
How to learn a quantum state

John Wright

CMU-CS-16-108

May 2016

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee:
Ryan O’Donnell, Chair

Anupam Gupta
Venkatesan Guruswami

Aram Harrow, MIT

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2016 John Wright

Supported by NSF grants CCF-0747250 and CCF-1116594 and also a Simons Fellowship in Theoretical
Computer Science. Some of this work was completed while visiting Columbia University.

Keywords: Quantum tomography, property testing, longest increasing subsequences,
RSK algorithm, Schur-Weyl duality

To my parents.

4

Abstract

The subject of this thesis is learning and testing properties of mixed quantum
states. A mixed state is described by a density matrix ρ ∈ Cd×d. In the standard
model, one is given access to many identical copies of the mixed state, and the
goal is to perform measurements on the copies to infer some information about ρ.
In our problem, each copy of ρ plays a role analogous to a sample drawn from
a probability distribution, and just as we aim to minimize sample complexity in
classical statistics, here we aim to minimize copy complexity. Our results are:

• We give new upper bounds for the number of copies needed to learn the ma-
trix ρ and the best low rank approximation to ρ, matching the lower bounds
of [HHJ+16]. This settles the copy complexity of the quantum tomogra-
phy problem (up to constant factors) and gives a first-of-its-kind principal-
component-analysis-style guarantee for learning approximately low rank states.
In addition, we give new upper bounds for the number of copies needed
to learn the entire spectrum of ρ and the largest eigenvalues of ρ. We
then show matching lower bounds for these latter problems for a popu-
lar spectrum learning algorithm, the empirical Young diagram algorithm
of [ARS88, KW01].

• We consider testing properties of ρ and its spectrum in the standard property
testing model [RS96, BFR+00]. We show matching upper and lower bounds
for the number of copies needed to test if ρ is the “maximally mixed state”.
This can be viewed as the quantum analogue of Paninski’s sharp bounds for
classical uniformity-testing [Pan08]. In addition, we give a new upper bound
for testing whether ρ is low rank. Finally, we give almost matching upper
and lower bounds for the problem of distinguishing whether ρ is maximally
mixed on a subspace of dimension r or of dimension r + ∆.

Our quantum results exploit a new connection to the combinatorial subject of
longest increasing subsequences (LISes) of random words and require us to prove
new results in this area. These results include:

• We give a new and optimal bound on the expected length of the LIS in a
random word. Furthermore, we show optimal bounds for the “shape” of the
Young diagram resulting from applying the “RSK algorithm” to a random
word.

• We prove a majorization theorem for the RSK algorithm applied to random
words. It states, roughly, that random words drawn from more “top-heavy”
distributions will tend to produce more “top-heavy” Young diagrams when
the RSK algorithm is applied to them.

6

Acknowledgments

I’m grateful to my advisor (and doppleganger) Ryan O’Donnell for six years of top-notch
mentorship. He has always been generous with his time, a great collaborator, and mindful
of the difficulties a clueless grad student faces when learning how to research. A couple of
years ago we jumped into the abyss of quantum computing together, and looking back it
couldn’t have gone better. Effortlessly cool, a brilliant mind, and a good taste in blogs too:
what more could you ask from an advisor?

As a grad student, I spent a pair of wonderful summers interning outside of Pittsburgh.
I’d like to thank Madhur Tulsiani for hosting me when I was a summer intern in Chicago
and Rocco Servedio for hosting me when I was a summer casual in New York (�) (and
for reading Don Quixote out loud during our meetings). In addition, I’d like to thank my
thesis committee, Anupam Gupta, Venkatesan Guruswami, and Aram Harrow, for their
time and many great suggestions. Finally, I’d like to thank my coauthors Per Austrin,
Boaz Barak, Johan H̊astad, Sanxia Huang, Akshay Krishnamurthy, Euiwoong Lee, Rajsekar
Manokaran, Ankur Moitra, Ryan O’Donnell, Prasad Raghavendra, Oded Regev, Melanie
Schmidt, Rocco Servedio, David Steurer, Xiaorui Sun, Li-Yang Tan, Luca Trevisan, Madhur
Tulsiani, Aravindan Vijayaraghavan, Andrew Wan, David Witmer, Chenggang Wu, Yu Zhao,
and Yuan Zhou.

Carnegie Mellon University has a fine group of administrative staff who make grad school
an all-around more enjoyable experience. Among them, I’d like to single out the all-seeing
and all-powerful Deb Cavlovich, who has gone to bat for me more times than I can count,
Catherine Copetas, who turned out to be right about Madama Butterfly, and Angie Miller,
who has been quite helpful lately with the Pittsburgh public transport system.

My six years at CMU have been the best of my life, and for that I have my friends to
thank. There are too many to list, so let me instead list some of my favorite memories:
the big ones were our spring break in Puerto Rico, the canoeing trip in Quetico, and the
roadtrip to Cleveland. I’ll always remember all of our ping pong games, lunch conversations,
kayaking days, Avalon games, and karaoke nights. A great group of people!

7

8

Contents

1 Introduction 13
1.1 Quantum states . 15
1.2 A quantum primer . 16

1.2.1 Quantum measurements . 18
1.3 Classical distribution learning and testing 21

1.3.1 Distribution learning . 22
1.3.2 Distribution testing . 24

1.4 Quantum problems and our results . 26
1.4.1 Quantum state learning . 27
1.4.2 Quantum state testing . 31

1.5 Our methodology . 34
1.6 Outline . 41

2 Representation theory 43
2.1 Introduction to representation theory . 44

2.1.1 Decomposing representations . 45
2.1.2 The regular representation . 48
2.1.3 Characters . 49
2.1.4 Branching rules . 51

2.2 Partitions and Young diagrams . 52
2.2.1 Young diagrams . 52
2.2.2 Young tableaus . 55

2.3 The irreducible representations of the symmetric group 56
2.3.1 James submodule theorem . 57
2.3.2 Young’s orthogonal basis . 59

2.4 The irreducible representations of the unitary and general linear groups . . . 60
2.4.1 Symmetric polynomials . 61
2.4.2 The Gelfand-Tsetlin basis . 63

2.5 Schur-Weyl duality . 64
2.6 Quantum algorithms from representation theory 66

3 Longest increasing subsequences and the RSK algorithm 69
3.1 Patience sorting . 70
3.2 The Robinson-Schensted-Knuth algorithm 72
3.3 Random words and permutations . 76

9

3.4 The Schur-Weyl growth process . 77

3.5 Longest increasing subsequences of random permutations 79

3.6 RSK of random permutations . 81

3.6.1 The bulk of the limit shape . 82

3.6.2 The edge of the limit shape . 82

3.7 RSK of random words . 83

3.7.1 Convergence to the GUE . 85

3.7.2 Schur-Weyl for uniform distribution 88

3.8 Polynomial algebras . 90

3.8.1 Working with the p]µ polynomials . 93

4 Spectrum estimation 97

4.1 Spectrum estimation . 98

4.2 Truncated spectrum estimation . 99

4.2.1 Proof of Lemma 4.2.1 . 100

4.3 The lower bound . 102

4.3.1 The EYD lower bound (continued) 105

5 Quantum tomography 113

5.1 Tomography with unentangled measurements 114

5.2 The pretty good measurement . 116

5.3 Keyl’s algorithm . 118

5.3.1 Integration formulas . 119

5.3.2 Proof of Theorem 5.0.1 . 122

5.4 Principal component analysis . 122

5.5 A lower bound . 124

6 A quantum Paninski theorem 127

6.1 The upper bound . 127

6.2 The lower bound: overview . 129

6.3 Proof of Theorem 6.2.3 . 130

6.4 A formula for sµ(+1,−1,+1,−1, . . .) . 135

6.5 Wrapping up the lower bound . 138

7 Hardness of distinguishing uniform distributions 139

7.1 The upper bound . 139

7.2 The lower bound . 140

7.2.1 Initial approximations . 140

7.2.2 Passing to the p] polynomials . 143

7.2.3 Showing the “main term” is small: some intuition 144

7.2.4 Proof that the “main term” is small 145

7.2.5 Bounding the “error term” . 146

7.2.6 Combining the bounds . 148

7.3 Extension to ∆ > 1 . 148

10

8 Quantum rank testing 153
8.1 Testers with one-sided error . 153
8.2 A lower bound for testers with two-sided error 156

9 Majorization for the RSK algorithm 157
9.1 Substring-LIS-dominance: RSK and Dyck paths 158
9.2 A bijection on Dyck paths . 161

10 Open problems 167
10.1 Identity testing . 167
10.2 Spectrum estimation . 167
10.3 Graph isomorphism . 167
10.4 Miscellaneous . 168

11

12

Chapter 1

Introduction

The subject of this thesis is how to learn a quantum state. A quantum state is described
by a d × d matrix ρ which characterizes the state’s behavior under quantum operations.
In this thesis, we will give algorithms for learning the matrix ρ—thereby solving the so-
called quantum tomography problem—and for learning specific properties of ρ, such as its
spectrum. Algorithms for these problems are of enormous practical importance for real-world
verification of current-day quantum technologies. In addition, these algorithms are of future
theoretical importance, as they play key roles in quantum protocols such as entanglement
detection [HE02, GT09].

The two scenarios we will typically keep in mind are: (i) you are given a quantum
device promised to output a quantum state with a particular matrix ρ, and you’d like to
learn the matrix that it actually outputs to verify that it works properly; (ii) you have
performed a quantum experiment which you have hypothesized will output a quantum state
with a particular matrix ρ, and to test your experimental hypothesis you’d like to learn
the state. Quantum mechanics provides only one way for classical observers to learn about
quantum states: quantum measurements, in which one “observes” the quantum state and
receives a random “outcome” depending on ρ. Unfortunately, quantum measurements are
(i) destructive, meaning they render the state useless for future measurements (this is the
“collapse of the wave function”), and they are (ii) low-information, meaning that they reveal
little about the matrix ρ. Either of these in isolation would not be particularly troubling,
but in combination they appear to render state learning impossible.

The standard fix is to repeatedly run the device (or experiment) to produce many iden-
tical copies of the quantum state and to either use each new copy to perform a different
measurement or to perform one giant measurement across all of the copies simultaneously
(a so-called entangled measurement). Each copy is viewed as being expensive to produce,
and so we would like to learn with as few copies as possible. This introduces a new resource
measure, the copy complexity, which is a quantum analogue of the sample complexity from
statistics.

Let us give two examples of state learning in action.

• In [MHS+12], the authors demonstrated long-range quantum teleportation by teleport-
ing the state of a photon (encoded in its polarization) to another photon 143 km away.
To verify successful teleportation, they learned the 2× 2 matrix of the photon on the

13

receiving end, and checked that this agreed with the matrix of the original state. In
total, they used n = 605 copies of the state.

• In [HHR+05], the authors constructed a device to generate 8-particle W-states, mean-
ing that the joint state of the 8 particles was given by a particular 256 × 256 matrix.
W-states are potentially useful as resources in fault-tolerant quantum communication
protocols. To verify the device worked properly, they generated n = 656100 copies of
the 8 particles and measured each copy separately, taking 10 hours in total. They then
computed the maximum likelihood estimate of the state based on the measurement
outcomes and found that it had “fidelity” 0.72 with the desired state.

Quantum state learning dates back to the 1950s [Hua12], and in spite of this, the optimal
copy complexity for many basic problems remains poorly understood. For example, as of
early 2015, the complexity of quantum state tomography was “shockingly unknown” [Har15].
In this thesis, we settle the copy complexity of quantum tomography, showing that n =
O(d2/ε2) copies are sufficient to learn ρ up to error ε in trace distance (see Definition 1.4.1),
matching a lower bound proved by [HHJ+16]. In addition, we give a variety of new algorithms
for problems like spectrum learning, principal component analysis, and mixedness testing.

Our second contribution is a new framework for analyzing these quantum state learning
algorithms which relates this topic to the combinatorial topic of longest increasing subse-
quences of random words. Here, given a probability distribution α = (α1, . . . , αd), we let w
be an n-letter α-random word, meaning that each wi is independently distributed according
to α. Then the key question is:

What is the expected length of the longest increasing subsequence
of an n-letter α-random word?

Our framework shows that sufficiently tight answers to questions like this yield optimal
algorithms for learning quantum states. Motivated by this, we answer this question and
many other basic questions in this area which were surprisingly unresolved.

The remainder of this chapter expands upon this introduction. It is organized as follows.

• Section 1.1 explains how quantum states are represented mathematically by matrices.

• Section 1.2 gives an introduction to the basics of quantum measurements.

• Section 1.3 surveys probability distribution learning and testing, the classical analogue
of the quantum problems we consider in this thesis.

• Section 1.4 states the problems we consider and our main results.

• Section 1.5 explains our methodology and how quantum state learning is connected to
longest increasing subsequences.

• Section 1.6 gives the outline for the rest of the thesis.

14

1.1 Quantum states

To store data in a quantum system, such as an atom, we pick a property of the quantum
system and encode our data into the state of this property. We say that it is a d-level
quantum system if the property exhibits d perfectly distinguishable states, meaning that if
the quantum system is in one of the states, then there is a measurement that will detect
which one with certainty. The state of a d-level quantum system is represented as a vector
in Cd. In this work, we will use Dirac’s bra-ket notation, in which |v〉 ∈ Cd denotes a column
vector and 〈v| := |v〉† denotes a row vector. It follows that 〈u| · |v〉 is the usual inner product
between |u〉 and |v〉, which is typically simplified as 〈u|v〉. The following are some examples
of how quantum states are encoded as vectors.

• An electron has a property called spin, which has two distinct states: up (↑) and
down (↓). We represent these two states with the column vectors

|↑〉 =

[
1
0

]
and |↓〉 =

[
0
1

]
.

More generally, the system may be in a superposition of these two states, in which
case its state is given by a vector |v〉 = α↑ |↑〉 + α↓ |↓〉 satisfying |α↑|2 + |α↓|2 = 1.
Equivalently, |v〉 satisfies 〈v|v〉 = 1.

• A photon has a property called polarization, which has two distinct states: horizontal
and vertical. These give rise to the basis vectors |H〉 and |V〉; as in the case of electron
spin, allowing for these and any possible superpositions means that the polarization
state may be any unit-norm vector |v〉 ∈ C2.

• The spin state of two electrons has four distinct possibilities: ↑↑, ↑↓, ↓↑, and ↓↓,
represented by the four vectors

|↑↑〉 =

1
0
0
0

 , |↑↓〉 =

0
1
0
0

 , |↓↑〉 =

0
0
1
0

 , and |↓↓〉 =

0
0
0
1

 .
Allowing for superpositions, the state may be given by any unit-norm vector |v〉 ∈ C4.
In some cases the spin states of the two electrons act totally independently, meaning
that the state of the first electron is given by some |v1〉 ∈ C2 and the state of the
second electron is given by some |v2〉 ∈ C2, and the state of the whole system is given
by the tensor-product vector |v〉 = |v1〉 ⊗ |v2〉; such states are said to be unentangled.
However, there are some vectors |v〉 ∈ C4 which cannot be written in this way, and
these vectors correspond to entangled states.

We also refer to a 2-level system as a qubit and a d-level system as a qudit. The first two are
examples of qubits whereas the third is an example of a d = 4 qudit.

Quantum states represented as vectors are called pure states. More generally, a quantum
system can be in a mixed state, in which its state is a random distribution (a statistical

15

mixture) over pure states, as follows.

|v〉 =

|v1〉 with probability p1,
|v2〉 with probability p2,
. . .
|vm〉 with probability pm.

(1.1)

(Note that the |vi〉’s need not be orthogonal, and so m may be smaller or larger than the
dimensionality d.) Mixed states commonly occur in quantum computing. For example, a
computer may first flip some coins before deciding which pure state to output, or some
noise may be applied to a pure state, perturbing it to a randomly-distributed nearby vector.
A third, more exotic example occurs due to quantum entanglement: for example, if the
joint spin state of two electrons is given by a vector |v〉 ∈ C4, then the appropriate way
of describing the state of the first electron by itself is with a mixed state computed by
applying the “partial trace” to |v〉. (In the case when the state is unentangled, this mixed
state will assign all of its probability mass to a single pure state.) Related to this, if one
has a multiparticle quantum system and measures some of the particles, then the remaining
particles will collapse to a state depending on the random measurement outcome. Hence,
they are in a mixed state.

Associated with each mixed state is its density matrix ρ, defined as

ρ :=
m∑
i=1

pi |vi〉 〈vi| . (1.2)

Though the mapping |v〉 7→ ρ is lossy (in particular, multiple mixed states may have the
same density matrix), the density matrix gives a full characterization of the behavior of
the quantum system under all possible quantum operations and measurements. This means
that two mixed states with the same density matrix are indistinguishable from one another,
and we therefore think of them as being the same. As a result, it is usually convenient to
work solely with a quantum system’s density matrix, ignoring the issue of which particular
ensemble of pure states gave rise to it. This motivates the following definition.

Definition 1.1.1. A density matrix ρ ∈ Cd×d is any Hermitian positive semidefinite matrix
with trace one. Equivalently, if α1, . . . , αd are ρ’s eigenvalues, then αi ≥ 0 for each i, and∑

i αi = 1. In other words, (α1, . . . , αd) is a probability distribution on the set {1, . . . , d}.

It is easy to check that any matrix of the form (1.2) satisfies this definition. The re-
verse is true as well: any density matrix corresponds to at least one mixed state. This is
because a density matrix has d eigenvalues α1, . . . , αd corresponding to d orthonormal eigen-
vectors |v1〉 , . . . , |vd〉, and hence represents the mixed state “output |vi〉 with probability αi”.

1.2 A quantum primer

The simplest type of measurement is a basis measurement. In a basis measurement, we
specify in advance d orthonormal vectors |u1〉 , . . . , |ud〉 ∈ Cd corresponding to d distinct
outcomes. The result of a quantum measurement is a probabilistic outcome i from the set
[1, . . . , d]. Here we are using the following notation.

16

Definition 1.2.1. For a positive integer m, we define [m] := {1, . . . ,m}.

If our quantum system is described by the pure state |v〉, then this outcome is distributed
as

Pr[observe outcome i] = | 〈ui|v〉 |2 = 〈ui|v〉 〈v|ui〉 .

That these d probability values form a valid probability distribution follows from the Pythagorean
theorem. More generally, if the quantum system is in a mixed state, as in (1.1), then we can
calculate the outcome distribution as

Pr[observe outcome i] =
m∑
j=1

pj ·Pr[observe outcome i on |vj〉]

=
m∑
j=1

pj · 〈ui|vj〉 〈vj|ui〉 = 〈ui| ρ |ui〉 .

Note that this depends only on ρ.
Following the measurement, if the outcome i was observed, then the state of the system

collapses and becomes the observed pure state |ui〉. Thus, any future measurements on
the quantum system will yield no additional information about the original state ρ. This
is a problem if one is trying to learn any significant amount of information about ρ: a
basis measurement returns one of d possibilities, and hence provides at most log d bits of
information about ρ. If, say, one is trying to learn all of ρ—the entire d×d matrix—then one
is trying to learn Θ(d2) unknowns, and this roughly corresponds to trying to learn Θ(d2) bits
of information. These two quantities—log d and d2—differ by orders of magnitude, meaning
that a single measurement is inadequate for the task at hand.

The solution to this problem is to recall the motivating setup from the beginning: we
were not just given a single quantum system whose state is represented by the matrix ρ,
but a device (or an experiment) capable of generating ρ. If we repeatedly run this device,
and can guarantee independence between the different runs, then we will generate many
identical copies of ρ, freeing us to perform as many measurements as desired. This motivates
the following definition.

Definition 1.2.2. Given a quantum algorithm for learning some property of a quantum
state ρ, the copy complexity is denoted by n and refers to the number of copies of ρ the
algorithm uses.

Copy complexity can be viewed as a quantum mechanical analogue of sample complexity
from classical statistics, and in general we aim for algorithms which minimize n. There are
numerous reason why copy complexity is an interesting resource to study in this context. For
example, the quantum teleportation experiment [MHS+12] only required 605 copies for their
application, but generating each copy was a highly error-prone process which took 6.5 hours
in total. On the other hand, the experiment of [HHR+05] was able to more easily generate
copies of their quantum state, but the large number of copies needed for their application
(656100 in total) was itself a bottleneck. In general, the quantum device which outputs ρ
may itself be an arbitrary quantum computer for which an individual execution may be

17

expensive in terms of time, space, or money, and so it is desirable to run it as few times as
possible.

Finally, let us note that our algorithms will actually use measurements which are more
powerful than basis measurements, such as entangled measurements and POVMs. For de-
tails, see Section 1.2.1 below.

Example 1.2.3. Suppose our quantum system is described by the density matrix ρ ∈ Cd×d,
and that we would like to learn this density matrix. (As we will mention below, this is
referred to as the quantum tomography problem.) Suppose further that we knew in advance
the eigenvectors |v1〉 , . . . , |vd〉 of ρ. Then learning ρ reduces to learning the eigenvalues
α1, . . . , αd.

To do this, we claim that it is optimal to perform a basis measurement on each copy of ρ
using the basis |v1〉 , . . . , |vd〉. This is because ρ can be viewed as representing the mixed
state

|v〉 =

|v1〉 with probability α1,
. . .
|vd〉 with probability αd,

and given |v〉, one can determine with certainty which of the |vi〉’s it is equal to by measuring
in the eigenbasis. Having measured in this basis, the outcome is distributed as

Pr[observe outcome i] = 〈vi| ρ |vi〉 = αi.

