
Influence-directed Explanations for
Machine Learning

Shayak Sen

CMU-CS-18-107

April 20, 2018

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
Thesis Committee:
Anupam Datta, Chair

Jaime Carbonell
Matt Fredrikson

Sriram K. Rajamani
Jeannette M. Wing

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2018 Shayak Sen

This research was sponsored by the National Science Foundation under grant numbers CNS-1064688 and
CNS-1704845, the Air Force Research Laboratory under grant numbers FA9550-12-1-0040, FA9550-17-1-
0600, and FA9750-16-2-0287, the Ed and Martha Clarke Fellowship, and the Cylab Presidential Fellowship.
The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

Abstract
Increasingly, decisions and actions affecting people’s lives are determined by

automated systems processing personal data. Excitement about these systems
has been accompanied by serious concerns about their opacity and the threats
that they pose to privacy, fairness, and other values. Recognizing these con-
cerns, it is important to make real-world automated decision-making systems
accountable for privacy and fairness by enabling them to detect and explain
violations of these values. System maintainers may leverage such accounts to
repair systems to avoid future violations with minimal impact on the utility
goals.

In this dissertation, we provide a basis for explaining how machine learning
systems use information. These explanations increase trust in the functioning
of the system, allowing us to verify that they make not only right decisions
but also for justifiable reasons. Further, explanations can be used to support
detection of privacy and fairness violations, as well as explain how they came
about. We can then leverage this understanding to repair systems to avoid
future violations.

We identify two major challenges to explaining information use in machine
learning systems: (i) converged use, that machine learning systems typically
combine a large number of input features, and (ii) indirect use, that these
systems can typically infer and use information that is not directly provided to
the system. Our approach to explaining how complex machine learning models
use information involves answering two questions: (influence) Which factors
were influential in determining outcomes?, and (interpretation) What do these
factors mean? We first present key results measuring the causal influence of
factors in machine learning models. We then examine the following settings: (i)
systems with potential indirect use of information, and (ii) convolutional neural
networks. For each setting we demonstrate how influence and interpretation
combine to account for information use.

iv

Acknowledgements

As a person who is generally susceptible to external influences it was quite essential that
the influences that shaped grad school for me were positive. They were overwhelmingly so,
and as a result, I have many people to thank. The sum of their teaching, contributions,
advice and encouragement is what propelled me through six years of graduate studies.

Anupam Datta taught me that the discovery of science is hardly ever linear. It is a
series of non-linear jumps that when strung together lead to the discovery of something
beautiful. He also taught me how to write better, present clearly, teach with passion and
think deeper. Anupam’s guidance and friendship have left a deep imprint on who I am
and who I’ll be.

I’m also fortunate to have been guided by an illustrious committee comprising of Jaime
Carbonell, Matt Fredrikson, Sriram Rajamani and Jeannette Wing. Their advice has
greatly improved both the ideas in this thesis and its writing. Even before they were part
of my committee, my work has been deeply influenced by my collaboration and interactions
with them. A phone call from Jeannette in the middle of an undergrad networks class in
2011 is what started my CMU journey in the first place. Sriram’s energetic mentorship
across two internships at Microsoft Research India has shaped the directions my research
has taken. Every meeting with Matt is a fountain of great ideas. Jaime’s deep insights
have refined the ideas in this thesis.

I’ve been lucky to have worked with some amazing collaborators who approximately in
order of appearance are: Joe Halpern, Saikat Guha, Sriram Rajamani, Deepak Garg, Limin
Jia, Aditya Nori, Aleksandar Chakarov, Yair Zick, Michael Tschantz, Matt Fredrikson,
Piotr Mardziel, Gihyuk Ko, Klas Leino, Sophia Kovaleva, and Linyi Li. A special shout
out to Saikat: my internship with him is what led me down the trail of ideas that eventually
turned into this thesis.

When I started off teaching, I used to be terrible. Now I’m slightly less terrible. Bob
Harper, Andre Platzer, Anupam Datta, and Sid Jain are to thank.

CMU has a wonderful support staff that keep things running under the hood that make
the place work like magic. In particular, I’d like to thank Deb Cavlovich, Martha Clarke,
Catherine Copetas, Marcella Baker, Diana Leathers and Kelley Conley.

A wonderful group of friends have kept me sane through the years through crosswords,
beers, road trips and food. These are (in no particular order) Rajesh Bhattacharjee, Ale-
jandro Carbonara, Shriphani Palakodety, Ashique Khudabukhsh, Ayantika Ghosh, Amit
Datta, Sid Jain, Sahil Singla, Dougal Sutherland, David Kurokawa, Anindit Mukherjee,
Kristina Sojakova, Sam Yeom, Sohinee Bhatacharyya and Aram Ebtekar.

v

Any description of the impact Sumedha Roy has had on this thesis will be an under-
statement. Over the years she has been a proofreader, cheerleader, life coach, thesaurus,
travel companion, the love of my life and now, my wife.

My parents have been a infinite source of support, guidance and love. This thesis is
dedicated to them.

vi

Contents

1 Introduction 1
1.1 Quantifying Direct Use . 3
1.2 Quantifying Indirect Use . 5

1.2.1 Explanations for CNNs . 6
1.2.2 Proxy Use . 8

1.3 Related Work . 10

I Converged Use 13

2 Quantifying Input Influence 15
2.1 Unary QII . 17
2.2 Influence Schema . 20
2.3 Set and Marginal QII . 21

2.3.1 Cooperative Games and Causality 23
2.3.2 Axiomatic Treatment of the Shapley Value 24

2.4 Estimation . 25
2.4.1 Computing Power Indices . 25
2.4.2 Estimating Q . 25

2.5 Private Transparency Reports . 27
2.6 Experimental Evaluation . 28

2.6.1 Comparison with Observational Measures 30
2.6.2 Unary QII Measures . 30
2.6.3 Personalized Explanations . 33
2.6.4 Differential Privacy . 34
2.6.5 Performance . 36
2.6.6 Conciseness . 36

2.7 QII for Fairness . 37
2.8 Related Work . 37
2.9 Conclusion . 40

3 Supervising Input Influence 41
3.1 Background . 44

3.1.1 Risk Minimization . 44

vii

3.1.2 Counterfactual Influence . 44
3.2 Covariate shift in Causal Testing . 45

3.2.1 Counterfactual divergence . 45
3.2.2 Relating counterfactual and true accuracies 46

3.3 Counterfactual Active Learning . 47
3.4 Evaluation . 49

3.4.1 Methodology . 50
3.4.2 Results . 51

3.5 Conclusion . 51

4 Distributional Influence in Continuous Models 53
4.1 Distributional Input Influence . 54
4.2 Axiomatic Characterization . 55
4.3 Related Work . 55

II Indirect Use 57

5 Explanations for CNNs 59
5.1 Influence . 61
5.2 Identifying Influential Concepts . 62

5.2.1 Effectiveness of Internal Influence 62
5.2.2 Validating the “Essence” of a Class 63
5.2.3 Disappearing Experts . 65

5.3 Explaining Instances . 66
5.3.1 Focused Explanations from Slices 66
5.3.2 Comparative Explanations . 67
5.3.3 Understanding Misclassification . 68

5.4 Axiomatic Justification of Measures . 69
5.5 Related Work . 70

6 Proxy Use 73
6.1 Use Privacy . 74
6.2 Proxy Non-discrimination . 75
6.3 Proxy Use . 76

6.3.1 Examples of Proxy Use . 76
6.3.2 Notation and Preliminaries . 77
6.3.3 Definition . 79
6.3.4 A Quantitative Relaxation . 80
6.3.5 Axiomatic Basis for Definition . 81

6.4 Detecting Proxy Use . 83
6.4.1 Environment Model . 84
6.4.2 Analyzing Proxy Use . 84

6.5 Removing Proxy Use Violations . 86

viii

6.6 Evaluation . 87
6.6.1 Example Workflow . 88
6.6.2 Other Case Studies . 90
6.6.3 Detection and Repair . 92

6.7 Complexity . 94
6.7.1 Distributions, datasets, and probability 95
6.7.2 Influence and Association . 97
6.7.3 Decompositions . 98
6.7.4 Detection . 98

6.8 Related Work . 99
6.8.1 Definition . 99
6.8.2 Detection and Repair Models . 100

6.9 Discussion . 100
6.10 Conclusion . 102

7 Conclusion and Future Work 103
7.1 Factors . 103
7.2 Systems . 104
7.3 Repair . 105

A Details for Proxy Use 107
A.1 Algorithm for Detection . 107

A.1.1 Decomposition . 107
A.1.2 Translation . 108
A.1.3 Validity Testing . 109

A.2 Algorithms for Repair . 110
A.2.1 Optimal constant selection . 110

Bibliography 113

ix

x

Chapter 1

Introduction

Machine learning systems are increasingly being deployed in application domains that sig-
nificantly affect people’s lives. Examples of such domains include credit, insurance, health-
care, personalized recommendations, and criminal justice [98, 141, 143]. Yet complex
machine learning models that are being pushed into production remain opaque—it is diffi-
cult to explain to human users why a model made certain predictions. Indeed automated
loan denials [141], radiology image classification [143] and prison sentence recommenda-
tions [98] are usually not accompanied by any explanation of how such decisions are made.
This situation is problematic because models may not be making predictions for justifiable
reasons. Their predictions over the long run may thus be untrustworthy (i.e., exhibit poor
accuracy), and pose a threat to societal values like privacy and fairness. This problem has
been widely recognized over the past few years leading to calls to enhance accountability
of machine learning systems [8, 13, 32, 47].

Machine learning models are optimized to make accurate predictions that best fit avail-
able data, without constraining the reasons behind the predictions they make. For exam-
ple, in [111], Ribeiro et al., highlight an instance of the problem where a neural network
identifies an image of a husky correctly, but only because of the snow that surrounds it.
This neural network, however, will not be able to identify huskies outside of their snowy
environment. A credit classifier might find zip-code to be predictive of credit-worthiness
because of past biases encoded in datasets. However, the use of zip-code admits the poten-
tial for the indirect use of race as the two are often correlated, and lead to discriminatory
outcomes. Similarly, an advertising system might discover that searching for certain health
conditions is useful for displaying ads for therapies. A personalized advertising system that
uses health information to target ads is concerning and considered to be an illegal privacy
violation in certain jurisdictions [104]. Privacy and discrimination harms in particular have
led to a requirement for explanations being mandated by a number of laws and regulations
such as the Equal Credit Opportunity Act [4], the Fair Information Practice Principles
(FIPPs) [131] in the USA, and the the General Data Protection Regulation in the EU [46].

All of the concerns above can be viewed as instances of improper information use: the
information used to make decisions was either unreliable, or disallowed by privacy and
fairness norms. In this dissertation, we provide a basis for developing explanations for in-
formation use in machine learning systems. Human experts can observe these explanations

1

Credit Decision

Age of Accounts

…

Zip code

Education

Marital Status

Age

Income

DecisionRace

Indirect Use

C
on

ve
rg

ed
 U

se

Employment

Indirect Use

Figure 1.1: A schematic representation of a typical machine learning model illustrating
the converged use problem that models typically have a large number of inputs with some
influence, and the indirect use problem that models can combine information to infer
attributes not directly provided as input.

in order to increase trust in the functioning of the system, allowing one to verify that they
make not only right decisions but also for justifiable reasons. Further, explanations can
be used to surface the use of protected information types such as race or health status
in support of the detection of privacy and fairness violations. We can then leverage this
understanding to repair systems to avoid future violations.

Explanations of information use are a means to enhancing trust in the pre-
dictions of machine learning models, and surfacing violations of privacy and
fairness.

A simple approach to explaining how models use information is to examine which inputs
are used by a model. For example, if we were to examine if a credit decisioning system uses
an input corresponding to age, we would vary that input while keeping all other inputs
fixed and see if the outcome changes. Such a notion of information use, will be familiar to
some readers as interference or causal influence.

However, machine learning models are typically a complex combination of a large num-
ber of inputs. Figure 1.1 illustrates that the simple approach of identifying which inputs
are used by the model faces two key challenges. The first challenge is converged use, where
each input (out of a large number) has some influence on the outcomes, and therefore a
qualitative notion of influence suggests an overwhelmingly large number of factors. In the
credit example above, which may combine information from credit reports with other ac-
count information, each factor is likely to have some, influence on the outcome. The second
challenge is indirect use, where multiple inputs may be combined to infer information that
wasn’t directly provided to the model as input. For example, attributes protected against
discrimination such as race could be inferred from a person’s zip code, and used. Race
wasn’t provided as input, but was inferred and used indirectly.

We address the converged use problem by proposing a quantitative measure of influence

2

that computes the relative importance of different input factors in a model. Using a
quantitative notion of influence allows examining the most important factors used by the
model. In the example, in Figure 1.1, for a particular individual’s decision income and
employment might be the most important factors, while other factors might be of minor
importance.

We address the indirect use problem by examining internal computations within a
model and interpreting them to identify what information has been inferred by an internal
computation. Further, as there may be many internal computations, we use quantitative
influence measures developed to address the converged use problem to examine the most
important influential factors, and then identifying the information inferred by them.

We examine this problem of indirect use in two settings. The first setting is motivated by
privacy and non-discrimination requirements that prohibit the use of protected information
types. Given some protected information type, we identify internal computations that
are strongly associated with that information type. The second setting, is motivated by
increasing trust, where we wish to discover the concepts being inferred by a model to make
decisions. In this setting, we focus on convolutional neural networks, which are heavily used
in computer vision tasks. For such models, input factors correspond to pixels in images
and not to high level concepts, and therefore require us to examine concepts inferred by
internal computations.

We term this general approach of explaining how information is used by a system by
examining influential internal or external factors influence-directed explanation. The key
thesis behind the approach can be stated as follows.

Interpreting influential causal factors provides a principled basis for tools that
explain how information is used in machine learning systems.

The theoretical and definitional results of this thesis are supported by algorithms im-
plementing these results. In particular, the algorithms addressing the converged use prob-
lem scale to state-of-the-art models such as deep convolutional neural networks and large
random forests. Scalability is still a concern for the algorithms addressing proxy use, a
challenge that we plan to address in future work.

We now describe the main results in support of this thesis.

1.1 Quantifying Direct Use
While explaining a certain behavior of a system, identifying factors with causal influence
on the behavior allows us to focus on the part of the system that is relevant. A qualitative
notion of causal influence is identical to the notion of interference: changing an input while
keeping all other inputs fixed, changes the output. Verifying the absence of interference
has been the subject of much research, starting from the work of Denning [38]. However,
for complex machine learning models that combine a large number of inputs, a qualitative
notion of influence is too coarse grained as almost all inputs have some degree of influence,
a problem that we term converged use. Therefore, we focus on quantifying the relative
degree of influence of different input factors.

3

Age 23
Workclass Private
Education 11th
Education-Num 7
Marital Status Never-married
Occupation Craft-repair
Relationship Own-child
Race Asian-Pac-Islander
Gender Male
Capital Gain 14344
Capital Loss 0
Hours per week 40
Country Vietnam

Cap
ita

l G
ai
n

Se
x

W
or

kc
la
ss

Rac
e

Hou
rs

 p
er

 w
ee

k

Cap
ita

l L
os

s

Occ
up

at
io
n

Cou
nt

ry
Age

Ed
uc

at
io
n-

Num

Ed
uc

at
io
n

Rel
at

io
ns

hi
p

M
ar

ita
l S

ta
tu

s
0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Q
II
 o

n
 O

u
tc

o
m

e
s

(S
h
a
p
le

y
)

Figure 1.2: Using QII to explain negative classification for an individual.

In Chapter 2, we develop Quantitative Input Influence (QII), a family of measures to
quantify the influence of inputs of systems on their outcomes. Distinctively, our causal QII
measures carefully account for correlated inputs while measuring influence. For example,
in 1.1, age and income may be correlated. As a result, even if a model makes decisions
only based on income is bound to be correlated. QII measures are defined via causal
interventions that break the correlations between inputs in order to expose the causal
relationships between inputs and outputs.

Further, they support a general class of queries by being parametric in a quantity of
interest about the system. By an appropriate parametrization of the quantity of interest,
one can explain decisions about individuals (e.g., a loan decision) and groups (e.g., disparate
impact based on gender).

Finally, single inputs may not always have high influence. For example, just changing
an individual’s income may not flip the decision. To address this problem, QII measures
also quantify the joint influence of a set of inputs (e.g., age and income) on outcomes
(e.g. loan decisions) and the marginal influence of individual inputs within such a set
(e.g., income). Since a single input may be part of multiple influential sets, the average
marginal influence of the input is computed using principled aggregation measures, such
as the Shapley value, previously applied to measure influence in voting.

Figure 1.2 illustrates the use of QII to explain an individual’s negative classification
by a model, and exposes the key positive and negative factors behind it. In this example,
while this individual’s capital gains income was a strong positive factor, education, and
marital status featured among the key negative factors that led to a negative classifica-
tion. A particular use case we envision for this mode of explanation is to support adverse
action notification requirements for regulations such as the Equal Credit Opportunity Act
(ECOA) which requires institutions to provide the principal reasons behind any decision
that adversely affects an individual.

4

Under most circumstances, QII measures can be approximated efficiently: for a fixed
degree of accuracy, QII can be computed in linear time in the number of features for
bounded quantities of interest. We also demonstrate that even for complex random forest
models, influence is concentrated in a small number of features for any individual, thus
satisfying requirements of conciseness in many settings such as adverse action notices in
credit [4].

Supervising Causal Influence. In order to measure the causal influence of inputs, we
violate distributional faithfulness, that is, we observe the outcome of the classifier on coun-
terfactual points: points which change one input while keeping all other inputs fixed. Such
causal experimentation is the staple of much of the natural sciences. However, in a problem
peculiar to machine learning models, since counterfactual inputs may lie outside of distri-
bution the model was trained on, the model is not required to behave meaningfully on such
inputs. As a result, traditional machine learning methods do not constrain the causal influ-
ences of features. In Chapter 3, we formalize the conditions under which causal influences
are unconstrained, and develop an active learning algorithm that constrains causal influ-
ences by training on counterfactual points, We term this approach counterfactual active
learning.

Influence for Differentiable Models. For differentiable models, it is possible to mea-
sure the effect of infinitesimal interventions; computing partial derivatives involve changing
an input with an infinitesimal amount while keeping all other features fixed. This infinites-
imal intervention gives us distributional faithfulness for free if the points we are measuring
the partial derivatives on lies within the distribution. In Chapter 4, we present distri-
butional input influence, an axiomatically justified influence measure that leverages this
observation to measure causal influences while retaining distributional faithfulness. This
input influence measure is generalized in Chapter 5 to internal factors in models, and forms
the basis for our explanations of the predictions of convolutional neural networks.

1.2 Quantifying Indirect Use

While the first part of this dissertation focuses on the converged use problem, a second
challenge is that machine learning models can combine inputs to infer information not
directly provided as input. In such settings only examining input factors is insufficient in
explaining how these models use information. We explore the indirect use problem in two
settings.
Low-level input features. In settings such as image classification, individual features

(pixels) do not represent meaningful concepts. For models like deep networks, the
system processes the low-level inputs into higher level intermediate features. In order
to build trust in the predictions of the model, we surface influential intermediate
features in the model, allowing a domain expert to judge whether the reasons behind
a prediction are justifiable.

5

Quantitative
Input Influence

Proxy Use

Quantitative
Input Influence

Proxy Use

Quantitative
Input Influence

Proxy Use

Distributional
Input Influence

Explanations for
CNNs

F
ac

to
rs

Input Factors

Internal Factors

DifferentiableDiscrete

Systems

Figure 1.3: A summary of influence-directed explanations in different settings. For a
setting where a discrete model such as a classifier has interpretable inputs, QII (Chapter 2)
provides an explanation for system behaviors in terms of input influence. Our method
for detecting proxy use (Chapter 6) identifies internal computations that are strongly
associated with some protected attribute and have causal influence on the outcome. For
neural networks (Chapter 5), influence directed explanations identify influential neurons
that can be interpreted with appropriate visualization techniques.

Proxies. Information may be used indirectly through proxies even if it isn’t directly pro-
vided to the system, and violate privacy and non-discrimination norms that prevent
the use of protected information types. Identifying information use through proxies,
and eliminating them entails accounting for associations that may be present between
features and sensitive attributes.

In both of these scenarios, we propose explanation tools that identify intermediate
factors with causal influence on outcomes. Since a model might have a large number of
intermediate factors, we use quantitative influence measures to focus on the most impor-
tant ones. Further, these intermediate factors are themselves complex computations and
it may not readily apparent what information they correspond to. In Figure 1.1, the inter-
mediate computation is not apriori labeled with the information type ‘race’. As a result,
we provide a mechanism for associating the influential intermediate factors with human-
understandable concepts. Figure 1.3 summarizes the main approaches to influence-directed
explanations.

1.2.1 Explanations for CNNs

In settings such as image classification with deep neural networks, individual input factors
(such as pixels) do not represent meaningful concepts. Deep neural networks, therefore,

6

(a) (b)

Figure 1.4: Images of cars labeled “sports car” by VGG16 ImageNet model (a) and receptive
fields of the most influential feature map on a comparative quantity that characterizes the
model’s tendency to predict “sports car” over “convertible” (b). In most cases, the features
within the field contain the top of the car, which is the key distinctive concept between
these classes.

process low-level input features into representations organized in layers that get progres-
sively richer with the depth of layers, and then use these representations to make predic-
tions. However, due to the complexity of these models, which typically have millions of
parameters, it is difficult to build trust that these models make decisions for justifiable
reasons, and debug reasons when they make mistakes.

In Chapter 5, we study the problem of explaining a rich class of behavioral properties
of deep neural networks. In line with the general template in this thesis, our influence-
directed explanations approach this problem by peering inside the network to identify
neurons with high influence and then providing an interpretation for the concepts these
neurons represent.

As an example, Figure 1.4 demonstrates on a CNN model [121] trained on the ImageNet
dataset [114] the capability of influence-directed explanations to extract meaningful insight
about the network’s inner workings. We measure the influence of neurons at an internal
layer on the network’s tendency to predict “sports car” over “convertible”. The images in
Figure 1.4(b) are computed by visualizing the most influential neuron for the corresponding
image in 1.4(a). The results coincide with an intuitive understanding of the distinction
between these classes: the depicted interpretation highlights the portion of the image
depicting the car’s top.

We introduce a novel distributional influence measure that allows us to identify which
neurons are most influential in determining the model’s behavior on a given distribution

7

Program

Income

Education

Employment

Outcome

X

Income

Zipcode
p

Race

p
ro

xy

influence

…

Figure 1.5: A visual representation of the proxy use definition that requires identifying an
internal factor that is strongly associated with a protected attribute, and has influence on
the outcome.

of instances. From this we are able to identify the learned concepts that cause the network
to behave characteristically, for example, on the distribution of instances that share a
particular label. This distributional influence measures shares key attributes with QII. In
particular, the measure accounts for causal influences and is parametric in a quantity of
interest. However, since neural networks are usually continuous and differentiable models,
it is possible to examine the effects of infinitesimally changing a factor. In effect, these
infinitesimal interventions allows us to measure causal effects without evaluating the model
on points outside the distribution containing input instances.

These influence-directed explanations can be approximated with a constant number of
gradient calls, where the constant depends on the number of parameters, and the accu-
racy required. Gradient calls are relatively inexpensive even for large networks through
optimized parallel implementations on GPUs, allowing us to scale to state-of-the-art con-
volutional neural networks.

1.2.2 Proxy Use

Information can be used indirectly through proxies, which allow a data processor to effec-
tively infer protected information types and use them even when they are not explicitly
provided. In Figure 1.1, we discussed an example where income and zip code could be com-
bined to infer race. Such indirect uses run afoul of privacy and non-discrimination norms
that govern the use of protected information types. For example, the Canadian Personal
Information Protection and Electronic Documents Act (PIPEDA) [139], prohibits the use
of health information for advertising and marketing. Similarly, for non-discrimination, the
Equal Credit Opportunity Act (ECOA) [4] prohibits the use of information types such as
race, or gender in lending decisions.

8

In Chapter 6, we propose a theory of proxy use, and use it as a building block to
construct theories of use privacy and proxy non-discrimination. The definition of proxy
use, illustrated in Figure 1.5, identifies intermediate factors in a program that has (i) causal
influence on outcomes (influence), and (ii) is strongly associated with a protected attribute
(interpretation). We arrive at this program-based definition after a careful examination of
the space of possible definitions. In particular, we prove that it is impossible for a purely
semantic notion of intermediate computations to support a meaningful notion of proxy use
as characterized by a set of natural properties or axioms.

Along with the definition, we provide algorithms for the detection and repair of proxy
use for a number of standard machine learning models such as logistic regression, decision
trees, and tree ensembles. We evaluate the performance of the detection algorithm and
show that, in particular cases, the runtime of our system scales linearly in the number of
intermediate computations in a model. For models with a large number of intermediate
computations such as linear models, the algorithms do not scale beyond small models.
Improving the scalability of our proxy use detection and repair algorithms is an important
direction of future work. In a recent unpublished manuscript [76], we report a novel model
checking approach to the problem that increases the size of models that can be verified by
up to 5x and reduces verification time by up to 13x over a baseline algorithm for this task.

The focus on use is a significant departure from a large body of prior work that focuses
on limiting disclosures for privacy (see [124] for a survey), and disparate impact for fair-
ness [50, 70, 105, 135, 149], which can both be viewed forms of probabilistic association.
We now describe how the definition of proxy use forms a building block for new, meaningful
definitions of privacy and non-discrimination.

Use Privacy Use privacy constraints restrict the use of protected information types and
some of their proxies.

A use privacy constraint may require that health information or its proxies not be used
for advertising. Indeed, there are calls for this form of privacy constraint [37, 87, 100, 139].
In this work, we consider the setting where a system is audited to ensure that it complies
with such use privacy constraints. The auditing could be done by a co-operative data
processor who is operating the system or by a regulatory oversight organization who has
access to the data processors’ machine learning models and knowledge of the distribution
of the dataset. In other words, we assume that the data processor does not act to evade
the detection algorithm, and provides accurate information.

In this setting, it is impossible to guarantee that data processors with strong background
knowledge are not able to infer certain facts about individuals [43]. Even in practice,
data processors often have access to detailed profiles of individuals and can infer sensitive
information about them [41, 138]. Use privacy instead places a more pragmatic requirement
on systems: that they simulate ignorance of protected information types by not using them
or their proxies in their decision-making. This requirement is met if the systems (e.g.,
machine learning models) do not infer protected information types or their proxies (even
if they could) or if such inferences do not affect decisions.

Recognizing that not all instances of proxy use of a protected information type are

9

inappropriate, our theory of use privacy makes use of a normative judgment oracle that
makes this inappropriateness determination for a given instance. For example, while using
health information or its proxies for credit decisions may be deemed inappropriate, an
exception could be made for proxies that are directly relevant to the credit-worthiness of
the individual (e.g., her income and expenses).

Proxy Non-discrimination Analogous to use privacy, proxy non-discrimination con-
straints restrict the use of protected information types such as gender, race and nationality
for purposes such as credit, insurance and healthcare.

Two popular approaches to addressing the problem of discrimination are the prevention
of disparate impact and disparate treatment. Disparate impact identifies cases where group
parity is violated i.e., where the fraction of individuals who get positive outcomes are very
different across protected and unprotected groups in the population. The 80% rule in hiring
and promotions is an embodiment of this approach that can be traced back to the Griggs
v. Duke Power ruling [20]. However, it has been pointed out that the group parity often
does not ensure outcomes which are fair [45]. On the other hand disparate treatment, rules
out explicit uses of protected information, which does not rule out inferences of protected
information being used. Instead, as with privacy, we take a pragmatic approach of detecting
evidence of proxy use of protected information.

1.3 Related Work
Existing tools that explain information use employ either causal techniques (interference,
information use, causal testing, differential privacy) or associative techniques (quantitative
information flow, information leakage, disparate impact testing). Instead of choosing a
purely causal or associative view, this dissertation proposes an novel approach that com-
bines the two. We use causal techniques to identify influential factors, and associative ones
to interpret them. We categorize some closely related work here by area: information flow
security, privacy and fairness.

Information Flow Security. There has been significant research activity in restricting
information flows in programs over the last three decades, and language-based methods
to support these restrictions ([38, 95, 107]). These methods enforce non-interference or
variants of it from sensitive inputs of the program to outputs.

Work on quantifying information flow has largely focused on quantifying the leakage of
information about sensitive attributes to an adversary. Quantitative Information Flow is
concerned with information leaks and therefore needs to account for correlations between
inputs that may lead to leakage, making measures of associations between inputs and
outcomes appropriate (see [123] for an overview). On the other hand, we take the position
that information use is a causal notion, and therefore measuring it requires destroying
correlations through interventions.

Finally, a line of work on information use and information flow experiments [32, 33, 136],
formalizes the relation between causality, probabilistic non-interference, and information

10

use, and develops a framework for black-box experimentation on web services. Black-
box experimentation is an important approach to achieving accountability in data driven
systems.

Privacy in Statistical Systems. Privacy in the presence of data analytics has largely
focused on minimizing the disclosure of personal information. Differential privacy [44] and
its variants belong to this class of properties in a setting with a trusted data processor and
an untrusted adversary trying to infer sensitive information about individuals. Differential
privacy provides the guarantee that any adversary will gain approximately the same infor-
mation with or without an individual’s participation in a dataset. Other formal properties
related to privacy focus on limiting the flow of information using notions such as statistical
disclosure limitation [48], characterizing possible inferences from data releases [30, 40, 115],
or that your participation in a study should not become known [62].

Our notion of use privacy is quite complementary to this body of prior work. Instead
of trying to limit disclosures through system outputs, we focus instead on ensuring that
protected information types and their proxies are not used internally by the data analytics
system, and could be used in conjunction with methods that limit disclosures of sensitive
information.

Fairness in Statistical Systems. Recently, the algorithmic foundations of fairness in
personal information processing systems have received significant attention [22, 32, 45,
70, 149]. While many of the algorithmic approaches [22, 70, 149] have focused on group
parity as a metric for achieving fairness in classification, Dwork et al. [45] argue that group
parity is insufficient as a basis for fairness, and propose a similarity-based approach which
prescribes that similar individuals should receive similar classification outcomes, along with
algorithms for achieving this by design. However, this approach requires a similarity metric
for individuals which is often subjective and difficult to construct.

Instead of trying to achieve fairness by design, in our theory of proxy non-discrimination,
we attempt to detect and remove instances of discrimination arising out of identifiable
explicit or proxy use of protected attributes.

In this thesis, we will focus on privacy and fairness harms that arise out of improper
information use. Limitations on information use are already well recognized norms in the
domains described above. For example, the use limitation norms in law and guidelines such
as the FTC’s FIPPs in United States [131], the PIPEDA in Canada [104], and the GDPR
in the European Union [46], require information use to only be limited to the purposes
for which it was collected, and additionally restrict the use of sensitive information types
such as health status, and sexual orientation. Anti-discrimination laws in employment [3],
housing, credit [4] prevent the use of protected attributes such as gender, race, nationality,
and sexual orientation for making decisions.

11

12

Part I

Converged Use

13

Chapter 2

Quantifying Input Influence

Machine learning models are typically a complex combination of a large number of inputs.
In order to understand what information is being used by a model, the first challenge,
which we term converged use, is that each input (out of a large number) has some influence
on the outcomes. As a result, a qualitative notion of influence suggests an overwhelmingly
large number of factors.

We introduce a family of Quantitative Input Influence (QII) measures that capture the
degree of relative influence of inputs on outputs of the system. Three desiderata drive the
definitions of these measures.

First, we seek to answer general class of related to input influence, ranging from specific
questions about individuals to general questions about groups.

Second, we seek input influence measures that appropriately account for correlated in-
puts—a common case for our target applications. For example, consider a system that
assists in hiring decisions for a moving company. Gender and the ability to lift heavy
weights are inputs to the system. They are positively correlated with one another and
with the hiring decisions. Yet whether the system uses the weight lifting ability or the
gender in making its decisions (and to what degree) has substantive implications for de-
termining if it is engaging in discrimination (the business necessity defense could apply in
the former case [1]). This observation makes us look beyond correlation coefficients and
other associative measures.

Third, we seek measures that appropriately quantify input influence in settings where
any input by itself does not have significant influence on outcomes but a set of inputs does.
In such cases, we seek measures of the joint influence of a set of inputs (e.g., age and
income) on a system’s decision (e.g., to serve a high-paying job ad). We also seek measures
of the marginal influence of an input within such a set (e.g., age) on the decision. This
notion allows us to measure the relative importance of individual inputs within the set
(e.g., age vs. income) in the system’s decision.

We achieve the first desideratum by formalizing a notion of a quantity of interest. The
influence of an input is parameterized by a quantity of interest, which represents a property
of the system for a given input distribution. Our formalization supports a wide range of
statistical properties including probabilities of various outcomes in the output distribution
and probabilities of output distribution outcomes conditioned on input distribution events.

15

Examples of quantities of interest include the conditional probability of an outcome for a
particular individual or group, and the ratio of conditional probabilities for an outcome for
two different groups (a metric used as evidence of disparate impact under discrimination
law in the US [1]).

We achieve the second desideratum by formalizing causal QII measures. These mea-
sures (called Unary QII) model the difference in the quantity of interest when the system
operates over two related input distributions—the real distribution and a hypothetical (or
counterfactual) distribution that is constructed from the real distribution in a specific way
to account for correlations among inputs. Specifically, if we are interested in measuring
the influence of an input on a quantity of interest of the system behavior, we construct the
hypothetical distribution by retaining the marginal distribution over all other inputs and
sampling the input of interest from its prior distribution. This choice breaks the correla-
tions between this input and all other inputs and thus lets us measure the influence of this
input on the quantity of interest, independently of other correlated inputs. Revisiting our
moving company hiring example, if the system makes decisions only using the weightlift-
ing ability of applicants, the influence of gender will be zero on the ratio of conditional
probabilities of being hired for males and females.

