
New Aspects of Beyond Worst-Case Analysis

Colin White

CMU-CS-18-123

October 2018

Department of Computer Science
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Maria-Florina Balcan (Chair)

Anupam Gupta
David Woodruff

Avrim Blum (Toyota Technological Institute at Chicago)
Yury Makarychev (Toyota Technological Institute at Chicago)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2018 Colin White

This research was supported by the Department of Defense (DoD) through the National Defense Science & Engi-
neering Graduate (NDSEG) Program, the National Science Foundation under grant numbers CCF-1451177, CCF-
1422910, and IIS-1618714, a John Woodruff Simpson Fellowship, and an Amherst Memorial Fellowship. The views
and conclusions contained in this document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of any sponsoring institution, the U.S. Government, or any other entity.

Keywords: Beyond Worst-Case Analysis, Clustering, k-means, Perturbation Resilience, Dis-
tributed Computation, Algorithm Configuration

Dedicated to my mom.

iv

Abstract

Traditionally, the theory of algorithms has focused on the analysis of worst-case
instances. While this has led to beautiful results and a thorough understanding of a
wide variety of problems, there are many problems for which worst-case analysis is not
useful for empirical or real-world instances. A rapidly developing line of research, the
so-called beyond worst-case analysis of algorithms (BWCA), considers the design and
analysis of problems using more realistic models or using natural structural properties.
The goals of BWCA are to design realistic models and new theoretical algorithms
which perform well in practice, as well as to explain why preexisting algorithms that
do well in practice perform better than worst-case analysis suggests. In other words,
the goal of BWCA is to bridge the gap between theory and practice. In this thesis, we
continue the line of work of BWCA for clustering and distributed learning by making
contributions in several areas. Specifically, we focus on three main problems and
models.

• Clustering is one problem that has benefited greatly from BWCA. The perturba-
tion resilience assumption proposed by Bilu and Linial (2011) states that the op-
timal clustering does not change under small perturbations to the input distances.
We design efficient algorithms that output optimal or near-optimal clusterings
for the canonical k-center objective (in both symmetric and asymmetric forms)
under perturbation resilience. Our results are tight up to the level of perturbation
resilience assumed. Next, we give robust algorithms with guarantees even if only
part of the data satisfies the perturbation resilience assumption.

• Clustering has many varied applications in practice, and an algorithm may have
drastically different performance between two applications. To reconcile this
fact, we consider a data-driven approach, in which a clustering application is
represented by a distribution over problem instances, and the goal is to find the
best algorithm for the (unknown) distribution. This model was first studied the-
oretically by Gupta and Roughgarden (2016). We define rich, infinite classes
of linkage algorithms with dynamic programming, as well as local search algo-
rithms with initialization, generalizing the k-means algorithm. We bound the
pseudo-dimension of these classes, which leads to computational- and sample-
efficient meta-algorithms for some of the algorithm classes we study.

• As datasets become larger and more complex, distributed learning becomes more
prevalent. Motivated by the fact that similar datapoints often belong to the same
or similar classes, we propose data-dependent dispatching that takes advantage of
such structure. We provide new dispatching algorithms which cast the problem
as clustering with important balance and fault-tolerance conditions. Finally, we
design general and robust distributed clustering algorithms.

vi

Acknowledgments

First and foremost, I would like to thank my advisor, Nina Balcan. This thesis
would not have been possible without Nina’s guidance the last four years. Nina’s
enthusiasm for research and ability to come up with fascinating project ideas is unpar-
alleled. Nina helped me drastically improve my technical writing and presenting skills
by giving me many opportunities to hone these skills. She also gave me countless pro-
fessional opportunities such as invitations to workshops and talks, and introducing me
to famous researchers. I thank Nina for the plethora of knowledge she has been nice
enough to share with me during my time at CMU.

I give a huge thanks to the other members of my thesis committee, Avrim Blum,
Anupam Gupta, David Woodruff, and Yury Makarychev, for interesting research meet-
ings and insightful comments about my work. I thank Yury Makarychev for inviting
me to TTIC for the summer of 2017. I thoroughly enjoyed my time at TTIC, working
with Yury, Kostya Makarychev, and Haris Angelidakis.

I thank all of my other collaborators whom I have had the pleasure to work with,
Nika Haghtalab, Travis Dick, Krishna Pillutla, Mu Li, Alex Smola, Ellen Vitercik,
Ainesh Bakshi, Pranjal Awasthi, Vaishnavh Nagarajan, Haris Angelidakis, Kostya
Makarychev, and Sunny Gakhar. They have all made research meetings and paper
writing fun and exciting. I also want to thank my past and current officemates, Ak-
shay, Sarah, Nic, and Aurick, for helpful discussions, coffee breaks at just the right
times, and making my CMU experience more enjoyable overall. More broadly, I am
grateful for the students in the theory group, and the computer science department as a
whole, for making my time here remarkable. I thank the administrative staff, in partic-
ular Deb Cavlovich, Catherine Copetas, and Amy Protos, for being extremely helpful
and keeping the department running smoothly.

I want to thank all of my friends at Ascend, the Pharaoh Hounds, the Ascend run
club, the J Crew, the supa squad, and all my other Pittsburgh, Amherst, and Evanston
friends for their constant support and kindness. I do not know how I would have made
it without their help.

Last but not least, I thank my family for their endless encouragement the past four
years. Carrie, for going on runs and going to great vegan restaurants with me, Dad,
for taking me out for donuts and being a constant support, Andrew, for high quality
memes and keeping me up to date with the real world, Rachel, for remembering all
birthdays/holidays and generally keeping the family together, and Grandpa, for great
holiday cards and phone conversations. And of course, my mom. She was the starting
point of my academic career, for fostering my interest in reading, problem solving, and
science, and giving me the confidence to aim big. I will never forget her dedication to
Carrie, Andrew, and me, and I owe all of my accomplishments to her.

viii

Contents

1 Introduction 1

2 k-center Clustering under Perturbation Resilience 5

2.1 Introduction . 5

2.1.1 Results and techniques . 6

2.1.2 Related work . 8

2.2 Preliminaries and basic properties . 9

2.2.1 Local Perturbation Resilience . 11

2.3 k-center under α-perturbation resilience . 12

2.3.1 α-approximations are optimal under α-PR 12

2.3.2 k-center under 2-PR . 13

2.3.3 Hardness of k-center under perturbation resilience 17

2.4 k-center under metric perturbation resilience . 19

2.5 k-center under local perturbation resilience . 20

2.5.1 Symmetric k-center . 20

2.5.2 Asymmetric k-center . 21

2.6 k-center under (α, ε)-perturbation resilience . 29

2.6.1 Symmetric k-center . 29

2.6.2 Local perturbation resilience . 35

2.6.3 Asymmetric k-center . 41

2.6.4 APX-Hardness under perturbation resilience 45

3 Data-Driven Clustering 47

3.1 Introduction . 47

3.1.1 Results and techniques . 49

3.1.2 Related work . 51

ix

3.2 Preliminaries . 52

3.3 Agglomerative algorithms with dynamic programming 53

3.3.1 Definition of algorithm classes . 56

3.3.2 Discretization . 58

3.3.3 Pseudo-dimension upper bounds . 61

3.3.4 Efficient algorithms . 63

3.3.5 Pseudo-dimension lower bounds . 65

3.4 (α, β)-Lloyds++ . 83

3.4.1 Sample efficiency . 88

3.4.2 Computational efficiency . 98

4 Data-Driven Dispatching for Distributed Learning 101
4.1 Introduction . 101

4.1.1 Results and techniques . 103

4.1.2 Related work . 105

4.2 Preliminaries . 106

4.3 Fault Tolerant Balanced Clustering . 107

4.3.1 Bicriteria algorithms . 108

4.3.2 True approximation algorithm for k-center 118

4.4 Structure of Balanced Clustering . 126

4.5 General Robust Distributed Clustering . 132

5 Conclusions 137

x

List of Figures

1.1 Different models in Beyond Worst-Case Analysis 4

2.1 Properties of a 2-perturbation resilient instance of aymmetric k-center that are used
for clustering. 14

2.2 Examples of a center-capturing vertex (left), and CCV-proximity (right). 22

2.3 Examples of center-separation (left), and cluster-proximity (right). 24

2.4 Example of Algorithm 3 (left), and the proof of Theorem 2.5.7 (right). 26

2.5 The red clusters are optimal clusters with no structure, the blue clusters are 2-PR clusters,
and the green clusters are 2-PR clusters who only have neighbors which are also 2-PR
(Theorem 2.5.7). Algorithm 4 outputs the green clusters exactly. 27

2.6 (a) Definition of a CCC, and (b) definition of a CCC2. 31

2.7 Case 1 of Lemma 2.6.5 . 32

2.8 A (3, ε)-perturbation resilient asymmetric k-center instance with one bad center (cy). The
purple arrows are distance 1, and the black arrows are distance 1

α 43

3.1 A schematic for a class of agglomerative clustering algorithms with dynamic pro-
gramming. 55

3.2 The clustering instance used in Theorem 3.3.2 . 59

3.3 The clustering instance used in Lemma 3.3.14 . 67

3.4 The clustering instance used in Lemma 3.3.15 . 72

3.5 A schematic for the α intervals. Each edge denotes whether to merge pi to A or qi
to A. 72

3.6 Setup of Phase 1 of Lemma 3.3.20 . 80

3.7 Execution tree of Phase 1 of Lemma 3.3.20 . 81

3.8 Execution tree of Phase 2 . 81

3.9 Optimal instance for dα∗-sampling . 86

3.10 Examples of which centers the algorithm chooses in a given round. 90

3.11 Definition of Et,j and E ′t,j , and details for bounding j − i (left). Intuition for
bounding P (Et,j), where the blue regions represent Et,j (right). 94

xi

4.1 Data is partitioned and dispatched to multiple workers. Each worker then trains
a local model using its local data. There is no communication between workers
during training. 102

4.1 Balanced clustering with fault tolerance . 109

4.2 Flow network for rounding the x’s: The nodes in each group all have the same
supply, which is indicated below each group. The edge costs and capacities are
shown above each group. The y-rounded solution gives a feasible flow in this
network. By the Integral Flow Theorem, there exists a minimum cost flow which
is integral and we can find it in polynomial time. 116

4.3 Minimum cost flow network to round x’s. Each node in a group has the same
supply, which is indicated below. The cost and capacity of each edge is indicated
above. 126

4.4 A graph in which the objective function strictly increases with k. Each edge signi-
fies distance 1, and all other distances are 2. 127

4.5 Each edge signifies distance 1, and all other distances are 2. The middle points
are replicated as many times as their label suggests (but each pair of replicated
points are still distance 2 away). Finally, add length 1 edges between all pairs in
{x1, x2, x3, x4}, {y1, y2}. 128

4.6 An example when m = 3. Each Xk is a different color. Each edge signifies
distance 1, and all other distances are 2. The middle points are replicated as many
times as their label suggests (but each pair of replicated points are still distance 2
away). 130

4.7 Algorithm 18 for k-median, m = 3, k = 3. 133

xii

List of Tables

2.1 Our results over all variants of k-center under perturbation resilience 8

4.1 Notation table . 110

xiii

xiv

Chapter 1

Introduction

Traditionally, the theory of algorithms has focused on the analysis of worst-case instances. This ap-
proach has led to many elegant algorithms, as well as a thorough understanding of many problems.
Nevertheless, there are many problems for which worst-case analysis is not useful for empirical or
real world instances. One of the most famous examples is linear programming. From a worst-case
perspective, the simplex algorithm is far worse than the ellipsoid method because the former runs
in exponential time as opposed to polynomial time. However, the simplex algorithm is the method
of choice for practitioners, since it runs much faster than the ellipsoid method on real world in-
stances. Therefore, worst-case analysis is not helpful in determining which linear programming
algorithm is better in practice. Indeed, the worst-case instances for the simplex method seem to
be delicate constructions, where variables must be set precisely to force the algorithm to run in
exponential time. Although these particular instances dominate worst-case analysis, it is very rare
that we see such instances come up naturally in a real-life application. Furthermore, the intricate
worst-case constructions seem to break under tiny perturbations. Spielman and Teng made this
observation explicit by showing that if an arbitrary input undergoes a small randomized perturba-
tion, the expected runtime of the simplex method is linear in the number of variables [Spielman
and Teng, 2004]. They referred to this model as “smoothed analysis”. This seminal work was one
of the first papers in a rapidly developing line of work in the algorithms community, the so-called
beyond worst-case analysis of algorithms (BWCA), which considers the design and analysis of
problem instances under natural structural properties and/or more practical models. Two of the
main goals of BWCA are (1) to use realistic models to design new theoretical algorithms which
perform well in practice, and (2) to explain why preexisting algorithms that do well in practice
perform better than worst-case analysis suggests. In other words, the goal of BWCA is to bridge
the gap between theory and practice. BWCA has seen a huge amount of success in many areas in
the last few decades.

In recent years, one of the problems which has benefited the most from BWCA is clustering.
Clustering is a fundamental problem in combinatorial optimization with a wide range of applica-
tions including bioinformatics, computer vision, text analysis, and countless others. The underly-
ing goal is to partition a given set of points to maximize similarity within a partition and minimize
similarity across different partitions. A common approach to clustering is to consider an objective
function over all possible partitionings and seek solutions that are optimal according to the objec-

1

tive. Given a set of points (and a distance metric), common clustering objectives include finding k
centers to minimize the sum of the distance from each point to its closest center (k-median), or to
minimize the maximum distance from a point to its closest center (k-center).

Traditionally, the theory of clustering has focused on the analysis of worst-case instances. For
example, it is well-known the popular objective functions are provably NP-hard to optimize exactly
or even approximately (APX-hard) [Gonzalez, 1985, Jain et al., 2002, Lee et al., 2017], so research
has focused on finding approximation algorithms. Recently, clustering under beyond worst-case
models has become popular, in part because explicitly making real-world assumptions about the
input can lead to algorithms which provably return optimal or near-optimal clusterings.

In this thesis, our goal is to continue this strong line of BWCA. We focus on clustering and
distributed machine learning problems. We consider three main models of BWCA, and we design
new algorithms, prove new structure, and make the assumptions more robust for real-world data.
We give a summary of our contributions below.

Clustering under Perturbation Resilience The popular notion of α-perturbation resilience, in-
troduced by Bilu and Linial [2012], informally states that the optimal solution does not change
when the input distances are allowed to increase by up to a factor of α. This definition seeks to
capture a phenomenon in practice: the optimal solution often “stands out”, thereby the optimal
solution does not change even when the input is slightly perturbed. Several recent papers have
successfully applied perturbation resilience to clustering, culminating in an optimal algorithm for
symmetric k-median, k-means, and k-center under 2-perturbation resilience [Angelidakis et al.,
2017].

In Chapter 2, we show that any 2-approximation algorithm for k-center will always return the
clusters satisfying 2-perturbation resilience. Since there are well-known 2-approximation algo-
rithms for symmetric k-center, this implies efficient algorithms for clustering under 2-perturbation
resilience. Next we design an algorithm which returns the exact solution for asymmetric k-center
under 2-perturbation resilience. As asymmetric k-center has a tightO(log∗(k)) approximation fac-
tor on worst-case instances, to our knowledge, this is the first problem that is hard to approximate
to any constant factor in the worst case, yet can be optimally solved in polynomial time under
perturbation resilience for a constant value of α. Then we prove our results are tight by showing
symmetric k-center under (2 − δ)-perturbation resilience is hard unless NP = RP . This is the
first tight result quantifying the power of perturbation resilience for a canonical combinatorial op-
timization problem, i.e., this is the first time the exact value of α for which the problem switched
from being NP -hard to efficiently computable has been found.

In this line of work on clustering under perturbation resilience, researchers have developed an
array of sophisticated tools exploiting the structural properties of such instances leading to algo-
rithms which can output the optimal solution. However, overly exploiting a BWCA assumption
can lead to algorithms that perform poorly when the input data does not exactly satisfy the given
assumption. Indeed, recent analyses and technical tools are susceptible to small deviations from
the BWCA assumptions which can propagate when just a small fraction of the data does not sat-
isfy the assumption. In Chapter 2, we give a natural continuation of this line of work by providing
robust algorithms which give the optimal solution under perturbation resilience, and also perform
well when the data is partially perturbation resilient, or not at all perturbation resilient. These

2

algorithms act as an interpolation between worst-case and beyond worst-case analysis.

The work from Chapter 2 is based on the following papers: Balcan et al. [2016], Balcan and
White [2017].

Data-Driven Clustering In Chapter 3, we consider a different approach within BWCA based on
the idea that the performance of a given clustering algorithm depends on the specific application at
hand, and this may not be known up front. For example, a “typical instance” for clustering protein
sequences may look very different from a typical instance for clustering documents in a database,
and clustering heuristics perform differently depending on the instance. We use a recently defined
PAC-learning framework by Gupta and Roughgarden [2016], in which it is assumed that the al-
gorithm designer has a specific task at hand, such as clustering protein sequences, or clustering
documents in a database, which follows an unknown distribution over problem instances. First we
define rich, infinite classes of linkage-based algorithms with a pruning step, and prove tight bounds
on the pseudo-dimension of these classes. Then we define a parameterized family of Lloyd’s algo-
rithms, with one parameter controlling the initialization step, and another parameter controlling the
local search step. We show the sample complexity needed to find parameters close to the optimal
parameters over the distribution is low. For both our linkage-based families and our Lloyd’s algo-
rithm family, we show computationally efficient algorithms to learn the best algorithm parameters
for a specific application.

The work from Chapter 3 is based on the following papers: Balcan et al. [2017, 2018].

Data-Driven Dispatching for Distributed Learning Chapter 4 introduces a BWCA model sim-
ilar to data-drive clustering, but applied to distributed learning. We study the model of distributed
machine learning in which data is dispatched to multiple machines, and there is no communication
among machines at training time. The simplest approach is to distribute the data randomly among
all machines. Motivated by the fact that similar data points often belong to the same or similar
classes, and more generally, classification rules of high accuracy tend to be “locally simple but
globally complex” [Vapnik and Bottou, 1993], we propose data-dependent dispatching that takes
advantage of such structure by sending similar datapoints to the same machine. For example, a
globally accurate classification rule may be complicated, but each machine can accurately clas-
sify its local region with a simple classifier. We provide new dispatching algorithms with provable
worst-case guarantees by overcoming novel technical challenges to satisfy important conditions for
accurate distributed learning, including fault tolerance and balancedness. This is accomplished by
having the dispatcher solve a clustering problem in the input. Finally, we consider the distributed
clustering problem. We construct general and robust algorithms for distributed clustering.

The work from Chapter 4 is based on the following papers: Dick et al. [2017], Awasthi et al.
[2017].

Tieing it all together Chapters 2, 3, and 4 all go beyond the worst-case in slightly different ways.
Recall that worst-case analysis evaluates an algorithm by its performance on just a single instance−
the worst one. Chapters 2 and 4 explicitly assume that any instance we see has more structure than
a worst-case instance. Then the analysis is still worst-case, but only over the restricted set of
structured instances, not the entire input space. This often more accurately portrays the real world;
for instance, the restricted set of instances may no longer contain pathological constructions used

3

Figure 1.1: Different models in Beyond Worst-Case Analysis

in hardness proofs. Chapter 3 is a slightly different take. In this chapter, we directly optimize
for a specific application. The evaluation is now the expected performance over the unknown
distribution corresponding to our application, not worst-case. This model is closer to average-case
analysis, in which the performance of an algorithm is measured by its average performance over
all problem instances. See Figure 1.1 for a summary of the BWCA models we study and their
relation to one another.

4

Chapter 2

k-center Clustering under Perturbation
Resilience

2.1 Introduction

Clustering is a fundamental problem in combinatorial optimization with a wide range of applica-
tions including bioinformatics, computer vision, text analysis, and countless others. The underly-
ing goal is to partition a given set of points to maximize similarity within a partition and minimize
similarity across different partitions. A common approach to clustering is to consider an objective
function over all possible partitionings and seek solutions that are optimal according to the objec-
tive. Given a set of points (and a distance metric), common clustering objectives include finding k
centers to minimize the sum of the distance from each point to its closest center (k-median), or to
minimize the maximum distance from a point to its closest center (k-center).

Traditionally, the theory of clustering (and more generally, the theory of algorithms) has fo-
cused on the analysis of worst-case instances [Arya et al., 2004, Byrka et al., 2015c, Charikar
et al., 1999b, 2001, Chen, 2008, Gonzalez, 1985, Makarychev et al., 2016]. For example, it is well
known the popular objective functions are provably NP-hard to optimize exactly or even approxi-
mately (APX-hard) [Gonzalez, 1985, Jain et al., 2002, Lee et al., 2017], so research has focused on
finding approximation algorithms. While this perspective has led to many elegant approximation
algorithms and lower bounds for worst-case instances, it is often overly pessimistic of an algo-
rithm’s performance on “typical” instances or real world instances. As explained in Chapter 1, one
way to reconcile this fact is to consider the problem of clustering beyond the worst case. For exam-
ple, the popular notion of α-perturbation resilience, introduced by Bilu and Linial [2012], considers
instances such that the optimal solution does not change when the input distances are allowed to
increase by up to a factor of α. The goals of beyond worst-case analysis (BWCA) are twofold: (1)
to design new algorithms with strong performance guarantees under the added assumptions [Bal-
can et al., 2013a, Hardt and Roth, 2013, Kumar et al., 2004, Roughgarden, 2014], and (2) to prove
strong guarantees under BWCA assumptions for existing algorithms used in practice [Makarychev
et al., 2014, Ostrovsky et al., 2012, Spielman and Teng, 2004]. An example of goal (1) is a series
of work focused on finding exact algorithms for k-median, k-means, and k-center clustering under
α-perturbation resilience [Awasthi et al., 2012, Balcan and Liang, 2016, Angelidakis et al., 2017].

5

The goal in this line of work is to find the minimum value of α ≥ 1 which admits an efficient
algorithm to find the optimal solution for α-perturbation resilient clustering instances. An example
of goal (2) is the celebrated result by Spielman and Teng [2004] establishing the smoothed linear
time complexity of the simplex algorithm.

In approaches for answering goals (1) and (2), researchers have developed an array of sophis-
ticated tools exploiting the structural properties of such instances leading to algorithms which can
output the optimal solution. However, overly exploiting a BWCA assumption can lead to algo-
rithms that perform poorly when the input data does not exactly satisfy the given assumption.
Indeed, recent analyses and technical tools are susceptible to small deviations from the BWCA
assumptions which can propagate when just a small fraction of the data does not satisfy the as-
sumption. For example, some recent algorithms make use of a dynamic programming subroutine
which crucially need the entire instance to satisfy the specific structure guaranteed by the BWCA
assumption. It is increasingly more essential to find algorithms which “gracefully degrade” from
the optimal BWCA guarantees down to the worst-case approximation guarantees, as the BWCA
assumptions are violated more and more. Another downside of existing approaches is that BWCA
assumptions are often not efficiently verifiable. This creates a catch-22 scenario: it is only useful to
run the algorithms if the data satisfies certain assumptions, but a user cannot check these assump-
tions efficiently. For example, by nature of α-perturbation resilience (that the optimal clustering
does not change under all α-perturbations of the input), it is not known how to test this condi-
tion without computing the optimal clustering over Ω (2n) different perturbations. In this chapter,
we give a natural continuation of this line of work by providing robust algorithms which give the
optimal solution under perturbation resilience, and also perform well when the data is partially
perturbation resilient, or not at all perturbation resilient. These algorithms act as an interpolation
between worst-case and beyond worst-case analysis.

2.1.1 Results and techniques

In this work, we study symmetric/asymmetric k-center under perturbation resilience. Our algo-
rithms simultaneously output the optimal clusters from the stable regions of the data, while achiev-
ing state-of-the-art approximation ratios over the rest of the data. In most cases, our algorithms are
natural modifications to existing approximation algorithms, thus achieving goal (2) of BWCA. To
achieve these two-part guarantees, we define the notion of perturbation resilience on a subset of the
datapoints. All prior work has only studied perturbation resilience as it applies to the entire dataset.
Informally, a subset S ′ ⊆ S satisfies α-perturbation resilience if all points v ∈ S ′ remain in the
same optimal cluster under any α-perturbation to the input. We show that our algorithms return all
optimal clusters from these locally stable regions. Most of our results also apply under the recently
defined, weaker condition of α-metric perturbation resilience [Angelidakis et al., 2017], which
states that the optimal solution cannot change under the metric closure of any α-perturbation. A
summary of our results and techniques are as follows:

k-center under 2-perturbation resilience In Section 2.3, we show that any 2-approximation
algorithm for k-center will always return the clusters satisfying 2-perturbation resilience. There-
fore, since there are well-known 2-approximation algorithms for symmetric k-center, our analysis
shows these will output the optimal clustering under 2-perturbation resilience. For asymmetric
k-center, we give a new algorithm under 2-perturbation resilience, which works by first consider-

6

ing the “symmetrized set”, or the points which demonstrate a rough symmetry. We show how to
optimally cluster the symmetrized set, and then we show how to add back the highly asymmetric
points into their correct clusters.

Hardness of symmetric k-center under (2 − δ)-perturbation resilience. In Section 2.3.3, we
prove there is no polynomial time algorithm for symmetric k-center under (2 − δ)-perturbation
resilience unless NP = RP , which shows that our perturbation resilience results are tight for
both symmetric and asymmetric k-center. In particular, it implies that we have identified the exact
moment (α = 2) where the problem switches from efficiently computable to NP-hard, for both
symmetric and asymmetric k-center. For this hardness result, we use a reduction from a variant of
perfect dominating set. To show that this variant is itself hard, we construct a chain of parsimo-
nious reductions (reductions which conserve the number of solutions) starting from 3-dimensional
matching to perfect dominating set.

Asymmetric k-center In Section 2.5, we build off our result from Section 2.3 by applying the
asymmetric k-center result to the local perturbation resilience and metric perturbation resilience
settings. In the worst case, the asymmetric k-center problem admits an O(log∗ n) approximation
algorithm due to Vishwanathan [1996], which is tight [Chuzhoy et al., 2005]. We give new in-
sights into this algorithm, which allow us to show a modification of the algorithm which outputs
all optimal clusters from 2-perturbation resilient regions, while keeping the worst-case O(log∗ n)
guarantee overall. If the entire dataset satisfies 2-perturbation resilience, then our algorithm out-
puts the optimal clustering. We combine the tools of Vishwanathan with the perturbation resilience
assumption to prove this two-part guarantee. Specifically, we use the notion of a center-capturing
vertex (CCV), which is used in the first phase of the approximation algorithm to pull out supersets
of clusters. We show that each optimal center from a 2-perturbation resilient subset is a CCV and
satisfies a separation property; we prove this by carefully constructing a 2-perturbation in which
points from other clusters cannot be too close to the center without causing a contradiction. The
structure allows us to modify the approximation algorithm of Vishwanathan to ensure that optimal
clusters from perturbation resilient subsets are pulled out separately in the first phase. All of our
guarantees hold under the weaker notion of metric perturbation resilience.

Efficient algorithms for k-center under (3, ε)-perturbation resilience. In Section 2.6, we con-
sider (α, ε)-perturbation resilience, which states that at most εn total points can swap into or out of
each cluster under any α-perturbation. For symmetric k-center, we show that any 2-approximation
algorithm will return the optimal clusters from (3, ε)-perturbation resilient regions, assuming a
mild lower bound on optimal cluster sizes, and for asymmetric k-center, we give an algorithm
which outputs a clustering that is ε-close to the optimal clustering. Our main structural tool is
showing that if any single point v is close to an optimal cluster other than its own, then k − 1
centers achieve the optimal radius under a carefully constructed 3-perturbation. Any other point
we add to the set of centers must create a clustering that is ε-close to the optimal clustering, and
we show all of these sets cannot simultaneously be consistent with one another, thus causing a
contradiction. A key concept in our analysis is defining the notion of a cluster-capturing center,
which allows us to reason about which points can capture a cluster when its center is removed.

Our upper bound for asymmetric k-center under 2-PR and lower bound for symmetric k-center

7

under (2 − δ)-PR illustrate a surprising relationship between symmetric and asymmetric k-center
instances under perturbation resilience. Unlike approximation ratio, for which symmetric k-center
is easily solved to a factor of 2 but asymmetric k-center cannot be approximated to any constant
factor, both symmetric and asymmetric k-center can be solved optimally under resilience to 2-
perturbations. Overall, this is the first tight result quantifying the power of perturbation resilience
for a canonical combinatorial optimization problem. A summary of our results can be found in
Table 2.1.

Problem Guarantee α Metric Local Theorem

Symmetric k-center under α-PR OPT 2 Yes Yes Theorem 2.5.1

Asymmetric k-center under α-PR OPT 2 Yes Yes Theorem 2.5.2

Symmetric k-center under (α, ε)-PR OPT 3 No Yes Theorem 2.6.8

Asymmetric k-center under (α, ε)-PR ε-close 3 No No Theorem 2.6.17

Table 2.1: Our results over all variants of k-center under perturbation resilience

2.1.2 Related work

Clustering. There are three classic 2-approximations for k-center from the 1980’s [Gonzalez,
1985, Hochbaum and Shmoys, 1985, Dyer and Frieze, 1985], which are known to be tight [Hochbaum
and Shmoys, 1985]. Asymmetric k-center proved to be a much harder problem. The first nontriv-
ial result was an O(log∗ n) approximation algorithm [Vishwanathan, 1996], and this was later im-
proved toO(log∗ k) [Archer, 2001]. This result was later proven to be asymptotically tight [Chuzhoy
et al., 2005].

Perturbation resilience. Perturbation resilience was introduced by Bilu and Linial [2012], who
showed algorithms that outputted the optimal solution for max cut under Ω(

√
n)-perturbation re-

silience (this was later improved by Makarychev et al. [2014]). The study of clustering under per-
turbation resilience was initiated by Awasthi et al. [2012], who provided an optimal algorithm for
center-based clustering objectives (which includes k-median, k-means, and k-center clustering, as
well as other objectives) under 3-perturbation resilience. This result was improved by Balcan and
Liang [2016], who showed an algorithm for center-based clustering under (1 +

√
2)-perturbation

resilience. They also gave a near-optimal algorithm for k-median under (2 +
√

3, ε)-perturbation
resilience when the optimal clusters are not too small.

Recently, Angelidakis et al. [2017] gave algorithms for center-based clustering (including k-
median, k-means, and k-center) under 2-perturbation resilience, and defined the more general
notion of metric perturbation resilience, although their algorithm does not extend to the (α, ε)-
perturbation resilience or local perturbation resilience settings. Cohen-Addad and Schwiegelshohn
[2017] showed that local search outputs the optimal k-median, k-means, and k-center solution
when the data satisfies a stronger variant of 3-perturbation resilience, in which both the optimal
clustering and optimal centers are not allowed to change under any 3-perturbation. Perturbation re-

8

silience has also been applied to other problems, such as min multiway cut, the traveling salesman
problem, finding Nash equilibria, metric labeling, and facility location [Makarychev et al., 2014,
Mihalák et al., 2011, Balcan and Braverman, 2017, Lang et al., 2017, Manthey and Tijink, 2018].

Subsequent work. Vijayaraghavan et al. [2017] study k-means under additive perturbation re-
silience, in which the optimal solution cannot change under additive perturbations to the input
distances. Deshpande et al. [2018] gave an algorithm for Euclidean k-means under perturbation
resilience which runs in time linear in n and the dimension d, and exponentially in k and 1

α−1
.

Chekuri and Gupta [2018] showed the natural LP relaxation of k-center and asymmetric k-center
is integral for 2-perturbation resilient instances. They also define a new model of perturbation
resilience for clustering with outliers, and they show the algorithm of Angelidakis et al. [2017]
exactly solves clustering with outliers under 2-perturbation resilience, and they further show the
natural LP relaxation for k-center with outliers is integral for 2-perturbation resilient instances.
Their algorithms have the desirable property that either they output the optimal solution, or they
guarantee the input did not satisfy 2-perturbation resilience (but note this is not the same thing as
determining whether or not a given instance satisfies perturbation resilience).

Other stability notions. A related notion, approximation stability [Balcan et al., 2013a], states
that any (1 + α)-approximation to the objective must be ε-close to the target clustering. There
are several positive results for k-means, k-median [Balcan et al., 2013a, 2009, Gupta et al., 2014],
and min-sum [Balcan et al., 2013a, Balcan and Braverman, 2009, Voevodski et al., 2011] under
approximation stability. Ostrovsky et al. [2012] show how to efficiently cluster instances in which
the k-means clustering cost is much lower than the (k−1)-means cost. Kumar and Kannan [2010]
give an efficient clustering algorithm for instances in which the projection of any point onto the
line between its cluster center to any other cluster center is a large additive factor closer to its own
center than the other center. This result was later improved along multiple axes by Awasthi and
Sheffet [2012]. There are many other works that show positive results for different natural notions
of stability in various settings [Arora et al., 2012, Awasthi et al., 2010, Gupta et al., 2014, Hardt
and Roth, 2013, Kumar and Kannan, 2010, Kumar et al., 2004, Roughgarden, 2014].

2.2 Preliminaries and basic properties
A clustering instance (S, d) consists of a set S of n points, a distance function d : S × S → R≥0,
and an integer k. For a point u ∈ S and a set A ⊆ S, we define d(u,A) = minv∈A d(u, v). The
k-center objective is to find a set of points X = {x1, . . . , xk} ⊆ S called centers to minimize
maxv∈S d(v,X). We denote VorX(x) = {v ∈ S | x = argminy∈Xd(v, y)}, the Voronoi tile of
x ∈ X induced by X on the set of points S, and we denote VorX(X ′) =

⋃
x∈X′ VorX(x) for a

subset X ′ ⊆ X . We refer to the Voronoi partition induced by X as a clustering. Throughout this
chapter, we denote the clustering with minimum cost by OPT = {C1, . . . , Ck}, we denote the
radius of OPT by r∗, and we denote the optimal centers by c1, . . . , ck, where ci is the center of Ci
for all 1 ≤ i ≤ k. We use Br(c) to denote a ball of radius r centered at point r.

Some of our results assume distance functions which are metrics, and some of our results
assume asymmetric distance functions. A distance function d is a metric if

1. for all u, v, d(u, v) ≥ 0,

9

2. for all u, v, d(u, v) = 0 if and only if u = v,

3. for all u, v, w, d(u,w) ≤ d(u, v) + d(v, w), and

4. for all u, v, d(u, v) = d(v, u).

An asymmetric distance function satisfies (1), (2), and (3), but not (4).

Now we formally define perturbation resilience, a notion introduced by Bilu and Linial [2012].
d′ is called an α-perturbation of the distance function d, if for all u, v ∈ S, d(u, v) ≤ d′(u, v) ≤
αd(u, v). 1

Definition 2.2.1. (Perturbation resilience) A clustering instance (S, d) satisfies α-perturbation re-
silience (α-PR) if for any α-perturbation d′ of d, the optimal clustering C ′ under d′ is unique and
equal to OPT .

Note that the optimal centers might change under an α-perturbation, but the optimal clustering
must stay the same. We also consider a relaxed variant of α-perturbation resilience, called (α, ε)
-perturbation resilience, that allows a small change in the optimal clustering when distances are
perturbed. We say that two clusterings C and C ′ are ε-close if minσ

∑k
i=1

∣∣∣Ci \ C ′σ(i)

∣∣∣ ≤ εn, where
σ is a permutation on [k].

Definition 2.2.2. ((α, ε)-perturbation resilience) A clustering instance (S, d) satisfies (α, ε)- per-
turbation resilience if for any α-perturbation d′ of d, any optimal clustering C ′ under d′ is ε-close
to OPT .

In Definitions 2.2.1 and 2.2.2, we do not assume that the α-perturbations satisfy the trian-
gle inequality. Angelidakis et al. [2017] recently studied the weaker definition in which the α-
perturbations must satisfy the triangle inequality, called metric perturbation resilience. We can
update these definitions accordingly. For symmetric clustering objectives, α-metric perturbations
are restricted to metrics. For asymmetric clustering objectives, the α-metric perturbations must
satisfy the directed triangle inequality.

Definition 2.2.3. (Metric perturbation resilience) A clustering instance (S, d) satisfies α-metric
perturbation resilience (α-MPR) if for any α-metric perturbation d′ of d, the optimal clustering C ′
under d′ is unique and equal to OPT .

In our arguments, we will sometimes convert a non-metric perturbation d′ into a metric pertur-
bation by taking the metric completion d′′ of d′ (also referred to as the shortest-path metric on d′)
by setting the distances in d′′ as the length of the shortest path on the graph whose edges are the
lengths in d′. Note that for all u, v, we have d(u, v) ≤ d′(u, v) since d was originally a metric.

1 We only consider perturbations in which the distances increase because WLOG we can scale the distances to
simulate decreasing distances.

10

2.2.1 Local Perturbation Resilience

Now we define perturbation resilience for an optimal cluster rather than the entire dataset. All prior
work has considered perturbation resilience with respect to the entire dataset.

Definition 2.2.4. (Local perturbation resilience) Given a clustering instance (S, d) with optimal
clustering C = {C1, . . . , Ck}, an optimal cluster Ci satisfies α-perturbation resilience (α-PR) if
for any α-perturbation d′ of d, the optimal clustering C ′ under d′ is unique and contains Ci.

As a sanity check, we show that a clustering is perturbation resilient if and only if every optimal
cluster satisfies perturbation resilience.

Fact 2.2.5. A clustering instance (S, d) satisfies α-PR if and only if each optimal cluster satisfies
α-PR.

Proof. Given a clustering instance (S, d), the forward direction follows by definition: assume
(S, d) satisfies α-PR, and given an optimal cluster Ci, then for each α-perturbation d′, the optimal
clustering stays the same under d′, thereforeCi is contained in the optimal clustering under d′. Now
we prove the reverse direction. Given a clustering instance with optimal clustering C, and given an
α-perturbation d′, let the optimal clustering under d′ be C ′. For each Ci ∈ C, by assumption, Ci
satisfies α-PR, so Ci ∈ C ′. Therefore C = C ′.

Next we define the local version of (α, ε)-PR.

Definition 2.2.6. (Local (α, ε)-perturbation resilience) Given a clustering instance (S, d) with
optimal clustering C = {C1, . . . , Ck}, an optimal cluster Ci satisfies (α, ε)-PR if for any α-
perturbation d′ of d, the optimal clustering C ′ under d′ contains a cluster C ′i which is ε-close
to Ci.

In Sections 2.5 and 2.6, we will consider a slightly stronger notion of local perturbation re-
silience. Informally, an optimal cluster satisfies α-strong perturbation resilience if it is α-PR, and
all nearby optimal clusters are also α-PR. We will sometimes be able to prove guarantees for
clusters satisfying strong perturbation resilience which are not true under standard perturbation
resilience.

Definition 2.2.7. (Strong perturbation resilience) Given a clustering instance (S, d) with optimal
clustering C = {C1, . . . , Ck}, an optimal cluster Ci satisfies α-strong perturbation resilience (α-
SPR) if for each j such that there exists u ∈ Ci, v ∈ Cj , and d(u, v) ≤ r∗, then Cj is α-PR (any
cluster that is close to Ci must be α-PR).

To conclude this section, we state a lemma for asymmetric (and symmetric) k-center which
allows us to reason about a specific class of α-perturbations which will be important throughout
the chapter. We give two versions of the lemma, each of which will be useful in different sections
of the chapter.

11

Lemma 2.2.8. Given a clustering instance (S, d) and α ≥ 1, (a) assume we have an α-perturbation
d′ of dwith the following property: for all p, q, if d(p, q) ≥ r∗ then d′(p, q) ≥ αr∗. Then the optimal
cost under d′ is αr∗.

(b) assume we have an α-perturbation d′ of d with the following property: for all u, v, either
d′(u, v) = min(αr∗, αd(u, v)) or d′(u, v) = αd(u, v). Then the optimal cost under d′ is αr∗.

Proof. (a) Assume there exists a set of centers C ′ = {c′1, . . . , c′k} whose k-center cost under d′ is
< αr∗. Then for all i and s ∈ VorC′,d′(c′i), d′(c′i, s) < αr∗, implying d(c′i, s) < r∗ by construction.
It follows that the k-center cost of C ′ under d is r∗, which is a contradiction. Therefore, the optimal
cost under d′ must be αr∗.

(b) Given u, v such that d(u, v) ≥ r∗, then d′(u, v) ≥ αr∗ by construction. Now the proof
follows from part (a).

2.3 k-center under α-perturbation resilience
In this section, we provide efficient algorithms for finding the optimal clustering for symmetric
and asymmetric instances of k-center under 2-perturbation resilience. Our results directly improve
on the result of Balcan and Liang [2016] for symmetric k-center under (1 +

√
2)-perturbation

resilience. We also show that it is NP-hard to recover OPT even for symmetric k-center instance
under (2− δ)-perturbation resilience. As an immediate consequence, our results are tight for both
symmetric and asymmetric k-center instances. This is the first problem for which the exact value of
perturbation resilience is found (α = 2), where the problem switches from efficiently computable
to NP-hard.

First, we show that any α-approximation algorithm returns the optimal solution for α per-
turbation resilient instances. An immediate consequence is an algorithm for symmetric k-center
under 2-perturbation resilience. Next, we provide a novel algorithm for asymmetric k-center under
2-perturbation resilience. Finally, we show hardness of k-center under (2− δ)-PR.

2.3.1 α-approximations are optimal under α-PR

The following theorem shows that any α-approximation algorithm for k-center will return the
optimal solution on clustering instances that are α-perturbation resilient.

Theorem 2.3.1. Given a clustering instance (S, d) satisfying α-perturbation resilience for asym-
metric k-center, and a set C of k centers which is an α-approximation, i.e., ∀p ∈ S, ∃c ∈ C s.t.
d(c, p) ≤ αr∗, then the Voronoi partition induced by C is the optimal clustering.

Proof. For a point p ∈ S, let c(p) := argminc∈Cd(c, p), the closest center in C to p. The idea is to
construct an α-perturbation in which C is the optimal solution by increasing all distances except
between p and c(p), for all p. Then the theorem will follow by using the definition of perturbation
resilience.

By assumption, ∀p ∈ S, d(c(p), p) ≤ αr∗. Create a perturbation d′ as follows. Increase all
distances by a factor of α, except for all p ∈ S, set d′(c(p), p) = min(αd(c(p), p), αr∗) (recall
in Definition 2.2.1, the perturbation need not satisfy the triangle inequality). Then no distances

12

were increased by more than a factor of α. And since we had that d(c(p), p) ≤ αr∗, no distances
decrease either. Therefore, d′ is an α-perturbation of d. By Lemma 2.2.8, the optimal cost for d′ is
αr∗. Also, C achieves cost≤ αr∗ by construction, so C is an optimal set of centers under d′. Then
by α-perturbation resilience, the Voronoi partition induced by C under d′ is the optimal clustering.

Finally, we show the Voronoi partition of C under d is the same as the Voronoi partition of C
under d′. Given p ∈ S whose closest point in C is c(p) under d, then under d′, all distances from p
to C \ {c(p)} increased by exactly α, and d(p, c(p)) increased by≤ α. Therefore, the closest point
in C to p under d′ is still c(p).

2.3.2 k-center under 2-PR

An immediate consequence of Theorem 2.3.1 is that we have an exact algorithm for symmet-
ric k-center under 2-perturbation resilience by running a simple 2-approximation algorithm (e.g.,
[Gonzalez, 1985, Hochbaum and Shmoys, 1985, Dyer and Frieze, 1985]). However, Theorem
2.3.1 only gives an algorithm for asymmetric k-center under O(log∗(k))-perturbation resilience.
Next, we show it is possible to substantially improve the latter result.

Asymmetric k-center under 2-PR

One of the challenges involved in dealing with asymmetric k-center instances is the fact that even
though for all p ∈ Ci, d(ci, p) ≤ r∗, the reverse distance, d(p, ci), might be arbitrarily large. Such
points for which d(p, ci)� r∗ pose a challenge to the structure of the clusters, as they can be very
close to points or even centers of other clusters. To deal with this challenge, we first define a set of
“good” points, A, such that A = {p | ∀q, d(q, p) ≤ r∗ =⇒ d(p, q) ≤ r∗}. 2 Intuitively speaking,
these points behave similarly to a set of points with symmetric distances up to a distance r∗. To
explore this, we define a desirable property of A with respect to the optimal clustering.

Definition 2.3.2. A is said to respect the structure of OPT if

(1) ci ∈ A for all i ∈ [k], and

(2) for all p ∈ S \ A, if A(p) := arg minq∈A d(q, p) ∈ Ci, then p ∈ Ci.

For all i, defineC ′i = Ci∩A (which is in fact the optimal clustering ofA). Satisfying Definition
2.3.2 implies that if we can optimally cluster A, then we can optimally cluster the entire instance
(formalized in Theorem 2.3.5). Thus our goal is to show that A does indeed respect the structure
of OPT , and to show how to return C ′1, . . . , C

′
k.

Intuitively, A is similar to a symmetric 2-perturbation resilient clustering instance. However,
some structure is no longer there, for instance, a point p may be at distance ≤ 2r∗ from every
point in a different cluster, which is not true for 2-perturbation resilient instances. This implies
we cannot simply run a 2-approximation algorithm on the set A, as we did in the previous section.
However, we show that the remaining structural properties are sufficient to optimally cluster A. To
this end, we define two properties and show how they lead to an algorithm that returns C ′1, . . . , C

′
k,

and help us prove that A respects the structure of OPT .

2 A “good” point is referred to as a center-capturing vertex in other works, e.g., Vishwanathan [1996]. We formally
define this notion in Section 2.5.

13

(a) Properties of 2-perturbation re-
silience

(b) Demonstrating the correctness of Algo-
rithm 1

Figure 2.1: Properties of a 2-perturbation resilient instance of aymmetric k-center that are used for
clustering.

The first of these properties requires each point to be closer to its center than any point in
another cluster.

Property (1): For all p ∈ C ′i and q ∈ C ′j 6=i, d(ci, p) < d(q, p).

The second property requires that any point within distance r∗ of a cluster center belongs to
that cluster.

Property (2): For all i 6= j and q ∈ Cj , d(q, ci) > r∗ (see Figure 2.1). 3

Let us illustrate how these properties allow us to optimally clusterA. 4 Consider a ball of radius
r∗ around a center ci. By Property 2, such a ball exactly captures C ′i. Furthermore, by Property 1,
any point in this ball is closer to the center than to points outside of the ball. Is this true for a ball
of radius r∗ around a general point p? Not necessarily. If this ball contains a point q ∈ C ′j from
a different cluster, then q will be closer to a point outside the ball than to p (namely, cj , which is
guaranteed to be outside of the ball by Property 2). This allows us to determine that the center of
such a ball must not be an optimal center.

This structure motivates our Algorithm 1 for asymmetric k-center under 2-perturbation re-
silience. At a high level, we start by constructing the setA (which can be done easily in polynomial
time). Then we create the set of all balls of radius r∗ around all points in A (if r∗ is not known, we
can use a guess-and-check wrapper). Next, we prune this set by throwing out any ball that contains
a point farther from its center than to a point outside the ball. We also throw out any ball that is
a subset of another one. Our claim is that the remaining balls are exactly C ′1, . . . , C

′
k. Finally, we

add the points in S \ A to their closest point in A.

Formal details of our analysis

Lemma 2.3.3. Properties 1 and 2 hold for asymmetric k-center instances satisfying 2-perturbation
resilience.

3 Property (1) first appeared in the work of Awasthi et al. [2012], for symmetric clustering instances. A weaker
variation of Property (2) was introduced by Balcan and Liang [2016], which showed that in 1 +

√
2-perturbation

resilient instances for any cluster Ci with radius ri, Bri(ci) = Ci. Our Property (2) shows that this is true for a
universal radius, r∗, even for 2-perturbation resilient instances, and even for asymmetric instances.

4 Other algorithms work, such as single linkage with dynamic programming at the end to find the minimum cost
pruning of k clusters. However, our algorithm is able to recognize optimal clusters locally (without a complete view
of the point set).

14

Algorithm 1 ASYMMETRIC k-CENTER ALGORITHM UNDER 2-PR

Input: Asymmetric k-center instance (S, d), distance r∗ (or try all possible candidates)
Create symmetric set
• Build set A = {p | ∀q, d(q, p) ≤ r∗ =⇒ d(p, q) ≤ r∗}

Create candidate balls
• ∀c ∈ A, construct Gc = Br∗(c) (the ball of radius r∗ around c).

Prune balls
• ∀Gc, if ∃p ∈ Gc, q /∈ Gc s.t. d(q, p) < d(c, p), then throw out Gc.

• ∀p, q s.t. Gp ⊆ Gq, throw out Gp.

Insert remaining points
• ∀p /∈ A, add p to Gq, where q = arg mins∈A d(s, p).

Output: sets G1, . . . , Gk

Proof. Property 1: Assume false, d(q, p) ≤ d(ci, p). The idea will be that since q is inA, it is close
to its own center, so we can construct a perturbation in which q replaces its center cj . Then p will
join q’s cluster, causing a contradiction. Construct the following d′:

d′(s, t) =

{
min(2r∗, 2d(s, t)) if s = q, t ∈ Cj ∪ {p}
2d(s, t) otherwise.

This is a 2-perturbation because d(q, Cj ∪ {p}) ≤ 2r∗. Then by Lemma 2.2.8, the optimal cost
is 2r∗. The set of centers {c`}ki=1 \ {cj} ∪ {q} achieves the optimal cost, since q is distance 2r∗

from Cj , and all other clusters have the same center as in OPT (achieving radius 2r∗). Then for
all c`, d′(q, p) ≤ d′(ci, p) ≤ d′(c`, p). And since q ∈ A, d(q, cj) ≤ r∗ so d(q, Cj) ≤ 2r∗. Then we
can construct a 2-perturbation in which q becomes the center of Cj , and then q is the best center
for p, so we have a contradiction.

Property 2: Assume on the contrary that there exists q ∈ Cj , i 6= j such that d(q, ci) ≤ r∗.
Now we will define a d′ in which q can become a center for Ci.

d′(s, t) =

{
min(2r∗, 2d(s, t)) if s = q, t ∈ Ci
2d(s, t) otherwise.

This is a 2-perturbation because d(q, Ci) ≤ 2r∗. Then by Lemma 2.2.8, the optimal cost is 2r∗.
The set of centers {c`}ki=1 \ {ci} ∪ {q} achieves the optimal cost, since q is distance 2r∗ from Ci,
and all other clusters have the same center as in OPT (achieving radius 2r∗). But the clustering
with centers {c`}ki=1 \ {ci} ∪ {q} is different from OPT , since (at the very least) q and ci are in
different clusters. This contradicts 2-perturbation resilience.

Lemma 2.3.4. The set A respects the structure of OPT .

15

Proof. From Lemma 2.3.3, we can use Property 2 in our analysis. First we show that ci ∈ A for
all i ∈ [k]. Given ci, ∀p ∈ Ci, then d(ci, p) ≤ r∗ by definition of OPT . ∀q /∈ Ci, then by Property
2, d(q, ci) > r∗. It follows that for any point p ∈ S, it cannot be the case that d(p, ci) ≤ r∗ and
d(ci, p) > r∗. Therefore, ci ∈ A.

Now we show that for all p ∈ S \ A, if A(p) ∈ Ci, then p ∈ Ci. Given p ∈ S \ A, let
p ∈ Ci and assume towards contradiction that q = A(p) ∈ Cj for some i 6= j. We will construct a
2-perturbation d′ in which q replaces cj as the center for Cj and p switches from Ci to Cj , causing
a contradiction. We construct d′ as follows. All distances are increased by a factor of 2 except
for d(q, p) and d(q, q′) for all q′ ∈ Cj . These distances are increased by a factor of 2 up to 2r∗.
Formally,

d′(s, t) =

{
min(2r∗, 2d(s, t)) if s = q, t ∈ Cj ∪ {p}
2d(s, t) otherwise.

This is a 2-perturbation because d(q, Cj) ≤ 2r∗. Then by Lemma 2.2.8, the optimal cost is
2r∗. The set of centers {c`}ki=1 \ {cj} ∪ {q} achieves the optimal cost, since q is distance 2r∗ from
Cj , and all other clusters have the same center as in OPT (achieving radius 2r∗). But consider
the point p. Since all centers are in A and q is the closest point to p in A, then q is the center
for p under d′. Therefore, the optimal clustering under d′ is different from OPT , so we have a
contradiction.

Now we are ready to show Algorithm 1 returns the optimal clustering.

Theorem 2.3.5. Algorithm 1 returns the exact solution for asymmetric k-center under 2-perturbation
resilience.

Proof. First we must show that after step 1, the remaining sets are exactly C ′1, . . . , C
′
k = C1 ∩

A, . . . , Ck ∩ A. We prove this in three steps: the sets Gci correspond to C ′i, these sets are not
thrown out in steps 1 and 1, and all other sets are thrown out in steps 1 and 1. Because of Lemma
2.3.3, we can use Properties 1 and 2.

For all i, Gci = C ′i: From Lemma 2.3.4, all centers are in A, so Gci will be created in step 2.
For all p ∈ Ci, d(ci, p) ≤ r∗. For all q /∈ C ′i, then by Property 2, d(q, ci) > r∗ (and since ci, q ∈ A,
d(ci, q) > r∗ as well). For all i, Gci is not thrown out in step 1: Given s ∈ Gci and t /∈ Gci . Then
s ∈ C ′i and t ∈ C ′j for j 6= i. If d(t, s) < d(ci, s), then we get a contradiction from Property 1.
For all non-centers p, Gp is thrown out in step 1 or 1: From the previous paragraph, Gci = C ′i. If
Gp ⊆ Gci , then Gp will be thrown out in step 1 (if Gp = Gci , it does not matter which set we keep,
so WLOG say that we keep Gci). Then if Gp is not thrown out in step 1, ∃s ∈ Gp ∩ C ′j , j 6= i.
If s = cj , then d(p, cj) ≤ r∗ and we get a contradiction from Property 2. So, we can assume s is
a non-center (and that cj /∈ Gp). But d(cj, s) < d(p, s) from Property 1, and therefore Gp will be
thrown out in step 1. Thus, the remaining sets after step 1 are exactly C ′1, . . . , C

′
k.

Finally, by Lemma 2.3.4, for each p ∈ Ci \A, A(p) ∈ Ci, so p will be added to Gci . Therefore,
the final output is C1, . . . , Ck.

