of the network.
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Figure 5.11: Mainstream improves F1-score of workloads under varying computational budgets. The
rightmost points on the X axis represent the resources available on an Intel® NUC. Even under heavy
resource constraints, there is available capacity for Mainstream to perform optimizations.

Mainstream improves upon Max-Sharing even under tight resource constraints. Fig-
ure 5.11 shows the e�ect of Mainstream, Max-Sharing, and No-Sharing on a range of computa-
tional budgets. We average the event F1-scores across 100 workloads, each with 3 applications.
The right-most points represent the scenario of running on computational resources equivalent
to an Intel® NUC. With a small workload of three applications, No-Sharing performs better than
Max-Sharing, as it is able to run expensive models at a high enough frame rate. As we decrease the
available budget, Max-Sharing’s conservative sharing approach allows it to be more scalable than
No-Sharing. However, even after the computational budget is reduced by 83%, Mainstream still
improves application performance, compared to the overly conservative Max-Sharing approach.

5.5.2 Robustness to inter-frame correlation

Mainstream uses inter-frame correlation to model the bene�t of increasing an application’s frame-
rate to its event F1-score. We show the range of behavior a�ected by the inter-frame correlation
in Figure 5.12. With fully uncorrelated event frames (Figure 5.12c), the probability of classify-
ing a frame is independent of the result of previously evaluated frames. With fully correlated
event frames (Figure 5.12a), applications get no bene�t from sampling an event multiple times.
In practice, tasks will lie somewhere in between. In Figure 5.12b, we use empirical correlation val-
ues derived from the videos in 7-Hybrid. When frames are more uncorrelated, increasing frame
rate is more e�ective for improving recall than increasing accuracy. Both Mainstream and Max-
Sharing take advantage of uncorrelated frames by increasing application frame rate. However,
when frames within an event are uncorrelated, both true and false positives are easier to come
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(b) Empirical correlation

6 12 18 24 30
Number of concurrent apps

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Ev
en

t F
1

0

4

8

12

16

20
FP

S

(c) Fully uncorrelated (independent)

Figure 5.12: The inter-frame correlation signi�cantly a�ects application quality. We run Mainstream, No-
Sharing and Max-Sharing with the two extremes: fully uncorrelated event frames (Figure 5.12a), and fully
correlated event frames (Figure 5.12c). In practice, the inter-frame correlation is somewhere in between
(Figure 5.12b). Mainstream provides improved F1-score across the spectrum of correlations values.
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by. Max-Sharing, which is running an inaccurate model with a high false positive rate, runs at a
lower frame rate in the fully correlated case, compared to the empirical case to increase its pre-
cision. For the same reason, in the fully correlated case, Max-Sharing runs at a lower frame rate
than Mainstream. The varying schedules between the three experimental con�gurations show
the importance of modeling inter-frame correlation. Under a variety of inter-frame correlation,
Mainstream is again able to �nd F1-score-improving conditions.

5.5.3 Tuned X-voting improves F1-score

Applications that su�er from low per-frame precision will generate many false positives. An
X-voting approach can greatly decrease the incidence of false positives, as X consecutive classi-
�cations are needed in order to report a detection. Too large a value of X can hurt recall, causing
real events to go unreported. By using X-voting and optimizing the parameter X, Mainstream
can improve the overall average event F1-score.

Figure 5.13 shows the e�ects of X-voting on F1-scores as X and the number of applications
are varied, while total resources are kept �xed. With just a few concurrent applications, run-
ning at high frame rates, 7-voting and 5-voting yield the highest F1-scores. With more resource
contention, and lower throughput, 3-voting becomes the best choice as the cost of dropping true
positives outweighs the bene�t of reducing false positives for higher values of X. When resources
become too constrained, this approach is less viable, e.g., 1-voting becomes the best approach at
25 concurrent apps. Figure 5.13 also shows the Pareto frontier of F1-scores achievable across all
values of X for a given number of concurrent applications.

5.5.4 Mainstream deployment

We deployed our environmental pollution monitor application and nine other concurrent ap-
plications using both Mainstream and a conventional No-Sharing approach for one week on the
hardware setup described in Chapter 5.4. Figure 5.14 shows the trace of both approaches on a sin-
gle train event sequence, indicating the frames analyzed. A hit represents a correct classi�cation
of the train, a miss represents an incorrect classi�cation. We see that Mainstream’s deployment
samples the stream more frequently, yielding many more hits (and misses) than No-Sharing; the
result, though, is that Mainstream detects the train event earlier and more con�dently.