We achieve the third desideratum in two steps. First, we define a notion of joint
influence of a set of inputs (called Set QII) via a natural generalization of the definition
of the hypothetical distribution in the Unary QII definition. Second, we define a family
of Marginal QII measures that model the difference on the quantity of interest as we
consider sets with and without the specific input whose marginal influence we want to
measure. Depending on the application, we may pick these sets in different ways, thus
motivating several different measures. For example, we could fix a set of inputs and ask
about the marginal influence of any given input in that set on the quantity of interest.
Alternatively, we may be interested in the average marginal influence of an input when
it belongs to one of several different sets that significantly affect the quantity of interest.
We consider several marginal influence aggregation measures from cooperative game theory
originally developed in the context of influence measurement in voting scenarios and discuss
their applicability in our setting. We also build on that literature to present an efficient
approximate algorithm for computing these measures.

Recognizing that different forms of influence may be appropriate for different settings,
we generalize our QII measures to be parametric in its key elements: the intervention used
to construct the hypothetical input distribution; the quantity of interest; and the difference
measure used to quantify the distance in the quantity of interest when the system operates
over the real and hypothetical input distributions. This generalized definition provides a
structure for exploring the design space of influence measures.

Since transparency reports released to an individual, regulatory agency, or the public
might compromise individual privacy, we explore the possibility of answering transparency
queries while protecting differential privacy. We prove bounds on the sensitivity of a
number of transparency queries and leverage prior results on privacy amplification via
sampling [71] to accurately answer these queries.

We illustrate the utility of the QII framework by developing three machine learning
applications on real datasets: an income classification application based on the benchmark

16

adult dataset [84], a predictive policing application based on the National Longitudinal
Survey of Youth [2], and a credit application based on the Lending Club dataset from Kag-
gle [81]. Using these applications, we argue, in Section 2.6, the need for causal measurement
by empirically demonstrating that in the presence of correlated inputs, observational mea-
sures are not informative in identifying input influence. In particular, we illustrate for these
applications how QII can provide insights into individual and group classification outcomes.
We also demonstrate that under most circumstances, QII measures can be made differen-
tially private with minimal addition of noise, and can be approximated efficiently: for a
fixed degree of accuracy, QII can be computed in linear time in the number of features for
bounded quantities of interest. Finally, we demonstrate that for even for complex random
forest models, influence is concentrated in a small number of features for any individual,
thus satisfying requirements of conciseness in many settings such as adverse action notices
in credit [4].

2.1 Unary QII

Consider the situation discussed in the introduction, where an automated system assists
in hiring decisions for a moving company. The input features used by this classification
system are : Age, Gender, Weight Lifting Ability, Marital Status and Education. Suppose
that, as before, weight lifting ability is strongly correlated with gender (with men having
better overall lifting ability than women). One particular question that an analyst may
want to ask is: “What is the influence of the input Gender on positive classification for
women?”. The analyst observes that 20% of women are approved according to his classifier.
Then, she replaces every woman’s field for gender with a random value, and notices that the
number of women approved does not change. In other words, an intervention on the Gender
variable does not cause a significant change in the classification outcome. Repeating this
process with Weight Lifting Ability results in a 20% increase in women’s hiring. Therefore,
she concludes that for this classifier, Weight Lifting Ability has more influence on positive
classification for women than Gender.

By breaking correlations between gender and weight lifting ability, we are able to estab-
lish a causal relationship between the outcome of the classifier and the inputs. We are able
to identify that despite the strong correlation between a negative classification outcome
for women, the feature Gender was not a cause of this outcome.

A mechanism for breaking correlations to identify causal effects is called an intervention
in the literature on causality. In this chapter, we introduce a particular randomized inter-
vention, and we describe in Section 2.2 how other interventions may be useful depending
on the causal question asked of the system.

In the example above, instead of the entire population of women, the analyst may be
interested in a particular individual, say Alice, and ask “What is the influence of the input
Gender on Alice’s rejection?”. The analyst answers this question by applying the same
intervention, but only on Alice’s data, and observes that keeping every other input feature
fixed and replacing Gender with a random value has no effect on the outcome.

In general, QII supports reasoning at such different scales by being parametric in a

17

quantity of interest. A quantity of interest is a statistic of the system, which represents
the subject of the causal question being asked. For example, a suitable quantity of interest
corresponding to the question “What is the influence of the input Gender on positive clas-
sification for women?” is average rate of positive outcomes for women. Similarly, a suitable
quantity of interest for “What is the influence of the input Gender on Alice’s rejection?”
is just Alice’s classification outcome. QII also supports reasoning about more complex
statistics such ones which measure group disparity. For example, the analyst observes that
the rate of positive classification is 20% higher in men than in women, and wishes to ask
“What is the influence of Income on men getting more positive classification than women?”.
In this case, a natural quantity of interest is the difference in the classification rates of men
and women.

We now present the formal definition of QII.
We are given an algorithm A. A operates on inputs (also referred to as features for

ML systems), N = {1, . . . , n}. Every i ∈ N , can take on various states, given by Xi. We
let X =

∏
i∈N Xi be the set of possible feature state vectors, let Z be the set of possible

outputs of A. For a vector x ∈ X and set of inputs S ⊆ N , x|S denotes the vector of inputs
in S. Inputs are assumed to be drawn from some probability distribution that represents
the population. The random variable X represents a feature state vector drawn from this
probability distribution.

For a random variable X representing the feature vector, a randomized intervention on
feature i is denoted by the random variable X−iUi, where Ui is new random variable that
is independently drawn from the prior distribution of feature i. For example, to randomly
intervene on age, we replace the age for every individual with a random age from the
population.

A quantity of interest QA(X) of some algorithm A is a statistic of the algorithm over
the population X is drawn from. As discussed above, examples of quantities of interest
are the average rate of positive classification for a group, or the classification outcome of
an individual.

The Quantitative Input Influence of an input on a quantity of interest is just the
difference in the quantity of interest with or without the intervention.
Definition 1 (QII). For a quantity of interest QA(·), and an input i, the Quantitative
Input Influence of i on QA(·) is defined to be

ιQA(i) = QA(X)−QA(X−iUi).

We now instantiate this definition with different quantities of interest to illustrate the
above definition in three different scenarios.

QII for Individual Outcomes One intended use of QII is to provide personalized
transparency reports to users of data analytics systems. For example, if a person is denied
a job application due to feedback from a machine learning algorithm, an explanation of
which factors were most influential for that person’s classification can provide valuable
insight into the classification outcome.

For QII to quantify the use of an input for individual outcomes, we define the quantity
of interest to be the classification outcome for a particular individual. Given a particular

18

individual x, we define Qx
ind(·) to be E(c(·) = 1 | X = x). The influence measure is

therefore:

ιxind(i) = E(c(X) = 1 | X = x)− E(c(X−iUi) = 1 | X = x) (2.1)

When the quantity of interest is not the probability of positive classification but the
classification that x actually received, a slight modification of the above QII measure is
more appropriate:

ιxind-act(i) = E(c(X) = c(x) | X = x)− E(c(X−iUi) = c(x) | X = x)

= 1− E(c(X−iUi) = c(x) | X = x) = E(c(X−iUi) 6= c(x) | X = x)
(2.2)

The above probability can be interpreted as the probability that feature i is pivotal to
the classification of c(x). Computing the average of this quantity over X yields:

∑
x∈X Pr(X = x)E(i is pivotal for c(X) | X = x) = E(i is pivotal for c(X)). (2.3)

We denote this average QII for individual outcomes as defined above, by ιind-avg(i), and
use it as a measure for importance of an input towards classification outcomes.

QII for Group Outcomes For more general findings, the quantity of interest may be
the classification outcome for a set of individuals. Given a group of individuals Y ⊆ X ,
we define QYgrp(·) to be E(c(·) = 1 | X ∈ Y). The influence measure is therefore:

ιYgrp(i) = E(c(X) = 1 | X ∈ Y)− E(c(X−iUi) = 1 | X ∈ Y) (2.4)

QII for Group Disparity Instead of simply classification outcomes, an analyst may
be interested in more nuanced properties of data analytics systems such as the presence
of disparate impact. Disparate impact compares the rates of positive classification within
protected groups defined by gender or race. In employment, its absence is often codified
as the ‘80% rule’ which states that the rate of selection within a protected demographic
should be at least 80% of the rate of selection within the unprotected demographic. The
quantity of interest in such a scenario is the ratio in positive classification outcomes for a
protected group Y from the rest of the population X \ Y .

E(c(X) = 1 | X ∈ Y)

E(c(X) = 1 | X 6∈ Y)

However, the ratio of classification rates is unstable at low values of positive classifica-
tion. Therefore, for the computations in this chapter we use the difference in classification
rates as our measure of group disparity.

19

Quantity of Interest Intervention Difference

Individual Outcome Constant Subtraction
Average Outcome Prior Absolute Difference
Distribution Earthmover Distance
Group Disparity Mutual Information

Table 2.1: Examples of influence schema elements

QYdisp(·) = |E(c(·) = 1 | X ∈ Y)− E(c(·) = 1 | X 6∈ Y)| (2.5)

The QII measure of an input group disparity, as a result is:

ιYdisp(i) = QYdisp(X)−QYdisp(X−iUi). (2.6)

More generally, group disparity can be viewed as an association between classification
outcomes and membership in a group. QII on a measure of such association (e.g., group
disparity) identifies the variable that causes the association in the classifier. Proxy variables
are variables that are associated with protected attributes. For addressing concerns of
discrimination such as digital redlining, it is important to identify which proxy variables
actually introduce group disparity. It is straightforward to observe that features with high
QII for group disparity are proxy variables that cause group disparity. Therefore, QII on
group disparity is a useful diagnostic tool for determining discrimination. The use of QII
in identifying proxy variables is explored experimentally in Section 2.6.2.

2.2 Influence Schema

The forms of explanations discussed so far are specific instances of a general schema for
input influence that we describe now. Recall that the influence of an input is the difference
in a quantity of interest before and after an intervention. This definition features the
following three elements of our influence schema.
• A quantity of interest, which captures the aspect of the system we wish to explain.
• An intervention distribution, which defines how the alternate distribution is con-
structed from the true distribution.

• A difference measure, which quantifies the difference between two quantities of inter-
est.

The particular instantiation of elements in this schema is determined by the question
the analyst wishes to answer about the system. Table 2.1 contains some examples of these
instantiations and we describe the elements in detail below.

20

The first element, the quantity of interest, is determined by the the subject of the
question. In the previous section, the systems considered were deterministic, and the
quantities of interest considered were represented by a number such as an expectation
or a probability. However, for more complex systems, the analyst may be interested in
richer quantities about the system. For instance, if the system is randomized, a particular
quantity of interest is the distribution over outcomes for a given individual.

The second element is the causal intervention used to compute influence. The particular
randomized intervention considered in this chapter, X−iUi, where Ui is drawn from the prior
distribution of feature i, is suitable when no alternatives are suggested in the analyst’s
question. For example, the question “What is the influence of age on Bob’s classification?”
does not suggest any particular alternative age. On the other hand, when a particular
alternative is suggested, a constant intervention is more suited. For example, for the
question “Was age influential in Bob’s rejection and Carl’s acceptance?” Carl’s age is the
natural alternate to consider, and Ui is drawn from the constant distribution corresponding
to Carl’s age.

Finally, we use a difference measure to compare the quantity of interest before and after
the intervention. Apart from subtraction, considered above, examples of other suitable
difference measures are absolute difference, and distance measures over distributions. The
absolute difference measure can be employed when the direction of change of outcomes
before and after an intervention is unimportant. When the quantity of interest is the
distribution over outcomes, subtraction does not make sense, and a suitable measure of
difference should be employed, such as the earthmover distance or the mutual information
between the original and the intervened distributions.

2.3 Set and Marginal QII
In many situations, intervention on a single input variable has no influence on the outcome
of a system. Consider, for example, a two-feature setting where features are age (A) and
income (I), and the classifier is c(A, I) = (A = old)∧ (I = high). In other words, the only
datapoints that are labeled 1 are those of elderly persons with high income. Now, given a
datapoint where A = young , I = low , an intervention on either age or income would result
in the same classification. However, it would be misleading to say that neither age nor
income have an influence over the outcome; changing both the states of income and age
would result in a change in outcome.

Equating influence with the individual ability to affect the outcome is uninformative in
real datasets as well: Figure 2.1 is a histogram of feature influence on individual outcomes
for a classifier learned from the adult dataset [84]1. For most individuals, all features have
zero influence: changing the state of one feature alone is not likely to change the outcome
of a classifier. Of the 19537 datapoints we evaluate, more than half have ιx(i) = 0 for
all i ∈ N ; indeed, changes to outcome are more likely to occur if we intervene on sets of
features. In order to better understand the influence of a feature i ∈ N , we should measure

1The adult dataset contains approximately 31k datapoints of users’ personal attributes, and whether
their income is more than $50k per annum; see Section 2.6 for more details.

21

its effect when coupled with interventions on other features. We define the influence of a
set of inputs as a straightforward extension of individual input influence. Essentially, we
wish the influence of a set of inputs S ⊆ N to be the same as when the set of inputs is
considered to be a single input; when intervening on S, we draw the states of i ∈ S based
on the joint distribution of the states of features in S.

0.0 0.2 0.4 0.6 0.8 1.0
Maximum influence of some input

0

2000

4000

6000

8000

10000

N
u
m

b
e
r

o
f

In
d
iv

id
u
a
ls

Figure 2.1: A histogram of the highest spe-
cific causal influence for some feature across
individuals in the adult dataset. Alone, most
inputs have very low influence.

We define the random variable X−SUS
representing an intervention on a set of fea-
tures instead of a single feature. X−SUS has
the states of features in N \S fixed to their
original values in x, but features in S take
on new values according the joint marginal
distribution over the features in S. This
is identical to the intervention considered
in unary QII, when the features in S are
viewed as a single composite feature. Us-
ing this generalization of an intervention to
sets of features, we can define set QII that
measures the influence of a set of features.
Definition 2 (Set QII). For a quantity of
interest Q, and an input i, the Quantita-
tive Input Influence of set S ⊆ N on Q is
defined to be

ιQ(S) = Q(X)−Q(X−SUS).

Considering the influence of a set of inputs raises a number of interesting questions
due to the interaction between inputs. First among these is how does one measure the
individual effect of a feature, given the measured effects of interventions on sets of features.
One natural way of doing so is by measuring the marginal effect of a feature on a set.
Definition 3 (Marginal QII). For a quantity of interest Q, and an input i, the Quantitative
Input Influence of input i over a set S ⊆ N on Q is defined to be

ιQ(i, S) = Q(X−SUS)−Q(X−S∪{i}US∪{i}).

Notice that marginal QII can also be viewed as a difference in set QIIs: ιQ(S ∪ {i})−
ιQ(S). Informally, the difference between ιQ(S∪{i}) and ιQ(S) measures the “added value”
obtained by intervening on S ∪ {i}, versus intervening on S alone.

The marginal contribution of i may vary significantly based on S. Thus, we are in-
terested in the aggregate marginal contribution of i to S, where S is sampled from some
natural distribution over subsets of N \ {i}. In what follows, we describe a few measures
for aggregating the marginal contribution of a feature i to sets, based on different methods
for sampling sets. The primary method of aggregating the marginal contribution is the
Shapley value [120]. The less theoretically inclined reader can choose to proceed to Section
2.6 without a loss in continuity.

22

2.3.1 Cooperative Games and Causality

In this section, we discuss how measures from the theory of finite cooperative games define
measures for aggregating marginal influence. In particular, we observe that the Shapley
value [120] is uniquely characterized by axioms that are natural in our setting. Definition 2
measures the influence that an intervention on a set of features S ⊆ N has on the outcome.
One can naturally think of Set QII as a function v : 2N → R, where v(S) is the influence of
S on the outcome. With this intuition in mind, one can naturally study influence measures
using cooperative game theory, and in particular, using the Shapley value. The Shapely
value can be thought of as an influence aggregation method, which, given an influence
measure v : 2N → R, outputs a vector φ ∈ Rn, whose i-th coordinate corresponds in some
natural way to the aggregate influence, or aggregate causal effect, of feature i.

The original motivation for game-theoretic measures is revenue division [91, Chapter
18]: the function v describes the amount of money that each subset of players S ⊆ N can
generate; assuming that the set N generates a total revenue of v(N), how should v(N) be
divided amongst the players? A special case of revenue division that has received significant
attention is the measurement of voting power [119]. In voting systems with multiple agents
(think of political parties in a parliament), whose weights differ, voting power often does
not directly correspond to agent weights. For example, the US presidential election can
roughly be modeled as a finite cooperative game where each state is an agent. The weight
of a state is the number of electors in that state (i.e., the number of votes it brings to
the presidential candidate who wins that state). Although states like California and Texas
have higher weight, swing states like Pennsylvania and Ohio tend to have higher power in
determining the outcome of elections.

A voting system can be modeled as a finite cooperative game: players are voters, and the
value of a coalition S ⊆ N is 1 if S can make a decision (e.g. pass a bill, form a government,
or perform a task), and is 0 otherwise. Note the similarity to classification, with players
being replaced by features (in classification, functions of the form v : 2N → {0, 1} are
referred to as boolean functions [99]). The game-theoretic measures of revenue division are
a measure of voting power: how much influence does player i have in the decision making
process? Thus the notions of voting power and revenue division fit naturally with our
goals when defining aggregate QII influence measures: in both settings, one is interested
in measuring the aggregate effect that a single element has, given the actions of subsets.

Several canonical influence measures rely on the fundamental notion of marginal con-
tribution. Given a player i and a set S ⊆ N \ {i}, the marginal contribution of i to S is
denoted mi(S, v) = v(S ∪ {i}) − v(S) (we simply write mi(S) when v is clear from the
context). Marginal QII, as defined above, can be viewed as an instance of a measure of
marginal contribution. Given a permutation π ∈ Π(N) of the elements in N , we define
Pi(σ) = {j ∈ N | σ(j) < σ(i)}; this is the set of i’s predecessors in σ. We can now similarly
define the marginal contribution of i to a permutation σ ∈ Π(N) as mi(σ) = mi(Pi(σ)).
Intuitively, one can think of the players sequentially entering a room, according to some
ordering σ; the value mi(σ) is the marginal contribution that i has to whoever is in the
room when she enters it.

Generally speaking, game theoretic influence measures specify some reasonable way of

23

aggregating the marginal contributions of i to sets S ⊆ N . In our setting, we argue for
the use of the Shapley value. Introduced by the late Lloyd Shapley, the Shapley value is
one of the most canonical methods of dividing revenue in finite cooperative games. It is
defined as follows:

ϕi(N, v) = E
σ

[mi(σ)] =
1

n!

∑
σ∈Π(N)

mi(σ)

Intuitively, the Shapley value describes the following process: players are sequentially
selected according to some randomly chosen order σ; each player receives a payment of
mi(σ). The Shapley value is the expected payment to the players under this regime.

2.3.2 Axiomatic Treatment of the Shapley Value

In this work, the Shapley value is our function of choice for aggregating marginal feature
influence. To justify our choice, we provide a brief exposition of axiomatic game-theoretic
value theory. We present a set of axioms that uniquely define the Shapley value, and
discuss why they are desirable in the QII setting.

The Shapley value satisfies the following properties:
Definition 4 (Symmetry). We say that i, j ∈ N are symmetric if v(S ∪{i}) = v(S ∪{j})
for all S ⊆ N \ {i, j}. A value φ satisfies symmetry if φi = φj whenever i and j are
symmetric.
Definition 5 (Dummy). We say that a player i ∈ N is a dummy if v(S ∪ {i}) = v(S) for
all S ⊆ N . A value φ satisfies the dummy property if φi = 0 whenever i is a dummy.
Definition 6 (Monotonicity). Given two games 〈N, v1〉, 〈N, v2〉, a value φ satisfies strong
monotonicity if mi(S, v1) ≥ mi(S, v2) for all S implies that φi(N, v1) ≥ φi(N, v2), where a
strict inequality for some set S ⊆ N implies a strict inequality for the values as well.

All of these axioms take on a natural interpretation in the QII setting. Indeed, if two
features have the same probabilistic effect, no matter what other interventions are already
in place, they should have the same influence. In our context, the dummy axiom says that
a feature that never offers information with respect to an outcome should have no influence.
Monotonicity makes intuitive sense in the QII setting: if a feature has consistently higher
influence on the outcome in one setting than another, its measure of influence should
increase. For example, if a user receives two transparency reports (say, for two separate
loan applications), and in one report gender had a consistently higher effect on the outcome
than in the other, then the transparency report should reflect this.

[147] offers an characterization of the Shapley value, based on these monotonicity as-
sumption.
Theorem 1 ([147]). The Shapley value is the only function that satisfies symmetry, dummy
and monotonicity.

To conclude, the Shapley value is a unique way of measuring aggregate influence in the
QII setting, while satisfying a set of very natural axioms.

24

2.4 Estimation
While the model we propose offers several appealing properties, it faces several technical
implementation issues. Several elements of our work require significant computational
effort; in particular, both the probability that a change in feature state would cause a
change in outcome, and the game-theoretic influence measures are difficult to compute
exactly. In the following sections we discuss these issues and our proposed solutions.

2.4.1 Computing Power Indices

Computing the Shapley or Banzhaf values exactly is generally computationally intractable
(see [24, Chapter 4] for a general overview); however, their probabilistic nature means
that they can be well-approximated via random sampling. More formally, given a random
variable X, suppose that we are interested in estimating some determined quantity q(X)
(say, q(X) is the mean of X); we say that a random variable q∗ is an ε-δ approximation of
q(X) if

Pr[|q∗ − q(X)| ≥ ε] < δ;

in other words, it is extremely likely that the difference between q(X) and q∗ is no more
than ε. An ε-δ approximation scheme for q(X) is an algorithm that for any ε, δ ∈ (0, 1)
is able to output a random variable q∗ that is an ε-δ approximation of q(X), and runs in
time polynomial in 1

ε
, log 1δ.

[11] show that when 〈N, v〉 is a simple game (i.e. a game where v(S) ∈ {0, 1} for
all S ⊆ N), there exists an ε-δ approximation scheme for both the Banzhaf and Shapley
values; that is, for φ ∈ {ϕ, β}, we can guarantee that for any ε, δ > 0, with probability
≥ 1− δ, we output a value φ∗i such that |φ∗i − φi| < ε.

More generally, [90] observe that the number of i.i.d. samples needed in order to ap-
proximate the Shapley value and Banzhaf index is parametrized in ∆(v) = maxS⊆N v(S)−
minS⊆N v(S). Thus, if ∆(v) is a bounded value, then an ε-δ approximation exists. In our
setting, coalitional values are always within the interval [0, 1], which immediately implies
the following thm.
Theorem 2. There exists an ε-δ approximation scheme for the Banzhaf and Shapley values
in the QII setting.

2.4.2 Estimating Q

Since we do not have access to the prior generating the data, we simply estimate it by
observing the dataset itself. Recall that X is the set of all possible user profiles; in this
case, a dataset is simply a multiset (i.e. possibly containing multiple copies of user profiles)
contained in X . Let D be a finite multiset of X , the input space. We estimate probabilities
by computing sums over D. For example, for a classifier c, the probability of c(X) = 1.

ÊD(c(X) = 1) =

∑
x∈D 1(c(x) = 1)

|D| . (2.7)

25

Given a set of features S ⊆ N , let D|S denote the elements of D truncated to only the
features in S. Then, the intervened probability can be estimated as follows:

ÊD(c(X−S) = 1) =

∑
uS∈D|S

∑
x∈D 1(c(x|N\SuS) = 1)

|D|2 . (2.8)

Similarly, the intervened probability on individual outcomes can be estimated as follows:

ÊD(c(X−S) = 1|X = x) =

∑
uS∈DS 1(c(x|N\SuS) = 1)

|D| . (2.9)

Finally, let us observe group disparity:∣∣∣ÊD(c(X−S) = 1 | X ∈ Y)− ÊD(c(X−S) = 1 | X /∈ Y)
∣∣∣

The term ÊD(c(X−S) = 1 | X ∈ Y) equals

1

|Y|
∑
x∈Y

∑
uS∈DS

1(c(x|N\SuS) = 1),

Thus group disparity can be written as:∣∣ 1

|Y|
∑
x∈Y

∑
uS∈DS

1(c(x|N\SuS) = 1)

− 1

|D \ Y|
∑

x∈D\Y

∑
uS∈DS

1(c(x|N\SuS) = 1)
∣∣. (2.10)

We write Q̂Ydisp(S) to denote (2.10).
If D is large, these sums cannot be computed efficiently. Therefore, we approximate

the sums by sampling from the dataset D. It is possible to show using the According to
the Hoeffding bound [64], partial sums of n random variables Xi, within a bound ∆, can
be well-approximated with the following probabilistic bound:

Pr

(∣∣∣∣∣ 1n
n∑
i=1

(Xi − EXi)

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(−2nε2

∆

)
Since all the samples of measures discussed in this chapter are bounded within the

interval [0, 1], we admit an ε-δ approximation scheme where the number of samples n can
be chosen to be greater than log(2/δ)/2ε2. Note that these bounds are independent of the
size of the dataset. Therefore, given an efficient sampler, these quantities of interest can be
approximated efficiently even for large datasets. For a fixed degree of accuracy, generating
transparency reports is linear in the number of features.

26

2.5 Private Transparency Reports

One important concern is that releasing influence measures estimated from a dataset might
leak information about individual users; our goal is providing accurate transparency re-
ports, without compromising individual users’ private data. To mitigate this concern, we
add noise to make the measures differentially private. We show that the sensitivities of the
QII measures considered in this chapter are low and therefore very little noise needs to be
added to achieve differential privacy.

The sensitivity of a function is a key parameter in ensuring that it is differentially
private; it is simply the worst-case change in its value, assuming that we change a single
data point in our dataset. Given some function f over datasets, we define the sensitivity
of a function f with respect to a dataset D, denoted by ∆f(D) as

max
D′
|f(D)− f(D′)|

where D and D′ differ by at most one instance. We use the shorthand ∆f when D is
clear from the context.

In order to not leak information about the users used to compute the influence of an
input, we use the standard Laplace Mechanism [44] and make the influence measure differ-
entially private. The amount of noise required depends on the sensitivity of the influence
measure. We show that the influence measure has low sensitivity for the individuals used
to sample inputs. Further, due to a result from [71] (and stated in [83]), sampling amplifies
the privacy of the computed statistic, allowing us to achieve high privacy with minimal
noise addition.

The standard technique for making any function differentially private is to add Laplace
noise calibrated to the sensitivity of the function:
Theorem 3 ([44]). For any function f from datasets to R, the mechanism Kf that adds
independently generated noise with distribution Lap(∆f(D)/ε) to the k output enjoys ε-
differential privacy.

Since each of the quantities of interest aggregate over a large number of instances, the
sensitivity of each function is very low.
Theorem 4. Given a dataset D,

1. ∆ÊD(c(X) = 1) = 1
|D|

2. ∆ÊD(c(X−S) = 1) ≤ 2
|D|

3. ∆ÊD(c(X−S) = 1|X = x) = 1
|D|

4. Q̂Ydisp(S) ≤ max
{

1
|D∩Y| ,

1
|D\Y|

}
Proof. We examine some cases here. In Equation 2.7, if two datasets differ by one instance,
then at most one term of the summation will differ. Since each term can only be either 0
or 1, the sensitivity of the function is

∆ÊD(c(X) = 1) =

∣∣∣∣ 0

|D| −
1

|D|

∣∣∣∣ =
1

|D| .

27

Similarly, in Equation 2.8, an instance appears 2|D| − 1 times, once each for the inner
summation and the outer summation, and therefore, the sensitivity of the function is

∆ÊD(c(X−S) = 1) =
2|D| − 1

|D|2 ≤ 2

|D| .

For individual outcomes (Equation (2.9)), similarly, only one term of the summation
can differ. Therefore, the sensitivity of (2.9) is 1/|D|.

Finally, we observe that a change in a single element x′ of D will cause a change of at
most 1

|D∩Y| if x
′ ∈ D ∩ Y , or of at most 1

|D\Y| if x
′ ∈ D \ Y . Thus, the maximal change to

(2.10) is at most max
{

1
|Y| ,

1
|D\Y|

}
.

While the sensitivity of most quantities of interest is low (at most a 2
|D|), Q̂

Y
disp(S) can

be quite high when |Y| is either very small or very large. This makes intuitive sense: if Y
is a very small minority, then any changes to its members are easily detected; similarly, if
Y is a vast majority, then changes to protected minorities may be easily detected.

We observe that the quantities of interest which exhibit low sensitivity will have low in-
fluence sensitivity as well: for example, the local influence of S is 1(c(x) = 1)−ÊD(c(X−S) =
1] | X = x); changing any x′ ∈ D (where x′ 6= x will result in a change of at most 1

|D| to
the local influence.

Finally, since the Shapley and Banzhaf indices are normalized sums of the differences
of the set influence functions, we can show that if an influence function ι has sensitivity
∆ι, then the sensitivity of the indices are at most 2∆ι.

To conclude, all of the QII measures discussed above (except for group parity) have a
sensitivity of α

|D| , with α being a small constant. To ensure differential privacy, we need only
need add noise with a Laplacian distribution Lap(k/|D|) to achieve 1-differential privacy.

Further, it is known that sampling amplifies differential privacy.
Theorem 5 ([71], [83]). If A is 1-differentially private, then for any ε ∈ (0, 1), A′(ε) is
2ε-differentially private, where A′(ε) is obtained by sampling an ε fraction of inputs and
then running A on the sample.

Therefore, our approach of sampling instances from D to speed up computation has
the additional benefit of ensuring that our computation is private.

Table 2.2 contains a summary of all QII measures defined in this chapter, and their
sensitivity.

2.6 Experimental Evaluation

We illustrate the utility of the QII framework by developing three simple machine learning
applications on real datasets. In Section 2.6.2, we illustrate the distinction between dif-
ferent quantities of interest on which Unary QII can be computed. We also illustrate the
effect of discrimination on the QII measure. In Section 2.6.3, we analyze explanations for

28

Name Notation Quantity of Interest Sensitivity

QII on Individual Outcomes (2.1) ιind(S) Positive Classifica-
tion of an Individ-
ual

1/|D|

QII on Actual Individual Outcomes (2.2) ιind-act(S) Actual Classi-
fication of an
Individual

1/|D|

Average QII (2.3) ιind-avg(S) Average Actual
Classification

2/|D|

QII on Group Outcomes (2.4) ιYgrp(S) Positive Classifica-
tion for a Group

2/|D ∩ Y|

QII on Group Disparity (2.6) ιYdisp(S) Difference in clas-
sification rates
among groups

2max(1/|D \ Y|, 1/|D ∩ Y|)

Table 2.2: A summary of the QII measures defined in this chapter

three individuals to demonstrate how Marginal QII can provide insights into individuals’
classification outcomes.

We use the following datasets in our experiments:
• adult [84]: This standard machine learning benchmark dataset is a subset of US
census data classifying individual income; it contains factors such as age, race, gender,
marital status and other socio-economic parameters. We use this dataset to train a
classifier that predicts the income of individuals from other parameters. Such a
classifier could potentially be used to assist in credit decisions.

• arrests [2]: The National Longitudinal Surveys are a set of surveys conducted by
the Bureau of Labor Statistics of the United States. In particular, we use the 1997
youth survey, covering young persons born in the years 1980–84.
The survey covers various aspects of an individual’s life such as medical history, crim-
inal records and economic parameters. From this dataset, we extract the following
features: age, gender, race, region, history of drug use, history of smoking, and his-
tory of arrests. We use this data to train a classifier that predicts arrests history to
simulate predictive policing, where socio-economic factors are used to decide whether
individuals should receive a visit from the police. A similar application is described
in [68].

• lending club: A data set of loans originated by Lending Club [81] is used to predict
charge-offs from 75 other financial variables about 890,000 individuals from which
we filter 51. Charge-off prediction can be used to as a statistical basis for generating
credit scores.

The three applications described above are hypothetical examples of decision making
aided by algorithms that use potentially sensitive socio-economic data, and not real systems
that are currently in use. We use these classifiers to illustrate the subtle causal questions
that our QII measures can answer.

29

We use the following standard machine learning classifiers in our dataset: Logistic
Regression, SVM with a radial basis function kernel, Decision Tree, and Gradient Boosted
Decision Trees(see [17] for an excellent primer to these classifiers); with the exception of
Logistic Regression, a linear classifier, the other three are nonlinear and can potentially
learn very complex models.

2.6.1 Comparison with Observational Measures

In the presence of correlated inputs, observational measures often cannot identify which
inputs were causally influential. To illustrate this phenomena on real datasets, we train
two classifiers: (A) where gender is provided as an actual input, and (B) where gender is
not provided as an input. For classifier (B), clearly the input Gender has no effect and any
correlation between the outcome and gender is caused via inference from other inputs. In
Table 2.3, for both the adult and the arrests dataset, we compute the following observa-
tional measures: Mutual Information (MI), Jaccard Index (Jaccard), Pearson Correlation
(corr), and the Disparate Impact Ratio (disp) to measure the similarity between Gender
and the classifiers outcome. We also measure the QII of Gender on outcome. We observe
that in many scenarios the observational quantities do not change, or sometimes increase,
from classifier A to classifier B, when gender is removed as an actual input to the classifier.
On the other hand, if the outcome of the classifier does not depend on the input Gender,
then the QII is guaranteed to be zero.

2.6.2 Unary QII Measures

In Figure 2.2, we illustrate the use of different Unary QII measures. Figures 2.2a and 2.2b
show the Average QII measure (Equation 2.3) computed for features of a decision forest
classifier. For the income classifier trained on the adult dataset, the feature with highest
influence is Marital Status, followed by Occupation, Relationship and Capital Gain. Sensi-
tive features such as Gender and Race have relatively lower influence. For the predictive
policing classifier trained on the arrests dataset, the most influential input is Drug His-
tory, followed by Gender, and Smoking History. We observe that influence on outcomes
may be different from influence on group disparity.

QII on group disparity Figures 2.2c, 2.2d show influences of features on group dis-
parity (Equation 2.6) for two different settings. Figure 2.2c shows feature influence on
group disparity by Gender in the adult dataset; Figure 2.2d shows the influence on group
disparity by Race in the arrests dataset. For the income classifier trained on the adult

dataset, we observe that most inputs have negative influence on group disparity; randomly
intervening on most inputs would lead to a reduction in group disparity. In other words,
a classifier that did not use these inputs would be fairer. Interestingly, in this classifier,
marital status — rather than gender — has the highest influence on group disparity by
gender.