Our goal is to learn the probability distribution α = (α1, . . . , αd), and each measurement
produces an outcome i ∈ [d] sampled according to α. This is exactly the classical problem
of learning an unknown distribution from independent samples, and it is known that n =
Θ(d/ε2) samples are necessary and sufficient to learn a distribution on d elements. Hence,
this same bound holds for the number of measurements and copies of ρ needed to learn α.
This example is one instance of the connection between quantumly learning quantum states
and classically learning probability distributions, which we explore more in Section 1.3. Note
that in general we do not know the eigenbasis of ρ, and this is where much of the challenge
in quantum state learning arises.

1.2.1 Quantum measurements

In this section, we will introduce the background on quantum computing necessary for this
thesis. For a more detailed introduction, see the textbook of Nielsen and Chuang [NC10].

Definition 1.2.4. We will consider the following three types of measurements.

• In a basis measurement, one provides an orthonormal basis |v1〉 , . . . , |vd〉 ∈ Cd corre-
sponding to the measurement outcomes. When the measurement is performed on a
pure state |ψ〉 ∈ Cd, one receives the outcome i ∈ [d] with probability | 〈vi|ψ〉 |2, in
which case |ψ〉 “collapses” to the state |vi〉. If instead the measurement is performed
on a mixed state ρ ∈ Cd×d, then outcome i is observed with probability 〈vi| ρ |vi〉, in
which case ρ collapses to |vi〉 〈vi|.

18

• In a projective measurement, one provides a set of projection matrices Π1, . . . ,Πm ∈
Cd×d satisfying the “completeness condition” P1 + . . . + Pm = I. If the measurement
is performed on a pure state |ψ〉, then outcome i ∈ [m] is observed with probability
〈ψ|Πi |ψ〉, in which case |ψ〉 collapses to

Πi |ψ〉
|Πi |ψ〉 |

.

If the measurement is performed on a mixed state ρ ∈ Cd×d, then outcome i ∈ [m] is
observed with probability tr(Πiρ), in which case ρ collapses to

ΠiρΠi

tr(Πiρ)
.

• In a Positive-Operator Valued Measure (henceforth, always a POVM), one provides a
set of PSD matrices E1, . . . , Em such that E1+. . .+Em = I. If the measurement is per-
formed on a pure state |ψ〉, outcome i ∈ [m] is observed with probability tr(Ei |ψ〉 〈ψ|).
If the measurement is performed on a mixed state ρ, then outcome i ∈ [m] is observed
with probability tr(Eiρ). The states that |ψ〉 and ρ collapse to are undefined.

We also allow for POVMs with an infinite outcome set. In this case, we will specify a
set Ω with σ-algebra Σ and a measure dω on this set. Each ω ∈ Ω has a corresponding
measurement outcome Eω. The measurement maps a (Borel) subset B ⊆ Ω to

M(B) :=

∫
B

Eωdω.

The completeness condition is given by M(Ω) = I, and the probability that an outcome
falls inside the subset B is given by either tr(M(B) |ψ〉 〈ψ|) or tr(M(B)ρ). (In this
thesis, we will only consider the case when Ω = U(d), the set of unitary matrices,
and dω is the Haar measure on U(d).)

We note that (ignoring the fact that POVMs don’t define a post-measurement state) each
measurement generalizes the previous one: a basis measurement is a projective measurement
with projectors Πi = |vi〉 〈vi|, and a projective measurement is a POVM in which Ei = Πi.
Furthermore, the rules for measuring mixed states follow from the rules for pure states using
the interpretation of a mixed state as a probability distribution over pure states.

Definition 1.2.5. If we have n unentangled quantum subsystems described by the states
|v1〉 ∈ Cd1 , . . . , |vn〉 ∈ Cdn , then the joint state of the whole system is described by the
tensor product |v1〉 ⊗ · · · ⊗ |vn〉. Similarly, if the n subsystems are described by the mixed
states ρ1 ∈ Cd1×d1 , . . . , ρn ∈ Cdn×dn , then the joint state is described by the tensor product
ρ1⊗· · ·⊗ρn. In this thesis, we will commonly consider the case when we are given n identical
and unentangled copies of an unknown state |ψ〉 ∈ Cd or ρ ∈ Cd×d, and so the entire state
of the n copies is given by either |ψ〉⊗n or ρ⊗n, respectively.

Definition 1.2.6. We will consider three types of measurements, each of increasing com-
plexity. Given n copies of ρ:

19

• a nonadaptive measurement fixes n measurements (of any type) in advance (by which
we mean either the bases, projectors, or POVM elements are fixed), measures each
state separately, and then collects the results and tries to infer some property of ρ.

• an adaptive measurement measures each copy of ρ one-by-one and is allowed to pick
each measurement based on the outcomes of the previous experiments.

• an entangled measurement performs any of the three types of measurements on the
state ρ⊗n.

It can be shown that entangled measurements generalize adaptive measurements, which in
turn generalize nonadaptive measurements. Each generalization increases the complexity
of implementing the measurement, and only very simple nonadaptive measurements (e.g.
projective measurements consisting of two projectors) can be practically implemented using
current-day techniques.

The measurement formalism in quantum mechanics gives one a significant amount of
freedom when designing measurements, but this freedom comes at a cost: it is often difficult
to determine what the best measurement for a given task is. As we will show in the following
proposition, the situation is simplified greatly when ρ is known to be block diagonal. (This
generalizes the case considered in Example 1.2.3.)

Proposition 1.2.7. Suppose ρ is known to be block-diagonal, where the blocks correspond
to the known orthogonal projectors Π1, . . . ,Πm. Then the following two statements hold.

1. Prior to any other measurements, one may without loss of generality first perform a
projective measurement on ρ using the Πi’s.

2. If, further, within each block, ρ is known to be a multiple of the identity matrix, then
this projective measurement is the optimal measurement.

Proof. Write |v1〉 , . . . , |vd〉 and α1, . . . , αd for ρ’s eigenvectors and corresponding eigenvalues.
Because ρ is block diagonal, each |vi〉 falls within a subspace corresponding to one of the
projectors Πi. As we can view ρ as the mixed state “output |vi〉 with probability αi”, we
may suppose that the system is in the pure state |vi〉 for some i ∈ [d]. By the measurement
rule for projectors, if |vi〉 falls in the subspace corresponding to Πj, then the projective
measurement Π1, . . . ,Πm will always produce the outcome j, and |vi〉 will remain unchanged
(i.e., it will collapse to itself). Hence, the measurement does not perturb the system, and so
we may perform it without loss of generality, proving item 1.

After the projective measurement is made and some outcome j is observed, then ρ col-
lapses to the maximally mixed state on the subspace corresponding to Πj. At this point,
we know that the state ρ collapsed to the maximally mixed state on this subspace, and so
nothing can be gained information theoretically from further measurements. This proves
item 2.

20

1.3 Classical distribution learning and testing

Before moving on to our quantum learning and testing problems, let us first consider the
classical special case (from Example 1.2.3) of learning and testing probability distributions.
In the standard model of distribution learning, there is an unknown probability distribu-
tion α, and the tester is allowed to draw n independent samples from this distribution. We
will often state this in terms of random words.

Definition 1.3.1. Let A be an alphabet ; i.e., a totally ordered set. Most often we consider
A = [d]. A word is a finite sequence (a1, . . . , an) of elements from A. We say that w =
(w1, . . . ,wn) is an n-letter α-random word if each letter wi is independently drawn from the
set A according to the distribution α. We may sometimes also write w ∼ α⊗n.

In this thesis, we will reserve A for alphabets and α for distributions on alphabets. One
may of course want to learn distributions on finite sets Ω which are not totally ordered (i.e.
are not alphabets). However, the alphabet case is without loss of generality in this setting
and will be crucial for our work on longest increasing subsequences.

We will now define some distance measures between probability distributions, and for
this it is convenient to consider distributions D on general sets Ω. The most basic way of
measuring the distance between two probability distributions is given by the total variation
distance.

Definition 1.3.2. Given a real number p ≥ 1 and a vector x on a finite set Ω, the `p norm
of x, written as ‖x‖p, is defined as

‖x‖pp :=
∑
ω∈Ω

|xω|p.

Given two discrete probability distributions D1 and D2 on a finite set Ω, the total variation
distance between them is dTV(α, β) := 1

2
‖D1 −D2‖1.

Suppose a random element ω in Ω was drawn from either D1 or D2, and one would like
to know which of the two it came from. It is natural to select a subset S ⊆ Ω, guess “D1”
if ω ∈ S, and guess “D2” if ω /∈ S. The following easy-to-prove statement relates how well
the best such strategy works with the total variation distance:

dTV(D1,D2) = max
S⊆[d]

{
Pr
ω∼D1

[ω ∈ S]− Pr
ω∼D2

[ω ∈ S]

}
. (1.3)

We will also require some nonsymmetric “distances” between probability distributions.

Definition 1.3.3. The chi-squared distance is

dχ2(D1,D2) := E
ω∼D2

[(
D1(ω)

D2(ω)
− 1

)2
]
.

Further, if supp(D1) ⊆ supp(D2), then the Kullback–Leibler divergence is

dKL(D1,D2) := E
ω∼D1

[
ln

(
D1(ω)

D2(ω)

)]
.

To relate these quantities, Cauchy–Schwarz implies that dTV(D1,D2) ≤ 1
2

√
dχ2(D1,D2), and

Pinsker’s inequality states that dTV(D1,D2) ≤ 1√
2

√
dKL(D1,D2).

21

1.3.1 Distribution learning

In distribution learning, we are given an n-letter α-random word w, and we would like to
learn a feature of α. The most basic problem in this area is to learn the entire distribution α,
and a good estimate turns out to be given by the empirical distribution.

Definition 1.3.4. Given an n-letter α-random word w, the empirical distribution is the
probability distribution α̂ in which α̂i is the number of i’s in w divided by n.

The most basic fact about the empirical distribution is that by taking n = Θ(d/ε2), it is
ε-close to α in total variation distance with high probability [DL01, pages 10 and 31]. The
simplest proof of this, from [Dia14, Slide 6], begins by proving convergence of the empirical
distribution in `2

2 distance.

Proposition 1.3.5. Given w ∼ α⊗n, let α̂ be the empirical distribution. Then

E ‖α̂− α‖2
2 ≤

1

n
.

To relate this to the total variation distance, note that

E ‖α̂− α‖1 ≤
√
d · E ‖α̂− α‖2 ≤

√
d ·
√

E ‖α̂− α‖2
2,

where the first step is Cauchy-Schwarz and the second is concavity of the square root. This
gives us the following corollary.

Corollary 1.3.6. E ‖α̂− α‖1 ≤
√
d/n. Hence, α̂ is ε-close to α in total variation distance

when n = O(d/ε2) with high probability.

(The high probability bound follows from the expectation bound by increasing n and
applying Markov’s inequality.) This strategy of proving `1 distance bounds by first switching
to `2

2 distance will prove fruitful later with our quantum state learning results.

Proof of Proposition 1.3.5. Each coordinate of the empirical distribution α̂i is distributed
as Binomial(n, αi)/n and hence has mean αi and variance αi(1− αi)/n. Then

E ‖α̂− α‖2
2 =

d∑
i=1

E(α̂i − αi)2 =
d∑
i=1

Var[α̂i] =
d∑
i=1

αi(1− αi)
n

≤ 1

n
.

A related problem, especially interesting in the case when α has only a few large entries,
is to estimate the values of the k largest αi’s. In the k = 1 case, for example, this is the
problem of estimating α’s `∞ norm. A natural algorithm is to output the k largest entries
in the empirical distribution.

Notation 1.3.7. Given x ∈ Rd, the notation x[i] means the i-th largest value among
x1, . . . , xd.

In other words, given w, then we output (α̂[1], . . . , α̂[k]). As this algorithm is agnostic to
the order of α, we may assume that α is sorted in decreasing order. In this case, we have
the following bound.

22

Proposition 1.3.8. Suppose α is a sorted probability distribution. Then for any k ∈ [d],

E
k∑
i=1

|α̂[i] − αi| ≤
√
k

n
.

Thus, we can estimate the k largest αi’s when n = O(k/ε2) with high probability.

To show this, we first need the following fact.

Fact 1.3.9. Let x, y ∈ Rd be sorted. Then for any permutation π ∈ S(d),

d∑
i=1

|xi − yi| ≤
d∑
i=1

|xi − yπ(i)|.

Proof. If π is not the identity permutation, then there are adjacent coordinates i, i + 1 for
which π(i) > π(i + 1). Suppose σ is the permutation formed by transposing these two
positions. Then we claim that

d∑
i=1

|xi − yσ(i)| ≤
d∑
i=1

|xi − yπ(i)|. (1.4)

Showing this will prove the fact, as we can repeatedly do this to σ, eventually arriving at
the identity permutation.

The only indices where the left-hand and the right-hand sides of Equation (1.4) differ
are i and i + 1. Zeroing in on these reduces to showing the following fact about four real
numbers a, b, c, d satisfying a ≥ b, c ≥ d:

|a− c|+ |b− d| ≤ |a− d|+ |b− c|.

This is easily verified using case analysis.

Proof of Proposition 1.3.8. For i ∈ [k], write `i for the index of the i-th largest coordinate
of α̂. Then α̂`i = α̂[i] for all i ∈ [k]. Consider `′1, . . . , `

′
k, the rearrangement of `1, . . . , `k

formed by (i) first setting `′i = i if i ∈ {`1, . . . , `k}, for each i ∈ [k], and then (ii) setting the
remaining (`′i)’s to be the remaining `i’s in any order. By fact 1.3.9,

E
k∑
i=1

|α̂[i] − αi| = E
k∑
i=1

|α̂`i − αi| ≤ E
k∑
i=1

|α̂`′i − αi|. (1.5)

Next, consider `+
1 , . . . , `

+
k , in which `+

i = `′i if α̂`′i ≥ αi and `+
i = i otherwise. Then for

each i ∈ [k], |α̂`′i − αi| ≤ |α̂`+i − α`+i | because either (i) `′i = i already, in which case the

two quantities are the same, or otherwise (ii) `′i 6= i. In this case, (i) if α̂`′i ≥ αi, then the
inequality follows from the fact that α`′i ≤ αi, because `′i 6= i and so α`′i is not one of the k

23

largest αj’s, and (ii) if α̂`′i < αi, then the inequality follows from the fact that α̂i ≤ α̂`′i ,
because `′i 6= i and so α̂i is not one of the k largest α̂j’s. As a result,

(1.5) ≤ E
k∑
i=1

|α̂`+i − α`+i | ≤ E

√√√√k ·
k∑
i=1

(α̂`+i − α`+i)2

≤ E
√
k · ‖α̂− α‖2

2 ≤
√
k · E ‖α̂− α‖2

2 ≤
√
k

n
,

where the inequalities follow from (in order): (i) the definition of the `+
i indices, (ii) Cauchy-

Schwarz, (iii) the fact that each index j ∈ [d] appears at most once among {`+
i }i∈[k],

(iv) Jensen’s inequality, and (v) Proposition 1.3.5.

There are various other natural properties of α one can learn, and the algorithms and
lower bounds for these often involve a substantial amount of cleverness. Famous examples
involve estimating the entropy of α up to ε-additive error, which can be done with n =
Θ(d

log(d)·ε) samples [VV11a, VV11b], and estimating the support size of α up to εn-additive

error, for which we know an upper bound of n = O(d
log(d)·ε2) samples1 and a nearly matching

lower bound of n = Ω(d
log d

) samples for any constant ε > 0 [VV11a].

1.3.2 Distribution testing

A related stream of research has dealt with the problem of testing properties of α. This
stream operates in the property testing model of Rubinfeld and Sudan [RS92, RS96], which
was originally introduced in the context of testing algebraic properties of polynomials over
finite fields but has since found applications in a wide variety of areas, including testing
properties of graphs and of Boolean functions. In the case of testing properties of probability
distributions, one is given a sample w ∼ α⊗n with the goal of determining whether α has
some property P or is ε-far from P in total variation distance, meaning that it is ε-far from
every distribution with property P . Formally, property testing is defined as follows.

Definition 1.3.10. In the model of property testing, there is a set of objects O along with
a distance measure dist : O × O → R. A property P is a subset of O, and for an object
o ∈ O, we define the distance of o to P to be2

dist(o,P) := min
o′∈P
{dist(o, o′)}.

If dist(o,P) ≥ ε, then we say that o is ε-far from P . A testing algorithm T tests P if, given
some sort of “access” to o ∈ O (e.g., independent samples or queries), T accepts with high
probability (say, probability at least 2/3) if o ∈ P and rejects with high probability if o
is ε-far from P . Generally, the aim is for T to be efficient according some measure, most
typically the number of accesses made to o. (On the other hand, T is generally allowed
unlimited computational power. Nevertheless, as we will see, all of the testers considered in
this thesis can be implemented efficiently.)

1Here, they also need the additional assumption that any nonzero probability value is at least 1/d.
2Formally, our sets O will always lie within some RN or CN , and we always require that P be a closed

set. Thus the “min” here is well-defined.

24

Definition 1.3.11. We will instantiate property testing in the following setting:

• Properties of probability distributions: O is the set of probability distributions α
on [d], the tester gets i.i.d. draws from α, and dist = dTV.

In this model, it is possible to test any property with n = O(d/ε2) samples by ε/2-
estimating α with the empirical distribution α̂ (by Corollary 1.3.6) and checking whether α̂
is ε/2-close to any distribution with property P . As a result, the goal of this area is to find
testers for properties which use a sublinear (in d) number of samples. That such algorithms
could exist is suggested by the following Birthday Paradox-based fact from [GR11, BFR+00]
(cf. [Bat01, Theorem 3.24]):

Fact 1.3.12. Θ(
√
r) samples are necessary and sufficient to distinguish between the cases

when the distribution is uniform on either r or 2r values. (The bound also holds for r vs. r′

when r′ > 2r.)

Setting r = d
2
, we see that this fact gives a sublinear algorithm for distinguishing between

the uniform distribution and a distribution that is uniform on exactly half of the elements
of {1, . . . , d}. This fact is also important as it immediately gives a lower bound of Ω(

√
d) for

testing a variety of natural problems, those for which Fact 1.3.12 appears as a special case.
Perhaps the most basic property of probability distributions one can test for is the prop-

erty of being equal to the uniform distribution.

Definition 1.3.13. We will write Unifd for the uniform probability distribution (1
d
, . . . , 1

d
).

An Ω(
√
d) lower bound follows directly from Fact 1.3.12. On the other hand, an O(

√
d/ε4)

upper bound was shown in the early work of [BFR+00, BFR+13] using techniques of [GR11].
The correct sample complexity was finally pinned down by Paninski in [Pan08], who showed
matching upper and lower bounds:

Theorem 1.3.14 ([Pan08]). Θ(
√
d/ε2) samples are necessary and sufficient to test whether α

is the uniform distribution Unifd.

This result was recently extended [VV14] to an O(
√
d/ε2) upper bound for testing equality

to any fixed distribution, improving on the previously known [BFF+01] upper bound of

Õ(
√
d/ε4). More precisely, [VV14] upper-bounds the sample complexity of testing equality

to a fixed distribution β by O(f(β)/ε2), where f(β) is a certain norm which is maximized
when β is the uniform distribution. Thus the uniform distribution is the hardest fixed
distribution to test equality to.

The property of being the uniform distribution falls within the class of symmetric prop-
erties of probability distributions.

Definition 1.3.15. We will instantiate property testing in the following setting:

• Symmetric properties of probability distributions: As in Definition 1.3.11 above,
but P is any symmetric property of probability distributions, meaning that if α ∈ P ,
then απ = (απ(1), . . . , απ(d)) ∈ P for any permutation π ∈ S(d).

Here we are using the following definition.

25

Definition 1.3.16. Given an integer d, S(d) refers to the symmetric group on d elements.

Note that membership in a symmetric property P depends only on the multiset {α1, . . . , αd}
and not on the ordering of the αi’s. Other interesting symmetric properties beyond unifor-
mity include having small entropy or small support size. Testing for small support size does
not appear to have been precisely addressed in the literature; however the following is easy to
derive from known results (in particular, the lower bound follows from the work of [VV11a]):

Theorem 1.3.17. To test (with ε a constant) whether a probability distribution has support
size r, O(r) samples are sufficient and Ω(r/ log(r)) samples are necessary.

Property testing of probability dstributions is a large field beyond the scope of this thesis;
see [Can16] for a comprehensive survey.

1.4 Quantum problems and our results

Let us begin by defining some standard distance measures between quantum states.

Definition 1.4.1. If M ∈ Cd×d is any Hermitian matrix with eigenvalues µ1, . . . , µd, the `1

or trace norm of M is

‖M‖1 := tr
(√

M †M
)

=
d∑
i=1

|µi|.

Similarly, the `2 or Frobenius norm of M , written as ‖M‖F , is defined as

‖M‖2
F := tr(M †M) =

d∑
i=1

µ2
i .

We note that ‖M‖1 ≤
√
d·‖M‖F by Cauchy-Schwarz applied to the eigenvalues of M . Given

two density matrices ρ and σ, the trace distance between them is

dtr(ρ, σ) :=
1

2
‖ρ− σ‖1.

The trace distance is the standard generalization of the total variation distance to mixed
states; for example, it satisfies the following generalization of Equation (1.3) [NC10, equa-
tion (9.22)]:

dTV(ρ1, ρ2) = max
projectors Π

{tr(Πρ1)− tr(Πρ2)} .