16

2.3.3 Hardness of k-center under perturbation resilience

In this section, we show NP-hardness for k-center under (2− δ)-perturbation resilience. We show
that if symmetric k-center under (2−δ)-perturbation resilience 5 can be solved in polynomial time,
then NP = RP , even under the condition that the optimal clusters are all size ≥ n

2k
. Because

symmetric k-center is a special case of asymmetric k-center, we have the same hardness results for
asymmetric k-center. This proves Theorem 2.3.5 is tight with respect to the level of perturbation
resilience assumed.

Theorem 2.3.6. There is no polynomial time algorithm for finding the optimal k-center clustering
under (2 − δ)-perturbation resilience, even when assuming all optimal clusters are size ≥ n

2k
,

unless NP = RP .

We show a reduction from a special case of Dominating Set which we call Unambiguous-
Balanced-Perfect Dominating Set. Below, we formally define this problem and all intermediate
problems. Part of our reduction is based off of the proof of Ben-David and Reyzin [2012], who
showed a reduction from a variant of dominating set to the weaker problem of clustering under
(2−δ)-center proximity 6 We use four NP-hard problems in a chain of reductions. Here, we define
all of these problems up front. We introduce the “balanced” variants of two existing problems.

Definition 2.3.7 (3-Dimensional Matching (3DM)). We are given three disjoint sets X1, X2, and
X3 each of size m, and a set T such that t ∈ T is a triple t = (x1, x2, x3) where x1 ∈ X1, x2 ∈ X2,
and x3 ∈ X3. The problem is to find a set M ⊆ T of size m which exactly hits all the elements
in X1 ∪ X2 ∪ X3. In other words, for all pairs (x1, x2, x3), (y1, y2, y3) ∈ M , it is the case that
x1 6= y1, x2 6= y2, and x3 6= y3.

Definition 2.3.8 (Balanced-3-Dimensional Matching (B3DM)). This is the 3DM problem
(X1, X2, X3, T) with the additional constraint that 2m ≤ |T | ≤ 3m, where |X1| = |X2| = |X3| =
m.

Definition 2.3.9 (Perfect Dominating Set (PDS)). Given a graph G = (V,E) and an integer k, the
problem is to find a set of vertices D ⊆ V of size k such that for all v ∈ V \D, there exists exactly
one d ∈ D such that (v, d) ∈ E.

Definition 2.3.10 (Balanced-Perfect-Dominating Set (BPDS)). This is the PDS problem (G, k)
with the additional assumption that if the graph has n vertices and a dominating set of size k
exists, then each vertex in the dominating set hits at least n

2k
vertices.

Additionally, each problem has an “Unambiguous” variant, which is the added constraint that
the problem has at most one solution. Valiant and Vazirani showed that Unambiguous-3SAT is
hard unless NP = RP [Valiant and Vazirani, 1986]. To show the Unambiguous version of an-
other problem is hard, one must establish a parsimonious reduction from Unambiguous-3SAT to
that problem. A parsimonious reduction is one that conserves the number of solutions. For two

5 In fact, our result holds even under the strictly stronger notion of approximation stability [Balcan et al., 2013a].
6 α-center proximity is the property that for all p ∈ Ci and j 6= i, αd(ci, p) < d(cj , p), and it follows from

α-perturbation resilience.

17

problems A and B, we denote A ≤par B to mean there is a reduction from A to B that is par-
simonious and polynomial. Some common reductions involve 1-to-1 mappings which are easy
to verify parsimony, but many other common reductions are not parsimonious. For instance, the
standard reduction from 3SAT to 3DM is not parsimonious [Kleinberg and Tardos, 2006], yet there
is a more roundabout series of reductions which all use 1-to-1 mappings, and are therefore easy
to verify parsimony. In order to prove Theorem 2.3.6, we start with the claim that Unambiguous-
BPDS is hard unless NP = RP . We use a parsimonious series of reductions from 3SAT to B3DM
to BPDS. All of these reductions are from prior work, yet we verify parsimony and balancedness.

Lemma 2.3.11. There is no polynomial time algorithm for Unambiguous-BPDS unless NP =
RP .

Proof. We give a parsimonious series of reductions from 3SAT to B3DM to BPDS. Then it fol-
lows from the result of Valiant and Vazirani [1986] that there is no polynomial time algorithm for
Unambiguous-BPDS unless NP = RP .

To show that B3DM is NP-hard, we use the reduction of Dyer and Frieze [1986] who showed
that Planar-3DM is NP-hard. While planarity is not important for the purpose of our problems,
their reduction from 3SAT has two other nice properties that we crucially use. First, the reduc-
tion is parsimonious, as pointed out by Hunt III et al. [1998]. Second, given their 3DM instance
X1, X2, X3, T , each element in X1 ∪ X2 ∪ X3 appears in either two or three tuples in T . (Dyer
and Frieze [1986] mention this observation just before their Theorem 2.3.) From this, it follows
that 2m ≤ |T | ≤ 3m, and so their reduction proves that B3DM is NP -hard via a parsimonious
reduction from 3SAT.

Next, we reduce B3DM to BPDS using a reduction similar to the reduction in Ben-David and
Reyzin [2012]. Their reduction maps every element X1, X2, X3, T to a vertex in V , and adds
one extra vertex v to V . There is an edge from each element (x1, x2, x3) ∈ T to the corresponding
elements x1 ∈ X1, x2 ∈ X2, and x3 ∈ X3. Furthermore, there is an edge from v to every element in
T . Ben-David and Reyzin [2012] show that if the 3DM instance is a YES instance with matching
M ⊆ T then the minimum dominating set is v ∪ M . Then, this dominating set is size m + 1.
If we start with B3DM, our graph has |X1| + |X2| + |X3| + |T | + 1 ≤ 6m + 1 vertices since
|T | ≤ 3m. Given t ∈M , t hits 3 nodes in the graph, and n

2(m+1)
≤ 6m+1

2m+2
≤ 3. Furthermore, v hits

|T | −m ≥ 2m−m = m nodes, and 6m+1
2m+2

≤ m when m ≥ 3. Therefore, the resulting instance is
a BPDS instance.

Now we have verified that there exists a parsimonious reduction 3SAT≤par BPDS, so it follows
that there is no polynomial time algorithm for Unambiguous-BPDS unless NP = RP .

Now we can prove Theorem 2.3.6 by giving a reduction from Unambiguous-BPDS to k-center
clustering under (2− δ)-perturbation resilience, where all clusters are size ≥ n

2k
. We use the same

reduction as in [Ben-David and Reyzin, 2012], but we must verify that the resulting instance is
(2− δ)-perturbation resilient, which requires the unambiguity.

Proof of Theorem 2.3.6. From Lemma 2.3.11, Unambiguous-BPDS is NP-hard unlessNP = RP .
Now for all δ > 0, we reduce from Unambiguous-BPDS to k-center clustering and show the
resulting instance has all cluster sizes ≥ n

2k
and satisfies (2− δ)-perturbation resilience.

18

Given an instance of Unambiguous-BPDS, for every v ∈ V , create a point v ∈ S in the
clustering instance. For every edge (u, v) ∈ E, let d(u, v) = 1, otherwise let d(u, v) = 2. Since
all distances are either 1 or 2, the triangle inequality is trivially satisfied. Then a k-center solution
of cost 1 exists if and only if there exists a dominating set of size k.

Since each vertex in the dominating set hit at least n
2k

vertices, the resulting clusters will be
size at least n

2k
+ 1. Additionally, if there exists a dominating set of size k, then the corresponding

optimal k-center clustering has cost 1. Because this dominating set is perfect and unique, any other
clustering has cost 2. It follows that the k-center instance is (2− δ)-perturbation resilient.

2.4 k-center under metric perturbation resilience
In this section, we extend the results from Section 2.3 to the metric perturbation resilience setting.
We first give a generalization of Lemma 2.2.8 to show that it can be extended to metric perturbation
resilience. Then we show how this immediately leads to corollaries of Theorem 2.3.1 and Theorem
2.3.5 extended to the metric perturbation resilience setting.

Recall that in the proofs from the previous section, we created α-perturbations d′ by increasing
all distances by α, except a few distances d(u, v) ≤ αr∗ which we increased to min(αd(u, v), αr∗).
In this specific type of α-perturbation, we used the crucial property that the optimal clustering has
cost αr∗ (Lemma 2.2.8). However, d′ may be highly non-metric, so our challenge is arguing that
the proof still goes through after taking the metric completion of d′ (recall the metric completion
of d′ is defined as the shortest path metric on d′). In the following lemma, we show that Lemma
2.2.8 remains true after taking the metric completion of the perturbation.

Lemma 2.4.1. Given α ≥ 1 and an asymmetric k-center clustering instance V = (V, d, k)
with optimal radius r∗, let d′′ denote an α-perturbation such that for all u, v, either d′′(u, v) =
min(αr∗, αd(u, v)) or d′′(u, v) = αd(u, v). Let d′ denote the metric completion of d′′. Then d′ is
an α-metric perturbation of d, and the optimal cost under d′ is αr∗.

Proof. By construction, d′(u, v) ≤ d′′(u, v) ≤ αd(u, v). Since d satisfies the triangle inequality,
we have that d(u, v) ≤ d′(u, v), so d′ is a valid α-metric perturbation of d.

Now given u, v such that d(u, v) ≥ r∗, we will prove that d′(u, v) ≥ αr∗. By construction,
d′′(u, v) ≥ αr∗. Then since d′ is the metric completion of d′′, there exists a path u = u0–u1–· · · –
us−1–us = v such that d′(u, v) =

∑s−1
i=0 d

′(ui, ui+1) and for all 0 ≤ i ≤ s − 1, d′(ui, ui+1) =
d′′(ui, ui+1).

Case 1: there exists an i such that d′′(ui, ui+1) ≥ αr∗. Then d′(u, v) ≥ αr∗ and we are done.

Case 2: for all 0 ≤ i ≤ s − 1, d′′(ui, ui+1) < αr∗. Then by construction, d′(ui, ui+1) =
d′′(ui, ui+1) = αd(ui, ui+1), and so

d′(u, v) =
s−1∑
i=0

d′(ui, ui+1) = α

s−1∑
i=0

d(ui, ui+1) ≥ αd(u, v) ≥ αr∗.

We have proven that for all u, v, if d(u, v) ≥ r∗, then d′(u, v) ≥ αr∗. Assume there exists
a set of centers C ′ = {c′1, . . . , c′k} whose k-center cost under d′ is < αr∗. Then for all i and

19

s ∈ VorC′,d′(c′i), d′(c′i, s) < αr∗, implying d(c′i, s) < r∗ by construction. It follows that the k-
center cost of C ′ under d is r∗, which is a contradiction. Therefore, the optimal cost under d′ must
be αr∗.

Recall that metric perturbation resilience states that the optimal solution does not change under
any metric perturbation to the input distances. In the proofs of Theorems 2.3.1 and 2.3.5, the only
perturbations constructed were the type as in Lemma 2.2.8. Since Lemma 2.4.1 shows this type of
perturbation is indeed a metric, Theorems 2.3.1 and 2.3.5 are true even under metric perturbation
resilience.

Corollary 2.4.2. Given a clustering instance (S, d) satisfying α-metric perturbation resilience for
asymmetric k-center, and a set C of k centers which is an α-approximation, i.e., ∀p ∈ S, ∃c ∈ C
s.t. d(c, p) ≤ αr∗, then the Voronoi partition induced by C is the optimal clustering.

Corollary 2.4.3. Algorithm 1 returns the exact solution for asymmetric k-center under 2- pertur-
bation resilience.

2.5 k-center under local perturbation resilience
In this section, we further extend the results from Sections 2.3 and 2.4 to the local perturbation
resilience setting. First we show that any α-approximation to k-center will return each optimal
α-MPR cluster, i.e., Corollary 2.4.2 holds even in the local perturbation resilience setting. Then
for asymmetric k-center, we show that a natural modification to the O(log∗ n) approximation al-
gorithm of Vishwanathan [1996] leads to an algorithm that maintains its performance in the worst
case, while exactly returning each optimal cluster located within a 2-MPR region of the dataset.
This generalizes Corollary 2.4.3.

2.5.1 Symmetric k-center

In section 2.3, we showed that any α-approximation algorithm for k-center returns the optimal so-
lution for instances satisfying α-perturbation resilience (and this was generalized to metric pertur-
bation resilience in the previous section). In this section, we extend this result to the local perturba-
tion resilience setting. We show that any α-approximation will return each (local) α-MPR cluster.
For example, if a clustering instance is half 2-perturbation resilient, running a 2-approximation
algorithm will return the optimal clusters for half the dataset, and a 2-approximation for the other
half.

Theorem 2.5.1. Given an asymmetric k-center clustering instance (S, d), a set C of k centers
which is an α-approximation, and a clustering C defined as the Voronio partition induced by C,
then each α-MPR cluster is contained in C.

The proof is very similar to the proof of Theorem 2.3.1. The key difference is that we rea-
son about each perturbation resilient cluster individually, rather than reasoning about the global
structure of perturbation resilience.

20

Proof. Given an α-approximate solution C to a clustering instance (S, d), and given an α-MPR
cluster Ci, we will create an α-perturbation as follows. Define

d′′(v, C(v)) = min{αr∗, αd(v, C(v))},For all v ∈ S.

For all other points u ∈ S, set d′′(v, u) = αd(v, u). Then by Lemma 2.4.1, the metric completion d′

of d′′ is an α-perturbation of d with optimal cost αr∗. By construction, the cost of C is≤ αr∗ under
d′, therefore, C is an optimal clustering. Denote the set of centers of C by C. By definition of α-
MPR, there exists vi ∈ C such that VorC(vi) = Ci in d′. Now, given v ∈ Ci, argminu∈Cd

′(u, v) =
vi, so by construction, argminu∈Cd(u, v) = vi. Therefore, VorC(vi) = Ci, so Ci ∈ C.

2.5.2 Asymmetric k-center

In Section 2.3, we gave an algorithm which outputs the optimal clustering for asymmetric k-center
under 2-perturbation resilience (Algorithm 1 and Theorem 2.3.5), and we extended it to metric
perturbation resilience in Section 2.4. In this section, we extend the result further to the local per-
turbation resilience setting, and we show how to add a worst-case guarantee of O(log∗ n). Specif-
ically, we give a new algorithm, which is a natural modification to the O(log∗ n) approximation
algorithm of Vishwanathan [1996], and show that it maintains the O(log∗ n) guarantee in the worst
case while returning each optimal perturbation resilient cluster in its own superset. As a conse-
quence, if the entire clustering instance satisfies 2-metric perturbation resilience, then the output
of our algorithm is the optimal clustering.

Theorem 2.5.2. Given an asymmetric k-center clustering instance (S, d) of size n with optimal
clustering {C1, . . . , Ck}, for each 2-MPR clusterCi, there exists a cluster outputted by Algorithm 3
that is a superset of Ci and does not contain any other 2-MPR cluster. 7 Furthermore, the overall
clustering returned by Algorithm 3 is an O(log∗ n)-approximation.

At the end of this section, we will also show an algorithm that outputs an optimal cluster Ci
exactly, if Ci and any optimal cluster near Ci are 2-MPR.

Approximation algorithm for asymmetric k-center We start with a recap of the O(log∗ n)-
approximation algorithm by Vishwanathan [1996]. This was the first nontrivial algorithm for
asymmetric k-center, and the approximation ratio was later proven to be tight by Chuzhoy et al.
[2005]. To explain the algorithm, it is convenient to think of asymmetric k-center as a set covering
problem. Given an asymmetric k-center instance (S, d), define the directed graph D(S,d) = (S,A),
where A = {(u, v) | d(u, v) ≤ r∗}. For a point v ∈ S, we define Γin(v) and Γout(v) as the set of
vertices with an arc to and from v, respectively. The asymmetric k-center problem is equivalent to
finding a subset C ⊆ S of size k such that ∪c∈CΓout(c) = S. We also define Γxin(v) and Γxout(v) as
the set of vertices which have a path of length ≤ x to and from v in D(S,d), respectively, and we
define Γxout(A) =

⋃
v∈A Γxout(v) for a set A ⊆ S, and similarly for Γxin(A). It is standard to assume

the value of r∗ is known; since it is one of O(n2) distances, the algorithm can search for the correct
value in polynomial time. Vishwanathan [1996] uses the following concept.

7Formally, given the output clustering C′ of Algorithm 3, for all 2-MPR clusters Ci and Cj , there exists C ′i ∈ C′
such that Ci ⊆ C ′i and Cj ∩ C ′i = ∅.

21

(a) u is a CCV, so it is distance 2r∗ to
its entire cluster.

(b) c satisfies CCV-proximity, so it is
closer to v than c′ is to v.

Figure 2.2: Examples of a center-capturing vertex (left), and CCV-proximity (right).

Definition 2.5.3. Given an asymmetric k-center clustering instance (S, d), a point v ∈ S is a
center-capturing vertex (CCV) if Γin(v) ⊆ Γout(v). In other words, for all u ∈ S, d(u, v) ≤ r∗

implies d(v, u) ≤ r∗.

As the name suggests, each CCV v ∈ Ci, “captures” its center, i.e. ci ∈ Γout(v) (see Fig-
ure 2.2a). Therefore, v’s entire cluster is contained inside Γ2

out(v), which is a nice property that the
approximation algorithm exploits. At a high level, the approximation algorithm has two phases. In
the first phase, the algorithm iteratively picks a CCV v arbitrarily and removes all points in Γ2

out(v).
This continues until there are no more CCVs. For every CCV picked, the algorithm is guaran-
teed to remove an entire optimal cluster. In the second phase, the algorithm runs log∗ n rounds
of a greedy set-cover subroutine on the remaining points. See Algorithm 2. To prove the second
phase terminates in O(log∗ n) rounds, the analysis crucially assumes there are no CCVs among the
remaining points. We refer the reader to [Vishwanathan, 1996] for these details.

Description of our algorithm and analysis We show a modification to the approximation algo-
rithm of Vishwanathan [1996] leads to simultaneous guarantees in the worst case and under local
perturbation resilience. Note that the set of all CCV’s is identical to the symmetric set A defined in
Section 2.3.2. In Section 2.3.2, we showed that all centers are inA, therefore, all centers are CCV’s,
assuming 2-PR. In this section, we have that each 2-MPR center is a CCV (Lemma 2.5.5), which
is true by definition of r∗, (Ci ⊆ Γout(ci)) and by using the definition of 2-MPR (Γin(ci) ⊆ Ci).
Since each 2-MPR center is a CCV, we might hope that we can output the 2-MPR clusters by
iteratively choosing a CCV v and removing all points in Γ2

out(v). However, using this approach we
might remove two or more 2-MPR centers in the same iteration, which means we would not output
one separate cluster for each 2-MPR cluster. If we try to get around this problem by iteratively
choosing a CCV v and removing all points in Γ1

out(v), then we may not remove one full cluster in
each iteration, so for example, some of the 2-SPR clusters may be cut in half.

The key challenge is thus carefully specifying which nearby points get marked by each CCV
c chosen by the algorithm. We fix this problem with two modifications that carefully balance the
two guarantees. First, any CCV c chosen will mark points in the following way: for all c′ ∈ Γin(c),
mark all points in Γout(c

′). Intuitively, we still mark points that are two hops from c, but the first

22

Algorithm 2 O(log∗ n) APPROXIMATION ALGORITHM FOR ASYMMETRIC k-CENTER [VISH-
WANATHAN, 1996]
Input: Asymmetric k-center instance (S, d), optimal radius r∗ (or try all possible candidates)

Set C = ∅
Phase I: Pull out arbitrary CCVs
While there exists an unmarked CCV

• Pick an unmarked CCV c, add c to C, and mark all vertices in Γ2
out(c)

Phase II: Recursive set cover
Set A0 = S \ Γ5

out(C), i = 0.
While |Ai| > k:

• Set A′i+1 = ∅.
• While there exists an unmarked point in Ai:

– Pick v ∈ S which maximizes Γ5
out(v) ∩ Ai, mark points in Γ5

out(v) ∩ Ai, and add v to
A′i+1.

• Set Ai+1 = A′i+1 ∩ A0 and i = i+ 1

Output: Centers C ∪ Ai+1

‘hop’ must go backwards, i.e., mark v such that there exists c′ and d(c′, c) ≤ r∗ and d(c′, v) ≤ r∗.
This gives us a useful property: if the algorithm picks a CCV c ∈ Ci and it marks a different 2-
MPR center cj , then the middle hop must be a point q in Cj . However, we know from perturbation
resilience that d(cj, q) < d(c, q). This fact motivates the final modification to the algorithm. Instead
of picking arbitrary CCVs, we require the algorithm to choose CCVs with an extra structural
property which we call CCV-proximity (Definition 2.5.4). See Figure 2.2b. Intuitively, a point c
satisfying CCV-proximity must be closer than other CCVs to each point in Γin(c). Going back to
our previous example, c will NOT satisfy CCV-proximity because cj is closer to q, but we will be
able to show that all 2-MPR centers do satisfy CCV-proximity. Thus Algorithm 3 works as follows.
It first chooses points satisfying CCV-proximity and marks points according to the rule mentioned
earlier. When there are no more points satisfying CCV-proximity, the algorithm chooses regular
CCVs. Finally, it runs Phase II as in Algorithm 2. This ensures that Algorithm 3 will output each
2-MPR center in its own cluster.

Details for Theorem 2.5.2 Now we formally define CCV-proximity. The other properties in the
following definition, center-separation and cluster-proximity, are defined in terms of the optimal
clustering, so they cannot be explicitly used by an algorithm, but they will simplify all of our
proofs.

Definition 2.5.4. 1. An optimal center ci satisfies center-separation if any point within distance
r∗ of ci belongs to its cluster Ci. That is, Γin(ci) ⊆ Ci (see Figure 2.3a). 8

2. A CCV c ∈ Ci satisfies CCV-proximity if, given a CCV c′ /∈ Ci and a point v ∈ Ci, we have
αd(c, v) < d(c′, v) (see Figure 2.3b). 9

8 Center-separation is the local-PR equivalent of property 2 from Section 2.3.2.
9 This is a generalization of α-center proximity [Awasthi et al., 2012], a property defined over an entire clustering

23

(a) ci satisfies center-separation, so
Γin(ci) ⊆ Ci.

(b) c ∈ Ci satisfies cluster-proximity, so it
is closer to v ∈ Ci than c′ ∈ Cj is to v.

Figure 2.3: Examples of center-separation (left), and cluster-proximity (right).

3. A CCV c ∈ Ci satisfies weak CCV-proximity if, given a CCV c′ /∈ Ci and a point v ∈ Ci, we
have d(c, v) < d(c′, v) (see Figure 2.3b).

4. A point c satisfies closure if it is a CCV, and each point in Γin(c) is closer to c than any CCV
outside of Γout(c). That is, for all points v ∈ Γin(c) and CCVs c′ /∈ Γout(c), d(c, v) < d(c′, v)
(see Figure 2.2b) 10

Next we prove that all 2-MPR centers satisfy CCV-proximity and center-separation. We also
prove a third condition which states a CCV in some cluster Ci is closer than a CCV outside of Ci
to all points in Ci. This property will help us prove Theorem 2.5.2.

Lemma 2.5.5. Given an asymmetric k-center clustering instance (S, d) and a 2-MPR cluster Ci,
(1) ci satisfies center-separation,
(2) any CCV c ∈ Ci satisfies weak CCV-proximity,
(3) ci satisfies closure.
Furthermore, an α-PR cluster satisfies α-CCV proximity.

Proof. Given an instance (S, d) and a 2-MPR clusterCi, we show thatCi has the desired properties.

Center separation: Assume there exists a point v ∈ Cj for j 6= i such that d(v, ci) ≤ r∗. The
idea is to construct a 2-perturbation in which v becomes the center for Ci.

d′′(s, t) =

{
min(2r∗, 2d(s, t)) if s = v, t ∈ Ci
2d(s, t) otherwise.

d′′ is a valid 2-perturbation of d because for each point u ∈ Ci, d(v, u) ≤ d(v, ci) + d(ci, u) ≤ 2r∗.
Define d′ as the metric completion of d′′. Then by Lemma 2.4.1, d′ is a 2-metric perturbation with
optimal cost 2r∗. The set of centers {ci′}ki′=1 \ {ci} ∪ {v} achieves the optimal cost, since v is
distance 2r∗ from Ci, and all other clusters have the same center as in OPT (achieving radius
2r∗). If v is a noncenter, then {ci′}ki′=1 \{ci}∪{v} is a valid set of k centers. If v = cj , then add an
arbitrary point v′ ∈ Cj to this set of centers (it still achieves the optimal cost since adding another

instance, which states for all i, for all v ∈ Ci, j 6= i, we have αd(ci, v) < d(cj , v). We generalize to local-PR,
asymmetric instances, and general CCV’s.

10This is similar to a property in [Balcan and Liang, 2016].

24

center can only decrease the cost). Then in this new optimal clustering, ci’s center is a point in
{ci′}ki′=1 \ {ci} ∪ {v, v′}, none of which are from Ci. We conclude that Ci is no longer an optimal
cluster, contradicting 2-MPR.

Cluster-proximity: Given a CCV c ∈ Ci, a CCV c′ ∈ Cj such that j 6= i, and a point v ∈ Ci,
assume to the contrary that d(c′, v) ≤ d(c, v). We will construct a perturbation in which c and
c′ become centers of their respective clusters, and then v switches clusters. Define the following
perturbation d′′.

d′′(s, t) =

{
min(2r∗, 2d(s, t)) if s = c, t ∈ Ci or s = c′, t ∈ Cj ∪ {v}
2d(s, t) otherwise.

d′′ is a valid 2-perturbation of d because for each point u ∈ Ci, d(c, u) ≤ d(c, ci) + d(ci, u) ≤ 2r∗,
for each point u ∈ Cj , d(c′, u) ≤ d(c′, cj) + d(cj, u) ≤ 2r∗, and d(c′, v) ≤ d(c, v) ≤ d(c, ci) +
d(ci, v) ≤ 2r∗. Define d′ as the metric completion of d′′. Then by Lemma 2.4.1, d′ is a 2-metric
perturbation with optimal cost 2r∗. The set of centers {ci′}ki′=1 \ {ci, cj} ∪ {c, c′} achieves the
optimal cost, since c and c′ are distance 2r∗ from Ci and Cj , and all other clusters have the same
center as in OPT (achieving radius 2r∗). Then since d′(c′, v) ≤ d(c, v), v can switch clusters,
contradicting perturbation resilience.

CCV-proximity: First we show that ci is a CCV. By center-separation, we have that Γin(ci) ⊆
Ci, and by definition of r∗, we have thatCi ⊆ Γout(ci). Therefore, Γin(ci) ⊆ Ci ⊆ Γout(ci), so ci is a
CCV. Now given a point v ∈ Γin(ci) and a CCV c /∈ Γout(ci), from center-separation and definition
of r∗, we have v ∈ Ci and c ∈ Cj for j 6= i. Then from cluster-proximity, d(ci, v) < d(c, v).

Algorithm 3 ALGORITHM FOR ASYMMETRIC k-CENTER UNDER PERTURBATION RESILIENCE

Input: Asymmetric k-center instance (S, d), distance r∗ (or try all possible candidates)
Set C = ∅.
Phase I: Pull out special CCVs
• While there exists an unmarked CCV:

– Pick an unmarked point cwhich satisfies CCV-proximity. If no such c exists, then pick
an arbitrary unmarked CCV instead. Add c to C, and ∀c′ ∈ Γin(c), mark Γout(c

′).

• For each c ∈ C, let Vc denote c’s Voronoi tile of the marked points induced by C.

Phase II: Recursive set cover
• Run Phase II as in Algorithm 2, outputting Ai+1.

• Compute the Voronoi diagram {V ′c}c∈C∪Ai+1
of S \ Γ5

out(C) induced by C ∪ Ai+1

• For each c in C, set V ′c = Vc ∪ V ′c
Output: Sets {V ′c}c∈C∪Ai+1

Now using Lemma 2.5.5, we can prove Theorem 2.5.2.

Proof of Theorem 2.5.2. First we explain why Algorithm 3 retains the approximation guarantee of
Algorithm 2. Given any CCV c ∈ Ci chosen in Phase I, since c is a CCV, then ci ∈ Γout(c), and by

25

(a) A point c /∈ Ci cannot mark ci
without causing a contradiciton.

(b) Case 2 in the proof of Theorem 2.5.7: c′ is
closer to v than c is to v.

Figure 2.4: Example of Algorithm 3 (left), and the proof of Theorem 2.5.7 (right).

definition of r∗, Ci ⊆ Γout(ci). Therefore, each chosen CCV always marks its cluster, and we start
Phase II with no remaining CCVs. This condition is sufficient for Phase II to return an O(log∗ n)
approximation (Theorem 3.1 from [Vishwanathan, 1996]).

Next we claim that for each 2-MPR cluster Ci, there exists a cluster outputted by Algorithm 3
that is a superset of Ci and does not contain any other 2-MPR cluster. To prove this claim, we
first show there exists a point from Ci satisfying CCV-proximity that cannot be marked by any
point from a different cluster in Phase I. From Lemma 2.5.5, ci satisfies CCV-proximity and center-
separation. If a point c /∈ Ci marks ci, then ∃v ∈ Γin(c)∩Γin(ci). By center-separation, ci /∈ Γout(c),
and therefore since c is a CCV, c /∈ Γout(ci). But then from the definition of CCV-proximity for ci
and c, we have d(c, v) < d(ci, v) and d(ci, v) < d(c, v), so we have reached a contradiction (see
Figure 2.4a).

At this point, we know a point c ∈ Ci will always be chosen by the algorithm in Phase I. To
finish the proof, we show that each point v from Ci is closer to c than to any other point c′ /∈ Ci
chosen as a center in Phase I. Since c and c′ are both CCVs, this follows directly from cluster-
proximity. 11

Strong perturbation resilience

Theorem 2.5.2 shows that Algorithm 3 will output each 2-PR center in its own cluster. Given some
2-PR center ci, it is unavoidable that ci might mark a non 2-PR center cj , and capture all points in its
cluster. Now we define a natural strengthening of α-PR which allows us to prove a stronger result
than Theorem 2.5.2. Intuitively, an optimal cluster Ci satisfies α-strong perturbation resillience
if all nearby clusters satisfy α-perturbation resilience. We show that Algorithm 3 with a slight
modification outputs each 2-strong perturbation resilient cluster exactly.

Definition 2.5.6. (Strong perturbation resilience) Given a k-center clustering instance (S, d), a
subset C satisfies α-strong perturbation resilience (α-SPR) if there exists S ′ ⊇ C which is α-PR,
and furthermore, for each u ∈ C, if u′ is in the same optimal cluster as u and if d(u′, v) ≤ r∗ then
v ∈ S ′.

Intuitively, the nearby 2-PR clusters ‘shield’ Ci from all other points (see Figure 2.5).
11 It is possible that a center c′ chosen in Phase 2 may be closer to v than c is to v, causing c′ to “steal” v; this is

unavoidable. This is why Algorithm 3 separately computes the voronoi tiling from Phase I and Phase II, and so the
final output is technically not a valid voronoi tiling over the entire instance S.

26

Figure 2.5: The red clusters are optimal clusters with no structure, the blue clusters are 2-PR clusters,
and the green clusters are 2-PR clusters who only have neighbors which are also 2-PR (Theorem 2.5.7).
Algorithm 4 outputs the green clusters exactly.

The only modification is that at the end of Phase II, instead of calculating the Voronoi diagram
using the metric d, we assign each point v ∈ S \Γ5

out(C) to the point in C ∪Ai+1 which minimizes
the path length in D(S,d), breaking ties by distance to first common vertex in the shortest path.

Theorem 2.5.7. Given an asymmetric k-center clustering instance (S, d) with optimal clustering
C = {C1, . . . , Ck}, consider a 2-PR cluster Ci. For all Cj , if there exists u ∈ Ci and v ∈ Cj such
that d(u, v) ≤ r∗, then Cj is 2-PR, then Algorithm 4 returns Ci exactly (if all neighboring optimal
clusters of Ci are 2-PR, then Ci is included in the output of Algorithm 4).

Proof. Given a 2-PR cluster Ci with the property in the theorem statement, by Theorem 2.5.2,
there exists a CCV c ∈ Ci from Phase I satisfying CCV-proximity such that Ci ⊆ Vc. Our goal
is to show that Vc = Ci. First we show that Γin(c) ⊆ Ci, which will help us prove the theorem.
Assume towards contradiction that there exists a point v ∈ Γin(c) \ Ci. Let v ∈ Cj . Since c is a
CCV, we have v ∈ Γout(c), so Cj must be 2-PR by definition. By Properties (2) and (3) of Lemma
2.5.5, cj is a CCV and d(cj, v) < d(c, v). But this violates CCV-proximity of c, so we have reached
a contradiction. Therefore, Γin(c) ⊆ Ci.

To finish the proof, we must show that Vc ⊆ Ci. Assume towards contradiction there exists
v ∈ Vc \ Ci at the end of the algorithm.

Case 1: v was marked by c in Phase I. Let v ∈ Cj . Then there exists a point u ∈ Γin(c)
such that v ∈ Γout(u). From the previous paragraph we have that Γin(c) ⊆ Ci, so u ∈ Ci.
Therefore, v ∈ Γout(u) implies Cj must be 2-PR. Since v is from a different 2-PR cluster, it cannot
be contained in Vc, so we have reached a contradiction.

Case 2: v was not marked by c in Phase I. Denote the shortest path in D(S,d) from c to v by
(c = v0, v1, . . . , vL−1, vL = v). Let v` ∈ Cj denote the first vertex on the shortest path that is not in
Ci (such a vertex must exist because v /∈ Ci). Then v`−1 ∈ Ci and d(v`−1, v`) ≤ r∗, so Cj is 2-PR
by the assumption in Theorem 2.5.7. Let c′ denote the CCV chosen in Phase I such that Cj ⊆ Vc′ .
Then by Property (2) of Lemma 2.5.5, we have d(c′, v`) < d(c, v`).

Case 2a: d(c, v`) ≤ r∗. Then v` is the first vertex on the shortest path from c to v and c′ to v,
so v` is the first common vertex on the shortest paths. Since d(c′, v`) < d(c, v`), the algorithm will
choose c′ as the center for v. See Figure 2.4b.

27

Algorithm 4 OUTPUTTING OPTIMAL CLUSTERS FOR ASYMMETRIC k-CENTER UNDER STABIL-
ITY

Input: Asymmetric k-center instance (S, d), distance r∗ (or try all possible candidates)
Set C = ∅.
Phase I: Pull out special CCVs
• While there exists an unmarked CCV:

– Pick an unmarked point cwhich satisfies CCV-proximity. If no such c exists, then pick
an arbitrary unmarked CCV instead. Add c to C, and ∀c′ ∈ Γin(c), mark Γout(c

′).

• For each c ∈ C, let Vc denote c’s Voronoi tile of the marked points induced by C.

Phase II: Recursive set cover
• Run Phase II as in Algorithm 2, outputting Ai+1.

Phase III: Assign points to centers
• For each v ∈ S \ Γ5

out(C), assign v to the center c ∈ C ∪ Ai+1 with the minimum path
length in D(S,d) from c to v, breaking ties by distance to first common vertex in the shortest
path.

• Let V ′c denote the set of vertices in v ∈ S \ Γ5
out(C) assigned to c.

• For each c in C, set V ′c = Vc ∪ V ′c
Output: Sets {V ′c}c∈C∪Ai+1

Case 2b: d(c, v`) > 2r∗. But since c′ ∈ Cj is a CCV, we have d(c′, v`) ≤ d(c′, cj) + d(cj, v`) ≤
2r∗, so the shortest path from c′ to v` is at most 2, and the shortest path from c to v` is at least 3.
Since v` is on the shortest path from c to v, it follows that the shortest path from c′ to v is strictly
shorter than the shortest path from c to v.

Case 2c: r∗ < d(c, v`) ≤ 2r∗. In this case, we will show that d(c′, v`) ≤ r∗, and therefore we
conclude the shortest path from c′ to v is strictly shorter than the shortest path from c to v, as in
Case 2b. Assume towards contradiction that d(c′, v`) > r∗. Then we will create a 2-perturbation in
which c and c′ become centers for their own clusters, and v` switches clusters. Define the following
perturbation d′.

d′(s, t) =

min(2r∗, 2d(s, t)) if s = c, t ∈ Ci or s = c′, t ∈ Cj \ {v`}
d(s, t) if s = c, t = v`

2d(s, t) otherwise.

d′ is a valid 2-perturbation of d because for each point u ∈ Ci, d(c, u) ≤ d(c, ci) + d(ci, u) ≤ 2r∗,
for each point u ∈ Cj , d(c′, u) ≤ d(c′, cj) + d(cj, u) ≤ 2r∗, and d(c, v`) ≤ 2r∗. Therefore, d′ does
not decrease any distances (and by construction, d′ does not increase any distance by more than a
factor of 2). If the optimal cost is 2r∗, then the set of centers {ci′}ki′=1 \ {ci, cj} ∪ {c, c′} achieves
the optimal cost, since c and c′ are distance 2r∗ from Ci ∪ {v`} and Cj , and all other clusters
have the same center as in OPT (achieving radius 2r∗). Then by perturbation resilience, it must
be the case that d′(c′, v`) < d′(c, v`), which implies 2d(c′, v`) < d(c, v`). But d(c′, v`) > r∗ and

28

d(c, v`) ≤ 2r∗, so we have a contradiction. Now we assume the optimal cost of d′ is less than 2r∗.
Note that all distances d(s, t) were increased to 2d(s, t) or min(2d(s, t), 2r∗) except for d(c, v`).
Therefore, c must be a center for v` under d′, or else the optimal could would be exactly 2r∗ by
Lemma 2.4.1. But it contradicts perturbation resilience to have c and c` in the same optimal cluster
under a 2-perturbation. This completes the proof.

2.6 k-center under (α, ε)-perturbation resilience
In this section, we consider (α, ε)-perturbation resilience. First, we show that any 2-approximation
algorithm for symmetric k-center must be optimal under (3, ε)-perturbation resilience (Theorem
2.6.1). Next, we show how to extend this result to local perturbation resilience (Theorem 2.6.8).
Then we give an algorithm for asymmetric k-center which returns a clustering that is ε-close to
OPT under (3, ε)-perturbation resilience (Theorem 2.6.17). For all of these results, we assume
a lower bound on the size of the optimal clusters, |Ci| > 2εn for all i ∈ [k]. We show the lower
bound on cluster sizes is necessary; in its absence, the problem becomes NP -hard for all values of
α ≥ 1 and ε > 0 (Theorem 2.6.18). The theorems in this section require a careful reasoning about
sets of centers under different perturbations that cannot all simultaneously be optimal.

2.6.1 Symmetric k-center

We show that for any (3, ε)-perturbation resilient k-center instance such that |Ci| > 2εn for all
i ∈ [k], there cannot be any pair of points from different clusters which are distance ≤ r∗. This
structural result implies that simple algorithms will return the optimal clustering, such as running
any 2-approximation algorithm or running the Single Linkage algorithm, which is a fast algorithm
widely used in practice for its simplicity.

Theorem 2.6.1. Given a (3, ε)-perturbation resilient symmetric k-center instance (S, d) where
all optimal clusters are size > max(2εn, 3), then the optimal clusters in OPT are exactly the
connected components of the threshold graph Gr∗ = (S,E), where E = {(u, v) | d(u, v) ≤ r∗}.

First we explain the high-level idea behind the proof.

Proof idea. Since each optimal cluster center is distance r∗ from all points in its cluster, it suffices
to show that any two points in different clusters are greater than r∗ apart from each other. Assume
on the contrary that there exist p ∈ Ci and q ∈ Cj 6=i such that d(p, q) ≤ r∗. First we find a set of
k + 2 points and a 3-perturbation d′, such that every size k subset of the points are optimal centers
under d′. Then we show how this leads to a contradiction under (3, ε)-perturbation resilience.

Here is how we find a set of k + 2 points and a perturbation d′ such that all size k subsets are
optimal centers under d′. From our assumption, p is distance≤ 3r∗ from every point in Ci∪Cj (by
the triangle inequality). Under a 3-perturbation in which all distances are blown up by a factor of
3 except d(p, Ci ∪Cj), then replacing ci and cj with p would still give us a set of k− 1 centers that
achieve the optimal cost. But, would this contradict (3, ε)-perturbation resilience? Indeed, not!
Perturbation resilience requires exactly k distinct centers. 12 The key challenge is to pick a final

12 This distinction is well-motivated; if for some application, the best k-center solution is to put two centers at the
same location, then we could achieve the exact same solution with k − 1 centers. That implies we should have been
running k′-center for k′ = k − 1 instead of k.

29

“dummy” center to guarantee that the Voronoi partition is ε-far from OPT . The dummy center
might “accidentally” be the closest center for almost all points in Ci or Cj . Even worse, it might
be the case that the new center sets off a chain reaction in which it becomes center to a cluster Cx,
and cx becomes center to Cj , which would also result in a partition that is not ε-far from OPT .

To deal with the chain reactions, we crucially introduce the notion of a cluster capturing center
(CCC). A cluster capturing center (CCC) is not to be confused with a center-capturing vertex
(CCV), defined by Vishwanathan [1996] and used in the previous section. cx is a CCC for Cy, if
for all but εn points p ∈ Cy, d(cx, p) ≤ r∗ and for all i 6= x, y, d(cx, p) < d(ci, p). Intuitively,
a CCC exists if and only if cx is a valid center for Cy when cy is taken out of the set of optimal
centers (i.e., a chain reaction will occur). We argue that if a CCC does not exist then every dummy
center we pick must be close to either Ci or Cj , since there are no chain reactions. If there does
exist a CCC cx for Cy, then it is much harder to reason about what happens to the dummy centers
under d′, since there may be chain reactions. However, we can define a new d′′ by increasing all
distances except d(cx, Cy), which allows us to take cy out of the set of optimal centers, and then
any dummy center must be close to Cx or Cy. There are no chain reactions because we already
know cx is the best center for Cy among the original optimal centers. Thus, whether or not there
exists a CCC, we can find k + 2 points close to the entire dataset by picking points from both Ci
and Cj (resp. Cx and Cy).

Because of the assumption that all clusters are size > 2εn, for every 3-perturbation there must
be a bijection between clusters and centers, where the center is closest to the majority of points in
the corresponding cluster. We show that all size k subsets of the k+2 points cannot simultaneously
admit bijections that are consistent with one another.

Formal analysis. We start out with a simple implication from the assumption that |Ci| > 2εn for
all i.

Fact 2.6.2. Given a clustering instance which is (α, ε)-perturbation resilient for α ≥ 1, and all
optimal clusters have size > 2εn, then for any α-perturbation d′, for any set of optimal centers
c′1, . . . , c

′
k of d′, for each optimal cluster Ci, there must be a unique center c′i which is the center

for more than half of the points in Ci under d′.

This fact follows simply from the definition of (α, ε)-perturbation resilience (under d′, at most
εn points in the optimal solution can change clusters), and the assumption that all optimal clusters
are size > 2εn. Now we formally define a CCC.

Definition 2.6.3. A center ci is a first-order cluster-capturing center (CCC) for Cj if for all x 6= j,
for more than half of the points p ∈ Cj , d(ci, p) < d(cx, p) and d(ci, p) ≤ r∗ (see Figure 2.6a). ci is
a second-order cluster-capturing center (CCC2) for Cj if there exists a cl such that for all x 6= j, l,
for more than half of points p ∈ Cj , d(ci, p) < d(cx, p) and d(ci, p) ≤ r∗ (see Figure 2.6b).

Each cluster Cj can have at most one CCC ci because ci is closer than any other center to more
than half of Cj . Every CCC is a CCC2, since the former is a stronger condition. However, it is
possible for a cluster to have multiple CCC2’s. 13 We needed to define CCC2 for the following
reason. Assuming there exist p ∈ Ci and q ∈ Cj which are close, and we replace ci and cj with p in

13In fact, a cluster can have at most three CCC2’s, but we do not use this in our analysis.

30

(a) ci is a CCC for Cj .

(b) ci is a CCC for Cj
and cx is a CCC2 for
Cj .

Figure 2.6: (a) Definition of a CCC, and (b) definition of a CCC2.

the set of centers. It is possible that cj is a CCC for Ci, but this does not help us, since we want to
analyze the set of centers after removing cj . However, if we know that cx is a CCC2 (it is the best
center for Ci, disregarding cj), then we know that cx will be the best center for Ci after replacing
ci and cj with p. Now we use this definition to show that if two points from different clusters are
close, we can find a set of k + 2 points and a 3-perturbation d′, such that every size k subset of the
points are optimal centers under d′. To formalize this notion, we give one more definition.

Definition 2.6.4. A set C ⊆ S (β, γ)-hits S if for all s ∈ S, there exist β points in C at distance
≤ γr∗ to s.

Note that if a set C of k + 2 points (3, 3)-hits S, then any size k subset of C is still 3r∗ from
every point in S, and later we will show that means there exists a perturbation d′ such that every
size k subset must be an optimal set of centers.

Lemma 2.6.5. Given a clustering instance satisfying (3, ε)-perturbation resilience such that all
optimal clusters are size > 2εn and there are two points from different clusters which are ≤ r∗

apart from each other, then there exists a set C ⊆ S of size k + 2 which (3, 3)-hits S.

Proof. First we prove the lemma assuming that a CCC2 exists, and then we prove the other case.
When a CCC2 exists, we do not need the assumption that two points from different clusters are
close.

Case 1: There exists a CCC2. If there exists a CCC, then denote cx as a CCC for Cy. If there
does not exist a CCC, then denote cx as a CCC2 for Cy. We will show that all points are close to
either Cx or Cy. cx is distance ≤ r∗ to all but εn points in Cy. Therefore, d(cx, cy) ≤ 2r∗ and so cx
is distance ≤ 3r∗ to all points in Cy. Consider the following d′.

d′(s, t) =

{
min(3r∗, 3d(s, t)) if s = cx, t ∈ Cy
3d(s, t) otherwise.

This is a 3-perturbation because d(cx, Cy) ≤ 3r∗. Then by Lemma 2.2.8, the optimal cost is
3r∗. Given any p ∈ S, the set of centers {cl}ki=1 \ {cy} ∪ {p} achieves the optimal cost, since cx
is distance 3r∗ from Cy, and all other clusters have the same center as in OPT (achieving radius

31

Figure 2.7: Case 1 of Lemma 2.6.5

3r∗). Therefore, this set of centers must create a partition that is ε-close to OPT , or else there
would be a contradiction. Then from Fact 2.6.2, one of the centers in {cl}ki=1 \ {cy} ∪ {p} must
be the center for the majority of points in Cy under d′. If this center is cl, l 6= x, y, then for the
majority of points q ∈ Cy, d(cl, q) ≤ r∗ and d(cl, q) < d(cz, q) for all z 6= l, y. Then by definition,
cl is a CCC for Cy. But then l must equal x, so we have a contradiction. Note that if some cl has
for the majority of q ∈ Cy, d(cl, q) ≤ d(cz, q) (non-strict inequality) for all z 6= l, y, then there is
another equally good partition in which cl is not the center for the majority of points in Cy, so we
still obtain a contradiction. Therefore, either p or cx must be the center for the majority of points
in Cy under d′.

If cx is the center for the majority of points in Cy, then p must be the center for the majority
of points in Cx (it cannot be a different center c`, since cx is a better center for Cx than c` by
definition). Therefore, each p ∈ S is distance ≤ r∗ to all but εn points in either Cx or Cy.

Now partition all the non-centers into two sets Sx and Sy, such that

Sx = {p | for the majority of points q ∈ Cx, d(p, q) ≤ r∗}, and
Sy = {p | p /∈ Sx and for the majority of points q ∈ Cy, d(p, q) ≤ r∗}.

Then given p, q ∈ Sx, there exists an s ∈ Cx such that d(p, q) ≤ d(p, s) + d(s, q) ≤ 2r∗ (since
both points are close to more than half of points in Cx). Similarly, any two points p, q ∈ Sy are
≤ 2r∗ apart. See Figure 2.7.

Now we will find a set of k + 2 points that (3, 3)-hits S. For now, assume that Sx and Sy are
both nonempty. Given an arbitrary pair p ∈ Sx, q ∈ Sy, we claim that {c`}k`=1 ∪ {p, q} (3, 3)-hits
S. Given a non-center s ∈ Ci such that i 6= x and i 6= y, without loss of generality let s ∈ Sx.
Then ci, p, and cx are all distance 3r∗ to s. Furthermore, ci, p and cx are all distance 3r∗ to ci.
Given a point s ∈ Cx, then cx, cy, and p are distance 3r∗ to s because d(cx, cy) ≤ 2r∗, and a similar
argument holds for s ∈ Cy. Therefore, {c`}k`=1 ∪ {p, q} (3, 3)-hits S.

If Sx = ∅ or Sy = ∅, then we can prove a slightly stronger statement: for each pair of non-
centers {p, q}, {c`}k`=1 ∪ {p, q} (3, 3)-hits S. Without loss of generality, let Sy = ∅. Given a point
s ∈ Ci such that i 6= x and i 6= y, then ci, cx, and p are all distance 3r∗ to s. Given a point s ∈ Cx,
then p, cx, and cy are all distance ≤ 3r∗ to s. Given a point s ∈ Cy, then p, cx, and cy are all
distance ≤ 3r∗ to s because s, p ∈ Sx implies d(s, p) ≤ 2r∗. Thus, we have proven case 1.

Case 2: There does not exist a CCC2. Now we use the assumption that there exist p ∈ Cx,

32

q ∈ Cy, x 6= y, such that d(p, q) ≤ r∗. Then by the triangle inequality, p is distance ≤ 3r∗ to all
points in Cx and Cy. Consider the following d′.

d′(s, t) =

{
min(3r∗, 3d(s, t)) if s = p, t ∈ Cx ∪ Cy
3d(s, t) otherwise.

This is a 3-perturbation because d(p, Cx ∪ Cy) ≤ 3r∗. Then by Lemma 2.2.8, the optimal cost
is 3r∗. Given any s ∈ S, the set of centers {cl}ki=1\{cx, cy}∪{p, s} achieves the optimal cost, since
p is distance 3r∗ from Cx ∪ Cy, and all other clusters have the same center as in OPT (achieving
radius 3r∗). Therefore, this set of centers must create a partition that is ε-close to OPT , or else
there would be a contradiction. Then from Fact 2.6.2, one of the centers in {cl}ki=1\{cx, cy}∪{p, s}
must be the center for the majority of points in Cx under d′.

If this center is c` for ` 6= x and ` 6= y, then for the majority of points t ∈ Cx, d(c`, t) ≤ r∗

and d(c`, t) < d(cz, t) for all z 6= `, x, y. Then by definition, c` is a CCC2 for Cx, and we have a
contradiction.

Similar logic applies to the center for the majority of points in Cy. Therefore, p and s must be
the centers for Cx and Cy. Since s was an arbitrary noncenter, all noncenters are distance ≤ r∗ to
all but εn points in either Cx or Cy.

Similar to Case 1, we now partition all the non-centers into two sets Sx and Sy, such that

Sx = {u | for the majority of points v ∈ Cx, d(u, v) ≤ r∗} and
Sy = {u | u /∈ Sx and for the majority of points v ∈ Cy, d(u, v) ≤ r∗}.

As before, each pair of points in Sx are distance ≤ 2r∗ apart, and similarly for Sy. It is no longer
true that d(cx, cy) ≤ 2r∗, however, we can prove that for both Sx and Sy, there exist points from
two distinct clusters each. From the previous paragraph, given a non-center s ∈ Ci for i 6= x, y,
we know that p and s are centers for Cx and Cy. With an identical argument, given t ∈ Cj for
j 6= x, y, i, we can show that q and t are centers for Cx and Cy. It follows that Sx and Sy both
contain points from at least two distinct clusters.

Now we finish the proof by showing that for each pair u ∈ Sx, v ∈ Sy, {c`}k`=1 ∪ {u, v} (3, 3)-
hits S. Given a non-center s ∈ Ci, without loss of generality s ∈ Sx, then there exists j 6= i and
t ∈ Cj ∩ Sx. Then ci, cj , and u are 3r∗ to s and ci, cx, and u are 3r∗ to ci. In the case where i = x,
then ci, cj , and u are 3r∗ to ci. This concludes the proof.

So far, we have shown that by just assuming two points from different clusters are close, we can
find a set of k+2 points that (3, 3)-hits S. Now we will show that such a set leads to a contradiction
under (3, ε)-perturbation resilience. Specifically, we will show there exists a perturbation d′ such
that any size k subset can be an optimal set of centers. But it is not possible that all

(
k+2
k

)
of these

sets of centers simultaneously create partitions that are ε-close to OPT . First we state a lemma
which proves there does exist a perturbation d′ such that any size k subset is an optimal set of
centers.

Lemma 2.6.6. Given a k-center clustering instance (S, d), given z ≥ 0, and given a set C ⊆ S
of size k + z which (z + 1, α)-hits S, there exists an α-metric perturbation d′ such that all size k
subsets of C are optimal sets of centers under d′.

33

Proof. Consider the following perturbation d′′.

d′′(s, t) =

{
min(αr∗, αd(s, t)) if s ∈ C and d(s, t) ≤ αr∗

αd(s, t) otherwise.

By Lemma 2.4.1, the metric closure d′ of d′′ is an α-metric perturbation with optimal cost αr∗.
Given any size k subset C ′ ⊆ C, then for all v ∈ S, there is still at least one c ∈ C ′ such that
d(c, v) ≤ αr∗, therefore by construction, d′(c, v) ≤ αr∗. It follows that C ′ is a set of optimal
centers under d′.

Next, we state a fact that helps clusters rank their best centers from the set of k + 2 points. For
each cluster Ci, we would like to have a ranking of all points such that for a given d′ and set of k
centers, the center for Ci is the highest point in the ranking. The following fact shows this ranking
is well-defined.

Fact 2.6.7. Given a k-center clustering instance (S, d) such that all optimal clusters have size
> 2εn, an α-perturbation d′ of d, and a cluster Cx, there exists a ranking Rx,d′ of S such that for
any set of optimal centers C, the center for Cx is the highest-ranked point in Rx,d′ . 14

Proof. Assume the fact is false. Then there exists a d′, a cluster Ci, two points p and q, and two
sets of k centers p, q ∈ C and p, q ∈ C ′ which achieve the optimal cost under d′, but p is the center
for Ci in C while q is the center for Ci in C ′. Then p is closer than all other points in C to all but
εn points in Ci. Similarly, q is closer than all other points in C ′ to all but εn points in Ci. Since
|Ci| > 2εn, this causes a contradiction.

We also define Rx,d′,C : C → [n′] as the ranking specific to C, where |C| = n′. Now we can
prove Theorem 2.6.1.