We control the false positive rate with 2-voting, requiring Mainstream to have two positive
samples before an event is classi�ed. The false positive rate of the Train video drops from 0.028
to 0.00056. No-Sharing and Mainstream achieve a 0 and a 0.00056 false positive rate, respectively.
In the analyzed deployment in Figure 5.14, we see that Mainstream still detects the train easily
and quickly.

False Positive Frequency. When evaluating the e�ectiveness of an inference system, one
must consider how the system reports false positives in addition to its false negative reporting.
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Figure 5.13: X-voting increases precision and helps Mainstream achieve a higher F1-score, but only if
frame rate is high enough to avoid hurting recall. Thus, the e�ects vary by the level of resource contention.
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Figure 5.14: Timeline of Mainstream running a train detector app with 9 concurrent applications. Our goal
is to detect the train as early as possible, before the smoke stack is out of view (end of window represented
by the dotted line). Mainstream detects the train earlier and more con�dently than No-Sharing.
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However, reporting false positives over time is not completely analogous to FNR. For an event
detection system, the FNR is naturally captured as the number of detected events divided by the
number of actual events.

In contrast, the most natural way to consider false positives is to measure the number of false
alarms reported. That is, how often does the system report the presence of an object (e.g., train)
when one is actually not visible in-frame. We term this measure the false positive frequency, and
it is a�ected both by the per-frame false positive rate and the frame sampling rate. Both can be
a�ected by the choices that Mainstream makes.

Figure 5.15 shows how the sampling rate a�ects the false positive frequency in our application
environment. The rates shown are from frames of the Train video which do not include a train.
The per-frame false positive rate of the deployed model is 0.028. This is equal to the false positive
frequency at a sampling rate of 1. Neither No-Sharing nor Mainstream has as high of a false
positive frequency, because their sampling rates are less than 1 from necessity. Since No-Sharing
runs at a much lower frame rate than Mainstream, its false positive frequency is correspondingly
lower.

To control the false positive rate, we can use the “X-voting” discussed in Sect. 5.3.3. “X-Voting”
requires Mainstream to have multiple positive samples before an event is classi�ed. Even with
just 2-voting, the false positive rate of the Train video drops from 0.028 to 0.00056. No-Sharing
and Mainstream achieve a 0 and a 0.00056 false positive frequency, respectively. In the analyzed
deployment in Figure 5.14, we see that Mainstream has no trouble still detecting the train, while
No-Sharing does not detect 2-consecutive positive samples in the presence of the train.
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5.6 Additional related work

Several recent systems have attempted to tackle the problem of optimizing execution of visual
computing pipelines.

VideoStorm [125] is a video analytics system for large-scale clusters and workloads. It ana-
lyzes resource use and application-goal-based metrics as a function of tunable parameters of the
analytics pipelines, building models for each application independently. It uses these models to
allocate resources and select parameters for deployed applications on a target platform, in order
to maximize application quality metrics. VideoStorm takes a black-box view of the applications,
and assumes that quality and resource consumption of co-deployed applications are indepen-
dently determined. Therefore, it cannot take into account computation sharing, or optimize the
sharing vs. degree of specialization tradeo�. In contrast, Mainstream takes a white-box approach
to modeling application quality, and can explicitly tune computation sharing to improve appli-
cation quality metrics. Compared to VideoStorm, Mainstream sacri�ces some generality to solve
the joint optimization problem.

MCDNN [40] introduces a static approach to sharing DNN computation, in which each ap-
plication developer independently determines their amount of model specialization. MCDNN
opportunistically shares any identical unspecialized layers between applications. In contrast,
Mainstream’s training and scheduling components allow late binding and jointly-optimized se-
lection of the degrees of specialization at run time, when resource availability and co-deployed
tasks are known.

Inference serving systems. Mainstream is an inference serving system for running neural
networks on resource-constrained nodes. Other inference serving systems include Clipper [21],
NoScope [59], and TensorFlow Serving [1]. Like Mainstream, these systems optimize for la-
tency and throughput gains. Clipper caches results from multiple models, dynamically chooses
from the results, and optimizes the batch size. NoScope replaces expensive neural networks for
object detection with cheaper di�erence detectors and specialized models. TensorFlow Serving
increases throughput with batching and hardware acceleration. LASER [4] and Velox [20] are in-
ference serving systems for non-DNN models. LASER deploys linear models while Velox deploys
personalized prediction algorithms using Apache Spark.

Unlike Mainstream, these inference serving systems do not share computation between in-
dependently trained models. They also target cluster environments. Mainstream targets edge
devices with limited resources, where achieving the right degree of DNN computation sharing is
particularly important, though such sharing would also be valuable in large data centers.