This statement relates the trace distance to the maximum probability with which two mixed
states can be distinguished by a projective measurement. This property makes it the natural
choice of distance for property testing of quantum states. We also have the following simple
fact:

Fact 1.4.2. Suppose ρ and σ are diagonal density matrices with diagonal entries α =
(α1, . . . , αd) and β = (β1, . . . , βd), respectively. Then dtr(ρ, σ) = dTV(α, β).

26

1.4.1 Quantum state learning

The most basic type of problem we consider is that of computing an estimate ρ̂ of the
quantum state ρ.

Definition 1.4.3. In quantum tomography, one is given n copies of a density matrix ρ ∈ Cd×d

with sorted spectrum α, and the goal is to output a density matrix ρ̂ such that dtr(ρ, ρ̂) ≤ ε.
In quantum PCA, there is an additional parameter 1 ≤ k ≤ d, and the goal is to output a
rank-k matrix ρ̂ which is PSD and has tr(ρ̂) ≤ 1 such that

‖ρ− ρ̂‖1 ≤ αk+1 + . . .+ αd + ε.

We note that αk+1 + . . .+ αd is the error of the best rank-k approximator to ρ.

Related to this is the problem of learning ρ’s spectrum.

Definition 1.4.4. In quantum spectrum estimation, one is given n copies of a density ma-
trix ρ ∈ Cd×d with sorted spectrum α, and the goal is to output a sorted spectrum α̂ such that
dTV(α, α̂) ≤ ε. In truncated spectrum estimation, there is an additional parameter 1 ≤ k ≤ d,

and the goal is that d
(k)
TV(α, α̂) ≤ ε, where d

(k)
TV(α, β) denotes 1

2

∑k
i=1 |αi − βi|.

Quantum PCA and truncated spectrum estimation correspond to the naturally occuring
case when ρ is either pure or low rank but has been subjected to a small amount of noise.
This case has been studied previously in, for example, [FGLE12]. Intuitively, tomography is
a harder problem than spectrum estimation, as the former requires learning both ρ’s eigen-
values and eigenvectors while the latter requires learning only ρ’s eigenvalues. Indeed, this
relationship can be made quantitative: if ρ̂ is an ε-approximation to ρ, then ρ̂’s spectrum α̂
is an ε-approximation to α, per the following fact.

Fact 1.4.5. Suppose the density matrices ρ1, ρ2 ∈ Cd×d have sorted spectrum α1, α2 ∈ Cd.
Then dTV(α1, α2) ≤ dtr(ρ1, ρ2).

Proof. We learned the proof of this fact from Ashley Montanaro [Mon14]. Since ‖ · ‖1 is a
unitarily invariant norm, a theorem of Mirsky (see [HJ13, Corollary 7.4.9.3]) states that

‖ρ1 − ρ2‖1 ≥ ‖ρ′1 − ρ′2‖1, (1.6)

where ρ′1 (respectively, ρ′2) denotes the diagonal density matrix whose entries are the eigen-
values of ρ1 (respectively, ρ2) arranged in nonincreasing order. We have ρ′1 = diag(α1),
and ρ′2 = diag(α2). But the left-hand side of (1.6) is 2dtr(ρ1, ρ2), and the right-hand side is
2dtr(ρ

′
1, ρ
′
2), which in turn equals 2dTV(α1, α2) (by Fact 1.4.2). Thus dTV(α1, α2) ≤ dtr(ρ1, ρ2),

as needed.

We note that Fact 1.3.9 corresponds to the special case of Fact 1.4.5 when ρ1 and ρ2 are
diagonal matrices.

As it is the simpler of the two problems, let us begin by discussing our results for spectrum
estimation. In this thesis, we consider a particular spectrum estimation algorithm called the
empirical Young diagram (EYD) algorithm. The EYD algorithm was originally introduced
in [ARS88, KW01] and is the most popular and powerful spectrum estimation algorithm

27

in the literature. In fact, is has been suggested that this algorithm can be implemented
using current-day experimental techniques [BAH+16]. Given ρ⊗n, it outputs a random esti-
mate α̂ of α which can be viewed as a quantum analogue of the empirical distribution. The
work of [HM02, CM06] showed that α̂ is ε-close in total variation distance to α with high
probability when n = O(d2/ε2 · log(d/ε)), and prior to our work this was the best known
bound for spectrum estimation. We improve this bound to n = O(d2/ε2). As in the proof of
Corollary 1.3.6, we begin by showing that α̂ approximates α well in `2

2 distance.

Theorem 1.4.6. Given n copies of a mixed state ρ with spectrum α, let α̂ be the random
output of the EYD algorithm. Then

E ‖α̂− α‖2
2 ≤

d

n
.

Our spectrum estimation bound then follows as an immediate corollary.

Corollary 1.4.7. Given n copies of a mixed state ρ with spectrum α, let α̂ be the random
output of the EYD algorithm. Then

E ‖α̂− α‖1 ≤
d√
n
.

As a result, n = O(d/ε) copies suffice to obtain an ε-accurate estimate in `2
2 distance, and

n = O(d2/ε2) copies suffice to obtain an ε-accurate estimate in total variation distance.
(These bounds are with high probability; confidence 1− δ may be obtained by increasing the
copies by a factor of log(1/δ).)

Proof. By Cauchy-Schwarz and then Jensen’s inequality,

E ‖α̂− α‖1 ≤
√
dE ‖α̂− α‖2 ≤

√
d
√

E ‖α̂− α‖2
2 ≤

d√
n
.

As we will see later, the behavior of the EYD algorithm depends only on the rank of ρ
and not on the ambient dimension d. Hence, if ρ is rank k, then only O(k2/ε2) copies of ρ
are needed to estimate α in total variation distance. Our next result, which generalizes
Corollary 1.4.7, shows that O(k2/ε2) copies are sufficient even if ρ is only approximately low
rank.

Theorem 1.4.8. Given n copies of a mixed state ρ with spectrum α, let α̂ be the random
output of the EYD algorithm. Then

E d
(k)
TV(α̂, α) ≤ 1.92 k + .5√

n
.

Thus, truncated spectrum estimation can be solved with n = O(k2/ε2) copies.

To our knowledge, nothing was previously known about truncated spectrum estimation.
In general, a lower bound of n = Ω(d/ε2) copies for spectrum estimation follows from

our Theorem 1.4.23 below. In the case of the EYD algorithm, we can improve this lower
bound to Ω(d2/ε2), matching the upper bound from Corollary 1.4.7. To do this, we show
that the EYD algorithm requires Ω(d2/ε2) copies when trying to estimate the spectrum of a
particular mixed state known as the maximally mixed state.

28

Definition 1.4.9. The d-dimensional maximally mixed state is the mixed state defined as

I

d
=

1
d

0 . . . 0
0 1

d
. . . 0

...
...

. . .
...

0 0 . . . 1
d

 .

Theorem 1.4.10. If ρ ∈ Cd×d is the maximally mixed state, then the EYD algorithm fails to
give an ε-accurate estimate in total variation distance with high probability unless Ω(d2/ε2)
copies are used.

Thus, to improve on Corollary 1.4.7, one has to consider a new algorithm.
Next, we extend these results to quantum tomography. For an extremely long time,

the best known tomography algorithm was the “textbook” algorithm [NC10, Section 8.4.2],
which performed nonadaptive “Pauli” measurements and used n = O(d4/ε2) copies [FGLE12,
Footnote 2]. The textbook algorithm is particularly easy to implement and is still referred
to by practicioners. Only recently in 2014 was this upper bound improved to n = O(d3/ε2)
by [KRT14], who proposed a new algorithm which performs nonadaptive “random basis
measurements”. In Section 5.1 below, we give a simpler proof of this bound. As announced
by Jeongwan Haah at QIP 2016 [Haa16], he and his coauthors [HHJ+16] have shown a
matching lower bound of Ω(d3/ε2) for all algorithms using nonadaptive measurements. Thus,
improving on this requires studying algorithms which perform more powerful measurements.

In this work, we consider two tomography algorithms: one being the algorithm of Michael
Keyl [Key06], and the other being the first of the two Pretty Good Measurement (PGM)-
inspired tomography algorithms from [HHJ+16]. Keyl’s algorithm and the first PGM to-
mography algorithm share some high level features: both perform highly entangled mea-
surements, both run the EYD algorithm as a subroutine, and it turns out that we can ana-
lyze both with substantially overlapping proofs. In doing so, we improve the upper bound
of [KRT14], showing that not only can we learn the spectrum using O(d2/ε2) copies, we can
learn the entire state with as many copies. The outline of our tomography results largely
follow the outline of our spectrum estimation results. For example, we begin by showing
that these algorithms well-approximate ρ in `2

2 distance.

Theorem 1.4.11. Given n copies of a mixed state ρ, let ρ̂ be the random output of either
Keyl’s algorithm or the PGM tomography algorithm. Then

E ‖ρ̂− ρ‖2
F ≤

4d− 3

n
.

As in Corollary 1.4.7, the `1 tomography bound follows as an immediate corollary.

Corollary 1.4.12. Given n copies of a mixed state ρ, let ρ̂ be the random output of either
Keyl’s algorithm or the PGM tomography algorithm. Then

E ‖ρ̂− ρ‖1 ≤
√

4d2 − 3d

n
. (1.7)

29

As a result, n = O(d/ε) copies suffice to obtain an ε-accurate estimate in `2
2 distance, and

n = O(d2/ε2) copies suffice to obtain an ε-accurate estimate in trace distance. (These bounds
are with high probability; confidence 1−δ may be obtained by increasing the copies by a factor
of log(1/δ).)

As we will see later, both tomography algorithms output a mixed state ρ̂ whose rank is at
most the rank of ρ. Hence, if ρ is rank k, then the Cauchy-Schwarz step involved in deriving
Equation (1.7) incurs a penalty of

√
2k rather than

√
d, in which case only n = O(kd/ε2)

copies are needed to estimate ρ in total variation distance. If ρ is only approximately rank k,
then there is a natural way to truncate the output of Keyl’s algorithm so that it is always
rank k. Our next result, which generalizes Corollary 1.4.12, shows that O(kd/ε2) copies are
sufficient for the truncated version of Keyl’s algorithm to approximate ρ in this case.

Theorem 1.4.13. Given n copies of a mixed state ρ, let ρ̂ be the rank k random output of
the truncated version of Keyl’s algorithm. Then

E ‖ρ̂− ρ‖1 ≤ αk+1 + · · ·+ αd + 6

√
kd

n
.

Thus, quantum PCA can be solved with n = O(kd/ε2) copies.

Prior works have typically considered the case when ρ is exactly rank k, and for this the
best previous bound was n = O(k2d/ε2) [KRT14]. To our knowledge, the only prior work to
get PCA-type bounds was [FGLE12], which showed how to find a rank-k matrix ρ̂ such that

dtr(ρ, ρ̂) ≤ C · (αk+1 + . . .+ αd) + ε,

for some absolute constant C, when n = O(
(
kd
ε

)2
log(d)). We are not aware of any previous

work proving a PCA guarantee satisfying Definition 1.4.3.

The focus of the paper [OW16] was analyzing Keyl’s algorithm. Independently, the work
of [HHJ+16] introduced two PGM-inspired quantum tomography algorithms. Following their
paper, we observed that our tomography analysis could also be used to analyze the first of
their algorithms [OW15a]. The main result of [HHJ+16] is that if ρ is exactly rank k,
then n = O(kd/ε2 · log(d/ε)) copies are sufficient to approximate ρ in trace distance, and
n = O(kd/ε · log(d/ε)) copies are sufficient to approximate ρ in “infidelity” (see [HHJ+16]
for this defined). In addition, they show two lower bounds for trace distance tomography:
the first is a lower bound of n = Ω(d2/ε2) for the general case, and the second is a lower
bound of n = Ω(kd/(ε2 log(d/ε))) if ρ is rank k. Hence, our tomography bound is optimal,
and our PCA bound is optimal up to logarithmic factors. We believe that our PCA bound
is in fact optimal, though proving the tight lower bound of n = Ω(kd/ε2) for tomography of
rank k matrices remains an open problem. We can, however, prove this bound without the
dependence on ε.

Theorem 1.4.14. Quantum tomography requires Ω(kd) copies in the case when ρ is rank k.

30

1.4.2 Quantum state testing

The second set of problems we consider involve testing properties of a state ρ. Formally:

Definition 1.4.15. We will instantiate property testing in the following setting:

• Properties of quantum states: O is the set of d× d mixed states ρ, the tester gets
unentangled copies of α, and dist = dtr.

An important subclass of properties to test are those that are unitarily invariant.

Definition 1.4.16. A property of mixed states P is unitarily invariant if ρ ∈ P implies
that UρU † ∈ P as well, for every unitary U .

Note that whether a mixed state ρ satisfies a unitarily invariant property depends only
on the multiset of its eigenvalues {α1, . . . , αd}; equivalently, it depends only on its sorted
spectrum α. Examples of unitarily invariant properties include having rank k and having
von Neumann entropy lower than some specified threshold. The property testing model re-
quires us to understand the quantity dtr(ρ,P), where ρ is an arbitrary mixed state, and for
unitarily invariant properties P , which may contain a wide variety of states, this quantity
seems difficult to understand. For example, if P is the set of rank k states, then it is not
obvious how to compute dtr(ρ,P). Ideally, we might hope that because P is unitarily invari-
ant, then dtr(ρ,P) is given by the total variation distance between α, ρ’s sorted spectrum,
and the closest sorted spectrum of any state in P . If this were so, then we would have

dtr(ρ,P)
?
= αk+1 + . . .+ αd,

but it is not immediately clear that this is indeed the case. Let us anyway define this
alternative notion of distance, in which states are not compared by their trace distances but
by the total variation distances of their spectra.

Definition 1.4.17. We will now introduce a “permutation-invariant” notion of total varia-
tion distance. Suppose α, β are distributions on [d]. We define

dsym
TV (α, β) := dTV(α↓, β↓) = min

π∈S(d)
{dTV(α, βπ)}.

Here, for a vector x ∈ Rd, x↓ denotes the rearrangement of x’s coordinates in nonincreasing
order, so x↓1 ≥ · · · ≥ x↓d. Here, the equivalence of the two expressions is by Fact 1.3.9. By
virtue of the permutation-invariance, we may also naturally extend this notation to the case
when α and β are simply unordered multisets of nonnegative numbers summing to 1.

If ρ and σ are d-dimensional mixed states with eigenvalues {α1, . . . , αd} and {β1, . . . , βd}
(thought of as a multiset), respectively, we will use the notation

dsym
TV (ρ, σ) := dsym

TV ({α1, . . . , αd}, {β1, . . . , βd}).

Equivalently, if α and β are ρ and σ’s sorted spectra, respectively, then

dsym
TV (ρ, σ) = dsym

TV (α, β) = dTV(α, β).

31

Definition 1.4.18. We will instantiate property testing in the following settings:

• Unitarily invariant properties of mixed states: As in Definition 1.4.15, but P
must be unitarily invariant.

• Quantum spectrum testing: O is the set of d-dimensional mixed states, P must be
unitarily invariant, and dist(ρ, σ) = dsym

TV (ρ, σ).

The following proposition shows that these two models are in fact equivalent. This
equivalence allows us to rephrase the mixed state testing model, in the case of unitarily
invariant properties, as a spectrum testing model.

Proposition 1.4.19. The two models in Definition 1.4.18 are equivalent.

Proof. We need to show that if P is a unitarily invariant property of d-dimensional mixed
states then dtr(ρ,P) = dsym

TV (ρ,P) holds for all mixed states ρ. By performing a unitary
transformation, we may assume without loss of generality that ρ is a diagonal matrix with
nonincreasing diagonal entries (spectrum).

The easy direction of the proof is showing that dtr(ρ,P) ≤ dsym
TV (ρ,P). To see this,

suppose σ ∈ P achieves dsym
TV (ρ, σ) = ε. Let σ′ denote the diagonal density matrix whose

diagonal entries are the eigenvalues of σ arranged in nonincreasing order. Now σ′ is unitarily
equivalent to σ, and hence σ′ ∈ P as well. But dtr(ρ, σ

′) = ε by Fact 1.4.2 and we therefore
conclude dtr(ρ,P) ≤ ε, as needed.

The more interesting direction is showing that dsym
TV (ρ,P) ≤ dtr(ρ,P). However, we have

essentially already carried out the proof. Suppose that σ ∈ P achieves dtr(ρ, σ) = ε. Then
by Fact 1.4.5, dTV(α, β) ≤ ε, if α and β are ρ and σ’s sorted spectra, respectively. But we
are done, as dsym

TV (ρ, σ) = dTV(α, β).

Having finished the setup, let us now discuss prior work and our results. Analogous to
the case of testing properties of probability distributions, in the case of testing properties of
mixed states, any property can be tested using n = O(d2/ε2) copies of ρ. This is due to our
main tomography result (Corollary 1.4.12), which allows us to estimate ρ to ε/2-accuracy
with this many copies and check whether this estimate is ε/2-close to P . As a result, the
goal of this area is to find testers for properties which use a subquadratic (in d) number
of copies. That such algorithms could exist is suggested by the following quantum version
of Fact 1.3.12, proven by [CHW07] (see also [DF09], who independently reproved the main
combinatorial statement used to prove this theorem).

Theorem 1.4.20. Θ(r) copies of a state ρ are necessary and sufficient to distinguish between
the cases when ρ’s spectrum is uniform on either r or 2r values. (The bound also holds for
r vs. cr when c > 2 is an integer.)

Property testing of mixed states was first explicitly studied in [MdW13], an excellent
survey on property testing in quantum computing. They suggested a variety of testing
problems to work on; we include these and others below.

Definition 1.4.21. The following are some examples of testing problems.

32

• In identity testing, there is a known density matrix σ, and the goal is to test whether
ρ = σ.

• Mixedness testing is the case of identity testing when σ is the maximally mixed state.

• Diagonality testing is the problem of testing whether ρ is diagonal (in a given basis).

• Given two unknown mixed states ρ1, ρ2 ∈ Cd×d, equality testing is the problem of
testing whether ρ1 = ρ2.

• The following are some examples of spectrum testing problems:

◦ Rank testing is the problem of testing whether ρ is rank r (in other words, testing
whether α has at most r nonzero elements). As a special case, purity testing is
the problem of testing whether ρ is pure, i.e. rank one.

◦ Von Neumann entropy testing is the problem of testing whether ρ’s von Neumann
entropy is at most β (equivalently, testing whether α has entropy at most β), for
some real number β.

◦ Mixedness testing can be viewed as the problem of testing whether ρ’s spectrum
α is (1

d
, . . . , 1

d
).

We can derive two easy lower bounds on these testing problems. First, Theorem 1.4.20
provides a linear lower bound (in d) for all of the spectrum testing problems, as the state
whose spectrum is uniform on d/2 values is far from the maximally mixed state and has
“small” rank and von Neumann entropy, whereas the state whose spectrum is uniform on
all d values is the maximally mixed state and has maximum rank and von Neumann entropy.
Second, recall from Example 1.2.3 that in the case when one knows ρ’s eigenvectors, then
the optimal measurement returns a statistic isomorphic to a sample w ∼ α⊗n. Hence, in
this case, testing whether α has a particular property P is equivalent to classical distribution
testing, and so the lower bounds from classical distribution testing apply.

Fact 1.4.22. Let P be a symmetric property of probability distributions which requires f(d, ε)
samples to test classically. Then testing whether a mixed state’s spectrum satisfies P also
requires at least f(d, ε) copies of the mixed state.

Indeed, testing unitarily invariant properties of mixed states can be viewed as the quantum
analogue of testing symmetric properties of probability distributions. In the first, a property
is invariant under unitary conjugation, and in the second, the property is invariant under
arbitrary permutation. This means that Definition 1.3.15 would be the same if it were defined
with dist = dsymm

TV instead.
Fact 1.4.22 shows that quantum spectrum testing is at least as hard as testing symmetric

properties of probability distributions, but there are some interesting nontrivial properties
which have the same complexity in both models (up to constant factors). For example, if P
is the property of ρ being a pure state (meaning that α has support size one), then Θ(1/ε)
samples/copies are necessary and sufficient to test P in both models (see [MdW13] for the
O(1/ε) quantum spectrum testing upper bound using the swap test). In general, however,

33

it is known that spectrum testing can require an asymptotically higher complexity (at least
in terms of the parameter d).

Our first property testing result is a quantum analogue of Paninski’s Theorem 1.3.14.

Theorem 1.4.23. Θ(d/ε2) copies are necessary and sufficient to test whether ρ ∈ Cd×d is
the maximally mixed state.

We also remark that given the way we prove Theorem 1.4.23, Childs et al.’s Theorem 1.4.20
can be obtained as a very special case. Our second result gives new bounds for testing
whether a state has low rank.

Theorem 1.4.24. Θ(r2/ε) copies are necessary and sufficient to test whether ρ ∈ Cd×d has
rank r with one-sided error. With two-sided error, a lower bound of Ω(r/ε) holds.

Here, by one-sided error we mean that the tester must accept rank-r states always but is
allowed to err with constant probability on non-rank-r states. On the other hand, two-sided
error means that the tester is allowed to err in either case. We note that the copy complexity
is independent of the ambient dimension d. Compare this to Theorem 1.3.17.

Finally, we extend Childs et al.’s Theorem 1.4.20 to r vs. r′ for any r + 1 ≤ r′ ≤ 2r. A
qualitative difference is seen when r′ = r + 1; namely, nearly quadratically many copies are
necessary.

Theorem 1.4.25. Let 1 ≤ ∆ ≤ r. Then O(r2/∆) copies are sufficient to distinguish between
the cases when ρ’s spectrum is uniform on either r or r + ∆ eigenvalues; further, a nearly
matching lower bound of Ω̃(r2/∆) copies holds.