Proof of Theorem 2.6.1. It suffices to prove that any two points from different clusters are at
distance > r∗ from each other. Assume towards contradiction that this is not true. Then by
Lemma 2.6.5, there exists a set C of size k + 2 which (3, 3)-hits S. From Lemma 2.6.6, there
exists a 3-metric perturbation d′ such that all size k subsets of C are optimal sets of centers under
d′. Consider the ranking of each cluster for C over d′ guaranteed from Fact 2.6.7. We will show
this ranking leads to a contradiction.

Consider the set of all points ranked 1 or 2 by any cluster, formally, {p ∈ C | ∃i s.t. Ri,d′,C ≤
2}. This set is a subset of C, since we are only considering the rankings of points in C, so it is size
≤ k + 2. Note that a point cannot be ranked both 1 and 2 by a cluster. Then as long as k > 2,
it follows by the Pigeonhole Principle that there exists a point c ∈ C which is ranked in the top
two by two different clusters. Formally, there exists x and y such that x 6= y, Rx,d′,C(c) ≤ 2, and
Ry,d′,C(c) ≤ 2. Denote u and v such that Rx,d′,C(u) = 1 and Ry,d′,C(v) = 1. If u or v is equal to c,
then redefine it to an arbitrary center in C \ {c, u, v}. Consider the set of centers C ′ = C \ {u, v}
which is optimal under d′ by construction. But then from Fact 2.6.7, c is the center for the majority
of points in both Cx and Cy, contradicting Fact 2.6.2. This completes the proof.

14Formally, for each Cx, there exists a bijection Rx,d′ : S → [n] such that for all sets of k centers C that achieve
the optimal cost under d′, we have c = argminc′∈CRx,d′(c′) if and only if VorC(c) is ε-close to Cx.

34

2.6.2 Local perturbation resilience

Now we extend the argument from the previous section to local perturbation resilience. First we
state our main structural result, which is that any pair of points from different (3, ε)-PR clusters
must be distance > r∗ from each other. Then we will show how the structural result easily leads to
an algorithm for (3, ε)-SPR clusters.

Theorem 2.6.8. Given a k-center clustering instance (S, d) with optimal radius r∗ such that all
optimal clusters are size > 2εn and there are at least three (3, ε)-PR clusters, then for each pair of
(3, ε)-PR clusters Ci and Cj , for all u ∈ Ci and v ∈ Cj , we have d(u, v) > r∗.

Before we prove this theorem, we show how it implies an algorithm to output the optimal (3, ε)-
SPR clusters exactly. Since the distance from each point to its closest center is ≤ r∗, a corollary of
Theorem 2.6.8 is that any 2-approximate solution must contain the optimal (3, ε)-SPR clusters, as
long as the 2-approximation satisfies two sensible conditions: (1) for every point v and its assigned
center u (so we know d(u, v) ≤ 2r∗), ∃w s.t. d(u,w) and d(w, v) are ≤ r∗, and (2) there cannot be
multiple clusters outputted in the 2-approximation that can be combined into one cluster with the
same radius. Both of these properties are easily satisfied using quick pre- or post-processing steps.
15

Theorem 2.6.9. Given a k-center clustering instance (S, d) such that all optimal clusters are size
> 2εn and there are at least three (3, ε)-PR clusters, then any 2-approximate solution satisfying
conditions (1) and (2) must contain all optimal (3, ε)-SPR clusters.

Proof. Given such a clustering instance, then Theorem 2.6.8 ensures that there is no edge of length
r∗ between points from two different (3, ε)-PR clusters. Given a (3, ε)-SPR cluster Ci, it follows
that there is no point v /∈ Ci such that d(v, Ci) ≤ r∗. Therefore, given a 2-approximate solution C
satisfying condition (1), any u ∈ Ci and v /∈ Ci cannot be in the same cluster. This is because in
the graph of datapoints where edges signify a distance ≤ r∗, Ci is an isolated component. Finally,
by condition (2), Ci must not be split into two clusters. Therefore, Ci ∈ C.

Proof idea for Theorem 2.6.8 The high level idea of this proof is similar to the proof of Theorem
2.6.1. In fact, the first half is very similar to Lemma 2.6.5: we show that if two points from different
PR clusters are close together, then there must exist a set of k + 2 points C which (3, 3)-hits the
entire point set. In the previous section, we arrived at a contradiction by showing that it is not
possible that all

(
k+2
k

)
subsets of C can be centers that are ε-close to OPT . However, the weaker

local PR assumption poses a new challenge.

As in the previous section, we will still argue that all size k subsets of C cannot stay consistent
with the (3, ε)-PR clusters using a ranking argument which maps optimal clusters to optimal cen-
ters, but our argument will be to establish conditional claims which narrow down the possible sets
of ranking lists. For instance, assume there is a (3, ε)-PR cluster Ci which ranks ci first, and ranks
cj second. Then under subsets C ′ which do not contain ci, cj is the center for a cluster C ′i which

15 For condition (1), before running the algorithm, remove all edges of distance > r∗, and then take the metric
completion of the resulting graph. For condition (2), given the radius r̂ of the outputted solution, for each v ∈ S,
check if the ball of radius r̂ around v captures multiple clusters. If so, combine them.

35

is ε-close to Ci. Therefore, a different point in C ′ must be the center for the majority of points
in Cj (and it cannot be a different center c` without causing a contradiction). This is the basis for
Lemma 2.6.13, which is the main workhorse lemma in the proof of Theorem 2.6.8. By building
up conditional statements, we are able to analyze every possibility of the ranking lists for the three
(3, ε)-PR clusters and show that all of them lead to contradictions, proving Theorem 2.6.8.

Formal analysis of Theorem 2.6.8 We start with a local perturbation resilience variant of Fact
2.6.2.

Fact 2.6.10. Given a k-center clustering instance (S, d) such that all optimal clusters have size
> 2εn, let d′ denote an α-perturbation with optimal centers C ′ = {c′1, . . . , c′k}. Let C ′ denote the
set of (α, ε)-PR clusters. Then there exists a one-to-one function f : C ′ → C ′ such that for all
Ci ∈ C ′, |VorC,d′(f(Ci))∩Ci| ≥ |Ci| − εn. That is, the optimal cluster in d′ whose center is f(Ci)
contains all but εn of the points in Ci.

In words, for any set of optimal centers under an α-perturbation, each PR cluster can be paired
to a unique center. This follows simply because all optimal clusters are size > 2εn, yet under a
perturbation, < εn points can switch out of each PR cluster. Because of this fact, for a perturbation
d′ with set of optimal centers C and an (α, ε)-PR cluster Cx, we will say that c is the center for Cx
under d′ if c is the center for the majority of points in Cx. Now we are ready to prove the first half
of Theorem 2.6.8, stated in the following lemma. The proof is similar to Lemma 2.6.5.

Lemma 2.6.11. Given a k-center clustering instance (S, d) such that all optimal clusters are size
> 2εn and there exist two points at distance r∗ from different (3, ε)-PR clusters, then there exists a
partition Sx ∪ Sy of the non-centers S \ {c`}k`=1 such that for all pairs p ∈ Sx, q ∈ Sy, {c`}k`=1 ∪
{p, q} (3, 3)-hits S.

Proof. This proof is split into two main cases. The first case is the following: there exists a CCC2
for a (3, ε)-PR cluster, discounting a (3, ε)-PR cluster. In fact, in this case, we do not need the
assumption that two points from different PR clusters are close. If there exists a CCC to a (3, ε)-
PR cluster, denote the CCC by cx and the cluster by Cy. Otherwise, let cx denote a CCC2 to a
(3, ε)-PR cluster Cy, discounting a (3, ε)-PR center cz. Then cx is at distance ≤ r∗ to all but εn
points in Cy. Therefore, d(cx, cy) ≤ 2r∗ and so cx is at distance≤ 3r∗ to all points in Cy. Consider
the following perturbation d′′.

d′′(s, t) =

{
min(3r∗, 3d(s, t)) if s = cx, t ∈ Cy
3d(s, t) otherwise.

This is a 3-perturbation because for all v ∈ Cy, d(cx, v) ≤ 3r∗. Define d′ as the metric
completion of d′′. Then by Lemma 2.4.1, d′ is a 3-metric perturbation with optimal cost 3r∗. Given
any non-center v ∈ S, the set of centers {c`}k`=1 \ {cy} ∪ {v} achieves the optimal score, since
cx is at distance 3r∗ from Cy, and all other clusters have the same center as in OPT (achieving
radius 3r∗). Therefore, from Fact 2.6.10, one of the centers in {c`}k`=1 \ {cy} ∪ {v} must be the
center for the majority of points in Cy under d′. If this center is c`, ` 6= x, y, then for the majority
of points u ∈ Cy, d(c`, u) ≤ r∗ and d(c`, u) < d(cz, u) for all z 6= `, y. Then by definition, c`
is a CCC for the (3, ε)-PR cluster, Cy. But then by construction, ` must equal x, so we have a

36

contradiction. Note that if some c` has for the majority of u ∈ Cy, d(c`, u) ≤ d(cz, u) (non-strict
inequality) for all z 6= `, y, then there is another equally good partition in which c` is not the center
for the majority of points in Cy, so we still obtain a contradiction. Therefore, either v or cx must
be the center for the majority of points in Cy under d′.

If cx is the center for the majority of points in Cy, then because Cy is (3, ε)-PR, the corre-
sponding cluster must contain fewer than εn points from Cx. Furthermore, since for all ` 6= x and
u ∈ Cx, d(u, cx) < d(u, c`), it follows that v must be the center for the majority of points in Cx.
Therefore, every non-center v ∈ S is at distance ≤ r∗ to the majority of points in either Cx or Cy.

Now partition all the non-centers into two sets Sx and Sy, such that

Sx = {u | for the majority of points v ∈ Cx, d(u, v) ≤ r∗}, and
Sy = {u | u /∈ Sx and for the majority of points v ∈ Cy, d(u, v) ≤ r∗}.

Given p, q ∈ Sx, there exists an s ∈ Cx such that d(p, q) ≤ d(p, s) + d(s, q) ≤ 2r∗ (since both
points are close to more than half of points in Cx). Similarly, any two points p, q ∈ Sy are ≤ 2r∗

apart.

Now we will find a set of k + 2 points that (3, 3)-hits S. For now, assume that Sx and Sy are
both nonempty. Given an arbitrary pair p ∈ Sx, q ∈ Sy, we claim that {c`}k`=1 ∪ {p, q} (3, 3)-hits
S. Given a non-center s ∈ Ci such that i 6= x and i 6= y, without loss of generality let s ∈ Sx.
Then ci, p, and cx are all distance 3r∗ to s. Furthermore, ci, p and cx are all distance 3r∗ to ci.
Given a point s ∈ Cx, then cx, cy, and p are distance 3r∗ to s because d(cx, cy) ≤ 2r∗, and a similar
argument holds for s ∈ Cy. Therefore, {c`}k`=1 ∪ {p, q} (3, 3)-hits S.

If Sx = ∅ or Sy = ∅, then we can prove a slightly stronger statement: for each pair of non-
centers {p, q}, {c`}k`=1 ∪ {p, q} (3, 3)-hits S. Without loss of generality, let Sy = ∅. Given a point
s ∈ Ci such that i 6= x and i 6= y, then ci, cx, and p are all distance 3r∗ to s. Given a point s ∈ Cx,
then p, cx, and cy are all distance ≤ 3r∗ to s. Given a point s ∈ Cy, then p, cx, and cy are all
distance ≤ 3r∗ to s because s, p ∈ Sx implies d(s, p) ≤ 2r∗. Thus, we have proven case 1.

Now we turn to the other case. Assume there does not exist a CCC2 to a PR cluster, discounting
a PR center. In this case, we need to use the assumption that there exist (3, ε)-PR clusters Cx and
Cy, and p ∈ Cx, q ∈ Cy such that d(p, q) ≤ r∗. Then by the triangle inequality, p is distance ≤ 3r∗

to all points in Cx and Cy. Consider the following d′′.

d′′(s, t) =

{
min(3r∗, 3d(s, t)) if s = p, t ∈ Cx ∪ Cy
3d(s, t) otherwise.

This is a 3-perturbation because d(p, Cx∪Cy) ≤ 3r∗. Define d′ as the metric completion of d′′.
Then by Lemma 2.4.1, d′ is a 3-metric perturbation with optimal cost 3r∗. Given any non-center
s ∈ S, the set of centers {c`}k`=1 \ {cx, cy} ∪ {p, s} achieves the optimal score, since p is distance
3r∗ from Cx ∪ Cy, and all other clusters have the same center as in OPT (achieving radius 3r∗).

From Fact 2.6.10, one of the centers in {c`}k`=1 \ {cx, cy} ∪ {p, s} must be the center for the
majority of points in Cx under d′. If this center is c` for ` 6= x, y, then for the majority of points
t ∈ Cx, d(c`, t) ≤ r∗ and d(c`, t) < d(cz, t) for all z 6= `, x, y. So by definition, c` is a CCC2 for
Cx discounting cy, which contradicts our assumption. Similar logic applies to the center for the

37

majority of points in Cy. Therefore, p and s must be the centers for Cx and Cy. Since s was an
arbitrary non-center, all non-centers are distance ≤ r∗ to all but εn points in either Cx or Cy.

Similar to Case 1, we now partition all the non-centers into two sets Sx and Sy, such that

Sx = {u | for the majority of points v ∈ Cx, d(u, v) ≤ r∗} and
Sy = {u | u /∈ Sx and for the majority of points v ∈ Cy, d(u, v) ≤ r∗}.

As before, each pair of points in Sx are distance ≤ 2r∗ apart, and similarly for Sy. It is no longer
true that d(cx, cy) ≤ 2r∗, however, we can prove that for both Sx and Sy, there exist points from
two distinct clusters each. From the previous paragraph, given a non-center s ∈ Ci for i 6= x, y,
we know that p and s are centers for Cx and Cy. With an identical argument, given t ∈ Cj for
j 6= x, y, i, we can show that q and t are centers for Cx and Cy. It follows that Sx and Sy both
contain points from at least two distinct clusters.

Now we finish the proof by showing that for each pair u ∈ Sx, v ∈ Sy, {c`}k`=1 ∪ {u, v} (3, 3)-
hits S. Given a non-center s ∈ Ci, without loss of generality s ∈ Sx, then there exists j 6= i and
t ∈ Cj ∩ Sx. Then ci, cj , and u are 3r∗ to s and ci, cx, and u are 3r∗ to ci. In the case where i = x,
then ci, cj , and u are 3r∗ to ci. This concludes the proof.

Now we move to the second half of the proof of Theorem 2.6.8. Recall that the proof from
the previous section relied on a ranking argument, in which optimal clusters were mapped to their
closest centers from the set C of k + 2 points from the first half of the proof. This is the basis for
the following fact.

Fact 2.6.12. Given a k-center clustering instance (S, d) such that all optimal clusters have size
> 2εn, and an α-perturbation d′ of d, let C ′ denote the set of (α, ε)-PR clusters. For each Cx ∈ C ′,
there exists a ranking Rx,d′ of S such that for any set of optimal centers C, the center for Cx is the
highest-ranked point in Rx,d′ . 16

Proof. Assume the lemma is false. Then there exists an (α, ε)-PR cluster Ci, two distinct points
u, v ∈ S, and two sets of k centers C and C ′ both containing u and v, and both sets achieve the
optimal score under an α-perturbation d′, but u is the center for Ci in C while v is the center for Ci
in C ′. Then VorC(u) is ε-close to Ci; similarly, VorC′(v) is ε-close to Ci. This implies u is closer
to all but εn points in Ci than v, and v is closer to all but εn points in Ci than u. Since |Ci| > 2εn,
this causes a contradiction.

We also define Rx,d′,C : C → [n′] as the ranking specific to C. Recall that our goal is to show
a contradiction assuming two points from different PR clusters are close. From Lemma 2.6.6 and
Lemma 2.6.11, we know there is a set of k + 2 points, and any size k subset is optimal under a
suitable perturbation. By Lemma 2.6.10, each size k subset must have a mapping from PR clusters
to centers, and from Fact 2.6.12, these mappings are derived from a ranking of all possible center
points by the PR clusters. In other words, each PR cluster Cx can rank all the points in S, so
that for any set of optimal centers for an α-perturbation, the top-ranked center is the one whose

16Formally, for each Cx ∈ C′, there exists a bijection Rx,d′ : S → [n] such that for all sets of k centers C that
achieve the optimal cost under d′, then c = argminc′∈CRx,d′(c′) if and only if VorC(c) is ε-close to Cx.

38

cluster is ε-close to Cx. Now, using Fact 2.6.12, we can try to give a contradiction by showing
that there is no set of rankings for the PR clusters that is consistent with all the optimal sets of
centers guaranteed by Lemmas 2.6.6 and 2.6.11. The following lemma gives relationships among
the possible rankings. These will be our main tools for contradicting PR and thus finishing the
proof of Theorem 2.6.8.

Lemma 2.6.13. Given a k-center clustering instance (S, d) such that all optimal clusters are size
> 2εn, and given non-centers p, q ∈ S such that C = {c`}k`=1 ∪ {p, q} (3, 3)-hits S, let the set C ′
denote the set of (3, ε)-PR clusters. Define the 3-perturbation d′ as in Lemma 2.6.6. The following
are true.

1. Given Cx ∈ C ′ and Ci such that i 6= x, Rx,d′(cx) < Rx,d′(ci).

2. There do not exist s ∈ C and Cx, Cy ∈ C ′ such that x 6= y, and Rx,d′,C(s) +Ry,d′,C(s) ≤ 4.

3. Given Ci and Cx, Cy ∈ C ′ such that x 6= y 6= i, if Rx,d′,C(ci) ≤ 3, then Ry,d′,C(p) ≥ 3 and
Ry,d′,C(q) ≥ 3.

Proof. 1. By definition of the optimal clusters, for each s ∈ Cx, d(cx, s) < d(ci, s), and there-
fore by construction, d′(cx, s) < d′(ci, s). It follows that Rx,d′(cx) < Rx,d′(ci).

2. Assume there exists s ∈ C and Cx, Cy ∈ C ′ such that Rx,d′,C(s) +Ry,d′,C(s) ≤ 4.

Case 1: Rx,d′,C(s) = 1 and Ry,d′,C(s) ≤ 3. Define u and v such that Ry,d′,C(u) = 1 and
Ry,d′,C(v) = 2. (If u or v is equal to s, then redefine it to an arbitrary center in C \ {s, u, v}.)
Consider the set of centers C ′ = C \ {u, v} which is optimal under d′ by Lemma 2.6.6.
By Fact 2.6.12, s is the center for the majority of points in both Cx and Cy, causing a
contradiction.

Case 2: Rx,d′,C(s) = 2 and Ry,d′,C(s) = 2. Define u and v such that Rx,d′,C(u) = 1 and
Ry,d′,C(v) = 1. (Again, if u or v is equal to s, then redefine it to an arbitrary center in
C \ {s, u, v}.) Consider the set of centers C ′ = C \ {u, v} which is optimal under d′ by
Lemma 2.6.6. However, by Fact 2.6.12, s is the center for the majority of points in both Cx
and Cy, causing a contradiction.

3. Assume Rx,d′,C(ci) ≤ 3.

Case 1: Rx,d′,C(ci) = 2. Then by Lemma 2.6.13 part 1, Rx,d′,C(cx) = 1. Consider the set
of centers C ′ = C \ {cx, p}, which is optimal under d′. By Fact 2.6.12, VorC′(ci) must
be ε-close to Cx. In particular, VorC′(ci) cannot contain more than εn points from Ci. But
by definition, for all j 6= i and s ∈ Ci, d(ci, s) < d(cj, s). It follows that VorC′(q) must
contain all but εn points from Ci. Therefore, for all but εn points s ∈ Ci, for all j, d′(q, s) <
d′(cj, s). If Ry,d′,C(q) ≤ 2, then Cy ranks cy or p number one. Then for the set of centers
C ′ = C \ {cy, p}, VorC′(q) contains more than εn points from Cy and Ci, contradicting the
fact that Cy is (3, ε)-PR. Therefore, Ry,d′,C(q) ≥ 3. The argument to show Ry,d′,C(p) ≥ 3 is
symmetric.

Case 2: Rx,d′,C(ci) = 3. If there exists j 6= i, x such that Rx,d′,C(ci) = 2, then WLOG
we are back in case 1. By Lemma 2.6.13 part 1, Rx,d′,C(cx) ≤ 2. Then either p or q are

39

ranked top two, WLOG Rx,d′,C(p) ≤ 2. Consider the set C ′ = C \ {cx, p}. Then as in
the previous case, VorC′(ci) must be ε-close to Cx, implying for all but εn points s ∈ Ci,
for all j, d′(q, s) < d′(cj, s). If Ry,d′,C(q) ≤ 2, again, Cy ranks cy or p as number one.
Let C ′ = C \ {cy, p}, and then VorC′(q) contains more than εn points from Cy and Ci,
causing a contradiction. Furthermore, if Ry,d′,C(p) ≤ 2, then we arrive at a contradiction by
Lemma 2.6.13 part 2.

We are almost ready to bring everything together to give a contradiction. Recall that Lemma 2.6.11
allows us to choose a pair (p, q) such that {c`}k`=1 ∪ {p, q} (3, 3)-hits S. For an arbitrary choice
of p and q, we may not end up with a contradiction. It turns out, we will need to make sure one
of the points comes from a PR cluster, and is very high in the ranking list of its own cluster. This
motivates the following fact, which is the final piece to the puzzle.

Fact 2.6.14. Given a k-center clustering instance (S, d) such that all optimal clusters are size
> 2εn, given an (α, ε)-PR cluster Cx, and given i 6= x, then there are fewer than εn points s ∈ Cx
such that d(ci, s) ≤ min(r∗, αd(cx, s)).

Proof. Assume the fact is false. Then let B ⊆ Cx denote a set of size εn such that for all s ∈
B, d(ci, s) ≤ min(r∗, αd(cx, s)). Construct the following perturbation d′. For all s ∈ B, set
d′(cx, s) = αd(cx, s). For all other pairs s, t, set d′(s, t) = d(s, t). This is clearly an α-perturbation
by construction. Then the original set of optimal centers still achieves cost r∗ under d′ because for
all s ∈ B, d′(ci, s) ≤ r∗. Clearly, the optimal cost under d′ cannot be < r∗. It follows that the
original set of optimal centers C is still optimal under d′. However, all points in B are no longer in
VorC(cx) under d′, contradicting the fact that Cx is (α, ε)-PR.

Now we are ready to prove Theorem 2.6.8.

Proof of Theorem 2.6.8. Assume towards contradiction that there are two points at distance ≤ r∗

from different (3, ε)-PR clusters. Then by Lemma 2.6.11, there exists a partition S1, S2 of non-
centers of S such that for all pairs p ∈ S1, q ∈ S2, {c`}k`=1 ∪ {p, q} (3, 3)-hit S. Given three
(3, ε)-PR clusters Cx, Cy, and Cz, let c′x, c′y, and c′z denote the optimal centers ranked highest
by Cx, Cy, and Cz disregarding cx, cy, and cz, respectively. Define p = argmins∈Cxd(cx, s), and
WLOG let p ∈ S1. Then pick an arbitrary point q from S2, and define C = {c`}k`=1 ∪ {p, q}.
Define d′ as in Lemma 2.6.6. We claim that Rx,d′,C(p) < Rx,d′,C(c′x): from Fact 2.6.14, there are
fewer than εn points s ∈ Cx such that d(c′x, s) ≤ min(r∗, 3d(cx, s)). Among each remaining point
s ∈ Cx, we will show d′(p, s) ≤ d′(c′x, s). Recall that d(p, s) ≤ d(p, cx) + d(cx, s) ≤ 2r∗, so
d′(p, s) = min(3r∗, 3d(p, s)). There are two cases to consider.

Case 1: d(c′x, s) > r∗. Then by construction, d′(c′x, s) ≥ 3r∗, and so d′(p, s) ≤ d′(c′x, s).

40

Case 2: 3d(cx, s) < d(c′x, s). Then

d′(p, s) ≤ 3d(p, s) by construction of d′

≤ 3(d(p, cx) + d(cx, s)) by triangle inequality
≤ 6d(cx, s) by definition of p
≤ 2d(c′x, s) by assumption
≤ min(3r∗, 3d(c′x, s)) by construction of d′

= d′(c′x, s),

and this proves our claim.

Because Rx,d′,C(p) < Rx,d′,C(c′x), it follows that either Rx,d′,C(p) ≤ 2 or Rx,d′,C(q) ≤ 2, since
the top two can only be cx, p, or q. The rest of the argument is broken up into cases.

Case 1: Rx,d′,C(c′x) ≤ 3. From Lemma 2.6.13, then Ry,d′,C(p) ≥ 3 and Ry,d′,C(q) ≥ 3. It fol-
lows by process of elimination that Ry,d′,C(cy) = 1 and Ry,d′,C(cy′) = 2. Again by Lemma 2.6.13,
Rx,d′,C(p) ≥ 3 and Rx,d′,C(q) ≥ 3, causing a contradiction.

Case 2: Rx,d′,C(cx′) > 3 and Ry,d′,C(cy′) ≤ 3. Then Rx,d′,C(p) ≤ 3 and Rx,d′,C(q) ≤ 3. From
Lemma 2.6.13, Rx,d′,C(p) ≥ 3 and Rx,d′,C(q) ≥ 3, therefore we have a contradiction. Note, the
case where Rx,d′,C(cx′) > 3 and Rz,d′,C(cz′) ≤ 3 is identical to this case.

Case 3: The final case is when Rx,d′,C(cx′) > 3, Ry,d′,C(cy′) > 3, and Rz,d′,C(cz′) > 3. So for
each i ∈ {x, y, z}, the top three for Ci in C is a permutation of {ci, p, q}. Then each i ∈ {x, y, z}
must rank p or q in the top two, so by the Pigeonhole Principle, either p or q is ranked top two by
two different PR clusters, contradicting Lemma 2.6.13. This completes the proof.

We note that Case 3 in Theorem 2.6.8 is the reason why we need to assume there are at least
three (3, ε)-PR clusters. If there are only two, Cx and Cy, it is possible that there exist u ∈ Cx, v ∈
Cy such that d(u, v) ≤ r∗. In this case, for p, q, d′, andC as defined in the proof of Theorem 2.6.8, if
Cx ranks cx, p, q as its top three and Cy ranks cy, q, p as its top three, then there is no contradiction.

2.6.3 Asymmetric k-center

Now we consider asymmetric k-center under (3, ε)-PR. The asymmetric case is a more challenging
setting, and our algorithm does not return the optimal solution, however, our algorithm outputs a
clustering that is ε-close to the optimal solution.

Recall the definition of the symmetric set A from Section 2.3, A = {p | ∀q, d(q, p) ≤ r∗ =⇒
d(p, q) ≤ r∗}, equivalently, the set of all CCV’s. We might first ask whether A respects the
structure of OPT , as it did under 2-perturbation resilience. Namely, whether Condition 1: all
optimal centers are in A, and Condition 2: arg minq∈A d(q, p) ∈ Ci =⇒ p ∈ Ci hold. In fact, we
will show that neither conditions hold in the asymmetric case, but both conditions are only slightly
violated.

Structure of optimal centers

First we give upper and lower bounds on the number of optimal centers in A, which will help us
construct an algorithm for (3, ε)-PR later on. We call a center ci “bad” if it is not in the set A, i.e.,

41

∃q such that d(q, ci) ≤ r∗ but d(ci, q) > r∗. First we give an example of a (3, ε)-PR instance with
at least one bad center, and then we show that all (3, ε)-PR centers must have at most 6 bad centers.

Lemma 2.6.15. For all α, n, k ≥ 1 such that n
k
∈ N, there exists a clustering instance with one

bad center satisfying
(
α, 2

n

)
-perturbation resilience.

Proof. Given α, n, k ≥ 1, we construct a clustering instance such that all clusters are size n
k

.
Denote the clusters by C1, . . . , Ck and the centers by c1, . . . , ck. For each i, denote the non-centers
in Ci by pi,1, . . . , pi,L. Now we define the distances as follows. For convenience, set L = n

k
− 1.

For all 2 ≤ i ≤ k and 1 ≤ j ≤ L, let d(ci, pi,j) = 1. For all 2 ≤ i ≤ k, 1 ≤ j, ` ≤ L,
let d(pi,j, p1,`) = 1

α
and d(c1, p1,`) = 1

α
. Finally, let d(p2,1, c1) = 1. All other distances are the

maximum allowed by the triangle inequality. In particular, the distance between two points p and
q is set to infinity unless there exists a path from p to q with finite distance edges defined above.
See Figure 2.8.

The optimal clusters and centers are C1, . . . , Ck and c1, . . . , ck, achieving a radius of 1, and c1

is a bad center because d(p2,1, c1) = 1 but d(c1, p2,1) = ∞. It is left to show that this instance
satisfies (α, 2

n
)-perturbation resilience. Given an arbitrary α-perturbation d′, we must show that

at most 2
n
· n = 2 points switch clusters. By definition of an α-perturbation, for all p, q, we have

d(p, q) ≤ d′(p, q) ≤ αd(p, q) (recall that without loss of generality, an α-perturbation only inc
Assume without loss of generality that for all p, q, d(p, q) ≤ d′(p, q) (i.e., d′ only scales up the
distances). The centers c2, . . . , ck must remain optimal centers under d′, since for all 2 ≤ i ≤ k,
d′(ci, pi,1) ≤ α and no other point q 6= ci, pi,1 satisfies d(q, pi,1) <∞. Now we must determine the
final optimal center. Note that for all 2 ≤ i, j ≤ k and 1 ≤ `,m ≤ L, we have

d′(pi,`, p1,m) ≤ αd(pi,`, p1,m)

< α · 1

α
≤ d(cj, p1,m)

≤ d′(cj, p1,m).

Therefore, cj cannot be a center for pi,`, for all 2 ≤ i, j ≤ k and 1 ≤ ` ≤ L. Therefore, the
final optimal center c under d′ must be either c1 or pi,` for 2 ≤ i ≤ k and 1 ≤ ` ≤ L. Furthermore,
it follows that c’s cluster at least contains C1 \ {c1} and for each 2 ≤ i ≤ k, ci’s cluster at least
contains Ci \ {c}. Therefore, the optimal clustering under d′ differs from OPT by at most two
points. This concludes the proof.

Now we show there are at most 6 bad centers for any asymmetric k-center instance satisfying
(3, ε)-PR.

Lemma 2.6.16. Given a (3, ε)-perturbation resilient asymmetric k-center instance such that all
optimal clusters are size > 2εn, there are at most 6 bad centers, i.e., at most 6 centers ci such that
∃q with d(q, ci) ≤ r∗ and d(ci, q) > r∗.

Proof. Assume the lemma is false. By assumption, there exists a set B, |B| ≥ 7, of centers ci such
that ∃q with d(q, ci) ≤ r∗ and d(ci, q) > r∗. The first step is use this set of bad centers to construct

42

Figure 2.8: A (3, ε)-perturbation resilient asymmetric k-center instance with one bad center (cy). The
purple arrows are distance 1, and the black arrows are distance 1

α .

a set C of ≤ k − 3 points which are ≤ 3r∗ from every point in S. Once we find C, we will show
how this set cannot exist under (3, ε)-perturbation resilience, causing a contradiction.

Given a center ci ∈ B, and q such that d(q, ci) ≤ r∗ and d(ci, q) > r∗, note that d(ci, q) > r∗

implies q /∈ Ci. For each ci ∈ B, define a(i) as the center of q’s cluster. Then d(a(i), ci) ≤
d(a(i), q) + d(q, ci) ≤ 2r∗ and so for all p ∈ Ci, we have d(a(i), p) ≤ d(a(i), ci) + d(ci, p) ≤ 3r∗.
If for each ci ∈ B, a(i) is not in B, then we would be able to remove B from the set of optimal
centers, and the remaining centers are still distance 3r∗ from all points in S (finishing the first half
of the proof). However, we need to consider the case where there exist centers ci in B such that
a(i) is also in B. Our goal is to show there exists a subset B′ ⊆ B of size 3, such that for each
ci ∈ B′, a(i) /∈ B′, therefore, the set of optimal centers without B′ is still distance 3r∗ from all
points in S.

Construct a directed graph G = (B,E) where E = {(ci, c) | c = a(i)}. Then every point
has out-degree ≤ 1. Finding B′ corresponds to finding ≥ 3 points with no edges to one another,
i.e., an independent set of G. Consider a connected component G′ = (V ′, E ′) of G. Since V ′ is
connected, we have |E ′| ≥ |V ′| − 1. Since every vertex has out-degree ≤ 1, |E ′| ≤ |V ′|. Then we
have two cases.

Case 1: |E ′| = |V ′| − 1. Then G′ is a tree, and so there must exist an independent set of size⌈
|V ′|

2

⌉
.

Case 2: |E ′| = |V ′|. Then G′ contains a cycle, and so there exists an independent set of size⌊
|V ′|

2

⌋
.

It follows that we can always find an independent set of size
⌊
|V ′|

2

⌋
for the entire graph G. For

|B| ≥ 7, there exists such a set B′ of size ≥ 3. Then we have the property that ci ∈ B′ =⇒
a(i) /∈ B′.

Now letC = {c`}k`=1\B′. By construction,B′ is distance≤ 3r∗ to all points in S. Consider the
following 3-perturbation d′: increase all distances by a factor of 3, except d(a(i), p), for i such that

43

ci ∈ B′ and p ∈ Ci, which we increase to min(3r∗, 3d(a(i), p)). Then by Lemma 2.2.8, the optimal
radius is 3r∗. Therefore, the set C achieves the optimal cost over d′ even though |C| ≤ k−3. Then
we can pick any combination of 3 dummy centers, and they must all result in clusterings which are
ε-close to OPT . We will show this contradicts (3, ε)-perturbation resilience.

We pick five arbitrary points p1, p2, p3, p4, p5 ∈ S \C, and define C ′ = C ∪ {p1, p2, p3, p4, p5}.
From the above paragraph, each size 3 subset P ⊆ {p1, p2, p3, p4, p5} added to C will result in a
set of optimal centers under d′. Then by Fact 2.6.2, each point in C ∪ P must be the center for
the majority of points in exactly one cluster. To obtain a contradiction, we consider the ranking
defined by Fact 2.6.7 of C ′ over d′.

We we start with a claim about the rankings: for each c′ ∈ C ′, for all pairs x, y such that
x 6= y, if @c ∈ C such thatRx,d′,C′(c) < Rx,d′,C′(c

′) orRy,d′,C′(c) < Ry,d′,C′(c
′), thenRx,d′,C′(c

′)+
Ry,d′,C′(c

′) ≥ 5. In words, there cannot be two clusters such that c′ is ranked first among C ∪ {c′}
and top two (or first and third) among C ′ for both clusters. Assume this is false. Then there exist
x 6= y such that Rx,d′,C′(c

′) + Ry,d′,C′(c
′) ≤ 4, so there are at most two total points ranked above

c′ in Rx,d′,C′ and Ry,d′,C′ , and these points must be from the set {p1, p2, p3, p4, p5}. Without loss of
generality, denote these points by p and p′ (if there are one or zero points ranked above c′, let one
or both of p and p′ be arbitrary). Then consider the set of centers C ′ \ {p, p′} which is size k and
must be optimal under d′ as described earlier. However, the partitioning is not ε-close to OPT ,
since c′ is the best center (ranked 1) for both Cx and Cy. This completes the proof of the claim.

Now consider the set D = {ci ∈ C | ∃x s.t. Rx,d′,C′(ci) = 1}, i.e., the set of points in C which
are ranked 1 for some cluster. Denote m = (k − 3) − |D|, which is the number of points in C
which are not ranked 1 for any cluster. By the claim and since |C| = k−3, there are exactly m+ 3
clusters whose top-ranked point is not in C. Given one such cluster Cx, again by the claim, the
top two ranked points must not be from the set D. Therefore, there are 2(m + 3) slots that must
be filled by m + 5 points, so (for all m ≥ 0) by the Pigeonhole Principle, there must exist a point
p ∈ C ′ ranked in the top two by two different clusters. This directly contradicts the claim, so we
have a contradiction which completes the proof.

Algorithm under (3, ε)-PR

From the previous lemma, we know that at most a constant number of centers are bad. Essentially,
our algorithm runs a symmetric 2-approximation algorithm on A, for all k − 6 ≤ k′ ≤ k, to find a
2-approximation for the clusters in A. For instance, iteratively pick an unmarked point, and mark
all points distance 2r∗ away from it [Hochbaum and Shmoys, 1985]. Then we use brute force to
find the remaining 6 centers, which will give us a 3-approximation for the entire point set. Under
(3, ε)-perturbation resilience, this 3-approximation must be ε-close to OPT . We are not able to
output OPT exactly, since Condition 2 may not be satisfied for up to εn points.

Theorem 2.6.17. Algorithm 5 runs in polynomial time and outputs a clustering that is ε-close to
OPT , for (3, ε)-perturbation resilient asymmetric k-center instances s.t. all optimal clusters are
size > 2εn.

Proof. We define three types of clusters. A cluster Ci is green if ci ∈ A, it is yellow if ci /∈ A
but Ci ∩ A 6= ∅, and it is red if Ci ∩ A = ∅. Denote the number of yellow clusters by y, and
the number of red clusters by x. From Lemma 2.6.16, we know that x + y ≤ 6. The symmetric

44

Algorithm 5 (3, ε)-PERTURBATION RESILIENT ASYMMETRIC k-CENTER

Input: Asymmetric k-center instance (S, d), r∗ (or try all possible candidates).

• Build set A = {p | ∀q, d(q, p) ≤ r∗ =⇒ d(p, q) ≤ r∗}.
• Create the threshold graph G = (A,E) where E = {(u, v) | d(u, v) ≤ r∗}. Define a new

symmetric k-center instance (S,A, d′) where d′(u, v) = distG(u, v).

• For all k − 6 ≤ k′ ≤ k, run a symmetric k-center 2-approximation algorithm on (S,A, d′).
Break if the output is a set of centers C achieving cost ≤ 2r∗.

• For all C ′ ⊆ C of size k − 6 and S ′ ⊆ S of size 6, return if cost(C ′ ∪ S ′) ≤ 3r∗.

Output: Voronoi tiling G1, . . . , Gk using C ′ ∪ S ′ as the centers.

k-center instance (S,A, d′) constructed in step 2 of the algorithm is a subset of an instance with
k − x optimal clusters of cost r∗, so the (k − x)-center cost of (S,A, d′) is at most r∗. Therefore,
step 3 will return a set of centers achieving cost ≤ 2r∗ for some k′ ≤ k− x. By definition of green
clusters, we know that k−x− y clusters have their optimal center in A. For each green cluster Ci,
let c(i) ∈ C denote the center which is distance ≤ 2r∗ to ci (if there is more than one point in C,
denote c(i) by one of them arbitrarily). Let C ′ = {c(i) | Ci is green}, and |C ′| ≤ k − x− y. Then
the set C ′ ∪ {cx | x is not green} is cost ≤ 3r∗, and the algorithm is guaranteed to encounter this
set in the final step.

Finally, we explain why C ′ ∪B must be ε-close to OPT . Create a 3-perturbation in which we
increase all distances by 3, except for the distances from C ′ ∪ B to all points in their Voronoi tile,
which we increase up to 3r∗. Then, the optimal score is 3r∗ by Lemma 2.4.1, and C ′ ∪B achieves
this score. Therefore, by (3, ε)-perturbation resilience, the Voronoi tiling of C ′∪B must be ε-close
to OPT . This completes the proof.

2.6.4 APX-Hardness under perturbation resilience

Now we show hardness of approximation even when it is guaranteed the clustering satisfies (α, ε)
-approximation stability for α ≥ 1 and ε > 0. The hardness is based on a reduction from the
general clustering instances, so the APX-hardness constants match the non-stable APX-hardness
results. This shows the condition on the cluster sizes in Theorem 2.6.1 is tight. 17

Theorem 2.6.18. Given α ≥ 1, ε > 0, it is NP-hard to approximate k-center to 2, k-median to
1.73, or k-means to 3.94, even when it is guaranteed the instance satisfies (α, ε)-approximation
stability.

Proof. Given α ≥ 1, ε > 0, assume there exists a β-approximation algorithm A for k-median
under (α, ε)-approximation stability. We will show a reduction to k-median without approximation
stability. Given a k-median clustering instance (S, d) of size n, we will create a new instance
(S ′, d′) for k′ = k + n/ε with size n′ = n/ε as follows. First, set S ′ = S and d′ = d, and then
add n/ε new points to S ′, such that their distance to every other point is 2αnmaxu,v∈S d(u, v). Let

17 In fact, this hardness holds even under the strictly stronger notion of approximation stability [Balcan et al., 2013a],
therefore, it generalizes a hardness result from [Balcan et al., 2013a].

45

OPT denote the optimal solution of (S, d). Then the optimal solution to (S ′, d′) is to use OPT
for the vertices in S, and make each of the n/ε added points a center. Note that the cost of OPT
and the optimal clustering for (S ′, d′) are identical, since the added points are distance 0 to their
center. Given a clustering C on (S, d), let C ′ denote the clustering of (S ′, d′) that clusters S as in
C, and then adds n/ε extra centers on each of the added points. Then the cost of C and C ′ are the
same, so it follows that C is a β-approximation to (S, d) if and only if C ′ is a β-approximation
to (S ′, d′). Next, we claim that (S ′, d′) satisfies (α, ε)-approximation stability. Given a clustering
C ′ which is an α-approximation to (S ′, d′), then there must be a center located at all n/ε of the
added points, otherwise the cost of C ′ would be > αOPT . Therefore, C ′ agrees with the optimal
solution on all points except for S, therefore, C ′ must be ε-close to the optimal solution. Now
that we have established a reduction, the theorem follows from hardness of 1.73-approximation for
k-median [Jain et al., 2002]. The proofs for k-center and k-means are identical, using hardness
from [Gonzalez, 1985] and [Lee et al., 2017], respectively.

46

Chapter 3

Data-Driven Clustering

3.1 Introduction

In this chapter, we take a different approach to beyond worst-case analysis. Clustering arises
in a variety of diverse and oftentimes unrelated application domains. For example, clustering is
a widely-studied NP-hard problem in unsupervised machine learning, used to group protein se-
quences by function, organize documents in databases by subject, and choose the best locations
for fire stations in a city. Although the underlying objective is the same, a “typical problem in-
stance” in one setting may be significantly different from that in another, causing approximation
algorithms to have inconsistent performance across the different application domains.

In this chapter, we study how to characterize which algorithms are best for which contexts,
a task often referred to in the AI literature as algorithm configuration. This line of work allows
researchers to compare algorithms according to an application-specific metric, such as expected
performance over their problem domain, rather than a worst-case analysis. If worst-case instances
occur infrequently in the application domain, then a worst-case algorithm comparison could be
uninformative and misleading. We approach application-specific algorithm configuration via a
learning-theoretic framework wherein an application domain is modeled as a distribution over
problem instances. We then fix an infinite class of approximation algorithms for that problem and
design computationally efficient and sample efficient algorithms which learn the approximation
algorithm with the best performance over the distribution, and therefore an algorithm with high
performance in the specific application domain. Gupta and Roughgarden [2016] introduced this
learning framework to the theory community, but it has been the primary model for algorithm
configuration and portfolio selection in the artificial intelligence community for decades [Rice,
1976] and has led to breakthroughs in diverse fields including combinatorial auctions [Leyton-
Brown et al., 2009], scientific computing [Demmel et al., 2005], vehicle routing [Caseau et al.,
1999], and SAT [Xu et al., 2008].

The most popular method in practice for clustering is local search, where we start with k centers
and iteratively make incremental improvements until a local optimum is reached. For example,
Lloyd’s method (sometimes called k-means) [Lloyd, 1982] and k-medoids [Friedman et al., 2001,
Cohen et al., 2016] are two popular local search algorithms. Another widely used paradigm for
clustering algorithms is the agglomerative algorithm paradigm, which includes common linkage-

47

based methods such as single-, average-, and complete-linkage.

In the algorithm configuration framework, we study both types of algorithmic families for
clustering: agglomerative clustering algorithms followed by a dynamic programming step, and
Lloyd’s local search algorithms with an initialization step.

There are multiple decisions an algorithm designer must make when using a Lloyd’s local
search algorithm or an agglomerative clustering algorithm. In local search, the algorithm designer
must decide how to seed local search, e.g., how the algorithm chooses the k initial centers. There
is a large body of work on seeding algorithms, since the initial choice of centers can have a large
effect on the quality of the outputted clustering [Higgs et al., 1997, Pena et al., 1999, Arai and
Barakbah, 2007]. The best seeding method often depends on the specific application at hand. For
example, a “typical problem instance” in one setting may have significantly different properties
from that in another, causing some seeding methods to perform better than others. Second, the
algorithm designer must decide on an objective function for the local search phase (resp. dynamic
programming phase) which could be k-means, k-median, etc. For some applications, there is an
obvious choice. For instance, if the application is Wi-Fi hotspot location, then the explicit goal
is to minimize the k-center objective function. For many other applications such as clustering
communities in a social network, the goal is to find clusters which are close to an unknown target
clustering, and we may use an objective function for local search in the hopes that approximately
minimizing the chosen objective will produce clusterings which are close to matching the target
clustering (in terms of the number of misclassified points). As before, the best objective function
for local search may depend on the specific application.

In this chapter, we show positive theoretical results for learning the best clustering procedures
over a large family of algorithms. We take a transfer learning approach where we assume there is
an unknown distribution over problem instances corresponding to our application, and the goal is
to use experience from the early instances to perform well on the later instances. For example, if
our application is clustering facilities in a city, we would look at a sample of cities with existing
optimally-placed facilities, and use this information to find the empirically best algorithm from an
infinite family, and we use this algorithm to cluster facilities in new cities. This is similar in spirit
to the learning to learn setting of Baxter [1997], where the goal is to learn the best concept class
from a family of concept classes, for an unknown distribution.

Problem description. In the algorithm configuration framework, we fix a computational prob-
lem, such as k-means clustering, and assume that there exists an unknown, application-specific
distribution D over a set of problem instances Π. We denote an upper bound on the size of the
problem instances in the support of D by n. For example, the support of D might be a set of social
networks over n individuals, and the researcher’s goal is to choose an algorithm with which to
perform a series of clustering analyses. Next, we fix a class of algorithmsA. Given a cost function
cost : A × Π → [0, H], the learner’s goal is to find an algorithm h ∈ A that approximately
optimizes the expected cost with respect to the distribution D. We derive our guarantees by ana-
lyzing the pseudo-dimension of the algorithm classes we study [Pollard, 1984, 1990, Anthony and
Bartlett, 2009]). We then use the structure of the problem to provide efficient algorithms for most
of the classes we study.

48

3.1.1 Results and techniques

Clustering by agglomerative algorithms with dynamic programming. We study infinite classes
of two-step clustering algorithms consisting of a linkage-based step and a dynamic programming
step. First, the algorithm runs one of an infinite number of linkage-based routines to construct a
hierarchical tree of clusters. Next, the algorithm runs a dynamic programming procedure to find
the pruning of this tree that minimizes one of an infinite number of clustering objectives. For
example, if the clustering objective is the k-means objective, then the dynamic programming step
will return the optimal k-means pruning of the cluster tree.

For the linkage-based procedure, we consider several parameterized agglomerative procedures
which induce a spectrum of algorithms interpolating between the popular single-, average-, and
complete-linkage procedures, which are prevalent in practice [Awasthi et al., 2014, Saeed et al.,
2003, White et al., 2010] and known to perform nearly optimally in many settings [Awasthi et al.,
2012, Balcan et al., 2016, Balcan and Liang, 2016, Grosswendt and Roeglin, 2015]. For the dy-
namic programming step, we study an infinite class of objectives which include the standard k-
means, k-median, and k-center objectives, common in applications such as information retrieval
[Can, 1993, Charikar et al., 1997]. We show how to learn the best agglomerative algorithm and
pruning objective function pair, thus extending our work to multiparameter algorithms. We provide
tight pseudo-dimension bounds, ranging from Θ(log n) for simpler algorithm classes to Θ(n) for
more complex algorithm classes, so our learning algorithms are sample efficient.

(α, β)-Lloyds++ We define an infinite family of algorithms generalizing Lloyd’s method, with two
parameters α and β. Our algorithms have two phases, a seeding phase to find k initial centers (pa-
rameterized by α), and a local search phase which uses Lloyd’s method to converge to a local opti-
mum (parameterized by β). In the seeding phase, each point v is sampled with probability propor-
tional to dmin(v, C)α, where C is the set of centers chosen so far and dmin(v, C) = minc∈C d(v, c).
Then Lloyd’s method is used to converge to a local minima for the `β objective. By ranging
α ∈ [0,∞) ∪ {∞} and β ∈ [1,∞) ∪ {∞}, we define our infinite family of algorithms which
we call (α, β)-Lloyds++. Setting α = β = 2 corresponds to the k-means++ algorithm [Arthur
and Vassilvitskii, 2007]. The seeding phase is a spectrum between random seeding (α = 0), and
farthest-first traversal [Gonzalez, 1985, Dasgupta and Long, 2005] (α = ∞), and the Lloyd’s
step is able to optimize over common objectives including k-median (β = 1), k-means (β = 2),
and k-center (β = ∞). We design efficient learning algorithms which receive samples from an
application-specific distribution over clustering instances and learn a near-optimal clustering algo-
rithm from our family.

In Section 3.4, we prove thatO
(

1
ε2

min(T, k) log n
)

samples are sufficient to guarantee the em-
pirically optimal parameters (α̂, β̂) have expected cost at most ε higher than the optimal parameters
(α∗, β∗) over the distribution, with high probability over the random sample, where n is the size
of the clustering instances and T is the maximum number of Lloyd’s iterations. The key challenge
is that for any clustering instance, the cost of the outputted clustering is not even a continuous
function in α or β since a slight tweak in the parameters may lead to a completely different run of
the algorithm. We overcome this obstacle by showing a strong bound on the expected number of
discontinuities of the cost function, which requires a delicate reasoning about the structure of the
“decision points” in the execution of the algorithm; in other words, for a given clustering instance,
we must reason about the total number of outcomes the algorithm can produce over the full range

49

of parameters. This allows us to use Rademacher complexity, a distribution-specific technique for
achieving uniform convergence.

Next, we complement our sample complexity result with a computational efficiency result.
Specifically, we give a novel meta-algorithm which efficiently finds a near-optimal value α̂ with
high probability. The high-level idea of our algorithm is to run depth-first-search over the “execu-
tion tree” of the algorithm, where a node in the tree represents a state of the algorithm, and edges
represent a decision point. A key step in our meta-algorithm is to iteratively solve for the decision
points of the algorithm, which itself is nontrivial since the equations governing the decision points
do not have a closed-form solution. We show the equations have a certain structure which allows
us to binary search through the range of parameters to find the decision points. Our algorithm
has been shown to perform favorably on a number of different real-world and synthetic datasets
including MNIST, Cifar10, CNAE-9, and mixtures of Gaussians [Balcan et al., 2018].

Key challenges. One of the key challenges in analyzing the pseudo-dimension of the algorithm
classes we study is that we must develop deep insights into how changes to an algorithm’s parame-
ters affect the solution the algorithm returns on an arbitrary input. For example, the cost function of
a clustering algorithm could be the k-means or k-median objective function, or even the distance to
some ground-truth clustering. As we range over algorithm parameters, we alter the merge step by
tuning an intricate measurement of the overall similarity of two point sets and we alter the pruning
step by adjusting the way in which the combinatorially complex cluster tree is pruned. The cost of
the returned clustering may vary unpredictably.

In this way, our algorithm analyses require more care than standard complexity derivations
commonly found in machine learning contexts. Typically, for well-understood function classes
used in machine learning, such as linear separators or other smooth curves in Euclidean spaces,
there is a simple mapping from the parameters of a specific hypothesis to its prediction on a given
example and a close connection between the distance in the parameter space between two pa-
rameter vectors and the distance in function space between their associated hypotheses. Roughly
speaking, it is necessary to understand this connection in order to determine how many significantly
different hypotheses there are over the full range of parameters. Due to the inherent complexity of
the classes we consider, connecting the parameter space to the space of approximation algorithms
and their associated costs requires a much more delicate analysis. Indeed, the key technical part of
our work involves understanding this connection from a learning-theoretic perspective. In fact, the
structure we discover in our pseudo-dimension analyses allows us to develop many computation-
ally efficient meta-algorithms for algorithm configuration due to the related concept of shattering.
A constrained pseudo-dimension ofO(log n) often implies a small search space of 2O(logn) = O(n)
in which the meta-algorithm will uncover a nearly optimal configuration.

We develop techniques for analyzing randomized algorithms, whereas the algorithms analyzed
in the previous work were deterministic. We also provide the first pseudo-dimension lower bounds
in this line of work, which require an involved analysis of each algorithm family’s performance
on carefully constructed instances. Our lower bounds are somewhat counterintuitive, since for
several of the classes we study, they are of the order Ω(log n), even if the corresponding classes of
algorithms are defined by a single real-valued parameter.

50

3.1.2 Related work

Agglomerative clustering with dynamic programming Agglomerative clustering algorithms
with dynamic programming are prevalent in practice due to their simplicity and efficiency. For
example, agglomerative algorithms with dynamic programming have been used to cluster business
listings maintained by Google, and a newsgroup documents data set [Awasthi et al., 2014], soft-
ware clustering [Saeed et al., 2003], and bioinformatic datasets [White et al., 2010]. These families
of algorithms have strong theoretical guarantees in a variety of settings. For example, Awasthi et al.
show that complete-linkage returns the optimal clustering under (2 +

√
3)-perturbation resilience

for any center-based objective [Awasthi et al., 2012], Balcan et al. show that single-linkage re-
turns a near-optimal clustering for k-center under 2-perturbation resilience or (3, ε)-perturbation
resilience [Balcan et al., 2016], and Balcan et al. show that a robust linkage procedure with a pre-
processing step can be used to cluster stable min-sum and k-median instances [Balcan and Liang,
2016]. Grosswendt and Roeglin show that complete-linkage yields a constant approximation for
k-center for any metric that is induced by a norm, for constant dimension.

