
Combinatorial Optimization

Under Uncertainty:

Probing and Stopping-Time Algorithms

Sahil Singla

CMU-CS-18-111
August, 2018

School of Computer Science
Carnegie Mellon University

Pi�sburgh, PA 15213

�esis Committee:

Manuel Blum (Co-Chair)
Anupam Gupta (Co-Chair)

Robert D. Kleinberg (Cornell University)
R. Ravi (Carnegie Mellon University)

Jan Vondrák (Stanford University)

Submi�ed in partial ful�llment of the requirements

for the degree of Doctor of Philosophy.

Copyright © 2018 Sahil Singla

�is research was sponsored by Google, PNC, Bosch, and the National Science Foundation under grant numbers
CCF-1016799, CCF-1536002, and CCF-1617790. �e views and conclusions contained in this document are those
of the author and should not be interpreted as representing the o�cial policies, either expressed or implied, of any
sponsoring institution, the U.S. government or any other entity.



Keywords: Approximation Algorithms, Optimal Stopping �eory, Adaptivity Gaps, Com-
binatorial Optimization, Optimization Under Uncertainty, Probing Algorithms, Online Algo-
rithms, Algorithmic Game �eory.



Dedicated to my family.



iv



Abstract

Combinatorial optimization captures many natural problems such as match-
ing, load balancing, social welfare, network design, clustering, and submodular op-
timization. Classically, these problems have been studied in the full-information

se�ing, i.e., where the entire input—an objective function and some constraints—is
given and the goal is to select a feasible set to maximize/minimize the objective
function. In this thesis we focus on combinatorial problems in an uncertain envi-
ronment where we only have partial knowledge about the input. In particular, we
study models where the input is revealed to us element-by-element and we have to
make irrevocable decisions. Depending on whether we can control the revelation
order of these elements, we separate our models and algorithms into two groups.

(A) Probing Algorithms: In these models we have stochastic knowledge about
the input, but the uncertainty of an element realizes only a�er we probe it.
We can choose the order and the set of elements to probe; however, we do not
wish to probe all of them as either probing incurs a price (the price of informa-

tion model) or there are probing constraints (the constrained stochastic probing

model). Some examples are the Pandora’s box and the Best-box problems.

(B) Stopping-Time Algorithms: In these models the input is revealed element-
by-element in an order that we cannot control. �ese models are inspired
from work in the �eld of Optimal Stopping �eory. In particular, we consider
combinatorial problems when either we have stochastic knowledge about the
input but the revelation order is chosen by an adversary (the Prophet Inequality

model) or when we have no prior knowledge about the input but the revelation
order is chosen uniformly at random (the Secretary model).



vi



Acknowledgments

First of all, I am extremely grateful to Anupam Gupta for being my PhD advisor.
He taught me everything from how to �nd a research problem to how to write a
research paper. I am thankful to him for introducing me to the �eld of stochastic
combinatorial optimization. �is area forms a perfect mix of my research interests:
optimization and probability theory.

I am thankful to Manuel Blum, my second PhD advisor, for his constant sup-
port. Although we never worked on a problem together, he played an instrumental
role during the early years of my PhD. I learnt from him that there are interest-
ing problems everywhere, and if one works hard on a problem, one will �nd many
ideas of great intellectual and practical value. Manuel’s humble nature, despite his
long list of accomplishments, played a crucial role in making me feel welcome and
in �nding a home in the theoretical CS community.

During my PhD, I was very fortunate to get the opportunities to visit and learn
from Ravishankar Krishnaswamy and Deeparnab Chakrabarty at Microso� Banga-
lore, from Mohit Singh at Microso� Redmond, and from Ma� Weinberg at Prince-
ton. I will always remain grateful to them. I am also thankful to the Simons Institute
for the �eory of Computing for hosting me at their beautiful Berkeley campus in
Fall 2016 and Fall 2017.

I am grateful to my collaborators for bearing with me and having the patience
to answer all my silly questions: Aviad Rubinstein, Viswanath Nagarajan, Soheil
Ehsani, �omas Kesselheim, R. Ravi, Ellis Hershkowitz, Domagoj Bradač, Haotian
Jiang, Ziv Scully, Janardhan Kulkarni, Euiwoong Lee, Guru Prashanth, Mohammad
Hajiaghayi, Goran Žužić, Ariel Procaccia, and Alex Psomas.

I would like to thank my thesis commi�ee members, Robert Kleinberg, Jan Von-
drak, and R. Ravi, for their invaluable feedback.

Many of the technical skills I developed were possible only because of the
long discussions with the strong and diverse theory students at CMU. I am par-
ticularly thankful to Euiwoong Lee, Guru Prashanth, Goran Žužić, David Wajc,
David Kurokawa, Ameya Velingkar, Collin White, Jakub Pachocki, Vijay Bhat-
tiprolu, Nika Haghtalab, Nicholas Rech, Ziv Scully, Roie Levin, Ainesh Bakshi,
Naama Ben-David, Jason Li, Ritesh Noothiga�u, and Pedro Paredes.

I would also use this opportunity to thank my friends who helped me in vari-
ous stages of life: Anuj Kalia, Vaibhav Raheja, Navdeep Singh, Shayak Sen, Manzil
Zaheer, Ankit Garg, Manish Sinha, Ashish Baid, Saurabh Singla, Sahil Rastogi, Bijit
Singha, Sukanya Kadam, Gagandeep Singh Bhatia, and Ravneet Singh.

Finally, I could not have achieved anything in life without the unconditional and
constant support of my family: my mom, dad, late grandmother, sister Aarushi, and
wife Akanksha.



viii



Contents

I Introduction 1

1 Overview 3

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 How to Model Combinatorial Optimization . . . . . . . . . . . . . . . . . . . . . 4
1.3 How to Model Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 �esis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 �esis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 13

2.1 General Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Combinatorial Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Combinatorial Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Some Properties of Combinatorial Functions . . . . . . . . . . . . . . . . . . . . 16

II Probing Algorithms 19

3 �e Price of Information via Frugal Algorithms 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Bounding the Optimal Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Designing an Adaptive Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Applications to Utility/Disutility Optimization . . . . . . . . . . . . . . . . . . . 30
3.5 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Multistage Probing via the Markovian Price of Information 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Grade and Prevailing Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Adaptive Algorithms for Utility Maximization . . . . . . . . . . . . . . . . . . . 43
4.4 Illustrative Examples and Missing Proofs . . . . . . . . . . . . . . . . . . . . . . 49

ix



5 Constrained Stochastic Probing via Adaptivity Gaps 51

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Adaptive Strategies and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Monotone Non-Negative Submodular Functions . . . . . . . . . . . . . . . . . . 55
5.4 Non-Monotone Non-Negative Submodular Functions . . . . . . . . . . . . . . . 62
5.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Constrained Stochastic Multi-Value Probing 71

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Combinatorial Functions over Independent Items . . . . . . . . . . . . . . . . . 72
6.3 Adaptivity Gaps Beyond Bernoulli Variables for Submodular Functions . . . . . 73
6.4 Adaptivity Gaps for a Weighted Rank Function of a k-Extendible System . . . . 74
6.5 Adaptivity Gaps for Subadditive Functions . . . . . . . . . . . . . . . . . . . . . 82

7 �e Price of Information under Constraints 91

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.2 Probing Constraints via Adaptivity Gaps . . . . . . . . . . . . . . . . . . . . . . 93
7.3 Commitment Constraints via Linear Programs . . . . . . . . . . . . . . . . . . . 97
7.4 Sampling Constraints via Robustness . . . . . . . . . . . . . . . . . . . . . . . . 99

III Stopping-Time Algorithms 107

8 �e Prophet Inequality via Online Contention Resolution Schemes 109

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.2 Online Contention Resolution Schemes . . . . . . . . . . . . . . . . . . . . . . . 112
8.3 Designing OCRS Assuming an Ex-Ante Prophet Inequality . . . . . . . . . . . . 114
8.4 An Ex-Ante Prophet Inequality for Matroids . . . . . . . . . . . . . . . . . . . . 115

9 Combinatorial Prophet Inequalities 119

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.2 Correlation Gap for Non-Monotone Submodular Functions . . . . . . . . . . . . 121
9.3 Submodular Prophets over Matroids . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.4 Subadditive Prophets over Packing Constraints . . . . . . . . . . . . . . . . . . . 128

10 �e Secretary and the Prophet Secretary Models 137

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
10.2 Prophet Secretary via Optimal (1 − 1/e )-OCRS . . . . . . . . . . . . . . . . . . . 139

x



10.3 A Simple Optimal I.I.D. Prophet Secretary . . . . . . . . . . . . . . . . . . . . . . 140
10.4 Combinatorial Secretary Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 142

11 Prophet Secretary for Matroids and Combinatorial Auctions via Residuals 145

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
11.2 Our Approach using a Residual . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
11.3 Prophet Secretary for Combinatorial Auctions . . . . . . . . . . . . . . . . . . . 151
11.4 Prophet Secretary for Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
11.5 Fixed �reshold Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

12 Matching and Matroid Intersection in the Secretary Model 163

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
12.2 Bipartite Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
12.3 Matroid Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
12.4 Sampling Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
12.5 General Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
12.6 Miscellaneous Results and Missing Proofs . . . . . . . . . . . . . . . . . . . . . . 185

IV Conclusions 193

13 Further Directions for Probing and Stopping-Time Algorithms 195

13.1 How to Find a Car Parking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
13.2 Learning Probability Distributions for Probing . . . . . . . . . . . . . . . . . . . 196
13.3 Beyond Independent Probability Distributions . . . . . . . . . . . . . . . . . . . 196
13.4 Prophet Inequalities from Samples . . . . . . . . . . . . . . . . . . . . . . . . . . 197
13.5 Orienteering Secretary and Prophet Inequality Problems . . . . . . . . . . . . . 198
13.6 Improving Approximation and Hardness Results . . . . . . . . . . . . . . . . . . 199

Bibliography 201

xi



xii



List of Figures

1.1 An α-approximation to the best non-adaptive solution implies an (α · GAP )-
approximation to the best adaptive algorithm, where GAP is the adaptivity gap. 8

1.2 Roadmap of chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Hierarchy of monotone combinatorial functions. . . . . . . . . . . . . . . . . . . 14
2.2 Hierarchy of packing constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 To prove �eorem 3.1.4, we �rst bound the optimal strategy using a surrogate
problem in §3.2, and then obtain utility close to the surrogate by transforming
the given Frugal algorithm to a probing algorithm in §3.3. . . . . . . . . . . . . 24

4.1 To prove �eorem 4.1.3, we �rst bound the optimal strategy using a surrogate
problem in §4.3.1, and then obtain utility close to the surrogate by transforming
the given Frugal algorithm to a probing algorithm in §4.3.2. . . . . . . . . . . . 44

5.1 Adaptive strategy tree T . �e thick line shows the all-no path. �e arrows
show the path taken by adap. In this example i = 4 and Si = {e1,e2,e3,e4}. . . . . 57

5.2 Adaptivity gap lower bound example for monotone submodular functions. . . . 61

6.1 Adaptivity gap lower bound example: a w = 3-ary tree of depth k = 2. . . . . . . 81

8.1 In §8.1.1 we show that it su�ces to design an OCRS to prove a matroid prophet
inequality (�eorem 8.1.2). In �eorem 8.3.1, we show that to design an OCRS it
su�ces to design an ex-ante prophet inequality for Bernoulli variables. Finally,
in �eorem 8.4.1 we design a 1/2-approximation ex-ante prophet inequality,
which implies �eorem 8.1.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.2 �e Hat example on n + 2 vertices. �e following x belongs to the graphic
matroid: xe = 1/2 for e = (ui ,vj ) where i ∈ {1,2} and j ∈ {1, . . . ,n}, and xe = 1
for e = (u1,u2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.1 Reducing a subadditive objective to a {0,1}-XOS objective. . . . . . . . . . . . . 128

10.1 Reducing a subadditive objective to an additive objective with additional pack-
ing constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

xiii



11.1 To obtain a prophet secretary algorithm for a given combinatorial auction in-
stance, �rst choose a base price bj for every item j based on its contribution
to the expected o�ine optimum. Next, using ideas from prophet inequalities
show there exists a residual function r (t ). Finally, Lemma 11.2.3 implies a good
performance guarantee on the constructed algorithm. . . . . . . . . . . . . . . . 148

11.2 An example of a bipartite matching instance where edge numbers vij indicate
value of buyer i for item j. A solid line means the buyer bought that item. . . . . 152

12.1 U = X1 ∪ Y2 and V = X2 ∪ Y1, where X1 and X2 denote the set of vertices
matched by Greedy in Phase (a). Here thick-edges are picked and diagonal-
dashed-edges are marked. Horizontal-dashed-edges show augmentations for
the marked edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

12.2 U denotes the set of vertices matched by Greedy in Phase (a) and V denotes
the remaining vertices of G. Solid edges within U denote the picked edges and
dashed edges within U denote the marked ones. Dashed edges from U to V
denote the OPT edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

12.3 �e above example is a conjunction of two �ick-Z graphs (Z1 and Z2) by a
single edge (the thick red edge). Notice that for a �ick-Z graph even knowing
the degree 2 vertex does not allow any algorithm to achieve more than 5

3 edges
in expectation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

13.1 Random variables X1, . . . ,Xn are independent conditioned on hidden variable S . 197

xiv



Part I

Introduction

1





Chapter 1

Overview

1.1 Motivation

Suppose you want to purchase a house. You have some estimates on the value of every available
house in the market, say based on its location, size, and photographs. However, to �nd the exact
value of a site (house) you have to hire a house inspector and pay her a price. Your goal is to
simultaneously maximize the value of the best site that you �nd and to minimize the total
inspection price that you pay (House-Purchasing). One simple strategy is to inspect every
potential site to �nd the best one, but this strategy incurs a large inspection price. Another
strategy is to only inspect the most promising site, but this site might have a value much smaller
than the maximum value site. What is the optimal inspection strategy?

In a di�erent scenario, suppose you own a diamond (item) that you are trying to sell. A
sequence of n buyers arrive, each with a di�erent value for your item. On arriving a buyer
makes a take-it-or-leave-it bid for your item. Your goal is to maximize the value that you get
for your item. �e bene�t of declining the early bids is that you might get a be�er bid later, but
then you also risk selling your item at a lower price later (Diamond-Selling).

�e above two scenarios are examples of situations where we need to solve a combinato-
rial problem in an uncertain environment. �e underlying combinatorial problem in the above
scenarios is that of �nding the best element (site/buyer). �is is a trivial problem in the classi-
cal full-information se�ing where we know all element values: just select the maximum value
element. However, in an uncertain environment where the element values are revealed one-
by-one, it is not obvious how to solve such problems. �e situation becomes even more com-
plicated when the underlying combinatorial problem is more involved. For example, �nding
a max-weight matching in a graph where the weights of the edges are revealed one-by-one.
�is problem can be useful to model kidney exchanges where you �nd compatibility of donor-
receiver pairs only by performing tests.

Why consider uncertainty? Some of the most common reasons are:

(i) lack of future knowledge,
(ii) imperfect prediction,

3



(iii) �nding exact value is costly, and
(iv) noise in the input.

In this thesis, we focus on combinatorial problems where one starts with some partial knowl-
edge (usually a probability distribution) about the input. �e actual input is revealed to us
element-by-element and we need to make decisions without knowing the future input. Notice
that we may not be optimal in hindsight because our decisions are irrevocable. E.g., in the
House-Purchasing scenario we cannot ask for a reimbursement if we do not like a site and
in the Diamond-Selling scenario we cannot go back to a declined bid. �e goal is to design
optimal/approximation algorithms to maximize our expected value given the partial knowledge
about the input.

Before describing our models, we stress on a crucial di�erence between the two scenar-
ios discussed earlier. While for House-Purchasing one could choose the order in which the
element values are revealed, for Diamond-Selling the arrival order of the buyers cannot be
controlled. On one hand this simpli�es the la�er problem as you do not have to worry about
choosing the order, on the other hand you now have to make decisions immediately as you
cannot go back to a declined bid. In this thesis we will see how these distinctions lead to com-
plementary challenges and give two groups of uncertainty models: (a) probing problems where
you can control the order and (b) stopping-time problems where you cannot control the order
and have to make immediate decisions.

In §1.2, we de�ne how to model a typical combinatorial optimization problem. In §1.3, we
de�ne how to formally model the House-Purchasing and the Diamond-Selling scenarios in
the probing and the stopping-time models, respectively.

1.2 How to Model Combinatorial Optimization

Given a �nite set of ground elements V , some constraints F ⊆ 2V , and an objective function
f : 2V → R, a combinatorial optimization problem is to select a set S ⊆ V that is feasible, i.e.,
S ∈ F , while trying to maximize/minimize the objective f (S ). Since the number of subsets of
V is �nite, it is possible to run an algorithm that evaluates f at every feasible subset to �nd the
optimal solution. However, such an approach is not computationally e�cient as the number of
subsets is exponential in |V |.

Ge�ing poly( |V |) running time algorithms for the above combinatorial problem seems im-
possible because both F and f might have exponential size descriptions. A standard way of
ge�ing around this di�culty is to assume access to the following oracles. For any set S ⊆ V ,
an independence oracle for F returns whether S is independent (i.e., S ∈ F ) and a value oracle

for f tells returns the value f (S ). Now our goal is to design e�cient algorithms that only make
poly( |V |) calls to these oracles. It turns out that for arbitrary F or f one can still not design
e�cient algorithms. We next brie�y mention some natural families of constraints and objective
functions where interesting results are possible, and discuss them in detail in Chapter 2.

�e most common class of objective functions are additive.
De�nition 1.2.1 (Additive/Linear function). Given a vector c ∈ R|V| , we de�ne f (S ) := cᵀ · 1S

4



for any S ⊆ V , where 1S is a vector of dimension |V | that contains 1 for i ∈ S and 0 otherwise.

In this thesis we also consider several general combinatorial functions that do not always
have a polynomial size description, but given access to a value oracle can be optimized for many
constraint families. �ese include submodular, XOS, and subadditive functions (de�ned in §2.2).

�e most common families of constraints are packing and covering constraints.
De�nition 1.2.2 (Packing/Downward-closed constraints). An independence family F ⊆ 2V is

called packing if A ∈ F and B ⊆ A implies B ∈ F .

Some examples are acyclic subgraphs, matroids, matchings, knapsack, and orienteering.
De�nition 1.2.3 (Upward-closed or covering constraints). An independence family F ⊆ 2V is

called covering if A ∈ F and B ⊇ A implies B ∈ F .

Some examples are spanning graphs, vertex/set cover, Steiner tree, and facility location.

1.3 How to Model Uncertainty

�e uncertainty models considered in this thesis assume some stochastic knowledge about the
input. �e uncertainty is then revealed to us element-by-element in an order that we can (prob-
ing models) or cannot (stopping-time models) control.

1.3.1 Group 1: Probing Models

Consider the House-Purchasing scenario from the introduction where you can can select the
order in which you �nd the values of the sites. �e goal in this problem is to both maximize
the value of the site and to minimize the total inspection price. Two natural ways to model
this problem are: (a) maximize the di�erence of the value of the site and the price spent on
inspections, and (b) given an inspection budget B > 0, maximize the value of the site subject
to total inspection price being smaller than B. We call these models the price of information

(PoI) and constrained stochastic probing (CoSP), respectively. Below we formally describe how
to model the House-Purchasing scenario in each of these models.
De�nition 1.3.1 (House-Purchasing in the PoI model). Given probability distributions of n
independent random variables Xi and given their probing prices πi , the problem is to adaptively

probe a subset Probed ⊆ [n] to maximize the expected utility:

E
[

max
i∈Probed

{Xi } −
∑

i∈Probed

πi
]
.

Note that by adaptively we mean that our decision to probe which element next can depend on
the values of the already probed elements. �is problem formulation turns out to be the same
as Weitzman’s “Pandora’s box” problem [Wei79]. In Chapters 3, 4, and 7, we discuss how to
extend this PoI to other combinatorial problems, e.g., max-weight matching and min-cost set
cover, and to other related models.

5



De�nition 1.3.2 (House-Purchasing in the CoSP model). Given probability distributions of n
independent random variables Xi , probing prices πi , and a budget B, the problem is to adaptively

probe a subset Probed ⊆ [n] s.t.

∑
i∈Probed πi ≤ B while maximizing the expected value:

E
[

max
i∈Probed

{Xi }
]
.

�is problem formulation is the same as the best-box problem considered in Chapter 5. In Chap-
ters 5-7 we discuss how to extend this CoSP model to the problem of maximizing an uncertain
submodular/subadditive function over a packing constraint.

1.3.2 Group 2: Stopping-Time Models

Consider the Diamond-Selling scenario from the introduction where the potential buyers ar-
rive in an order that you cannot control and bid take-it-or-leave-it values. �ere are two popular
Stopping �eory models that can be used to study this problem: the secretary and the prophet

inequality models. In the secretary model we assume no prior knowledge about the buyer val-
ues but the buyers arrive in a uniformly random order [Dyn63]. Meanwhile, in the prophet
inequality model we assume stochastic knowledge about the buyer values but the arrival or-
der of the buyers is chosen by an adversary [KS78, KS77]. Below we formally describe the
Diamond-Selling secenario in these two models.
De�nition 1.3.3 (Diamond-Selling in the Prophet Inequality model). Given probability dis-

tributions of n independent random variables Xi , suppose their outcome values are revealed in an

adversarial order. Whenever a value is revealed we have to immediately and irrevocably decide if

we want to select this element, while ensuring that we never select more than one element. �e goal

is to maximize the expected value of the element that we select.

In Chapters 8 and 9 we extend this prophet inequality model to other combinatorial problems
such as maximizing a submodular function over a matroid constraint and maximizing a subad-
ditive function over a packing constraint.
De�nition 1.3.4 (Diamond-Selling in the Secretary model). A sequence of n element values

are revealed in a uniformly random order. Whenever a value is revealed we have to immediately

and irrevocably decide if we want to select this element, while ensuring that we never select more

than one element. �e goal is to maximize the expected value of the element that we select.

In Chapters 10-12 we extend this secretary model to other combinatorial problems such as max-
cardinality matching and maximizing a subadditive function over a packing constraint. We also
study a related prophet secretary model that assumes both stochastic knowledge on buyer values
and the buyers arrive in a random order, and tries to get the best of both the prophet inequality
and secretary models.

1.4 �esis Statement

In this thesis we seek to address the question whether combinatorial optimization is possible
when the input is not entirely known and we have to make irrevocable decisions to obtain

6



reduce input uncertainty. For example, in the House-Purchasing scenario these irrevocable
decisions meant paying a price to �nd a site value and in the Diamond-Selling scenario an
irrevocable decision meant permanently deciding whether to sell the item to the current buyer.
�e challenge is to balance between exploration vs. exploitation: at each moment we can either
choose to exploit the currently most promising option or to further explore to reduce input
uncertainty.

�is thesis gives evidence to support the following statement:

E�cient combinatorial optimization is possible even when the underlying input is un-

certain and we (adaptively) make irrevocable decisions to resolve this uncertainty.

Besides their immediate applications, I believe the results and techniques developed in this
thesis will motivate other researchers to develop algorithms with provable guarantees for other
optimization under uncertainty problems where we currently rely on heuristics.

1.5 �esis Contributions

In §1.5.1 and §1.5.2, we give informal descriptions of our results and techniques, o�en simpli�ed
to the House-Purchasing and the Diamond-Selling scenarios mentioned in the introduction.
�e hope is to give readers an idea of the challenges that di�erent variants of these two “simple”
scenarios already present. �e results in the chapters are more generic, where we consider com-
binatorial objective functions and general packing/covering constraints. In §1.5.3 we explain
how the contributions in this thesis can be viewed as designing algorithms for some Markov
decision processes (MDPs). Since the MDPs obtained for our problems are exponentially sized,
existing algorithms do not su�ce: they are either not computationally e�cient or have no
provable performance guarantees. Finally, in §1.5.4 we present a roadmap of the chapters in
this thesis.

1.5.1 Results and Techniques for Probing Algorithms

�e House-Purchasing scenario is the running example for probing problems in Part II.

Price of Information (PoI) Consider House-Purchasing in the PoI model where the goal
is to maximize the value of the best site minus the total probing (inspection) prices (De�-
nition 1.3.1). Although this can be easily solved using Weitzman’s algorithm for Pandora’s
box [Wei79], it leaves several important questions:

(a) What if we want to purchase multiple houses where our value function is combinatorial
(e.g., sum of values of best k houses, or an independent set in a matroid, or a matching)?

(b) What if we need to perform multiple probes at a site before �nding its value, where each
inspection incurs a price and improves our estimate?

�e above �estion (a) is our focus in Chapter 3. Our main result is to give a general reduc-
tion that converts any “greedy” (Frugal) algorithm for a combinatorial problem into a probing

7



Figure 1.1: An α-approximation to the best non-adaptive solution implies an (α · GAP )-
approximation to the best adaptive algorithm, where GAP is the adaptivity gap.

strategy with the same performance guarantees. Applications of this powerful reduction in-
clude optimal probing algorithms for sum of values of best k houses and a 2-approximation
for max-weight matching. We also study several covering problem where our goal is to mini-
mize disutility, which is the cost of our solution plus the total probing prices. Examples of such
problems includes minimum spanning trees and minimum set-cover.

In Chapter 4 we focus on �estion (b) where need to make several probes (inspections)
before �nding the value of a site. A natural way to model this multistage probing is to use a
separate Markov chain for each site, where each probe at a site incurs a price and results in
a random transition in its chain (the Markovian PoI). �e probing algorithm selects which
next Markov chain to probe and perform a random transition. Naı̈vely, it is not clear how this
algorithm should compare di�erent sites (chains): what if a site has currently no/low value
but with 1/2 probability becomes a high value site a�er the next probe? �e main idea in this
chapter is to de�ne a time varying “proxy” value (grade) for every site depending on its current
state in its Markov chain. We use this grade to give a general reduction that converts any
greedy algorithm for a combinatorial problem into a multistage probing strategy with the same
performance guarantees.

Constrained Stochastic Probing (CoSP) Now consider a model for House-Purchasing
where there is a strict budget constraint on the probing price and the goal is to maximize the
value of the best site we �nd (De�nition 1.3.2). Notice, the price does not appear in objective of
this best-box problem. One might wonder if we can “Lagrangify” the budget constraint to move
it into the objective, thereby reducing CoSP to PoI. Unfortunately, such a simple approach does
not work; e.g., unlike Pandora’s box, optimal probing strategies are not known for best-box.

Since in general the optimal adaptive strategy is exponentially sized and computationally
ine�cient to �nd, is there a single non-adaptive solution that gets almost the same value? Such
a non-adaptive strategy decides all its probing sites independent of the outcomes. A small
adaptivity gap result will therefore reduce the search space considerably at only a small loss
in performance (see Figure 1.1). In Chapter 5 we show that such non-adaptive solutions ex-
ist. �is raises the question if the adaptivity gap continues to remain small for the following

8



generalizations:

(c) What if the budget constraint is replaced by a more general constraint, e.g., an arbitrary
packing constraint?

(d) What if the objective is a combinatorial function, e.g., submodular or subadditive?

In Chapters 5 and 6 we design new techniques to bound adaptivity gaps for combinatorial CoSP
problems over arbitrary packing constraints. �e crucial insight on which they rely is to argue
that a randomized non-adaptive algorithm that probes every feasible subset of sites with exactly
the same probability as the optimal adaptive strategy has a “high” value.

Finally, in Chapter 7 we show why our techniques for PoI and CoSP are amenable to several
changes in the models. In particular, we discuss three such modeling changes:

(e) What happens when we combine PoI and CoSP models, i.e., the probing price appears
both in the objective and as a constraint?

(f) What if whenever we probe a site, we need to immediately and irrevocably decide if this
site is included in our �nal solution (commitment constraint)?

(g) What if the input probability distributions to our probing model is noisy (robustness)?

We obtain optimal/approximation algorithms for all the se�ings described above.

1.5.2 Results and Techniques for Stopping-Time Algorithms

�e Diamond-Selling scenario is the running example for stopping-time problems in Part III.

Prophet Inequality Consider Diamond-Selling in a model where we are given probabil-
ity distributions on adversarially arriving buyer values. On a buyer arrival, we immediately
and irrevocably decide (commitment constraint) whether to sell the item (diamond). Although
we know a tight 2-approximation algorithm for this problem [KS78], and its generalization to
matroids [KW12], previous approaches are ad-hoc and raise the following questions:

(a) Is there a generic technique to handle commitment constraints for packing problems?
(b) How to maximize a combinatorial function, e.g., submodular or subadditive, over a ma-

troid/packing constraint in the prophet inequality model?

In Chapter 8 we present online contention resolution scheme (OCRS), introduced in [FSZ16], a
generic technique to handle commitment constraint over matroids, knapsacks, and their inter-
sections. We prove that not only is this technique generic, it also gives optimal approximation
factors for matroids. In Chapter 9 we again use this technique to obtain anO (1)-approximation
prophet inequality to maximize a submodular function over a matroid. Since it is known that
for general packing constraints one cannot obtain e�cient algorithms, in Chapter 9 we also
design ine�cient but information theoretically possible O (poly log(n))-subadditive prophet in-
equalities over arbitrary packing constraints.

Secretary and Prophet Secretary Unlike prophet inequalities, in many practical situations
it is conceivable that the buyer arrival order for Diamond-Selling is not decided by an ad-

9



versary. �is motivates us to consider the secretary model where the arrival order is chosen
uniformly at random. While in the classical secretary problem buyer value distributions are
unknown [Dyn63], in Chapter 10 we also consider the prophet secretary model where both the
distributions are known and the arrival order is random.

(c) Can we improve the prophet inequality approximation factors under this assumption of
uniformly random arrival order?

(d) How to design algorithms for combinatorial problems such as matching and combinato-
rial auctions in these models?

In Chapters 11 and 12 we answer both the above questions and give new algorithms with im-
proved approximation factors for matroids, matchings, and combinatorial auctions. Our algo-
rithms crucially exploit properties of uniformly random arrival; e.g., this allows us to convert
our discrete problem into a continuous time problem where we can imagine each buyer arrives
at a uniformly random time in [0,1].

1.5.3 Connections to Markov Decision Processes

�e contributions in this thesis can be also viewed as designing e�cient algorithms with prov-
able guarantees for some Markov decision processes (MDPs). �is is because the problems that
we consider can be captured using an MDP, albeit with a caveat that the size of the MDPs
becomes exponential, thereby preventing use of any generic algorithms. We �rst recollect the
de�nition of an MDP.
De�nition 1.5.1 (Markov decision process). An MDP consist of a �nite state space S and a �nite

set of actions A. In each time step the algorithm, which starts in r ∈ S and is currently in state

s ∈ S, chooses an action a ∈ A. �e chosen action a determines the reward r (a,s ) : A × S → R
and the probability of transitioning from state s to s′, i.e., P (a,s,s′) : A × S × S → [0,1]. �e

problem is to select an action for every state to maximize the expected total reward.

It is known how to optimally solve an MDP in a time polynomial in |S| and |A| using dynamic
programming [Ber95, SB98].

One can easily show that the stochastic models considered in this thesis can be captured
using an MDP. E.g., we can model the House-Purchasing scenario as an MDP: the state space
S captures the currently known/unknown values of the n sites (for Bernoulli variables, each
site i has 3 possible values {0,vi ,unknown}, which implies |S| = 3n) and the actions space A
consists of which site we probe next or whether we decide to purchase one of the probed houses
(|A| = O (n)). �e stochastic value of the probed site determines the next stochastic state and
we obtain a reward only by playing an action that purchases a house.

Although powerful, modeling the House-Purchasing scenario as an MDP is not very use-
ful. �is is because such a model consists of an exponential number of states and generic optimal
MDP algorithm runs in time poly( |S|) (since the input size is already Ω( |S|)). On way to over-
come this hurdle is to use some heuristics, e.g., Q-learning, that is the common approach in
the reinforcement learning literature [Ber95, SB98, Pow07]. Unfortunately, such an approach
does not immediately give us any provable performance guarantees on our algorithms. In this

10



Figure 1.2: Roadmap of chapters

thesis we want to design e�cient algorithms that have provable guarantees. We achieve this
by exploiting the special “product” structure of the state space in our problems: each state is
formed by the values of exactly n sites.

One naı̈ve way to simplify our MDP is to decompose it by optimizing for each site sepa-
rately. Such an approach, however, does not have a good performance because there is a com-
mon combinatorial constraint relating each of the sites: we can only purchase 1 house. �ere
has been some previous work on studying MDPs that are formed by weakly coupled Markov
chains [SC98, MHK+98, DGV04, GM07]. In these models, there are n independent Markov
chains that are related by only a “few” common constraints (e.g., one budget constraint). �e
work in this thesis can be thought of as designing algorithms for se�ings where the Markov
chains are “strongly coupled” because the underlying combinatorial constraint is more compli-
cated (e.g., any packing/covering constraint).

1.5.4 Roadmap

�e high level connections between various chapters is described in Figure 1.2.

Chapter 2: We start with some preliminaries and de�ne the common notation used through-
out this thesis. We also de�ne the most common combinatorial functions and constraints, and
discuss some of their properties.

Chapter 3: We motivate and introduce the price of information model (PoI) where you

11



maximize value minus the price. We formally de�ne the notion of a “greedy” (Frugal) algo-
rithm and show how to convert any such algorithm into a probing strategy. We also argue how
(variants of) many existing algorithms are Frugal. �is chapter is based on [Sin18].

Chapter 4: We de�ne and study a multistage probing mode where a Markov chain repre-
sents the evolution of a site’s value. �is chapter is based on a joint work with Anupam Gupta,
Haotian Jiang, and Ziv Scully [GJSS18].

Chapter 5: We consider the best-box problem (CoSP) and its generalization to maximizing
a submodular function over arbitrary packing constraints. We prove the adaptivity gaps are
small,O (1), and discuss several applications of this model. �is chapter is based on joint works
with Anupam Gupta and Viswanath Nagarajan [GNS16, GNS17] and with Domagoj Bradač and
Goran Žužić [BSZ18].

Chapter 6: We consider the notion of adaptivity gaps for more general combinatorial func-
tions: submodular over multiple independent items, weighted rank function of a k-extendible
system (which generalizes intersection of k matroids), and monotone subadditive functions.
�is chapter is based on joint works with Anupam Gupta and Viswanath Nagarajan [GNS17]
and with Domagoj Bradač and Goran Žužić [BSZ18].

Chapter 7: We explain why our techniques are amenable to changes in the model. We
discuss three types of constraints: (a) probing, (b) commitment, and (c) sampling. �is chapter is
based on [Sin18] and a joint work with Anupam Gupta, Haotian Jiang, and Ziv Scully [GJSS18].

Chapter 8: We introduce the prophet inequality model and explain a generic technique, on-
line contention resolution scheme. In general, this techniques can be use to handle commitment
constraints. �is chapter is based on a joint work with Euiwoong Lee [LS18].

Chapter 9: We consider more general combinatorial functions, submodular and subaddi-
tive, in the prophet inequality model. We present the �rst prophet inequalities for these func-
tions. �is chapter is based on a joint work with Aviad Rubinstein [RS17].

Chapter 10: We introduce the random arrival order, which leads to the secretary and
prophet secretary models. We present simpli�ed proofs of some existing results in the prophet
secretary model and the �rst O (poly log(n)) approximation algorithms for subadditive func-
tions in the secretary model. �is la�er result is based on a joint work Aviad Rubinstein [RS17].

Chapter 11: We consider the prophet secretary model for combinatorial auctions and ma-
troids. We show how the random arrival order assumption allows us to improve existing
prophet inequality algorithms. �is chapter is based on a joint work with Soheil Ehsani, Mo-
hammad Hajiaghayi, and �omas Kesselheim [EHKS18].

Chapter 12: We consider matchings and matroid intersection in the secretary model and
provide the �rst algorithms performing be�er than the 2-approximation greedy algorithm. �is
chapter is based on a joint work with Guru Guruganesh [GS17].

Chapter 13: We conclude with potential further directions and several open problems in
probing and stopping-time models.

12



Chapter 2

Preliminaries

2.1 General Notation

For integers a,b ∈ Z, denote [a,b] to mean the set {a,a + 1, . . . ,b}. For n ≥ 1, denote [n] to
mean {1,2, . . . ,n}. We mostly denote the �nite ground set (universe) of elements by [n] or V
with |V | = n. For S ⊆ V , we use 1S to denote an indicator vector with i’th coordinate 1 for
i ∈ S and 0 otherwise. Depending on the context, the running time of an algorithm means
the number of operations on the RAM model or the number of calls to an oracle (e.g., value or
independence oracle).

In this thesis, we assume that if a probability distributionD is part of the algorithm’s input
then it has some concise (polynomial in n) representation. E.g., this could mean the distribution
comes from a natural family, like gaussian or exponential, where we know the parameters of
the distribution. It could also mean the distribution is over a polynomial sized set and we know
the probability of each outcome. By X ∼ D we denote a random variable (r.v.) X drawn from
probability distribution D. We assume that “simple” statistics of this r.v. X can be computed
e�ciently, e.g., E[X ] or Pr[X > τ ] for a given τ ∈ R. Unless explicitly stated, all input random
variables are assumed to be independent. Some times the algorithm might only have oracles
access to independent samples from a distribution.

To design randomized algorithms, we assume access to perfect random variables with any
speci�ed bias. We do not worry about the di�culty of �nding perfect randomness.

2.2 Combinatorial Functions

We denote the ground set byV , withn = |V |. A function f : 2V → R is monotone if f (S ) ≤ f (T )
for all S ⊆ T ⊆ X . �e most common class of objective functions are additive.
De�nition 2.2.1 (Additive/Linear function). Given a vector c ∈ R|V| , we de�ne f (S ) := cᵀ · 1S
for any S ⊆ V , where 1S is a vector of dimension |V | that contains 1 for i ∈ S and 0 otherwise.

Next we consider more general functions that o�en do not have a polynomial size descrip-
tion, but given value oracle access can be optimized for several constraint families.

13



De�nition 2.2.2 (Combinatorial functions). A function f : 2V → R is

• Submodular if for every S ,T ⊆ V it satis�es

f (S ∩T ) + f (S ∪T ) ≤ f (S ) + f (T ).

E.g., max value function, number of distinct items, matroid rank function, coverage function,

cut function, entropy, and log determinant.

• Monotone XOS (Fractionally subadditive) if it can be wri�en as the maximum of additive

functions: i.e., there are vectors ci ∈ Rn≥0 for i ∈ {1 . . .W } such that

f (S ) := Wmax
i=1

(
cᵀi · 1S

)
=

Wmax
i=1

(∑
j∈S

ci (j )
)
.

An alternative characterization due to Feige [Fei09], which motivates the name fractionally
subadditive: a function is XOS if f (T ) ≤

∑
i αi f (Si ) for all αi ≥ 0 and χT =

∑
i αi χSi .

�e width of an XOS function is the smallest number W such that f can be wri�en as the

maximum overW linear functions.

E.g., maximum-weight matching, rank of intersection of k matroids, knapsack, longest in-

creasing subsequence, and largest independent set in a graph.

• Subadditive if for every S ,T ⊆ V it satis�es

f (S ∪T ) ≤ f (S ) + f (T ).

E.g., Set cover, Steiner tree, facility location, multiway cut, TSP, and makespan.

Additive
Submodular

XOS
Subadditive

Figure 2.1: Hierarchy of monotone combinatorial functions.

Although the above combinatorial functions capture many natural problems, we stress that
there are many interesting classes of functions beyond these classes. We list a few such func-
tions below, but they will not be discussed in much detail in this thesis.

• k-median or k-center for a set of vertices in a metric.
• Maximum �ow from s to t : a subadditive function over paths but not edges.
• Largest connected component.
• Some scheduling objectives like sum of job completion times.

14



2.3 Combinatorial Constraints

�e most common families of constraints are packing and covering constraints.
De�nition 2.3.1 (Downward-closed or packing constraints). An independence family F ⊆ 2V
is called downward-closed if A ∈ F and B ⊆ A implies B ∈ F . Some examples are:

• Matroid (V ,F ): �e elements of F satisfy the matroid exchange axiom: for all pairs of sets

I , J ∈ F such that |I | < |J |, there exists an element x ∈ J such that I ∪ {x } ∈ F . Elements

of F are called independent sets. E.g., uniform matroid F = {S : |S | ≤ k } and partition

matroid F = {S : |S ∩Ai | ≤ ai } for a given partition {A1,A2, . . .} of V .

• Intersection of matroids: If there exist two matroidsM1 = (V ,F1) andM2 = (V ,F2) such

F = F1 ∩ F2. E.g., bipartite matching is intersection of two partition matroids.

• Knapsack: Given w ∈ Rn
≥0 and a knapsack size B > 0, set S ∈ F i�

∑
i∈S wi ≤ B.

• Orienteering: Given a metric (V ,E,d ), a budget B > 0, and a root r ∈ V , a set S ⊆ V is in

F i� there exists a walk starting at r of length at most B that visits all nodes in S .

• k-extendible system: If for every A ⊆ B ∈ F and e ∈ T where A ∪ {e} ∈ F , we have that

there is a set Z ⊆ B \A such that |Z | ≤ k and B \Z ∪ {e} ∈ F . �ese are more general than

intersection of matroids; e.g., a 2-extendible system captures matching in general graphs.

• k-system: If for any S ⊆ V , we have

maxJ :J is a base of S |J |

minJ :J is a base of S |J |
≤ k .

�ese are more general than a k-extendible system [Mes06, CCPV11].

Matroid
Matroid

Intersection

k-extend system

k-system

Packing

Knapsack Orienteering

Figure 2.2: Hierarchy of packing constraints.

We now de�ne and give some examples of covering constraints.

15



De�nition 2.3.2 (Upward-closed or covering constraints). An independence family F ⊆ 2V is

called downward-closed if A ∈ F and B ⊇ A implies B ∈ F . Some examples are:

• Matroid Basis: Given a matroid, set S is feasible i� it contains a matroid basis.

• Set Cover: Suppose for every i ∈ V we are guven a set Ti ⊆ [n]. Now a set S ⊆ V is feasible

i�

⋃
i∈S Ti ⊇ [n].

• Uncapacitated Facility Location: Given a graph G = (V ,E) with metric (V ,d ), Clients ⊆
V , and facility opening costs X : V → R≥0, open facilities at some locations I ⊆ V to

minimize the sum of facility opening costs and the connection costs to Clients, i.e.,∑
i∈I

Xi +
∑

j∈Clients
min
i∈I

d (j,i ).

• Steiner Tree: Given a graph G = (V ,E) with some edge costs c : E → R and a subset of

nodes S ⊆ V . �e goal is to �nd a treeT ⊆ E that connects all the nodes in S (it may or may

not connect nodes in V \ S) of minimum cost∑
e∈T

ce .

• Prize-Collecting Steiner Tree: Given a graph G = (V ,E) with some edge costs c : E → R, a

root node r ∈ V , and penalties X : V → R. �e goal is to �nd a tree that connects a subset

of nodes to r , while trying to minimize the cost of the tree and the sum of the penalties of

nodes I not connected to r , i.e.,∑
i∈I

Xi +Min-Steiner-Tree(V \ I),

where Min-Steiner-Tree(V \ I) is the minimum cost tree connecting all nodes in V \ I to r .

• Feedback Vertex Set: Given an undirected graphG = (V ,E), suppose each node i ∈ V has a

cost Xi ∈ R≥0. �e problem is select a subset I ⊆ V s.t. the induced graph G[V \ I] contains

no cycle, while minimizing the total cost ∑
i∈I

Xi .

Again, we stress that there are important families of constraints that are not packing/covering
constraints, e.g., mixed packing-covering constraints. �ese will not be the focus of this thesis.

2.4 Some Properties of Combinatorial Functions

2.4.1 Submodular Functions

We recall some notation to extend submodular functions from the discrete hypercube {0,1}n to
relaxations whose domain is the continuous hypercube [0,1]n.

16



For any vector x ∈ [0,1]n, let S ∼ x denote a random set S that contains each element i ∈ [n]
independently w.p. xi . Moreover, let 1S denote a vector of length n containing 1 for i ∈ S and 0
for i < S .
De�nition 2.4.1. We de�ne important continuous extensions of any set function f .

Multilinear extension F :

F (x) , ES∼x
[
f (S )

]
.

Concave closure f +:

f +(x) , max
α

{ ∑
S⊆[n]

αS f (S ) |
∑
S

αS = 1 and

∑
S

αS1S = x
}
.

Continuous relaxation f ∗:

f ∗(x) , min
S⊆[n]

{
f (S ) +

∑
i∈[n]\S

fS (e ) · xi

}
.

Some Useful Results

Lemma 2.4.2 (Correlation gap [CCPV07]). For any monotone submodular function and x ∈
[0,1]n,

F (x) ≤ f +(x) ≤ f ∗(x) ≤
(
1 − 1

e

)−1
F (x).

Lemma 2.4.3 (Lemma 2.2 of [BFNS14]). Consider any submodular function f and any set A ⊆
[n]. Let S be a random subset of A that contains each element of S w.p. at most p (not necessarily

independently), then

ES[f (S )] ≥ (1 − p) · f (∅).

Lemma 2.4.4 (Lemma 2.3 of [FMV11]). For any non-negative submodular function f and any

sets A,B ⊆ [n],

ES∼1A/2
T∼1B/2

[f (S ∪T )] ≥ 1
4
( f (∅) + f (A) + f (B) + f (A ∪ B)) .

Lemma 2.4.5 (�eorem 2.1 of [FMV11]). For any non-negative submodular function f , any set

A ⊆ [n] and p ∈ [0,1],
F (1A · p) ≥ p (1 − p) ·max

T⊆A
f (T ).

We can now prove the following useful variant of the previous two lemmas.
Lemma 2.4.6. Consider any non-negative submodular function f and 0 ≤ L ≤ H ≤ 1. Let S∗ be

a set that maximizes f , and let x ∈ [0,1]n be such that for all i ∈ [n], L ≤ xi ≤ H . �en,

F (x) ≥ L(1 − H ) · f (S∗).

17



Proof. Imagine a process in which in which we construct the random set T ∼ x, i.e. set T
containing each element e independently w.p. xe , in two steps. In the �rst step we construct
setT ′ by selecting every element independently w.p. exactly L. In the second step we construct
set T̃ containing each element e independently w.p. (xe − L)/(1 − L). It’s easy to verify that the
union of the two setsT ′∪T̃ contains each element e independently with probability exactly xe .

From Lemma 2.4.5, we know that at the end of �rst step, the generated set has expected value
E[f (T ′)] ≥ L(1 − L) f (S∗). Now, we argue that the second step does not “hurt” the value by a
lot. We note that in the second step each element is added w.p. at most (H −L)/(1−L) because
xe ≤ H . Letд(S ) := f (S∪T ′) be a non-negative submodular function. We apply Lemma 5.4.3 on
д to get E[д(T̃ )] ≥ (1−H )/(1−L) ·д(∅), which implies E[f (T ′∪T̃ )] ≥ (1−H )/(1−L) ·E[f (T ′)].

Together, we get F (x) = E[T ′ ∪ T̃ ] ≥ L(1 − L) (1 − H )/(1 − L) f (S∗) = L(1 − H ) f (S∗). �

Given any function f : 2X → R, de�ne f max(S ) := maxT⊆S f (T ) to be the maximum value
subset contained within S . �e function f is monotone if and only if f max = f . In general,
f max may be di�cult to compute given access to f . However, Feige et al. [FMV11] show that
for submodular functions

1
4 f

max(S ) ≤ ER∼S ( 1
2 )

[f (R)] ≤ f max(S ). (2.1)

2.4.2 XOS and Subadditive Functions

A set function f : {0,1}n → R+ is subadditive if for all S ,T ⊆ [n] it satis�es f (S ∪T ) ≤ f (S ) +
f (T ). It’s monotone if f (S ) ≤ f (T ) for any S ⊆ T . A set function f : {0,1}n → R+ is an XOS

(alternately, fractionally subadditive) function if there exist linear functions Li : {0,1}n → R+
such that f (S ) = maxi {Li (S )}. (See Feige [Fei09] for illustrative examples.)
Lemma 2.4.7 ([Dob07, Lemma 3]). Any subadditive function v : 2n → R+ can be

( log|S |
2e

)
-

approximated by an XOS function v̂ : 2n → R+; i.e. for every S ⊆ [n],

v̂ (S ) ≤ v (S ) ≤

(
log |S |

2e

)
v̂ (S ) .

Furthermore, the XOS function has the form v̂ (S ) = maxT⊆[n] pT · |T ∩ S | for an appropriate choice

of pT ’s.

�e following lemma is obvious if we represent a monotone XOS function as a max over
linear functions.
Lemma 2.4.8. For a monotone XOS function and any distribution D over subsets of S such that

PrT∼D[i ∈ T ] ≥ p, we have ET∼D f (T ) ≥ p · f (S ).

We remark that since Shannon’s entropy is a monotone submodular function, which is a
monotone XOS function, Lemma 2.4.8 gives Shearer’s lemma as a corollary.

18



Part II

Probing Algorithms

19





Chapter 3

�e Price of Information via Frugal

Algorithms

3.1 Introduction

As discussed in the introduction (§1.3.1), the House-Purchasing scenario can be modeled as
Weitzman’s “Pandora’s box” problem: Given probability distributions of n independent r.v.s
{Xi } (representing the value of house at site i) and their probing prices πi , the goal is design a
strategy to adaptively probe a set Probed ⊆ {1,2, . . . ,n} to maximize expected utility:

E
[

max
i∈Probed

{Xi } −
∑

i∈Probed

πi

]
.

An optimal policy for this problem was given by [Wei79]. Now suppose instead of probing
values of sites, we probe weights of edges in a graph. Our utility is the maximum-weight
matching that we �nd minus the total probing prices that we pay. What probing strategy should
we adopt?

In a di�erent scenario, consider a network design minimization problem. Suppose we wish
to lay down a minimum-cost spanning tree in a graph; however, we only have stochastic in-
formation about the edge costs. To �nd the precise cost Xi of any edge, we have to conduct a
study that incurs a price πi . Our disutility is the sum of the tree cost and the total price that
we spend on the studies. We want to design a strategy to minimize our expected disutility. An
important di�erence between these two scenarios is that of maximizing utility vs minimizing
disutility.

Situations like the above o�en arise where we wish to �nd a “good” solution to an optimiza-
tion problem; however, we start with only some partial knowledge about the parameters of the
problem. �e missing information can be found only a�er paying a probing price, which we call
the price of information (hereby, PoI). In this work we design optimal/approximation algorithms
for several combinatorial optimization problems in an uncertain environment where we jointly
optimize the value of the solution and the price of information [Sin18].

21



3.1.1 Model and Results

To begin, the above maximum-weight matching problem can be formally modeled as follows.
Max-Weight Matching Given a graph G with edges E, suppose each edge i ∈ E takes some
random weight Xi independently from a known probability distribution. We can �nd the exact
outcome Xi only a�er paying a probing price πi . �e goal is to adaptively probe a set of edges
Probed ⊆ E and select a matching I ⊆ Probed to maximize the expected utility,

E
[ ∑
i∈I

Xi −
∑

i∈Probed

πi

]
,

where the expectation is over random variables X = (X1, . . . ,Xn ) and any internal randomness
of the algorithm. We observe that we can only select an edge if it has been probed and we might
select only a subset of the probed edges. �is matching problem can be used to model kidney
exchanges where testing compatibility of donor-receiver pairs has an associated price.

To capture value functions of more general combinatorial problems in a single framework,
we de�ne the notion of semiadditive functions.
De�nition 3.1.1 (Semiadditive function). We say a function f (I,X) : 2V × R|V |

≥0 → R≥0 is semi-
additive if there exists a function h : 2V → R≥0 such that

f (I,X) =
∑
i∈I

Xi + h(I).

For example, for max-weight matching our value function f (I,X) =
∑

i∈IXi is additive, i.e.
h(I) = 0. We call these functions semiadditive because the second term h(I) is allowed to e�ect
the function in a “non-additive” way; however, not depending on X. Consider other examples.

• Uncapacitated Facility Location: Given a graph G = (V ,E) with metric (V ,d ), Clients ⊆
V , and facility opening costsX : V → R≥0, we wish to open facilities at some locations I ⊆
V . �e function is the sum of facility opening costs and the connection costs to Clients.
Hence, f (I,X) = ∑

i∈IXi +
∑

j∈Clients mini∈I d (j,i ), where h(I) =
∑

j∈Clients mini∈I d (j,i )
only depends on I, and not on facility opening costs X.

• Prize-Collecting Steiner Tree: Given a graph G = (V ,E) with edge costs c : E → R≥0, a
root r ∈ V , and penalties X : V → R≥0. �e goal is to �nd a tree that connects a subset
of nodes to r , while trying to minimize the cost of the tree and the sum of the penalties
of nodes I not connected to r . Hence, f (I,X) = ∑

i∈IXi +Min-Steiner-Tree(V \ I),where
Min-Steiner-Tree(V \ I) denotes the minimum cost tree connecting nodes in V \ I to r .

We can now describe an abstract utility-maximization model that captures problems such as
Pandora’s box, max-weight matching, and max-spanning tree, in a single unifying framework.

Utility-Maximization Suppose we are given a downward-closed (packing) constraint F ⊆
2V and a semiadditive function val. Each element i ∈ V takes a value Xi independently from a
known probability distribution. To �nd the outcome Xi we have to pay a known probing price
πi . �e goal is to adaptively probe a set of elements Probed ⊆ V and select I ⊆ Probed that is

22



feasible (i.e., I ∈ F ) to maximize the expected utility,

E
[
val(I,X) −

∑
i∈Probed

πi

]
,

where the expectation is over random variables X and any internal randomness of the algo-
rithm.

For example, in the max-weight matching problem val is an additive function and a subset
of edges I is feasible if they form a matching. Similarly, when val is additive and F is a graphic
matroid, this captures max-weight spanning tree.

�e following is our main result for the utility-maximization problem:
�eorem 3.1.2. For the utility-maximization problem for additive value functions and various

packing constraints F , we obtain the following e�cient algorithms.

• k-system: For stochastic element values, we �nd a k-approximation algorithm.

• Knapsack: For stochastic item values, we �nd a 2-approximation algorithm.

Some important corollaries of �eorem 3.1.2 are an optimal algorithm for the max-weight
matroid rank problem1 and a 2-approximation algorithm for the max-weight matching problem.

Next, we describe a disutility-minimization model to capture problems like min spanning
tree.

Disutility-Minimization Suppose we are given an upward-closed (covering) constraints
F ′ ⊆ 2V and a semiadditive function cost. Each element i ∈ V takes a value Xi independently
from a known probability distribution. To �nd the outcomeXi we have to pay a known probing
price πi . �e goal is to adaptively probe a set of elements Probed ⊆ V and select I ⊆ Probed
that is feasible (i.e., I ∈ F ′) to minimize the expected disutility,

E
[
cost(I,X) +

∑
i∈Probed

πi

]
,

where the expectation is over random variables X and any internal randomness of the algo-
rithm.

For example, in the min-cost spanning tree problem, cost is an additive function and a subset
of edges I are in F ′ if they contain a spanning tree. Similarly, when val is the semiadditive
facility location function as de�ned earlier and every non-empty subset of V is feasible in F ′,
this captures the min-cost facility location problem. We now mention our results in this model.
�eorem 3.1.3. For the disutility-minimization problem for various covering constraints F ′, we

obtain the following e�cient algorithms.

• Matroid Basis: For stochastic element costs, we �nd the optimal adaptive algorithm.

• Set Cover: For stochastic costs of the sets, we �nd a min{O (log |V |), f }-approximation algo-

rithm, where V is the universe and f is the maximum number of sets in which an element

can occur.

1For weighted matroid rank functions, Kleinberg et al. [KWW16] independently obtained a similar result.

23



Figure 3.1: To prove �eorem 3.1.4, we �rst bound the optimal strategy using a surrogate prob-
lem in §3.2, and then obtain utility close to the surrogate by transforming the given Frugal
algorithm to a probing algorithm in §3.3.

• Uncapacitated Facility Location: For stochastic facility opening costs in a given metric, we

�nd a 1.861-approximation algorithm.

• Feedback Vertex Set: For stochastic vertex costs in a given graph we �nd an O (logn)-
approximation algorithm.

3.1.2 Techniques

How do we bound the utility/disutility of the optimal adaptive strategy? �e usual techniques
in approximation algorithms for stochastic problems (see related work in §4.1.4) either use a
linear program (LP) to bound the optimal strategy, or directly argue about the adaptivity gap
of the optimal decision tree. Neither of these techniques is helpful because the natural LPs fail
to capture a mixed-sign objective—they wildly overestimate the optimal value. On the other
hand, the adaptivity gap of our problems is large even for the special case of the Pandora’s box
problem.

We need two crucial ideas for both our utility-maximization and disutility-minimization
results. Our �rst idea (§3.2) is to show that for semiadditive functions, one can bound the
utility/disutility of the optimal strategy in the price-of-information world (herea�er, the PoI

world) using a related instance in a world where there is no price to �nding the parameters,
i.e., πi = 0 (herea�er, the free-information world). �is proof crucially relies on the semiadditive
nature of our value/cost function. Next, we show how to design strategies with utility/disutility
close to this bound.

Our second idea (§3.3) is to show that any algorithm with “nice” properties in the free-
information world can be used to get an algorithm with a similar expected utility/disutility in
the PoI world. We call such a nice algorithm Frugal. For intuition, imagine a Frugal algorithm
to be a greedy algorithm, or an algorithm that is not “wasteful”—it picks elements irrevocably.
�is includes simple primal-dual algorithms that do not have the reverse-deletion step. �e
following is our main technical theorem (see Figure 3.1 for proof idea).

24



�eorem 3.1.4. If there exists a Frugal α-approximation AlgorithmA to maximize (minimize)

a semiadditive function over some packing constraints F (covering constraints F ′) in the free-

information world then there exists an α-approximation algorithm for the corresponding utility-

maximization (disutility-minimization) problem in the PoI world.

Finally, to prove our results, in §3.4 we show modi�cations of the corresponding algorithms are
Frugal.

3.1.3 Related Work

An in�uential work of Dean et al. [DGV04] considered the stochastic knapsack problem where
we have stochastic knowledge about the sizes of the items. Chen et al. [CIK+09] studied stochas-
tic matchings where we �nd about an edge’s existence only a�er probing, and Asadpour et
al. [ANS08] studied stochastic submodular maximization where the items may or may not be
present. Several followup papers have appeared, e.g., for knapsack [BGK11, Ma14], packing
integer programs [DGV05, CIK+09, BGL+12], budgeted multi-armed bandits [GM07, GKMR11,
LY13, Ma14], orienteering [GM09, GKNR12, BN14], submodular objectives [GN13, ASW14], and
matchings [Ada11, BGL+12, BCN+15, AGM15]. Most of these results show that the stochastic
problem has a small adaptivity gap and focus on the non-adaptive problem. �ere is also a
large body of work in related models where information has a price. We refer the readers to
the following papers and the references therein [GK01, CFG+02, KK03, GMS07, GM12].

Most of the above works do not capture mixed-sign objective of maximizing the value minus

the prices. Some of them instead model this as a knapsack constraint on the prices. Moreover,
most of them are for maximization problems as for the minimization se�ing even the “sim-
plest” problem of probing at most k elements to minimize the expected minimum value has no
polynomial approximation [GGM10].

For recent work on Pandora’s box, the readers are referred to [OW15, Dov18]. Another very
relevant paper is that of Kleinberg et al. [KWW16], while their results are to design auctions.
�eir proof of the Pandora’s box problem inspired us to study designing optimal/approximation
algorithms for combinatorial problems in the PoI world.

3.2 Bounding the Optimal Strategy

In this section we bound the expected utility/disutility of the optimal adaptive strategy for a
combinatorial optimization in the PoI world in terms of a surrogate problem in the Free-Info
world. We �rst de�ne the grade τ and surrogate Y of non-negative random variables.
De�nition 3.2.1 (Grade τ ). For any non-negative random variable Xi , let τmax

i be the solution to

equation E[(Xi − τ
max
i )+] = πi and let τmin

i be the solution to equation E[(τmin
i − Xi )

+] = πi .
De�nition 3.2.2 (Surrogate Y ). For any non-negative random variable Xi , we denote Ymax

i :=
min{Xi ,τ

max
i } and Ymin

i := max{Xi ,τ
min
i }.

Note that τmax
i could be negative in the above de�nition. �e following lemmas bound the

25



optimal strategy in the PoI world in terms of the optimal strategy of a surrogate problem in the
Free-Info world.
Lemma 3.2.3. �e expected utility of the optimal strategy to maximize a semiadditive function

val over packing constraints F in the PoI world is at most

EX

[
max
I∈F
{val(I,Ymax)}

]
.

Lemma 3.2.4. �e expected disutility of the optimal strategy to minimize a semiadditive function

cost over covering constraints F ′ in the PoI world is at least

EX

[
min
I∈F ′
{cost(I,Ymin)}

]
.

We only prove Lemma 4.3.3 as the proof of Lemma 3.2.4 is similar. �e ideas in this proof are
similar to that of Kleinberg et al. [KWW16, Lemma 1] to bound the optimal adaptive strategy
for Pandora’s box.

Proof of Lemma 4.3.3. Consider a �xed optimal adaptive strategy. Let Ai denote the indicator
variable that element i is selected into I and let 1i denote the indicator variable that element i is
probed by the optimal strategy. Note that these indicators are correlated and the set of elements
with non-zero Ai is feasible in F . Now, the optimal strategy has expected utility

= E
[
val(I,X) −

∑
i∈Probed

πi

]

= E
[ ∑

i

(AiXi − 1iπi )
]
+ E[h(I)]

= E
[ ∑

i

(
AiXi − 1iEXi [(Xi − τ

max
i )+]) ]

+ E[h(I)],

using the de�nition of πi . Since value of Xi is independent of whether it’s probed or not, we
simplify to

= E
[ ∑

i

(
AiXi − 1i (Xi − τ

max
i )+

) ]
+ E[h(I)].

Moreover, since we can select an element into I only a�er probing, we have 1i ≥ Ai . �is
implies that the expected utility of the optimal strategy is

≤ E
[ ∑

i

(
AiXi −Ai (Xi − τ

max
i )+

) ]
+ E[h(I)]

= E
[ ∑

i

AiY
max
i

]
+ E[h(I)]

= E[val(I,Ymax)].

Finally, since elements in I form a feasible set, this is at most E[maxI∈F {val(I,Ymax)}]. �

26



3.3 Designing an Adaptive Strategy

In this section we introduce the notion of a Frugal algorithm and prove �eorem 3.1.4. We
need the following notation.
De�nition 3.3.1 (Vector YM ). For any vector Y with indices inV and any M ⊆ V , let YM denote

a vector of length |V | with entries Yj for j ∈ M and a symbol ∗, otherwise.

3.3.1 A Frugal Algorithm

�e notion of a Frugal algorithm is similar to that of a greedy algorithm, or any other algorithm
that is not “wasteful”—it selects elements one-by-one and irrevocably. Its de�nition captures
“non-greedy” algorithms such as the primal-dual algorithm for set cover that does not have the
reverse-deletion step.

We de�ne a Frugal algorithm in the packing se�ing. Consider a packing problem in the
Free-Info world (i.e., ∀i,πi = 0 ) where we want to �nd a feasible set I ∈ F and F ⊆ 2V are some
downward-closed constraints, while trying to maximize a semiadditive function val(I,Y) =∑

i∈IYi + h(I).
De�nition 3.3.2 (Frugal Packing Algorithm). For a packing problem with constraints F and

value function val, we say Algorithm A is Frugal if there exists a marginal-value function

д(Y,i,y) : RV × V × R → R that is increasing in y, and for which the pseudocode is given by

Algorithm 6. We note that this algorithm always returns a feasible solution if we assume ∅ ∈ F .

Algorithm 1 Frugal Packing Algorithm A
1: Start with M = ∅ and vi = 0 for each element i ∈ V .
2: For each element i < M , compute vi = д(YM ,i,Yi ). Let j = argmaxi<M & M∪i∈F {vi }.
3: If vj > 0 then add j into M and go to Step 2. Otherwise, return M .

An example of a Frugal packing algorithm is the greedy algorithm to �nd the maximum weight
spanning tree (or to maximize any weighted matroid rank function), where д(YM ,i,Yi ) = Yi .

We similarly de�ne a Frugal algorithm in the covering se�ing. Consider a covering prob-
lem in the Free-Info world where we want to �nd a feasible set I ∈ F ′, where F ′ ⊆ 2V is
some upward-closed constraint, while trying to minimize a semiadditive function cost(I,Y) =∑

i∈IYi + h(I).
De�nition 3.3.3 (Frugal Covering Algorithm). For a covering problem with constraints F ′

and cost function cost, we say Algorithm A is Frugal if there exists a marginal-value function

д(Y,i,y) : RV × V × R → R that is increasing in y, and for which the pseudocode is given by

Algorithm 2.

We note that for a covering problem it is unclear whether Algorithm 2 returns a feasible solution

as we do not appear to be looking at our covering constraints F ′. To overcome this, we say the

marginal-value function д encodes F ′ if whenever M is infeasible then there exists an element

i < M withvi > 0. �is means that the algorithm will return a feasible solution as long asV ∈ F ′.

27



Algorithm 2 Frugal Coverage Algorithm A
1: Start with M = ∅ and vi = 0 for each element i ∈ V .
2: For each element i < M , compute vi = д(YM ,i,Yi ). Let j = argmaxi<M {vi }.
3: If vj > 0 then add j into M and go to Step 2. Otherwise, return M .

A simple example of a Frugal covering algorithm is the greedy min-cost set cover algorithm,
where д(YM ,i,Yi ) =

(
|
⋃

j∈M∪i Sj | − |
⋃

j∈M Sj |
)
/Yi . Note that here д encodes our coverage con-

straints.
Remark: Observe that a crucial di�erence between Frugal packing and covering algorithms
is that a Frugal packing algorithm has to handle Y ∈ RV (i.e. some entries in Y could be
negative) but a Frugal covering algorithm has to only handle Y ∈ RV . �e intuition behind this
di�erence is that unlike the disutility minimization problem, the utility maximization problem
has a mixed-sign objective.

3.3.2 Using a Frugal Algorithm to Design an Adaptive Strategy

A�er de�ning the notion of a Frugal algorithm, we can now prove �eorem 3.1.4 (restated
below).
�eorem 3.1.4. If there exists a Frugal α-approximation AlgorithmA to maximize (minimize)

a semiadditive function over some packing constraints F (covering constraints F ′) in the free-

information world then there exists an α-approximation algorithm for the corresponding utility-

maximization (disutility-minimization) problem in the PoI world.