As above, we note that these bounds are independent of the ambient dimension d. (Note
that though one is testing between two options, this theorem does not strictly fall into the
property testing model.)

1.5 Our methodology

Let us describe our methodology for learning or testing properties just of ρ’s spectrum α. This
methodology is also relevant for tomography and PCA, as solving these problems requires
first learning some or all of α. The first step of our methodology is standard: we use a
symmetry-based argument to show that when learning or testing properties of α, there is
an optimal measurement one should use without loss of generality. This reduces our study
of spectrum learning and testing to the study of just one measurement, both for our upper
and lower bounds. The second step of our methodology is novel: we relate the behavior of
this measurement to the combinatorial subject of longest increasing subsequences of random
words. This not only gives us many new tools with which to analyze our quantum algorithms,
it also allows our analyses to be conceptual rather than technical.

Optimality from symmetry. To illustrate the symmetry-based argument, let us show
a similar argument in the context of classically learning or testing symmetric properties of
probability distributions. Here, one is given n independent and identically distributed (i.i.d.)
samples from the unknown distribution, as in Figure 1.1a.

34

w = 54423131423144554251

(a) A 20-letter random word with d = 5.

1

2

3

4

5

(b) The histogram of w (on its side).

1st most frequent

2nd most frequent

3rd most frequent

4th most frequent

5th most frequent

λ1 :=

λ2 :=

λ3 :=

λ4 :=

λ5 :=

(c) The sorted histogram of w.

Figure 1.1: The process of creating the sorted histogram of a word.

First, note that because the samples are i.i.d., their order doesn’t matter. As a result,
we lose nothing if we “forget” the ordering information and retain only the histogram, as
in Figure 1.1b. Second, note that because we care only about a symmetric property of
the distribution, the “names” of the elements in the distribution don’t matter, only the
frequencies with which they occur in the sample. As a result, we lose nothing if we also
“forget” the names and sort the histogram, retaining only the frequency statistics, as in
Figure 1.1c. Formally, we can view this as symmetry under the product group S(n)×S(d),
and by retaining only the sorted histogram we have “factored out” this symmetry.

The sorted histogram is always a collection of n boxes arranged into d rows whose row
lengths λ1, . . . , λd are always nondecreasing, i.e. λ1 ≥ . . . ≥ λd. In the combinatorics and
representation theory literature, an object of this type is called a Young diagram and is
typically named “λ”. The d values (λ1, . . . , λd) are also referred to as a partition, and the
fact that they partition n is denoted as λ ` n. The result of the above discussion is that
when learning a symmetric property of the probability distribution α, rather than receiving
a sample w ∼ α⊗n, we can without loss of generality assume that the algorithm received a
Young diagram λ distributed as follows.

1. Let w be an n-letter α-random word.

2. Output λ, the sorted histogram of w.

Equivalently, λ is drawn from the distribution in which for each λ = (λ1, . . . , λd),

Pr[λ = λ] =

(
n

λ

)
·mλ(α), (1.8)

35

where mλ is the monomial symmetric function (see Section 2.4.1). “Forgetting” the sample
and retaining only the sorted histogram is a standard first step in the literature on learning
symmetric properties of probability distributions; here, λ is referred to as the fingerprint of
the sample [Bat01, Val08].

A similar situation holds for learning properties of a mixed state ρ’s spectrum α. Here the
problem exhibits symmetry under the product group S(n) × U(d): symmetry under S(n)
because the n copies of ρ are identical, and symmetry under U(d) because the spectrum is
invariant under rotation, i.e. ρ and UρU † have the same spectrum for U ∈ U(d). Factoring
these out involves a powerful result from representation theory called Schur-Weyl duality ;
the punchline is that there is a measurement called weak Schur sampling (WSS) which is the
optimal measurement whenever one is trying to learn any property just of the spectrum α.
Furthermore, though the measurement itself is difficult to state, its input/output behavior
is (relatively) simple: it is an entangled measurement, meaning that it uses up all n copies
of ρ simultaneously, and its measurement outcomes correspond to Young diagrams λ with n
boxes and d rows. Furthermore, it is possible to explicitly compute the probability that
WSS outputs a particular Young diagram λ on a state with spectrum α, and the result is
an expression that looks similar to Equation (1.8):

Pr[λ = λ] = dim(Vd
λ) · sλ(α),

where dim(Vd
λ) is an absolute constant associated with λ, and sλ is a symmetric polynomial

known as the Schur polynomial (see Section 2.4.1). (That sλ is symmetric will prove to
be important throughout this thesis, and it is reasonable given that the eigenvalues of ρ
have no intrinsic ordering.) Hence, when one performs WSS, one receives a random Young
diagram, and the goal is to infer the desired property of α from the diagram. This approach
of using WSS to learn properties of the spectrum is widely used in the literature [ARS88,
CEM99, KW01, HM02, CM06, CHW07, Mon09], and it is typically analyzed by explicit
computations involving formulas for Schur polynomials, the dimension constants dim(Vd

λ),
and the “projectors” (see Section 2.6 below) associated with WSS.

Relating WSS to increasing subsequences. The main conceptual contribution of this
thesis is a new interpretation of the output distribution of weak Schur sampling in terms of
a certain combinatorial process related to longest increasing subsequences of random words.
In particular, if we perform WSS on a mixed state ρ with spectrum α, then the random
Young diagram λ received has the same distribution as the following process:

1. Let w be an n-letter α-random word.

2. Output λ = shRSK(w).

Here shRSK refers to the RSK algorithm, named after its inventors Robinson (a mathemati-
cian) [Rob38], Schensted (a physicist) [Sch61], and Knuth (a computer scientist) [Knu70].
It is an elegant combinatorial algorithm which scans the word w from left to right and iter-
atively constructs the Young diagram λ box-by-box by “inserting” the letters of w into λ,

36

322231221321333w =

322231221321333

322231221321333

322231221321333

322231221321333

7

3

6

9

LIS(w) = 9
(a) Various increasing subsequences in w
along with their lengths. The longest is at
the bottom.

λ1

λ2

λ3

(b) The Young diagram λ = shRSK(w). By Schen-
sted’s theorem, the number of boxes in the first
row λ1 is equal to 9 because LIS(w) = 9.

Figure 1.2: An illustration of Schensted’s theorem.

“bumping” previously inserted letters in λ in the process. See [O’D16] for a video demon-
stration, [Gog99] for an interactive applet, and Section 3.2 below for a formal definition.3

Unfortunately, the iterative nature of the RSK algorithm means that it can be conceptu-
ally difficult to analyze. However, there is an alternative interpretation of the RSK algorithm
due to Schensted [Sch61] and Greene [Gre74] in terms of the longest increasing subsequence
statistics of w that is more amenable to analysis. Letting λ = shRSK(w), Schensted showed
that the number of boxes in the first row of λ, i.e. λ1, is equal to LIS(w), the length of the
longest weakly increasing subsequence of w.

Definition 1.5.1. Given a word w ∈ An, a subsequence is a set of indices 1 ≤ i1 < . . . <
it ≤ n. The subsequence is weakly increasing if wi1 ≤ . . . ≤ wit and strongly increasing if
wi1 < . . . < wit , and we define a subsequence to be weakly or strongly decreasing analogously.
We will typically call a subsequence increasing or decreasing if we mean that it is weakly
increasing or decreasing. Finally, we define LIS(w) to be the length of the longest increasing
subsequence of w and LDS(w) to be the length of the longest strongly decreasing subsequence.

We illustrate this definition in Figure 1.2a and Schensted’s theorem in Figure 1.2b. Note
the asymmetry in the definitions of LIS and LDS: the first refers to a weakly increasing
subsequence whereas the second refers to a strongly decreasing subsequence. This distinction
is important when w has repeated letters; in the case when w has no repeated letters (e.g.
the case when w is a permutation), the distinction is irrelevant.

Following Schensted, Greene provided a significant generalization of Schensted’s theorem
to the first k rows of λ, for any 1 ≤ k ≤ d. For k = 2, he showed that λ1 + λ2, the
number of boxes in the first two rows of λ, is equal to the length of the longest disjoint union
of two increasing subsequences in w. This is illustrated in Figure 1.3. More generally, he
showed that λ1 + · · ·+ λk is equal to the length of the longest disjoint union of k increasing

3In fact, the RSK algorithm actually outputs two “Young tableaus” P and Q whose common shape is λ.
We write this as (P,Q) = RSK(w) and λ = shRSK(w). See Section 3.2 for fully correct details.

37

54423131423144554251

On input w = 54423131423144554251

54423131423144554251

54423131423144554251

54423131423144554251

54423131423144554251
λ = shRSK(w)

Figure 1.3: An illustration of Greene’s theorem. On each row k, we have highlighted the let-
ters in the longest set of k disjoint increasing subsequences. The number of letters highlighted
should be equal to λ1 + · · ·+ λk, the number of boxes in the first k rows of λ.

subsequences in w. As a special case, note that one can always find d disjoint increasing
subsequences which cover all of w: the all-ones subsequence, the all-twos subsequence, . . . ,
and the all-d’s subsequence. Hence, λ1 + . . . + λd, the number of boxes in the first d rows
of λ, is always equal to n.

At this point, the high level picture is that we have the following two distributions on
Young diagrams:

D1
1. Run the weak Schur sampling measurement on n copies of ρ.
2. Receive a random measurement outcome λ.

D2
1. Let w be an n-letter α-random word.
2. Set λ = shRSK(w).

For our application in quantum state learning, we would like to understand distribution D1,
but this may be difficult due to its origins in representation theory and quantum computing.
However, we have argued that these two distributions are the same, and so we can instead
analyze λ as if it came from D2! But topics such as longest increasing subsequences of
random words and the RSK algorithm have been studied in the mathematics literature for
over 50 years, and so we gain access to a large body of techniques which were previously
unavailable to researchers studying quantum state learning.

Definition 1.5.2. We will refer to the distribution on Young diagrams given by D1 or D2
as the Schur-Weyl distribution (after Schur-Weyl duality) and refer to it either by SWn

ρ or
SWn(α).

As we saw earlier in the context of distribution D1, the probability that a Young di-
agram λ is sampled from SWn(α) is a symmetric polynomial in α. This implies the fact,
which is far from obvious given Greene’s theorem or the definition of the RSK algorithm,
that distribution D2 is invariant under permuting the αi’s. This surprising fact will play a
key role in many of our proofs, as it is often convenient to assume that the αi’s are sorted
in either increasing or decreasing order. The proof can be found below as Corollary 3.3.5.

38

(a) The sorted histogram µ of w. (b) λ = shRSK(w), the LIS statistics of w. Note
that λ is more “top-heavy” than µ, meaning λ�µ.

Figure 1.4: Two types of statistics of the word w = 54423131423144554251.

Analyzing the RSK algorithm. Let us now give a taste of the type of analysis involved in
learning properties of ρ’s spectrum and show how it relates to the classical topic of learning
symmetric properties of a distribution. Consider the word w = 54423131423144554251.
When learning symmetric properties of a distribution, one is given its sorted histogram µ,
as in Figure 1.4a. When learning properties of a mixed state’s spectrum, one is given its
LIS statistics λ, as in Figure 1.4b. Though these two diagrams represent different types of
statistics, they are related through majorization.

Notation 1.5.3. For x, y ∈ Rd, we say x majorizes y, denoted x � y, if
∑k

i=1 x[i] ≥
∑k

i=1 y[i]

for all k ∈ [d] = {1, 2, . . . , d} (recalling Notation 1.3.7), with equality for k = d. We also use
the traditional notation λ� µ instead when λ and µ are partitions of n (Young diagrams).

In particular, we have the majorization relationship λ � µ between the LIS statistics and
the sorted histogram. To see this, note that λ and µ are Young diagrams and are therefore
already sorted, and so to show majorization we need to show that the partial sums λ1+· · ·+λk
are always greater than µ1 + . . . + µk, for 1 ≤ k ≤ d. This follows because w always has k
elements which occur with frequencies µ1, . . . , µk, and the k subsequences corresponding to
just these elements are both disjoint and increasing, and hence λ1 + · · ·+λk ≥ µ1 + · · ·+µk.
As a result, though in the quantum setting we would prefer to have access to the sorted
histogram of w, we instead are only given its LIS statistics, which are like a “top-heavy”
version of the sorted histogram.

Let w be an n-letter α-random word. Suppose our only goal were to compute α1, the
maximum probability value. If we were given µ, namely w’s sorted histogram, then the
standard algorithm for this would be to output µ1/n. By Proposition 1.3.8 this is accurate
to within error ±ε (with high probability) so long as n = O(1/ε2). However, in distribution
D2 we are only given λ, namely w’s LIS statistics. Still, for lack of a better idea, it is
natural to output λ1/n as a guess for α1. By Schensted’s theorem (λ1 = LIS(w)), we arrive
at the following question:

What is the expected length of the longest increasing subsequence
of an n-letter α-random word?

39

It is perhaps at first surprising that LIS(w)/n does indeed approach α1 as n approaches
infinity. (The rough intuition is that if α1 � α2, then there are so many 1s that the
LIS should just take them all.) There is a simple combinatorial proof of this fact (see
Proposition 3.7.1 below), and we encourage the reader to try to prove this for themselves
first. One of our main results is to provide tight error bounds on the rate of convergence of
this estimator. In particular, we show that this estimate is accurate to within ±ε error (with
high probability) so long as n = O(1/ε2): just as good as if we had the sorted histogram!
This is the k = 1 case of Theorem 1.4.8.

Suppose instead that we wanted to learn the entire spectrum α. If we had the sorted
histogram µ, then the natural strategy would be to output the empirical distribution

µ

n
:=
(µ1

n
, . . . ,

µd
n

)
,

and it is known that this is an ε-accurate estimate in total variation distance when n =
O(d/ε2) (with high probability). If we try the same strategy with the LIS statistics and
output λ/n, then we have the well-known empirical Young diagram (EYD) algorithm (com-
monly known as the Keyl-Werner algorithm in the physics literature) mentioned in Sec-
tion 1.4.

To analyze the EYD algorithm, it is natural to ask whether the estimator λ/n has similar
moments as α, e.g. whether(

λ1

n

)2

+ . . .+

(
λd
n

)2

≈ α2
1 + . . .+ α2

d,

up to some small error. In fact, it is possible to show that this second-moment condition is
sufficient for λ/n to be a good approximator for α. Unfortunately, executing this plan of
attack requires being able to compute quantities like the expectation Eλ[λ2

1 + . . .+λ2
d], and

to our knowledge no simple formula for this quantity exists. However, as it turns out, there
are simple, explicit formulas which exactly compute the expectation of the following related
quantity:

p∗2(λ1, . . . ,λd) =
d∑
i=1

(λi − i+ 1
2
)2 − (−i+ 1

2
)2.

(That one can compute the expectation of this quantity follows from results in representation
theory: up to normalization, p∗2(λ) is the character χλ((12)).) Using this quantity as a proxy
for the second moment, we can prove our Corollary 1.4.7, that n = O(d2/ε2) copies are
sufficient to learn the spectrum.

Considering the approaches we take to solving our various learning and testing problems,
our analysis then splits into these two styles: some of the time it uses the combinatorics of
longest increasing subsequences of random words and the rest of the time it uses polynomi-
als like p∗2(λ) (the so-called shifted symmetric polynomials; see Section 3.8) to analyze the
moments of a random λ. Some of our theorems, such as the general-k part of Theorem 1.4.8,
require a combination of the two.

We will need the following majorization theorem in the proof of our truncated spectrum
estimation and PCA results (Theorems 1.4.8 and 1.4.13). Essentially, it says that if α is
more “top-heavy” than β, then the Young diagrams produced by SWn(α) are also more
top-heavy than those produced by SWn(β).

40

Theorem 1.5.4. Let α, β be probability distributions on [d] with β � α. Then for any n ∈ N
there is a coupling (λ,µ) of SWn(α) and SWn(β) such that µ� λ always.

The proof is entirely combinatorial, and can be read independently of the quantum content
in the rest of the thesis. We note that though a priori the theorem statement seems like it
must be true, our proof of it is quite nontrivial.

We will several times use the following elementary majorization inequality:

If c, x, y ∈ Rd are sorted (decreasing) and x � y then c · x ≥ c · y. (1.9)

Conclusion. The take-home message of this thesis is that to understand quantum spec-
trum estimation, it suffices to understand longest increasing subsequences of random words.
Using tools from longest increasing subsequences, we are able to give new and sometimes
optimal results for quantum spectrum estimation.4 Our results for quantum tomography and
PCA build further on top of these results and also need new insights in the representation
theory of the unitary and general linear groups.

1.6 Outline

The thesis is organized as follows.

• Chapter 2 is a high level introduction to representation theory. It also shows how to
use representation theory to design quantum measurements (in particular, weak Schur
sampling).

• Chapter 3 is a survey of longest increasing subsequences of random words. It will
explain the connection to quantum algorithms and introduce many of the technical
tools we will use in this thesis.

• Chapter 4 covers quantum spectrum estimation. It contains the proofs of Theo-
rems 1.4.6 and 1.4.8.

• Chapter 5 covers quantum tomography. It contains the proofs of Theorems 1.4.11
and 1.4.13.

• Chapter 6 covers mixedness testing. It contains the proofs of Theorem 1.4.23.

• Chapter 7 covers uniform distribution testing. It contains the proofs of Theorem 1.4.25.

• Chapter 8 covers rank testing. It contains the proofs of Theorem 1.4.24.

• Chapter 9 contains the proof of Theorem 1.5.4.

4In fact, because D1 = D2, one can draw exactly the reverse lesson: to understand longest increasing
subsequences of random words, it suffices to understand quantum spectrum estimation. Though at first
blush this looks like trying to understand one object via another more complicated object, this approach was
carried out by Kuperberg [Kup02], who used quantum tools, such as the quantum central limit theorem, to
give new proofs of well-known results about longest increasing subsequences.

41

• Chapter 10 contains a list of open problems.

The testing chapters, i.e. Chapters 6, 7, and 8, are based on work from [OW15b]. Chapter 9
is based on work from [OW16]. Chapter 4 is also based on work from [OW16], except
for Section 4.3 which is based on work from [OW15b]. Finally, Chapter 5 comes from
several sources: Section 5.1 is based on unpublished joint work with Akshay Krishnamurthy,
Section 5.2 is based on [OW15a], Sections 5.3 and 5.4 are based on [OW16], and Section 5.5
is based on unpublished joint work with Ryan O’Donnell.

42

Chapter 2

Representation theory

The standard approach for designing quantum state learning algorithms in settings like ours
is to exploit the symmetries in the problems. By this, we mean that some aspect of the
problem is symmetric under some group action. The two key examples of this are the
following.

Symmetry under the symmetric group: the inputs to our learning problems are of the
form ρ⊗n, i.e. tensor product states which are invariant under permuting the n subsys-
tems.

Symmetry under the unitary group: if our goal is to learn something which depends
only on ρ’s spectrum, then our algorithm may as well act identically on ρ⊗n and
(U †ρU)⊗n, for any unitary matrix U .

The tool we will use—and the subject of this chapter—is representation theory, the math-
ematical field which studies, among other things, symmetries of matrices and vector spaces
under group actions. Using representation theory, we will show that there is a basis in
which ρ⊗n has a particularly nice structure and, further, that measuring in this basis (via
the so-called weak Schur sampling measurement) is optimal for many of our problems. This
approach has been previously used to great success in works such as [ARS88, KW01, HM02,
CM06, CHW07].

Due to the above symmetries, we will focus on the representation theory of the following
three groups.

Definition 2.0.1. The symmetric group S(n) is the group of permutations π of the set [n].

Definition 2.0.2. The general linear group GLd is the group of d × d complex invertible
matrices. (More generally, if V is a vector space, then GLV is the group of invertible linear
transformations on V .)

Definition 2.0.3. The unitary group U(d) is the group of d× d unitary matrices.

The unitary group is a subgroup of the general linear group, and as such the representation
theories of the two groups go hand-in-hand. Surprisingly, the representation theories of
the symmetric and general linear groups are also linked, due to a powerful theorem known

43

as Schur-Weyl duality. As these are precisely the two symmetries involved in our learning
problems, Schur-Weyl duality plays a central role in the algorithms we consider.

The chapter is organized as follows.

• Section 2.1 gives an introduction to the subject of representation theory tailored to the
three groups we are interested in.

• Section 2.2 introduces Young diagrams, a certain combinatorial object which occurs in
the representation theories of all three groups we are interested in.

• Section 2.3 covers the representation theory of S(n).

• Section 2.4 covers the representation theory of GLd and U(d).

• Section 2.5 introduces Schur-Weyl duality, connecting the representation theories of S(n)
and GLd.

• Section 2.6 introduces the general methodology we will use to design quantum algo-
rithms based on representation theory.

2.1 Introduction to representation theory

In this section, we will give a high-level overview of representation theory. We will closely
follow chapters 3 and 4 in the excellent introduction to representation theory by Stein-
berg [Ste11], and full proofs of the results in this section can be found there.

Definition 2.1.1. Given a group G, a complex, finite-dimensional representation (hence-
forth, a representation) of G is a pair (µ, V), where µ : G→ GLV is a group homomorphism
and V is a finite-dimensional complex vector space. In other words, we associate with each
g ∈ G a matrix µ(g) such that µ(g)µ(h) = µ(gh) for any g, h ∈ G. The dimension of V is
called the dimension of the representation µ and is denoted dim(µ).