30

logistic kernel svm decision tree random forest

adult arrests adult arrests adult arrests adult arrests

MI A 0.045 0.049 0.046 0.047 0.043 0.054 0.044 0.053
MI B 0.043 0.050 0.044 0.053 0.042 0.051 0.043 0.052

Jaccard A 0.501 0.619 0.500 0.612 0.501 0.614 0.501 0.620
Jaccard B 0.500 0.611 0.501 0.615 0.500 0.614 0.501 0.617

corr A 0.218 0.265 0.220 0.247 0.213 0.262 0.218 0.262
corr B 0.215 0.253 0.218 0.260 0.215 0.257 0.215 0.259

disp A 0.286 0.298 0.377 0.033 0.302 0.335 0.315 0.223
disp B 0.295 0.301 0.312 0.096 0.377 0.228 0.302 0.129

QII A 0.036 0.135 0.044 0.149 0.023 0.116 0.012 0.109
QII B 0 0 0 0 0 0 0 0

Table 2.3: Comparison of QII with associative measures. For 4 different classifiers, we
compute metrics such as Mutual Information (MI), Jaccard Index (JI), Pearson Correlation
(corr), Group Disparity (disp) and Average QII between Gender and the outcome of the
learned classifier. Each metric is computed in two situations: (A) when Gender is provided
as an input to the classifier, and (B) when Gender is not provided as an input to the
classifier.

For the arrests dataset, most inputs have the effect of increasing group disparity if
randomly intervened on. In particular, Drug history has the highest positive influence
on disparity in arrests. Although Drug history is correlated with race, using it reduces
disparate impact by race, i.e. makes fairer decisions.

In both examples, features correlated with the sensitive attribute are the most influ-
ential for group disparity according to the sensitive attribute rather than the sensitive
attribute itself. It is in this sense that QII measures can identify proxy variables that
cause associations between outcomes and sensitive attributes.

QII with artificial discrimination We simulate discrimination using an artificial ex-
periment. We first randomly assign “ZIP codes” to individuals in our dataset (these are
simply arbitrary numerical identifiers). Then, to simulate systematic bias, we make an
f fraction of the ZIP codes discriminatory in the following sense: all individuals in the
protected set are automatically assigned a negative classification outcome. We then study
the change in the influence of features as we increase f . Figure 2.3a, shows that the influ-
ence of Gender increases almost linearly with f . Recall that Marital Status was the most
influential feature for this classifier without any added discrimination. As f increases, the
importance of Marital Status decreases as expected, since the number of individuals for

31

M
ar

ita
l S

ta
tu

s

Occ
up

at
io
n

Rel
at

io
ns

hi
p

Ed
uc

at
io
n

Ed
uc

at
io
n-

Num

Cap
ita

l G
ai
n

Hou
rs

 p
er

 w
ee

k
Age Se

x

W
or

kc
la
ss

Cap
ita

l L
os

s

Cou
nt

ry
Rac

e

Feature

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Q
II
 o

n
 O

u
tc

o
m

e
s

(a) QII of inputs on Outcomes for the adult

dataset

Dru
g

Hist
or

y
Se

x

Sm
ok

in
g

Hist
or

y
Rac

e

Birt
h

Ye
ar

Cen
su

s
Reg

io
n

Feature

0.00

0.05

0.10

0.15

0.20

Q
II
 o

n
 O

u
tc

o
m

e
s

(b) QII of inputs on Outcomes for the arrests
dataset

M
ar

ita
l S

ta
tu

s
Se

x

Occ
up

at
io
n

Hou
rs

 p
er

 w
ee

k

Ed
uc

at
io
n

Ed
uc

at
io
n-

Num Age

Cap
ita

l G
ai
n

Cap
ita

l L
os

s

W
or

kc
la
ss

Rac
e

Cou
nt

ry

Rel
at

io
ns

hi
p

Feature

0.03

0.08

0.13

0.18

0.23

Q
II
 o

n
 G

ro
u
p
 D

is
p
a
ri

ty

-0.09

-0.06

-0.03
-0.02-0.02-0.02-0.01-0.01-0.00-0.00-0.00-0.00

0.05

Original Disparity

(c) QII of Inputs on Group Disparity by Gender
in the adult dataset

Rac
e

Cen
su

s
Reg

io
n

Se
x

Birt
h

Ye
ar

Sm
ok

in
g

Hist
or

y

Dru
g

Hist
or

y

Feature

0.04

0.09

0.14

Q
II
 o

n
 G

ro
u
p
 D

is
p
a
ri

ty

-0.02
-0.01 -0.00

0.00

0.06
0.07

Original Disparity

(d) Influence on Group Disparity by Race in the
arrests dataset

Figure 2.2: QII measures for the adult and arrests datasets

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Discriminatory Zip Codes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Q
II
 o

n
 O

u
tc

o
m

e
s

Sex
Marital Status

(a) Change in QII of inputs as discrimination by
Zip Code increases in the adult dataset

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Discriminatory Zip Codes

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Q
II
 o

n
 O

u
tc

o
m

e
s

Race
Drug History

(b) Change in QII of inputs as discrimination
by Zip Code increases in the arrests dataset

Figure 2.3: The effect of discrimination on QII.

32

Age 23
Workclass Private
Education 11th
Education-Num 7
Marital Status Never-married
Occupation Craft-repair
Relationship Own-child
Race Asian-Pac-Islander
Gender Male
Capital Gain 14344
Capital Loss 0
Hours per week 40
Country Vietnam

Cap
ita

l G
ai
n

Se
x

W
or

kc
la
ss

Rac
e

Hou
rs

 p
er

 w
ee

k

Cap
ita

l L
os

s

Occ
up

at
io
n

Cou
nt

ry
Age

Ed
uc

at
io
n-

Num

Ed
uc

at
io
n

Rel
at

io
ns

hi
p

M
ar

ita
l S

ta
tu

s
0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Q
II
 o

n
 O

u
tc

o
m

e
s

(S
h
a
p
le

y
)

Figure 2.4: Mr. X’s profile and explanation for negative classification.

whom Marital Status is pivotal decreases.

2.6.3 Personalized Explanations

To illustrate the utility of personalized explanations, we study the classification of indi-
viduals who received potentially unexpected outcomes. For the personalized explanations,
we use classification outcomes obtained from decision forests, though one obtains a similar
outcome using other classifiers.

The influence measure that we employ is the Shapley value. In more detail, the coali-
tional function we use is v(S) = ιQA(S), with QA being E[c(·) = 1 | X = x]; that is,
the marginal contribution of i ∈ N to S is given by mi(S) = E[c(X−S) = 1 | X =
x]− E[c(X−S∪{i}) = 1 | X = x].

We emphasize that some features may have a negative Shapley value; this should be
interpreted as follows: a feature with a high positive Shapley value often increases the
certainty that the classification outcome is 1, whereas a feature whose Shapley value is
negative is one that increases the certainty that the classification outcome would be zero.
Mr. X: The first example is of an individual from the adult dataset, to whom we refer

as Mr. X (Figure 2.4). The learnt classifier classifies his income as low. This result
may be surprising to him: he reports high capital gains ($14k), and only 2.1% of
people with capital gains higher than $10k are reported as low income. In fact,
he might be led to believe that his classification may be a result of his ethnicity or
country of origin. Examining his explanation in Figure 2.4, however, we find that the
most influential features that led to his negative classification were Marital Status,
Relationship and Education.

33

Age 27
Workclass Private
Education Preschool
Education-Num 1
Marital Status Married-civ-spouse
Occupation Farming-fishing
Relationship Other-relative
Race White
Gender Male
Capital Gain 41310
Capital Loss 0
Hours per week 24
Country Mexico

Cap
ita

l G
ai
n

Se
x

Ed
uc

at
io
n

W
or

kc
la
ss

Rel
at

io
ns

hi
p

Rac
e

Cou
nt

ry

Cap
ita

l L
os

s

M
ar

ita
l S

ta
tu

s
Age

Hou
rs

 p
er

 w
ee

k

Ed
uc

at
io
n-

Num

Occ
up

at
io
n

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Q
II
 o

n
 O

u
tc

o
m

e
s

(S
h
a
p
le

y
)

Figure 2.5: Mr. Y’s profile and explanation for negative classification.

Mr. Y: The second example, to whom we refer as Mr. Y (Figure 2.5), has even higher
capital gains than Mr. X. Mr. Y is a 27 year old, with only Preschool education, and
is engaged in fishing. Examination of the transparency report reveals that the most
influential factor for negative classification for Mr. Y is his Occupation. Interestingly,
his low level of education is not considered very important by this classifier.

Mr. Z: The third example, who we refer to as Mr. Z (Figure 2.6) is from the arrests

dataset. History of drug use and smoking are both strong indicators of arrests.
However, Mr. X received positive classification by this classifier even without any
history of drug use or smoking. Upon examining his classifier, it appears that race,
age and gender were most influential in determining his outcome. In other words,
the classifier that we train for this dataset (a decision forest) has picked up on the
correlations between race (Black), and age (born in 1984) to infer that this individual
is likely to engage in criminal activity. Indeed, our interventional approach indicates
that this is not a mere correlation effect: race is actively being used by this classifier
to determine outcomes. Of course, in this instance, we have explicitly offered the race
parameter to our classifier as a viable feature. However, our influence measure is able
to pick up on this fact, and alert us of the problematic behavior of the underlying
classifier. More generally, this example illustrates a concern with the black box use
of machine learning which can lead to unfavorable outcomes for individuals.

2.6.4 Differential Privacy

Most QII measures considered in this chapter have low sensitivity, and therefore can be
made differentially private with negligible loss in utility. However, recall that the sensitivity
of influence measure on group disparity ιYdisp depends on the size of the protected group in

34

Birth Year 1984
Drug History None
Smoking History None
Census Region West
Race Black
Gender Male

Rac
e

Birt
h

Ye
ar Se

x

Cen
su

s
Reg

io
n

Dru
g

Hist
or

y

Sm
ok

in
g

Hist
or

y
0.2

0.1

0.0

0.1

0.2

0.3

0.4

Q
II
 o

n
 O

u
tc

o
m

e
s

(S
h
a
p
le

y
)

Figure 2.6: Mr. Z’s profile and explanation for positive classification.

the dataset D as follows:

ιYdisp = 2 max

(
1

|D \ Y| ,
1

|D ∩ Y|

)

For sufficiently small minority groups, a large amount of noise might be required to
ensure differential privacy, leading to a loss in utility of the QII measure. To estimate the
loss in utility, we set a noise of 0.005 as the threshold of noise at which the measure is
no longer useful, and then compute fraction of times noise crosses that threshold when
Laplacian noise is added at ε = 1. The results of this experiment are as follows:

Y Count Loss in Utility

Race: White 27816 2.97× 10−14

Race: Black 3124 5.41× 10−14

Race: Asian-Pac-Islander 1039 6.14× 10−05

Race: Amer-Indian-Eskimo 311 0.08

Race: Other 271 0.13

Gender: Male 21790 3.3× 10−47

Gender: Female 10771 3.3× 10−47

We note that for most reasonably sized groups, the loss in utility is negligible. However,
the Asian-Pac-Islander, and the Amer-Indian-Eskimo racial groups are underrepresented
in this dataset. For these groups, the QII on Group Disparity estimate needs to be very
noisy to protect privacy.

35

logistic kernel-svm decision-tree decision-forest

QII on Group Disparity 0.56 234.93 0.57 0.73
Average QII 0.85 322.82 0.77 1.12

QII on Individual Outcomes (Shapley) 6.85 2522.3 7.78 9.30
QII on Individual Outcomes (Banzhaf) 6.77 2413.3 7.64 10.34

Table 2.4: Runtimes in seconds for explanation computation

2.6.5 Performance

We report runtimes of our prototype for generating explanations on the adult dataset.
Recall from Section 2.5 that we approximate QII measures by computing sums over samples
of the dataset. According to the Hoeffding bound to derive an (ε, δ) estimate of a QII
measure, at ε = 0.01, and n = 37000 samples, δ = 2 exp(−nε2) < 0.05 is an upper bound
on the probability of the output being off by ε. Table 2.4 shows the runtimes of four
different QII computations, for 37000 samples each. The runtimes of all algorithms except
for kernel SVM are fast enough to allow real-time feedback for machine learning application
developers. Evaluating QII metrics for Kernel SVMs is much slower than the other metrics
because each call to the SVM classifier is very computationally intensive due to a large
number of distance computations that it entails. We expect that these runtimes can be
optimized significantly. We present them as proof of tractability.

Runtimes on the lending club dataset scale roughly linearly to that of the adult
dataset with QII on Individual Outcomes (Shapley) requiring 29.6 seconds on average
with 51 input features, and 37000 samples (same as adult) out of 890000 instances. As
the accuracy does not depend on the size of the dataset sampled from, this achieves similar
theoretical accuracy to the adult dataset.

2.6.6 Conciseness

Regulations surrounding credit such as the Equal Credit Opportunity Act [4] require con-
cise explanations for the principal reasons behind denials. We evaluate QII explanations in
terms of the number of important reasons revealed for individual outcomes. For a 500 tree
random forest trained on the lending club dataset with 51 input features, we computed
the number of negative influencers, that is, the number of features that have negative in-
fluence with magnitude greater than 0.001. The average number of negative influencers
were 4.6 indicating that a large fraction of the influence is concentrated in a small number
of features for any individual.

36

2.7 QII for Fairness

Due to the widespread and black box use of machine learning in aiding decision making,
there is a legitimate concern of algorithms introducing and perpetuating social harms such
as racial discrimination [13, 106]. As a result, the algorithmic foundations of fairness in
personal information processing systems have received significant attention recently [22,
32, 45, 70, 149]. While many of the algorithmic approaches [22, 50, 70, 149] have focused
on group parity as a metric for achieving fairness in classification, Dwork et al. [45] argue
that group parity is insufficient as a basis for fairness, and propose an approach which
prescribes that similar individuals should receive similar classification outcomes. However,
this approach requires a similarity metric for individuals which is often subjective and
difficult to construct.

QII does not suggest any normative definition of fairness. Instead, we view QII as a
diagnostic tool to aid fine-grained fairness determinations. In fact, QII can be used in
the spirit of the similarity based definition of [45] by comparing the personalized privacy
reports of individuals who are perceived to be similar but received different classification
outcomes, and identifying the inputs which were used by the classifier to provide different
outcomes.

When group parity is used as a criteria for fairness, QII can identify the features that
lead to group disparity, thereby identifying features being used by a classifier as a proxy
for sensitive attributes. The determination of whether using certain proxies for sensitive
attributes is discriminatory is often a task-specific normative judgment. For example, using
standardized test scores (e.g., SAT scores) for college admissions decisions is by and large
accepted. However, SAT scores may act as a proxy for several protected attributes, leading
to concerns of unfairness [132, 140]. Our goal is not to provide such normative judgments.
Rather we seek to provide fine-grained transparency into input usage (e.g., what’s the
extent to which SAT scores influence decisions), which is useful to make determinations of
discrimination from a specific normative position.

2.8 Related Work

QII enables algorithmic transparency via a family of game-theoretic causal influence mea-
sures. In this section we compare with related work along a number of different dimensions.
First, we compare with related approaches to measuring causal influence, associations, and
briefly discuss an emerging direction that measures proxy influence via a combination of
associative and causal techniques. Next, we discuss orthogonal approaches to algorithmic
transparency: interpretable machine learning and experimentation on web services. Fi-
nally, we discuss other fields in which similar game-theoretic measures have been applied.

Quantitative Causal Measures Causal models and probabilistic interventions have
been used in a few other settings. While the form of the interventions in some of these set-
tings may be very similar, our generalization to account for different quantities of interests
enables us to reason about a large class of transparency queries for data analytics systems

37

ranging from classification outcomes of individuals to disparity among groups. Further, the
notion of marginal contribution which we use to compute responsibility does not appear
in this line of prior work.

Janzing et al. [67] use interventions to assess the causal importance of relations between
variables in causal graphs; in order to assess the causal effect of a relation between two
variables, X → Y (assuming that both take on specific values X = x and Y = y), a new
causal model is constructed, where the value of X is replaced with a prior over the possible
values of X. The influence of the causal relation is defined as the distance between the
joint distributions of all the variables in the two causal models with and without the value
of X replaced. The approach of intervening with a random value from the prior is similar
to our approach of constructing X−SUS.

Independently, there has been considerable work in the machine learning community
to define importance metrics for variables, mainly for the purpose of feature selection (see
[59] for a comprehensive overview). One important metric is called Permutation Impor-
tance [19], which measures the importance of a feature towards classification by randomly
permuting the values of the feature and then computing the difference of classification ac-
curacies before and after the permutation. Replacing a feature with a random permutation
can be viewed as sampling the feature independently from the prior.

Measures of Association One can think of our results as a causal alternative to quan-
titative information flow. Quantitative information flow is a broad class of metrics that
quantify the information leaked by a process by comparing the information contained be-
fore and after observing the outcome of the process. Quantitative Information Flow traces
its information-theoretic roots to the work of Shannon [118] and Rényi [110]. Recent
works have proposed measures for quantifying the security of information by measuring
the amount of information leaked from inputs to outputs by certain variables; we point
the reader to [123] for an overview, and to [29] for an exposition on information theory.
Quantitative Information Flow is concerned with information leaks and therefore needs to
account for correlations between inputs that may lead to leakage. The dual problem of
transparency, on the other hand, requires us to destroy correlations while analyzing the
outcomes of a system to identify the causal paths for information leakage. Measures of
association have also been widely used for detecting discrimination (see Section 6.9).

Proxy Influence An emerging direction in this space is the identification of proxy or
indirect use of sensitive features as opposed to direct causal use, as captured by QII. Adler
et al. [7] quantify the indirect influence of an attribute by obscuring the attribute (along
with associations) from a dataset and comparing the prediction accuracy of a model before
and after obscuring. In a different approach, Datta et al. [?] identify intermediate
computations in a program that are associated with an attribute and use QII to measure
the causal influence of the intermediate computations on the outcome.

Interpretable Machine Learning An orthogonal approach to adding interpretability
to machine learning is to constrain the choice of models to those that are interpretable by

38

design. This can either proceed through regularization techniques such as Lasso [133] that
attempt to pick a small subset of the most important features, or by using models that
structurally match human reasoning such as Bayesian Rule Lists [82], Supersparse Linear
Integer Models [144], or Probabilistic Scaling [113]. Since the choice of models in this
approach is restricted, a loss in predictive accuracy is a concern, and therefore, the central
focus in this line of work is the minimization of the loss in accuracy while maintaining
interpretability. On the other hand, our approach to interpretability is forensic. We add
interpretability to machine learning models after they have been learnt. As a result, our
approach does not constrain the choice of models that can be used.

Experimentation on Web Services Another emerging body of work focuses on sys-
tematic experimentation to enhance transparency into Web services such as targeted ad-
vertising [12, 32, 57, 79, 80]. The setting in this line of work is different since they have
restricted access to the analytics systems through publicly available interfaces. As a re-
sult they only have partial control of inputs, partial observability of outputs, and little or
no knowledge of input distributions. The intended use of these experiments is to enable
external oversight into Web services without any cooperation. Our framework is more ap-
propriate for a transparency mechanism where an entity proactively publishes transparency
reports for individuals and groups. Our framework is also appropriate for use as an internal
or external oversight tool with access to mechanisms with control and knowledge of input
distributions, thereby forming a basis for testing.

Game-Theoretic Influence Measures Recent years have seen game-theoretic influ-
ence measures used in various settings. Datta et al. [31] also define a measure for quanti-
fying feature influence in classification tasks. Their measure does not account for the prior
on the data, nor does it use interventions that break correlations between sets of features.
In the terminology of this chapter, the quantity of interest used by [31] is the ability of
changing the outcome by changing the state of a feature. Strumbelj and Kononenko [128]
also use the Shapley value to compute influences for individual classification. This work
greatly extends and generalizes the concepts presented in [31] and [128], by both account-
ing for interventions on sets, and by generalizing the notion of influence to include a wide
range of system behaviors, such as group disparity, group outcomes and individual out-
comes. Essentially, the instantiations of our transparency schema define a wide range of
transparency reports.

Game theoretic measures have been used by various research disciplines to measure
influence. Indeed, such measures are relevant whenever one is interested in measuring
the marginal contribution of variables, and when sets of variables are able to cause some
measurable effect. Prominent domains where game theoretic measures have recently been
used are terrorist networks [86, 92], protein interactions [18], and neurophysical models [72].
The novelty in our use of the game theoretic power indices lies in the conception of a
cooperative game via a valuation function ι(S), defined by an randomized intervention on
inputs S. Such an intervention breaks correlations and allows us to compute marginal
causal influences on a wide range of system behaviors.

39

2.9 Conclusion
In this chapter, we present QII, a general family of metrics for quantifying the influence of
inputs in systems that process personal information. In particular, QII lends insights into
the behavior of opaque machine learning algorithms by allowing us to answer a wide class
of queries ranging from influence on individual causal outcomes to influence on disparate
impact. To achieve this, QII breaks correlations between inputs to allow causal reasoning,
and computes the marginal influence of inputs in situations where inputs cannot affect
outcomes alone. Also, we demonstrate that QII can be efficiently approximated, and can
be made differentially private with negligible noise addition in many cases.

A problem which we don’t address in this chapter is that the kind of interventions pre-
sented here my query the model on instances outside the natural distribution of instances.
We explore two solutions to this problem: (i) we train the model on these intervened in-
stances via an active learning approach in Chapter 3, and (ii) for differentiable models,
we explore infinitesimal interventions in Chapter 4. Also, we do not consider the problem
of indirect use: identifying the influence of inputs that are not explicitly provided but
inferred by the model. We address this problem in Chapter 6. Finally, we do not consider
situations where inputs do not have well understood semantics. Such situations arise often
in settings such as image or speech recognition, and automated video surveillance. With
the proliferation of immense processing power, complex machine learning models such as
deep neural networks have become ubiquitous in these domains. We consider this problem
in Chapter 5.

40

Chapter 3

Supervising Input Influence

In Chapter 2, we present an approach to addressing the converged use problem by proposing
a causal influence measure that quantifies the relative importance of inputs used by a model.
However, causal analyses, including QII, involve evaluating the classifier using datapoints
that may be atypical of its training distribution. In this chapter, we show that standard
methods for training classifiers that minimize empirical risk do not constrain the behavior
of the classifier on such datapoints. As a result, training to minimize empirical risk does not
distinguish among classifiers that agree on predictions in the training distribution but have
wildly different causal influences. We term this problem covariate shift in causal testing
and formally characterize conditions under which it arises. As a solution to this problem,
we propose a novel active learning algorithm that constrains the influence measures of
the trained model. We prove that any two predictors whose errors are close on both the
original training distribution and the distribution of atypical points are guaranteed to have
causal influences that are also close. Further, we empirically demonstrate with synthetic
labelers that our algorithm trains models that (i) have similar causal influences as the
labeler’s model, and (ii) generalize better to out-of-distribution points while (iii) retaining
their accuracy on in-distribution points.

Data processors employing machine learning algorithms are increasingly being required
to provide and account for reasons behind their predictions due to regulations such as the
EU GDPR [46]. This call for reasoning tools has intensified with the increasing use of
machine learning systems in domains like criminal justice [8], credit [21], and hiring [66].
Traditionally, influence measures were used to inform feature selection [19]. Recently,
influence measures have received renewed interest as part of a toolbox to explain operations
and reveal biases of inscrutable machine learning systems [7, 34, 36, 74, 111].

Causal influence measures are a particularly important constituent of this toolbox [34,
74]. In Chapter 2, we demonstrated how causal influence measures enable identification
of principal reasons for decisions (e.g., credit denials) by evaluating counterfactual queries
that ask whether changing input attributes would produce a change in the decision. This
determination is used to explain and guard against unjust biases. For example, the use of
a correlate of age like income to make credit decisions may be justified even if it causes
applicants of one age group to be approved at a higher rate than another whereas the direct

41

Age

In
co
m
e ℎ1

ℎ2
ℎ3

(a) Three predictors with similar in-distribution
predictions

Age

In
co
m
e ℎ1

ℎ2
ℎ3

(b) Causal testing for income

Figure 3.1: The three predictors trying to separate white points from black have similar
predictions on the distribution, but very different causal influences. Predictor h1 uses only
income, h2 uses only age, and h3 uses a linear combination of the two. Figure (b) shows how
counterfactual querying, by keeping age fixed and varying income allows the identification
of causal influence and distinguishes between the three classifiers.

use of age or a correlate like zipcode may not be justified1.
Causal analyses of natural systems often involve observing outcomes of specially created

units, e.g. mice with genes altered. Such units may be atypical in natural populations.
However, while performing causal analysis over machine learnt systems, a similar approach
encounters an important challenge: machine learning systems are not expected to be evalu-
ated on atypical or out-of-distribution units (datapoints), since they have not been exposed
to such units during training. Standard methods for training classifiers that minimize em-
pirical risk do not constrain the behavior of the classifier on such datapoints. As a result,
training to minimize empirical risk does not distinguish among classifiers that agree on
predictions in the training distribution but have unintended causal influences. We term
this problem covariate shift in causal testing. In other words, typical machine learning
algorithms are designed to make the right predictions but not necessarily for justifiable
reasons.

Returning to the example of credit decisions using age and income, consider a situa-
tion where the two are strongly correlated: young individuals have low income and older
individuals have a higher income. This situation is illustrated in Figure 3.1a where all
three predictors h1, h2, h3 have low predictive error, but they make similar predictions for
very different reasons. Since the three predictors have nearly identical predictions on the
distribution, points from the distribution are not useful in distinguishing the causal influ-

1This is an example of a “business necessity defense” under US law on disparate impact [20].

42

ence of the two features. As a result, causal testing requires the creation of atypical units
that break the correlations between features. For example, evaluating the predictor on
the points on the red bar (Figure 3.1b) where age is fixed and income is varied informs
whether income is used by a given predictor or not. However, since from an empirical risk
minimization perspective the atypical points are irrelevant, an algorithm optimizing just
for predictive accuracy is free to choose any of the three predictors.

We formally characterize conditions that give rise to covariate shift in causal testing
(Theorem 6). Intuitively, this result states that if the units used for measuring causal influ-
ence are sufficiently outside the data distribution, constraining the behavior of a predictor
on the data distribution does not constrain the causal influences of the predictor.

In order to address this issue, we introduce an active learning algorithm in Section 3.3.
This algorithm provides an accountability mechanism for data processors to examine im-
portant features, and if their influences are suspicious, to collect additional information
that constrains the feature influences. This additional information could steer the in-
fluences toward more acceptable values (e.g., by reducing the influence of age in h2 in
Figure 3.1a). Alternatively, it could provide additional evidence that the influence values
convey appropriate predictive power and the suspicions are unfounded (e.g., by preserving
influences in h1 in Figure 3.1a).

The active learning process is assisted by two oracles. The first is a feature selection
oracle that examines the causal influences of different features, and chooses the feature for
which counterfactuals queries should be answered. We envision this oracle to be an auditor
who can identify problematic causal influences based on background knowledge of causal
factors or ethical norms governing classification. The second is similar to a standard active
learning oracle, and labels atypical points to answer counterfactual queries. For example,
for predictor h2 in our running example, the feature selection oracle might notice that
age has an unduly high influence, and can instruct the algorithm to focus on instances
that vary age while keeping income fixed. While the direct use of age may be obviously
problematic, in common applications the system designer may not have apriori knowledge
of which attribute uses are problematic. The feature selection oracle may be able to spot
suspiciously high or low influences and guide the counterfactual queries that get sent to
the labeler to better inform the learning.

We evaluate the counterfactual active learning algorithm for linear, decision tree, and
random forest models on a number of datasets, using a synthetic labeler. In particular,
we demonstrate that after counterfactual active learning, the trained classifier has similar
causal influence measures to the labeler. We also show that the classifier can generalize
better to out-of-distribution points. This is an important consequence of having causal
behavior similar to the labeler. Finally, we demonstrate that the accuracy on the data
distribution does not degrade as a result of this additional training.

Related Work. Prior work on causal learning learns the structure of causal models [65,
126], or given the structure of models, the functional relationship between variables. In this
context, active learning has been used to aid both the discovery of causal structures [63, 134]
and their functional relationships [112]. In this work we don’t attempt to learn true causal

43

models. Instead, our work focuses on constraining the causal behavior of learnt models. In
doing so, we provide an accountability mechanism for data processors to collect additional
data that guides the causal influences of their models to more acceptable values or justifies
the causal influences of the learnt model.

Contributions. In summary, the contributions of this chapter are as follows.
• A formal articulation of the covariate shift in causal testing problem.
• A novel active learning algorithm that addresses the problem.
• An empirical evaluation of the algorithm for standard machine learning predictors
on a number of real-world datasets.

3.1 Background
A predictor h is a function X → Y that operates on an input space X ⊆ Rn to a space
of predictions Y . The input space X has a probability distribution P associated with it,
where P (X = x) is the frequency of drawing a particular instance x.

3.1.1 Risk Minimization

Given random variables X ∈ X , and Y ∈ Y , and a loss function l, the risk associated with
predictor h is given by

R(h) = E [l(h(X), Y)] .

The goal of supervised learning algorithms under a risk minimization paradigm is to mini-
mize R(h). In general, the distributions over X and Y are unknown. As a result, learning
algorithms minimize empirical risk over a sample {(xi, yi)}1..N

R̂(h) =
1

N

N∑
i=1

l(h(xi), yi).

Note that the risk minimization paradigm only constrains the behavior of a predictor
on points from the distribution and treats any two predictors that have identical behavior
on points from the distribution interchangeably.

For ease of presentation, we focus on binary classification tasks where Y is binary, and
use the 0− 1 loss function l0-1(ŷ, y) = I(ŷ 6= y) = |ŷ − y|.

3.1.2 Counterfactual Influence

The influence of a feature f for a predictor h is measured by comparing the outcomes of
h on the data distribution to the outcomes of a counterfactual distribution that changes
the value of f . We denote the data distribution over features as X and the counterfactual
distribution with respect to feature f as Xf

cf.
A number of influence measures proposed in prior work can be viewed as instances

of this general idea. For example, Permutation Importance [19], measures the difference

44

in accuracy between X and Xf
cf, where X

f
cf is chosen as X randomly permuted. In [7],

Xf
cf is chosen as the minimal perturbation of X such that feature f cannot be predicted.

In this chapter, we use Average Unary QII (auQII), an instance of Quantitative Input
Influence [34], as our causal influence measure. The counterfactual distribution Xf

cf for
auQII is represented as X−fUf , where the random variable X−f represents features except
f where Uf is sampled from the marginal distribution of f independently of the rest of the
features X−f .

P (X−fUf = x) = P (X−f = x−f)P (Uf = xf)

Definition 7. Given a loss function l, and a model h, the Average Unary QII (auQII) of
an input f , written ιf (h), is defined as

ιf (h) = E
X,Uf

[l0-1(h(X), h(X−fUf))]

3.2 Covariate shift in Causal Testing

In this section, we discuss some of the theoretical implications of the covariate shift in causal
testing. First, we show in Theorem 6 that risk minimization does not constrain influences
when the data distribution diverges significantly from the counterfactual distribution. In
other words, predictors trained under an ERM regime are free to choose influential fac-
tors. Further, in Theorem 7, we demonstrate predictors that agree on predictions on both
the data distribution and the counterfactual distribution have similar influences. This
theorem forms the motivation for our counterfactual active learning algorithm presented
in Section 3.3 that attempts to minimize errors on both the data and the counterfactual
distribution by adding points from the counterfactual distribution to the training set.

3.2.1 Counterfactual divergence

We first define what it means for an influence measure to be unconstrained by its behavior
on the data distribution. An influence measure ιf is unconstrained for a predictor h, and
data distribution X, if it is possible to find a predictor h′ which has similar predictions
on the data distribution but very different influences. More specifically, if the influence is
high, then it can be reduced to a lower value, and vice versa.
Definition 8. An influence measure ιf is said to be (ε, δ)-unconstrained, for 0 ≤ δ ≤ 1/2,
for a predictor h, if there exists predictors h1, h2 such that for i ∈ {1, 2}, P (h(X) 6=
hi(X)) ≤ ε, and ιf (h1) ≥ δ and ιf (h2) ≤ 1− δ.

The following theorem shows that if there exist regions ϕ in the input space with low
probability weight in the data distribution and high weight in the counterfactual distribu-
tion, i.e. the data distribution and counterfactual distribution diverge significantly, then
any model will have unconstrained causal influences. As a result, predictors trained under
an ERM regime are free to choose influential causal factors.
Theorem 6. If there exists a predicate ϕ, such that P (ϕ(X)) ≤ ε and P (ϕ(X−fUf) ∧
¬ϕ(X)) = γ, then for any h, ιf (h) is (ε, γ/2)-unconstrained.

45

Proof. The proof proceeds via an averaging argument. Let Π be the set of all functions
from X to {0, 1}. For i ∈ {1, 2} consider hi sampled uniformly from the set of deterministic
functions that map values x satisfying ϕ to h(x) and according to some π ∈ Π otherwise:
{x 7→ h(x) when ¬ϕ(x) and π(x) o.w. }π∈Π. Notice that P (hi(X)|¬ϕ(X)) is therefore
uniform in {0, 1}.

As hi(x) = h(x) when ¬ϕ(x), any such classifier satisfies P (h(X) 6= hi(X)) ≤ P (ϕ(x)) ≤
ε. Computing the expected influence over all h1, we have

E
h1

[ιf (h1))]

= E
h1

[
E

X,Uf
[I(h1(X) 6= h1(X−fUf))]

]
Let θ = ϕ(X−fUf) ∧ ¬ϕ(X). Then, P (θ) = γ

=γ E
X,Uf

[
E
h1

[I(h1(X) 6= h1(X−fUf))] | θ
]

+ (1− γ) E
X,Uf

[
E
h1

[I(h1(X) 6= h1(X−fUf))] | ¬θ
]

(
if θ, then E

h1
[I(h1(X) 6= h1(X−fUf))] =

1

2

)
≥γ 1

2
+ (1− γ)0

=γ/2.