We prove �eorem 3.1.4 only for the utility-maximization se�ing as the other proof is simi-
lar. Lemma 4.3.3 already gives us an upper bound on the expected utility of the optimal strategy
for the utility-maximization problem in terms of the expected value of a problem in the Free-
Info world. �is Free-Info problem can be solved using Algorithm A. �e main idea in the
proof of this theorem is to show that if AlgorithmA is Frugal then we can also run a modi�ed
version of A in the PoI world and get the same expected utility.

Proof of �eorem 3.1.4. Let Alд(Ymax,A) denote the set I ∈ F returned by Algorithm A when
it runs with element weights Ymax. Since A is an α-approximation algorithm (where α ≥ 1),
we know

val(Alд(Ymax,A),Ymax) ≥
1
α
·max
I∈F

{
val(I,Ymax)

}
. (3.1)

�e following crucial lemma shows that one can design an adaptive strategy in the PoI
world with the same expected utility.

Lemma 3.3.4. If Algorithm A is Frugal then there exists an algorithm in the PoI world with

expected utility

EX

[
val(Alд(Ymax,A),Ymax)

]
.

28



Before proving Lemma 3.3.4, we �nish the proof of �eorem 3.1.4. Recollect, Lemma 4.3.3
shows that E[maxI∈F {val(I,Ymax)] is an upper bound on the expected optimal utility in the PoI
world. Combining this with Lemma 3.3.4 and (3.1) gives an α-approximation algorithm in the
PoI world. �

We �rst give some intuition for the missing Lemma 3.3.4. �e lemma is surprising because
it says that there exists an algorithm in the PoI world that has the same expected utility as
Algorithm A in the Free-Info world, where there are no prices. �e fact that in the Free-Info
world Algorithm A can only get the smaller surrogate values Ymax

i = min{Xi ,τ
max
i }, instead of

the actual value Xi , comes to our rescue. We show that Ymax is de�ned in a manner to balance
this di�erence in the values with the probing prices.

Proof of Lemma 3.3.4. Since A is Frugal, we would like to run Algorithm 6 in the PoI world.
�e di�culty is that we do not know Ymax values of the unprobed elements. To overcome this
hurdle, consider Algorithm 3 that uses the grade τmax as a proxy forYmax values of the unprobed
elements.

Claim 3.3.5. �e set of elements returned by Algorithm 3 is the same as that by Algorithm 6

running with Y = Ymax
.

Proof of Claim 3.3.5. We prove the claim by induction on the number of elements selected by
Algorithm 3. Suppose the set of elements selected by both the algorithms into M are the same
till now and Algorithm 3 decides to select element j in Step 3(a). �is means that j is already
probed before this step. �e only concern is that Algorithm 3 selects j without probing some
other element i based on its grade τmax

i . We observe that this step is consistent with Algorithm 6
because Ymax

i ≤ τmax
i and д(Ymax

M ,i,Y
max
i ) is an increasing function in Ymax

i , which implies

д(Ymax
M ,i,Y

max
i ) ≤ д(Ymax

M ,i,τ
max
i ) ≤ д(Ymax

M ,i,Y
max
j ). �

An immediate corollary is that value of Algorithm 3 in the Free-Info world is

EX

[
val(Alд(Ymax,A),Ymax)

]
. (3.2)

In Claim 3.3.6 we argue that this expression also gives expected utility of Algorithm 3 in the
PoI world, which completes the proof of Lemma 3.3.4. �

Claim 3.3.6. �e expected utility of Algorithm 3 in PoI world is

EX

[
val(Alд(Ymax,A),Ymax)

]
.

Proof of Claim 3.3.6. We �rst expand the claimed expression,

EX

[
val(Alд(Ymax,A),Ymax)

]
= E

[ ∑
i∈Alд(Ymax,A)

Ymax
i

]
+ E

[
h(Alд(Ymax,A))

]
. (3.3)

29



Algorithm 3 Utility-Maximization
1: Start with M = ∅ and vi = 0 for all elements i .
2: For each element i < M :

(a) if i is probed let vi = д(Ymax
M ,i,Y

max
i ).

(b) if i is unprobed let vi = д(Ymax
M ,i,τ

max
i ).

3: Consider the element j = argmaxi<M & M∪i∈F {vi } and vj > 0.
(a) If j is already probed then select it into M and set vj = 0.
(b) If j is not probed then probe it. If X j ≥ τ

max
j then select j into M and set vj = 0.

4: If every element i < M has vi = 0 then return set M . Else, go to Step 2.

Observe that to prove the claim we can ignore the second term, E[h(Alд(Ymax,A))], because it
contributes the same in both the worlds (it is only a function of the returned feasible set). We
now argue that in every step of Algorithm 3 the expected change in ∑

i∈M Ymax
i in the Free-Info

world is the same as the expected increase in ∑
i∈M Xi minus the probing prices in the PoI world.

We �rst consider the case when the next highest element j in Step 3 of Algorithm 3 is already
probed and hasvj > 0. In this case, the algorithm selects element j. Since this element has been
already probed before (but not selected then), it means X j < τmax

j and X j = Ymax
j . Hence the

increase in the value of the algorithm in both the worlds is X j .
Next, consider the case that the next highest element j in Step 3 has not been probed before.

Let µj denote the probability density function of random variableX j . Now the expected increase
in the value in the Free-Info world is

τmax
j · Pr[X j ≥ τ

max
j ] = τmax

j ·

∫ ∞

t=τmax
j

µj (t )dt .

�is is because the algorithm selects this element in this step only if its value is at least τmax
j , in

which case Ymax
j = τmax

j . On the other hand, the expected increase in the value in the PoI world
is given by

−πj +

∫ ∞

t=τmax
j

t · µj (t )dt .

�is is because we pay the probing cost πj and get a positive value X j only when X j ≥ τmax
j .

Now using the de�nition of τmax
j , we can simplify the above equation to

−

∫ ∞

t=τmax
j

(t − τmax
j )µj (t )dt +

∫ ∞

t=τmax
j

t · µj (t )dt = τmax
j ·

∫ ∞

t=τmax
j

µj (t )dt .

�is shows that in every step of the algorithm the expected increase in the value in both the
worlds is the same, thereby proving Claim 3.3.6. �

3.4 Applications to Utility/Disutility Optimization

In this section we show that for several combinatorial problems there exist Frugal algorithms.
Hence we can use �eorem 3.1.4 to obtain optimal/approximation algorithms for the corre-

30



sponding utility-maximization or disutility-minimization problem in PoI world.

3.4.1 Utility-Maximization

To recollect, in the utility-maximization se�ing we are given a semiadditive value function
val ≥ 0 and a packing constraint F . Our goal is to probe a set of elements Probed and select a
feasible set I ⊆ Probed in F to maximize expected utility,

E
[
val(I,X) −

∑
i∈Probed

πi

]
.

We assume that ∅ ∈ F and hence there always exist a solution of utility zero.

k-System

Let val(I,X) =
∑

i∈IXi be an additive function and let F denote a k-system constraint in
this se�ing. To prove �eorem 3.1.2, we observe that the greedy algorithm that starts with
an empty set and at every step selects the next feasible element maximum marginal-value is
an α-approximation algorithm is a Frugal algorithm as de�ned in Defn 3.3.2. We know that
this greedy algorithm is a k-approximation for additive functions over a k-system in Free-Info
world [Jen76, KH78]. Hence, �eorem 3.1.4 combined with the greedy algorithm gives the k-
system part of �eorem 3.1.2 as a corollary.

Knapsack

Given a knapsack of size B, suppose each item i has a known size si (≤ B) but a stochastic value
Xi . To �nd Xi , we have to pay probing price πi . �e goal is to probe a subset of items Probed
and select a subset I ⊆ Probed, where ∑

i∈I si ≤ B, to maximize the expected utility

E
[ ∑
i∈I

Xi −
∑

i∈Probed

πi

]
.

We can model this problem in our utility-maximization framework by taking val(I,X) =
∑

i∈IXi

and F to contain every subset S of items that �t into the knapsack.
In the Free-Info world, consider a greedy algorithm that sorts items in decreasing order

based on the ratio of their value and size, and then selects items greedily in this order until
the knapsack is full. �is greedy algorithm does not always give a constant approximation to
the knapsack problem. Similarly, an algorithm that selects only the most valuable item is not
always a constant approximation algorithm (recollect that we can pick every item i because
si ≤ B). However, it’s known that for any knapsack instance if we randomly run one of the
previous two algorithms, each w.p. half, then this is a 2-approximation algorithm.

From �eorem 3.1.4, we can simulate the greedy algorithm in the PoI world. Also, using the
solution to the Pandora’s box problem, we can simulate selecting the most valuable item in the
PoI world. Hence, consider an algorithm that for any given knapsack problem in the PoI world,

31



runs either the simulated greedy algorithm or the Pandora’s box solution, each with probability
half. Such an algorithm is a 2-approximation to the knapsack problem in the PoI world.

3.4.2 Disutility-Minimization

To recollect, in the disutility-minimization se�ing we are given a semiadditive cost function
cost ≥ 0 and a covering constraint F ′. Our goal is to probe a set of elements Probed and select
a feasible set I ⊆ Probed in F ′ to minimize expected disutility,

E
[
cost(I,X) +

∑
i∈Probed

πi

]
.

We will assume that V ∈ F , and hence there always exists a feasible solution.

Matroid Basis

Given a matroid M of rank r on n elements, we consider the additive function cost(I,X) =∑
i∈IXi and let F ′ be subsets of elements that contain a basis ofM. To ensure that a feasible

set of �nite value exists, we make the following assumption.
Assumption 3.4.1. We can always extend a set I ∈ M to a basis by probing and selecting items

with zero penalty but with large probing cost π0. �us it incurs an additional penalty of (r −
|rank (I) |) · π0.

To use �eorem 3.1.4, we notice that the greedy algorithm that always selects the minimum
cost independent element is Frugal. �is is true because we choose marginal-value function д
to be the reciprocal of the weight of an element in Defn 4.4.3. Now since the greedy algorithm
is optimal for min-cost matroid basis, this proves the �rst part of �eorem 3.1.3.

Set Cover

Consider a problem where we are given sets S1, . . . ,Sm ⊆ V that have some unknown stochastic
costs Xi . �e goal is to select a set cover with minimum disutility, which is the sum of the set
cover solution costs and the probing prices. We can model this problem in our framework by
considering a the additive function cost(I,X) =

∑
i∈IXi and F ′ be set covers of V .

To ensure that the solution is always bounded, we make the following assumption.
Assumption 3.4.2. �ere exists S0 = [n] that covers all elements and has X0 = 0, but a �nite

large π0.

To prove the set cover part of �eorem 3.1.3, we �rst notice that the classical O (log |V |)
greedy algorithm for the min-cost set cover problem is Frugal. �is is because the marginal-
value function д(YM ,i,Yi ) in Defn 4.4.3 is equal to

(
|
⋃

j∈M∪i Sj | − |
⋃

j∈M Sj |
)
/Yi .

Next we give an f -approximation algorithm, where f is the maximum number of sets in
which an element can appear. We observe that the primal-dual f -approximation algorithm (see
pseudocode in Algorithm 4) for the min-cost set cover [BYE81, WS11] is also Frugal. �is is

32



because we can encode the information about the order σ and the dual variables yj for j ∈ M
in the marginal-value function д(YM ,i,Yi ) in Defn 4.4.3.

Algorithm 4 Primal-dual algorithm for min-cost set cover
1: Fix an order σ on the ground elements. Start with M = ∅ and yj = 0 for every ground

element j.
2: Select the next element j < ⋃

i∈M Si according to σ and raise its dual variable yj until some
set i becomes tight, i.e., ∑j∈Si yj = Yi .

3: Select every tight set into M .
4: If every ground element is covered in ⋃

i∈M Si then return M , else go to Step 2.

Uncapacitated Facility Location

Consider an uncapacitated facility location problem where we are given a graph G = (V ,E)
with metric (V ,d ) and Clients ⊆ V , however, facility opening costs Xi for i ∈ V are stochastic
and can be found by paying a probing price πi . �e goal is to probe a set of facility locations
Probed ⊆ V and open a non-empty subset I ⊆ Probed to minimize expected disutility

E
[ ∑
u∈Clients

d (u, I) +
∑
i∈I

Xi +
∑

i∈Probed

πi

]
,

where d (u, I) = mini∈I d (u,i ).
We model the above problem in our framework by de�ning exponential number of elements

that are indexed by (i,S ), for i ∈ V and S ⊆ Clients, which denotes that facility i will serve
clients S . Any subset of elements, say I = {(i1,S1), (i2,S2), . . .}, is feasible if the union of their
clients covers Clients. �e semiadditive cost(I,X) is given by ∑

(i,S )∈I

(
Xi +

∑
j∈S d (i, j )

)
.

We notice that the 1.861-approximation greedy algorithm of Jain et al. [JMM+03] for the
uncapacitated facility location problem is Frugal. In each step, their algorithm selects the next
best element with minimum cost per client, where already opened facilities now have zero
opening costs. �e reciprocal of this value gives the marginal-value function д. Hence, we can
use �eorem 3.1.4 to obtain a 1.861-approximation strategy.

Prize-Collecting Steiner Tree

Consider a Prize-Collecting Steiner tree problem (PCST) where we are given a graphG = (V ,E)
with some edge costs c : E → R, a root node r ∈ V , and probability distributions on the
independent penaltiesXi for i ∈ V . �e stochastic penaltiesXi can be found by paying a probing
price πi . �e goal is to probe a set of nodes Probed ⊆ V \ {r } and select a subset I ⊆ Probed to
minimize expected disutility,

E
[ ∑
i∈I

Xi +Min-Steiner-Tree(V \ I) +
∑

i∈Probed

πi

]
,

33



where Min-Steiner-Tree(V \ I) is the min-cost Steiner tree connecting all nodes in V \ I to r .
We can model the PCST in our disutility-minimization framework by noticing that the func-

tion cost(X, I) =
∑

i∈IXi +Min-Steiner-Tree(V \ I) is semiadditive. We show that although the
2-approximation Goemans-Williamson [GW95] algorithm (herea�er, GW-algorithm) for PCST
in the Free-Info world is not Frugal, it can be modi�ed to obtain a 3-approximation Frugal
algorithm for PCST. Combining this with �eorem 3.1.4 gives a 3-approximation algorithm for
PCST in the PoI world.

We quickly recollect the 2-approximation primal-dual GW-algorithm. (We do not repeat
their proof and refer to [WS11, Chapter 14] for details.) �eir algorithm starts by making each
node i ∈ V \ {r } active with initial charge p ({i}) = Xi . At any time, the algorithm grows a moat

around each active componentC and dischargesC at the same rate. If a componentC runs out
of charge, we make it inactive and mark every unlabeled node in the component with labelC . If
an edge e becomes tight, we pick e , merge the two componentsC,C′ connected by e , make both
C,C′ inactive, and make C ∪ C′ active with an initial charge of p (C ) + p (C′). Any component
that hits the component containing r is made inactive. In the cleanup phase we remove all edges
that do not disconnect an unmarked node from r , while ensuring that if a component with label
C is connected to r then every node with label C′ ⊇ C is also connected to r .

We �rst observe that the GW-algorithm is not Frugal. �is is because whenever a node i
is labeled with a componentC 3 i , the algorithm looks at the penalty Xi ; however, the decision
of whether to select i into I (i.e., not connecting i to r ) is not made until the cleanup phase.
�e reason is that some other active component C′ might later come and merge with C , and
eventually connect i to r . To �x this, we modify this algorithm to make it Frugal. �e idea is
to immediately include the labeled vertices into I.

Consider an algorithm that creates the same tree as the GW-algorithm; however, any node
that ever gets labeled during the run of the algorithm is imagined to be included into I. �is
means that although our �nal tree might connect a labeled node i to r , our algorithm still pays
its penalty Xi . We argue that these additional penalties are at most the optimal PCST solution
in the Free-Info world, which gives us a 3-approximation Frugal algorithm.

Finally, to argue that the additional penalties are not large, consider the state of the GW-
algorithm before the cleanup phase. Let C denote the set of maximal inactive components.
Clearly, each node i that was every labeled belongs to some maximal tight component C ∈
C. Hence, the sum of the additional penalties is upper bounded by ∑

C∈C
∑

i∈C Xi . Since each
component C ∈ C is tight, we know ∑

C∈C
∑

i∈C Xi =
∑

C∈C
∑

S⊆C yS , where yS are the dual
variables corresponding to the moats. Since the dual solutions form a feasible dual-solution,
they are a lower bound on the optimal solution for the problem. �is proves that the additional
penalty paid by our Frugal algorithm in comparison to GW-algorithm is at most the optimal
solution.

Feedback Vertex Set

Given an undirected graph G = (V ,E), suppose each node i ∈ V has a stochastic weight Xi ,
which we can �nd by probing and paying price πi . �e problem is to probe a set Probed ⊆ V and
select a subset I ⊆ Probed s.t. the induced graph G[V \ I] contains no cycle, while minimizing

34



the expected disutility

E
[ ∑
i∈I

Xi +
∑

i∈Probed

πi

]
.

�e above problem can be modeled in our framework by considering the additive function
cost(I,X) =

∑
i∈IXi and F ′ contains a set of nodes S if G[V \ S] has no cycle. Becker and

Geiger [BG96] showed that the greedy Algorithm 5 is anO (logn)-approximation algorithm for
the feedback vertex set problem in the Free-Info world. Since this algorithm is Frugal, using
�eorem 3.1.4 we get an O (logn)-approximation algorithm for minimizing disutility for the
feedback vertex set problem in the PoI world.

Algorithm 5 Greedy Algorithm for Feedback Vertex Set
1: Start with R = M = ∅ and vi = 0 for each element i ∈ V .
2: While ∃i ∈ V \ (R ∪M ) s.t. degree of i in G[V \ (R ∪M )] is 0 or 1, add i to R.
3: For each element i < R∪M , computevi = deдree (i,G[V \ (R∪M )])/w (i ), wheredeдree (i,G )

is the degree of vertex i in G and w (i ) is the weight of vertex i .
4: Let j = argmaxi<R∪M {vi }. Add j to M .
5: If R ∪M , V , go to Step 2. Otherwise, return M .

Remark: �e O (logn)-approximation primal-dual algorithm in [BYGNR98] (or in Chapter 7.2
of [WS11]) can be also shown to be Frugal. �is gives another O (logn)-approximation algo-
rithm for minimizing disutility for feedback vertex set problem.

3.5 Illustrative Examples

3.5.1 Why the naı̈ve greedy algorithm fails for Pandora’s box

Suppose curr denotes the maximum value in the currently opened set of boxes. �e naı̈ve
greedy algorithm selects in any step the unopened box j corresponding to the maximum marginal
value, i.e. argmax{E[(X j − curr )

+] − πj }, and opens it if its marginal value is non-negative. �e
algorithm stops probing when every unopened box has a negative marginal value. We give an
example where this algorithm can be made arbitrarily worse as compared to the optimum.

Consider n − 1 iid boxes, each taking value 1/p2 w.p. p and 0 otherwise, where p < 1. �e
probing price of each of these boxes is 1. Also, there is a box which takes value 1/p2 w.p. 1 but
has a probing price of 1/p2−1/p+1. Note that in the beginning, the marginal value of every box
is 1/p − 1. Now the optimal strategy is to probe the boxes with price 1, until we see a box with
value 1/p2. For large enough n, the expected utility of this strategy is ≈ 1/p2 − 1/p because in
expectation the algorithm stops a�er roughly 1/p probes. However, the naı̈ve greedy algorithm
will open the box with price 1/p2 − 1/p − 1 and then stop probing. �us its expected utility
will be 1/p − 1. By choosing small enough p, the ratio (1/p2 − 1/p) to (1/p − 1) can be made
arbitrarily large.

35



3.5.2 �e Pandora’s box problem has no constant approximation non-

adaptive solution

Consider an example where each element independently takes value 1 w.p. p (� 1) and value
0, otherwise. Suppose the price of probing any element is 1 − ϵ , for some small ϵ > 0. �e
optimal adaptive strategy is to continue probing till we see an element with value 1. Assuming
n to be large, it is easy to see that this strategy has expected value ≈ ϵ/p. On the other hand, a
non-adaptive strategy has to decide in the beginning which all elements S to probe, and then
probe them irrespective of the consequence. Since all items are identical, the only decision it
has to make is how many items to probe. One can verify that no such non-adaptive strategy can
get value more than O (ϵ ). By choosing p to be small enough, we can make the gap arbitrarily
large.

3.5.3 Hardness for general submodular functions

To prove that one cannot obtain good approximation results for any monotone submodular
functions f , we show that even when all variables are deterministic, the computational problem
of selecting the best set I ⊆ V to maximize f (I) − π (I) is Ω̃(

√
n) hard assuming P , NP, where

n = |V |. �e idea is to reduce from set packing. Let § = {S1,S2, . . . ,Sm} denote the sets of a set
packing instance. For S ⊆ §, let f (S ) denote the covering function. Let price of probing Si be
πi = |Si | − 1. Clearly, it doesn’t make sense to probe sets that are not disjoint as the marginal
utility will be non-positive. �e optimal solution therefore equals the maximum number of
disjoint sets. But no polynomial time algorithm can beO (n1/2−ϵ )-approximation, for any ϵ > 0,
unless P = NP [Has96, HKT00].

36



Chapter 4

Multistage Probing via the Markovian

Price of Information

4.1 Introduction

Consider a scenario where you run an oil company and want to set up a new oil drill. You
have estimates on the amount of oil (the “value”) available at potential sites, say, based on prior
surveys. To �nd the exact value at a site you need to conduct a closer inspection that incurs
some “price”. What inspection strategy should you adopt to maximize the expected value of
the best site you �nd minus the total inspection price you pay?

Similar to the House-Purchasing scenario discussed in §1.3, the above oil-drilling scenario
can be also modeled as Weitzman’s “Pandora’s box” problem [Wei79]. Although powerful, the
basic Pandora’s box model is limited assuming we �nd the exact amount of oil at a site using
a single inspection. What if we need to perform multiple inspections at a site before �nding
Xi , where each inspection incurs a price and improves our estimate? A natural way to model
this evolution of Xi is to use a Markov chain for each site, where each probe at a site incurs a
price and results in a random transition in the chain. It is only when a Markov chain reaches
one of its “destination” states that we �nd Xi . �is model was used in [DTW03] to study a
related minimization problem where the goal is to minimize the total price paid to set up an oil-
drill, while ensuring that one of the sites reaches its destination state. Moreover, a very general
model for the maximization problem was proposed by [KWW16, Appendix G], who gave an
optimal algorithm to pick a single site.

�e basic Pandora’s box model was extended to richer combinatorial constraints in Chap-
ter 3. We recollect the se�ing: given a packing combinatorial constraint F ⊆ 2J over some
ground elements J , the price of information model asks for a strategy to probe a set Probed ⊆ J
of r.v.s and return a subset I ⊆ Probed that is feasible according to the constraint (i.e., I ∈ F )
and maximizes utility:

E
[ ∑

i∈IXi︸ ︷︷ ︸
value

−
∑

i∈Probed πi︸        ︷︷        ︸
total price

]
. (4.1)

37



In this chapter we propose the Markovian Price of Information (Markovian PoI) model that
combines these two lines of inquiry: the Markovian and the combinatorial generalizations of the
Pandora’s box. We design optimal/approximation algorithms in the se�ing where the objective
is to select a feasible set of elements that have reached their destination states, while minimizing
the total prices paid in advancing the Markov chains to get to their destination states.

In the following sections, we �rst describe the basic Markovian PoI model in more detail
and present our results. We then talk about extensions of the model to a robust variant, and to
a model with commitments.

4.1.1 �e Markovian Price of Information Model

To capture the Markovian evolution of a r.v. in examples like oil-drilling, we use the notion of
a Markov system inspired by [DTW03] (who did not consider values at the destinations).
De�nition 4.1.1 (Markov System). A Markov systemS = (V ,P ,s,T ,π,r) for an element consists

of a discrete Markov chain with state spaceV , a transition matrix P = {pu,v } indexed byV ×V (here

pu,v is the probability of transitioning fromu tov), a starting state s , a set of absorbing destination
states T ⊆ V , a non-negative probing price πu ∈ R≥0 for every state u ∈ V \T , and a value r t ∈ R
for each destination state t ∈ T . We assume that every state u ∈ V reaches some destination state.

We have a collection J of ground elements, each associated with its own Markov system.
An element is ready if its Markov system has reached one of its absorbing destination states.
For a ready element, if ω is the (random) trajectory of its Markov chain then its associated
destination state is denoted by d (ω). We now de�ne the Markovian PoI game, which consists
of an objective function on the ground elements J .
De�nition 4.1.2 (Markovian PoI Game). Given a set of ground elements J , constraints F ⊆ 2J ,
an objective function f : 2J × R|J | → R, and a Markov system Si = (Vi ,Pi ,si ,Ti ,πi ,ri ) for each

element i ∈ J , the Markovian PoI game is the following. At each time step, we either advance a

Markov system Si from its current state u ∈ Vi \Ti by incurring price πui , or we end the game by

selecting a subset of ready elements I ⊆ J that are feasible—i.e., such that I ∈ F .

An interesting special case of the objective function f is when it is additive, i.e., f (I,x) =∑
i∈I xi for I ⊆ J and x ∈ RJ . �is already captures our oil-drilling example where our objective

is the sum of the values of each oil-drill that we set up.
Let ω denote the trajectory pro�le for the Markovian PoI game: it consists of the random

trajectories ωi taken by all the Markov chains i at the end of the game. To avoid confusion, we
write the selected feasible solution I as I(ω). A utility/disutility optimization problem is to give
a strategy for a Markovian PoI game while optimizing some combination of the objective and
the total price.

Utility Maximization Problem: A Markovian PoI game where the family of constraints F
are downward-closed (i.e., packing) and the values ri are non-negative for every i ∈ J (i.e.,
∀t ∈ Ti , r ti ≥ 0, and can be understood as a reward obtained by selecting element i). �e goal is

38



to �nd a strategy ALG that maximizes the utility:

Umax(ALG) ∆
= Eω

[
f

(
I(ω), {rd (ωi )i }i∈I(ω)

)︸                      ︷︷                      ︸
value

−
∑

i
∑

u∈ωi π
u
i︸        ︷︷        ︸

total price

]
. (4.2)

Notice that when f is additive and each Markov chain consists of only start and destination
states, the above expression captures the PoI model from (4.1). Moreover, since the empty set
is always feasible for a packing constraint, the optimal strategy has a non-negative utility.

We also de�ne a minimization variant of the problem that is useful to capture covering
combinatorial problems such as minimum spanning trees and set cover.

Disutility Minimization Problem: A Markovian PoI game where the family of constraints
F are upward-closed (i.e., covering) and the values ri are non-negative for every i ∈ J (i.e.,
∀t ∈ Ti , r ti ≥ 0, and can be understood as a cost we need to pay for selecting element i). �e
goal is to �nd a strategy ALG that minimizes the disutility:

Umin(ALG) ∆
= Eω

[
f

(
I(ω), {rd (ωi )i }i∈I(ω)

)
+

∑
i
∑

u∈ωi π
u
i

]
.

We will assume that the function f is non-negative when all ri are non-negative. Hence, the
disutility of the optimal policy is non-negative.

In the special case where all the Markov chains for a Markovian PoI game are formed
by a directed acyclic graph (Dag), we call the corresponding utility optimization problem Dag-
Utility Maximization or Dag-Disutility Minimization.

4.1.2 Our Results

In [Sin18], Frugal algorithms were introduced to capture the intuitive notion of “greedy” algo-
rithms. �ere are many known optimal/approximation Frugal algorithms for classical packing
and covering problems. E.g., optimal algorithms for matroids and O (1)-approx algorithms for
matchings, vertex cover, and facility location. �ese Frugal algorithms have been designed in
the traditional free information (Free-Info) se�ing, where each ground element has a determin-
istic �xed value or cost. Can we use them in the Markovian PoI world?

Our main contribution is a technique that adapts any Frugal algorithm to the Markovian
PoIworld, achieving the same approximation ratio as the original algorithm achieves in the Free-
Info world. �e result applies to “semiadditive” objectives, which include all additive objectives
as well as non-additive objectives of problems like facility location and prize-collecting Steiner
tree.
�eorem 4.1.3. For a semiadditive objective function val, if there exists an α-approximation

Frugal algorithm for a Utility Maximization problem over some packing constraints F in

the Free-Info world, then there exists an α-approximation strategy for the corresponding Utility
Maximization problem in the Markovian PoI world.

We prove an analogous result for Disutility Minimization in Appendix 4.4.2.
�e following corollaries immediately follow using the known Frugal algorithms (§3.4).

39



Corollary 4.1.4. In the Markovian PoI world, we have:

• An optimal algorithm for both Utility Maximization and Disutility Minimization for

matroids.

• A 2-approx for Utility Maximization for matchings and a k-approx for a k-system.

• A min{ f , logn}-approx for Disutility Minimization for set-cover, where f is the maxi-

mum number of sets in which a ground element is present.

• A 1.861-approx for facility location and a 3-approx for prize-collecting Steiner tree.

For instance, the multi-stage oil-drilling example given at the start of the introduction is a
Utility Maximization problem with laminar matroid constraints: so we can solve it optimally
with an adapted Frugal algorithm.

4.1.3 Our Techniques

We �rst sketch how a Frugal algorithm solves a packing problem in the Free-Info world; the
story for a covering problem is very similar. Recall that in a Free-Info packing problem, the goal
is to select a set I of elements to maximize our total value. A Frugal algorithm does this by
repeatedly selecting elements to add to I one at a time. Speci�cally, for each element i , a Frugal
algorithm computes a marginal value of i based on the element’s value yi and the already-
selected elements. It then selects the element j of maximal marginal value. A key property of
Frugal algorithms is that such selections are irrevocable: once an element is selected, it will
certainly be in the output set M .

How might we take a Frugal algorithm, originally designed for the Free-Info world, and
apply it to the Markovian PoI world? Our general approach is the following.

• Instead of using a �xed value yi for element i , we use a time-varying “proxy” value that
depends on the state of i’s Markov chain.

• Instead of immediately selecting the element j of greatest marginal value, we advance j
one step, selecting j only if it is in a destination state (i.e., ready).

�is outline leaves us with an important question: what proxy value should we use in place of
yi for element i? Simple heuristics, such as using i’s expected value minus expected probing
price, are suboptimal even for very simple Markov systems and packing constraints.

�e key to our adaptation of Frugal algorithms is to use the right proxy value for each
element i in place of the �xed value yi used in the Free-Info algorithm. �is proxy is called
the grade, wri�en τui , for state u of Markov system Si . �e adapted algorithm then has a very
simple form:

Pretend each element i has value yi equal to its current grade τui . If the Frugal
algorithm selects element i next, then either advance i one step if it is not ready, or
select i if it is ready.

To de�ne the grade of a state, we consider that Markov system in isolation. Roughly, the grade
denotes the maximum penalty we can put at the destinations, while ensuring that it is optimal

40



to advance this Markov system at least once. (For those familiar with the literature, this grade
is closely related to the well-known Gi�ins index.) While our de�nition of the grade is an
extension of similar past de�nitions [DTW03, Web92], it was an open problem to combine these
ideas with combinatorial constraints—indeed, it had been unclear what the right algorithm
should be, and how to argue about such an algorithm. We manage to give a simple e�cient
algorithm for such a generalization. �is is the main conceptual contribution of this part of this
work.

4.1.4 Related Work

�e work on multi-armed bandits originated in the scheduling literature. �e Gi�ins index
theorem [GJ74] provides a simple optimal strategy for several scheduling problems where the
objective is to maximize the long-term exponentially discounted reward. �is theorem turned
out to be fundamental and [Tsi94, Web92, Whi80] gave alternate proofs. It can be also used to
solve Weitzman’s Pandora’s box. �e reader is referred to the book [GGW11] for further dis-
cussions on this topic. In�uenced by this literature, [DTW03] studied scheduling of Markovian
jobs, which is a minimization variant of the Gi�ins index theorem without any discounting.
�eir paper is part of the inspiration for our Markovian PoI model.

�e Lagrangian variant considered in [GM07] is similar to ourMarkovian PoImodel. How-
ever, their approach using an LP relaxation to design a probing strategy is fundamentally dif-
ferent from our approach using a Frugal algorithm. E.g., unlike Corollary 4.1.4, their approach
cannot give optimal probing strategies for matroid constraints due to an integrality gap. Also,
their approach does not work for Disutility Minimization.

Finally, as discussed in the introduction, the works in [KWW16] and [Sin18] are directly
relevant to this chapter. �e former’s primary focus is on single item se�ings and its applications
to auction design, and the la�er studies price of information in a single-stage probing model.
�e contributions in this chapter concern selecting multiple items in multi-stage probing model,
in some sense unifying these two lines of work.

Organization of the Chapter In §4.2, we explain the concepts of grade and prevailing cost
that form the key to our arguments. �en in §4.3, we formally de�ne a Frugal algorithm and
show how to use it to obtain a good adaptive strategy for the Utility Maximization problem.
�e corresponding proofs for Disutility Minimization are in §4.4.

4.2 Grade and Prevailing Cost

Inspired by [DTW03], we de�ne a grade for every state in a Markov system in §4.2.1. �is grade
is a variant of the popular Gi�ins index. In §4.2.2, we use the grade to de�ne a prevailing cost

and an epoch for a trajectory.

41



4.2.1 Grade of a State

To de�ne the grade τv of a state v ∈ V in Markov system S = (V ,P ,s,T ,π,r), we consider the
following Markov game called τ -penalized S, denoted S (τ ). Roughly, S (τ ) is the same as S but
with a termination penalty, which is a constant τ ∈ R.

Suppose v ∈ V denotes the current state of S in the game S (τ ). In each move, the player
has two choices: (a) Halt that immediately ends the game, and (b) Play that changes the state,
price, and value as follows:

• If v ∈ V \ T , the player pays price πv , the current state of S changes according to the
transition matrix P , and the game continues.

• If v ∈ T , then the player receives penalized value rv − τ , where τ is the aforementioned
termination penalty, and the game ends.

�e player wishes to maximize his utility, which is the expected value he obtains minus the
expected price he pays. We write Uv (τ ) for the utility a�ained by optimal play starting from
state v ∈ V .

�e utilityUv (τ ) is clearly non-increasing in the penalty τ , and one can also show that it is
continuous [DTW03, Section 4]. In the case of extremely large penalty τ → +∞, it is optimal to
halt immediately, achieving Uv (τ ) = 0. In the opposite extreme τ → −∞, it is optimal to play
until completion, achieving Uv (τ ) → +∞. �us, as we increase τ from −∞ to +∞, the utility
Uv (τ ) that starts positive, becomes 0 at some critical value τ = τv . �is critical value τv that
depends on the starting state v is the grade.
De�nition 4.2.1 (Grade of a state). �e grade of a state v in Markov system S is

τv = sup{τ ∈ R | Uv (τ ) > 0}.

�is quantity is well-de�ned from the discussion above. For a Utility Maximization problem,

we write the grade of a state v in Markov system Si corresponding to element i as τvi .

We emphasize the grade of a state only depends on its own Markov system and is indepen-
dent of other Markov systems. Put another way, the grade of a state is the penalty τ that makes
the player indi�erent between halting and playing. Hence, starting with state v in game S (τ ):

• If τ < τv , it is optimal to play on the �rst move.
• If τ > τv , it is optimal to halt on the �rst move.
• If τ = τv , either halting or playing is optimal on the �rst move.

For example, the grade of a destination state t ∈ T is τ t = r t , because then both halting and
playing yield zero utility.

It is possible to e�ciently compute the grade of a state [DTW03, Section 7].

4.2.2 Prevailing Cost and Epoch

We now de�ne a prevailing cost [DTW03] and an epoch. Given a trajectory ω, intuitively the
prevailing cost denotes the maximum termination penalty that we can charge for the game

42



S (τ ) such that for every state along ω the player does not want to halt.
De�nition 4.2.2 (Prevailing Cost for Utility Maximization). �e prevailing cost of a trajec-

tory ωi of Markov system Si for Utility Maximization is

Ymax
ωi

∆
= min

v∈ωi
{τvi }.

For a trajectory pro�le ω, let Ymax
ω denote the list of prevailing costs for each Markov system.

Observe that in the above de�nition, prevailing cost of a trajectory can only decrease as it
extends further. In particular, it decreases whenever the Markov system reaches a state with
grade smaller than each of the previously visited states. We can therefore view the prevailing
cost as a non-increasing piecewise constant function of time. �is motivates us to de�ne an
epoch.
De�nition 4.2.3 (Epoch for Utility Maximization). An epoch for a trajectory ω is any maxi-

mal continuous segment of ω where the prevailing cost does not change.

Since the grade can be computed e�ciently, we can also compute the prevailing cost and
epochs of a trajectory e�ciently.

4.3 Adaptive Algorithms for Utility Maximization

In this section, we prove our main result that adapts a Frugal algorithm in Free-Info world to
a probing strategy in the Markovian PoI world. We restate our theorem.
�eorem 4.1.3. For a semiadditive objective function val, if there exists an α-approximation

Frugal algorithm for a Utility Maximization problem over some packing constraints F in

the Free-Info world, then there exists an α-approximation strategy for the corresponding Utility
Maximization problem in the Markovian PoI world.

�e theorem concerns semiadditive functions, which are useful to capture non-additive ob-
jectives of problems like facility location and prize-collecting Steiner tree. We recollect their
de�nition from §3.1.1.
De�nition 4.3.1 (Semiadditive function). A function f (I,X) : 2J × R|J | → R is semiadditive if

there exists a function h : 2J → R such that

f (I,x) =
∑
i∈I

xi + h(I).

All additive functions are semiadditive withh(I) = 0 for all I. To capture the facility location
problem on a graph G = (J ,E) with metric (J ,d ), clients C ⊆ J , and facility opening costs
x : J → R≥0, we can de�ne h(I) = ∑

j∈C mini∈I d (j,i ). Note that h only depends on the identity
of facilities I and not their opening costs.

�e proof of �eorem 4.1.3 takes two steps (see Figure 4.1). In §4.3.1, we give a randomized
reduction to upper bound the utility of the optimal strategy in the Markovian PoI world with
the optimum value of a surrogate problem in the Free-Info world. �en, in §4.3.2, we show how
to transform a Frugal algorithm into a strategy that achieves utility close to this upper bound.

43



Figure 4.1: To prove �eorem 4.1.3, we �rst bound the optimal strategy using a surrogate prob-
lem in §4.3.1, and then obtain utility close to the surrogate by transforming the given Frugal
algorithm to a probing algorithm in §4.3.2.

4.3.1 Upper Bounding the Optimal Strategy Using a Surrogate Problem

�e main idea in this section is to show that for a Utility Maximization problem, no strategy
(in particular, optimal) can derive more utility from an element i ∈ J than its prevailing cost.
Here, the prevailing cost of i is for a random trajectory to a destination state in Markov system
Si . Since the optimal strategy can only select a feasible set in F , our main idea naturally
leads to the following Free-Info surrogate problem: imagine each element’s value is exactly its
(random) prevailing cost, the goal is to select a set feasible in F to maximize the total value.
In Lemma 4.3.3, we show that the expected optimum value of this surrogate problem is an
upper bound on the optimum utility for Utility Maximization. First, we formally de�ne the
surrogate problem.
De�nition 4.3.2 (Surrogate Problem). Given a Utility Maximization problem with semiaddi-

tive objective val and packing constraints F over universe J , the corresponding surrogate problem

over J is the following. It consists of constraints F and (random) objective function f̃ : 2J → R
given by f̃ (I) = val(I,Ymax(ω)), where Ymax(ω) denotes the prevailing costs over a random trajec-

tory pro�le ω consisting of independent random trajectories for each element i ∈ J to a destination

state. �e goal is to select I ∈ F to maximize f̃ (I).

Let SUR(ω) ∆
= maxI∈F {val(I,Ymax(ω))} denote the optimum value of this surrogate problem

for trajectory pro�leω. We now upper bound the optimum utility in theMarkovian PoIworld.
Our proof borrows ideas from the “prevailing reward argument” in [DTW03].
Lemma 4.3.3. For a Utility Maximization problem with objective val and packing constraints

F , let OPT denote the utility of the optimal strategy. �en,

OPT ≤ Eω[SUR(ω)] = Eω
[

max
I∈F
{val(I,Ymax(ω))}

]
,

where the expectation is over a random trajectory pro�leω that has every Markov system reaching

a destination state.

44



Proof. We abuse the notation and use OPTto denote both the optimal policy and its utility. Sup-
pose we �x a trajectory pro�le ω where each Markov system Si reaches a destination state. Let
I(ω) be the set of elements selected by OPTon ω, where notice that some of the unselected ele-
ments may not be ready: OPTmight have selected I(ω) only a�er playing pre�xes of trajectories
in ω. �e following observation follows from the de�nition of SUR(ω).

Observation 4.3.4. For any trajectory pro�le ω,

val(I(ω),Ymax(ω)) ≤ SUR(ω).

Now, the following Claim 4.3.5, along with Observation 4.3.4, implies Lemma 4.3.3.

Claim 4.3.5. �e utility of the optimal strategy

OPT ≤ Eω

[
val(I(ω),Ymax(ω))

]
. �

Proof of Claim 4.3.5. Since for every trajectory pro�leω both OPT in the Markovian PoI world
and Eω [val(I(ω),Ymax(ω))] in the Free-Info world pick the same set of elements I(ω), the
expected value due to the set function h is the same. Hence, WLOG assume h(I) = 0 for all
I ∈ F .

Now consider the following teasing game GT de�ned using the prevailing cost from De�ni-
tion 4.2.2. Consider a game where each Markov systemSi starts at its initial state si and a player
is invited to advance the Markov systems. Besides advancing, the player is allowed to select
any arbitrary elements (need not be feasible in F ) or terminate the game at any time during
the game. Whenever an element i is selected, the player pays a corresponding cost, which is
set to be the prevailing cost de�ned by the trajectory that lead to the current state in Si . �e
player’s goal is to maximize the expected value, which is the expected utility (as de�ned for
Utility Maximization) from advancing the Markov systems minus the expected total cost he
pays when some items are selected. Observe that in this game the costs are updated in a “teas-
ing” manner according to the prevailing costs that motivates the player to continue playing. By
an argument similar to [DTW03], we have the following claim.

Claim 4.3.6. �e teasing game GT is fair, which means that no strategy achieves a positive ex-

pected value by playing it and that there exists a strategy with zero expected value. Moreover, the

following strategy plays fairly: irrespective of the order in which the Markov systems are played,

whenever the player starts to advance a Markov system, he continues to advance it through the

entire epoch.

Now consider running the optimal policy OPT in the teasing game. Let ω be a trajectory
pro�le in which each chain reaches its destination state. Let ωT denote a trajectory pro�le
until the moment when OPT returns the solution I(ω) on the trajectory pro�le ω. It should be
noticed that each trajectory in ωT is a pre�x of the corresponding trajectory in ω. In particular,
for an element i ∈ I(ω), ωi coincides with (ωT )i since the destination state of Si is reached. For
an element i < I(ω), however, (ωT )i may only be a pre�x of ωi . It follows that applying OPT in
GT along trajectory pro�le ω incurs a cost of ∑

i∈I(ω) Y
max
(ωT )i

, where Ymax
(ωT )i

is the prevailing cost

45



for Si on trajectory (ωT )i according to De�nition 4.2.2. Since GT is a fair game, the expected
utility of OPT cannot be larger than the expected cost it pays, i.e.,

OPT ≤ Eω
[ ∑
i∈I(ω)

Ymax
(ωT )i

]
.

Since the elements i ∈ I(ω) are ready, we have ωi = (ωT )i and∑
i∈I(ω)

Ymax
(ωT )i

=
∑

i∈I(ω)

Ymax
ωi .

�is implies
OPT ≤ Eω

[ ∑
i∈I(ω)

Ymax
ωi

]
,

which �nishes the proof of Claim 4.3.5. �

4.3.2 Designing an Adaptive Strategy Using a Frugal Algorithm

We use the same de�nition of a Frugal packing algorithm as in [Sin18]. A Frugal algorithm
selects elements one-by-one and irrevocably. Besides greedy algorithms, its de�nition also cap-
tures “non-greedy” algorithms such as primal-dual algorithms that do not have the reverse-
deletion step.
De�nition 4.3.7 (Frugal Packing Algorithm). For a combinatorial optimization problem on

universe J in the Free-Info world with packing constraints F ⊆ 2J and objective f : 2J → R, we

say AlgorithmA is Frugal if there exists a marginal-value functionд(Y,i,y) : RJ×J×R→ R that

is increasing in y, and for which the pseudocode is given by Algorithm 6. Note that this algorithm

always returns a feasible solution if ∅ ∈ F .

Algorithm 6 Frugal Packing Algorithm A
1: Start with M = ∅ and vi = 0 for each element i ∈ J .
2: For each element i < M , compute vi = д(YM ,i,Yi ). Let j = argmaxi<M & M∪i∈F {vi }.
3: If vj > 0 then add j into M and go to Step 2. Otherwise, return M .

�e following lemma shows that a Frugal algorithm can be converted to a strategy with
the same utility in the Markovian PoI world.
Lemma 4.3.8. Given a Frugal packing Algorithm A, there exists an adaptive strategy ALGA
for the corresponding Utility Maximization problem in the Markovian PoI world with utility

at least

Eω

[
val(A (Ymax(ω)),Ymax(ω))

]
,

where A (Ymax(ω) is the solution returned by A for objective f (I) = val(Ymax(ω), I).

46



Proof. We describe how to adapt the Frugal AlgorithmA to an adaptive strategy ALGA in the
Markovian PoI world. ALGA uses the grade τ as proxy for Ymax, since Ymax is known only
when the Markov systems reach their destination states. More speci�cally, at each moment
when the Frugal Algorithm A is trying to evaluate the marginal-value function for each el-
ement, instead of using the Ymax value for each element, which we may not yet know at the
moment, the strategy uses the τ values to compute the marginal. For the element chosen byA,
the corresponding Markov system will be advanced one more step. A more speci�c description
of our algorithm ALGA is given Algorithm 7. Here Ymax

M for a set M ⊆ J is de�ned as the list of
Ymax values that are in the set M .

Algorithm 7 Algorithm ALGA for Utility Maximization in Markovian PoI
1: Start with M = ∅ and vi = 0 for all elements i .
2: For each element i < M , set д(Ymax

M ,i,τ
ui
i ) where ui is the current state of i .

3: Consider the element j = argmaxi<M & M∪i∈F {vi }.
4: Ifvj > 0, then ifSj is not in a destination state then proceedSj by one step and go to Step 2.

Else, when vj > 0 but Sj is in a destination state tj , select j into M and go to Step 2.
5: Else, if every element i < M has vi ≤ 0 then return set M .

In the following Claim 4.3.9, we argue that for any trajectory pro�le ω, running ALGA in
Markovian PoI returns the same set of elements as running A for Ymax(ω).
Claim 4.3.9. For any trajectory pro�le ω, the solution returned by running Algorithm 7 in the

Markovian PoI world is the same as the solution by Algorithm A on Ymax(ω).

Before proving Claim 4.3.9, we use it to prove Lemma 4.3.8 by showing that the utility of
Algorithm 7 in the Markovian PoI world is at least

Eω

[
val(A (Ymax(ω)),Ymax(ω))

]
.

By Claim 4.3.9, the value due to the set function h is the same for both algorithms. So
without loss of generality, assume h is always 0. We consider the teasing game GT as de-
�ned in Claim 4.3.6. By de�nition, д is an increasing function of the last parameter y. Since
grade is used as that parameter and the grade of each state visited during an epoch is at least
the grade of the initial state of that epoch, it follows that once Algorithm 7 starts to play a
Markov system Si , it will not switch before �nishing an epoch. �erefore, by Claim 4.3.6, Al-
gorithm 7 plays a fair game. So the expected cost that Algorithm 7 pays is the same as its
expected utility from playing the Markov systems. However, Claim 4.3.9 gives the expected
cost payed by Algorithm 7 is the same as the utility of running Algorithm A in the Free-Info
world, i.e., Eω[val(A (Ymax(ω)),Ymax(ω))]. Hence, the utility of running Algorithm 7 at least
Eω[val(A (Ymax(ω)),Ymax(ω))]. �

Proof of �eorem 4.1.3. From Lemma 4.3.8, we know that the utility of ALGA is at least

Eω

[
val(A (Ymax(ω)),Ymax(ω))

]
.

47



Since Algorithm A is an α-approximation algorithm in the Free-Info world, it follows

Eω[val(A (Ymax(ω)),Ymax(ω))] ≥ 1
α
· Eω

[
max
I∈F
{val(I,Ymax(ω))}

]
.

Now using the upper bound on the optimal utility OPT ≤ Eω [maxI∈F {val(I,Ymax(ω))}] from
Lemma 4.3.3, we have utility of ALGA is at least 1

α · OPT. �

It remains to prove the missing Claim 4.3.9 in the proof of Lemma 4.3.8.

Proof of Claim 4.3.9. Suppose we �x a trajectory pro�le ω where each Markov system reaches
some destination state. We prove the claim by induction on the number of elements already
selected into the set M . Suppose the set of elements selected into M is the same by running the
two algorithms until now. We show that the next element selected by the algorithms into M is
the same.

Assume for the purpose of contradiction that the next element picked byA is j but the next
element picked by Algorithm 7 is i , j. By the de�nition of Algorithm A,

j = argmaxi ′<M
{
д

(
Ymax
M (ω),i′,Ymax

ωi ′

)}
. (4.3)

where ω′i denotes the trajectory of Si ′ in ω. Now we look at the trajectory ωi , it follows that
the prevailing cost Ymax

ωi is non-increasing over this trajectory and is equal to Ymax
ωi when Si

reaches the destination state. We look at the last moment t0 when the prevailing cost of Si
decreases. Consider the �rst moment t1 a�er t0 that our Algorithm 7 decides to play Si (but has
not actually played Si yet). It follows that the prevailing cost of Si at moment t1 is exactly the
same as Ymax

ωi and also the grade τuii of the current state ui . Denote Ymax
ω ′j

the prevailing cost of
Sj and uj the state of Sj at moment t1. �en we have Ymax

ω ′j
≥ Ymax

ωj
because the prevailing cost

of Sj is also non-increasing. By the de�nition of t1, one has

д
(
Ymax
M (ω),i,Ymax

ωi

)
= д

(
Ymax
M (ω),i,τuii

)
> д

(
Ymax
M (ω), j,τ

uj
j

)
≥ д

(
Ymax
M (ω), j,Ymax

ω ′j

)
.

However, since д is increasing in the last parameter, it follows that

д
(
Ymax
M (ω), j,Ymax

ω ′j

)
≥ д

(
Ymax
M (ω), j,Ymax

ωj

)
,

which implies

д
(
Ymax
M (ω),i,Ymax

ωi

)
> д

(
Ymax
M (ω), j,Ymax

ωj

)
.

�is contradicts with the de�nition of j in Eq (4.3). �

In Appendix 4.4.2, a similar approach is used for the Disutility Minimization problem
with semi-additive function. We conclude that for either Utility Maximization or Disutil-
ity Minimization problem with semi-additive function, any Frugal approximation algorithm
in the Free-Info world can be transformed into an approximation strategy with the same ap-
proximation ratio in the Markovian PoI world.

48



4.4 Illustrative Examples and Missing Proofs

4.4.1 Comparing Grade and Weitzman’s Index for Pandora’s Box

Recall Weitzman’s Pandora’s box formulation of the oil-drilling problem mentioned in §1. Given
probability distributions of n independent random variablesXi (amount of oil at site i) and their
probing (inspection) prices πi , the goal is to design a strategy to adaptively probe a set Probed
to maximize expected utility

E
[

max
i∈Probed

{Xi } −
∑

i∈Probed

πi

]
.

�e Weitzman’s index for site i , denoted by τmax
i , is de�ned using the following equation

E[(Xi − τ
max
i )+] = πi . It is known that the following strategy is optimal [Wei79].

Selection Rule: �e next site to be probed is the one with with the highest Weitzman’s index.
Stopping Rule: Terminate when the maximum realized value amongst the probed sites ex-

ceeds the Weitzman’s index of every unprobed site.
It turns out that Weitman’s index τmax

i is simply the grade, de�ned in §4.2.1, in disguise. To
see this, we start by noticing that each variableXi with probing price πi can be thought of as the
following Markov system. �ere is one initial state si with moving cost πi . si has transitions,
with probabilities according to the distribution of Xi , to a set Ti of destination states, each
corresponding to a possible outcome of the variable Xi . �e value of each destination state is
naturally set to be the corresponding outcome of Xi . We show below that τmax

i is simply the
grade τ sii of the initial state si .

According to our de�nition of grade in §4.2.1, in the τ sii -penalized Markov game S (τ sii ),
there is a fair strategy that probes site i and achieves a zero utility. Such a strategy would pick
site i (i.e., play in the corresponding destination state) if and only if Xi − τ

si
i ≥ 0. �e utility

of that policy is thus −πi + E[(Xi − τ
si
i )+] = 0. Comparing with the de�nition of Weitzman’s

index, this shows τmax
i = τ sii . �e optimality of Weitzman’s strategy is therefore also implied

by �eorem 4.1.3.

4.4.2 Adaptive Algorithms for Disutility Minimization

We give the corresponding de�nitions for the Disutility Minimization problem.
De�nition 4.4.1 (Prevailing Reward for Disutility Minimization). �e prevailing reward of

Si for the trajectory Pi in Disutility Minimization is de�ned as

Rmin
Pi

∆
= max

u∈Pi
{−τui }.

For a trajectory pro�le ω, denote Rmin
ω the list of prevailing rewards for each Markov system.

For a trajectory Pi in the Disutility Minimization problem, consider the change of the
prevailing reward as the Markov system starts from si and moves according to Pi . It follows

49



that the prevailing reward is non-decreasing in this process. Moreover, it increases whenever
the Markov system reaches a state that has smaller grade than each previously visited state.
Now we are ready to state the de�nition of an epoch.
De�nition 4.4.2 (Epoch for Disutility Minimization). An epoch is de�ned to be the period

from the time when the prevailng reward increases until the moment just before the next time it

increases.

It follows that within an epoch, all states visited has grade no smaller than the prevailing
reward at the start of this epoch and thus the prevailing reward stays constant in an epoch. We
can therefore view the prevailing reward as a non-decreasing piece-wise constant function of
time.
De�nition 4.4.3 (Frugal Covering Algorithm). For a Disutility Minimization problem in

the Deterministic world with covering constraints F and cost function cost, we say AlgorithmA

is Frugal if there exists a marginal-value function д(Y,i,y) : RJ × J ×R→ R that is decreasing in

y, and for which the pseudocode is given by Algorithm 8. Moreover, the function д(Y,i,y) should

encode the constraints F , such that whenever M is infeasible, then ∃i < M with vi > 0. �is

requirement will ensure that a feasible solution is returned.

Algorithm 8 Frugal Covering Algorithm A
1: Start with M = ∅ and vi = 0 for each element i ∈ J .
2: For each element i < M , compute vi = д(YM ,i,Yi ). Let j = argmaxi<M {vi }.
3: If vj > 0 then add j into M and go to Step 2. Otherwise, return M .

With the de�nitions above, one can prove the following theorem for Disutility Minimiza-
tion using similar techniques as in §4.3.
�eorem 4.4.4. For a semiadditive objective function cost, if there exists an α-approximation

Frugal algorithm for a Disutility Minimization problem over some covering constraints F in

the Free-Info world, then there exists an α-approximation strategy for the corresponding Disutil-
ity Minimization problem in the Markovian PoI world.

50



Chapter 5

Constrained Stochastic Probing via

Adaptivity Gaps

5.1 Introduction

Consider the best-box problem: Suppose there are n independent Bernoulli random variables
where Xi takes value vi with probability pi and is zero otherwise. Given a probing price πi
for each Xi and an overall probing budget B, design a strategy to adaptively probe a subset of
variables Probed ⊆ [n] within our budget, i.e., ∑i∈Probed πi ≤ B, while maximizing the expected
value of the best variable that we probe:

E
[

max
i∈Probed

{Xi }

]
.

As discussed in §1.3.1, the best-box problem can be used to model the House-Purchasing
scenario. In this chapter we will always assume that our random variables are Bernoulli. In
Chapter 6, we extend this model to capture more general random variables. Now suppose in-
stead of �nding the best box, what if we are interested in maximizing the sum of the top k boxes
that we probe. In fact, what if our objective is given by an uncertain submodular function. Sub-
modular maximization has been a very useful abstraction for many problems, both theoretical
(e.g., the classical k-coverage problem [WS11]) and practical (e.g., the in�uence maximization
problem [KKT15], or many problems in machine learning [Kra13]). We know how to perform
constrained submodular maximization both when the function is monotone [FNW78, CCPV11]
and when it’s non-monotone [FMV11, LMNS09, FNS11b]. How to model and solve the problem
of maximizing an uncertain submodular function over a packing constraint?

Consider the following se�ing. We have a submodular function over a ground set of ele-
mentsV (e.g., the max value function). But the elements are not all active, and we can get value
only for active elements. �e bad news is that a priori we don’t know the elements’ status—
whether it is active or not. �e good news is that each element e is active independently with
some known probability pe . We �nd out an element e’s status only by probing it. Once we
know its status, we can use this information to decide which other elements to probe next, and
in what order; i.e., be adaptive. We have some constraints on which subsets we are allowed to

51



probe (e.g., knapsack constraints). Eventually, we stop with some probed set S and a known
subset active(S ) of the active elements in S . At that time we can pick anyT ⊆ active(S ) and get
value f (T ).1 What is a good strategy to probe elements to maximize the expected value?

As another example, consider the se�ing of in�uence maximization, the ground set is a set
of email addresses (or Facebook accounts), and for a set S of email addresses f (S ) is the fraction
of the network that can be in�uenced by seeding the set S . But not all email addresses are still
active. For each email address e , we know the probability pe that it is active. (Based, e.g., on
when the last time we know it was used, or some other machine learning technique.) Now
due to time constraints, or our anti-spam policies, or the fact that we are risk-averse and do
not want to make introductory o�ers to too many people—we can only probe some K of these
addresses, and make o�ers to the active ones in these K , to maximize our expected in�uence.
Observe that it makes sense to be adaptive—if t.theorist@cs.cmu.edu happens to be
active we may not want to probe t.theorist@cmu.edu, since we may believe they are
the same person.

�ere are other examples: e.g., Bayesian mechanism design problems (see [GN13] for de-
tails), stochastic matching problems in kidney exchange and online dating [CIK+09, BGL+12],
and stochastic set cover problems that arise in database applications [LPRY08, DHK14].

�e question that is of primary interest to us is the following: Even though our model allows

for adaptive queries, what is the bene�t of this adaptivity? Note that there is price to adaptivity:
the optimal adaptive strategy may be an exponentially-large decision tree that is di�cult to
store, and also may be computationally intractable to �nd. Moreover, in some cases the adaptive
strategy would require us to be sequential (probe one email address, then probe the next, and
so on), whereas a non-adaptive strategy may be just a set of K addresses that we can probe in
parallel. So we want to bound the adaptivity gap: the ratio between the expected value of the
best adaptive strategy and that of the best non-adaptive strategy. Secondly, if this adaptivity
gap is small, we would like to �nd the best non-adaptive strategy e�ciently (in polynomial
time). �is would give us our ideal result: a non-adaptive strategy that is within a small factor
of the best adaptive strategy.

�e goal of this work is to get such results for as broad a class of functions, and as broad
a class of probing constraints as possible [GNS17, GNS16]. Recall that we are not allowed to
probe all the elements, but only those that satisfy some problem-speci�c constraints (e.g., probe
at most K email addresses, or probe a set of locations that can be reached using a path of length
at most D.)

5.1.1 Model and Results

In this paper, we allow very general probing constraints: the sequence of elements we probe
must satisfy a given pre�x-closed constraint—e.g., these may be given by a matroid, or an ori-
enteering constraint, or deadline, or precedence constraint, or an arbitrary downward-closed
constraint—if we can probe some sequence of elements we can probe any pre�x of it. Simple
examples show that we cannot hope to get small adaptivity gaps for arbitrary functions even

1If the function is monotone, clearly we should choose T = active(S ).

52



for a cardinality constraint, and hence we have to look at interesting sub-classes of functions.
Our �rst set of results are for the case where the function f is a non-negative submodular

function. �e �rst result is for monotone functions.
�eorem 5.1.1 (Monotone Submodular). For any monotone non-negative submodular function

f and any pre�x-closed probing constraints, the stochastic probing problem has adaptivity gap at

most 3.

�e previous results in this vein severely restricted the probing constraints (e.g., Asadpour et
al. [AN16] gave a gap of e

e−1 for matroid probing constraints). We discuss these and other prior
works in §5.1.3. �ere is a lower bound of e

e−1 on the adaptivity gap for monotone submodular
functions with pre�x-closed probing constraints (in fact for the rank function of a partition
matroid, with the constraint being a simple cardinality constraint). It remains an interesting
open problem to close this gap.

We then turn to non-monotone submodular functions, and again give a constant adaptivity
gap. While the constant can be improved slightly, we have not tried to optimize it, focusing
instead on clarity of exposition.
�eorem 5.1.2 (Non-Monotone Submodular). For any non-negative submodular function f and

pre�x-closed probing constraints, the stochastic probing problem has adaptivity gap at most 40.

Both �eorems 5.1.1 and 5.1.2 just consider the adaptivity gap. What about the computa-
tional question of �nding the best non-adaptive strategy? �is is where the complexity of the
pre�x-closed constraints come in. �e problem of �nding the best non-adaptive strategy with
respect to some pre�x-closed probing constraint can be reduced to the deterministic problem of
maximizing a submodular function with respect to the same constraints. So we can use existing
results on (deterministic) submodular maximization.

5.1.2 Techniques

Before talking about our techniques, a word about previous approaches to bounding the adap-
tivity gap. Several works, starting with the work of Dean et al. [DGV04] have used geometric
“relaxations” (e.g., a linear program for linear functions [DGV04], or the multilinear extension
for submodular se�ings [ANS08, ASW14]) to get an estimate of the value achieved by the op-
timal adaptive strategy. �en one tries to �nd a non-adaptive strategy whose expected value is
not much less than this relaxation. �is is particularly successful when the probing constraints
are amenable to being captured by linear programs—e.g., matroid or knapsack constraints. Deal-
ing with general constraints means we cannot use this approach.

�e other approach is to argue about the optimal decision-tree directly. An induction on
the tree was used, e.g., by Chen et al. [CIK+09] and Adamczyk [Ada11] to study stochastic
matchings. A di�erent approach is to use concentration bounds like Freedman’s inequality
to show that for most paths down the tree, the function on the path behaves like the path-
mean [GKNR12]. However, this approach seems best suited to linear functions, and loses loga-
rithmic factors due to the need for union bounds.

Given that we prove a general result for any submodular function, how do we show a good

53



non-adaptive strategy? Our approach is to take a random path down the tree (the randomness
coming from the element activation probabilities) and to show the expected value of this path,
when viewed as a non-adaptive strategy, to be good. To prove this, we use induction. An
inductive approach is surprising because the objective is not additive over the nodes of the tree,
and the natural induction down the tree does not seem to work. Instead, we perform a non-
standard inductive argument, where we consider the all-no path (which we call the stem), show
that a non-adaptive strategy would get value comparable to the decision tree on the stem, and
then induct on the subtrees hanging o� this stem. �e proof for monotone functions, though
basic, is subtle—requiring us to change representations and view things “right”.

5.1.3 Related Work

�e adaptivity gap of stochastic packing problems has seen much interest: e.g., for knap-
sack [DGV04, BGK11, Ma14], packing integer programs [DGV05, CIK+09, BGL+12], budgeted
multi-armed bandits [GM07, GKMR11, LY13, Ma14] and orienteering [GM09, GKNR12, BN14].
All except the orienteering results rely on having relaxations that capture the constraints of
the problem via linear constraints. A recent paper also designs a PTAS for the best-box prob-
lem [HFX18].

For stochastic monotone submodular functions where the probing constraints are given by
matroids, Asadpour et al. [AN16] bounded the adaptivity gap by e

e−1 ; Hellerstein et al. [HKL15]
bound it by 1

τ , where τ is the smallest probability of some set being materialized. Other relevant
papers are [LPRY08, DHK14].

�e work of Chen et al. [CIK+09] (see also [Ada11, BGL+12, BCN+15, AGM15]) sought to
maximize the size of a matching subject to b-matching constraints; this was motivated by ap-
plications to online dating and kidney exchange. More generally, see, e.g. [RSÜ05, AR12], for
pointers to other work on kidney exchange problems. �e work of [GN13] abstracted out the
general problem of maximizing a function (in their case, the rank function of the intersection
of matroids or knapsacks) subject to probing constraints (again, intersection of matroids and
knapsacks). �is was improved and generalized by Adamczyk, et al. [ASW14] to submodu-
lar objectives. All these results use LP relaxations, or non-linear geometric relaxations for the
submodular se�ings.

5.2 Adaptive Strategies and Notation

We denote the ground set byV , with n = |V |. Each element e ∈ V has an associated probability
pe . Given subset S ⊆ V and vector p = (p1,p2, . . . ,pn ), let S (p) denote the distribution over sub-
sets of S obtained by picking each element e ∈ S independently with probability pe . Specifying
a single number p ∈ [0,1] in S (p) indicates each element is chosen with the same probability p.

All objective functions f that we deal with are non-negative with f (∅) = 0. Given any
function f : 2V → R, de�ne f max(S ) := maxT⊆S f (T ) to be the maximum value subset contained
within S . �e function f is monotone if and only if f max = f . In general, f max may be di�cult to

54



compute given access to f . However, Feige et al. [FMV11] show that for submodular functions
1
4 f

max(S ) ≤ ER∼S ( 1
2 )

[f (R)] ≤ f max(S ). (5.1)

Also, for a subset S , de�ne the “contracted” function fS (T ) := f (S ∪T ) − f (S ). Note that if
f is non-monotone, then fS may take negative values even if f is non-negative.

An adaptive strategy tree T is a binary rooted tree where every internal node v represents
some element e ∈ V (denoted by elt(v ) = e), and has two outgoing arcs—the yes arc indicating
the node to go to if the element e = elt(v ) is active (which happens with probability pe ), and
the no arc indicating the node to go to if e is not active (which happens with the remaining
probability qe = 1−pe ). No element can be represented by two di�erent nodes on any root-leaf
path. Moreover, any root-leaf path in T should be feasible according to the constraints. Hence,
each leaf ` in the tree T is associated with the root-leaf path P`: the elements probed on this
path are denoted by elt(P` ). LetA` denote the active elements on this path P`—i.e., the elements
represented by the nodes on P` for which we took the yes arc.