Examples:

• For any group G, the trivial representation is the one-dimensional representation given
by µ(g) := [1] for each g ∈ G.

• The standard representation of GLd is the d-dimensional representation given by µ(M) :=
M for each M ∈ GLd.

• The sign representation of S(n) is the one-dimensional representation given by µ(π) :=
[sgn(π)] for each π ∈ S(n).

• The determinant representation of GLd is the one-dimensional representation given by
µ(M) := [det(M)] for each M ∈ GLd. In fact, for any z ∈ Z one has a representation
µz(M) := [det(M)z].

44

• For any finite group G, the (left) regular representation is the |G|-dimensional represen-
tation on the vector space V = {|g〉}g∈G which assigns to each g ∈ G the permutation
matrix µ(g) acting as µ(g) |h〉 = |gh〉 for each g, h ∈ G.

• For the group {−1, 1}n, where the group operation is defined as component-wise mul-
tiplication, there is a one-dimensional representation for each subset S ⊆ [n] given by
µ(x) = [χS(x)], where χS(x) :=

∏
i∈S xi.

Save for the last example, these representations play an important role in the representation
theory of S(n) and GLd.

The two most important representations for us are given in the following definition.

Definition 2.1.2. The groups S(n) and GLd each have a natural action on the space
(Cd)⊗n; the associated representations P and Q (respectively) are defined on the standard
basis vectors |a1〉 ⊗ |a2〉 ⊗ · · · |an〉 (for ai ∈ [d]) via

P(π) |a1〉 ⊗ |a2〉 ⊗ · · · ⊗ |an〉 = |aπ−1(1)〉 ⊗ |aπ−1(2)〉 ⊗ · · · ⊗ |aπ−1(n)〉 ,
Q(M) |a1〉 ⊗ |a2〉 ⊗ · · · ⊗ |an〉 = (M |a1〉)⊗ (M |a2〉)⊗ · · · ⊗ (M |an〉).

The representations are then extended to all of (Cd)⊗n by linearity.

The relationship between these two representations is the subject of Schur-Weyl duality
(Section 2.5).

2.1.1 Decomposing representations

Given a representation, there are a variety of ways of generating new representations. We
summarize two of these below.

Definition 2.1.3. If µ is a representation acting on a vector space V , then MµM−1 is also a
representation acting on V , for any invertible matrix M ∈ GLV . Two representations µ1 and
µ2 are said to be isomorphic if there is some invertible matrix M such that Mµ1M

−1 = µ2.
In this case we write µ1

∼= µ2.

Definition 2.1.4. The direct sum of k representations (µ1, V1), . . . , (µk, Vk) produces the
representation (µ, V = V1 ⊕ · · · ⊕ Vk) given by block-diagonal matrices:

µ(g) :=

µ1(g) 0 · · · 0

0 µ2(g) · · · 0
...

...
. . .

...
0 0 · · · µk(g)

for all g ∈ G. Equivalently, we may write

µ(g) :=
k∑
i=1

|i〉〈i| ⊗ µi(g).

45

We will also write µ = µ1 ⊕ . . . ⊕ µk to denote that µ is the direct sum of µ1, . . . , µk. In
general, each µi may appear multiple (say, mi) times in the decomposition of µ, which we
write as

µ =
k⊕
i=1

mi · µi :=
k⊕
i=1

mi⊕
j=1

µi.

We will refer to mi as µi’s multiplicity. Finally, if the µ’s and µi’s are understood from
context, we may also write this as

V
G∼=

k⊕
i=1

mi · Vi,

whereG is the group being represented. (We may also choose to omitG from this expression.)
A representation µ is decomposable if µ ∼= µ1 ⊕ µ2, where µ1, µ2 are representations of
dimension at least one. Otherwise, µ is indecomposable.

A decomposable representation divides the vector space into two orthogonal subspaces
on which the representation acts independently.

Definition 2.1.5. If (µ, V) is a representation of G, then an invariant subspace is a subspace
U ⊆ V such that µ(g)U = U for all g ∈ G. An invariant subspace is trivial if it is either ∅
or V . We say that µ is reducible if it has a nontrivial invariant subspace. Otherwise, it is
irreducible. For brevity, we will often refer to an irreducible representation as an irrep.

Irreducible representations are analogous to prime factors in the world of representation
theory. Given a representation of a group, standard tasks involve (i) determining if it is
irreducible and (ii) if not, determining how it decomposes as the direct sum of irreducible
representations.

Examples:

• The trivial, sign, and determinant representations are trivially irreducible because they
are one-dimensional.

• The standard representation is irreducible, because for any two vectors |v1〉 , |v2〉 there
is an invertible matrix M such that M |v1〉 = |v2〉.

• The regular representation is reducible (if |G| ≥ 2). This because for every g ∈ G,
µ(g) is a permutation matrix, and so it fixes the vector

∑
g∈G |g〉.

• Consider the subspace of (Cd)⊗n spanned by vectors of the form |v〉 ⊗ · · · ⊗ |v〉. When
n = 1, this is all of (Cd)⊗n, but for larger n this is a nontrivial subspace known as the
symmetric subspace. The symmetric subspace is an invariant subspace of P and Q, and
so these representations are reducible when n > 1. That it is an invariant subspace for
both representations is a manifestation of Schur-Weyl duality (Section 2.5).

46

Note that if a representation is decomposable, then it is reducible, but the reverse is not true
in general. For example, the representation µ of the group C under addition given by

µ(z) =

[
1 z
0 1

]
has span{e1} as an invariant subspace, and hence is reducible, but µ(1) is not diagonalizable,
and hence µ is not decomposable.

Given that not every reducible representation is decomposable, we would like to know
simple conditions that guarantee complete reducibility, meaning that the representation can
be decomposed into a direct sum of irreducibles. One such condition is that the representa-
tion always be a unitary matrix.

Definition 2.1.6. A unitary representation of a group G is a representation of the form µ :
G→ U(d).

Any unitary representation µ is completely reducible, because if V is a nontrivial invariant
subspace then so is V ⊥. This decomposes µ as µ = µ1 ⊕ µ2, where µ1, µ2 are unitary
subrepresentations, and one can recursively apply this argument until the subrepresentations
have no nontrivial subspaces, and hence are irreducible. The question now becomes for which
groups can we guarantee unitary representations, and this question is answered for two of
our favorite groups in the following.

Theorem 2.1.7. If G is a finite group or a unitary group (i.e. U(d) for some d) then
every representation of G is isomorphic to a unitary representation. As a result, every
representation of G is completely reducible.

One consequence is that we may always assume that the irreps of such a G are unitary. The
case of finite G is known as Maschke’s Theorem and can be found in [Ste11]. The argument
for unitary groups is similar and can be found in [Hal15, Proposition 4.36]. Finite groups
have other nice properties, such as the following.

Theorem 2.1.8. If G is a finite group, then the set of all irreps (up to isomorphism), which

we denote by Ĝ, is finite.

Note that if two representations µ1 and µ2 are isomorphic, then this implies that they
have an intertwining operator, a matrix T such that Tµ1 = µ2T .

Lemma 2.1.9 (Schur’s lemma). Suppose µ1 and µ2 are irreducible representations of a
group G which have an intertwining operator T . Then either T is invertible (in which case
µ1
∼= µ2) or T = 0. Furthermore, if µ1 = µ2, then T = λI with λ ∈ C.

Schur’s lemma has a variety of useful consequences, e.g.:

Corollary 2.1.10. Suppose µ1 and µ2 are isomorphic unitary representations. Then they
are related by a unitary change of basis, i.e. a unitary matrix U such that Uµ1U

† = µ2.

47

Proof. Because µ1 and µ2 are isomorphic, they have a nonzero intertwining operator T
satisfying

Tµ1 = µ2T. (2.1)

Furthermore, for any element g ∈ G,

µ1(g)T † = (Tµ1(g)†)† = (Tµ1(g−1))† = (µ2(g−1)T)† = (µ2(g)†T)† = T †µ2(g), (2.2)

where the second and fourth equalities use that µ1 and µ2 are unitary. Together, (2.1)
and (2.2) imply that

µ1T
†T = T †µ2T = T †Tµ1,

meaning that T †T is an intertwining operator of µ1 with itself. By Schur’s lemma, T †T = λI
for some nonzero λ, and so T/

√
λ is a unitary matrix which gives a unitary change of basis

between µ1 and µ2.

If µ is a unitary representation of a finite or unitary group, then it is isomorphic to a direct
sum of unitary irreps. Since a direct sum of unitary matrices is unitary, this corollary gives
a unitary change-of-basis between the original representation and the direct sum. This is
useful for us as unitary rotations are exactly the operations allowed on a quantum computer.

A final way of combining representations involves two representations of different groups.

Definition 2.1.11. Let µ1 be a representation of the group G1 and µ2 be a representation of
the group G2. Then the tensor product of µ1 and µ2, denoted µ1 ⊗ µ2, is the representation
defined by

(µ1 ⊗ µ2) (g, h) := (µ1(g))⊗ (µ2(h)),

where the right-hand side uses the ordinary matrix tensor product. We have dim(µ1⊗µ2) =
dim(µ1) · dim(µ2).

2.1.2 The regular representation

One of the most basic representations of any finite group is the regular representation. It
has the following decomposition into irreps.

Theorem 2.1.12. Let G be a finite group and let µreg be its regular representation. Then

µreg
∼=
⊕
µ∈Ĝ

dim(µ) · µ.

As the dimension of the representation on the left is |G| and the dimension of the repre-
sentation on the right is

∑
µ∈Ĝ dim(µ)2, we can conclude that∑

µ∈Ĝ

dim(µ)2 = |G|. (2.3)

This equality induces a natural probability distribution on the set of irreps.

Definition 2.1.13. For a finite group G, the Plancherel distribution is the probability dis-
tribution on irreps in which µ ∈ Ĝ has probability (dimµ)2/|G|.

48

The Plancherel distribution plays a central role in this work.

Given the appealing form of Equation (2.3), it is natural to ask for an interpretation of

the matrix elements of the irreps µ ∈ Ĝ as counting objects in some set of size |G|. As it
turns out, there is such an interpretation in terms of functions f : G→ C under the following
inner product.

Definition 2.1.14. Let f, g : G→ C. Then we define the inner product 〈 , 〉 as

〈f, g〉 := E
h∼G

[f(h)g(h)],

where h ∼ G is a uniformly random element of G.

The Schur orthogonality relations say that if we consider the matrix entries µij of the irreps as
functions µij : G→ C, then these functions form an orthonormal basis (up to normalization)
for the set of functions with domain G.

Theorem 2.1.15 (Schur orthogonality relations). Let µ and σ be nonisomorphic unitary
irreps of a finite group G. Then for any i, j ∈ [dim(µ)] and k, ` ∈ [dim(σ)],

1. 〈µij, σk`〉 = 0,

2. 〈µij, µk`〉 =

{
1/ dim(µ) if i = k and j = `,

0 otherwise.

Combined with (2.3), the matrix elements of
√
dµ · µ, for µ ∈ Ĝ, give an orthonormal basis

of functions f : G→ C.

One consequence of the orthogonality relations is Theorem 2.1.8 above, that there is only a
finite number of nonisomorphic irreps of a finite group.

2.1.3 Characters

Definition 2.1.16. If µ is a representation of a group G, then its character is the function
χµ : G→ C given by χµ(g) = tr(µ(g)) for each g ∈ G.

Recall that a conjugacy class of a group is an equivalence class of the group under the
equivalence relation g1 ∼ g2 iff hg1h

−1 = g2 for some h ∈ G. By the cyclic property of matrix
trace, a character χµ of a representation is constant on the conjugacy classes of G.

Definition 2.1.17. A class function f : G → C is any function which is constant on the
conjugacy classes of G.

Thus, χµ is a class function.

49

Examples:

• If µ is a representation, then µ(e) · µ(e) = µ(e2) = µ(e), and so µ(e) is a projection
matrix. Furthermore, by definition, µ is invertible. As a result, µ(e) is the identity
matrix, in which case

χµ(e) = dim(µ). (2.4)

• For the one-dimensional representations (trivial, sign, etc.), the character is the value
of the matrix entry.

• If µ is the standard representation, then χµ(M) = tr(M) for all M .

• If µ is the regular representation, then

χµ(e) = |G| and χµ(g) = 0 for all e 6= g ∈ G. (2.5)

The first equality is trivial. The second uses gh = h iff g = e.

• The (a1, . . . , an)-th diagonal entry of P(π) is one iff aπ(i) = ai for all i ∈ [n] and is zero
otherwise. There is such a nonzero diagonal entry for each way of assigning a number
in [d] to each cycle of π. As a result,

χP(π) = d`(π),

where `(π) denotes the number of cycles in π.

• For a matrix M ∈ GLd, Q(M) acts on (Cd)⊗n as M⊗n. Hence,

χQ(M) = tr(M⊗n) = tr(M)n.

It is easy to check that these are all examples of class functions.
By the cyclic property of matrix trace, isomorphic representations have equivalent char-

acters. On the other hand, nonisormorphic irreducible representations have orthogonal char-
acters.

Theorem 2.1.18 (Character orthogonality relations). Let µ and σ be irreps of a finite
group G. Then

〈χµ, χσ〉 =

{
1 if µ ∼= σ,
0 otherwise.

Proof. Because isomorphic representations have equivalent characters, we may assume that µ
and σ are unitary irreps. By the definition of trace,

χµ =

dim(µ)∑
i=1

µi,i. and χσ =

dim(µ)∑
i=1

σi,i

By the Schur orthogonality relations, these functions have inner product zero unless µ ∼= σ,
in which case their inner product is dim(µ)/ dim(µ) = 1.

50

In fact, not only do the χµ functions form an orthonormal set, but they also form a basis.

Theorem 2.1.19. If G is a finite group, then the functions χµ for µ ∈ Ĝ form an orthonor-
mal basis for the set of class functions on G. As a corollary, the number of nonisomorphic
irreps of G is equal to the number of conjugacy classes of G.

If a representation µred of a group G is completely reducible, then it can be written as
µred

∼=
⊕

µ∈Ĝmµ · µ, for some multiplicities mµ. To find these multiplicities, it suffices to
note that

χµred =
∑
µ∈Ĝ

mµχµ.

Then, by Theorem 2.1.18, we have the equality mµ = 〈µred, µ〉. For example, we can use this
to prove Theorem 2.1.12.

Proof of Theorem 2.1.12. For an irrep µ ∈ Ĝ, we can calculate its multiplicity as

E
g∼G

χµreg(g)χµ(g) =
1

|G|
χµreg(e)χµ(e) = dim(µ),

where the first equality used Equation (2.5) for χµreg and (2.4) for χµ.

We now recall some basics of Fourier analysis over an arbitrary finite group G (though
we will ultimately only need the case G = S(n)). For general f, g : G → C we define
(f ∗ g)(u) = Ev∼G[f(v)g(v−1u)]; this includes a nonstandard normalization by 1

|G| . For a

class function f and µ ∈ Ĝ we employ the following “Fourier notation”: f̃(µ) = 〈f, χµ〉.
(According to standard notation we would have f̃(µ) = 1

|G|tr
(
f̂
)

). Then Fourier inversion

is simply f =
∑

µ f̃(µ)χµ. Further, if g is another class function we have the formula

f̃ ∗ g(µ) = 1
dimµ

f̃(µ)g̃(µ).

2.1.4 Branching rules

Given a representaton µ of a group G and a subgroup H ⊆ G, µ also trivially serves as a
representation of H. When viewed in this way, we use the following notation.

Definition 2.1.20. Given a representation µ of a group G and a subgroup H ⊆ G, µ↓H
denotes µ viewed as a representation of H.

Even if µ is an irreducible representation of G, it may not be an irreducible representation
of H. For example, if µ is a representation of a group G with identity element e, then we
have seen (Section 2.1.3) that µ(e) is the dim(µ)-dimensional identity matrix. On the other
hand, the trivial group {e} is a subgroup of G, and its only irreducible representation is the
trivial representation. Together these mean that

µ↓{e} = (dimµ) · µtriv,

by which we mean that µtriv appears with multiplicity dimµ.
In general, we are interested in how a representation of G, when restricted to the sub-

group H, decomposes into a direct sum of irreps for H.

51

Definition 2.1.21. Given a representation µ of a group G and a subgroup H ⊆ G, a
branching rule is a statement of the form

µ↓H ∼=
k⊕
i=1

mi · µi,

where the µi’s are irreps of H. In the case when the mi’s are all one (or zero), we say that
the branching rule is multiplicity free.

We will see examples of branching rules in Sections 2.3.2 and 2.4.2.

2.2 Partitions and Young diagrams

Definition 2.2.1. A partition of n ≥ 1, denoted λ ` n, is a list of nonnegative integers
λ = (λ1, λ2, . . . , λk) satisfying λ1 ≥ λ2 ≥ . . . ≥ λk and λ1 + λ2 + . . .+ λk = n.

Notation 2.2.2. We will use the following notation.

• The length of the partition, denoted `(λ), is the number of nonzero λi’s in λ.

• The partition’s size is n, and is also written as |λ|.

• Two partitions are considered to be equivalent if they only differ in trailing zeros. For
example, (4, 2) and (4, 2, 0, 0) are equivalent.

• We write Par to denote the set of all partitions, of any size.

• For w ∈ N+ we will use the notation mw(λ) to denote the number of parts i with
λi = w.

Finally, at one point we will require the fairly elementary fact (see e.g. [Rom14, (1.15)])
that the number of partitions of n is 2O(

√
n) (much more precise asymptotics are known [HR18]).

2.2.1 Young diagrams

It is standard to represent a partition λ ` n pictorially with a Young diagram; i.e., a certain
arrangement of n squares, called cells or boxes. There are several conventions for how to
draw Young diagrams: we will define the English notation, the French notation, the Russian
notation, and the Maya notation.

• In the English notation, the Young diagram for λ = (λ1, . . . , λk) is drawn with left-
justified rows of cells: λ1 cells in the top row, λ2 cells beneath this, λ3 cells beneath this,
etc. As an example, the English notation for (6, 4, 4, 3, 3) is pictured in Figure 2.1a.

• The French notation is the reflection English notation across the horizontal axis. The
French notation for (6, 4, 4, 3, 3) is pictured in Figure 2.1b. We think of the French
diagram as consisting of unit squares sitting in R2

+, with the bottom-left corner at the
origin.

52

(a) English notation. (b) French notation.

Figure 2.1: Two ways of drawing the partition λ = (6, 4, 4, 3, 3).

Figure 2.2: The Russian and Maya diagrams for the partition λ = (6, 4, 4, 3, 3). The Russian
diagram is given by the dashed lines while the Maya diagram is given by the pebbles. The
function λ : R → R is given by the thick black line and tends towards infinity in both
directions.

Definition 2.2.3. Given the English and French notations, it’s natural to define the width
of λ as λ1, and to refer to `(λ) as its height. We can also define the conjugate partition
of λ to be the partition λ′ ` n obtained by reflecting the French diagram through the line
y = x; i.e., exchanging rows and columns. For example, the conjugate of λ = (6, 4, 4, 3, 3) is
λ′ = (5, 5, 5, 3, 1, 1). Note that the height of λ is the width of λ′, and vice versa; in particular,
we sometimes prefer the notation λ′1 to `(λ).

• The Russian notation is obtained from the French notation by first rotating the dia-
gram 45◦ counterclockwise about the origin, and then dilating by a factor of

√
2; see

Figure 2.2. The purpose of the dilation is so that the corners of the boxes will have
integer x- and y-coordinates. The purpose of the rotation is so that conjugation corre-
sponds to reflection in the y-axis and so that the boundary of the diagram forms the
graph of a function:

Definition 2.2.4. Given a partition λ drawn in Russian notation, its upper boundary forms
the graph of a function with domain [−λ′1, λ1] ⊆ R. We extend this function to have domain
all of R according to the function x 7→ |x|. We will use the notation λ : R → R+ for this

53

function, which we remark is a continuous and piecewise linear curve. Any time we write
λ(x), where λ is a partition and x ∈ R, we are referring to this curve. See Figure 2.2 for an
example.

• Finally, we define the Maya notation. It contains no boxes; just a sequence of black
and white pebbles. However the Maya notation is typically drawn in conjunction with
the Russian notation, with the pebbles being located on the half-integer points Z + 1

2

of the x-axis. In the Maya notation, a black pebble is placed at all points directly
below a “downward-sloping” segment in λ’s graph, and a white pebble is placed at
all points directly below an “upward-sloping” segment. (Thus all sufficiently negative
half-integer points have a black pebble and all sufficiently positive half-integer points
have a white pebble.) The notation also includes a vertical tick mark to denote the
location of the origin. A picture of the Russian and Maya notation for λ = (6, 4, 4, 3, 3)
appears in Figure 2.2. One can check that the sequence of pebbles uniquely identifies
the partition λ. It also uniquely determines the position of the origin mark, in that
the number of black pebbles to the right of the origin mark always equals the number
of white pebbles to the left of the origin mark. These numbers are both equal to d(λ),
defined to be the number of cells touching the y-axis in the Russian diagram. We make
one more definition:

Definition 2.2.5. Given the Maya diagram of a partition λ, we may define its modified
Frobenius coordinates to be the half-integer values a∗1 > a∗2 > · · · a∗d > 0 and b∗1 > b∗2 > · · · >
b∗d > 0 (for d = d(λ)), where a∗i is the position of the i-th rightmost black pebble and b∗i is the
negative of the position of the i-th leftmost white pebble. One may check that, equivalently,
a∗i = λi − i + 1

2
and b∗i = λ′i − i + 1

2
. For example, if λ = (6, 4, 4, 3, 3), then a∗ = (11

2
, 5

2
, 3

2
)

and b∗ = (9
2
, 7

2
, 5

2
). The coordinates have the property that

∑
i(a
∗
i + b∗i) = |λ|.