Reducing DNN inference time. Approaches to reducing DNN inference time for vision
applications can be broadly classi�ed into those that reduce model precision [15, 18, 19, 36, 51,
97, 128], use e�cient network architectures [46, 53], use anytime prediction methods [47, 49], or
employ model compression and sparsi�cation [79, 119]. All of these methods are orthogonal to
Mainstream’s adaptive DNN computation sharing technique, but share its goal of selecting the
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right trade-o� between per-frame quality and frame throughput.

Multi-task networks. Multi-task learning [5, 12, 65, 84, 88, 91, 96, 127] is a ML approach
in which a single model is trained to perform multiple tasks. Using multiple tasks to train a
single model helps achieve better accuracy because of better generalization and complementary
information [12, 103]. In the context of DNNs, a multi-task network can have a varying number
of shared layers across tasks and task-speci�c layers [88, 91]. Multi-task learning assumes that
all of the tasks are known a priori, and that training data for all of the tasks is available for use in
a single training process. In contrast, Mainstream allows each task to be developed, trained, and
deployed independently, and avoids the need to share or expose proprietary or privacy-sensitive
training data between task developers. Note that one can run a multi-task network as a single
large application in Mainstream.
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Chapter 6

Conclusion and Future Directions

We conclude this thesis with a summary of the contributions and results from our research, lim-
itations of our work, and potential future research directions.

6.1 Contributions and research results

In this thesis, we provid supporting evidence that dynamic optimization of hyperparameters can
improve deep learning training and inference. While dynamic hyperparameter optimization in-
creases e�ciency in a part of the training and inference pipeline, the optimization itself introduces
a new cost. A major challenge in designing our dynamic optimizations is choosing the right met-
ric to optimize for that provides an overall net bene�t of e�ciency. We show that by doing so, we
can accelerate training by up to 3.5x and improve video application quality by up to 87x compared
to traditional static approaches.

6.1.1 Selective-Backprop: Dynamically selecting training examples

Selective-Backprop accelerates training of neural networks by skipping the backwards pass for
examples where the forward pass loss function indicates little value at a particular stage of train-
ing.

Increased sample e�ciency. Our exploration of the e�ects of prioritizing challenging ex-
amples during training in Selective-Backprop shows that an example’s training loss serves as a
useful proxy to measure how challenging the example is for the network to classify correctly. The
relative training loss of an example �uctuates over the course of training, especially when those
examples are held out for a subset of epochs. Experiments on several datasets and networks show
that Selective-Backprop �nds examples that are more sample-e�cient and converges to target er-
ror rates up to 3.5x faster than with standard SGD and 1.02–1.8x faster than the state-of-the-art
sampling approach.
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Example selection cost. Selective-Backprop’s selection pass uses the latest model parameters
to compute up-to-date losses for all training examples considered. This allows Selective-Backprop
to dynamically adapt to changes in example e�ciency. However, this approach requires addi-
tional selection forward passes not used directly for training. We de�ne and evaluate a Selective-
Backprop variant called StaleSB that executes selection forward passes every nth epoch. This
as an example where we needed to compromise between on dynamism and increased overhead,
to maximize net e�ciency. Compared to Selective-Backprop, selecting examples with stale loss
information further accelerates training on average by 26%.

6.1.2 AdaptSB: Dynamically adapting example prioritization

AdaptSB generalizes Selective-Backprop by allowing tuning of the prioritization function, a map-
ping between the relative loss of the example to the likelihood of its backprop.

Improving sample e�ciency. We use AdaptSB to explore the e�ects of tuning the prioriti-
zation of challenging examples during training. We �nd that the optimal prioritization function
depends on the training dataset as well as the training time. Speci�cally, AdaptSB outperforms
Selective-Backprop on datasets with label error by de-emphasizing the highest loss examples.
On CIFAR10, AdaptSB outperforms Selective-Backprop by increasingly prioritizing challenging
examples as training continues and the network is able to classify easy examples better.

AdaptSB introduces hyperparameter search cost. AdaptSB determines a priority function
that minimizes wall-clock time by choosing examples with high sample-e�ciency. Currently,
AdaptSB chooses a priority function using a hyperparameter search. We �nd that this leads to
improved wall-clock time once the hyperparameter search is completed. However, an end-to-end
evaluation requires taking into account the overhead of the search itself. In our evaluation, we
show that a potential solution is to perform the hyperparameter search on a subset of the training
dataset, to reduce the relative cost compared to training. We also outline future approaches to
reduce the absolute cost of performing the search, including techniques to reduce the size of the
search space.

6.1.3 Mainstream: Dynamically tuning DNN specialization

Mainstream adaptively orchestrates DNN stem-sharing among concurrent video processing ap-
plications sharing the limited resources on an edge device.