By an averaging argument, there exists an h∗1 such that ιf (h∗1) ≥ γ/2. Similarly, computing
the expected influence over all h2, we have

E
h2

[ιf (h2))]

= E
h2

[
E

X,Uf
[I(h2(X) 6= h2(X−fUf))]

]
Let θ = ϕ(X−fUf) ∧ ¬ϕ(X). Then, P (θ) = γ

=γ E
X,Uf

[
E
h2

[I(h2(X) 6= h2(X−fUf))] | θ
]

+ (1− γ) E
X,Uf

[
E
h2

[I(h2(X) 6= h2(X−fUf))] | ¬θ
]

≤γ 1

2
+ (1− γ)1

=1− γ/2
Again, by an averaging argument, there exists an h∗2 such that ιf (h∗2) ≤ 1− γ/2

3.2.2 Relating counterfactual and true accuracies

We now show that if the two models agree on both the true and the counterfactual distri-
butions, then they have similar influences.

46

Definition 9. Given a loss function l and predictors h and h′, the expected loss of the h
with respect to h′, written err(h, h′, X), is

err(h, h′, X) = E
X

[l0-1(h(X), h′(X))] .

Theorem 7. If err(h, h′, X) ≤ ε1, and err(h, h′, X−fUf) ≤ ε2, then |ιf (h)− ιf (h′)| ≤
ε1 + ε2

Proof.

|ι(h, f)− ι(h′, f)|

=

∣∣∣∣ E
X,Uf

[h(X) 6= h(X−fUf)]

− E
X,Uf

[h′(X) 6= h′(X−fUf)]

∣∣∣∣
=

∣∣∣∣ E
X,Uf

[|h(X)− h(X−fUf)|]

− E
X,Uf

[|h′(X)− h′(X−fUf)|]
∣∣∣∣

by triangle inequality
≤ E

X,Uf
[|h(X)− h(X−fUf)− h′(X) + h′(X−fUf)|]

= E
X,Uf

[|h(X)− h′(X) + h′(X−fUf)− h(X−fUf)|]

by triangle inequality
≤ E

X,Uf
[|h(X)− h′(X)|]

+ EX,Uf [|h′(X−fUf)− h(X−fUf)|]
=err(h, h′, X) + err(h, h′, X−fUf)

≤ε1 + ε2

3.3 Counterfactual Active Learning
In this section, we describe an active learning algorithm for training a model that pushes
the model towards the desired causal influences. The learning is assisted by two oracles.
The first is a feature selection oracle that examines the causal influences of input features,
and chooses the feature for which counterfactuals should be labeled. We envision this oracle
to be a domain expert that can identify problematic causal influences based on background
knowledge of causal factors or ethical norms governing the classification task. The second
oracle, similar to a standard active learning oracle, labels counterfactual points with their
intended label.

47

Algorithm 1 Counterfactual active learning.
Require: Labeling oracle O, Feature selection oracle F
procedure CounterfactualActiveLearning(D, k)

D: training dataset
k: labeling batch size
c← train(D)
repeat

ι← feature influences QII(c,D)
f ← feature F(ι)

Ĉ
$←−
k
D−fUf

ŷ ← oracle labels O(Ĉ)
D ← D ∪ 〈Ĉ, ŷ〉
c← train(D)

until stopping condition reached
return c

end procedure

The active learning process (Algorithm 1), on every iteration, computes the influences
of features of a classifier trained on the dataset. The feature selection oracle F picks a
feature. Then k points Ĉ are picked from the counterfactual distribution, where k is a
pre-specified batch size parameter. The parameter k can also be thought of as a learning
rate for the algorithm. The k points in Ĉ are then labeled by the oracle O and added
to the training set. A new classifier is trained on the augmented dataset and this process
is repeated until the stopping condition is reached. The stopping condition can either be
a pre-specified number of iterations or a convergence condition when the classifier learnt
does not show a significant change in influences.

The choice of the feature selection oracle affect the speed of convergence of the al-
gorithm. In our experiments, we consider two feature selection oracles (i) a baseline
random oracle, that picks features at random for generating counterfactual queries, (ii)
a guided oracle, that picks the feature that has the highest difference in influence from
the true influence. In Section 3.4.2, we demonstrate that an oracle that deterministically
picks the feature with the highest difference in influence converges faster than an oracle
that picks a feature at random.

The rationale for training the classifier on points from the counterfactual distribution
is two-fold. First, by adding points from the counterfactual distribution, the algorithm re-
duces the divergence between the training distribution and the counterfactual distribution,
as a result, constraining the feature influences of the learnt classifier according to Theo-
rem 6. Additionally, by increasing accuracy of the classifier with respect to the labeler on
the counterfactual distribution, the influences of the trained classifier are pushed closer to
the influence of the labeler (Theorem 7).

48

3.4 Evaluation
a
d
u
l
t

0 5 10 15 20
Epoch

0.005

0.010

0.015

0.020

0.025

0.030

M
ea

n
Sq

ua
re

 E
rro

r

Mean Square Error of influence
guided
random
non-counterfactual

0 5 10 15 20
Epoch

0.0075

0.0080

0.0085

0.0090

0.0095

0.0100

Er
ro

r

Error wrt biased distribution
guided
random
non-counterfactual

0 5 10 15 20
Epoch

0.030

0.032

0.034

0.036

0.038

Er
ro

r

Error wrt data distribution
guided
random
non-counterfactual

a
r
r
e
s
t
s

0 5 10 15 20
Epoch

0.0125

0.0130

0.0135

0.0140

0.0145

0.0150

0.0155

0.0160

0.0165

0.0170

M
ea

n
Sq

ua
re

 E
rro

r

Mean Square Error of influence
guided
random
non-counterfactual

0 5 10 15 20
Epoch

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

0.0055

0.0060

0.0065

Er
ro

r

Error wrt biased distribution
guided
random
non-counterfactual

0 5 10 15 20
Epoch

0.0545

0.0550

0.0555

0.0560

0.0565

0.0570

0.0575

Er
ro

r

Error wrt data distribution
guided
random
non-counterfactual

l
e
n
d
i
n
g
c
l
u
b

0 5 10 15 20
Epoch

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
ea

n
Sq

ua
re

 E
rro

r

Mean Square Error of influence
guided
random
non-counterfactual

(a) Convergence of difference of
influence

0 5 10 15 20
Epoch

0.004

0.005

0.006

0.007

0.008

0.009

Er
ro

r

Error wrt biased distribution
guided
random
non-counterfactual

(b) Convergence of in-
distribution error

0 5 10 15 20
Epoch

0.006

0.007

0.008

0.009

0.010

0.011

0.012
Er

ro
r

Error wrt data distribution
guided
random
non-counterfactual

(c) Convergence of out of distri-
bution error

Figure 3.2: Rates of convergence of counterfactual active learning with guided, random,
and non− counterfactual settings.

In this section, we evaluate the counterfactual active learning algorithm for linear,
decision tree, and random forest models using a synthetic labeler as ground truth. In
particular, we demonstrate that after counterfactual active learning, the trained classifier
has similar causal influence measures to the labeler. We also show that the classifier can
generalize better to out-of-distribution points. This is an important consequence of having
causal behavior similar to the labeler. And finally, we demonstrate that the accuracy on
the data distribution does not degrade as a result of this additional training.

49

0 5 10 15 20

Epoch

0.015

0.020

0.025

0.030

0.035

0.040

0.045

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

Mean Square Error of influence

guided

random

non-counterfactual

(a) Convergence of difference of influence

0 5 10 15 20

Epoch

0.0190

0.0195

0.0200

0.0205

0.0210

0.0215

0.0220

0.0225

0.0230

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

Mean Square Error of influence

guided

random

non-counterfactual

(b) Convergence of difference of influence

Figure 3.3: Rates of convergence of counterfactual active learning with guided, random,
and non− counterfactual settings.

3.4.1 Methodology

We evaluate our algorithm by training two predictors. The first predictor provides the
ground truth to be used by the oracles. The second predictor is trained on a biased version
of the dataset used to train the first predictor. This approach induces a difference in influ-
ence in the two predictors. In more detail, the following steps comprise our experimental
methodology.
• Given: D a dataset which is a sample from the original distribution,
• Train ground truth model ht on D. This model is used by the labeling oracle to
respond to counterfactual queries.

• Select a random predicate θ.
• Construct Db by excluding points from D that satisfy θ.
• Train predictor hb on a random subset of Db, leaving the rest for testing and for use
by the non− counterfactual baseline described below.

• Perform counterfactual active learning on predictor hb.
The random predicate θ is chosen by training a short decision tree on the dataset with

random labels. Db is intended to simulate a biased data collection mechanism in order to
induce artificial correlations in the dataset. The induced artificial correlations create a gap
between the counterfactual distribution and the data distribution, thus making the feature
influences unconstrained.

We run the active learning algorithm under the following settings:
• guided: At each iteration, the feature selection oracle selects the feature with the
highest difference in auQII with respect to the base model.

• random: This is a baseline where the feature selection oracle selects a feature at
random.

• non− counterfactual: This is another baseline where the labeling oracle labels
fresh points from Db as opposed to from the counterfactual distribution.

The experiments presented here are run on the following datasets:
• adult: The benchmark adult dataset [85], a subset of census data, is used to predict

50

income from 13 demographic factors including age and marital status.
• arrests: This data set is used to predict a history of arrests using 6 features extracted
from the National Longitudinal Survey of Youth [2] such as drug and alcohol use.

• lending club: A data set of loans originated by Lending Club [81] is used to predict
charge-offs from 19 other financial variables about individuals.

These datasets represent prediction tasks that could be potentially used in settings
such as predictive policing or credit, and where data processors are accountable for reasons
behind prediction.

All experiments presented here are run with a batch size t of 200 for 20 epochs, and
averaged over 50 runs of the algorithm.

3.4.2 Results

Figure 3.2 shows the evolution of the active learning algorithm for the three datasets
dataset with a logistic regression model. In particular, Figure 3.2a shows the the change
of the mean square error of auQII between hb and ht. This figure shows that the feature
influences converge to values close to that of ht with the guided oracle. The random oracle
also converges but at a slower rate. This result is useful as it indicates that the process does
not require the feature selection oracle to pick optimally. The non− counterfactual al-
gorithm does not affect the influence measures significantly. This is to be expected since
it retrains using labeled points from within the biased distribution.

In Figures 3.2b and 3.2c, we show the accuracy of the classifier on holdout sets from
Db and D respectively. Figure 3.2b shows that the error on the data distribution does
not increase due to this additional training. Further, Figure 3.2c shows that the error on
the unbiased dataset D also decreases, even though parts of D are not in the training
set. This can be viewed as a side-effect of the model becoming causally closer to the
ground truth model. For all three datasets the guided oracle leads to faster convergence
across the three metrics. The arrests dataset shows similar behavior for the random and
guided oracles which can be attributed to the dataset only containing a small number of
features.

Figures 3.3a and 3.3b show the effect of counterfactual active learning on decision
trees and random forests. They both show a similar trend to linear models of the causal
influences of hb converging toward those of ht with counterfactual active learning.

3.5 Conclusion

We articulate the problem of covariate shift in causal testing and formally characterize
conditions under which it arises. We present an algorithm for counterfactual active learning
that addresses this problem. We empirically demonstrate with synthetic labelers that our
algorithm trains models that (i) have similar causal influences as the labeler’s model, and
(ii) generalize better to out-of-distribution points while (iii) retaining their accuracy on
in-distribution points.

51

In this chapter, we assume that the labeling oracle can label all points with equal cer-
tainty and cost. However, for points further from the distribution, the labeler might need
to perform real experiments in order to label the points. This suggests two interesting di-
rections for future work. The first studies mechanisms for answering counterfactual queries
for points far away from the distribution. The second involves designing an algorithm that
takes into account the cost of a labeler in the learning process.

52

Chapter 4

Distributional Influence in Continuous
Models

In Chapter 2, we proposed a general approach for quantifying the causal influence of inputs
in machine learning models, with a particular focus on machine learning classifiers. For
machine learning classifiers, we observe that in order to measure causal influences we need
to query the model on points outside the distribution it operates on. This requirement
results in a covariate shift problem that we address in Chapter 3: approaches to causal
testing of classifiers query the model on points where it isn’t expected to predict reliably.

However, for continuous and differentiable models including those used for regression,
we can observe the causal effects of infinitesimal changes to inputs. For very small values
of ∆, we can measure f(x1 + ∆, x2)− f(x1, y2) and observe the causal effect of intervening
on x by a tiny amount. As ∆ tends to 0, if (x1, x2) belongs to the input distribution, then
for this infinitesimal intervention, we measure causal influence with zero covariate shift. If
this reminds the reader of a partial derivative, then she is not mistaken; this infinitesimal
causal measure, when divided by ∆, is exactly the partial derivative of f with respect to
x1.

In this chapter, we present input distributional influence, an influence measure based
on the partial derivative for continuous and differentiable models that captures causality in
the model while still retaining distributional faithfulness, i.e. has no covariate shift due to
causal testing. This input influence measure is generalized in Chapter 5 to internal factors
in models, and evaluated on convolutional neural networks.

Desiderata. We begin by describing some intuitive desiderata of measures of influence.
• Causality: We intend our influence measures to identify parts of the network, that
when changed, have the most effect on outcomes. This suggests a causal view of
influence. We focus on the partial derivative on outcomes as a measure of causal
influence locally as it measures the change in outcomes corresponding to an infinites-
imal change in inputs, while keeping all other inputs fixed.

• Flexibility: We wish that with appropriate parameterization, our measures should be
useful for answering a general class of causal queries.

• Distributional Faithfulness: Models operating on high dimensional spaces such as

53

neural networks are not expected to behave reliably on instances outside the input
distribution. As a result, we wish that our measures only evaluate the behavior
of the network on points within the distribution, a property we call distributional
faithfulness. This property is key to our axiomatic treatment of influence and is
reflected in Axioms 2, and 3 in Section 5.4.

Note that both QII and distributional influence share the three desiderata. The third
desideratum of distributional faithfulness, however, is discharged differently for the two.
For distributional influence, the use of the partial derivative does not evaluate the model
on points outside the distribution if the partial derivatives are only measured on points
in the distribution. Partial derivatives are not appropriate for QII as they also apply
to discontinuous models with discrete inputs, and we need to evaluate models on points
outside the distribution. To achieve distributional faithfulness, we train the model on
points outside the distribution via counterfactual active learning.

4.1 Distributional Input Influence

Distributional input influence is parameterized by a quantity of interest, and a distribution
of interest. The measure is the average partial derivative of the quantity of interest over
the distribution of interest.

The distribution and quantity of interest together capture aspects of network behavior
that we are interested in explaining. Examples of distributions of interest are: (i) a single
instance (influence measure just reduces to the partial derivative at the point) (ii) the
distribution of ‘cat’ images, or (iii) the overall distribution of images. While the first
distribution of interest focuses on why a single instance was classified a particular way,
the second explains the essence of a class, and the third identifies generally influential
inputs over the entire population. A fourth instance is the uniform distribution on the line
segment of scaled instances between an instance and a baseline, which yields a measure
called Integrated Gradients [129]. Examples of quantities of interest are: outcome towards
the ‘cat’ class (i.e., the network score for the cat class) or comparative outcome towards
‘cat’ versus ‘dog’ (i.e., the difference in the network scores for cat and dog classes). The
first quantity of interest answers the question of why a particular input was classified as
a cat, whereas the second can be helpful in understanding how the network distinguishes
‘cat’ instances from ‘dog’ instances.

We represent quantities of interest of networks as continuous and differentiable functions
f from X → R, where X ⊆ Rn, and n is the number of inputs to f . A distributional
influence measure, denoted by ιi(f, P), measures the influence of an input i for a quantity
of interest f , and a distribution of interest P , where P is a distribution over X .
Definition 10. The distributional input influence ιi(f, P) of input i for a quantity of
interest f , and distribution of interest P is given by

ιi(f, P) =

∫
X

∂f

∂xi

∣∣∣∣
x

P (x)dx.

54

4.2 Axiomatic Characterization
We narrow the space of influence measures using three axioms that characterize desirable
properties of influence measures for machine learning models with respect to a quantity
and distribution of interest, and then prove that these axioms uniquely define the above
measure.

We characterize a measure ιi(f, P) that measures the influence of input i for a quantity
of interest f , and distribution of interest P . The first axiom, linear agreement states that
for linear systems, the coefficient of an input is its influence. Measuring influence in linear
models is straightforward since a unit change in an input corresponds to a change in the
output given by the coefficient.
Axiom 1 (Linear Agreement). For linear models of the form f(x) =

∑
i αixi, ιi(f, P) = αi.

The second axiom, distributional marginality states that partial derivatives at points
outside the support of the distribution of interest should not affect the influence of an
input. This axiom ensures that the influence measure only depends on the behavior of the
model on points within the manifold containing the input distribution.
Axiom 2 (Distributional marginality (DM)). If, P (∂f1

∂xi

∣∣∣
X

= ∂f2
∂xi

∣∣∣
X

) = 1, where X is the
random variable over instances from X , then ιi(f1, P) = ιi(f2, P).

The third axiom, distribution linearity states that the influence measure is linear in the
distribution of interest. This ensures that influence measures are properly weighted over
the input space, i.e., influence on infrequent regions of the input space receive lesser weight
in the influence measure as compared to more frequent regions.
Axiom 3 (Distribution linearity (DL)). For a family of distributions indexed by some
a ∈ A, P (x) =

∫
A g(a)Pa(x)da, then ιi(f, P) =

∫
A g(a)ιi(f, Pa)da.

We can show that the only influence measure that satisfies these three axioms is the
weighted partial derivative of the input probability distribution.
Theorem 8. The only measure that satisfies linear agreement, distributional marginality
and distribution linearity is given by

ιi(f, P) =

∫
X

∂f

∂xi

∣∣∣∣
x

P (x)dx.

Proof. Choose any function f and Pa(x) = δ(x − a), where δ is the Dirac delta function
on X . Now, choose f ′(x) = ∂f

∂xi
|axi. By linearity agreement, it must be the case that,

ι(f ′, Pa(x)) = ∂f
∂xi
|a. By distributional marginality, we therefore have that ιi(f, Pa) =

ιi(f
′, Pa) = ∂f

∂xi
|a. Any distribution P can be written as P (x) =

∫
X P (a)Pa(x)da. There-

fore, by the distribution linearity axiom, we have that ι(f, P) =
∫
X
P (a)ι(f, Pa)da =∫

X P (a) ∂f
∂xi
|ada.

4.3 Related Work
As mentioned in Chapter 2, influence measures are studied in cooperative game theory as
solutions to the problem of attribution of outcomes to participants and has applications to

55

a wide range of settings including revenue division and voting. In Chapter 2, we viewed
features as participating in finite cooperative games where valuation functions v(S) capture
the outcomes generated when agents in set S participate; a feature belongs in S if it is
not intervened on. In this chapter focusing on continuous models, we draw ideas from the
theory of infinite cooperative games, where valuation functions are of the form v(x), and
xi represents the numerical contribution of agent i.

We highlight ideas drawn from this body of work and differences in terms of two key
properties of influence measures: the marginality principle, and efficiency.

The marginality principle [146] states that an agent’s attribution only depends on its
own contribution to the output. Formally, this is stated as: if the partial derivatives with
respect to an agent of two functions are identical throughout, then they have identical
attributions for agent i. Our axiom of distributional marginality (DM) is a weaker form
of this requirement that only requires equality of attribution when partial derivatives are
same in the distribution.

A second property, called efficiency, which is especially important for revenue divi-
sion, is that attributions add up to the total value generated. This ensures that no value
is left unattributed. The marginality principle, along with efficiency uniquely define the
Aumann-Shapley Value[9]. In [129], the Aumann-Shapley Value is used for attributions
with efficiency as a justification. While it is unclear that efficiency is an essential require-
ment in our setting, the Aumann-Shapley value can be recovered in our framework by
choosing the distribution of interest as the uniform distribution on the line segment join-
ing an instance x and a baseline image b. Certain choices of baselines can be problematic
from the point of view of distributional faithfulness, since the line segment of linear com-
binations between them might lie significantly out of distribution. The particular baseline
chosen in [129] is the zero vector, where the line segment represents scaled images, and
could be reasonably called within distribution.

Partial derivatives (gradients) have also been used as a measure of influence in prior
work for interpreting machine learning models. In particular, for convolutional neural
networks, a common approach to interpreting their functioning is to visualize gradients [10,
122, 129], or some combination of gradients with internal values [10, 127, 148]. A more
comprehensive comparison with this body of work is deferred to Chapter 5.

56

Part II

Indirect Use

57

Chapter 5

Explanations for CNNs

We study the problem of explaining a class of behavioral properties of deep neural networks,
with a focus on convolutional neural networks operating on images. This problem has
received significant attention in recent years with the rise of deep networks and associated
concerns about their opacity [75]. Explanations that provide insight into the reasons behind
incorrect network behavior play an important role in mitigating this opacity.

A growing body of work on explaining deep convolutional network behavior is based
on mapping models’ prediction outputs back to relevant regions in an input image. This is
accomplished in various ways, such as by visualizing gradients [10, 122, 129] or backpropa-
gation [10, 127, 148]. Recently [111] proposed fitting simpler interpretable models around
a test point to predict relevant input regions. An appealing feature of these approaches
is that they capture input influence. However, because these approaches relate instance-
specific features to instance-specific predictions, the explanations that they produce do not
generalize beyond a single test point (see Section 5.2, Figure 5.2).

An orthogonal approach is to visualize the features learned by networks by identify-
ing input instances that maximally activate an internal neuron, by either optimizing the
activation in the input space [89, 96, 122], or searching for instances in a dataset [55].
Importantly, this type of explanation gives insight into the higher-level concepts learnt
by the network, and naturally generalizes across instances and classes. However, this ap-
proach does not relate these higher-level concepts to predictions that they cause. Indeed
examining activations alone is not sufficient to do so (see Section 5.2, Table 5.1).

Continuing with our template of combining influence and interpretation, we develop
influence-directed explanations for deep networks to combine the positive attributes of
these two lines of work. Our approach peers inside the network to identify neurons with
high influence on the model’s behavior, and then uses existing techniques (e.g., visual-
ization) to provide an interpretation for the concepts they represent. We generalize the
distributional input influence measure presented in Chapter 4 to internal neurons, and
present a distributional influence measure that allows us to identify which neurons are
most influential in determining the model’s behavior on a given distribution of instances.
From this we are able to identify the learned concepts that cause the network to behave
characteristically, for example, on the distribution of instances that share a particular label.

59

(a) (b)

Figure 5.1: Images of cars labeled “sports car” by VGG16 ImageNet model (a) and receptive
fields of the most influential feature map on a comparative quantity that characterizes the
model’s tendency to predict “sports car” over “convertible” (b). In most cases, the features
within the field contain the top of the car, which is the key distinctive concept between
these classes.

Figure 5.1 demonstrates on a VGG16 [121] model trained on the ImageNet dataset [114]
the capability of influence-directed explanations to extract meaningful insight about the
network’s inner workings. We measure the influence of feature maps at the conv4_1 layer
on the network’s tendency to predict “sports car” over “convertible”. The images in Fig-
ure 5.1(b) are computed by rendering the receptive field of the most influential map in the
original feature space for the corresponding image in 5.1(a). The results coincide with an
intuitive understanding of the distinction between these classes: the depicted interpretation
highlights the portion of the image depicting the car’s top.

Our empirical evaluation demonstrates that influence-directed explanations (i) extract
influential concepts that generalize across instances whereas input-influence-based expla-
nations fail to do so (Section 5.2.1); (ii) reveal the essence of how the network views a
class (Section 5.2.2); (iii) isolate features that the network uses to make predictions and
distinguish related instances (Section 5.3.1, 5.3.2) and (iv) assist in understanding misclas-
sifications (Section 5.3.3). In each case, our influence-directed explanations leverage the
ability to measure internal influence to produce useful explanations that would not have
been possible otherwise.

These influence-directed explanations can be approximated with a constant number of
gradient calls, where the constant depends on the number of parameters, and the accu-
racy required. Gradient calls are relatively inexpensive for even large networks through
optimized parallel implementations on GPUs.

60

5.1 Influence

In this section, we generalize the distributional input influence measure presented in Chap-
ter 4, and we propose distributional influence. In addition to a quantity of interest, and a
distribution of interest, Distributional influence is parameterized by a slice of the network
(e.g. a particular layer). The measure is the average partial derivative of the quantity
of interest over the distribution of interest at the slice. We describe the measure and its
parameters below. In Section 5.4, we justify this family of measures by proving that these
are the only measures that satisfy some natural properties.

The slice parameter exposes the internals of a network, and allows one to compute
influence with respect to intermediate neurons, a significant departure from prior work.
Importantly, as opposed to input pixels, as internal neurons can represent higher-level
concepts, influential internal neurons allow explanations to be more general rather than
being specific to single instances. In Section 5.5, we compare this measure to others used
in prior work.

Recall that the distribution and quantity of interest together capture aspects of network
behavior that we are interested in explaining. Examples of distributions of interest are:
(i) a single instance (influence measure just reduces to the gradient at the point) (ii) the
distribution of ‘cat’ images, or (iii) the overall distribution of images. While the first
distribution of interest focuses on why a single instance was classified a particular way,
the second explains the essence of a class, and the third identifies generally influential
neurons over the entire population. A fourth instance is the uniform distribution on the
line segment of scaled instances between an instance and a baseline, which yields a measure
called Integrated Gradients [129]. Examples of quantities of interest are: outcome towards
the ‘cat’ class (i.e., the network score for the cat class) or comparative outcome towards
‘cat’ versus ‘dog’ (i.e., the difference in the network scores for cat and dog classes). The
first quantity of interest answers the question of why a particular input was classified as
a cat, whereas the second can be helpful in understanding how the network distinguishes
‘cat’ instances from ‘dog’ instances.

Similar to Chapter 4, we represent quantities of interest of networks as continuous and
differentiable functions f from X → R, where X ⊆ Rn, and n is the number of inputs to f .
A distributional influence measure, denoted by ιi(f, P), measures the influence of an input
i for a quantity of interest f , and a distribution of interest P , where P is a distribution
over X . Next, we define a slice of a network. A particular layer in the network can be
viewed as a slice. More generally, a slice is any partitioning of the network into two parts
that exposes its internals. Formally, a slice s of a network f is a tuple of functions 〈g, h〉,
such that h : X → Z, and g : Z → R, and f = g ◦ h. The internal representation for
an instance x is given by z = h(x). In our setting, elements of z can be viewed as the
activations of neurons at a particular layer.
Definition 11. The influence of an element j in the internal representation defined by
s = 〈g, h〉 is given by

ιsj(f, P) =

∫
X

∂g

∂zj

∣∣∣∣
h(x)

P (x)dx (5.1)

61

0 20 40 60 80 100

0

0.5

1

% Features Removed

%
f
(x
)
−
f
(0
)
de
cr
ea
se Individual - IG

Individual - Int
Mean - IG
Mean - Int

Figure 5.2: Plot of the decrease in the function value (before the softmax), f(x), as features
are removed in order of influence. The model is based on LeNet [78] trained on the MNIST
dataset. In each case, the most influential feature or hidden unit is incrementally removed,
and the resulting value of f(x) is depicted on the vertical axis. The vertical axis was
normalized so that the average value of f(x) on class “3” is 1, and 0 is the value of f(0). The
dashed curves depict the quantity when influence is measured for each instance individually
(averaged across all instances of class “3”), and the solid curves when influence is with the
empirical distribution of the entire class as the distribution of interest. Plots are shown
for both integrated gradients (IG), as well as for internal influence (Int) for a slice at the
first fully-connected layer of the network.

5.2 Identifying Influential Concepts

The influence measure defined in Section 5.1 is parameterized by a distribution of interest
P (Equation 5.1) over which the measure is taken. By selecting P to be a point mass,
the resulting measurements characterize the importance of features or components for the
model’s behavior on a single instance. Any meaningful interpretation of these measure-
ments can refer only to that instance, and thus reflect specific features and concepts that
may not generalize across a class. Defining the distribution of interest with support over a
larger set of instances will yield explanations that capture the factors common to network
behaviors across the corresponding population of instances. These explanations capture
the “essence” of what the network learned about that population, and can be used to
identify the concepts that are most relevant to the network’s behavior on it.

5.2.1 Effectiveness of Internal Influence

Figure 5.2 quantifies the degree to which internal units identified using influence correspond
to relevant general concepts, compared against the influence measurements obtained using
integrated gradients [129]. The curves are computed by “turning off” either input features
(IG) or units in the network in the order determined by their influence. We adapted this
approach from [116] for hidden units by intervening to set their activation to 0. The vertical

62

axis depicts the percentage dropoff of the network’s output prior to softmax, against the
percentage of features that have been removed by order of their influence.

We evaluated this measure on instances of the number 3 from MNIST on a LeNet
model [78]. We selected integrated gradients as our point of comparison because we found
that it outperformed comparable instances discussed in the related work. We calculated
influence in two ways to characterize the difference between instance-specific and general
measurements. In the cases labeled “Individual”, we measure influence for each instance
individually and rank features and units accordingly. For those labeled “Mean” we measure
influence using a distribution of interest corresponding to the class in question, and rank
features and units for each instance according to the resulting ordering.

Comparing the individual and mean results tells us how well the explanations general-
ize across the class. If the individual explanations significantly outperform their respective
mean explanations, then we may conclude that the distributional influences failed to iden-
tify concepts that are relevant to many instances in the class.

The results in Figure 5.2 show a very small gap between the performance of the instance-
specific and mean cases. This suggests that units deemed relevant to the class on-average
also tend to matter consistently across instances in that class. Compared with integrated
gradients [129], which operates on the input features, the class-wide average influences
computed from internal nodes outperform significantly. This is not particularly surprising,
but the size of the gap illustrates the additional explanatory power of influential internal
units.

Figure 5.2 also shows that using integrated gradients results in a more rapid initial
dropoff. Regardless, the area under the curve for the respective internal influence is ap-
proximately 8% lower than that of integrated gradients, and the function value drops to
its baseline value more quickly by a factor of 4. We observed that influence is distributed
fairly evenly across fewer units in the layer in question for these experiments, whereas in
the bottom input layer there are a relatively small number of features that account for
most of the influence, and a longer tail of features that have a small amount of influence.
Finally, the sharp dropoff of IG may be additionally explained by the observation that on
many MNIST instances it may be possible to change classification by changing relatively
few pixels [103], whereas this phenomenon may not be as pronounced on other datasets.

5.2.2 Validating the “Essence” of a Class

As is apparent in Figure 5.6, it is often the case that relatively few units are highly in-
fluential towards a particular class. In such cases, we refer to this as the “essence” of the
class, as the network’s behavior on these classes can be understood by focusing on these
units. To validate this claim, we demonstrate that these units can be isolated from the rest
of the model to extract a classifier that is more proficient at distinguishing class instances
from the rest of the data distribution than the original model. To this end, we introduce
a technique for compressing models using influence measurements to yield class-specific
“expert” models that demonstrate the essence of that class learned by the model.

Given a model, f , with softmax output, and slice, 〈g, h〉, where g : Z → Y , let Mh ∈ Z
be a 0-1 vector. Intuitively,Mh masks the set of units at layer h that we wish to retain, and

63

5 10 20 40 80 120 160 240
0 0.00 0.39 0.78 0.82 0.39 0.08 0.06 0.00
10 0.00 0.33 0.77 0.83 0.46 0.18 0.11 0.04
20 0.00 0.33 0.73 0.84 0.53 0.20 0.18 0.04
40 0.00 0.23 0.69 0.86 0.63 0.40 0.23 0.04
80 0.00 0.21 0.60 0.83 0.76 0.58 0.45 0.18
120 0.00 0.15 0.52 0.80 0.83 0.68 0.53 0.33
160 0.00 0.08 0.43 0.77 0.87 0.81 0.66 0.50
240 0.00 0.02 0.28 0.67 0.85 0.89 0.86 0.74
320 0.00 0.00 0.23 0.53 0.81 0.88 0.92 0.84
640 0.00 0.00 0.00 0.32 0.58 0.73 0.83 0.88

(a)

Figure 5.3: F1 score for experts on a randomly-selected class from ImageNet using the
VGG16 network. The rows and columns correspond to α and β respectively. The results
indicate that while selecting larger sets of units for compression does lead to increased
performance, the returns diminish rapidly and good experts can be identified using a small
set of units.

so is 1 at all locations corresponding to such units and 0 everywhere else. Then the slice
compression fMh

(X) = g(h(X)∗Mh) corresponds to the original model after discarding all
units at h not selected by Mh. Given a model f , we obtain a binary classifier f i for class
Li (corresponding to softmax output i) by projecting the softmax output at i, in addition
to the sum of all other outputs: f i = (f |i,

∑
j 6=i f |j), where f |i is the projection of the

model’s softmax output to its ith coordinate.

Class-specific Experts For the sake of this discussion, we define a class-wise expert for
Li to be a slice compression fMh

whose corresponding binary classifier f iMh
achieves better

recall on Li than the binary classifier f i obtained by f , while also achieving approximately
the same recall. We demonstrate that the influence measurements taken at slice 〈g, h〉
over a distribution of interest, Pi, conditioned on class Li yields an efficient heuristic for
extracting experts from large networks.

In particular, we compute Mh by measuring the slice influence (Equation 5.1) over Pi
using the quantity of interest g|i. Given parameters α and β, we select α units at layer h
with the largest positive influence, and β units with the greatest negative influence (i.e.,
greatest magnitude among those with negative influence). Mh is then defined to be zero
at all positions except those corresponding to these α + β units. In our experiments, we
obtain concrete values for α and β by a parameter sweep, ultimately selecting those values
that yield the best experts by the criteria defined above. Figure 5.3 shows the F1 score
obtained on a randomly-selected class as a function of α and β. Notably, both measures
plateau with relatively few units in the compressed model, indicating that good parameters
can be identified quickly in practice by selecting a small portion of the units at the chosen
layer.

64

Class Orig. Act. Infl.

Chainsaw (491) .14 0. .71

Bonnet (452) .62 0. .92

Park Bench (703) .52 0. .71

Sloth Bear (297) .36 0. .75

Pelican (144) .65 0. .95

Table 5.1: Model compression recall for five randomly-selected ImageNet classes. Columns
marked Orig. correspond to the original model, Act. to experts computed using activation
levels, and Infl. to experts computed using influence measures. Precision in all cases was
1.0.