Definition 2.2.6. For a partition λ (drawn either in the English, French, or Russian nota-
tion), we often use the symbol “�” to denote a box in λ’s Young diagram. In addition, we
will use the following related pieces of notation.

• We write [λ] for the set of all boxes in the diagram.

• Each box � ∈ [λ] is indexed by an ordered pair (i, j), where i is �’s row and j is �’s
column in the English notation, counting rows from top-to-bottom and columns from
left-to-right.

• We define the content of cell � to be c(�) := j− i. Note that in the Russian diagram,
the content of � is the x-coordinate of its center.

• We also define the hook length h(�) of � via the French notation: it is the number of
cells directly to the right or above �, including � itself; equivalently, it is (λi − j) +
(λ′j − i) + 1.

Definition 2.2.7. Having defined “content” for cells in a Young diagram, we may introduce
some convenient notation (essentially from [OO98b]) that generalizes the standard notions

54

of “falling factorial power” and “rising factorial power”. First, for z ∈ R and m ∈ N, recall
the falling factorial power 1

z↓m := z(z − 1)(z − 2) · · · (z −m+ 1)

and rising factorial power

z↑m := z(z + 1)(z + 2) · · · (z +m− 1).

We generalize this notation to the case of an arbitrary partition λ ` m:

z↓λ :=
∏
�∈[λ]

(z − c(�)) and z↑λ :=
∏
�∈[λ]

(z + c(�)).

Definition 2.2.8. Given Young diagrams µ ` n − 1 and λ ` n, we write µ ↗ λ if λ is a
Young diagram formed by adding a box to the end of a row of µ. In other words, λi = µi + 1
for some i and λj = µj for all j 6= i. Similarly, if µ and λ are Young diagrams with |µ| ≤ |λ|,
we write µ - λ if λ is a Young diagram formed by adding some number of boxes to each row
of µ such that no two of the newly added boxes are in the same column. In other words, if
µ has height d then

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λd ≥ µd ≥ λd+1.

2.2.2 Young tableaus

Definition 2.2.9. Let A be an alphabet ; i.e., a totally ordered set. Most often we consider
A = [d]. A word is a finite sequence (a1, . . . , an) of elements from A. It is weakly increasing
if a1 ≤ a2 ≤ · · · ≤ an and strongly (or strictly) increasing if a1 < a2 < · · · < an. For
simplicity, we will often refer to a sequence as increasing if it is weakly increasing. If D is a
probability distribution on A we write D⊗n to denote the probability distribution on words
of length n given by drawing the letters independently from D.

Definition 2.2.10. Given a word a ∈ [d]n, there is an associated partition λ ` n of length
at most d called the sorted type (or histogram). It is defined as follows: λi is the fre-
quency of the i-th-most frequent letter in a, for 1 ≤ i ≤ d. In other words, λ is the
histogram of letter frequencies, sorted into nonincreasing order. For example, the sorted
type of (4, 1, 3, 4, 4, 4, 1, 4) ∈ [4]8 is (5, 2, 1, 0) ` 8.

Definition 2.2.11. Let λ ` n, and think of its Young diagram in the English notation. If
each cell is filled with an element from some alphabet A, we call the result a Young tableau
of shape λ. The Young tableau is said to be semistandard if its entries are weakly increasing
from left-to-right along rows and are strongly increasing from top-to-bottom along columns.
If the rows are in fact strongly increasing, the Young tableau is called standard. Figure 2.3a
gives an example of a standard tableau, and Figure 2.3b gives an example of a semistandard
tableau. As shorthand, we sometimes write SYT for “standard Young tableau” and SSYT
for “semistandard Young tableau”.

1Or Pochhammer symbol, sometimes denoted (z)m or zm.

55

1 5 6 10 14

12 13

15 17 18

16 19 20

2

43 9 11

7 8

(a) A standard tableau.

1 1 2 3 3

4 5

5 6 6

6 7 8

1

22 3 3

3 3

(b) A semistandard tableau
with alphabet [8].

Figure 2.3: Two Young tableaus of shape λ = (6, 4, 4, 3, 3).

Definition 2.2.12. For reasons we will see in Section 2.3.2, the number of standard Young
tableaus of shape λ ` n over alphabet [n] is denoted dim(λ). It can be computed via the Hook-
Length Formula of Frame, Robinson, and Thrall [FRT54] (see also [Sag01, Theorem 3.10.2]):

dim(λ) =
n!∏

�∈[λ] h(�)
.

Definition 2.2.13. For reasons we will see in Section 2.4.2, the number of semistandard
Young tableaus of shape λ ` n over alphabet [d] is denoted dim(Vd

λ). It can be computed as

dim(Vd
λ) =

(dimλ)d↑λ

|λ|!
=

∏
1≤i<j≤d

(λi − λj) + (j − i)
j − i

.

The first expression is by combining Definition (2.2.12) with [Sta99, Corollary 7.21.4], and
the second expression is the Weyl dimension formula [GW09, Equation (7.18)].

2.3 The irreducible representations of the symmetric

group

In this section, we will introduce the representation theory of the symmetric group. Proofs
of any results in this section can be found in [Sag01].

Our main goal will be to understand the irreducible representations of the symmetric
group. To begin, we would like to determine the number of irreps of S(n); by Theorem 2.1.19
this is equal to the number of conjugacy classes of S(n). The conjugacy class of a permutation
π ∈ S(n) is determined by its cycle type, connecting representation theory to partitions.

Definition 2.3.1. We say that π ∈ S(n) has cycle type λ = (λ1, . . . , λk) ` n if π is the
product of disjoint cycles of size λ1, λ2, . . . , λk. (Note that π’s length-1 cycles are included.)

Two permutations π1, π2 are conjugate iff there is another permutation σ such that
σπ1σ

−1 = π2, and it can be checked that such a σ exists iff π1 and π2 have the same cycle
type. As a result, the irreducible representations of S(n) are in one-to-one correspondence
with partitions λ ` n, and in fact there is a canonical way of associating the two sets.

56

Theorem 2.3.2. The irreducible representations of S(n) are indexed by partitions λ ` n.
We will write κλ for the irrep indexed by λ and Spλ for the Specht module, the vector space
κλ acts on. We will often abbreviate the character χκλ as χλ. We remark that χλ is known
to take on only rational values; in particular, χλ = χλ.

In Section 2.3.1 below, we will show a natural way to associate the irreps of S(n) with
the partitions λ ` n. First, let us establish some notation.

Notation 2.3.3. We will use the following notation.

• If π has cycle type λ, then it is standard to write this as ρ(π) = λ. However we will
use this notation extremely sparingly (and with warning) so as to preserve the symbol
“ρ” for density matrices.

• To prevent using this notation, we adopt the following convention: whenever a per-
mutation π appears in a place where a partition λ is expected, the meaning is that λ
should be the cycle type of π.

• We also use the following standard notation:

zλ :=
∏
w≥1

(wmw(λ) ·mw(λ)!).

When λ ` n, the quantity n!/zλ is the number of permutations in S(n) of cycle type λ,
so z−1

λ represents the probability that a uniformly random permutation in S(n) has
cycle type λ.

2.3.1 James submodule theorem

The James submodule theorem refers to a particular construction of the irreducible repre-
sentations of the symmetric group in which partitions λ arise naturally. We will heavily
follow the excellent exposition given in [HGG09], where these ideas are used for performing
machine learning over permutations. For proofs, see [Sag01, Chapter 2].

Given a permutation π ∈ S(n), the λ-representation constructed in the James submodule
theorem provide “statistics of shape λ” about π. As an example, given a permutation π ∈
S(6), the following is an example of a statistic of shape (5, 1).

Does π

{
1 3 4 5 6
2

}
=

{
1 2 4 5 6
3

}
? (2.6)

This should be interpreted as asking whether π maps the set {1, 3, 4, 5, 6} to the set {1, 2, 4, 5, 6}
and the set {2} to {3}. In other words, does π(2) = 3? If one were to ask this question
for every pair T1, T2 of Young tableaus of shape (5, 1), then one could recover the entire
permutation π. However, receiving the answer to just a single question of this form gives
very little information about π.

As a more interesting example, the following is an example of a statistic of shape (3, 2, 1).

Does π

 1 3 5
4 6
2

 =

 4 5 6
1 2
3

 ?

57

In other words, does π map {1, 3, 5} to {4, 5, 6}, {4, 6} to {1, 2}, and {2} to {3}? This statistic
provides strictly more information about π than the (5, 1)-statistic from Equation (2.6). In
general, we will think of “top-heavy” statistics as giving less information about π, where we
think of λ as being more top-heavy than µ if λ� µ. As examples, the answer to a statistic
of type (n) is always “yes”, and therefore reveals no information about π, whereas a “yes”
answer to a statistic of type (1n) will determine π completely.

Let us formalize the λ-statistics as follows.

Definition 2.3.4. Let T1, T2 be n-box Young tableaus of the same shape which contain
each number in [n] exactly once. We call T1 and T2 row equivalent if the i-th rows of T1

and T2 contain the same set of numbers, for each i. A Young tabloid {T} denotes the
equivalence class corresponding to T under this equivalence relation. In other words, a
Young tabloid of shape λ is equivalent to a method of partitioning the numbers in [n] into
sets of size λ1, λ2, . . . and assigning the sets to the corresponding rows of λ. Finally, given a
permutation π ∈ S(n), we define the operation π{T} as applying π to each of these sets in
the natural manner. Equivalently, π{T} = {πT}, where πT is the Young tableau resulting
from applying π box-by-box to T .

Definition 2.3.5. The permutation representation corresponding to a Young diagram λ ` n
is the representation τλ of S(n) with a row and a column for each Young tabloid {T} of
shape λ defined as

(τλ(π)){T1},{T2} =

{
1 if π{T2} = {T1},
0 otherwise.

for each permutation π ∈ S(n).

Examples:

• When λ = (n), τλ is isomorphic to the trivial representation.

• When λ = (n− 1, 1), τλ is isomorphic to µ, the dimension-n representation defined as

µ(π)i,j =

{
1 if π(j) = i,
0 otherwise.

• When λ = (1n), τλ is isomorphic to the regular representation.

Unfortunately, the permutation representations do not form a set of irreps for S(n):
for example, as we have seen before, when n > 1 the regular representation, and hence
τ(1n), is reducible. More generally, τλ is a permutation matrix, and so it fixes the vector∑

tabloids {T} |{T}〉. As a result, except in the case of λ = (n), τλ is reducible. However,
the James submodule theorem states that τλ is in fact isomorphic to κλ, so long as one first
removes the “top-heavy irreps” from it.

Theorem 2.3.6 (James submodule theorem). There are numbers Kλµ for partitions λ, µ ` n
called the Kostka numbers such that

τλ ∼=
⊕
µ`n

Kλµκµ.

58

The Kostka numbers satisfy: (i) Kλλ = 1 and (ii) Kλµ 6= 0 iff µ � λ. (In fact, Kλµ has a
combinatorial interpretation as the number of Young tableaus of shape λ and sorted type µ.)2

This gives a somewhat implicit definition of the irreps of S(n). One can also explicitly
construct κλ and the subspace of the permutation representation that it acts on, and the
result is the Specht module; see [Sag01, Chapter 2.3] for details.

Examples

• When λ = (n), κλ is the trivial representation.

• When λ = (1n), κλ is the determinant representation.

2.3.2 Young’s orthogonal basis

In this section, we will give an explicit basis for each irrep of the symmetric group which re-
sults from the branching rule (see Section 2.1.4) for the symmetric group. For this branching
rule, we will consider embedding the group S(n − 1) into S(n) by mapping π ∈ S(n − 1)
to (π, n). Under this mapping, S(n− 1) becomes a subgroup of S(n).

Theorem 2.3.7. Consider π ∈ S(n − 1) embedded into S(n) through the mapping π 7→
(π, n). Given a partition λ ` n, the branching rule for κλ restricted to S(n− 1) is

κλ↓S(n−1)
∼=

⊕
µ`n−1

s.t. µ↗λ

κµ.

Note that it is multiplicity-free.

If we recursively apply the branching rule to S(n− 1),S(n− 2), . . ., we get that

κλ↓S(0)
∼=

⊕
λ(n−1)↗λ

⊕
λ(n−2)↗λ(n−1)

· · ·
⊕

λ(0)↗λ(1)
κλ(0) . (2.7)

Note that S(0) is a trivial group, and hence κλ(0) is the dimension-one trivial representation.
As a result, the vector space Spλ, when restricted to S(0), decomposes into dimension-one
subspaces, one corresponding to each chain

∅ = λ(0) ↗ λ(1) ↗ · · · ↗ λ(n) = λ. (2.8)

There is a one-to-one correspondence between chains of this form and standard tableaus T
of shape λ. As an example, the chain in (2.8) corresponds to the tableau T which has an
“i” in the cell λ(i) \ λ(i−1), for each i ∈ [n].

Definition 2.3.8. Given λ ` n, the Young orthogonal basis for Spλ has a unit vector |T 〉
for each standard tableau T of shape λ associated with the corresponding dimension-one
subspace in (2.7).

We note that this definition uniquely specifies each basis vector |T 〉 up to phase. The most
important consequence for us is the following corollary, which explains the notation dimλ.

Corollary 2.3.9. The dimension of κλ is dim(λ). As a result, we will henceforth abbreviate
dim(κλ) as dim(λ).

2We note, incidentally, that the Kostka numbers are #P-complete to compute [Nar06].

59

2.4 The irreducible representations of the unitary and

general linear groups

In this section, we will introduce the representation theory of the general linear and unitary
groups. Proofs of any results in this section can be found in [GW09]. We will limit ourselves
to studying polynomial representations of these groups.

Definition 2.4.1. A polynomial representation (µ, V) of U(d) is one in which the mapping
U 7→ µ(U) is polynomial, meaning that every matrix entry µ(U)ij is a polynomial in the
matrix entries of U . One can similarly define the polynomial representations of GLd.

An example of a non-polynomial representation of GLd is the representation given by
µz(M) := [det(M)z] for negative z ∈ Z. This is a rational representation.

Theorem 2.4.2. The polynomial irreps of U(d) are indexed by partitions λ of height at
most d. We will write them as (πλ,V

d
λ), where Vd

λ is a vector space known as the Weyl
module. (Throughout this thesis, π will also be used for permutations, but it will always be
clear from context which of the two is intended.)

Theorem 2.4.3. Because πλ is a polynomial irrep of U(d), it is well-defined for any d × d
matrix. In this way, the polynomial irreps U(d) extend to form the polynomial irreps of GLd.

(See [Har05, Chapter 6] or [Wal14, Section 2.1] to see this point discussed further.)
As in the case of the representation theory of the symmetric group, in the representation

theory of GLd (and U(d)) it helps to first understand the conjugacy classes of GLd. For
simplicity, let us restrict our attention to the set of d× d invertible, diagonalizable matrices
Diag ⊆ GLd. (We note that Diag is dense in GLd and hence the behavior of any continuous
representation of GLd is uniquely determined by its behavior on Diag.) Two diagonalizable
matrices D1, D2 ∈ Diag are conjugates of each other (with respect to GLd) iff they are similar
to each other, and for two diagonalizable matrices this is equivalent to them having the same
set of d eigenvalues. As a result, the conjugacy classes of Diag (with respect to GLd) are in
one-to-one correspondence with the possible multisets of d eigenvalues {α1, . . . , αd}.

From this, we can draw the following conclusions:

• For a matrix D ∈ Diag, the character χπλ(D) should only depend on D’s eigenvalues.
This is because D’s conjugacy class depends only on its eigenvalues.

• If D has eigenvalues α1, . . . , αd, then χπλ(D) should be a polynomial in the αi’s, i.e.

χπλ(D) = sλ(α1, . . . , αd),

for some d-variate polynomial sλ. This clearly holds for any diagonal matrix D, because
(i) D’s eigenvalues are on its diagonal, (ii) πλ is a polynomial irrep, so its matrix entries
are all polynomials in D’s matrix entries, and (iii) χπλ(D) is just the sum of the diagonal
entries of πλ(D). For more general matrices in Diag, this holds because they are all
similar to diagonal matrices.

60

• The polynomial sλ(α1, . . . , αd) should be symmetric. This is because there is no intrin-
stic ordering to a matrix’s eigenvalues. (Equivalently, given a diagonal matrix D, one
can arbitrarily permute the diagonal entries to form a similar matrix, which should
have the same character value.)

• When varying λ over all partitions of height at most d, the sλ polynomials should form
a basis for the set of symmetric polynomials on d variables. (Though we have not
shown a formal justification for this, an analogous statement holds in the finite group
case (Theorem 2.1.19), and it is natural to hope that it might hold here too.)

It is not immediately clear why it should be natural to index a basis for the set of sym-
metric polynomials on d variables with Young diagrams of height at most d. In Section 2.4.1,
we will show that this is indeed natural, and we will show that the sλ polynomials are the
Schur polynomials.

2.4.1 Symmetric polynomials

Definition 2.4.4. A d-variate polynomial p : Cd → C is symmetric if p(xπ) = p(x) for every
x ∈ Cd, π ∈ S(d), where xπ := (xπ(1), . . . , xπ(d)).

The study of symmetric polynomials is a large field; see [Mac95] and [Sta99, Chapter 7]
for standard references. The most basic symmetric polynomials are indexed by natural
numbers.

Examples

• Form ∈ N, them-th elementary symmetric polynomial is em(x) =
∑

i1<···<im xi1 · · ·xim .

• For m ∈ N, the m-th power sum symmetric polynomial is pm(x) =
∑d

i=1 x
m
i .

More generally, it is useful to index symmetric polynomials by partitions corresponding to
the types of the monomials in the polynomials.

• For λ a partition, say that a monomial xa11 · · ·x
ad
d has type λ if the nonzero ai’s are

some permutation of λ. Then the monomial symmetric function mλ(x) is the sum over
all distinct monomials in the xi’s with type λ. For example, the monomial symmetric
function corresponding to λ = (2, 2, 1) in the case of d = 3 is

m(2,2,1)(x1, x2, x3) = x2
1x

2
2x3 + x2

1x2x
2
3 + x1x

2
2x

2
3.

• For λ a partition, we define eλ(x) :=
∏`(λ)

i=1 eλi(x), and similarly for pλ(x).

Any symmetric polynomial will give the same coefficient to each monomial of the same type.
Hence, the monomial symmetric functions form a linear basis for the set of all d-variate
symmetric polynomials. It can be checked that the eλ’s and pλ’s also form a linear basis this
set. For example, we have that

eλ(x) = mλ(x) + {linear combination of mµ(x)’s with µ� λ} ,

and so the fact that the eλ’s form a linear basis can be proved by induction.
For us, the most important set of polynomials are the following.

61

i i i i+1

i

i+1 i+1

i+1 i+1 i+1 i+1

(a) A row of cells in T which are not paired off.
This row consists of one i followed by four i+1’s.

i i i i

i

i+1 i+1

i+1 i+1i i

(b) The same row in T ′, which consists of four i’s
followed by one i+ 1.

Figure 2.4: The involution T 7→ T ′, which swap the numbers of i’s and i+ 1’s but fixes the
remaining cells.

Definition 2.4.5. Let x1, . . . , xd be indeterminates, typically standing for real numbers.
Given λ ` n, the Schur polynomial sλ(x1, . . . , xd) is the degree-n homogeneous polynomial
defined by

∑
T x

T , where the sum is over all semistandard tableaus of shape λ over alpha-
bet [d], and where

xT :=
d∏
i=1

x
(# of occurrences of letter i in T)
i .

Their importance comes from the fact that they are the characters of the irreps of the
general linear group.

Theorem 2.4.6. If M is a matrix with eigenvalues α1, . . . , αd, then χπλ(M) = sλ(α1, . . . , αd).

We note that from Definition 2.4.5, it is not immediately obvious why the Schur polyno-
mials are even symmetric.

Proposition 2.4.7. The Schur polynomials sλ of height at most d are symmetric and form
a basis for the set of all d-variate symmetric polynomials.

Proof. To prove symmetry, we reproduce here the proof from [Sta99, Theorem 7.10.2]. Be-
cause S(d) is generated by transpositions, it suffices to show that sλ(x1, . . . , xd) is symmetric
in coordinates i and i+ 1, for any i ∈ [d− 1]. Consider a term xT in the expansion of sλ(x).
Some cells in T containing an i have a cell immediately below them containing an i + 1.
These pairs of cells are naturally “paired off”. The remaining cells containing an i or an i+1
occur in rows containing a certain number r of i’s followed by a certain number s of i+ 1’s.
Consider the tableau T ′ in which we replace each such row with a sequence of s i’s and r
i+ 1’s. See Figure 2.4 for an illustration. Then T ′ has as many i’s as T has i+ 1’s, and vice
versa, and the two have the same number of every other letter. As the map T 7→ T ′ is an
involution, and as xT

′
also appears as a term in sλ(x), this shows that sλ(x) is symmetric.

To show that Schur polynomials form a basis, note that sλ contains a monomial of type λ,
and every other monomial has a type µ such that µ�λ. As sλ is symmetric, we can conclude
that

sλ(x) = mλ(x) + {linear combination of mµ(x)’s with µ� λ} .
The fact that the sλ’s form a basis now follows from induction and the corresponding fact
for the mλ’s.