�e tree T naturally gives us a probability distribution πT over its leaves: start at the root,
at each node v , follow the yes branch with probability pelt(v ) and the “no” branch otherwise,
to end at a leaf.

Given a submodular function f and a tree T , the associated adaptive strategy is to probe
elements until we reach a leaf `, and then to pick the max-value subset of the active elements
on this path P` . Let adap(T , f ) denote the expected value obtained this way; it can be wri�en
compactly as

adap(T , f ) := E`←πT [f max(A` )]. (5.2)

De�nition 5.2.1 (stem of T ). For any adaptive strategy tree T the stem represents the all-no
path in T starting at the root, i.e., when all the probed elements turn out inactive.

De�nition 5.2.2 (deepness of T ). �e deepness of a strategy tree T is the maximum number of

active nodes that adap sees along a root-leaf path of T .

Note that the notion of deepness is di�erent from the (more standard) “depth” used for trees.
Deepness measures the number of yes-arcs on the path from the root to the leaf, rather than
the number of arcs seen on the path (which is the depth). �is de�nition is inspired by the
induction we will do in the submodular sections.

We also de�ne the natural non-adaptive algorithm given the tree T : just pick a leaf ` ← πT
from the distribution given by T , probe all elements on that path, and choose the max-value
subset of the active elements. We denote the expected value by alg(T , f ):

alg(T , f ) := E`←πT
[
ER∼V (p)[f max(R ∩ elt(P` ))]

]
. (5.3)

5.3 Monotone Non-Negative Submodular Functions

We now prove �eorem 5.1.1, and bound the adaptivity gap for monotone submodular functions
f over any pre�x-closed set of constraints. �e idea is a natural one in retrospect: we take an

55



adaptive tree T , and show that the natural non-adaptive strategy (given by choosing a random
root-leaf path down the tree, and probing the elements on that path) is within a factor of 3 of
the adaptive tree. �e proof is non-trivial, though. One strategy is to induct on the two children
of the root (which, say, probes element e), but note that the objective f is not additive and the
adaptive and non-adaptive algorithms recurse having seen di�erent sets of active elements.2
�is issue caused the previous result [GNS16] to proceed along di�erent lines, using massive
union bounds over the paths in the decision tree, and hence losing logarithmic factors. �ey
were also restricted to matroid rank functions, instead of all submodular functions.

A crucial insight in our proof is to focus on the stem of the tree (the all-no path from the
root, see De�nition 5.2.1), and induct on the subtrees hanging o� this stem. Again we have
issues of adaptive and non-adaptive recursing with di�erent active elements, but we control
this by amortizing the value obtained from the stem over the di�erent non-adaptive strategies.
�e proof for non-monotone functions in §5.4 is even more tricky, and will build further on
ideas from this monotone case. Formally, the main technical result is the following:
�eorem 5.3.1. For any adaptive strategy tree T , and any monotone non-negative submodular

function f : 2V → R≥0 with f (∅) = 0,

alg(T , f ) ≥
1
3 adap(T , f ).

�eorem 5.1.1 follows by the observation that each root-leaf path in T satis�es the pre�x-
closed constraints, which gives us a feasible non-adaptive strategy. Some comments on the
proof: because the function f is monotone, f max = f . Plugging this into (5.2) and (5.3), we
want to show that

E`←πT

[
ER∼V (p)[f (R ∩ elt(P` ))]

]
≥

1
3 E`←πT [f (A` )]. (5.4)

Since both expressions take expectations over the random path, the proof proceeds by induction
on the deepness of the tree. (Recall the de�nition of deepness in De�nition 5.2.2.) We argue that
for the stem starting at the root, alg gets a value close to adap in expectation (Lemma 5.3.3).
However, to induct on the subtree that the algorithms leave the stem on, the problem is that
the two algorithms may have picked up di�erent active elements on the stem, and hence the
“contracted” functions may look very di�erent. �e idea now is to give adap the elements
picked by alg for “free” and disallow alg (just for the analysis) to pick elements picked by adap
a�er exiting the stem. Now both the algorithms work a�er contracting the same set of elements
in f , and we are able to proceed with the induction.

5.3.1 Proof of �eorem 5.3.1

We proceed by induction on the deepness of the adaptive strategy tree T . For the base case of
deepness 0, T does not contain any internal node. So both alg and adap get zero value, and the
theorem is vacuously true.

2�e adaptive strategy sees e as active when it takes the yes branch (with probability pe ), and nothing as
active when taking the no branch. Whereas, the non-adaptive strategy sees e as active with the same probability
pe in both branches.

56



To prove the induction step, recall that the stem is the path in T obtained by starting at the
root node and following the no arcs until we reach a leaf. (See Figure 5.1.) Let v1,v2, . . . ,v`
denote the nodes along the stem of T withv1 being the root andv` being a leaf; let ei = elt(vi ).
For i ≥ 1, let Ti denote the subtree hanging o� the yes arc leaving vi . �e probability that a
path following the probability distribution πT enters Ti is pi

∏
j<i qj , where pi = 1−qi denotes

the probability that the ith element is active.

T1

T2

T3

T4

yesno

Figure 5.1: Adaptive strategy tree T . �e thick line shows the all-no path. �e arrows show
the path taken by adap. In this example i = 4 and Si = {e1,e2,e3,e4}.

Let Si = {e1,e2, . . . ,ei } be the �rst i elements probed on the stem, and Ri ∼ Si (p) be a random
subset of Si that contains each element e of Si independently w.p. pe . We can now rewrite adap
and alg in a form more convenient for induction. Here we recall the de�nition of a marginal
with respect to subset Y : fY (S ) := f (Y ∪ S ) − f (Y ). Note that the leaf v` has no associated
element; to avoid special cases we de�ne a dummy element e` with f ({e`}) = 0 and f{e` } = f .
Claim 5.3.2. Let I be the random variable denoting the index of the node at which a random

walk according to πT leaves the stem. (If I = ` then the walk does not leave the stem, and T̀ is a

deepness-zero tree.) �en,

adap(T , f ) = EI
[
f (eI ) + adap(TI , f{eI })

]
(5.5)

≤ EI ,R∼SI (p)
[
f (eI ) + f (R) + adap(TI , fR∪eI )

]
(5.6)

algH (T ) = EI ,R∼SI (p)
[
f (R) + alg(TI , fR )

]
(5.7)

≥ EI ,R∼SI (p)
[
f (R) + alg(TI , fR∪eI )

]
. (5.8)

Proof. Equation (5.5) follows from the de�nition of adap; (5.6) follows from the monotonicity
of f . (We are giving the adaptive strategy elements in R “for free”.) Equation (5.7) follows from
the de�nition of alg, and (5.8) uses the consequence of submodularity that marginals can only
decrease for larger sets. �

Observe the expressions in (5.6) and (5.8) are ideally suited to induction. Indeed, since the
function fR∪eI also satis�es the assumptions of �eorem 5.3.1, and the height of Ti is smaller

57



than that of T , we use induction hypothesis on Ti with the monotone non-negative submodular
function fR∪EI to get

EI ,R∼SI (p)
[
alg(TI , fR∪eI )

]

≥
1
3 EI ,R∼SI (p)

[
adap(TI , fR∪eI )

]
.

Finally, we use the following Lemma 5.3.3 to show that

EI ,R∼SI (p)
[
f (R)

]
≥

1
3 EI ,R∼SI (p)

[
f (R) + f (eI )

]
.

Substituting these two into (5.6) and (5.8) �nishes the induction step.
Lemma 5.3.3. Let I be the random variable denoting the index of the node at which a random

walk according to πT leaves the stem. (If I = ` then the walk does not leave the stem.) �en,

EI ,R∼SI (p)
[
f (R)

]
≥

1
2 EI

[
f (eI )

]
.

Proof. For brevity, we use EI ,R[·] as shorthand for EI ,R∼SI (p)[·] in the rest of the proof. We prove
this lemma by showing that

EI ,R
[
f (R)

]
≥ EI ,R

[
max
e∈R

f (e )
]
≥

1
2 EI

[
f (eI )

]
.

�e �rst inequality uses monotonicity. �e rest of the proof shows the la�er inequality.
For any real x ≥ 0, letWx denote the indices of the elements ej on the stem with f (ej ) ≥ x ,

and letW x denote the indices of stem elements not inWx . �en,

EI
[
f (eI )

]
=

∫ ∞

0
Pr
I

[f (eI ) ≥ x]dx

=

∫ ∞

0
Pr
I

[I ∈Wx ]dx =
∫ ∞

0

∑
i∈Wx

(
pi

∏
j<i

qj
)
dx , (5.9)

where the last equality uses that the probability of exiting stem at i is pi
∏

j<i qj .
On the other hand, we have

EI ,R
[

max
e∈R

f (e )
]
=

∫ ∞

0
Pr
I ,R

[max
e∈R

f (e ) ≥ x]dx

=

∫ ∞

0
Pr
I ,R

[R ∩Wx , ∅]dx . (5.10)

For any x , we have

Pr
I ,R

[R ∩Wx , ∅]

=
∑
k∈Wx

Pr
I ,R

[ek ∈ R and ej < R for all j < k with j ∈Wx ]

58



=
∑
k∈Wx

Pr
I

[I ≥ k] · Pr[ek active] · Pr
I

[ ej inactive for all j < k with j ∈Wx ] (5.11)

=
∑
k∈Wx

(∏
j<k

qj
)
· pk ·

( ∏
j<k & j∈Wx

qj
)

(5.12)

=
∑
k∈Wx

( ∏
j<k & j∈Wx

q2
j

)
·
( ∏
j<k & j<Wx

qj
)
· pk . (5.13)

Recall thatR ∼ SI (p). Above (5.11) is because, for ek to be the �rst element inWx∩R, (i) the index
I must go past k , (ii) ek must be active, and (iii) all elements before k on the stem with indices
in Wx must be inactive (which are all independent events). Equation (5.12) is by de�nition of
these probabilities. Combining (5.10) and (5.13), and renaming k to i ,

EI ,R
[

max
ej∈R

f (ej )
]
=

∫ ∞

0

∑
i∈Wx

(
pi

( ∏
j<i & j∈Wx

q2
j

) ( ∏
j<i & j<Wx

qj
))

dx . (5.14)

To complete the proof, we compare equations (5.9) and (5.14) and want to show that for
every x , ∑

i∈Wx

(
pi

( ∏
j<i & j∈Wx

q2
j

) ( ∏
j<i & j<Wx

qj
))
≥

1
2

∑
i∈Wx

(
pi

∏
j<i

qj
)
. (5.15)

While the expressions look complicated, things simplify considerably when we condition on
the outcomes of elements outsideWx . Indeed, observe that the le�-hand-side of (5.15) equals

EW x

[ ∑
i∈Wx

(
pi

( ∏
j<i & j∈Wx

q2
j

) ( ∏
j<i & j<Wx

1qj
))]
,

where 1qj is an independent 0-1 random variable taking value 1 w.p. qj , and we take the expec-
tation over coin tosses for elements inW x . Similarly, the right-hand-side of (5.15) is

1
2

∑
i∈Wx

(
pi

∏
j<i

qj
)
= EW x

[ 1
2

∑
i∈Wx

(
pi

( ∏
j<i & j∈Wx

qj
) ( ∏

j<i & j<Wx

1qj
))]
.

Now we condition on the elements in W x : let s ∈ W x denote the �rst element in W x with
1qs = 0. LetW ′

x denote all elements inWx that appear before s . In order to prove (5.15) it now
su�ces to show: ∑

i∈W ′
x

(
pi

( ∏
j<i & j∈W ′

x

q2
j

))
≥

1
2

∑
i∈W ′

x

(
pi

( ∏
j<i & j∈W ′

x

qj
))
.

�is inequality can be proved using the following claim.
Claim 5.3.4. For any ordered set A of probabilities {a1,a2, . . . ,a |A|}, let bj denote 1 − aj for j ∈
[1, |A|]. �en, ∑

i

ai
(∏

j<i

bj
)2
≥

1
2
∑
i

ai
(∏

j<i

bj
)

59



Proof. Observe that ∑
i

ai
(∏

j<i

bj
)2

=
∑
i

1 − b2
i

1 + bi

(∏
j<i

bj
)2
≥

1
2
∑
i

(1 − b2
i )

(∏
j<i

b2
j

)
=(?)

1
2
(
1 −

∏
i

b2
i

)
=

1
2
(
1 −

∏
i

bi
) (

1 +
∏
i

bi
)

≥
1
2
(
1 −

∏
i

bi
)
=(?)

1
2
∑
i

ai
(∏

j<i

bj
)
,

where we have repeatedly used aj + bj = 1 for all j. �e equalities marked (?) move between
two ways of expressing the probability of at least one “heads” when the tails probability is b2

j
and bj respectively. �

Applying the claim to the elements inWx , in order of their distance from the root, completes
the proof of Lemma 5.3.3. �

5.3.2 Lower Bound of 2 for Submodular Functions

Our analysis cannot be substantially improved since Claim 5.3.4 is tight. Consider the se�ing
with |A| being in�nite for now, and ai = ε for all i . �en the LHS of Claim 5.3.4 is ε∑i (1 −
ε )2(i−1) = ε

1−(1−ε )2 ≈
1
2 + O (ε ), whereas the sum on the right is 1. Making |A| �nite but large

compared to 1
ε would give similar results.

We now present a monotone non-negative submodular function and a pre�x-closed set of
constraints where the adaptivity gap for stochastic probing is arbitrarily close to 2.
�eorem 5.3.5. �e optimal adaptivity gap for stochastic probing where the constraints are pre�x-

closed and the function is a monotone non-negative submodular is at least 2.

Proof. Our example is on a universe V := {e (k,l ) | k ,l ∈ Z≥0} where every element is indepen-
dently active with probability ϵ for some 0 < ϵ < 1.

Example: We de�ne our submodular objective f to be the weighted rank function of a par-
tition matroid that selects at most one element from each part. �e elements are partitioned
according to their �rst label—for every k ∈ Z≥0 the set {e (k,l ) | l ∈ Z≥0} is a part of the partition
matroid with weight (1 − ϵ )k . In other words, for any set S ⊆ V let K (S ) := {k | e (k,l ) ∈ S } be
the (unique) set of �rst labels, then

f (S ) :=
∑

k∈K (S )

(1 − ϵ )k .

Note that this series always converges so f is well de�ned.

60



0,0

0,1 1,0

0,2 1,1 2,0

0,3 1,2 2,1 3,0
Figure 5.2: Adaptivity gap lower bound example for monotone submodular functions.

To de�ne our pre�x-closed constraints, we consider an in�nite directed acyclic graph where
every element is identi�ed with a single node in the graph. Every node/element e (k,l ) has exactly
two outgoing edges: towards e (k,l+1) and towards e (k+l+1,0) . We denote {e (k,0),e (k ,1), . . .} as the
elements on column k . �e probing constraint is that a sequence of elements can be probed if
and only if it corresponds to a directed path starting at e (0,0) . See §5.2 for an illustration.

Analysis: We �rst give an adaptive strategy with value 2−ϵ (in Eq. (5.16)) and later argue that
every non-adaptive strategy has value at most 1 (in Eq. (5.17)); thereby, proving this theorem.
Although, the probing constraint allows for in�nite strategies, and in a di�erent se�ing it would
not be clear how to de�ne their expected values, since f is monotone we include every active
element in the solution. So the expected value of an in�nite strategy can be de�ned as the limit
of the strategies that only probe a �nite number of elements.

Our adaptive strategy adap starts with probing element e (0,0) . It is de�ned recursively: a�er
probing e (k ,l ) , the next element to probe is either e (k+l+1,0) if e (k,l ) is found active, or e (k ,l+1)
otherwise. In other words, it probes elements on a column until it �nds one active, and then
probes another column.

Let adap(k ) denote the expected additional value our above adaptive strategy if the next
probed element is e (k,0) and let adap := adap(0) denote the expected value of the entire strategy.
Note that adap(k ) does not depend on the set of elements found active before probing e (k ,0) (i.e.,
the elements e (k ′,l ′) where k′ < k). Furthermore, the subgraph reachable from e (k,0) is similar to
the entire graph on V in the sense that one can relabel the elements in the subgraph to match
the entire graph exactly, the only di�erence being that the value of any subset is multiplied by
a factor of (1 − ϵ )k . �erefore, we have

adap(k ) = (1 − ϵ )k · adap(0).

Now, summing over the number of inactive elements on column 0, we get

adap(0) =
∞∑
k=0

(1 − ϵ )k · ϵ ·
(
1 + adap(k + 1)

)
=

∞∑
k=0

(1 − ϵ )k · ϵ
(
1 + (1 − ϵ )k+1 · adap(0)

)
,

which uses adap(k ) = (1 − ϵ )k · adap(0). Solving this equation yields the result:

adap = adap(0) = 2 − ϵ . (5.16)

61



Similarly, let alg(k ) denote the expected additional value of the optimal non-adaptive strat-
egy if the next probed element is e (k ,0) , and let alg = alg(0) denote the expected value of the
optimal non-adaptive strategy. By the same argument as adap(k ), we have

alg(k ) = (1 − ϵ )k · alg(0).

Let k denote the number of elements the optimal non-adaptive strategy probes on column 0.
We get

alg(0) = max
k≥1

{
1 − (1 − ϵ )k + alg(k + 1)

}
= max

k≥1

{
1 − (1 − ϵ )k + (1 − ϵ )k · alg(0)

}
,

which uses alg(k ) = (1 − ϵ )k · alg(0). �is implies

alg = alg(0) = 1. (5.17)

Combining Eq. (5.16) and Eq. (5.17), we get an adaptivity gap arbitrarily close to 2 for ϵ →
0. �

5.3.3 Finding Non-Adaptive Polices

A non-adaptive policy is given by a �xed sequence σ = 〈e1,e2, . . . ,ek〉 of elements to probe
(such that σ satis�es the given pre�x-closed probing constraint. If A is the set of active ele-
ments, then the value we get is EA∼V (p)[f max(A ∩ {e1, . . . ,ek })] = EA[f (A ∩ {e1, . . . ,ek })], the
equality holding for monotone functions. If we de�ne д(S ) := EA∼V (p)[f (V ∩ A)], д is also a
monotone submodular function. Hence �nding good non-adaptive policies for f is just opti-
mizing the monotone submodular function д over the allowed sequences. E.g., for the probing
constraint being a matroid constraint, we can get a e

e−1-approximation [CCPV11]; for it being an
orienteering constraint we can get anO (logn)-approximation in quasi-polynomial time [CP05].

For non-monotone functions (discussed in the next section), we can approximate the f max(S )
function by ER∼V ( 1

2 )
[f (S∩R)], and losing a factor of 4, reduce �nding good non-adaptive strate-

gies to (non-monotone) submodular optimization over the probing constraints.

5.4 Non-Monotone Non-Negative Submodular Functions

We now prove �eorem 5.1.2. �e proof for the monotone case used monotonicity in several
places, but perhaps the most important place was to claim that going down the tree, both adap
and alg could add all active elements to the set. �is “online” feature seemed crucial to the proof.
In contrast, when the adaptive strategy adap reaches a leaf in the non-monotone se�ing, it
chooses the best subset within the active elements; a similar choice is done by the non-adaptive
algorithm. �is is why we have f max(A` ) in (5.2) versus f (A` ) in (5.4).

Fortunately, a result from Feige el al. [FMV11] shows that for non-negative non-monotone
submodular functions, the simple strategy of picking every active element independently w.p.

62



half gives us a near-optimal possible subset. Losing a factor of four, this result allows us to
analyze the performance relative to an adaptive online algorithm adapon which selects (with
probability 1

2 ) each probed element that happens to be active. By modifying the tree, we can
view adapon as selecting every active element: the modi�ed adapon tree probes each element
w.p. 1

2 and select every active element.
�e rest of the proof is similar (at a high level) to the monotone case: to relate adapon and alg

we bound them using comparable terms (adap and alg in De�nition 5.4.1) and apply induction.
Altogether we will obtain:

alg
(Lemma 5.4.2(ii ))

≥ alg
(Lemma 5.4.4)
≥

1
5 · adap

(Lemma 5.4.2(i ))
≥

1
10 · adapon

(5.1)
≥

1
40 · adap.

In the inductive proof, we will work with “contracted” submodular functions д obtained
from f , which may take negative values but have д(∅) = 0. In order to deal with such issues,
the induction here is more complex than in the monotone case.

We �rst de�ne the surrogates adap and alg for adap and alg recursively as follows.
De�nition 5.4.1. For any adaptive online strategy tree T and submodular functionд withд(∅) =
0, let

• I be the node at which a random walk according to πT exits the stem.

• R ∼ SI (p) where SI denotes the elements on the stem until node I .
• J = arg max{д(e ) | e ∈ R,д(e ) > 0} w.p.

1
2 and J = ⊥ w.p.

1
2 .

�en we de�ne:

adap(T ,д) := EI ,J
[
д(I ) + д(J ) + adap(TI ,дI∪J )

]
and

alg(T ,д) := EI ,J
[
д(J ) + alg(TI ,дI∪J )

]
.

Above we account for the non-monotonicity of the function, via this process of random
sampling used in the de�nition of adap and alg. One problem with following the proof from
§5.3 is that when we induct on the “contracted” function fS for some set S , this function may not
be non-negative any more. Instead, our proof considers the entire path down the tree and argues
about it at one shot; to make the analysis easier we imagine that the non-adaptive algorithm
picks at most one item from the stem, i.e., the one with the highest marginal value.
Lemma 5.4.2. For any adaptive online strategy tree T , the following hold:

(i) For any non-negative submodular function f , adap(T , f ) ≥ 1
2adapon (T , f ).

(ii) For any submodular function д, alg(T ,д) ≥ alg(T ,д).

We make use of the following property of submodular functions.
Lemma 5.4.3 ([BFNS14], Lemma 2.2). For any non-negative submodular function h : 2A → R≥0
(possibly with h(∅) , 0) let S ⊆ A be a random subset that contains each element of A with

probability at most p (not necessarily independently). �en,

ES[f (S )] ≥ (1 − p) · f (∅).

63



Proof of Lemma 5.4.2. We condition on a random leaf ` drawn according to πT . Let I1, . . . , Id
denote the sequence of nodes that correspond to active elements on the path P` , i.e., I1 is the
point where P` exits the stem of T , I2 is the point where P` exits the stem of TI1 etc. �en,
the adaptive online value is exactly f ({I1, . . . Id }). For any k = 1, . . . ,d let P`[Ik−1, Ik] denote
the elements on path P` between Ik−1 and Ik . Also let R denote the random subset where each
element e on path P` is chosen independently w.p. pe .

For k = 1, . . . ,d , de�ne Jk as follows:

Jk = arg max{ fLk−1 (e ) | e ∈ R ∩ P`[Ik−1, Ik ], fLk−1 (e ) > 0}

with probability 1
2 , and

Jk = ⊥ with probability 1
2 ,

where Lk−1 := {I1, . . . , Ik−1} ∪ {J1, . . . , Jk−1}. In words, the sets L contain the exit points from
the stems, and for each stem also the element with maximum marginal value (if any) with
probability half.

For (i), by De�nition 5.4.1, the value of adap(T , f ) conditioned on path P` and elements
J1, . . . , Jd is

d∑
k=1

fLk−1 (Ik ) + fLk−1 (Jk ) ≥

d∑
k=1

fLk−1 ({Ik , Jk })

= f ({I1, J1, . . . Id , Jd }). (5.18)

�e inequality follows from the following two cases:

• If Ik , Jk , then by submodularity of fLk−1 ,

fLk−1 (Ik ) + fLk−1 (Jk ) ≥ fLk−1 ({Ik , Jk }) + fLk−1 (∅)

= fLk−1 ({Ik , Jk }).

• If Ik = Jk , then by choice of Jk we have fLk−1 (Jk ) > 0 and

fLk−1 (Ik ) + fLk−1 (Jk ) = 2 · fLk−1 (Jk ) > fLk−1 (Jk ).

Using (5.18) and taking expectation over the Js, adap(T , f ) conditioned on path P` is at least

EJ1,...Jd [f ({I1, J1, . . . Id , Jd })] ≥
1
2 · f ({I1, . . . Id }).

Above we used Lemma 5.4.3 on the non-negative submodular functionh(S ) := f (S∪{I1, . . . , Id }),
using the fact that the set {J1, . . . , Jd } contains each element with probability at most half. Fi-
nally, deconditioning over ` (i.e., over I1, . . . Id ) proves part (i).

For part (ii), by De�nition 5.4.1, the value of alg(T ,д) conditioned on path P` and elements
J1, . . . , Jd is

d∑
k=1

дLk−1 (Jk ) ≤
d∑

k=1
дJ1,...Jk−1 (Jk ) = д({J1, . . . , Jd }),

64



where the inequality is by submodularity of д. Since alg chooses the maximum value subset in
R and {J1, . . . , Jd } ⊆ R, taking expectations over ` and R, we prove part (ii). �is completes the
proof of Lemma 5.4.2. �

Lemma 5.4.4. For any strategy tree T and submodular function д with д(∅) = 0, alg(T ,д) ≥
1
5 · adap(T ,д).

Proof. We proceed by induction. Recall the notation in De�nition 5.4.1. For each node i on
the stem of T de�ne ai := max{д(i ),0}. Note that д(J ) = a J by choice of J : if J , ⊥ we have
д(J ) > 0 and if J = ⊥, д(J ) = д(∅) = 0 = a J . We will show that

EI ,J [aI ] ≤ 4 · EI ,J [a J ]. (5.19)

�en the de�nition of adap(T ,д) and alg(T ,д), and induction on TI and дI∪J , would prove the
lemma.

Let K = arg max{ae | e ∈ R} be the r.v. denoting the maximum weight active (i.e., in R)
element on the stem. �en, by de�nition of J , we have EI ,J [a J ] = 1

2EI ,K [aK ]. Finally we can use
Lemma 5.3.3 from Section 5.3 to obtainEI ,K [aK ] ≥ 1

2EI ,J [aI ], which proves (5.19). �is completes
the proof of Lemma 5.4.4. �

5.5 Applications

5.5.1 Stochastic Probing on Metrics

In the stochastic probing problem on metrics, recall that the elements are in a metric space
(V ,d ), and probing constraints enforce that the probed elements lie on a path of length at most
B.

To begin, consider the simpler case where the objective is a simple submodular function
given by rank function r () of single matroid M; here each element e is active and has value
1 with probability pe , or is inactive (has value zero) with probability 1 − pe . Let A ∼ V (p) be
a random set of active elements. �e non-adaptive problem is now to �nd a path Q of total
length B, to maximize the quantity д(Q ) := EA∼V (p)[r (Q ∩ A)]. Since the rank function r () is a
submodular function, so is д(), and we have a problem of �nding a pathQ of length at most B to
maximize the submodular functionд(Q ). �is is precisely the submodular orienteering problem
for which Chekuri and Pál [CP05] gave an O (logn) approximation in quasi-polynomial time.
�eorem 5.5.1. �ere is a quasi-polynomial time O (logn)-approximation algorithm for non-

adaptive stochastic probing on metrics when the objective function is a submodular.

We next prove a “generalization” of �eorem 5.5.1 to objective functions that are given by
intersection ofk matroids. For the intersection ofk matroids, de�ne the “rank” r (S ) to be the size
of the largest common independent set contained in S . �e function r () is no longer submodular,
so we cannot use the same arguments as above. In Chapter 6 we prove a generalization of

65



ourO (1)-adaptivity gaps for submodular functions toO (poly(k ))-adaptivity gaps for functions
given by intersection of k matroids (Corollary 6.4.2). Even if we assume this result, we need to
still design a non-adaptive algorithm. We achieve this by reworking the proof of Chekuri and
Pál, with an additional loss of a factor of k2. First, we put the stochasticity aside, and try to
maximize the cardinality of a common independent set in the intersection of k matroids.
Proposition 5.5.2. �ere is a quasi-polynomial time (k log2(2n))-approximate algorithm to max-

imize the rank function of the intersection of k matroids, subject to an orienteering constraint.

Proof. (Sketch) We assume the reader is familiar with the elegant Savitch-like idea from [CP05].
By suitable guessing, we want to �nd the best s-t path of length B with ` hops, where the “half-
way” point is v , the length of the s-v portion is B1 and the rest is B2. Let P?1 and P?2 be the s-v
andv-t portions of the optimal path P?, and let I? be the optimal independent set. Since we are
in the unweighted case, the optimum solution value is |I?| = |I?∩P?1 |+ |I?∩P?2 |. We recursively
�nd a 1/(k log2 `)-approximate solution I1 to the s-v problem (with `/2 hops and budget B1):

|I1 | ≥
1

k log2 `
|I? ∩ P?1 |.

�en we contract the elements of I1 and �nd an approximate solution I2 for the v-t problem
(with `/2 hops and budget B − B1). Since contracting each element of I1 can only reduce the
rank of the problem by k , we get

|I2 | ≥
1

k log2 `

(
|I? ∩ P?2 | − k |I1 |

)
.

Combining, we have

|I | = |I1 | + |I2 | ≥
1

k log2 `

(
|I? ∩ P?1 | + |I

? ∩ P?2 | − k |I1 |
)
,

which implies

|I | ≥
|I?|

k (1 + log2 `)
=

|I?|

k log2(2`)
.

For the base case ` = 1 the only option is to go from s to t , and get a 1 ≥ 1
k log2 2-approximation.

�

�e entire analysis above is linear, and immediately extends to any positive linear combi-
nation of such unweighted rank functions, say those functions of the form

д(Q ) := EA∼V (p)[r (Q ∩A)].
Finally, using the reduction from weighted to unweighted rank functions we lose another factor
of O (k ) and get:
�eorem 5.5.3. �ere is a quasi-polynomial time O (k2 logn)-approximation algorithm for non-

adaptive stochastic probing on metrics when the objective is given by intersections of k matroids.

Finally, combining with Corollary 6.4.2 completes the proof of the following theorem.
�eorem 5.5.4. �ere is a quasi-polynomial time O (k3 logk logn)-approximation algorithm for

stochastic probing on metrics with objective function given by intersection of k-matroids.

66



Stochastic Submodular Orienteering for Monotone Submodular Functions �e above
result also implies an approximation algorithm for the following stochastic submodular orien-

teering (StocSO) problem. Given a metric (V ,d ) with a root where each vertex v ∈ V is active
independently with probability pv , a monotone submodular function д : 2V → R+ and length
bound B, the goal is to �nd an adaptive path of length at most B that originates from the root
and maximizes the expected function value on active elements. When function д is a monotone

submodular function, notice that StocSO is precisely the above stochastic probing problem on
metrics. Hence, by �eorem 5.5.1 there is a quasi-polynomial time O (logn)-approximation al-
gorithm for StocSO (we use the fact that [CP05] algorithm can be used to �nd a non-adaptive
strategy). We summarize this discussion below:
Corollary 5.5.5. �ere is a quasi-polynomial timeO (logn)-approximation algorithm for stochas-

tic monotone submodular orienteering.

�is result will be useful for the next section.

5.5.2 Stochastic Minimum Latency Submodular Cover

�e minimum latency submodular cover problem studied in [INvdZ12] is as follows: given a
metric (V ,d ) with root r andm monotone submodular functions fi : 2V → R+ (for i ∈ [m]), the
goal is to �nd a path originating from r that minimizes the total “cover time” of them functions.
Here, function fi is said to be covered at time t if this is the minimum value such that

fi

(
{v | vertex v visited before time t }

)
= fi (V ).

In the stochastic minimum latency submodular cover (StocMLSC) problem, the input is the same
as above and furthermore each vertex (element) v ∈ V is active independently with probability
pv . �e goal is to �nd an adaptive strategy to minimize the expected total cover time of the
m functions. In the stochastic se�ing, function fi is said to be covered at time t if this is the
minimum value such that

fi

(
{v | v visited before time t and active}

)
= fi (V ).

Due to the stochasticity, there may be situations where some functions fi never reach the max-
imum value fi (V )—in such cases the cover time is just set to be the entire path length. We
assume, without loss of generality, that functions are normalized so that fi (V ) = 1 for i ∈ [m].

Obtaining a poly-logarithmic approximation ratio for StocMLSCwas le� open in [INvdZ12].
We answer this question.
�eorem 5.5.6. �ere is a quasi-polynomial time O (logn · log 1

ϵ )-approximation algorithm for

stochastic minimum latency submodular cover, where ϵ is such that for any i ∈ [m] and S′ ⊆ S , if

fi (S ) > fi (S
′) then fi (S ) ≥ fi (S

′) + ϵ .

Proof. (Sketch) �e main ingredient in this algorithm is an approximation algorithm for stochas-
tic submodular orienteering (StocSO). Given an α-approximation algorithm for this problem,
the algorithm and analysis for the deterministic minimum latency submodular cover problem

67



in [INvdZ12] apply directly to yield an O (α · log 1
ϵ )-approximation algorithm for StocMLSC,

where ϵ is the smallest positive marginal value of any function { fi }mi=1. Moreover, the function
д in the StocSO instances solved by this algorithm is always a non-negative linear combination
of the fis.

Since д is a linear combination of the fis, Corollary 5.5.5 yields quasi-polynomial time
O (logn)-approximation algorithm for StocSO with objective д. Applying this within the algo-
rithm from [INvdZ12], we obtain aO (logn · log 1

ϵ )-approximation algorithm for StocMLSC. �

As an example, consider the stochastic version of the latency group Steiner problem [GNR10,
CS11]. �e input consists of (i) metric (V ,d ) where each vertex v ∈ V is active independently
with probability pv , (ii) root r ∈ V and (iii) m groups {Ui ⊆ V }mi=1 of vertices. �e goal is to
�nd an adaptive path (starting from r ) that minimizes the expected cover-time of them groups.
Group Ui is covered at the earliest time when some active vertex from Ui is observed. A direct
application of �eorem 5.5.6 yields an O (logn)-approximation algorithm (we use the fact that
ϵ ≥ 1 in this example).

5.5.3 Stochastic Connected Dominating Set

�e budgeted connected dominating set problem (BCDS) studied in [KPS14] is the following.
Given an undirected graph G = (U ,E) and budget k , the goal is to choose a set S of k vertices
such that G[S] is a connected suggraph, and the number of vertices dominated by S are maxi-
mized. A vertex v ∈ U is said to be dominated by set S ⊆ U if N (v ) ∩ S , ∅, where N (v ) is the
set of neighbors of v which includes v .

We consider the following stochastic version of BCDS. �e elements are edges E of a graph,
and each edge e ∈ E is active for the purpose of dominating one end-point by the other only
with some independent probabilitype . Furthermore, the status of an edge e is only known when
we “probe” one of its end points. �e (random) subset of active edges is denoted A ⊆ E. We
want an adaptive strategy for probing a sequence of at most k vertices such that:
• the set P of probed vertices at any point in time is connected in the (deterministic) graph
G = (U ,E), and
• the expected number of vertices dominated by P in the graph Gp = (U ,A) is maximized.
�is models, for example, a sensor network application where vertices U denote potential

coverage locations and edges E correspond to pairs of locations between which two sensors
can communicate. A sensor placed at location u covers u, and additionally a (random) subset
of u’s neighbors between whom the sensing quality is good enough. A priori we only know the
probabilities of having a good sensing quality; the exact status is known only when a sensor is
placed at u or v . We want to set up a connected network using k sensors (possibly adaptively)
so as to maximize the expected number of covered locations.

We formally cast the problem in our framework: �e ground set contains the edge set E
with probabilities {pe }e∈E . In our model we must probe elements/edges (and not vertices), but
the generality of our framework helps capture this. �e outer constraints require that there
exists a subset S ⊆ U of vertices such that (i) every probed edge has at least one end-point
in S , (ii) S is connected in G, and (iii) |S | ≤ k . It is easy to see that this can be captured by

68



a pre�x-closed collection of sequences of elements in E. �ere is no inner constraint, but the
objective is the coverage function

f (A) :=
∑
v∈U

1A contains edge incident to v ,

where A is the set of probed edges that are active. By �eorem 5.1.1 the adaptivity gap of this
stochastic probing problem is O (1), so we can focus on the non-adaptive problem.

In the non-adaptive stochastic BCDS problem, we want a static set S ⊆ U of at most k
connected vertices in G that maximizes the function

д(S ) := |S | +
∑
v∈U \S

Pr[v dominated by S]

= |S | +
∑
v∈U \S

(
1 −

∏
e∈E (S ,v )

(1 − pe )
)
.

Above E (S ,v ) denotes the set of edges incident tov whose other endpoint lies in S . Not only isд
is a submodular function onU , it is also a “special submodular” function as de�ned in [KPS14],
so the algorithm from [KPS14] yields anO (1)-approximation for non-adaptive stochasticBCDS,
and hence proves the following �eorem 5.5.7.
�eorem 5.5.7. �ere is a constant factor approximation algorithm for stochastic connected dom-

inating set.

5.5.4 Stochastic Precedence Constrained Scheduling

Consider a set V of tasks with precedence constraints, where each task e ∈ V has an indepen-
dent random value/reward Xe ∈ Z+. �e exact value of a task is known only when it is probed,
and the order of probing tasks must satisfy the precedence. (I.e., a task can be probed only
when its predecessors have all be probed.) �ere is a bound B on the total number of probes.
Each task must be irrevocably accepted/rejected immediately a�er it is probed. Finally, we are
allowed to accept at most k tasks. �e objective is to maximize the expected total value of the
selected tasks.

�is can be modeled as a stochastic probing problem on the ground setV , with independent
random valuesXe for each e ∈ V . �e outer constraints requires that we probe a set S ⊆ V with
|S | ≤ B that satis�es the precedence (i.e., it is a lower-ideal of the poset giving the precedence
constraints). �e inner constraint is a single uniform matroid of rank k . By �eorem 5.1.1 the
adaptivity gap of this probing problem is O (1), and hence it su�ces to give an algorithm for
the non-adaptive problem.

�e non-adaptive problem involves choosing a precedence-constrained set S ⊆ V with |S | ≤
B that maximizes:

value(S ) := E
[

max
{∑

e∈I

Xe
���� I ⊆ S , |I | ≤ k

}]
.

�is value is approximated (within factor 4) by value′(S ) which is:

69



∑
j ∈Z

2j · E
[
max{|I | : I ⊆ S ∩ {e | 2j−1 ≤ Xe < 2j }, |I | ≤ k }

]

=
∑
j ∈Z

2j · E
[
min

{
S ∩ {e | 2j−1 ≤ Xe < 2j }, k

}]
.

�is in turn is approximated within factor e
e−1 by

value′′(S ) =
∑
j∈Z

2j ·min
{∑
e∈S

Pr[2j−1 ≤ Xe < 2j], k
}
.

�is follows from the fact that for independent [0,1] valued random variables X ′1, · · · ,X ′n with
Y =

∑
X ′i , it holds that E[min{Y ,1}] ≥ (1−1/e ) ·min{E[Y ],1} (see, e.g., [AMM+11, �eorem 4]).

For each j, we use this result with X ′e =
1
k · 12j−1≤Xe<2j and Y =

∑
e∈S X

′
e .

De�ne pe,j := Pr[2j−1 ≤ Xe < 2j] for each e ∈ V and j ∈ Z. Using standard scaling argu-
ments, we may assume that the random variable takes on values in the range [1,poly(n)], that so
we have L = O (logn) weight classes j = 1, · · · ,L. Summarizing the above reductions, we know
that with a constant factor loss, the non-adaptive problem reduces to �nding a precedence-
constrained set S ⊆ V with |S | ≤ B that maximizes X ′(S ) = ∑L

j=1 2j ·min
{∑

e∈S pe,j , r
}
.

When L = 1, this reduces to the partially ordered knapsack problem for which an FPTAS
is known when the precedence constraint is an “2-dimensional order” [KS07].3 �e algorithm
in [KS07] is a dynamic program which easily extends to give a quasi-polynomial nO (L) time
approximation scheme for non-adaptive stochastic precedence constrained scheduling in this
se�ing. Hence we get:
�eorem 5.5.8. �ere is a quasi-polynomial time constant-factor approximation algorithm for

stochastic precedence constrained scheduling under 2-dimensional orders.

3�is class is strictly more general than series-parallel precedence constraints. For general precedence con-
straints, no approximation algorithm is known: this is at least as hard as Dense-k-subgraph.

70



Chapter 6

Constrained Stochastic Multi-Value

Probing

6.1 Introduction

In Chapter 5 we studied constrained stochastic probing (CoSP) and saw its several applications
in §5.5. Although powerful, we make two crucial assumptions in that model: (i) each element
i can only take a Bernoulli value, i.e., it is active w.p. pi and is inactive, otherwise; (ii) the
combinatorial objective function is submodular. For many applications, it is conceivable that
“small” adaptivity gaps hold even when the variables have non-Bernoulli distributions or when
the combinatorial function is more general. For example, is the adaptivity gapO (1) for the Best-
box problem whenXis are arbitrary non-negative r.v.s? In this chapter we study adaptivity gaps
for CoSP both when the distribution of r.v.s goes beyond Bernoulli variables and also when the
function is more general, e.g., intersection of matroids, XOS, or monotone subadditive.

For a general submodular function, it is not obvious how to formally de�ne the notion
“an element is not Bernoulli”. We would like a model that allows an element to take one of
k potential “types” for some given k ; but then it is unclear how to de�ne element marginals.
For example, how should an element i’s marginal change over set S when an element in S
changes its type? In §6.2 we resolve this problem by modeling “combinatorial but independent
functions” that are de�ned over a larger universe of elements, say n × k elements.

In §6.3 we prove that our above intuition of small adaptivity gaps for non-Bernoulli sub-
modular functions is correct. In fact, we show that an improved analysis of the approach of
taking a random root-leaf path in the decision tree from Chapter 5 can give the tight adap-

tivity gap of 2 for submodular functions (matching the lower bound from §5.3.2). In §6.4 we
consider adaptivity gaps for a special class of subadditive functions that are given as weighted
rank function of a k-extendible system. �is class is more general than rank functions of inter-
section of k matorids, e.g., k = 2 captures the max-weight matching in general graphs. Finally,
in §6.5 we bound the adaptivity gaps of XOS functions in terms of their width (recollect, De�ni-
tion 2.2.2). We hope in future work to obtain “width-independent” small adaptivity gaps for XOS
functions. Since an XOS function O (logn)-approximates a subadditive function (Lemma 2.4.7),

71



such a width-independent result would imply a small adaptivity gap for general subadditive
functions.

6.2 Combinatorial Functions over Independent Items

In this section, we de�ne what we mean by “submodular (or subadditive) valuations over inde-
pendent items”. Formally, we de�ne:
De�nition 6.2.1 (C Valuations over Independent Items). Let C be a class of valuation functions

(in particular, we are interested in C ∈ {submodular, XOS, subadditive}). Consider:

• n sets U1, . . . ,Un and distributions D1, . . . ,Dn, where Di returns a single item (type) from

set Ui .

• A function f : {0,1}U → R≥0, where U ,
⋃n

i=1Ui and f ∈ C.

• For X ∈
∏

i Ui and subset S ⊆ [n], let vX(S ) , f
(
{Xi : i ∈ S }

)
.

Let D be a distribution over valuation functions v (·) : 2n → R≥0. We say that D is “C over
independent items” if it can be wri�en as the distribution that �rst samples X ∼×i Di , and then

outputs valuation function vX(·).

Sometimes, we also denote the sets of typesUi by setTi and their union byT , U = ⋃n
i=1Ti .

Related notions in the literature

Combinatorial functions over independent items have been considered before. Agrawal et al.
[ADSY12], for example, consider a di�erent, incomparable framework de�ned via the general-
ization of submodular and monotone functions to non-binary, ordered domains (e.g. f :×i Ui →

R≥0 is submodular if f (max{X,Y})+ f (min{X,Y}) ≤ f (X)+ f (Y)). In our de�nition, per contra,
there is no natural way to de�ne a full order over the set of items potentially available on each
time period. For example, if we select an item on Day 1, an item X2 on Day 2 may have a larger
marginal contribution than item Y2, but a lower contribution if we did not select any item on
Day 1.

Another relevant de�nition has been considered in probability theory [Sch99] and more
recently in mechanism design [RW15]. �e la�er paper considers auctioning n items to a buyer
that has a random, “independent” monotone subadditive valuation over the items. Now the
seller knows which items she is selling them, but di�erent types of buyers may perceive each
item di�erently. �is is captured via an a�ribute of an item, which describes how each buyer
values a bundle containing this item. Formally,
De�nition 6.2.2 (Monotone Subadditive Valuations over Independent Items [Sch99, RW15]).
We say that a distribution D over valuation functions v (·) : 2n → R is subadditive over inde-
pendent items if:

1. All v (·) in the support of D exhibit no externalities.

Formally, let ΩS =×i∈S Ωi , where each Ωi is a compact subset of a normed space. �ere exists

72



a distribution DX
over Ω[n] and functionsVS : ΩS → R such that D is the distribution that

�rst samples X ∼ DX
and outputs the valuation function v (·) with v (S ) = VS (〈Xi〉i∈S ) for

all S .

2. All v (·) in the support of D are monotone and subadditive.

3. �e private information is independent across items. �at is, theDX
guaranteed in Property

1 is a product distribution.

For monotone valuations, De�nition 6.2.1 is stronger than De�nition 6.2.2 as it assumes that
the valuation function is de�ned over every subset of U = ⋃

Ui , rather than just the support
ofD. However, it turns out that for monotone subadditive functions De�nitions 6.2.1 and 6.2.2
are equivalent.
Observation 6.2.3. A distribution D is subadditive over independent items according to De�ni-

tion 6.2.1 if and only if it is subadditive over independent items according to De�nition 6.2.2.

Proof sketch. It’s easy to see that De�nition 6.2.1 implies De�nition 6.2.2: We can simply identify
between the set of a�ributes Ωi on day i and the set of potential itemsUi , and letVS (〈Xi〉i∈S ) ,

f
(
{Xi : i ∈ S }

)
. Observe that the desiderata of De�nition 6.2.2 are satis�ed.

In the other direction, we again identify between each Ui and Ωi . For feasible set S which
consists of only one item in Ui for each i ∈ R, we can let XS be the corresponding vector in∏

Ωi , and de�ne f
(
S
)
, VXS (R). De�nition 6.2.1 requires that we de�ne f (·) over any subset

of U , ⋃
Ui . We do this by taking the maximum of f (·) over all feasible subsets. Namely, for

set T ⊆ U , let RT ⊆ [n] denote again the set of i’s such that |T ∩Ui | ≥ 1. We set:

f (T ) , max
S⊆T s.t.
∀i |S∩Ui |≤1

VXS (RT ).

Now f (·) is monotone subadditive because it is maximum of monotone subadditive functions.
�

6.3 Adaptivity Gaps Beyond Bernoulli Variables for Sub-

modular Functions

We now prove a generalization of �eorem 5.3.1 for submodular functions over independent
items, which also gives the optimal adaptivity gaps for monotone submodular functions.
�eorem 6.3.1. �e optimal adaptivity gap for stochastic probing where the constraints are pre�x-

closed and the function is a monotone non-negative submodular is exactly 2.

From �eorem 5.3.5, we already know an example that shows a lower bound of 2. To prove
the upper bound, our non-adaptive strategy will sample a random root-leaf path using the
optimal adaptive strategy tree T . In other words, it performs a “dry-run” of a random walk
along the tree without probing anything. In the end it queries all the elements on this random
root-leaf path. We argue that its expected value is at least half of the adaptive strategy.

73



Proof of upper bound in �eorem 6.3.1. We induct over the depth of the tree T , i.e., for any
monotone submodular function f and tree T of depth at most d , we have

alg(T , f ) ≥
1
2adap(T , f ).

�e base case for d = 1 is trivially true because the tree is a single node. For induction, let e
be the root node of the optimal decision tree T . Denote by I := Xe ∈ Ue be (random) type of
element e when probed by the adaptive strategy (and also the virtual type of the non-adaptive
strategy), while R := X ′e be the (random) true type when probed by the non-adaptive strategy.
Also, let TI denote the subtree the adaptive strategy goes to when the root element is in type I .
�is implies

adap(T , f ) = EI [f (I ) + adap(TI , fI )] and alg(T , f ) = EI ,R[f (R) + alg(TI , fR )]. (6.1)

Now using submodularity and monotonicity of f , we bound the adaptive strategy

adap(T , f ) ≤ EI ,R[f (I ∪ R) + adap(TI , fI∪R )]
≤ EI ,R[f (I ) + f (R) + adap(TI , fI∪R )],

where the last inequality uses that every monotone submodular function is subadditive. Notice
that I and R are i.i.d. variables. �is along with linearity of expectation implies

adap(T , f ) ≤ EI ,R[2 · f (R) + adap(TI , fI∪R )]. (6.2)

Next, we lower bound the expected value of the non-adaptive strategy from Eq. (6.1). We
use monotonicity of f to get

alg(T , f ) = EI ,R[f (R) + alg(TI , fR )] ≥ EI ,R[f (R) + alg(TI , fI∪R )]. (6.3)

Since fI∪R is also a monotone submodular function over independent elements and TI is an
adaptive strategy tree of depth at most d − 1, by induction hypothesis

alg(TI , fI∪R ) ≥
1
2adap(TI , fI∪R ).

Combining this with Eq. (6.2) and Eq. (6.3), we get

alg(T , f ) ≥
1
2adap(T , f ),

which �nishes the proof of the upper bound by induction. �

6.4 Adaptivity Gaps for a Weighted Rank Function of a k-

Extendible System

For a downward-closed family F , we de�ne its rank function fF : 2V → R≥0 to be the largest
cardinality subset in F , i.e., fF (S ) := maxT⊆S & T∈F |T | = maxT∈F |S ∩ T |. In this section we
prove our results on the optimal adaptivity gaps of a weighted rank function of a k-extendible
system.

74



�eorem 6.4.1. �e optimal adaptivity gap for CoSP where the constraints are pre�x-closed and

the function is a weighted rank function of a k-extendible system is between k and O (k logk ).
Moreover, for unweighted rank functions, the optimal adaptivity gap is between k and 2k .

Since the weighted rank of function of intersection of k-matroids is a k-extendible system,
�eorem 6.4.1 implies as a corollary that the adaptivity gaps for this class is at most Θ̃(k ).
Corollary 6.4.2. �e optimal adaptivity gap for CoSP where the constraints are pre�x-closed and

the function is a weighted rank function of intersection of k-matroids system is O (k logk ).

In §6.4.2 we prove the upper bound for unweighted k-extendible systems, and in §6.4.3 we
give a reduction from weighted to unweighted k-extendible systems that loses a factorO (logk )
in the adaptivity gap. Our lower bound is presented in §6.4.4.

6.4.1 Preliminaries

We �rst formally de�ne a k-extendible system.
De�nition 6.4.3 (k-extendible system). A family F 3 ∅ such that for every A ⊆ B ∈ F and

e ∈ T whereA∪{e} ∈ F , we have that there is a setZ ⊆ B\A such that |Z | ≤ k and B\Z∪{e} ∈ F .

To simplify our proofs, we de�ne an element e ∈ T is a loop in F ⊆ 2T if e is not in
any F ∈ F . Furthermore, given a non-loop element e ∈ T , we de�ne the contraction F /e as
{F \ {e} | F ∈ F ,e ∈ F }, i.e., the family of subsets that contain e but with e removed. We also
need the following property of k-extendible systems, which intuitively means a set E ∈ F hurts
at most k · |E | from another set B ∈ F .
Fact 6.4.4. Let F ⊆ 2T be a k-extendible system. For every A ⊆ B ∈ F and E ⊆ T where

A ∪ E ∈ F , there exists a set Z ⊆ B \A such that |Z | ≤ k · |E | and B \ Z ∪ E ∈ F .

Proof. Enumerate the elements E = {e1, . . . ,er } where r := |E | and denote by Ei := {e1, . . . ,ei }
for 0 ≤ i ≤ r . Initialize Z0 := ∅ and consider the following procedure to construct Z1,Z2, . . . ,Zr

that satis�es the invariants A ⊆ B \ Zi , B \ Zi ∪ Ei ∈ F and |Zi | ≤ k · i .
In the ith step we have that A ∪ Ei−1 ∪ {ei } ∈ F by downward-closeness and A ∪ Ei−1 ⊆

B \ Zi−1 ∪ Ei−1 by the induction hypothesis. Hence by k-extendibility we can �nd Z ′ ⊆ B \
(Zi−1 ∪A∪Ei−1) with |Z ′| ≤ k and where (B \Zi−1 ∪Ei−1) \Z

′∪ {ei } = B \ (Zi−1 ∪Z
′) ∪Ei ∈ F .

Set Zi := Zi−1∪Z
′ and note that |Zi | ≤ |Zi−1 |+ |Z

′| ≤ (i − 1) ·k +k = i ·k . Furthermore, already
deduced that B \Zi ∪Ei ∈ F and �nally A ⊆ B \Zi = B \Zi−1 \Z

′ since Z ′∩A = ∅. We satis�ed
all stipulations of the induction, hence we report Zr as the solution. �

6.4.2 Upper Bound of 2k for an Unweighted k-Extendible System

Let T denote the optimal adaptive strategy for maximizing the rank function f of a given
k-extendible system F . We prove the following unweighted upper bound of �eorem 6.4.1.
�eorem 6.4.5. �e optimal adaptivity gap for CoSP where the constraints are pre�x-closed and

the function is an unweighted rank function of a k-extendible system is at most 2k .

75



We use the random walk strategy to convert the adaptive strategy T into a non-adaptive
strategy. To analyze our algorithm, we de�ne a natural greedy procedure to select a subset of
A ⊆ T that is also in F ⊆ 2T . First, consider elements of A in an arbitrary order (which can be
even determined on the �y). If the currently considered element is a non-loop, it gets contracted
in F ; otherwise it gets ignored. Any such computed set is in F and the �nal output, the
number of contracted elements, is denoted by greedy(A). We �rst show that for k-extendible
systems such a greedy procedure produce a k-approximation to the largest subset in F . A
similar statement has been proven by Mestre [Mes06].
Lemma 6.4.6. Let f be a rank function of a k-extendible system F ⊆ 2T . Fix any subset A ⊆ T
and consider the output of the greedy procedure greedy(A) with an arbitrary ordering of A. We

have that f (A) ≤ k ·greedy(A). Even more, for anyA ⊆ B ⊆ T we have that f (A) ≤ k ·дreedy (B).

Proof. LetG ⊆ B be the set picked by greedy(B). Notice thatG is a maximal set in F (need not
be maximum). On the other hand, let OPT ⊆ A be the set picked by f (A), i.e., the maximum
set in F on A. Our goal is to prove |OPT| ≤ k · |G |.

LetC := OPT∩G, note thatG = C∪ (G \C ) ∈ F andC ⊆ OPT, hence by Fact 6.4.4 there is a
Z ⊆ OPT\C with |Z | ≤ k ·|G\C | = k ·|G |−k ·|C | such that OPT\Z∪(G\C ) = (OPT\C )\Z∪G ∈ F .
However, since G is a maximal set and (OPT \C ) ∩G = ∅ we know that OPT \C \ Z = ∅ and
hence |OPT| ≤ |Z | + |C | ≤ k · |G | − k · |C | + |C | = k · |G | − (k − 1) |C | ≤ k · |G |. �

Given the above properties of a k-extendible system, we can now prove �eorem 6.4.5.

Proof of �eorem 6.4.5. Let X and X′ denote the element types for the adaptive and the non-
adaptive algorithms, respectively. �e adaptive strategy on the optimal decision tree T gets
value f (XS ), where S ⊆ V is the set of probed elements by strategy T for type vector X. We
compare this value to a greedy strategy greedy(XS ∪ X′S ) in which

(a) we consider the elements of S in root-to-leaf order in which they appear on the tree and
(b) for any e ∈ S we �rst consider X′e (the true type) before Xe (the virtual type) in the greedy

order.
Note by Lemma 6.4.6 we have

adap(T , f ) ≤ k · EX,X′[greedy(XS ∪ X′S )].

By induction on the subtrees, below we prove

EX,X′[greedy(XS ∪ X′S )] ≤ 2 · alg(T , f ). (6.4)

�is �nishes the proof of �eorem 6.4.5 because the optimal non-adaptive algorithm has value
at least

alg(T , f ) ≥
1
2 · EX,X

′[greedy(XS ∪ X′S )] ≥
1

2k · adap(T , f ).

To prove the missing Eq. (6.4), we induct on the height of the tree andF being any downward-
closed family. For consistency, we de�ne the notation of greedy(T , f ) to denote the value
of the above greedy strategy when run on T with a rank function f . �us, greedy(T , f ) =

76



EX,X′[greedy(XS ∪ X′S )]. Suppose e ∈ V is the label the root of T . Denote by I := Xe the (ran-
dom) type of element e when probed by the adaptive strategy (which is also the virtual type
of the non-adaptive strategy), and denote R := X ′e the (random) true type when probed by the
non-adaptive strategy. Also, let TI denote the subtree the adaptive strategy goes to when the
root e is in state I . We have

greedy(T , f ) ≤ EI ,R
[
f (I ∪ R) + greedy(TI , f /(R/I ))

]
,

where by ( f /R)/I we mean the rank function of F a�er we �rst contract R if it a non-loop, and
then contract I if it is still a non-loop. Now subadditivity of f gives

greedy(T , f ) ≤ EI ,R
[
f (I ) + f (R) + greedy(TI , f /(R/I ))

]

= EI ,R

[
2 · f (R) + greedy(TI , f /(R/I ))

]
, (6.5)

where the last equality uses linearity of expectation as I and R are identically distributed.
Next, we lower bound the value of our non-adaptive algorithm. Although it takes a random

root-leaf path and decides the set of elements to retain in the end, we lower bound its value by
an online algorithm that greedily selects R (unless it is a loop), however, always also contracts
I if it is a non-loop. �is gives,

alg(T , f ) ≥ EI ,R
[
f (R) + alg(TI , f /(R/I ))

]
. (6.6)

Since f /(R/I ) is also a rank function of a downward-closed system andTI is an adaptive strategy,
by induction hypothesis we have

alg(TI , f /(R/I )) ≥
1
2 greedy(TI , f /(R/I )).

Combining this with Eq. (6.5) and Eq. (6.6), we get

greedy(T , f ) ≤ 2 · alg(T , f ),

which proves Eq. (6.4) by induction. �

6.4.3 Reducing Weighted to Unweighted k-Extendible System by Los-

ing O (logk )

We show how to extend the adaptivity gap result for an unweighted k-extendible system to a
weighted k-extendible system by losing an O (logk ) factor.
�eorem 6.4.7. For CoSP over pre�x-closed constraints, the adaptivity gap for a weighted rank

function of a k-extendible system is at most 32k log2 k .

77



Proof. Given a weighted rank function f of a k-extendible system F ⊆ 2T over a set of typesT ,
we de�ne fj for j ∈ Z to be an unweighted rank function of the k-extendible system F ; how-
ever, the new weights are changed such that only the types with original weights in (2j−1,2j]
participate with new weight of 1, while the other elements have a new weight of 0. Note that
this partitions the set of types T into pairwise disjoint classes. Notice, we have

adap(T , f ) ≤
∑
j

2j · adap(T , fj ), (6.7)

where adap (T , fj ) denotes the expected value of an adaptive strategy given by the common
decision tree T with respect to the rank function fj .

Now, since adap(T , fj ) is an unweighted k-extendible system problem, we know that a
random root-leaf path returns a solution with expected value

alg(T , fj ) ≥
1

2k · adap(T , fj ). (6.8)

In the following lemma, we show that these non-adaptive solutions for fj can be combined to
obtain a feasible and “high-value” non-adaptive solution for f .
Lemma 6.4.8. �e random-walk non-adaptive algorithm alg has expected value

alg(T , f ) ≥
1

16 · logk
∑
j

2j · alg(T , fj ).

Before proving Lemma 6.4.8, we �nish the proof of �eorem 6.4.7 by combining it with
Eq. (6.8) and Eq. (6.7):

alg(T , f ) ≥
1

16 · logk
∑
j

2j · alg(T , fj ) ≥
1

32k logk
∑
j

2j · adap(T , fj )

≥
1

32k logk · adap(T , f ). �

Informally, in the proof of Lemma 6.4.8 we combine the unweighted solutions of alg(T , fi )
by running a “greedy-optimal” algorithm from the higher weight to the smaller weight classes
and �xing the types chosen in earlier classes. Unfortunately, in general such an approach loses
an extra factor k in the approximation. To �x this, our second idea is to increase the weight gap
between successive classes. We achieve this by combining O (logk ) consecutive classes into a
bucket, where in each bucket we focus on the class with the largest non-adaptive value. Because
of boundary issues, we only take either odd or even buckets.

Proof of Lemma 6.4.8. Let a ≤ b ∈ Z denote the indices of the smallest and the highest weight
classes. We de�ne buckets consisting of 2 logk consecutive classes, where bucket Bi consists of
classes {b − 2i logk ,b − 2i logk − 1, . . . ,b − 2(i − 1) logk }. For each Bi , let

j (i ) := argmaxj∈Bi
{
2j · alg(T , fj )

}
.

78



Since each bucket has size 2 logk , this implies∑
i

2j (i ) · alg(T , fj (i ) ) ≥
1

2 · logk
∑
j

2j · alg(T , fj ).

Without loss of generality we can assume the odd indices satisfy∑
i is odd

2j (i ) · alg(T , fj (i ) ) ≥
1
2
∑
i

2j (i ) · alg(T , fj (i ) ).

Otherwise, use the same argument for even indices. Combining the last two equations, we get∑
i is odd

2j (i ) · alg(T , fj (i ) ) ≥
1

4 · logk
∑
j

2j · alg(T , fj ). (6.9)

We now claim that a greedy-optimal algorithm has a large value: It goes over classes j (i ) in
decreasing order of (odd) buckets, but it always selects the maximum independent set (instead
of selecting a maximal greedy set) in the current class j (i ) given its choices in the previous
buckets. �is algorithm is, therefore, a combination of greedy and optimal algorithms.
Claim 6.4.9. Consider an algorithm that goes over the odd numbered buckets in decreasing order

of weights and selects the maximum set from class j (i ) in bucket i such that the resulting set is

still feasible in F . (A�er a set in a class is selected, it gets �xed for all future choices.) �e �nally

chosen set has value at least

1
4

∑
i is odd

2j (i ) · alg(T , fj (i ) ).

Proof. �e intuition is that for a k-extendible system by Fact 6.4.4 any selected member can
“hurt” at most k members from lower buckets. Since we only consider odd numbered buckets,
two types in di�erent buckets di�er in their weights by at least a factor of 22 logk = k2. �us,
losing k types of lower weight should not signi�cantly impact the value.

Let ` be the random variable denoting the leaf reached by the random walk on the decision
tree T , and let R be the random set of elements seen by the random-walk non-adaptive strategy
on this path. Furthermore, letAi denote the set of elements picked by the non-adaptive strategy
with respect to fj (i ) , let A′i ⊆ Ai be the set of elements picked by our greedy-optimal non-
adaptive strategy from bucket i , and let A′<i denote ⋃

i ′<i : i ′ is odd Ai ′ . In other words, A′<i is the
greedy-optimal solution up to bucket number i and A′i is the maximum subset of Ai such that
A′i ∪A

′
<i ∈ F . Note that Ai , A′i and A′<i are random variables depending on ` and R.

Using Fact 6.4.4 on the k-extendible system F with the preconditions ∅ ∪ A′<i ∈ F and
∅ ⊆ Ai , there exists a set Z with |Z | ≤ k · |A′<i | such that Ai \ Z ∈ F . Hence, we have

|A′i | ≥ |Ai \ Z | ≥ |Ai | − k · |A
′
<i |.

Multiplying by 2j (i ) and summing over all odd i gives∑
i is odd

2j (i ) · |A′i | ≥
∑

i is odd
2j (i ) · |Ai | − k ·

∑
i is odd

2j (i ) · |A′<i |

79



=
∑

i is odd
2j (i ) · |Ai | − k ·

∑
i is odd

|A′i |
∑

i ′>i : i ′ is odd
2j (i ′) . (6.10)

Now, since every bucket i contains 2 logk classes, where two successive class weights di�er by
a factor of 2, we know

2j (i+2) ≤
2j (i )
k2 .

Combining this with Eq. (6.10) gives∑
i is odd

2j (i ) · |A′i | ≥
∑

i is odd
2j (i ) · |Ai | − k ·

∑
i is odd

|A′i |
∑

i ′>i : i ′ is odd

2j (i ′+2)

k2

≥
∑

i is odd
2j (i ) · |Ai | −

∑
i is odd

|A′i | · 2j (i ),

where the last inequality uses∑
i ′>i : i ′ is odd

2j (i ′+2) =
∑

i ′≥i : i ′ is odd
2j (i ′) ≤ 2 · 2j (i ) ≤ k · 2j (i ) .

A�er rearranging, ∑
i is odd

2j (i ) · |A′i | ≥
1
2 ·

∑
i is odd

2j (i ) · |Ai |.

Notice that by de�nition of a class, each type in class j (i ) has weight at least 2j (i )−1. Using
this fact and taking expectation over ` and R, we get

alg(T , f ) ≥ E`,R
[ ∑
i is odd

2j (i )−1 · |A′i |
]

≥
1
4E`,R

[ ∑
i is odd

2j (i ) · |Ai |

]
=

1
4

∑
i is odd

2j (i ) · alg(T , fj (i ) ),

which �nishes the proof of Claim 6.4.9. �

Using Claim 6.4.9, we have

alg(T , f ) ≥
1
4

∑
i is odd

2j (i ) · alg(T , fj (i ) ),

which combined when with Eq. (6.9) proves Lemma 6.4.8. �

6.4.4 Lower Bounds

We present two very similar lower bound examples: one where the adaptivity gap is k−o(1) for
a rank function of an unweighted k-extendible system and another where the adaptivity gap is
Ω(
√
k ) for a rank function of an intersection of k matroids.

80



Example: For generality we work in the Bernoulli se�ing where each element in V is either
active or inactive. Consider a perfect w-ary tree of depth k whose edges correspond to the
ground set V (see Figure 6.1). Each edge is active with probability p > 0. For any leaf `, let
P` denote the unique path from the root to `. �e objective value on any set is the maximum
number of edges in the set on the same root-leaf path, i.e., for any S ⊆ V ,

f (S ) := max
leaf `
|P` ∩ S |.