Table 5.1 shows the recall of experts found in this way for five randomly selected
ImageNet classes, as well as the recall of the original model on each class and on experts
computed using activations, rather than influence. Precision is not shown because in all
cases it was 1.0. This shows that the top and bottom influential neurons are sufficient to
capture the concepts embodied in a particular layer that discriminate a given class from the
others. Removing non-influential neurons yields significantly higher recall than the baseline
model, and moreover activation levels are not a meaningful and consistent indication of the
relevance of a neuron. In other words, measuring internal influence is an effective way to
identify the concepts that the network learned in order to discriminate classes from each
other.

5.2.3 Disappearing Experts

The results discussed so far demonstrate that internal distributional influence measure-
ments can be used to identify relevant concepts that generalize across instances, and dis-
tinguish between classes. In this section we show that the concepts identified in this way
often represent input-space features that are interpretable by domain experts as important
for correctly classifying instances, and can be identified as such even when it is not possible
to interpret those concepts reliably in pixel space.

Building on the work of [58, 109], we trained an Inception network [130] to diagnose the
severity of diabetic retinopathy in color retinal fundus images [69]. Diabetic Retinopathy
(DR) is a medical condition characterized by damage to the retina occurring due to dia-
betes. DR is classified on a scale from 1 to 5 [6], with class 1 corresponding to the absence
of symptoms and class 5 being the most severe presentation. In the Kaggle dataset used to
train our model, class-1 is the most common (39,539 instances) and the remaining classes
(14,042 instances) distributed relatively evenly. Class-2, the least severe positive diagnosis,
is characterized by the presence of visible microaneurysms only, with no other symptoms
present on the fundus image [6] that distinguish it from class-1. Due to their small size in

65

the pixel space, validating that they have been identified by an influence measurement is
challenging because it is not possible to visualize them well.

To address this challenge, we created a dataset to control for the presence of microa-
neurysm features that characterize class-2 instances. Specifically, we preprocessed all im-
ages with a minor Gaussian blur (radius 2) to remove the corresponding visual features,
and trained a second model on the dataset generated by this intervention.

The model trained on the original dataset behaved as expected, and achieved a non-
trivial recall of class-2 instances (approximately 15%). We were also able to extract an
expert for each class from this model that improved on the recall of the original model,
demonstrating that internal influence measures identified distinctive concepts in this case.

The model trained on the intervened dataset displayed classification behavior consistent
with our expectation that applying small-radius Gaussian blur removes microaneurysm
features. Namely, the intervened model classified none of the instances in the validation
set as class-2, and instead classified 95% of the true class-2 instances as class-1. Moreover,
when we applied the same strategy for extracting an expert for class-2, we were unable to
find a set of influential neurons that achieved better (i.e., non-zero) recall. This was the
case even if we relax the criteria for selecting experts to allow for reduced precision.

To summarize, by controlling for the presence of an important concept in the source
data, it is often possible to characterize the concept represented by internal units by testing
for “disappearing experts” in retrained models.

5.3 Explaining Instances

In this section we demonstrate that the learned concepts identified by measuring influence
on internal units are useful when explaining model behavior on individual instances.

5.3.1 Focused Explanations from Slices

As discussed in Section 5.2, computing the influence on a slice of the network (Equation 5.1)
lets us determine how relevant neurons in intermediate layers are to a particular network
behavior. In particular, given an image and the network’s prediction on that image, the
influence measurements for a slice can reveal which features or concepts present in that
image were relevant to the prediction.

Figure 5.4(a) shows the results of interpreting the influences taken on a slice of the
VGG16 [121] corresponding to an intermediate convolutional layer (conv4_1). In this
example we take the three most influential units for the quantity of interest corresponding
to the correct classification of this image. More precisely, the quantity of interest used in
this example corresponds to f |L, i.e., the projection of the model’s softmax output to the
coordinate corresponding to the correct label L of this instance. The visualization for each
of these units was then obtained by measuring the influence of the input pixels on these
units along each color channel, and scaling the pixels in the original image accordingly.

Because convolutional units have a limited receptive field, the resulting interpretation
shows distinct regions in the original image, in this case corresponding to the left eye and

66

(a) (b)

Figure 5.4: (a) Interpretation of the three most influential units from a slice corresponding
to a convolutional layer (conv4_1), for the VGG16 [121] network. (b) Explanation based
on integrated gradients [129], taken on the same network and image. The interpretation in
both cases was computed by scaling pixels in the original image using the results of either
method.

(a) (b)

Figure 5.5: (a) Comparative explanation of classes “sports car” and “convertible” taken
from the top-three most influential units at the conv4_1 layer (VGG16 [121]). (b) Expla-
nation computed using the quantity of interest corresponding to “sports car” on the same
instance used in (a).

mouth, that were most relevant to the model’s predicted classification. When compared
to the explanation provided by integrated gradients [129] on input features shown in Fig-
ure 5.4(b), it is evident that the explanation based on network’s internal units is better at
localizing the features used by the network in its prediction.

5.3.2 Comparative Explanations

Influence-directed explanations are parameterized by a quantity of interest, corresponding
to the function f in Equation 5.1. Changing the quantity of interest gives additional
flexibility in the characteristic explained by the influence measurements and interpretation.
One class of quantities that is particularly useful in answering counterfactual questions such
as, “Why was this instance classified as L1 rather than L2?”, is given by the comparative
quantity.

More precisely, if f is a softmax classification model that predicts classes L1, . . . , Ln,
then the comparative quantity of interest between classes Li and Lj is f |i−f |j. When used
in Equation 5.1, this quantity captures the tendency of the model to classify instances as Li
over Lj. In Section 5.2 we used this quantity to show that internal influences computed over

67

(a) (b)

Figure 5.6: Distributional influence measurements taken on DR model (Section 5.2.3) at
bottom-most fully connected layer. To compute the grid, the distribution of influence was
conditioned on class 5 (a) and class 1 (b). Figure (a) depicts an instance from class 5
that was correctly classified as such, and (b) an instance from class 5 that was incorrectly
classified as class 1. In (a) the influences depicted in the grid align closely with the class-
wide ordering of influences, whereas in (b) they are visibly more random. White space in
the middle of the grid corresponds to units with no influence on the quantity.

a distribution capture high-level concepts learned by the network, and here we demonstrate
that they are also useful when explaining individual predictions.

Continuing the example discussed in Section 5.2, Figure 5.5(a) shows an example
of a comparative explanation taken for a VGG16 [121] model trained on the ImageNet
dataset [114]. The original instance shown on the left is labeled in the “sports car” leaf
node of the ImageNet hierarchy. We measured influence using a comparative quantity
against the leaf class “convertible”, using a slice at the conv4_1 convolutional layer. The
interpretation was computed on the top-three most influential units at this layer in the
same way as discussed in Section 5.3.1.

As in the examples from Figure 5.1, the receptive field of the most influential unit
corresponds to the region containing the hard top of the vehicle, which is understood to be
its most distinctive feature according to this comparative quantity. Figure 5.5(b) shows an
interpretation for the same instance computed using influence measurements taken from
the quantity of interest f |L (i.e., the same quantity used in Section 5.3 and implicitly used
by integrated gradients [129]). While both explanations capture features common to cars,
only the comparative explanation isolates the distinctive elements of the feature space.

5.3.3 Understanding Misclassification

Influential distributional concepts can also lead to insights about misclassification behavior
on particular instances. Figure 5.6 depicts an example of such an explanation. These visu-
alizations were generated by measuring influence on a slice corresponding to the bottom-
most fully-connected layer of a Diabetic Retinopathy (DR) model (see Section 5.2.3 for
details on this model).

68

The quantity of interest f |i corresponds to a particular class outcome, and the distri-
bution was conditioned on the corresponding class label. The units in that layer were then
sorted according to their influence on the conditioned distribution, with the top-left corner
corresponding to the largest positive influence, and the bottom-right to the largest negative
influence. For a specific instance (shown on the left of Figures 5.6(a) and (b)), influences
at that layer were then measured, and the magnitude and sign of the corresponding unit in
the class-wide ordering is depicted by the size and shape of the box at that position: large
boxes denote larger magnitude, whereas green boxes denote positive sign and red negative.

Figure 5.6(a) depicts this for an instance of class 5 that was correctly classified, whereas
5.6(b) for an instance of the same class that was incorrectly classified. The differences
are readily apparent: influences for the correctly-classified instance align closely with the
distributional order, whereas they do not in the incorrectly-classified case. This suggests a
notion of an instance being classified for a “correct reason,” as in 5.6(a), or an “incorrect”
or “anomalous” reason, as in 5.6(b), which can be determined by identifying influential
high-level concepts.

5.4 Axiomatic Justification of Measures

In this section we justify the family of measures presented in 5.1, by defining a set of natural
properties that an influence measure should satisfy, and proving a tight characterization
of these measures. We generalize the distributional input influence measure presented in
Chapter 4 to general slices, and address the case where influence is measured with respect
to internal neurons. We again take an axiomatic approach, with two natural invariance
properties on the structure of the network.

The first axiom states that the influence measure is agnostic to how a network is sliced,
as long as the neuron with respect to which influence is measured is unchanged. Below,
the notation x−i refers to the vector x with element i removed.

Two slices s1 = 〈g1, h1〉 and s2 = 〈g2, h2〉 are j-equivalent if for all x ∈ X , and zj ∈ Zj,
h1(x)j = h2(x)j, and g1(h1(x)−jzj) = g2(h2(x)−jzj). Informally, two slices are j-equivalent
as long as they have the same function for representing zj, and the causal dependence of
the outcome on z is identical.
Axiom 4 (Slice Invariance). For all j-equivalent slices s1 and s2, ιs1j (f, P) = ιs2j (f, P).

The second axiom equates the distributional input influence of an input with the inter-
nal influence of a perfect predictor of that input. Essentially, this encodes a consistency
requirement between inputs and internal neurons that if an internal neuron has exactly
the same behavior as an input, then the internal neuron should have the same influence as
the input.
Axiom 5 (Preprocessing). Consider hi such that P (Xi = hi(X−i)) = 1. Let s = 〈f, h〉, be
such that h(x−i) = x−ihi(x−i), which is a slice of f ′(x−i) = f(x−ihi(x−i)), then ιi(f, P) =
ιsi (f

′, P).
We can now show that the only measure that satisfies these two properties is the one

presented above.

69

Theorem 9. The only measure that satisfies slice invariance and preprocessing is

ιsj(f, P) =

∫
X

∂g

∂zj

∣∣∣∣
h(x)

P (x)dx

5.5 Related Work

Prior work on interpreting CNNs has focused on answering two questions: (i) given an
input image, what part of the instance is relevant to a particular neuron? and (ii) what
maximizes the activation of a particular neuron?

Identifying influential regions One approach to interpreting predictions for convolu-
tional networks is to map activations of neurons back to regions in the input image that
are the most relevant to the outcomes of the neurons. Possible approaches for localizing
relevance are to (i) visualize gradients [10, 122, 129] (ii) propagate activations back us-
ing gradients [10, 127, 148], (iii) learning interpretable models predicting the effect of the
presence of regions in an image [111]. Because these approaches relate instance-specific
features to instance-specific predictions, their results do not generalize beyond a single test
point.

Visualization by maximizing activation An orthogonal approach is to visualize fea-
tures learnt by networks by identifying input instances that maximally activate a neuron,
achieved by either optimizing the activation in the input space [89, 96, 122], or searching
for instances in a dataset [55]. Examining causal influence of neurons rather than their
activations better identifies neurons used by a network for classification. Experiments in
Section 5.2.2 demonstrate why examining activations fails to identify important neurons.

Table 5.2 presents a detailed comparison of the influence-directed explanation frame-
work presented here to related prior work measuring influence for CNNs. The leftmost
three columns describe framework properties for which some measures allow flexibility.
First, our explanations are parametric in a distribution of interest, allowing us to explain
the network behavior at different levels of granularity (e.g., an instance or a particular
class). Second, our explanations are parametric in a quantity of interest that allow us to
provide explanations for different behaviors of a system, as opposed to instance outcomes.
Cells marked X∗ in these columns denote that these measures offer a limited form of flex-
ibility along this dimension with the choice of an appropriate baseline. Third, examining
the influence of internal neurons plays an important role here because they capture more
general concepts, and we demonstrate it is possible to identify “expert” neurons for certain
distributions (Section 5.2.2). In contrast, the frameworks proposed for Integrated Gradi-
ents [129], Sensitivity Analysis [122], and the Simple Taylor Decomposition [10] are based
on attributing relevance solely to the input features. For deconvolution [148] and guided
backpropogation [127], these cells are marked a X† as internal influences are used only as
an intermediary to computing input influence.

70

Explanation framework properties Influence properties
Quantity Distribution Internal Faithfulness Sensitivity

influence-
directed

X X X X∗ X

integrated
gradients

X∗ X∗ X

simple Tay-
lor

X∗ X∗ X

sensitivity
analysis

X

deconvolution X† X

guided back-
propagation

X† X

relevance
propagation

X† X X∗

Table 5.2: Comparison of the influence-directed explanations proposed here to prior related
work including Integrated Gradients [129], Sensitivity Analysis [122], Deconvolution [148],
Layer-wise Relevance Propagation [10], and Simple Taylor Decomposition [10]. The first
three columns refer to capabilities of the corresponding explanation framework: the flex-
ibility in the choice of Quantity of interest and Distribution of interest over instance,
and the ability to examine the role of Internal neurons. The latter two columns describe
properties of the influence measure used to build explanations: Faithfulness refers to
distributional faithfulness; Sensitivity requires that if two instances differ in one feature
and yield different predictions, then that feature is assigned non-zero influence. ∗ denotes
that the framework may have the feature under certain parameterizations, and † denotes
that the framework measures internal influence only as an intermediary step to computing
feature influence.

71

The rightmost two columns in Table 5.2 reflect that our choice of influence measures are
guided by axiomatic choices different from those in prior work [129]. A notable difference
stems from our distributional faithfulness criteria, which imposes a weaker distribution
marginality principle than the marginality principle imposed by Integrated Gradients. A
practical consequence of this criteria for Integrated Gradients is that only certain choices
of baselines satisfy faithfulness (denoted by X∗). Notably, several of the frameworks make
use of influence measures that do not satisfy sensitivity under any circumstances; this
matter is described in further detail in [129]. Measures that do not satisfy sensitivity can
be problematic in practice because they may fail to identify features or components that
are causally-relevant to the quantity of interest, leading to “blind spots” or a focus on
irrelevant features.

72

Chapter 6

Proxy Use

While the first part of this work focuses on the use of input factors which are explicitly
provided, information can be used indirectly through proxies. Proxies allow a data proces-
sor to effectively infer protected information types and use them even when they are not
explicitly provided.

We use an example, inspired by the Target case [41], to motivate the challenges in
defining proxy use in automated decision-making systems. Consider a pharmacy within
a retail store, such as Target. We consider various ways in which the retail store and its
pharmacy may use information about the pregnancy status, purchases, and credit card
type of its customers in making decisions.

The pharmacy knows the pregnancy status of its customers (e.g., via a permitted
information flow from a doctor’s office to the pharmacy with prescription information).
However, it is restricted in how it may use this information to protect patient privacy. For
example, it may legitimately use pregnancy status directly to dispense medicine, but is
prohibited from using pregnancy status to target ads. Indeed, this form of use restriction
to protect privacy is embodied in privacy laws like the HIPAA Privacy Rule [101] and in
many corporate policies (e.g., [56, 93]). They reflect the understanding that knowledge
restrictions are inadequate to protect privacy in settings where the knowledge of certain
information types may be used to achieve certain desired purposes (e.g., treatment) but
not for others (e.g., marketing). Prior work provides methods for enforcing these explicit
use restrictions in human and automated decision-making systems (e.g., [117, 136, 137]).

Use restrictions get more nuanced when proxy use comes into play. For example, instead
of using the pregnancy status information available to the pharmacy, the retail store could
use information in the purchase history that are strong predictors (or proxies) for pregnancy
status (e.g., pre-natal vitamins) to target ads. Our goal is to capture this form of proxy
use.

In [35], we propose a definition of proxy use that is an instance of our general template
of interpretation of causally influential internal factors. Informally, a program exhibits
proxy use of a protected attribute if there exists an internal computation such that the
internal computation is 1) a proxy, that is, it is strongly associated with the protected
information type, and is 2) used, that it is are causally influential on the outcome.

We then use this definition of proxy use as a building block to construct a theory of

73

use privacy and proxy non-discrimination. In this chapter, we first describe a definition
for proxy use in Section 6.3. The development of this definition is guided by axioms that
characterize reasonable conditions for proxy use. We then describe theories of use privacy
(Section 6.1) and proxy non-discrimination (Section 6.2) using the definition of proxy use
as a building block. We evaluate the performance of the detection algorithm and show
that, in particular cases, the runtime of our system scales linearly in the size of the model.

6.1 Use Privacy

We return to the Target example described earlier in the chapter to motivate our notion
of use privacy. Historically, data collected in a context of interaction between a retailer
and a consumer is not expected to result in flows of health information. However, such
flow constraints considered in significant theories of privacy (e.g., see Nissenbaum [97])
cannot be enforced because of possible statistical inferences. In particular, prohibited
information types (e.g., pregnancy status) could be inferred from legitimate flows (e.g.,
shopping history). Thus, the theory of use privacy instead ensures that the data processing
systems “simulate ignorance” of protected information types (e.g., pregnancy status) and
their proxies (e.g., purchase history) by not using them in their decision-making. Because
not all instances of proxy use of a protected information type are inappropriate, our theory
of use privacy makes use of a normative judgment oracle that makes this inappropriateness
determination for a given instance.

We model the personal data processing system as a program p. The use privacy con-
straint governs a protected information type Z. Our definition of use privacy makes use
of two building blocks: (1) a function that given p, Z, and a population distribution P
returns a witness w of proxy use of Z in a program p (if it exists); and (2) a normative
judgment oracle O(w) that given a specific witness returns a judgment on whether the
specific proxy use is appropriate (true) or not (false).

Definition 12 (Use Privacy). Given a program p, protected information type Z, normative
judgment oracle O, and population distribution P, use privacy in a program p is violated
if there exists a witness w in p of proxy use of Z in P such that O(w) returns false.

In this work, we formalize the computational component of the above definition of use
privacy, by using our definition of proxy use which formalizes what it means to use an
information type directly or through proxies and design an algorithm to detect proxy uses
in programs. We assume that the normative judgment oracle is given to us and use it to
identify inappropriate proxy uses and then repair them.

This definition cleanly separates computational considerations that are automatically
enforceable and ethical judgments that require input from human experts. This form of
separation exists also in some prior work on privacy [53] and fairness [45].

74

6.2 Proxy Non-discrimination

The definition of privacy presented above can also be viewed as characterizing non-discrimination
when the protected information type is the membership in a certain class. We briefly dis-
cuss how this notion of non-discrimination relates existing notions in the law.

The theory of proxy non-discrimination prohibits the proxy use of membership in a
protected class for certain decisions. Currently, such restrictions for protected classes based
on gender or race are required by the law for education, credit, and employment. Indeed,
our treatment of proxy use combines elements of causation and association found in two
different parts of anti-discrimination law in the US adapted to the setting of automated
decision making systems.

Title VII of U.S. Civil Rights Act prohibits use of race, sex, and other protected at-
tributes for employment decisions [3]. Similar laws govern credit [49] and housing deci-
sions [73]. The case law on enforcing these laws has developed various definitions of when
such a protected attribute is used for a decision.

Direct disparate treatment, on the one hand, corresponds to the obvious case: purpose-
fully and directly using the value of a person’s race or sex as an input to a decision-making
process, a causal property of the process given that data is unlikely to be provided acci-
dentally to such a process. Disparate impact, on the other hand, occurs when the same
rule is applied to the protected class without regard for class membership but results in
significantly worse outcomes for that class. The courts and regulators have used a vari-
ety of heuristics and statistical methods to define “significantly”. The most well known is
80% rule, which requires that the rate of hiring of a protected class should be within 80%
of the rest [142]. These significance tests each measure the degree of association, but not
necessarily causation, between membership in a protected class and employment outcomes.

The courts also recognize more subtle indirect usage, such as pretextually using neigh-
borhood (redlining) or education level as a proxy for race [108]. nalogous to use privacy,
our definition of proxy use allows for the formalization of such indirect uses. A further
complication is that employers can defend themselves against disparate impact by showing
that the difference arose due to a business necessity. For example, a moving company
may require employees be able to lift 200lbs, a requirement yielding a disparate impact
on women, but possibly justifiable as a business necessity. Thus, for automated testing of
disparate impact to scale, it will require some method of screening out suspected cases that
are justified by a business necessity. Similarly, the theory of disparate treatment contains
exceptions for bona fide occupational qualifications for gender.

Consider a case of external auditors discovering associations between race and outcomes
in a system that predicts the risk of recidivism used in sentencing systems (as in Angwin
et al. [8]). Using a theory of proxy discrimination will allow an analyst to identify proxies
that explain the presence of these associations, and then make fine-grained judgements of
whether the use of these proxies is justified for predicting recidivism.

75

6.3 Proxy Use

We now present an axiomatically justified, formal definition of proxy use in data-driven
programs. Our definition for proxy use of a protected information type involves decompos-
ing a program to find an intermediate computation whose result exhibits two properties:
• Proxy : strong association with the protected type
• Use: causal influence on the output of the program
In § 6.3.1, we present a sequence of examples to illustrate the challenge in identifying

proxy use in systems that operate on data associated with a protected information type. In
doing so, we will also contrast our work with closely-related work in privacy and fairness.
In §6.3.2, we formalize the notions of proxy and use, preliminaries to the definition. The
definition itself is presented in §6.3.3 and §6.3.4. Finally, in §6.3.5, we provide an axiomatic
characterization of the notion of proxy use that guides our definitional choices.

6.3.1 Examples of Proxy Use

Prior work on detecting use of protected information types [32, 50, 80, 135] and leveraging
knowledge of detection to eliminate inappropriate uses [50] have treated the system as
a black-box. Detection relied either on experimental access to the black-box [32, 80] or
observational data about its behavior [50, 135]. Using a series of examples motivated by
the Target case, we motivate the need to peer inside the black-box to detect proxy use.
Example 1. (Explicit use, Fig. 6.1a) A retailer explicitly uses pregnancy status from
prescription data available at its pharmacy to market baby products.

This form of explicit use of a protected information type can be discovered by exist-
ing black-box experimentation methods that establish causal effects between inputs and
outputs (e.g., see [32, 80]).
Example 2. (Inferred use, Fig. 6.1b) Consider a situation where purchase history can
be used to accurately predict pregnancy status. A retailer markets specific products to
individuals who have recently purchased products indicative of pregnancy (e.g., a1, a2 ∈
purchases).

This example, while very similar in effect, does not use health information directly.
Instead, it infers pregnancy status via associations and then uses it. Existing methods (see
[50, 135]) can detect such associations between protected information types and outcomes
in observational data.
Example 3. (No use, Fig. 6.1c) Retailer uses some uncorrelated selection of products
(a1, n1 ∈ purchases) to suggest ads.

In this example, even though the retailer could have inferred pregnancy status from the
purchase history, no such inference was used in marketing products. As associations are
commonplace, a definition of use disallowing such benign use of associated data would be
too restrictive for practical enforcement.
Example 4. (Masked proxy use, Fig. 6.1d) Consider a more insidious version of Exam-
ple 2. To mask the association between the outcome and pregnancy status, the company

76

medical
records

ad2
not pregnant

ad1preg
nant

(a) Explicit Use

purchases

ad2
n1 , n2

ad1a1, a2

(b) Use via proxy

purchases

ad2
a2 , n2

ad1a1, n
1

(c) No use

purchases
retail
eng. ad1high

ad2
lown

1 , n
2

retail
eng. ad2high

ad1
low

a1, a
2

(d) Masked use via proxy

Figure 6.1: Examples of models (decision trees) used by a retailer for offering medicines and
for selecting advertisements to show to customers. The retailer uses pregnancy status, past
purchases, and customer’s level of retail engagement. Products a1 and a2 are associated
with pregnancy (e.g., prenatal vitamins, scent-free lotions) whereas products n1 and n2

are associated with a lack of pregnancy (e.g., alcohol, camping gear); all four products are
equally likely. Retail engagement, (high or low), indicating whether the customer views
ads or not, is independent of pregnancy.

also markets baby products to people who are not pregnant, but have low retail engagement,
so these advertisements would not be viewed in any case.

While there is no association between pregnancy and outcome in both Example 3 and
Example 4, there is a key difference between them. In Example 4, there is an intermediate
computation based on aspects of purchase history that is a predictor for pregnancy status,
and this predictor is used to make the decision, and therefore is a case of proxy use.
In contrast, in Example 3, the intermediate computation based on purchase history is
uncorrelated with pregnancy status. Distinguishing between these examples by measuring
associations using black box techniques is non-trivial. Instead, we leverage white-box
access to the code of the classifier to identify the intermediate computation that serves as
a proxy for pregnancy status. Precisely identifying the particular proxy used also aids the
normative decision of whether the proxy use is appropriate in this setting.

6.3.2 Notation and Preliminaries

We assume individuals are drawn from a population distribution P , in which our definitions
are parametric. Random variables W,X, Y, Z, . . . are functions over P , and the notation
W ∈ W represents that the type of random variable is W : P → W . An important
random variable used throughout this chapter is X, which represents the vector of features
of an individual that is provided to a predictive model. A predictive model is denoted by

77

f A function
〈X,A〉P A model, which is a function A used for prediction, operating on

random variables X, in population P
X A random variable
p A program

〈X, p〉P A syntactic model, which is a program p, operating on random vari-
ables X

[p1/X]p2 A substitution of p1 in place of X in p2

X A sequence of random variables

Table 6.1: Summary of notation used in the chapter

〈X,A〉P , where A is a function that operates on X. For simplicity, we assume that P is
discrete, and that models are deterministic. Table 6.1 summarizes all the notation used
in this chapter, in addition to the notation for programs that is introduced later in the
chapter.

Proxies

A proxy for a random variable Z is a random variable X that is perfectly correlated with
Z. Informally, it is possible to use X and Z interchangeably in any function drawing inputs
from the same distribution.
Definition 13 (Perfect Proxy). A random variable X ∈ X is a perfect proxy for Z ∈ Z if
there exist functions f : X → Z, g : Z → X , such that Pr(Z = f(X)) = Pr(g(Z) = X) =
1. �

While this notion of a proxy is too strong in practice, it is useful as a starting point
to explain the key ideas in our definition of proxy use. This definition captures two key
properties of proxies, two-sidedness and invariance under renaming.

Two-sidedness Definition 13 captures the property that proxies admit predictors in
both directions: it is possible to construct a predictor of X from Z, and vice versa. This
strict two-sided association criterion distinguishes benign use of associated information
from proxy use as illustrated in the following example.
Example 5. Recall that in Figure 6.1, a1, a2 is a proxy for pregnancy status. In contrast,
consider Example 3, where purchase history is an influential input to the program that
serves ads to. Suppose that the criteria is to serve ads to those with a1 , n1 in their purchase
history. According to Definition 13, neither purchase history or a1, n1 are proxies, because
pregnancy status does not predict purchase history or a1, n1. However, if Definition 13
were to allow one-sided associations, then purchase history would be a proxy because it can
predict pregnancy status. This would have the unfortunate effect of implying that the benign
application in Example 3 has proxy use of pregnancy status. �

78

Invariance under renaming This definition of a proxy is invariant under renaming of
the values of a proxy. Suppose that a random variable evaluates to 1 when the protected
information type is 0 and vice versa, then this definition still identifies the random variable
as a proxy.

Influence

Our definition of influence aims to capture the presence of a causal dependence between
a variable and the output of a function. Intuitively, a variable x is influential on f if it
is possible to change the value of f by changing x while keeping the other input variables
fixed.
Definition 14. For a function f(x, y), x is influential if and only if there exists values x1,
x2, y, such that f(x1, y) 6= f(x2, y). �

In Figure 6.1a, pregnancy status is an influential input of the system, as just changing
pregnancy status while keeping all other inputs fixed changes the prediction. Influence, as
defined here, is identical to the notion of interference used in the information flow literature.

6.3.3 Definition

We use an abstract framework of program syntax to reason about programs without spec-
ifying a particular language to ensure that our definition remains general. Our definition
relies on syntax to reason about decompositions of programs into intermediate computa-
tions, which can then be identified as instances of proxy use using the concepts described
above.

Program decomposition We assume that models are represented by programs. For a
set of random variables X, 〈X, p〉P denotes the assumption that p will run on the variables
in X. Programs are given meaning by a denotation function J·KX that maps programs to
functions. If 〈X, p〉P , then JpK is a function on variables in X, and JpK(X) represents the
random variable of the outcome of p, when evaluated on the input random variables X.
Programs support substitution of free variables with other programs, denoted by [p1/X]p2,
such that if p1 and p2 programs that run on the variables X and X, X, respectively, then
[p1/X]p2 is a program that operates on X.

A decomposition of program p is a way of rewriting p as two programs p1 and p2 that
can be combined via substitution to yield the original program.
Definition 15 (Decomposition). Given a program p, a decomposition (p1, X, p2) consists
of two programs p1, p2, and a fresh variable X, such that p = [p1/X]p2. �

For the purposes of our proxy use definition we view the first component p1 as the
intermediate computation suspected of proxy use, and p2 as the rest of the computation
that takes in p1 as an input.
Definition 16 (Influential Decomposition). Given a program p, a decomposition (p1, X, p2)
is influential iff X is influential in p2. �

79

Main definition
Definition 17 (Proxy Use). A program 〈X, p〉P has proxy use for a random variable Z if
there exists an influential decomposition (p1, X, p2) of 〈X, p〉P , and Jp1K(X) is a proxy for
Z. �
Example 6. In Figure 6.1d, this definition would identify proxy use using the decompo-
sition (p1, U, p2), where p2 is the entire tree, but with the condition (a1, a2 ∈ purchases)
replaced by the variable U . In this example, U is influential in p2, since changing the
value of U changes the outcome. Also, we assumed that the condition (a1, a2 ∈ purchases)
is a perfect predictor for pregnancy, and is therefore a proxy for pregnancy. Therefore,
according to our definition of proxy use, the model in 6.1d has proxy use of pregnancy
status.

6.3.4 A Quantitative Relaxation

Definition 17 is too strong in one sense and too weak in another. It requires that intermedi-
ate computations be perfectly correlated with a protected attribute, and that there exists
some input, however improbable, in which the result of the intermediate computation is
relevant to the model. For practical purposes, we would like to capture imperfect proxies
that are strongly associated with an attribute, but only those whose influence on the final
model is appreciable. To relax the requirement of perfect proxies and non-zero influence,
we quantify these two notions to provide a parameterized definition.

ε-proxies We wish to measure how strongly a random variable X is a proxy for a random
variable Z. Recall the two key requirements from the earlier definition of a proxy: (i) the
association needs to be two-sided, and (ii) the association needs to be invariant under
renaming of the random variables. The variation of information metric dvar(X,Z) =
H(X|Z) + H(Z|X) [29] is one measure that satisfies these two requirements. The first
component in the metric, the conditional entropy of X given Z, H(X|Z), measures how
well X can be predicted from Z, and H(Z|X) measures how well Z can be predicted
from X, thus satisfying the requirement for the metric being two-sided. Additionally,
one can show that conditional entropies are invariant under renaming, thus satisfying our
second criteria. To obtain a normalized measure in [0, 1], we choose 1 − dvar(X,Z)

H(X,Z)
as our

measure of association, where the measure being 1 implies perfect proxies, and 0 implies
statistical independence. Interestingly, this measure is identical to normalized mutual
information [29], a standard measure that has also been used in prior work in identifying
associations in outcomes of machine learning models [135].
Definition 18 (Proxy Association). Given two random variables X and Z, the strength
of a proxy is given by normalized mutual information,

d(X,Z) = 1− H(X|Z) +H(Z|X)

H(X,Z)

where X is defined to be an ε-proxy for Z if d(X,Z) ≥ ε.

80

δ-influential decomposition Recall that for a decomposition (p1, X, p2), in the qual-
itative sense, influence is given by interference which implies that there exists x, x1, x2,
such that Jp2K(x1, x) 6= Jp2K(x2, x). Here x1, x2 are values for the output of p1, that for a
given x, change the outcome of p2. However, this definition is too strong as it requires only
a single pair of values x1, x2 to show that the outcome can be changed by p1 alone. To
measure influence, we quantify interference by using Quantitative Input Influence (QII), a
causal measure of input influence introduced in [34]. In our context, for a decomposition
(p1, X, p2), the influence of p1 on p2 is given by:

ι(p1, p2) = EX,X′
$←P(JpK(X) 6= Jp2K(X, Jp1K(X′))).

Intuitively, this quantity measures the likelihood of finding randomly chosen values of the
output of p1 that would change the outcome of p2.
Definition 19 (Decomposition Influence). Given a decomposition (p1, X, p2), the influence
of the decomposition is given by the QII of X on p2. A decomposition (p1, X, p2) is defined
to be δ-influential if ι(p1, p2) > δ.

(ε, δ)-proxy use Now that we have quantitative versions of the primitives used in Defini-
tion 17, we are in a position to define quantitative proxy use (Definition 20). The structure
of this definition is the same as before, with quantitative measures substituted in for the
qualitative assertions used in Definition 17.
Definition 20 ((ε, δ)-proxy use). A program 〈X, p〉P has (ε, δ)-proxy use of random vari-
able Z iff there exists a δ-influential decomposition (p1, X, p2), such that JpK(X) is an
ε-proxy for Z.

This definition is a strict relaxation of Definition 17, which reduces to (1, 0)-proxy use.

6.3.5 Axiomatic Basis for Definition

We now motivate our definitional choices by reasoning about a natural set of properties that
a notion of proxy use should satisfy. We first prove an important impossibility result that
shows that no definition of proxy use can satisfy four natural semantic properties of proxy
use. The central reason behind the impossibility result is that under a purely semantic
notion of function composition, the causal effect of a proxy can be made to disappear.
Therefore, we choose a syntactic notion of function composition for the definition of proxy
use presented above. The syntactic definition of proxy use is characterized by syntactic
properties which map very closely to the semantic properties.
Property 1. (Explicit Use) If Z is an influential input of the model 〈{X, Z},A〉P , then
〈{X, Z},A〉P has proxy use of Z.