62

When `(λ) > d, there are no semistandard tableaus of shape λ over alphabet [d]. Thus,
the sum

∑
T x

T is the empty sum. This gives us the following fact about Schur polynomials:

Proposition 2.4.8. Consider the Schur polynomial sλ(x1, . . . , xd). If `(λ) > d then sλ ≡ 0.

Finally, though we will not need this, we note that the Schur polynomials are commonly
defined as the ratio of a skew-symmetric polynomial and the Vandermonde determinant (see
e.g. [Sta99, Theorem 7.15.1]), as follows.

Theorem 2.4.9. sλ(x1, . . . , xd) =
det
(
x
d+λj−j
i

)
ij

det
(
xd−ji

)
ij

.

Following Stanley [Sta99, Corollary 7.17.5], we can actually give a definition of the sym-
metric group characters χµ in terms of the power sum and Schur polynomials:

Theorem 2.4.10. In the context of Fourier analysis over the group G = S(n), suppose
µ ` n and x ∈ Cd. Then p(·)(x) := π 7→ pπ(x) is a class function, and its Fourier coefficients
are given by

p̃(·)(x)(µ) = sµ(x).

Although this can be taken as an implicit definition of the characters χµ, we will more often
think of the characters χµ as “known” and of Theorem 2.4.10 as letting us express the Schur
polynomials in terms of the power sum polynomials.

2.4.2 The Gelfand-Tsetlin basis

In this section, we will give an explicit basis for each irrep of the general linear group which
results from the branching rule (see Section 2.1.4) for the general linear group. For this
branching rule, we will consider embedding the group GLd−1 × GL1 into GLd by mapping
(M,α) ∈ GLd−1 ×GL1 as follows:

(M,α) 7→
[
M 0
0 α

]
.

Under this mapping, GLd−1 ×GL1 becomes a subgroup of GLd.

Theorem 2.4.11. Given a partition λ of height d, the branching rule for πλ restricted to
GLd−1 ×GL1 is

πλ↓GLd−1×GL1(M,α) ∼=
⊕

µ of height d− 1
s.t. µ-λ

πµ(M) · α|λ\µ|.

Note that it is multiplicity-free.

As in Section 2.3.2, we can recursively apply this branching rule, eventually restricting πλ
to

GL1 × · · · ×GL1︸ ︷︷ ︸
d copies

,

63

an element of which is of the form (α1, . . . , αd). As a result, Vd
λ decomposes into a set of

dimension-one subspaces corresponding to each chain

∅ = λ(0) - λ(1) - · · · - λ(d) = λ, (2.9)

where at every step of the chain, one picks up a multiplicative factor of α
|λ(i)\λ(i−1)|
i . There

is a one-to-one correspondence between chains of this form and semistandard tableaus T of
shape λ and alphabet [d]. As an example, the chain in (2.8) corresponds to the tableau T
which has an “i” in every cell in the difference λ(i) \ λ(i−1), for each i ∈ [d]. In summary, we
get the decomposition

πλ↓GL×d1
(α1, . . . αd) ∼=

⊕
T of shape λ,
alphabet [d]

αT · πλ(0)(e). (2.10)

Definition 2.4.12. Given λ of height d, the Gelfand-Tsetlin basis for Vd
λ has a unit vec-

tor |T 〉 (and a corresponding dimension-one subspace called the |T 〉-weight space) for each
semistandard tableau T of shape λ and alphabet [d]. By (2.10), the vector |T 〉 satisfies

〈T |πλ(diag(α1, . . . , αd)) |T 〉 = αT .

When the αi’s are sorted, this expression is maximized for the tableau T which has λ1 ones
in its first row, λ2 twos in its second row, and so on. The vector |T 〉 for this particular
tableau is called the highest weight vector, and we will denote it by |Tλ〉.

Let us record a pair of consequences of the GZ basis. The first is that for any matrix of
the form M = diag(α1, . . . , αd),

χπλ(M) =
∑

T of shape λ,
alphabet [d]

αT = sλ(α),

exactly as guaranteed by Theorem 2.4.6. The second consequence is the following corollary.

Corollary 2.4.13. The dimension of Vd
λ is equal to the number of semistandard tableaus of

shape λ and alphabet [d]. This explains the notation dim(Vd
λ) for this number. We note the

equality
sλ(1

d) = dim(Vd
λ).

2.5 Schur-Weyl duality

Schur-Weyl duality concerns the relationships between the representations P(π) and Q(M)
(Definition 2.1.2), one of the symmetric group and the other of the general linear group.
These representations both act on (Cd)⊗n, and they commute with each other, so we may
consider the representation of the product group S(n)×GLd given by µ(π,M) := P(π)Q(M).
(That they commute is important for this to be a representation, as

µ(π1,M1)µ(π2,M2) = P(π1)Q(M1)P(π2)Q(M2)

= P(π1)P(π2)Q(M1)Q(M2) = P(π1π2)Q(M1M2) = µ(π1π2,M1M2).)

The following standard proposition (cf. [Har05]) shows that any time a representation is
constructed in this manner, then it decomposes in a particularly nice way.

64

Proposition 2.5.1. Suppose (µ1, V) and (µ2, V) are representations of two groups G1 and
G2 which act on the same vector space and commute. Suppose further that µ1 and µ2

are completely reducible. Then the representation of the product group G1 × G2 given as
µ(g1, g2) := µ1(g1)µ2(g2) decomposes as

µ ∼=
⊕

ν1∈Ĝ1,ν2∈Ĝ2

mν1,ν2 · ν1 ⊗ ν2,

for some multiplicities mν1,ν2.

Proof. Because µ1 is completely reducible, it decomposes into a direct sum of irreps. For
simplicity, let us assume that this decomposition occurs in the standard basis, i.e. that

µ1 =
⊕
ν1∈Ĝ1

mν1 · ν1 =
⊕
ν1∈Ĝ1

Imν1 ⊗ ν1 =
∑
ν1∈Ĝ1
i∈[mν1]

|ν1〉 〈ν1| ⊗ |i〉 〈i| ⊗ ν1, (2.11)

for some multiplicities mν1 . On the other hand, µ2 will in general look like

µ2(g2) =
∑

ν1,ν′1∈Ĝ1

i∈[mν1],j∈[mν′1
]

|ν1〉 〈ν ′1| ⊗ |i〉 〈j| ⊗Mν1,ν′1,i,j
(g2), (2.12)

for some dim(ν1)× dim(ν ′1) matrices Mν1,ν′1,i,j
(g2). Now we will use the fact that µ1 and µ2

commute. Expanding out the equation µ1(g1)µ2(g2) = µ2(g2)µ1(g1) using (2.11) and (2.12),
we get that for each ν1, ν

′
1, i, j,

ν1(g1) ·Mν1,ν′1,i,j
(g2) = Mν1,ν′1,i,j

(g2) · ν ′1(g1).

Thus, Mν1,ν′1,i,j
(g2) is an intertwining operator between ν1 and ν ′1, and Schur’s lemma tells

us that it is zero unless ν1 = ν ′1, in which case it is a multiple of the identity. (This multiple
may depend on ν1, i, j, and g2.) Hence,

µ2(g2) =
∑
ν1∈Ĝ1

|ν1〉 〈ν1| ⊗Mν1(g2)⊗ Idim(ν1) =
⊕
ν1∈Ĝ1

Mν1(g2)⊗ Idim(ν1), (2.13)

for some matrices Mν1(g1). Multiplying (2.11) with (2.13), we get that

µ(g1, g2) =
⊕
ν1∈Ĝ1

Mν1(g2)⊗ ν1(g1).

The lemma now follows by noting that from (2.13), Mν1(g2) is a representation of G2 and
hence decomposes into a direct sum of irreps of G2.

Given this proposition, it remains in our case to determine the multiplicities. In the cases
of both S(n) and GLd, the irreps are indexed by partitions λ, and Schur-Weyl duality states
that κλ1 ⊗ πλ2 occurs with multiplicity zero unless λ1 = λ2, in which case it occurs with
multiplicity one.

65

Theorem 2.5.2 (Schur-Weyl duality). With respect to the representation µ of S(n)×GLd,
we have the following unitary equivalence.

(Cd)⊗n ∼=
⊕
λ`n
`(λ)≤d

Spλ ⊗ Vd
λ.

A proof of this can be found in [GW09]. The condition that the partition be of size n
comes from S(n), and the condition that it be of height at most d comes from GLd.

2.6 Quantum algorithms from representation theory

Let us finally discuss how to use representation theory, and in particular Schur-Weyl duality,
to build algorithms for quantum state learning. By Schur-Weyl duality, there is a unitary
change-of-basis USchur on (Cd)⊗n such that for any π ∈ S(n), M ∈ GLd, we have that

USchurP(π)Q(M)U †Schur =
⊕
λ`n
`(λ)≤d

κλ(π)⊗ πλ(M). (2.14)

The matrix USchur changes the standard basis into something called the Schur basis.
Suppose ρ is the state we are trying to learn, and we are given the n copies ρ⊗n. Then

applying (2.14) with π = e (the identity permutation) and M = ρ, and recalling that
Q(ρ) = ρ⊗n, we get that

USchurρ
⊗nU †Schur =

⊕
λ`n
`(λ)≤d

Idimλ ⊗ πλ(ρ). (2.15)

(That we can apply Q to ρ depends on ρ having d nonzero eigenvalues α1, . . . , αd. However, if
some of these eigenvalues are zero, then we can write ρ as the limit of a sequence of invertible
matrices, and by continuity (2.15) holds. We also use here that πλ is polynomial, and hence
is well-defined for any matrix.)

What (2.15) says is that there is a unitary transformation—an allowable quantum me-
chanical operation—which is independent of ρ and which causes ρ to assume a particularly
nice, block diagonal form. By item 1 of Proposition 1.2.7, we may now without loss of gen-
erality perform a projective measurement according to these blocks, and we may or may not
choose to perform a second measurement following this.

Definition 2.6.1. There are two broad categories of Schur-Weyl-based quantum measure-
ments:

• Write Πλ for the projector onto the λ-subspace given by Schur-Weyl duality, i.e. the
subspace Spλ ⊗ Vd

λ. Then weak Schur sampling refers to the projective measurement
{Πλ}λ`n,`(λ)≤d.

• Strong Schur sampling refers to the process of first performing weak Schur sampling,
receiving a measurement outcome λ, and then performing a subsequent measurement
in the subspace corresponding to Πλ.

66

Given n copies of a mixed state ρ with spectrum α, weak Schur sampling yields the
partition λ ` n with probability

tr(Πλρ
⊗n) = tr(Idimλ ⊗ πλ(ρ)) = dim(λ) · sλ(α). (2.16)

The fact that χπλ(ρ) = sλ(α) was only established in the case that the αi’s are all nonzero, but
again we can appeal to a continuity argument to extend this to all mixed states ρ. Recalling
that the eigenvalues of ρ form a probability distribution, we will spend much of this thesis
analyzing the following distribution.

Definition 2.6.2. Given a probability distribution α = (α1, . . . , αd) and an integer n ≥ 0,
the Schur-Weyl distribution SWn(α) is the probability distribution on partitions in which
λ ` n has probability dim(λ) · sλ(α). In the case when α is the uniform distribution, we
sometimes write SWn

d instead of SWn(α). In addition, if ρ is a mixed state with spectrum α,
we will sometimes write SWn

ρ for SWn(α).

Now we can state the reason why this representation theoretic approach is so powerful:
not only is weak Schur sampling without loss of generality, it is often optimal.

Theorem 2.6.3. Suppose we are interested in computing a property of ρ which depends only
on its spectrum α. Then weak Schur sampling is the optimal measurement on ρ⊗n.

In other words, if we have an algorithm Alg for computing the property which has failure
rate β on any matrix ρ, then there is a similar algorithm for doing so using only weak Schur
sampling followed by classical postprocessing.

Proof. Suppose that prior to giving Alg the input ρ⊗n, we first “averaged” it out by random
permutations and unitaries:

ρavg := E
π∼S(n)
U∼U(d)

[
P(π)Q(U)ρ⊗nQ(U †)P(π−1)

]
= E
U∼U(d)

(UρU †)⊗n.

Then ρavg is an mixture of states with spectrum α, and hence if we feed ρavg into Alg, it will
properly compute the property of α with probability at least 1− β.

Now we claim that whatever the measurement Alg performs on ρavg, it is only better for
it to measure with respect to the Πλ projectors. To see this, note that by Equations (2.14)
and (2.15),

USchurρavgU
†
Schur =

⊕
λ`n
`(λ)≤d

Idimλ ⊗ E
U∼U(d)

[
πλ(U)πλ(ρ)πλ(U)†

]
︸ ︷︷ ︸

ρλ

. (2.17)

Writing ρλ for the matrix given in the expectation, we see that πλ(U)ρλπλ(U)† = ρλ for any
U ∈ U(d) by the properties of the Haar measure. Schur’s lemma then tells us that ρλ is
some multiple of the identity matrix. As a result, ρavg is block diagonal corresponding to the
Πλ projectors, and so by item 2 of Proposition 1.2.7 the projective measurement with these
projectors is optimal.

Finally, we note that WSS when performed on ρavg gives the same distribution of out-
comes as when performed on ρ⊗n. This is because

tr(Πλρavg) = E
U∼U(d)

tr((UρU †)⊗n) = E
U∼U(d)

dim(λ) · sλ(α) = dim(λ) · sλ(α) = tr(Πλρ
⊗n),

67

where we have twice used Equation (2.16). In total, WSS (followed by classical postprocess-
ing) performs at least as well as Alg does on ρ⊗n.

To our knowledge, this theorem first appeared in [KW01] (cf. [CHW07, Lemma 5]
and [MdW13, Lemma 20]).

68

Chapter 3

Longest increasing subsequences and
the RSK algorithm

In this chapter, we focus on two probability distributions on partitions which arise naturally
in the study of representation theory. The first is the Plancherel distribution, inspired by
the decomposition into irreps of the regular representation.

Definition 3.0.1 (Definition 2.1.13 restated). For a finite group G, the Plancherel distribu-

tion is the probability distribution on irreps in which µ ∈ Ĝ has probability (dimµ)2/|G|.
In the case when G is S(n), we denote this distribution by Planchn.

The second probability distribution is the Schur-Weyl distribution from Definition 2.6.2.
As we will see below (Corollary 3.3.4) these two distributions are related; in particular, the
Plancherel distribution for S(n) is a special case of the Schur-Weyl distribution.

The goal of this chapter is to connect these two distributions to the seemingly-unrelated
topic of longest increasing subsequences of random words. A key player in this connection
is the Robinson-Schensted-Knuth (RSK) algorithm, a combinatorial algorithm which takes
as input a word w and outputs the “higher-order longest increasing subsequence statistics”
of w in the form of a Young diagram λ. As we show below, when the input w is selected
from a suitably chosen probability distribution, then the output λ of the RSK algorithm will
be distributed according to either Planchn or SWn(α).

The outline of this chapter is as follows:

• In Section 3.1 we will introduce Patience sorting, a simple version of the RSK algorithm,
and in Section 3.2 we will generalize it to the full RSK algorithm.

• In Section 3.3, we will show that the RSK algorithm, when applied to suitably chosen
random words, generates the Plancherel and Schur-Weyl distributions. We then spend
Section 3.4 briefly investigating some properties of the Schur-Weyl distribution.

• In Section 3.5, we will survey the history of results about longest increasing subse-
quences of random permutations. In Section 3.6, we will show how these results have
been generalized to study the Plancherel distribution, and in Section 3.7, we will show
how these results were further generalized to the Schur-Weyl distribution.

69

• In Section 3.8, we will introduce one of the main tools for analyzing the Plancherel
and Schur-Weyl distributions: Kerov’s algebra of observables. This is a certain set of
polynomials which allow us to analyze the “moments” of random Young diagrams. We
will also give a taste here of some of the down-and-dirty work involved when using
these polynomials.

3.1 Patience sorting

Patience sorting was originally conceived of as a method of sorting a deck of cards, though
it has since found use as an algorithm for computing the longest increasing subsequence of a
word. It was originally introduced by Mallows [Mal62], who credits it to A. S. C. Ross, and
was rediscovered by Floyd [AD99] and later by Hammersley [Ham72]. Though it is essentially
a special case of the RSK algorithm, it was apparently developed independently [Mal63].
See [AD99] for a survey of patience sorting and related topics and [Lan07] for some extensions.

Patience sorting works by first arranging the cards into a sequence of piles (usually, this
step alone is referred to as “patience sorting”) and then performing a simple postprocessing
step on the piles. We will represent the set of piles using a semistandard row tableau, where
the number in a given cell represents the top card in that pile.

Definition 3.1.1. A semistandard row tableau T is an SSYT whose shape is (`) for some
integer `.

Each step of patience sorting is given by the following set of instructions: draw a card
(the “current card”) from the deck, scan the piles from left to right, and place the current
card on top of the first pile whose top card is larger than the current card. If no such pile
exists, then create a new pile with the current card at the top. This operation is called
insertion; in SSYT form, it is given as follows.

Definition 3.1.2. Given a semistandard row tableau T with alphabet A, we insert a letter
a ∈ A into T as follows:

1. Find the leftmost cell of T containing a letter b such that b > a. Remove b from the
cell and replace it with a.

2. If no such cell exists, then append a new cell containing a to the end of the row.

The letter b is said to have been bumped.

In total, then, the algorithm is given as follows.

Definition 3.1.3. Given an n-letter word w with alphabet A, the patience sorting algorithm
works as follows:

1. Initialize T to be an empty tableau.

2. For i = 1 . . . n, insert wi into T . Do nothing with the bumped letters.

3. Output T .

70

Having formed the piles in the way, note that deck’s smallest card is on the top of the
first pile. Removing this card, the deck’s second smallest card is now on the top of the first
two piles. One can then repeatedly remove the smallest card from the top of the piles to
sort the deck. The efficiency of this last step is governed by the number of piles created by
patience sorting, and this number was determined by Schensted in [Sch61].

Theorem 3.1.4 (Schensted’s theorem). Let w ∈ [d]n, and set T to be the result of applying
patience sorting to w. Then the length of T is equal to LIS(w).

This theorem can be proved easily by a direct analysis; see for example [Rom14, Lemma 1.7].
For a Computer-Science-based approach, consider Algorithm 1, a natural recursive algorithm
for computing LIS(w). (To compute LIS(w), one simply needs to find the maximum ` such
that RecursiveLIS(w, `) < ∞.) This recursive algorithm can be turned into a dynamic
program using memoization, and Proposition 3.1.5 shows that patience sorting maintains
the data structure used to do this.

1 Function RecursiveLIS(w, `)
Input : a word w ∈ An and a length ` ∈ Z≥0

Output: a letter a ∈ A such that

a = min
increasing subsequences s in w

of length `

(rightmost letter in s)

2 if n = 0 then return ∞;
3 a ← RecursiveLIS(w[1..n− 1], `− 1);
4 b ← RecursiveLIS(w[1..n− 1], `);
5 if a ≤ wn < b then return wn;
6 else return b;

Algorithm 1: A recursive algorithm for computing LIS(w).

Proposition 3.1.5. Let w ∈ [d]n, and set T to be the result of applying patience sorting
to w. Then the letter a in the (1, `)-th cell of T is RecursiveLIS(w, `).

The proof of this statement is trivial. From this, Schensted’s theorem follows immediately.
The algorithmic complexity of computing LIS(w) has been studied in various models.

In [Fre75], Fredman considered the patience sorting algorithm in which the insertion step is
implemented by binary searching through the row tableau T for the letter b. He showed (i)
that this algorithm uses n log n − n log log n + O(n) comparisons and (ii) that this number
of comparisons is optimal for all algorithms, by reducing the problem of sorting w to the
problem of computing LIS(w). In the RAM model, this algorithm runs in time O(n log n)
in general and time O(n log k) if k = LIS(w). Further improvements are possible in the case
when w is a permutation of [n]. Here, Hunt and Szymanski [HS77] improved the running
time of patience sorting to O(n log log n) by replacing the binary search step with a priority
queue data structure of van Ernde Boas [vEB77] (see also [BS00] for a simplified write-up
of this result). Following this, Crochemore and Porat [CP10] showed that a careful imple-
mentation of this algorithm would yield a runtime of O(n log log k) if k = LIS(w). Other

71

works have considered the complexity of approximating LIS(w) [SS10], its streaming com-
plexity [LNVZ06, GJKK07, SW07, EJ08, GG10], and its communication complexity [SW07].

3.2 The Robinson-Schensted-Knuth algorithm

The RSK algorithm is a generalization of patience sorting in which the letter “bumped”
during an insertion is recursively inserted into the second row of the tableau rather than
discarded. This recursive insertion is called Schensted insertion (or row-insertion).

Definition 3.2.1. Given an SSYT T with alphabetA and a letter a ∈ A, Schensted insertion
is the following procedure:

1. Insert a into the first row of T .

2. If a letter b was bumped, then recursively Schensted insert b into the subtableau of T
formed by deleting the first row.

Fact 3.2.2. If T is an SSYT with alphabet A and we Schensted insert a ∈ A into it, then
the resulting tableau is also an SSYT with alphabet A.

Proof. We will prove this by induction, the base case being that T begins as an SSYT. For
the inductive step, assume that the letter recursively inserted into row i − 1 produced an
SSYT T ′. Consider the letter a which is inserted into row i of T ′. It is easy to see that
this row remains weakly increasing, and thus to show that the resulting tabelau is SSYT, it
remains to show that the column that a is inserted into remains strongly increasing. Write
b1 < . . . < bm for the letters in this column, for some m. Then Schensted insertion replaces bi
with a and leaves the rest unchanged, and so we need only check that bi−1 < a < bi+1.