�e feasibility constraints are such that a set of edges can be probed if and only if there
exists some root-leaf path P` such that every probed edge has at least one endpoint on P` . Note
that this implies that a maximum of w · k edges can be probed.

Figure 6.1: Adaptivity gap lower bound example: a w = 3-ary tree of depth k = 2.

Analysis: Let the adaptive strategy be the following: probe all w edges incident to the root.
If any of them is active, start probing the edges directly below the active edge, otherwise below
the �rst edge. Continue recursively until a leaf is reached. On every level, the adaptive strategy
has 1 − (1 − p)w probability of �nding an active edge. �erefore, the expected value of the
adaptive strategy is k · (1 − (1 − p)w ).

For any non-adaptive strategy, the feasibility constraints imply there exists a root-leaf path
P` such that all probed edges have an endpoint on it. Suppose all w · k edges incident to P`
are probed. �e non-adaptive strategy can get value at most 1 from the edges not on P` and in
expectation at most k · p from the edges on P` . So, the non-adaptive strategy has an expected
value of at most 1 + k · p.

Lower Bound of k for an unweighted k-extendible system

Consider the example described above and set w := k4 and p := 1
k3 . �e function f is trivially a

rank function of a k-extendible system because the rank of the system is k , i.e., f (V ) = k . �e
adaptive strategy has an expected value

k ·
(
1 −

(
1 − 1

k3

)k4)
≥ k ·

(
1 − 1

ek

)
= k − o(1),

whereas any non-adaptive strategy has an expected value at most 1+ 1
k2 .�is gives an adaptivity

gap of k − o(1).

81



Lower Bound of Ω(
√
k ) for an unweighted intersection of k matroids

In this section we show how to model the above example as an intersection of t = k2 matroids,
yielding an adaptivity gap of Ω(

√
t ) for an intersection of t matroids. Consider the example

described above and set w := k and p := 1
k . �e adaptive strategy has an expected value of

k ·
(
1 −

(
1 − 1

k

)k )
≥ k ·

(
1 − 1

e

)
= Ω(k )

and the non-adaptive strategy gets at most 2 in expectation; so the adaptivity gap is Ω(k ).
All that remains to show is that f can be represented as an intersection ofk2 simple partition

matroids. We use the term simple partition matroid for a matroid that partitions the V into
multiple parts and a set is independent if it contains at most one element in every part.

Suppose that k is prime and label each node v with a list Lv as follows: the root’s label is
an empty list (). Let L(i ) denote the ith element of the list L and L + x a list equal to L with
x appended to it. All the other nodes are labeled recursively: let v be a node with children
{v0,v1, ...vk−1}. De�ne Lvi := Lv + i . Hence, u is an ancestor of v if and only if Lu is a pre�x of
Lv , and otherwise Lu (i ) , Lv (i ) for some i .

Let ev denote the edge/element between v and its parent. We de�ne k2 partition matroids
Mi,j for i ∈ {1,2, ...,k } and j ∈ {0,1, ...,k − 1}. Each Mi,j consists of k big partitions indexed from
0 to k − 1, and all other partitions contain only a single element. Let

Iv (i, j ) := Lv (i )j + dv (mod k ).

For a node v on depth dv ≥ i , element ev is in the Iv (i, j )th big partition of Mi,j . For a node v on
depth dv < i , ev is the only element in its partition in Mi,j .

We claim that f is the rank function of F := ⋂k
i=1

⋂k−1
j=0 Mi,j , which is an intersection of

k2 matroids. Since F is an intersection of simple partition matroids, S ∈ F if and only if
{a,b} ∈ F for every a,b ∈ S . Now consider two nodes u,v such that {eu ,ev } < F . �is means
Iu (i, j ) = Iv (i, j ) for some i ≤ du ,dv and j ∈ {0,1, ...,k − 1}, which is equivalent to

Lu (i ) · j + du ≡ Lv (i ) · j + dv (mod k ).

Since k is prime, this holds for some i, j if and only if du = dv (for j = 0,i = 1) or Lu (i ) , Lv (i )
for any i . �at is, {eu ,ev } < F if and only if u and v are not ancestors of one another, which
completes the proof.

6.5 Adaptivity Gaps for Subadditive Functions

In §6.3 we show adaptivity gap for monotone submodular functions is bounded by 2. Now
we consider more general classes of functions. We conjecture that the adaptivity gap for all
subadditive functions is poly-logarithmic in the size of the ground set. Since we know that
any subadditive function can be approximated to within a logarithmic factor by an XOS func-
tion [Dob07], and every XOS function is subadditive, it su�ces to focus on XOS functions. As a

82



step towards our conjecture, we show a nearly-tight logarithmic adaptivity gap for monotone
XOS functions of small “width”, which we explain below.

As de�ned in §1.2, a monotone XOS function f : 2[n] → R≥0 is one that can be wri�en as the
maximum of linear functions. We de�ne the width of (the representation of) an XOS function as
W , the number of linear functions in this representation. E.g., a width-1 XOS function is just a
linear function. In general, even representing submodular functions in this XOS form requires
an exponential width [BH11, BDF+12].

In this section we study adaptivity gaps for monotone non-negative XOS functions. To
recall, a function is monotone XOS if there exist linear functions C1,C2, . . . ,CW : V → R≥0

such that f (S ) = maxWi=1{
∑

e∈S Ci (e )}. To simplify notation we use Ci (S ) := ∑
e∈S Ci (e ) for any i

and subset S ⊆ V . �e width of an XOS function is the smallest numberW such that f can be
wri�en as the maximum overW linear functions. Let T ∗ denote the optimal adaptive strategy.
By monotonicity f max = f and (5.2) gives

adap(T ∗, f ) = E`←πT ∗ [f (A` )].

�e following is our main result in this section.
�eorem 6.5.1. �e stochastic probing problem for monotone XOS functions of width W has

adaptivity gapO (logW ) for any pre�x-closed constraints. Moreover, there are instances withW =

O (n) and adaptivity gap Ω(
logW

log logW ).

In §6.5.2, we also present an e�cient non-adaptive algorithm for XOS functions of widthW
that makes O (W + logn) calls to the following linear oracle.
De�nition 6.5.2 (Oracle O). Given a pre�x-closed constraint family F and linear function C :
V → R≥0

, oracle O (F ,C) returns a set S ∈ F that maximizes

∑
e∈S C (e ).

6.5.1 Adaptivity Gap Upper Bound

We �rst state a useful property that is used critically later.
Claim 6.5.3 (Subtree property). For any node u in the optimal adaptive strategy tree T ∗, if we

consider the subtree T ′ rooted at u then the expected value of T ′ is at most that of T ∗:

adap(T ′, f ) ≤ adap(T ∗, f ), when T ′ is a subtree of T ∗.

�is is because otherwise a be�er strategy would be to go directly to u (probing all the
element along the way, so that we satisfy the pre�x-closed constraint, but ignoring these ele-
ments), and then to run strategy T ′.

Proof Idea. �e proof consists of three steps. In the �rst step we argue that one can assume
that every coe�cient in every linear function Ci is smaller than adap(T ∗,f )

logW ; otherwise, we show
a simple non-adaptive strategy that is comparable to the adaptive value obtained from a single
active item. �e second step shows that by losing a constant factor, one can truncate the tree
T ∗ to obtain tree T , where the instantiated value at each leaf is at most 2 · adap(T ∗, f ). �e

83



combined bene�t of these steps is to ensure that root-leaf paths have neither high variance
nor too large a value. In the third step, we use Freedman’s concentration inequality (which
requires the above properties of T ) to argue that for any linear function Ci , the instantiated
value on a random root-leaf path is close to its mean with high probability. Taking a union
bound over the W linear functions, we can then show that (again with high probability), no
linear function has an instantiation much more than its mean. Hence, for a random root-leaf
path, adap gets value (the maximum instantiation over linear functions) that is not much more
than the corresponding mean, which is a lower bound on the non-adaptive value.

Below we use OPT = adap(T ∗, f ) to denote the optimal adaptive value.

Small and large elements. De�ne λ := 103 logW . An element e ∈ V is called large if
maxWi=1 Ci (e ) ≥ h := OPT

λ ; it is called small otherwise. Let L be the set of large elements, and let
OPTl (resp., OPTs ) denote the value obtained by tree T ∗ from large (resp., small) elements. By
subadditivity, we have OPTl + OPTs ≥ OPT.

Lemma 6.5.4 shows that when OPTl ≥ OPT/2, a simple non-adaptive strategy proves that
the adaptivity gap is O (logW ). �en Lemma 6.5.5 shows that when OPTs ≥ OPT/2, the adap-
tivity gap isO (1). Choosing between the two by �ipping an unbiased coin gives a non-adaptive
strategy that proves the adaptivity gap is O (logW ). �is would prove the �rst part of �eo-
rem 6.5.1.
Lemma 6.5.4. Assuming that OPTl ≥ OPT/2, there is a non-adaptive solution of value at least

Ω(1/ logW ) · OPT. Moreover, there is a solution S satisfying the probing constraint with h ·
min{∑e∈S∩L pe , 1} ≥ OPT

O (logW ) .

Proof. We restrict the optimal tree T ∗ to the large elements. So each node in T ∗ either contains
a large element, or corresponds to making a random choice (and adds no value). �e expected
value of this restricted tree is OPTl . We now truncate T ∗ to obtain tree T ∗ as follows. Consider
the �rst active nodeu on any root-leaf path, remove the subtree below theyes (active) arc from
u, and assign exactly a value of h to this instantiation. �e subtree property (Assumption 6.5.3)
implies that the expected value in this subtree below u is at most OPT. On the other hand, just
before the truncation at u, the adaptive strategy gains value of h = OPT

λ since it observed an
active large element at nodeu. By taking expectations, we obtain that the value of T ∗ is at least

1
1+λ · OPTl .

Note that T ∗ is a simpler adaptive strategy. In fact T ∗ is a feasible solution to the stochastic
probing instance with the probing constraintF and a di�erent objectiveд(R) = h·min{|R∩L|,1}
which is the rank function (scaled byh) of the uniform-matroid of rank 1 over all large elements.
As any matroid rank function is a monotone submodular function, �eorem 5.1.1 implies that
there is a non-adaptive strategy which probes a feasible sequence of elements S ∈ F , having
value ER∼S (p)[д(R)] ≥ 1

3 ·adap(T
∗
,д) ≥ 1

3 ·
OPTl
1+λ . Note that for any subsetR ⊆ L of large elements

f (R) ≥ maxe∈R {maxWi=1 Ci (e )} ≥ h · min{|R |,1} = д(R); the �rst inequality is by monotonicity
of f and the second is by de�nition of large elements. So we have:

ER∼S (p)[f (R)] ≥ ER∼S (p)[д(R)] = Ω(1/ logW ) · OPTl .

84



It follows that S is the claimed non-adaptive solution for the original instance with objective f .
We now show the second part of the lemma using the above solution S . Note that

OPT
O (logW )

= ER∼S (p)[д(R)] = h · ER∼S (p)[1(R ∩ L , ∅)] ≤ h ·min
{ ∑
e∈S∩L

pe , 1
}
,

as desired. �is completes the proof of Lemma 6.5.4. �

In the rest of this section we prove the following, which implies anO (logW ) adaptivity gap.
Lemma 6.5.5. Assuming that OPTs ≥ OPT/2, there is a non-adaptive solution of value Ω(1) ·OPT.

Proof. We start with the restriction of the optimal treeT ∗ to the small elements; recall thatOPTs
is the expected value of this restricted tree. �e next step is to truncate tree T ∗ to yet another
tree Twith further useful properties. For any root-leaf path in T ∗ drop the subtree below the
�rst node u (including u) where f (Au ) > 2 ·OPT; here Au denotes the set of active elements on
the path from the root to u. �e subtree property (Assumption 6.5.3) implies that the expected
value in the subtree below u is at most OPT. On the other hand, before the truncation at u, the
adaptive value obtained is more that 2 · OPT. Hence, the expected value of T ∗ obtained at or
above the truncated nodes is at least 2

3 ·OPTs . Finally, since all elements are small and thus the
expected value from any truncated node itself is at most h ≤ 0.01 ·OPT, the tree T has at least
( 2

3 − 0.01)OPTs ≥ 1
2OPTs value. �is implies the next claim:

Claim 6.5.6. Tree T has expected value at least
1
2 ·OPTs ≥

1
4 ·OPT and max`∈T maxWi=1{Ci (P` )} ≤

2 · OPT.

Next, we want to claim that each linear function behaves like its expectation (with high
probability) on a random path down the tree. For any i ∈ [W ] and root-leaf path P` in T ,
de�ne

µi (P` ) := ER∼V (p)[Ci (R ∩ P` )] =
∑
v∈P`

(
pelt(v ) · Ci (elt(v ))

)
.

Claim 6.5.7. For any i ∈ [W ],

Pr
`←πT

[
|Ci (A` ) − µi (P` ) | > 0.1 OPT

]
≤

1
W 2 .

Proof. Our main tool in this proof is the following concentration inequality for martingales.
�eorem 6.5.8 (Freedman, �eorem 1.6 in [Fre75]). Consider a real-valued martingale sequence

{Xt }t≥0 such that X0 = 0, and E [Xt+1 | Xt ,Xt−1, . . . ,X0] = 0 for all t . Assume that the sequence

is uniformly bounded, i.e., |Xt | ≤ M almost surely for all t . Now de�ne the predictable quadratic

variation process of the martingale to beWt =
∑t

j=0 E
[
X 2
j | X j−1,X j−2, . . . ,X0

]
for all t ≥ 1. �en

for all ` ≥ 0 and σ 2 > 0, and any stopping time τ we have

Pr
[���

τ∑
j=0

X j
��� ≥ ` and Wτ ≤ σ

2
]
≤ 2 exp

(
−

`2/2
σ 2 +M`/3

)
.

85



Consider a random root-leaf path P` = 〈r = v0,v1, . . . ,vτ = `〉 in T , and let et = elt(vt ).
Now de�ne a sequence of random variables X0,X1, . . . ,where

Xt =
(
1et ∈A − pet

)
· Ci (et ).

Let Ht be a �lter denoting the sequence of variables before Xt . Observe that E[Xt | Ht ] = 0,
which implies {Xt } forms a martingale. Clearly |Xt | ≤ |Ci (et ) | ≤ h. Now,

t∑
j=0
E

[
|X j | | Hj

]

≤

t∑
j=0

(
pet (1 − pet ) + (1 − pet )pet

)
· Ci (et )

≤
1
2

t∑
j=0
Ci (et ) ≤

1
2 ·max

`

Wmax
i=1
Ci (P` ) ≤ OPT,

where the last inequality is by Claim 6.5.6. We use |X j | ≤ h = OPT
λ and the above equation to

bound the path variance,

t∑
j=0
E

[
X 2
j | Hj

]
≤ h ·

t∑
j=0
E

[
|X j | | Hj

]
≤

OPT2

λ
.

Applying �eorem 6.5.8, we get

Pr
[���

τ∑
j=0

X j
��� > 0.1 OPT

]

= Pr[|Ci (A` ) − µi (P` ) | > 0.1 OPT]

≤ 2 exp
(
−

(0.1 OPT)2/2
OPT2/(λ) + (OPT/(λ)) · (0.1 OPT)/3

)
≤

1
W 2 .

�is completes the proof of Claim 6.5.7. �

Now we can �nish the proof of Lemma 6.5.5. We label every leaf ` in T according to the
linear function Ci that achieves the value f (A` ), breaking ties arbitrarily. I.e., for leaf ` we
de�ne

cmax
` := Ci , where Ci (A` ) = f (A` ).

Also de�ne µmax
`

:= µi for i as above. Using Claim 6.5.7 and taking a union bound over all
i ∈ [W ],

Pr
`←πT

[
���c

max
` (A` ) − µ

max
` (P` )

��� > 0.1 OPT
]
≤

1
W
. (6.11)

86



Consider the natural non-adaptive solution which selects ` ← πT and probes all elements in
P` . �is has expected value at least:

E`←πT
[
µmax
` (P` )

]

(6.11)
≥ E`←πT

[
cmax
` (A` )

]
− 0.1 OPT − 1

W
(2 OPT)

(Claim 6.5.6)
≥ (0.15 − 2

W
) · OPT.

If W ≥ 20 then we obtain the desired non-adaptive strategy. �e remaining case of W < 20
is trivial: the adaptivity gap is 1 for a single linear function, and taking the best non-adaptive
solution among the W possibilities has value at least 1

W · OPT. �is completes the proof of
Lemma 6.5.5. �

Let us record an observation that will be useful for the non-adaptive algorithm.
Remark 6.5.9. Observe that the above proof shows that when OPTs ≥ OPT/2, there exists a

path Q in T ∗ (i.e. Q satis�es the probing constraints) and a linear function Cj with mean value

ER∼Q (p)[Cj (R)] = Ω(OPT).

6.5.2 Polynomial Time Non-adaptive Algorithm

Consider any instance of the stochastic probing problem with a width-W monotone XOS ob-
jective and pre�x-closed constraint F . Our non-adaptive algorithm is the following (here
λ = 103 logW as in §6.5.1).

Algorithm 9 Non-adaptive Algorithm for XOS functions
1: de�nem := maxe∈V {pe ·maxi∈[W ] Ci (e )}
2: for j ∈ {0, . . . ,1 + logn} do

3: de�ne bj as follows

bj (e ) =
{
pe if maxi∈[W ]{Ci (e )} ≥

2jm
λ

0 otherwise .

4: set Tj ← O (F ,bj ).
5: set v (Tj ) ← 2jm

λ ·min{bj (Tj ),1}.
6: end for

7: for i ∈ {1, . . . ,W } do

8: de�ne ci with ci (e ) = pe · Ci (e )
9: Si ← O (F ,ci ) and v (Si ) ← ci (Si ).

10: end for

11: return set S ∈ {S1, . . . ,SW ,T0,T1, . . . ,T1+logn} that maximizes v (S ).

87



Case I: OPTl ≥ OPT/2. Lemma 6.5.4 shows that in this case it su�ces to consider only
the set of large elements and to maximize the probability of selecting a single large element.
While we do not know OPT, and the large elements are de�ned in terms of OPT, we do know
m = maxe∈V {pe · maxi∈[W ] Ci (e )} ≤ OPT ≤ n ·m. In the above algorithm, consider the value of
j ∈ {0, . . . ,1 + logn} when 2j ·m/λ is between h and 2h. Let L denote the set of large elements;
note that these correspond to the elements with positive bj (e ) values. By the second part of
Lemma 6.5.4, the solution Tj returned by the oracle will satisfy v (Tj ) ≥ OPT/O (logW ). Now
interpreting this solution Tj as a non-adaptive solution, we get an expected value at least:

h · ER∼Tj (p)[1(R ∩ L , ∅)]
= h ·

(
1 − Πe∈Tj (1 − bj (e ))

)
≥ h ·

(
1 − e−bj (Tj )

)
≥ (1 − 1/e )h ·min{bj (Tj ),1}

= (1 − 1/e ) · v (Tj ) ≥
OPT

O (logW )
.

Case II: OPTs ≥ OPT/2. In this case Remark 6.5.9 following the proof of Lemma 6.5.5 shows
that there exists a solutionQ satisfying the probing constraints F and a linear function Cj with
mean value cj (Q ) = ER∼Q (p)[Cj (R)] = Ω(OPT). Since the above algorithm calls O (F ,ci ) for
each i ∈ [W ] and chooses the best one, it will return a set with value Ω(OPT).

6.5.3 Adaptivity Gap Lower Bound

Consider a k-ary tree of depth k , whose edges are the ground set. Each edge/element has
probability pe =

1
k . Here, imagine k = Θ(

logn
log logn ), so that the total number of edges is ∑k

i=1 k
i =

n. For each of the kk leaves l , consider the path Pl from the root to that leaf. �e XOS function
is f (S ) := maxl |Pl ∩ S |. Note that the widthW = Θ(n) in this case.

Suppose the probing constraint is the following pre�x-closed constraint: there exists a root-
leaf path Pl such that all probed edges have at least one endpoint on this path. �is implies that
we can probe at most k2 edges.

• For an adaptive strategy, probe the k edges incident to the root. If any one of these
happens to be active, start probing the k edges at the next level below that edge. (If none
were active, start probing the edges below the le�-most child, say.) Each level will have
at least one active edge with probability 1− (1− 1

k )
k ≥ 1− 1/e , so we will get an expected

value of Ω(k ).
• Now consider any non-adaptive strategy: it is speci�ed by the path Pl whose vertices hit

every edge that is probed. �ere are k2 such edges, we can probe all of them. But the XOS
function can get at most 1 from an edge not on Pl , and it will get at most k · 1/k = 1 in
expectation from the edges on Pl .

�is shows a gap of Ω(k ) = Ω
(

logn
log logn

)
for XOS functions with a pre�x-closed (in fact subset-

closed) probing constraint.

88



A Lower Bound for Cardinality Constraints

We can show a near-logarithmic lower bound for XOS functions even for the most simple car-
dinality constraints. �e setup is the same as above, just the constraint is that a subset of at
most k2 edges can be probed.

• �e adaptive strategy remains the same, with expected value Ω(k ).
• We claim that any non-adaptive strategy gets expected value O (logk ). Such a non-

adaptive strategy can �x any set S of k2 edges to probe. For each of these edges, choose
an arbitrary root-leaf path passing through it, let T be the edges lying in these k2 many
root-leaf paths of length k . So |T | ≤ k3. Let us even allow the strategy to probe all the
edges in T—clearly this is an upper bound on the non-adaptive value.
�e main claim is that the expected value to be maximized when T consists of k2 many
disjoint paths. (�e k-ary tree does not have these many disjoint paths, but this is just a
thought-experiment.) �e claim follows from an inductive application of the following
simple fact.
Fact 6.5.10. Given independent non negative random variables X ,X ′,Y ,Z , where X ′ and X
have the same distribution, the following holds:

EX ,Y ,Z [max{X + Y ,X + Z }]
≤ EX ,X ′,Y ,Z [max{X + Y ,X ′ + Z }].

Proof. Follows from the fact that {max{X +Y ,X +Z } > c} ⊆ {max{X +Y ,X ′+Z } > c}. �

Finally, for any path with k edges, we expect to get value 1 in expectation. �e probability
that any one path gives value c logk is 1

k3 , for suitable constant c . So a union bound implies
that the maximum value over k2 path is at most c logk with probability 1/k . Finally, the
XOS function can take on value at most k , so the expected value is at most 1 + c logk .

�is shows an adaptivity gap of Ω
(

k
logk

)
= Ω

(
logn

(log logn)2

)
even for cardinality constraints.

89



90



Chapter 7

�e Price of Information under

Constraints

7.1 Introduction

In this chapter we discuss how our results on the Price of Information and the Markovian Price
of Information in Chapters 3 and 4, respectively, can be extended to also handle some addi-
tional “constraints”. In particular, we describe techniques to handle three types of constraints:
(i) probing, (ii) commitment, and (iii) sampling.

7.1.1 Probing Constraints

Consider a generalization of the Pandora’s box problem where besides paying probing prices,
we can only probe at most k elements. �is is di�erent from the model discussed in §3.1.1 as
earlier we could probe any set of elements but could get value for only one item. In general,
we could be given a downward-closed constraints J that allow us to only probe a subset of
elements Probed ∈ J . We now formally de�ne our problem.

Constrained Utility-Maximization Suppose we are given downward-closed probing con-
straints J ⊆ 2V and probability distributions of independent non-negative variables Xi for
i ∈ V . To �nd Xi we have to pay a probing price πi . �e goal is to probe a set of elements
Probed ∈ J to maximize the expected utility:

E
[

max
i∈Probed

{Xi } −
∑

i∈Probed

πi

]
.

Depending on the family of constraints J , one can design e�cient approximation algo-
rithms for some se�ings of the above problem. In [Sin18] we show the following result for this
problem.
�eorem 7.1.1. If the constraints J form an `-system then the constrained utility-maximization

problem has a 2(` + 1)-approximation algorithm.

91



Since the cardinality (or any matroid) constraint forms a 1-system, �eorem 7.1.1 gives a 6-
approximation algorithm for the Pandora’s box problem under a cardinality probing constraint.

�e above constrained utility-maximization problem can be used as a framework to study
variants of Pandora’s box. Consider a set-probing utility-maximization problem where the costs
are on subsets of random variables, instead of individual variables: for a subset S ⊆ V , we pay
price πS to simultaneously probe all Xi for i ∈ S . �us, to �nd Xi , we can now probe a “small”
or a “large” set containing i , but at di�erent prices. (Note that when we probe multiple sets
containing i , we �nd the same value Xi and not a fresh sample from the distribution.)
�eorem 7.1.2. �e set-probing utility-maximization problem has a 2(` + 1)-approximation ef-

�cient algorithm, where ` is the size of the largest set in S. Moreover, no e�cient algorithm can be

o(`/ log `)-approximation, unless P = NP .

7.1.2 Commitment Constraints

Consider the Markovian PoI model de�ned in §4.1.1 with an additional restriction that when-
ever we abandon advancing a Markov system, we need to immediately and irrevocably decide
if we are selecting this element into the �nal solution I. Since we only select ready elements,
any element that is not ready when we abandon its Markov system is automatically discarded.
We call this constraint commitment. �e benchmark to which we compare our algorithm is the
optimal policy without the commitment constraint.

We study the Utility Maximization problem in the Dag model with the commitment con-
straint. Our algorithms make use of the online contention resolution schemes (OCRSs) proposed
in [FSZ16]. OCRSs address our problem in the Free-Info world1 (i.e., we can see the realization
of the r.v.s for free, but there is the commitment constraint). Constant factor “selectable” OCRSs
are known for several constraint families such as matroids and matchings [FSZ16]. In §7.3, we
show how to adapt any such OCRS to Markovian PoI with commitment.
�eorem 7.1.3. For an additive objective, if there exists a 1/α-selectable OCRS (α ≥ 1) for a

packing constraint F , then there exists an α-approximation algorithm for the corresponding Dag-

Utility Maximization problem with commitment.

�e proof of this result is based on a new LP relaxation (inspired from [GM07]) to bound the
optimum utility of aMarkovian PoI game without commitment. Although this relaxation is not
exact even for Pandora’s box (and cannot be used to design optimal strategies in Corollary 4.1.4),
it turns out to su�ce for our approximation guarantees. We use an OCRS to round this LP with
only a small loss in the utility, while respecting the commitment constraint.
Remark 7.1.4. We do not consider Disutility Minimization problem under the commitment

constraint. �is is because it captures prophet inequalities in a minimization se�ing where no

polynomial approximation factors are possible even for i.i.d. r.v.s [EHLM17, �eorem 4].

1In fact, OCRSs treat a variation of the problem where an adversary can choose the order in which the elements
are tried. �is, of course, handles the present problem in which we may choose the order.

92



7.1.3 Sampling Constraints

In practical applications, the parameters of Markov systems (i.e., transition probabilities, values,
and prices) are not known exactly but are estimated by statistical sampling. In this se�ing, the
true parameters, which govern how each Markov system evolves, di�er from the estimated
parameters that the algorithm uses to make decisions. �is raises a natural question: how well
does an adapted Frugal algorithm do when the true and the estimated parameters di�er? We
would hope to design a robust algorithm, meaning small additive estimation errors cause only
small additive error in the utility objective.

In §7.4, we show that in the important special case where the Markov chain corresponding
to each element is formed by a directed acyclic graph (Dag), a minor adaptation of our strategy
in �eorem 4.1.3 is robust. �is Dag assumption turns out to be necessary as similar results do
not hold for general Markov chains (see an example in Appendix 7.4.5).
�eorem 7.1.5 (Informal statement of �eorem 7.4.2). If there exists anα-approximation Frugal
algorithm (α ≥ 1) for a packing problem with an additive objective function, then it su�ces to es-

timate the input parameters of a Dag-Markovian PoI game within an additive error of ϵ/ poly,

where poly is some polynomial in the size of the input, to design a strategy with utility at least

1
α ·OPT−ϵ , where OPTis the utility of the optimal policy that knows all the true input parameters.

Speci�cally, we show the same strategy as in �eorem 4.1.3 works with one minor change:
each time we advance an element’s Markov system, we slightly increase that element’s grade.
Roughly, this is because we need to be “optimistic” in our estimate of each element’s true grade.

�e analogous result for Disutility Minimization is also true.

7.2 Probing Constraints via Adaptivity Gaps

In this section we consider a generalization of the Pandora’s box problem where we have an
additional constraint that allows us to only probe a subset of elements Probed ⊆ V that belongs
to a downward-closed constraint J (e.g., a cardinality constraint allowing us to probe at most
k elements). We restate our main result for the constrained utility-maximization problem (see
problem de�nition in §7.1.1).
�eorem 7.1.1. If the constraints J form an `-system then the constrained utility-maximization

problem has a 2(` + 1)-approximation algorithm.

Similar to §3.2, our strategy to prove �eorem 7.1.1 is to bound the constrained utility-
maximization problem in the PoI world (a mixed-sign objective function) with a surrogate con-
strained utility-maximization problem in the Free-Info world (i.e., where πi = 0 for all i ∈ V ).
�is la�er problem turns out to be the same as the stochastic probing problem, which we de�ne
below in the form that is relevant to this paper.

Stochastic Probing Given downward-closed probing constraints J ⊆ 2V and probability dis-
tributions of independent non-negative variables Yi for i ∈ V , the stochastic probing problem
is to adaptively probe a subset Probed ∈ J to maximize the expected value E[maxi∈Probed{Yi }].

93



Here, adaptively means that the decision to probe which element next can depend on the out-
comes of the already probed elements.

7.2.1 Reducing to Non-adaptive Stochastic Probing

�e following lemma bounds the expected utility of the constrained utility-maximization prob-
lem in the PoI world by the expected value of a stochastic probing problem in the Free-Info
world.
Lemma 7.2.1. �e expected utility of the optimal strategy for the constrained utility-maximization

problem is at most the expected value of the optimal adaptive strategy for a stochastic probing prob-

lem with the same constraints J and where the random variables Yi for i ∈ V have probability

distributions Ymax
i (recollect, Defn 3.2.2).

Proof of Lemma 7.2.1. We start by noticing that the optimal strategy for our problem is given
by a decision treeT with leaves l . For any root leaf path Pl , the value of the optimal strategy is
maxi∈Pl {Xi } − π (Pl ). �us the expected value of the optimal strategy is

El

[
max
i∈Pl
{Xi } − π (Pl )

]
. (7.1)

Now we design an adaptive strategy for the stochastic probing problem on random variables
Ymax
i with expected value at least as given by (7.1). Consider the adaptive strategy that follows

the same decision treeT (note, it pays no probing price). �e expected value of such an adaptive
strategy is given by

El

[
max
i∈Pl
{Ymax

i }

]
. (7.2)

�e following claim �nishes the proof of this lemma.

Claim 7.2.2.

El

[
max
i∈Pl
{Xi } − π (Pl )

]
≤ El

[
max
i∈Pl
{Ymax

i }

]
.

Proof. Let Al (i ) and 1i∈Pl denote indicator variables that element i is selected and probed on a
root-leaf path Pl of the optimal strategy, respectively. Note that these indicator variables are
correlated. �e expected utility of the optimal strategy equals

El

[
max
i∈Pl
{Xi } − π (Pl )

]
= El

[ ∑
i

(
Al (i )Xi − 1i∈Plπi

) ]

= El

[ ∑
i

(
Al (i )Xi − 1i∈PlEi[(Xi − τ

max
i )+]

) ]

= El

[ ∑
i

(
Al (i )Xi − 1i∈Pl (Xi − τ

max
i )+

) ]

94



since Xi is independent of 1i∈Pl . Now using Al (i ) ≤ 1i∈Pl , we have

El

[
max
i∈Pl
{Xi } − π (Pl )

]
≤ El

[ ∑
i

(
Al (i )Xi −Al (i ) (Xi − τ

max
i )+

) ]

= El

[ ∑
i

Al (i )Y
max
i

]

≤ El

[
max
i∈Pl
{Ymax

i }

]
,

where the last inequality uses ∑
i∈Pl Al (i ) ≤ 1.

�

�e following Lemma 7.2.3 shows that we can further simplify the stochastic probing prob-
lem in the Free-Info world by focusing only on �nding the best non-adaptive strategy for
this problem, i.e. the problem of �nding argmaxProbed∈J {maxi∈Probed{Yi }}. �is is because the
adaptivity gap—ratio of the expected values of the optimal adaptive and optimal non-adaptive
strategies—for the stochastic probing problem is small.
Lemma 7.2.3. �e adaptivity gap for the stochastic probing problem is at most 2.

Lemma 7.2.3 follows from �eorem 6.3.1. It tells us about the existence of a feasible set S ∈ J
such that E[maxi∈S {Ymax

i }] is at least half of the optimal adaptive strategy for the stochastic
probing problem. Suppose we have an oracle to (approximately) �nd this feasible set S for
probing constraints J .
Assumption 7.2.4. Suppose there exists an oracle that �nds S ∈ J that β approximately maxi-

mizes the non-adaptive stochastic probing solution.

�e above assumption is justi�able as it is a constrained submodular maximization problem that
we know how to approximately solve for some many constraint families J , e.g., an `-system.
Lemma 7.2.5 (Greedy Algorithm [FNW78, CCPV11]). �e greedy algorithm has an (` + 1)-
approximation for monotone submodular maximization over an `-system.

Finally, we need to show that given S there exists an e�cient adaptive strategy in the
PoI world with expected utility E[maxi∈S {Ymax

i }]. But this is exactly the Pandora’s box prob-
lem for which we know that Weitzman’s index-based policy is optimal with expected utility
E[maxi∈S {Ymax

i }]. �e above discussion can be summarized in the following theorem.
�eorem 7.2.6. Given a β-approximation oracle for monotone submodular maximization over

downward-closed constraintsJ , there exists a 2β-approximation algorithm for constrained utility-

maximization.

Combining Lemma 7.2.5 and �eorem 7.2.6, we get �eorem 7.1.1 as a corollary.

7.2.2 An Application to the Set-Probing Utility-Maximization Problem

In this section we see an application of the constrained utility-maximization framework to the
set-probing utility-maximization problem de�ned in §7.1.1. �is problem is a generalization of

95



Pandora’s box where we pay a price to simultaneously �nd values of a set of random variables.
We restate �eorem 7.1.2 for convenience.
�eorem 7.1.2. �e set-probing utility-maximization problem has a 2(` + 1)-approximation ef-

�cient algorithm, where ` is the size of the largest set in S. Moreover, no e�cient algorithm can be

o(`/ log `)-approximation, unless P = NP .

�e remaining section discusses the approximation algorithm. See the hardness proof in §7.2.3.
We �rst observe that WLOG one can assume that the given sets S = {S1, . . . ,Sm} are

downward-closed, i.e., if S ∈ S then any subset T ⊆ S is also in S. �is is because a sim-
ple way to ensure downward-closedness is by adding every subset of Sj for the same price πj
into S. Intuitively, this is equivalent to paying for the original set but choosing not to see the
outcome of some of the random variables in it.

To construct our algorithm, we imagine solving a constrained utility-maximization prob-
lem. �e random variables of this problem are indexed by sets S ∈ S: variable XS has value
maxi∈S {Xi } and has price πS . �e problem is to adaptively probe some elements such that the
sets corresponding to them are pairwise disjoint (a downward-closed constraint J ), while the
goal is to maximize the utility that is given by max element value minus the total probing
prices. Intuitively, the reason we need disjointness is to ensure independence between sets
in our analysis as disjoint sets of random variables take values independently. We make the
following simple observation.
Observation 7.2.7. �e optimal adaptive policy for this constrained utility-maximization prob-

lem with disjointness constraints is the same as the unconstrained set-probing utility-maximization

problem.

Given the above observation and noting that disjointness constraints are downward-closed,
we want to use �eorem 7.2.6 to reduce our problem into a non-adaptive optimization problem.
Although it appears that this is not possible because �eorem 7.2.6 is only for independent
variables, and variables corresponding to non-disjoint sets are not independent. Fortunately,
the proof of �eorem 7.2.6 only uses independence of random variables along any root-leaf
path of the decision tree. Since our probing constraints ensure that the probed sets are disjoint,
we get variables XS along any root-leaf path to be independent, thereby allowing us to use
�eorem 7.2.6. �e �nal part in the proof of �eorem 7.1.2 is an approximation algorithm for
this non-adaptive constrained utility-maximization problem.
Lemma 7.2.8. �ere exists an e�cient (` + 1)-approximation algorithm for the non-adaptive

problem of �nding a family S′ ⊆ S of disjoint sets to maximize E[maxS∈S′{Ymax
S }].

Proof. Observe that the function д(S′) = E[maxS∈S′{Ymax
S }] is submodular. Also, the disjoint-

ness constraints can be viewed as an `-system constraints since each set S has size at most `.
�us we can view the non-adaptive problem as maximizing a submodular function over an `-
system, where we know by Lemma 7.2.5 that the greedy algorithm has an (`+1)-approximation.

Moreover, to implement the greedy algorithm e�ciently, we note that although S may con-
tain an exponential number of elements, the initial set system S was polynomial sized (before
we made S downward-closed). For sets A,B available at the same price, where A ⊆ B, it is ob-

96



vious that the greedy algorithm will always choose B beforeA. Hence, at every step our greedy
algorithm only needs to consider the original sets, which are only polynomial in number, and
select the set with the best marginal value. Since, this can be done in polynomial time, this
completes the proof of �eorem 7.1.2. �

7.2.3 Hardness for the set-probing problem

To prove that no polynomial time algorithm for the set-probing problem can be o(`/ log `)-
approximation, unless P = NP, we reduce `-set packing problem into an instance of the set-
probing problem. Given an `-set packing instance with sets S1,S2, . . . ,Sm, each of size `, we
create the following set-probing problem. For every element i ∈ ⋃

j Sj , w.p. 1
n3 variable Xi takes

value 1, and is 0, otherwise. Also, let each set Sj have price (`−0.5)
n3 .

Since probability of two elements taking value 1 is really small O (1/n4), we see that it only
makes sense to probe sets where none of the elements have been already probed: even if a single
element is probed before, expected value from probing the set is at most (`−1)

n3 −
(`−0.5)
n3 = −0.5

n3 < 0.
Hence, E[Opt] = (Max # disjoint sets) · 0.5

n3 . But this is exactly the `-set packing problem and we
know that unless P = NP , no poly time algorithm can be o(`/ log `)-approximation [HSS06].

7.3 Commitment Constraints via Linear Programs

In this section we handle the commitment constraint de�ned in §7.1.2 for the Dag-Utility
Maximization problem. Speci�cally, we prove �eorem 7.1.3 that shows how to use an OCRS
to design an approximation algorithm for our problem.
�eorem 7.1.3. For an additive objective, if there exists a 1/α-selectable OCRS (α ≥ 1) for a

packing constraint F , then there exists an α-approximation algorithm for the corresponding Dag-

Utility Maximization problem with commitment.

Recollect that in the above theorem we compare to the optimal strategy without the com-
mitment constraint. [FSZ16] designed selectable OCRS for several packing constraint families:
1/4 for matroids, 1/(2e ) for matchings, and Ω(1/k ) for intersection of k matroids.

Our proof proceeds in two steps. In §7.3.1, we give an LP relaxation to upper bound the
optimum utility without the commitment constraint. In §7.3.2, we apply an OCRS to round the
LP solution to obtain an adaptive policy, while satisfying the commitment constraint.

7.3.1 Upper Bounding the Optimum Utility

De�ne the following variables, where i is an index for the Markov systems.
• yui : probability we reach state u in Markov system Si for u ∈ Vi \Ti .
• zui : probability we play Si when it is in state u for u ∈ Vi \Ti .
• xi =

∑
u∈Ti z

u
i : probability Si is selected into the �nal solution when in a destination state.

97



• PF denotes a convex relaxation containing all feasible solutions for packing constraint
F .

Using these variables we can formulate the following LP, which is inspired from [GM07].

max
z

∑
i

( ∑
u∈Ti

rui z
u
i −

∑
u∈Vi\Ti

πui z
u
i

)
subject to ysii = 1 ∀i ∈ J

yui =
∑
v∈Vi (Pi )uvz

v
i ∀i ∈ J ,∀u ∈ Vi \ si

xi =
∑

u∈Ti z
u
i ∀i ∈ J

zui ≤ y
u
i ∀i ∈ J ,∀u ∈ Vi

x ∈ PF
xi ,y

u
i ,z

u
i ≥ 0 ∀i ∈ J ,∀u ∈ Vi

�e �rst four constraints characterize the dynamics in advancing the Markov systems. �e
��h constraint encodes the packing constraint F . We denote the optimal solution of this LP as
(x,y,z).
Claim 7.3.1. �e utility of the optimal strategy without commitment is at most the LP value.

Proof. If we interpret the variables yui ,xi , and zui as the probabilities corresponding to the opti-
mal strategy without commitment, it forms a feasible solution to the LP. �

We can e�ciently solve the above LP for packing constraints such as matroids, matchings,
and intersection of k matroids.

7.3.2 Rounding the LP Using an OCRS

Before describing our rounding algorithm, we de�ne an OCRS (discussed in detail in Chapter 8).
Intuitively, it is an online algorithm that given a random set ground elements, selects a feasible
subset of them. Moreover, if it can guarantee that every i is selected w.p. at least 1

α · xi , it is
called 1

α -selectable.
De�nition 7.3.2 (OCRS [FSZ16]). Given a point x ∈ PF , let R (x ) denote a random set containing

each i independently w.p. xi . �e elements i reveal one-by-one whether i ∈ R (x ) and we decide

whether to select an i ∈ R (x ) into the �nal solution is taken irrevocably before the next element is

revealed. An OCRS is an online algorithm that selects a subset I ⊆ R (x ) such that I ∈ F .

De�nition 7.3.3 ( 1
α -Selectability [FSZ16]). Let α ≥ 1. An OCRS for F is

1
α -selectable if for any

x ∈ PF and all i , we have Pr[i ∈ I | i ∈ R (x )] ≥ 1
α .

Our algorithm ALG uses OCRS as an oracle. It starts by �xing an arbitrary order π of
the Markov systems. (Our algorithm works even when an adversary decides the order of the
Markov systems.) �en at each step, the algorithm considers the next element i in π and queries
the OCRS whether to select element i if it is ready. If OCRS decides to select i , then ALG
advances the Markov system such that it plays from each state u with independent probability

98



zui /y
u
i . �is guarantees that the desination state is reached with probability xi . If OCRS is not

going to select i , then ALG moves on to the next element in π . A formal description of the
algorithm can be found in Algorithm 10.

Algorithm 10 Algorithm ALG for Handling the Commitment Constraint
1: Fix an arbitrary order π of the items. Set M = ∅ and pass x to OCRS.
2: Consider the next element i in the order of π . �ery OCRS whether to add i to M if i is

ready.
(a) If OCRS would add i to M , then keep advancing the Markov system as follows: play
from each current state u ∈ Vi \Ti independently with probability zui /y

u
i , and otherwise go

to Step 2. If a destination state t is reached then add i to M w.p. zti /yti .
(b) Go to Step 2.

We show below that ALG achieves a utility of at least 1/α times the LP optimum.
Lemma 7.3.4. �e utility of ALG is at least 1/α times the LP optimum.

Since by Claim 7.3.1 the LP optimum is an upper bound on the utility of any policy with-
out commitment, this �nishes the proof of �eorem 7.1.3. �e only thing le� is to prove
Lemma 7.3.4.

Proof of Lemma 7.3.4. Recollect that we call a Markov system ready if it reaches an absorbing
destination state. We �rst notice that once ALG starts to advance a Markov system i , then by
Step 2 of Algorithm 10, element i is ready with probability exactly xi . �is agrees with what
ALG tells the OCRS. Since the OCRS is 1/α-selectable, the probability that any Markov system
Si begins advancing is 1/α . Here the probability is both over the random choice of the OCRS
and the randomness due to the Markov systems. Conditioning on the event that Si begins
advancing, the probability that it is selected into the �nal solution on reaching a destination
state t ∈ Ti is exactly zti . Hence, the conditioned utility from Markov system Si is exactly∑

u∈Ti

rui z
u
i −

∑
u∈Vi\Ti

πui z
u
i .

By removing the conditioning and by linearity of expectation, the utility of ALG is at least

1
α
·
∑
i

( ∑
u∈Ti

rui z
u
i −

∑
u<Ti

πui z
u
i

)
,

which �nishes the proof of this lemma. �

7.4 Sampling Constraints via Robustness

In this section, we study the Robustnessmodel from §7.1.3. Here we are only given approxima-
tions of the input parameters of the Markov systems, i.e., prices, values, and transition probabili-
ties. Our main result is to show that to design robust algorithms forDag-UtilityMaximization

99



with utility close to that of an optimal policy that exactly knows all the input parameters, it suf-
�ces to know the input parameters within an additive error polynomially small in the input size

(see §7.4.1). �is Dag assumption turns out to be necessary as similar results do not hold for
general Markov chains (see Appendix 7.4.5). A simple application of Cherno� bounds along
with our result implies polynomial sample complexity for Dag-Utility Maximization.

We formally state our main theorem and the parameters on which it depends in §7.4.1. §7.4.2
shows that close estimates of transition probabilities can be used to obtain close estimates of
the grades. In §7.4.3, we use these estimated grades to transform a Frugal algorithm into a
robust adaptive algorithm for Dag-Utility Maximization. Similar arguments can be used to
obtain the corresponding results for Dag-Disutility Minimization (we omit this proof).

7.4.1 Main Results and Assumptions

We �rst explicitly de�ne the input size of Dag-Utility Maximization as follows.

(i) n is the number of Markov systems.
(ii) k is the maximum number of elements in a feasible solution, i.e., k := maxI∈F |I|.

(iii) D is the maximum depth of any Dag Markov system.

Denote B an upper bound on all input prices and values, i.e., ∀i,∀π ∈ πi ,∀r ∈ ri , we have
|π | ≤ B, |r | ≤ B. We make the following assumption.
Assumption 7.4.1. �e upper bound B is polynomial in n,k , and D.

Such an assumption turns out to be necessary (see Appendix 7.4.5). We now state our main
theorem of this section.
�eorem 7.4.2. Consider a Dag-Utility Maximization problem with a semiadditive objective

and satisfying Assumption 7.4.1. Suppose there exists an α-approximation Frugal algorithm in

the Free-Info world. If each input parameter is known to within an additive error of ϵ/ poly, where

poly is some polynomial in n,k , and D, then there exists an adaptive algorithm EALG with utility

at least

1
α
· OPT − ϵ ,

where OPTis the utility of the optimal policy that exactly knows the true input parameters.

To simplify the proof of �eorem 7.4.2, we also assume the following without loss of gen-
erality (see Appendix 7.4.5 for justi�cations).

(iv) All non-zero transition probabilities are lower bounded by 1/P , where P is a polynomial
in n,k , and D.

(v) We know the prices π and the rewards r exactly, i.e., the only unknown input parameters
are the transition probabilities.

100



7.4.2 Well-Estimated Input Parameters Imply Well-Estimated Grades

We call the set of Markov systems constructed using our estimated transition probabili-
ties the estimated world. �e ith Markov system in this estimated world is denoted Ŝi =
(Vi , P̂i ,si ,Ti ,πi ,ri ), where P̂i contains the estimated transition probabilities. Note, πi and ri are
exact due to Assumption (v). We estimate the grade of a state by simply computing the grade
of that state in the estimated world. �e following Lemma 7.4.3 bounds the error in estimated
grades in terms of the error in transition probabilities.
Lemma 7.4.3. Consider the Dag-Utility Maximization problem satisfying the assumptions in

§7.4.1. Suppose all transition probabilities are estimated to within an additive error of ϵ < 1/P ,

then ∀i,∀u ∈ Vi , the estimated grade τ̂ui is within an additive factor of O (L · ϵ ) from the real grade

τui , where L = D2BP .

Proof. We show below that τui ≥ τ̂ui − L · ϵ . A symmetrical argument shows τ̂ui ≥ τui − L · ϵ ,
which �nishes the proof of this lemma.

We consider the Markov game Ĝu de�ned in §4.2.1 in the estimated world. By de�nition,
there exists an optimal policy Pol that advances the chain at least one more step and achieves
an expected utility of 0. Also consider the Markov game Gu in the real world and apply Pol
in Gu . Notice Pol might be sub-optimal in Gu and might therefore obtain a negative expected
value. Let τ f air be the cost τ in Gu such that Pol obtains an expected value of 0. It follows that
τui ≥ τ f air . It therefore su�ces to show that τ f air ≥ τ̂ui − L · ϵ .

Denote the set of trajectories when applying Pol (in either world) by S and those in which
the item is picked by Swin. Denote pω the probability of a trajectory ω ∈ S in the real world
and p̂ω the probability of it in the estimated world. Let rω be the utility of ω (as de�ned for
Utility Maximization by ignoring the cost τ ) in either world. It follows that

τ f air =
1∑

ω∈Swin pω
·
∑
ω∈S

(
pω · rω

)
=

∑
ω∈S

(
pω∑

ω∈Swin pω
· rω

)
,

and that

τ̂ui =
1∑

ω∈Swin p̂ω
·
∑
ω∈S

(
p̂ω · rω

)
=

∑
ω∈S

(
p̂ω∑

ω∈Swin p̂ω
· rω

)
.

Since each transtion probability is lower bounded by 1/P , it is estimated to within a multiplica-
tive error of (1 ±O (Pϵ )). Since pω and p̂ω can be wri�en as the product of at most D proba-
bilities, each term pω∑

ω∈Swin pω
is within a multiplicative error of (1 ±O (DPϵ )) from p̂ω∑

ω∈Swin p̂ω
.

It follows that τ f air is within a multiplicative factor of (1 ±O (DPϵ )) from τ̂ui . But notice that
τ̂ui ≤ DB, which implies that τ f air ≥ τ̂ui −O (D2BP · ϵ ) = τ̂ui −O (L · ϵ ). �

7.4.3 Designing an Adaptive Strategy for DAG-Utility Maximization

From the previous section we know how to obtain close estimates of the grades. Now we use
well-estimated grades to design a robust adaptive strategy for Dag-Utility Maximization

101



and prove �eorem 7.4.2. �eorem 7.4.2 directly follows by combining Lemma 4.3.3 and the
following Lemma 7.4.4.
Lemma 7.4.4. Assuming the conditions of �eorem 7.4.2 and that the grade of each state is es-

timated to within an additive factor of ϵ/2kDi , where Di is the depth of Si , then there exists an

adaptive algorithm EALG with utility at least

1
α
· Eω

[
max
I∈F

{
val

(
I,Ymax(ω)

)}]
− ϵ .

To prove Lemma 7.4.4, we describe our algorithm EALGA (Algorithm 11). We de�ne Ŷmax as
follows.
De�nition 7.4.5. Fix a trajectory pro�le ω where each Markov system reaches the destination

state. For each i and u ∈ Vi , let du (ωi ) be the number of transitions for Si to reach u from si by

taking the trajectory ωi ∈ ω. Let γ̂ui (ωi ) = τ̂
u
i + du (ωi )ϵ/2kDi . De�ne Ŷmax

ωi

∆
= minu∈ωi {γ̂ui (ωi )}.

Denote the list of Ŷmax
ωi ’s as Ŷmax(ω) and Ŷmax

M (ω) the list of Ŷmax
ωi values in the set M .

�e key idea in EALGA (the main di�erence from Algorithm 7) is the “upward shi�ing”
technique in Step 2. As we advance a Markov system, we shi� our estimates of its grades
upward. �is guarantees that our algorithm is optimal in the teasing game GT de�ned for
Claim 4.3.6.

Algorithm 11 Algorithm EALGA for Utility Maximization in Markovian PoI
1: Start with M = ∅. Set vi = 0 and ctri = 0 for all elements i .
2: For each element i < M , set vi = д

(
Ŷmax
M ,i, τ̂

u
i + ctri · ϵ/2kDi

)
where u is the current state

of i .
3: Consider the element j = argmaxi<M & M∪i∈F {vi } and vj > 0.
4: Proceed Sj for one step and set ctrj = ctrj + 1. If tj is reached by Sj , select j into M .
5: If every element i < M has vi ≤ 0 then return set M . Else, go to Step 2.

Proof of Lemma 7.4.4. �is lemma immediately follows from the following two claims (whose
proofs are in Appendix 7.4.4).

Claim 7.4.6. �e utility of running EALGA in the real world is exactly the same as

Eω
[
val

(
Alд(Ŷmax(ω),A),Ymax(ω)

)]
.

Claim 7.4.7. For any trajectory pro�le ω and for any i , |Ŷmax
ωi − Y

max
ωi | ≤ ϵ/2k . �us

val
(
Alд(Ŷmax(ω),A),Ymax(ω)

)
≥

1
α
·max
I∈F

{
val

(
I,Ymax(ω)

)}
− ϵ .

�

102



7.4.4 Missing Proofs in the Robustness Model

Proof of Claim 7.4.6. Because EALGA shi�s the estimated grade upward by ϵ/2kDi each time we
advance Si and that each grade is estimated to within an additive error of ϵ/2kDi , whenever
EALGA starts to advance a Markov system, it continues to advance it through the whole epoch.
It follows from Claim 4.3.6 that EALGA is an optimal policy in the teasing gameGT . By a similar
argument as the proof of Claim 4.3.9, one can show that for any list of trajectories ω, running
EALGA in the real world returns the same solution as running A on Ŷmax(ω). �ese imply the
claim. �

Proof of Claim 7.4.7. Since Markov system i can be played at most Di times, it follows that the
estimated grade is shi�ed upward by at most (Di − 1)ϵ/2kDi . It follows that each estimated
grade a�er the upward shi�ing is still within an additive error of ϵ/2k from the real grade,
which �nishes the �rst part of the grade.

�e second part follows from the following inequalities.

val
(
Alд(Ŷmax(ω),A),Ymax(ω)

)
≥ val

(
Alд(Ŷmax(ω),A), Ŷmax(ω)

)
− k · ϵ/2k

≥
1
α
·max
I∈F

{
val

(
I, Ŷmax(ω)

)}
− ϵ/2

≥
1
α
· val

(
argmaxI∈F

{
val(I,Ymax(ω))

}
, Ŷmax(ω)

)
− ϵ/2

≥
1
α
·max
I∈F

{
val

(
I,Ymax(ω)

)}
− ϵ ,

where the last line follows because α ≥ 1. �

7.4.5 Assumptions in the Robustness Model

DAG assumption

We give an example to illustrate why theDag assumption is necessary for our robustness results
to hold. We show that if there are cycles in the Markov chains, one might need to estimate the
input parameters to a super-exponentially accurate precision in order to achieve a small additive
loss in the performance.

Consider the following Utility Maximization problem of picking at most one item (i.e.
the constraint F is the uniform Matroid with rank 1) where all the input parameters are polyno-

mially bounded. We have n Markov systems {Si }1≤i≤n. �e last n − 2 Markov systems each has
only one state, which is a destination state, with value 0. �ese Markov systems can be safely
ignored since one can pick nothing and obtains 0 utility. We can therefore focus only on the
other two Markov systems.

�e 2nd Markov system S2 has only one state, which is a destination state, with value 1.
�e �rst Markov system S1 has three states {s1,v,t1}, where s1 is the initial state with playing

103



cost n2/22n , ti is the destination state with value n2/2, and v is some intermediate state with
playing cost 0. �e transitions in S1 are as follows. s1 goes to v deterministically. v goes to
s1 with probability 1 − 1/p22n and t1 with probability 1/p22n , where p ∈ (0,1]. Notice that S1
contains a cycle and a negligible transition out of the cycle to the destination. It follows that
the utility obtained by always playing S1 is n2/2 − pn2, which is n2/4 if p = 1/4 and −n2/2 if
p = 1.

In this case, if we fail to estimate the transition probabilities of S1 to a super-exponentially
accurate precision of O (1/22n ), it would render it impossible even to distinguish between the
case where playing S1 has utility Θ(n2) and the case where playing S1 has negative utility,
which makes it impossible to obtain an approximation policy within a small additive error
from the optimal policy.

Polynomial upper bound on input parameters

Here, we give an example to illustrate why Assumption 7.4.1 is necessary for our robustness re-
sults to hold. We show that if some parameters are exponential in the input parameter, then one
might need to estimate some input parameters to within an additive error that is exponential
in the input parameters.

Consider the following Utility Maximization problem of picking at most one item (i.e.
the constraint F is the uniform Matroid with rank 1) where all the input parameters are poly-

nomially bounded. We have n Markov systems {Si }1≤i≤n. �e last n − 1 Markov systems deter-
ministically give 0 utility. �e �rst Markov system S1 has an initial state s1 and two destination
states t1 and t2. �e initial state s1 has price 3n. It goes to t1 with probability p and t2 with
probability 1 − p. t1 has reward 2 × 3n and t2 has reward 0.

�e player has to decide between playing S1 or doing nothing at all. If p = 1/2 + Θ(1/2n ),
then the utility of playing S1 is Θ(1.5n ) and if p = 1/2−Θ(1/2n ), then the utility of playing S1 is
−Θ(1.5n ). It follows that one need to estimate the transition probabilities to within an additive
error that is exponentially small.

Other assumptions without loss of generality

Recall that for the Dag-Utility Maximization problem in the robustness model, we made the
following assumptions.

• All non-zero transition probabilities are lower bounded by 1/P , where P is some polyno-
mial in the parameters above.

• We can estimate the prices π and the rewards r exactly, i.e. the only unknown input
parameters are the transition probabilities.

�e assumption that all non-zero transition probabilities are polynomially lower bounded
is without loss of generality. It can be removed by the following procedure. We start by se�ing
a threshold 1/P and estimating all the data to within an additive error smaller than 1/P . We
then ignore the transitions that have estimated probabilities smaller than 2/P . �is is done by
reallocating these probability masses to other transitions from the same state in both the orig-

104



inal Markov systems and the estimated Markov systems. A�er the removal of these negligible
transition probabilities, the remaining Markov systems have a lower bound of 1/P on all the
transition probabilities. Since the maximum price paid on any sample path in a Markov system
is at most DB, it follows that this changes the optimal policy by at most a very small additive
factor if the polynomial P we take is large enough. �erefore, we shall assume without loss of
generality a lower bound on all non-zero transition probabilities.

�e assumption that we can estimate the pricesπ and the rewards r exactly is again without
loss of generality and can be removed by the following argument with a small additive term
in the theoretical guarantee. Suppose all the prices π and the rewards r are estimated within
an additive error of δ/nD. Since one needs at most D steps to reach the destination for each
Markov system, the utility is a�ected by at most a small additive factor of δ/nD ×nD = δ if we
set δ to be small. �erefore, we will assume that estimations of the prices π and the rewards r
are exact and only the estimations of transition probabilities have deviations from the real

105



106



Part III

Stopping-Time Algorithms

107





Chapter 8

�e Prophet Inequality via Online

Contention Resolution Schemes

8.1 Introduction

In the prophet inequality problem a decision maker must choose one of n buyers arriving one-
by-one to purchase their single item. Each buyer has a value drawn independently from a known

distribution, but the buyer arrival order is chosen by an adversary. As described in §1.3.2, we
can use this to model the Diamond-Selling scenario.
De�nition 8.1.1 (Single item prophet inequality). For i ∈ [n], given probability distributions

Di of n independent random variables, suppose their outcome values vi ∼ Di are revealed in an

adversarial order. Whenever a value is revealed we have to immediately and irrevocably decide

if we want to select this element, while ensuring that we never select more than one element. �e

goal is to maximize the expected value of the element that we select.

�e benchmark used in the study of prophet inequalities is the expected o�ine optimum,
which is the expected value of an algorithm that knows allvi from the beginning (and therefore
gets maxi {vi }). We de�ne the competitive ratio of an algorithm to be the ratio of the expected
value of the algorithm to the expected o�ine optimum. �e above single item prophet in-
equality problem was resolved by Krengel and Sucheston, who gave a tight 1/2-competitive
algorithm [KS78, KS77]. How to design a prophet inequality where we sell multiple items?

Besides being a natural problem in the �eld of Stopping �eory, the motivation to design
multiple item prophet inequalities comes from its applications in the �eld of Mechanism Design.
O�en while designing a mechanism, one has to balance between maximizing revenue/welfare
and the simplicity of the mechanism. While there exist optimal mechanisms such as VCG or
Myerson’s mechanism, they are impractical in real markets [AM06, Rot07]. On the other hand,
Sequentially Posted Pricing mechanisms, where we o�er take-it-or-leave-it prices to buyers, are
known to be both simple and to give good approximations to optimal mechanisms. �is reduces
the mechanism design problem to designing multiple-choice variants of the prophet inequal-
ity problem, where the decision maker selects a subset of buyers feasible in a given packing
constraint F ⊆ 2[n] with the goal of maximizing the sum of buyer values. Motivated by

109



Figure 8.1: In §8.1.1 we show that it su�ces to design an OCRS to prove a matroid prophet
inequality (�eorem 8.1.2). In �eorem 8.3.1, we show that to design an OCRS it su�ces to
design an ex-ante prophet inequality for Bernoulli variables. Finally, in �eorem 8.4.1 we design
a 1/2-approximation ex-ante prophet inequality, which implies �eorem 8.1.2.

these applications, tight prophet inequalities have been obtained subject to cardinality con-
straint [HKS07, Ala14], and its generalization to arbitrary matroid constraints [KW12].

8.1.1 Results

In this chapter we present a new proof of the matroid prophet inequality using a generic tech-
nique known as online contention resolution scheme (OCRS). See Figure 8.1.
�eorem 8.1.2 ([KW12]). �ere exists a 1/2-matroid prophet inequality.

To prove �eorem 8.1.2, we �rst bound the expected o�ine optimum using a convex relax-
ation. Given a prophet inequality problem instance with packing constraints F and random
variables vi ∼ Di for i ∈ [n], we de�ne the following ex-ante relaxation

max
x

∑
i

xi · ui (xi ) s.t. x ∈ PF , (8.1)

where ui (xi ) denotes Evi∼Di [vi | vi takes value in its top xi quantile]. To prove (8.1) is an upper
bound, we interpret xi as the probability that i is in the o�ine optimum. �e bound follows
because any such i can contribute at most xi ·ui (xi ) to the expected o�ine optimum. It is known
that (8.1) is a convex program and can be solved e�ciently; see [FSZ16] for more details.

Given the upper bound in (8.1), consider an algorithm that ignores constraints F and selects
every element i when it takes a value in its top xi quantile. Clearly, by linearity of expectation,
the expected value of such an algorithm is ∑

i xi · ui (xi ). �is raises the following question:

Does there exist an online algorithm that selects each element i at least 1/2-fraction
of the times when i takes value in its top xi quantile, while ensuring that the selected

110



set of elements is feasible in F ?

Existence of a 1/2-OCRS, formally de�ned in §8.2, answers the above question a�rmatively. �e
main result of this chapter, based on a joint work with Euiwoong Lee [LS18], is the following:
�eorem 8.1.3. For matroids, there exists a 1/2-OCRS for adversarial arrival order.

By the above discussion, �eorem 8.1.3 along with linearity of expectation implies a prophet
inequality algorithm with expected value at least 1

2
∑

i xi ·ui (xi ). Since ∑
i xi ·ui (xi ) is an upper

bound on the expected o�ine optimum, this proves �eorem 8.1.2.
�e main idea in the proof of �eorem 8.1.3 is to show a deep connection between OCRSs

and prophet inequalities. In particular, we show that an ex-ante prophet inequality for Bernoulli
variables can be used to design an OCRS.
De�nition 8.1.4 (Ex-ante prophet inequality). For x ∈ PF , consider a prophet inequality instance

where r.v. vi takes value ui ∈ R≥0 w.p. xi and is 0 otherwise. A c-approximation ex-ante prophet

inequality for 0 ≤ c ≤ 1 and packing constraints F is a prophet inequality algorithm with expected

value at least (c ·
∑

i xiui ).

In §8.3 we show why an ex-ante prophet inequality implies an OCRS (�eorem 8.3.1), and
in §8.4 we design an ex-ante prophet inequality for matroids (�eorem 8.4.1).

8.1.2 Related Work

�e connection between multiple-choice prophet inequalities and mechanism design was rec-
ognized in the work of Hajiaghayi et al. [HKS07]. In particular, they proved a prophet in-
equality for uniform matroids; their bound was later improved by Alaei [Ala11]. Chawla et
al. [CHMS10] further developed the connection between prophet inequalities and mechanism
design, and proved that for general matroids one can be O (1)-competitive in a variant of the
prophet inequality where the algorithm may choose the order in which the items are viewed.
Yan [Yan11] improved this result to e/(e − 1)-competitive. �e matroid prophet inequality was
�rst explicitly formulated by Kleinberg and Weinberg [KW12].

In a di�erent direction, Alaei et al. [AHL12] considered a variant they call prophet-inequality

matching, which is useful for online ad allocation. More generally, for intersection of a con-
stant number of matroid, knapsack, and matching constraints, Feldman, Svensson, and Zen-
klusen [FSZ16] gave anO (1)-competitive algorithm; this is a corollary of their online contention

resolution schemes that we also use heavily in our work. Feldman et al. [FGL15] consider com-
binatorial auctions in the prophet inequality se�ings. Azar, Kleinberg, and Weinberg [AKW14]
study a limited information variant where the algorithm only has access to samples from each
day’s distributions. Esfandiari et al. [EHLM17] considered a mixed notion of “Prophet Secre-
tary” where the items arrive in a uniformly random order and draw their values from known
independent distributions. Finally, for general downward-closed constraint, Rubinstein [Rub16]
gave an O (logn log r )-competitive prophet inequality.

111



8.2 Online Contention Resolution Schemes

Given a combinatorial optimization problem, a common algorithmic approach is to �rst solve
a convex relaxation of the problem and to then round the obtained fractional solution x into a
feasible integral solution while (approximately) preserving the objective. Contention resolution
schemes (CRSs), introduced in [CVZ14], is a way to perform this rounding given a fractional
solution x ∈ Rn

≥0. For c > 0, intuitively a c-CRS is a rounding algorithm that guarantees every
element i is selected into the �nal feasible solution w.p. at least c · xi . To formally de�ne a CRS,
we need some notation: For a given x ∈ [0,1]V , let R (x) denote a random set containing each
element i ∈ V independently w.p. xi , and say an element i is active if it belongs to R (x).
De�nition 8.2.1 (Contention resolution scheme). Given a �nite ground set V with n = |V | and

a packing (downward-closed) family of feasible subsets F ⊆ 2V , let PF ⊆ [0,1]V be the convex

hull of all characteristic vectors of feasible sets. For a given x ∈ PF , a c-selectable CRS (or simply,

c-CRS) is a (randomized) mapping π : 2V → V satisfying the following three properties:

(i) π (S ) ⊆ S for all S ⊆ V .