This property identifies the simplest case of proxy use: if an input to the model is
influential, then the model exhibits proxy use of that input.
Property 2. (Preprocessing) If a model 〈{X, X},A〉P has proxy use of random variable
Z, then for any function f such that Pr (f(X) = X) = 1, let A′(x) = A(x, f(x)). Then,
〈X,A′〉P has proxy use of Z.

81

This property covers the essence of proxy use where instead of being provided a pro-
tected information type explicitly, the program uses a strong predictor for it instead. This
property states that models that use inputs explicitly and via proxies should not be differ-
entiated under a reasonable theory of proxy use.
Property 3. (Dummy) Given 〈X,A〉P , define A′ such that for all x, x′, A′(x, x′) = A(x),
then 〈X,A〉P has proxy use for some Z iff 〈{X, X},A′〉P has proxy use of Z.

This property states that the addition of an input to a model that is not influential,
i.e., has no effect on the outcomes of the model, has no bearing on whether a program has
proxy use or not. This property is an important sanity check that ensures that models
aren’t implicated by the inclusion of inputs that they do not use.
Property 4. (Independence) If X is independent of Z in P, then 〈X,A〉P does not have
proxy use of Z.

Independence between the protected information type and the inputs ensures that the
model cannot infer the protected information type for the population P . This property
captures the intuition that if the model cannot infer the protected information type then
it cannot possibly use it.

While all of these properties seem intuitively desirable, it turns out that these properties
can not be achieved simultaneously.
Theorem 10. No definition of proxy use can satisfy Properties 1-4 simultaneously.

Proof. Proof by contradiction. Assume that there exists a definition of proxy usage that
satisfies all four properties. Let X = {0, 1}, and X is a uniform Bernoulli variable over
X . The model A(x) = x is the identity function. Let Z be an independent uniform
Bernoulli variable. According to (independence), A has no proxy usage of Z. Choose
A′(x, z) = A(x) which operates over X × Z. By (dummy), A′ has no implicit use of
Z. We choose the following bijective transformation: f(x, z) = (u, z) = (x ⊕ z, z), and
f−1(u, z) = (u ⊕ z, z) In this transformed space, we choose A′′ = A′ ◦ f−1. Therefore,
A′′(u, z) = u ⊕ z, since A′′(u, z) = A′(f−1(u, z)) = A′(u ⊕ z, z) = u ⊕ z. According
to (representation independence), A′′ has no implicit use of Z. However, since z is an
influential input of the model, according to (explicit use of proxy), A′′ has implicit use of
Z. Therefore, we have a contradiction.

The key intuition behind this result is that Property 2 requires proxy use to be pre-
served when an input is replaced with a function that predicts that input via composition.
However, with a purely semantic notion of function composition, after replacement, the
proxy may get canceled out. To overcome this impossibility result, we choose a more syn-
tactic notion of function composition, which is tied to how the function is represented as
a program, and looks for evidence of proxy use within the representation.

We now proceed to the axiomatic justification of our definition of proxy use. As in
our attempt to formalize a semantic definition, we base our definition on a set of natural
properties given below. These are syntactic versions of their semantic counterparts defined
earlier.
Property 5. (Syntactic Explicit Use) If X is a proxy of Z, and X is an influential input
of 〈{X, X}, p〉P , then 〈{X, X}, p〉P has proxy use.

82

Algorithm 2 Detection for expression programs.
Require: association (d), influence(ι) measures
procedure ProxyDetect(p,X, Z, ε, δ)

P ← ∅
for each subprogram p1 appearing in p do

for each program p2 such that [p2/u]p1 = p do
if ι(p1, p2) ≥ δ ∧ d(Jp1K(X), Z) ≥ ε then

P ← P ∪ {(p1, p2)}
end if

end for
end for
return P

end procedure

Property 6. (Syntactic Preprocessing) If 〈{X, X}, p1〉P has proxy use of Z, then for any
p2 such that Pr (Jp2K(X) = X) = 1, 〈X, [p2/X]p1〉P has proxy use of Z.
Property 7. (Syntactic Dummy) Given a program 〈X, p〉P , 〈X, p〉P has proxy use for
some Z iff 〈{X, X}, p〉P has proxy use of Z.
Property 8. (Syntactic Independence) If X is independent of Z, then 〈X, p〉P does not
have proxy use of Z.

Properties 5 and 6 together characterize a complete inductive definition, where the
induction is over the structure of the program. Suppose we can decompose programs
p into (p1, X, p2) such that p = [p1/X]p2. Now if X, which is the output of p1, is a
proxy for Z and is influential in p2, then by Property 5, p2 has proxy use. Further, since
p = [p1/X]p2, by Property 6, p has proxy use. This inductive definition where we use
Property 5 as the base case and Property 6 for the induction step, precisely characterizes
Definition 17. Additionally, it is can be shown that Definition 17 also satisfies Properties 7
and 8. Essentially, by relaxing our notion of function composition to a syntactic one, we
obtain a practical definition of proxy use characterized by the natural axioms above.

6.4 Detecting Proxy Use

In this section, we present an algorithm for identifying proxy use of specified variables
in a given machine-learning model (Algorithm 2, Appendix A.1 contains a more formal
presentation of the algorithm for the interested reader). The algorithm is program-directed
and is directly inspired by the definition of proxy use in the previous section. We prove
that the algorithm is complete in a strong sense — it identifies every instance of proxy
use in the program (Theorem 12). We also describe three optimizations that speed up the
detection algorithm: sampling, reachability analysis, and contingency tables.

83

6.4.1 Environment Model

The environment in which our detection algorithm operates is comprised of a data proces-
sor, a dataset that has been partitioned into analysis and validation subsets, and a machine
learning model trained over the analysis subset. We assume that the data processor does
not act to evade the detection algorithm, and the datasets correspond to a representative
sample from the population we wish to test proxy use with respect to. Additionally, we
assume that information types we wish to detect proxies of are also part of the validation
data. We discuss these points further in Section 6.9.

For the rest of this chapter we focus on an instance of the proxy use definition, where
we assume that programs are written in the simple expression language shown in Fig-
ure 6.2. However, our techniques are not tied to this particular language, and the key
ideas behind them apply generally. This language is rich enough to support commonly-
used models such as decision trees, linear and logistic regression, Naive Bayes, and Bayesian
rule lists. Programs are functions that evaluate arithmetic terms, which are constructed
from real numbers, variables, common arithmetic operations, and if-then-else (ite(·, ·, ·))
terms. Boolean terms, which are used as conditions in ite terms, are constructed from
the usual connectives and relational operations. Finally, we use λ-notation for functions,
i.e., λx.e denotes a function over x which evaluates e after replacing all instances of x
with its argument. Details on how machine learning models such as linear models, de-
cision trees, and random forests are translated to this expression language are discussed
in Appendix A.1.2 and consequences of the choice of language and decomposition in that
language are further discussed in more detail in Section 6.9.

Distributed proxies Our use of program decomposition provides for partial handling
of distributed representations, the idea that concepts can be distributed among multiple
entities. In our case, influence and association of a protected information type can be
distributed among multiple program points. First, substitution (denoted by [p1/X]p2) is
defined to replace all instances of variable X in p2 with the program p1. If there are
multiple instances of X in p2, they are still describing a single decomposition and thus
the multiple instances of p2 in p1 are viewed as a single proxy. Further, implementations
of substitution can be (and is in our implementation) associativity-aware: programs like
x1 +x2 +x3 can be equivalent regardless of the order of the expressions in that they can be
decomposed in exactly the same set of ways. If a proxy is distributed among x1 and x3, it
will still be considered by our methods because x1 +(x2 +x3) is equivalent to (x1 +x3)+x2,
and the sub-expression x1 +x3 is part of a valid decomposition. Allowing such equivalences
within the implementation of substitution partially addresses the problem that our theory
does not respect semantic equivalence, which is a necessary consequence of Theorem 10.

6.4.2 Analyzing Proxy Use

Algorithm 2 describes a general technique for detecting (ε, δ)-proxy use in expression pro-
grams. In addition to the parameters and expression, it takes as input a description of the

84

〈aexp〉 ::= R | var | op(〈aexp〉, . . . , 〈aexp〉)
| ite(〈bexp〉, 〈aexp〉, 〈aexp〉)
〈bexp〉 ::= T | F | ¬ 〈bexp〉
| op(〈bexp〉, . . . , 〈bexp〉)
| relop(〈aexp〉, 〈aexp〉)
〈prog〉 ::= λvar1, . . . , varn . 〈aexp〉

Figure 6.2: Syntax for the language used in our analysis.

distribution governing the feature variables X and Z. In practice this will nearly always
consist of an empirical sample, but for the sake of presentation we simplify here by assum-
ing the distribution is explicitly given. In Section 6.7.2, we describe how the algorithm can
produce estimates from empirical samples.

The algorithm proceeds by enumerating sub-expressions of the given program. For each
sub-expression e appearing in p, ProxyDetect computes the set of positions at which
e appears. If e occurs multiple times, we consider all possible subsets of occurrences as
potential decompositions1 . It then iterates over all combinations of these positions, and
creates a decomposition for each one to test for (ε, δ)-proxy use. Whenever the provided
thresholds are exceeded, the decomposition is added to the return set. This proceeds until
there are no more subterms to consider. While not efficient in the worst-case, this approach
is both sound and complete with respect to Definition 20.
Theorem 11 (Detection soundness). Any decomposition (p1, p2) returned by ProxyDetect(p,X, ε, δ)
is a decomposition of the input program p and had to pass the ε, δ thresholds, hence is a
(ε, δ)-proxy use.
Theorem 12 (Detection completeness). Every decomposition which could be a (ε, δ)-proxy
use is enumerated by the algorithm. Thus, if (p1, p2) is a decomposition of p with ι(p1, p2) ≥
d and d(Jp1K(X), Z) ≥ ε, it will be returned by ProxyDetect(p,X, ε, δ).

Our detection algorithm considers single terms in its decomposition. Sometimes a large
number of syntactically different proxies with weak influence might collectively have high
influence. A stronger notion of program decomposition that allows a collection of multiple
terms to be considered a proxy would identify such a case of proxy use but will have to
search over a larger space of expressions. Exploring this tradeoff between scalability and
richer proxies is an important topic for future work.

The detection algorithm runs in time O (|p| c (|D|+ k |D|)) where |D| is the size of a
dataset employed in the analysis, c is the number of decompositions of a program, k is the
maximum number of elements in the ranges of all sub-programs (|D| in the worst case),
and |p| is the number of sub-expressions of a program. The number of decompositions
varies from O (|p|) to O

(
2|p|
)
depending on the type of program analyzed. Details can be

found in Section 6.7 along with more refined bounds for several special cases.

1This occurs often in decision forests (see Figure A.2).

85

6.5 Removing Proxy Use Violations

In this section we present a repair algorithm for removing violations of (ε, δ)-Proxy Use
in a model. Our approach has two parts: first (Algorithm 3) is the iterative discovery of
proxy uses via the ProxyDetect procedure described in the previous section and second
(Algorithm 4) is the repair of the ones found by the oracle to be violations. We describe
these algorithms informally here, and Appendix A.2 contains formal descriptions of these
algorithms. The iterative discovery procedure guarantees that the returned program is free
of violations (Algorithm 6). Our repair procedures operate on the expression language, so
they can be applied to any model that can be written in the language. Further, our violation
repair algorithm does not require knowledge of the training algorithm that produced the
model. The witnesses of proxy use localize where in the program violations occur. To
repair a violation we search through expressions local to the violation, replacing the one
which has the least impact on the accuracy of the model that at the same time reduces
the association or influence of the violation to below the (ε, δ) threshold.

At the core of our violation repair algorithm is the simplification of sub-expressions
in a model that are found to be violations. Simplification here means the replacement of
an expression that is not a constant with one that is. Simplification has an impact on
the model’s performance hence we take into account the goal of preserving utility of the
machine learning program we repair. We parameterize the procedure with a measure of
utility v that informs the selection of expressions and constants for simplification. We
briefly discuss options and implementations for this parameter later in this section.

The repair procedure (Algorithm 4) works as follows. Given a program p and a de-
composition (p1, p2), it first finds the best simplification to apply to p that would make
(p1, p2) no longer a violation. This is done by enumerating expressions that are local to
p1 in p2 (Line 3). Local expressions are sub-expressions of p1 as well as p1 itself and if
p1 is a guard in an if-then-else expression, then local expressions of p1 also include that
if-then-else’s true and false branches as well as their sub-expressions. Each of the local
expressions corresponds to a decomposition of p into the local expression p′1 and the con-
text around it p′2. For each of these local decompositions we discover the best constant, in
terms of utility, to replace p′1 with (Line 4). We then make the same simplification to the
original decomposition (p1, p2), resulting in (p′′1, p

′′
2) (Line 5) Using this third decomposition

we check whether making the simplification would repair the original violation (Line 6),
collecting those simplified programs that do. Finally, we take the best simplification of
those found to remove the violation (Line 10). Details on how the optimal constant is
selected is described in Appendix A.2.1.

Two important things to note about the repair procedure. First, there is always at least
one subprogram on Line 3 that will fix the violation, namely the decomposition (p1, p2)
itself. Replacing p1 with a constant in this case would disassociate it from the sensitive
information type. Secondly, the procedure produces a model that is smaller than the one
given to it as it replaces a non-constant expression with a constant. These two let us state
the following:

86

Algorithm 3 Witness-driven repair.
Require: association (d), influence (ι), utility (v) measures, oracle (O)
procedure Repair(p,X, Z, ε, δ)

P ← {d ∈ ProxyDetect(p,X, Z, ε, δ) : not O(d)}
if P 6= ∅ then

(p1, p2)← element of P
p′ ← ProxyRepair(p, (p1, p2),X, Z, ε, δ)
return Repair(p′,X, Z, ε, δ)

else
return p

end if
end procedure

Algorithm 4 Local Repair.
Require: association (d), influence (ι), utility (v) measures
1: procedure ProxyRepair(p, (p1, p2),X, Z, ε, δ)
2: R← {}
3: for each subprogram p′1 of p1 do
4: r∗ ← Optimal constant for replacing p′1
5: (p′′1, p

′′
2)← (p1, p2) with r∗ subst. for p′1

6: if ι(p′′1, p′′2) ≤ δ ∨ d(Jp′′1K(X), Z) ≤ ε then
7: R← R ∪ [u/r∗]p′2
8: end if
9: end for
10: return arg maxp∗∈R v (p∗)
11: end procedure

Theorem 13. Algorithm 3 terminates and returns a program that does not have any (ε, δ)-
Proxy Use violations (instances of (ε, δ)-Proxy Use for which oracle returns false).

6.6 Evaluation

In this section we empirically evaluate our definition and algorithms on several real datasets.
In particular, we simulate a financial services application and demonstrate a typical work-
flow for a practitioner using our tools to detect and repair proxy use in decision trees and
linear models (§6.6.1). We highlight that this workflow identifies more proxy uses over a
baseline procedure that simply removes features associated with a protected information
type. For three other simulated settings on real data sets—contraception advertising, stu-
dent assistance, and credit advertising—we describe our findings of interesting proxy uses
and demonstrate how the outputs of our detection tool would allow a normative judgment
oracle to determine the appropriateness of proxy uses (§6.6.2). In §6.6.3, we evaluate the
performance of our detection and repair algorithms and show that in particular cases, the

87

runtime of our system scales linearly in the size of the model. Also, by injecting violations
into real data sets so that we have ground truth, we evaluate the completeness of our
algorithm, and show a graceful degradation in accuracy as the influence of the violating
proxy increases.

Models and Implementation Our implementation currently supports linear models,
decision trees, random forests, and rule lists. Note that these model types correspond to
a range of commonly-used learning algorithms such as logistic regression, support vector
machines [27], CART [19], and Bayesian rule lists [82]. Also, these models represent a
significant fraction of models used in practice in predictive systems that operate on personal
information, ranging from advertising [26], psychopathy [60], criminal justice [15, 16], and
actuarial sciences [52, 54]. Our prototype implementation was written in Python, and we
use scikit-learn package to train the models used in the evaluation. The benchmarks we
describe later in this section were recorded on a Ubuntu Desktop with 4.2 GHz Intel Core
i7 and 32GB RAM.

6.6.1 Example Workflow

A financial services company would like to expand its client base by identifying potential
customers with high income. To do so, the company hires an analyst to build a predictive
model that uses age, occupation, education level, and other socio-economic features to
predict whether an individual currently has a “high” or “low” income. This practice is in
line with the use of analytics in the financial industry that exploit the fact that high-income
individuals are more likely to purchase financial products [145].

Because demographic data is known to correlate with marital status [94], the data
processor would like to ensure that the trained model used to make income predictions
does not effectively infer individuals’ marital status from the other demographic variables
that are explicitly used. In this context, basing the decision of which clients to pursue on
marital status could be perceived as a privacy violation, as other socio-economic variables
are more directly related to one’s interest and eligibility in various financial services.

To evaluate this scenario, we trained an income prediction model from the UCI Adult
dataset which consists of roughly 48,000 rows containing economic and demographic infor-
mation for adults derived from publicly-available U.S. Census data. One of the features
available in this data is marital status, so we omitted it during training, and later used it
when evaluating our algorithms. In this scenario, we act as the oracle in order to illustrate
the kind of normative judgments an analyst would need to make as an oracle.

After training a classifier on the preprocessed dataset, we found a strong proxy for mar-
ital status in terms of an expression involving relationship status. Figure 6.3 visualizes all
of the expressions making up the model (marked as •), along with their association and in-
fluence measures. In decision trees, sub-expressions like these coincide with decompositions
in our proxy use definition; each sub-expression can be associated with a decomposition
that cuts out that sub-expression from the tree, and leaves a variable in its place. The
connecting lines in the figure denote the sub-expression relationship. Together with the

88

2−22−42−62−82−102−12

δ / influence [probability]

20

2−2

2−4

2−6

2−8

2−10

ε
/

a
ss

o
ci

at
io

n
(n

m
i)

relationship ≤ 0.5

root

maximal
exps.

Figure 6.3: The association and influence of the expressions composing a decision tree
trained on the UCI Adult dataset. Narrow lines designate the sub-expression relationship.
Shaded area designates the feasible values for association and influence between none, and
maximal. Marker size denotes the relative size of the sub-expressions pictured.

placement of points on the influence and association scales, this produces an overview of
the decision tree and the relationship of its constituent parts to the sensitive attribute.

On further examination the relationship status was essentially a finer-grained ver-
sion of marital status. While not interesting in itself, this occurrence demonstrates an
issue with black-box use of machine learning without closely examining the structure
of the data. In particular, one can choose to remove this feature, and the model ob-
tained after retraining will make predictions that have low association with marital sta-
tus. However, one submodel demonstrated relatively strong proxy use (ε = 0.1, δ = 0.1):
age ≤ 31 and sex = 0 and capital_loss ≤ 1882.50 (labeled A in Figure 6.4). This
demonstrates that simply removing a feature does not ensure that proxies are removed.
When the model is retrained, the learning algorithm might select new computations over
other features to embed in the model, as it did in this example. Also, note that the new
proxy combines three additional features. Eliminating all of these features from the data
could impact model performance. Instead we can use our repair algorithm to remove the
proxy: we designate the unacceptable ε, δ thresholds (the darkest area in Figure 6.4) and
repair any proxies in that range. The result is the decision tree marked with + in the
figure. Note that this repaired version has no sub-expressions in the prohibited range and
that most of the tree remains unchanged (the • and + markers largely coincide).

89

2−22−42−62−82−102−12

δ / influence [probability]

20

2−2

2−4

2−6

2−8

2−10ε
/

a
ss

o
ci

at
io

n
(n

m
i)

Aexps.

exps. (repaired)

Figure 6.4: Decision tree trained on the UCI Adult dataset but with the relationship
attribute removed (•), and the repaired version (+) of the same tree. Dark area in the
upper-left designates the thresholds used in repair.

6.6.2 Other Case Studies

We now discuss interesting examples for proxy use from other case studies, demonstrating
how our framework aids normative use privacy judgments.

Targeted contraception advertising We consider a scenario in which a data processor
wishes to show targeted advertisements for contraceptives to females. To support this goal,
the processor collects a dataset from a randomly-sampled female population containing
age, level of education, number of children, current employment status, income, level of
media exposure, information about the partner’s education and occupation, and the type
of contraception used by the individual (if any). This dataset is used to train a model that
predicts whether an individual uses no contraception, short-term contraception, or long-
term contraception. This model is then used to determine who to display advertisements
to, under the assumption that individuals who already use short-term contraception are
more likely to be receptive to the advertisements.

Because certain religions ban the use of contraception, users belonging to such a religion
are on the whole less likely to purchase contraceptives after seeing such an advertisement.
The ad-targeting model does not explicitly use a feature corresponding to religion, as this
information is not available to the system when ads are displayed. Furthermore, some users
may view the use of this information for advertising purposes as a violation of their privacy,
so the data processor would like to ensure that the targeting model has not inferred a proxy
for this information that is influential in determining whether to show an advertisement.

We evaluated this scenario using data collected for the 1987 National Indonesia Con-

90

traceptive Survey [5], which contains the features mentioned above, as well as a feature
indicating whether the individual’s religious beliefs were Islam. To simulate the data pro-
cessor, we trained a decision tree classifier to predict contraceptive use over all available
features except the one corresponding to religion. We then used our detection algorithm
to look for a proxy use of religion, using the available data as ground truth to evaluate the
effectiveness of our approach.

Although this data is representative of a single country, it illustrates an interesting
case of potential use privacy. Our detection algorithm identified the following intermediate
computation, which was one of the most influential in the entire model, and the one most
closely associated with the religion variable: ite(educ < 4∧nchild ≤ 3∧age < 31, no, yes).
This term predicts that women younger than 31, with below-average education background
and fewer than four children will not use contraception. Given that the dataset is comprised
entirely of females, closer examination in fact reveals that just the “guard” term educ < 4
alone is even more closely associated with religion, and its influence on the model’s output
is nearly as high. This reveals that the model is using the variable for education background
as a proxy for religion, which may be concerning given that this application is focused on
advertising.

Student assistance A current trend in education is the use of predictive analytics to
identify students who are likely to benefit from certain types of interventions to ensure
on-time graduation and other benchmark goals [51, 61]. We look at a scenario where a
data processor builds a model to predict whether a secondary school student’s grades are
likely to suffer in the near future, based on a range of demographic features (such as age,
gender, and family characteristics), social information (such as involvement in extracur-
ricular activities, amount of reported free time after school), and academic information
(e.g., number of reported absences, use of paid tutoring services, intention to continue on
to higher education). Based on the outcome of this prediction, the student’s academic
advisor can decide whether to pursue additional interventions.

Because of the wide-ranging nature of the model’s input features, and sensitivity to-
wards the privacy rights of minors, the data processor would like to ensure that the model
does not base its decision on inferred facts about certain types of activities that the student
might be involved with. For example, alcohol consumption may be correlated with several
of the features used by the model, and it may not be seen as appropriate to impose an
intervention on a student because their profile suggests that they may have engaged in this
activity. Depending on the context in which such an inference were made, the processor
would view this as a privacy violation, and attempt to remove it from the model.

To evaluate this scenario, we trained a model on the UCI Student Alcohol Consumption
dataset [28]. This data contains approximately 700 records collected from Portuguese
public school students, and includes features corresponding to the variables mentioned
above. Our algorithm found the following proxy for alcohol use: ite(studytime < 2 ∧
dad_educ < 4, fail, ...), which predicts that a student who spends at most five hours per
week studying, and whose father’s level of education is below average, is likely to fail a class
in at least one term. Further investigation reveals that studytime < 2 was more influential

91

on the model’s output, and nearly as associated with alcohol consumption, as the larger
term. This finding suggests that this instance of proxy use can be deemed an appropriate
use, and not a privacy violation, as the amount of time a student spends studying is clearly
relevant to their academic performance. If instead dad_educ < 4 alone had turned out
to be a proxy use of alcohol consumption, then it may have been a concerning inference
about the student’s behavior from information about their family history. Our algorithm
correctly identified that this is not the case.

Credit advertisements We consider a situation where a credit card company wishes to
send targeted advertisements for credit cards based on demographic information. In this
context, the use of health status for targeted advertising is a legitimate privacy concern [39].

To evaluate this scenario, we trained a model to predict interest in credit cards using
the PSID dataset, which contains detailed demographic information for roughly 10,000
families and includes features such as age, employment status income, education, and the
number of children. From this, we trained two models: one that identifies individuals with
student loans and another that identifies individuals with existing credit cards as the two
groups to be targeted.

The first model had a number of instances of proxy use. One particular subcomputation
that was concerning was a subtree of the original decision tree that branched on the number
of children in the family. This instance provided negative outcomes to individuals with
more children, and may be deemed inappropriate for use in this context. In the second
model, one proxy was a condition involving income income ≤ 33315. The use of income in
this context is justifiable, and therefore this may not be regarded as a use privacy violation.

6.6.3 Detection and Repair

For the remainder of the section we focus on evaluating the performance and efficacy of
the detection and repair algorithms. We begin by exploring the impact of the dataset and
model size on the detection algorithm’s runtime.

Figure 6.5 demonstrates the runtime of our detection algorithm on three models trained
on the UCI Adult dataset vs. the size of the dataset used for the association and influence
computations. The algorithm here was forced to compute the association and influence
metrics for each decomposition (normally influence can be skipped if association is below
threshold) and thus represents a worst-case runtime. The runtime for the random forest
and decision tree scales linearly in dataset size due to several optimizations. The logistic
regression does not benefit from these and scales quadratically. Further, runtime for each
model scales linearly in the number of decompositions.

Figure 6.6 demonstrates the runtime of the detection algorithm as a function of the
number of decompositions of the analyzed model (a proxy for its size). We show two
trends in that figure. The black line demonstrates the worst case detection that requires
both association and influence computation for each decomposition while the gray line
demonstrates the best case where only the association computation is performed. The

92

0 200 400 600 800 1000

dataset size [count]

100

101

102

103

re
al

ru
nt

im
e

[s
]

Figure 6.5: Worst-case detection algorithm run-time (average of 5 runs) as a function
of input dataset size. Influence and association computed on each decomposition (hence
worst-case). The models are decision tree(◦), random forest(+), and logistic regression(×)
trained on the UCI Adult dataset.

runtime in practice would thus fall somewhere between these two cases, both linear in
the number of decompositions. The scalability of our algorithm relative to the number
of decompositions has large consequences the its applicability to linear models. We have
found that such models, if trained without restricting the number of coefficients, are too
big for our sound sub-expression enumeration to handle. In order to deal with this problem
we used the Lasso method in order to reduce the number of coefficients in the models we
analyzed.

To determine the completeness of our detection algorithm we inserted a proxy in a
trained model to determine whether we can detect it. To do this, we used the UCI Student
Alcohol Consumption dataset to train two decision trees: one to predict students’ grades,
and one to predict alcohol consumption. We then inserted the second tree into random
positions of the first tree thereby introducing a proxy for alcohol consumption. We observed
that in each case, we were able to detect the introduced proxy. While not interesting in
itself due to our completeness theorem, we used this experiment to explore how much
utility is actually lost due to repair. We evaluate our repair algorithm on a set of similar
models with inserted violations of various influence magnitude. The results can be seen
in Figure 6.7. We can see that the accuracy (i.e., ratio of instances that have agreement
between repaired and unrepaired models) falls linearly with the influence of the inserted
proxy. This implies that repair of less influential proxies will incur a smaller accuracy
penalty than repair of more influential proxies. In other words, our repair methods do not
unduly sacrifice accuracy when repairing only minor violations.

93

100 101 102 103 104

decompositions [count]

10−2

10−1

100

101

102

103

re
al

ru
nt

im
e

[s
] w/ infl.

w/o infl.

Figure 6.6: Detection algorithm run-time as a function of the number of decompositions in
a decision tree trained on the UCI Adult dataset. Detecting violations with ε = 0.0 (black
dots and line) requires influence computations whereas detecting with ε = 1.0 (gray dots
and line) does not. A 1000 instance sample of the dataset was used with varying training
depths.

A point not well visible in this figure is that occasionally repair incurs no loss of utility.
This is due to our use of the scikit-learn library for training decision trees as it does not
currently support pruning unnecessary nodes. Occasionally such nodes introduce associa-
tions without improving the model’s accuracy. These nodes can be replaced by constants
without loss. We have also observed this in some of our case studies.

6.7 Complexity

The complexity of the presented algorithms depend on several factors, including the type of
model being analyzed, the number of elements in the ranges of sub-programs, and reacha-
bility of sub-programs by dataset instances . In this section we describe the the complexity
characteristics of the detection and repair algorithms under various assumptions. Com-
plexity is largely a property of the association and influence computations and the number
of decompositions of the analyzed program. We begin by noting our handling of probability
distributions as specified by datasets, several quantities of interest, discuss the complexity
of components of our algorithms, and conclude with overall complexity bounds.

94

0.0 0.1 0.2 0.3 0.4

influence [probability]

0.5

0.6

0.7

0.8

0.9

1.0
ac

cu
ra

cy
[r

at
io

]

Figure 6.7: Repaired accuracy vs. influence of proxy during repair of a synthetic proxy
inserted into random positions of a decision tree trained on the UCI Student Alcohol
Consumption dataset. Accuracy is agreement to non-repaired model. The synthetic model
is a (1.0)-proxy for alcohol use, inserted into a decision tree predicting student grade.
Repair is configured for (0.01, 0.01)-proxy use removal. Note that other proxies (if they
exist) are not repaired in this experiment.

6.7.1 Distributions, datasets, and probability

It is rarely the case that one has access to the precise distribution from which data is
drawn. Instead, a finite sample must be used as a surrogate when reasoning about random
variables. In our formalism we wrote X $← P to designate sampling of a value from a
population. Given a dataset surrogate D, this operation is implemented as an enumeration
x ∈ D, with each element having probability 1/ |D|. We will overload the notation and use
D also as the random variable distributed in the manner just described. We assume here
that the sensitive attribute Z is a part of the random variable X.

The following sections use the following quantities to express complexity bounds, mostly
overloading prior notations:
• D - The number of instances in the population dataset.
• p - The number of expressions in a program p being analyzed.
• Z - The number of elements in the support of Z.
• k - The maximum number of unique elements in support of every sub-expression,
that is maxp′∈p ||.

• c - The number of decompositions in a given program. We will elaborate on this
quantity under several circumstances later in this section.

• b - The minimum branching factor of sub-expressions in a given program.
We will assume that the number of syntactic copies of any sub-expression in a pro-

95

gram is no more than some constant. This means we will ignore the asymptotic effect of
decompositions with multiple copies of the same sub-program p1.

The elementary operation in our algorithms is a lookup of a probability of a value
according to some random variable. We pre-compute several probabilities related to reach-
ability and contingency tables to aid in this operation. When we write “p1 is reached”,
we mean that the evaluation of p, containing p1, on a given instance X, will reach the
sub-expression p1 (or that p1 needs to be evaluated to evaluate p on X).

Probability pre-computation
For every decomposition Jp2K (X, Jp1KX) = JpK (X), we compute:

1. the r.v. (Jp1KX,XZ) for X $← D,
2. the r.v. X| (p1 is reached by X) for X $← D, and
3. the value PrX $←D (p1 is reached by X).

In point (1) above we write XZ to designate the sensitive attribute component of X′,
hence this point computes the r.v. representing the output of p1 along with the sensitive
attribute Z. This will be used for the association computation.

The complexity of these probability computations varies depending on circumstances.
In the worst case, the complexity is O (cDp). However, under some assumptions related to
programs p and datasets D, these bounds can be improved. We define two types of special
cases which we call splitting and balanced:
Definition 21. p is splitting for D iff it has at most a constant number of reachable op
operands (arguments of op expressions).

The Decision trees are local for any dataset as they do not contain any op operands
(they do contain relop operands). Further, if number of trees in random forests or number
of coefficients in linear regression are held constant, then these models too are splitting for
any dataset. The reasoning behind this definition is to prohibit arbitrarily large programs
that do not split inputs using if-then-else expressions. It is possible to create such programs
using arithmetic and boolean operations, but not using purely relational operations.
Definition 22. p is b-balanced for D iff all but a constant number of sub-expressions
e′ have parent e with b > 1 sub-expressions which split the instances that reach them
approximately equally among their children.

Balanced implies splitting as op operands do not satisfy the balanced split property
hence there has to be only a constant number of them. Also, the definition is more general
than necessary for the language presented in this paper where the branching factor is always
2 because the if-then-else expressions are the only ones that can satisfy the balanced split
condition. Decision trees trained using sensible algorithms are usually balanced due to the
branch split criteria employed preferring approximately equal splits of training instances.
For the same reason, if the number of trees are held constant, then random forests are also
likely to be balanced.

When p is splitting for D, the probability computation step reduces to O (Dp2). This
stems from the fact that the number of decompositions is asymptotically equal to the
number of sub-expressions (limits to operands prevent more decompositions). Further, if
p is b-balanced for D, the probability pre-computation reduces to O (D logbD). In the

96

language presented b = 2. These bounds derive similarly to the typical divide and conquer
program analysis; there are logbD layers of computation, each processing D instances.

6.7.2 Influence and Association

Our proxy definition further relies on two primary quantities used in Algorithm 2, influence
and association. We describe the methods we use to compute them here.

Quantitative decomposition influence Given a decomposition (p1, u, p2) of p, the
influence of p1 on p2’s output is defined as:

ι(p1, p2)
def
= E

X,X′
$←D

[Pr (Jp2K (X, Jp1KX) 6= Jp2K (X, Jp1KX′))]

This quantity requires D2 samples to compute in general. Each sample takes at most
O (p) time, for a total of O (pD2). However, we can take advantage of the pre-computations
described in the prior section along with balanced reachability criteria and limited ranges
of values in expression outputs to do better. We break down the definition of influence
into two components based on reachability of p1:

ι(p1, p2)
def
= E

X,X′
$←D

[Pr (Jp2K (X, Jp1KX) 6= Jp2K (X, Jp1KX′))]

= E
X

$←D

[
E

X′
$←D

[Pr (Jp2K (X, Jp1KX) 6= Jp2K (X, Jp1KX′))]
]

= Pr (p1 not reached) · E
X

$←D|p1 not reached
[· · ·]

+ Pr (p1 reached) · E
X

$←D|p1 reached
[· · ·]

= 0 + Pr (p1 reached) ·
E

X
$←D|p1 reached

[
E

X
$←D

[Pr (JpK(X) 6= Jp2K (X, Jp1KX′))]
]

= Pr (p1 reached) ·

E
X

$←D|p1 reached

[
E

Y
$←Jp1KD

[Pr (JpK(X) 6= Jp2K (X,Y))]

]
Note that all both random variables and one probability value in the final form of influence
above have been pre-computed. Further, if the number of elements in the support of Jp1KX
is bounded by k, we compute influence using kD samples (at most D for X and at most k
for Y), for total time of O (kpD).