Lloyd’s algorithm and farthest-first traversal The iterative local search method for clustering,
known as Lloyd’s algorithm or sometimes called k-means, is one of the most popular algorithms
for k-means clustering [Lloyd, 1982], and improvements are still being found [Max, 1960, Mac-
Queen et al., 1967, Dempster et al., 1977, Pelleg and Moore, 1999, Kanungo et al., 2002, Kaufman
and Rousseeuw, 2009]. The worst-case runtime of Lloyd’s method is exponential [Arthur and
Vassilvitskii, 2006] even in R2 [Vattani, 2011], however, it converges very quickly in practice
[Har-Peled and Sadri, 2005], and the smoothed complexity is polynomial Arthur et al. [2011].
Many different initialization approaches have been proposed [Higgs et al., 1997, Pena et al., 1999,
Arai and Barakbah, 2007]. When using d2-sampling to find the initial k centers, the algorithm is
known as k-means++, and the approximation guarantee is provably O(log k) [Arthur and Vassil-
vitskii, 2007]. If the data satisfies a natural stability condition, k-means++ returns a near-optimal
clustering [Ostrovsky et al., 2012].

The farthest-first traversal algorithm is an iterative method to find k centers, and it was shown
to give a 2-approximation algorithm for k-center [Gonzalez, 1985], and an 8-approximation for
hierarchical k-center [Dasgupta and Long, 2005].

Learning to Learn Application-specific algorithm configuration has been used in the artifical in-
telligence community for decades [Rice, 1976]. For example, Leyton-Brown et al. used algorithm
configuration in designing combinatorial auctions [Leyton-Brown et al., 2009], Demmel et al. used
this technique for scientific computing [Demmel et al., 2005], Caseau et al. studied the problem for
vehicle routing [Caseau et al., 1999], and Xu et al. used this model to design a portfolio-based al-
gorithm for SAT [Xu et al., 2008]. Gupta and Roughgarden were the first to theoretically introduce
algorithm configuration as a formal learning framework [Gupta and Roughgarden, 2016]. They
gave pseudo-dimension bounds for families of greedy heuristics, and showed how to learn the best
greedy algorithm for knapsack, maximum-weight independent set, and machine scheduling.

There are several related models for learning the best representation and transfer learning for
clustering. Ashtiani and Ben-David show how to use a small labeled fraction of the dataset to
learn a metric embedding of the entire dataset such that k-means performs well [Ashtiani and Ben-
David, 2015]. Baxter studied the task of choosing the right concept class for a distribution over an

51

environment of supervised learning tasks [Baxter, 1997]. Specifically, the goal is to learn the best
hypothesis space from a family of hypothesis spaces. Our problem is similar in spirit to this model,
where we study environments of unsupervised learning tasks instead of supervised learning tasks.

There are a few models for the question of finding the best clustering algorithm to use on a
single instance, given a small amount of expert advice. Ackerman et al. (building off of the famous
clustering impossibility result of Kleinberg [2003]) study the problem of taxonomizing clusering
algorithmic paradigms, by using a list of abstract properties of clustering functions [Ackerman
et al., 2010]. In their work, the goal is for a user to choose a clustering algorithm based on the
specific properties which are important for her application.

Another related area is the problem of unsupervised domain adaption. In this problem, the
machine learning algorithm has access to a labeled training dataset, and an unlabeled target dataset
over a different distribution. The goal is to find an accurate classifier over the target dataset, while
only training on the training distribution [Sener et al., 2016, Ganin and Lempitsky, 2015, Tzeng
et al., 2014].

There has been more research on related questions for transfer learning on unlabeled data
and unsupervised tasks. Raina et al. study transfer learning using unlabeled data, to a supervised
learning task [Raina et al., 2007]. Jiang and Chung, and Yang et al. study transfer learning for
clustering, in which a clustering algorithm has access to unlabeled data, and uses it to better cluster
a related problem instance [Yang et al., 2009, Jiang and Chung, 2012]. This setting is a bit different
from ours, since we assume we have access to the target clustering from each training instance, but
we tackle the harder question of finding the best clustering objective.

3.2 Preliminaries
Problem description. Recall the model from the previous section, which we state again for conve-
nience. We fix a computational problem, such as k-means clustering, and assume that there exists
an unknown, application-specific distribution D over a set of problem instances Π. We denote
an upper bound on the size of the problem instances in the support of D by n. For example, the
support of D might be a set of social networks over n individuals, and the researcher’s goal is to
choose an algorithm with which to perform a series of clustering analyses. Next, we fix a class
of algorithms A. Given a cost function cost : A × Π → [0, H], the learner’s goal is to find an
algorithm h ∈ A that approximately optimizes the expected cost with respect to the distribution
D, as formalized below.

Definition 3.2.1 (Gupta and Roughgarden [2016]). A learning algorithm L (ε, δ)-learns the al-
gorithm class A with respect to the cost function cost if, for every distribution D over Π, with
probability at least 1 − δ over the choice of a sample S ∼ Dm, L outputs an algorithm ĥ ∈ A
such that Ex∼D

[
cost

(
ĥ, x
)]
− minh∈A {Ex∼D[cost(h, x)]} < ε. We require that the number

of samples be polynomial in n, 1
ε
, and 1

δ
, where n is an upper bound on the size of the problem

instances in the support ofD. Further, we say that L is computationally efficient if its running time
is also polynomial in n, 1

ε
, and 1

δ
.

We derive our guarantees by analyzing the pseudo-dimension of the algorithm classes we
study. Consider a class of algorithms A and a class of problem instances X . Let the cost func-

52

tion cost(h, x) denote the abstract cost of running an algorithm h ∈ A on a problem instance
x ∈ X . Similarly, define the function class HA = {cost(h, ·) : X → R|h ∈ A}. Then, recall
that a finite subset of problem instances S = {x1, x2, . . . xm} is shattered by the function class
H, if there exist real-valued witnesses r1, . . . , rm such that for all subsets T ⊆ S, there exists a
function cost (hT , ·) ∈ H, or in other words, an algorithm hT ∈ A such that cost (hT , xi) ≤ ri
if and only if i ∈ T . Then, we can define the pseudo-dimension of the algorithm class A to be the
pseudo-dimension Pdim(H) ofH i.e., the cardinality of the largest subset of X shattered byH.

Next, we provide the definition of pseudo-dimension in the context of algorithm classes. Con-
sider a class of algorithmsA and a class of problem instances X . Let the cost function cost(h, x)
denote the abstract cost of running an algorithm h ∈ A on a problem instance x ∈ X . Simi-
larly, define the function class HA = {cost(h, ·) : X → [0, H] | h ∈ A}. Recall that a finite
subset of problem instances S = {x1, x2, . . . xm} is shattered by the function class H, if there
exist real-valued witnesses r1, . . . , rm such that for all subsets T ⊆ S, there exists a function
cost (hT , ·) ∈ H, or in other words, an algorithm hT ∈ A such that cost (hT , xi) ≤ ri if and
only if i ∈ T . Then, we can define the pseudo-dimension of the algorithm class A to be the
pseudo-dimension Pdim(H) ofH i.e., the cardinality of the largest subset of X shattered byH.

By bounding Pdim(H), clearly we can derive sample complexity guarantees in the context
of algorithm classes [Dudley, 1967]: for every distribution D over X , every ε > 0, and every
δ ∈ (0, 1],

m ≥ c

(
H

ε

)2(
Pdim(H) + log

1

δ

)
for a suitable constant c (independent of all other parameters), then with probability at least 1− δ
over m samples x1, . . . , xm ∼ D,∣∣∣∣∣ 1

m

m∑
i=1

cost(h, xi)− Ex∼D[cost(h, x)]

∣∣∣∣∣ < ε

for every algorithm h ∈ A. Therefore, if a learning algorithm receives as input a sufficiently large
set of samples and returns the algorithm which performs best on that sample, we can be guaranteed
that this algorithm is close to optimal with respect to the underlying distribution.

3.3 Agglomerative algorithms with dynamic programming
We begin with an overview of agglomerative algorithms with dynamic programming, which in-
clude many widely-studied clustering algorithms, and then we define several parameterized classes
of such algorithms. As in the previous section, we prove it is possible to learn the optimal algo-
rithm from a fixed class for a specific application, and for many of the classes we analyze, this
procedure is computationally efficient and sample efficient. We focus on agglomerative algo-
rithms with dynamic programming for clustering problems. A clustering instance V = (V, d)
consists of a set V of n points and a distance metric d : V × V → R≥0 specifying all pair-
wise distances between these points. The overall goal of clustering is to partition the points into
groups such that distances within each group are minimized and distances between each group
are maximized. Clustering is typically performed using an objective function Φ, such as k-means,
k-median, k-center, or the distance to the ground truth clustering. Formally, an objective function

53

Φ takes as input a set of points c = {c1, . . . , ck} ⊆ V which we call centers, as well as a partition
C = {C1, . . . , Ck} of V which we call a clustering. We define the rich class of clustering objec-
tives Φ(p)(C, c) =

∑k
i=1(
∑

q∈Ci d(q, ci)
p)1/p for p ∈ [1,∞) ∪ {∞}. The k-means, k-median, and

k-center objective functions are Φ(2), Φ(1), and Φ(∞), respectively.1

Next, we define agglomerative clustering algorithms with dynamic programming, which are
prevalent in practice [Awasthi et al., 2014, Saeed et al., 2003, White et al., 2010] and enjoy strong
theoretical guarantees in a variety of settings [Awasthi et al., 2012, Balcan et al., 2016, Balcan and
Liang, 2016, Grosswendt and Roeglin, 2015]. Examples of these algorithms include the popular
single-, complete-, and average-linkage algorithms with dynamic programming. An agglomerative
clustering algorithm with dynamic programming is defined by two functions: a merge function
and a pruning function. A merge function ξ(A,B) → R≥0 defines a distance between two sets of
points A,B ⊆ V . The algorithm builds a cluster tree T by starting with n singleton leaf nodes,
and iteratively merging the two sets with minimum distance until there is a single node remaining,
consisting of the set V . The children of any node T in this tree correspond to the two sets of
points that were merged to form T during the sequence of merges. Common choices for the merge
function ξ include mina∈A,b∈B d(a, b) (single linkage), 1

|A|·|B|
∑

a∈A,b∈B d(a, b) (average linkage)
and maxa∈A,b∈B d(a, b) (complete linkage).

A pruning function Ψ takes as input a k′-pruning of any subtree of T and returns a score R≥0

for that pruning. A k′-pruning for a subtree T is a partition of the points contained in T ’s root
into k′ clusters such that each cluster is an internal node of T . Pruning functions may be similar
to objective functions, though the input is a subtree. The k-means, -median, and -center objectives
are standard pruning functions. The algorithm returns the k-pruning of the tree T that is optimal
according to Ψ, which can be found in polynomial time using dynamic programming. Algorithm 6
details how the merge function and pruning function work together to form an agglomerative clus-
tering algorithm with dynamic programming. In the dynamic programming step, to find the 1-
pruning of any node T , we only need to find the best center c ∈ T . When k′ > 1, we recursively
find the best k′-pruning of T by considering different combinations of the best i′-pruning of the left
child TL and the best (k′ − i′)-pruning of the right child TR for i′ ∈ {1, . . . , k − 1} and choosing
the best combination.

Pictorially, Figure 3.1 depicts an array of available choices when designing an agglomerative
clustering algorithm with dynamic programming. Each path in the chart corresponds to an alter-
native choice of a merging function ξ and pruning function Ψ. The algorithm designer’s goal is to
determine the path that is optimal for her specific application domain.

Our results hold even when there is a fixed preprocessing step that precedes the agglomerative
merge step (as long as it is independent of ξ and Ψ), therefore our analysis carries over to algorithms
such as in [Balcan and Liang, 2016].

1There have been several papers that provide theoretical guarantees for clustering under this family of objective
functions for other values of p. For instance, Gupta and Tangwongsan [2008] provide anO(p) approximation algorithm
when p < log n and Bateni et al. [2014a] study distributed clustering algorithms.

54

Algorithm 6 Agglomerative algorithm with dynamic programming

Input: Clustering instance V = (V, d), merge function ξ, pruning function Ψ.
1: Agglomerative merge step to build a cluster tree T according to ξ:

• Start with n singleton sets {v} for each v ∈ V .

• Iteratively merge the two setsA andB which minimize ξ(A,B) until a single set remains.

• Let T denote the cluster tree corresponding to the sequence of merges.

2: Dynamic programming to find the k-pruning of T minimizing Ψ :

• For each node T , find the best k′-pruning of the subtree rooted at T in T , denoted by
(CT,k′ , cT,k′) according to following dynamic programming recursion:

Ψ (CT,k′ , cT,k′) =

{
minc∈T Ψ ({T}, c) if k′ = 1,

mini′∈[k′−1] Ψ (CTL,i′ ∪ CTR,k′−i′ , cTL,i′ ∪ cTR,k′−i′) otherwise.

where TL and TR denote the left and right children of T , respectively.

Output: The best k-pruning of the root node Troot of T .

Figure 3.1: A schematic for a class of agglomerative clustering algorithms with dynamic program-
ming.

55

3.3.1 Definition of algorithm classes

We now define three infinite families of merge functions and provide sample complexity bounds
for these families with any fixed but arbitrary pruning function. The families A1 and A3 consist
of merge functions ξ(A,B) that depend on the minimum and maximum of all pairwise distances
between A and B. The second family, denoted by A2, depends on all pairwise distances between
A and B. All classes are parameterized by a single value α.

A1 =

{(
min

u∈A,v∈B
(d(u, v))α + max

u∈A,v∈B
(d(u, v))α

)1/α
∣∣∣∣∣ α ∈ R ∪ {∞,−∞}

}
,

A2 =

 1

|A||B|
∑

u∈A,v∈B

(d(u, v))α
)1/α

∣∣∣∣∣∣ α ∈ R ∪ {∞,−∞}

 ,

A3 =

{
α min
u∈A,v∈B

d(u, v) + (1− α) max
u∈A,v∈B

d(u, v)

∣∣∣∣ α ∈ [0, 1]

}
.

For i ∈ {1, 2, 3}, we define Ai(α) as the merge function in Ai defined by α. A1 and A3 define
spectra of merge functions ranging from single-linkage (A1(−∞) andA3(1)) to complete-linkage
(A1(∞) and A3(0)). A2 defines a spectrum which includes average-linkage in addition to single-
and complete-linkage. Given a pruning function Ψ, we denote (Ai(α),Ψ) as the algorithm which
builds a cluster tree using Ai(α), and then prunes the tree according to Ψ. To reduce notation,
when Ψ is clear from context, we often refer to the algorithm (Ai(α),Ψ) as Ai(α) and the set of
algorithms {(Ai(α),Ψ) | α ∈ R∪ {−∞,∞}} as Ai. For example, when the cost function is Φ(p),
then we always set Ψ to minimize the Φ(p) objective, so the pruning function is clear from context.

Recall that for a given class of merge functions and a cost function (a generic clustering
objective clus), our goal is to learn a near-optimal value of α in expectation over an unknown
distribution of clustering instances. One might wonder if there is some α that is optimal across all
instances, which would preclude the need for a learning algorithm. In Theorem 3.3.1, we prove
that this is not the case; for each p ∈ [1,∞) ∪ {∞} and i ∈ {1, 2, 3}, given any α, there exists a
distribution over clustering instances for which Ai(α) is the best algorithm in Ai with respect to
Φ(p). Crucially, this means that even if the algorithm designer sets p to be 1, 2, or∞ as is typical in
practice, the optimal choice of the tunable parameter α could be any real value. The optimal value
of α depends on the underlying, unknown distribution, and must be learned, no matter the value of
p.

To formally describe this result, we set up new notation. Let V denote the set of all clustering
instances over at most n points. With a slight abuse of notation, we will use clus(Ai(α),Ψ)(V) to
denote the abstract cost of the clustering produced by (Ai(α),Ψ) on the instance V .

Theorem 3.3.1. For i ∈ {1, 2, 3} and a permissible value of α for Ai, there exists a distribution
D over clustering instances V such that EV∼D

[
clus(p)

Ai(α)(V)
]
< EV∼D

[
clus(p)

Ai(α′)(V)
]

for all
permissible values of α′ 6= α for Ai.

Proof. We give a general proof for all three classesA1,A2, andA3. We will point out a few places
in the proof where the details for b = 1, 2, 3 are different, but the general structure of the argument

56

is the same. For each value of b, we construct a single clustering instance V = (V, d) that has the
desired property; the distribution D is merely the single clustering instance with probability 1.

Consider some permissible value of α, denoted α∗. Set k = 4 and n = 210. The clustering
instance consists of two well-separated ‘gadgets’ of two clusters each. The class Ab results in
different 2-clusterings of the first gadget depending on whether α ≤ α∗ or not. Similarly, Ab
results in different 2-clusterings of the second gadget depending on whether α ≥ α∗ or not. By
ensuring that for the first gadget α ≤ α∗ results in the lowest cost 2-clustering, and for the second
gadget α ≥ α∗ results in the lowest cost 2-clustering, we ensure that α = α∗ is the optimal
parameter overall.

The first gadget is as follows. We define five points a1, b1, c1, x1 and y1. For the sake of
convenience, we will group the remaining points into four sets A1, B1, X1, and Y1 each containing
25 points. We set the distances as follows: d(a1, b1) = d(x1, y1) = 1, d(a1, c1) = 1.1, and
d(b1, c1) = 1.2. For a ∈ A1 ∪B1, d(c1, a) = 1.51 and d(a1, a) = d(b1, a) = 1.6. For x ∈ X1 ∪ Y1,
d(x1, x) = d(y1, x) = 1.6. For a ∈ A1, b ∈ B1, x ∈ X1, and y ∈ Y1, d(a, b) = d(x, y) = 1.6. We
also define special points x∗1 ∈ X1 and y∗1 ∈ Y1, which have the same distances as the rest of the
points in X1 and Y1 respectively, except that d(x1, x

∗
1) = 1.51 and d(y1, y

∗
1) = 1.51. If two points

p and q belong to the same set (A1, B1, X1, or Y1), then d(p, q) = 1.5.

The distances d(x1, c1) and d(y1, c1) are defined in terms of b and α∗, but they will always be
between 1.1 and 1.2. For b = 1, we set d(x1, c1) = d(y1, c1) = 1.2− .1 · α∗. For b = 2 and b = 3,
d(x1, c1) = d(y1, c1) = ((1.1α

∗
+ 1.2α

∗
)/2)

1
α∗ .

So far, all of the distances we have defined are in [1, 2], therefore they trivially satisfy the
triangle inequality. We set all of the rest of the distances to be the maximum distances allowed
under the triangle inequality. Therefore, the triangle inequality holds over the entire metric.

Now, let us analyze the merges caused by Ab(α) for various values of α. Regardless of the
values of α and b, since the distances between the first five points are the smallest, merges will
occur over these initially. In particular, regardless of α and b, a1 is merged with b1, and x1 with
y1. Next, by a simple calculation, if α ≤ α∗, then c1 merges with a1 ∪ b1. If α > α∗, then c1

merges with x1 ∪ y1. Denote the set containing a1 and b1 by A′1, and denote the set containing x1

and y1 by X ′1 (one of these sets will also contain c1). Between A′1 and X ′1, the minimum distance
is ≥ 1.1 + 1.1 ≥ 2.2. All other subsequent merges (except for the very last merge) will involve all
distances smaller than 2.2, so we never need to consider A′1 merging to X ′1.

The next smallest distances are all 1.5, so all points in A1 will merge together, and similarly
for B1, X1, and Y1. At this point, the algorithm has created six sets: A′1, X ′1, A1, B1, X1, and Y1.
We claim that if α ≤ α∗, A′1 will merge to A1 and B1, and X ′1 will merge to X1 and Y1. This is
because the maximum distance between sets in each of these merges is 1.6, whereas the minimum
distance between {A′1, A1, B1} and {X ′1, X1, Y1} is ≥ 2.2. Therefore, for all three values of b, the
claim holds true.

Next we claim that the 2-clustering cost of gadget 1 will be lowest for clusters A′1 ∪ A1 ∪ B1}
and X ′1 ∪ X1 ∪ Y1 and when c1 ∈ A′1, i.e., when α ≤ α∗. Clearly, since the distances within
A′1 ∪ A1 ∪ B1 and X ′1 ∪ X1 ∪ Y1 are much less than the distances across these sets, the best 2-
clustering is A′1 ∪ A1 ∪ B1 and X ′1 ∪ X1 ∪ Y1 (with all points at distance ≤ 1.6 to their center).
We proved this will be a pruning of the tree when α ≤ α∗. Therefore, we must argue the cost

57

of this 2-clustering is lowest when c1 ∈ A′1. The idea is that c1 can act as a very good center for
A′1 ∪ A1 ∪ B1. But if c1 ∈ X ′1, then the best center for A′1 ∪ A1 ∪ B1 will be an arbitrary point
in A1 ∪ B1. The cost in the first case is 1.51p · 50 + 1.1p + 1.2p. The cost in the second case is
1.5p · 24 + 1.6p · 27.

For X ′1∪X1∪Y1, the center does not change depending on α (x∗1 and y∗1 tie for the best center),
so the only difference in the cost is whether or not to include c1. If α ≤ α∗, then the cost is
1.5p ·24+1.51p+1.6p ·26, otherwise the cost is 1.5p ·24+1.51p+1.6p ·26+(1.6+1.2−0.1α∗)p.

Putting it all together, if α ≤ α∗, the cost is 1.51p ·50+1.1p+1.2p+1.5p ·24+1.51p+1.6p ·26.
Otherwise the cost is 1.5p ·48 + 1.51p+ 1.6p ·53 + (1.6 + 1.2−0.1α∗)p. Subtracting off like terms,
we conclude that the first case is always smaller because 1.51p · 49 + 1.1p + 1.2p < 1.5p · 24 +
1.6p · 26 + (1.6 + 1.2− 0.1α∗)p for all p ≥ 1.

Next, we will construct the second gadget arbitrarily far away from the first gadget. The second
gadget is very similar to the first. There are points a2, b2, c2, x2, y2, x

∗
2, y
∗
2 and sets to A2, B2, X2,

Y2. d(a2, b2) = d(x2, y2) = 1, d(x2, c2) = 1.1, d(y2, c2) = 1.2, and for b = 1, d(a2, c2) =

d(b2, c2) = 1.2 − .1 · α∗. For b = 2 or b = 3, d(a2, c2) = d(b2, c2) = ((1.1α
∗

+ 1.2α
∗
)/2)

1
α∗ . The

rest of the distances are the same as in gadget 1. Then c2 joins {a2, b2} if α ≥ α∗, not α ≤ α∗. The
rest of the argument is identical. So the conclusion we reach, is that the cost for the second gadget
is much lower if α ≥ α∗.

Therefore, the final cost of the 4-clustering is minimized when α = α∗, and the proof is
complete.

3.3.2 Discretization

Another natural question to ask is whether a discretized set of the parameter space will always
contain some parameter that is approximately optimal (for instance, an ε-net of the parameter
space). In Corollary 3.3.3, we show this is not possible: for any data-independent discretization
D = {d1, . . . , dm} of the parameter space, there exists an infinite family of clustering instances
such that all α ∈ D will output a clustering that is an Ω(n) factor worse than the optimal value of
α. First we prove the main structural idea behind Corollary 3.3.3.

Theorem 3.3.2. For b ∈ {1, 2, 3}, for all 1
3
< x < y < 2

3
, n > 10, and p ∈ O(1), there exists a

clustering instance V such that for all α ∈ [x, y], clus(p)
Ab(α)(V) ∈ O(1), and for all α /∈ [x, y],

clus(p)
Ab(α)(V) ∈ Ω(n).

Proof. Given 1
3
< x < y < 2

3
and n > 10, we will construct an instance V with the desired

properties. We set k = 2.

Here is a high level description of our construction V = (V, d). There will be two gadgets.
Gadget 1 contains points x1, y1, x′1, y′1, and z1. Gadget 2 contains points x2, y2, x′2, y′2, and z2. We
will define the distances so the following merges take place. Initially, x1 merges to y1, x′1 merges
to y′1, x2 merges to y2, and x′2 merges to y′2. Then the sets are {x1, y1}, {x′1, y′1}, {z1}, {x2, y2},
{x′2, y′2}, and {z2}. Next, z1 will merge to {x1, y1} if α < x, otherwise it will merge to {x′1, y′1}.
Similarly, z2 will merge to {x2, y2} if α < y, otherwise it will merge to {x′2, y′2}. Finally, the

58

Figure 3.2: The clustering instance used in Theorem 3.3.2

sets containing {x1, y1} and {x2, y2} will merge, and the sets containing {x′1, y′1} and {x′2, y′2} will
merge.

Therefore, the situation is as follows. If α ∈ [x, y], then the last two sets in the merge tree will
each contain exactly one of the points {z1, z2}. If α /∈ [x, y], then if we again look at the last two
sets in the merge tree, one of the sets will contain both points {z1, z2}. Since these are the last two
sets in the merge tree, the pruning step is not able to output a clustering with z1 and z2 in different
clusters. To finish the proof, we give a high weight to points z1 and z2 by placing n−8

2
points in the

same location as z1, and n−8
2

points in the same location as z2. Note this does not affect the merge
equations. When z1 and z2 are in different clusters, the optimal centers for k = 2 are at z1 and z2,
and the cost is just the cost of the remaining points, {x1, x

′
1, y1, y

′
1, x2, x

′
2, y2, y

′
2}, and all distances

will be between 1 and 6, so the total cost is ≤ 8 · 6p. When z1 and z2 are in the same cluster, the
center will be distance at least 2 from either z1 or z2 (or both), so the cost is ≥ n−8

2
· 2p ∈ Ω(n).

Now we define the distances and prove the desired merges take place in the correct ranges of α
(see Figure 3.2). First we consider A3. We set

d(x1, y1) = d(x2, y2) = d(x′1, y
′
1) = d(x′2, y

′
2) = 1.5,

d(x1, z1) = d(x2, z2) = 2.4,

d(x′1, z1) = d(x′2, z2) = 2.6,

d(y1, z1) = d(y′1, z1) = 2.6− .2x,
d(y2, z2) = d(y′2, z2) = 2.6− .2y,

We set all distances between {x1, y1} and {x2, y2} to 2.7. Similarly, we set all distances be-
tween {x′1, y′1} and {x′2, y′2} to 2.7. All other distances are the maximum allowed by the triangle
inequality.

Then, the first four merges are {x1, y1}, {x′1, y′1}, {x2, y2}, and {x′2, y′2} since these are the
shortest distances. The next-shortest distances are between 2.4 and 2.6, so z1 will merge to either
{x1, y1} or {x′1, y′1}, and z2 will merge to either {x2, y2} or {x′2, y′2}. The decision for z1 corre-
sponds to the equation α · 2.4 + (1 − α) · 2.6 = α · (2.6 − .2x) + (1 − α) · (2.6 − .2x), so z1

59

will merge to {x1, y1} if α < x, otherwise it will merge to {x′1, y′1}. Similarly, we conclude that z2

merges to {x2, y2} if α < y, otherwise {x′2, y′2}.
Next, we want the set containing {x1, y1} to merge to the set containing {x2, y2} and the set

containing {x′1, y′1} to merge to the set containing {x′2, y′2}. For both of these merges, the merge
equation is α · 2.7 + (1−α)2.7 = 2.7. However, the merge equation for {x1, y1} to {x′1, y′1} could
be as small as α · 2.4 + (1−α) · 4.8, which is smaller than 2.7 for α > .875. In order to ensure that
this clustering instance has high cost when α > .875, we add a few more points close to z1 and z2

which will cause a cluster containing z1 and z2 to merge early on, whenever α > .86. Specifically,
we set d(z1, z2) = 2.4 and add z′1 and z′2 such that d(z1, z

′
1) = d(z2, z

′
2) = 1.1, and the distances

to x1, y1, x
′
1, y
′
1, x2, y2, x

′
2, y
′
2 are the same as for z1 and z2. So z1 merges to z′1 and z2 merges to

z′2, and the merge equation for {z1, z
′
1} and {z2, z

′
2} is smaller than 2.7 when α > .86. This will

ensure the clustering has high cost when α > .86.

Now, if α ∈ [x, y], then the last two sets in the merge tree are

{x1, y1, x2, y2, z1} and {x′1, y′1, x′2, y′2, z2},

which each contain exactly one of the points {z1, z2}. If α /∈ [x, y], then if we again look at the
last two sets in the merge tree, one of the sets will contain both points {z1, z2}. Since these are the
last two sets in the merge tree, the pruning step is not able to output a clustering with z1 and z2 in
different clusters. When z1 and z2 are in different clusters, since they both have high weight, the
optimal centers for k = 2 are at z1 and z2, and the cost of the remaining 8 points is at most 8 · 6p.
When z1 and z2 are in the same cluster, the center is distance 2 from at least one of them, so the
cost is ≥ n−8

2
· 2p. When p is a constant, the difference in cost between these cases is Ω(n).

The cases for A1 and A2 are similar to the previous case. All distances are the same, except
we set

d(y1, z1) = d(y′1, z1) =

(
1

2
(2.4x + 2.6x)

) 1
x

,

d(y2, z2) = d(y′2, z2) =

(
1

2
(2.4y + 2.6y)

) 1
y

.

This ensures that z1 will merge to {x1, y1} if α < x, otherwise it will merge to {x′1, y′1}, and z2

will merge to {x2, y2} if α < y, otherwise it will merge to {x′2, y′2}. The rest of the details of the
proof are identical to the previous case. This concludes the proof.

Now we can prove Corollary 3.3.3.

Corollary 3.3.3. For b ∈ {1, 2, 3} and p ∈ O(1), given a finite discretization D = {d1, . . . , dm}
of the parameter space, there exists a constant c such that for all n > 10, there exists a clustering
instance V of size n such that c · n ·minα∈[0,1] clus

(p)
Ab(α)(V) < minα∈D clus

(p)
Ab(α)(V).

Proof. Given a discretization D = {d1, . . . , dm}, note that [0 = d0, d1], [d1, d2], . . . , [dm, dm+1 =
1] is a partition of the parameter space [0, 1]. Choose an interval [di, di+1] which has nonempty
intersection with (1

3
, 2

3
). Now define a new interval [d′i, d

′
i+1] such that d′i = max(di,

1
3
) and d′i+1 =

60

min(di+1,
2
3
). We set x = d′i +

d′i+1−d′i
3

and y = d′i+1 −
d′i+1−d′i

3
. By construction, we have [x, y] ⊆

(di, di+1) and [x, y] ⊆ (1
3
, 2

3
), and it follows that D ∩ [x, y] = ∅. Now for each n > 10, we use

Theorem 3.3.2 with x and y as defined above, to obtain V such that for all α ∈ [x, y], cost(V , α) ∈
O(1), and for all α /∈ [x, y] (including all of D), cost(V , α) ∈ Ω(n). This completes the proof.

3.3.3 Pseudo-dimension upper bounds

Now for an arbitrary objective function Φ and arbitrary pruning function Ψ, we analyze the com-
plexity of the classes

HA1×{Ψ},Φ =
{
clus(A1(α),Ψ) : V→ R≥0

∣∣ α ∈ R ∪ {∞,−∞}
}
,

HA2×{Ψ},Φ =
{
clus(A2(α),Ψ) : V→ R≥0

∣∣ α ∈ R ∪ {∞,−∞}
}

, and

HA3×{Ψ},Φ =
{
clus(A3(α),Ψ) : V→ R≥0

∣∣ α ∈ [0, 1]
}
.

We drop the subscript Φ from HAi×{Ψ},Φ when the objective function is clear from context. Fur-
thermore, in our analysis we will often fix a tuple V = (V, d) and use the notation clusAi,V(α) to
analyze how clusAi(α)(V) changes as a function of α. We start with A1 and A3.

Theorem 3.3.4. For all objective functions Φ(p), Pdim
(
HA1,Φ(p)

)
= Θ(log n) and Pdim

(
HA3,Φ(p)

)
=

Θ(log n). For all other objective functions Φ 2 and all pruning functions Ψ, Pdim
(
HA1×{Ψ},Φ

)
=

O(log n) and Pdim
(
HA3×{Ψ},Φ

)
= O(log n).

This theorem follows from Lemma 3.3.8 and Lemma 3.3.13. We begin with the following
structural lemma, which will help us prove Lemma 3.3.8.

Lemma 3.3.5. clusA3,V : [0, 1]→ R>0 is made up of O(n8) piecewise constant components.

Proof. First note that for α 6= α′, the clustering returned by A1(α) and the associated cost are
both identical to that of A1(α′) if both the algorithms construct the same merge tree. Now, as
we increase α from 0 to 1 and observe the run of the algorithm for each α, at what values of
α do we expect A1(α) to produce different merge trees? To answer this, suppose that at some
point in the run of algorithm A1(α), there are two pairs of subsets of V , (A,B) and (X, Y), that
could potentially merge. There exist eight points p, p′ ∈ A, q, q′ ∈ B, x, x′ ∈ X , and y, y′ ∈ Y
such that the decision of which pair to merge depends on whether αd(p, q) + (1 − α)d(p′, q′) or
αd(x, y) + (1 − α)d(x′, y′) is larger. This is a linear equation in α, so there is at most one value
of α for which these expressions are equal, unless the difference of the expressions is zero for all
α. Assuming that ties are broken arbitrarily but consistently, this implies that there is at most one
α ∈ [0, 1] such that the choice of whether to merge (A,B) before (X, Y) is identical for all α < α′,
and similarly identical for α ≥ α′. Since each merge decision is defined by eight points, iterating
over all pairs (A,B) and (X, Y) it follows that we can identify all O(n8) unique 8-tuples of points
which correspond to a value of α at which some decision flips. This means we can divide [0, 1]
into O(n8) intervals over each of which the merge tree, and therefore the output of clusA1,V(α),
is fixed.

2Recall that although k-means, k-median, and k-center are the most popular choices, the algorithm designer can
use other objective functions such as the distance to the ground truth clustering.

61

Now we will provide the details of Lemma 3.3.7. In the argument for the structure ofHA3,clus,
we relied on the linearity ofA3’s merge equation to prove that for any eight points, there is exactly
one value of α such that αd(p, q) + (1 − α)d(p′, q′) = αd(x, y) + (1 − α)d(x′, y′). Now we
will use Theorem 3.3.6, a consequence of Rolle’s Theorem, to bound the values of α such that
((d(p, q))α + d(p′, q′)α)1/α = ((d(x, y))α + d(x′, y′)α)1/α.

Theorem 3.3.6 (ex. Tossavainen [2006]). Let f be a polynomial-exponential sum of the form
f(x) =

∑N
i=1 aib

x
i , where bi > 0, ai ∈ R, and at least one ai is non-zero. The number of roots of

f is upper bounded by N .

Theorem 3.3.7. clusA1,V : R ∪ {−∞,∞} → R>0 is made up of O(n8) piecewise constant
components.

Proof. As was the case for HA3 , the clustering returned by A1(α) and the associated cost are
identical to that ofA1(α′) as long as both algorithms construct the same merge trees. Our objective
is to understand the behavior of A1(α) over m instances. In particular, as α varies over R we
want to count the number of times the algorithm outputs a different merge tree on one of these
instances. For some instance V we will consider two pairs of sets A,B and X, Y that can be
potentially merged. The decision to merge one pair before the other is determined by the sign of
dα(p, q) + dα(p′, q′) − dα(x, y) + dα(x′, y′). This expression, as before, is determined by a set of
8 points p, p′ ∈ A, q, q′ ∈ B, x, x′ ∈ X and y, y′ ∈ Y chosen independent of α.

Now, from Theorem 3.3.6, we have that the sign of the above expression as a function of α flips
at most 4 times across R. Since the expression is defined by exactly 8 points, iterating over all pairs
(A,B) and (X, Y) we can list only O(n8) such unique expressions, each of which correspond to
O(1) values of α at which the corresponding decision flips. Thus, we can divide R into O(n8)
intervals over each of which the output of clusA1,V(α) is fixed.

These lemmas allow us to upper bound the pseudo-dimension of HA1 ,clus and HA1 ,clus
by O(log n). Thus we obtain the following lemma.

Theorem 3.3.8. For any clus, Pdim(HA1 ,clus) = O(log n) and Pdim(HA3 ,clus) = O(log n).

Proof. Suppose S =
{
V(1), . . . ,V(m)

}
is a set of clustering instances that can be shattered by

HA1 using the witnesses r1, . . . , rm. We must show that m = O(log n). For each value of α ∈
R ∪ {−∞,∞}, the algorithm A1(α) induces a binary labeling on each V(i), based on whether or
not clusA1(α)

(
V(i)
)
≤ ri. From Lemma 3.3.7, we know that every sample V(i) partitions R ∪

{∞,−∞} into O(n8) intervals in this way. Merging all m partitions, we can divide R∪{∞,−∞}
into O(mn8) intervals over each of which clusA3,V(i)(α), and therefore the labeling induced by
the witnesses, is fixed for all i ∈ [m]. This means that HA1 can achieve only O(mn8) binary
labelings, which is at least 2m since S is shatterable, so m = O(log n).

The details forHA3 ,clus are identical, by using Lemma 3.3.5.

Now we turn to A2. We obtain the following bounds on the pseudo-dimension.

Theorem 3.3.9. For objective functions Φ(p), Pdim(HA2,Φ(p)) = Θ(n). For all other objective
functions Φ and all pruning functions Ψ, Pdim

(
HA2×{Ψ},Φ

)
= O(n).

62

This theorem follows from Lemmas 3.3.10 and 3.3.15.

Lemma 3.3.10. For all objective functions Φ and all pruning functions Ψ, Pdim
(
HA2×{Ψ},Φ

)
=

O(n).

Proof. Recall the proof of Lemma 3.3.8. We are interested in studying how the merge trees con-
structed by A2(α) changes over m instances as we increase α over R. To do this, as in the proof
of Lemma 3.3.8, we fix an instance and consider two pairs of sets A,B and X, Y that could be
potentially merged. Now, the decision to merge one pair before the other is determined by the
sign of the expression 1

|A||B|
∑

p∈A,q∈B(d(p, q))α − 1
|X||Y |

∑
x∈X,y∈Y (d(x, y))α. First note that this

expression has O(n2) terms, and by Theorem 3.3.6, it has O(n2) roots. Therefore, as we iterate
over the O

(
(3n)2) possible pairs (A,B) and (X, Y), we can determine O (32n) unique expres-

sions each with O(n2) values of α at which the corresponding decision flips. Thus we can divide
R into O (n232n) intervals over each of which the output of ΦA3,V(α) is fixed. In fact, suppose
S =

{
V(1), . . . ,V(m)

}
is a shatterable set of size m with witnesses r1, . . . , rm. We can divide R

into O (mn232n) intervals over each of which ΦA2,V(i)(α) is fixed for all i ∈ [m] and therefore the
corresponding labeling of S according to whether or not ΦA2(α)

(
V(i)
)
≤ ri is fixed as well for all

i ∈ [m]. This means that HA2 can achieve only O (mn232n) labelings, which is at least 2m for a
shatterable set S , so m = O(n).

3.3.4 Efficient algorithms

The upper bound on the pseudo-dimension implies a computationally efficient and sample efficient
learning algorithm for Ai for i ∈ {1, 3}. See Algorithm 7. First, we know that m = Õ

(
(H/ε)2)

samples are sufficient to (ε, δ)-learn the optimal algorithm in Ai. Next, as a consequence of Lem-
mas 3.3.7 and 3.3.5, the range of feasible values of α can be partitioned into O(mn8) intervals,
such that the output of Ai(α) is fixed over the entire set of samples on a given interval. Moreover,
these intervals are easy to compute. Therefore, a learning algorithm can iterate over the set of
intervals, and for each interval I , choose an arbitrary α ∈ I and compute the average cost ofAi(α)
evaluated on the samples. The algorithm then outputs the α that minimizes the average cost.

Theorem 3.3.11. Let Φ be a clustering objective and let Ψ be a pruning function computable
in polynomial time. Given an input sample of size m = O

((
H
ε

)2 (
log n+ log 1

δ

))
, and a value

i ∈ {1, 3}, Algorithm 7 (ε, δ)-learns the class Ai × {Ψ} with respect to the cost function Φ and it
is computationally efficient.

Proof. Algorithm 7 finds the best α over the sample by solving for the O(mn8) discontinuities of
the function

∑
V∈S ΦAb(α)(V) and evaluating the function over the corresponding intervals, which

are guaranteed to be constant by Lemmas 3.3.7 and 3.3.5. Therefore, we can pick any arbitrary α
within each interval to evaluate the empirical cost over all samples, and find the empirically best
α. This can be done in polynomial time because there are polynomially many intervals, and the
runtime of Ai(α) on a given instance is polynomial time.

Then it follows from Theorem 3.3.4 thatm samples are sufficient for Algorithm 7 to (ε, δ)-learn
the optimal algorithm in Ai for i ∈ {1, 3}.

63

Algorithm 7 An algorithm for finding an empirical cost minimizing algorithm in A1 or A3

Input: Sample S =
{
V(1), . . . ,V(m)

}
, b ∈ {1, 3}

1: Let T = ∅. For each sample V(i) =
(
V (i), d(i)

)
∈ S , and for each ordered set of 8 points

{v1, . . . , v8} ⊆ V (i), solve for α (if a solution exists) in the following equation and add the
solutions to T : d(v1, v2)α + d(v3, v4)α = d(v5, v6)α + d(v7, v8)α.

If b = 1 : d(v1, v2)α + d(v3, v4)α = d(v5, v6)α + d(v7, v8)α.

If b = 3 : αd(v1, v2) + (1− α)d(v3, v4) = αd(v5, v6) + (1− α)d(v7, v8).

2: Order the elements of set T ∪ {−∞,+∞} as α1 < . . . < α|T |. For each 0 ≤ i ≤ |T |, pick an
arbitrary α in the interval (αi, αi+1) and runAb(α) on all clustering instances in S to compute∑
V∈S ΦAb(α)(V). Let α̂ be the value which minimizes

∑
V∈S ΦAb(α)(V).

Output: α̂

Algorithm 8 An algorithm for finding an empirical cost minimizing algorithm in A2

Input: Sample S =
{
V(1), . . . ,V(m)

}
.

1: Let T = ∅. For each sample V(i) =
(
V (i), d(i)

)
∈ S, and for all A,B,X, Y ⊆ V (i), solve for

α (if a solution exists) in the following equation and add the solutions to T :

1

|A||B|
∑

p∈A,q∈B

(d(p, q))α =
1

|X||Y |
∑

x∈X,y∈Y

(d(x, y))α.

2: Order the elements of set T ∪ {−∞,+∞} as α1 < . . . < α|T |. For each 0 ≤ i ≤ |T |, pick an
arbitrary α in the interval (αi, αi+1) and runA2(α) on all clustering instances in S to compute∑
V∈S ΦA2(α)(V). Let α̂ be the value which minimizes

∑
V∈S ΦA2(α)(V).

Output: α̂

Now we give an ERM algorithm for A2, similar to Algorithm 7.

Theorem 3.3.12. Let Φ be a clustering objective and let Ψ be a pruning function. Given an input
sample of size m = O

((
H
ε

)2 (
n+ log 1

δ

))
, Algorithm 8 (ε, δ)-learns the class A2 × {Ψ} with

respect to the cost function Φ.

Proof. The sample complexity analysis follows the same logic as the proof of Theorem 3.3.11.
To prove that Algorithm 8 indeed finds the empirically best α, recall from the pseudo-dimension
analysis that the cost as a function of α for any instance is a piecewise constant function with
O(n232n) discontinuities. In Step 1 of Algorithm 8, we solve for the values of α at which the
discontinuities occur and add them to the set T . T therefore partitions α’s range into O(mn232n)
subintervals. Within each of these intervals,

∑
V∈S ΦA2(α)(V) is a constant function. Therefore,

we pick any arbitrary α within each interval to evaluate the empirical cost over all samples, and
find the empirically best α.

64

3.3.5 Pseudo-dimension lower bounds

Next, we give lower bounds for the pseudo-dimension of the two classes.

Lemma 3.3.13. For any objective function Φ(p), Pdim
(
HA1,Φ(p)

)
= Ω(log n) and Pdim

(
HA3,Φ(p)

)
=

Ω(log n).

First we give a general proof outline for both classes. Let b ∈ {1, 3}. We construct a set
S =

{
V(1), . . . ,V(m)

}
of m = log n − 3 clustering instances that can be shattered by Ab. There

are 2m = n/8 possible labelings for this set, so we need to show there are n/8 choices of α such
that each of these labelings is achievable by some Ab(α) for some α. The crux of the proof lies in
showing that given a sequence α0 < α1 < · · · < αn′ < αn′+1 (where n′ = Ω(n)), it is possible
to design an instance V = (V, d) over n points and choose a witness r such that clusAb(α)(V)
alternates n′/2 times above and below r as α traverses the sequence of intervals (αi, αi+1).

Here is a high level description of our construction. There will be two “main” points, a and a′

in V . The rest of the points are defined in groups of 6: (xi, yi, zi, x
′
i, y
′
i, z
′
i), for 1 ≤ i ≤ (n− 2)/6.

We will define the distances between all points such that initially for all Ab(α), xi merges to yi
to form the set Ai, and x′i merges to y′i to form the set A′i. As for (zi, z

′
i), depending on whether

α < αi or not,Ab(α) merges the points zi and z′i with the sets Ai and A′i respectively or vice versa.
This means that there are (n−2)/6 values of α such thatAb(α) has a unique behavior in the merge
step. Finally, for all α, sets Ai merge to {a}, and sets A′i merge to {a′}. Let A = {a} ∪⋃iAi and
A′ = {a′} ∪⋃iA

′
i. There will be (n− 2)/6 intervals (αi, αi+1) for which Ab(α) returns a unique

partition {A,A′}. By carefully setting the distances, we cause the cost Φ({A,A′}) to oscillate
above and below a specified value r along these intervals.

Now we give the full details of the proof of Lemma 3.3.13 We first prove this lemma for
the center-based objective cost denoted by Φ(p) for p ∈ [1,∞) ∪ {∞}. We later note how this
can be extended cluster purity based cost. We first prove the following useful statement which
helps us construct general examples with desirable properties. In particular, the following lemma
guarantees that given a sequence of values of α of size O(n), it is possible to construct an instance
V such that the cost of the output of A1(α) on V as a function of α, that is Φ

(p)
A1,V(α), oscillates

above and below some threshold as α moves along the sequence of intervals (αi, αi+1). Given
this powerful guarantee, we can then pick appropriate sequences of α and generate a sample set
of Ω(log n) instances that correspond to cost functions that oscillate in a manner that helps us
pick Ω(n) values of s that shatters the samples. We also show how to trade off the number of
oscillations, with the difference in cost between the oscillations, using parameter γ. However,
γ = 1 is sufficient to obtain a pseudo-dimension lower bound.

Lemma 3.3.14. Given n ∈ N, 0 < γ ≤ 1, b ∈ {1, 3}, γ ≤ 1, and given a sequence of n′ ≤ bγn
7
c

α’s such that .3 = α0 < α1 < · · · < αn′ < αn′+1 = .6, there exists a real valued witness r > 0

and a clustering instance V = (V, d), |V | = n, such that for 0 ≤ i ≤ n′/2− 1, Φ
(p)
Ab(α)(V) < γ · r

for α ∈ (α2i, α2i+1), and Φ
(p)
Ab(α)(V) > r for α ∈ (α2i+1, α2i+2), for k = 2.

Proof. The idea of the proof is as follows. There will be two “main” points, a and a′ in V . The
rest of the points are defined in groups of 6: (xi, yi, zi, x

′
i, y
′
i, z
′
i), for 1 ≤ i ≤ (n − 2)/6. We will

define the distances between all points such that initially for all Ab(α), xi merges to yi to form the

65

set Ai, and x′i merges to y′i to form the set A′i. As for zi and z′i, depending on whether α < αi
or not, Ab(α) merges the points zi and z′i with the sets Ai and A′i respectively or vice versa. This
means that there are (n − 2)/6 values of α such that Ab(α) has a unique behavior in the merge
step. Finally, for all α, sets Ai merge to {a}, and sets A′i merge to {a′}. Let A = {a} ∪⋃iAi and
A′ = {a′} ∪⋃iA

′
i. There will be (n− 2)/6 intervals (αi, αi+1) for which Ab(α) returns a unique

partition {A,A′}. By carefully setting the distances, we cause the cost Φ({A,A′}) to oscillate
above and below a specified value r along these intervals. In order to make the cost oscillate above
r and below γr, we give a high weight to two points, by putting 1−γ

2
points in the same location as

these two points. The first high-weight point is a, and the second high-weight point is a new point
z. We set the distances so that z oscillates between merging to A or A′ as we increase α from .3 to
.6. If z merges to A′, then the 2-clustering cost is low because we can put centers on a and z. If z
merges to A, then both a and z are in the same cluster, incurring a large cost.

Now we will give the full details of the proof, including all distances. First we focus onA3 and
γ = 1, and we discuss the other cases later in the proof. First of all, in order for d to be a metric,
we set all distances in [1, 2] so that the triangle inequality is trivially satisfied. The following are
the distances of the pairs of points for 1 ≤ i ≤ (n− 2)/6.

d(xi, yi) = d(x′i, y
′
i) = 1,

d(xi, zi) = 1.3, d(yi, zi) = 1.4,

d(x′i, zi) = d(y′i, zi) = 1.4− .1 · αi,
d(xi, x

′
i) = d(yi, y

′
i) = 2.

We set the distances to z′i as follows (see Figure 3.3).

d(xi, z
′
i) = d(yi, z

′
i) = d(x′i, z

′
i) = d(y′i, z

′
i) = 1.41,

d(zi, z
′
i) = 2.

Then the first merges will be xi to yi and x′i to y′i, no matter what α is set to be (when each
point is a singleton set, each pair of points with the minimum distance in the metric will merge).
Next, zi will either merge to Ai or A′i based on the following equation:

α · 1.3 + (1− α) · 1.4 ≶ α · (1.4− .1 · αi) + (1− α)(1.4− .1 · αi)
=⇒ 1.4− .1 · α ≶ 1.4− .1 · αi
=⇒ αi ≶ α

If α < αi, then zi merges to A′i, otherwise it will merge to Ai. After one of these merges takes
place, the new value for merging Ai to A′i could be as small as α · 1.3 + (1−α) · 2 = 2− .6 ·α, but
we do not want this merge to occur. If we ensure all subsequent merges have maximum distance
less than 1.5, then Ai will not merge to A′i (until A and A′ merge in the very final step) as long as
α < .6, because α · 1.5 + (1− α) · 1.5 = 1.5 < 2− .6 · .7.

These distances ensure z′i merges after zi regardless of the value of α, since zi is closer than z′i
to xi, x′i, yi, and y′i. Furthermore, z′i will merge to the opposite set of zi, since we set d(zi, z

′
i) = 2.

66

z1

zi

x1

y1

x1′

y1′

xi′

yi′

z1′
zi′

xi

yi

1 1

1 1

2

1.4− 0.1αi

1.3

1.41

1.41

1.4

Figure 3.3: The clustering instance used in Lemma 3.3.14

The merge expression for z′i to merge to the opposite set is α ·1.41+(1−α) ·1.41, while the merge
expression to the same set is ≥ α · 1.41 + (1− α) · 2.

Now we set the distances to a and a′ as follows.

d(a, xi) = d(a, yi) = d(a′, x′i) = d(a′, y′i) = 1.42,

d(a, x′i) = d(a, y′i) = d(a′, xi) = d(a′, y′i) = 2.

We also set all distances between Ai and A′j to be 2, for all i and j, and all distances between
Ai and Aj to be 1.5, for all i 6= j. We will set the distances from a and a′ to zi and z′i later, but they
will all fall between 1.46 and 1.47. By construction, every set Ai will merge to the current superset
containing {a}, because the merge expression is α · 1.42 + (1 − α)1.5, and any other possible
merge will have value ≥ α · 1.3 + (1− α) · 2, which is larger for α < .6. Similarly, all A′i sets will
merge to {a′}.

Therefore, the final two sets in the linkage tree are A and A′. Given 1 ≤ i ≤ (n − 2)/6, by
construction, for α ∈ (αi, αi+1),

{z1, . . . , zi, z
′
i+1, . . . z

′
(n−2)/6} ⊆ A and {z′1, . . . , z′i, zi+1, . . . z(n−2)/6} ⊆ A′.

Finally, we set the distances between a, a′, zi, and z′i to ensure the cost function oscillates.

∀i, d(a, z′i) = d(a′, zi) = 1.46

∀1 ≤ j ≤ (n− 2)/12, d(a, z2j−1) = d(a′, z′2j) = 1.47,

and d(a, z2j) = d(a′, z′2j+1) = (2 · 1.46p − 1.47p)1/p.

Now we calculate the 2-clustering cost of (A,A′) for α’s in different ranges. Regardless of α,
all partitions will pay

∑
i(d(a, xi)

p+d(a, yi)
p+d(a′, x′i)

p+d(a′, y′i)
p) = (n−2)/6 · (4 ·1.42p),but

67

the distances for zi and z′i differ. For α ∈ (α0, α1), all of the z’s pay 1.46p, so the cost is (n−2)/6 ·
(4 · 1.42p + 2 · 1.46p). Denote this value by rlow .

When α ∈ (α1, α2), the only values that change are z1 and z′1, which adds d(a, z1)+d(a′, z′1)−
d(a, z′1)−d(a′, z1) = 2·(1.47p−1.46p) > 0 to the cost (the inequality is always true for p ∈ [1,∞]).
Denote rlow + 2 · (1.47p− 1.46p) by rhigh . When α ∈ (α2, α3), the values of z2 and z′2 change, and
the cost changes by d(a, z2) + d(a′, z′2)− d(a, z′2)− d(a′, z2) = 2 · ((2 · 1.46p− 1.47p)− 1.46p) =
−2 · (1.47p − 1.46p), decreasing it back to rlow .

In general, the cost for α ∈ (αi, αi+1) is rlow +
∑

1≤j≤i(−1)i+1 · 2(1.47p − 1.46p) = rlow +

(1.47p − 1.46p) + (−1)i+1 · (1.47p − 1.46p). If α ∈ (α2j, α2j+1), then the cost is rlow , and if
α ∈ (α2j+1, α2j+2), the cost is rhigh . We set r = (rlow + rhigh)/2, and conclude that the cost
function oscillates above and below r as specified in the lemma statement.

The pruning step will clearly pick (A,A′) as the optimal clustering, since the only centers with
more than 3 points at distance < 1.5 are a and a′, and (A,A′) are the clusters in which the most
points can have a and a′ as centers. This argument proved the case where n′ = (n − 2)/6. If
n′ < (n − 2)/6, then we set d(a, zi) = d(a′, z′i) = 1.46 for all i > n′, which ensures the cost
function oscillates exactly n′ times. This completes the proof for A3 and γ = 1.