(ii) π (S ) ⊆ F for all S ⊆ V .

(iii) PrR (x),π [i ∈ π (R (x))] ≥ c · xi for all i ∈ V .

Notice, if f is a monotone linear function thenE[f (π (R (x)))] ≥ c ·E[f (R (x))] by linearity of
expectation. �is inequality also holds for submodular functions when the CRS additionally sat-
is�es a “greedy” property (see §9.3 for more details). By constructing CRSs for various families
F , Chekuri et al. [CVZ14] give improved approximation algorithms for linear and submodular
maximization problems under knapsack, matroid, matchoid, and their intersections constraints.

In the above applications of CRSs to o�ine optimization problems, the algorithm �rst �ips
all the random coins to sample R (x), and then obtains π (R (x)) ⊆ R (x). For various online
problems such as the prophet inequality, this randomness is an inherent part of the problem.
Feldman et al. [FSZ16] therefore introduce an OCRS where whether i ∈ R (x) (or not) is only
revealed one-by-one to the CRS algorithm.
De�nition 8.2.2 (Online contention resolution scheme). A c-selectable OCRS (or simply, c-

OCRS) is a c-selectable contention resolution scheme π that is only revealed one-by-one whether

i ∈ R (x) (or not). A�er each revelation (online arrival), the OCRS algorithm π has to immediately

and irrevocably decide whether to include i ∈ R (x) into π (R (x)) (if possible) without knowing the

future revelations, and while always satisfying properties (i)-(iii) of a c-CRS.

In this chapter, we assume that the adversarial arrival order is known to the algorithm in ad-
vance. �is o�ine adversary is weaker than the almighty adversary considered in [FSZ16], but
is common in the prophet inequality literature. To build some intuition for the above de�nitions
we �rst discuss the special case of a rank 1 matroid, i.e., we can only select one element.

8.2.1 Example: Rank 1 matroid

For simplicity, in this section we assume that all random variables are Bernoulli, i.e., vi takes
value yi independently w.p. pi , and is 0 otherwise. We �rst show why a c-OCRS implies a

112



c-approximation prophet inequality for rank 1 matroids.
Consider the optimum solution x to the ex-ante relaxation (8.1) for the above Bernoulli

instance. Its objective value is ∑
i xiyi where x satis�es ∑

i xi ≤ 1. Moreover, xi ≤ pi for all i
because selecting i beyond pi does not increase (8.1). To see why (8.1) gives an upper bound on
the expected o�ine maximum, observe that if we interpret xi as the probability that vi is the
o�ine maximum, this gives a feasible solution to ∑

i xi ≤ 1 and with value at most ∑i xiyi . �us,
to prove a c-approximation prophet inequality, it su�ces to design an online algorithm with
value at least c ·∑i xiyi . Consider an algorithm that runs a c-OCRS on x, where i is considered
active independently w.p. xi/pi whenevervi takes value yi . �is ensures element i is active w.p.
exactly xi . Since a c-OCRS guarantees each element is selected w.p. ≥ c when it is active, by
linearity of expectation such an algorithm has expected value at least c ·∑i xiyi .

We now discuss a simple 1/4-OCRS for a rank 1 matroid. Given x satisfying ∑
i xi ≤ 1,

consider an algorithm that ignores each element i independently w.p. 1/2, and otherwise selects
i only if it is active. Since this algorithm selects any element i w.p. at most xi/2 (when i is not
ignored and is active), by Markov’s inequality the algorithm selects no element till the end w.p.
at least 1−∑

i xi/2 ≥ 1/2. Hence the algorithm reaches each element i w.p. at least 1/2 without
selecting any of the previous elements. Moreover, it does not ignore i w.p. 1/2, which implies
it considers each element w.p. at least 1/4. �e OCRS due to Feldman et al. [FSZ16] can be
thought of generalizing this approach to a general matroid.

An interesting result of Alaei [Ala14] shows that the above 1/4-OCRS can be improved to
a 1/2-OCRS over a rank 1 matroid by “greedily” maximizing the probability of ignoring the
next element i , but considering i w.p. 1/2 on average. �is raises the question whether one can
obtain a 1/2-OCRS for general matroids.

8.2.2 Our techniques

We �rst see the di�culty in extending Alaei’s greedy approach from a rank 1 matroid to a
general matroid. Consider the graphic matroid for the Hat example (see Figure 8.2). Suppose
the base edge (u1,u2) appears in the end of an adversarial order. Notice that any algorithm
which ignores the structure of the matroid is very likely to select some pair of edges (u1,vi )
and (vi ,u2) for some i . Since this pair spans the base edge (u1,u2), such an OCRS algorithm will
not satisfy c-selectability for (u1,u2). To overcome this, Feldman et al. [FSZ16] decompose the
matroid into “simpler” matroids using x. However, it is not clear how to extend their approach
beyond a 1/4-OCRS.

In this chapter we take an alternate LP based approach to design OCRSs, which was �rst
used by Chekuri et al. [CVZ14] to design o�ine CRSs. �e idea is to consider an exponential
sized linear program where each variable denotes a deterministic OCRS algorithm. �e objec-
tive is to maximize c s.t. each element is selected at least c fraction of the times (c-selectability).
To argue that the optimal c ≥ 1/2, in §8.3 we prove that the value of the dual LP is at least 1/2
because it can be interpreted as an ex-ante prophet inequality.

Next, to show there exists a 1/2 approximation ex-ante prophet inequality, our approach is
inspired from the matroid prophet inequality of Kleinberg and Weinberg [KW12]. �ey give

113



v1

v2

vn−1

vn

u1 u2

Figure 8.2: �e Hat example on n + 2 vertices. �e following x belongs to the graphic matroid:
xe = 1/2 for e = (ui ,vj ) where i ∈ {1,2} and j ∈ {1, . . . ,n}, and xe = 1 for e = (u1,u2).

an online algorithm that gets at least half of the expected o�ine optimum for the product dis-
tribution (independent r.v.s). Unfortunately, their techniques do not directly extend because
the ex-ante relaxation objective could be signi�cantly higher than for the product distribution.
(�is is known as the correlation gap and can be e/(e − 1); see Chapter 9 for further discussion.)
Our primary technique is to view the ex-ante relaxation solution as a “special kind” of a corre-
lated value distribution. Although prophet inequalities are not possible for general correlated
distributions [HK92], we show that in this special case the original proof of the matroid prophet
inequality algorithm retains its 1/2 approximation a�er some modi�cations.

8.3 Designing OCRS Assuming an Ex-Ante Prophet In-

equality

In this section we prove the following approximation factor preserving reduction from OCRSs
to ex-ante prophet inequalities.
�eorem 8.3.1. If there exists a c-approximation ex-ante prophet inequality over a matroidM

then there exists a c-OCRS overM.

Proof. Let Φ∗ denote the set of all deterministic online rounding algorithms. For ϕ ∈ Φ∗ and
element i ∈ V , let qi,ϕ denote the probability that ϕ selects i in the adversarial order, where the
randomness is over R (x). Similar to Chekuri et al. [CVZ14, Section 4.2], we use the solution to
the following linear program to design a randomized OCRS: randomly execute a ϕ w.p. λϕ .

max c

s.t.
∑
ϕ∈Φ∗

qi,ϕ · λϕ ≥ xi · c i ∈ N∑
ϕ∈Φ∗

λϕ = 1

λϕ ≥ 0 ∀ϕ ∈ Φ∗

114



�e dual is

min µ

s.t.
∑
i∈N

qi,ϕ · yi ≤ µ ϕ ∈ Φ∗∑
i∈N

xi · yi = 1

yi ≥ 0 ∀i ∈ N

�e only di�erence from [CVZ14] is that Φ∗ is the family of online set functions. Although
this linear program has an exponential number of variables/constraints, we show there exists
a polynomial time algorithm to obtain a solution with primal value at least c − ϵ , where ϵ > 0
is an arbitrarily small constant.

We �rst prove that the above pair of linear programs have value at least c . Given y such
that ∑

i xiyi = 1, notice that a c-approximation ex-ante prophet inequality gives in polynomial
time an online algorithm ϕ ∈ Φ∗ with expected value at least c ·∑i xiyi , i.e., ∑i qi,ϕ ·yi ≥ c . �is
implies the optimal value of the LPs is at least c . In particular, for any ϵ > 0, the polytope

Qc−ϵ :=
{
y : y ≥ 0,

∑
i

xiyi = 1,
∑
i

qi,ϕyi ≤ c − ϵ for all ϕ ∈ Φ∗
}

is empty. Since we have an e�cient separation oracle (for anyy, we can �nd a violated constraint

in polynomial time) for Qc−ϵ , by running the ellipsoid algorithm, we can �nd a subset Φ′ ⊆ Φ∗

with |Φ′| = poly(n) in polynomial time such that Q′c−ϵ := {y : y ≥ 0,∑i xiyi = 1,∑i qi,ϕyi ≤
c − ϵ for all ϕ ∈ Φ′} is empty. �en the following primal program with polynomial number of
variables and constraints has the optimal value at least c − ϵ .

max c

s.t.
∑
ϕ∈Φ′

qi,ϕλϕ ≥ xic i ∈ N∑
ϕ∈Φ′

λϕ = 1

λϕ ≥ 0 ∀ϕ ∈ Φ′.

�e optimal solution to this linear program has value at least c − ϵ and gives a randomized
(c − ϵ )-OCRS for any ϵ > 0. �

8.4 An Ex-Ante Prophet Inequality for Matroids

In this section we design an ex-ante prophet inequality for matroids.
�eorem 8.4.1. For matroids, there exists a 1/2-approximation ex-ante prophet inequality.

�e proof of this theorem is similar to [KW12]. Together with �eorem 8.3.1, this gives
�eorem 8.1.3 as a corollary.

115



8.4.1 Notation

Given x ∈ PM , let v ∼ D be a set of random element values {v1, . . . ,vn} where each vi inde-
pendently takes value ui w.p. xi and is 0 otherwise. Since x ∈ PM , we can write it as a convex
combination of independent sets in the matroid. In particular, this gives a correlated distribu-
tion D̂ over independent sets ofM such that for each i ∈ V , we have PrI∼D̂[i ∈ I ] = xi . Let
v̂ = {v̂1, . . . ,v̂n} be a set of random values obtained by sampling I ∼ D̂ and se�ing v̂i = ui for
i ∈ I , and v̂i = 0 otherwise. Notice the optimal value of (8.1) is ∑

i xiui and for each i ∈ V , we
have E[v̂i] = xiui .

We need the following notation to describe our algorithms.
De�nition 8.4.2. For a given vector v̂ of values of n elements and any A ⊆ V , we de�ne:

• LetOpt (v̂ | A)⊆ V \A denote the maximum value independent set in the contracted matroid

M/A.

• Let R (A, v̂) := ∑
i∈Opt (v̂|A) v̂i denote the remaining value a�er selecting set A.

We next de�ne a base price of for every element i .
De�nition 8.4.3. For A ∈ I denoting an independent set of elements accepted by our algorithm,

we de�ne

• Let bi (A, v̂) := R (A, v̂) − R (A ∪ {i}, v̂) denote a threshold for element i .

• Let bi (A) := Ev̂∼D̂[bi (A, v̂)] denote the base price for element i .

8.4.2 Adversarial Order

Consider v ∼ D as the input to our online algorithm, where vi takes value ui w.p. xi and is 0
otherwise. Given v, our algorithm is deterministic and let A := A(v) denote the set of elements
that it selects. Relabel the elements such that the arrival order of the elements is 1, . . . ,n. Let
Ai = A ∩ {1, . . . ,i}.

Our algorithm selects the next element i i� both vi > Ti := α · bi (Ai−1) and selecting i is
feasible in M, where α = 1

2 . �us, the total value of algorithm Alg := ∑
i∈Avi = Revenue +

Utility, where
Revenue :=

∑
i∈A

Ti and Utility :=
∑
i∈A

(vi −Ti )
+.

To prove �eorem 8.4.1 it su�ces to show E[Alg] = E[Revenue] + E[Utility] ≥ α ·∑i∈V xiui .
We keep track of the algorithm’s progress using the following residual function:

r (i ) := E
v∼D,v̂∼D̂[R (Ai−1, v̂)].

Clearly, r (0) = ∑
i∈V xiui . In the following Lemma 8.4.4 and Lemma 8.4.5, we use the residual

function to lower bound E[Revenue] and E[Utility].
Lemma 8.4.4.

Ev∼D[Revenue] = α ·
(
r (0) − r (n)

)
.

116



Proof. From the de�nition of Revenue, we get

Revenue = α ·
∑
i∈A

bi (Ai−1)

= α ·
∑
i∈A

(
Ev̂[R (Ai−1, v̂)] − Ev̂[R (Ai−1 ∪ {i}, v̂)]

)
= α ·

∑
i∈A

(
Ev̂[R (Ai−1, v̂)] − Ev̂[R (Ai , v̂)]

)
= α ·

(
Ev̂[R (A0, v̂)] − Ev̂[R (A, v̂)]

)
.

Taking expectation over v ∼ D and using the de�nitions of r (0) and r (n), the lemma follows.
�

Lemma 8.4.5.

Ev∼D[Utility] ≥ (1 − α ) · r (n).

Proof. We prove the following two inequalities:

Ev∼D[Utility] ≥ E
v∼D,v̂∼D̂

[ ∑
i∈Opt (v̂|A)

(v̂i −Ti )
+

]
(8.2)

and
E

v∼D,v̂∼D̂

[ ∑
i∈Opt (v̂|A)

(v̂i −Ti )
+

]
≥ (1 − α ) · E

v∼D,v̂∼D̂[R (A, v̂)]. (8.3)

Lemma 8.4.5 now follows by summing (8.2) and (8.3), and using r (n) = E
v∼D,v̂∼D̂[R (A, v̂)].

To prove (8.2), notice that for any element i not selected by the algorithm vi ≤ Ti . �is
implies

Ev∼D[Utility] = Ev

[ ∑
i∈A

(vi −Ti )
+

]
= Ev

[ ∑
i∈V

(vi −Ti )
+

]
.

Now observe that for any �xed i and v1, . . . ,vi−1, the threshold Ti is determined. Since vi and
v̂i are independent random variables with the same distribution, we get

Ev[(vi −Ti )+ |v1, . . . ,vi−1] = Ev,v̂[(v̂i −Ti )+ |v1, . . . ,vi−1].

�is implies

Ev∼D[Utility] = Ev

[ ∑
i∈V

(vi −Ti )
+

]

= Ev,v̂

[ ∑
i∈V

(v̂i −Ti )
+

]
≥ Ev,v̂

[ ∑
i∈Opt (v̂|A)

(v̂i −Ti )
+

]
.

Finally, to prove (8.3), we have

Ev,v̂[R (A, v̂)] = Ev,v̂

[ ∑
i∈Opt (v̂|A)

v̂i

]
≤ Ev,v̂

[ ∑
i∈Opt (v̂|A)

Ti

]
+ Ev,v̂

[ ∑
i∈Opt (v̂|A)

(v̂i −Ti )
+

]

117



≤ α · Ev,v̂

[ ∑
i∈Opt (v̂|A)

v̂i

]
+ Ev,v̂

[ ∑
i∈Opt (v̂|A)

(v̂i −Ti )
+

]
,

where the �rst inequality uses v̂i ≤ Ti + (v̂i − Ti )
+ and the second inequality uses Claim 8.4.6

for S = Opt (v̂ | A). A�er rearranging, this implies (8.3). �

We need the following Claim 8.4.6 in the proof of Lemma 8.4.5.
Claim 8.4.6. For every pair of disjoint sets A,S such that A ∪ S ∈ M,

α · Ev̂∼D̂

[ ∑
i∈S

R (Ai−1, v̂) − R (Ai−1 ∪ {i}, v̂)
]
=

∑
i∈S

Ti ≤ α · Ev̂∼D̂[R (A, v̂)]. (8.4)

Proof. �is directly follows from [KW12], as they proved it for every �xed w′. �e proof is
similar to Claim 11.4.6 in Chapter 11. �

Proof of �eorem 8.4.1. Using Lemma 8.4.4 and Lemma 8.4.5, and substituting α = 1
2 , we get

E[Alg] = E[Utility] + E[Revenue] ≥ 1
2r (0) =

1
2
∑
i∈V

xiui . �

118



Chapter 9

Combinatorial Prophet Inequalities

9.1 Introduction

Recall that in the classic prophet inequality, a gambler is asked to choose one of n independent
non-negative random payo�s. In multiple choice prophet inequalities studied in Chapter 8, the
gambler chooses multiple payo�s, subject to some known-in-advance feasibility constraint, and
receives their sum, i.e., an additive objective. In this chapter, we are interested in the case where
the gambler’s value is not additive over the outcomes of the random draws: For example, instead
of monetary payo�s, at each time period the gambler can choose to receive a random item, say
a car, and the value from owning multiple cars diminishes quickly. As another example, the
gambler receives monetary payo�s, but his marginal value for the one-millionth dollar is much
smaller than for the �rst. Can we design prophet inequalities for more general combinatorial
objective functions?

9.1.1 Model and Results

Our main conceptual contribution is a generalization of the Prophet Inequality se�ing to com-
binatorial valuations. Roughly, on each of n days, the decision maker knows an independent
prior distribution over k potential items that could appear.1 She also has access to a combinato-
rial (in particular, submodular or monotone subadditive) function f that describes the value of
any subset of the n · k items. �e goal is to maximize the value of f on the union of all selected
items. Formally, we de�ne the problem using the discussion of combinatorial but independent
functions from Chapter 6.
De�nition 9.1.1 (Combinatorial Prophet Inequality). �e o�ine inputs to the problem are:

• n sets U1, . . . ,Un; we denote their union U ,
⋃n

i=1Ui ;

• a combinatorial function f : {0,1}U → R≥0;

• n distributions Di over subset Ui ; and

1Note that some notion of independence assumption is necessary as even for the single choice problem, if
values are arbitrarily correlated then every online algorithm is Ω(n) competitive [HK92].

119



• a feasibility constraint F over [n]

On the i-th time period, the algorithm observes an elementXi ∈ Ui drawn according toDi , indepen-

dently from outcomes and actions on past and future days. �e algorithm must decide (immediately

and irrevocably) whether to add i and Xi to setsW and XW , respectively, subject toW remaining

feasible in F . �e objective is to maximize f (XW ).

We obtain the following combinatorial prophet inequalities in [RS17].
�eorem 9.1.2 (Submodular Prophet). �ere exists an e�cient randomized O (1)-competitive

algorithm for monotone/non-monotone submodular prophet over any matroid.

Since for general packing constraints one cannot obtain e�cient algorithms using mem-
bership queries even for additive valuations [Rub16], we design a computationally ine�cient
subadditive prophet inequality over packing constraints.
�eorem 9.1.3 (Monotone Subadditive Prophet). �ere exists an O (logn · log2 r )-competitive

algorithm for monotone subadditive prophet inequality subject to any packing constraints.

9.1.2 Techniques

Our main technique in the proof of �eorem 9.1.2 is a constant correlation gap for non-monotone
submodular functions, which might be of independent interest. For a monotone submodular
function f , [CCPV07] showed that the expected value of f over any distribution of subsets
is at most a constant factor larger than the expectation over subsets drawn from the product
distribution with the same marginals. �is bound on the correlation gap has been very useful in
the past decade with applications in optimization [CVZ14], mechanism design [ADSY12, Yan11,
BCK12, BH16], social networks [RSS15, BPR+16], and recommendation systems [KSS13].

It turns out that when f is non-monotone, the correlation gap is unbounded, even for n = 2.
Instead, we prove a correlation gap for a related function:

fmax(S ) , max
T⊆S

f (T ).

(Note that fmax is monotone, but may not be submodular.)
�eorem 9.1.4 (Non-monotone correlation gap; informal). For any (non-monotone) submodular

function f , the function fmax has a correlation gap of O (1).

Our techniques in the proof of �eorem 9.4.3 extend the ideas from [Rub16]. We show
how to approximate a monotone subadditive function using an XOS function and interpreting
it as another packing constraint can be used to obtain subadditive prophet inequalities. In
Chapter 10 we will see a similar result for the subadditive secretary problem. However, unlike
the subadditive secretary problem over a general packing constraint, we cannot obtain a black-
box reduction to linear prophet inequalities over packing constraints (with a small loss in the
approximation factor). Instead, we need to revisit every step in the proof from [Rub16].

120



9.1.3 Other notions of online submodular optimization

Online submodular optimization has been studied in contexts beyond secretary. In online sub-
modular welfare maximization, there are m items, n people, and each person has a monotone
submodular value function. Given the value functions, the items are revealed one-by-one and
the problem is to immediately and irrevocably allocate it to a person, while trying to maximize
the sum of all the value functions (welfare). �e greedy strategy is already half competitive.
Kapralov et al. [KPV13] showed that for adversarial arrival greedy is the best possible in gen-
eral (competitive ratio of 1/2), but under a “large capacities” assumption, a primal-dual algo-
rithm can obtain 1−1/e-competitive ratio [DHK+13]. For random arrival Korula et al. [KMZ15]
showed that greedy can beat half; obtaining 1 − 1/e in this se�ings remains open.

Buchbinder et al. [BFS15] considered the problem of (monotone) submodular maximization
with preemption, when the items are revealed in an adversarial order. Since sublinear com-
petitive ratio is not possible in general with adversarial order, they consider a relaxed model
where we are allowed to drop items (preemption) and give constant-competitive algorithms.
Submodular maximization has also been studied in the streaming se�ing, where we have space
constraints but are again allowed to drop items [BMKK14, CK15, CGQ15].

�e “learning community” has looked into experts and bandits se�ings for submodular opti-
mization. In these se�ings, di�erent submodular functions arrive one-by-one and the algorithm,
which is trying to minimize/ maximize its value, has to select a set before seeing the function.
�e function is then revealed and the algorithm gets the value for the selected set. �e goal is to
perform as close as possible to the best �xed set in hindsight. Since submodular minimization
can be reduced to convex function minimization using Lovász extension, sublinear regrets are
possible [HK12]. For submodular maximization, the usual benchmark is a 1−1/e multiplicative
loss and an additive regret [SG08, GK10, GKS14].

Interestingly, to the best of our knowledge none of those problems have been studied for
subadditive functions.

Organization We begin by formalizing and proving a correlation gap for non-monotone sub-
modular functions in Section 9.2; in Section 9.3 we prove the submodular prophet inequality;
and in Section 9.4 we prove the subadditive prophet inequality

9.2 Correlation Gap for Non-Monotone Submodular Func-

tions

For monotone submodular functions, [CCPV07] proved that

F (x) ≥ (1 − 1/e ) · f +(x). (9.1)

�is result was later rediscovered by [ADSY12], who called the ratio between f +(x) and F (x)
correlation gap. It’s useful in many applications since it says that up to a constant factor, pick-
ing items independently is as good as the best correlated distribution with the same element
marginals.

121



What is the correct generalization of (9.1) to non-monotone submodular functions? It is
tempting to conjecture that F (x) ≥ c · f +(x) for some constant c > 0. However, the following
example shows that even for a function as simple as the directed cut function on a two-vertex
graph, this gap may be unbounded.
Example 9.2.1. Let f be the directed cut function on the two-vertex graph u → v ; i.e. f (∅) = 0,

f ({u}) = 1, f ({v}) = 0, and f ({u,v}) = 0. Let x = (ϵ ,1 − ϵ ). �en,

F (x) = ϵ2 � ϵ = f +(x).

It turns out that the right way to generalize (9.1) to non-monotone submodular functions is
to �rst make them monotone:
De�nition 9.2.2 (Function fmax).

fmax(S ) , max
T⊆S

f (T ).

For non-monotone submodular f , we have that fmax is monotone, but it may no longer be
submodular, as shown by the following example:
Example 9.2.3 (Function fmax is not submodular). Let f be the directed cut function on the four-

vertex graph u → v → w → x . In particular, f ({v}) = 1, f ({u,v}) = 1, f ({v,w }) = 1, and

f ({u,w }) = 2.

fmax({u,v})−fmax({v}) = 1 − 1
< 2 − 1
= fmax({u,v,w })−fmax({v,w }).

Finally, we are ready to de�ne correlation gap for non-monotone functions:
De�nition 9.2.4 (Correlation gap). �e correlation gap of any set function f is

max
x∈[0,1]n

max
α≥0




f +(x)
Fmax(x)

����
∑
S

αS = 1 and

∑
S

αS1S = x


,

where Fmax is the multilinear extension of fmax.

Notice that for monotone f , we have that fmax ≡ f , so De�nition 9.2.4 generalizes the
correlation gap for monotone submodular functions. Furthermore, one could replace f + with
f +max in De�nition 9.2.4; observe that the resulting de�nition is equivalent.
�eorem 9.2.5 (Non-monotone correlation gap). For any non-monotone non-negative submod-

ular function f , the correlation gap is at most 200.

While the constant can be improved slightly, we have not tried to optimize it, focusing
instead on clarity of exposition. Our proof goes through a third relaxation, f ∗1/2.
De�nition 9.2.6 (f ∗1/2). For any set function f and any x ∈ [0,1]n,

f ∗1/2(x) , min
S⊆[n]

{
ET∼1S/2

[
f (T ) +

∑
i∈[n]\S

fT (e ) · xi
]}
.

122



Below, we will prove (Lemma 9.2.7) that f +(x) ≤ 4 · f ∗1/2(x). We then show (Lemma 9.2.9)
that f ∗1/2(x) ≤ 50 · F (x/2), which implies

f +(x) ≤ 4 · f ∗1/2(x) ≤ 200 · F (x/2). (9.2)

Finally, to �nish the proof of �eorem 9.2.5, it su�ces to show that F (x/2) ≤ Fmax(x). �is
is easy to see since drawing T according to x/2 is equivalent to drawing S according to x, and
then throwing out each element from S independently with probability 1/2. For Fmax(x), on the
other hand, we draw the same set S and then take the optimal subset.

9.2.1 Proof that f +(x) ≤ 4 · f ∗1/2(x)

Lemma 9.2.7. For any x ∈ [0,1]n and non-negative submodular function f : {0,1}n → R+,

f +(x) ≤ 4 · f ∗1/2(x).

We �rst prove the following auxiliary claim:
Claim 9.2.8. For any sets S ,T ⊆ [n],

ET1/2∼1T /2

[
f ((S \T ) ∪T1/2

]
≥

1
4 f (S ).

Proof. De�ne a new auxiliary function h(U ) , f ((S \T ) ∪U ). Observe that h continues to be
non-negative and submodular. We now have,

ET1/2∼1T /2[f ((S \T ) ∪T1/2]
= ET1/2∼1T /2[h(T1/2)]

≥
1
4h(T ) (Lemma 2.4.6 for L = H = 1/2)

=
1
4 f (S ) (de�nition of h).

�

Proof of Lemma 9.2.7. Fix x, and let S∗ = S∗(x) denote the optimal set that satis�es f ∗1/2(x) =

ET∼1S∗/2
[
f (T ) +

∑
i∈[n]\S∗ fT (e )xi

]
. Let {αS } be the optimal distribution that satis�es f +(x) =∑

S αS f (S ). �en, 1
4 f
+(x) = 1

4
∑

S αS f (S )

≤
∑
S

αS · ET∼1S∗/2[f ((S \ S∗) ∪T )] (using Claim 9.2.8)

=
∑
S

αS · ET∼1S∗/2 [f (T ) + fT (S \ S
∗)]

≤
∑
S

αS · ET∼1S∗/2

[
f (T ) +

∑
i∈S\S∗

fT (e )
]

(using submodularity)

123



= ET∼1S∗/2

[
f (T )

∑
S

αS +
∑
S

αS
∑

i∈S\S∗

fT (e )
]

= ET∼1S∗/2

[
f (T ) +

∑
i∈[n]\S∗

fT (e )xi

]
= f ∗1/2(x) (using

∑
S

αS1S = x).

�

9.2.2 Proof that f ∗1/2(x) ≤ 50 · F (x/2)

�e proof of the following lemma is similar to Lemma 5 in [CCPV07].
Lemma 9.2.9. .

f ∗1/2(x) ≤ 50 · F (x/2) .

Proof. Consider an exponential clock running for each element i ∈ [n] at rate xi . Whenever the
clock triggers, we update set S to S ∪ {i}. For t ∈ [0,1], let S (t ) denote the set of elements in
S by time t . �us, each element belongs to S (1) w.p. 1 − exp(−xi ), which is between xi (1 − 1

e )
and xi . Let V (t ) , ET∼1S (t )/2[f (T )], i.e. expected value of set that picks each element in S (t )

independently w.p. 1
2 . Our goal is to show that:

f ∗1/2(x) ≤

( 2
1 − e−1/2

)
· E[V (1)] ≤

( 2
1 − e−1/2

) (
4(e − 1)
e − 2

)
· F (x/2) . (9.3)

We begin with the second inequality of (9.3). Consider the auxiliary submodular function
д(S ) , ET∼1−exp(−x)[f (S ∩T )], and letG denote its multilinear extension. Let S∗ be a maximizer
of д, and observe that

V (1) = G (1[n]/2) ≤ д(S∗).

Observe further that, with slight abuse of notation, F (x/2) = G
(

x/2
1−exp(−x)

)
; this is well-de�ned

since for any xi ∈ [0,1], we have

1
2 ≤

xi/2
1 − exp(−xi )

≤
e

2(e − 1) < 1.

Moreover, since xi/2
1−exp(−xi ) is bounded, Lemma 2.4.6 gives

F (x/2) ≥ 1
2 ·

(
1 − e

2(e − 1)

)
· д(S∗)

=
e − 2

4(e − 1)д(S
∗) = Ω(1) · д(S∗).

We now turn to the �rst inequality of (9.3). Consider an in�nitesimal interval interval
(t ,t + dt]. For any i < S (t ) the exponential clock triggers with probability xi dt , so it con-
tributes to V (t + dt ) with probability xi/2 dt . �e probability that two clocks trigger in the

124



same in�nitesimal is negligible (O (dt2)). �erefore,

E[V (t + dt ) −V (t )] = ES (t )ET∼1S (t )/2

[ ∑
j∈[n]\S

xi
2 fT (j ) dt

]
−O (dt2)

≥
1
2

(
f ∗1/2(x) − ES (t )ET∼1S (t )/2E[f (T )]︸                      ︷︷                      ︸

E[V (t )]

)
dt −O (dt2).

Dividing both sides by dt and taking the limit as dt → 0, we get:

d

dt
E[V (t )] ≥ 1

2

(
f ∗1/2(x) − E[V (t )]

)
.

To solve the di�erential inequality, let ϕ (t ) = E[V (t )] and ψ (t ) = exp( t2 ) ϕ (t ). We get
dϕ
dt ≥

1
2 ( f

∗
1/2(x) − ϕ (t )) and dψ

dt = exp( t2 ) (
dϕ
dt +

ϕ (t )
2 ) ≥ exp( t2 )

f ∗1/2 (x)
2 . Since ψ (0) = ϕ (0) = 0,

integration over t gives

E[V (t )] = ϕ (t ) = exp(−t/2)ψ (x ) ≥
f ∗1/2(x)

2 (1 − exp(−t/2)).

In particular, plugging in t = 1 completes the proof of the �rst inequality in (9.3). �

9.3 Submodular Prophets over Matroids

De�nition 9.3.1 (Submodular Matroid Prophet). �e o�ine inputs to the problem are:

• n sets U1, . . . ,Un; we denote their union U ,
⋃n

i=1Ui ;

• a (not necessarily monotone) non-negative submodular function f : {0,1}U → R+;

• n distributions Di over subset Ui ; and

• a matroidM over [n]

On the i-th time period, the algorithm observes an elementXi ∈ Ui drawn according toDi , indepen-

dently from outcomes and actions on past and future days. �e algorithm must decide (immediately

and irrevocably) whether to add i and Xi to setsW and XW , respectively, subject toW remaining

independent inM. �e objective is to maximize f (XW ).

�eorem 9.3.2. �ere is a randomized algorithm with a competitive ratio of O (1) for any Sub-
modular Matroid Prophet

Before proving �eorem 9.3.2, we need to de�ne greedy online contention resolution
schemes.

Greedy online contention resolution scheme Given a point x in the matroid polytope P
of matroidM, many submodular maximization applications like to select each element i inde-
pendently with probability xi and claim that the selected set S has expected value F (x) [CVZ14].

125



�e di�culty is that S need not be feasible inM, and we can only select T ⊆ S that is feasi-
ble. Chekuri et al. [CVZ14] introduced the notion of contention resolution schemes (CRS) that
describes how, given a random S , one can �nd a feasible T ⊆ S such that the expected value
f (T ) will be close to F (x).

As discussed in Chapter 8, Feldman, Svensson, and Zenklusen introduced online contention

resolution schemes (OCRSs), which informally says that the decision of whether to select element
i ∈ S into T can be made online, even before knowing the entire set S [FSZ16]. In particular,
we need their de�nition of greedy OCRS, which is a property necessary to extend applications
of OCRSs from linear to submodular functions. We de�ne it below and state the results from
[FSZ16] that we use in our O (1)-submodular prophet inequality result over matroids.
De�nition 9.3.3 (Greedy OCRS). Let x belong to a matroid polytope P and S ∼ x. A greedy

OCRS de�nes a downward-closed family Fx of feasible sets in the matroid. All elements reveal

one-by-one if they belong to S , and when element i ∈ [n] reveals, the greedy OCRS selects it if,

together with the already selected elements, the obtained set is in Fx.

Lemma 9.3.4 (�eorems 1.8 and 1.10 of [FSZ16]). Given a non-negative submodular function f ,

a matroidM, and a vector x in the convex hull of independent sets inM, there exists a deterministic

greedy OCRS that outputs a set T satisfying ET [F (1T /2)] ≥ (1/16) · F (x ).

Proof overview �e main ingredients in the proof of �eorem 9.3.2 are known online con-

tention resolution schemes (OCRS) due to Feldman, Svensson, and Zenklusen [FSZ16], and our
new bound on the correlation gap for non-monotone submodular functions (�eorem 9.2.5).

Let x ∈ [0,1]U denote the vector of probabilities that each element realizes (i.e. x (i,j ) =
Di (j )). A naive proof plan proceeds as follows: Select elements online using the OCRS (w.r.t
x); obtain a constant factor approximation to F (x); use a “correlation gap” to show a constant
factor approximation of f +(x); �nally, observe that f +(x) is an upper bound on OPT .

�ere are two problems with that plan: First, the OCRS of Feldman et al. applies when
elements realize independently. �e realization of di�erent elements for the same day is ob-
viously correlated (exactly one element realizes), so we cannot directly apply their OCRS. �e
second problem is that for non-monotone submodular function, it is in general not true that
F (x) approximates f +(x) (see Example 9.2.1).

�e solution to both obstacles is working with x/2 instead of x. In Section 9.2 we showed
that F (x/2) is a constant factor approximation of f +(x) (Ineq. (9.2)). �en, in Subsection 9.3.1,
we give an algorithm that approximates the selection of the greedy OCRS on x/2. Our plan is
then to show:

ALG = Ω(ES∼OCRS (x/2)[f (S )]) (Subsection 9.3.1)
= Ω(F (x/2)) (Lemma 9.3.4)
= Ω( f +(x)) (Inequality (9.2))
= Ω(OPT ).

126



9.3.1 Applying the OCRS to our setting

In this subsection we show an algorithm that obtains, in expectation, 1/2 of the expected value
of the OCRS with probabilities x/2.

Our algorithm uses the greedy OCRS as a black box. On each day, the algorithm (sequen-
tially) feeds the OCRS a subset of the elements Ui that can potentially arrive on that day. �e
subset on each day is chosen at random; it is correlated with the element that actually arrives
on that day, and independent from the subsets chosen on other days. �e guarantee is that the
distribution over sequences fed into the OCRS is identical to the distribution induced by x/2.

Reduction

For each i , let Ui denote the set of elements that can arrive on day i , and �x some (arbitrary)
order over Ui . For a subset Si ⊆ Ui , let P ix/2(Si ) denote the probability that the set Si is exactly
the outcome of sampling from Ui according to x/2. When element (i, j ) arrives on day i , the
algorithm feeds into the OCRS a random set Ti drawn from the following distribution. With
probability

P ix/2 ({(i,j )})

xi,j
, the algorithm feeds just element (i, j ), i.e. Ti = {(i, j )}; notice that this

guarantees Pr [Ti = {(i, j )}] = P ix/2({(i, j )}). Otherwise, the algorithm letsTi be a random subset
of Ui , drawn according to x/2, conditioned on |Ti | , 1. �is guarantees that the probability
mass on subsets of size , 1 is also allocated according to x/2.

Now, if the algorithm fed the singleton {(i, j )} and the OCRS selected it, then the algorithm
also takes {(i, j )}; otherwise the algorithm does not take {(i, j )}. (In particular, if |Ti | , 1, the
algorithm ignores the decisions of the OCRS.)

Analyzing the reduction

Observe that on each day the distribution overTi ’s is identical to the distribution P ix/2(·). Since
the Ti ’s are also independent, it means that the distribution of inputs to the OCRS is indeed
distributed according to x/2.

Conditioning on (i, j ) is being fed (i.e., with probability xi,j/2), P ix/2(·) assigns at least 1/2
probability to the event where no other element is also being fed (this is precisely the reason
we divide x by 2):

Pr[Ti = {(i, j )} | Ti 3 (i, j )] ≥ 1/2.

Since the OCRS is greedy, for any history on days 1, . . . ,i − 1, if it selects (i, j ) when ob-
serving set Ti 3 (i, j ), it would also select (i, j ) when observing only this element on day i .
Furthermore, since the OCRS is only allowed to select one element on day i , conditioning on
the OCRS selecting (i, j ), the future days (i + 1, . . . ,n) proceed independently of whether the al-
gorithm also selected (i, j ). �erefore, conditioning on the greedy OCRS selecting any set SOCRS,
the algorithm selects a subset TALG ⊆ SOCRS where each element appears with probability at
least 1/2.

Finally, to argue that the algorithm obtains at least 1/2 of the expected value of the set
selected by the OCRS, �x the set SOCRS selected by the OCRS, and consider the submodular

127



Figure 9.1: Reducing a subadditive objective to a {0,1}-XOS objective.

function д(T̄ ) , f (SOCRS \ T̄ ). Se�ing T̄ , TALG \ SOCRS, we have that f (TALG) = д(T̄ ). �us by
Lemma 5.4.3,

E[f (TALG)] ≥
1
2E[д(∅)] =

1
2E[f (SOCRS)].

9.4 Subadditive Prophets over Packing Constraints

De�nition 9.4.1 (Monotone Subadditive Downward-Closed Prophet). �e o�ine inputs

to the problem are:

• n sets U1, . . . ,Un; we denote their union U ,
⋃n

i=1Ui ;

• a monotone non-negative subadditive function f : {0,1}U → R+;

• n distributions Di over subset Ui ; and

• a feasibility constraint F over [n].

On the i-th time period, the algorithm observes an elementXi ∈ Ui drawn according toDi , indepen-

dently from outcomes and actions on past and future days. �e algorithm must decide (immediately

and irrevocably) whether to add i and Xi to setsW and XW , respectively, subject to the constraint

thatW remains feasible in F . �e objective is to maximize f (XW ).

Let r denote the maximum cardinality of a feasible set S ∈ F . As mentioned in the intro-
duction, Rubinstein gave an O (poly logn)-approximation prophet inequality for maximizing a
linear function over a packing constraint.
�eorem 9.4.2 ([Rub16]). When items take values in {0,1}, there areO (logn)-competitive algo-

rithms for (additive) Downward-Closed Secretary and Downward-Closed Prophet.

We extend the above result to subadditive functions.
�eorem 9.4.3. �ere is a deterministic algorithm for Monotone Subadditive Downward-
Closed Prophet that achieves a competitive ratio of O

(
logn · log2 r

)
.

�e proof of �eorem 9.4.3 consists of three steps (see Figure 9.1): in Subsection 9.4.1 we
reduce monotone subadditive valuations over independent items to monotone XOS subadditive
valuations over independent items, with a loss ofO (log r ), using a lemma of Dobzinski [Dob07].
�en in Subsection 9.4.2 we use a standard reduction from general XOS valuations to XOS with
{0,1} marginal contributions, losing another factor of O (log r ). Finally, in Subsection 9.4.3 we
use techniques from [Rub16] to give anO (logn)-competitive algorithm for monotone XOS with
{0,1} marginal contributions.

128



9.4.1 Subadditive to XOS

De�nition 9.4.4 (Monotone XOS Downward-Closed Prophet). For any setM and items [n],

the o�ine inputs to the problem are:

• n sets U1, . . . ,Un of valuations vectors in RM+ ; we denote their union U ,
⋃n

i=1Ui ;

• a monotone XOS function f̂ : {0,1}U → R+

f̂ (S ) , max
m∈M

∑
u∈S um for S ∈ {0,1}U ;

• n distributions Di over subset Ui ; and

• a feasibility constraint F over [n], which is a collection of subsets of [n].

On the i-th time period, the algorithm observes a valuations vector Xi ∈ Ui drawn according to

Di , independently from outcomes and actions on past and future days. �e algorithm must decide

(immediately and irrevocably) whether to add i and Xi to setsW and XW , respectively, subject to

the constraint thatW remains feasible in F . �e objective is to maximize f̂ (XW ).

In Proposition 9.4.5 we give an O (logn · log r )-competitive algorithm for Monotone XOS
Downward-Closed Prophet. By Dobzinski’s Lemma 2.4.7, this implies an O

(
logn · log2 r

)
-

competitive algorithm for Monotone Subadditive Downward-Closed Prophet.
Proposition 9.4.5. �ere is a deterministic algorithm for Monotone XOS Downward-Closed
Prophet that achieves a competitive ratio of O (logn · log r ).

9.4.2 XOS to XOS with {0,1} coe�cients

Below (Proposition 9.4.6), we give an O (logn)-competitive algorithm for Monotone XOS
Downward-Closed Prophet in the special case where all the vectors v ∈ U are in {0,1}M .
First, let us show why this would imply Proposition 9.4.5.

Proof of Proposition 9.4.5 from Proposition 9.4.6. We recover separately the contributions from
“tail” events (a single item taking an exceptionally high value) and the “core” contribution that
is spread over many items. Run the be�er of the following two algorithms:

Tail Let OPT denote the expected o�ine optimum value. Whenever we see a feasible
item whose valuations vector Xi has value at least 2OPT , we select it. For item i , let pi =
Pr [Xi ≥ 2OPT ]. We have

OPT ≥ 2OPT · Pr [∃i : Xi ≥ 2OPT ] = 2OPT ·
(
1 −

∏
(1 − pi )

)
.

Dividing by OPT and rearranging, we get

1/2 ≤
∏

(1 − pi ) ≤ e−
∑
pi ,

and thus ∑
pi ≤ ln 2.

129



�erefore the probability that we want to take an item but can’t is at most ln 2, so this
algorithm achieves at least a (1 − ln 2)-fraction of the expected contribution from values greater
than 2OPT .

Core Observe that we can safely ignore values less than OPT /2r , as those can contribute a
total of at mostOPT /2. Partition all remaining values into 2+ log r intervals [OPT /2r ,OPT /r ] ,
. . . , [OPT ,2OPT ]. �e expected contribution from the values in each interval is Ω (1/ log r )-
fraction of the expected o�ine optimum without values greater than 2OPT . Pick the interval
with the largest expected contribution, round down all the values in this interval, and run
the algorithm guaranteed by Proposition 9.4.6. �is achieves an Ω

(
1

logn·log r

)
-fraction of the

expected contribution from values less than or equal to 2OPT . �

9.4.3 XOS with {0,1} coe�cients

Proposition 9.4.6. When the Xi ’s take values in {0,1}M , there is a deterministic algorithm for

Monotone XOS Downward-Closed Prophet with O (logn) competitive ratio.

A dynamic potential function

At each iteration, the algorithm maintains a target value τ and a target probability π , where π is
the probability (over future realizations) that the current restricted prophet beats τ . We say that
an outcome (i.e. a pair of item and valuations vector) is good if selecting it does not decrease the
probability of beating the target value by a factor greater than n2, and bad otherwise. Notice
that all the bad items together contribute at most a (1/n)-fraction of the probability of beating
τ . A key ingredient is that τ is updated dynamically. If the probability of observing a good
outcome is too low (less than 1/4), we deduct 1 from τ . We show (Lemma 9.4.10) that this
increases π by a factor of at least 2. Since π decreases by at most an n2 factor when we select an
item, and increases by a factor of 2 whenever we deduct 1 from τ : we balance 2 logn deductions
for every item the algorithm selects, and this gives the O (logn) competitive ratio.

So far our algorithm is roughly as follows: set a target value τ ; whenever the probability
π of reaching the target τ drops below 1/4, decrease τ ; if π > 1/4, sit and wait for a good
outcome - one will arrive with probability at least 1/4 (we actually do this with Pr[A] instead
of π , where A is a closely related event). �ere is one more subtlety: what should the algorithm
do if no good outcomes arrive? In other words, what if the probability of observing a good
outcome is neither very low nor very close to 1, say 1/2 or even 1 − 1

logn? On one hand, we
can’t decrease τ again, because we are no longer guaranteed a signi�cant increase in π ; on the
other hand, a�er, sayΘ

(
log2 n

)
iterations, we still have a high probability of having an iteration

where none of the good outcomes arrive. (If no good outcomes are coming, we don’t want the
algorithm to wait forever…) Fortunately, there is a simple solution: the algorithm waits for the
last item with a good outcome in its support; if, against the odds, no good outcomes have yet
been observed, the algorithm “hallucinates” that this last item has a good valuations vector, and
selects it. In expectation, at most a constant fraction of the items we select are “hallucinated”,

130



so the competitive ratio is still O (logn).

Notation

We let OPT denote the expected (o�ine) optimum. W is the set of items selected so far (W for
“Wins”), and `W , max {i ∈W } is the index of the last selected item.

Let F denote the family of all feasible subsets of [n]. For any T ⊆ [n], let FT denote the
family of feasible sets whose intersection with {1, . . . ,max (T )} is exactly T .

Let Xi =
(
Xm
i

)
m∈M

∈ {0,1}M denote the random vector drawn for the i-th item. We use zi
to refer to the observed realization of Xi . Our algorithm will maintain a subset M′ ⊆ M . We let

VM ′
(
F ,X[n]

)
, max

S∈F
max
m∈M ′

∑
i∈S

(Xi )m

denote the value of optimum o�ine solution (note that this is also a random variable).
Let τ = τ (W ) be the current target value, and π = π (τ ,W ) denotes the current target

probability:
π (τ ,W ) , Pr

[
VM ′

(
FW ,X[n]

)
> τ | X[`W ] = z[`W ]

]
.

For each yj ∈ supp
(
X j

)
, we de�ne π j,yj = π j,yj (τ ,W ) to be the probability of reaching τ , given

that:
• zj = yj ,
• j is the next item we select, and
• item j actually contributes 1 to the o�ine optimum.

Formally,

π j,yj (τ ,W )

, Pr
[
VM ′∩yj

(
FW+j ,X[n]

)
> τ | X[`W ]∪[j] =

(
z[`W ],yj

)]
,

where we slightly abuse notation and also use yj to denote the set ofm ∈ M such that ymj = 1.

We say that a future outcome
(
j,yj

)
is good if π j,yj ≥ n−2 · π and j is feasible (and otherwise

it is bad), and let G =
{
good

(
j,yj

)}
denote the set of good future outcomes. Finally,

A , A (π ,τ ,W ) ,

is the event that at least one good outcome occurs.

Updated proof plan and the algorithm

�e idea is to always maintain a threshold τ such that probability of one of the good outcomes to
occur is large, i.e. Pr[A] is at least a constant 1

4 . �e way we do this is by showing in Claim 9.4.7
that at any time during the execution of the algorithm, conditioned on what all has happened till

131



now, the probability π that the o�ine algorithm achieves the threshold τ gives a lower bound
on Pr[A]. Hence, whenever Pr[A] goes below 1

4 , we decrease the threshold τ , which increases
π due to Lemma 9.4.10 and, indirectly, increases Pr[A] by Claim 9.4.7.

Initialize τ ← OPT /2, M′ ← M , andW ← ∅. Lemma 9.4.9 uses a concentration bound due
to Ledoux to show that in the beginning τ = OPT /2 satis�es π > 1

4 .
A�er each update toW , decrease τ until Pr [A] ≥ 1/4, or until |W | > τ . When Pr [A] ≥ 1/4,

reveal the values of items until observing a good outcome. When we observe a good outcome
zj , add j toW and restrict M′ to its intersection with zj . Since we restrict M to M′, this gives us
that at any time

VM ′ (F ,XW ) = |W |.

If we reach the last item with good outcomes in its support, and none of the good outcomes re-
alize, add this last item toG and subtract 1 from τ (without modifying M′). See also pseudocode
in Algorithm 12.

We �rst claim that π gives us a lower bound on Pr[A] because most of the mass in π comes
from good outcomes.
Claim 9.4.7. At any point during the run of the algorithm,

Pr[A (π ,τ ,W )] ≥
(
1 − 1

n

)
π (W ,τ ).

Proof. For each
(
j,yj

)
< G, we have, by de�nition of G,

π j,yj (W ,τ ) < n−2 · π (W ,τ ) .

Summing over all
(
j,yj

)
< G,

∑
j

∑
yj :(j,yj )<G

Pr
[
yj

]
· π j,yj (W ,τ )

≤
∑
j

∑
yj :(j,yj )<G

Pr
[
yj

]
·
(
n−2 · π (W ,τ )

)
≤

∑
j

n−2 · π (W ,τ )

≤ n−1 · π (W ,τ ) .

�us, most of π comes from good
(
j,yj

)
’s:

Pr[A] =
∑
j

∑
yj :(j,yj )∈G

Pr
[
yj

]
· π j,yj (W ,τ )

≥ (1 − 1/n) π (W ,τ ) . �

132



Algorithm 12 Prophet

1. τ ← OPT
2 ; M′ ← M ;W ← ∅

2. while τ > |W |:

(a) π ← Pr
[
VM ′

(
FW ,X[n]

)
> τ | X[`W ] = z[`W ]

]

# π is the probability that, given the history, the o�ine optimum can still beat τ .
(b) G ←

{(
j,yj

)
: j > `W ANDπ j,yj ≥ n−2 · π

}
∩

(⋃
S∈FW S

)
# G is the set of good and feasible outcomes.

(c) if Pr [A] ≥ 1/4
# A good outcome is likely occur.

i. j∗ ← min
{
j ∈ G :

(
j,zj

)
∈ G

}

# Wait for a good and feasible outcome.
ii. if j∗ = ∞

# No good outcomes.
A. j∗ ← maxG

# Select the last potentially good item.
B. τ ← τ − 1

# Adjust the target value to account for select an item with value 0
iii. else

# j∗ is actually a good item.
A. M′ ← M′ ∩ zj

iv. W ←W ∪ {j∗}

(d) else

i. τ ← τ − 1
# decrease target value τ until Pr [A] ≥ 1/4.

133



Concentration for the beginning

�eorem 9.4.8. [Led97, �eorem 2.4] �ere exists some constant K > 0 such that the following

holds. Let Yi ’s be independent (but not necessarily identical) random variables in some space S ;

let C be a countable class of measurable functions f : S → [0,1]; and let Z = supf ∈C

∑n
i=1 f (Yi ).

�en,

Pr [Z ≥ E [Z ] + t] ≤ exp
(
−
t

K
· log

(
1 + t

E [Z ]

))
.

To make the connection to our se�ing, let Yi be the vector in [0,1]F ×M whose (S ,m)-th
coordinate is Xm

i if i ∈ S , and 0 otherwise. Let fS ,m (Yi ) , [Yi]S ,m, so ∑n
i=1 fS ,m (Yi ) is simply

the value of the set S under the m-th summation in the XOS representation of the valuation
function. Let C , {

fS
}
S∈F . �e above concentration inequality can now be wri�en as

Pr
[
V

(
F ,X[n]

)
≥ OPT + t

]
≤ exp

(
−
t

K
· log

(
1 + t

OPT

))
. (9.4)

Lemma 9.4.9. Assume OPT ≥ Ω (logn). �en,

Pr
[
V

(
F ,X[n]

)
≥
OPT

2

]
> 1/4.

Proof. We have,

OPT =

∫ ∞

−OPT
Pr

[
V

(
F ,X[n]

)
≥ OPT + t

]
dt , (9.5)

which can be decomposed as to integrals over [−OPT ,−OPT /2], [−OPT /2,OPT ], and [OPT ,∞].
�e �rst two integrals can be easily bounded as∫ −OPT /2

−OPT
Pr

[
V

(
F ,X[n]

)
≥ OPT + t

]
dt ≤

∫ −OPT /2

−OPT
1 · dt ≤

OPT

2

and ∫ OPT

−OPT /2
Pr

[
V

(
F ,X[n]

)
≥ OPT + t

]
dt

≤

∫ OPT

−OPT /2
Pr

[
V

(
F ,X[n]

)
≥ OPT /2

]
dt

≤
3OPT

2 · Pr
[
V

(
F ,X[n]

)
>
OPT

2

]
.

For the third integral we use the concentration bound (9.4):∫ ∞

OPT
Pr

[
V

(
F ,X[n]

)
≥ OPT + t

]
dt

≤

∫ ∞

OPT
exp

(
−
t

K
· log

(
1 + t

OPT

))
dt

134



≤

∫ ∞

OPT
exp

(
−
t

K

)
dt =

[
Ke−t/K

]∞
OPT

= K · e−OPT /K ,

which is negligible since OPT = ω (1).
Plugging into (9.5), we have:

OPT ≤
OPT

2 +
3OPT

2 · Pr
[
V

(
F ,X[n]

)
>
OPT

2

]
+ o (1) ,

and a�er rearranging we get

Pr
[
V

(
F ,X[n]

)
>
OPT

2

]
≥ 1/3 − o (1) . �

Main lemma

Lemma 9.4.10. At any point during the run of the algorithm, if Pr [A] ≤ 1/4, then subtracting 1
from τ doubles π ; i.e.

π (W ,τ − 1) ≥ 2π (W ,τ ) .

Proof of Lemma 9.4.10. Consider the event that the optimum solution (conditioned on the items
W we already selected and the realizations z[`W ] we have already seen) reaches τ . We can write
it as a union of disjoint events, depending on the next item j > `W that is part of the optimum
solution, and its possible realizations yj :

π (W ,τ ) =
∑
j

∑
yj

Pr
[
yj

]
· Pr

[
VM ′∩yj

(
FW∪{j},X[n]

)
> τ | X[`W ]∪[j] =

(
z[`W ],yj

)]︸                                                                 ︷︷                                                                 ︸
π j,yj (W ,τ )

.

We break the RHS into the sum over
(
j,yj

)
’s that are good and the sum over those that are bad.

Now, Claim 9.4.7 gives∑
j

∑
yj :(j,yj )∈G

Pr
[
yj

]
· π j,yj (W ,τ ) ≥ (1 − 1/n) π (W ,τ ) . (9.6)

Since yj ∈ {0,1}M , each item can contribute at most 1 to the o�ine optimum. �erefore:

Pr
[
VM ′∩yj

(
FW∪{j},X[n]

)
> τ | X[`W ]∪[j] =

(
z[`W ],yj

)]︸                                                                 ︷︷                                                                 ︸
π j,yj=π j,yj (τ ,W )

≤ π j,0 (W ,τ − 1) .

Plugging into (9.6), we have

(1 − 1/n) · π (W ,τ ) ≤
∑
j

∑
yj :(j,yj )∈G

Pr
[
yj

]
· π j,0 (W ,τ − 1)

≤
∑
j

Pr
[(
j,yj

)
∈ G

]
· π j,0 (W ,τ − 1)

135



≤

(∑
j

Pr
[(
j,yj

)
∈ G

] )
· π (W ,τ − 1) , (9.7)

where the second inequality follows because π j,0 (W ,τ − 1) doesn’t depend on yj , and the third
because conditioning on the j-th item being 0 can only decrease the probability of reaching
τ − 1.

Recall that A is the union of all the events
(
j,yj

)
∈ G. �erefore,

Pr [A] ≥
∑
j

Pr
[(
j,yj

)
∈ G

]
(1 − Pr [A])

Plugging in Pr [A] < 1/4, we get that ∑
j Pr

[(
j,yj

)
∈ G

]
< 1/3. Plugging into (9.7) and rear-

ranging, we get
π (W ,τ − 1) ≥ 3n

n − 1π
(W ,τ ) . �

Putting it all together

Lemma 9.4.11. At any point during the run of the algorithm,

τ ≥
OPT

2 − (2 logn + 1) · |W | − 2

Proof. We prove by induction that at any point during the run of the algorithm,

logπ ≥ −2 − (2 logn + 1) · |W | +
(OPT

2 − τ
)
. (9.8)

A�er initialization, logπ ≥ −2 by Lemma 9.4.9. By de�nition of G, whenever we add an item
toW , we decrease logπ by at most 2 logn - hence the 2 logn · |W | term. Notice that when the
algorithm “hallucinates” a 1, we also decrease τ by 1 to correct for the hallucination - at any
point during the run of the algorithm, this has happened at most |W | times. Recall that we may
also decrease τ in the last line of Algorithm 12 (in order to increase π ); whenever we do this, τ
decreases by 1, but π doubles (by Lemma 9.4.10), so logπ increases by 1, and Inequality (9.8) is
preserved.

Finally, since π is a probability, we always maintain logπ ≤ 0. �

We are now ready to complete the proof of �eorem 9.4.3.

Proof of Proposition 9.4.6. �e algorithm always terminates a�er at most O (OPT ) decreases to
the value of τ . By Lemma 9.4.11, when the algorithm terminates, we have |W | ≥ τ ≥ OPT

2 −

(2 logn + 1) · |W | − 2, and therefore in particular |W | ≥ OPT−4
4 logn+4 .

Finally, recall that sometimes the algorithm “hallucinates” good realizations, i.e. for some
items i ∈W that we select, Xi = 0. However, each time we add an item, the probability that we
add a zero-value item is at most 3/4 (by the condition Pr [A] > 1/4). �erefore in expectation
the value of the algorithm is at least |W | /4. �

136



Chapter 10

�e Secretary and the Prophet Secretary

Models

10.1 Introduction

In the Diamond-Selling scenario discussed in the introduction (§1.1), there is a sequence of n
buyers arriving with di�erent values to your single item (diamond). On arrival a buyer o�ers a
take-it-or-leave-it value for your item. �e question is to decide which buyer to assign the item
to in order to maximize the value. In Chapter 8 we model this problem as a prophet inequality
model where the buyer arrival order is chosen by an adversary. In practice, however, it is o�en
conceivable that there is no adversary acting against you. Can we design be�er strategies when
the arrival order is chosen uniformly at random?

10.1.1 Model and Results

Suppose the arrival order of buyers in the Diamond-Selling scenario is chosen uniformly at
random. �ere are two natural ways to model this problem. Firstly, in the secretary model the
decision maker has no prior information about the valuations of buyers to arrive (except their
cardinality, n), but the buyers are guaranteed to arrive in a uniformly random order. �is is
a classical problem in stopping theory and Dynkin gave a tight e-competitive algorithm in in
1963 [Dyn63]. Secondly, in the prophet secretary model the decision maker knows the proba-
bility distributions of all the n buyers (similar to a prophet inequality) and also the buyers are
guaranteed to to arrive in a uniformly random order. �is model was introduced in [EHLM17]
and they gave a (1 − 1/e )-competitive algorithm. In §10.2, we give an alternate proof of their
result using OCRSs de�ned in Chapter 8.
�eorem 10.1.1. �ere exists a tight (1 − 1/e )-OCRS for a 1-uniform matroid when the arrival

order is chosen uniformly at random. �is implies a (1 − 1/e )-prophet secretary for single item.

Although the factor 1 − 1/e is tight for OCRSs, some recent works have shown that it is
possible to go beyond for the prophet secretary problem [ACK18, AEE+17, CFH+17]. In §10.3
we present a new simple proof of this result for the special case of identically distributed buyers.

137



�eorem 10.1.2 ([HK+82, CFH+17]). �ere exists a tight α-competitive algorithm for the prophet

secretary problem when the number of buyers tends to in�nity and their value distributions are

identical, where α (≈ 0.74) satis�es the equation

∫ y=1
y=0

dy

y−y lny−1+ 1
α
= 1 with y (0) = 1.

Motivated in part by applications to mechanism design, multiple-choice variants of the sec-
retary problem have also been widely studied in the online algorithms community. �e semi-
nal papers of [HKP04, Kle05] introduced a secretary problem subject to a cardinality constraint
(and [Kle05] also obtained a 1 − O (1/

√
r )-competitive algorithm). In 2007, Babaio� et al. in-

troduced the famous matroid secretary problem [BIK07]. For general packing constraints, an
O (logn log r )-competitive algorithm was recently obtained by Rubinstein [Rub16], where r is
the size of the largest feasible set. All these results trivially carry over to the prophet secretary
model since these secretary algorithms do not even need probability distributions.

In all the works mentioned in the previous paragraphs, the goal is to maximize the sum of
selected items’ values, i.e., an additive objective is optimized. For the secretary problem, there
has also been signi�cant work on optimizing more general, combinatorial objective functions.
A line of great works [BHZ13, FNS11a, BUCM12, FZ15] on secretary problem with submodular
valuations culminated with a general reduction by Feldman and Zenklusen [FZ15] from any
submodular function to linear valuations with only O (1) loss. Going beyond submodular is an
important problem [FI17], but for subadditive objective functions there is a daunting Ω(

√
n)

lower bound on the competitive ratio [BHZ13]1. We circumvent this impossibility by designing
ine�cient (but information theoretically possible) algorithms. In §10.4 we consider combinato-
rial variants of this problem where we want to maximize a subadditive function over a packing
constraint and prove the following result (based on our work in [RS17]).
�eorem 10.1.3. �ere exists anO (logn · log2 r )-competitive algorithm for monotone subadditive

secretary problem subject to any packing constraints.

Of course, all the above secretary results again trivially carry over to the prophet secretary
model. In Chapter 11 we show how to improve some of them in the prophet secretary model.

10.1.2 Related Work

Starting with the work of Dynkin [Dyn63], there has been a long line of research on secretary
problems. One of the �rst generalizations is the multiple-choice secretary problem in which we
are allowed to pick k items and the goal is to maximize their sum [HKP04]. Kleinberg [Kle05]
gives a (1 −O (

√
1/k ))-approximation algorithm.

�e connection between secretary problems and online auctions is �rst explored in Haji-
aghayi et al. [HKP04]. Its generalization to matroids is considered in [BIK07, Lac14, FSZ15] and
to matchings in [GM08, KP09, MY11, KMT11, KRTV13, GS17].

Secretary problems have also been studied beyond a matroid/matching. Submodular vari-
ants of the secretary problem have been considered in [BHZ13, GRST10, FZ15, KMZ15]. Ru-
binstein [Rub16] considers these problems for arbitrary downward-closed constraints. �e sec-

1For general packing constraints, even with additive valuations one cannot obtain e�cient algorithms using
membership queries [Rub16].

138



retary model has been studied for many classical combinatorial problems (see e.g., [Mey01,
GGLS08, GHK+14, DEH+17]).

In the prophet secretary model, Esfandiari et al. [EHLM17] give a (1 − 1/e )-approximation
in the special case of a single item. Going beyond 1 − 1/e has been challenging. Only recently,
Abolhasani et al. [AEE+17] and Correa et al. [CFH+17] improve this factor for the single item
i.i.d. se�ing, and Azar et al. [ACK18] for single item non-i.i.d. se�ing. Extending this result to
matroids is an interesting open question.

10.2 Prophet Secretary via Optimal (1 − 1/e )-OCRS

Given x ∈ [0,1]n satisfying ∑
i xi ≤ 1, in this section we prove �eorem 10.1.1 that gives a

(1 − 1/e )-selectable tight OCRS algorithm for uniformly random arrival order. Intuitively, this
means there exists an algorithm that selects each element i when it is active (which happens
w.p. xi ) at least (1 − 1/e ) fraction of the times. By the reduction from Chapter 8, this (1 − 1/e )-
selectable OCRS directly implies a (1 − 1/e )-prophet secretary.

We �rst prove that no OCRS can be be�er than (1−1/e )-selectable for random arrival order.
Consider the feasible solution x with xi = 1/n for every i . We argue that no online algorithm
can guarantee each element is selected w.p. greater than (1−1/e )

n . �is is because for the product
distribution, w.p. 1/e none of the n elements is active (more precisely, w.p. (1 − 1/n)n). Hence
the OCRS algorithm, which only selects active elements, selects some element w.p. 1−1/e . �is
implies on average it cannot select every element w.p. greater than (1−1/e )

n .
Next, we show how to design the (1− 1/e )-selectable OCRS. Notice that the random arrival

order can be emulated by assuming each element i selects a time ti uniformly at random in the
interval [0,1] and then arrives at time ti .
�eorem 10.2.1. An algorithm that selects an active element i arriving at time t ∈ [0,1] with

probability exp(−t · xi ) (and ignores i otherwise) is (1 − 1/e )-selectable for a rank 1 matroid; that

is, on average this algorithm considers (not ignore) any element i at least (1− 1/e ) fraction of the

times.

Proof. By reaching time t (element j), let us denote the event that no element is selected before
time t (element j’s arrival). We start by noticing that for any element i ∈ [n],

Pr[i is considered] =
∫ 1

t=0
Pr[i is considered at time t | reach time t & i arrives at t]

· Pr[reach time t | i arrives at t] · dt

=

∫ 1

t=0
exp(−t · xi ) · Pr[reach time t | i arrives at t] · dt . (10.1)

Now we can simplify Pr[reach time t | i arrives at t] by∏
j,i

(
1 − Pr[j arrives before t & is active & is considered | reach j]

)
139



=
∏
j,i

(
1 − xj · Pr[j arrives before t & is considered| reach j]

)
=

∏
j,i

(
1 − xj ·

∫ t

a=0
exp(−a · xj ) · da

)
=

∏
j,i

exp(−t · xj ).

Now combining this equation with (10.1), we get

Pr[i is considered] =
∫ 1

t=0
exp(−t · xi ) ·

∏
j,i

exp(−t · xj ) · dt

≥

∫ 1

t=0
exp(−t ) · dt = 1 − 1

e
,

where the inequality uses ∑
i xi ≤ 1.

�

10.3 A Simple Optimal I.I.D. Prophet Secretary

In this section we give a simple proof of �eorem 10.1.2, which gives a tight α-prophet secretary
(α ≈ 0.74) in the special case of i.i.d. buyers for large n. We only show an algorithm achieving
this factor α and refer the readers to the original papers that proved this theorem for a matching
hardness example [HK+82, CFH+17].