Influence can also be estimated, ι̂ by taking a sample from D × D. By Hoeffding’s
inequality [64], we select the subsample size n to be at least log(2/β)/2α2 to ensure that
the probability of the error ι̂(p1, p2)− ι(p1, p2) being greater than β is bounded by α.

Association As discussed in Section 6.3, we use mutual information to measure the
association between the output of a subprogram and Z. In our pre-computation steps
we have already constructed the r.v. (Jp1KX,XZ) for X

$← D. This joint r.v. contains

97

both the subprogram outputs and the sensitive attribute hence it is sufficient to compute
association metrics. In case of normalized mutual information, this can be done in time
O (kZ), linear in the size of the support of this random variable.

6.7.3 Decompositions

The number of decompositions of a model determines the number of proxies that need
to be checked in detection and repair algorithms. We consider two cases, splitting and
non-splitting programs. For splitting models, the number of decompositions is bounded
by the size of the program analyzed, whereas in case of non-splitting models, the num-
ber of decompositions can be exponential in the size of the model. These quantities are
summarized in Table 6.2.

splitting non-splitting

worst-case general O (p) O (2p)

linear model with (con-
stant or f) number of
coefficients

O (1) O
(
2f
)

decision tree of height h O
(
2h
)

O
(
2h
)

random forest of (con-
stant or t) number of
trees of height h

O
(
2h
)

O
(
2t2h

)

Table 6.2: The number of decompositions in various types of models. When we write
“(constant or f)” we denote two cases: one in which a particular quantity is considered
constant in a model making it satisfy the splitting condition, and one in which that same
quantity is not held constant, falsifying the splitting condition.

6.7.4 Detection

The detection algorithm can be written O (A+B · C), a combination of three components.
A is probability pre-computation as described earlier in this section, B is the complexity
of association and influence computations, and C is the number of decompositions.

The complexity in terms of the number of decompositions under various conditions is
summarized in Table 6.3. Instantiating the parameters, the overall complexity ranges from
O (D logbD + p2D) in case of models like balanced decision trees with a constant number
of classes, to O (p2pD2) in models with many values and associative expressions like linear
regression. If the model size is held constant, these run-times become O (D logbD) and
O (D2), respectively.

98

non-splitting O (pc (D + kD))

splitting O (p (Dp+ ckD))

b−balanced O (D logbD + ckpD)

Table 6.3: The complexity of the detection algorithm under various conditions, as a
function of the number of decompositions.

6.8 Related Work

6.8.1 Definition

Minimizing disclosures In the computer science literature, privacy has been thought
of as the ability to protect against undesired flows of information to an adversary. Much
of the machinery developed in cryptography, such as encryption, anonymous communi-
cation, private computation, and database privacy have been motivated by such a goal.
Differential privacy [44] is one of the main pillars of privacy research in the case of compu-
tations over data aggregated from a number of individuals, where any information gained
by an adversary observing the computation is not caused by an individual’s participation.
However, none of these technologies cover the important setting of individual-level data
analytics, where one may want to share some information while hiding others from ad-
versaries with arbitrary background knowledge. This absence is with good reason, as in
the general case it is impossible to prevent flows of knowledge from individual-level data,
while preserving the utility of such data, in the presence of arbitrary inferences that may
leverage the background knowledge of an adversary [43]. In this work, we do not attempt
to solve this problem either.

Nevertheless, the setting of individual level data analytics is pervasive, especially in
the case of predictive systems that use machine learning. Since these systems are largely
opaque, even developers do not have a handle on information they may be inadvertently
using via inferences. Therefore, in this work, we make the case for proxy use restrictions
in data driven systems and develop techniques to detect and repair violations of proxy
use. Restrictions on information use, however do not supplant the need for other privacy
enhancing technologies geared for restricting information collection and disclosure, which
may be useful in conjunction with the enforcement of use restrictions. For example, when
machine learning models are trained using personal data, it is desirable to minimize dis-
closures pertaining to individuals in the training set, and to reduce the use of protected
information types for the individuals the models are applied to.

Identifying explicit use The privacy literature on use restrictions has typically focused
on explicit use of protected information types, not on proxy use (see Tschantz et al. [136]
for a survey and Lipton and Regan [87]). Recent work on discovering personal data use
by black-box web services focuses mostly on explicit use of protected information types by

99

examining causal effects [32, 80]; some of this work also examines associational effects [79,
80]. Associational effects capture some forms of proxy use but not others as we argued in
Section 6.3.

6.8.2 Detection and Repair Models

Our detection algorithm operates with white-box access to the prediction model. Prior
work requires weaker access assumptions.

Access to observational data Detection techniques working under an associative use
definition [50, 135] usually only require access to observational data about the behavior of
the system.

Access to black-box experimental data Detection techniques working under an ex-
plicit use definition of information use [32, 80] typically require experimental access to the
system. This access allows the analyst to control some inputs to the system and observe
relevant outcomes.

The stronger white-box access level allows us to decompose the model and trace an
intermediate computation that is a proxy. Such traceability is not afforded by the weaker
access assumptions in prior work. Thus, we explore a different point in the space by giving
up on the weaker access requirement to gain the ability to trace and repair proxy use.

Tramèr et al. [135] solve an important orthogonal problem of efficiently identifying
populations where associations may appear. Since our definition is parametric in the
choice of the population, their technique could allow identifying relevant populations for
further analysis using our methods.

Repair Removal of violations of privacy can occur at different points of the typical ma-
chine learning pipeline. Adjusting the training dataset is the most popular approach,
including variations that relabel only the class attribute [88], modify entire instances while
maintaining the original schema [50], and transform the dataset into another space of
features [45, 149]. Modifications to the training algorithm are specific to the trainer em-
ployed (or to a class of trainers). Adjustments to Naive Bayes [22] and trainers amiable
to regularization [70] are examples. Several techniques for producing differentially-private
machine learning models modify trained models by perturbing coefficients [14, 25]. Other
differentially-private data analysis techniques [44] instead perturb the output by adding
symmetric noise to the true results of statistical queries. All these repair techniques aim
to minimize associations or inference from the outcomes rather than constrain use.

6.9 Discussion
Beyond strict decomposition Theorem 10 shows that a definition satisfying natural
semantic properties is impossible. This result motivates our syntactic definition, param-
eterized by a programming language and a choice of program decomposition. In our im-

100

plementation, the choice of program decomposition is strict. It only considers single terms
in its decomposition. However, proxies may be distributed across different terms in the
program. As discussed in Section 6.4.1, single term decompositions can also deal with a re-
stricted class of such distributed proxies. Our implementation does not identify situations
where each of a large number of syntactically different proxies have weak influence but
together combine to result in high influence. A stronger notion of program decomposition
that allows a collection of multiple terms to be considered a proxy would identify such a
case of proxy use.

The choice of program decomposition also has consequences for the tractability of the
detection and repair algorithms. The detection and repair algorithms presented in this
chapter currently enumerate through all possible subprograms in the worst case. Depending
on the flexibility of the language chosen and the model2 being expressed there could be an
exponentially large number of subprograms, and our enumeration would be intractable.

Important directions of future work are therefore organized along two thrusts. The first
thrust is to develop more flexible notions of program decompositions that identify a wide
class of proxy uses for other kinds of machine learning models, including deep learning
models that will likely require new kinds of abstraction techniques due to their large size.
The second thrust is to identify scalable algorithms for detecting and repairing proxy use
for these flexible notions of program decompositions.

Data and access requirements Our definitions and algorithms require (i) a specifica-
tion of which attributes are protected, (ii) entail reasoning using data about these protected
information types for individuals, and (iii) white box access to models and a representa-
tive dataset of inputs. Obtaining a complete specification of protected information types
can be challenging when legal requirements and privacy expectations are vague regarding
protected information types. However, in many cases, protected types are specified in laws
and regulations governing the system under study (e.g., HIPAA, GDPR), and also stated
in the data processor’s privacy policies.

Further, data about protected information types is often not explicitly collected. Preg-
nancy status, for example, would rarely find itself as an explicit feature in a purchases
database (though it was the case in the Target case). Therefore, to discover unwanted
proxy uses of protected information types, an auditor might need to first infer the pro-
tected attribute from the collected data to the best extent available to them. Though
it may seem ethically ambiguous to perform a protected inference in order to (discover
and) prevent protected inferences, it is consistent with the view that privacy is a func-
tion of both information and the purpose for which that information is being used [136]3.
In our case, the inference and use of protected information by an auditor has a different
(and ethically justified) purpose than potential inferences in model being audited. Fur-
ther, protected information has already been used by public and private entities in pursuit
of social good: affirmative action requires the inference or explicit recording of minority

2Though deep learning models can be expressed in the example language presented in this chapter,
doing so would result in prohibitively large programs.

3This principle is exemplified by law in various jurisdictions including the PIPEDA Act in Canada
[104], and the HIPAA Privacy Rule in the USA [101].

101

membership, search engines need to infer suicide tendency in order to show suicide preven-
tion information in their search results[125], health conditions can potentially be detected
early from search logs of affected individuals [102]. Supported by law and perception of
public good, we think it justified to expect system owners be cooperative in providing the
necessary information or aiding in the necessary inference for auditing.

Finally, in order to mitigate concerns over intellectual property due to access require-
ments for data and models, the analyst will need to be an internal auditor or trusted third
party; existing privacy-compliance audits (Sen et al. [117]) that operate under similar
requirements could be augmented with our methods.

Normative judgments Appropriateness decisions by the analyst will be made in ac-
cordance with legal requirements and ethical norms. Operationally, this task might fall on
privacy compliance teams. In large companies, such teams include law, ethics, and technol-
ogy experts. Our work exposes the specific points where these complex decisions need to
be made. In our evaluation, we observed largely human-interpretable witnesses for proxies.
For more complex models, additional methods from interpretable machine learning might
be necessary to make witnesses understandable.

Another normative judgment is the choice of acceptable ε, δ parameters. Similar to
differential privacy, the choice of parameters requires identifying an appropriate balance
between utility and privacy. Our quantitative theory could provide guidance to the oracle
on how to prioritize efforts, e.g., by focusing on potentially blatant violations (high ε, δ
values).

6.10 Conclusion
We develop a theory of use privacy and proxy non-discrimination in data-driven systems.
Distinctively, our approach constrains not only the direct use of protected information
types but also their proxies (i.e. strong predictors), unless allowed by exceptions justified
by ethical considerations.

We formalize proxy use and present a program analysis technique for detecting it in a
model. In contrast to prior work, our analysis is white-box. The additional level of access
enables our detection algorithm to provide a witness that localizes the use to a part of the
algorithm. Recognizing that not all instances of proxy use of a protected information type
are inappropriate, our theory of use privacy makes use of a normative judgment oracle
that makes this appropriateness determination for a given witness. If the proxy use is
deemed inappropriate, our repair algorithm uses the witness to transform the model into
one that does not exhibit proxy use. Using a corpus of social datasets, our evaluation shows
that these algorithms are able to detect proxy use instances that would be difficult to find
using existing techniques, and subsequently remove them while maintaining acceptable
classification performance.

102

Chapter 7

Conclusion and Future Work

In this dissertation, we described a basis for developing explanations for information use in
data driven systems. These explanations are a means to enhancing trust in the predictions
of machine learning models, and surfacing violations of privacy and fairness. Our approach
combines two key elements: causal influence and associative interpretation. While these
elements have been explored individually in prior work, combining the two opens up a
rich space of techniques that we begin to explore in this dissertation. In Figure 7.1, we
describe this space in terms of the factors under study, and the systems these influences are
computed in. In this thesis, we focus on the part of the space that examines the influence
of input factors and internal factors in trained models.

Further, each result described in this paper explains why a certain behavior occurs.
In cases where the behavior is undesirable, we can attempt to leverage the explanation
in order to repair the behavior. In the restricted cases of Chapter 3 and 6, we already
explore this idea of leveraging explanations to aid the repair of models. Pursuing a general
approach to repairing systems is another important line of future work.

7.1 Factors

For both proxy use (Chapter 6) and influence-directed explanations (Chapter 5), we con-
sider the influence of single internal factors in isolation. However, viewing the influence of
computations together might reveal interactions between these factors that we currently
miss. An interesting future line of work would be to analyze the influence of a set of factors.
For example, in a convolutional neural network the concept of the roof of a sports car might
be represented by a certain combination of neuron values across different layers. Similarly,
for a random forest different parts of different trees might combine to define a strong proxy
for race than any single component. The key challenge in analyzing the influence of a set
of factors is that an exponential number of sets could be potentially explored, and we need
richer notions of program decomposition to address this challenge.

103

Systems

F
ac

to
rs

Input Factors

Internal Factors

Combination of
Internal Factors

System +

Environment

Quantitative
Input Influence

Proxy Use

Quantitative
Input Influence

Proxy Use

Quantitative
Input Influence

Proxy Use

Distributional
Input Influence

Explanations for
CNNs

F
ac

to
rs

Input Factors

Internal Factors

DifferentiableDiscrete

Systems

Figure 7.1: A summary of future work in influence-directed explanations described in terms
of the systems we measure the influence in, and the factors we compute the influence of. In
this dissertation we focus on the part of the space the looks at the influence of input and
internal factors in trained models. These trained models are generated by complex training
algorithms and operate in a rich environment. Explaining the behavior of these models
in this expanded context is an important direction of future work. Further, generalizing
to combinations of internal factors will allow us to capture concepts with a distributed
internal representation.

7.2 Systems

In this dissertation, we focus on understanding how trained machine learning models use
information. As the behavior of these models is directly governed by the training data,
understanding the influence of parts of the training data on the behavior will enable repairs
during the training process. Recent work by Chakarov et al. [23] and Koh et al. [77] study
the use of influence functions in understanding how training data points affect the predic-
tions of machine learning classifiers. An important direction of future work will extend
these ideas from influence on predictions to influence on behaviors such as discrimination
and privacy violations.

Further, analyzing causality in programs is relatively simple, but the true implications
of the use of programs is borne out by the composition of the programs with the environ-
ment they operate in. For example, in predictive policing, policing certain neighborhoods
might reduce criminal activity as criminals move to other neighborhoods, thus changing the
underlying distribution the models were trained on. Similarly, providing loans to a certain
community over a few years might improve the economic characteristics of that community
and thus alter their creditworthiness. Understanding such effects of how algorithms lead
to downstream effects on society will require combining an understanding of causal effects
in algorithms with causal effects in society. While causal experimentation in programs
is relatively simple, causal experimentation in society is expensive and time-consuming.
Economists and social scientists have decades of research approximating causal experime-

104

nation from observational data. Combining the power of rapid causal experimentation in
programs with techniques for causal inference in society will be essential in explaining the
societal outcomes of the use of machine learning models.

7.3 Repair
Both counterfactual active learning (Chapter 3) and repair techniques for proxy use (Chap-
ter 6) are techniques that leverage insights from explanations to repair the model. A more
general approach to repair is another interesting line of future work. For example, once
we identify that for CNNs a misclassification occurs because some set of incorrect neu-
rons were fired, it should be possible to train those incorrect neurons on instances that
correct the behavior of those neurons. This kind of retraining can be viewed as a form of
counterfactual active learning but on the internal layers of a neural network.

105

106

Appendix A

Details for Proxy Use

A.1 Algorithm for Detection
In this section we provide technical details about the detection algorithm skipped from the
main body of the dissertation. In particular, we formally define the decomposition used
in the implementation, how machine learning models are translated to the term language,
and how associational tests mitigate spurious results due to sampling.

A.1.1 Decomposition

Before we present the formal algorithm for detection, we need to develop notation for
precisely denoting decompositions. Decomposition follows naturally from the subterm
relation on expressions. However, as identical subterms can occur multiple times in an
expression, care must be taken during substitution to distinguish between occurrences.
For this reason we define substitution positionally, where the subterm of expression e =
op(e1, . . . , en) at position q, written e|q, is defined inductively:

op(e1, . . . , en)|q =

op(e1, . . . , en) if q = ε

ei|q′ if q = iq′ ∧ 1 ≤ i ≤ n

op(ei1 , . . . , eik) if q = {i1, . . . , ik}
⊥ otherwise

We denote q as ‘positional indicator’. Specifically, q has the syntax of the following.
〈q〉 ::= ε | i〈q〉 | {i1, . . . , ik}
We then define the term obtained by substituting s in e at position q, written e[s]q, to be
the term where e[s]q|q = s, and e[s]q|q′ = eq′ for all q′ that are not prefixed by q. For a
sequence of positions q1, . . . , qn and terms s1, . . . , sn, we write e[s1, . . . , sn]q1,...,qn to denote
the sequential replacement obtained in order from 1 to n. Given a program p = λx.e, we
will often write p|q or p[s]q for brevity to refer to e|q and e[s]q, respectively. The set of
decompositions of a program p is then defined by the set of positions q such that p|q 6=⊥.
Given position q, the corresponding decomposition is simply (λx.p|q, u, λx, u.p[u]q).

107

Algorithm 5 Detection for expression programs.
Require: association (d), influence(ι) measures
procedure ProxyDetect(p,X, Z, ε, δ)

P ← ∅
for each term e appearing in p do

p1 ← λx1, . . . , xn.e
Q← {q | p|q = e}
for each k ∈ [1, . . . , |Q|], (q1, . . . , qk) ∈ Q do

p2 ← λx1, . . . , xn, u.p[u]q1,...,qk
if ι(p1, p2) ≥ δ ∧ d(Jp1K(X), Z) ≥ ε then

P ← P ∪ {(p1, p2)}
end if

end for
end for
return P

end procedure

Example 7. Consider a simple model,

p = λx, y.ite(x+ y ≤ 0, 1, 0)

= λx, y.ite(≤ (+(x, y), 0), 1, 0)

There are eight positions in the body expression, namely {ε, 1, 2, 3, 11, 12, 111, 112}. The
subexpression at position 112 is y, and p[u]11 = ite(u ≤ 0, 1, 0). This corresponds to the
decomposition:

(λx, y.x+ y, u, λx, y, u.ite(u ≤ 0, 1, 0))

With this notation in place, we can formally describe the detection algorithm in Algo-
rithm 5.

A.1.2 Translation

This section describes the translation of machine learning models used in our implementa-
tion to the term language.

Decision trees and Rule lists

Decision trees can be written in this language as nested ite terms, as shown in Figure A.1.
The Boolean expression in each term corresponds to a guard, and the arithmetic expressions
to either a proper subtree or a leaf. Bayesian rule lists are a special kinds of decision trees,
where the left subtree is always a leaf.

108

x1

0 x2

x3

0 1

0

≤ 1
2 > 1

2

≤ 1

≤ 0 > 0

> 1

ite(x1≤ 1
2
,

0

ite(x2 ≤ 1,

ite(x3 ≤ 0, 0, 1),

0)))

Figure A.1: Decision tree and corresponding expression program.

Linear models

Linear regression models are expressed by direct translation into an arithmetic term, and
linear classification models (e.g., logistic regression, linear support vector machines, Naive
Bayes) are expressed as a single ite term, i.e.,

sgn(w · x + b) becomes λx.ite(w · x + b ≥ 0, 1, 0)

Importantly, the language supports n-ary operations when they are associative, and
allows for rearranging operands according to associative and distributive equivalences. In
other words, the language computes on terms modulo an equational theory. Without
allowing such rearrangement, when a linear model is expressed using binary operators,
such as ((((w1 × x1) + (w2 × x2)) + (w3 × x3)), then the algorithm cannot select the
decomposition:

p1 = λx.(w1 × x1) + (w3 × x3)

p2 = λx, u.u+ (w2 × x2)

Decision Forests

Decision forests are linear models where each linear term is a decision tree. We combine the
two translations described above to obtain the term language representation for decision
forests.

A.1.3 Validity Testing

We use mutual information to determine the strength of the statistical association between
Jp1K(X) and Z. Each test of this metric against the threshold ε amounts to a hypothesis test
against a null hypothesis which assumes that d(Jp1K(X), Z) < ε. Because we potentially
take this measure for each valid decomposition of p, it amounts to many simultaneous
hypothesis tests from the same data source. To manage the likelihood of encountering
false positives, we employ commonly-used statistical techniques. The first approach that
we use is cross-validation. We partition the primary dataset n times into training and
validation sets, run Algorithm 5 on each training set, and confirm the reported proxy uses
on the corresponding validation set. We only accept reported uses that appear at least t
times as valid.

109

Algorithm 6 Witness-driven repair.
Require: association (d), influence (ι), utility (v) measures, oracle (O)
procedure Repair(p,X, Z, ε, δ)

P ← {d ∈ ProxyDetect(p,X, Z, ε, δ) : not O(d)}
if P 6= ∅ then

(p1, p2)← element of P
p′ ← ProxyRepair(p, (p1, p2),X, Z, ε, δ)
return Repair(p′,X, Z, ε, δ)

else
return p

end if
end procedure

The second approach uses bootstrap testing to compute a p-value for each estimate
d̂(p1(X), Z), and applying Bonferroni correction [42] to account for the number of simul-
taneous hypothesis tests. Specifically, the bootstrap test that we apply takes n samples of
(X, Z), [(X̂i, Ẑi)]1≤i≤n, and permutes each X̂i, Ẑi to account for the null hypothesis that X
and Z are independent. We then estimate the p-value by computing:

p =
1

n

∑
1≤i≤n

1(d(X̂i, Ẑi) < d(Jp1K(X), Z))

After correction, we can bound the false positive discovery rate by only accepting instances
that yield p ≤ α, for sufficiently small α. We note, however, that this approach is only
correct when the association strength ε = 1, as the null hypothesis in this test assumes
that Jp1K is independent of Z. To use this approach in general, we would need to sample
[(X̂i, Ẑi)]1≤i≤n under the assumption that d(X̂i, Ẑi) ≥ ε. We leave this detail to future
work.

A.2 Algorithms for Repair
We now provide a formal description of the repair algorithms informally described in the
paper. Algorithm 6, and 7 correspond to 3, and 4 respectively.

A.2.1 Optimal constant selection

As constant terms cannot be examples of (ε, δ)-Proxy Use, there is freedom in their selec-
tions as replacements for implicated sub-programs. In Algorithm 7 we pick the replacement
that optimizes some measure of utility of the patched program. If the given program was
constructed as a classifier, we define utility as the patched program’s prediction accuracy
on the data set using 0-1 loss. Similarly, if the program were a regression model, v would
correspond to mean-squared error.

110

Algorithm 7 Local Repair.
Require: association (d), influence (ι), utility (v) measures
1: procedure ProxyRepair(p, (p1, p2),X, Z, ε, δ)
2: R← {}
3: for each decomp. (p′1, p

′
2) w/ p′1 local to p1 in p2 do

4: r∗ ← arg maxr v ([u/r]p′2)
5: (p′′1, p

′′
2)← (p1, p2) with r∗ substituted for p′1

6: if ι(p′′1, p′′2) ≤ δ ∨ d(Jp′′1K(X), Z) ≤ ε then
7: p∗ ← [u/r∗]p′2
8: R← R ∪ {p∗}
9: end if
10: end for
11: return arg maxp∗∈R v (p∗)
12: end procedure

If the program computes a continuous convex function, as in the case of most commonly-
used regression models, then off-the-shelf convex optimization procedures can be used in
this step. However, because we do not place restrictions on the functions computed by
programs submitted for repair, the objective function might not satisfy the conditions
necessary for efficient optimization. In these cases, it might be necessary to develop a
specialized procedure for the model class. Below we describe such a procedure for the case
of decision trees.

Decision trees Decision trees are typically used for classification of instances into a
small number of classes C. For these models, the only replacement constants that will
provide reasonable accuracy are those that belong to C, so in the worst case, the selection
procedure must only consider a small finite set of candidates. However, it is possible to
calculate the optimal constant with a single pass through the dataset.

Given a decomposition (p1, p2) of p, let φ be the weakest formula over p’s variables such
that ∀x.p1(x) = p(x). φ corresponds to the conjoined conditions on the path in p prefixing
p1. We can then define the objective function:

v(r) =
∑
x∈X

1(φ(x)→ xc = r)

This objective is minimized when r matches the greatest number of class labels for samples
that pass through p1. This minimizes classification error over X, and is easily computed
by taking the class-label mode of training samples that satisfy φ.
Example 8. Consider the tree in Figure A.1, and assume that x1 and x2 are distributed
according to N (1

2
, 1), and x3 = x1 +x2. For simplicity, assume that the class label for each

instance is given exactly by the tree. Then given the decomposition:

p1 = λx.ite(x3 ≤ 0, 0, 1)

p2 = λx, u.ite(x1 ≤ 1/2, 0, ite(x2 ≤ 1, u, 0))

111

2−22−42−62−82−102−122−14

δ / influence [probability]

20

2−2

2−4

2−6

2−8

2−10

ε
/

as
so

ci
at

io
n

(n
m

i)
relationship ≤ -0.573-0.026 * relationshiprelationship ≤ -0.573493

relationship ≤ -0.573493

relationship ≤ -0.573493

logistic

random-forest

decision-tree

Figure A.2: The association with marital_status and influence of the sub-expressions of
three similarly-sized models trained on the UCI Adult dataset (normalized): random forest
(×), decision tree (+), and logistic regression (?). The arrows denote the sub-expression
relationship among the expressions. Pointed out are several significant expressions that use
the relationship feature. Note that in the random forest, the same associated expression
appears in all three of the trees in that model.

we need to find an optimal constant to replace the subtree rooted at x3. In this case,
φ

def
= x1 >

1
2
∧ x2 ≤ 1, so we select Xφ = {x ∈ X|x1 >

1
2
∧ x2 ≤ 1} and take the mode of

the empirical sample [p(x)]x∈Xφ
.

112

Bibliography

[1] E.G. Griggs v. Duke Power Co., 401 U.S. 424, 91 S. Ct. 849, 28 L. Ed. 2d 158 (1977).
2

[2] National longitudinal surveys. http://www.bls.gov/nls/. 2, 2.6, 3.4.1
[3] Title VII of the civil rights act of 1964, 1964. URL https://www.eeoc.gov/laws/

statutes/titlevii.cfm. Accessed Aug 13, 2016. 1.3, 6.2
[4] Equal Credit Opportunity Act (ECOA), 1974. URL https://www.justice.gov/

crt/equal-credit-opportunity-act-3. Accessed Feb 24, 2017. 1, 1.1, 1.2.2, 1.3,
2, 2.6.6

[5] Indonesia - national contraceptive prevalence survey 1987, 2013. URL http://
microdata.worldbank.org/index.php/catalog/1398/study-description. (Ac-
cessed Nov 11, 2016). 6.6.2

[6] AAO. American Academy of Ophthalmology: International clinical Diabetic
Retinopathy disease severity scale. http://www.icoph.org, 2002. 5.2.3

[7] Philip Adler, Casey Falk, Sorelle A. Friedler, Tionney Nix, Gabriel Rybeck, Carlos
Scheidegger, Brandon Smith, and Suresh Venkatasubramanian. Auditing black-box
models for indirect influence. Knowledge and Information Systems, 54(1):95–122,
Jan 2018. ISSN 0219-3116. doi: 10.1007/s10115-017-1116-3. 2.8, 3, 3.1.2

[8] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias:
There’s software used across the country to predict future criminals. and itâĂŹs
biased against blacks. ProPublica, May 2016. URL https://www.propublica.org/
article/machine-bias-risk-assessments-in-criminal-sentencing. 1, 3, 6.2

[9] R. J. Aumann and L. S. Shapley. Values of Non-Atomic Games. Princeton University
Press, 1974. 4.3

[10] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-
Robert Müller, and Wojciech Samek. On pixel-wise explanations for non-linear clas-
sifier decisions by layer-wise relevance propagation. PLoS ONE, 10(7):e0130140, 07
2015. doi: 10.1371/journal.pone.0130140. 4.3, 5, 5.5, 5.5, 5.2

[11] Y. Bachrach, E. Markakis, E. Resnick, A.D. Procaccia, J.S. Rosenschein, and
A. Saberi. Approximating power indices: theoretical and empirical analysis. Au-
tonomous Agents and Multi-Agent Systems, 20(2):105–122, 2010. 2.4.1

[12] Paul Barford, Igor Canadi, Darja Krushevskaja, Qiang Ma, and S. Muthukrishnan.

113

http://www.bls.gov/nls/
https://www.eeoc.gov/laws/statutes/titlevii.cfm
https://www.eeoc.gov/laws/statutes/titlevii.cfm
https://www.justice.gov/crt/equal-credit-opportunity-act-3
https://www.justice.gov/crt/equal-credit-opportunity-act-3
http://microdata.worldbank.org/index.php/catalog/1398/study-description
http://microdata.worldbank.org/index.php/catalog/1398/study-description
http://www.icoph.org/dynamic/attachments/resources/diabetic-retinopathy-detail.pdf
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Adscape: Harvesting and analyzing online display ads. In Proceedings of the 23rd
International Conference on World Wide Web, pages 597–608, Republic and Canton
of Geneva, Switzerland, 2014. International World Wide Web Conferences Steering
Committee. ISBN 978-1-4503-2744-2. URL http://dx.doi.org/10.1145/2566486.
2567992. 2.8

[13] S. Barocas and H. Nissenbaum. Big data’s end run around procedural privacy pro-
tections. Communications of the ACM, 57(11):31–33, October 2014. 1, 2.7

[14] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk mini-
mization: Efficient algorithms and tight error bounds. In 55th IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA,
October 18-21, 2014, pages 464–473, 2014. 6.8.2

[15] Richard Berk and Justin Bleich. Forecasts of violence to inform sentencing decisions.
Journal of Quantitative Criminology, 30(1):79–96, 2014. ISSN 1573-7799. 6.6

[16] Richard A. Berk, Susan B. Sorenson, and Geoffrey Barnes. Forecasting domestic
violence: A machine learning approach to help inform arraignment decisions. Journal
of Empirical Legal Studies, 13(1):94–115, 2016. ISSN 1740-1461. 6.6

[17] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
2.6

[18] P. Bork, L.J. Jensen, C. von Mering, A.K. Ramani, I. Lee, and E.M. Marcott. Protein
interaction networks from yeast to human. Current Opinions in Structural Biology,
14(3):292–299, 2004. 2.8

[19] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, October 2001. ISSN 0885-
6125. 2.8, 3, 3.1.2, 6.6

[20] Warren Burger. Griggs v. duke power company. Opinion of the United States
Supreme Court, March 1971. 1.2.2, 1

[21] Nanette Byrnes. An ai-fueled credit formula might help you get a
loan. ProPublica, 2017. URL https://www.technologyreview.com/s/603604/
an-ai-fueled-credit-formula-might-help-you-get-a-loan/. 3

[22] Toon Calders and Sicco Verwer. Three naive bayes approaches for discrimination-
free classification. Data Mining and Knowledge Discovery, 21(2):277–292, 2010. ISSN
1384-5810. 1.3, 2.7, 6.8.2

[23] Aleksandar Chakarov, Aditya V. Nori, Sriram K. Rajamani, Shayak Sen, and Deepak
Vijaykeerthy. Debugging machine learning tasks. CoRR, abs/1603.07292, 2016. 7.2

[24] G. Chalkiadakis, E. Elkind, and M. Wooldridge. Computational Aspects of Cooper-
ative Game Theory. Morgan and Claypool, 2011. 2.4.1

[25] Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Differentially pri-
vate empirical risk minimization. Journal of Machine Learning Research, 12:1069–
1109, 2011. 6.8.2

[26] David Maxwell Chickering and David Heckerman. A decision theoretic approach to
targeted advertising. In Proceedings of the Sixteenth Conference on Uncertainty in

114

http://dx.doi.org/10.1145/2566486.2567992
http://dx.doi.org/10.1145/2566486.2567992
https://www.technologyreview.com/s/603604/an-ai-fueled-credit-formula-might-help-you-get-a-loan/
https://www.technologyreview.com/s/603604/an-ai-fueled-credit-formula-might-help-you-get-a-loan/

Artificial Intelligence, UAI’00, pages 82–88, San Francisco, CA, USA, 2000. Morgan
Kaufmann Publishers Inc. ISBN 1-55860-709-9. 6.6

[27] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn., 20
(3):273–297, September 1995. ISSN 0885-6125. 6.6

[28] Paulo Cortez and Alice Maria Goncalves Silva. Using data mining to predict sec-
ondary school student performance. Technical Report, Department of Computer
Science, University of Camerino, 2008. 6.6.2

[29] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley
& Sons, 2012. 2.8, 6.3.4

[30] T. Dalenius. Towards a methodology for statistical disclosure control. Statistik
Tidskrift, 15:429–444, 1977. 1.3

[31] A. Datta, A. Datta, A.D. Procaccia, and Y. Zick. Influence in classification via
cooperative game theory. In Proceedings of the 24th International Joint Conference
on Artificial Intelligence (IJCAI 2015), pages 511–517, 2015. 2.8

[32] Amit Datta, Michael Carl Tschantz, and Anupam Datta. Automated experiments
on ad privacy settings: A tale of opacity, choice, and discrimination. In Proceedings
on Privacy Enhancing Technologies (PoPETs). De Gruyter Open, 2015. 1, 1.3, 1.3,
2.7, 2.8, 6.3.1, 6.3.1, 6.8.1, 6.8.2

[33] Amit Datta, Michael Carl Tschantz, and Anupam Datta. Automated experiments
on ad privacy settings. PoPETs, 2015(1):92–112, 2015. 1.3

[34] Anupam Datta, Shayak Sen, and Yair Zick. Algorithmic transparency via quan-
titative input influence: Theory and experiments with learning systems. 3, 3.1.2,
6.3.4