It is straightforward to modify this proof to work for A1. The only major change is to set

d(x′i, zi) = d(y′i, zi) = ((1.3αi + 1.4αi)/2)
1
αi .

Now we move to the case where γ < 1. In this case, the cost will oscillate between > r and
< γ · r, for a value of r defined later. To accomplish this, we put large weight on a and a new
point z. Our goal is to show that the optimal k = 2 pruning oscillates between putting a and
z in the same cluster, versus different clusters, for the intervals defined by α0, . . . , αn′ . We will
use γ·n

7
gadgets consisting of 6 points each, to achieve γ·n

7
intervals that oscillate. The remaining

(1− γ)n points will be used to create a separation between the costs of the optimal 2-clustering in
neighboring α intervals.

Now we will show how to alternate a and z in the same cluster versus different clusters. Note
that a will always merge to the set A by definition. Next we set the distances from z1, . . . , zn′ and
z′1, . . . , z

′
n′ to z so that it alternates merging to A or A′ along α0, . . . , αn′ . We set the distances

between z and z1, . . . , zn′ , z′1, . . . , z
′
n′ as follows. We nest d(z, z1) < · · · < d(z, zn′) < d(z, zn′) <

d(z, z′1). Recall that in interval (αi, αi+1), A contains z1, . . . , zi, z
′
i+1, . . . , z

′
n′ , and A′ contains

z′1, . . . , z
′
i, z
′
i+1, . . . , z

′
n′ . Therefore, the merge equation in this interval is

αid(z, z1) + (1− αi)d(z, z′1) ≶ αid(z, zi+1) + (1− αi)d(z, z′i+1).

We set d(z, z1) = 1.46, d(z, z′1) = 1.47, and d(z, z′i) − d(z, zi) = 1
2i

. Then we solve to find
d(z, zi) = 1.47 − .01α1 + αi

2i
and d(g2, z

′
i) = 1.47 − .01α1 − 1

2i
(1 − αi) would achieve equality

in the equation above. Call these values di and d′i, respectively. If we set the distances to exactly
these values, then we would have exact ties for the decision to merge z to A or A′ in all α intervals.
Therefore, we add small offsets of size ε = .0001 to some of the values. Specifically, set d(z, zi) =
di for all i. For even i, set d(z, z′i) = d′i + ε, and for odd i, set d(z, z′i) = d′i − ε. This ensures z
oscillates merging to A or A′ along the n′ α intervals.

68

The pruning step for k = 2 must output A and A′, since this is the last merge that takes place
in the tree. When z is in A′, then the optimal centers are at a and z, and the cost of the clustering is
the cost of the γn points making up the gadgets, which is O(γn). When z is in A, then the center
for A must be distance at least 1 to either a or z, so the cost of the clustering is at least 1−γ

2
· n.

Therefore, the difference in cost is Ω
(

1−γ
γ

)
.

Now we can prove Lemma 3.3.13.

Proof of Lemma 3.3.13. Given b ∈ {1, 3}, we prove the claim for HAb,clus(p) by constructing a
set of samples S = {V(1), . . . ,V(m)} where m = log n − 3 that can be shattered by HAb,clus(p) .
That is, we should be able to choose 2m = n/8 different values of α such that there exists some
witnesses r1, . . . , rm with respect to which Φ

(p)
Ab(α)(·) induces all possible labelings on S.

Choose a sequence of 2m distinct α’s arbitrarily in the range (0, .7). We will index the terms
of this sequence using the notation αx for all x ∈ {0, 1}m, such that αx < αy iff x1x2 . . .xm <
y1y2ym. Then the α’s satisfy

0 < α[0 ... 0 0] < α[0 ... 0 1] < α[0 ... 1 0] < · · · < α[1 ... 1 1] < .7.

Given x, denote by n(x) the vector corresponding to x1x2 . . .xs+1, therefore, αn(x) is the smallest
α greater than αx.

Now, the crucial step is that we will use Lemma 3.3.14 to define our examples V(1), . . . V (m)

and witnesses r1, . . . rm so that when α ∈ (αx, αn(x)) the labeling induced by the witnesses on S
corresponds to the vector x. This means that for α ∈ (αx, αn(x)) the cost function Φ

(p)
Ab(α)(V(i))

must be greater than ri if the ith term in x is 1, and less than ri otherwise. Since there are only
2m = n

8
x’s, it implies that for any sample V(i) there at most n/8 values of α at which we want its

cost to flip above/below ri. We can we can accomplish this using Lemma 3.3.14 by choosing αx’s
for which V(i) is supposed to switch labels. In this manner, we pick each V(i) and ri thus creating
a sample of size Ω(log n) that is shattered byHAb,clus(p) .

Note: Lemma 3.3.13 assumes that the pruning step fixes a partition, and then the optimal centers
can be chosen for each cluster in the partition, but points may not switch clusters even if
they are closer to the center in another cluster. This is desirable, for instance, in applications
which much have a balanced partition.

If it is desired that the pruning step only outputs the optimal centers, and then the clusters
are determined by the Voronoi partition of the centers, we modify the proof as follows. We
introduce 2n′ more points into the clustering instance: c1, . . . , cn′ , and c′1, . . . , c

′
n′ . Each ci

will merge to cluster A, and each c′i will merge to cluster A′. We set the distances so that ci
and c′i will be the best centers for A and A′ when α ∈ (αi, αi+1). The distances are also set
up so that the cost of the Voronoi tiling induced by c2i and c′2i is rlow , and the cost for c2i+1

and c′2i+1 is rhigh . This is sufficient for the argument to go through.

Furthermore, the lower bound holds even if the cost function is the symmetric distance to
the ground truth clustering. For this proof, let A∪⋃i{z2i, z

′
2i+1} and A′∪⋃i{z2i+1, z

′
2i} be

the ground truth clustering. Then in each interval as α increases, the cost function switches
between having (n− 2)/3 errors and having (n− 2)/3− 2 errors.

69

Now we give a lower bound for A2.

Lemma 3.3.15. For all objective functions Φ(p), Pdim
(
HA2,Φ(p)

)
= Ω(n).

Here is the intuition behind the proof. The crux of the proof is to show that there exists a
clustering instance V over n points, a witness r, and a set of α’s

1 = α0 < α1 < · · · < α2N < α2N+1 = 3,

where N = b(n − 8)/4c, such that ΦA2,V(α) oscillates above and below r along the sequence
of intervals (αi, αi+1). We finish the proof in a manner similar to Lemma 3.3.13 by constructing
instances with fewer oscillations.

To construct V , first we define two pairs of points which merge together regardless of the
value of α. Call these merged pairs A and B. Next, we define a sequence of points pi and qi for
1 ≤ i ≤ N with distances set such that merges involving points in this sequence occur one after the
other. In particular, each pi merges with one of A or B while qi merges with the other. Therefore,
there are potentially 2N distinct merge trees which can be created. Using induction to precisely
set the distances, we show there are 2N distinct values of α, each corresponding to a unique merge
tree, thus enabling A2 to achieve all possible merge tree behaviors. Finally, we carefully add more
points to the instance to control the oscillation of the cost function over these intervals as desired.

Now we give the full details of the proof. We start with a helper lemma.

Lemma 3.3.16. Given n, and setting N = b(n − 8)/2c, then there exists a clustering instance
V = (V, d) of size |V | = n and a set of 2N + 2 values of α for which α-linkage creates a unique
merge tree.

Proof. The idea of the proof is as follows. First we define two pairs of points which merge together
regardless of the value of α. Call these merged pairs A = {pa, qa} and B = {pb, qb}. Next, we
define a sequence of points pi and qi for 1 ≤ i ≤ N with distances set such that merges involving
points in this sequence occur one after the other. In particular, first p1 merges to A or B, then q1

merges to the opposite set, then p2 merges to A or B and q2 merges to the opposite set, and so on.
Using induction to precisely set all the distances, we show that for all 1 ≤ i ≤ N , pi merges to A
orB based on the value of α, regardless of all previous merges that took place. Therefore, there are
2N distinct merge trees which can be created. In particular, there are 2N distinct values of α, each
corresponding to a distinct merge tree, enabling A2 to achieve all possible merge tree behaviors.
Finally, we carefully add more points to the instance to control the oscillation of the cost function
over these intervals as desired.

Now we go into more detail on the specifics of the construction. We set the distances so the
first two merges will always be pa to qa, and pb to qb. These sets {pa, qa} and {pb, qb} will stay
separated until the last few merge operations. Throughout the analysis, at any point in the merging
procedure, we denote the current superset containing {pa, qa} by A, and we similarly denote the
superset of {pb, qb} by B. Next, we construct the distances so that pi and qi will always merge
before pj and qj , for i < j. Furthermore, for all i, {pi} will first merge to A or B, and then {qi}
will merge to the other one. We call these merges ‘round i’, for 1 ≤ i ≤ N . Finally, there will be
a set CA of size N + 2 which merges together and then merges to A, and similarly a set CB which

70

merges to B. These sets will control the value of the resulting clusterings. In our construction, the
only freedom is whether pi merges to A or to B, for all i, which is 2N combinations total. The crux
of the proof is to show there exists a unique α for each of these behaviors.

In round 1, the following equation specifies whether p1 merges to A or B:

1

2
(d(pa, p1)α + d(qa, p1)α) ≶

1

2
(d(pb, p1)α + d(qb, p1)α)

If the LHS is smaller, then p1 merges to A, otherwise it merges to B. We set the distances to
ensure there exists a value α′ which is the only solution to the equation in the range (1, 3). Then
p1 merges to A for all α ∈ (1, α′), and B for all α ∈ (α′, 3). We set d(p1, q1) to be large, so that
once p1 merges to either A or B, q1 is forced to the other set, the one which does not contain p1.

In round 2, there are two equations:

1

3
(d(pa, p2)α + d(qa, p2)α + d(p1, p2)α) ≶

1

3
(d(pb, p2)α + d(qb, p2)α + d(q1, p2)α),

1

3
(d(pa, p2)α + d(qa, p2)α + d(q1, p2)α) ≶

1

3
(d(pb, p2)α + d(qb, p2)α + d(p1, p2)α).

The first equation specifies where p2 merges in the case when p1 ∈ A, and the second equation
is the case when p1 ∈ B. So we must ensure there exists a specific α[−1] ∈ (1, α′) which solves
equation 1, and α[1] ∈ (α′, 3) which solves equation 2, and these are the only solutions in the
corresponding intervals.

In general, round i has 2i−1 equations corresponding to the 2i−1 possible states for the partially
constructed tree. For each state, there is a specific α interval which will cause the algorithm to
reach that state. We must ensure that the equation has exactly one solution in that interval. By
achieving this simultaneously for every equation, the next round will have 2 · 2i−1 states. See
Figure 3.4 for a schematic of the clustering instance.

For 1 ≤ i ≤ N , given x ∈ {−1, 1}i−1, let Ex denote the equation in round i which determines
where pi merges, in the case where for all 1 ≤ j < i, pj merged to A if xj = −1, or B if xj = 1
(and let E ′ denote the single equation for round 1). Let αx ∈ (1, 3) denote the solution to Ex = 0.
Then we need to show the α’s are well-defined and follow a specific ordering, shown in Figure
3.5. This ordering is completely specified by two conditions: (1) α[x −1] < α[x] < α[x 1] and (2)
α[x −1 y] < α[x 1 z] for all x,y, z ∈ ⋃i<N{−1, 1}i and |y| = |z|.

Now we show how to set up the distances to achieve all of these properties. In the first round,
we set the distances so that the merge equation is 2 · 1.1α ≶ (1.1 − q∗)α + (1.1 + q∗)α, for some
offset value q∗ which solves the equation at α = 2. Therefore, α ∈ (1, 2) corresponds to p1 ∈ A,
and α ∈ (2, 3) corresponds to p1 ∈ B. In the next round, there are three distances on each side of
the merge equations, since p1 and q1 are added to sets A and B. In the first case, when p1 ∈ A, the
merge equation for round 2 is 2 · 1.1α + (1.5 − o1)α ≶ (1.1 − q∗)α + (1.1 + q∗)α + (1.5 + o1)α,
and when p1 ∈ B the equation is 2 · 1.1α + (1.5 + o1)α ≶ (1.1− q∗)α + (1.1 + q∗)α + (1.5− o1)α.
By setting the offset small enough, we ensure that both solutions to the equations fall in their
respective ranges of (1, 2) and (2, 3). This ensures that there are four distinct values of α, such that
we get four distinct merge trees after round 2. The rest of the rounds repeat this pattern. For each

71

p1 q1 pi
qi

pN
qN

qa

qb

pa

pb

1

1

1.11.2

≈ 1.151
≈ 1.151

All distances here ≈ 1.5
2

Figure 3.4: The clustering instance used in Lemma 3.3.15

α[1 1]α[1 −1]

α[−1]

α[−1 1]

α′

α[1]

α[−1 −1]

α[−1 −1] α[−1 1]α[−1] α[1 −1] α[1] α[1 1]α′

p1 q1

q2p2q2p2

Figure 3.5: A schematic for the α intervals. Each edge denotes whether to merge pi to A or qi to
A.

72

new round i, the new distances added to the equation will be 1.5 + oi and 1.5− oi, and we set these
offsets oi smaller and smaller so that the solutions to the equations stay in the correct ranges. To
precisely show that such values of the offsets exist, we use an inductive proof.

Our inductive proof will need the following fact (true by elementary calculus).

Fact 3.3.17. For all 0 ≤ z ≤ .01 and α ∈ (1, 3), the following are true about the functions

g(z, α) = (1.5− z)α − (1.5 + z)α and

h(z, α) = (1.1− z)α + (1.1 + z)α − 2 · (((1.1− z)α + (1.1 + z)α)/2)
α
2 .

1. For z > 0, g(z, α) < 0,

2. for a fixed z, g is nonincreasing in α,

3. for a fixed α, g is nonincreasing in z,

4. h(0, α) = 0 and h is nondecreasing in z.

Here are the details for the general construction. All distances will be between 1 and 2 so that
the triangle inequality is satisfied. Given N , for all i,

d(pa, qa) = d(pb, qb) = 1,

d(pa, qa) = d(pa, qb) = d(pb, qa) = d(pb, qb) = 2,

∀i ≤ N, d(pa, pi) = d(pa, qi) = 1.1− q, d(qa, pi) = d(qa, qi) = 1.1 + q,

d(pb, pi) = d(pb, qi) = d(qb, pi) = d(qb, qi) =

√
1

2
((1.1− q)2 + (1.1 + q)2),

d(pi, qi) = 2,

∀1 ≤ j < i ≤ N, d(pi, pj) = d(pi, qj) = 1.5 + oj

d(qi, pj) = d(qi, qj) = 1.5− oj.

where q and oj are offset values in (0, .01) which we will specify later. Then for α ∈ (1, 3), the
following are true.

• The first two merges are pa to qa and pb to qb,

• {pi} and {qi} will always prefer merging to A or B instead of merging to another singleton
{pj} or {qj}.

After the first two merges occur, all pi and qi are tied to first merge to A or B. For convenience,
we specify the tiebreaking order as {p1, q1, . . . , pN , qN}. Alternatively, at the end we can make
tiny perturbations to the distances so that tiebreaking does not occur.

73

Next, we choose the value for q, which must be small enough to ensure that qi always merges
to the opposite cluster as pi. Consider

h(α, q, o1, . . . , oN ,x) =
N + 2

N + 3

(
(1.1 + q)α + (1.1− q)α +

∑
i<N

xi(1.5 + oi)
α + 1.5α

)
− 2 · (((1.1 + q)2 + (1.1− q)2)/2)

α
2 −

∑
i<N

xi(1.5 + oi)
α.

If this equation is positive for all x ∈ {−1, 1}N−1, then qN will always merge to the opposite
cluster as pN (and qi will always merge to the opposite cluster as pi, which we can similarly show
by setting oj = 0 in h for all j > i).

Note

h(α, 0, 0, . . . , 0,x) =
N + 2

N + 3
(2 · 1.1α + (N + 1) · 1.5α)− 2 · 1.1α −N · 1.5α > 0

for all x and all α ∈ (1, 3). Fact 3.3.17 implies there exists a 0 < q∗ < .01 such that h(α, q, 0, . . . , 0,x)
stays positive. Similarly, there exists a cutoff value δ > 0 such that for all 0 < o1, . . . , oN < δ,
α ∈ (1, 3), and x ∈ {−1, 1}N−1, h(α, q∗, o1, . . . , ok,x) > 0. Therefore, as long as we set all the
offsets oi less than δ, the merges will be as follows:

1. pa merges to qa and pb merges to qb.

2. For 1 . . . , N , pi merges toA orB, and qi merges to the opposite cluster. Then qN will always
merge to the opposite cluster as pN .

Now we show that there are 2N intervals for α ∈ (1, 3) which give unique behavior. Recall for
x ∈ ⋃i<N{−1, 1}i, Ex is defined as

(1.1− q∗)α + (1.1 + q∗)α− 2 · (1

2
((1.1− q∗)2 + (1.1 + q∗)2))

α
2 +
∑
i<N

xi((1.5− oi)α− (1.5 + oi)
α).

For brevity, we denote

d = (
1

2
((1.1− q∗)2 + (1.1 + q∗)2))

1
2 .

We show the αs are correctly ordered by proving the following three statements with induction.
The first statement is sufficient to order the αs, and the second two will help to prove the first.

1. There exist 0 < o1, . . . , oN < δ such that if we solveEx = 0 for αx for all x ∈ ⋃i<N{−1, 1}i,
then the α’s satisfy α[x −1] < α[x] < α[x 1] and for all i < N , α[x 1] < α[y −1] for x,y ∈
{−1, 1}i and x1 . . .xi < y1 . . .yi.

2. For all k′ ≤ N and α ∈ (1, 3),

(1.5 + ok′)
α − (1.5− ok′)α +

∑
k′<i<N

((1.5− oi)α − (1.5 + oi)
α) > 0.

74

3.

(1.1− q∗)3 + (1.1 + q∗)3 − 2 · d3 +
∑
i<N

((1.5− oi)3 − (1.5 + oi)
3) > 0, and

(1.1− q∗) + (1.1 + q∗)− 2 · d+
∑
i<N

((1.5 + oi)− (1.5− oi)) < 0.

We proved the base case in our earlier example for n = 10. Assume for k ≤ N , there exist
0 < o1, . . . , ok < δ which satisfy the three properties. We first prove the inductive step for the
second and third statements.

By inductive hypothesis, we know for all k′ ≤ k and α ∈ (1, 3),

(1.5 + ok′)
α − (1.5− ok′)α +

∑
k′<i≤k

((1.5− oi)α − (1.5 + oi)
α) > 0,

Since there are finite integral values of k′ ≤ k, and the expression is > 0 for all values of k′,
then there exists an ε > 0 such that the expression is ≥ ε for all values of k′. Then we define za
such that (1.5 + za)

α − (1.5− za)α < ε
2

for α ∈ (1, 3). Then for all 0 < z < za, k′ ≤ k + 1, and
α ∈ (1, 3),

(1.5 + ok′)
α − (1.5− ok′)α +

∑
k′<i≤k+1

((1.5− oi)α − (1.5 + oi)
α) > 0.

So as long as we set 0 < ok+1 < za, the inductive step of the second property will be fulfilled.
Now we move to the third property. We have the following from the inductive hypothesis:

(1.1− q∗)3 + (1.1 + q∗)3 − 2 · d3 +
∑
i≤k′

((1.5− oi)3 − (1.5 + oi)
3) > 0,

(1.1− q∗) + (1.1 + q∗)− 2 · d+
∑
i≤k′

((1.5 + oi)− (1.5− oi)) < 0.

We may similarly find zb such that for all 0 < ok+1 < zb,

(1.1− q∗)3 + (1.1 + q∗)3 − 2 · d3 +
∑
i≤k+1

((1.5− oi)3 − (1.5 + oi)
3) > 0,

(1.1− q∗) + (1.1 + q∗)− 2 · d+
∑
i≤k+1

((1.5 + oi)− (1.5− oi)) < 0.

Now we move to proving the inductive step of the first property. Given x ∈ {−1, 1}k, let
p(x), n(x) ∈ {−1, 1}k denote the vectors which sit on either side of αx in the ordering, i.e., αx is
the only αy in the range (αp(x), αn(x)) such that |y| = k. If x = [1 . . . 1], then set αn(x) = 3, and
if x = [0 . . . 0], set αp(x) = 1. Define

f(α,x, z) = Ex + (1.5− z)α − (1.5 + z)α.

75

By inductive hypothesis, we have that f(αx,x, 0) = 0. We must show there exists zx such that
for all 0 ≤ z ≤ zx, f(αx,x, z) < 0 and f(αn(x),x, z) > 0. This will imply that if we choose
0 < ok+1 < zx, then α[x 1] ∈ (αx, αn(x)).

Case 1: x 6= [1 . . . 1]. Since f(αx,x, 0) = 0, and by Fact 3.3.17, then for all 0 < z <
.01, f(αx,x, z) < 0. Now denote i∗ as the greatest index such that xi∗ = −1. Then n(x) =
[x1 . . .xi∗−1 1 −1 · · ·−1]. By statement 1 of the inductive hypothesis (αn(x) is a root ofEn(x) = 0),

(1.1− q∗)αn(x) + (1.1 + q∗)αn(x) − 2 · dαn(x) +
∑
i≤k

(n(x)i(1.5− oi)αn(x) −n(x)i(1.5 + oi)
αn(x)) = 0.

From statement 2 of the inductive hypothesis, we know that

(1.5− oi∗)αn(x) − (1.5 + oi∗)
αn(x) +

∑
i∗<i≤k

((1.5 + oi)
αn(x) − (1.5− oi)αn(x)) < 0.

It follows that

(1.1− q∗)αn(x) + (1.1 + q∗)αn(x) − 2 · dαn(x) +
∑
i<i∗

(n(x)i(1.5− oi)αn(x) −n(x)i(1.5 + oi)
αn(x)) > 0,

and furthermore,

(1.1− q∗)αn(x) + (1.1 + q∗)αn(x) − 2 · dαn(x) +
∑
i<i∗

(xi(1.5− oi)αn(x) − xi(1.5 + oi)
αn(x)) > 0.

Therefore, f(αn(x), 0) > 0, so denote f(αn(x), 0) = ε > 0. Then because of Fact 3.3.17, there
exists zx such that ∀0 < z < zx, f(αn(x), z) > 0.

Case 2: x = [1 . . . 1]. Since f(αx, 0) = 0, and by Fact 3.3.17, then for all 0 < z < .01,
f(αx, z) < 0. By property 3 of the inductive hypothesis, we have

(1.1− q∗)3 + (1.1 + q∗)3 − 2 · d3 +
∑
i≤k

((1.5− oi)3 − (1.5 + oi)
3) > 0,

so say this expression is equal to some ε > 0. Then from Fact 3.3.17, there exists zx such that for
all 0 < z < zx, 0 < (1.5 + z)3 − (1.5 − z)3 < ε

2
. Combining these, we have f(3, z) > 0 for all

0 < z < zx.

To recap, in both cases we showed there exists zx such that for all 0 < z < min(.01, zx),
f(αx, z) < 0 and f(αn(x), z) > 0. We may perform a similar analysis on a related function f ′,
defined as f ′(α,x, z) = Ex + (1.5 + z)α − (1.5 − z)α to show there exists z′x such that for all
0 < z < z′x, f ′(αp(x), z) < 0 and f ′(αx, z) > 0. We perform this analysis over all x ∈ {−1, 1}k.

Finally, we set ok+1 = minx(zx, z
′
x, za, zb, .01). Given x ∈ {−1, 1}k, since f(αx, ok+1) < 0

and f(αn(x), ok+1) > 0, there must exist a root α[x 1] ∈ (αx, αn(x)) (and by Fact 3.3.17, the function
is monotone in α in the short interval (αx, αn(x)), so there is exactly one root). Similarly, there
must exist a root α[x −1] ∈ (αp(x), αx). Then we have shown α[x −1] and α[x 1] are roots of E[x −1]

and E[x 1], respectively. By construction, α[x −1] < αx < α[x 1], so condition 1 is satisfied. Now
we need to show condition 2 is satisfied. Given x,y ∈ {−1, 1}k, let k′ be the largest number for
which xi = yi, ∀i ≤ k′. Let z = x[1...k′] = y[1...k′]. Then by the inductive hypothesis,

αx < αn(x) ≤ αz ≤ αp(y) < αy.

76

It follows that
α[x −1] < α[x 1] < αz < α[y −1] < α[y 1],

proving condition 2. This completes the induction.

Now we are ready to prove Lemma 3.3.15.

Proof of Lemma 3.3.15. Given n, and setting N = b(n − 8)/4c, we will show there exists a clus-
tering instance (V, d) of size |V | = n, a witness r, and a set of 2N + 2 α’s 1 = α0 < α1 <

· · · < α2N < α2N+1 = 3, such that Φ
(p)
A3(α)(V) oscillates above and below r between each interval

(αi, αi+1).

We start by using the construction from Lemma 3.3.15, which gives a clustering instance with
2N + 8 points and 2N + 2 values of α for which α-linkage creates a unique merge tree. The next
part is to add 2N more points and define a witness r so that the cost function alternates above and
below r along each neighboring α interval, for a total of 2N oscillations. Finally, we will finish off
the proof in a manner similar to Lemma 3.3.13.

Starting with the clustering instance (V, d) from Lemma 3.3.15, we add two sets of points, CA
and CB, which do not interfere with the previous merges, and ensure the cost functions alternates.
Let CA = {ca, c′a, a1, a2, . . . , aN} and CB = {cb, c′b, b1, b2, . . . , bN}. All distances between two
points in CA are 1, and similarly for CB. All distances between a point in CA and a point in CB
are 2. The distances between CA ∪ CB and A ∪ B are as follows (we defined the sets A and B in
Lemma 3.3.15).

d(pa, ca) = d(pa, c
′
a) = d(qa, ca) = d(qa, c

′
a) = 1.51,

d(pb, cb) = d(pb, c
′
b) = d(qb, cb) = d(qb, c

′
b) = 1.51,

d(pa, cb) = d(pa, c
′
b) = d(qa, cb) = d(qa, c

′
b) = 2,

d(pb, ca) = d(pb, c
′
a) = d(qb, ca) = d(qb, c

′
a) = 2,

d(pa, c) = d(qa, c) = d(pb, c) = d(qb, c) = 2 ∀c ∈ CA ∪ CB \ {ca, c′a, cb, c′b},
d(c, pi) = d(c, qi) = 1.51 ∀1 ≤ i ≤ N − 1 and c ∈ CA ∪ CB.

We will specify the distances between {ca, c′a, cb, c′b} and {pN , qN} soon, but they will be in
[1.6, 2]. So at the start of the merge procedure, all points in CA merge together, and all points in CB
merge together. Then all merges from Lemma 3.3.15 take place, because all relevant distances are
smaller than 1.51. We end up with four sets: A,B, CA, and CB. The pairs (A,B) and (CA, CB) are
dominated by distances of length 2, so the merges (CA, A) and (CB, B) will occur, which dominate
(CA, B) and (CB, A) because of the distances between {pa, qa, pb, qb} and {ca, c′a, cb, c′b}. The final
merge to occur will be (CA∪A,CB ∪B), however, the 2-median pruning step will clearly pick the
2-clustering CA ∪A, CB ∪B, since no other clustering in the tree has almost all distances ≤ 1.51.
Then by construction, ca or c′a will be the best center for CA ∪ A, which beat pa and qa because
1.51 · (2N) < 1.1 ·N + 2 ·N = 1.55 · (2N). Similarly, cb or c′b will be the best center for CB ∪B.
Note that centers {ca, c′a} and {cb, c′b} currently give equivalent 2-median costs. Denote this cost
by r′ (i.e., the cost before we set the distances to pN and qN).

77

Now we set the final distances as follows.

d(ca, pN) = d(cb, qN) = 1.6,

d(c′a, pN) = d(c′b, qN) = 1.7,

d(c′a, qN) = d(c′b, pN) = 1.8,

d(ca, qN) = d(cb, pN) = 1.9.

If pN ∈ A and qN ∈ B, then ca and cb will be the best centers, achieving cost r′ + 3.2 for
(CA ∪ A,CB ∪ B). If pN ∈ B and qN ∈ A, then c′a and c′b will be the best centers, achieving cost
r′ + 3.6 for (CA ∪ A,CB ∪B).

The distances are also constructed so that in the variant where the pruning outputs the optimal
centers, and then all points are allowed to move to their closest center, the cost still oscillates. First
note that no points other than pN and qN are affected, since d(ca, pi) = d(ca, qi) for i < N , and
similarly for cb. Then pN will move to the cluster with ca or c′a, and qN will move to the cluster
with cb or c′b. If pN was originally in A, then the cost is r′ + 3.2, otherwise the cost is r′ + 3.4.

In either scenario, we set r = r′ + 3.3. Then we have ensured for all x ∈ {−1, 1}N−1, the
cost for α ∈ (αp(x), αx) is < r, and the cost for α ∈ (αx, αn(x)) is > r. We have finished our
construction of a clustering instance whose cost function alternates 2N times as α increases.

To finish the proof, we will show there exists a set S = {V1, . . . , Vs} of size s = N =
b(n − 8)/4c ∈ Ω(n) that is shattered by A. Such a set has 2N orderings total. For V1, we use the
construction which alternates 2N times. For V2, we use the same construction, but we eliminate
(pN , qN) so that there are only N − 1 rounds (the extra two points can be added to CA and CB to
preserve |V2| = n). Then V2’s cost will alternate 1

2
·2N times, between the intervals (αp(x), αx) and

(αx, αn(x)), for x ∈ {−1, 1}N−2. So V2 oscillates every other time V1 oscillates, as α increases.
In general, Vi will be the construction with only N − i + 1 rounds, oscillating 2

N

2i−1 times, and
each oscillation occurs every other time Vi−1 oscillates. This ensures for every x ∈ {−1, 1}N−1,
(αp(x), αx) and (αx, αn(x)) will have unique labelings, for a total of 2N labelings. This completes
the proof.

Note: As in Lemma 3.3.13, this lower bound holds even if the cost function is the symmetric
distance to the ground truth clustering. Merely let pN and qN belong to different ground
truth clusters, but for all i < N , pi and qi belong to the same ground truth cluster. Since in
each adjacent α interval, pN and qN switch clusters, this shows the symmetric distance to
the ground truth clustering oscillates between every interval.

Furthermore, as was the case in Lemma 3.3.14, we can achieve a tradeoff between the
number of oscillations, and the difference in cost between the oscillations. Specifically, for
all 0 < γ <≤ 1, we can show an instance which oscillates 2N times above r and below γr,
where N = bγ(n − 8)/4c. We use N points to create the gadgets above, and then we add
1−γ

2
cotn points to a, and 1−γ

2
· n points to zN .

Even though the pseudo-dimension forA1 is tight, the runtime of Algorithm 7 might be as large
as Θ(n8), since there are Θ(n8) decision points in the worst case. Note that the construction in

78

Lemma 3.3.13 has Ω(n) decision points. Next, we give a stronger lower bound of Ω(n5) decision
points, as well as intuition for extending it to Ω(n7).

We are interested in computing the minimum number of intervals it takes to divide up [0, 1]
such that the output of α-linkage is fixed for all α over a distinct interval. Given a clustering
instance V = (S, d) of size |S| = n, we denote the number of intervals as #I . We can also think
of #I as the number of discontinuities of the cost function cost(V , α) of the clustering outputted
by α-linkage, as a function of α.

Over (S, d), there are O(n2) distances. The merge value of any two sets A,B ⊆ S is defined
by two distances d(A,B)

min , d
(A,B)
max , the minimum and maximum distances between points in A and B.

Specifically, the merge value of (A,B) is

αd
(A,B)
min + (1− α)d(A,B)

max = d(A,B)
max − (d(A,B)

max − d(A,B)
min)α.

We give a few simple observations.

Fact 3.3.18. Given two pairs of sets (A,B) and (C,D), if d(A,B)
min < d

(C,D)
min and d(A,B)

max < d
(C,D)
max ,

then (A,B) will have a lower merge value than (C,D) for all values of α in [0, 1].

This is easy to see: αd(A,B)
min + (1− α)d

(A,B)
max < αd

(C,D)
min + (1− α)d

(C,D)
max .

Fact 3.3.19. Given two pairs of sets (A,B) and (C,D) such that d(A,B)
min < d

(C,D)
min , if d(A,B)

min <

d
(C,D)
min < d

(C,D)
max < d

(A,B)
max , then there exists α∗ ∈ [0, 1] such that (C,D) has the lower merge value

on [0, α∗], and (A,B) has the lower merge value on [α∗, 1].

Proof. Recall that (A,B) and (C,D) each define linear equations, so there exists a single inter-
section. When α = 0, the merge values of (A,B) and (C,D) are d(A,B)

max and d(C,D)
max , respectively,

so the value for (C,D) is lower. When α = 1, the values are d(A,B)
min and d(C,D)

min , so (A,B) is lower.
Therefore, the intersection of the two linear equations must be in [0, 1]. In fact, the value of α∗ is
the following.

α∗ =
d

(C,D)
max − d(A,B)

max

d
(C,D)
max − d(A,B)

max + d
(A,B)
min − d(C,D)

min

. (3.1)

Now we move to the Ω(n5) lower bound. First we give an overview behind the construction.
Recall the execution tree of α-linkage run on clustering instance V . This is a tree where each node
is labeled by a state (i.e., a partial tree of merges that have happened so far) and the set A ⊂ [0, 1]
of α values that would result in the algorithm choosing this sequence of merges. For example,
assume the algorithm is in state S defined by [α1, α2] and has created the partial merge tree T so
far. If in the next round, the algorithm chooses merge (A,B) for all α ∈ [α1, α2], then there are
no new breakpoints created. However, if the algorithm chooses merge (A,B) for α ∈ [α1, α

′] and
merge (C,D) for α ∈ [α′, α2], then the state S splits into two nodes.

In our construction every state will have at most two children. In other words, at any state
in the algorithm, the are only two candidate merges the can take place. Recall that the decision

79

between two merges (A,B) or (C,D) depends on eight points. In the n5 construction, we will only
consider merges with the following form: a point w merges to set A = {x, y} or B = {z, v}. The
distances associated with this merge are d(w, x), d(w, y), d(w, z), and d(w, v). Since the merge
equation is defined by five points, there are n5 possible such equations. The construction will use
five phases. The first four phases are ‘setup’, where the goal is to construct a (partial) execution
tree of depth 2n

5
with Ω(n4) states. Each state will contain a unique pair of sets A and B. Then

phase 5 consists of n
10

rounds where points w1, . . . , w n
10

merge to either A or B. A new breakpoint
is created in each round and each state, for a total of Ω(n4) · n

10
= Ω(n5) breakpoints.

Lemma 3.3.20. There exists a constant c such that for all n ≥ 1, there exists a clustering instance
V with #I ≥ c · n5.

Proof. The n merges are split up into five phases of n′ = n/10 merges each. Each phase adds a
factor of n′ to the number of discontinuities of cost(V , α). In the first phase, the discontinuities
added are at 1

n′
, 2
n′
, . . . , n

′−1
n′

, and then in each successive phase, each interval is split up into n′

new equally sized intervals. The discontinuities at the end of phase 5 are 1
n′5
, 2
n′5
, . . . , n

′5−1
n′5

=
105

n5 ,
2·105

n5 , . . . , n−105

n5 .

There are three main sets of points, A, B, and C. Each phase has n′ points associated with it.
Points x1, . . . , xn′ , y1, . . . , yn′ , z1, . . . , zn′ , v1, . . . , vn′ , and w1, . . . , wn′ are associated with phases
1,2,3,4, and 5, respectively. At the start, A = {a1, a2}, B = {b1, b2}, and C = {c1, c2}, and each
of the five phases consist of the associated points merging to either A, B, or C. In phase 1, points
x1, . . . , xn′ each successively merge to either A or B. In phase 2, y1, . . . , yn′ merge to A or B. In
phase 3, z1, . . . , zn′ merge to A or C. Phases 4 and 5 have v1, . . . , vn′ and w1, . . . , wn′ merging to
A, B, or C, respectively. Now we walk through the details of each phase.

The breakpoints of phase 1 are α1 = 1
n′
, . . . , αn′−1 = n′−1

n′
. Within phase 1, first x1 merges to

A or B, then x2 merges to A or B, and so on. Specifically, xi merges to A if α < αi, otherwise xi
merges to B. See Figure 3.6.

Figure 3.6: Setup of Phase 1 of Lemma 3.3.20

Therefore, we can characterize the execution tree at the end of phase 1 as follows: for all
1 ≤ i ≤ n′, there is a node with α-interval [i

n′
, i+1
n′

], such that x1, . . . , xi merged to A, and
xi+1, . . . , xn′ merged to B. See Figure 3.7.

80

Figure 3.7: Execution tree of Phase 1 of Lemma 3.3.20

To achieve these merges, we simply set d(b1, xi) = 1.3, d(b2, xi) = 1.4, d(a1, xi) = 1.3 + 1
10n′

,
and d(a2, xi) = 1.4 − 1

10n′
· n−i

i
= 1.4 − 1

10
· 1−αi

αi
for all 1 ≤ i ≤ n′. Then, xi will merge to A if

α < αi, otherwise xi will merge to B.

Now we move to phase 2. The breakpoints of phase 2 are αij = i
n′

+ j
n′2

, for all 1 ≤ i, j ≤ n′.
Note that for each state [i

n′
, i+1
n′

], there will be n′ new breakpoints inside this interval by the end
of phase 2, for a total of n′2 intervals. Intuitively, for each state [i

n′
, i+1
n′

], which contains A =
{a1, a2, x1, . . . , xi} and B = {b1, b2, xi+1, . . . , xn′}, we will use a construction similar to phase 1
to obtain n′ new breakpoints (see Figure 3.8).

Figure 3.8: Execution tree of Phase 2

Within [i
n′
, i+1
n′

], yj merges to A if α < αij , otherwise yj merges to B. The execution tree at the
end of phase 2 is as follows: for all 1 ≤ i, j ≤ n′, there is a node with α-interval [i

n′
+ j

n′2
, i
n′

+ j+1
n′2

],

81

such that x1, . . . , xi, y1, . . . , yj merged to A, and xi+1, . . . , xn′ , yj+1, . . . , yn′ merged to B.

Intuitively, we can achieve these n′2 merges by varying the distances between each pair xi and
yj so that the breakpoints fall into the correct intervals. Specifically, for each 1 ≤ i, j ≤ n′, we set
d(b1, yj) = 1.3, d(b2, yj) = 1.4, d(a1, yj) = 1.3 + 1

10n′
, and d(xi, yj) = 1.4 − 1

10n′
· 1−αij

αij
. This

ensures that in state [i
n′
, i+1
n′

], yj will merge to A if α < αij , otherwise it will merge to B.

Before we continue with the details for phases 3, 4, and 5, we give more high level intuition.
Recall that the value of α at the breakpoint is computed by the four distances in Equation 3.1. In
phase 1, the decision of whether to merge xi to A or B depends on the minimum and maximum
distances from xi to A and B, which were d(a1, xi), d(a2, xi), d(b1, xi), and d(b2, xi). In phase
2, if we had followed the same pattern, the distances would be d(a1, yj), d(a2, yj), d(b1, yj), and
d(b2, yj). Instead, we replaced one of the distances with d(xi, yj), so that the resulting breakpoint
would depend on both i and j. Since there are four distances, we can continue this pattern for three
more rounds.

In phase 3, the four distances will be d(xi, zk), d(yj, zk), d(b1, zk), and d(b2, zk), so the break-
point depends on i, j, and k. In phase 4, the distances will be d(xi, v`), d(yj, v`), d(zk, v`), and
d(b2, v`). Finally, in phase 5, all four distances will depend on a variable from the previous round:
d(xi, wm), d(yj, wm), d(zk, wm), and d(v`, wm). By carefully setting all the distances, we can en-
sure that each equation has a solution in the correct range to add a new breakpoint, so the total
number of breakpoints will be n′5, one for each 5-tuple of (i, j, k, `,m). The breakpoints will be
αijk`m = i

n′
+ j

n′2
+ k

n′3
+ `

n′4
+ m

n′5
.

Thus, the only remaining step of the proof is to define all distances to show this construction is
achievable. There are a few technicalities that must be dealt with. For example, instead of deciding
whether to merge to A or B in all 5 phases, we need to introduce set C, and in some of the phases,
the decision is between sets A and C or B and C. We need to introduce the set C so that the
distances in the equations are properly ‘nested’, e.g., we need to satisfy the inequalities in Fact
3.3.19 even to ensure the value of α∗ falls in [0, 1]. In the rest of the proof, we lay out the details
for phases 3, 4, and 5.

In phase 3, we set aside set B. The decisions in phase 3 are whether to merge z1, . . . , zn′
to A or C = {c1, c2}. At the end of phase 2, there are n′2 states: for all 1 ≤ i, j ≤ n′,
A = {a1, a2, x1, . . . , xi, y1, . . . , yj} for α ∈ [αij, αij + 1

n′2
]. We set the distances d(c1, zk) = 1.3,

d(c2, zk) = 1.4, d(ai, zk) = 1.3+ 1
10
· 1−αi
αi

, d(bj, zk) = 1.4− 1
10n′
· 1−αj
αj

for all 1 ≤ i, j, k ≤ n′. Note
that for any fixed k, as i increases, d(ai, zk) increases, and as j increases, d(bj, zk) increases. This
ensures that for all i, j, k, the minimum and maximum distances to zk in state [αij, αij+

1
n′2

] will al-
ways be d(xi, zk) and d(yj, zk), respectively. The distances are chosen so that the new breakpoints
are αijk = i

n′
+ j

n′2
+ k

n′3
.

In phase 4, the decisions are whether to merge v1, . . . , vn′ to A or C. As in the previous
round, we set up the distances so that the distances in the merge equation in state [αijk, αijk + 1

n′3
]

are d(xi, v`), d(yj, v`), d(zk, v`), and d(c1, v`). We set up the distances so that the breakpoints
are exactly αijk` = i

n′
+ j

n′2
+ k

n′3
+ `

n′4
. Finally, in phase 5, the decisions are whether to merge

w1, . . . , wn′ toB orC. The distances in state [αijk`, αijk`+
1
n′4

] are d(xi, wm), d(yj, wm), d(zk, wm),
and d(v`, wm). We set the distances so that the final breakpoints are αijk`m = i

n′
+ j

n′2
+ k

n′3
+ `

n′4
+

m
n′5

.

82

Ω(n7) lower bound Even with Lemma 3.3.20, there is still a gap between the lower bound of
Ω(n5) and the upper bound of O(n8). In this section, we give a sketch for a lower bound of Ω(n7).
Recall that each breakpoint is an equation in 4 distances, or 8 points. In the Ω(n5) proof, the first
four rounds can be thought of as a setup to obtain Ω(n4) different states, where each state has two
sets, A = {xi, yj} and B = {zk, v`}, and then there are n′ = n

10
more rounds deciding whether to

merge w1, . . . , wn′ to A or B. Therefore, the breakpoint equations depend on points xi, yj, zk, v`,
and wm. Specifically, the four distances are d(xi, wm), d(yj, wm), d(zk, wm), and d(v`, wm).

Note that the Ω(n5) construction has the nice property that every single merge round uses
unique distances, e.g., for all 1 ≤ m ≤ n′, round m uses only the distances from all other points
to xm. If we go beyond Ω(n5), we will not have this nice property. It is natural to ask whether we
can continue this construction into phases 6, 7, and 8, where the equations depend on 6, 7, and 8
points, respectively. It is theoretically possible to extend to two more phases using the following
construction. Start the first five phases as in the current proof. Then, in phase 6, we will have sets
A = {xi, yj}, B = {zk, v`}, and C = {wm}. Now define n′ new points, u1, . . . , un′ . For each
1 ≤ p ≤ n′, the decision in phase 6 is whether to merge up to A, or B to C. The corresponding
distances are d(up, xi), d(up, yj), d(zk, wm), and d(v`, wm). Thus, there are six variables which
range in [1, . . . , n′], so theoretically this will give n′6 breakpoints. The challenge is to construct a
clustering instance which achieves this setup, with sets A, B, C.

This can theoretically be pushed to one more phase, as well. To achieve Ω(n7) breakpoints, we
can use a setup with sets A = {xi, yj}, B = {zk, v`}, and C = {wm, up}, and points t1, . . . , tn′ .
The decisions are whether to merge tq toA orB to C, which would have seven variables. Note that
it is unclear whether Ω(n8) breakpoints are possible. If we use the same format, we would need
n′ variables s1, . . . , sn′ , and the decision is whether to merge sr to A or B to C. But whichever
merge is chosen, then in the next round, we will not have seven variables, since at least two of the
variables must now be contained in the same set, because of the last merge. However, it could be
possible to achieve Ω(n8) breakpoints with a different type of construction.

3.4 (α, β)-Lloyds++
In this section, we define an infinite family of algorithms generalizing Lloyd’s algorithm, with one
parameter controlling the the initialization procedure, and another parameter controlling the local
search procedure. Our main results bound the intrinsic complexity of this family of algorithms
(Theorems 3.4.8 and 3.4.10) and lead to sample complexity results guaranteeing the empirically
optimal parameters over a sample are close to the optimal parameters over the unknown distri-
bution. We measure optimality in terms of agreement with the target clustering. We also show
theoretically that no parameters are optimal over all clustering applications (Theorem 3.4.4). Fi-
nally, we give an efficient algorithm for learning the best initialization parameter (Theorem 3.4.13).

Our family of algorithms is parameterized by choices of α ∈ [0,∞) ∪ {∞} and β ∈ [1,∞) ∪
{∞}. Each choice of (α, β) corresponds to one local search algorithm. A summary of the algo-
rithm is as follows (see Algorithm 9). The algorithm has two phases. The goal of the first phase
is to output k initial centers. Each center is iteratively chosen by picking a point with probability
proportional to the minimum distance to all centers picked so far, raised to the power of α. The
second phase is an iterative two step procedure similar to Lloyd’s method, where the first step is to
create a Voronoi partitioning of the points induced by the initial set of centers, and then a new set

83

of centers is chosen by computing the `β mean of each Voronoi tile.

Algorithm 9 (α, β)-Lloyds++ Clustering

Input: Instance V = (V, d, k), parameter α.
Phase 1: Choosing initial centers with dα-sampling
1. Initialize C = ∅ and draw a vector Z = {z1, . . . , zk} from [0, 1]k uniformly at random.
2. For each t = 1, . . . , k:

(a) Partition [0, 1] into n intervals, where there is an interval Ivi for each vi with size equal to
the probability of choosing vi during dα-sampling in round t (see Figure 3.10).

(b) Denote ct as the point such that zt ∈ Ict , and add ct to C.

Phase 2: Lloyd’s algorithm
5. Set C ′ = ∅. Let {C1, . . . , Ck} denote the voronoi tiling of V induced by centers C.
6. Compute argminx∈V

∑
v∈Ci d(x, v)β for all 1 ≤ i ≤ k, and add it to C ′.

7. If C ′ 6= C, set C = C ′ and goto 5.

Output: Centers C and clustering induced by C.

Our goal is to find parameters which return clusterings close to the ground-truth in expectation.
Setting α = β = 2 corresponds to the k-means++ algorithm. The seeding phase is a spectrum
between random seeding (α = 0), and farthest-first traversal (α = ∞), and the Lloyd’s algorithm
can optimize for common clustering objectives including k-median (β = 1), k-means (β = 2), and
k-center (β =∞).

We start with two structural results about the family of (α, β)-Lloyds++ clustering algorithms.
The first shows that for sufficiently large α, phase 1 of Algorithm 9 is equivalent to farthest-first
traversal. This means that it is sufficient to consider α parameters in a bounded range.

Farthest-first traversal [Gonzalez, 1985] starts by choosing a random center, and then iteratively
choosing the point farthest to all centers chosen so far, until there are k centers. We assume that
ties are broken uniformly at random.

Lemma 3.4.1. Given a clustering instance V and δ > 0, if α >
log(nkδ)

log s
, then dα-sampling will give

the same output as farthest-first traversal with probability > 1 − δ. Here, s denotes the minimum
ratio d1/d2 between two distances d1 > d2 in the point set.

Proof. Given such a clustering instance V = (V, d, k) and α, first we note that farthest-first traver-
sal and dα-sampling both start by picking a center uniformly at random from V . Assume both
algorithms have chosen initial center v1, and let C = {v1} denote the set of current centers.
In rounds 2 to n, farthest-first traversal deterministically chooses the center u which maximizes
dmin(u,C) (breaking ties uniformly at random). We will show that with high probability, in every
round, dα-sampling will also choose the center maximizing dmin(u,C) or break ties at random. In
round t, let dt = maxu∈V dmin(u,C) (assuming C are the first t− 1 centers chosen by farthest-first
traversal). Let d′t denote the largest distance smaller than dt, so by assumption, dt > s ·d′t. Assume
there are x points whose minimum distance to C is dt. Then the probability that dα-sampling will

84

fail to choose one of these points is at most

(n− x)d′αt
(n− x)d′αt + x(sd′t)

α
≤ n− x
n− x+ x · sα

≤ n

sα

Over all k rounds of the algorithm, the probability that dα-sampling will deviate from farthest-
first traversal (assuming they start with the same first choice of a center and break ties at random
in the same way) is at most nk

sα
, and if we set this probability smaller than δ and solve for α, we

obtain

α >
log
(
nk
δ

)
log s

.

For some datasets, 1
log s

might be very large. Empirically, it has been shown that (α, β)-Lloyds++
behaves the same as farthest-first traversal for α > 20 [Balcan et al., 2018].

Now we define a common stability assumption called separability [Kobren et al., 2017, Pruitt
et al., 2011], which states that there exists a value r such that all points in the same cluster have
distance less than r and all points in different clusters have distance greater than r.

Definition 3.4.2. A clustering instance satisfies (1 + c)-separation if

(1 + c) max
i|u,v∈Ci

d(u, v) < min
j 6=j′|u∈Cj ,v∈Cj′

d(u, v).

Now we show that under (1 + c)-separation, dα-sampling will give the same output as farthest-
first traversal with high probability if α > log n, even for c = .1.

Lemma 3.4.3. Given a clustering instance V satisfying (1 + c)-separation, and 0 < δ, then if
α > 1

c
·
(
log n+ log 1

δ

)
, with probability > 1− δ, dα-sampling with Lloyd’s algorithm will output

the optimal clustering.

Proof. Given V satisfying (1 + c)-separation, we know there exists a value r such that for all i,
for all u, v ∈ Ci, d(u, v) < r, and for all u ∈ Cj , v ∈ Cj′ 6=j , d(u, v) > (1 + c)r. WLOG,
let r = 1. Consider round t of dα-sampling and assume that each center v in the current set of
centers C is from a unique cluster in the optimal solution. Now we will bound the probability
that the center chosen in round t is not from a unique cluster in the optimal solution. Given a
point u from a cluster already represented in C, there must exist v ∈ C such that d(u, v) < 1, so
dmin(u,C) < 1. Given a point u from a new cluster, it must be the case that dmin(u,C) > (1 + c).
The total number of points in represented clusters is < n. Then the probability we pick a point
from an already represented cluster is ≤ tn

tn+cα
. If we set tn

tn+cα
≤ δ

k
and solve for α, we obtain

α >
logn+log 1

δ

log c
≤ 1

c
·
(
log n+ log 1

δ

)
. Since this is true for an arbitrary round t, and there are k

rounds in total, we may union bound over all rounds to show the probability dα-sampling outputting

85

one center per optimal clustering is > 1 − δ. Then, using (1 + c)-separation, the Voronoi tiling
of these centers must be the optimal clustering, so Lloyd’s algorithm converges to the optimal
solution in one step.

Next, to motivate learning the best parameters, we show that for any pair of parameters (α∗, β∗),
there exists a clustering instance such that (α∗, β∗)-Lloyds++ outperforms all other values of
α, β. This implies that dβ-sampling is not always the best choice of seeding for the `β objec-
tive. Let clusα,β(V) denote the expected cost of the clustering outputted by (α, β)-Lloyds++,
with respect to the target clustering. Formally, clusα,β(V) = EZ∼[0,1]k [clusα,β (V ,Z)] , where
clusα,β (V ,Z) is the cost of the clustering outputted by (α, β)-Lloyds++ with randomness Z] ∈
[0, 1]k (see line 1 of Algorithm 9).

Theorem 3.4.4. For α∗ ∈ [0,∞)∪{∞} and β∗ ∈ [1,∞)∪{∞}, there exists a clustering instance
V whose target clustering is the optimal `β∗ clustering, such that clusα∗,β∗(V) < clusα,β(V)
for all (α, β) 6= (α∗, β∗).

Proof. First we give a proof sketch, and later we give the full proof. Consider α∗, β∗ ∈ [0,∞) ∪
{∞}. The clustering instance consists of 6 clusters, C1, . . . , C6. The target clustering will be the
optimal `β∗ objective. The proof consists of three sections. First, we construct C1, . . . , C4 so that
dα
∗ sampling has the best chance of putting exactly one point into each optimal cluster. Then we

add “local minima traps” to each cluster, so that if any cluster received two centers in the sampling
phase, Lloyd’s method will not be able to move the centers to a different cluster. Finally, we
construct C5 and C6 so that if seeding put one point in each cluster, then β∗-Lloyd’s method will
outperform any other β 6= β∗.

Figure 3.9: Optimal instance for dα∗-sampling

Step 1: we let C1 and C2 equal two different cliques, and we define a third clique whose points
are equal to C3 ∪ C4. See Figure 3.9. We space these cliques arbitrarily far apart so that with high
probability, the first three sampled centers will each be in a different clique. Now the idea is to
define the distances and sizes of the cliques so that α∗ is the value of α with the greatest chance
of putting the last center into the third clique. If we set the distances in cliques 1,2,3 to 2, 1/2,
and 1, and set |C1| = 22α∗|C2|, then the probability of sampling a 4th center in the third clique for

86

α = α∗ + δ is equal to
|C3 ∪ C4|

|C3 ∪ C4|+ (2α∗+δ + 2α∗−δ)|C2|
.

This is maximized when δ = 0.

Now we add local minima traps for Lloyd’s method as follows. In the first two cliques, we add
three centers so that the 2-clustering cost is only slightly better than the 1-clustering cost. In the
third clique, which consists of C3∪C4, add centers so that the 2-clustering cost is much lower than
the 1-clustering cost. We also show that since all cliques are far apart, it is not possible for a center
to move between clusters during Lloyd’s method.