Mainstream’s model training and scheduling overheads. The goal of Mainstream is to
maximize aggregate application quality—termed the event F1-score—across deployed applica-
tions. It does so by optimizing the degree of specialization for each application at runtime. Unlike
traditional training, M-Trainer trains many models for a given task, and keeps “less optimal” can-
didate DNN models. This increases training time cost by having to train multiple (≈10) models.
The M-Scheduler determines the best candidate for each application, including the degrees of
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specialization and, thus, sharing. This require searching the option space to maximize appli-
cation quality (e.g., average F1-score among the applications). We exclude the M-Trainer and
M-Scheduler cost in the end-to-end metric because they are one-time costs and can be performed
in the datacenter. By contrast, Mainstream applications run on a resource-constrained edge de-
vice and are typically deployed for several months. The one-time cost of training and scheduling
is therefore quickly amortized. Overall, Maintream’s overheads are much smaller compared to
Selective-Backprop and AdaptSB.

Improving aggregate application quality. Mainstream provides scalability to edge deploy-
ments by sharing a portion of the DNN computation between applications. The key challenge
to coordinating this resource sharing is to determine how much each application should special-
ize, and thus not share, their DNN. We �nd that the optimal con�guration depends on runtime
characteristics, namely the resources available to the concurrently deployed applications. We de-
fer the determination to runtime by training multiple models with di�erent amounts of sharing
potential for each task. Mainstream is then able to choose which model to deploy. Its dynamic
optimization results in much higher aggregate application quality, compared to static approaches.
Experiments with several event detection tasks con�rm that Mainstream signi�cantly increases
overall event F1-score relative to current approaches over a range of concurrency levels.

6.2 Limitations and future directions

We conclude by discussing possible future directions to expand the potential realized from the
approaches developed in the three proposed systems.

Selective-Backprop for continuous learning. Catastrophic forgetting is a common chal-
lenge of applying continuous or incremental learning to high-dimensional data streams [48, 62,
83]. DNNs that are capable of incrementally performing new tasks or assimilating additional data
are more e�cient than models that must be retrained from scratch each time new information is
available. However, DNNs are prone to performance degradation on their original task, once a
new task is introduced.

One potential solution is to re-introduce data from old datasets when training on a new task
but this can become prohibitively expensive. Incremental learning approaches must balance the
use of new and old data to learn e�ciently, yet still be able to characterize examples from old
datasets. Selective-Backprop and AdaptSB dynamically identify examples useful at a given stage
in training. One potential research direction is to use Selective-Backprop to improve continuous
learning by dynamically sampling useful examples for training. Over the course of training,
Selective-Backprop can reintroduce examples that the network has forgotten, but skip examples
it still remembers. AdaptSB could also be used to tune the emphasis on old and new datapoints,
which is likely to change between training tasks.

Distinguishing betweenout-of-distribution andmislabeled exampleswithAdaptSB. Ex-
amples exhibit a high loss for di�erent reasons. Our work on Selective-Backprop and AdaptSB
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shows that primarily two types of examples exhibit high loss: (1) examples that are under-
represented and useful, and (2) mislabeled examples that are harmful to training. An important
weakness of AdaptSB is that in a dataset contained mislabeled examples, AdaptSB de-emphasizes
all high-loss examples, potentially skipping even useful under-represented examples that are nec-
essary to improve generalization. An interesting future line of research would be to create better
sampling methods that directly target useful examples by distinguishing between di�erent types
of challenging examples. Such a technique would likely also be useful in accurately �agging
potential mislabels during dataset sanitation.

An analysis of intermediate activations is a potential approach to distinguishing under repre-
sented examples from mislabeled examples. The key idea is as follows: Unlike under-represented
examples, mislabels are likely to exhibit similar activations as other examples in the dataset. By
clustering similar intermediate activations, one could �nd under-represented examples by �nding
high-loss examples that are far from a cluster’s centroid. Previously proposed approaches for de-
tecting out-of-distribution examples are also promising. These include using a static threshold on
maximum softmax con�dence [44], training a network with either synthetic out-of-distribution
examples [37, 72], or using an alternative dataset to detect outliers [44].

Mainstream beyond event detection. In this thesis, we used Mainstream for one application:
event detection in video streams. A promising direction for future work is applying Mainstream’s
approach to a broader class of applications. Generally, Mainstream may be bene�cial to other
deep learning applications whose performance depends on both accuracy and throughput. For
example, models performing object tracking must consider both accuracy and speed to track an
object more closely across frames [80, 118, 120]. In order to use Mainstream in another domain,
one must create an analytical model that determines the marginal bene�t of improving accuracy
or throughput to the �nal application’s performance.
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