[35] Anupam Datta, Matthew Fredrikson, Gihyuk Ko, Piotr Mardziel, and Shayak Sen.
Use privacy in data-driven systems: Theory and experiments with machine learnt
programs. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’17, pages 1193–1210, New York, NY, USA, 2017.
ACM. ISBN 978-1-4503-4946-8. 6

[36] Anupam Datta, Matthew Fredrikson, Gihyuk Ko, Piotr Mardziel, and Shayak Sen.
Proxy non-discrimination in data-driven systems. Technical report, arXiv, July 2017.
URL http://arxiv.org/abs/1707.08120. 3

[37] Wendy Davis. Ftc’s julie brill tells ad tech companies to improve privacy protec-
tions, 2016. URL http://www.mediapost.com/publications/article/259210/
ftcs-julie-brill-tells-ad-tech-companies-to-impro.html. Accessed Nov 11,
2016. 1.2.2

[38] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure
information flow. Commun. ACM, 20(7):504–513, 1977. 1.1, 1.3

[39] Pam Dixon and Robert Gellman. The scoring of america: How se-
cret consumer scores threaten your privacy and your future, 2014. URL
http://www.worldprivacyforum.org/wp-content/uploads/2014/04/WPF_

115

http://arxiv.org/abs/1707.08120
http://www.mediapost.com/publications/article/259210/ftcs-julie-brill-tells-ad-tech-companies-to-impro.html
http://www.mediapost.com/publications/article/259210/ftcs-julie-brill-tells-ad-tech-companies-to-impro.html
http://www.worldprivacyforum.org/wp-content/uploads/2014/04/WPF_Scoring_of_America_April2014_fs.pdf
http://www.worldprivacyforum.org/wp-content/uploads/2014/04/WPF_Scoring_of_America_April2014_fs.pdf
http://www.worldprivacyforum.org/wp-content/uploads/2014/04/WPF_Scoring_of_America_April2014_fs.pdf

Scoring_of_America_April2014_fs.pdf. Accessed: 2016-11-05. 6.6.2
[40] Flávio du Pin Calmon and Nadia Fawaz. Privacy against statistical inference. In

Communication, Control, and Computing (Allerton), 2012 50th Annual Allerton
Conference on, pages 1401–1408, October 2012. URL http://ieeexplore.ieee.
org/abstract/document/6483382/. 1.3

[41] Charles Duhigg. How companies learn your secrets, 2012. URL http://www.
nytimes.com/2012/02/19/magazine/shopping-habits.html. (Accessed Aug 13,
2016). 1.2.2, 6

[42] Olive Jean Dunn. Estimation of the medians for dependent variables. 30(1):192–197,
03 1959. A.1.3

[43] Cynthia Dwork. Differential privacy. In Michele Bugliesi, Bart Preneel, Vladimiro
Sassone, and Ingo Wegener, editors, Automata, Languages and Programming, 33rd
International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings,
Part II, volume 4052 of Lecture Notes in Computer Science, pages 1–12. Springer,
2006. ISBN 3-540-35907-9. URL http://dx.doi.org/10.1007/11787006_1. 1.2.2,
6.8.1

[44] Cynthia Dwork, Frank Mcsherry, Kobbi Nissim, and Adam Smith. Calibrating noise
to sensitivity in private data analysis. In Theory of Cryptography Conference, pages
265–284. Springer, 2006. 1.3, 2.5, 3, 6.8.1, 6.8.2

[45] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel.
Fairness through awareness. In Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ITCS ’12, pages 214–226, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1115-1. URL http://doi.acm.org/10.1145/2090236.
2090255. 1.2.2, 1.3, 2.7, 6.1, 6.8.2

[46] European Commission. General data protection regulation (GDPR). Regulation
(EU) 2016/679, L119, May 2016. 1, 1.3, 3

[47] Executive Office of the President. Big data: A report on algorithmic systems, oppor-
tunity, and civil rights. Posted at https://www.whitehouse.gov/sites/default/
files/microsites/ostp/2016_0504_data_discrimination.pdf, May 2016. Ac-
cessed Oct. 17, 2016. 1

[48] Federal Committee on Statistical Methodology. Statistical disclosure limitation
methodology. Statistical Policy Working Paper 22, 2005. 1.3

[49] Federal Reserve. Consumer Compliance Handbook, chapter Federal Fair Lending
Regulations and Statutes: Overview. Federal Reserve, 2016. 6.2

[50] Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and Suresh
Venkatasubramanian. Certifying and removing disparate impact. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’15, pages 259–268, New York, NY, USA, 2015. ACM. ISBN
978-1-4503-3664-2. URL http://doi.acm.org/10.1145/2783258.2783311. 1.2.2,
2.7, 6.3.1, 6.3.1, 6.8.2, 6.8.2

116

http://www.worldprivacyforum.org/wp-content/uploads/2014/04/WPF_Scoring_of_America_April2014_fs.pdf
http://www.worldprivacyforum.org/wp-content/uploads/2014/04/WPF_Scoring_of_America_April2014_fs.pdf
http://www.worldprivacyforum.org/wp-content/uploads/2014/04/WPF_Scoring_of_America_April2014_fs.pdf
http://ieeexplore.ieee.org/abstract/document/6483382/
http://ieeexplore.ieee.org/abstract/document/6483382/
http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html
http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html
http://dx.doi.org/10.1007/11787006_1
http://doi.acm.org/10.1145/2090236.2090255
http://doi.acm.org/10.1145/2090236.2090255
https://www.whitehouse.gov/sites/default/files/microsites/ostp/2016_0504_data_discrimination.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/2016_0504_data_discrimination.pdf
http://doi.acm.org/10.1145/2783258.2783311

[51] Nicole Freeling. How big data is helping students graduate on
time, 2016. URL https://www.universityofcalifornia.edu/news/
how-big-data-helping-students-graduate-time. (Accessed Nov 11, 2016).
6.6.2

[52] Edward W. Frees, Richard A. Derrig, and Glenn Meyers. Predictive Modeling Appli-
cations in Actuarial Science. Cambridge University Press, 2014. 6.6

[53] Deepak Garg, Limin Jia, and Anupam Datta. Policy auditing over incomplete logs:
theory, implementation and applications. In Proceedings of The ACM Conference on
Computer and Communications Security (CCS), 2011. 6.1

[54] Adrian Gepp, J. Holton Wilson, Kuldeep Kumar, and Sukanto Bhattacharya. A
comparative analysis of decision trees vis-a-vis other computational data mining
techniques in automotive insurance fraud detection. Journal of Data Science, 10
(3):537–561, 2012. 6.6

[55] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hi-
erarchies for accurate object detection and semantic segmentation. In Proceedings
of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
’14, pages 580–587, 2014. ISBN 978-1-4799-5118-5. 5, 5.5

[56] Google. Privacy policy. Accessed Nov. 21, 2014. 6
[57] Saikat Guha, Bin Cheng, and Paul Francis. Challenges in measuring online adver-

tising systems. In Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement, pages 81–87, New York, NY, USA, 2010. ISBN 978-1-4503-0483-2.
URL http://doi.acm.org/10.1145/1879141.1879152. 2.8

[58] V Gulshan, L Peng, M Coram, and et al. Development and validation of a deep learn-
ing algorithm for detection of diabetic retinopathy in retinal fundus photographs.
JAMA, 316(22):2402–2410, 2016. 5.2.3

[59] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection.
J. Mach. Learn. Res., 3:1157–1182, March 2003. ISSN 1532-4435. URL http://dl.
acm.org/citation.cfm?id=944919.944968. 2.8

[60] Robert Hare. Manual For the Revised Psychopathy Checklist. Multi-Health Systems,
2003. 6.6

[61] Benjamin Harold. The future of big data and analytics in k-12 education, 1 2016.
6.6.2

[62] Xi He, Ashwin Machanavajjhala, and Bolin Ding. Blowfish privacy: Tuning privacy-
utility trade-offs using policies. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD 2014). ACM, June 2014. URL http:
//research.microsoft.com/apps/pubs/default.aspx?id=226369. 1.3

[63] Yangbo He and Zhi Geng. Active learning of causal networks with intervention
experiments and optimal designs. 9:2523–2547, 11 2008. 3

[64] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, March 1963. URL

117

https://www.universityofcalifornia.edu/news/how-big-data-helping-students-graduate-time
https://www.universityofcalifornia.edu/news/how-big-data-helping-students-graduate-time
http://doi.acm.org/10.1145/1879141.1879152
http://dl.acm.org/citation.cfm?id=944919.944968
http://dl.acm.org/citation.cfm?id=944919.944968
http://research.microsoft.com/apps/pubs/default.aspx?id=226369
http://research.microsoft.com/apps/pubs/default.aspx?id=226369

http://www.jstor.org/stable/2282952. 2.4.2, 6.7.2
[65] Antti Hyttinen, Frederick Eberhardt, and Patrik O. Hoyer. Experiment selection for

causal discovery. Journal of Machine Learning Research, 14:3041–3071, 2013. URL
http://jmlr.org/papers/v14/hyttinen13a.html. 3

[66] Ideal Inc. How ai can stop unconscious bias in recruiting. https://ideal.com/
unconscious-bias/, 2017. Accessed Nov. 22, 2017. 3

[67] D. Janzing, D. Balduzzi, M. Grosse-Wentrup, and B. Schölkopf. Quantifying causal
influences. Ann. Statist., 41(5):2324–2358, 10 2013. 2.8

[68] Zubin Jelveh and Michael Luca. Towards diagnosing accuracy loss in discrimination-
aware classification: An application to predictive policing. Fairness, Accountability
and Transparency in Machine Learning, 26(1):137–141, 2014. 2.6

[69] Kaggle. Diabetic Retinopathy Detection. https://www.kaggle.com/c/
diabetic-retinopathy-detection, 2015. 5.2.3

[70] T. Kamishima, S. Akaho, and J. Sakuma. Fairness-aware learning through regular-
ization approach. In Proceedings of the 2011 IEEE 11th International Conference on
Data Mining Workshops (ICDMW 2011), pages 643–650, 2011. 1.2.2, 1.3, 2.7, 6.8.2

[71] S.P. Kasiviswanathan, H.K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith. What
can we learn privately? In Proceedings of the 49th IEEE Symposion on Foundations
of Computer Science (FOCS 2008), pages 531–540, Oct 2008. 2, 2.5, 5

[72] A. Keinan, B. Sandbank, C.C. Hilgetag, I. Meilijson, and E. Ruppin. Fair attribution
of functional contribution in artificial and biological networks. Neural Computation,
16(9):1887–1915, September 2004. 2.8

[73] Anthony Kennedy. Texas department of housing & community affairs v. the inclusive
communities project, inc. Opinion of the United States Supreme Court, June 2015.
6.2

[74] Niki Kilbertus, Mateo Rojas-Carulla, Giambattista Parascandolo, Moritz Hardt, Do-
minik Janzing, and Bernhard Schölkopf. Avoiding discrimination through causal
reasoning. arXiv preprint arXiv:1706.02744, 2017. 3

[75] Will Knight. The Dark Secret at the Heart of AI. MIT Technology review, Apr 2017.
5

[76] Gihyuk Ko, Piotr Mardziel, Shayak Sen, Anupam Datta, and Matt Fredrikson. Model
checking white-box machine learning applications for fairness properties. Unpub-
lished Manuscript. 1.2.2

[77] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence
functions. 70:1885–1894, 06–11 Aug 2017. 7.2

[78] Yann LeCun, LÃľon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. In Proceedings of the IEEE, volume 86,
pages 2278–2324, 1998. 5.2, 5.2.1

[79] Mathias Lécuyer, Guillaume Ducoffe, Francis Lan, Andrei Papancea, Theofilos Pet-

118

http://www.jstor.org/stable/2282952
http://jmlr.org/papers/v14/hyttinen13a.html
https://ideal.com/unconscious-bias/
https://ideal.com/unconscious-bias/
https://www.kaggle.com/c/diabetic-retinopathy-detection
https://www.kaggle.com/c/diabetic-retinopathy-detection

sios, Riley Spahn, Augustin Chaintreau, and Roxana Geambasu. Xray: Enhanc-
ing the web’s transparency with differential correlation. In Proceedings of the 23rd
USENIX Conference on Security Symposium, SEC’14, pages 49–64, Berkeley, CA,
USA, 2014. USENIX Association. ISBN 978-1-931971-15-7. 2.8, 6.8.1

[80] Mathias Lecuyer, Riley Spahn, Yannis Spiliopolous, Augustin Chaintreau, Roxana
Geambasu, and Daniel Hsu. Sunlight: Fine-grained targeting detection at scale
with statistical confidence. In Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security, CCS ’15, pages 554–566, New York, NY,
USA, 2015. ACM. ISBN 978-1-4503-3832-5. 2.8, 6.3.1, 6.3.1, 6.8.1, 6.8.2

[81] Lending Club. Lending club loan data. https://www.kaggle.com/wendykan/
lending-club-loan-data, 2016. 2, 2.6, 3.4.1

[82] Benjamin Letham, Cynthia Rudin, Tyler H. McCormick, and David Madigan. In-
terpretable classifiers using rules and bayesian analysis: Building a better stroke
prediction model. Ann. Appl. Stat., 9(3):1350–1371, 09 2015. 2.8, 6.6

[83] Ninghui Li, Wahbeh H. Qardaji, and Dong Su. Provably private data anonymization:
Or, k-anonymity meets differential privacy. CoRR, abs/1101.2604, 2011. 2.5, 5

[84] M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.
uci.edu/ml. 2, 2.3, 2.6

[85] M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.
uci.edu/ml. 3.4.1

[86] R. Lindelauf, H. Hamers, and B. Husslage. Cooperative game theoretic centrality
analysis of terrorist networks: The cases of jemaah islamiyah and al qaeda. European
Journal of Operational Research, 229(1):230–238, 2013. 2.8

[87] Richard J. Lipton and Kenneth W. Regan. Making public informa-
tion secret, 2016. URL https://rjlipton.wordpress.com/2016/05/20/
making-public-information-secret/. Accessed Aug 13, 2016. 1.2.2, 6.8.1

[88] Binh Thanh Luong, Salvatore Ruggieri, and Franco Turini. k-nn as an implementa-
tion of situation testing for discrimination discovery and prevention. 6.8.2

[89] Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representa-
tions by inverting them. CoRR, abs/1412.0035, 2014. URL http://arxiv.org/abs/
1412.0035. 5, 5.5

[90] S. Maleki, L. Tran-Thanh, G. Hines, T. Rahwan, and A. Rogers. Bounding the
estimation error of sampling-based shapley value approximation with/without strat-
ifying. CoRR, abs/1306.4265, 2013. 2.4.1

[91] M. Maschler, E. Solan, and S. Zamir. Game Theory. Cambridge University Press,
2013. 2.3.1

[92] T.P. Michalak, T. Rahwan, P.L. Szczepanski, O. Skibski, R. Narayanam, M.J.
Wooldridge, and N.R. Jennings. Computational analysis of connectivity games with
applications to the investigation of terrorist networks. In Proceedings of the 23rd In-
ternational Joint Conference on Artificial Intelligence (IJCAI 2013), pages 293–301,

119

https://www.kaggle.com/wendykan/lending-club-loan-data
https://www.kaggle.com/wendykan/lending-club-loan-data
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://rjlipton.wordpress.com/2016/05/20/making-public-information-secret/
https://rjlipton.wordpress.com/2016/05/20/making-public-information-secret/
http://arxiv.org/abs/1412.0035
http://arxiv.org/abs/1412.0035

2013. 2.8
[93] Microsoft. Microsoft privacy statement, September 2016. URL https://privacy.

microsoft.com/en-us/privacystatement. 6
[94] Sumaria Mohan-Neill, Indira Neill Hoch, and Meng li. An analysis of us household

socioeconomic profiles based on marital status and gender. Journal of Economics
and Economic Education Research, (3), 9 2014. 6.6.1

[95] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized
label model. ACM Trans. Softw. Eng. Methodol., 9(4):410–442, 2000. 1.3

[96] Anh Mai Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff Clune.
Synthesizing the preferred inputs for neurons in neural networks via deep generator
networks. CoRR, abs/1605.09304, 2016. URL http://arxiv.org/abs/1605.09304.
5, 5.5

[97] Helen Nissenbaum. Privacy in Context: Technology, Policy, and the Integrity of
Social Life. Stanford Law Books. Stanford University Press, 2009. 6.1

[98] Northpointe. Practitioners guide to COMPAS. Technical report, Northpointe,
Inc., August 2012. URL http://www.northpointeinc.com/files/technical_
documents/FieldGuide2_081412.pdf. 1

[99] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, New
York, NY, USA, 2014. ISBN 1107038324, 9781107038325. 2.3.1

[100] The President’s Council of Advisors on Science and Technology. Big data and privacy:
A technological perspective. Technical report, Executive Office of the President, May
2014. 1.2.2

[101] Office for Civil Rights. Summary of the HIPAA privacy rule. OCR Privacy Brief,
U.S. Department of Health and Human Services, 2003. 6, 3

[102] John Paparrizos, Ryen W. White, and Eric Horvitz. Screening for pancreatic adeno-
carcinoma using signals from web search logs: Feasibility study and results. Journal
of Oncology Practice, 12(8):737–744, 2016. doi: 10.1200/JOP.2015.010504. URL
http://dx.doi.org/10.1200/JOP.2015.010504. PMID: 27271506. 6.9

[103] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The
limitations of deep learning in adversarial settings. In 2016 IEEE European Sympo-
sium on Security and Privacy (EuroS P), 2016. 5.2.1

[104] Parliament of Canada. Personal information protection and electronic documents
act (PIPEDA). S.C. 2000, c. 5, 2000. 1, 1.3, 3

[105] Dino Pedreshi, Salvatore Ruggieri, and Franco Turini. Discrimination-aware data
mining. In Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’08, pages 560–568, New York, NY,
USA, 2008. ACM. ISBN 978-1-60558-193-4. 1.2.2

[106] J. Podesta, P. Pritzker, E.J. Moniz, J. Holdern, and J. Zients. Big data: Seizing
opportunities, preserving values. Technical report, Executive Office of the President
- the White House, May 2014. 2.7

120

https://privacy.microsoft.com/en-us/privacystatement
https://privacy.microsoft.com/en-us/privacystatement
http://arxiv.org/abs/1605.09304
http://www.northpointeinc.com/files/technical_documents/FieldGuide2_081412.pdf
http://www.northpointeinc.com/files/technical_documents/FieldGuide2_081412.pdf
http://dx.doi.org/10.1200/JOP.2015.010504

[107] François Pottier and Vincent Simonet. Information flow inference for ml. In POPL,
pages 319–330, 2002. 1.3

[108] Lewis F. Powell, Jr. Mcdonnell douglas corp. v. green. Opinion of the United States
Supreme Court, May 1973. 6.2

[109] Harry Pratt, Frans Coenen, Deborah M. Broadbent, Simon P. Harding, and Yalin
Zheng. Convolutional neural networks for diabetic retinopathy. Procedia Computer
Science, 90:200 – 205, 2016. 5.2.3

[110] A. Rényi. On measures of entropy and information. In Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contri-
butions to the Theory of Statistics, pages 547–561, Berkeley, Calif., 1961. University
of California Press. URL http://projecteuclid.org/euclid.bsmsp/1200512181.
2.8

[111] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust
you?": Explaining the predictions of any classifier. In Proceedings of the 22Nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’16, pages 1135–1144, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4232-
2. doi: 10.1145/2939672.2939778. URL http://doi.acm.org/10.1145/2939672.
2939778. 1, 3, 5, 5.5

[112] P. K. Rubenstein, I. Tolstikhin, P. Hennig, and B. Schölkopf. Probabilistic active
learning of functions in structural causal models. 2017. 3

[113] Stefan Rüping. Learning interpretable models. PhD thesis, Dortmund University of
Technology, 2006. http://d-nb.info/997491736. 2.8

[114] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015. doi:
10.1007/s11263-015-0816-y. 1.2.1, 5, 5.3.2

[115] Salman Salamatian, Amy Zhang, Flávio du Pin Calmon, Sandilya Bhamidipati, Na-
dia Fawaz, Branislav Kveton, Pedro Oliveira, and Nina Taft. Managing your private
and public data: Bringing down inference attacks against your privacy. J. Sel. Top-
ics Signal Processing, 9(7):1240–1255, 2015. URL http://dx.doi.org/10.1109/
JSTSP.2015.2442227. 1.3

[116] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K. R. MÃĳller. Evaluating
the visualization of what a deep neural network has learned. IEEE Transactions on
Neural Networks and Learning Systems, 28(11):2660–2673, Nov 2017. 5.2.1

[117] Shayak Sen, Saikat Guha, Anupam Datta, Sriram K. Rajamani, Janice Tsai, and
Jeannette M. Wing. Bootstrapping privacy compliance in big data systems. In
Proceedings of the 2014 IEEE Symposium on Security and Privacy, SP ’14, pages
327–342, Washington, DC, USA, 2014. IEEE Computer Society. ISBN 978-1-4799-
4686-0. URL http://dx.doi.org/10.1109/SP.2014.28. 6, 6.9

121

http://projecteuclid.org/euclid.bsmsp/1200512181
http://doi.acm.org/10.1145/2939672.2939778
http://doi.acm.org/10.1145/2939672.2939778
http://dx.doi.org/10.1109/JSTSP.2015.2442227
http://dx.doi.org/10.1109/JSTSP.2015.2442227
http://dx.doi.org/10.1109/SP.2014.28

[118] C. E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27(3):379–423, 1948. ISSN 1538-7305. 2.8

[119] L. S. Shapley and M. Shubik. A method for evaluating the distribution of power in
a committee system. The American Political Science Review, 48(3):787–792, 1954.
2.3.1

[120] L.S. Shapley. A value for n-person games. In Contributions to the Theory of Games,
vol. 2, Annals of Mathematics Studies, no. 28, pages 307–317. Princeton University
Press, 1953. 2.3, 2.3.1

[121] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014. 1.2.1, 5, 5.3.1, 5.4, 5.5, 5.3.2

[122] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. ArXiv e-prints,
2014. 4.3, 5, 5.5, 5.5, 5.2

[123] G. Smith. Quantifying information flow using min-entropy. In Proceedings of the
8th International Conference on Quantitative Evaluation of Systems (QEST 2011),
pages 159–167, 2011. 1.3, 2.8

[124] Geoffrey Smith. Recent developments in quantitative information flow (invited tu-
torial). In Proceedings of the 2015 30th Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS), LICS ’15, pages 23–31, Washington, DC, USA, 2015.
IEEE Computer Society. ISBN 978-1-4799-8875-4. URL http://dx.doi.org/10.
1109/LICS.2015.13. 1.2.2

[125] S.E. Smith. How do search engines respond when you google âĂŸsuicideâĂŹ?,
2015. URL https://www.dailydot.com/via/germanwings-suicide-hotline/.
Accessed May 15, 2017. 6.9

[126] P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT
press, 2nd edition, 2000. 3

[127] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller.
Striving for simplicity: The all convolutional net. ICLR, 2015. 4.3, 5, 5.5, 5.5

[128] Erik Strumbelj and Igor Kononenko. An efficient explanation of individual classifica-
tions using game theory. J. Mach. Learn. Res., 11:1–18, March 2010. ISSN 1532-4435.
2.8

[129] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep
networks. ArXiv e-prints, 2017. 4.1, 4.3, 5, 5.1, 5.2.1, 5.4, 5.3.1, 5.3.2, 5.5, 5.5, 5.2

[130] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Computer Vision and Pattern Recognition (CVPR),
2015. URL http://arxiv.org/abs/1409.4842. 5.2.3

[131] Hugo Teufel III. Privacy policy guidance memorandum: The fair information prac-
tice principles: Framework for privacy policy at the Department of Homeland Se-
curity. Memorandum Number: 2008-01, December 2008. URL https://www.dhs.

122

http://dx.doi.org/10.1109/LICS.2015.13
http://dx.doi.org/10.1109/LICS.2015.13
https://www.dailydot.com/via/germanwings-suicide-hotline/
http://arxiv.org/abs/1409.4842
https://www.dhs.gov/xlibrary/assets/privacy/privacy_policyguide_2008-01.pdf
https://www.dhs.gov/xlibrary/assets/privacy/privacy_policyguide_2008-01.pdf
https://www.dhs.gov/xlibrary/assets/privacy/privacy_policyguide_2008-01.pdf

gov/xlibrary/assets/privacy/privacy_policyguide_2008-01.pdf. 1, 1.3
[132] The National Center for Fair and Open Testing. 850+ colleges and universities that

do not use sat/act scores to admit substantial numbers of students into bachelor
degree programs, 2015. URL http://www.fairtest.org/university/optional.
2.7

[133] Robert Tibshirani. Regression shrinkage and selection via the lasso: a retrospective.
Journal of the Royal Statistical Society Series B, 73(3):273–282, 2011. URL http:
//EconPapers.repec.org/RePEc:bla:jorssb:v:73:y:2011:i:3:p:273-282. 2.8

[134] Simon Tong and Daphne Koller. Active learning for structure in bayesian networks.
In Proceedings of the 17th International Joint Conference on Artificial Intelligence -
Volume 2, IJCAI’01, pages 863–869, San Francisco, CA, USA, 2001. Morgan Kauf-
mann Publishers Inc. 3

[135] Florian Tramèr, Vaggelis Atlidakis, Roxana Geambasu, Daniel J. Hsu, Jean-Pierre
Hubaux, Mathias Humbert, Ari Juels, and Huang Lin. Discovering unwarranted
associations in data-driven applications with the fairtest testing toolkit. CoRR,
abs/1510.02377, 2015. URL http://arxiv.org/abs/1510.02377. 1.2.2, 6.3.1, 6.3.1,
6.3.4, 6.8.2, 6.8.2

[136] Michael Carl Tschantz, Anupam Datta, and Jeannette M. Wing. Formalizing and
enforcing purpose restrictions in privacy policies. In Proceedings of the 2012 IEEE
Symposium on Security and Privacy, pages 176–190, Washington, DC, USA, 2012.
1.3, 6, 6.8.1, 6.9

[137] Michael Carl Tschantz, Anupam Datta, and Jeannette M. Wing. Purpose restrictions
on information use. In Proceedings of the 18th European Symposium on Research in
Computer Security (ESORICS), volume 8134 of Lecture Notes in Computer Science,
pages 610–627. Springer Berlin Heidelberg, 2013. 6

[138] Joseph Turow. The Daily You: How the New Advertising Industry Is Defining Your
Identity and Your Worth. Yale University Press, 2011. ISBN 9780300165012. 1.2.2

[139] Findings under the Personal Information Protection and Electronic Documents Act
(PIPEDA). Use of sensitive health information for targeting of google ads raises
privacy concerns, 2014. URL https://www.priv.gc.ca/cf-dc/2014/2014_001_
0114_e.asp. Accessed Aug 13, 2016. 1.2.2, 1.2.2

[140] George Washington University. Standardized test scores will be op-
tional for gw applicants, 2015. URL https://gwtoday.gwu.edu/
standardized-test-scores-will-be-optional-gw-applicants. 2.7

[141] US Consumer Finance Protection Bureau. Supporting consumer-friendly in-
novation: Announcing our first no-action letter. News Release, Septem-
ber 2017. URL https://www.consumerfinance.gov/about-us/blog/
supporting-consumer-friendly-innovation-announcing-our-first-no-action-letter/.
1

[142] U.S. Federal Goverment. Part 1607—uniform guidelines on employee selec-

123

https://www.dhs.gov/xlibrary/assets/privacy/privacy_policyguide_2008-01.pdf
https://www.dhs.gov/xlibrary/assets/privacy/privacy_policyguide_2008-01.pdf
https://www.dhs.gov/xlibrary/assets/privacy/privacy_policyguide_2008-01.pdf
http://www.fairtest.org/university/optional
http://EconPapers.repec.org/RePEc:bla:jorssb:v:73:y:2011:i:3:p:273-282
http://EconPapers.repec.org/RePEc:bla:jorssb:v:73:y:2011:i:3:p:273-282
http://arxiv.org/abs/1510.02377
https://www.priv.gc.ca/cf-dc/2014/2014_001_0114_e.asp
https://www.priv.gc.ca/cf-dc/2014/2014_001_0114_e.asp
https://gwtoday.gwu.edu/standardized-test-scores-will-be-optional-gw-applicants
https://gwtoday.gwu.edu/standardized-test-scores-will-be-optional-gw-applicants
https://www.consumerfinance.gov/about-us/blog/supporting-consumer-friendly-innovation-announcing-our-first-no-action-letter/
https://www.consumerfinance.gov/about-us/blog/supporting-consumer-friendly-innovation-announcing-our-first-no-action-letter/

tion procedures. Code of Federal Regulations, Title 29 - Labor, Vol. 4,
1978. URL https://www.gpo.gov/fdsys/pkg/CFR-2011-title29-vol4/xml/
CFR-2011-title29-vol4-part1607.xml. 6.2

[143] US Food and Drug Administration. Fda permits marketing of artificial intelligence-
based device to detect certain diabetes-related eye problems. News Release, April
2018. URL https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/
ucm604357.htm. 1

[144] Berk Ustun, Stefano TracÃă, and Cynthia Rudin. Supersparse linear integer models
for interpretable classification. ArXiv e-prints, 2013. URL http://arxiv.org/pdf/
1306.5860v1. 2.8

[145] Siva Viswanathan. Business intelligence and predictive analytics for financial ser-
vices: The untapped potential of soft information. In Digits: Center for Digital
Innovation, Technology, and Strategy “Research in Practice” Paper Series. Robert H.
Smith School of Business, University of Maryland, 2010. 6.6.1

[146] H. P. Young. Individual contribution and just compensation. In Alvin E. Roth,
editor, The Shapley Value, chapter 17, pages 267–278. Cambridge University Press,
1988. 4.3

[147] H.P. Young. Monotonic solutions of cooperative games. International Journal of
Game Theory, 14(2):65–72, 1985. 2.3.2, 1

[148] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. ECCV, 2014. 4.3, 5, 5.5, 5.5, 5.2

[149] Richard S. Zemel, Yu Wu, Kevin Swersky, Toniann Pitassi, and Cynthia Dwork.
Learning fair representations. In Proceedings of the 30th International Conference
on Machine Learning, volume 28 of JMLR Workshop and Conference Proceedings,
pages 325–333. JMLR.org, 2013. URL http://jmlr.org/proceedings/papers/
v28/zemel13.html. 1.2.2, 1.3, 2.7, 6.8.2

124

https://www.gpo.gov/fdsys/pkg/CFR-2011-title29-vol4/xml/CFR-2011-title29-vol4-part1607.xml
https://www.gpo.gov/fdsys/pkg/CFR-2011-title29-vol4/xml/CFR-2011-title29-vol4-part1607.xml
https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm604357.htm
https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm604357.htm
http://arxiv.org/pdf/1306.5860v1
http://arxiv.org/pdf/1306.5860v1
http://jmlr.org/proceedings/papers/v28/zemel13.html
http://jmlr.org/proceedings/papers/v28/zemel13.html

	1 Introduction
	1.1 Quantifying Direct Use
	1.2 Quantifying Indirect Use
	1.2.1 Explanations for CNNs
	1.2.2 Proxy Use

	1.3 Related Work

	I Converged Use
	2 Quantifying Input Influence
	2.1 Unary QII
	2.2 Influence Schema
	2.3 Set and Marginal QII
	2.3.1 Cooperative Games and Causality
	2.3.2 Axiomatic Treatment of the Shapley Value

	2.4 Estimation
	2.4.1 Computing Power Indices
	2.4.2 Estimating Q

	2.5 Private Transparency Reports
	2.6 Experimental Evaluation
	2.6.1 Comparison with Observational Measures
	2.6.2 Unary QII Measures
	2.6.3 Personalized Explanations
	2.6.4 Differential Privacy
	2.6.5 Performance
	2.6.6 Conciseness

	2.7 QII for Fairness
	2.8 Related Work
	2.9 Conclusion

	3 Supervising Input Influence
	3.1 Background
	3.1.1 Risk Minimization
	3.1.2 Counterfactual Influence

	3.2 Covariate shift in Causal Testing
	3.2.1 Counterfactual divergence
	3.2.2 Relating counterfactual and true accuracies

	3.3 Counterfactual Active Learning
	3.4 Evaluation
	3.4.1 Methodology
	3.4.2 Results

	3.5 Conclusion

	4 Distributional Influence in Continuous Models
	4.1 Distributional Input Influence
	4.2 Axiomatic Characterization
	4.3 Related Work

	II Indirect Use
	5 Explanations for CNNs
	5.1 Influence
	5.2 Identifying Influential Concepts
	5.2.1 Effectiveness of Internal Influence
	5.2.2 Validating the ``Essence'' of a Class
	5.2.3 Disappearing Experts

	5.3 Explaining Instances
	5.3.1 Focused Explanations from Slices
	5.3.2 Comparative Explanations
	5.3.3 Understanding Misclassification

	5.4 Axiomatic Justification of Measures
	5.5 Related Work

	6 Proxy Use
	6.1 Use Privacy
	6.2 Proxy Non-discrimination
	6.3 Proxy Use
	6.3.1 Examples of Proxy Use
	6.3.2 Notation and Preliminaries
	6.3.3 Definition
	6.3.4 A Quantitative Relaxation
	6.3.5 Axiomatic Basis for Definition

	6.4 Detecting Proxy Use
	6.4.1 Environment Model
	6.4.2 Analyzing Proxy Use

	6.5 Removing Proxy Use Violations
	6.6 Evaluation
	6.6.1 Example Workflow
	6.6.2 Other Case Studies
	6.6.3 Detection and Repair

	6.7 Complexity
	6.7.1 Distributions, datasets, and probability
	6.7.2 Influence and Association
	6.7.3 Decompositions
	6.7.4 Detection

	6.8 Related Work
	6.8.1 Definition
	6.8.2 Detection and Repair Models

	6.9 Discussion
	6.10 Conclusion

	7 Conclusion and Future Work
	7.1 Factors
	7.2 Systems
	7.3 Repair

	A Details for Proxy Use
	A.1 Algorithm for Detection
	A.1.1 Decomposition
	A.1.2 Translation
	A.1.3 Validity Testing

	A.2 Algorithms for Repair
	A.2.1 Optimal constant selection

	Bibliography