Finally, we add three centers c5, b5, b
′
5 to the last cluster C5. We set the rest of the points so that

c5 minimizes the `β∗ objective, while b5 and b′5 favor β = β∗ ± ε. Therefore, (α∗, β∗) performs the
best out of all pairs (α, β).

Now we give the full details of the proof. Consider α∗, β∗ ∈ [0,∞) ∪ {∞}. The clustering
instance consists of 6 clusters, C1, . . . , C6. The target clustering will be the optimal `β∗ objective.
The basic idea of the proof is as follows.

First, we show that for all β and α 6= α∗, clusα∗,β(V) < clusα,β(V). We use clusters
C1, . . . , C4 to accomplish this. We set up the distances so that dα∗ sampling is more likely to
sample one point per cluster than any other value of α. If the sampling does not sample one point
per cluster, then it will fall into a high-error local minima trap that β-Lloyd’s method cannot escape,
for any value of β. Therefore, dα∗ sampling is more effective than any other value of α.

Next, we use clusters C5 and C6 to show that if we start with one center in C5 and one in
C6, then β∗-Lloyd’s method will strictly outperform any other value of β. We accomplish this by
adding three choices of centers for C5. Running β∗-Lloyd’s method will return the correct center,
but any other value of β will return suboptimal centers which incur error on C5 and C6. Also, we
show that Lloyd’s method returns the same centers on C1, . . . , C4, independent of β.

For the first part of the proof, we define three cliques (see Figure 3.9). The first two cliques
are C1 and C2, and the third clique is C3 ∪ C4. C1 contains w1 points at distance x > 1, and C2

contains w2 points at distance 1
x
. We set w1 = x2α∗w2. The last clique contains w points at distance

1. Since the cliques are very far apart, the first three sampled centers will each be in a different
clique, with high probability (for α > .1). The probability of sampling a 4th center x4 in the third
clique, for α = α∗ + δ is equal to

w

w + (xα∗+δ + xα∗−δ)w2

.

Since xα∗+δ + xα
∗−δ is minimized when δ = 0, this probability is maximized when α = α∗.

Now we show that the error will be much larger when x4 is not in the third clique. We add center
c1 which is distance x − ε to all points in C1. We also add centers b1 and b′1 which are distance
x − 2ε to B1 and B′1 such that B1 and B′1 form a partition of C1. Similarly, we add centers c2, b2,
and b′2 at distance 1

x
− ε and 1

x
− 2ε to C2, B2, and B′2, respectively, such that B2 and B′2 form a

partition of C2. Finally, we add c3 and c4 which are distance .5 to C3 and C4, respectively, and we
add b3 which is distance 1− ε to C3 ∪C4. Then the optimal centers for any β must be c1, c2, c3, c4,
and this will be the solution of β-Lloyd’s method, as long as the sampling procedure returned one

87

point in the first two cliques, and two points in the third clique. If the sampling procedure returns
two points in the first clique or second clique, then β-Lloyd’s method will return b1, b

′
1, c2, b3 or

c1, b2, b
′
2, b3, respectively. This will incur error w/2 +w1/2 or w/2 +w2/2, since we set the target

clustering to be the optimal `β∗ objective which is equal to {C1, C2, C3, C4}. Note that we have set
up the distances so that Lloyd’s method is independent of β. Therefore, the expected error is equal
to

w

w + (xα∗+δ + xα∗−δ)w2

· (w/2 + min(w1, w2)/2).

This finishes off the first part of the proof. Next, we construct C5 and C6 so that β∗-Lloyd’s
method will return the best solution, assuming the sampling returned one point in C5 and C6. Later
we will show how adding these clusters does not affect the previous part of the proof. We again
define three cliques. The first clique is size 2

3
w5 and distance .1, the second clique is size 1

3
w5 and

distance .1, and the third clique is size w6 and distance .1. The first two cliques are C5, and the
second clique is C6. The distance between the first two cliques is .2, and the distance between the
first two and the third clique is 1000. Now imagine the first two cliques are parallel to each other,
and there is a perpendicular bisector which contains possible centers for C5. I.e., we will consider
possible centers c for C5 where the `β cost of c is 2

3
w5 ·zβ+ 1

3
w5(.2−z)β for some 0 ≤ z ≤ .2, . For

β ∈ (0,∞), the β which minimizes the expression must be in [0, .2]. We set c5 corresponding to the
z which minimizes the expression for β∗, call it z∗. Therefore, β∗-Lloyd’s method will output c5.
We also set centers b5 and b′5 corresponding to z∗− ε and z∗+ ε. Therefore, any value of β slightly
above or below β∗ will return a different center. We add a center C6 at distance .1− ε to the third
clique. This is the only point we add, so it will always be chosen by β-Lloyd’s method for all β.
Finally, we add two points p1 and p2 in between the second and third cliques. We set the distances
as follows. d(c5, p1) = d(c6, p2) = 500− ε, d(c5, p2) = d(c6, p1) = 500, d(b5, p1) = 500 + ε, and
d(b′5, p2) = 500− 2ε. Since the weight of these two points are very small compared to the cliques,
these points will have no effect on the prior sampling and Lloyd’s method analyses. The optimal
clustering for the `β∗ objective is to add p1 to C5 and p2 to C6. However, running β-Lloyd’s method
for β smaller or larger than β∗ will return center b5 or b′5 and incur error 1 by mislabeling p1 or p2.

Since all cliques from both parts of the proof are 1000 apart, with high probability, the first 5
sampled points will be in cliques C1, C2, C3 ∪ C4, C5, and C6. Since the cliques from the second
part of the proof are distance .2, while in the first part they were > 1

x
apart, we can set the variables

x,w1, w2, w, w5, w6 so that with high probability, the sixth sampled point will not be in C5 or C6.
Therefore, the constructions in the second part do not affect the first part. This concludes the
proof.

3.4.1 Sample efficiency

Now we give sample complexity bounds for learning the best algorithm from the (α, β)-Lloyds++
family. We analyze the phases of Algorithm 9 separately. For the first phase, our main structural
result is to show that for a given clustering instance and value of β, with high probability over
the randomness in Algorithm 9, the number of discontinuities of the cost function clusα,β (V ,Z)
as we vary α ∈ [0, αh] is O(nk(log n)αh). Our analysis crucially harnesses the randomness in
the algorithm to achieve this bound. For instance, if we use a combinatorial approach as in prior

88

algorithm configuration work, we would only achieve a bound of nO(k), which is the total number
of sets of k centers. For completeness, we give a combinatorial proof of O(nk+3) discontinuities
before we show the stronger result.

Combinatorial upper bound We upper bound the number of discontinuities of seedα(V ,Z).
Recall that seedα(V ,Z) denotes the outputted centers from phase 1 of Algorithm 9 on instance V
with randomness Z. For the first phase, our main structural result is to show that for a given cluster-
ing instance and value of β, with high probability over the randomness in Algorithm 9, the number
of discontinuities of the cost function clusα,β (V ,Z) as we vary α ∈ [0, αh] is O(nk(log n)αh).
Our analysis crucially harnesses the randomness in the algorithm to achieve this bound. In contrast,
a combinatorial approach would only achieve a bound of nO(k), which is the total number of sets
of k centers. For completeness, we start with a combinatorial proof of O(nk+3) discontinuities.
Although Theorem 3.4.5 is exponential as opposed to Theorem 3.4.8, it holds with probability 1
and has no dependence on αh.

Theorem 3.4.5. Given a clustering instance V and vector Z ∈ [0, 1]k, the number of discontinuities
of seedα(V ,Z) as a function of α over [0,∞) ∪ {∞} is O

(
min

(
nk+3, n22n

))
.

Proof. Given a clustering instance V and a vector Z, consider round t of the dα seeding algorithm.
At this point, there are

(
n
t−1

)
choices for the set of current centers C. Recall that the decision for

the next center depends on zt ∈ [0, 1]. We denote the points V = {v1, . . . , vn} and WLOG assume
the algorithm orders the intervals Iv1 , Iv2 , . . . , Ivn . Given a point vi ∈ V , it will be chosen as the
next center if and only if zt lands in its interval, formally,∑i−1

j=1 dmin(vj, C)α∑n
j=1 dmin(vj, C)α

< zt <

∑i
j=1 dmin(vj, C)α∑n
j=1 dmin(vj, C)α

By a consequence of Rolle’s theorem, these two equations have at most n + 1 roots each.
Therefore, in the n + 2 intervals of α between each root, the decision whether or not to choose vi
as a center in round t is fixed. Note that the center set C, the point vi, and the number zt fixed
the coefficients of the equation. Since in round t, there are

(
n
t

)
choices of centers, then there are∑k

t=1

(
n
k

)
· n · 2 total equations which determine the outcome of the algorithm. Each equation has

at most n+ 1 roots, so it follows there are 1 +
∑k

t=1

(
n
k

)
· n · 2(n+ 1) ∈ O(n3 · nk) total intervals

of α along [0,∞) ∪ {∞} such that within each interval, the entire outcome of the algorithm,
seedα(V ,Z), is fixed. Note that we used k · nk to bound the total number of choices for the set of
current centers. We can also bound this quantity by 2n, since each point is either a center or not a
center. This results in a final bound of O

(
min

(
nk+3, n22n

))
.

Probabilistic upper bound To show the O(nk(log n)αh) upper bound, we start by giving a few
definitions of concepts used in the proof. Assume we start to run Algorithm 9 without a specific
setting of α, but rather a range [α`, αh], for some instance V and randomness Z. In some round t, if
Algorithm 9 would choose a center ct for every setting of α ∈ [α`, αh], then we continue normally.
However, if the algorithm would choose a different center depending on the specific value of α
used from the interval [α`, αh], then we fork the algorithm, making one copy for each possible
center. In particular, we partition [α`, αh] into a finite number of sub-intervals such that the next

89

(a) The algorithm chooses v3 as a cen-
ter.

(b) In the interval [α`, α`+1], the algo-
rithm may choose v4, v3, v2, or v1 as
a center, based on the value of α.

Figure 3.10: Examples of which centers the algorithm chooses in a given round.

center is constant on each interval. The boundaries between these intervals are “breakpoints”, since
as α crosses those values, the next center chosen by the algorithm changes. Our goal is to bound
the total number of breakpoints over all k rounds in phase 1 of Algorithm 9, which bounds the
number of discontinuities of the cost of the outputted clustering as a function of α over [α`, αh].

A crucial step in the above approach is determining when to fork and where the breakpoints
are located. Recall that in round t of Algorithm 9, each datapoint vi has an interval in [0, 1] of
size dαi

Dn(α)
, where di is the minimum distance from vi to the current set of centers, and Dj(α) =

dα1 + · · · + dαj . Furthermore, the interval is located between Di−1(α)
Dn(α)

and Di(α)
Dn(α)

(see Figure 3.10).
WLOG, we assume d1 ≥ · · · ≥ dn. We prove the following nice structure about these intervals.

Lemma 3.4.6. Assume that v1, . . . , vn are sorted in decreasing distance from a set C of centers.
Then for each i = 1, . . . , n, the function α 7→ Di(α)

Dn(α)
is monotone increasing and continuous along

[0,∞). Furthermore, for all 1 ≤ i ≤ j ≤ n and α ∈ [0,∞), we have Di(α)
Dn(α)

≤ Dj(α)

Dn(α)
.

Proof. Recall that Di(α) =
∑i

j=1 dmin(v(i), C)α, where v1, . . . , vn are the points sorted in decreas-
ing order of distance to the set of centers C.

We prove that for each i, the function α 7→ Di(α)/Dn(α) is monotone increasing. Given
α1 < α2, we must show that for each i,

Di(α1)

Dn(α1)
≤ Di(α2)

Dn(α2)
.

This is equivalent to showing

Di(α1)Dn(α2) ≤ Di(α2)Dn(α1).

90

Using the shorthand notation dj = d(vj, C), we have

Di(α1)Dn(α2) =

(
i∑

j=1

dα1
j

)(
n∑
j=1

dα2
j

)

=

(
i∑

j=1

dα1
j

)(
i∑

j=1

dα2
j

)
+

(
i∑

j=1

dα1
j

)(
n∑

j=i+1

dα2
j

)

=

(
i∑

j=1

dα1
j

)(
i∑

j=1

dα2
j

)
+

i∑
j=1

n∑
k=i+1

dα1
j d

α2
k

≤
(

i∑
j=1

dα1
j

)(
i∑

j=1

dα2
j

)
+

i∑
j=1

n∑
k=i+1

dα1
j d

α2
k

(
dj
dk

)α2−α1

=

(
i∑

j=1

dα1
j

)(
i∑

j=1

dα2
j

)
+

i∑
j=1

n∑
k=i+1

dα2
j d

α1
k

=

(
i∑

j=1

dα2
j

)(
n∑
j=1

dα1
j

)
=Di(α2)Dn(α1),

as required.

Next we show that α 7→ Di(α)/Dn(α) is continuous along [0,∞). Di(α) and Dn(α) are both
sums of simple exponential functions, so they are continuous. Dn(α) is always at least n along
[0,∞), therefore, Di(α)/Dn(α) is continuous.

Finally, we show that for all 1 ≤ i ≤ j ≤ n, we have Di(α)
Dn(α)

≤ Dj(α)

Dn(α)
. Given 1 ≤ i ≤ j ≤ n,

then
Dj(α)

Dn(α)
− Di(α)

Dn(α)
=
dαi+1 + · · ·+ dαj

Dn(α)
≥ 0

This completes the proof.

This lemma guarantees two crucial properties. First, we know that for every (ordered) set C
of t ≤ k centers chosen by phase 1 of Algorithm 9 up to round t, there is a single interval (as
opposed to a more complicated set) of α-parameters that would give rise to C. Second, for an
interval [α`, αh], the set of possible next centers is exactly v(i`), v(i`+1), . . . , v(ih), where i` and ih
are the centers sampled when α is α` and αh, respectively (see Figure 3.10). Now we are ready to
prove our main structural result. Formally, we define seedα(V ,Z) as the outputted centers from
phase 1 of Algorithm 9 on instance V with randomness Z.

Now before we give the proof of Theorem 3.4.8, we need to bound the derivative of
(
Di(α)
Dn(α)

)
.

Lemma 3.4.7. Given d1 ≥ · · · ≥ dn, and i = 1, . . . , n, for α ∈ [0, αh],
∣∣∣ ∂∂α (Di(α)

Dn(α)

)∣∣∣ ≤ 4 log n.

91

Proof.

∂

∂α

(
Di(α)

Dn(α)

)
≤ (Di(α)′(Dn(α))− (Dn(α))′(Di(α))

(Dn(α))2

≤

(∑i
x=1 d

α
x log(dαx)

)(∑n
y=1 d

α
y

)
−
(∑i

x=1 d
α
x

)(∑n
y=1 d

α
y log(dαy)

)
∑i

x=1

∑i
y=1 d

α
xd

α
y

≤ 2 ·
∑i

x=1

∑n
y=i+1 d

α
xd

α
y

(
log(dαx)− log(dαy)

)∑n
x=1

∑n
y=1 d

α
xd

α
y

≤ 2 ·
∑i

x=1

(
dαx

(∑n
y=i+1 d

α
y log

(
dα1
dαy

)))
∑n

x=1

(
dαx

(∑n
y=i+1 d

α
y

))
Now we will show that

∑n
y=i+1 d

α
y log

(
dα1
dαy

)
≤ 2 log n

∑n
y=1 d

α
y by grouping each i+1 ≤ y ≤ n

into one of two different cases.

Case 1: dαy >
dα1
n2 . Then dαy log

(
dα1
dαy

)
≤ 2dαy log n.

Case 2: dαy <
dα1
n2 . Then dαy log

(
dα1
dαy

)
≤ dα1

(
dαy
dα1

log
dα1
dαy

)
≤ 1

n
· dα1 , where the last inequality

follows because 1
x

log x ≤ 1
n

for all x > n2. Therefore, the sum over all y in case 2 are smaller
than dα1 .

So, for all y in case 1, dαy log
(
dα1
dαy

)
≤ 2dαy log n, and

∑
y:case 2 d

α
y log

(
dα1
dαy

)
≤ dα1 . It follows that

for all i ≥ 1,
∑n

y=i+1 dy log
(
dα1
dαy

)
≤ 2 log n

∑n
y=1 dy. Therefore, ∂

∂α

(
Di(α)
Dn(α)

)
≤ 4 log n.

Theorem 3.4.8. Given a clustering instance V , the expected number of discontinuities of the func-
tion seedα(V ,Z) for α over [0, αh] isO(nk(log n)αh). Here, the expectation is over the uniformly
random draw of Z ∈ [0, 1]k.

Proof. Given V and [0, αh], we will show that E[#I] ≤ nk log n · αh, where #I denotes the
total number of discontinuities of seedα(V ,Z) and the expectation is over the randomness Z ∈
[0, 1]k of the dα-sampling algorithm. Consider round t of a run of the algorithm. Suppose at the
beginning of round t, there are L possible states of the algorithm, e.g., L sets of α such that within
a set, the choice of the first t − 1 centers is fixed. By Lemma 3.4.6, we can write these sets as
[α0, α1], . . . , [αL−1, αL], where 0 = α0 < · · · < αL = αh. Given one interval, [α`, α`+1], we
claim the expected number of new breakpoints #It,` by choosing a center in round t is bounded
by 4n log n(α`+1 − α`). Note that #It,` + 1 is the number of possible choices for the next center
in round t using α in [α`, α`+1].

The claim gives an upper bound on the expected number of new breakpoints, where the ex-
pectation is only over zt (the uniformly random draw from [0, 1] used by Algorithm 9 in round t),
and the bound holds for any given configuration of d1 ≥ · · · ≥ dn. Assuming the claim, we can
finish off the proof by using linearity of expectation as follows. Let #I denote the total number of
discontinuities of seedα(V ,Z).

92

EZ∈[0,1]k [#I] ≤ EZ∈[0,1]k

[
k∑
t=1

L∑
`=1

(#It,`)

]

≤
k∑
t=1

L∑
`=1

EZ∈[0,1]k [#It,`]

≤
k∑
t=1

L∑
`=1

4n log n(α`+1 − α`)

≤ 4nk log n · αh

Now we will prove the claim. Recall that for α-sampling, each point x receives an interval
along [0, 1] of size dαx

Dn(α)
, so the number of breakpoints in round t along [α`, α`+1] corresponds

to the number of times zt switches intervals as we increase α from α` to α`+1. By Lemma 3.4.6,
the endpoints of these intervals are monotone increasing, so the number of breakpoints is exactly
x− y, where x and y are the minimum indices s.t. Dx(α`)

Dn(α`)
> zt and Dy(α`+1)

Dn(α`+1)
> zt, respectively. We

want to compute the expected value of x− y for zt uniform in [0, 1] (here, x and y are functions of
zt).

We take the approach of analyzing each interval individually. One method for bounding
Ezt∈[0,1][x − y] is to compute the maximum possible number of breakpoints for each interval Ivj ,
for all 1 ≤ j ≤ n. Specifically, if we let i denote the minimum index such that Dj(α`)

Dn(α`)
< Di(α`+1)

Dn(α`+1)
,

then

E[#It,`] ≤
n∑
j=1

P

(
Dj(α`)

Dn(α`)
< zt <

Dj+1(α`)

Dn(α`)

)
· (j − i+ 1)

≤
n∑
j=1

dα`j
Dn(α`)

· (j − i+ 1).

In this expression, we are using the worst case number of breakpoints within each bucket, j− i+1.

We cannot quite use this expression to obtain our bound; for example, when α`+1 − α` is
extremely small, j − i+ 1 = 1, so this expression will give us E[#It,`] ≤ 1 over [α`, α`+1], which
is not sufficient to prove the claim. Therefore, we give a more refined analysis by further breaking
into cases based on whether zt is smaller or larger than Di(α`+1)

Dn(α`+1)
. If zt is less than Di(α`+1)

Dn(α`+1)
, then we

have the maximum number of breakpoints possible, since the algorithm chooses center vi−1 when
α = α`+1 and it chooses center vj when α = α`. The number of breakpoints is therefore j − i+ 1,
by Lemma 3.4.6. We denote this event by Et,j , i.e., Et,j is the event that in round t, zt lands in Ivj
and is less than Di(α`+1)

Dn(α`+1)
. If zt is instead greater than Di(α`+1)

Dn(α`+1)
, then the algorithm chooses center vi

when α = α`+1 (or another center vi′ where i′ > i), so the number of breakpoints is ≤ j − i. We
denote this event by E ′t,j . See Figure 3.11. Note that Et,j and E ′t,j are disjoint and Et,j ∪E ′t,j is the
event that zt ∈ Ivj .

93

Figure 3.11: Definition ofEt,j andE ′t,j , and details for bounding j− i (left). Intuition for bounding
P (Et,j), where the blue regions represent Et,j (right).

Within an interval Ivj , the expected number of breakpoints is

P (Et,j)(j − i+ 1) + P (E ′t,j)(j − i) = P (Et,j ∪ Et,j)(j − i) + P (E ′t,j).

We will show that j− i and P (Et,j) are both proportional to (log n)(α`+1−α`), which finishes off
the claim.

First we upper bound P (Et,j). Recall this is the probability that zt is in between Dj(α`)

Dn(α`)
and

Di(α`+1)

Dn(α`+1)
, which is

Di(α`+1)

Dn(α`+1)
− Dj(α`)

Dn(α`)
≤ Dj(α`+1)

Dn(α`+1)
− Dj(α`)

Dn(α`)
.

Therefore, we can bound this quantity by bounding the derivative
∣∣∣ ∂∂α (Dj(α)

Dn(α)

)∣∣∣, which is at most
4 log n by Lemma 3.4.7.

For case 1, recall that j− i represents the number of intervals between Di(α`)
Dn(α`)

and Dj(α`)

Dn(α`)
. Note

that the smallest interval in this range is
d
α`
j

Dn(α`)
, and Dj(α`)

Dn(α`)
− Di(α`)

Dn(α`)
≤ Di(α`+1)

Dn(α`+1)
− Di(α`)

Dn(α`)
. Therefore,

the expected number of breakpoints is at most Dn(α`)

d
α`
j

·
(
Di(α`+1)

Dn(α`+1)
− Di(α`)

Dn(α`)

)
, and we can bound the

second half of this fraction by again using Lemma 3.4.7.

Putting case 1 and case 2 together, we have

94

E[#It,`] ≤
∑
j

(
P (E ′t,j) · (j − i) + P (Et,j) · (j − i+ 1)

)
≤
∑
j

(
P (E ′t,j) · (j − i) + P (Et,j) · (j − i) + P (Et,j)

)
≤
∑
j

(
P (E ′t,j ∪ Et,j) · (j − i) + P (Et,j)

)
≤
∑
j

(
P (zt ∈ Ivj) · (j − i)

)
+
∑
j

P (Et,j)

≤
∑
j

(
dα`j

Dn(α`)

)(
Dn(α`)

dα`j
· 4 log n(α`+1 − α`)

)
+
∑
j

(4 log n(α`+1 − α`))

≤
∑
j

(4 log n(α`+1 − α`)) +
∑
j

(4 log n(α`+1 − α`))

≤ 8n log n(α`+1 − α`)

This concludes the proof.

In fact, we can also show that the worst-case number of discontinuities is exponential.

Lemma 3.4.9. Given n, there exists a clustering instance V of size n and a vector Z such that the
number of discontinuities of seedα(V ,Z) as a function of α over [0, 2] is 2Ω(n).

Proof. We construct V = (V, d, k) and Z = {z1, . . . , zk} such that seedα(V ,Z) has 2k/3 different
intervals in α which give different outputs.

Here is the outline of the construction. At the start, we set z1 so that one point, v, will always
be the first center chosen. Then we add points a1, b1, . . . , ak, bk such that in round i, either ai or bi
will be chosen as centers. We carefully set the distances so that for each combinations of centers,
there is an α interval which achieves this combination of centers. Therefore, the total number of
α intervals such that the output of the sampling step is fixed, is 2k−1. Our construction also uses
points a′1, b

′
1, . . . a

′
k, b
′
k and v1, . . . , vk which are never chosen as centers, but will be crucial in the

analysis.

Next, we describe the distances between the points in our clustering instance. Almost all
distances will be set to 100, except for a few distances: for all i, d(ai, a

′
i) = d(bi, b

′
i) = ε, d(bi, vi) =

100 − oi, d(ai, bi) = 2oi, d(v, a1) = d(v, b1) = 99, and d(ai−1, ai) = d(ai−1, bi) = d(bi−1, ai) =
d(bi−1, bi) = 100 − oi, for 0 ≤ ε, o1, . . . , ok ≤ 1 to be specified later. At the end, we will perturb
all other distances by a slight amount (< ε) away from 100, to break ties.

Now we set up notation to be used in the remainder of the proof. We set zi = 1
2

for all i. For
1 ≤ i ≤ k, given x ∈ {0, 1}i−1, let Ex denote the equation in round i which determines whether
ai or bi is chosen as the next center, in the case where for all 1 ≤ j < i, aj ∈ C if xj = 0, or
else bj ∈ C (and let E ′ denote the single equation in round 2). Specifically, Ex is the following
expression

95

100α
(
n−(i−1)

2

)
100α(n− 2(i− 1)) + (100− oi)α +

∑i−1
j=1(100− xjoj)α

.

Let αx denote the solution to equation Ex = 1
2

in [1, 3], if it exists. In the rest of the proof,
we must show there exist parameters ε, o0, . . . , ok which admit an ordering to the values αx which
ensures that each αx falls in the correct range to split up each interval, thus achieving 2k−1 intervals.
The ordering of the αx’s can be specified by two conditions: (1) α[x 0] < α[x] < α[x 1] and (2)
α[x 0 y] < α[x 1 z] for all x,y, z ∈ ⋃i<k{0, 1}i and |y| = |z|. To prove the αx’s follow this
ordering, we use an inductive argument. We must show the following claim: there exist 0 <
o1, . . . , ok < 1 such that if we solve Ex = 1

2
for αx for all x ∈ ∪i<k{0, 1}i, then the α’s satisfy

α[x 0] < α[x] < α[x 1] and for all i < k, α[x 1] < α[y 0] for x,y ∈ {0, 1}i and x1 . . . xi < y1 . . . yi.

Given x ∈ {0, 1}i, for 1 ≤ i ≤ k − 1, let p(x), n(x) ∈ {0, 1}i denote the vectors which sit on
either side of αx in the desired ordering, i.e., αx is the only αy in the range (αp(x), αn(x)) such that
|y| = i. If x = [1 . . . 1], then set αn(x) = 3, and if x = [0 . . . 0], then set αp(x) = 1.

Given 1 ≤ i ≤ k − 2, assume there exist 0 < o1, . . . , oi < 1 such that the statement is true.
Now we will show the statement holds for i + 1. Given x ∈ {0, 1}i, by assumption, we have that
the solution to Ex = 1

2
is equal to αx. First we consider E[x 0] = 1

2
. Note there are two differences

in the equations Ex and E[x 0]. First, the number of 100α terms in the numerator decreases by 1,
and the number of terms in the denominator decreases by 2. WLOG, at the end we set a constant
c = n

k
large enough so that this effect on the root of the equation is negligible for all n. Next, the

offset in the denominator changes from (100− oi)α to (100− oi+1)α. Therefore, if 0 < oi+1 < oi,
then α[x 0] < αx. Furthermore, there exists an upper bound 0 < zi+1 < oi such that for all
0 < oi+1 < zi+1, we have α[x 0] ∈ (αp(x), αx). Next we consider E[x 1] = 1

2
. As before, the number

of 100α terms decrease, which is negligible. Note the only other change is that an 100α term is
replaced with (100 − oi+1)α. Therefore, as long as 0 < oi+1 < oi, then αx < α[x 1], and similar
to the previous case, there exists an upper bound 0 < z′i+1 < oi such that for all 0 < oi+1 < z′i+1,
we have α[x 1] ∈ (αx, αn(x)). We conclude that there exists 0 < oi+1 < min(zi, z

′
i) < oi such that

αp(x) < α[x 0] < αx < α[x 1] < αn(x), thus finishing the inductive proof.

Now we have shown that there are 2k
′ nonoverlapping α intervals, such that within every inter-

val, dα-sampling chooses a unique set of centers, for k′ = k− 1. To finish our structural claim, we
will show that after β-Lloyd’s method, the cost function clusα,β(V ,Z) alternates 2k

′ times above
and below a value r as α increases. We add two points, a and b, so that d(v, a) = d(v, b) = 100,
d(ak, a) = d(bk, b) = 100− ε, and the distances from all other points to a and b are length 100 + ε.
Then we add many points in the same location as v, ai, and bi, so that any set c returned by dα-
sampling is a local minima for β-Lloyd’s method, for all β. Furthermore, these changes do not
affect the previous analysis, as long as we appropriately balance the terms in the the numerator and
denominator of each equationEx (and for small enough ε). Finally, we set v and a to have label 1 in
the target clustering, and all points are labeled 2. Therefore, as dα-sampling will alternate between
ak ∈ C and bk /∈ C as we increase α, a and v alternate being in the same or different clusters,
so the function seedα(V ,Z) will alternate between different outputs 2Ω(n) times as a function of
α.

96

Now we analyze phase 2 of Algorithm 9. Since phase 2 does not have randomness, we use
combinatorial techniques. We define lloydsβ(V , C, T) as the cost of the outputted clustering
from phase 2 of Algorithm 9 on instance V with initial centers C, and a maximum of T iterations.

Theorem 3.4.10. Given T ∈ N, a clustering instance V , and a fixed set C of initial centers, the
number of discontinuities of lloydsβ(V , C, T) as a function of β is O(min(n3T , nk+3)).

Proof. Given a clustering instance V and a vector Z, we bound the number of possible intervals
created by the Lloyd’s step, given a fixed set of initial centers. Define lloydβ(V , C) as the cost
of the clustering outputted by the β-Lloyd iteration algorithm on V using initial centers C. Note
that the Voronoi partitioning step is only dependent on C, in particular, it is independent of β. Let
{C1, . . . , Ck} denote the Voronoi partition of V induced by C. Given one of these clusters Ci,
the next center is computed by minc∈Ci

∑
v∈Ci d(c, v)β . Given any c1, c2 ∈ Ci, the decision for

whether c1 is a better center than c2 is governed by
∑

v∈Ci d(c1, v)β <
∑

v∈Ci d(c2, v)β . Again by
Theorem 3.3.6, this equation has at most 2n+1 roots. Notice that this equation depends on the setC
of centers, the choice of a cluster Ci, and the two points c1, c2 ∈ Ci. Then there are

(
n
k

)
·n ·
(
n
2

)
total

equations which fix the outcome of the Lloyd’s method, and there are
(
n
k

)
·n ·
(
n
2

)
· (2n+1) ≤ nk+4

total intervals of β such that the outcome of Lloyd’s method is fixed.

Next we give a different analysis which bounds the number of discontinuities by n3T , where
T is the maximum number of Lloyd’s iterations. By the same analysis as the previous paragraph,
if we only consider one round, then the total number of equations which govern the output of a
Lloyd’s iteration is

(
n
2

)
, since the set of centers C is fixed. These equations have 2n + 1 roots,

so the total number of intervals in one round is O(n3). Therefore, over T rounds, the number of
intervals is O(n3T).

By combining Theorem 3.4.8 with Theorem 3.4.10, and using standard learning theory results,
we can bound the sample complexity needed to learn near-optimal parameters α, β for an unknown
distribution D over clustering instances. Recall that clusα,β(V) denotes the expected cost of the
clustering outputted by (α, β)-Lloyds++, with respect to the target clustering, and let H denote the
maximum value of clusα,β(V).

Theorem 3.4.11. Given αh and a sample of size

m = O

((
H

ε

)2(
min(T, k) log n+ log

1

δ
+ logαh

))

from
(
D × [0, 1]k

)m, with probability at least 1−δ over the choice of the sample, for all α ∈ [0, αh]
and β ∈ [1,∞) ∪ {∞}, we have∣∣∣∣∣ 1

m

m∑
i=1

clusα,β
(
V (i),Z(i)

)
− E

V∼D
[clusα,β (V)]

∣∣∣∣∣ < ε.

Proof. Fix δ > 0. From Theorems 3.4.8 and 3.4.10, for each i, the expected number of disconti-
nuities of clusα(Vi, Zi) is at most (8nk log n) min(nk, n3T). By a Markov inequality, the number
of discontinuities is ≤ 1

δ
· (16mnk log n) min(nk, n3T) with probability ≥ 1 − δ

2m
. Therefore,

97

Algorithm 10 Dynamic algorithm configuration

Input: Instance V = (V, d, k), randomness Z, αh
1. Initialize Q to be an empty queue, then push the root node (〈〉, [0, αh]) onto Q.
2. While Q is non-empty

(a) Pop node (C,A) from Q with centers C and alpha interval A.
(b) Compute all points u1, . . . , um that can be chosen for the next center for some value of

α ∈ A.
(c) For each ui, set Ci = C ∪ {ui} and define Ai = {α ∈ A : ui is the sampled center}.
(d) For each i, if |Ci| < k, push (Ci, Ai) onto Q. Otherwise, output (Ci, Ai).

with probability ≥ 1 − δ
2
, the total number of discontinuities of 1

m

∑m
i=1 clusα(Vi, Zi) over α is

≤ 1
δ
· (16m2nk log n) min(nk, n3T).

Now we apply Massart’s Lemma [Massart, 2000]. Let N ≤ 1
δ
· (16m2nk log n) min(nk, n3T)

denote the number of α-intervals such that 1
m

∑m
i=1 clusα(Vi, Zi) is constant along each inter-

val. For each interval 1 ≤ i ≤ N , choose an arbitrary αi in the interval, and define ai =
[clusαi(V1, Zi), . . . ,clusαN (Vm, Zm)]. Then with probability ≥ 1− δ

2
,

R̂(A) ≤ max
i
||ai − ā|| ·

√
2 logN

m
≤

√
2 log 16m2nk lognmin(nk,n3T)

δ

m
,

and the proof follows from standard Rademacher complexity bounds [Bartlett and Mendelson,
2002].

Note that a corollary of Theorem 3.4.11 and Lemma 3.4.1 is a uniform convergence bound for
all α ∈ [0,∞) ∪ {∞}, however, the algorithm designer may decide to set αh <∞.

3.4.2 Computational efficiency

In this section, we present an algorithm for tuning α whose running time scales with the true
number of discontinuities over the sample. Combined with Theorem 3.4.8, this gives a bound on
the expected running time of tuning α.

The high-level idea of our algorithm is to directly enumerate the set of centers that can possibly
be output by dα-sampling for a given clustering instance V and pre-sampled randomness Z. We
know from the previous section how to count the number of new breakpoints at any given state in
the algorithm, however, efficiently solving for the breakpoints poses a new challenge. From the
previous section, we know the breakpoints in α occur when Di(α)

Dn(α)
= zt. This is an exponential

equation with n terms, and there is no closed-form solution for α. Although an arbitrary equation
of this form may have up to n solutions, our key observation is that if d1 ≥ · · · ≥ dn, then Di(α)

Dn(α)

must be monotone decreasing (from Lemma 3.4.6), therefore, it suffices to binary search over α
to find the unique solution to this equation. We cannot find the exact value of the breakpoint from
binary search (and even if there was a closed-form solution for the breakpoint, it might not be
rational), however we can find the value to within additive error ε for all ε > 0. Now we show that
the expected cost function is (Hnk log n)-Lipschitz in α, therefore, it suffices to run O

(
log Hnk

ε

)
98

rounds of binary search to find a solution whose expected cost is within ε of the optimal cost. This
motivates Algorithm 10. Let seedα(V) denote the output of dα sampling run on V .

Lemma 3.4.12. Given a clustering instance V , ε > 0, and α ∈ [0,∞) ∪ {∞}, P (seedα(V) 6=
seedα+ε(V)) ≤ εnk log n.

Proof. Given a clustering instance V , ε > 0, and a vector Z ∼ [0, 1]k, we will show there is low
probability that seedα(V ,Z) outputs a different set of centers than seedα+ε(V ,Z). Assume in
round t of dα-sampling and dα+ε-sampling, both algorithms have C as the current list of centers.
Given we draw zt ∼ [0, 1], we will show there is only a small chance that the algorithms choose
different centers in this round. Since the algorithms have an identical set of current centers, the

distances d(v, C) are the same, but the break points of the intervals,
∑i
j=1 d(vj ,C)α∑n
j=1 d(vj ,C)α

differ slightly. If
zt ∼ [0, 1] lands in the the same interval Ii and I ′i for dα-sampling and dα+ε-sampling, respectively,
then the two algorithms will choose the same point. Thus, we need to bound the size of

∑n
i=1(Ii \

I ′i) ∪ (I ′i \ Ii). Recall the endpoint of interval i is Di(α)
Dn(α)

, where Di =
∑i

j=1 d(vj, C)α. Thus, we

want to bound
∣∣∣ Di(α)
Dn(α)

− Di(α+ε)
Dn(α+ε)

∣∣∣, and we can use Lemma 3.4.7, which bounds the derivative of
Di(α)
Dn(α)

by (4 log n), to show
∣∣∣ Di(α)
Dn(α)

− Di(α+ε)
Dn(α+ε)

∣∣∣ ≤ (4 log n)ε.

Therefore, we have

n∑
i=1

(Ii \ I ′i) ∪ (I ′i \ Ii) ≤
n∑
i=1

∣∣∣∣Di(α)

Dn(α)
− Di(α + ε)

Dn(α + ε)

∣∣∣∣
≤

n∑
i=1

ε · (4 log n)

≤ 4εn log n

Therefore, assuming dα-sampling and dα+ε-sampling have chosen the same centers so far, the
probability that they choose different centers in round t is ≤ 4εn log n. Over all rounds, the
probability the outputted set of centers is not identical, is ≤ 4εnk log n.

In order to analyze the runtime of Algorithm 10, we consider the execution tree of dα-sampling
run on a clustering instance V with randomness Z. This is a tree where each node is labeled by a
state (i.e., a sequence C of up to k centers chosen so far by the algorithm) and the interval A of α
values that would result in the algorithm choosing this sequence of centers. The children of a node
correspond to the states that are reachable in a single step (i.e., choosing the next center) for some
value of α ∈ A. The tree has depth k, and there is one leaf for each possible sequence of k centers
that dα-sampling will output when run on V with randomness Z. Our algorithm enumerates these
leaves up to an error ε in the α values, by performing a depth-first traversal of the tree.

Theorem 3.4.13. Given a clustering instance V , an interval [0, αh], ε > 0, and β ∈ [1,∞)∪{∞},
Algorithm 10 outputs a value ᾱwhose expected cost is within ε of the optimal α, i.e., |clusᾱ,β(V)−
min0≤α≤αh clusα,β(V)| < ε. The expected runtime is O

(
n2k2αh log

(
nH
ε

)
log n

)
.

99

Proof. First we establish the correctness of Algorithm 10 (that it outputs α̂ such that

|clusα̂,β(V ,Z)− clusα∗,β(V ,Z)| < ε, where α∗ = argmin0≤α≤αhclusα,β(V ,Z).

In each node of the execution tree, Algorithm 10 performs log nkH logn
ε

rounds of binary search to
find each breakpoint to within ε

nkH logn
error. Therefore, the algorithm must output a value ᾱ such

that |ᾱ − α̂| < ε
nkH logn

, where E[clusα̂(V)] − E[clusα∗(V)] ≤ ε/2. By Lemma 3.4.12, the
probability that α̂ and ᾱ output different centers is ≤ ε

2nkH
· nk(log n), therefore, E[clusᾱ(V)]−

E[clusα̂(V)] ≤ ε/2. Therefore, we conclude that E[clusᾱ(V)]− E[clusα∗] ≤ ε.

Now we analyze the runtime of Algorithm 10. Let (C,A) be any node in the algorithm, with
centers C and alpha interval A = [α`, αh]. Sorting the points in V according to their distance to
C has complexity O(n log n). Finding the points sampled by dα-sampling with α set to α` and
αh costs O(n) time. Finally, computing the alpha interval Ai for each child node of (C,A) costs
O(n log nH

ε
) time, since we need to perform log nkH logn

ε
iterations of binary search on α 7→ Di(α)

Dn(α)

and each evaluation of the function costs O(n) time. We charge this O(n log nH
ε

) time to the
corresponding child node. If there are N nodes in the execution tree, summing this cost over all
nodes gives a total running time of O(N · n log nH

ε
)). If we let #I denote the total number of

α-intervals for V , then each layer of the execution tree has at most #I nodes, and the depth is k,
giving a total running time of O(#I · kn log nH

ε
).

From Theorem 3.4.8, we have E[#I] ≤ 8nk log n · αh. Therefore, the expected runtime of
Algorithm 10 is O

(
n2k2αh(log n)

(
log nH

ε

))
. This completes the proof.

Since we showed that dα-sampling is Lipschitz as a function of α in Lemma 3.4.12, it is also
possible to find the best α parameter with sub-optimality at most ε by finding the best point from a
discretization of [0, αh] with step-size s = ε/(Hn2k log n). The running time of this algorithm is
O(n3k2H log n/ε), which is significantly slower than the efficient algorithm presented in this sec-
tion. Intuitively, Algorithm 10 is able to binary search to find each breakpoint in time O(log nH

ε
),

whereas a discretization-based algorithm must check all values of alpha uniformly, so the runtime
of the discretization-based algorithm increases by a multiplicative factor of O

(
nH
ε
·
(
log nH

ε

)−1
)

.

100

Chapter 4

Data-Driven Dispatching for Distributed
Learning

4.1 Introduction

In this chapter, we study distributed models of machine learning. Distributed computation is play-
ing a major role in modern large-scale machine learning practice with a lot of work in this direction
in the last few years [Balcan et al., 2012, 2013b, Liang et al., 2014, Li et al., 2014, Zhang et al.,
2013, 2012]. In the first model, the high-level form is where massive amounts of data are collected
centrally, and for space and efficiency reasons this data must be dispatched to distributed machines
in order to perform some machine learning task [Li et al., 2014, Zhang et al., 2012]. In the second
model, the data is inherently distributed, for example, hospitals may keep records of their patients
locally, but may want to cluster the entire spread of patients across all hospitals. In this setting, it
is assumed that data is partitioned arbitrarily across all machines.

When data is dispatched to distributed machines, past work has focused on performing the
dispatching randomly [Zhang et al., 2012, 2013]. Random dispatching has the advantage that it
is clean to analyze theoretically. Motivated by the fact that in practice, similar data points tend to
have the same or similar classification, and more generally, classification rules of high accuracy
tend to be “locally simple but globally complex” [Vapnik and Bottou, 1993], we propose a new
paradigm for performing data-dependent dispatching that takes advantage of such structure by
sending similar datapoints to similar machines. For example, a globally accurate classification
rule may be complicated, but each machine can accurately classify its local region with a simple
classifier. We introduce and analyze dispatching techniques that partition a set of points such that
similar examples end up on the same machine/worker, while satisfying key constraints present in
a real world distributed system including balancedness and fault-tolerance. Such techniques can
then be used within a simple, but highly efficient distributed system that first partitions a small
initial segment of data into a number of sets equal to the number of machines. Then each machine
locally and independently applies a learning algorithm, with no communication between workers
at training. At the prediction time, we use a super-fast sublinear algorithm for directing new data
points to the most appropriate machine. In our framework, a central machine starts by clustering a
small sample of data into roughly equal-sized clusters, where the number of clusters is equal to the

101

data
dispatch

train

worker 1 worker 2 worker n

Figure 4.1: Data is partitioned and dispatched to multiple workers. Each worker then trains a local
model using its local data. There is no communication between workers during training.

number of available machines. Next, we extend this clustering into an efficient dispatch rule that
can be applied to new points. This dispatch rule is used to send the remaining training data to the
appropriate machines and to direct new points at prediction time. In this way, similar datapoints
wind up on the same machine. To perform the initial clustering used for dispatch, we use classic
clustering objectives (k-means, k-median, and k-center).

As mentioned in previous chapters, clustering is a fundamental problem in machine learning
with a diverse set of applications. As datasets become larger, sequential algorithms designed to run
on a single machine are no longer feasible. Additionally, in may cases data is naturally spread out
among multiple locations. For example, hospitals may keep records of their patients locally, but
may want to cluster the entire spread of patients across all hospitals in order to do better data anal-
ysis and inference. Therefore, distributed clustering algorithms have gained popularity over the
past few years [Balcan et al., 2013c, Bateni et al., 2014b, Malkomes et al., 2015]. In the distributed
setting, it is assumed that the data is partitioned arbitrarily across m machines, and the goal is to
find a clustering which approximates the optimal solution over the entire dataset while minimiz-
ing communication among machines. Recent work in the theoretical machine learning commu-
nity establishes guarantees on the clusterings produced in distributed settings for certain problems
[Balcan et al., 2013c, Bateni et al., 2014b, Malkomes et al., 2015]. For example, Malkomes et al.
provide distributed algorithms for k-center and k-center with outliers Malkomes et al. [2015], and
Bateni et al. introduce distributed algorithms for capacitated k-clustering under any `p objective
Bateni et al. [2014b]. A key algorithmic idea common among both of these works is the following:
each machine locally constructs an approximate size Õ(k) summary of its data; the summaries
are collected on a central machine which then runs a sequential clustering algorithm. A natural
question that arises is whether there is a unifying theory for all distributed clustering variants. In
this chapter, we answer this question by providing a general distributed algorithm for clustering
under any `p objective with or without outliers, and with or without capacity constraints, thereby
generalizing and improving over recent results.

102

4.1.1 Results and techniques

We propose a novel scheme for partitioning data which leads to better accuracy in distributed
machine learning tasks, and we give a theoretical analysis of this approach. We present new algo-
rithms with provable worst-case guarantees for dispatching in realistic settings. Empiricallyk, our
method strongly scales and that we achieve significantly higher accuracy over baselines based on
random partitioning, balanced partition trees, and locality-sensitive hashing Dick et al. [2017].

In our framework, a central machine starts by clustering a small sample of data into roughly
equal-sized clusters, where the number of clusters is equal to the number of available machines.
Next, we extend this clustering into an efficient dispatch rule that can be applied to new points. This
dispatch rule is used to send the remaining training data to the appropriate machines and to direct
new points at prediction time. In this way, similar datapoints wind up on the same machine. Finally,
each machine independently learns a classifier using its own data (in an embarrassingly parallel
manner). To perform the initial clustering used for dispatch, we use classic clustering objectives
(k-means, k-median, and k-center). However, we need to add novel constraints to ensure that the
clusters give a data partition that respects the constraints of real distributed learning systems:

Balancedness: We need to ensure our dispatching procedure balances the data across the dif-
ferent machines. If a machine receives much more data than other machines, then it will be the
bottleneck of the algorithm. If any machine receives very little data, then its processing power is
wasted. Thus, enforcing upper and lower bound constraints on the cluster sizes leads to a faster,
more efficient setup.

Fault-Tolerance: In order to ensure that our system is robust to machine failures, we assign each
point to multiple distinct clusters. This way, even if a machine fails, the data on that machine is still
present on other machines. Moreover, this has the added benefit that our algorithms behave well
on points near the boundaries of the clusters. We say a clustering algorithm satisfies p-replication
if each point is assigned to p distinct clusters.

Efficiency: To improve efficiency, we apply our clustering algorithms to a small sample of data.
Therefore, we need to be able to extend the clustering to new examples from the same distribution
while maintaining a good objective value and satisfying all constraints. The extension technique
should be efficient for both the initial partitioning, and dispatching at prediction time.

When designing clustering algorithms, adding balancedness and fault tolerance makes the task
significantly harder. Prior work has considered upper bounds on the cluster sizes [An et al., 2014,
Byrka et al., 2015b, Cygan et al., 2012, Khuller and Sussmann, 1996, Li, 2014, 2016] and lower
bounds [Aggarwal et al., 2006, Ahmadian and Swamy, 2016], but no prior work has shown prov-
able guarantees with upper and lower bounds on the cluster sizes simultaneously. 1 With upper
bounds, the objective functions are nondecreasing as the number of clusters k increases, but with
lower bounds we show the objective function can oscillate arbitrarily with respect to k. This makes
the problem especially challenging from a combinatorial optimization perspective. Existing capac-
itated clustering algorithms work by rounding a fractional linear program solution, but the erratic
nature of the objective function makes this task more difficult for us.

1 Note that enforcing only upper (resp. lower) bounds implies a weak lower (resp. upper) bound on the cluster
sizes, but this is only nontrivial if the upper (resp. lower) bounds are extremely tight or the number of clusters is a
small constant.

103

The balance constraints also introduce challenges when extending a clustering-based partition-
ing from a small sample to unseen data. The simple rule that assigns a new point to the cluster
with the nearest center provides the best objective value on new data, but it can severely violate the
balance constraints. Therefore, any balanced extension rule must take into account the distribution
of data.

We overcome these challenges, presenting a variety of complementary results, which together
provide strong justification for our distributed learning framework. We summarize each of our
main results below.

Balanced fault-tolerant clustering. We provide the first clustering algorithms with provable
guarantees that simultaneously handle upper and lower bounds on the cluster sizes, as well as
fault tolerance. Clustering is NP-hard and adding more constraints makes it significantly harder,
as we will see in Section 4.4. For this reason, we first devise approximation algorithms with
strong worst-case guarantees, demonstrating this problem is tractable. Specifically, in Section 4.3
we provide an algorithm that produces a fault-tolerant clustering that approximately optimizes
k-means, k-median, and k-center objectives while also roughly satisfying the given upper and
lower bound constraints. At a high level, our algorithm proceeds by first solving a linear program,
followed by a careful balance and replication aware rounding scheme. We use a novel min-cost
flow technique to finish off rounding the LP solution into a valid clustering solution. No previous
work gives provable guarantees while satisfying both upper and lower bounds on the cluster sizes,
and Section 4.3 may be of independent interest beyond distributed learning.

Structure of balanced clustering. We show that adding lower bound constraints on the cluster
sizes makes clustering objectives highly nontrivial. Specifically, we show that for k-means, k-
median, and k-center, the objective values may oscillate arbitrarily with respect to k. In light of
this structure, our aforementioned algorithmic results are more surprising, since it is not obvious
that algorithms with constant-factor guarantees exist.

General Robust Distributed Clustering. In Section 4.5, we show a general distributed algo-
rithm for balanced k-clustering in `p in d dimensions with z outliers, usingO(m(k+z)(d+log n))
communication. The algorithm can be summarized as follows. Each machine performs a k-
clustering on its own data, and then sends the centers, along with the sizes of their corresponding
clusters, to a central machine. The central machine then runs a weighted clustering algorithm on
the mk centers. We add necessary changes to handle capacities and outliers, for instance, each
(non-central) machine runs a k + z clustering algorithm in the case of k-clustering with z outliers.
Given a sequential α-approximation algorithm and a bicriteria β-approximation algorithm which
opens up Õ(k) centers, we show our distributed algorithm returns an O(αβ) approximation and
improves over the approximation guarantees of Bateni et al. [2014b]. For example, for k-median,
we achieve a (6α+ 2 + ε)-approximation by plugging in the bicriteria algorithm of Lin and Vitter
[1992] (adding an O(log n) factor to the communication cost), as opposed to a 32α-approximation
from Bateni et al. [2014b]. By plugging in the approximation algorithm for k-median with outliers
[Chen, 2008], our algorithm achieves the first constant approximation for distributed k-median
with outliers, answering an open question posed by Malkomes et al. [2015]. We achieve these im-
provements by using a refined analysis to prove a strong bound on the distance between each local
center and its closest center in the solution outputted by the algorithm. We show how to carefully

104

reason about the optimal clustering with subsets of outliers removed to preserve the constant factor
approximation guarantee for k-median with outliers.

4.1.2 Related work

Distributed Learning. Currently, the most popular method of dispatch in distributed learning is
random dispatch [Zhang et al., 2012, 2013]. This may not produce optimal results because each
machine must learn a global model. Another notion is to dispatch the data to pre-determined loca-
tions e.g., Yahoo!’s geographically distributed database, PNUTS [Cooper et al., 2008]. However,
it does not look at any properties of the data other than physical location.

In a recent paper, Wei et al. [2015] study partitioning for distributed machine learning, however,
they give no formal guarantees on balancing the data each machine receives. You et al. [2015]
use k-means clustering to distribute data for parallel training of support vector machines, but their
clustering algorithms do not have approximation guarantees and are applied to the entire dataset, so
their clustering step is much slower than ours. There is also work on distributed graph partitioning
[Aydin et al., 2016, Bourse et al., 2014, Delling et al., 2011], in which the data points are set up in
a graph structure, and must be distributed to different machines, minimizing the number of edges
across machines. These techniques do not apply more generally for non graph-based objectives,
e.g. k-means, k-median, or k-center.

Centralized Clustering. The first constant-factor approximation algorithm for k-median was
given by Charikar et al. [1999b], and the current best approximation ratio is 2.675 from Byrka
et al. [2015c]. For k-center, there is a tight 2-approximation algorithm [Gonzalez, 1985]. For
k-means, the best approximation ratio is 6.357 [Ahmadian et al., 2017], and Makarychev et al.
[2016] recently showed a bicriteria algorithm with strong guarantees. For clustering with outliers,
there is a 3-approximation algorithm for k-center with z outliers, as well as a bicriteria 4(1 + 1/ε)-
approximation algorithm for k-median that picks (1 + ε)z outliers Charikar et al. [2001]. Chen
found a true constant factor approximation algorithm for k-median (the constant is not explicitly
computed) [Chen, 2008].

Capacitated k-center The (uniform) capacitated k-center problem is to minimize the maximum
distance between a cluster center and any point in its cluster subject to the constraint that the
maximum size of a cluster is L. It is NP-Hard, so research has focused on finding approximation
algorithms. Bar-Ilan et al. [1993] introduced the problem and presented the first constant factor
polynomial time algorithm achieving a factor of 10, using a combinatorial algorithm which moves
around clients until the capacities are satisfied, and the objective is approximately satisfied. The
approximation factor was improved by Khuller and Sussmann [1996]. Cygan et al. [2012] give
the first algorithm for capacitated k-center with non-uniform capacities by using an LP rounding
algorithm. The appoximation factor is not explicitly computed, although it is mentioned to be in
the order of hundreds. An et al. [2014] follow a similar procedure but with a dynamic rounding
procedure, and they improve to an approximation factor of 8. Further, for the special case of
uniform capacities, they show a 6-approximation.

Capacitated k-median k-median with capacities is a notoriously difficult problem in clustering.
It is much less understood than k-center with capacities, and uncapacitated k-median, both of
which have constant factor approximations. Despite numerous attempts by various researchers,

105

still there is no known constant factor approximation for capacitated k-median (even though there
is no better lower bound for the problem than the one for uncapacitated k-median). As stated
earlier, there is a well-known unbounded integrality gap for the standard LP even when violating
the capacity or center constraints by a factor of 2− ε [Aardal et al., 2015].