�e �rst crucial observation is that since the buyers are i.i.d. and n is large, we can imagine
the arrival of the buyers as a Poisson arrival of i.i.d. buyers at rate n from time 0 to 1. �is
means that the inter-arrival time of the buyers is given by an exponentially distribution.

Let the value distribution of each i.i.d. buyer be f : R≥0 → R≥0. Let F (x ) := Pr[X ≤ x] =∫ x

a=0 f (a) · da and G (x ) := 1 − F (x ). Moreover, let Max denote max{X1, . . . ,Xn} and Alg denote
the value of the element chosen by our algorithm.

Our algorithm is threshold based, i.e., it selects a buyer only if its value is above the thresh-
old.
De�nition 10.3.1 (Functions h and τ ). Let h(t ) denote the probability that no buyer is selected

till time t by a threshold τ (t ) algorithm, which selects buyer at time t ∈ [0,1] only if its value is

at least τ (t ). �is means h(0) = 1 and h(t ) is a non-increasing function of t .

For Poisson arrival of buyers at rate n, the above de�nitions of h and τ imply that at any
time time t ∈ [0,1], we have −h′(t )dt = h(t ) · n · dt · Pr[X ≥ τ ]. �is gives

τ (t ) = G−1
(
−

1
n

h′(t )

h(t )

)
.

Recollect that

E[Max] =
∫ ∞

x=0
Pr[Max ≥ x] · dx and E[Alg] =

∫ ∞

x=0
Pr[Alg ≥ x] · dx .

140



�us, to prove �eorem 10.1.2, it su�ces to prove for all x > 0,

Pr[Alg ≥ x] ≥ α · Pr[Max ≥ x]. (10.2)

Before proving this inequality, we �rst simplify the expressions for Pr[Max ≥ x] and Pr[Alg ≥
x] in the following Lemma 10.3.2 and Lemma 10.3.3, respectively. �ese lemmas are inspired
from [AEE+17].
Lemma 10.3.2. For any x ≥ 0,

Pr[Max ≥ x] = 1 − exp(−n ·G (x )).

Proof. �e probability that a buyer arrives with value more than x between time t and t + dt
is n · G (x )dt . �is is equivalent to Poisson arrivals with rate n · G (x ), which implies that the
probability of no such buyer arriving till time 1 is exp(−n ·G (x )). �

Consider an algorithm that sets threshold τ (t ) for a buyer arriving at time t .
Lemma 10.3.3. For any x ≥ 0,

Pr[Alg ≥ x] =
(
1 − h(s (x )) + n ·G (x )

∫ 1

r=s (x )
h(r ) · dr

)
, where τ (s (x )) = x .

Proof. If the item is sold before time s (x ), clearly Alg ≥ x . For time r ≥ s (x ), the probability
that item gets sold between r and r + dr with value above x is

Pr[Item unsold till r ] · Pr[Arrival between r and r + dr ] · Pr[Arrived buyer value ≥ x]
= h(r ) · n · dr ·G (x ). �

Finally, we prove the following Lemma 10.3.4, which implies (10.2) and gives �eorem 10.1.2
as a corollary.
Lemma 10.3.4. For any x ≥ 0, we get (10.2) is true.

Proof. By Lemma 10.3.2 and Lemma 10.3.3, we know to prove this lemma it su�ces to show

1 − h(s (x )) + n ·G (x )

∫ 1

r=s (x )
h(r ) · dr ≥ α · (1 − exp(−n ·G (x ))) . (10.3)

Consider the function

ρ (s,д) := 1 − h(s ) + д ·
∫ 1

r=s
h(r ) · dr − α · (1 − exp(−д)) .

To prove (10.3), it su�ces to show minд≥0,1≥s≥0 ρ (s,д) ≥ 0. Since the boundary д = 0 already
satis�es ρ (s,0) ≥ 0, assume that at the minimizer

∂ρ

∂д
=

∫ 1

r=s
h(r ) · dr − α · exp(−д) = 0.

141



Substituting this solution into ρ, and le�ing y (s ) := 1
α

∫ 1
r=s

h(r ) · dr , i.e., −y′(s ) = 1
αh(s ), we get

min
д≥0,1≥s≥0

ρ (s,д) = min
1≥s≥0

{1 + αy′ − ln(y) · αy − α + αy}.

Suppose we choose function y (s ) satisfying

y′ = y lny − y + 1 − 1
α
. (10.4)

�is gives minд≥0,1≥s≥0 ρ (s,д) = 0 and h = α · (y − y lny − 1) + 1. Moreover, since

1 = h(0)
= −α · y′(0)

= −α ·
(
y (0) · lny (0) − y (0) + 1 − 1

α

)
,

we gety (0) = 1. Finally, integrating (10.4) from s = 0 to s = 1 and usingy (1) = 0 (by de�nition),

1 =
∫ s=1

s=0

dy

y lny − y + 1 − 1
α

=

∫ y=0

y=1

dy

y lny − y + 1 − 1
α

=

∫ y=1

y=0

dy

y − y lny − 1 + 1
α

.

Numerically, this equation givens α ≈ 0.74. �

10.4 Combinatorial Secretary Problems

We now consider the problem of maximizing a combinatorial function in the secretary model. A
remarkable result of Feldman and Zenklusen shows that if our objective is submodular and the
constraints form a matroid, then this problem is no harder than maximizing a linear function
over a matroid [FZ15]. �is reduces the submodular secretary problem to the matroid sec-
retary problem, where a constant factor is still elusive but we know O (log logn)-competitive
algorithms [Lac14, FSZ15].

In this section we focus on the more di�cult subadditive secretary problem over arbitrary
downward-closed constraints. Similar to §9.4, since one cannot hope to optimize general sub-
additive functions in polynomial time, we only aim for the best possible information theoretic
approximation factors. We �rst formally de�ne the problem.
De�nition 10.4.1 (Monotone Subadditive Downward-Closed Secretary). Consider n items, a

monotone subadditive valuation function from subsets of items toR≥0, and an arbitrary downward-

closed set system F over the items; both f and F are adversarially chosen. �e algorithm receives

as input n (but not F or f ). �e items arrive in a uniformly random order. Initialize W as the

142



Figure 10.1: Reducing a subadditive objective to an additive objective with additional packing
constraints.

empty set. When item i arrives, the algorithm observes all feasible subsets of items that have al-

ready arrived, and their valuation in f . �e algorithm then decides (immediately and irrevocably)

whether to add i to setW , while always ensuring thatW is feasible in F . �e goal is to maximize

f (W ).

Our main result in this section is an O (poly log(n))-competitive algorithm for the subaddi-
tive secretary problem by reducing maximizing a monotone subadditive function over packing
constraints to maximizing a linear function over packing constraints (�eorem 10.1.3). Since
we know an O (logn log r )-competitive algorithm for the la�er problem [Rub16], and because
the reduction only loses an O (log r ) factor, we get an O (logn log2 r )-competitive algorithm for
subadditive secretary over packing constraints. �e crucial ideas in the reduction is to observe
that a monotone subadditive function can be approximated by an XOS function and that an
unweighted XOS function can be interpreted as another packing constraint (see Figure 10.1).

Proof of �eorem 10.1.3. Let T? be the set chosen by the o�ine algorithm (OPT = f (T?)). By
Lemma 2.4.7 there exists a pT? such that for every S ⊆ T?:

f (S ) ≥ pT?
���S ∩T

?��� ; (10.5)

OPT = f (T?) = O
(
pT?

���T
?��� log ���T

?���
)
= O

(
pT?

���T
?���
)

log r . (10.6)

Assume that we know pT? (discussed later). We de�ne a new feasibility constraint F ′ as
follows: a set T ⊆ [n] is feasible in F ′ i� it is feasible in F and for every subset S ⊆ T , we
have f (S ) ≥ pT? |S |. Notice that because we also force the condition on all subsets of T , F ′ is
downward-closed and it does not depend on the order of arrival.

We run the algorithm for {0,1}-valued (additive) Downward-Closed Secretary (as guar-
anteed by �eorem 9.4.2) with feasibility constraint F ′ where all values are 1. By (10.5), T? is
feasible in F ′, and by (10.6) pT? ��T?�� = Ω

(
OPT
log r

)
. �erefore, the additive {0,1}-values algorithm

returns a setTALG of size ���T
ALG ��� = Ω

(
OPT

pT? logn log r

)
. Furthermore,TALG is also feasible in F ′, i.e.

f (TALG ) ≥ pT?
���T

ALG ���
= Ω

(
OPT

logn log r

)
. (10.7)

143



Guessing pT?

Finally, we don’t actually know pT? , but we can guess it correctly, up to a constant factor, with
probability 1/ log r . We run the classic secretary algorithm over the �rst n/2 items, where we
use the value of the singleton f ({i}) as “the value of item i”: Observe the �rst n/4 items and
select none; then take the next item whose value is larger than every item observed so far. With
constant probability this algorithm selects the item with the largest value, which we denote by
M .

Also, with constant probability the algorithm sees the item with the largest value too early
and does not select it. Assume that this is the case. Since we obtained expected value of Ω (M )
on the �rst n/2 items we can, without loss of generality, ignore values less than M/r . In partic-
ular, we know that pT? ∈ [M/r ,M]. Pick α ∈ {M/r ,M/(2r ), . . . ,M/2,M } uniformly at random,
and use it instead of pT? to de�ne F ′. With probability 1/ log r , pT? ∈ [α ,2α], in which case the
algorithm returns a set TALG satisfying (10.7). �

144



Chapter 11

Prophet Secretary for Matroids and

Combinatorial Auctions via Residuals

11.1 Introduction

In this chapter, we consider generalizations of the single-item prophet secretary problem con-
sider in Chapter 10 to combinatorial se�ings. Suppose a sequence of n buyers corresponding
to elements of a matroid1 arrive one-by-one in uniformly random order and o�er take-it-or-
leave-it value for being accepted. Which buyers should we accept to maximize our total value
when we can only accept an independent set of buyers in this matroid.

In the prophet inequality model, in Chapter 8 we saw a 1/2-approximation strategy to this
problem, i.e., the value of their strategy, in expectation, is at least half of the value of the
expected o�ine optimum that selects the best set of buyers in hindsight. Simple examples
show that for adversarial arrival one cannot improve this factor. On the other hand, if we are
also allowed to control the arrival order of the buyers, Yan [Yan11] gives a 1 − 1/e ≈ 0.63-
approximation strategy. But what if the arrival order is neither adversarial and nor in your
control. In particular, can we beat the 1/2-approximation for a uniformly random arrival or-
der?

Matroid Prophet Secretary Problem (MPS): Given a matroidM = ([n],I) on n buyers (ele-

ments) and independent probability distributions on their values, suppose the outcome buyer values

are revealed in a uniformly random order. Whenever a buyer value is revealed, the problem is to

immediately and irrevocably decide whether to select the buyer. �e goal is to maximize the sum

of values of the selected buyers, while ensuring that they are always feasible in I.

Besides being a natural problem that relates two important Stopping �eory models, MPS is
also interesting because of its applications in mechanism design. O�en while designing mech-
anisms, we have to balance between maximizing revenue/welfare and the simplicity of the

1A matroidM consists of a ground set [n] = {1,2, . . . ,n} and a non-empty downward-closed set system I ⊆
2[n] satisfying the matroid exchange axiom: for all pairs of sets I , J ∈ I such that |I | < |J |, there exists an element
x ∈ J such that I ∪ {x } ∈ I. Elements of I are called independent sets.

145



mechanism. While there exist optimal mechanisms such as VCG or Myerson’s mechanism,
they are impractical in real markets [AM06, Rot07]. On the other hand, simple Sequentially

Posted Pricing mechanisms, where we o�er take-it-or-leave-it prices to buyers, are known to
give good approximations to optimal mechanisms. �is is because the problem gets reduced to
designing a prophet inequality [CHMS10, Yan11, Ala14, KW12, FGL15].

Esfandiari et al. [EHLM17] study MPS in the special case of a rank 1 matroid and give a
(1−1/e )-approximation algorithm. For general matroids, as in the original models of [CHMS10,
Yan11, KW12], it was unclear prior to the work of this paper whether beating the factor of 1/2
is possible. In §11.4 we prove the following result, which is based on our work in [EHKS18].
�eorem 11.1.1. �ere exists a (1 − 1/e )-approximation algorithm to MPS.

Note that the approximation in this theorem as well as the following ones compare to the ex-
pected optimal o�ine solution for the particular outcomes of the distributions. �at is, in the
case of matroids, we have E[Alg] ≥ (1− 1/e ) ·E[maxI∈I

∑
i∈I vi], where vi is the value of buyer

i2.
Next, let us consider a combinatorial auctions se�ing. Suppose there are n buyers that

take combinatorial valuations (say, submodular) for m indivisible items from n independent
probability distributions. �e problem is to decide how to allocate the items to the buyers,
while trying to maximize the welfare—the sum of valuations of all the buyers. Feldman et
al. [FGL15] show that for XOS3 (a generalization of submodular) valuations there exist static

prices for items that gets a 1/2-approximation for buyers arriving in an adversarial order. Since
this factor cannot be improved for adversarial arrival, this leaves an important open question if
we can design be�er algorithms when the arrival order can be controlled. Or ideally, we want
to beat 1/2 even when the arrival order cannot be controlled but is chosen uniformly at random.

Combinatorial Auctions Prophet Secretary Problem (CAPS): Suppose n buyers take XOS

valuations form items from n independent probability distributions. �e outcome buyer valuations

are revealed in a uniformly random order. Whenever a buyer valuations is revealed, the problem

is to immediately and irrevocably assign a subset of the remaining items to the buyer. �e goal is

maximize the sum of the valuations of all the buyers for their assigned subset of items.

In §11.3.2 we improve the online approximation result of [FGL15] for random order.
�eorem 11.1.2. �ere exists a (1 − 1/e )-approximation algorithm to CAPS.

Given access to demand and XOS oracles for stochastic utilities of di�erent buyers, the al-
gorithm in �eorem 11.1.2 can be made e�cient. �is is interesting because it matches
the best possible (1 − 1/e )-approximation for XOS-welfare maximization in the o�ine set-
ting [DNS10, Fei09].

A desirable property in the design of an economically viable mechanism is incentive-

compatibility. In particular, a buyer is more likely to make decisions about their allocations
based on their own personal incentives rather than to accept a given allocation that might op-

2It’s not known if 1 − 1/e is tight for MPS.
3A function v : 2M → R is an XOS function if there exists a collection of additive functions A1, . . . ,Ak such

that for every S ⊆ M we have v (S ) = max1≤i≤k Ai (S ).

146



timize the social welfare but not the individuals’ pro�t. For the important case of unit-demand
buyers (aka bipartite matching), in §11.3.1 we extend �eorem 11.1.2 to additionally obtain this
property.
�eorem 11.1.3. For bipartite matchings, when buyers arrive in a uniformly random order,

there exists an incentive-compatible mechanism based on dynamic prices that gives a (1 − 1/e )-
approximation to the optimal welfare.

For this result, we require unit-demand buyers. �is is because for general XOS functions
shi�ing buyers to earlier arrivals can change the availability of items arbitrarily. For unit-
demand functions, we show that this e�ect is bounded.

Finally, in §11.5 we conclude by showing that for the single-item case one can obtain a
(1 − 1/e )-approximation even by using static prices, and that nothing be�er is possible.

11.1.1 Our Techniques

In this section we discuss our three main ideas for a combinatorial auction. In this se�ing, our
algorithm is threshold based, which means that we set dynamic prices to the items and allow
a buyer to purchase a set of items only if her value is more than the price of that set. �is
allows us to view total value as the sum of utility of the buyers and the total generated revenue.
Although powerful, dynamic prices o�en lead to involved calculations and become di�cult to
analyze beyond a single item se�ing [EHLM17, AEE+17]. To overcome this issue, we convert
our discrete problem into a continuous se�ing. �is is possible because a random permutation
of buyers can be viewed as each buyer arriving at a time chosen uniformly at random between
0 and 1. �e bene�t of such a transformation is that the arrival times are independent, which
keeps correlations managable. Besides, it allow us to use tools from integral calculus such as
integration by parts.

Our algorithm for combinatorial auctions sets a base price bj for every item j based on its
contribution to the expected o�ine optimum E[OPT]. Our approach is to de�ne two time
varying continuous functions: discount and residual. �e discount function α (t ) : [0,1]→ [0,1]
is chosen such that the price of an unsold item j at time t is exactly α (t ) · bj . We de�ne a
residual function r (t ) : [0,1] → R≥0 that intuitively denotes the expected value remaining in
the instance at time t . Hence, r (0) = E[OPT] and r (1) = 0. Computing r (t ) is di�cult for a
combinatorial auction since it depends on several random variables. However, assuming that
we know r (t ), we use application speci�c techniques to compute lower bounds on both the
expected revenue and the expected utility in terms of the functions r (t ) and α (t ).

Finally, although we do not know r (t ), we can choose the function α (t ) in a way that allows
us to simplify the sum of expected revenue and utility, without ever computing r (t ) explicitly.
�is step exploits properties of the exponential function for integration (see Lemma 11.2.3 and
Figure 11.1).

147



Figure 11.1: To obtain a prophet secretary algorithm for a given combinatorial auction instance,
�rst choose a base price bj for every item j based on its contribution to the expected o�ine
optimum. Next, using ideas from prophet inequalities show there exists a residual function r (t ).
Finally, Lemma 11.2.3 implies a good performance guarantee on the constructed algorithm.

11.1.2 Organization of the Chapter

In §11.2 we formally de�ne a residual function. To give some intuition, we give an alternate
proof of single item 1− 1/e prophet secretary using this approach. In §11.3 we �rst extend this
approach to bipartite matching and then to combinatorial auctions. In §11.4 we combine ideas
from [KW12] with our residual approach to prove �eorem 11.1.1 for matroids. Finally in §11.5
we show the power and limitations of �xed threshold algorithms.

11.2 Our Approach using a Residual

In this section, we de�ne a residual and discuss how it can be used to design an approximation
algorithm for a prophet secretary problem. Suppose there are n requests that arrive at times
(Ti )i∈[n] drawn i.i.d. from the uniform distribution in [0,1]. �ese requests correspond to buyers
of a combinatorial auction or to elements of a matroid.

Whenever a request arrives, we have to decide if and how to serve it. Depending on how
we serve request i , say xi , we gain a certain value vi (xi ). Our task is to maximize the sum
of values over all requests ∑n

i=1vi (xi ). Our algorithm Alg includes a time-dependent payment
component. �e payment that request i has to make is the product of a time-dependent discount

functionα (t ) and a base price b (xi ). �e base price depends on the allocation up to this point and
how much the new choice limits other allocations in the future. However, it does not depend
on t , the time that has passed up to this point. If request i has to pay pi (xi ,Ti ) = α (Ti ,b (xi ) for
our decision xi , then its utility is given by ui = vi (xi ) − pi (xi ,Ti ). We write Utility =

∑n
i=1ui for

the sum of utilities and Revenue =
∑n

i=1 pi (xi ,Ti ) for the sum of payments. �e value achieved
by Alg equals Utility + Revenue.

148



Next we de�ne a residual function that has the interpretation of “expected remaining value
in the instance at time t”. In Lemma 11.2.3 we show that the existence of a residual function for
Alg su�ces to give a (1 − 1/e )-approximation prophet secretary.
De�nition 11.2.1 (Residual). Consider a prophet secretary problem with expected o�ine value

E[OPT]. For any algorithm Alg based on a di�erentiable discount function α (t ) : [0,1] → [0,1],
a di�erentiable function r (t ) : [0,1] → R≥0 is called a residual if it satis�es the following three

conditions for every choice of α .

r (0) = E[OPT] (11.1a)

E[Revenue] ≥ −
∫ 1

t=0
α (t ) · r ′(t ) · dt (11.1b)

E[Utility] ≥
∫ 1

t=0
(1 − α (t )) · r (t ) · dt . (11.1c)

We would like to remark here that this de�nition is similar in spirit to balanced thresholds
[KW12] and balanced prices [DFKL17]. However, it is di�erent because we have to take into
account the random arrivals.

As an illustration of De�nition 11.2.1, consider the case of a single item. �at is, we are
presented a sequence of n real numbers and may select only up to one of them (previously
studied in [EHLM17]).
Example 11.2.2 (Single Item). Suppose buyer i ∈ [n] arrives with random value vi at time Ti
chosen uniformly at random between 0 and 1. De�ne b = E[maxi vi] as the base price of the

single item. A buyer arriving at time t is o�ered the item at price α (t ) ·b, and she accepts the o�er

if and only ifvi ≥ α (t ) ·b. We show that r (t ) = Pr[item not sold before t] ·b is a residual function.

By de�nition, (11.1a) holds trivially. To see that (11.1b) holds, observe that the increase in

revenue from time t to time t + ϵ is approximately α (t ) ·b if the item is allocated during this time,

and is 0 otherwise. �at is, the expected increase in revenue is approximately α (t ) (r (t ) − r (t + ϵ )).

Taking the limit for ϵ → 0 then implies (11.1b), i.e., E[Revenue] = −
∫ 1
t=0 α (t )r

′(t )dt .

For (11.1c), consider the expected utility of a buyer i conditioning on her arriving at time t

E[ui | Ti = t] = E[1item not sold before t · (vi − α (t ) · b)
+ | Ti = t]

= Pr[item not sold before t | Ti = t] · E[(vi − α (t ) · b)+].

Here we use that the event the item is sold before t does not depend on vi because buyer i only

arrives at time t . �e expectation in turn only depends on vi . It is also important to observe that

Pr[item not sold before t | Ti = t] ≥ Pr[item not sold before t]. Next, we take the sum over all

buyers i and use that E[∑n
i=1(vi − α (t ) · b)

+] ≥ E[maxi (vi − α (t ) · b)] = E[maxi vi] − α (t ) · b =
(1 − α (t )) · b to get

n∑
i=1
E[ui | Ti = t] ≥ Pr[item not sold before t] · (1 − α (t )) · b = (1 − α (t )) · r (t ).

149



�is implies

E[Utility] =
n∑
i=1

∫ 1

t=0
E[ui | Ti = t]dt =

∫ 1

t=0

n∑
i=1
E[ui | Ti = t]dt ≥

∫ 1

t=0
(1 − α (t )) · r (t ) · dt .

We now use the properties of a residual function to design a (1 − 1/e )-approximation algo-
rithm. To this end, we choose α (t ) in a manner that makes the sum of the expected revenue and
buyers’ utilities independent of r (t ). �is allows us to compute expected welfare, even though
we cannot compute r (t ) directly.
Lemma 11.2.3. For a prophet secretary problem, if there exists a residual function r (t ) for al-

gorithm Alg as de�ned in De�nition 11.2.1, then se�ing α (t ) = 1 − et−1
gives a (1 − 1/e )-

approximation.

Proof. To further simplify (11.1b), we observe that applying integration by parts gives∫
r ′(t ) · α (t ) · dt = r (t ) · α (t ) −

∫
r (t )α ′(t ) · dt .

So in combination

E[Revenue] ≥ −
(

[r (t ) · α (t )]1
t=0 −

∫ 1

t=0
r (t ) · α ′(t ) · dt

)
. (11.2)

Now adding (11.2) and (11.1c) gives,

E[Alg] = E[Utility] + E[Revenue]

≥

∫ 1

t=0
r (t ) · (1 − α (t )) · dt − [r (t )α (t )]1

t=0 +

∫ 1

t=0
r (t )α ′(t ) · dt

=

∫ 1

t=0
r (t ) · (1 − α (t ) + α ′(t )) · dt − [r (t )α (t )]1

t=0 .

Although we do not know r (t ) and computing
∫ 1
t=0 r (t ) · (1−α (t )+α

′(t )) ·dt seems di�cult, we
have the liberty of selecting the function α (t ). By choosing α (t ) satisfying 1 − α (t ) + α ′(t ) = 0
for all t , this integral becomes independent of r (t ) and simpli�es to 0. In particular, let α (t ) =
1 − et−1. �is gives,

E[Alд] ≥ − [r (t ) · α (t )]1
t=0

=

(
1 − 1

e

)
r (0)

=

(
1 − 1

e

)
E[OPT] . �

150



11.3 Prophet Secretary for Combinatorial Auctions

Let N denote a set of n buyers and M denote the set of m indivisible items. Suppose buyer i
arrives at a timeTi chosen uniformly at random between 0 and 1. Letvi : 2M → R≥0 (similarly v̂i )
denote the random combinatorial valuation function of buyer i . In order to ensure polynomial
running times, we assume that the distribution of vi has a polynomial support {v1

i ,v
2
i , . . . , },

where ∑
k Pr[vi = vki ] = 1. Note that this assumption only simpli�es notation. If we only have

sample access to the distributions, then we can replace {v1
i ,v

2
i , . . . , } by an appropriate number

of samples. Within our proofs, we will use v̂ to denote an independent, fresh sample from the
distribution.

By T and v (similarly v̂) we denote the vector of all the buyer arrival times and valuations,
respectively. Also, let v−i (similarly v̂−i ) denote valuations of all buyers except buyer i . For the
special case of single items, we let vij denote vi ({j}). Let qj (t ) denote the probability that item j
has not been sold before time t , where the probability is over valuations v, arrival times T, and
any randomness of the algorithm.

11.3.1 Bipartite Matching

In the bipartite matching se�ing all buyers are unit-demand, i.e. vi (S ) = maxj∈S vij . We can
therefore assume that no buyer buys more than one item. See Figure 11.2 for an example. We
restate our result.
�eorem 11.1.3. For bipartite matchings, when buyers arrive in a uniformly random order,

there exists an incentive-compatible mechanism based on dynamic prices that gives a (1 − 1/e )-
approximation to the optimal welfare.

To de�ne prices of items, let base price bj denote the expected value of the buyer that buys
item j in the o�ine welfare maximizing allocation (maximum weight matching). Now consider
an algorithm that prices item j at α (t ) · bj at time t and allows the incoming buyer to pick any
of the unsold items; here α (t ) is a continuous di�erentiable discount function.

Consider the function r (t ) =
∑

j qj (t ) · bj . Clearly, r (0) = E[OPT]. Using the following
Lemma 11.3.1 and Claim 11.3.2, we prove that r is a residual function for our algorithm. Since
the algorithm is clearly incentive-compatible, Lemma 11.2.3 implies �eorem 11.1.3.
Lemma 11.3.1. We can lower bound the total expected utility by

Ev,T[Utility] ≥
∑
j

∫ 1

t=0
qj (t ) · (1 − α (t )) · bj · dt . (11.3)

Proof. Since buyer i arriving at time t can pick any of the unsold items, we have

Ev,T[ui | Ti = t] = Ev

[
max

j
1j not sold before t ·

(
vi,j − α (t ) · bj

)+ �����
Ti = t

]
.

One particular choice of buyer i is to choose itemOPTi (vi , v̂−i ) if it is still available, and no item

151



Figure 11.2: An example of a bipartite matching instance where edge numbersvij indicate value
of buyer i for item j. A solid line means the buyer bought that item.

otherwise. �is gives us a lower bound of

Ev,T[ui | Ti = t] ≥ Ev

[
1OPTi (vi , v̂−i ) not sold before t ·

(
vi,OPTi (vi ,v̂−i ) − α (t ) · bj

)+ ���� Ti = t
]

=
∑
j

Ev,v̂

[
1j not sold before t · 1j=OPTi (vi ,v̂−i ) ·

(
vi,j − α (t ) · bj

)+ ���� Ti = t
]
.

Note that in the product, the fact whether j is sold before t only depends on v−i and the arrival
times of the other buyers. It does not depend on vi or v̂. �e remaining terms, in contrast, only
depend on vi and v̂−i . �erefore, we can use independence to split up the expectation and get

Ev,T[ui | Ti = t]
≥

∑
j

Pr[j not sold before t | Ti = t] · Evi ,v̂−i
[
1j=OPTi (vi ,v̂−i ) · (vi,j − α (t ) · bj )

+ ��� Ti = t
]
.

Next, we use that Pr[j not sold before t | Ti = t] ≥ qj (t ) by Lemma 11.3.3 and that vi and v̂i are
identically distributed. �erefore, we can swap their roles inside the expectation. Overall, this
gives us

Ev,T[ui | Ti = t] ≥
∑
j

qj (t ) · Ev̂

[
1j=OPTi (v̂) · (v̂i,j − α (t ) · bj )

]
. (11.4)

Next, observe that Ev̂[∑i 1j=OPTi (v̂) · v̂i,j] = bj by the de�nition of bj . �erefore, using linearity
of expectation, summing up (11.4) over all buyers i gives us∑

i

Ev,T[ui | Ti = t] ≥ qj (t ) · (1 − α (t )) · bj .

152



Now, taking the expectation over t , we get

Ev,T

[ ∑
i

ui

]
=

∑
i

∫ 1

t=0
Ev,T[ui | Ti = t] · dt

=

∫ 1

t=0

∑
i

Ev,T[ui | Ti = t] · dt

≥

∫ 1

t=0

∑
j

qj (t ) · (1 − α (t )) · bj · dt

=
∑
j

∫ 1

t=0
qj (t ) · (1 − α (t )) · bj · dt . �

We next give a bound on the revenue generated by our algorithm.
Claim 11.3.2. We can bound the total expected revenue by

Ev,T[Revenue] = −
∑
j

∫ 1

t=0
q′j (t )α (t ) · bj · dt . (11.5)

Proof. Since −q′j (t )dt is the probability that item j is bought between t and t + dt (note qj (t ) is
decreasing in t ), we have

E[Revenue] = −
∑
j

∫ 1

t=0
q′j (t )α (t ) · bj · dt . �

Finally, we prove the missing lemma that removes the conditioning on the arrival time.
Lemma 11.3.3. We have

Ev−i

[
Pr
T

[j not sold before t | Ti = t]
]
≥ qj (t ).

�e idea is that if buyers arrive earlier in the process, this only reduces the available items.
It can never happen that such a change makes an item available at a later point. For a single
item this is trivial, for multiple items and other combinatorial valuations it does not necessarily
hold.

Proof. Consider the execution of our algorithm on two sequences that only di�er in the arrival
time of buyer i . To this end, let v be arbitrary values and T be arbitrary arrival times. Let At ′ be
the set of items that are sold before time t ′ on the sequence de�ned by v and T. Furthermore,
let Bt ′ be the set of items sold before time t ′ if we replace Ti by t . Ties are broken in the same
way in both sequences.

We claim that Bt ′ ⊆ At ′ for all t ′ ≤ t .
To this end, we observe that by de�nition Bt ′ = At ′ for t ′ ≤ min{Ti ,t } because the two

sequences are identical before min{Ti ,t }. �is already shows the claim for Ti ≥ t . Otherwise,

153



assume that there is some t ′ ≤ t for which Bt ′ * At ′ . Let tinf be the in�mum among these
t ′. It has to hold that some buyer i′ arrives at time tinf and buys item jA < Atinf in the original
sequence and jB < Btinf in the modi�ed sequence. Furthermore, we now have to have Btinf * Atinf
because tinf was de�ned to be the in�mum of all t ′ for which Bt ′ ⊆ At ′ is not ful�lled. �erefore,
jA < Btinf . Additionally, jB < Atinf . �e reason is that for any t ′ < tinf before the next arrival
Bt ′ = Btinf ∪ {jB }.

Overall this means that in both sequences at time tinf buyer i′ has the choice between jB
and jA. As his values are identical and ties are broken the same way, it has to hold that jB = jA,
which then contradicts that Btinf * Atinf .

Taking the expectation over both v and T, we get

Pr
T,v

[j < At ] ≤ Pr
T,v

[j < Bt ].

�is implies the Lemma 11.3.3 because

Pr
T,v

[j not sold before t] = Pr
T,v

[j < At ]

Pr
T,v

[j not sold before t | Ti = t] = Pr
T,v

[j < Bt ]. �

11.3.2 XOS Combinatorial Auctions

In this section we prove our main result (restated below) for combinatorial auctions.
�eorem 11.1.2. �ere exists a (1 − 1/e )-approximation algorithm to CAPS.

Recollect that the random valuation vi of every buyer i has a polynomial support. We can
therefore write the following expectation-version of the con�guration LP, which gives us an
upper bound on the expected o�ine social welfare.

max
∑
i

∑
k

∑
S

vki (S ) · x
k
i,S

s.t.
∑
i

∑
k

∑
S :j∈S

xki,S = 1 for all j ∈ M∑
S

xki,S = Pr[vi = vki ] for all i,k

�e above con�guration LP can be solved with a polynomial number of calls to demand
oracles of buyer valuations (see [DNS10]). Since all functions vki are XOS, there exist additive
supporting valuations; that is, there exist numbers vk,Si,j ≥ 0 s.t. vk ,Si,j = 0 for j < S , ∑j∈S v

k,S
i,j =

vki (S ), and ∑
j∈S ′ v

k,S
i,j ≤ v

k
i (S
′) for all S′. Before describing our algorithm, we de�ne a base price

for every item.
De�nition 11.3.4. �e base price bj of every item j ∈ M is

∑
i,k

∑
S :j∈S v

k ,S
i,j x

k
i,S .

154



Since ∑
S x

k
i,S = Pr[vi = vki ], consider an algorithm that on arrival of buyer i with valuation

vki draws an independent random set S with probability xki,S/Pr[vi = vki ]. Let S∗i denote this
drawn set. �is distribution also satis�es that for every item j,

∑
i

Evi ,S∗i

[
1j∈S∗i · v

k,S∗i
i,j

]
=

∑
i,k

Pr[vi = vki ] ·
∑
S :j∈S

xki,S

Pr[vi = vki ]
· v

k,S∗i
i,j = bj . (11.6)

Now consider the supporting additive valuation for S∗i in the XOS valuation functionvki of buyer
i . �is can be found using the XOS oracle forvki [DNS10]. Our algorithm assigns her every item
j that has not been allocated so far and for which vk,S

∗
i

i,j ≥ α (t ) · bj , where α (t ) is a continuous
di�erentiable function of t . Note that since we do not allow buyer i to choose items outside set
S∗i , the mechanism de�ned by this algorithm need not be incentive compatible.

Consider the function r (t ) =
∑

j qj (t ) · bj , where again qj (t ) denotes the probability that
item j has not been sold before time t . Clearly, r (0) = OPT . Using the following Lemma 11.3.5
and Claim 11.3.6, we prove that r is a residual function for our algorithm. Hence, Lemma 11.2.3
implies �eorem 11.1.2.
Lemma 11.3.5. �e expected utility of the above algorithm is lower bounded by

Ev,T[Utility] ≥
∑
j

∫ 1

t=0
qj (t ) · (1 − α (t )) · bj · dt . (11.7)

Proof. Given that buyer i arrives at t and only buys item j if vk ,S
∗
i

i,j ≥ α (t ) · bj , her utility is

Ev,T[ui | Ti = t] =
∑
j

Ev,T,S∗i

[
1j not sold by t · 1j∈S∗i ·

(
v
k,S∗i
i,j − α (t ) · bj

)+ ���� Ti = t
]

Using the fact that whether j is sold before t only depends on v−i and T, and not on vi or S∗i ,

Ev,T[ui | Ti = t] =
∑
j

Pr
v−i ,T

[j not sold by t | Ti = t] · Evi ,S∗i
[
1j∈S∗i ·

(
v
k,S∗i
i,j − α (t ) · bj

)+]
.

Now, observe that in our algorithm every buyer i independently decides which set of items S∗i it
will a�empt to buy. Crucially, the probability of an item j being sold by time t can only increase
if more buyers arrive before t . �erefore,

Pr
v−i ,T

[j not sold by t | Ti = t] ≥ Pr
v,T

[j not sold by t] = qj (t ).

�us, we get

Ev,T[ui | Ti = t] ≥
∑
j

qj (t ) · Evi ,S∗i

[
1j∈S∗i ·

(
v
k,S∗i
i,j − α (t ) · bj

)+]

≥
∑
j

qj (t ) · Evi ,S∗i

[
1j∈S∗i ·

(
v
k,S∗i
i,j − α (t ) · bj

)]
.

155



Finally, recollect from (11.6) that ∑
i Evi ,S∗i

[
1j∈S∗i · v

k ,S∗i
i,j

]
= bj . Moreover,

∑
i

Evi ,S∗i

[
1j∈S∗i

]
=

∑
i,k

Pr[vi = vki ] ·
∑
S :j∈S

xki,S

Pr[vi = vki ]
= 1.

Hence, by linearity of expectation∑
i

E[ui | Ti = t] ≥
∑
j

qj (t ) · (1 − α (t )) · bj .

�

We next give a bound on the revenue generated by our algorithm.
Claim 11.3.6. We can bound the total expected revenue by

Ev,T[Revenue] = −
∑
j

∫ 1

t=0
q′j (t )α (t ) · bj · dt . (11.8)

Proof. Since −q′j (t )dt is the probability that item j is bought between t and t + dt (note qj (t ) is
decreasing in t ), we have

E[Revenue] = −
∑
j

∫ 1

t=0
q′j (t )α (t ) · bj · dt .

�

11.4 Prophet Secretary for Matroids

Letvi denote the random value of the i’th buyer (element) and let v̂i denote another independent
draw from the value distribution of the i’th buyer. �e problem is to select a subset I of the
buyers that form a feasible set in matroidM, while trying to maximize ∑

i∈I vi . We restate our
main result for the matroid se�ing.
�eorem 11.1.1. �ere exists a (1 − 1/e )-approximation algorithm to MPS.

We need the following notation to describe our algorithm.
De�nition 11.4.1. For a given vector v̂ of values of n items and A ⊆ [n], we de�ne the following:

• Let Opt (v̂ | A)⊆ [n] \A denote the optimal solution set in the contracted matroidM/A.

• Let R (A, v̂) := ∑
i∈Opt (v̂|A) v̂i denote the remaining value a�er selecting set A.

We next de�ne a base price of for every buyer i .
De�nition 11.4.2. Let A denote the independent set of buyers that have been accepted till now.

• Let bi (A, v̂) := R (A, v̂) − R (A ∪ {i}, v̂) denote a threshold for buyer i .

156



• Let bi (A) := Ev̂[bi (A, v̂)] denote the base price for buyer i .

Starting withA0 = ∅, letAt denote the set of accepted buyers before time t . �is is a random
variable that depends on the values v and arrival times T. Suppose a buyer i arrives at time t ,
then our algorithm selects i i� both vi > α (t ) · bi (At ) and selecting i is feasible inM.

Consider the function r (t ) := Ev,v̂,T[R (At , v̂)], where At is a function of v and T. Clearly,
r (0) = E[OPT]. Using the following Lemma 11.4.4 and Claim 11.4.3, we prove that r is a residual
function. Hence, Lemma 11.2.3 implies �eorem 11.1.1.
Claim 11.4.3.

Ev,T[Revenue] = −
∫ 1

t=0
α (t ) · r ′(t )dt .

Proof. Consider the time from t to t + ϵ for some t ∈ [0,1], ϵ > 0. Let us �x the arrival times
T and values v of all elements. �is also �xes the sets (At )t∈[0,1]. Let i1, . . . ,ik be the arrivals
between t and t + ϵ that get accepted in this order. Note that it is also possible that k = 0. �e
revenue obtained between t and t + ϵ is now given as

Revenue≤t+ϵ − Revenue≤t =
k∑
j=1

α (ti j )bi j (Atij
)

=

k∑
j=1

α (ti j )Ev̂

[
R (At ∪ {i1, . . . ij−1}, v̂) − R (At ∪ {i1, . . . ij }, v̂)

]

≥ α (t + ϵ )Ev̂ [R (At , v̂) − R (At+ϵ , v̂)] .

Taking the expectation over v and T, we get by linearity of expectation

Ev,T[Revenue≤t+ϵ] − Ev,T[Revenue≤t ] ≥ α (t + ϵ ) (r (t ) − r (t + ϵ )).

By the same argument, we also have

Ev,T[Revenue≤t+ϵ] − Ev,T[Revenue≤t ] ≤ α (t ) (r (t ) − r (t + ϵ )).

In combination, we get that

d

dt
Ev,T[Revenue≤t ] = −α (t )r ′(t ),

which implies the claim. �

Lemma 11.4.4.

Ev,T[Utility] ≥
∫ 1

t=0
(1 − α (t )) · r (t )dt .

Proof. �e utility of buyer i arriving at time t is given by

Ev,T[ui | Ti = t] = Ev,T−i

[
(vi − α (t ) · bi (At ))

+
· 1i<Span(At )

��� Ti = t
]
.

157



Observe that At does not depend on vi if Ti = t because it includes only the acceptances before

t . It does not depend on v̂i either, as v̂i is only used for analysis purposes and not known to the
algorithm. Since vi and v̂i are identically distributed, we can also write

Ev,T[ui | Ti = t] = Ev,v̂,T−i

[
(v̂i − α (t ) · bi (At ))

+
· 1i<Span(At )

��� Ti = t
]
. (11.9)

Now observe that buyer i can belong to Opt (v̂ | At ) only if it’s not already in Span(At ), which
implies 1i<Span(At ) ≥ 1i∈Opt (v̂|At ) . Using this and removing non-negativity, we get

Ev,T[ui | Ti = t] ≥ Ev,v̂,T−i

[
(v̂i − α (t ) · bi (At )) · 1i∈Opt (v̂|At )

��� Ti = t
]
.

Now we use Lemma 11.4.5 to remove the conditioning on buyer i arriving at time t as this gives
a valid lower bound on expected utility,

Ev,T[ui | Ti = t] ≥ Ev,v̂,T

[
(v̂i − α (t ) · bi (At )) · 1i∈Opt (v̂|At )

]
. (11.10)

We can now lower bound sum of buyers’ utilities using (11.10) to get

Ev,T[Utility] =
∑
i

∫ 1

t=0
Ev,T[ui | Ti = t] · dt

≥
∑
i

∫ 1

t=0
Ev,v̂,T

[
(v̂i − α (t ) · bi (At )) · 1i∈Opt (v̂|At )

]
· dt .

By moving the sum over buyers inside the integrals, we get

Ev,T[Utility] ≥
∫ 1

t=0
Ev,v̂,T

[ ∑
i

(v̂i − α (t ) · bi (At )) · 1i∈Opt (v̂|At )

]
· dt

=

∫ 1

t=0
Ev,v̂,T

[
R (At , v̂) − α (t ) ·

∑
i∈Opt (v̂|At )

bi (At )
]
· dt .

Finally, using Lemma 11.4.6 for V = Opt (v̂ | At ), we get

Ev,T[Utility] ≥
∫ 1

t=0
Ev,v̂,T [(1 − α (t )) · R (At , v̂)] · dt .

�

Finally, we prove the missing lemma that removes the conditioning on item i arriving at t .
Lemma 11.4.5. For any i , any time t , and any �xed v, v̂, we have

ET−i
[
(v̂i − α (t ) · bi (At )) · 1i∈Opt (v̂|At ) | Ti = t

]
≥ ET

[
(v̂i − α (t ) · bi (At )) · 1i∈Opt (v̂|At )

]
.

Proof. We prove the lemma for any �xed T−i . Suppose we draw a uniformly randomTi ∈ [0,1].
Observe that if Ti ≥ t then we have equality in the above equation because set At is the same
both with and without i . �is is also the case when Ti < t but i is not selected into At . Finally,
when Ti < t and i ∈ At we have 1i∈Opt (v̂|At ) = 0 in the presence of item i (i.e., RHS of lemma),
making the inequality trivially true. �

158



Lemma 11.4.6. For any �xed v,T, time t , and set of elementsV that is independent in the matroid

M/At , we have ∑
i∈V

bi (At ) ≤ Ev̂ [R (At , v̂)] .

Proof. By de�nition ∑
i∈V

bi (At ) = Ev̂

[ ∑
i∈V

(R (At , v̂) − R (At ∪ {i}, v̂))
]
.

Fix the values v̂ arbitrarily, we also have∑
i∈V

(R (At , v̂) − R (At ∪ {i}, v̂)) ≤ R (At , v̂).

�is follows from the fact that R (At , v̂) − R (At ∪ {i}, v̂) are the respective critical values of
the greedy algorithm onM/At with values v̂. �erefore, the bound follows from Lemma 3.2
in [LB10]. An alternative proof is given as Proposition 2 in [KW12] while in our case the �rst
inequality can be skipped and the remaining steps can be followed replacing A by At .

Taking the expectation over v̂, the claim follows. �

11.5 Fixed �reshold Algorithms

In this section we discuss the powers and limitations of Fixed-�reshold Algorithms (FTAs) for
single item prophet secretary. In an FTA, we set a �xed threshold for the item at the beginning
of the process and then assign it to the �rst buyer whose valuation exceeds the threshold. �e
motivation to study FTAs comes from their simplicity, transparency, and fairness in the design
of a posted price mechanism (see, e.g., [FGL15]).

In §11.5.1, we give a (1 − 1/e )-approximation FTA for single-item prophet secretary. �is
seemingly contradicts earlier impossibility results (e.g., [FGL15, EHLM17]). However, as we
show, these impossibility results do not hold in case of continuous distributions or equivalently
randomized tie-breaking. Next, in §11.5.2, we present an upper bound for FTAs. In particular,
we show that there is no FTA, even for identical distributions, with an approximation factor
be�er than 1 − 1/e . �is indicates the tightness of our algorithm for prophet secretary.

11.5.1 Single Item Prophet Secretary

Recall, by T and v we denote the random vector of all the buyer arrival times and valuations,
respectively. Also, q(t ) denotes the probability that the item is unsold till time t , where the
probability is over valuations v, arrival times T, and any randomness of the algorithm. We
show that a �xed threshold algorithm that selects τ s.t.

Pr
v

[max{vi } ≤ τ ] =
∏
i

Pr[vi ≤ τ ] = 1
e

gives a (1 − 1/e )-approximation.

159



�eorem 11.5.1. �ere exists a (1 − 1/e )-approximation FTA to single-item prophet secretary.

Proof. Without loss of generality, assume all distributions have a �nite expectation and a con-
tinuous CDF4. As two extreme selections for the threshold, if we set τ to zero then the FTA
selects the �rst item, and if we set it to in�nity then no item will be selected. �erefore, the
assumption for the continuity of the distribution function allows us to select a threshold τ such
that the FTA reaches the end of the sequence with an exact probability of 1/e . �is means all of
drawn values are below τ with probability 1/e . In the remainder, we show that the FTA based
on this choice of τ lead to a (1 − 1/e )-approximation algorithm.

Let OPT denote maxi {vi } and Alg be a random variable that indicates the value selected by
the algorithm, or is zero if no item is selected. �e goal is to show

E[Alg] ≥
(
1 − 1

e

)
· E[OPT].

We have E[Alg] = E[Revenue] + E[Utility]. By de�nition of τ , the algorithm sells the item
with probability exactly 1 − 1/e; therefore, E[Revenue] =

(
1 − 1

e

)
τ . Below, we show

E[Utility] ≥
(
1 − 1

e

)
· E[(OPT − τ )+]. (11.11)

�is su�ces to prove �eorem 11.5.1 because

E[Alg] = E[Revenue] + E[Utility] ≥
(
1 − 1

e

)
τ +

(
1 − 1

e

)
E[(OPT − τ )+] ≥

(
1 − 1

e

)
E[OPT].

We now prove (11.11). For the utility, we know

E[Utility] =
∫ 1

t=0

n∑
i=1
E[ui | Ti = t] · dt

=

∫ 1

t=0

n∑
i=1

Pr[item not sold before t | Ti = t] · E[(vi − τ )+] · dt

≥

∫ 1

t=0

n∑
i=1

q(t ) · E[(vi − τ )+] · dt

=

n∑
i=1
E[(vi − τ )+] ·

∫ 1

t=0
q(t ) · dt ,

where the inequality uses the observation Pr[item not sold before t | Ti = t] is at least the
probability that the item is not sold before t . In the following Lemma 11.5.2, we show q(t ) ≥

exp(−t ). �is implies
∫ 1
t=0 q(t ) · dt ≥ 1 − 1

e , which proves the missing (11.11) because
n∑
i=1
E[(vi − τ )+] ≥ E[(max

i
{vi } − τ )

+] = E[(OPT − τ )+]. �

4�is assumption is without loss because the actual CDF can be approximated with arbitrary precision by a
continuous function. �is approximation corresponds to a randomized tie-breaking in case of point masses.

160



Lemma 11.5.2. For t ∈ [0,1], we have

q(t ) ≥ exp(−t ).

Proof. Observe that

q(t ) =
n∏
i=1

Pr[i does not buy the item till t].

Since i gets the item only by arriving before t and having a value above τ , we get

q(t ) =
n∏
i=1

(1 − t · Pr[vi > τ ]) = exp *
,

∑
i

ln(1 − t · Pr[vi > τ ])+
-
.

Notice that for t ,x ∈ [0,1), we have ln(1 − tx ) ≥ t · ln(1 − x ). �is gives,

q(t ) ≥ exp *
,
t ·

∑
i

ln(1 − Pr[vi > τ ])+
-
= exp(t · ln(1/e )) = exp(−t ),

where we use ∏
i (1 − Pr[vi > τ ]) = 1

e by de�nition of τ . �

11.5.2 Impossibility for IID Prophet Inequalities

In the following we prove an impossibility result for FTAs for single item prophet secretary. We
show this impossibility even for the special case of iid items. For every n, we give a common
distribution D for every item such that no FTA can achieve an approximation factor be�er than
1 − 1/e . �is also implies the tightness of the algorithm discussed in §11.5.1.
�eorem 11.5.3. Any FTA for iid prophet inequality is at most (1 − 1

e +O ( 1
n ))-approximation

5
.

Proof. We prove the theorem by giving a hard input instance for every n as follows: every vi is
n/(e − 1) with probability 1/n2 and is (e − 2)/(e − 1) otherwise. �e expected maximum value
of these n items is

E[OPT] =
(
1 − 1

n2

)n
·
e − 2
e − 1 +

(
1 −

(
1 − 1

n2

)n) n

e − 1
= 1 −O

( 1
n

)
.

In this instance, if τ < (e − 2)/(e − 1) then the algorithm selects the �rst item, and if
(e − 2)/(e − 1) < τ ≤ n/(e − 1) then the algorithm can only select n/(e − 1). In these cases the
approximation factor can be at most (e − 2)/(e − 1) ≈ 0.58.

Now, note that the CDF of this input distribution is not continuous. Reshaping a discrete
distribution function into a continuous one, however, does not change the approximation factor
because in the above example we only need a slight change at the point (e − 2)/(e − 1) of the

5Jose Correa later pointed to us that the lower bound in �eorem 11.5.3 also follows from a result in [CFH+17].

161



CDF. �is change gives us a randomness when τ = (e−2)/(e−1), which is equivalent to �ipping
a random coin and skipping every item with some probability p ≤ 1 − 1/n2 if the drawn value
is (e − 2)/(e − 1). With this assumption we have

E[Alg] =
n∑
i=1

pi E[vi · 1vi≥τ ]

=
1 − pn

1 − p E[vi · 1vi≥τ ]

=
1 − pn

1 − p

((
1 − 1

n2 − p
) e − 2
e − 1 +

1
n2

n

e − 1

)
<

1 − pn

e − 1

(
e − 2 + 1

n(1 − p)

)
. (11.12)

To complete the proof, it su�ces to show that the right hand side of Inequality (11.12) is at
most 1 − 1/e +O (1/n). To this end, we try to maximize this term based on parameter c where
p = 1 − c/n. We can rewrite the right hand side of the inequality as

1 − (1 − c
n )

n

e − 1

(
e − 2 + 1

c

)
.

If c = Θ(n) then this term is at most (e − 2 + Θ(1/n))/(e − 1) ≈ 0.41 +O (1/n), which is below
1 − 1/e for su�ciently large n. Otherwise c/n � 1 and we can approximate (1 − c/n)n as
e−c +O (1/n). �is upper bounds Inequality (11.12) by (1 − e−c ) (e − 2 + 1/c )/(e − 1) +O (1/n),
where the �rst term is independent of n and is at most 1− 1/e for di�erent constants c; thereby
completing the proof. �

We would like to note that the continuity of the CDF of the input distributions is a useful and
natural property that can be used by an FTA. �is is because making this assumption allows us
to design a (1 − 1/e )-approximation algorithm, as shown by �eorem 11.5.1, but not assuming
this puts a barrier of 1/2 for any FTA, which is shown in [FGL15, EHLM17]. For example, in the
above instance the approximation factor without assuming continuity would be at most (e −
2)/(e − 1) ≈ 0.58, which is below the 1− 1/e ≈ 0.63 claim of �eorem 11.5.1. �is contradiction
is because without this assumption on the input distribution the algorithm could not set τ in a
way that the probability of selecting an item becomes exactly 1 − 1/e .

162



Chapter 12

Matching and Matroid Intersection in

the Secretary Model

12.1 Introduction

�e online matroid intersection problem in the secretary model (OMI) consists of two matroids
M1 = (E,I1) andM2 = (E,I2), where the elements in E are presented one-by-one to an online
algorithm whose goal is to construct a large common independent set. As an element arrives,
the algorithm must immediately and irrevocably decide whether to pick it, while ensuring that
the picked elements always form a common independent set. We assume that the algorithm
knows the size of E and has access to independence oracles for the arrived elements. �e greedy
algorithm, which picks an element whenever possible, is 1/2-competitive. In [GS17], we show:
�eorem 12.1.1. �e online matroid intersection problem in the random arrival model has a

( 1
2 + δ )-competitive randomized algorithm, where δ > 0 is a constant.

A special case of OMI where both the matroids are partition matroids captures the online

bipartite matching problem in the random edge arrival (OBME) model. Here, edges of a �xed
(but adversarially chosen) bipartite graph G arrive in a uniformly random order and the al-
gorithm must irrevocably decide whether to pick them into a matching. Despite tremendous
progress made in the online vertex arrival model [KVV90, MSVV07, GM08, AGKM11, DJK13,
WW15, KMZ15], nothing non-trivial was known in the edge arrival model where the edges
arrive one-by-one (except in [LS17]). �eorem 12.1.1 gives the �rst algorithm that beats the
greedy algorithm.
Corollary 12.1.2. �e online bipartite matching problem in the random edge arrival model has

a ( 1
2 + δ )-competitive randomized algorithm, where δ > 0 is a constant.

Finally, the simplicity of our OMI algorithm allows us to extend our results to the more
general problem of online matching in general graphs (see §12.5).
�eorem 12.1.3. �e online matching problem for general graphs in the random edge arrival

model has a ( 1
2 + δ

′)-competitive randomized algorithm, where δ ′ > 0 is a constant.

163



12.1.1 Comparison to Previous Work

Our main OMI result is interesting in two di�erent aspects: It gives the �rst linear time al-
gorithm that beats greedy for the classical o�ine matroid intersection problem; also, it is the
�rst non-trivial algorithm for the general problem of online matroid intersection, where pre-
viously nothing be�er than half was known even for online bipartite matching. Since o�ine
matroid intersection problem is a fundamental problem in the �eld of combinatorial optimiza-
tion [Sch03, Chapter 41] and online matching occupies a central position in the �eld of online
algorithms [Meh12], there is a long list of work in both these areas. We state the most relevant
works here and refer readers to further related work in §12.1.3.

O�ine matroid intersection was brought to prominence in the groundbreaking work of Ed-
monds [Edm70]. To illustrate the di�culty in moving from bipartite matching to matroid inter-
section, we note that while the �rst linear time algorithms that beat half for bipartite matching
were designed more than 20 years ago [HK73, ADFS95], the fastest known matroid intersection
algorithms till today that beat half make Ω(rm) calls to the independence oracles, where r is
the rank of the optimal solution [CQ16, HKK16]. �e quadratic term appears because matroid
intersection algorithms rely on constructing auxiliary graphs that needs Ω(rm) calls [KV08,
Chapter 13]. Until our work, achieving a competitive ratio be�er than half with linear number
of independence oracle calls was not known. �e key ingredient that allows us to circumvent
these di�culties is the Sampling Lemma for matroid intersection. We do not construct an auxil-
iary graph and instead show that any maximal common independent is either already a ( 1

2 +δ )
approximation, or we can improve it to a ( 1

2 + δ ) approximation in a single pass over all the
elements.

Online bipartite matching has been studied extensively in the vertex arrival model (see a
nice survey by Mehta [Meh12]). Since adversarial arrival order o�en becomes too pessimistic,
the random arrival model (similar to the secretary problem) for online matching was �rst studied
by Goel and Mehta [GM08]. Since then, this modeling assumption has become standard [KP09,
MY11, KMT11, KMZ15]. �e only progress when edges arrive one-by-one has been in showing
lower bounds: no algorithm can achieve a competitive ratio be�er than 0.57 (see [ELSW13]),
even when the algorithm is allowed to drop edges.

While nothing was previously known for online matching in the random edge arrival
model, similar problems have been studied in the streaming model, most notably by Konrad
et al. [KMM12]. �ey gave the �rst algorithm that beats the factor of half for bipartite match-
ing in the random arrival streaming model. In this work we generalize their Hastiness Lemma

to matroids. However, prior works on online matching (see §12.1.3) are not useful as they are
tailored to graphs—for instance their reliance on notion of “vertices” cannot be easily extended
to the framework of matroids.

�e simplicity of our OMI algorithm and �exibility of our analysis allows us to tackle prob-
lems of much greater generality, such as general graphs and k-matroid intersection, when pre-
viously even special cases like bipartite matching had been considered di�cult in the online
regime [MV15]. While our results are a qualitative advance, the quantitative improvement is
small (δ > 10−4). It remains an interesting challenge to improve the approximation factor δ .
Perhaps a more interesting challenge is to relax the random order requirement.

164



12.1.2 Our Techniques

In this section, we present an overview of our techniques to prove �eorem 12.1.1. Our anal-
ysis relies on two observations about the greedy algorithm that are encompassed in the Sam-
pling Lemma and the Hastiness Lemma; the la�er being useful to extend our linear time o�ine
matroid intersection result to the online se�ing. Informally, the Sampling Lemma states that
the greedy algorithm cannot perform poorly on a randomly generated OMI instance, and the
Hastiness Lemma states that if the greedy algorithm performs poorly, then it picks most of its
elements quickly.

Let OPT denote a �xed maximum independent set in the intersection of matroidsM1 and
M2. WLOG, we assume that the greedy algorithm is bad—returns a common independent set
T of size ≈ 1

2 |OPT|. For o�ine matroid intersection, by running the greedy algorithm once, one
can assume that T is known. For online matroid intersection, we use the Hastiness Lemma to
constructT . It states that even if we run the greedy algorithm for a small fraction f (say < 1%)
of elements, it already picks a setT of elements of size ≈ 1

2 |OPT|. �is lemma was �rst observed
by Konrad et al. [KMM12] for bipartite matching and is generalized to matroid intersection in
this work. By running the greedy algorithm for this small fraction f , the lemma lets us assume
that we start with an approximately maximal common independent set T with most of the
elements (1 − f > 99%) still to arrive.

�e above discussion reduces the problem to improving a common independent set T of
size ≈ 1

2 |OPT| to a common independent set of size ≥ ( 1
2 + δ ) |OPT| in a single pass over all the

elements. (�is is true for both linear-time o�ine and OMI problems.) SinceT is approximately
maximal, we know that picking most elements in T eliminates the possibility of picking two
OPT elements (one for each matroid). Hence, to beat half-competitiveness, we drop a uniformly
random p fraction of these “bad” elements in T to obtain a set S , and try to pick (1 + γ )OPT
elements (for constant γ > 0) per dropped element. Our main challenge is to construct an
online algorithm that can get on average γ gain per dropped element ofT in a single pass. �e
Sampling Lemma for matroid intersection, which is our main technical contribution, comes to
rescue.
Sampling Lemma (informal): SupposeT is a common independent set in matroidsM1 andM2,

and de�ne Ẽ = span1(T ). Let S denote a random set containing each element of T independently

with probability (1 − p). �en,

ES[|Greedy (M1/S ,M2/T , Ẽ) |] ≥
(

1
1 + p

)
· ES[|OPT(M1/S ,M2/T , Ẽ) |].

Intuitively, it says that if we restrict our a�ention to elements in span1(T ) then dropping random
elements fromT allows us to pick more than 1/(1+p) ≥ 1/2 fraction of the optimal intersection.
�e advantage over half yields the γ gain per dropped element. Applying the lemma requires
care as we apply it twice, once for (M1/S ,M2/T ) and once for (M1/T ,M2/S ), while ensuring
that the resulting solutions have few “con�icts” with each other. We overcome this by only
considering elements that are in the span of T for exactly one of the matroids.

�e proof of the Sampling Lemma involves giving an alternate view of the greedy algo-
rithm for the random OMI instance. Using a carefully constructed invariant and the method of

165



deferred decisions, we show that the expected greedy solution is not too small.

12.1.3 Further Related Work

Online Matching in Vertex Arrival Model

Karp, Vazirani, and Vazirani [KVV90] presented the ranking algorithm for online bipartite
matching in the vertex arrival model. �e problem is to �nd a matching in a bipartite graph
where one side of the bipartition is �xed, while the other side vertices arrive in an online
fashion. Upon arrival of a vertex, its edges to the �xed vertices are revealed, and the algo-
rithm must immediately and irrevocably decide where to match it. [KVV90] gives an opti-
mal

(
1 − 1

e

)
-competitive ranking algorithm for adversarial vertex arrival. Since their origi-

nal proof was incorrect, new ways of analyzing the ranking algorithm have since been devel-
oped [BM08, DJK13]. Due to its many applications in the online ad-market, the vertex arrival
model, its weighted generalizations, and vertex arrival on both sides have been studied thor-
oughly (see survey [Meh12, WW15]).

Goel and Mehta [GM08] introduced the random vertex-arrival model. In this model, the
adversary may choose the worst instance of a graph, but the online vertices arrive in a random
order. �e greedy algorithm is already

(
1 − 1

e

)
-competitive for this problem, as the analysis

reduces to [KVV90]. Later works [MY11, KMT11] showed that the ranking algorithm has a
competitive ratio of at least 0.69, beating the bounds for adversarial vertex arrival model. �ere
is still a gap between known upper and lower bounds, and closing this gap remains an open
problem.

Online Matching in Edge Arrival Model

In the edge arrival model, a �xed bipartite graph is chosen by an adversary and its edges are
revealed one by one to an online algorithm that is trying to �nd a maximum matching. If
the edge arrival is adversarial, this problem captures the adversarial vertex arrival model as a
special case: constraint the edges incident to a vertex to appear together. �e greedy algorithm
has a competitive ratio of half and a natural open question is whether we can beat half. �e
current best hardness result for adversarial edge arrival is ∼ 0.57, even when the algorithm is
allowed to drop edges (see [ELMS11]).

Matching in the edge arrival model has also been studied in the streaming community.
In the streaming model, the matching algorithm can revoke decisions made earlier, but has
only a bounded memory; in particular, it has Õ (1) memory in the streaming model and Õ (n)
memory in the semi-streaming model (see [FKM+05]). �e algorithm may make multiple passes
over the input; usually trading o� the number of passes with the quality of the solution. For
bipartite matching in adversarial edge arrival, Kapralov [Kap13] showed that no semi-streaming
matching algorithm can do be�er than 1 − 1

e . Beating the factor of half remains a major open
problem.

On the other hand, for uniformly random edge arrival Konrad, Magniez, and Math-
ieu [KMM12] gave the �rst single pass algorithm that obtains a 0.501-competitive ratio for
bipartite matching in the semi-streaming se�ing. �eir algorithm crucially used the ability to
revoke earlier decisions. One of the contributions in this paper is to show that a variant of the

166



greedy algorithm, which appears simple in hindsight, achieves a competitive ratio be�er than
half in the more restrictive online model.

A weighted generalization of OBME is online bipartite matching for random edge arrival in
an edge weighted bipartite graph. �is problem has exactly the same se�ing as OBME; however,
the goal is to maximize the weight of the matching obtained. Since it is a generalization of
the secretary problem, the greedy algorithm is no longer constant competitive. Korula and
Pal [KP09] achieved a breakthrough and gave a constant competitive ratio algorithm for this
problem1. Kesselheim et al. [KRTV13] later improved their results.

Randomized Greedy Matching Algorithms

Our result for matching in general graphs follows a line of work analyzing variants of the
greedy algorithm for matching in general graphs. Dyer and Frieze [DF91] showed that greedy
on a uniformly random permutation of the edges cannot achieve a competitive ratio be�er than
half for general graphs; however, it performs well for some classes of sparse graphs. Aaronson
et al. [ADFS95] proposed the Modi�ed Randomized Greedy (MRG) algorithm and showed that
it has a competitive ratio be�er than half for general graphs. Poloczek and Szegedy [PS12] pro-
vided an argument to improve the bounds on the competitive ratio of this algorithm; however,
a gap has emerged in their contrast lemma. A ranking based randomized greedy algorithm has
been also shown to have a competitive ratio be�er than half for general graphs (see [CCWZ14]).
Neither MRG nor the ranking algorithm can be implemented in the original se�ing of [DF91]
where the edges arrive in random order and the algorithm is only allowed a single pass. To
prove �eorem 12.1.3, we give an algorithm that beats greedy for general graphs with a much
simpler analysis and also works in the original se�ing of [DF91].

Online Matroid Problems

�e OMI problem studied in this paper is much more general than online matching and has
many other applications, such as the following online network design problem. Consider a
central depot that stores di�erent types of commodities and is connected to di�erent cities by
rail-links. At various points cities order one of the commodities from the depot and the central
manager must immediately and irrevocably decide whether to ful�ll the order. If the central
manager chooses to ful�ll the order, it needs to �nd a path of rail-links from the depot to that
city. Moreover, any rail-link can be used to ful�ll at most one order as it can only run a single
train. �e question is to maximize the number of accepted requests given that there is only a
�nite amount of each commodity at the depot. �is is a matroid intersection problem between
a gammoid and a partition matroid. Our result implies an algorithm that beats the factor of
half for this problem if the orders arrive uniformly at random. �e intersection of two graphic
matroids, with applications to electrical networks [Rec05], is another special case of matroid
intersection that has received a�ention in the past [GX96].

O�line Matroid Intersection

Until recently, the fastest unweighted o�ine matroids intersection algorithm was a variant
of Hopcra�-Karp bipartite matching algorithm due to Cunningham [Cun86] taking O (mr 3/2Q )

1�ey also obtain similar results for hypergraphs and call it the “Hypergraph Edge-at-a-time Matching” prob-
lem.

167



time —m,r , andQ refer to the number of ground elements, the rank of matroid intersection, and
to the independence oracle query time, respectively. In 2015, Lee, Sidford, and Wong [LSW15]
improved this to Õ (m2Q +m3), both for weighted and unweighted matroid intersection. Not
much success has been achieved in proving lower bounds on the oracle complexity of matroid
intersection algorithms [Har08]. When looking for a (1 − ϵ ) approximate weighted matroid
intersection, recent works have improved the running time to Õ (mrQ/ϵ2) [CQ16, HKK16]. Our
main �eorem 12.1.1 gives the �rst algorithm that achieves an approximation factor greater
than half with only a linear number of calls to the independence oracles, i.e., in O (mQ ) time.

12.2 Bipartite Matching

In this section, we consider a special case of online matroid intersection, namely online bipartite
matching in the random edge arrival model. Although, this is a special case of the general
�eorem 12.1.1, we present it because nothing non-trivial was known before (see §12.1.3) and
several of our ideas greatly simplify in this case (in particular the Sampling Lemma), allowing
us to lay the framework of our ideas.

12.2.1 De�nitions and Notation

An instance of the online bipartite matching problem (G,E,π ,m) consists of a bipartite graph
G = (U ∪ V ,E) with m = |E |, and where the edges in E arrive according to the order de�ned
by π . We assume that the algorithm knows m but does not know E or π . For 1 ≤ i ≤ j ≤ m,
let Eπ [i, j] denote the set of edges that arrive in between positions i through j according to π 2.
When permutation π is implicit, we abbreviate this to E[i, j].

Greedy denotes the algorithm that picks an edge into the matching whenever possible. Let
OPT denote a �xed maximum o�ine matching of graph G. For f ∈ [0,1], let T π

f
denote the

matching produced by Greedy a�er seeing the �rst f -fraction of the edges according to order
π . For a uniformly random chosen order π ,

G ( f ) :=
Eπ [|T π

f
|]

|OPT| .

Hence, G (1) |OPT| is the expected output size of Greedy and G ( 1
2 ) |OPT| is the expected output

size of Greedy a�er seeing half of the edges. We observe that Greedy has a competitive ratio
of at-least half and in §12.6, we show that this ratio is tight for worst case input graphs.3

12.2.2 Beating the Factor of Half

Lemma 12.2.1 shows that we can restrict our a�ention to the case when the expected Greedy
size is small. �eorem 12.2.2 gives an algorithm that beats the factor of half for this restricted

2We emphasize that our de�nition also works when i and j are non-integral
3We also show that for regular graphs Greedy is at least

(
1 − 1

e

)
competitive, and that no online algorithm for

OBME can be be�er than 69
84 ≈ 0.821 competitive.

168



Y2 X2 G2

G1X1 Y1

Figure 12.1: U = X1 ∪ Y2 and V = X2 ∪ Y1, where X1 and X2 denote the set of vertices matched
by Greedy in Phase (a). Here thick-edges are picked and diagonal-dashed-edges are marked.
Horizontal-dashed-edges show augmentations for the marked edges.

case.
Lemma 12.2.1. Suppose there exists an Algorithm A that achieves a competitive ratio of

1
2 + γ

when G (1) ≤ ( 1
2 + ϵ ) for some ϵ ,γ > 0. �en there exists an algorithm with competitive ratio at

least
1
2 + δ , where δ =

ϵγ
1
2+ϵ+γ

.

Proof. Consider the algorithm that tosses a coin at the beginning and runs Greedy with prob-
ability 1 − r and Algorithm A with probability r , where r > 0 is some constant. �is lemma
follows from simple case analysis.

• Case 1: G (1) < 1
2 + ϵ

Since Greedy is always 1
2 competitive, we can say that in expectation, the competitive

ratio will be at least
(1 − r ) 1

2 + r
(1
2 + γ

)
=

1
2 + rγ .

• Case 2: G (1) ≥ 1
2 + ϵ

Since we have no guarantees on the performance of AlgorithmA whenGreedy performs
well, we assume that it achieves a competitive ratio of 0. Our expected performance will
be at least

(1 − r )
(1
2 + ϵ

)
+ 0 = 1

2 + ϵ −
r

2 − rϵ .

Choosing r = ϵ
1
2+ϵ+γ

, we get δ ≥ ϵγ
1
2+ϵ+γ

. �

�eorem 12.2.2. If G (1) ≤ ( 1
2+ϵ ) for some constant ϵ > 0 then the Marking-Greedy algorithm

outputs a matching of size at least ( 1
2 + γ ) |OPT| in expectation, where γ > 0 is a constant.

Before describing Marking-Greedy, we need the following property about the perfor-
mance of Greedy in the random arrival model — if Greedy is bad then it makes most of its
decisions quickly and incorrectly. We will be interested in the regime where 0 < ϵ � f � 1/2.

169



Lemma 12.2.3 (Hastiness property: Lemma 2 in [KMM12]). For any graphG if G (1) ≤ ( 1
2 + ϵ )

for some 0 < ϵ < 1
2 , then for any 0 < f < 1/2

G ( f ) ≥ 1
2 −

(
1
f − 2

)
ϵ .

Marking-Greedy for Bipartite Matching:

Marking-Greedy consists of two phases (see the pseudocode). In Phase (a), it runs Greedy for
the �rst f -fraction of the edges, but picks each edge selected by Greedy into the �nal matching
only with probability (1 − p), where p > 0 is a constant. With the remaining probability p,
it marks the edge e and its vertices, and behaves as if it had been picked. In Phase (b), which
is for the remaining 1 − f fraction of edges, the algorithm runs Greedy to pick edges on two
restricted disjoint subgraphs G1 and G2, where it only considers edges incident to exactly one
marked vertex in Phase (a). (see Figure 12.1.)

Phase (a) is equivalent to running Greedy to select elements, but then randomly dropping
p fraction of the selected edges. �e idea of marking some vertices (by marking an incident
edge) is to “protect” them for augmentation in Phase (b). To distinguish if an edge is marked
or picked, the algorithm uses auxiliary random bits Ψ that are unknown to the adversary. We
assume that Ψ(e ) ∼ Bern(1 − p) i.i.d. for all e ∈ E.
Algorithm 13 Marking-Greedy(G,E,π ,m,Ψ)

Phase (a)

1: Initialize S ,T ,N1,N2 to ∅
2: for each element e ∈ Eπ [1, f m] do . Greedy while picking and marking

3: if T ∪ e is a matching in G then

4: T ← T ∪ e . Elements selected by Greedy
5: if Ψ(e ) = 1 then . Auxiliary random bits Ψ
6: S ← S ∪ e . Elements picked into �nal solution

7: end if

8: end if

9: end for

Phase (b)

10: Initialize set Tf to T . Let sets X1,X2 be vertices of U ,V matched in Tf respectively.
11: Let G1 be the subgraph of G induced on X1 and V \ X2.
12: Let G2 be the subgraph of G induced on U \ X1 and X2.
13: for each edge e ∈ (Eπ [f m,m]) do . Greedy on two disjoint subgraphs

14: for i ∈ {1,2} do

15: if e ∈ Gi and S ∪ Ni ∪ e is a matching then . Greedy step
16: Ni ← Ni ∪ e . New edges picked

17: end if

18: end for

19: end for

20: return S ∪ N1 ∪ N2

170



Comparison to Konrad et al. [KMM12] For the special case of bipartite matching, we can
consider Marking-Greedy to be a variant of the streaming algorithm of [KMM12]. For graphs
where Greedy is bad, both algorithms use the �rst phase to pick an approximately maximal
matching T using the Hastiness Lemma. [KMM12] divides the remaining stream into two por-
tions and uses each portion to �nd greedy matchings, say F1 and F2. Since decisions in the
streaming se�ing are revocable, at the end of the stream they use edges in F1 ∪ F2 to �nd su�-
cient number of three-augmenting paths w.r.t. T . �eir algorithm is not online because it keeps
all the matchings till the end. One can view the current algorithm as turning their algorithm
into an online one by �ipping a coin for each edge inT . In the second phase, it runs Greedy on
two random disjoint subgraphs and use the Sampling Lemma to argue that in expectation the
algorithm picks su�cient number of augmenting paths.

While our online matching algorithm is simple and succinct, the main di�culty lies in ex-
tending it to OMI as the notions of marking and protecting vertices do not exist. �is is also the
reason why obtaining a linear time algorithm for o�ine matroid intersection problem, where
Hastiness Lemma is not needed, had been open. De�ning and proving the correct form of
Sampling Lemma forms the core of our OMI analysis in §12.3.

Proof that Marking-Greedy works for Bipartite Matching:

Let Gi denote graphs G1 or G2 for i ∈ {1,2}. For a �xed order π of the edges, graphs Gi in
Marking-Greedy are independent of the randomness Ψ. Since the algorithm uses Ψ to pick
a random subset of the Greedy solution, this can be viewed as independently sampling each
vertex matched by Greedy in Gi . Lemma 12.2.4 shows that this su�ces to pick in expectation
more than the number of marked edges. In essence, we use the randomness Ψ to limit the power
of an adversary deciding the order of the edges in Phase (b). While the proof follows from the
more general Lemma 12.3.7, we include a simple self-contained proof.
Lemma 12.2.4 (Sampling Lemma4). Consider a bipartite graph H = (X ∪ Y , Ẽ) containing a

matching Ĩ . Let Ψ(x ) ∼ Bern(1−p) i.i.d. for all x ∈ X , and de�neX ′ = {x | x ∈ X and Ψ(x ) = 0}.
I.e., the vertices of X ′ are obtained by independently sampling each vertex in X with probability p.

Let H ′ denote the subgraph induced on X ′ and Y . �en for any arrival order of the edges in H ′,

EΨ[Greedy(H ′, Ẽ)] ≥ 1
1 + p

(
p |Ĩ |

)
.

Proof. We prove this statement by induction on |Ĩ |. Consider the base case |Ĩ | = 1. Whenever
Greedy does not select any edge, the vertex adjacent to Ĩ in X is not sampled. �is happens
with probability 1 − p. Hence, the expected size of the matching is at least p ≥ p

1+p , which
implies the statement is true when |Ĩ | = 1.

From the induction hypothesis (I.H.) we can assume the statement is true when the matching
size is at most |Ĩ | − 1. We prove the induction step by contradiction and consider the smallest
graph in terms of |X | that does not satisfy the statement. Note that |X | ≥ |Ĩ |. Consider the �rst

4�is special case of Lemma 12.3.7 for bipartite matching is also proved in [KMM12]. We are thankful to
Deeparnab Chakrabarty for pointing this at IPCO 2017.

171



edge e = (x ,y) that arrives. �e �rst case is when x < X ′ and it happens with probability 1 −p.
Here any edge incident to x does not ma�er for the remaining algorithm. We use I.H. on the
subgraph induced on (X\x ,Y ) as |X\x | = ( |X | − 1). Since this subgraph has a matching of size
at least |Ĩ | − 1, I.H. gives a matching of expected size at least p

1+p ( |Ĩ | − 1).
�e second case is when x ∈ X ′ and it happens with probability p. Now edge (x ,y) is

included in the Greedy matching for the induced graph on (X ′,Y ). Vertices x and y, along with
the edges incident to them, do not participate in the remaining algorithm. We apply I.H. on the
subgraph induced on the vertices (X\x ,Y\y). Noting that this graph has a matching of size at
least |Ĩ | − 2, I.H. gives a matching of expected size at least p

1+p ( |Ĩ | − 2). Combining both cases,
the expected matching size is at least

(1 − p)
( p

1 + p ( |Ĩ | − 1)
)
+ p

(
1 + p

1 + p ( |Ĩ | − 2)
)
=

p

1 + p |Ĩ |.

�is is a contradiction as we assumed that the graph did not satisfy the induction statement,
which completes the proof of Lemma 12.2.4. �

We next prove the main lemma needed to prove �eorem 12.2.2. Se�ing f = 0.07, p = 0.36,
and ϵ = 0.001 in Lemma 12.2.5, the theorem follows by taking γ > 0.05.
Lemma 12.2.5. For any 0 < f < 1/2 and bipartite graphG, Marking-Greedy outputs a match-

ing of expected size at least

[
(1 − p)

(
1
2 −

(
1
f
− 2

)
ϵ

)
+

p

1 + p

(
1 − 2ϵ

f
− f

)]
|OPT|.

Proof. We remind the reader that for any f ∈ [0,1] and any permutation π of the edges, T π
f

denotes the matching that Greedy produces on Eπ [1, f m]. For i ∈ {1,2}, let Hi denote the
subgraph of Gi containing all its edges that appear in Phase (b). Let Ii denote the set of edges
of OPT that appear in graph Gi . We use the following claim.
Claim 12.2.6.

Eπ [|I1 | + |I2 |] ≥
(
1 − 2ϵ

f

)
|OPT|.

Proof. We use the following two simple properties of T π
1 (proved in §12.6.6).

Fact 12.2.7.

|T π
1 | ≥

1
2

(
|OPT| +

∑
e∈OPT

1[Both ends of e matched in T π
f ]

)
and (12.1)

|T π
1 | ≥ |T

π
f | +

1
2

∑
e∈OPT

1[Both ends of e unmatched in T π
f ]. (12.2)

Note that, Eπ [|I1 | + |I2 |] is equal to

Eπ

[
|OPT| −

∑
e∈OPT

1[Both ends of e matched in T π
f ] −

∑
e∈OPT

1[Both ends of e unmatched in T π
f ]

]

172



≥ |OPT| − Eπ
[2 |T π

1 | − |OPT|
]
− Eπ

[
2( |T π

1 | − |T
π
f |)

]
(using (12.1) and (12.2))

≥ |OPT| − 2ϵ |OPT| − 2
(
ϵ +

(
1
f
− 2

)
ϵ

)
|OPT| (using G (1) ≤ 1

2 + ϵ and Lemma 12.2.3)

=

(
1 − 2ϵ

f

)
|OPT|, which �nishes the proof of the claim. �

For i ∈ {1,2}, let Ĩ i ⊆ Ii denote the set of edges of OPT that appear in Phase (b) of
Marking-Greedy, i.e., they appear in graph Hi . In expectation over uniform permutation π , at
most f |OPT| elements of OPT can appear in Phase (a). Hence,

Eπ
[
|Ĩ 1 | + |Ĩ 2 |

]
≥ Eπ [|I1 | + |I2 |] − f |OPT| ≥

(
1 − 2ϵ

f
− f

)
|OPT|.

Marking a random subset of T π
f

independently is equivalent to marking a random subset of
vertices independently. �us, we can apply Lemma 12.2.4 to both H1 and H2. �e expected
number of edges in N1∪N2 is at least p

1+p ( |Ĩ 1 |+ |Ĩ 2 |), where the expectation is over the auxilary
bits Ψ that distinguishes the random set of edges marked. Taking expectations over π and
noting that Phase (a) picks (1 − p) G ( f ) |OPT| edges, we have

EΨ,π [|S ∪ N1 ∪ N2 |] = EΨ,π [|S |] + EΨ,π [|N1 | + |N2 |]

≥ G ( f ) (1 − p) |OPT| + p

1 + pEπ
[
|Ĩ 1 | + |Ĩ 2 |

]

≥

[
(1 − p)

(
1
2 −

(
1
f
− 2

)
ϵ

)
+

p

1 + p

(
1 − 2ϵ

f
− f

)]
|OPT| (by Lemma 12.2.3) .

�

12.3 Matroid Intersection

12.3.1 De�nitions and Notation

An instance of the online matroid intersection problem (M1,M2,E,π ,m) consists of matroids
M1 andM2 de�ned on ground set E of sizem, and where the elements in E arrive according to
the order de�ned by π . For any 1 ≤ i ≤ j ≤ m, let Eπ [i, j] denote the ordered set of elements of
E that arrive in positions i through j according to π . For any matroidM on ground set E, we
use T ∈ M to denote T ⊆ E is an independent set in matroidM. We use the terminology of
matroid restriction and matroid contraction as de�ned in Oxley [Oxl06]. To avoid clu�er, for
any e ∈ E we abbreviate A ∪ {e} to A ∪ e and A \ {e} to A \ e .

We note that Greedy is well de�ned even when matroidsM1 andM2 are de�ned on larger
ground sets as long as they contain E. �is notation will be useful when we run Greedy on
matroids a�er contracting di�erent sets in the two matroids. Since Greedy always produces a
maximal independent set, its competitive ratio is at least half (see �eorem 13.8 in [KV08]). �is
is because an “incorrect” element creates at most two circuits in OPT, one for each matroid.

173



Algorithm 14 Greedy (M1,M2,E,π )

1: Initialize set T to ∅
2: for each element e ∈ Eπ [1, |E |] do

3: if T ∪ e ∈ M1 ∩M2 then

4: T ← T ∪ e
5: end if

6: end for

7: return T

Let OPT denote a �xed maximum o�ine independent set in the intersection of both the
matroids. For f ∈ [0,1], let T π

f
denote the independent set that Greedy produces a�er seeing

the �rst f fraction of the edges according to order π . When clear from context, we will o�en
abbreviate T π

f
with Tf . Let G ( f ) := Eπ [|Tf |]

|OPT| , where π is a uniformly random chosen order.
For i ∈ {1,2}, let spani (T ) := {e | (e ∈ E) ∧ (

rankMi (T ∪ e ) = rankMi (T )
)
} denote the span

of set T ⊆ E in matroidMi . Suppose we have T ∈ Mi and e ∈ spani (T ), then we denote the
unique circuit ofT ∪ e in matroidMi byCi (T ∪ e ). If i = 1, we use ı to denote 2, and vice versa.

We provide a table of all notation used in §12.6.1.

12.3.2 Hastiness Property

Before describing our algorithm Marking-Greedy, we need an important hastiness property
of Greedy in the random arrival model. Intuitively, it states that if Greedy’s performance is
bad then it makes most of its decisions quickly and incorrectly. �is observation was �rst made
by Konrad et al. [KMM12] in the special case of bipartite matching. We extend this property to
matroids in Lemma 12.3.1 (proof in §12.6.7). We are interested in the regime where 0 < ϵ �
f � 1.
Lemma 12.3.1 (Hastiness Lemma). For any two matroidsM1 andM2 on the same ground set

E, let T π
f

denote the set selected by Greedy a�er running for the �rst f fraction of elements E

appearing in order π . Also, for i ∈ {1,2}, let Φi (T
π
f
) := spani (T

π
f
)∩OPT. Now for any 0 < f ,ϵ ≤ 1

2 ,

if Eπ [|T π
1 |] ≤ ( 1

2 + ϵ ) |OPT| then

Eπ
[
|Φ1(T

π
f ) ∩ Φ2(T

π
f ) |

]
≤ 2ϵ |OPT| and

Eπ
[
|Φ1(T

π
f ) ∪ Φ2(T

π
f ) |

]
≥

(
1 − 2ϵ

f
+ 2ϵ

)
|OPT|.

�is implies G ( f ) :=
Eπ [|T πf |]
|OPT|

≥
(

1
2 −

(
1
f − 2

)
ϵ
)
.

12.3.3 Beating the Factor of Half for Online Matroid Intersection

Once again, we use Lemma 12.2.1 to restrict our a�ention to the case when the expected size of
Greedy is small. In �eorem 12.3.2, we give an algorithm that beats the factor of half for this

174



restricted case, which when combined with Lemma 12.2.1 �nishes the proof of �eorem 12.1.1.
�eorem 12.3.2. For any two matroidsM1 andM2 on the same ground set E, there exist constants

ϵ ,γ > 0 and a randomized online algorithm Marking-Greedy such that if G (1) ≤
(

1
2 + ϵ

)
then

Marking-Greedy outputs an independent set in the intersection of both the matroids of expected

size at least

(
1
2 + γ

)
|OPT|.

Marking-Greedy for OMI:

Algorithm 15 Marking-Greedy (M1,M2,E,π ,m,Ψ)

Phase (a)

1: Initialize S ,T to ∅
2: for each element e ∈ Eπ [1, f m] do . Greedy while picking and marking

3: if T ∪ e ∈ M1 ∩M2 then

4: T ← T ∪ e . Elements selected by Greedy
5: if ψ (e ) = 1 then . Auxiliary random bits Ψ
6: S ← S ∪ e . Elements picked into the �nal solution

7: end if

8: end if

9: end for

Phase (b)

10: Fix Tf to T and initialize sets N1,N2 to ∅
11: for each element e ∈ Eπ [f m,m] do . Greedy on two disjoint problems

12: for i ∈ {1,2} do

13: if e ∈ spani (Tf ) and e < spanı (Tf ) then . To ensure disjointness

14: if (S ∪ Ni ∪ e ∈ Mi ) and (Tf ∪ Ni ∪ e ∈ Mı ) then . Greedy step
15: Ni ← Ni ∪ e . Newly picked elements

16: end if

17: end if

18: end for

19: end for

20: return (S ∪ N1 ∪ N2)

Marking-Greedy consists of two phases (see notation in §12.6.1). In Phase (a), it runs Greedy
for the �rst f fraction of the elements, but picks each element selected by Greedy into the �nal
solution only with probability (1−p), wherep > 0 is a constant. With the remaining probability
p, it marks the element e , and behaves as if it had been selected. �e idea of marking some
elements in Phase (a) is that we hope to “augment” them in Phase (b). To distinguish if an
element is marked or picked, the algorithm uses auxiliary random bits Ψ that are unknown to
the adversary. We assume that Ψ(e ) ∼ Bern(1 − p) i.i.d. for all e ∈ E.

In Phase (b), one needs to ensure that the augmentations of the marked elements do not
con�ict with each other. �e crucial idea is to use the span of the elements selected by Greedy
in Phase (a) as a proxy to �nd two random disjoint OMI subproblems. �e following Fact 12.3.3

175



(proof in §12.6.6) underlies this intuition. It states that given any independent set S , we can
substitute it by any other independent set contained in the span of S . In Lemma 12.3.4 we use
it to prove the correctness of Marking-Greedy.
Fact 12.3.3. Consider any matroidM and independent setsA,B,C ∈ M such thatA ⊆ spanM (B)
and B ∪C ∈ M. �en, A ∪C ∈ M.

Lemma 12.3.4. Marking-Greedy outputs sets S ,N1, and N2 such that

(S ∪ N1 ∪ N2) ∈ M1 ∩M2.

Proof. Observe that the outputs sets S ,N1, and N2 of Marking-Greedy satisfy the following
for i ∈ {1,2}:

Ni ∈ Mi/S ∩Mı/Tf (due to Line 14) (12.3)
Ni ⊆ spanMi/S

(Tf \ S ) (due to Line 13) (12.4)

From Property (12.3) above we know Nı ∈ Mi/Tf , which implies Nı ∪ (Tf \ S ) ∈ Mi/S because
S ⊆ Tf ∈ Mi . Also, Property (12.4) implies Ni ⊆ spanMi/S

(Tf \ S ). Using Fact 12.3.3, we have(
N1 ∪ N2

)
∈ Mi/S . �

Proof that Marking-Greedy works for OMI:

We know from Lemma 12.3.1 that G ( f ) is close to half for ϵ � f � 1. In the following
Lemma 12.3.5, we show that Marking-Greedy (which returns S ∪ N1 ∪ N2 by Lemma 12.3.4)
gets an improvement over Greedy. �is completes the proof of �eorem 12.3.2 to give γ ≥ 0.03
for ϵ = 0.001, f = 0.05, and p = 0.33. �e rest of the section is devoted to proving the following
lemma.
Lemma 12.3.5. Marking-Greedy outputs sets S ,N1, and N2 such that

Eπ ,Ψ[|S ∪ N1 ∪ N2 |] ≥ (1 − p) G ( f ) |OPT| + 2p
1 + p

(
1 − 2ϵ

f
− 2ϵ − f − G ( f )

)
|OPT|.

Lemma 12.3.5. We treat the sets S ⊆ Tf ,N1, and N2 as random sets depending on π and Ψ. Since
Marking-Greedy ensures the sets are disjoint,

Eπ ,Ψ[|S ∪ N1 ∪ N2 |] = Eπ ,Ψ[|S |] + Eπ ,Ψ[|N1 | + |N2 |]
≥ (1 − p) G ( f ) |OPT| + Eπ ,Ψ[|N1 | + |N2 |]. (12.5)

Next, we lower bound Eπ ,Ψ[|N1 | + |N2 |] by observing that for i ∈ {1,2}, Ni is the result of
running Greedy on the following restricted set of elements.
De�nition 12.3.6 (Sets Ẽi ). For i ∈ {1,2}, we de�ne Ẽi to be the set of elements e that arrive in

Phase (b) and satisfy e ∈ spani (Tf ) and e < spanı (Tf ).

It’s easy to see that Ni is obtained by running Greedy on the matroidsMi/S andMı/Tf with
respect to elements in Ẽi , i.e. Ni = Greedy(Mi/S ,Mı/Tf , Ẽi ). To lower bound Eπ ,Ψ[|N1 |+ |N2 |],

176



we use the following Sampling Lemma (proved in §12.4) that forms the core of our technical
analysis. Intuitively, it says that if S is a random subset of Tf then for the obtained random
OMI instance, with optimal solution of expected size p |Ĩ |, Greedy performs be�er than half-
competitiveness even for adversarial arrival order of ground elements.
Lemma 12.3.7 (Sampling Lemma). Given matroidsM1,M2 on ground set E, a setT ∈ M1∩M2,

and Ψ(e ) ∼ Bern(1 − p) i.i.d. for all e ∈ T , we de�ne set S := {e | e ∈ T and Ψ(e ) = 1}. I.e., S
is a set achieved by dropping each element in T independently with probability p. For i ∈ {1,2},
consider a set Ẽ ⊆ spani (T ) and a set Ĩ ⊆ Ẽ satisfying Ĩ ∈ Mi ∩ (Mı/T ). �en for any arrival

order of the elements of Ẽ, we have

EΨ[Greedy(Mi/S ,Mı/T , Ẽ)] ≥
1

1 + p
(
p |Ĩ |

)
.

To use the Sampling Lemma, in Claim 12.3.8 we argue that in expectation there exist disjoint
sets Ĩ i ⊆ Ẽi of “large” size that satisfy the preconditions of the Sampling Lemma (proof uses
Hastiness Lemma and is deferred to §12.3.4).
Claim 12.3.8. If G (1) ≤

(
1
2 + ϵ

)
then for i ∈ {1,2} ∃ disjoint sets Ĩ i ⊆ Ẽi s.t.

(i) Eπ
[
|Ĩ 1 | + |Ĩ 2 |

]
≥ 2

(
1 − 2ϵ

f − f − G ( f )
)
|OPT|.

(ii) Ĩ i ∈ Mi ∩ (Mı/Tf ).

Finally, to �nish the proof of Lemma 12.3.5, we use the sets Ĩ i from the above Claim 12.3.8
as Ĩ and sets Ẽi as Ẽ in the Sampling Lemma 12.3.7. From (12.5) and Claim 12.3.8, we get

Eπ ,Ψ[|S ∪ N1 ∪ N2 |] ≥ (1 − p) G ( f ) |OPT| + p

1 + p Eπ
[
|Ĩ 1 | + |Ĩ 2 |

]

≥ (1 − p) G ( f ) |OPT| + 2p
1 + p

(
1 − 2ϵ

f
− f − G ( f )

)
|OPT|. �

Claim 12.3.8. Recall Φi (T
π
f
) := spani (T

π
f
) ∩ OPT. Let Ii denote Φi (T

π
f
) \ Φı (T

π
f
). We construct

sets Ĩ i by removing some elements from Ii , which implies Ĩ i ∈ Mi because Ii ∈ Mi . We �rst
show that |I1 | + |I2 | is large. From the Hastiness Lemma 12.3.1, we have

Eπ [|I1 | + |I2 |] = Eπ
[
|Φ1(T

π
f ) ∪ Φ2(T

π
f ) |

]
− Eπ

[
|Φ1(T

π
f ) ∩ Φ2(T

π
f ) |

]

≥

(
1 − 2ϵ

f

)
|OPT|. (12.6)

Next, we ensure that Ĩ i ∈ Mı/Tf . Note that Iı ⊆ spanı (Tf ). Let Xı denote a minimum subset
of elements ofTf such that spanı (Xı∪Iı ) = spanı (Tf ). Since Iı andTf are independent inMı , we
have |Xı | = |Tf | − |Iı |. Now starting with (Ii ∪ Iı ) ∈ Mı , we add elements of Xı into it. We will
remove at most |Xı | elements from Ii to get a set I′i such that (I′i ∪Xı∪ Iı ) ∈ Mı as (Xı ∪ Iı ) ∈ Mı .
Using Fact 12.3.3 and spanı (Xı∪Iı ) = spanı (Tf ), we also have I′i∪Tf ∈ Mı . One can use a similar
argument to obtain set I′

ı
and Xi such that I′

ı
∪Tf ∈ Mi . Since Eπ

[
|Xi |

]
= Eπ

[
|Tf | − |Ii |

]
,

Eπ [|I′1 | + |I′2 |] ≥ Eπ [|I1 | + |I2 | − |X1 | − |X2 |] = 2 Eπ [|I1 | + |I2 | − |Tf |] (12.7)

177



Finally, to ensure that Ĩ i ⊆ Ẽi , observe that any element e ∈ I′i already satis�es e ∈ spani (Tf ) and
e < spanı (Tf ). To ensure that these elements also appear in Phase (b), note that all elements of
I′i belong to OPT. Hence, in expectation over π , at most f |OPT| of these elements can appear in
Phase (a). �e remaining elements appear in Phase (b). �us, combining the following equation
with (12.8) and (12.9) completes the proof of Lemma 12.3.5

Eπ
[
|Ĩ 1 | + |Ĩ 2 |

]
≥ Eπ

[
|I′1 | + |I

′
2 |

]
− f |OPT|. �

12.3.4 Existence of Large Disjoint Sets for Claim 12.3.8

Finally, we prove the missing Claim 12.3.8 that in expectation there exist disjoint sets Ĩ i ⊆ Ẽi of
“large” size that satisfy the preconditions of the Sampling Lemma

Claim 12.3.8. Recall Φi (T
π
f
) := spani (T

π
f
) ∩ OPT. Let Ii denote Φi (T

π
f
) \ Φı (T

π
f
). We construct

sets Ĩ i by removing some elements from Ii , which implies Ĩ i ∈ Mi because Ii ∈ Mi . We �rst
show that |I1 | + |I2 | is large. From the Hastiness Lemma 12.3.1, we have

Eπ [|I1 | + |I2 |] = Eπ
[
|Φ1(T

π
f ) ∪ Φ2(T

π
f ) |

]
− Eπ

[
|Φ1(T

π
f ) ∩ Φ2(T

π
f ) |

]

≥

(
1 − 2ϵ

f

)
|OPT|. (12.8)

Next, we ensure that Ĩ i ∈ Mı/Tf . Note that Iı ⊆ spanı (Tf ). Let Xı denote a minimum subset
of elements ofTf such that spanı (Xı∪Iı ) = spanı (Tf ). Since Iı andTf are independent inMı , we
have |Xı | = |Tf | − |Iı |. Now starting with (Ii ∪ Iı ) ∈ Mı , we add elements of Xı into it. We will
remove at most |Xı | elements from Ii to get a set I′i such that (I′i ∪Xı∪ Iı ) ∈ Mı as (Xı ∪ Iı ) ∈ Mı .
Using Fact 12.3.3 and spanı (Xı∪Iı ) = spanı (Tf ), we also have I′i∪Tf ∈ Mı . One can use a similar
argument to obtain set I′

ı
and Xi such that I′

ı
∪Tf ∈ Mi . Since Eπ

[
|Xi |

]
= Eπ

[
|Tf | − |Ii |

]
,

Eπ [|I′1 | + |I′2 |] ≥ Eπ [|I1 | + |I2 | − |X1 | − |X2 |] = 2 Eπ [|I1 | + |I2 | − |Tf |] (12.9)

Finally, to ensure that Ĩ i ⊆ Ẽi , observe that any element e ∈ I′i already satis�es e ∈ spani (Tf ) and
e < spanı (Tf ). To ensure that these elements also appear in Phase (b), note that all elements of
I′i belong to OPT. Hence, in expectation over π , at most f |OPT| of these elements can appear in
Phase (a). �e remaining elements appear in Phase (b). �us, combining the following equation
with (12.8) and (12.9) completes the proof

Eπ
[
|Ĩ 1 | + |Ĩ 2 |

]
≥ Eπ

[
|I′1 | + |I

′
2 |

]
− f |OPT|. �

12.4 Sampling Lemma

We prove the lemma for i = 1 as the other case is analogous.

178



12.4.1 Alternate View of the Sampling Lemma

We prove the Sampling Lemma by �rst showing that Greedy(M1/S ,M2/T , Ẽ) produces the
same output as algorithm Samp-Alg (proof deferred to §12.4.3).
Lemma 12.4.1. Given a �xed Ψ and assuming the elements of Ẽ are presented in the same order,

the output of Samp-Alg is the same as the output of Greedy(M1/S ,M2/T , Ẽ).

�e idea behind Samp-Alg is to run Greedy, but postpone distinguishing between the ele-
ments that are selected by Greedy (setT ) and picked by our algorithm (set S). �is limits what
an adversary can do while ordering the elements of Ẽ. Intuitively, the sets in Samp-Alg denote
the following:

• N ′ denotes the new elements to be added to the independent set.
• T ′ are the elements of T for which we still haven’t read the random bit Ψ.
• S′ are the elements e ∈ T for which we have read Ψ and they turn out to be picked, i.e.,
Ψ(e ) = 1.

Algorithm 16 Samp-Alg
Input:M1,M2,T , and random bits Ψ ∈ {0,1} |T | .

1: Initialize: N ′,S′ to ∅, and T ′ = T
2: for each element e ∈ Ẽ do

3: if T ∪ N ′ ∪ e ∈ M2 then

4: Let C ← C1(S
′ ∪ N ′ ∪T ′,e ) ∩T ′ . Unread elements of the formed circuit

5: for each element f ∈ C do

6: T ′ ← T ′ \ f
7: if Ψ( f ) = 1 then . Auxiliary random bits Ψ
8: S′ ← S′ ∪ f . Already picked elements

9: else

10: N ′ ← N ′ ∪ e . Newly picked elements

11: Break

12: end if

13: end for

14: end if

15: end for

16: return N ′

12.4.2 Proof of the Sampling Lemma

By Lemma 12.4.1, it su�ces to prove that given the preconditions of the Sampling Lemma,
Samp-Alg produces an output of expected size at least p

1+p |Ĩ |.More precisely, we need to show
that if Ψ in Samp-Alg is chosen as Ψ(e ) ∼ Bern(1 − p) i.i.d. for all e ∈ T , we have EΨ[|N ′|] ≥
p

1+p |Ĩ |.

179



�e main idea of the proof is to argue that before every iteration of the for-loop in Line 2,
there are “su�cient” number of elements that are still to arrive and can be added to our solution.
To achieve this, we de�ne a set I′, which intuitively denotes the set ofOPT elements that are still
to arrive and can be added to the current solution. �e properties of I′ are rigorously captured in
Invariant 12.4.2, where Ẽr denotes the remaining elements of Ẽ that are still to be considered in
the for-loop. Due to Lemma 12.4.1, this also denotes the elements of Ẽ that are still to arrive for
Greedy. Starting with I′ = Ĩ at the beginning of Samp-Alg, we wish to maintain the following.

Invariant 12.4.2. For given sets S′,N ′,T , and Ẽr ⊆ Ẽ, set I′ satis�es this invariant if

S′ ∪ N ′ ∪ I ′ ∈ M1 (12.10)
T ∪ N ′ ∪ I ′ ∈ M2 (12.11)

I ′ ⊆ Ẽr (12.12)

As the algorithm Samp-Alg progresses, set I′ has to drop some of its elements so that it con-
tinues to satisfy Invariant 12.4.2. �ese drops from I′ are rigorously captured in Updates 12.4.3.
Note that set I′ and Updates 12.4.3 are just for analysis purposes, and never appear in the actual
algorithm. Starting with I′ = Ĩ at the beginning of Samp-Alg and satisfying Invariant 12.4.2, in
Claim 12.4.4 we prove that Updates 12.4.3 to I′ ensure that the invariant is always satis�ed. �is
lets us use induction to prove in Claim 12.4.5 that Updates 12.4.3 never drop too many elements
from I′ and Samp-Alg returns an independent set of large size.
Updates 12.4.3. We perform the following updates to I′ whenever Samp-Alg reaches Line 8 or

Line 10. Claim 12.4.4 shows that these updates are well-de�ned.

• Line 8: If circuitC1(S
′∪N ′∪ I′∪ f ) is non-empty then remove an element from I′ belonging

to C1(S
′ ∪ N ′ ∪ I′ ∪ f ) to break the circuit.

• Line 10: If circuitC1(S
′∪N ′∪ I′∪e ) is non-empty then remove an element from I′ belonging

to C1(S
′ ∪ N ′ ∪ I′ ∪ e ) to break the circuit. If C2(T ∪ N ′ ∪ I′ ∪ e ) is non-empty then remove

another element from I′ belonging to C2(T ∪ N ′ ∪ I′ ∪ e ) to break the circuit. In the special

case where e ∈ I′, we remove e from I′.

�e following claim (proof deferred to §12.4.4) shows that Updates 12.4.3 maintain Invari-
ant 12.4.2.
Claim 12.4.4. Given matroidsM1,M2, a set T ∈ M1 ∩M2, a set Ẽr ⊆ span1(T ) (denoting the

set of remaining elements), and Ψ(e ) ∼ Bern(1 − p) i.i.d. for all e ∈ T , suppose there exists a set I ′

satisfying Invariant 12.4.2 at the beginning of some iteration of the for-loop in Line 2 of Samp-Alg.

�en

(i) Updates 12.4.3 are well-de�ned.

(ii) Updates 12.4.3 ensure that Invariant 12.4.2 hold at the end of the iteration.

Finally, we use Invariant 12.4.2 to prove the main claim.
Claim 12.4.5. Given matroidsM1,M2, a set T ∈ M1 ∩M2, a set Ẽr ⊆ Ẽ ⊆ span1(T ) (denoting

the set of remaining elements), and Ψ(e ) ∼ Bern(1 − p) i.i.d. for all e ∈ T , suppose there exists

180



a set I ′ satisfying Invariant 12.4.2 at the beginning of some iteration of the for-loop of Line 2 in

Samp-Alg. �en the value of N ′ at the end of Samp-Alg satis�es

EΨ[|N ′|] ≥ p

1 + p |I
′|

Proof. To prove the claim we use induction on |I′| where I′ ⊆ Ẽ. WLOG we can assume that
e is the �rst element such that C in Line 4 is non-empty. Let C = {t1, . . . ,tl } where l ≥ 1. For
j ∈ {0, . . . ,l − 1}, de�ne event Bj as Ψ(t1) = Ψ(t2) = · · · = Ψ(tj ) = 1 and Ψ(tj+1) = 0. Also,
de�ne B as Ψ(t1) = . . .Ψ(tl ) = 1.
Base Case: SinceC is a non-empty circuit, we can assume that any element f ∈ C satis�es the
condition Ψ( f ) = 0 with probability p. Hence, |N ′| ≥ 1 with probability at least p, proving the
required claim.
Induction Step: �e events B0, . . . ,Bl−1, and B partition the entire probability space.
Case 1 (Event Bj) : Since applying the Updates 12.4.3 preserves Invariant 12.4.2 by Claim 12.4.4,

we can apply the induction hypothesis to the updated set I ′. Moreover. Updates 12.4.3 remove
at most j + 2 elements from I ′ in the event Bj . Applying the Induction hypothesis, we can
conclude that EΨ[|N ′| ���Bj] ≥ 1 + p

1+p ( |I
′| − j − 2).

Case 2 (Event B): Since applying the Updates 12.4.3 preserves Invariant 12.4.2 by Claim 12.4.4,
we can apply the induction hypothesis to the updated set I ′. Moreover, Updates 12.4.3 remove
l elements from I′ in the event B. Conditioned on the event B and applying the induction
hypothesis to the updated set I ′, we can conclude EΨ[|N ′|] ≥ p

1+p ( |I
′| − l ).

Combining both the cases, we have EΨ[|N |] is at least
l−1∑
j=0

Pr[Bj] · EΨ[|N ′| ���Bj] + Pr[B] · EB[|N | ���B]

≥

l−1∑
j=0

(1 − p)j p
(
1 + p

1 + p ( |I
′| − 2 − j )

)
+ (1 − p)l

(
p

1 + p ( |I
′| − l )

)

=
p

1 + p |I
′| using

l−1∑
j=0

j (1 − p)j = −l (1 − p)
l

p
−

(1 − p)
p2 ((1 − p)l − 1). �

To �nish the proof of Lemma 12.3.7, we start with I′ := Ĩ , T ′ := T , N ′ := ∅, and S′ := ∅ in
Claim 12.4.5. �e preconditions hold true because T ∪ I ∈ M2, T ∈ M1, and I ∈ M1.

12.4.3 Proof of the Alternate View of Sampling Lemma

We restate the lemma for convenience.
Lemma 12.4.1. Given a �xed Ψ and assuming the elements of Ẽ are presented in the same order,

the output of Samp-Alg is the same as the output of Greedy(M1/S ,M2/T , Ẽ).

Starting with S′ = ∅, N ′ = ∅, and T ′ = T , we make some simple observations and prove a
small claim before proving Lemma 12.4.1.

181



Observation 12.4.6. �e for-loop de�ned in Line 2 of Samp-Alg maintains the following invari-

ant

S ⊆ S′ ∪T ′ ⊆ T

Proof. To show the �rst containment, observe that for each element if an Ψ(e ) = 1 then it simply
moves fromT ′ to S′. Hence, all the elements of S ⊆ S′∪T ′. To observe, the second containment,
note that an element of T ′ either moves into S′ or gets removed. Since T ′ was initialized to T ,
the second containment follows. �

Observation 12.4.7. �e for-loop de�ned in Line 2 of Samp-Alg maintains the following invari-

ant

S′ ∪ N ′ ∪T ′ ∈ M1.

Proof. Since T ∈ M1 and S′ = T ′ = ∅ at the beginning, we can conclude that this is correct at
the beginning of Samp-Alg. Now consider an iteration of the for-loop de�ned in Line 2. When
an element f is added to S′ in Line 8, it must have belonged to T ′, implying that S′ ∪ N ′ ∪ T ′

is unchanged. If an element e is added to N ′ (in Line 10) then we must remove an element
f from T ′ (due to Line 6), which belonged to the unique circuit C1(S

′ ∪ T ′ ∪ N ′,e ). Hence,
S′ ∪ N ′ ∪ e ∪ (T ′ \ f ) is still an independent set inM1. �

Claim 12.4.8. For an element e ∈ Ẽ, if Line 4 of Samp-Alg is reached then C1(S
′ ∪ N ′ ∪T ′,e ) is

non-empty.

Proof. We know Ẽ ⊆ span1(T ). Moreover, S′ ∪T ′ ⊆ T ⊆ span1(T ) (using Observation 12.4.6).
Hence, S′ ∪T ′ ∪ Ẽ ⊆ span1(T ) implies

rankM1 (S
′ ∪T ′ ∪ Ẽ) ≤ |T |. (12.13)

We prove the lemma by contradiction and assume circuit C1(S
′ ∪ N ′ ∪ T ′,e ) is empty. Using

Observation 12.4.7, this implies (S′ ∪ N ′ ∪T ′ ∪ e ) ∈ M1. Now, rankM1 (S
′ ∪ N ′ ∪ T ′ ∪ e ) =

|S′∪N ′∪T ′|+1 ≤ rankM1 (S
′∪T ′∪ Ẽ) ≤ |T | using (12.13). In the next paragraph, we show that

the algorithm always maintains |S′∪N ′∪T ′| = |T |, which gives the contradiction |T |+1 ≤ |T |.
To prove |S′∪N ′∪T ′| = |T |, we note that the only timeT ′ decreases is in Line 6. In this case,

we either add the dropped element to S′ in Line 8 or a new element to N ′ in Line 10. Hence,
the |S′ ∪ N ′ ∪ T ′| is unchanged in the for-loop of Line 2. Since we initialize S′ = N ′ = ∅ and
T ′ = T , we can conclude that this |S′ ∪ N ′ ∪T ′| = |T | is maintained. �

We now have the tools to prove Lemma 12.4.1.

Lemma 12.4.1. Let us assume the elements of Ẽ are presented in order e1, . . . ,et where t = |Ẽ |.
We will use induction on the following hypothesis.
Induction Hypothesis (I.H.): A�er both algorithms have seen the �rst k elements e1, . . . ,ek ,
the set N ′ in Samp-Alg is the same as the set of elements selected by Greedy(M1/S ,M2/T , Ẽ).
Base Case: Initially, both algorithms have not selected any element. Hence, N ′ = ∅ is the set
of all elements selected by Greedy.

182



Induction Step: Suppose the I.H. is true for elements e1, . . . ,ek−1 and we are considering ele-
ment ek . If ek does not satisfyT ∪N ′∪ ek ∈ M2, then it will also not satisfy the same condition
for Greedy because N ′ is the set selected by Greedy (by I.H.) and N ′ ∪ e <M2/T . In this case
we are done with the induction step. From now assume T ∪ N ′ ∪ ek ∈ M2.

Suppose ek is added to N ′ in Samp-Alg, then we claim Greedy(M1/S ,M2/T , Ẽ) will also
select this element. �e only location where ek could be added is Line 10. �is occurs when we
remove some appropriate element f ∈ T ′ to ensure S′ ∪ (T ′ \ f ) ∪ N ′ ∪ e ∈ M1. Furthermore
Ψ( f ) = 0 implies f < S . By Observation 12.4.6, set S ⊆ S′∪T ′\f . Hence, S′∪(T ′\f )∪N ′∪e ∈ M1
implies S ∪ N ′ ∪ e ∈ M1 and Greedy will also select this element.

Next, suppose ek is not picked by the algorithm. By Claim 12.4.8, we know that C1(S
′ ∪

N ′ ∪ T ′,e ) is non-empty. In this case, every element f ∈ C encountered in the for-loop of
Line 5 must have had Ψ( f ) = 1. �is implies that at the end of the for-loop of Line 5, circuit
C1(S

′ ∪ N ′ ∪T ′,e ) ⊆ S′ ∪ N ′. Since S′ ⊆ S (by Observation 12.4.6), this gives N ′ ∪ e < M1/S .
Hence, Greedy cannot select element ek . �

12.4.4 Proof that the Updates are valid

In this section we prove Claim 12.4.4 by showing that Updates 12.4.3 are well-de�ned and main-
tain Invariant 12.4.2.

Claim 12.4.4. Since Invariant 12.4.2 holds before entering into the for-loop in Line 2, we prove
this claim by showing that a�er one iteration of the for-loop, i.e., a�er arrival of an element e ,
Properties ((i)) and ((ii)) hold.

We �rst show that the properties hold if the set C in Line 4 is empty. Since in this case
we do not perform any updates to sets S′,N ′, I′, and T ′, Invariant 12.10, Invariant 12.11, and
well-de�nedness trivially hold. To prove Invariant (12.12), we need to show e < I′. �is is true
because by Claim 12.4.8 element e forms a circuit inC1(S

′∪N ′∪T ′,e ), and by Invariant (12.10)
we know S′ ∪ N ′ ∪ I ′ ∈ M1. Hence, the circuitC1(S

′ ∪ N ′ ∪T ′,e ) contains some element ofT ′,
which gives the contradiction that C is non-empty.

Now WLOG, we can assume that element e forms a non-empty set C in Line 4. We prove
Property ((i)), Invariant (12.10), and Invariant (12.11) by showing that they hold a�er any iter-
ation of the for-loop of Line 5. Note that sets S′,N ′, and I′ can only change in Lines 8 or 10 of
the for-loop. We prove the claim for both these cases.
Case 1 (Line 8): Since f belonged toT ′, from Observation 12.4.7 we know (S′ ∪ N ′ ∪ f ) ∈ M1.

Now using Invariant (12.10) (which holds before the iteration), we can deduce thatC1(S
′∪N ′∪

I ′, f )∩I ′ is non-empty and the update is well-de�ned. Invariant (12.10) holds because the update
breaks any circuit in S′∪N ′∪ I′ inM1. SinceT and N ′ are unchanged and I′ only gets smaller,
Invariant (12.11) holds trivially.
Case 2 (Line 10): Since we are adding e to N ′, it must be the case that S′ ∪ N ′ ∪ e ∈ M1

(by Lemma 12.4.1). If C1(S
′ ∪ N ′ ∪ I ′ ∪ e ) is non-empty then C1(S

′ ∪ N ′ ∪ I′ ∪ e ) ∩ I ′ must be
non-empty. Moreover, by Line 3, we know that T ∪ N ′ ∪ e ∈ M2. Hence, if C2(T ∪ N ′ ∪ I ′ ∪ e )
is non-empty then C2(T ∪ N ′ ∪ I ′ ∪ e ) ∩ I ′ must be non-empty. Both of them together prove

183



U V

u2
u1

v2
v1

Figure 12.2: U denotes the set of vertices matched by Greedy in Phase (a) and V denotes the
remaining vertices ofG. Solid edges withinU denote the picked edges and dashed edges within
U denote the marked ones. Dashed edges from U to V denote the OPT edges.

the the update is well-de�ned in this case. Invariant (12.10) and Invariant (12.11) hold because
Updates 12.4.3 break any circuit C1(S

′ ∪ N ′ ∪ I′ ∪ e ) and C2(T ∪ N ′ ∪ I′ ∪ e ).
Finally, to �nish the proof of this claim, we show that Invariant (12.12) also holds at the end

of every iteration of the for-loop of Line 2. If e < I′ then Invariant (12.12) trivially holds as Ẽr
looses element e , and I′ ⊆ Ẽr \ e . Now suppose e ∈ I′. Here we consider two cases.
Case 1 (e is added to N ′): Here Samp-Alg reaches Line 10 and the special case of Update 12.4.3

ensures that e is removed from I′. Hence I′ ⊆ Ẽr .
Case 2 (e is not added to N ′): From the above proof, we know that Invariants (12.10) and (12.11)

are preserved at the end of this iteration. We prove by contradiction and assume that e ∈ I ′ at
the end of this iteration. Since e < N ′, all the elements of C in Line 4 are added to S′ by the
end of this iteration. Hence, the entire circuit in Line 4 (which is non-empty by Claim 12.4.8) is
contained in S′ ∪ N ′ ∪ e at the end of the iteration. Since e ∈ I ′, this implies that S′ ∪ N ′ ∪ I ′ is
not independent. �is is a contradiction as Invariant (12.10) is violated. �

12.5 General Graphs

�eorem 12.1.3. In the random edge arrival model, the online matching problem for general

graphs has a ( 1
2 + δ

′)-competitive randomized algorithm, where δ ′ > 0 is a constant.

Proof overview. LetG be the arrival graph with edge set E. Using the same idea as Lemma 12.2.1,
we can again focus on graphs where Greedy has a competitive ratio of at most

(
1
2 + ϵ

)
for

any constant ϵ > 0. We construct a two-phase algorithm that uses the algorithm from �eo-
rem 12.1.2 as a subroutine. In Phase (a), we runGreedy; however, each edge selected byGreedy
is picked only with probability (1 − p). With probability p, we mark it along with its vertices
and behave as if it has been matched for the rest of Phase (a). Since the hastiness property

184



(Lemma 12.2.3) is also true for general graphs, in expectation we pick (1−p)
(

1
2 −O ( ϵf )

)
|OPT|

edges and mark p
(

1
2 −O ( ϵf )

)
|OPT| edges in Phase (a). Now we need to ensure that in expec-

tation (1 + γ ) edges, for some constant γ > 0, are picked per marked edge in Phase (b).
LetTf denote the set of edges selected by Greedy in Phase (a), i.e., both picked and marked

edges. LetU denote the set of vertices matched inTf andV denote the remaining set of vertices
of G. Using the following simple Fact 12.5.1 and Lemma 12.2.3, we can argue that

(
1 −O ( ϵf )

)
OPT edges go from a vertex in U to a vertex in V in graph G.

Fact 12.5.1 (Lemma 1 in [KMM12]). Consider a maximal matchingT of graphG such that |T | ≤(
1
2 + ϵ

)
|OPT| for some ϵ ≥ 0. �enG contains at least

(
1
2 − 3ϵ

)
|OPT| vertex disjoint 3-augmenting

paths with respect to T .

Moreover, in expectation at most f fraction of these (U ,V ) OPT edges can appear in Phase (a).
�us, se�ing ϵ � f � 1 gives that most of the OPT edges, i.e.,

(
1 −O ( ϵf ) − f

)
fraction, appear

in Phase (b). �is implies that most of the marked edges contain two 3-augmentation edges as
shown in Figure 12.2.

Now consider a marked edge (u1,u2) with (u1,v1) and (u2,v2) denoting its 3-augmentations.
In comparison to bipartite graphs, the new concern in general graphs is that there might be an
edge between u1 and v2 as triangles are possible in non-bipartite graphs. Hence, the Sam-
pling Lemma 12.2.4 cannot be directly applied here. However, we are only interested in the
bipartite graph between vertices U and V . �erefore, in Phase (b), we run the algorithm from
�eorem 12.1.2 for bipartite graphs restricted to (U ,V ) edges. For su�ciently small values of
constants ϵ and f , the constant δ gain in �eorem 12.1.2 is su�cient to obtain a constant δ ′
gain for this theorem. �

12.6 Miscellaneous Results and Missing Proofs

12.6.1 Table of Notation

We summarize the notation used in this chapter in Table 12.1.

12.6.2 Greedy Beats Factor of Half on Almost Regular Graphs

�eorem 12.6.1. For online matching in random edge arrival model, Greedy has a competitive

ratio of at least (1 − 1
e ) on any d-regular graph.

Proof. Consider a vertex v , and let u1,u2, . . . ,ud be its neighbours. �e probability that (u1,v )
is the �rst to occur amongst all the edges of u1 is exactly 1

d . If this occurs, then we know that
vertex v will be surely matched. �us, the probability that v is not matched by the end of the
algorithm is at most (1 − 1

d )
d ≤ 1

e . �is means that each vertex is matched with probability at
least 1 − 1

e , leading to the stated theorem. �

185



General Notation

Mi Matroid indexed by i
A ∈ M Subset A is an independent set in the matroidM
T ∪ e Short form for notation T ∪ {e}

rankM �e rank function de�ned by matroidM
ı Denotes the index 3 − i

M1 ∩M2 �e set of subsets that are independent in both matroidsM1 andM2
M/T �e matroid resulting from contracting subset T in matroidM

spani (T ) {e | (e ∈ E) ∧ (rankMi (T ∪ {e}) = rankMi (T )}
Ci (T ∪ e ) �e unique circuit formed by T ∪ {e} in matroidMi . �is is unde�ned when T is

not an independent set and e < spani (T ).
E �e set of ground elements common to the matroidsM1 andM2
π A permutation on the set E

OPT A �xed maximum independent set in the intersection ofM1 ∩M2
G ( f ) Eπ [|Tf |]/|OPT|

Notation used by Marking-Greedy in §12.3.3

Ψ �e set of random bits used in the algorithm. For each e ∈ E, we have Ψ(e ) ∼
Bern(1 − p)

selecting �e element is chosen by Greedy in Phase (a)
picking �e element is chosen by Marking-Greedy in the �nal solution

marking �e element is chosen by Greedy in Phase (a) but the algorithm does not pick it
Tf �e set of elements selected by Greedy in Phase (a)
S �e set of elements picked by Marking-Greedy in Phase (a)
Ni �e set of elements belonging to Mi/S ∩ Mı/T picked by Marking-Greedy in

Phase (b)

Table 12.1: Table of Notation

186



�e same analysis also extends to graphs that are almost regular, i.e., graphs with vertex
degrees between d (1 ± ϵ ), for any small constant ϵ .

12.6.3 Greedy Cannot Always Beat Half for Bipartite Graphs

Dyer and Frieze [DF91] showed a general graph5 for which Greedy is half competitive. In-
spired from their construction, we give the following bipartite graph for which Greedy is half
competitive.
De�nition 12.6.2 (�ick-Z graph). Let graph �ick-Z := ((U1 ∪ U2) ∪ (V1 ∪ V2)},E) be a

bipartite graph with |U1 | = |V1 | and |U2 | = |V2 |. �e edge set E consists of the union of a perfect

matching between Ui and Vi for i ∈ {1,2} and a complete bipartite graph between U2 and V1. If

additionally |U1 | = |V2 |, we call the graph a balanced �ick-Z.

Lemma 12.6.3. When the edges of a balanced �ick-Z are revealed one-by-one in a random order

to Greedy then in expectation it produces a matching of size

(
1
2 + o(1)

)
|OPT|.

Proof. We note that a�er an edge is picked by Greedy, both the end points of the edge do not
participate later in the algorithm. Hence, at any instance during the execution of Greedy, the
participating graph is still a �ick-Z graph ((U ′1 ∪ U ′2 ) ∪ (V ′1 ∪ V ′2 )},E

′), where U ′i ⊆ Ui and
V ′i ⊆ Vi for i ∈ {1,2}.

We can view the choices made by Greedy as being done in time steps, where Greedy
chooses one edge at each time step. At each time step, at least one of U1 or U2 decrease by
1, and Greedy halts when |U ′1 | = |U ′2 | = 0. Let t be the random variable indicating the �rst
time step during the execution of Greedy when min{|U ′1 |, |U ′2 |} = n2/3. Let a,b be the random
variables denoting a := |U ′1 | = |V ′1 | and b := |U ′2 | = |V ′2 | at time t . Let O1 denote the number of
edges of OPT chosen by Greedy before time t and let O2 denote the number of edges of OPT
chosen a�er time t .

We observe that the matching produced by Greedy is of size n
2 + |O1 | + |O2 |. Observe

|
(
|U ′1 | − |U

′
2 |
)
| changes only when Greedy chooses an edge from OPT, implying that we can

bound |a − b | ≤ |O1 |. Since O2 is bounded by |U ′1 | + |U ′2 | at time t , we can say

|O2 | ≤ a + b = 2 min{a,b} + |a − b | ≤ 2n2/3 + |O1 |.

Next, to bound |O1 |, we note that before time t the probability of an edge picked by Greedy
being from OPT is at most 2n

n2/3·n2/3 =
2

n1/3 . Since Greedy picks at most n edges before time t , we
have E[|O1 |] ≤ 2n

n1/3 = 2n2/3. �is proves that expected size of the matching chosen by Greedy
is n

2 + E[|O1 | + |O2 |] ≤ n
2 + 2n2/3 + 2E[|O1 |] ≤ n

2 + 6n2/3.
�

5�is graph is popularly known as a bomb graph. It is obtained by adding a new vertex and edge adjacent to
each vertex of a complete graph.

187



Z1

Z2

Figure 12.3: �e above example is a conjunction of two �ick-Z graphs (Z1 and Z2) by a single
edge (the thick red edge). Notice that for a �ick-Z graph even knowing the degree 2 vertex
does not allow any algorithm to achieve more than 5

3 edges in expectation.

12.6.4 Limitations on any OBME Algorithm

Lemma 12.6.4. No randomized algorithm can achieve a competitive ratio greater than
5
6 ∼ 0.833

for online bipartite matching in random edge arrival model when the graph is a balanced �ick-Z

with n = 1. �is is true, even the adversary knows the graph and can identify one vertex which has

degree 2.

Proof. �e optimum o�ine matching size is two. However, no randomized online algorithm,
(even one which knows the input graph), can obtain more than 5

3 edges in expectation over the
random edge order. To see this, let p denote the probability that the algorithm picks the �rst
edge it sees.

Case 1: �e �rst edge is from the optimal matching (i.e. the �rst edge is of the form (ui ,vi )
for i ∈ {1,2}). In this case, the algorithm will achieve the optimal value 2 with probability p. If
it skips one of these edges, it will retain at most 1 edge in the remaining graph.

Case 2: �e �rst edge is not from the optimal matching (i.e. the �rst edge is (u1,v2)). In this
case the algorithm will achieve a value of at most 1 · p + 2 · (1 − p).

Since Case 1 occurs with probability 2
3 and Case 2 occurs with probability 1

3 , the expected
value of the algorithm is 5

3p +
4
3 (1 − p) ≤

5
3 . �

Lemma 12.6.5. No randomized algorithm can achieve a competitive ratio greater than
69
84 ∼ 0.821

for online bipartite matching in random edge arrival model.

Proof. Our instance corresponds to the case where we take two copies of balanced �ick-Z
graph joined by a single edge (see Figure 12.3). �e input is some permutation of the graphs
(where the vertices or edges may be permuted andU andV may be swapped). We show by case
analysis that no algorithm can achieve a competitive ratio be�er than 69

84 <
5
6 . Intuitively, the

addition of the single edge only hurts any algorithm without compromising the independence
between the two instances.

Let p be the probability that the algorithm picks the �rst edge. Consider the following cases
based on Figure 12.3:

Case 1: Suppose the �rst edge is the thick red edge. �is occurs with probability 1
7 . If the

algorithm picks this edge (which happens with probability p), then the optimal value in the
remaining graph is 3. Otherwise, it can get at most 2 · 5

3 as the two �ick-Z graphs are disjoint
and we can use the previous lemma. Hence the expected outcome is 1

7

(
p · 3 + (1 − p) · 10

3

)
.

188



Case 2: Suppose the �rst edge is a blue edge, this occurs with probability 2
7 . If the algorithm

chooses this edge, then we can get value of 1. Since this a�ords no information about the second
Z , the best an algorithm can do is 5

3 . Hence the expected solution is 2
7

(
p (1+ 5

3 )+ (1−p) (2+
5
3 )

)
.

Case 3: Suppose the �rst edge is a black edge. �is occurs with probability 4
7 . If the algorithm

chooses the �rst edge, then we can get value of 2 in this copy of the �ick-Z. However, still
the algorithms gets at most 5

3 in the remaining copy of �ick-Z. Hence the expected cost of
the solution is 4

7

(
p (2 + 5

3 ) + (1 − p) (1 + 5
3 )

)
Adding these cases together, we get that expected solution has value at most 64+5p

21 . Since
the optimal solution is 4, this gives an upper bound of 69

84 .
�

12.6.5 When Size of the Ground Set is Unknown

�eorem 12.6.6. For any constant ϵ > 0, any randomized algorithm A that does not know the

number of edges to arrive has a competitive ratio α ≤ 2
3+ϵ for online bipartite matching in random

edge arrival model.

Proof. To prove this theorem, we show that for any ϵ > 0 there exists an instance where A is
less than 2

3 + ϵ-competitive.
SinceA does not know the number of edges to arrive, it must maintain an α approximation

in expectation a�er the arrival of every edge. �is is because A does not know if the current
edge will be the last edge.

Consider the instance given by the graph balanced �ick-Z (see De�nition 12.6.2) where
the size of the |U1 | = |V1 | = N will be set later. Consider a random permutation π on the set of
all edges and note that each edge eappears in the �rst T edges with probability T

N 2+2N , where
T = 4(N + 2) logN . �e previous probability is at least 4 logN

N . Let GT denote the set of edges
from the perfect matching betweenUi andVi that appear in the �rstT edges. Let BT denote the
set of edges from U2 to V1 that appear in the �rst T edges. By linearity of expectation, we can
say E[|GT |] ≤ 8 logN and E[|BT |] ≤ 4N logN .

Let OPTT denote the expected size of the maximum matching on the graph induced by the
�rst T edges.

Claim 12.6.7. N (1 − ϵ ) ≤ Eπ [|OPTT |]

Proof. Consider the graph induced betweenU2 andV1 in the �rstT edges. Since any particular
edge occurs with probability 4 logN

N and the edges are negatively correlated, we can conclude
that

Pr[∃a perfect matching between U2 and V1 in the �rst T edges] ≥
Pr[∃ a perfect matching in G

N ,N ,
4 logN
N

].

189



By a result of Erdos and Renyi (see [ER64]), we know that
lim
N→∞

Pr[∃a perfect matching in G
N ,N ,

4 logN
N

] = 1

Hence, we can choose an N such that the above probability is at least 1−ϵ . �us we can conlude
that E[OPTT ] ≥ N (1 − ϵ ). �

Let MOPT denote the expected number of edges picked by A that belong to the perfect
matching between Ui and Vi (for i = 1,2) at time T . Similarly, let MRest denote the expected
number of edges between U2 and V1 chosen by A.

Since A must maintain an α approximation, we can say MOPT +MRest ≥ α (1 − ϵ )N . Since
MOPT ≤ E[|GT |] = 8 logN ≤ αϵN , we can say

MRest ≥ (α − 2ϵ )N (12.14)
However, every edge chosen from MRest decreases the value of the optimal algorithm by one.
Let F be the expected size of the matching chosen by the algorithm. We know that α · 2N ≤
F ≤ 2N −MRest . Substituting into (12.14) and dividing by 2N , we get α ≤ 2

3 + ϵ . �

12.6.6 Facts

Fact 12.2.7.

|T π
1 | ≥

1
2

*
,
|OPT| +

∑
e∈OPT

1[Both ends of e matched in T π
f ]+

-
and

|T π
1 | ≥ |T

π
f | +

1
2

∑
e∈OPT

1[Both ends of e unmatched in T π
f ].

Proof. We start by counting the vertices matched in T π
1 ,

2 |T π
1 | ≥ 2

∑
e∈OPT

1[Both ends of e matched in T π
1 ]+

∑
e∈OPT

1[Exactly one end of e matched in T π
1 ]

Since T π
1 is a maximal set,

|OPT | =
∑

e∈OPT
1[Exactly one end of e matched in T π

1 ] +
∑

e∈OPT
1[Both ends of e matched in T π

1 ]

Combining the previous two statements and the fact that T π
f
⊆ T π

1 ,

|T π
1 | ≥

1
2

*
,
|OPT| +

∑
e∈OPT

1[Both ends of e matched in T π
f ]+

-
.

To prove the second part, observe that T π
f
⊆ T π

1 and T π
1 is a maximal matching. For each

edge of OPT that has both its end points unmatched inT π
f

, at least one end point is adjacent to
an edge T π

1 . Since these edges must be part of T π
1 \T

π
f

,

|T π
1 | ≥ |T

π
f | +

1
2

∑
e∈OPT

1[Both ends of e unmatched in T π
f ].

�

190



Fact 12.3.3. Consider any matroidM and independent setsA,B,C ∈ M such thatA ⊆ spanM (B)
and B ∪C ∈ M. �en we also have A ∪C ∈ M.

Proof. Suppose we start with B ∈ M and add elements ofA = {a1,a2, . . . ,ak } one by the one. We
show that one can ensure that the set remains independent inM by removing some elements
from B. First, note that |B | = rank(B) = rank(B ∪A). Our algorithm removes an element from
B only if addition of aj creates a circuit. Hence the rank of the set is always |B | and addition of
every aj creates a unique circuit. Moreover, this circuit contains an element bj ∈ B that can be
removed as we know A ∈ M.