Charikar et al. gave a 16-approximation when constraints are violated by a factor of 3 [Charikar
et al., 1999a]. Byrka et al. improved this violation to 2+ε, while maintaining anO(1

ε2
) approxima-

tion [Byrka et al., 2015a]. Recently, Li improved the latter to O(1
ε
), specifically, when constraints

are violated by 2 + 2
α

for α ≥ 4, they give a 6 + 10α approximation [Li, 2014]. These results are
all for the hard capacitated k-median problem. In the soft capacities variant, we can open a point
more than once to achieve more capacity, although each extra opening counts toward the budget of
k centers. In hard capacities, each center can only be opened once. The hard capacitated version
is more general, as each center can be replicated enough times so that the soft capacitated case
reduces to the hard capacitated case. Therefore, we will only discuss the hard capacitated case.

All of the algorithms for capacitated k-median mentioned above share the same high-level LP
rounding and aggregation idea but with different refinements in the algorithm and analysis.

Distributed Clustering. Balcan et al. showed a coreset construction for k-median and k-means,
which leads to a clustering algorithm with Õ(mkd) communication, and also studied more gen-
eral graph topologies for distributed computing Balcan et al. [2013c]. Bateni et al. indroduced a
construction for mapping coresets, which admits a distributed clustering algorithm that can han-
dle balance constraints with communication cost Õ(mk) [Bateni et al., 2014b]. Malkomes et al.
showed a distributed 13- and 4- approximation algorithm for k-center with and without outliers,
respectively [Malkomes et al., 2015]. Chen et al. studied clustering under the broadcast model of
distributed computing, and also proved a communication complexity lower bound of Ω(mk) for
distributed clustering [Chen et al., 2016], building on a recent lower bound for set-disjointness in
the message-passing model [Braverman et al., 2013]. Garg et al. showed a communication com-
plexity lower bound for computing the mean of d-dimensional points [Garg et al., 2014].

4.2 Preliminaries
Clustering. Recall the formal definition of clustering stated in previous chapters. Given a set
of points V of size n and a distance metric d, let C denote a clustering of V , which we define
as a partition of V into k subsets X1, . . . , Xk. Each cluster Xi contains a center xi. When d is
an arbitrary distance metric, we must choose the centers from the point set. If V ⊆ Rd and the
distance metric is the standard Euclidean distance, then the centers can be any k points in Rd. In
fact, this distinction only changes the cost of the optimal clustering by at most a factor of 2 when
p = 1, 2, or∞ [Awasthi and Balcan, 2014]. The `p cost of C is

cost(C) =

(∑
i

∑
v∈Xi

d(v, xi)
p

) 1
p

.

We will denote the optimal clustering of a point set V in `p with z outliers as OPT k,z,p(V). V ,
p, k, and/or z will often be clear from context, so we may drop some or all of these parameters.
OPT (A,B) will denote the optimal clustering for a point setA ⊆ V , using centers from a different

106

point set B ⊆ V . We often overload notation and let OPT denote the objective value of the
optimal clustering as well. In our proofs, we make use of the triangle inequality generalized for
`p, d(u, v)p ≤ 2p−1(d(u,w)p + d(w, v)p), for any points u, v, w. We denote the optimal clusters
as C1, . . . , Ck, with centers c1, . . . , ck. We say a bicriteria clustering algorithm A is a (γ, α)-
approximation algorithm if it returns γ · k centers which define a clustering whose cost is at most
an α-factor from the optimal clustering with k centers. Throughout the section, unless otherwise
noted, we assume any d-dimensional datapoint can be expressed using O(d) bits.

Distributed computing. We use a common, general theoretical framework for distributed com-
puting called the coordinator model. There are m machines, and machine 1 is designated as the
coordinator. Each machine can send messages back and forth with machine 1. This model is very
similar to the message-passing model, also known as the point-to-point model, in which any pair
of machines can send messages back and forth. In fact, the two models are equivalent up to small
factors in the communication complexity [Braverman et al., 2013]. We assume the data is arbitrar-
ily partitioned across the m machines, and it is the coordinator’s job to output the answer. Most of
our algorithms can be applied to the mapreduce framework with a constant number of rounds. For
more details, see [Bateni et al., 2014b, Malkomes et al., 2015].

4.3 Fault Tolerant Balanced Clustering
In this section, we give an algorithm to cluster a small initial sample of data to create a dispatch
rule that sends similar points to the same machine. There are many ways to measure the similarity
of points in the same cluster. We consider three classic clustering objectives while imposing upper
and lower bounds on the cluster sizes and replication constraints. It is well-known that solving the
objectives optimally are NP-hard even without the capacity and fault tolerance generalizations [Jain
et al., 2003]. In Section 4.4, we show that the objectives with balance constraints behave erratically
with respect to the number of clusters k, in particular, there may exist an arbitrary number of local
minima and maxima. In light of this difficulty, one might ask whether any approximation algorithm
is possible for this problem. We answer affirmatively, by extending previous work [Li, 2014] to fit
our more challenging constrained optimization problem. Our algorithm returns a clustering whose
cost is at most a constant factor multiple of the optimal solution, while violating the capacity
and replication constraints by a small constant factor. This is the first algorithm with provable
guarantees to simultaneously handle both upper and lower bounds on the cluster sizes.

Theorem 4.3.1. Algorithm 4.1 returns a constant factor approximate solution for the balanced k-
clustering with p-replication problem for p > 1, where the upper capacity constraints are violated
by at most a factor of p+2

p
, and each point can be assigned to each center at most twice.

Recall that formally, a clustering instance consists of a set V of n points, and a distance metric
d. Given two points i and j in V , denote the distance between i and j by d(i, j). The task is to find
a set of k centers C = {c1, . . . , ck} and assignments of each point to p of the centers f : V →

(
C
p

)
,

where
(
C
p

)
represents the subset of Cp with no duplicates. In this section, we study k-median,

k-means, and k-center. Due to the new p-replication constriant, we formally state these objectives
below.

(1) k-median: minC,f
∑

i∈V
∑

j∈f(i) d(i, j)

107

(2) k-means: minC,f
∑

i∈V
∑

j∈f(i) d(i, j)2

(3) k-center: minC,f maxi∈V maxj∈f(i) d(i, j)

We add size constraints 0 < ` ≤ L < 1, also known as capacity constraints, so each cluster
must have a size between n` and nL. For simplicity, we assume these values are integral (or replace
them by dn`e and bnLc respectively). First we consider k-median and k-means, and later we turn
to k-center.

4.3.1 Bicriteria algorithms

At a high level, our algorithm proceeds by first solving a linear program, followed by careful
rounding. In particular, we set up an LP whose optimal integral solution is the optimal clustering.
We can use an LP solver which will give a fractional solution (for example, the LP may open up
2k half centers). Then, using a greedy procedure from Charikar et al. [1999a], we pick ≤ k points
(called the ‘monarchs) which are spread out. Furthermore, the distance from a non-monarch to
its closest monarch is a constant-factor multiple of the non-monarch’s connection cost in the LP
solution. The empire of a monarch is defined to be its cell in the Voronoi partition induced by the
monarchs. By a Markov inequality, every empire has ≥ p/2 total fractional centers, which is at
least one for p ≥ 2. Then we merely open the innermost points in the empires as centers, ending
with ≤ k centers. Once we have the centers, we find the optimal assignments by setting up a
min-cost flow problem.

The key insight is that p-replication helps to mitigate the capacity violation in the rounding
phase. Together with a novel min-cost flow technique, this allows us to simultaneously handle
upper and lower bounds on the cluster sizes. The procedure is summarized in Algorithm 4.1.

Step 1: Linear Program The first step is to solve a linear program (LP) relaxation of the stan-
dard integer program (IP) formulation of our constrained clustering problem. The variables are as
follows: for each i ∈ V , let yi be an indicator for whether i is opened as a center. For i, j ∈ V ,
let xij be an indicator for whether point j is assigned to center i. In the LP, the variables may be
fractional, so yi represents the fraction to which a center is opened (we will refer to this as the
“opening” of i), and xij represents the fractional assignment of j to i. One can use an LP solver to
get a fractional solution which must then be rounded. Let (x, y) denote an optimal solution to the
LP. For any points i and j, let cij be the cost of assigning point j to center i. That is, for k-median,
cij = d(i, j), and for k-means cij = d(i, j)2 (we discuss k-center in the next section). Define
Cj =

∑
i cijxij , the average cost from point j to its centers in the LP solution (x, y).

It is well-known that the LP in Algorithm 4.1 has an unbounded integrality gap (the ratio of the
optimal LP solution over the optimal integral LP solution), even when the capacities are violated
by a factor of 2 − ε [Li, 2014]. We give the integrality gap below. However, with fault tolerance,
the integrality is only unbounded when the capacities are violated by a factor of p

p−1
. Intuitively,

this is because the p centers can ‘share’ this violation.

Step 1 details We restate the LP for k-means and k-median for completeness, labeling each
constraint for the proofs later.

108

1. Find a solution to the following linear program:

min
x,y

∑
i,j∈V

cijxij s.t. (a)∀j ∈ V :
∑
i∈V

xij = p; (b)
∑
i∈V

yi ≤ k;

(c)∀i ∈ V : `yi ≤
∑
j∈V

xij
n
≤ Lyi; (d)∀i, j ∈ V : 0 ≤ xij ≤ yi ≤ 1.

2. Greedily place points into a setM from lowest Cj to highest (called “monarchs”), adding
point j toM if it is not within distance 4Cj of any monarch. Partiton the points into coarse
clusters (called “empires”) using the Voronoi partitioning of the monarchs.

3. For each empire Eu with total fractional opening Yu ,
∑

i∈Eu yi, give opening Yu/bYuc to the
bYuc closest points to u and all other points opening 0.

4. Round the xij’s by constructing a minimum cost flow problem on a bipartite graph of centers
and points, setting up demands and capacities to handle the bounds on cluster sizes.

Algorithm 4.1: Balanced clustering with fault tolerance

min
∑
i,j∈V

cijxij (LP.1)

subject to:
∑
i∈V

xij = p, ∀j ∈ V (LP.2)

`yi ≤
∑
j∈V

xij
n
≤ Lyi, ∀i ∈ V (LP.3)∑

i∈V

yi ≤ k; (LP.4)

0 ≤ xij ≤ yi ≤ 1, ∀i, j ∈ V. (LP.5)

It is well-known that the standard capacitated k-median LP (this LP, without the lower bound
constraint and with p = 1) has an unbounded integrality gap, even when the capacities are violated
by a factor of 2− ε [Aardal et al., 2015]. The integrality gap is as follows. k = 2nL− 1, and there
are nL groups of size 2nL − 1. Points in the same group are distance 0, and points in different
groups are distance 1. Fractionally, we can open 2 − 1

nL
facilities in each group to achieve cost

0. But integrally, some group contains at most 1 facility, and thus the capacity violation must be
2− 1

nL
.

However, with p replication, there must be p centers per group, so the balance violation can
be split among the p centers. Therefore, the integrality is only unbounded when the capacities are
violated by a factor of p

p−1

The k-center LP is a little different from the k-median/means LP. As in prior work [An et al.,
2014, Cygan et al., 2012, Khuller and Sussmann, 1996], we guess the optimal radius, t. Since there
are a polynomial number of choices for t, we can try all of them to find the minimum possible t
for which the following program is feasible. Here is the LP for k-center.

109

Table 4.1: Notation table

Symbol Description k-median k-means k-center

yi Fractional opening at center i -

xij Fractional assignment of point j to center i -

cij Cost of assigning j to center i d(i, j) d(i, j)2 t

Cj Avg cost of assignment of point j to all its centers
∑

i cijxij/p t

CLP Cost of LP
∑

j pCj

ρ parameter for monarch procedure 2 4 1

∑
i∈V

xij = p, ∀j ∈ V (4.2a)

n`yi ≤
∑
j∈V

xij ≤ nLyi, ∀i ∈ V (4.2b)

∑
i∈V

yi ≤ k; (4.2c)

0 ≤ xij ≤ yi, ∀i, j ∈ V (4.2d)
xij = 0 if d(i, j) > t. (4.2e)

For k-median and k-means, let CLP denote the objective value. For k-center, CLP would be the
smallest threshold t at which the LP is feasible, however we scale it as CLP = tnp for consistency
with the other objectives. For all j ∈ V , define the connection cost Cj as the average contribution
of a point to the objective. For k-median and k-means, it is Cj = 1

p

∑
i∈V cijxij . That is, for

k-median, it is the average distance of a point to its fractional centers while for k-means, it is the
average squared distance of a point to its fractional centers. For k-center, Cj is simply the threshold
Cj = t. Therefore, CLP =

∑
j∈V pCj in all cases.

The notation is summarized in table 4.1.

Step 2: Monarch Procedure Next, partition the points into “empires” such that every point is
≤ 4Cj from the center of its empire (the “monarch”) by using a greedy procedure from Charikar
et al. [1999a] (for an informal description, see step 2 of Algorithm 4.1). By Markov’s inequality,
every empire has total opening ≥ p/2, which is crucially ≥ 1 for p ≥ 2 under our model of fault
tolerance. We obtain the following guarantees.

Lemma 4.3.2. The output of the monarch procedure satisfies the following properties:

(1a) The clusters partition the point set;

(1b) Each point is close to its monarch: ∀j ∈ Eu, u ∈M, cuj ≤ 4Cj;

110

(1c) Any two monarchs are far apart: ∀u, u′ ∈M s.t. u 6= u′, cuu′ > 4 max{Cu, Cu′};

(1d) Each empire has a minimum total opening: ∀u ∈M,
∑

j∈Eu yj ≥
p
2
.

Proof sketch. The first three properties follow easily from construction (for property (1c), recall
we greedily picked monarchs by the value ofCj). For the final property, note that for some u ∈M,
if d(i, u) ≤ 2Cu, then i ∈ Eu (from the triangle inequality and property (1c)). Now, note that Cu is
a weighted average of costs ciu with weights xiu/p, i.e., Cu =

∑
i ciu

xiu/p. By Markov’s inequality,
in any weighted average, values greater than twice the average have to get less than half the total
weight. That is, ∑

j:cju>2Cu

xju
p

<
∑

j:cju>2Cu

xju
p
· cju

2Cu
<

Cu
2Cu

=
1

2

Combining these two facts, for each u ∈M:∑
j∈Eu

yj ≥
∑

j:cju≤2Cu

yj ≥
∑

j:cju≤2Cu

xju ≥
p

2
.

Step 2 details LetM be the set of monarchs, and for each u ∈ M, denote Eu as the empire of
monarch u. Recall that the contribution of an assignment to the objective cij is d(i, j) for k-median,
d(i, j)2 for k-means, and t for k-center. We also define a parameter ρ = 1 for k-center, ρ = 2 for
k-median, and ρ = 4 for k-means, for convenience.

Initially setM = ∅. Order all points in nondecreasing order of Ci. For each point i, if ∃j ∈M
such that cij ≤ 2tCi, continue. Else, setM = M∪ {i}. At the end of the for loop, assign each
point i to cluster Eu such that u is the closest point inM to i. See Algorithm 11.

Algorithm 11 Monarch procedure for coarse clustering: Greedy algorithm to create monarchs
and assign empires

Input: V and fractional (x, y)
M← ∅
Order all points in non-decreasing order of Ci
Identify Monarchs
For each i ∈ V
• If @j ∈M such that cij ≤ 2ρCi

– M←M∪ {i}
Assign Empires as Voronoi partitions around monarchs
For each j ∈ V
• Let u ∈M be the closest monarch to j

• Eu ← Eu ∪ {j}
Output: Set of monarchs,M, and empire Ej for each monarch j ∈M

Now we give the full proof of Lemma 4.3.2.

111

Proof of Lemma 4.3.2. The first three properties follow easily from construction (for the third
property, recall we ordered the points at the start of the monarch procedure). Here is the proof
of the final property, depending on the objective function.

For k-center and k-median, it is clear that for some u ∈ M, if d(i, u) ≤ ρCu, then i ∈ Eu
(from the triangle inequality and Property (1c)). For k-means, however: if d(i, u)2 ≤ 2Cu, then
i ∈ Eu. Note that the factor is ρ/2 for k-means. This is because of the triangle inequality is a little
different for squared distances.

To see why this is true for k-means, assume towards contradiction that ∃i ∈ V , u, u′ ∈ M,
u 6= u′ such that u ∈ Eu′ and d(i, u)2 ≤ 2Cu. Then d(i, u′) ≤ d(i, u) by construction. Therefore,
d(u, u′)2 ≤ (d(u, i) + d(i, u′))2 ≤ 4d(i, u)2 ≤ 8Cu, and we have reached a contradiction by
Property (1c).

Now, to prove property (1d):

k-center From the LP constraints, for every u,
∑

j∈V xju = p. But xju is non-zero only they are
separated by at most t, the threshold. Combining this with the fact that if d(j, u) ≤ Cu = t, then
j ∈ Eu, we get, for each u ∈M: ∑

j∈Eu

yj ≥
∑
j∈Eu

xju = p

k-median and k-means Note that Cu is a weighted average of costs ciu with weights xiu/p, i.e.,
Cu =

∑
i ciu

xiu/p. By Markov’s inequality,∑
j:cju>2Cu

xju
p

<
Cu
2Cu

=
1

2

Combining this with the fact that if cju ≤ 2Cu, then j ∈ Eu for both k-median and k-means , we
get, for each u ∈M: ∑

j∈Eu

yj ≥
∑

j:cju≤2Cu

yj ≥
∑

j:cju≤2Cu

xju ≥
p

2
.

Step 3: Aggregation The point of this step is to end up with ≤ k centers total. Since each empire
has total opening at least 1, we can aggregate openings within each empire. For each empire Eu,
we move the openings to the bYuc innermost points of Eu, where Yu =

∑
i∈Eu yi. This shuffling is

accomplished by greedily calling a suboperation called Move, which is the standard way to transfer
openings between points to maintain all LP constraints [Li, 2014]. To perform a Move from i to j
of size δ, set y′i = yi− δ and y′j = yj + δ, and change all x’s so that the fractional demand switches
from i to j: ∀u ∈ V , x′iu = xiu(1 − δ/yi) and similarly increase the demand to all xju. The Move
operation preserves all LP constraints, except we may violate the capacity constraints if we give a
center an opening greater than one.

In each empire Eu, start with the point i with nonzero yi that is farthest away from the monarch
u. Move its opening to the monarch u, and then iteratively continue with the next-farthest point
in Eu with nonzero opening. Continue this process until u has opening exactly Yu

bYuc , and then start

112

moving the farthest openings to the point j closest to the monarch u. Continue this until the bYuc
closest points to u all have opening Yu

bYuc . Call the new variables (x′, y′). They have the following
properties.

Lemma 4.3.3. The aggregated solution (x′, y′) satisfies the following constraints:

(2a) The opening of each point is either zero or in [1, p+2
2

]: ∀i ∈ V, 1 ≤ y′i <
p+2
p

or y′i = 0;

(2b) Each cluster satisfies the capacity constraints: i ∈ V, `y′i ≤
∑

j∈V
x′ij
n
≤ Ly′i;

(2c) The total fractional opening is k:
∑

i∈V y
′
i = k;

(2d) Points are only assigned to open centers: ∀i, j ∈ V, x′ij ≤ y′i;

(2e) Each point is assigned to p centers: ∀i ∈ V, ∑j x
′
ji = p;

(2f) The number of points with non-zero opening is at most k: |{i | y′i > 0}| ≤ k.

Proof. For the first property, recall that each cluster Eu has total opening ≥ p
2
, so by construction,

all i with nonzero y′i has y′i ≥ 1. We also have Yu
bYuc ≤

bYuc+1
bYuc ≤

p+2
p

, which gives the desired
bound.

The next four properties are checking that the LP constraints are still satisfied (except for
y′i ≤ 1). These follow from the fact that Move does not violate the constraints. The last property is
a direct result of Properties (2a) and (2c).

Now we state the following guarantee about the moving costs.

Lemma 4.3.4. ∀j ∈ V whose opening moved from i′ to i,

• k-median: d(i, j) ≤ 3d(i′, j) + 8Cj ,
• k-means: d(i, j)2 ≤ 15d(i′, j)2 + 80Cj .

Below, we formally define the “Move” operation, which allows us to prove Lemma 4.3.4.

Step 3 Details First we define the suboperation Move [Li, 2014]:

Definition 4.3.5 (Operation “Move”). The operation “Move” moves a certain opening δ from a to
b. Let (x′, y′) be the updated (x, y) after a movement of δ ≤ ya from a to b. Define

y′a = ya − δ
y′b = yb + δ

∀u ∈ V, x′au = xau(1− δ/ya)

∀u ∈ V, x′bu = xbu + xau · δ/ya

It has been proven in previous work that the move operation does not violate any of the LP con-
straints except the constraint that yi ≤ 1 [Li, 2014]. We provide a proof below for completeness.
Should we require δ ≤ min(ya, 1 − yb), the constraint yi ≤ 1 would not be violated. But to get a
bicriteria approximation, we allow this violation. The amount by which the objective gets worse
can then be bounded by the triangle inequality.

113

Lemma 4.3.6. The operation Move does not violate any of the LP constraints except possibly the
constraint yi ≤ 1 and the threshold constraint 4.2e of k-center.

Proof. To show that the Move operation satisfies all the LP constraints, first note that the only
quantities that change are ya, yb, xau, xbu, ∀u ∈ V . Further, x, y satisfy all the constraints of the
LP. Using this,

• Constraint LP.1: For every u,
∑

i x
′
iu =

∑
i xiu = p.

• Constraint LP.2 (1):∑
u

x′au =
∑
u

xau(1− δ/ya) ≤ nLya(1− δ/ya) = nLy′a∑
u

x′bu =
∑
u

xbu +
∑
u

xau · δ/ya

≤ nLyb + nLya · δ/ya = nLy′b

• Constraint LP.2 (2):∑
u

x′au =
∑
u

xau(1− δ/ya) ≥ n`ya(1− δ/ya) = n`y′a∑
u

x′bu =
∑
u

xbu +
∑
u

xau · δ/ya

≥ n`yb + n`ya · δ/ya = n`y′b

• Constraint LP.3:
∑

i y
′
i =

∑
i yi ≤ k

• Constraint LP.4 (1):

x′au = xau(1− δ/ya) ≤ ya(1− δ/ya) = y′a
x′bu = xbu + xau · δ/ya ≤ yb + ya · δ/ya = y′b.

• Non-negative constraint: this is true since δ ≤ ya.

See Algorithm 12 for the aggregation procedure.

For convenience, we restate Lemma 4.3.4, and then we give a full proof.

Lemma 4.3.4 (restated). ∀j ∈ V whose opening moved from i′ to i,

• k-center: d(i, j) ≤ 5t,
• k-median: d(i, j) ≤ 3d(i′, j) + 8Cj ,
• k-means: d(i, j)2 ≤ 15d(i′, j)2 + 80Cj .

114

Algorithm 12 Aggregation procedure
Input: V , fractional (x, y), empires {Ej}

For each Eu
• Define Yu =

∑
i∈Eu yi, zu = Yu

bYuc .

• While ∃v s.t. yv 6= zu

– Let v be the point farthest from u with nonzero yv.
– Let v′ be the point closest to j with yv′ 6= zu.
– Move min{yv, zu − yv′} units of opening from yv to yv′ .

Output: updated (x, y)

Proof. k-center. Use the fact that all Cj = t, and xij > 0 =⇒ d(i, j) ≤ t with property (1b) to
get:

d(i, j) ≤ d(i, u) + d(u, i′) + d(i′, j)

≤ 2Ci + 2Ci′ + d(i′, j) ≤ 5t.

k-median. By construction, if the demand of point j moved from i′ to i, then ∃u ∈ M s.t.
i, i′ ∈ Eu and d(u, i) ≤ d(u, i′). Denote j′ as the closest point inM to j. Then d(u, i′) ≤ d(j′, i′)
because i′ ∈ Eu. Then,

d(i, j) ≤ d(i, u) + d(u, i′) + d(i′, j)

≤ 2d(u, i′) + d(i′, j)

≤ 2d(j′, i′) + d(i′, j)

≤ 2(d(j′, j) + d(j, i′)) + d(i′, j)

≤ 8Cj + 3d(i′, j).

k-means The argument is similar to k-median, but with a bigger constant factor because of the
squared triangle inequality.

d(i, j)2 ≤ (d(i, u) + d(u, i′) + d(i′, j))2

≤ (2d(u, i′) + d(i′, j))2

≤ 4d(u, i′)2 + d(i′, j)2 + 4d(u, i′)d(i′, j)

≤ 4d(u, i′)2 + d(i′, j)2 + 4d(u, i′)d(i′, j) + (2d(i′, j)− d(u, i))2

≤ 5d(u, i′)2 + 5d(i′, j)2

≤ 5d(j′, i′)2 + 5d(i′, j)2

≤ 5(d(j′, j) + d(j, i′))2 + 5d(i′, j)2

≤ 5d(j′, j)2 + 10d(i′, j)2 + 10d(j′, j)d(i′, j)

≤ 5d(j′, j)2 + 10d(i′, j)2 + 10d(j′, j)d(i′, j) + 5(d(j′, j)− d(i′, j))2

≤ 10d(j′, j)2 + 15d(i′, j)2

≤ 80Cj + 15d(i′, j)2.

115

1

2

3

4

5

1

3

4

v

cost = cij

cost = 0

V

Ycapacity = 2

supply = p

supply = � n`

supply = kn`� np

capacity = dnL(p + 2)/pe

Figure 4.2: Flow network for rounding the x’s: The nodes in each group all have the same supply,
which is indicated below each group. The edge costs and capacities are shown above each group.
The y-rounded solution gives a feasible flow in this network. By the Integral Flow Theorem, there
exists a minimum cost flow which is integral and we can find it in polynomial time.

Step 4: Min cost flow Now we must round the x’s. We set up a min cost flow problem, where
an integral solution corresponds to an assignment of points to centers. We create a bipartite graph
with V on the left (each with supply p) and the k centers on the right (each with demand n`), and
a sink vertex with demand np− kn`. We carefully set the edge weights so that the minimum cost
flow that satisfies the capacities corresponds to an optimal clustering assignment. See Figure 4.2.

Then using the Integral Flow Theorem, we are guaranteed there is an integral assignment that
achieves the same optimal cost (and finding the min cost flow is a well-studied polynomial time
problem [Papadimitriou and Steiglitz, 1998]). Thus, we can round the x’s without incurring any
additional cost to the approximation factor. This is the first time this technique has been used in
the setting of clustering.

Step 4 details Set {i | yi 6= 0} = Y . We show details of the min cost flow network in Algorithm
13.

Lemma 4.3.7. There exists an integral assignment of the x′ij’s such that ∀i, j ∈ V , x′ij ≤ 2 and it
can be found in polynomial time.

Proof. See Algorithm 13 and Figure 4.2 for the details of the flow construction.

In this graph, there exists a feasible flow: ∀i, j ∈ V , send x′ij units of flow along the edge
from i to j, and send

∑
j∈V xij units of flow along the edge from i to v. Therefore, by the integral

flow theorem, there exists a maximal integral flow which we can find in polynomial time. Also, by
construction, this flow corresponds to an integral assignment of the x′ij’s such that x′ij ≤ 2.

Now we are ready to prove Theorem 4.3.1. The approximation ratios are 5, 11, and 95 for k-
center, k-median, and k-means, respectively. For convenience, we restate the theorem statement.

116

Algorithm 13 Min cost flow procedure: Set up flow problem to round x’s

Input: V , (x, y), y are integral
Create a flow graph G = (V ′, E) as follows.

• Add each i ∈ V to V ′, and give i supply p.

• Add each i ∈ Y to V ′, and give i demand n`.

• Add a directed edge (i, j) for each i ∈ V , j ∈ Y , with capacity 2 and cost cij (for k-center,
make the edge weight 5t if d(i, j) ≤ 5t and +∞ otherwise.

• Add a sink vertex v to V ′, with demand np− kn`.
• Add a directed edge (i, v) for each i ∈ Y , with capacity dp+2

p
nLe − n` and cost 0.

Run an min cost integral flow solver on G.
Update x by setting xij to 0, 1, or 2 based on the amount of flow going from i to j.

Output: updated (x, y) with integral x’s and y’s

Theorem 4.3.1 (restated). Algorithm 4.1 returns a constant factor approximate solution for the
balanced k-clustering with p-replication problem for p > 1, where the upper capacity constraints
are violated by at most a factor of p+2

p
, and each point can be assigned to each center at most

twice.

Proof of Theorem 4.3.1.
k-center: Recall that we defined CLP = tnp, where t is the threshold for the k-center LP. From
Lemma 4.3.4, when we reassign the demand of point j from i′ to i, d(i, j) ≤ 5t. In other words,
the y-rounded solution is feasible at threshold 5t. Then the k-center cost of the new y’s is np(5t) =
5CLP . From Lemma 4.3.7, we can also round the x’s at no additional cost.

k-median: From Property 4.3.4, when we reassign the demand of point j from i′ to i, d(i, j) ≤
3d(i′, j) + 8Cj . Then we can bound the cost of the new assignments with respect to the original
LP solution as follows.∑

i∈V

∑
j∈V

d(i, j)x′ij ≤
∑
i∈V

∑
j∈V

(8Cj + 3d(i, j))xij

≤
∑
i∈V

∑
j∈V

8Cjxij +
∑
i∈V

∑
j∈V

3d(i, j)xij

≤
∑
j∈V

8Cj
∑
i∈V

xij + 3CLP

≤
∑
j∈V

8pCj + 3CLP

≤ 11CLP .

Then from Lemma 4.3.7, we get a solution of cost at most 11CLP , which also has integral x’s.

k-means: The proof is similar to the k-median proof. From lemma 4.3.4, when we reassign
the demand of point j from i′ to i, d(i, j)2 ≤ 15d(i′, j)2 + 80Cj . Then we can bound the cost of

117

the new assignments with respect to the original LP solution as follows.∑
i∈V

∑
j∈V

d(i, j)2x′ij ≤
∑
i∈V

∑
j∈V

(80Cj + 15d(i′, j)2)xij

≤
∑
i∈V

∑
j∈V

80Cjxij +
∑
i∈V

∑
j∈V

15d(i, j)2xij

≤
∑
j∈V

80Cj
∑
i∈V

xij + 15CLP

≤
∑
j∈V

80pCj + 15CLP

≤ 95CLP .

Then from Lemma 4.3.7, we get a solution of cost at most 95CLP , which also has integral
x’s.

See Algorithm 14 for the final algorithm.

Algorithm 14 Bicriteria approximation Algorithm for k-median, k-means, and k-center
Input: V

• Run a solver for the LP relaxation for k-median, k-means, or k-center, output (x, y).

• Run Algorithm 11 with V , (x, y), output set of empires {Ej}.
• Run Algorithm 12 with V , {Ej}, (x, y), output updated (x, y).

• Run Algorithm 13 with V , (x, y), output updated (x, y).

Output: Integral (x, y) corresponding to bicriteria clustering solution

In the next section, we show a more involved algorithm specifically for k-center which achieves
a 6-approximation with no violation to the capacity or replication constraints.

4.3.2 True approximation algorithm for k-center

In this section, we present a more complicated algorithm that is specific to k-center, which achieves
a true approximation algorithm - the capacity and replication constraints are no longer violated.

As in the previous section and in prior work [An et al., 2014, Cygan et al., 2012, Khuller and
Sussmann, 1996], we start off by guessing the optimal distance t. Since there are a polynomial
number of possibilities, it is still only polynomially expensive. We then construct the threshold
graph Gt = (V,Et), with j being the set of all points, and (x, y) ∈ Et iff d(x, y) ≤ t.

A high-level overview of the rounding algorithm that follows is given in Algorithm 15.

Connection to the previous section The algorithm here is similar to the bicriteria algorithm
presented previously. There are, however, two differences. Firstly, we work only with connected
components of the threshold graph. This is necessary to circumvent the unbounded integrality gap
of the LP [Cygan et al., 2012]. Secondly, the rounding procedure of the y’s can now move opening

118

across different empires. Since the threshold graph is connected, the distance between any two
adjacent monarchs is bounded and turns out to exactly be thrice the threshold. This enables us to
get a constant factor approximation without violating any constraints.

Algorithm 15 Algorithm overview

Input: V : the set of points, k: the number of clusters, (`, L): min and max allowed cluster size
Procedure balanced-k-center(V, k, p, `, L)

• For each threshold t

– Construct the threshold graph Gt = (V,Et), where Et = {(u, v) | d(u, v) ≤ t}
– For each connected component G(c) of Gt and each 1 ≤ k′ ≤ k,
∗ Solve LPRound(G(c), k′, p, `, L)

– Search for a solution for each G(c) with kc centers such that
∑

c kc = k by linear
search, call it s

– If s 6= ∅, return s.
Procedure LPRound(G, k, p, `, L)

• (x, y)← relaxed solution of LP in equation 4.3

• Round the y values

– Run Algorithm 16 on (x, y) to return a tree T
– Run Algorithm 17) to return (x′, y′) where y′ is integral

• Round x′ to get x′′ from Theorem 4.3.16

• Return (x′′, y′)

Output: A k-clustering of V respecting cluster size constraints, p: replication factor

The Algorithm

Intuition

The approach is to guess the optimal threshold, construct the threshold graph at this threshold,
write and round several LPs for each connected component of this graph for different values of k.
The intuition behind why this works is that at the optimal threshold, each cluster is fully contained
within a connected component (by definition of the threshold graph).

We the round the opening variables, but this time, open exactly k centers. Most of the work goes
into rounding the openings, and showing that it is correct. Then, we simply round the assignments
using a minimum cost flow again.

Linear Program

As earlier, let yi be an indicator variable to denote whether vertex i is a center, and xij be indicators
for whether j belongs to the cluster centered at i. By convention, i is called a facility and j is called
a client.

119

Consider the following LP relaxation for the IP for each connected component of G. Note that
it is exactly the same as the one from the previous section, except it is described in terms of the
threshold graph G. Let us call it LP-k-center(G):

∑
i∈V

yi = k (4.3a)

xij ≤ yi ∀i, j ∈ V (4.3b)∑
j:ij∈E

xij ≤ nLyi ∀i ∈ V (4.3c)∑
j:ij∈E

xij ≥ n`yi ∀i ∈ V (4.3d)∑
i:ij∈E

xij = p ∀j ∈ V (4.3e)

xij = 0 ∀ij /∈ E (4.3f)
0 ≤ x, y ≤ 1 (4.3g)

Once we have the threshold graph, for the purpose of k-center, all distances can now be mea-
sured in terms of the length of the shortest path in the threshold graph. Let dG(i, j) represent the
distance between i and j measured by the length of the shortest path between i and j in G.

Connected Components

It is well known [Cygan et al., 2012] that even without lower bounds and replication, the LP has
unbounded integrality gap for general graphs. However, for connected components of the threshold
graph, this is not the case.

To begin with, we show that it suffices to be able to do the LP rounding procedure for only
connected threshold graphs, even in our generalization.

Theorem 4.3.8. If there exists an algorithm that takes as input a connected graph G, capacities
`, L, replication p, and k for which LP-k-center(Gt) is feasible, and computes a set of k centers
to open and an assignment of every vertex j to p centers i such that dG(i, j) ≤ r satisfying the
capacity constraints, then we can obtain a r-approximation algorithm to the balanced k-centers
problem with p-replication.

Proof. Let connected component i have ki clusters. For each connected component, do a linear
search on the range [1, . . . , k] to find values of ki for which the problem is feasible. These feasible
values will form a range, if size constraints are to be satisfied. To see why this is the case, note
that if (x1, y1) and (x2, y2) are fractional solutions for k = k1 and k = k2 respectively, then
((x1 + x2)/2, (y1 + y2)/2) is a valid fractional soluion for k = (k1 + k2)/2.

Suppose the feasible values of ki are mi ≤ ki ≤ Mi. If
∑

imi > k or
∑

iMi < k, return NO
(at this threshold t). Otherwise, start with each ki equal to mi. Increase them one by one up to Mi

until
∑

i ki = k. This process takes polynomial time.

From now on, the focus is entirely on a single connected component.

120

Rounding y

Given an integer feasible point to the IP for each connected component, we can obtain the desired
clustering. Hence, we must find a way to obtain an integer feasible point from any feasible point
of LP-k-center.

To round the y, we follow the approach of An et al. [2014]. The basic idea is to create a coarse
clustering of vertices, and have the cluster centers form a tree. The radius of each cluster will be at
most 2, and the length of any edge in the tree will exactly be three, by construction.

Now, to round the y, we first start from the leaves of the tree, moving opening around in each
coarse cluster such that at most one node (which we pick to be the center, also called the monarch).
In subsequent steps, this fractional opening is passed to the parent cluster, where the same process
happens. The key to getting a constant factor approximation is to ensure that fractional openings
that transferred from a child cluster to a parent cluster are not propagated further. Note that the
bicriteria algorithm did not move opening from one coarse cluster (empire) to another because we
didn’t have an upper bound of the cost incurred by making this shift.

Preliminaries. We start with some definitions.

Definition 4.3.9 (δ-feasible solution [Cygan et al., 2012]). A solution (x, y) feasible on Gδ, the
graph obtained by connecting all nodes within δ hops away from each other.

Next, we introduce the notion of a distance-r shift. Intuitively, a distance-r shift is a series of
movements of openings, none of which traverses a distance more than r in the threshold graph.
Note that the definition is similar to what is used in An et al. [2014].

Definition 4.3.10 (Distance-r shift). Given a graph G = (V,E) and y, y′ ∈ R|V |≥0 , y′ is a distance-
r shift of y if y′ can be obtained from y via a series of disjoint movements of the form “Move δ
from i to i′” where δ ≤ min(yi, 1 − yi′) and every i and i′ are at most a distance r apart in the
threshold graph G. Further, if all y′ are zero or one, it is called an integral distance-r shift.

Note that, by the definition of a distance-r shift, each unit of y moves only once and if it moves
more than once, all the movements are put together as a single, big movement, and this distance
still does not exceed r.

Lemma 4.3.11 (Realizing distance-r shift). For every distance-r shift y′ of y such that 0 ≤ y′i ≤
1 ∀i ∈ V , we can find x′ in polynomial time such that (x′, y′) is (r + 1)-feasible.

Proof. We can use the Move operation described earlier and in Cygan et al. [2012] to change the
corresponding x for each such a movement to ensure that the resulting (x′, y′) are (r+ 1)-feasible.
The additional restriction δ ≤ 1− yb ensures that y ≤ 1. Since each unit of y moves only once, all
the movements put together will also lead a solution feasible in Gr+1, i.e. we get a (r+ 1)-feasible
solution.

From here on, we assume that xij, xi′j are adjusted as described above for every movement
between i and i′.

121

The algorithm to round y [An et al., 2014] proceeds in two phases. In the first phase, we cluster
points into a tree of coarse clusters (monarchs) such that nearby clusters are connected using the
monarch procedure of Khuller and Sussmann [1996]. In the second phase, fractional opening are
aggregated to get an integral distance-5 shift.

Monarch Procedure. The monarch procedure is presented a little differently but is very similar
to the monarch procedure presented earlier. Since the threshold graph is connected, we can get
guarantees on how big the distance between two monarchs is.

Algorithm 16 describes the first phase where we construct a tree of monarchs and assign em-
pires to each monarch. LetM be the set of all monarchs. For some monarch, u ∈M, let Eu denote
its empire. For each vertex i, let m(i) denote the the monarch u to whose empire Eu, i belongs.

Algorithm 16 Monarch Procedure: Algorithm to construct tree of monarchs and assign empires

Input: G = (V,E)
Marked← ∅
For each j ∈ V
• initialize ChildMonarchs(j) and Dependents(j) to ∅

Pick any vertex u and make it a monarch
Eu ← N+(u); Initialize T to be a singleton node u
Marked← Marked ∪ Eu
While ∃w ∈ (V \ Marked) such that dG(w,Marked) ≥ 2

• Let u ∈ (V \ Marked) and v ∈ Marked such that dG(u, v) = 2

• Make u a monarch and assign its empire to be Eu ← N+(u)

• Marked← Marked ∪ Eu
• Make u a child of m(v) in T

• ChildMonarchs(v)← ChildMonarchs(v) ∪ {u}
For each v ∈ (V \ Marked)

• Let u ∈ Marked be such that dG(u, v) = 1

• Dependents(u)← Dependents(u) ∪ {v}
• Em(u) ← Em(u) ∪ {v}

Output: Tree of monarchs, T = (M, E ′), and empires for each monarch

The guarantees now translate to the following (Lemma 4.3.12):

• Empires partition the point set.

• The empire includes all immediate neighbors of a monarch and additionally, some other
nodes of distance two (called dependents).

• Adjacent monarchs are exactly distance 3 from each other.

122

Lemma 4.3.12. Algorithm 16, the monarch procedure is well-defined and its output satisfies the
following:

• Eu ∩ Eu′ = ∅.

• ∀u ∈M : Eu = N+(u) ∪ (
⋃
j∈N+(u) Dependents(j)).

• The distance between a monarch and any node in its empire is at most 2.

• Distance between any two monarchs adjacent in T is exactly 3.

• If ChildMonarchs(j) 6= ∅ or Dependents(j) 6= ∅, then j is at distance one from some
monarch.

Proof. Note that the whole graph is connected and V 6= ∅. For the while loop, if there exists w
such that dG(w,Marked) ≥ 2, there exists u such that dG(u,Marked) = 2 because the graph
is connected. By the end of the while loop, there are no vertices at a distance 2 or more from
Marked. Hence, vertices not in Marked, if any, should be at a distance 1 from Marked. Thus,
the algorithm is well defined.

Each time a new monarch u is created, N+(u) is added to its empire. This shows the first
statement. The only other vertices added to any empire are the dependents in the foreach loop.
Each dependent j is directly connected to i, a marked vertex. Hence, i has to be a neighbor of a
monarch. If iwere a monarch, j would have been marked in the while loop. Thus, dG(j,m(i)) = 2.

If the first statement of the while loop, v is a marked vertex, and has to be a neighbor of some
monarch m(v). New monarch u is chosen such that dG(u, v) = 2. The parent monarch of u is
m(v) and dG(u,m(v)) = dG(u, v) + dG(v,m(v)) = 3.

Initial Aggregation. Now, we shall turn to the rounding algorithm of An et al. [2014]. The
algorithm begins with changing yu of every monarch u ∈M to 1. Call this the initial aggregation.
It requires transfer of at most distance one because the neighbors of the monarchs has enough
opening.

Lemma 4.3.13. The initial aggregation can be implemented by a distance-1 shift.

Proof. For every vertex u ∈ V , we have
∑

j∈N(u) yj ≥
∑

j∈N(u) xuj = p ≥ 1. Hence, there
is enough y-mass within a distance of one from u. The actual transfer can happen by letting
δ = min(1 − yu, yj) for some neighbor j of u and then transferring δ from j to u. That is,
yj = yj − δ and yu = yu + δ.

Rounding. The rounding procedure now proceeds in a bottom-up manner on the tree of monar-
chs, rounding all y using movements of distance 5 or smaller. After rounding the leaf empires, all
fractional opening, if any is at the monarch. For internal empires, the centers of child monarch
(remnants of previous rounding steps) and dependents are first rounded. Then the neighbors of the

123

monarch are rounded to leave the entire cluster integral except the monarch. The two step proce-
dure is adopted so that the opening propagated from this monarch to its parent originates entirely
from the 1-neighborhood of the monarch.

Formally, at the end of each run of round on u ∈ M, all the vertices of the set Iu are integral,
where Iu := (Eu \ u) ∪ (

⋃
j∈N(u) ChildMonarchs(j)).

Algorithm 17 Algorithm to round y
Input: Tree of monarchs, T , and empires for each monarch after the initial aggregation

Procedure Round(Monarch u)

• For each child w of u in T , Round(w) //Recursive call

• For each j ∈ N(u) //Phase 1

– Xj ← {j} ∪ ChildMonarchs(j) ∪ Dependents(j)

– Wj ← {by(Xj)c nodes from Xj}; (Avoid picking j if possible)
– Run LocalRound(Wj, Xj, ∅)
– Run LocalRound({j}, Xj \Wj, ∅)

• F = {j|j ∈ N(u) and 0 < yj < 1} //Phase 2

• WF ← { any by(F)c nodes from F}
• Run LocalRound(WF , F, ∅)
• If y(F \WF) > 0

– Choose w∗ ∈ F \WF

– Run LocalRound({w∗}, F \WF , u)

Procedure LocalRound(V1, V2, V3)

• While ∃i ∈ V1 such that yi < 1

– Choose a vertex w with non-zero opening from V2 \ V1

– If there exists none, choose j from V3 \ V1

– δ ← min(1− yi, yj)
– Move δ from j to i

Output: y′, an integral distance-5 shift of y

The rounding procedure is described in detail in Algorithm 17. The following lemma states
and proves that algorithm 17 rounds all points and doesn’t move opening very far.

Lemma 4.3.14 (Adaptation of Lemma 19 of An et al. [2014]). Let

Iu := (Eu \ u) ∪ (
⋃

j∈N(u)

ChildMonarchs(j)).

• Round(u) makes the vertices of Iu integral with a set of opening movements within Iu∪{u}.

• This happens with no incoming movements to the monarch u after the initial aggregation.

124

• The maximum distance of these movements is five, taking the initial aggregation into account.

Proof. Integrality. From lemma 4.3.12, it can be seen that Xj, j ∈ N(u) above form a partition
of Iu. Hence, it suffices to verify that each node of every Xj is integral.

At the end of line 1, the total non-integral opening in Xj is y(Xj) − by(Xj)c, and is hence
smaller than one. Line 1 moves all these fractional openings to j. By now, all openings of Xj \{j}
are integral.

Now, F is the set of all non-integral j ∈ N(u). So, by the end of line 1, the total non-integral
opening in N(u) (and hence in all of Iu) is y(F \WF) = y(F)−by(F)c, and is again smaller than
one. If this is zero, we are done.

Otherwise, we choose a node w∗, shift this amount to w∗ in line 1. To make this integral, this
operations also transfers the remaining amount, i.e. 1 − y(F \WF) from the monarch u. If this
happens, the monarch u’s opening is no longer integral, but Iu’s is.

This shows the first bullet. For the second one, notice that after the initial aggregation, this
last operation is the only one involving the monarch u and hence, there are no other incoming
movements into u.

Distance. In the first set of transfers in line 1 the distance of the transfer is at most 4. This is
because dependents are a distance one away from j and child monarchs are at a distance two away.
The maximum distance is when the transfer happens from one child monarch to another, and this
distance is 4 (recall that there are no incoming movements into monarchs).

The transfers in line 1 moves openings from a child monarch or a dependent to j. The distances
are 2 and 1 respectively. Accounting for the initial aggregation, this is at most 3.

The rounding on line 1 moves openings between neighbors of the monarch, i.e. from some
j to j′ where j, j′ ∈ N(u). So, the distance between j and j′ is at most 2. From the preceding
transfers, the openings at j moved a distance of at most three to get there, and thus, we conclude
that openings have moved at most a distance of 5 so far.

The first step of rounding on line 1 moves openings from some j to w∗, where j, w∗ ∈ N(u).
As above, the maximum distance in this case is 5. The second step of rounding on line 1 moves
opening from the monarch u to its neighbor w∗. This distance is one, and after accounting for the
initial aggregation, is 2.

From this, we see that the maximum distance any opening has to move is 5.

The algorithms, their properties in conjunction with lemma 4.3.11 leads to the following theo-
rem, which also summarizes this subsection.

Theorem 4.3.15. There exists a polynomial time algorithm to find a 6-feasible solution with all y
integral.

Rounding x

Once we have integral y, rounding the x is fairly straight-forward, without making the approx-
imation factor any worse. Exactly the same procedure used in bicriteria algorithms works here

125

1

2

3

4

5

1

3

4

ts

T

S cost = 0

cost = � 1
cost = 0

capacity = 1

capacity = p
capacity = n(L� `)

supply = np

supply = 0

supply = � n`

supply = kn`� np

Figure 4.3: Minimum cost flow network to round x’s. Each node in a group has the same supply,
which is indicated below. The cost and capacity of each edge is indicated above.

too. But, we can have an easier construction since for k-center since we can use distances in the
threshold graph instead.

Theorem 4.3.16. There exists a polynomial time algorithm that given a δ-feasible solution (x, y)
with all y integral, finds a δ-feasible solution (x′, y) with all x′ integral.

Proof. We shall use a minimum cost flow network to this. Consider a directed bipartite graph
(S, T,E ′), where S = V and T = {i : yi = 1} and j → i ∈ E ′ iff xij > 0. Add a dummy vertex
s, with edges to every vertex in S, and t with edges from every vertex in T . In this network, let
every edge of the bipartite graph have capacity 1. Further, all the s → S edges have capacity p. s
supplies a flow of np units, while each u ∈ T has a demand of l units. To ensure no excess demand
or supply, t has a demand of np− kl. All the t→ T edges have a capacity of (L− `).

All the s→ S edges have a cost of −1 and every other edge has a cost of zero. See figure 4.3.

Clearly, a feasible assignment (x, y) to LP-k-center(Gδ) with integral y is a feasible flow
in this network. In fact, it is a minimum-cost flow in this network. This can be verified by the
absence of negative cost cycles in the residual graph (because all negative cost edges are at full
capacities).

Since, the edge capacities are all integers, there exists a minimum cost integral flow by the
Integral Flow Theorem. This flow can be used to fix the cluster assignments.

Piecing together theorems 4.3.15 and 4.3.16, we have the following theorem:

Theorem 4.3.17. Given an instance of the k-centers problem with p-replication and for a con-
nected graph G, and a fractional feasible solution to LP-k-center(G), there exists a polyno-
mial time algorithm to obtain a 6-feasible integral solution. That is, for every i, j such that xij 6= 0,
we have dG(i, j) ≤ 6.

4.4 Structure of Balanced Clustering
In this section, we show that adding lower bounds to clustering makes the problem highly non-
trivial. Specifically, our main result is that the k-means, k-median, and k-center objective values

126

c

Figure 4.4: A graph in which the objective function strictly increases with k. Each edge signifies
distance 1, and all other distances are 2.

may oscillate arbitrarily with respect to k (Theorem 4.4.4). In light of this structure, our results
from Section 4.3 are more surprising, since it is not obvious that algorithms with constant-factor
guarantees exist.

We give a variety of clustering instances which do not have monotone cost functions with
respect to k. For readability and intuition, these examples start out simple, and grow in complexity
until we eventually prove Theorem 4.4.4.

First, consider a star graph with n points and lower bound `, such that n` ≥ 3 (see Figure
4.4). The center c is at distance 1 to the 10n` leaves, and the leaves are at distance 2 from each
other. When k = 1, each point is distance 1 to the center c. However as we increase k, the new
centers must be leaves, distance 2 from all the other points, so n`− 1 points must pay 2 instead of
1 for each extra center. It is also easy to achieve an objective that strictly decreases up to a local
minimum k′, and then strictly increases onward, by adding k′ copies of the center of the star.

Lemma 4.4.1. Given a star graph with parameters n and ` such that n` ≥ 3, then the cost of the
k-means and k-median objectives strictly increase in k.

Proof. Let the size of the star graph be n. Clearly, the optimal center for k = 1 is c. Then
OPT 1 = n− 1. Then for k = 2, we must choose another center p that is not c. p is distance 2 to
all points other than c, so the optimal clustering is for p’s cluster to have the minimum of n` points,
and c’s cluster has the rest. Therefore, OPT 2 = n+ n`− 2.

This process continues; every time a new center is added, the new center pays 0 instead of 1,
but n`− 1 new points must pay 2 instead of 1. This increases the objective by n`− 2. As long as
n` ≥ 3, this ensures the objective function is strictly increasing in k.

Note for this example, the problem goes away if we are allowed to place multiple centers on
a single point (in the literature, this is called “soft capacities”, as opposed to enforcing one center
per point, called “hard capacities”). The next lemma shows there can be a local minimum for hard
capacities.

Lemma 4.4.2. For all k′, there exists a balanced clustering instance in which the k-means or
k-median objective as a function of k has a local minimum at k′.

127

5 15 5 15 5 15

y1 y2

x1 x2 x3 x4

5 15

Figure 4.5: Each edge signifies distance 1, and all other distances are 2. The middle points are
replicated as many times as their label suggests (but each pair of replicated points are still distance
2 away). Finally, add length 1 edges between all pairs in {x1, x2, x3, x4}, {y1, y2}.

Proof. Given l ≥ 3, we create a clustering instance as follows. Define k′ sets of pointsG1, . . . , Gk′ ,
each of size 2n` − 1. For any two points in some Gi, set their distance to 0. For any two points
in different sets, set their distance to 1. Then for 1 ≤ k ≤ k′, the objective value is equal to
(k′ − k)(2n` − 1), since we can put k centers into k distinct groups, but (k′ − k) groups will not
have centers, incurring cost 2n`− 1. When k > k′, we cannot put each center in a distinct group,
so there is some group Gi with two centers. Since |Gi| = 2n` − 1, the two centers cannot satisfy
the capacity constraint with points only from Gi, so the objective value increases.

Local maxima So far, we have seen examples in which the objective decreases with k, until it hits
a minimum (where capacities start to become violated), and then the objective strictly increases.
The next natural question to ask, is whether the objective can also have a local maximum. We
show the answer is yes in the following lemma.

Lemma 4.4.3. There exists a balanced clustering instance in which the k-center, k-median, and
k-means objectives contain a local maximum with respect to k.

Proof. Consider Figure 4.5, where n = 86, and set n` = 21. First we give the intuition behind
the proof, and later we provide the full details. Since the distances are all 1 or 2, this construction
is trivially a valid distance metric. From Figure 4.5, we see that k = 2 and k = 4 have valid
clusterings using only length 1 edges, using centers {y1, y2} and {x1, x2, x3, x4}, respectively.
But now consider k = 3. The crucial property is that by construction, y1 and any xi cannot
simultaneously be centers and each satisfy the capacity to distance 1 points, because the union of
their distance 1 neighborhoods is less than 2n`. Then we carefully check all other sets of 3 centers
do not achieve a clustering with distance 1 edges, which completes the proof.

Here are the full details. Consider the graph in Figure 4.5, where n = 86, and set n` = 21.
Since the distances are all 1 or 2, this construction is trivially a valid distance metric. From Figure
4.5, we see that k = 2 and k = 4 have valid clusterings using only length 1 edges, using centers
{y1, y2} and {x1, x2, x3, x4}, respectively. But now consider k = 3. The crucial property is that
by construction, y1 and any xi cannot simultaneously be centers and each satisfy the capacity to
distance 1 points, because the union of their distance 1 neighborhoods is less than 2n`. So we
cannot just take the centers from k = 2 and add a center from k = 4. Formally, we show no
possible set of 3 centers can be distance 1 to all points without violating the lower bound on the
cluster sizes.

128

Case 1: the set of centers includes a point p not in {x1, x2, x3, x4, y1, y2}. The rest of the points
are only distance 1 from exactly two points, so p cannot hit the lower bound of 21 using only
distance 1 assignments.

Case 2: the set of centers is a subset of {x1, x2, x3, x4}. Then there are clearly 20 points which
are not distance 1 from the three centers.

Case 3: the set of centers includes both y1 and y2. Then we need to pick one more center, xi.
xi is distance 1 from 20 middle points, plus {x1, x2, x3, x4, y1, y2}, so 26 total. y1 is also distance
1 from 20 middle points and {x1, x2, x3, x4, y1, y2}. y1 and xi share exactly 5 neighbors from the
middle points, plus {x1, x2, x3, x4, y1, y2} as neighbors. Then the union of points that xi and y1 are
distance 1 from, is 26 + 26 − 11 = 41, which implies that xi and y1 cannot simultaneously reach
the lower bound of 21 with only distance 1 points.

Case 4: the set of centers does not include xi nor yj . By construction, for each pair xi and yj ,
there exists some middle points which are only distance 1 from xi and yj .

These cases are exhaustive, so we conclude OPT 3 must be strictly larger than OPT 2 and
OPT 4 (no matter what objective we use).

The previous example does not work for the case of soft capacities, since the set of centers
{x1, y2, y2} allows every point to have an edge to its center. Now we prove our main theorem.
Note, this theorem holds even for soft capacities.

Theorem 4.4.4. For all m ∈ N, there exists a balanced clustering instance in which the k-center,
k-median, and k-means objectives contain m local maxima, even for soft capacities.

Proof. First we give a sketch of the proof, focusing on intuition, and then we give the full details.
As in the previous lemma, we will construct a set of points in which each pair of points are either
distance 1 or 2. It is convenient to define a graph on the set of points, in which an edge signifies a
distance of 1, and all non-edges denote distance 2. We will construct a clustering instance where
the objective value for all even values of k between 10m and 12m is low and the objective value
for all odd values of k between 10m and 12m is high. The m odd values will be the local maxima.
We will set the lower bound n` to be the product of all the even integers between 10m and 12m.

We start by creating a distinct set of “good” centers, Xk, for each even value of k between 10m
and 12m. Let X be the union of these sets. The set Xk contains k points which will be the optimal
centers for a k-clustering in our instance. Then we will add an additional set of points, Y , and add
edges from Y to the centers in X with the following properties.

1. For each even value of k between 10m and 12m, there is an assignment of the points in Y to
the centers in Xk so that points in Y are only assigned to adjacent centers and the capacity
constraints are satisfied.

2. Each of the good centers in X is adjacent to no more than 6
5
· n` points in Y .

3. For each good center x in Xk, there is at least one point x′ in every other set X ′k (for k′ 6= k)
so that the number of points in Y adjacent to both x and x′ is at least 2

5
· n`.

129

. . .

X36 = Xkmax

X34

Y

X32

X30 = Xkmin

CC1 CC3 CC4 CC29 CC30CC2

2n`

5

2n`

5

2n`

5

2n`

5

2n`

5

2n`

5

2n`

5

2n`

5

2n`

5

2n`

5
2n`

5

2n`

5

Figure 4.6: An example when m = 3. Each Xk is a different color. Each edge signifies distance 1,
and all other distances are 2. The middle points are replicated as many times as their label suggests
(but each pair of replicated points are still distance 2 away).

4. Any subset of the centers in X that does not contain any complete set of good centers Xk for
some even k is non-adjacent to at least one point in Y .

Whenever we add a point to Y , we give it an edge to exactly one point from each Xk. This
ensures that each Xk partitions Y . We first create connected components as in Figure 4.6 that each
share 2

5
· n` points from Y , to satisfy Property 3.

For property 4, we add one additional point to Y for every combination of picking one point
from each Xk. This ensures that any set which does not contain at least one point from each Xk

will not be a valid partition for Y . Note that in the previous two steps, we did not give a single
center more than 6

5
· n` edges, satisfying property 2. Then we add “filler” points to bring every

center’s capacity up to at least n`, which satisfies property 1.

Now we explain why properties 1-4 are sufficient to finish off the proof. Property 1 guarantees
that the for each even value of k there is a clustering where the cost of each point in Y is one,
which results in a good clustering objective.

Properties 2 and 3 guarantee that any set including a full Xk and a point from a different Xk′

cannot achieve cost 1 for each point without violating the capacities. Property 4 guarantees that
any set without a full Xk cannot achieve cost 1 for each point. This completes the proof sketch.

Now we give the full details of the proof.

Setup. Set kmin = 10 ·m, and kmax = 12m. DefineKgood = {k | kmin ≤ k ≤ kmax and 2 | k}.
Similarly, let Kbad = {k | kmin ≤ k ≤ kmax and 2 - k}. Note |Kbad| = m and |Kgood| = m + 1.
For all k ∈ Kgood, define Xk = {x(k)

1 , . . . , x
(k)
k′ }. Let X =

⋃
kXk.

Define G = (V,E), V = X ∪ Y , X ∩ Y = ∅. Just like in the last proof, the edges later
correspond to a distance of 1, and all other distances are 2. We will construct Y and E such that
for all k ∈ Kgood, all the neighbors of Xk form a partition of Y , i.e. ∀k ∈ Kgood,

⋃
iN(x

(k)
i) = Y

and N(x
(k)
i)∩N(x

(k)
j) = ∅ for all i 6= j. So taking Xk as the centers corresponds to a k-clustering

in which all points are distance 1 from their center. We will also show that for all k ∈ Kbad, it is
not possible to find a valid set of centers for which every point has an edge to its center, unless the
capacities are violated. This implies that all m points in Kbad are local maxima.

130

For all k ∈ Kgood, Xk′ will have exactly kmax
k′
l edges in Y Thus, set n` =

∏
k∈Kgood k to make

all of these values integral. Note that some points (those in Xkmax) have exactly n` edges, and all
points have ≤ 6

5
n` edges (which is tight for the points in Xkmin).

Now we define the main property which drives the proof. We say x(j1)
i1

overlaps with x(j2)
i2

if
N(x

(j1)
i1

) ∪ N(x
(j2)
i2

) > 2
5
n`. Note this immediately implies it is not possible to include them in

the same set of centers such that each point has an edge to its center, since N(x
(j1)
i1

) ∪N(x
(j2)
i2

) ≤
N(x

(j1)
i1

) +N(x
(j2)
i2

)−N(x
(j1)
i1

) ∩N(x
(j2)
i2

) < 2 · 6
5
n`− 2

5
n` = 2n`.

Outline. We will construct Y in three phases. First, we add edges to ensure that for all x(j1)
i1

,
for all j2 6= j1, there exists an i2 such that x(j1)

i1
overlaps with x(j2)

i2
. It follows that if we are trying

to construct a set of centers from X for k′ ∈ Kbad, we will not be able to use any complete Xk′ as
a subset. These are called the backbone edges.

The next phase is to add enough edges among points in different Xk’s so that no subset of X
(other than the Xk′’s) is a complete partition of Y . We will accomplish this by adding a bunch of
points to Y shared by various x ∈ X , so that each x has edges to kmax points in Y . These are
called the dispersion edges.

The final phase is merely to add edges so that all points reach their assigned capacity. We do
this arbitrarily. These are called the filler edges.

Note whenever we add a point to Y , for all k ∈ Kgood, we need to add an edge to exactly one
x ∈ Xk, which will ensure that all Xk’s form a partition of Y .

Phase 1: Backbone edges. Recall that for k, k′ ∈ Kgood, we want ∀i, ∃j such that x(k)
i overlaps

with x(k′)
j . Since kmax = 6

5
kmin, some x’s will be forced to overlap with two points from the same

Xk. However, we can ensure no point overlaps with three points from the same Xk.

We satisfy all overlappings naturally by creating kmin components, CC1 to CCkmin . Each
component CCi contains point x(kmin)

i . The rest of the sets Xk are divided so that one or two
points are in each component, as shown in Figure 4.6. Formally, in component CCi, sets Xkmin to
Xkmin+d i

2
e have one point in the component, and all other sets have two points in the component.

For each component CCi, we add 4
5
n` points to Y , split into two groups of 2

5
n`. The points

from sets Xkmin+d i
2
e have edges to all 4

5
n` points, and the points from the rest of the sets (since

there are two from each set) have edges to one group of 2
5
n` points. Therefore, for all k, k′ ∈ Kgood,

each point x ∈ Xk belongs to some component CCi, and overlaps with some x′ ∈ Xk′ , so all of
the overlapping requirements are satisfied (only using points within the same component).

This completes phase 1. Each point in X had at most 4
5
n` edges added, so every point can still

take at least n`
5

more edges in subsequent phases.

Phase 2: Dispersion edges. Now we want to add points to Y to ensure that no set of at most
kmax points from X create a partition of Y , except sets that completely contain some Xk.

We have a simple way of achieving this. For every (x1, x2, . . . , xm+1) ∈ Xkmin × Xkmin+2 ×
· · · ×Xkmax , add one point to Y with edges to x1, x2, . . . , xm+1. Then we have added

∏
k∈Kgood k

total points to Y in this phase.

This completes phase 2.

131

Phase 3: Filler edges. The final step is just to fill in the leftover points, since we want every
point x(k)

i to have kmin
k
l points total. All of the mechanisms for the proof have been set up in phases

1 and 2, so these final points can be arbitrary.

We greedily assign points. Give each point x(k)
i ∈ X a number t

x
(k)
i

= kmin
k
n` − N(x

(k)
i),

i.e., the number of extra points it needs. Take the point x ∈ Xk with the minimum t, and create t
points in Y with x. For each layer other than Xk, add edges to the point with the smallest number.
Continue this process until t = 0 for all points.

Final Proof. Now we are ready to prove that G has m local maxima. By construction, for all
k ∈ Kgood, Xk is a set of centers which satisfy the capacity constraints, and every point has an
edge to its center. Now, consider a set C of centers of size k′ ∈ Kbad. We show in every case, C
cannot satisfy the capacity constraints with all points having edges to their centers.

Case 1: C contains a point y ∈ Y . y only has m edges, which is much smaller than n`.

Case 2: There exists k ∈ Kgood such that Xk ⊆ C. Then since |C| /∈ Kgood, ∃x ∈ C \Xk. By
construction, there exists x(k)

i ∈ Xk such that x and x(k)
i are overlapping. Therefore, both centers

cannot satisfy the capacity constraints with points they have an edge to.

Case 3: For all k ∈ Kgood, there exists x ∈ Xk such that x /∈ C. Take the set of all of these
points, x1, x2, . . . , xm+1. By construction, there is a point y ∈ Y with edges to only these points.
Therefore, y will not have an edge to its center in this case.

This completes the proof.

4.5 General Robust Distributed Clustering
In this section, we give a general algorithm for distributed clustering with the `p objective, with
or without balance constraints and with or without outliers. This generalizes previous distributed
clustering results [Bateni et al., 2014b, Malkomes et al., 2015], and answers an open question of
Malkomes et al. [2015]. We give a simple algorithmic framework, together with a careful analysis,
to prove strong guarantees in various settings. Each machine performs a k-clustering on its own
data, and the centers, along with the size of their corresponding clusters, are sent to a central
machine, which then runs a weighted clustering algorithm on the mk centers (see Figure 4.7). For
the case of clustering with outliers, each machine runs a (k+z)-clustering, and the central machine
runs a clustering algorithm that handles outliers.

Theorem 4.5.1. Given a sequential (δ, α)-approximation algorithmA 2 for balanced k-clustering
with the `p objective with z outliers, and given a sequential (γ, β)-approximation algorithm B for
k-clustering with the `p objective, then Algorithm 18 is a distributed algorithm for clustering in `p
with z outliers, with communication cost O(m(k+ z)(d+ log n)γ). The number of centers opened
is δk and the approximation ratio is (23p−1αpβp + 22p−1(αp +βp))1/p. For k-median and k-center,
this ratio simplifies to 4αβ + 2α + 2β.

Setting B to be the (8 logn
ε
, 1 + ε)-bicriteria approximation algorithm for k-median [Lin and

2 We note that A must be able to handle weighted points. It has been pointed out that every clustering algorithm
we are aware of has this property [Bateni et al., 2014b].

132

Figure 4.7: Algorithm 18 for k-median, m = 3, k = 3.

Algorithm 18 Distributed balanced clustering with outliers
Input: Distributed points V = V1 ∪ · · · ∪ Vm, algorithms A and B

1: For each machine i,

• Run B for (k + z)-clustering on Vi, outputting Ai = {ai1, . . . , aik+z}.
• Set wij = |{p ∈ Vj | aij = argmina∈Aid(p, a)}|.
• Send Ai and all weights to machine 1.

2: Run A on
⋃
iAi using the corresponding weights, outputting X = {x1, . . . , xk}.

Output: Centers X = x1, . . . , xk

Vitter, 1992], the approximation ratio becomes 6α + 2 + ε, which improves over the 32α ap-
proximation ratio of Bateni et al. [2014b]. If we set A as the current best k-median algorithm
[Byrka et al., 2015c], we achieve a distributed (18.05 + ε)-approximation algorithm for k-median.
If instead we plug in the sequential approximation algorithm for k-median with z outliers [Chen,
2008], we obtain the first constant-factor approximation algorithm for k-median with outliers, an-
swering an open question from Malkomes et al. [2015]. We can also use the results from Gupta
and Tangwongsan [2008] to obtain an O(1)-approximation algorithm for 1 < p < log n.

Our proof of Theorem 4.5.1 carefully reasons about the optimal clustering in certain settings
where subsets of the outliers are removed, to ensure the constant approximation guarantee carries
through to the final result. First we bound the sum of the local optimal (k + z)-clustering on each
machine by the global clustering with outliers in the following lemma (a non-outlier version of this
lemma appears in [Bateni et al., 2014b]).

Lemma 4.5.2. For a partition V1, . . . , Vk of V and 1 ≤ p <∞,
∑m

i=1OPT k+z(Vi)
p ≤ 2pOPT pk,z.

Proof. Given a machine with datapoints Vi ⊆ V , we will first show that

OPT (Vi, Vi)
p ≤ 2pOPT (Vi, V)p.

Let c1, . . . , ck be the optimal centers for OPT (Vi, V). Given cj , let c′j be the closest point in Vi to
cj . Note that there may be one point c′ which is the closest point in Vi to two different centers, but

133

this just means we will end up with ≤ k centers total, which is okay. Then we have the following:

OPT (Vi, Vi)
p ≤

∑
v∈Vi

d(v, c′v)
p

≤ 2p−1
∑
v∈Vi

(d(v, cv)
p + d(cv, c

′
v)
p)

≤ 2p
∑
v∈Vi

d(v, cv)
p

≤ 2pOPT (Vi, V)p

The third inequality follows because c′v was defined as the closest point in Vi to cv. By choosing
k′ = k + z, we have that OPT k+z(Vi, Vi)

p ≤ 2pOPT k+z(Vi, V)p for all i.

Let the centers in OPT k,z be c1, . . . , ck, and for v ∈ V , let cv denote the closest of these
centers to v. Given the outliers Z from OPT k,z, let V ′i = Vi \ Z. Then OPT k+z(Vi, V)p ≤
OPT k(V ′i , V)p ≤∑v∈V ′i

d(v, cv)
p. The second inequality follows because with k + z centers, we

can make all points in Vi ∩ Z a center and also use the centers in OPT k(V ′i , V).

Summing over all i, we arrive at
∑

iOPT k+z(Vi, V)p ≤ OPT pk,z, and the lemma follows.

Now we prove Theorem 4.5.1.

Proof. (Theorem 4.5.1) Given a (δ, α)-approximation algorithm A for balanced clustering in `p
with z outliers and a (γ, β)-approximation algorithm B for `p clustering, we show that Algorithm
18 outputs a set X of centers with provable approximation guarantees. First we consider the case
where p <∞.

We start by defining all the notation we need for the proof. Let Z denote the set of outliers
returned by Algorithm 18 when running B, let Z∗ denote the outliers in OPT k,z(A,A), where
A =

⋃
tAt (defined in Algorithm 18), and let Z ′ denote the outliers in OPT k,z. Denote the

centers in OPT k,z(A,A) by x∗, denote the centers in OPT k,z by cj , and let c′j denote the closest
point in A to cj . Given a point v ∈ Vt, let av,, xv, and cv denote the closest point to v in At, X , or
OPT (V), respectively. Finally, let c′v denote the closest point to cv in A.

Using the triangle inequality and the fact that for all v, d(v, xv) ≤ d(v, xav),

∑
v∈V \Z

d(v, xv)
p ≤

∑
v∈V \Z

d(v, xav)
p ≤ 2p−1

∑
v∈V \Z

(d(v, av)
p + d(av, xav)

p) (4.4)

≤ 2p−1
∑
v∈V

d(v, av)
p + 2p−1

∑
v∈V \Z

d(av, xav)
p (4.5)

134

We can bound the first summation in Expression 4.5 as follows.∑
v∈V

d(v, av)
p =

∑
i

∑
v∈Vi

d(v, av)
p (4.6)

≤
∑
i

βpOPT k+z(Vi, Vi)
p [by definition of B] (4.7)

≤ 2pβpOPT pk,z [by Lemma 4.5.2.] (4.8)

Now we show how to bound the second summation.

∑
v∈V \Z

d(av, xav)
p ≤ αp

∑
v∈V \Z∗

d(av, x
∗
v)
p [by def’n of A]

≤ αp
∑

v∈V \Z′
d(av, c

′
v)
p [by def’n of OPT k,z]

≤ 2p−1αp
∑

v∈V \Z′
(d(av, cv)

p + d(cv, c
′
v)
p) [by triangle ineq.]

≤ 2pαp
∑

v∈V \Z′
d(av, cv)

p [by definition of c′v]

≤ 22p−1αp
∑

v∈V \Z′
(d(v, av)

p + d(v, cv)
p) [by triangle ineq.]

≤ 22p−1αp
∑

v∈V \Z′
d(v, av)

p + 22p−1αp
∑

v∈V \Z′
d(v, cv)

p [expanding]

≤ 23p−1αpβpOPT pk,z + 22p−1αpOPT pk,z [by Expression 4.8]

≤ (23p−1αpβp + 22p−1αp)OPT pk,z [arithmetic]

Therefore, our final result is ∑
v∈V \Z

d(v, xv)
p

 1
p

≤
(
23p−1αpβp + 22p−1(αp + βp)

) 1
p OPT k,z.

For the communication complexity, it is clear that we communicate ≤ (k + z)mγ total points
and weights, and the weights are numbers ≤ n, so the communication cost is O(m(k + z)(d +
log n)γ). The balance constraints follow from the guarantees of AlgorithmA, and the fact that the
points in A are weighted. We also note that for all i, machine 1 can send the center assignments
of Ai to machine i, so that each datapoint knows its global center (and this does not increase the
communication cost above O(m(k + z)(d+ log n)γ)).

For k-center, we can derive the same result as k-median by using the same analysis, but re-
placing every summation with a maximum. For instance, we use a modified Lemma 4.5.2 to
show maxmi=1OPT k+z(Vi) ≤ 2OPT k,z. Our final result for k-center is maxv∈V \Z d(v, xv) ≤
(4αβ + 2α + 2β)OPT k,z.

135

136

Chapter 5

Conclusions

In this thesis, we develop the theory of beyond worst-case analysis in multiple areas including
perturbation resilience for clustering, data-driven clustering via algorithm configuration, and data-
driven dispatching for distributed machine learning. Specifically, we made the following contribu-
tions to BWCA.

k-center clustering under perturbation resilience We design robust, efficient algorithms that
output near-optimal clusterings under perturbation resilience. We show that any 2-approximation
algorithm for symmetric k-center will return the exact solution under 2-perturbation resilience,
and we give an algorithm which returns the exact solution for 2-perturbation resilient instances of
asymmetric k-center. We prove our results are tight by showing symmetric k-center under (2− δ)-
perturbation resilience is hard unless NP = RP .

Our work pushes the understanding of (promise) stability conditions farther in several ways.
We are the first to design computationally efficient algorithms to find the optimal clustering under
α-perturbation resilience with a constant value of α for a problem that is hard to approximate to
any constant factor in the worst case, thereby demonstrating the power of perturbation resilience.
Furthermore, we demonstrate the limits of this power by showing the first tight results in this space
for perturbation resilience. Our work also shows a surprising relation between symmetric and
asymmetric instances, in that they are equivalent under resilience to 2-perturbations, which is in
stark contrast to their widely differing tight approximation factors.

Finally, we initiate the study of clustering under local stability. We define a local notion of
perturbation resilience, and we give algorithms that simultaneously output all optimal clusters from
the perturbation resilient regions of the data, while still ensuring the worst-case approximation
guarantee. This allows a user to run one single algorithm even if she is not sure whether her input
is fully perturbation resilient, partly perturbation resilient, or not at all perturbation resilient, and
obtain good results in all cases.

Data-driven clustering We consider a related area of BWCA, in which the goal is to directly op-
timize for the expected performance over a specific application, which is modeled as an unknown
distribution over problem instances. We define rich, infinite families of clustering algorithms, and
then show tight bounds on the pseudo-dimension of these families, which leads to computational-
and sample-efficient algorithm configuration. More specifically, we give polynomial-time algo-

137

rithms which output a parameter which is provably close to the parameter with the best expected
performance over the unknown distribution, with high probability.

We consider three families of agglomerative algorithms with dynamic programming, and also
a family of algorithms generalizing Lloyd’s method. The linkage families include the popular
single-linkage and complete-linakge aglorithms, and the Lloyd’s family includes the celebrated k-
means++ algorithm, as well as the classic farthest-first traversal algorithm. We provide sample ef-
ficient and computationally efficient algorithms to learn near optimal parameters over an unknown
distribution of clustering instances, by developing techniques to bound the expected number of
discontinuities in the cost as a function of the parameter. The learned parameters vary among dif-
ferent types of datasets, and the learned parameters often significantly improve the error compared
to existing algorithms such as k-means++ and farthest-first traversal.

Distributed machine learning We propose and analyze a new framework for distributed learn-
ing. We consider the distributed machine learning model in which data is dispatched to multiple
machines for processing and the machines do not communicate during training time. The simplest
dispatching algorithm in this case would be random dispatching. Given that similar points tend to
have similar classes, we partition the data so that similar examples go to the same machine. We
cast the dispatching step as a clustering problem combined with novel fault tolerance and balance
constraints necessary for distributed systems. We show the added constraints make the objective
highly nontrivial, yet we provide LP rounding algorithms with provable guarantees. These are the
first algorithms with provable guarantees under both upper and lower capacity constraints, and may
be of interest beyond distributed learning. Finally, we consider the distributed clustering problem.
We construct general and robust algorithms for distributed clustering.

138

Bibliography

Karen Aardal, Pieter L van den Berg, Dion Gijswijt, and Shanfei Li. Approximation algorithms
for hard capacitated k-facility location problems. European Journal of Operational Research,
2:358–368, 2015. 4.1.2, 4.3.1

Margareta Ackerman, Shai Ben-David, and David Loker. Towards property-based classification of
clustering paradigms. In Proceedings of the Annual Conference on Neural Information Process-
ing Systems (NIPS), pages 10–18, 2010. 3.1.2

Gagan Aggarwal, Tomás Feder, Krishnaram Kenthapadi, Samir Khuller, Rina Panigrahy, Dilys
Thomas, and An Zhu. Achieving anonymity via clustering. In Proceedings of the twenty-fifth
ACM symposium on Principles of database systems, pages 153–162, 2006. 4.1.1

Sara Ahmadian and Chaitanya Swamy. Approximation algorithms for clustering problems with
lower bounds and outliers. In Proceedings of the Annual International Colloquium on Automata,
Languages, and Programming (ICALP), 2016. 4.1.1

Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for
k-means and euclidean k-median by primal-dual algorithms. In Proceedings of the Annual Sym-
posium on Foundations of Computer Science (FOCS), 2017. 4.1.2

Hyung-Chan An, Aditya Bhaskara, Chandra Chekuri, Shalmoli Gupta, Vivek Madan, and Ola
Svensson. Centrality of trees for capacitated k-center. In Integer Programming and Combina-
torial Optimization, pages 52–63. Springer, 2014. 4.1.1, 4.1.2, 4.3.1, 4.3.2, 4.3.2, 4.3.2, 4.3.2,
4.3.2, 4.3.14

Haris Angelidakis, Konstantin Makarychev, and Yury Makarychev. Algorithms for stable and per-
turbationresilient problems. In Proceedings of the Annual Symposium on Theory of Computing
(STOC), 2017. 1, 2.1, 2.1.1, 2.1.2, 2.1.2, 2.2

Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical foundations. Cam-
bridge University Press, 2009. 3.1

Kohei Arai and Ali Ridho Barakbah. Hierarchical k-means: an algorithm for centroids initializa-
tion for k-means. Reports of the Faculty of Science and Engineering, 36(1):25–31, 2007. 3.1,
3.1.2

Aaron Archer. Two o (log* k)-approximation algorithms for the asymmetric k-center problem. In
Integer Programming and Combinatorial Optimization, pages 1–14. Springer, 2001. 2.1.2

139

Sanjeev Arora, Rong Ge, and Ankur Moitra. Learning topic models - going beyond SVD. In
Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS), pages 1–
10, 2012. 2.1.2

David Arthur and Sergei Vassilvitskii. How slow is the k-means method? In Proceedings of
the twenty-second annual symposium on Computational geometry, pages 144–153. ACM, 2006.
3.1.2

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In Proceed-
ings of the Annual Symposium on Discrete Algorithms (SODA), pages 1027–1035, 2007. 3.1.1,
3.1.2

David Arthur, Bodo Manthey, and Heiko Röglin. Smoothed analysis of the k-means method.
Journal of the ACM (JACM), 58(5):19, 2011. 3.1.2

Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and Vinayaka
Pandit. Local search heuristics for k-median and facility location problems. SIAM Journal on
Computing, 33(3):544–562, 2004. 2.1

Hassan Ashtiani and Shai Ben-David. Representation learning for clustering: a statistical frame-
work. In Proceedings of the Annual Conference on Uncertainty in Artificial Intelligence, pages
82–91, 2015. 3.1.2

Pranjal Awasthi and Maria-Florina Balcan. Center based clustering: A foundational perspective.
2014. 4.2

Pranjal Awasthi and Or Sheffet. Improved spectral-norm bounds for clustering. In Proceedings of
the International Workshop on Approximation, Randomization, and Combinatorial Optimization
Algorithms and Techniques (APPROX-RANDOM), pages 37–49. Springer, 2012. 2.1.2

Pranjal Awasthi, Avrim Blum, and Or Sheffet. Stability yields a ptas for k-median and k-means
clustering. In Proceedings of the Annual Symposium on Foundations of Computer Science
(FOCS), pages 309–318, 2010. 2.1.2

Pranjal Awasthi, Avrim Blum, and Or Sheffet. Center-based clustering under perturbation stability.
Information Processing Letters, 112(1):49–54, 2012. 2.1, 2.1.2, 3, 9, 3.1.1, 3.1.2, 3.3

Pranjal Awasthi, Maria-Florina Balcan, and Konstantin Voevodski. Local algorithms for interactive
clustering. In Proceedings of the International Conference on Machine Learning (ICML), pages
550–558, 2014. 3.1.1, 3.1.2, 3.3

Pranjal Awasthi, Maria-Florina Balcan, and Colin White. General and robust communication-
efficient algorithms for distributed clustering. arXiv preprint arXiv:1703.00830, 2017. 1

Kevin Aydin, MohammadHossein Bateni, and Vahab Mirrokni. Distributed balanced partitioning
via linear embedding. In Proceedings of the International Conference on Web Search and Data
Mining, pages 387–396, 2016. 4.1.2

140

Maria-Florina Balcan and Mark Braverman. Finding low error clusterings. In Proceedings of the
Annual Conference on Learning Theory (COLT), pages 3–4, 2009. 2.1.2

Maria-Florina Balcan and Mark Braverman. Nash equilibria in perturbation-stable games. Theory
of Computing, 13(13):1–31, 2017. 2.1.2

Maria Florina Balcan and Yingyu Liang. Clustering under perturbation resilience. SIAM Journal
on Computing, 45(1):102–155, 2016. 2.1, 2.1.2, 2.3, 3, 10, 3.1.1, 3.1.2, 3.3, 3.3

Maria-Florina Balcan and Colin White. Clustering under local stability: Bridging the gap between
worst-case and beyond worst-case analysis. arXiv preprint arXiv:1705.07157, 2017. 1

Maria Florina Balcan, Heiko Röglin, and Shang-Hua Teng. Agnostic clustering. In International
Conference on Algorithmic Learning Theory, pages 384–398, 2009. 2.1.2

Maria-Florina Balcan, Avrim Blum, Shai Fine, and Yishay Mansour. Distributed learning, commu-
nication complexity, and privacy. In Proceedings of the Annual Conference on Learning Theory
(COLT), 2012. 4.1

Maria-Florina Balcan, Avrim Blum, and Anupam Gupta. Clustering under approximation stability.
Journal of the ACM (JACM), 60(2):8, 2013a. 2.1, 2.1.2, 5, 17

Maria-Florina Balcan, Steven Ehrlich, and Yingyu Liang. Distributed k-means and k-median clus-
tering on general communication topologies. In Proceedings of the Annual Conference on Neu-
ral Information Processing Systems (NIPS), 2013b. 4.1

Maria-Florina Balcan, Nika Haghtalab, and Colin White. k-center clustering under perturbation
resilience. In Proceedings of the Annual International Colloquium on Automata, Languages,
and Programming (ICALP), 2016. 1, 3.1.1, 3.1.2, 3.3

Maria-Florina Balcan, Vaishnavh Nagarajan, Ellen Vitercik, and Colin White. Learning-theoretic
foundations of algorithm configuration for combinatorial partitioning problems. In Proceedings
of the Annual Conference on Learning Theory (COLT), pages 213–274, 2017. 1

Maria-Florina Balcan, Travis Dick, and Colin White. Data-driven clustering via parameterized
lloyd’s families. In Proceedings of the Annual Conference on Neural Information Processing
Systems (NIPS), 2018. 1, 3.1.1, 3.4

Maria-Florina F Balcan, Steven Ehrlich, and Yingyu Liang. Distributed k-means and k-median
clustering on general topologies. In Proceedings of the Annual Conference on Neural Informa-
tion Processing Systems (NIPS), pages 1995–2003, 2013c. 4.1, 4.1.2

Judit Bar-Ilan, Guy Kortsarz, and David Peleg. How to allocate network centers. Journal of
Algorithms, 15(3):385 – 415, 1993. 4.1.2

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002. 3.4.1

141

MohammadHossein Bateni, Aditya Bhaskara, Silvio Lattanzi, and Vahab Mirrokni. Distributed
balanced clustering via mapping coresets. In Proceedings of the Annual Conference on Neural
Information Processing Systems (NIPS), pages 2591–2599, 2014a. 1

Mohammadhossein Bateni, Aditya Bhaskara, Silvio Lattanzi, and Vahab Mirrokni. Distributed
balanced clustering via mapping coresets. In Proceedings of the Annual Conference on Neural
Information Processing Systems (NIPS), pages 2591–2599, 2014b. 4.1, 4.1.1, 4.1.2, 4.2, 4.5, 2,
4.5

Jonathan Baxter. A bayesian/information theoretic model of learning to learn via multiple task
sampling. Machine learning, 28(1):7–39, 1997. 3.1, 3.1.2

Shalev Ben-David and Lev Reyzin. Data stability in clustering: A closer look. In Algorithmic
Learning Theory, pages 184–198. Springer, 2012. 2.3.3, 2.3.3

Yonatan Bilu and Nathan Linial. Are stable instances easy? Combinatorics, Probability and
Computing, 21(05):643–660, 2012. 1, 2.1, 2.1.2, 2.2

Florian Bourse, Marc Lelarge, and Milan Vojnovic. Balanced graph edge partition. In Proceedings
of the Annual Conference on Knowledge Discovery and Data Mining (KDD), pages 1456–1465,
2014. 4.1.2

Mark Braverman, Faith Ellen, Rotem Oshman, Toniann Pitassi, and Vinod Vaikuntanathan. A
tight bound for set disjointness in the message-passing model. In Proceedings of the Annual
Symposium on Foundations of Computer Science (FOCS), pages 668–677, 2013. 4.1.2, 4.2

Jarosław Byrka, Krzysztof Fleszar, Bartosz Rybicki, and Joachim Spoerhase. Bi-factor approxi-
mation algorithms for hard capacitated k-median problems. In Proceedings of the Annual Sym-
posium on Discrete Algorithms (SODA), pages 722–736, 2015a. 4.1.2

Jarosław Byrka, Krzysztof Fleszar, Bartosz Rybicki, and Joachim Spoerhase. Bi-factor approxi-
mation algorithms for hard capacitated k-median problems. In Proceedings of the Annual Sym-
posium on Discrete Algorithms (SODA), pages 722–736, 2015b. 4.1.1

Jarosław Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An im-
proved approximation for k-median, and positive correlation in budgeted optimization. In Pro-
ceedings of the Annual Symposium on Discrete Algorithms (SODA), pages 737–756, 2015c. 2.1,
4.1.2, 4.5

Fazli Can. Incremental clustering for dynamic information processing. ACM Transactions on
Information Systems (TOIS), 11(2):143–164, 1993. 3.1.1

Yves Caseau, François Laburthe, and Glenn Silverstein. A meta-heuristic factory for vehicle rout-
ing problems. In International Conference on Principles and Practice of Constraint Program-
ming (CP), pages 144–158. Springer, 1999. 3.1, 3.1.2

Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental clustering
and dynamic information retrieval. In Proceedings of the Annual Symposium on Theory of
Computing (STOC), pages 626–635, 1997. 3.1.1

142

Moses Charikar, Sudipto Guha, Éva Tardos, and David B Shmoys. A constant-factor approxima-
tion algorithm for the k-median problem. In Proceedings of the Annual Symposium on Theory
of Computing (STOC), pages 1–10, 1999a. 4.1.2, 4.3.1, 4.3.1

Moses Charikar, Sudipto Guha, Éva Tardos, and David B Shmoys. A constant-factor approxima-
tion algorithm for the k-median problem. In Proceedings of the Annual Symposium on Theory
of Computing (STOC), pages 1–10, 1999b. 2.1, 4.1.2

Moses Charikar, Samir Khuller, David M Mount, and Giri Narasimhan. Algorithms for facility lo-
cation problems with outliers. In Proceedings of the Annual Symposium on Discrete Algorithms
(SODA), pages 642–651, 2001. 2.1, 4.1.2

Chandra Chekuri and Shalmoli Gupta. Perturbation resilient clustering for k-center and related
problems via lp relaxations. In Proceedings of the International Workshop on Approxima-
tion, Randomization, and Combinatorial Optimization Algorithms and Techniques (APPROX-
RANDOM), 2018. 2.1.2

Jiecao Chen, He Sun, David Woodruff, and Qin Zhang. Communication-optimal distributed clus-
tering. In Proceedings of the Annual Conference on Neural Information Processing Systems
(NIPS), pages 3720–3728, 2016. 4.1.2

Ke Chen. A constant factor approximation algorithm for k-median clustering with outliers. In
Proceedings of the Annual Symposium on Discrete Algorithms (SODA), pages 826–835, 2008.
2.1, 4.1.1, 4.1.2, 4.5

Julia Chuzhoy, Sudipto Guha, Eran Halperin, Sanjeev Khanna, Guy Kortsarz, Robert Krauthgamer,
and Joseph Seffi Naor. Asymmetric k-center is log* n-hard to approximate. Journal of the ACM
(JACM), 52(4):538–551, 2005. 2.1.1, 2.1.2, 2.5.2

Michael B Cohen, Yin Tat Lee, Gary Miller, Jakub Pachocki, and Aaron Sidford. Geometric
median in nearly linear time. In Proceedings of the Annual Symposium on Theory of Computing
(STOC), pages 9–21. ACM, 2016. 3.1

Vincent Cohen-Addad and Chris Schwiegelshohn. On the local structure of stable clustering in-
stances. In Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS),
2017. 2.1.2

Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip Bohannon,
Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni. Pnuts: Yahoo!’s hosted
data serving platform. Proceedings of the VLDB Endowment, 1(2):1277–1288, 2008. 4.1.2

Marek Cygan, MohammadTaghi Hajiaghayi, and Samir Khuller. Lp rounding for k-centers with
non-uniform hard capacities. In Proceedings of the Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 273–282, 2012. 4.1.1, 4.1.2, 4.3.1, 4.3.2, 4.3.2, 4.3.2, 4.3.9, 4.3.2

Sanjoy Dasgupta and Philip M Long. Performance guarantees for hierarchical clustering. Journal
of Computer and System Sciences, 70(4):555–569, 2005. 3.1.1, 3.1.2

143

Daniel Delling, Andrew V Goldberg, Ilya Razenshteyn, and Renato F Werneck. Graph partition-
ing with natural cuts. In Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS), pages 1135–1146, 2011. 4.1.2

Jim Demmel, Jack Dongarra, Victor Eijkhout, Erika Fuentes, Antoine Petitet, Rich Vuduc, R Clint
Whaley, and Katherine Yelick. Self-adapting linear algebra algorithms and software. Proceed-
ings of the IEEE, 93(2):293–312, 2005. 3.1, 3.1.2

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the royal statistical society, pages 1–38, 1977. 3.1.2

Amit Deshpande, Anand Louis, and Apoorv Vikram Singh. Clustering perturbation resilient in-
stances. arXiv preprint arXiv:1804.10827, 2018. 2.1.2

Travis Dick, Mu Li, Venkata Krishna Pillutla, Colin White, Maria Florina Balcan, and Alex Smola.
Data driven resource allocation for distributed learning. In Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS), 2017. 1, 4.1.1

R.M Dudley. The sizes of compact subsets of Hilbert space and continuity of Gaussian processes.
Journal of Functional Analysis, 1(3):290 – 330, 1967. 3.2

Martin E Dyer and Alan M Frieze. A simple heuristic for the p-centre problem. Operations
Research Letters, 3(6):285–288, 1985. 2.1.2, 2.3.2

Martin E. Dyer and Alan M. Frieze. Planar 3dm is np-complete. Journal of Algorithms, 7(2):
174–184, 1986. 2.3.3

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning, vol-
ume 1. Springer, 2001. 3.1

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
Proceedings of the International Conference on Machine Learning (ICML), 2015. 3.1.2

Ankit Garg, Tengyu Ma, and Huy Nguyen. On communication cost of distributed statistical es-
timation and dimensionality. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NIPS), pages 2726–2734, 2014. 4.1.2

Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Com-
puter Science, 38:293–306, 1985. 1, 2.1, 2.1.2, 2.3.2, 2.6.4, 3.1.1, 3.1.2, 3.4, 4.1.2

Anna Grosswendt and Heiko Roeglin. Improved analysis of complete linkage clustering. In Pro-
ceedings of the Annual European Symposium on Algorithms (ESA), volume 23, pages 656–667,
2015. 3.1.1, 3.3

Anupam Gupta and Kanat Tangwongsan. Simpler analyses of local search algorithms for facility
location. CoRR, abs/0809.2554, 2008. 1, 4.5

Rishi Gupta and Tim Roughgarden. A PAC approach to application-specific algorithm selection. In
Proceedings of the Annual Conference on Innovations in Theoretical Computer Science (ITCS),
pages 123–134, 2016. 1, 3.1, 3.1.2, 3.2.1

144

Rishi Gupta, Tim Roughgarden, and C Seshadhri. Decompositions of triangle-dense graphs. In
Proceedings of the Annual Conference on Innovations in Theoretical Computer Science (ITCS),
pages 471–482, 2014. 2.1.2

Sariel Har-Peled and Bardia Sadri. How fast is the k-means method? Algorithmica, 41(3):185–
202, 2005. 3.1.2

Moritz Hardt and Aaron Roth. Beyond worst-case analysis in private singular vector computation.
In Proceedings of the Annual Symposium on Theory of Computing (STOC), pages 331–340,
2013. 2.1, 2.1.2

Richard E Higgs, Kerry G Bemis, Ian A Watson, and James H Wikel. Experimental designs
for selecting molecules from large chemical databases. Journal of chemical information and
computer sciences, 37(5):861–870, 1997. 3.1, 3.1.2

Dorit S Hochbaum and David B Shmoys. A best possible heuristic for the k-center problem.
Mathematics of operations research, 10(2):180–184, 1985. 2.1.2, 2.3.2, 2.6.3

Harry B Hunt III, Madhav V Marathe, Venkatesh Radhakrishnan, and Richard E Stearns. The
complexity of planar counting problems. SIAM Journal on Computing, 27(4):1142–1167, 1998.
2.3.3

Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility location
problems. In Proceedings of the Annual Symposium on Theory of Computing (STOC), pages
731–740, 2002. 1, 2.1, 2.6.4

Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V Vazirani.
Greedy facility location algorithms analyzed using dual fitting with factor-revealing lp. Journal
of the ACM (JACM), 50(6):795–824, 2003. 4.3

Wenhao Jiang and Fu-lai Chung. Transfer spectral clustering. In Proceedings of the Annual Con-
ference on Knowledge Discovery and Data Mining (KDD), pages 789–803, 2012. 3.1.2

Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman, and
Angela Y Wu. An efficient k-means clustering algorithm: Analysis and implementation. trans-
actions on pattern analysis and machine intelligence, 24(7):881–892, 2002. 3.1.2

Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an introduction to cluster
analysis, volume 344. John Wiley & Sons, 2009. 3.1.2

Samir Khuller and Yoram J. Sussmann. The capacitated k-center problem. In Proceedings of the
Annual European Symposium on Algorithms (ESA), pages 152–166, 1996. 4.1.1, 4.1.2, 4.3.1,
4.3.2, 4.3.2

Jon Kleinberg and Eva Tardos. Algorithm design. Pearson Education India, 2006. 2.3.3

Jon M Kleinberg. An impossibility theorem for clustering. In Proceedings of the Annual Confer-
ence on Neural Information Processing Systems (NIPS), pages 463–470, 2003. 3.1.2

145

Ari Kobren, Nicholas Monath, Akshay Krishnamurthy, and Andrew McCallum. An online hierar-
chical algorithm for extreme clustering. In Proceedings of the Annual Conference on Knowledge
Discovery and Data Mining (KDD), 2017. 3.4

Amit Kumar and Ravindran Kannan. Clustering with spectral norm and the k-means algorithm.
In Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS), pages
299–308, 2010. 2.1.2

Amit Kumar, Yogish Sabharwal, and Sandeep Sen. A simple linear time (1+ ε)-approximation
algorithm for geometric k-means clustering in any dimensions. In Proceedings of the Annual
Symposium on Foundations of Computer Science (FOCS), pages 454–462, 2004. 2.1, 2.1.2

Hunter Lang, David Sontag, and Aravindan Vijayaraghavan. α-expansion is exact on stable in-
stances. In Proceedings of the International Conference on Artificial Intelligence and Statistics
(AISTATS), volume 1050, page 6, 2017. 2.1.2

Euiwoong Lee, Melanie Schmidt, and John Wright. Improved and simplified inapproximability
for k-means. Information Processing Letters, 120:40–43, 2017. 1, 2.1, 2.6.4

Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. Empirical hardness models: Method-
ology and a case study on combinatorial auctions. Journal of the ACM (JACM), 56(4):22, 2009.
3.1, 3.1.2

Mu Li, David G Andersen, Alex J Smola, and Kai Yu. Communication efficient distributed ma-
chine learning with the parameter server. In Proceedings of the Annual Conference on Neural
Information Processing Systems (NIPS), pages 19–27, 2014. 4.1

Shanfei Li. An improved approximation algorithm for the hard uniform capacitated k-median
problem. In Proceedings of the International Workshop on Approximation, Randomization, and
Combinatorial Optimization Algorithms and Techniques (APPROX-RANDOM), pages 325–338,
2014. 4.1.1, 4.1.2, 4.3, 4.3.1, 4.3.1, 4.3.1, 4.3.1

Shi Li. Approximating capacitated k-median with (1 + ε)k open facilities. Proceedings of the
Annual Symposium on Discrete Algorithms (SODA), 2016. 4.1.1

Yingyu Liang, Maria-Florina F Balcan, Vandana Kanchanapally, and David Woodruff. Improved
distributed principal component analysis. In Proceedings of the Annual Conference on Neural
Information Processing Systems (NIPS), pages 3113–3121, 2014. 4.1

Jyh-Han Lin and Jeffrey Scott Vitter. Approximation algorithms for geometric median problems.
Information Processing Letters, 44(5):245–249, 1992. 4.1.1, 4.5

Stuart Lloyd. Least squares quantization in pcm. transactions on information theory, 28(2):129–
137, 1982. 3.1, 3.1.2

James MacQueen et al. Some methods for classification and analysis of multivariate observations.
In symposium on mathematical statistics and probability, volume 1, pages 281–297. Oakland,
CA, USA, 1967. 3.1.2

146

Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Bilu-linial stable in-
stances of max cut and minimum multiway cut. In Proceedings of the Annual Symposium on
Discrete Algorithms (SODA), pages 890–906, 2014. 2.1, 2.1.2

Konstantin Makarychev, Yury Makarychev, Maxim Sviridenko, and Justin Ward. A bi-criteria
approximation algorithm for k means. In Proceedings of the International Workshop on
Approximation, Randomization, and Combinatorial Optimization Algorithms and Techniques
(APPROX-RANDOM), 2016. 2.1, 4.1.2

Gustavo Malkomes, Matt J Kusner, Wenlin Chen, Kilian Q Weinberger, and Benjamin Moseley.
Fast distributed k-center clustering with outliers on massive data. In Proceedings of the Annual
Conference on Neural Information Processing Systems (NIPS), pages 1063–1071, 2015. 4.1,
4.1.1, 4.1.2, 4.2, 4.5, 4.5

Bodo Manthey and Matthijs B Tijink. Perturbation resilience for the facility location problem.
Operations research letters, 46(2):215–218, 2018. 2.1.2

Pascal Massart. Some applications of concentration inequalities to statistics. In Annales-Faculte
des Sciences Toulouse Mathematiques, volume 9, pages 245–303. Université Paul Sabatier,
2000. 3.4.1

Joel Max. Quantizing for minimum distortion. IRE Transactions on Information Theory, 6(1):
7–12, 1960. 3.1.2

Matús Mihalák, Marcel Schöngens, Rastislav Srámek, and Peter Widmayer. On the complexity
of the metric tsp under stability considerations. In SOFSEM, volume 6543, pages 382–393.
Springer, 2011. 2.1.2

Rafail Ostrovsky, Yuval Rabani, Leonard J Schulman, and Chaitanya Swamy. The effectiveness of
lloyd-type methods for the k-means problem. Journal of the ACM (JACM), 59(6):28, 2012. 2.1,
2.1.2, 3.1.2

Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and
complexity. Courier Corporation, 1998. 4.3.1

Dan Pelleg and Andrew Moore. Accelerating exact k-means algorithms with geometric reasoning.
In Proceedings of the Annual Conference on Knowledge Discovery and Data Mining (KDD),
pages 277–281, 1999. 3.1.2

José M Pena, Jose Antonio Lozano, and Pedro Larranaga. An empirical comparison of four ini-
tialization methods for the k-means algorithm. Pattern recognition letters, 20(10):1027–1040,
1999. 3.1, 3.1.2

David Pollard. Convergence of stochastic processes. Springer-Verlag, 1984. 3.1

David Pollard. Empirical processes. Institute of Mathematical Statistics, 1990. 3.1

Kim D Pruitt, Tatiana Tatusova, Garth R Brown, and Donna R Maglott. Ncbi reference sequences
(refseq): current status, new features and genome annotation policy. Nucleic acids research, 40
(D1):D130–D135, 2011. 3.4

147

Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y Ng. Self-taught learn-
ing: transfer learning from unlabeled data. In Proceedings of the International Conference on
Machine Learning (ICML), pages 759–766, 2007. 3.1.2

John R Rice. The algorithm selection problem. Advances in computers, 15:65–118, 1976. 3.1,
3.1.2

Tim Roughgarden. Beyond worst-case analysis. http://theory.stanford.edu/ tim/f14/f14.html, 2014.
2.1, 2.1.2

Mehreen Saeed, Onaiza Maqbool, Haroon Atique Babri, Syed Zahoor Hassan, and S Mansoor
Sarwar. Software clustering techniques and the use of combined algorithm. In Proceedings of
the European Conference on Software Maintenance and Reengineering, pages 301–306. IEEE,
2003. 3.1.1, 3.1.2, 3.3

Ozan Sener, Hyun Oh Song, Ashutosh Saxena, and Silvio Savarese. Learning transferrable rep-
resentations for unsupervised domain adaptation. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NIPS), pages 2110–2118, 2016. 3.1.2

Daniel A Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM (JACM), 51(3):385–463, 2004. 1,
2.1

Timo Tossavainen. On the zeros of finite sums of exponential functions. Australian Mathematical
Society Gazette, 33(1):47–50, 2006. 3.3.6

Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion:
Maximizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014. 3.1.2

Leslie G Valiant and Vijay V Vazirani. Np is as easy as detecting unique solutions. Theoretical
Computer Science, 47:85–93, 1986. 2.3.3, 2.3.3

Vladimir N. Vapnik and Leon Bottou. Local algorithms for pattern recognition and dependencies
estimation. Neural Computation, 1993. 1, 4.1

Andrea Vattani. K-means requires exponentially many iterations even in the plane. Discrete &
Computational Geometry, 45(4):596–616, 2011. 3.1.2

Aravindan Vijayaraghavan, Abhratanu Dutta, and Alex Wang. Clustering stable instances of eu-
clidean k-means. In Proceedings of the Annual Conference on Neural Information Processing
Systems (NIPS), pages 6503–6512, 2017. 2.1.2

Sundar Vishwanathan. An o(log*n) approximation algorithm for the asymmetric p-center problem.
In Proceedings of the Annual Symposium on Discrete Algorithms (SODA), 1996. 2.1.1, 2.1.2, 2,
2.5, 2.5.2, 2.5.2, 2.5.2, 2.5.2, 2, 2.5.2, 2.6.1

Konstantin Voevodski, Maria-Florina Balcan, Heiko Röglin, Shang-Hua Teng, and Yu Xia. Min-
sum clustering of protein sequences with limited distance information. In International Work-
shop on Similarity-Based Pattern Recognition, pages 192–206, 2011. 2.1.2

148

Kai Wei, Rishabh K Iyer, Shengjie Wang, Wenruo Bai, and Jeff A Bilmes. Mixed robust/average
submodular partitioning: Fast algorithms, guarantees, and applications. In Proceedings of the
Annual Conference on Neural Information Processing Systems (NIPS), pages 2233–2241, 2015.
4.1.2

James R White, Saket Navlakha, Niranjan Nagarajan, Mohammad-Reza Ghodsi, Carl Kingsford,
and Mihai Pop. Alignment and clustering of phylogenetic markers-implications for microbial
diversity studies. BMC bioinformatics, 11(1):152, 2010. 3.1.1, 3.1.2, 3.3

Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. SATzilla: portfolio-based al-
gorithm selection for SAT. Journal of Artificial Intelligence Research, 32:565–606, June 2008.
3.1, 3.1.2

Qiang Yang, Yuqiang Chen, Gui-Rong Xue, Wenyuan Dai, and Yong Yu. Heterogeneous transfer
learning for image clustering via the social web. In Proceedings of the Conference on Natural
Language Processing, pages 1–9, 2009. 3.1.2

Y. You, J. Demmel, K. Czechowski, L. Song, and R. Vuduc. CA-SVM: Communication-avoiding
support vector machines on clusters. In Proceedings of the International Parallel and Dis-
tributed Processing Symposium (IPDPS), 2015. 4.1.2

Yuchen Zhang, John C. Duchi, and Martin Wainwright. Communication-efficient algorithms for
statistical optimization. In Proceedings of the Annual Conference on Neural Information Pro-
cessing Systems (NIPS), 2012. 4.1, 4.1.2

Yuchen Zhang, John Duchi, Michael Jordan, and Martin Wainwright. Information-theoretic lower
bounds for distributed statistical estimation with communication constraints. In Proceedings of
the Annual Conference on Neural Information Processing Systems (NIPS), 2013. 4.1, 4.1.2

149

	1 Introduction
	2 k-center Clustering under Perturbation Resilience
	2.1 Introduction
	2.1.1 Results and techniques
	2.1.2 Related work

	2.2 Preliminaries and basic properties
	2.2.1 Local Perturbation Resilience

	2.3 k-center under alpha-perturbation resilience
	2.3.1 alpha-approximations are optimal under alpha-PR
	2.3.2 k-center under 2-PR
	2.3.3 Hardness of k-center under perturbation resilience

	2.4 k-center under metric perturbation resilience
	2.5 k-center under local perturbation resilience
	2.5.1 Symmetric k-center
	2.5.2 Asymmetric k-center

	2.6 k-center under (alpha,epsilon)-perturbation resilience
	2.6.1 Symmetric k-center
	2.6.2 Local perturbation resilience
	2.6.3 Asymmetric k-center
	2.6.4 APX-Hardness under perturbation resilience

	3 Data-Driven Clustering
	3.1 Introduction
	3.1.1 Results and techniques
	3.1.2 Related work

	3.2 Preliminaries
	3.3 Agglomerative algorithms with dynamic programming
	3.3.1 Definition of algorithm classes
	3.3.2 Discretization
	3.3.3 Pseudo-dimension upper bounds
	3.3.4 Efficient algorithms
	3.3.5 Pseudo-dimension lower bounds

	3.4 (alpha,beta)-Lloyds++
	3.4.1 Sample efficiency
	3.4.2 Computational efficiency

	4 Data-Driven Dispatching for Distributed Learning
	4.1 Introduction
	4.1.1 Results and techniques
	4.1.2 Related work

	4.2 Preliminaries
	4.3 Fault Tolerant Balanced Clustering
	4.3.1 Bicriteria algorithms
	4.3.2 True approximation algorithm for k-center

	4.4 Structure of Balanced Clustering
	4.5 General Robust Distributed Clustering

	5 Conclusions