Next we repeat the above procedure but by starting with B ∪C ∈ M and adding elements
of A. We know from before that addition of each element aj creates a unique circuit that does
not contain an element of C . Hence we can remove element bj while ensuring the set remains
independent inM. �is will �nally give A ∪C ∈ M. �

12.6.7 Hastiness Lemma

�e proof of the following lemma is similar to Lemma 2 in [KMM12].
Lemma 12.3.1 (Hastiness Lemma). For any two matroids M1 and M2 on the same ground

set E, let T π
f

denote the set selected by Greedy a�er running for the �rst f fraction of elements E

appearing in order π . Also, for i ∈ {1,2}, let Φi (T
π
f
) := spani (T

π
f
)∩OPT. Now for any 0 < f ,ϵ ≤ 1

2 ,

if Eπ [|T π
1 |] ≤ ( 1

2 + ϵ ) |OPT| then

Eπ
[
|Φ1(T

π
f ) ∩ Φ2(T

π
f ) |

]
≤ 2ϵ |OPT| and (12.15)

Eπ
[
|Φ1(T

π
f ) ∪ Φ2(T

π
f ) |

]
≥

(
1 − 2ϵ

f
+ 2ϵ

)
|OPT|. (12.16)

�is implies G ( f ) :=
Eπ [|T πf |]
|OPT|

≥
(

1
2 −

(
1
f − 2

)
ϵ
)
.

Proof. For ease of notation, we write T π
f

by Tf . To prove (12.15),

Eπ
[
|Φ1(Tf ) ∩ Φ2(Tf ) |

]
≤ Eπ [|Φ1(T1) ∩ Φ2(T1) |] (because Tf ⊆ T1)
= Eπ [( |Φ1(T1) | + |Φ2(T1) |) − |Φ1(T1) ∪ Φ2(T1) |]
= Eπ [|Φ1(T1) | + |Φ2(T1) | − |OPT|] (because T1 is a maximal solution)
≤ 2 Eπ [|T1 |] − |OPT| (because |T1 | ≥ |Φi (T1) |)
≤ 2ϵ |OPT|.

Now to prove Eq (12.16), we �rst bound |Φ1(Tf ) | + |Φ2(Tf ) |. It is at least

|OPT| +
∑

e∈OPT
1[e ∈ span1(Tf ) ∩ span2(Tf )] −

∑
e∈OPT

1[e <
(
span1(Tf ) ∪ span2(Tf )

)
]

≥ |OPT| +
∑

e∈OPT
1[e ∈ Tf ] −

∑
e∈OPT

1[e < span1(Tf ) ∪ span2(Tf )]. (because Tf ⊆ spani (Tf ))

191



Taking expectations and using Claim 12.6.8,

Eπ [|Φ1(Tf ) | + |Φ2(Tf ) |] ≥ |OPT| −
( 1
f
− 2

)
Eπ [|Tf ∩ OPT|] (12.17)

Since f ≤ 1
2 , we can use an upper bound on Eπ [|Tf ∩ OPT|]. Observe T1 ⊇ Tf is a maximal

solution implying |T1 | ≥ |T1 ∩ OPT| + 1
2 ( |OPT| − |T1 ∩ OPT|) ≥ 1

2 ( |OPT| + |Tf ∩ OPT|). Taking
expectations,

Eπ [|Tf ∩ OPT|] ≤ 2Eπ
[
|T1 | −

1
2 |OPT|

]
≤ 2 ϵ |OPT|. (because Eπ [|T1 |] ≤

(
1
2 + ϵ

)
|OPT|)

Combining this with (12.17) and (12.15) proves (12.16),

Eπ
[
|Φ1(T

π
f ) ∪ Φ2(T

π
f ) |

]
= Eπ [|Φ1(Tf ) | + |Φ2(Tf ) |] − Eπ

[
|Φ1(T

π
f ) ∩ Φ2(T

π
f ) |

]

≥

(
1 − 2ϵ

f
+ 2ϵ

)
|OPT|.

Finally, using (12.17) and |Tf | ≥ |Φi (Tf ) |, we also have Eπ [|T π
f
|] ≥ 1

2Eπ [|Φ1(Tf ) | +

|Φ2(Tf ) |] ≥
(

1
2 −

(
1
f − 2

)
ϵ
)
|OPT|. �

For intuition, imagine the following claim for f = 1
2 , where it says that for a uniformly

random order probability that e is in not in the span of Tf for either of the matroids is at most
the probability e is selected by Greedy into Tf .

Claim 12.6.8. Suppose G (1) ≤
(

1
2 + ϵ

)
|OPT| for some ϵ < 1

2 and Tf is the output of Greedy on

E ([1,mf )], then

∀e ∈ OPT Pr
π

[
e < Φ1(Tf ) ∧ e < Φ2(Tf )

]
≤

( 1
f
− 1

)
Pr
π

[e ∈ Tf ].

Proof. Let us de�ne the event X =
(
e < Φ1(Tf ) ∧ e < Φ2(Tf )

)
∨ (e ∈ Tf ). Consider the

mapping д from permutations to permutations. If e occurs in the �rst f fraction of elements
thenд(π ) = π . If not, then remove e and insert it uniformly at randomly at a position in [1,mf ].
�is induces a mapping from the set of all permutations on the ground elements to the set of
permutations that have e in the �rst f fraction of elements. �e important observation is that
the set of permutations satisfying the event X still satisfy the event under the mapping д. We
can conclude that Pr[X] ≤ Pr[X | e ∈ [1,mf ]]. Conditioned on the event that e ∈ [1, f m],
event X means e ∈ Tf . �is is because if e < Φ1(Tf ) ∧ e < Φ2(Tf ) and e ∈ E[1, f m] then
Tf ∪ e ∈ M1 ∩M2. �us, we can conclude that Pr[X] ≤ Pr[e ∈ Tf | e ∈ [1,mf ]] = 1

f Pr[e ∈

Tf ]. Moreover, since
(
e < Φ1(Tf ) ∧ e < Φ2(Tf )

)
and (e ∈ Tf ) are disjoint events, Pr[X] =

Pr
[(
e < Φ1(Tf ) ∧ e < Φ2(Tf )

)]
+ Pr[e ∈ Tf ], which proves this claim. �

192



Part IV

Conclusions

193





Chapter 13

Further Directions for Probing and

Stopping-Time Algorithms

In this chapter we discuss several further directions for the probing and stopping-time models
described in the previous chapters.

13.1 How to Find a Car Parking

Consider a scenario where you want to go to a restaurant for dinner. �e problem is that the
restaurant is located at a popular location/site where �nding a car parking is di�cult. Based
on your prior experiences, suppose you know the probability of �nding parking at di�erent
potential sites in that area. Since di�erent parking sites incurs di�erent costs (e.g., based on
parking payment or the walking distance from the site to the restaurant), what strategy should
you adopt to minimize your total disutility: sum of the distance that you drive and the park-
ing cost. Clearly, one policy is to cancel your dinner plans and remain parked at your home.
However, this incurs a a large disutility that you would like to reduce. Formally, we de�ne this
problem as follows.

�e Car Parking Problem Given a graphG = (V ,E) with a metric (V ,d ) and a starting node
r ∈ V , suppose each node i ∈ V of the graph contains an empty parking spot independently
with probability pi (where pr = 1). If i is empty and we park the car at i then we incur a cost
ci . �e problem is to �nd a walk P starting at r , that minimizes the total expected disutility,
E [mini∈P {ci } + d (P )] ,where d (P ) is the length of the walk P .

�e above car parking problem is similar to the disutility-minimization variant of the Pan-
dora’s box problem discussed in §3.1.1. �e di�erence is that the probing prices are now given
by an underlying metric. �is inspires us to study more general variants of the car parking
problem where rather than �nding one empty parking lot, you need to �nd k empty parking
sites. We call this the k-car parking problem. In an ongoing work, we show the following.
�eorem 13.1.1. �ere exists an O (k ) approximation strategy for k-car parking.

�is theorem is interesting when k is small, but leaves an interesting open question.

195



�estion 13.1.2. Does there exist an O (1)-approximation algorithm for the k-car parking prob-

lem?

�e above question is also related the question of bounding adaptivity gaps beyond submod-
ular functions from Chapter 6. A non-adaptive algorithm for the k-parking problem �xes its
entire path independent of the actual instantiation of the parking sites. �is raises the question
of designing an O (1)-approximation non-adaptive algorithm.
�estion 13.1.3. Is the adaptivity gap for the k-car parking problem bounded by O (1)?

13.2 Learning Probability Distributions for Probing

In both the PoI and the CoSP probing models considered in Part II, we assume the probability
distributions of all input parameters is exactly known. �is is a strong assumption because in
practice we need to learn the probability distributions from samples. Since one can never learn
the distributions exactly from a �nite number of samples, this raises the question of designing
algorithms that robust to noise. We model these issues in the following two ways.

(A) Two-Phase Learning: In this model the problem contains two-phases: a learning phase

and an optimization phase. Given an ϵ > 0, the problem is to use the minimum number of
samples in the �rst phase to design a strategy which when used in the second-phase gives at
most an ϵ-additive loss to the optimal strategy that knows the distributions. In Chapter 3 we
saw how the results in the PoI model are robust and can achieve their guarantees given only a
polynomial number of samples. However, this question is still open in the CoSP model.
�estion 13.2.1. Do poly(n) samples su�ce for two-phase learning in the CoSP model?

(B) Simultaneous Exploration and Exploitation: �is model has the classical exploration
vs. exploitation tradeo� where the learning and the optimization phases operate together. For
example, consider the Pandora’s box problem where every day we play an instance of this
problem drawn from the same underlying unknown value distribution. Suppose the probing
prices are known, what strategy should we adopt to maximize the sum of our utility over T
days? We de�ne regret to be the di�erence of the total utility over T days obtained by the
optimum strategy that knows all probability distributions starting from day one and the total
utility of our algorithm.
�estion 13.2.2. Can we obtain sublinear regret, i.e., o(T ), for the Pandora’s box problem in the

simultaneous exploration and exploitation model?

Similar questions are also open in the CoSP model, e.g., the Best-box problem.

13.3 Beyond Independent Probability Distributions

�e probing models considered in Part II assume that the probability distributions of di�erent
elements behave independently. �is is not without loss of generality and for many se�ings we
would like our model to capture element correlations.

196



(A) Hidden Markov Models

In Chapter 4 we use the Markovian PoI model to capture correlations in the evolution of a given
element. We now use a similar Markov model to capture correlations between elements.

Consider the disutility-minimization Pandora’s box problem along with a hidden random
state S from §3.1.1. Suppose S takes a value from a known probability distribution (e.g., S can be
“high” or “low” w.p. half each). Conditioned on the value of S , the r.v.s {Xi }i∈[n] corresponding
to the cost of each box take values independently from known distributions. �is is also known
as the Bayesian network model (see Figure 13.1). �e algorithm is not allowed to probe the
hidden state S ; however, probing di�erent boxes gives a be�er posterior on the value of S .
What probing strategy should we adopt to minimize the expected disutility, which is the sum
of total probing price and the cost of the box that we select.

X1 X2 Xn−1 Xn

S

Figure 13.1: Random variables X1, . . . ,Xn are independent conditioned on hidden variable S .
�estion 13.3.1. Can we design optimal/O (1)-approximation strategy for the disutility-

minimization Pandora’s box problem in the Hidden Markov model?

(B) Common Base-Value and Linear Distribution Models

One way of capturing mild positive correlations between random variables is using the common

base-value model of Chawla et. al [CMS15]. In this model, n random variablesX1, . . . ,Xn have a
common base-value distribution if there exist n+1 independent non-negative random variables
Y0,Y1, . . . ,Yn such that Xi = Y0 + Yi . In [BDHS15], Bateni et. al generalized the common base
value model. A probability distribution on n random variables X1, . . . ,Xn is a linear distribution

if there exist non-negative independent random variablesY = {Y1,Y2, . . . .,Yk } and a k×n matrix
M with non-negative values such that Xi = 〈Mi ,Y 〉 is the dot product of the i’th column Mi of
M and the random vector Y .

In some preliminary work, we designO (1)-approximation prophet inequalities for common
base-value distributions. �is raises the following question.
�estion 13.3.2. Can we designO (1)-approximation algorithms for single-item prophet inequal-

ities or utility-maximization Pandora’s box problem in the linear distribution model?

13.4 Prophet Inequalities from Samples

�e prophet inequalities designed in Chapter 8 assume that we exactly know the input distri-
butions. Because of the concerns raised in §13.2, we want to design robust algorithms that give

197



good multiplicative approximation results even with a small number of samples. Intuitively,
it might appear that such guarantees are not possible because in most learning algorithms we
only obtain additive guarantees with O (1)-samples. A surprising result due to Azar, Kleinberg,
and Weinberg [AKW14] shows that for single item prophet inequalities, one can obtain an
e-approximation algorithm using only one sample from each distribution.

In [AKW14] the authors show a strong connection between the secretary and prophet in-
equality models. �ey proved that any α-approximation “order oblivious” secretary algorithm
can be converted to obtain an α-approximation prophet inequality. As a corollary, this implies
O (1) prophet inequalities for several matroid constraints where we know O (1)-approximation
secretary algorithms. Since such results are not known for general matroids, this raises the
following interesting question.
�estion 13.4.1. Can we designO (1)-approximation matroid prophet inequality using onlyO (1)
independent samples from each distribution?

In preliminary work along this direction, we observe that the “median based” 2-
approximation prophet inequality algorithm due to Samuel-Cahn [SC84] for single item

is robust: O (1/ϵ2)-samples from each distribution su�ce to improve the e-approximation
in [AKW14] to a (2 + ϵ )-approximation single item prophet inequality. Can we generalize
this median based single item algorithm to general matroids?

13.5 Orienteering Secretary and Prophet Inequality Prob-

lems

Consider another example of a combinatorial optimization problem under uncertainty. Suppose
you run a fedex service. Every day you receive a sequence of requests from a subset of the
houses in the city to pick up their package, and how much they are willing to pay you for their
pickup. On receiving a request, you have to immediately and irrevocably decide whether to
accept the request, while always ensuring that the set of accepted o�ers can be visited between
9 am to 5 pm the following day. �e goal is to maximize the sum of the payments of the accepted
o�ers.

In the deterministic case where we know all the requests and their payment values, the
above problem is exactly the orienteering problem. It is known that this problem is NP-hard, but
O (1)-approximation e�cient algorithms are possible [BCK+07]. In an uncertain environment,
this problem can be modeled in both the secretary and the prophet inequality models. Since
orienteering is a packing constraint, we know from the work of Rubinstein [Rub16] thatO (logn·
log r )-approximation algorithms are information theoretically possible in both these stopping-
time models. Unfortunately, these algorithms are not e�cient. In an ongoing work we show
that one cannot obtain o(logn/ log logn)-approximation for the orienteering secretary or the
orienteering prophet inequality problems. However, it is not known if there exists an e�cient
algorithm that achieves this bound. Ideally, we would like to obtain the following black-box
reduction.
�estion 13.5.1. Given access to an α-approximation oracle for linear function maximization

198



over some packing constraint F (e.g., orienteering), can we design an e�cient α · poly log(n)-
approximation algorithm for the same problem in the secretary/prophet-inequality model?

13.6 Improving Approximation and Hardness Results

In this section we list a few problems where we do not know the tight approximation factors.
First, consider probing algorithms.

(A) Consider the shortest-path problem in the PoI model. Given a graph G = (V ,E) where
each edge e has a stochastic cost Xe that can be found by paying a probing price πe . For
given nodes s,t ∈ V , what strategy should we adopt to �nd a path from s to t while
minimizing the length of the path plus the total probing price. Can we get an O (1)-
approximation for this problem?

(B) Consider House-Purchasing in the CoSP model (De�nition 1.3.2). Using techniques
from §5 we can design an O (1)-approximation algorithm for this problem. (Also,
see [HFX18].) Is it possible to �nd the optimal policy in polynomial time or prove that
the problem is hard?

(C) In §13.1 we give an O (1)-approximation algorithm for the 1-car parking problem. Can
we show that �nding the optimal strategy is hard?

Next, we list some open problems for the stopping-time models.

(A) �e online submodular welfare problem is a generalization of online bipartite matching
where items arrive one-by-one and we have to immediately and irrevocably allocate them
to users with di�erent submodular valuations. �e goal is to maximize the sum of the user
valuations. A simple argument shows that the greedy algorithm that allocates the item to
the user with largest marginal value is 1/2-competitive. Can we show that this algorithm
is (1 − 1/e )-competitive for random arrival order of the items? See [KMZ15].

(B) In Corollary 12.1.2 we gave a (1/2+ϵ )-competitive algorithm for online bipartite matching
in the random edge arrival model, where ϵ < 10−4. Can we obtain a signi�cantly larger
constant? Also, can we show that for adversarial edge arrival one cannot beat half?

(C) �e important question of obtaining an O (1)-competitive algorithm for the matroid sec-

retary problem is open. In §13.4 we discussed how secretary algorithms can be used to
design a robust prophet inequality. Can we show the converse and use a robust matroid
prophet inequality algorithm to obtain a matroid secretary algorithm?

199



200



Bibliography

[ACK18] Yossi Azar, Ashish Chiplunkar, and Haim Kaplan. Prophet secretary: Surpassing
the 1-1/e barrier. In Proceedings of the 2018 ACM Conference on Economics and

Computation, Ithaca, NY, USA, June 18-22, 2018, pages 303–318, 2018. 10.1.1, 10.1.2
[Ada11] Marek Adamczyk. Improved analysis of the greedy algorithm for stochastic match-

ing. Inf. Process. Le�., 111(15):731–737, 2011. 3.1.3, 5.1.2, 5.1.3
[ADFS95] Jonathan Aronson, Martin Dyer, Alan Frieze, and Stephen Suen. Randomized

greedy matching. II. Random Structures & Algorithms, 6(1):55–73, 1995. 12.1.1,
12.1.3

[ADSY12] Shipra Agrawal, Yichuan Ding, Amin Saberi, and Yinyu Ye. Price of correlations
in stochastic optimization. Operations Research, 60(1):150–162, 2012. 6.2, 9.1.2, 9.2

[AEE+17] Melika Abolhasani, Soheil Ehsani, Hossein Esfandiari, MohammadTaghi Haji-
Aghayi, Robert Kleinberg, and Brendan Lucier. Beating 1-1/e for ordered prophets.
In Proceedings of the 49th Annual ACM SIGACT Symposium on �eory of Computing,
pages 61–71. ACM, 2017. 10.1.1, 10.1.2, 10.3, 11.1.1

[AGKM11] Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. Online
vertex-weighted bipartite matching and single-bid budgeted allocations. In Pro-

ceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms,
pages 1253–1264. SIAM, 2011. 12.1

[AGM15] Marek Adamczyk, Fabrizio Grandoni, and Joydeep Mukherjee. Improved approx-
imation algorithms for stochastic matching. In Algorithms-ESA 2015, pages 1–12.
Springer, 2015. 3.1.3, 5.1.3

[AHL12] Saeed Alaei, MohammadTaghi Hajiaghayi, and Vahid Liaghat. Online prophet-
inequality matching with applications to ad allocation. In ACM Conference on

Electronic Commerce, EC ’12, Valencia, Spain, June 4-8, 2012, pages 18–35, 2012.
8.1.2

[AKW14] Pablo Daniel Azar, Robert Kleinberg, and S. Ma�hew Weinberg. Prophet inequali-
ties with limited information. In Proceedings of the Twenty-Fi�h Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7,

2014, pages 1358–1377, 2014. 8.1.2, 13.4, 13.4
[Ala11] Saeed Alaei. Bayesian combinatorial auctions: Expanding single buyer mecha-

nisms to many buyers. In IEEE 52nd Annual Symposium on Foundations of Com-

puter Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 512–

201



521, 2011. 8.1.2
[Ala14] Saeed Alaei. Bayesian combinatorial auctions: Expanding single buyer mecha-

nisms to many buyers. SIAM Journal on Computing, 43(2):930–972, 2014. 8.1, 8.2.1,
11.1

[AM06] Lawrence M Ausubel and Paul Milgrom. �e lovely but lonely vickrey auction.
Combinatorial auctions, 17:22–26, 2006. 8.1, 11.1

[AMM+11] Yossi Azar, Aleksander Madry, �omas Moscibroda, Debmalya Panigrahi, and Ar-
avind Srinivasan. Maximum bipartite �ow in networks with adaptive channel
width. �eor. Comput. Sci., 412(24):2577–2587, 2011. 5.5.4

[AN16] Arash Asadpour and Hamid Nazerzadeh. Maximizing stochastic monotone sub-
modular functions. Management Science, 62(8):2374–2391, 2016. 5.1.1, 5.1.3, 13.6

[ANS08] Arash Asadpour, Hamid Nazerzadeh, and Amin Saberi. Stochastic submodular
maximization. In International Workshop on Internet and Network Economics, pages
477–489. Springer, 2008. Full version appears as [AN16]. 3.1.3, 5.1.2

[AR12] Itai Ashlagi and Alvin E. Roth. New challenges in multihospital kidney exchange.
American Economic Review, 102(3):354–59, 2012. 5.1.3

[ASW14] Marek Adamczyk, Maxim Sviridenko, and Justin Ward. Submodular stochastic
probing on matroids. In STACS, pages 29–40, 2014. 3.1.3, 5.1.2, 5.1.3

[BCK+07] Avrim Blum, Shuchi Chawla, David R Karger, Terran Lane, Adam Meyerson, and
Maria Minko�. Approximation algorithms for orienteering and discounted-reward
tsp. SIAM Journal on Computing, 37(2):653–670, 2007. 13.5

[BCK12] Anand Bhalgat, Tanmoy Chakraborty, and Sanjeev Khanna. Mechanism design for
a risk averse seller. In Internet and Network Economics - 8th International Workshop,

WINE 2012, Liverpool, UK, December 10-12, 2012. Proceedings, pages 198–211, 2012.
9.1.2

[BCN+15] Alok Baveja, Amit Chavan, Andrei Nikiforov, Aravind Srinivasan, and Pan Xu.
Improved bounds in stochastic matching and optimization. In Approximation,

Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-

PROX/RANDOM 2015, August 24-26, 2015, Princeton, NJ, USA, pages 124–134, 2015.
3.1.3, 5.1.3

[BDF+12] Ashwinkumar Badanidiyuru, Shahar Dobzinski, Hu Fu, Robert Kleinberg, Noam
Nisan, and Tim Roughgarden. Sketching valuation functions. In Proceedings of the

twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages 1025–
1035. SIAM, 2012. 6.5

[BDHS15] MohammadHossein Bateni, Sina Dehghani, MohammadTaghi Hajiaghayi, and
Saeed Seddighin. Revenue maximization for selling multiple correlated items. In
Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece, Septem-

ber 14-16, 2015, Proceedings, pages 95–105, 2015. 13.3
[Ber95] Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1. Athena

scienti�c Belmont, MA, 1995. 1.5.3

202



[BFNS14] Niv Buchbinder, Moran Feldman, Joseph Se� Naor, and Roy Schwartz. Submod-
ular maximization with cardinality constraints. In Proceedings of the Twenty-Fi�h

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1433–1452. SIAM,
2014. 2.4.3, 5.4.3

[BFS15] Niv Buchbinder, Moran Feldman, and Roy Schwartz. Online submodular maxi-
mization with preemption. In Proceedings of the Twenty-Sixth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 1202–1216. SIAM, 2015. 9.1.3
[BG96] Ann Becker and Dan Geiger. Optimization of pearl’s method of conditioning and

greedy-like approximation algorithms for the vertex feedback set problem. Arti�-

cial Intelligence, 83(1):167–188, 1996. 3.4.2
[BGK11] Anand Bhalgat, Ashish Goel, and Sanjeev Khanna. Improved approximation re-

sults for stochastic knapsack problems. In SODA, pages 1647–1665, 2011. 3.1.3,
5.1.3

[BGL+12] Nikhil Bansal, Anupam Gupta, Jian Li, Julián Mestre, Viswanath Nagarajan, and
Atri Rudra. When LP Is the Cure for Your Matching Woes: Improved Bounds for
Stochastic Matchings. Algorithmica, 63(4):733–762, 2012. 3.1.3, 5.1, 5.1.3

[BH11] Maria-Florina Balcan and Nicholas JA Harvey. Learning submodular functions.
In Proceedings of the forty-third annual ACM symposium on �eory of computing,
pages 793–802. ACM, 2011. 6.5

[BH16] Eric Balkanski and Jason D. Hartline. Bayesian budget feasibility with posted pric-
ing. In Proceedings of the 25th International Conference on World Wide Web, WWW

2016, Montreal, Canada, April 11 - 15, 2016, pages 189–203, 2016. 9.1.2
[BHZ13] MohammadHossein Bateni, Mohammad Taghi Hajiaghayi, and Morteza Zadi-

moghaddam. Submodular secretary problem and extensions. ACM Trans. Algo-

rithms, 9(4):32, 2013. 10.1.1, 10.1.2
[BIK07] Moshe Babaio�, Nicole Immorlica, and Robert Kleinberg. Matroids, secretary

problems, and online mechanisms. In Proceedings of the Eighteenth Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA,

January 7-9, 2007, pages 434–443, 2007. 10.1.1, 10.1.2
[BM08] Benjamin Birnbaum and Claire Mathieu. On-line bipartite matching made simple.

ACM SIGACT News, 39(1):80–87, 2008. 12.1.3
[BMKK14] Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas

Krause. Streaming submodular maximization: Massive data summarization on the
�y. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 671–680. ACM, 2014. 9.1.3
[BN14] Nikhil Bansal and Viswanath Nagarajan. On the adaptivity gap of stochastic ori-

enteering. In IPCO, pages 114–125, 2014. 3.1.3, 5.1.3
[BPR+16] Ashwinkumar Badanidiyuru, Christos H. Papadimitriou, Aviad Rubinstein, Lior

Seeman, and Yaron Singer. Locally adaptive optimization: Adaptive seeding for
monotone submodular functions. In Proceedings of the Twenty-Seventh Annual

203



ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA,

January 10-12, 2016, pages 414–429, 2016. 9.1.2
[BSZ18] Domagoj Bradac, Sahil Singla, and Goran Zuzic. (Near) optimal adaptivity gaps

for stochastic multi-value probing, Manuscript. 2018. 1.5.4
[BUCM12] Siddharth Barman, Seeun Umboh, Shuchi Chawla, and David L. Malec. Secretary

problems with convex costs. In Automata, Languages, and Programming - 39th

International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings,

Part I, pages 75–87, 2012. 10.1.1
[BYE81] Reuven Bar-Yehuda and Shimon Even. A linear-time approximation algorithm for

the weighted vertex cover problem. Journal of Algorithms, 2(2):198–203, 1981. 3.4.2
[BYGNR98] Reuven Bar-Yehuda, Dan Geiger, Joseph Naor, and Ron M. Roth. Approximation

algorithms for the feedback vertex set problem with applications to constraint sat-
isfaction and bayesian inference. SIAM journal on computing, 27(4):942–959, 1998.
3.4.2

[CCPV07] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a
submodular set function subject to a matroid constraint. In International Con-

ference on Integer Programming and Combinatorial Optimization, pages 182–196.
Springer, 2007. 2.4.2, 9.1.2, 9.2, 9.2.2

[CCPV11] Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a
monotone submodular function subject to a matroid constraint. SIAM J. Comput.,
40(6):1740–1766, 2011. 2.3.1, 5.1, 5.3.3, 7.2.5

[CCWZ14] T-H. Hubert Chan, Fei Chen, Xiaowei Wu, and Zhichao Zhao. Ranking on arbi-
trary graphs: Rematch via continuous LP with monotone and boundary condition
constraints. In Proceedings of the Twenty-Fi�h Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 1112–1122, 2014. 12.1.3
[CFG+02] Moses Charikar, Ronald Fagin, Venkatesan Guruswami, Jon M. Kleinberg, Prab-

hakar Raghavan, and Amit Sahai. �ery strategies for priced information. J.

Comput. Syst. Sci., 64(4):785–819, 2002. 3.1.3
[CFH+17] José Correa, Patricio Foncea, Ruben Hoeksma, Tim Oosterwijk, and Tjark Vrede-

veld. Posted price mechanisms for a random stream of customers. In Proceedings

of the 2017 ACM Conference on Economics and Computation, pages 169–186. ACM,
2017. 10.1.1, 10.1.2, 10.1.2, 10.3, 5

[CGQ15] Chandra Chekuri, Shalmoli Gupta, and Kent �anrud. Streaming algorithms for
submodular function maximization. In International Colloquium on Automata, Lan-

guages, and Programming, pages 318–330. Springer, 2015. 9.1.3
[CHMS10] Shuchi Chawla, Jason D. Hartline, David L. Malec, and Balasubramanian Sivan.

Multi-parameter mechanism design and sequential posted pricing. In Proceedings

of the 42nd ACM Symposium on �eory of Computing, STOC 2010, Cambridge, Mas-

sachuse�s, USA, 5-8 June 2010, pages 311–320, 2010. 8.1.2, 11.1
[CIK+09] Ning Chen, Nicole Immorlica, Anna R. Karlin, Mohammad Mahdian, and Atri

204



Rudra. Approximating matches made in heaven. In Automata, Languages and

Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece, July 5-

12, 2009, Proceedings, Part I, pages 266–278, 2009. 3.1.3, 5.1, 5.1.2, 5.1.3
[CK15] Amit Chakrabarti and Sagar Kale. Submodular maximization meets streaming:

Matchings, matroids, and more. Mathematical Programming, 154(1-2):225–247,
2015. 9.1.3

[CMS15] Shuchi Chawla, David L. Malec, and Balasubramanian Sivan. �e power of ran-
domness in bayesian optimal mechanism design. Games and Economic Behavior,
91:297–317, 2015. 13.3

[CP05] Chandra Chekuri and Martin Pál. A recursive greedy algorithm for walks in di-
rected graphs. In FOCS, pages 245–253, 2005. 5.3.3, 5.5.1, 5.5.1, 5.5.1

[CQ16] Chandra Chekuri and Kent �anrud. Fast approximations for matroid intersec-
tion. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Dis-

crete Algorithms, 2016. 12.1.1, 12.1.3
[CS11] D. Chakrabarty and C. Swamy. Facility location with client latencies: Linear pro-

gramming based techniques for minimum latency problems. In 15th International

Conference on Integer Programming and Combinatoral Optimization (IPCO), pages
92–103, 2011. 5.5.2

[Cun86] William H Cunningham. Improved bounds for matroid partition and intersection
algorithms. SIAM Journal on Computing, 15(4):948–957, 1986. 12.1.3

[CVZ14] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular function maxi-
mization via the multilinear relaxation and contention resolution schemes. SIAM

J. Comput., 43(6):1831–1879, 2014. 8.2, 8.2, 8.2.2, 8.3, 9.1.2, 9.3
[DEH+17] Sina Dehghani, Soheil Ehsani, MohammadTaghi Hajiaghayi, Vahid Liaghat, and

Saeed Seddighin. Stochastic k-Server: How Should Uber Work? In ICALP 2017,
2017. 10.1.2

[DF91] Martin Dyer and Alan Frieze. Randomized greedy matching. Random Structures &

Algorithms, 2(1):29–45, 1991. 12.1.3, 12.6.3
[DFKL17] Paul Dü�ing, Michal Feldman, �omas Kesselheim, and Brendan Lucier. Prophet

inequalities made easy: Stochastic optimization by pricing non-stochastic inputs.
In IEEE 58th Annual Symposium on Foundations of Computer Science, FOCS 2017,

Berkeley, CA, USA, 14-17 October, 2017, pages 540–551, 2017. 11.2
[DGV04] Brian C. Dean, Michel X. Goemans, and Jan Vondrák. Approximating the stochas-

tic knapsack problem: �e bene�t of adaptivity. In Foundations of Computer Sci-

ence, 2004. Proceedings. 45th Annual IEEE Symposium on, pages 208–217. IEEE, 2004.
1.5.3, 3.1.3, 5.1.2, 5.1.3

[DGV05] Brian C. Dean, Michel X. Goemans, and Jan Vondrák. Adaptivity and approxima-
tion for stochastic packing problems. In Proceedings of the Sixteenth Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver, British Columbia,

Canada, January 23-25, 2005, pages 395–404, 2005. 3.1.3, 5.1.3

205



[DHK+13] Nikhil R. Devanur, Zhiyi Huang, Nitish Korula, Vahab S. Mirrokni, and Qiqi Yan.
Whole-page optimization and submodular welfare maximization with online bid-
ders. In ACM Conference on Electronic Commerce, EC ’13, Philadelphia, PA, USA,

June 16-20, 2013, pages 305–322, 2013. 9.1.3
[DHK14] Amol Deshpande, Lisa Hellerstein, and Devorah Kletenik. Approximation algo-

rithms for stochastic boolean function evaluation and stochastic submodular set
cover. In Proceedings of the Twenty-Fi�h Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1453–1466,
2014. 5.1, 5.1.3

[DJK13] Nikhil R Devanur, Kamal Jain, and Robert D Kleinberg. Randomized primal-dual
analysis of ranking for online bipartite matching. In Proceedings of the Twenty-

Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 101–107, 2013.
12.1, 12.1.3

[DNS10] Shahar Dobzinski, Noam Nisan, and Michael Schapira. Approximation algorithms
for combinatorial auctions with complement-free bidders. Mathematics of Opera-

tions Research, 35(1):1–13, 2010. 11.1, 11.3.2, 11.3.2
[Dob07] Shahar Dobzinski. Two randomized mechanisms for combinatorial auctions. In

Approximation, Randomization, and Combinatorial Optimization. Algorithms and

Techniques, 10th International Workshop, APPROX 2007, and 11th International

Workshop, RANDOM 2007, Princeton, NJ, USA, August 20-22, 2007, Proceedings,
pages 89–103, 2007. 2.4.7, 6.5, 9.4

[Dov18] Laura Doval. Whether or not to open pandora’s box. Journal of Economic �eory,
175:127–158, 2018. 3.1.3

[DTW03] Ioana Dumitriu, Prasad Tetali, and Peter Winkler. On playing golf with two balls.
SIAM Journal on Discrete Mathematics, 16(4):604–615, 2003. 4.1, 4.1.1, 4.1.3, 4.1.4,
4.2, 4.2.1, 4.2.1, 4.2.2, 4.3.1, 4.3.1

[Dyn63] Eugene B Dynkin. �e optimum choice of the instant for stopping a markov pro-
cess. In Soviet Math. Dokl, volume 4, 1963. 1.3.2, 1.5.2, 10.1.1, 10.1.2

[Edm70] Jack Edmonds. Submodular functions, matroids, and certain polyhedra. Combina-

torial structures and their applications, pages 69–87, 1970. 12.1.1
[EHKS18] Soheil Ehsani, Mohammad Hajiaghayi, �omas Kesselheim, and Sahil Singla.

Prophet secretary for combinatorial auctions and matroids. In Proceedings of the

Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2018.
1.5.4, 11.1

[EHLM17] Hossein Esfandiari, MohammadTaghi Hajiaghayi, Vahid Liaghat, and Morteza
Monemizadeh. Prophet secretary. SIAM Journal on Discrete Mathematics,
31(3):1685–1701, 2017. 7.1.4, 8.1.2, 10.1.1, 10.1.2, 11.1, 11.1.1, 11.2, 11.5, 11.5.2

[ELMS11] Leah Epstein, Asaf Levin, Julián Mestre, and Danny Segev. Improved approxima-
tion guarantees for weighted matching in the semi-streaming model. SIAM Journal

on Discrete Mathematics, 25(3):1251–1265, 2011. 12.1.3

206



[ELSW13] Leah Epstein, Asaf Levin, Danny Segev, and Oren Weimann. Improved bounds
for online preemptive matching. In 30th International Symposium on �eoretical

Aspects of Computer Science, STACS 2013, pages 389–399, 2013. 12.1.1
[ER64] Paul Erdos and Alfred Renyi. On random matrices. Magyar Tud. Akad. Mat. Kutató

Int. Közl, 8(455-461):1964, 1964. 12.6.5
[Fei09] Uriel Feige. On maximizing welfare when utility functions are subadditive. SIAM

Journal on Computing, 39(1):122–142, 2009. 2.2.2, 2.4.2, 11.1
[FGL15] Michal Feldman, Nick Gravin, and Brendan Lucier. Combinatorial auctions via

posted prices. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 123–135. Society for Industrial and Applied Mathe-
matics, 2015. 8.1.2, 11.1, 11.1, 11.5, 11.5.2

[FI17] Moran Feldman and Rani Izsak. Building a good team: Secretary problems and
the supermodular degree. In Proceedings of the Twenty-Eighth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 1651–1670. SIAM, 2017. 10.1.1
[FKM+05] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian

Zhang. On graph problems in a semi-streaming model. Elsevier �eoretical Com-

puter Science, 348(2):207–216, 2005. 12.1.3
[FMV11] Uriel Feige, Vahab S Mirrokni, and Jan Vondrák. Maximizing non-monotone sub-

modular functions. SIAM Journal on Computing, 40(4):1133–1153, 2011. 2.4.4, 2.4.5,
2.4.1, 5.1, 5.2, 5.4

[FNS11a] Moran Feldman, Joseph Naor, and Roy Schwartz. Improved competitive ratios for
submodular secretary problems (extended abstract). In Approximation, Random-

ization, and Combinatorial Optimization. Algorithms and Techniques - 14th Interna-

tional Workshop, APPROX 2011, and 15th International Workshop, RANDOM 2011,

Princeton, NJ, USA, August 17-19, 2011. Proceedings, pages 218–229, 2011. 10.1.1
[FNS11b] Moran Feldman, Joseph Naor, and Roy Schwartz. A uni�ed continuous greedy al-

gorithm for submodular maximization. In Foundations of Computer Science (FOCS),

2011 IEEE 52nd Annual Symposium on, pages 570–579. IEEE, 2011. 5.1
[FNW78] Marshall L. Fisher, George L. Nemhauser, and Laurence A. Wolsey. An analysis

of approximations for maximizing submodular set functions��ii. In Polyhedral

combinatorics, pages 73–87. Springer, 1978. 5.1, 7.2.5
[Fre75] David A. Freedman. On tail probabilities for martingales. Annals of Probability,

3:100–118, 1975. 6.5.8
[FSZ15] Moran Feldman, Ola Svensson, and Rico Zenklusen. A simple O(log log(rank))-

competitive algorithm for the matroid secretary problem. In Proceedings of the

Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015,

San Diego, CA, USA, January 4-6, 2015, pages 1189–1201, 2015. 10.1.2, 10.4
[FSZ16] Moran Feldman, Ola Svensson, and Rico Zenklusen. Online contention resolution

schemes. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages

207



1014–1033, 2016. 1.5.2, 7.1.2, 7.3, 7.3.2, 7.3.3, 8.1.1, 8.1.2, 8.2, 8.2, 8.2.1, 8.2.2, 9.3,
9.3.4, 9.3

[FZ15] Moran Feldman and Rico Zenklusen. �e submodular secretary problem goes lin-
ear. In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium

on, pages 486–505. IEEE, 2015. 10.1.1, 10.1.2, 10.4
[GGLS08] Naveen Garg, Anupam Gupta, Stefano Leonardi, and Piotr Sankowski. Stochastic

analyses for online combinatorial optimization problems. In Proceedings of the

nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages 942–951.
Society for Industrial and Applied Mathematics, 2008. 10.1.2

[GGM10] Ashish Goel, Sudipto Guha, and Kamesh Munagala. How to probe for an extreme
value. ACM Transactions on Algorithms (TALG), 7(1):12, 2010. 3.1.3

[GGW11] John Gi�ins, Kevin Glazebrook, and Richard Weber. Multi-armed bandit allocation

indices. John Wiley & Sons, 2011. 4.1.4
[GHK+14] Oliver Göbel, Martin Hoefer, �omas Kesselheim, �omas Schleiden, and Berthold

Vöcking. Online independent set beyond the worst-case: Secretaries, prophets,
and periods. In International Colloquium on Automata, Languages, and Program-

ming, pages 508–519. Springer, 2014. 10.1.2
[GJ74] John Gi�ins and David Jones. A dynamic allocation index for the sequential design

of experiments. Progress in statistics, pages 241–266, 1974. 4.1.4
[GJSS18] Anupam Gupta, Haotian Jiang, Ziv Scully, and Sahil Singla. �e markovian price

of information, Manuscript. 2018. 1.5.4
[GK01] Anupam Gupta and Amit Kumar. Sorting and selection with structured costs. In

Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on, pages
416–425. IEEE, 2001. 3.1.3

[GK10] Daniel Golovin and Andreas Krause. Adaptive submodularity: A new approach to
active learning and stochastic optimization. In COLT 2010 - �e 23rd Conference on

Learning �eory, Haifa, Israel, June 27-29, 2010, pages 333–345, 2010. 9.1.3
[GKMR11] Anupam Gupta, Ravishankar Krishnaswamy, Marco Molinaro, and R. Ravi. Ap-

proximation algorithms for correlated knapsacks and non-martingale bandits. In
IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm

Springs, CA, USA, October 22-25, 2011, pages 827–836, 2011. 3.1.3, 5.1.3
[GKNR12] Anupam Gupta, Ravishankar Krishnaswamy, Viswanath Nagarajan, and R. Ravi.

Approximation algorithms for stochastic orienteering. In Proceedings of the

Twenty-�ird Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012,

Kyoto, Japan, January 17-19, 2012, pages 1522–1538, 2012. 3.1.3, 5.1.2, 5.1.3
[GKS14] Daniel Golovin, Andreas Krause, and Ma�hew Streeter. Online submodular max-

imization under a matroid constraint with application to learning assignments.
arXiv preprint arXiv:1407.1082, 2014. 9.1.3

[GM07] Sudipto Guha and Kamesh Munagala. Approximation algorithms for budgeted
learning problems. In STOC, pages 104–113. 2007. Full version as: Approximation

208



Algorithms for Bayesian Multi-Armed Bandit Problems, http://arxiv.org/
abs/1306.3525. 1.5.3, 3.1.3, 4.1.4, 5.1.3, 7.1.2, 7.3.1

[GM08] Gagan Goel and Aranyak Mehta. Online budgeted matching in random input mod-
els with applications to adwords. In Proceedings of the Nineteenth Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 982–991. Society for Industrial and
Applied Mathematics, 2008. 10.1.2, 12.1, 12.1.1, 12.1.3

[GM09] Sudipto Guha and Kamesh Munagala. Multi-armed bandits with metric switching
costs. In Automata, Languages and Programming, 36th Internatilonal Colloquium,

ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part II, pages 496–507,
2009. 3.1.3, 5.1.3

[GM12] Sudipto Guha and Kamesh Munagala. Adaptive uncertainty resolution in bayesian
combinatorial optimization problems. ACM Transactions on Algorithms (TALG),
8(1):1, 2012. 3.1.3

[GMS07] Sudipto Guha, Kamesh Munagala, and Saswati Sarkar. Information acquisition and
exploitation in multichannel wireless systems. In IEEE Transactions on Information

�eory. Citeseer, 2007. 3.1.3
[GN13] Anupam Gupta and Viswanath Nagarajan. A stochastic probing problem with

applications. In Integer Programming and Combinatorial Optimization - 16th Inter-

national Conference, IPCO 2013, Valparaı́so, Chile, March 18-20, 2013. Proceedings,
pages 205–216, 2013. 3.1.3, 5.1, 5.1.3

[GNR10] Anupam Gupta, Viswanath Nagarajan, and R. Ravi. Approximation algorithms
for optimal decision trees and adaptive tsp problems. In ICALP (1), pages 690–701,
2010. 5.5.2

[GNS16] Anupam Gupta, Viswanath Nagarajan, and Sahil Singla. Algorithms and adaptiv-
ity gaps for stochastic probing. In Proceedings of the Twenty-Seventh Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 1731–1747. SIAM, 2016. 1.5.4, 5.1,
5.3

[GNS17] Anupam Gupta, Viswanath Nagarajan, and Sahil Singla. Adaptivity Gaps for
Stochastic Probing: Submodular and XOS Functions. In Proceedings of the Twenty-

Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1688–1702.
SIAM, 2017. 1.5.4, 5.1

[GRST10] Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. Constrained
non-monotone submodular maximization: O�ine and secretary algorithms. In In-

ternational Workshop on Internet and Network Economics, pages 246–257. Springer,
2010. 10.1.2

[GS17] Guru Prashanth Guruganesh and Sahil Singla. Online matroid intersection: Beat-
ing half for random arrival. In International Conference on Integer Programming

and Combinatorial Optimization, pages 241–253. Springer, 2017. 1.5.4, 10.1.2, 12.1
[GW95] Michel X Goemans and David P Williamson. A general approximation technique

for constrained forest problems. SIAM Journal on Computing, 24(2):296–317, 1995.

209

http://arxiv.org/abs/1306.3525
http://arxiv.org/abs/1306.3525


3.4.2
[GX96] Harold N Gabow and Ying Xu. E�cient theoretic and practical algorithms for

linear matroid intersection problems. Journal of Computer and System Sciences,
53(1):129–147, 1996. 12.1.3

[Har08] Nicholas J. A. Harvey. Matroid intersection, pointer chasing, and young’s semi-
normal representation of Sn. In Proceedings of the Nineteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2008, San Francisco, California, USA, Jan-

uary 20-22, 2008, pages 542–549, 2008. 12.1.3
[Has96] Johan Hastad. Clique is hard to approximate within n1−ϵ . In Foundations of Com-

puter Science, 1996. Proceedings., 37th Annual Symposium on, pages 627–636. IEEE,
1996. 3.5.3

[HFX18] Jian Li Hao Fu and Pan Xu. A ptas for a class of stochastic dynamic programs.
In Automata, Languages, and Programming - 39th International Colloquium, ICALP

2018, 2018. 5.1.3, (B)
[HK73] John E Hopcro� and Richard M Karp. An n5̂/2 algorithm for maximum matchings

in bipartite graphs. SIAM Journal on computing, 2(4):225–231, 1973. 12.1.1
[HK+82] �eodore P Hill, Robert P Kertz, et al. Comparisons of stop rule and supremum

expectations of iid random variables. �e Annals of Probability, 10(2):336–345, 1982.
10.1.2, 10.3

[HK92] �eodore P Hill and Robert P Kertz. A survey of prophet inequalities in optimal
stopping theory. Contemp. Math, 125:191–207, 1992. 8.2.2, 1

[HK12] Elad Hazan and Satyen Kale. Online submodular minimization. Journal of Machine

Learning Research, 13(Oct):2903–2922, 2012. 9.1.3
[HKK16] Chien-Chung Huang, Naonori Kakimura, and Naoyuki Kamiyama. Exact and Ap-

proximation Algorithms for Weighted Matroid Intersection. In Proceedings of the

Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2016.
12.1.1, 12.1.3

[HKL15] Lisa Hellerstein, Devorah Kletenik, and Patrick Lin. Discrete stochastic submod-
ular maximization: Adaptive vs. non-adaptive vs. o�ine. In Algorithms and Com-

plexity - 9th International Conference, CIAC 2015, Paris, France, May 20-22, 2015.

Proceedings, pages 235–248, 2015. 5.1.3
[HKP04] Mohammad Taghi Hajiaghayi, Robert D. Kleinberg, and David C. Parkes. Adap-

tive limited-supply online auctions. In Proceedings 5th ACM Conference on Elec-

tronic Commerce (EC-2004), New York, NY, USA, May 17-20, 2004, pages 71–80, 2004.
10.1.1, 10.1.2

[HKS07] Mohammad Taghi Hajiaghayi, Robert D. Kleinberg, and Tuomas Sandholm. Au-
tomated online mechanism design and prophet inequalities. In Proceedings of the

Twenty-Second AAAI Conference on Arti�cial Intelligence, July 22-26, 2007, Vancou-

ver, British Columbia, Canada, pages 58–65, 2007. 8.1, 8.1.2
[HKT00] Magnús M. Halldórsson, Jan Kratochvıl, and Jan Arne Telle. Independent sets with

210



domination constraints. Discrete Applied Mathematics, 99(1):39–54, 2000. 3.5.3
[HSS06] Elad Hazan, Shmuel Safra, and Oded Schwartz. On the complexity of approximat-

ing k-set packing. Computational Complexity, 15(1):20–39, 2006. 7.2.3
[INvdZ12] Sungjin Im, Viswanath Nagarajan, and Ruben van der Zwaan. Minimum latency

submodular cover. In ICALP, pages 485–497, 2012. 5.5.2, 5.5.2
[Jen76] �omas A. Jenkyns. �e e�cacy of the �greedy� algorithm. In Proc. of 7th South

Eastern Conference on Combinatorics, Graph �eory and Computing, pages 341–350,
1976. 3.4.1

[JMM+03] Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V
Vazirani. Greedy facility location algorithms analyzed using dual ��ing with
factor-revealing lp. Journal of the ACM (JACM), 50(6):795–824, 2003. 3.4.2

[Kap13] Michael Kapralov. Be�er bounds for matchings in the streaming model. In Proceed-

ings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1679–1697. SIAM, 2013. 12.1.3

[KH78] Bernhard Korte and Dirk Hausmann. An analysis of the greedy heuristic for inde-
pendence systems. Annals of Discrete Mathematics, 2:65–74, 1978. 3.4.1

[KK03] Sampath Kannan and Sanjeev Khanna. Selection with monotone comparison costs.
In Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algo-

rithms, pages 10–17. Society for Industrial and Applied Mathematics, 2003. 3.1.3
[KKT15] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of in�uence

through a social network. �eory of Computing, 11(4):105–147, 2015. 5.1
[Kle05] Robert D. Kleinberg. A multiple-choice secretary algorithm with applications to

online auctions. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA 2005, Vancouver, British Columbia, Canada, January

23-25, 2005, pages 630–631, 2005. 10.1.1, 10.1.2
[KMM12] Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in

semi-streaming with few passes. In Approximation, Randomization, and Combi-

natorial Optimization. Algorithms and Techniques, pages 231–242. Springer, 2012.
12.1.1, 12.1.2, 12.1.3, 12.2.3, 12.2.2, 4, 12.3.2, 12.5.1, 12.6.7

[KMT11] Chinmay Karande, Aranyak Mehta, and Pushkar Tripathi. Online bipartite match-
ing with unknown distributions. In Proceedings of the forty-third annual ACM sym-

posium on �eory of computing, pages 587–596. ACM, 2011. 10.1.2, 12.1.1, 12.1.3
[KMZ15] Nitish Korula, Vahab Mirrokni, and Morteza Zadimoghaddam. Online submodular

welfare maximization: Greedy beats 1/2 in random order. In Proceedings of the

Forty-Seventh Annual ACM on Symposium on �eory of Computing, pages 889–898.
ACM, 2015. 9.1.3, 10.1.2, 12.1, 12.1.1, (A)

[KP09] Nitish Korula and Martin Pál. Algorithms for secretary problems on graphs and
hypergraphs. In International Colloquium on Automata, Languages and Program-

ming, pages 508–520. Springer, 2009. 10.1.2, 12.1.1, 12.1.3
[KPS14] Samir Khuller, Manish Purohit, and Kanthi K. Sarpatwar. Analyzing the opti-

211



mal neighborhood: Algorithms for budgeted and partial connected dominating
set problems. In SODA, pages 1702–1713, 2014. 5.5.3

[KPV13] Michael Kapralov, Ian Post, and Jan Vondrák. Online submodular welfare max-
imization: Greedy is optimal. In Proceedings of the Twenty-Fourth Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 1216–1225. Society for Industrial
and Applied Mathematics, 2013. 9.1.3

[Kra13] Andreas Krause. Submodularity in machine learning and vision. In British Machine

Vision Conference, BMVC 2013, Bristol, UK, September 9-13, 2013, 2013. 5.1
[KRTV13] �omas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. An op-

timal online algorithm for weighted bipartite matching and extensions to combi-
natorial auctions. In European Symposium on Algorithms, pages 589–600. Springer,
2013. 10.1.2, 12.1.3

[KS77] Ulrich Krengel and Louis Sucheston. Semiamarts and �nite values. Bull. Am. Math.

Soc, 1977. 1.3.2, 8.1
[KS78] Ulrich Krengel and Louis Sucheston. On semiamarts, amarts, and processes with

�nite value. Advances in Prob, 4:197–266, 1978. 1.3.2, 1.5.2, 8.1
[KS07] Stavros G. Kolliopoulos and George Steiner. Partially ordered knapsack and appli-

cations to scheduling. Discrete Applied Mathematics, 155(8):889–897, 2007. 5.5.4
[KSS13] Pushmeet Kohli, Mahyar Salek, and Greg Stoddard. A fast bandit algorithm for

recommendation to users with heterogenous tastes. In Proceedings of the Twenty-

Seventh AAAI Conference on Arti�cial Intelligence, July 14-18, 2013, Bellevue, Wash-

ington, USA., 2013. 9.1.2
[KV08] Bernhard Korte and Jens Vygen. Combinatorial Optimization, Volume 21 of Algo-

rithms and Combinatorics. Springer-Verlag, Berlin,, 2008. 12.1.1, 12.3.1
[KVV90] Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. An optimal algorithm

for on-line bipartite matching. In Proceedings of the Twenty-Second Annual ACM

Symposium on �eory of Computing, pages 352–358, 1990. 12.1, 12.1.3
[KW12] Robert Kleinberg and S. Ma�hew Weinberg. Matroid prophet inequalities. In

Proceedings of the 44th Symposium on �eory of Computing Conference, STOC 2012,

New York, NY, USA, May 19 - 22, 2012, pages 123–136, 2012. 1.5.2, 8.1, 8.1.2, 8.1.2,
8.2.2, 8.4, 8.4.2, 11.1, 11.1.2, 11.2, 11.4

[KWW16] Robert D. Kleinberg, Bo Waggoner, and E. Glen Weyl. Descending price optimally
coordinates search. In Proceedings of the 2016 ACM Conference on Economics and

Computation, EC ’16, Maastricht, �e Netherlands, July 24-28, 2016, pages 23–24,
2016. 1, 3.1.3, 3.2, 4.1, 4.1.4

[Lac14] Oded Lachish. O(log log rank) competitive ratio for the matroid secretary problem.
In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014,

Philadelphia, PA, USA, October 18-21, 2014, pages 326–335, 2014. 10.1.2, 10.4
[LB10] Brendan Lucier and Allan Borodin. Price of anarchy for greedy auctions. In Pro-

ceedings of the twenty-�rst annual ACM-SIAM symposium on Discrete Algorithms,

212



pages 537–553. Society for Industrial and Applied Mathematics, 2010. 11.4
[Led97] Michel Ledoux. On Talagrand’s deviation inequalities for product measures.

ESAIM: Probability and Statistics, 1:63–87, 1997. 9.4.8
[LMNS09] Jon Lee, Vahab S Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Non-

monotone submodular maximization under matroid and knapsack constraints. In
Proceedings of the forty-�rst annual ACM symposium on �eory of computing, pages
323–332. ACM, 2009. 5.1

[LPRY08] Zhen Liu, Srinivasan Parthasarathy, Anand Ranganathan, and Hao Yang. Near-
optimal algorithms for shared �lter evaluation in data stream systems. In Pro-

ceedings of the ACM SIGMOD International Conference on Management of Data,

SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pages 133–146, 2008. 5.1,
5.1.3

[LS17] Euiwoong Lee and Sahil Singla. Maximum matching in the online batch-arrival
model. In International Conference on Integer Programming and Combinatorial Op-

timization, pages 355–367. Springer, 2017. 12.1
[LS18] Euiwoong Lee and Sahil Singla. Optimal online contention resolution schemes via

ex-ante prophet inequalities. In 26th Annual European Symposium on Algorithms,

ESA 2018, August 20-24, 2018, Helsinki, Finland, 2018. 1.5.4, 8.1.1
[LSW15] Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A Faster Cu�ing Plane

Method and its Implications for Combinatorial and Convex Optimization. In Pro-

ceedings of the Fi�y-Sixth Annual IEEE Symposium on Foundations of Computer Sci-

ence, 2015. 12.1.3
[LY13] Jian Li and Wen Yuan. Stochastic combinatorial optimization via poisson approxi-

mation. In Symposium on �eory of Computing Conference, STOC’13, Palo Alto, CA,

USA, June 1-4, 2013, pages 971–980, 2013. 3.1.3, 5.1.3
[Ma14] Will Ma. Improvements and generalizations of stochastic knapsack and multi-

armed bandit approximation algorithms: Extended abstract. In SODA, pages 1154–
1163, 2014. 3.1.3, 5.1.3

[Meh12] Aranyak Mehta. Online matching and ad allocation. �eoretical Computer Science,
8(4):265–368, 2012. 12.1.1, 12.1.3

[Mes06] Julián Mestre. Greedy in approximation algorithms. In European Symposium on

Algorithms, pages 528–539. Springer, 2006. 2.3.1, 6.4.2
[Mey01] Adam Meyerson. Online facility location. In Foundations of Computer Science, 2001.

Proceedings. 42nd IEEE Symposium on, pages 426–431. IEEE, 2001. 10.1.2
[MHK+98] Nicolas Meuleau, Milos Hauskrecht, Kee-Eung Kim, Leonid Peshkin, Leslie Pack

Kaelbling, �omas L Dean, and Craig Boutilier. Solving very large weakly coupled
markov decision processes. In AAAI/IAAI, pages 165–172, 1998. 1.5.3

[MSVV07] Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and
generalized online matching. Journal of the ACM (JACM), 54(5):22, 2007. 12.1

[MV15] Aranyak Mehta and Vijay Vazirani. Personal communication. 2015. 12.1.1

213



[MY11] Mohammad Mahdian and Qiqi Yan. Online bipartite matching with random ar-
rivals: an approach based on strongly factor-revealing lps. In Proceedings of the

forty-third annual ACM symposium on �eory of computing, pages 597–606. ACM,
2011. 10.1.2, 12.1.1, 12.1.3

[OW15] Wojciech Olszewski and Richard Weber. A more general pandora rule? Journal of

Economic �eory, 160:429–437, 2015. 3.1.3
[Oxl06] James G Oxley. Matroid �eory, volume 3. Oxford university press, 2006. 12.3.1

[Pow07] Warren B Powell. Approximate Dynamic Programming: Solving the curses of di-

mensionality, volume 703. John Wiley & Sons, 2007. 1.5.3
[PS12] Ma�hias Poloczek and Mario Szegedy. Randomized greedy algorithms for the

maximum matching problem with new analysis. In Proceedings of the Fi�y-�ird

Annual IEEE Symposium on Foundations of Computer Science, pages 708–717. IEEE,
2012. 12.1.3

[Rec05] András Recski. Maps of matroids with applications. Discrete Mathematics,
303(1):175–185, 2005. 12.1.3

[Rot07] Michael H Rothkopf. �irteen reasons why the vickrey-clarke-groves process is
not practical. Operations Research, 55(2):191–197, 2007. 8.1, 11.1

[RS17] Aviad Rubinstein and Sahil Singla. Combinatorial prophet inequalities. In Proceed-

ings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1671–1687. SIAM, 2017. 1.5.4, 9.1.1, 10.1.1

[RSS15] Aviad Rubinstein, Lior Seeman, and Yaron Singer. Approximability of adaptive
seeding under knapsack constraints. In Proceedings of the Sixteenth ACM Confer-

ence on Economics and Computation, EC ’15, Portland, OR, USA, June 15-19, 2015,
pages 797–814, 2015. 9.1.2

[RSÜ05] Alvin E. Roth, Tayfun Sönmez, and M.Ũtku Ünver. Pairwise kidney exchange. J.

Econom. �eory, 125(2):151–188, 2005. 5.1.3
[Rub16] Aviad Rubinstein. Beyond matroids: secretary problem and prophet inequality

with general constraints. In Proceedings of the 48th Annual ACM SIGACT Sympo-

sium on �eory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016,
pages 324–332, 2016. 8.1.2, 9.1.1, 9.1.2, 9.4.2, 9.4, 10.1.1, 10.1.2, 1, 10.4, 13.5

[RW15] Aviad Rubinstein and S. Ma�hew Weinberg. Simple mechanisms for a subadditive
buyer and applications to revenue monotonicity. In Proceedings of the Sixteenth

ACM Conference on Economics and Computation, EC ’15, Portland, OR, USA, June

15-19, 2015, pages 377–394, 2015. 6.2, 6.2.2
[SB98] Richard S Su�on and Andrew G Barto. Reinforcement learning: An introduction,

volume 1. MIT press Cambridge, 1998. 1.5.3
[SC84] Ester Samuel-Cahn. Comparison of threshold stop rules and maximum for inde-

pendent nonnegative random variables. the Annals of Probability, pages 1213–1216,
1984. 13.4

[SC98] Satinder P Singh and David Cohn. How to dynamically merge markov decision

214



processes. In Advances in neural information processing systems, pages 1057–1063,
1998. 1.5.3

[Sch99] Gideon Schechtman. Concentration, results and applications, 1999. 6.2, 6.2.2
[Sch03] Alexander Schrijver. Combinatorial optimization: polyhedra and e�ciency, vol-

ume 24. Springer Science & Business Media, 2003. 12.1.1
[SG08] Ma�hew Streeter and Daniel Golovin. An online algorithm for maximizing sub-

modular functions. In Advances in Neural Information Processing Systems, pages
1577–1584, 2008. 9.1.3

[Sin18] Sahil Singla. �e price of information in combinatorial optimization. In Proceedings

of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,
2018. 1.5.4, 3.1, 4.1.2, 4.1.4, 4.3.2, 7.1.1

[Tsi94] John N Tsitsiklis. A short proof of the gi�ins index theorem. �e Annals of Applied

Probability, pages 194–199, 1994. 4.1.4
[Web92] Richard Weber. On the gi�ins index for multiarmed bandits. �e Annals of Applied

Probability, 2(4):1024–1033, 1992. 4.1.3, 4.1.4
[Wei79] Martin L. Weitzman. Optimal search for the best alternative. Econometrica: Journal

of the Econometric Society, pages 641–654, 1979. 1.3.1, 1.5.1, 3.1, 4.1, 4.4.1
[Whi80] Peter Whi�le. Multi-armed bandits and the gi�ins index. Journal of the Royal

Statistical Society. Series B (Methodological), pages 143–149, 1980. 4.1.4
[WS11] David P. Williamson and David B. Shmoys. �e design of approximation algorithms.

Cambridge university press, 2011. 3.4.2, 3.4.2, 3.4.2, 5.1
[WW15] Yajun Wang and Sam Chiu-wai Wong. Two-sided online bipartite matching and

vertex cover: Beating the greedy algorithm. In International Colloquium on Au-

tomata, Languages, and Programming, pages 1070–1081. Springer, 2015. 12.1, 12.1.3
[Yan11] Qiqi Yan. Mechanism design via correlation gap. In Proceedings of the twenty-

second annual ACM-SIAM symposium on Discrete Algorithms, pages 710–719. Soci-
ety for Industrial and Applied Mathematics, 2011. 8.1.2, 9.1.2, 11.1

215


	I Introduction
	1 Overview
	1.1 Motivation
	1.2 How to Model Combinatorial Optimization
	1.3 How to Model Uncertainty
	1.4 Thesis Statement
	1.5 Thesis Contributions

	2 Preliminaries
	2.1 General Notation
	2.2 Combinatorial Functions
	2.3 Combinatorial Constraints
	2.4 Some Properties of Combinatorial Functions


	II Probing Algorithms
	3 The Price of Information via Frugal Algorithms 
	3.1 Introduction
	3.2 Bounding the Optimal Strategy
	3.3 Designing an Adaptive Strategy
	3.4 Applications to Utility/Disutility Optimization
	3.5 Illustrative Examples

	4 Multistage Probing via the Markovian Price of Information
	4.1 Introduction
	4.2 Grade and Prevailing Cost
	4.3 Adaptive Algorithms for Utility Maximization
	4.4 Illustrative Examples and Missing Proofs

	5 Constrained Stochastic Probing via Adaptivity Gaps 
	5.1 Introduction
	5.2 Adaptive Strategies and Notation
	5.3 Monotone Non-Negative Submodular Functions
	5.4 Non-Monotone Non-Negative Submodular Functions
	5.5 Applications

	6 Constrained Stochastic Multi-Value Probing 
	6.1 Introduction
	6.2 Combinatorial Functions over Independent Items
	6.3 Adaptivity Gaps Beyond Bernoulli Variables for Submodular Functions
	6.4 Adaptivity Gaps for a Weighted Rank Function of a k-Extendible System
	6.5 Adaptivity Gaps for Subadditive Functions

	7 The Price of Information under Constraints
	7.1 Introduction
	7.2 Probing Constraints via Adaptivity Gaps
	7.3 Commitment Constraints via Linear Programs
	7.4 Sampling Constraints via Robustness


	III Stopping-Time Algorithms
	8 The Prophet Inequality via Online Contention Resolution Schemes
	8.1 Introduction
	8.2 Online Contention Resolution Schemes
	8.3 Designing OCRS Assuming an Ex-Ante Prophet Inequality
	8.4 An Ex-Ante Prophet Inequality for Matroids

	9 Combinatorial Prophet Inequalities
	9.1 Introduction
	9.2 Correlation Gap for Non-Monotone Submodular Functions
	9.3 Submodular Prophets over Matroids
	9.4 Subadditive Prophets over Packing Constraints

	10 The Secretary and the Prophet Secretary Models
	10.1 Introduction
	10.2 Prophet Secretary via Optimal (1-1/e)-OCRS
	10.3 A Simple Optimal I.I.D. Prophet Secretary
	10.4 Combinatorial Secretary Problems

	11 Prophet Secretary for Matroids and Combinatorial Auctions via Residuals
	11.1 Introduction
	11.2 Our Approach using a Residual
	11.3 Prophet Secretary for Combinatorial Auctions
	11.4 Prophet Secretary for Matroids
	11.5 Fixed Threshold Algorithms

	12 Matching and Matroid Intersection in the Secretary Model
	12.1 Introduction
	12.2 Bipartite Matching
	12.3 Matroid Intersection
	12.4 Sampling Lemma
	12.5 General Graphs
	12.6 Miscellaneous Results and Missing Proofs


	IV Conclusions
	13 Further Directions for Probing and Stopping-Time Algorithms
	13.1 How to Find a Car Parking
	13.2 Learning Probability Distributions for Probing 
	13.3 Beyond Independent Probability Distributions
	13.4 Prophet Inequalities from Samples
	13.5 Orienteering Secretary and Prophet Inequality Problems
	13.6 Improving Approximation and Hardness Results

	Bibliography