Because a bumped bi, we know that a < bi, and so a < bi < bi+1. For the other inequality,
consider the letter a′ that was inserted into row i − 1 in the previous step. The cell it was
inserted into was either bi−1’s cell (in which case a′ = bi−1) or to its right. Otherwise, as this
cell originally contained a, the cell below it contains a letter strictly larger than a, but this
is a contraction because a is inserted in row i to the right of this column. As a result, we
have that bi−1 ≤ a′, and since a′ < a we have that bi−1 < a, completing the proof.

Definition 3.2.3. Given an n-letter word w with alphabetA, the Robinson-Schensted-Knuth
(RSK) algorithm works as follows:

1. Initialize P,Q to be empty tableaus.

2. For i = 1 . . . n:

(a) Schensted insert wi into P .

(b) Add a new cell to Q in the same position as the newly added cell in P . Fill it
with the number i.

3. Output RSK(w) := (P,Q).

72

2

1

4

3 3

2 (empty) 2

24 2 4

2 43

4

32

4

32

4

321 1 3

2 4

2

1 3

4

2

1

4

3

2

1

4

33

(i)1.

2.

3.

4.

5.

(ii)

(ii)

(ii)

(ii)

(ii)

(iii)

(iii) (iv)

(i)

(i)

(i)

(i)

Results:

2

1

4

3 3P =

3

1

4

2 5Q =

Figure 3.1: The construction of the insertion tableau P from the RSK algorithm applied to
the word w = 24313. Each large gray box corresponds to a Schensted insertion, each red
box corresponds to a bumped letter, and each blue box corresponds to a newly created cell.

73

P is known as the insertion tableau and Q is known as the recording tableau. We will write
shRSK(w) for the Young diagram given by the common shape of P and Q.

An example execution of the RSK algorithm is given in Figure 3.1. The RSK algorithm is
named after its three inventors: Gilbert de Beauregard Robinson, a mathematician, Craige
(Ea Ea) Schensted, a physicist, and Donald Knuth, a computer scientist. The algorithm first
appeared in somewhat opaque form in the work of Robinson [Rob38], who only considered
the case when w is a permutation. Schensted independently discovered it in [Sch61], extended
it to hold for general words w, and discovered the link to longest increasing subsequences
(Schensted’s theorem). Finally, Knuth [Knu70] gave a further generalization of the algorithm
to the case when w is not a word at all but a matrix of nonnegative integers.1

The first row of the RSK algorithm carries out the patience sorting algorithm, and so if
λ = shRSK(w) then Schensted’s theorem says that λ1 = LIS(w). In 1974, Greene [Gre74]
proved the following significant generalization of this fact.

Theorem 3.2.4 (Greene’s Theorem). Let w ∈ [d]n, and set (P,Q) = RSK(w). Then for
each k ≥ 1, λ1 + . . . + λk equals the length of the longest k disjoint increasing subsequences
of w. Similarly, for each k ≥ 1, λ′1 + . . . + λ′k equals the length of the longest k disjoint
strictly decreasing subsequences of w.

An example of Greene’s Theorem is given in Figure 3.2 (which is Figure 1.3 reprinted).
Given any word w, one can always form k increasing subsequences consisting of the top k
most frequently occurring letters in w. This yields the following corollary.

Corollary 3.2.5. Let λ = shRSK(w) and let µ be w’s sorted histogram. Then λ� µ.

Hence, shRSK(w) can be viewed as a “top-heavy” estimate of w’s sorted histogram.

Perhaps the single most important feature of this algorithm is that it establishes a bijec-
tion between words w and pairs (P,Q) of insertion and recording tableaus. This bijection is
known as the RSK correspondence.

Theorem 3.2.6 (RSK correspondence). The RSK algorithm gives the following two bijec-
tions:

1. between permutations π ∈ S(n) and pairs (P,Q), where P and Q have the same
shape λ ` n and are both SYT.

2. between words w ∈ [d]n and pairs (P,Q), where P and Q have the same shape λ ` n,
P is SSYT with alphabet [d], and Q is SYT.

Furthermore, the SSYT P in item 2 always has the same multiset of letters as w has.

1Though we will only ever use the algorithm in the case when w is a word, and hence Schensted’s
construction is sufficient, it is common in the literature to still refer to the simpler forms of the algorithm
as the RSK algorithm, and we will do so here. That said, some works do distinguish between the RS and
the RSK algorithms.

74

54423131423144554251

On input w = 54423131423144554251

54423131423144554251

54423131423144554251

54423131423144554251

54423131423144554251
λ = shRSK(w)

Figure 3.2: An illustration of Greene’s theorem. On each row k, we have highlighted the let-
ters in the longest set of k disjoint increasing subsequences. The number of letters highlighted
should be equal to λ1 + . . .+ λk, the number of boxes in the first k rows of λ.

One reason this is useful is that it allows us to count the number of words with a certain
property by instead counting the number of pairs (P,Q) with a certain property. For exam-
ple, if we want to count the number of words w with LIS(w) ≥ `, we need only count the
number of pairs (P,Q) whose common shape λ has λ1 ≥ `, and this might look easier given
our explicit formulas for counting tableaus, for example Definitions 2.2.12 and 2.2.13. In
addition, the RSK correspondence is the reason we are able to relate the distributions D1
and D2 from above; for this, see Theorem 3.3.2 below.

Proof of Theorem 3.2.6. We will give the proof of item 2; the proof of item 1 is almost
identical. First, we show that RSK does indeed map words to pairs of SSYT and SYT
tableaus. Given w ∈ [d]n, set (P,Q) := RSK(w). By construction, P and Q have the same
shape λ ` n. Furthermore, by Fact 3.2.2, P is always SSYT with alphabet [d]. Finally, in
the construction of Q each new cell is added southeast of its adjacent cells and contains the
largest number yet added, meaning that Q is always SYT.

Now, given a pair (P,Q) we show how to recover the unique word w mapped to it by
RSK. We will do so by “reversing” the steps of the RSK algorithm to recover the letter
wn and the insertion and recording tableaus (P ′, Q′) prior to the Schensted insertion of wn.
Applying this reversing procedure recursively will recover the entire word w.

The process of Schensted inserting w into P begins with an insertion followed by a series
of alternating bumpings and insertions until a letter is inserted into a new cell at the end of
a row. By construction, this is the cell containing the number n in the recording tableau Q.
Let a be the letter in the corresponding cell of P , and delete this cell from both P and Q.
For a to have been bumped, a letter b must have been inserted into the previous row, and a
must have been the first letter in that row larger than b. Hence, b is the last letter in that
row which is smaller than a. To “unbump” a, then, remove b from its cell and replace it
with a. Continuing this unbumping procedure up the Young tableau, we arrive at the letter
which was inserted into the first row, wn, and we have reverted (P,Q) to (P ′, Q′).

75

3.3 Random words and permutations

In this section, we will consider the following two distributions on random words.

Definition 3.3.1. A random permutation of length n is a uniformly random permutation
π ∈ S(n).

For the purposes of longest increasing subsequences, a random permutation π may be viewed
as a random word w ∼ Unif⊗nd in the limit as d → ∞ (in which case w will have always
have n distinct letters). See Corollary 3.3.4 for this intuition formalized. For the same
reasons, we may also view a random permutation π as a random word w ∼ [0, 1]⊗n, where
each letter of w is a uniformly random element of [0, 1].

We are now able to state the main result of this section: using the loose terminology of
the introduction, D1 = D2.

Theorem 3.3.2. Let λ ` n. Let π be a random permutation of length n. Then

Pr[shRSK(π) = λ] = Pr
λ∼Planchn

[λ = λ].

Let w be an n-letter α-random word. Then

Pr[shRSK(w) = λ] = Pr
λ∼SWn(α)

[λ = λ].

Proof. There are n! permutations of length n. By item 1 of the RSK correspondence, the
number of permutations π ∈ S(n) for which shRSK(π) = λ is equal to

|{SYT T of shape λ}|2 = (dimλ)2.

Hence, Pr[shRSK(π) = λ] = (dimλ)2/n!, as in the Plancherel distribution.
By item 2 of the RSK correspondence, every word w ∈ [d]n maps to a unique pair (P,Q)

with a common shape λ ` n. Furthermore, Q is SYT and P is SSYT and contains the same
multiset of letters as in w. Hence, the probability that RSK(w) = (P,Q) is αP . Because RSK
gives a bijection, every (P,Q) is mapped to by some word w ∈ [d]n, and so the probability
that shRSK(w) = λ is∑

(P,Q) of shape λ

αP = dim(λ) ·
∑

P of shape λ

αP = dim(λ) · sλ(α),

where the sums only include SYTs Q and SSYTs P with alphabet [d]. This is the same
probability λ is observed in SWn(α).

Recall from Definition 2.6.2 that when α = Unifd, we may write SWn
d instead of SWn(α).

In this case,
SWn

d(λ) = dim(λ) · sλ(1
d
, . . . , 1

d
).

Definition 2.2.13, Corollary 2.4.13, and the homogeneity of the Schur polynomials give the
following well known formula (cf. [CHW07, Equation (26)]).

76

Proposition 3.3.3. SWn
d(λ) =

(dimλ)2

n!
· d
↑λ

dn
.

The following corollary motivates the study of the Plancherel distribution. Although it
is not the output distribution of any quantum measurement we study2, it is a special case
of the Schur-Weyl distribution SWn

d .

Corollary 3.3.4. SWn
d → Planchn as d→∞.

Proof. We give two proofs of this statement. The first uses the RSK correspondence, whereas
the second uses Proposition 3.3.3, as in [CHW07].

Proof 1: Select w ∼ Unif⊗nd . As d→∞, the probability that w contains n distinct letters
approaches 1. Conditioned on w containing n distinct letters, then shRSK(w) ∼ Planchn,
as (i) the RSK algorithm depends only on the relative magnitudes of the letters in w (and
hence we may assume that w is a permutation of n) and (ii) the distribution on w is
permutation symmetric, i.e. w and wπ = (wπ(1), . . . ,wπ(n)) occur with equal probability for
any permutation π.

Proof 2: As d→∞, the ratio d↑λ/dn → 1, and so by Proposition 3.3.3,

SWn
d(λ)→ (dimλ)2

n!
,

as in the Plancherel distribution.

The next corollary follows from the fact that the Schur polynomial sλ(α) is symmetric
in the αi’s (Proposition 2.4.7).

Corollary 3.3.5. Given an n-letter α-random word w, the distributions of the two random
variables LIS(w) and RSK(w) depend only on the multiset {α1, . . . , αd} and not on the order
of the αi’s. In addition, it follows easily from the RSK algorithm that these random variables
depend only on the multiset of nonzero αi’s.

As a result, when working with SWn(α) we may assume without loss of generality that α is
sorted.

3.4 The Schur-Weyl growth process

In the related Schur-Weyl growth process, we imagine the process of growing a Young tableau
by Schensted-inserting α-random letters into it one at a time.

Definition 3.4.1. The Schur-Weyl growth process is the infinite (random) sequence

∅ = λ(0) ↗ λ(1) ↗ λ(2) ↗ λ(3) ↗ · · ·

where w ∼ α⊗∞ and λ(t) = shRSK(w[1 .. t]). Note that the marginal distribution on λ(n) is
given by SWn(α).

2Though it is a distribution encountered when studying quantum algorithms for Graph Isomor-
phism [HMR+10].

77

The Schur-Weyl growth process was studied in, e.g., [O’C03], who noted the following.

Fact 3.4.2. For any chain ∅ = λ(0) ↗ · · · ↗ λ(n),

Pr[λ(t) = λ(t) ∀t ≤ n] = sλ(n)(α).

Proof. Let Q∗ be the SYT containing, for each i ∈ [n], the number i in the cell corresponding
to λ(i) \ λ(i−1). For a word w ∈ [d]n, let (P,Q) = RSK(w). Then shRSK(w[1..t]) = λ(t) for
all t ≤ n if and only if Q = Q∗. By the RSK correspondence, the probability that such a
word w is sampled from α⊗n is∑

(P,Q∗) of shape λ(n)

αP =
∑

P of shape λ(n)

αP = sλ(n)(α).

(Together with the fact that sλ(α) is homogeneous of degree |λ|, this gives yet another
alternate definition of the Schur polynomials.) The definition of conditional expectation
then immediately yields the following.

Corollary 3.4.3. For any i ∈ [d],

Pr[λ(n+1) = λ+ ei | λ(n) = λ] =
sλ+ei(α)

sλ(α)
.

(This corollary is correct even when λ+ei is not a valid partition of n+1; in this case sλ+ei ≡ 0
formally under the determinantal definition.) The above equation is also a probabilistic
interpretation of the following special case of Pieri’s rule.

Fact 3.4.4 (Pieri’s rule). (x1 + · · ·+ xd)sλ(x1, . . . , xd) =
d∑
i=1

sλ+ei(x1, . . . , xd).

We will need the following consequence of Corollary 3.4.3:

Proposition 3.4.5. Let λ ` n and let α ∈ Rd be a sorted probability distribution. Then(
sλ+e1(α)

sλ(α)
, . . . ,

sλ+ed(α)

sλ(α)

)
� (α1, . . . , αd). (3.1)

Proof. Let β be the reversal of α (i.e. βi = αd−i+1) and let (λ(t))t≥0 be a Schur-Weyl growth
process corresponding to β. By Corollary 3.4.3 and the fact that the Schur polynomials
are symmetric, we conclude that the vector on the left of (3.1) is (p1, . . . , pd), where pi =
Pr[λ(n+1) = λ+ ei | λ(n) = λ]. Now p1 + · · ·+ pk is the probability, conditioned on λ(n) = λ,
that the (n+ 1)-th box in the process enters into one of the first k rows. But this is indeed
at least α1 + · · ·+ αk = βd + · · ·+ βd−k+1, because the latter represents the probability that
the (n + 1)-th letter is d− k + 1 or higher, and such a letter will always be inserted within
the first k rows under RSK.

78

3.5 Longest increasing subsequences of random per-

mutations

Over the next three sections, we will use the connection to the RSK algorithm given by
Theorem 3.3.2 to understand the distribution SWn(α) and its special case, Planchn. In this
section, we will consider only the distribution of λ1 when λ ∼ Planchn. Then in Section 3.6
we will consider the distribution of the entire shape λ, and in Section 3.7 we will generalize
this to the distribution of the entire shape λ ∼ SWn(α). Recall from Theorem 3.3.2 and
Schensted’s Theorem that λ1, when λ ∼ Planchn, is distributed as LIS(π) of a random
permutation π.

The study of longest increasing subsequences of permutations dates back to a paper of
Erdős and Szekeres [ES35], who showed the following worst-case lower bound on the longest
increasing and decreasing subsequences of any permutation.

Theorem 3.5.1 ([ES35]). If π ∈ S(n) and n ≥ rs+ 1 then LIS(π) > r or LDS(π) > s. In
fact, LIS(π) · LDS(π) > rs.

There are a variety of proofs of this result (see [Ste95] for a collection of them), perhaps the
simplest being Seidenberg’s [Sei59].

Of course, we are interested not in worst-case behavior, but in the average-case LIS
behavior of a random permutation. The question of determining this behavior was originally
posed by Ulam [Ula61]:

Theorem 3.5.2 (Ulam’s problem). Determine `n := Eπ∼S(n) LIS(π).

Already, Theorem 3.5.1 gives us a lower bound on `n: setting r = s =
√
n− 1, it tells us

that LIS(π) · LDS(π) ≥ n for any permutation π ∈ S(n). Given (i) that any permutation π
and its reverse πrev := (πn, πn−1, . . . , 1) occur with equal probability and (ii) the fact that
LIS(πrev) = LDS(π) (and vice versa), this tells us that

`n = E
π∈S(n)

[
1

2
LIS(π) +

1

2
LDS(π)

]
≥ E
π∈S(n)

√
LIS(π) · LDS(π) ≥

√
n, (3.2)

where the second step is by the AM-GM inequality. On the other hand, there is an elementary
proof (cf. [Rom14, Lemma 1.4]) which gives the upper bound

lim sup
n→∞

`n√
n
≤ e. (3.3)

The result is that, somewhat surprisingly, the average case longest increasing subsequence is
not too much longer than the worst case.

In 1968, computer simulations by Baer and Brock suggested that `n → 2
√
n as n →

∞ [BB68]. The first step towards confirming this was given by Hammersley, who showed
that the limit Λ := limn→∞ `n/

√
n does indeed exist [Ham72]. Following this, Logan and

Shepp [LS77] and Vershik and Kerov [VK77] independently proved the Baer and Brock
estimates.

Theorem 3.5.3. Λ = 2.

79

Following this, independent work by Vershik and Kerov [VK85] and by Pilpel [Pil90]
showed that `n can even be upper-bounded in the non-asymptotic regime.

Theorem 3.5.4. `n ≤ 2
√
n for all n.

We will give the elegant proof here as an example of the role the RSK algorithm plays in
proving bounds on the LISes of random permutations.

Proof of Theorem 3.5.4. Set δn := `n − `n−1. Our goal will be to upper bound δn ≤ 1/
√
n,

from which the theorem will follow, as
∑n

i=1 1/
√
i ≤ 2

√
n. To begin, note that `n−1 =

E shRSK(π[1..n− 1])1, for π ∼ S(n). This is because π[1..n− 1] always has n− 1 distinct
letters in random order. Then

δn = E
π∼S(n)

[shRSK(π)1 − shRSK(π[1..n− 1])1] = Pr
π∼S(n)

[first-row(π)],

where first-row(π) is the event that a box was added to the first row in the last step of RSK
on π. Setting (P ,Q) = RSK(π), first-row(π) occurs when Q has an “n” in the rightmost
box of its first row. This can occur only when sh(Q) is of the form µ+�, where µ ` n− 1
and “+ �” means adding a box to the first row (as otherwise Q would not be SYT). By the
RSK correspondence, the number of permutations π ∈ S(n) for which first-row(π) occurs is∑

µ`n−1

dim(µ) dim(µ+�).

Hence, the probability that a random π satisfies first-row(π) is

∑
µ`n−1

dim(µ) dim(µ+�)

n!
≤

√√√√ 1

n

∑
µ`n−1

dim(µ)2

(n− 1)!
·
∑
µ`n−1

dim(µ+�)2

n!

=

√√√√ 1

n

∑
µ`n−1

dim(µ+�)2

n!
≤
√

1

n

∑
λ`n

dim(λ)2

n!
=

1√
n
,

where the first step uses Cauchy-Schwarz and the two equalities follow from the definition
of the Plancherel distribution.

We will reprove and generalize this theorem to random words in our Lemma 4.2.1.
The next step in answering Ulam’s problem was to determine the next highest order

terms in `n after 2
√
n. Related to this was to determine the limiting distribution of LIS(π).

In spite of conjectures that it should have standard deviation on the order of n1/4, Odlyzko
and Rains [OR00] presented numerical evidence that both 2

√
n − `n and stddev[LIS(π)]

were on the order of n1/6, and further that LIS(π) was non-Gaussian in the limit. This was
confirmed in the work of Baik, Deift, and Johansson [BDJ99], who connected the limiting
distribution of LIS(π) to the Tracy-Widom distribution from random matrix theory.

Definition 3.5.5. The Gaussian Unitary Ensemble GUEm is the probability distribution
over m × m random Hermitian matrices X with i.i.d. entries in which (i) Xk,k ∼ N (0, 1)
for all k ∈ [m], and (ii) Xj,k ∼ N (0, 1)C and Xk,j = Xj,k for all j < k ∈ [m]. Here N (0, 1)C
refers to the complex standard Gaussian, distributed as N (0, 1

2
) + iN (0, 1

2
).

80

Definition 3.5.6. The Tracy-Widom distribution TW is given by the random variable
√

2m1/6 · (λ1(X)−
√

2m),

whereX ∼ GUEm, in the limit asm→∞. Its mean is−1.771 and its variance is 0.813 [TW09].

The Baik, Deift, and Johansson [BDJ99] result is given as follows.

Theorem 3.5.7. As n→∞, then the random variable

LIS(π)−
√

2n

n1/6
→ TW

in distribution, where π ∼ S(n). In other words, the two random variables

√
2m1/6 · (λ1(X)−

√
2m) and

LIS(π)−
√

2n

n1/6
,

where X ∼ GUEm and π ∼ S(n), converge to each other in distribution as m,n→∞.

This result essentially gives a complete answer to Ulam’s problem, at least in the asymptotic
regime.

3.6 RSK of random permutations

Concurrent with, and inspired by, the work on the distribution of λ1, for λ ∼ Planchn, was
work on the distribution of the entire shape λ. Already, the results on λ1 tell us interesting
things about the shape of λ. For example, the fact that RSK(π) = RSK(πrev)

′, where
πrev = (πn, πn−1, . . . , π1), tells us that λ and λ′ have the same distribution, and so it is
natural to consider λ in the Russian notation. Furthermore, since we expect λ1 ∼ 2

√
n, we

also expect λ′1 ∼ 2
√
n. Therefore, a typical Young diagram will be roughly 2

√
n× 2

√
n, and

so it is natural to define scaled partitions as follows.

Definition 3.6.1. Let λ ` n and recall Definition 2.2.4. Then λ : R → R+ is defined as
λ(x) := λ(

√
n · x)/

√
n, for all x.

Logan and Shepp [LS77] and Vershik and Kerov [VK77] independently showed that λ
approaches a limiting shape as n→∞. This is the so-called “law of large numbers” for the
Plancherel distribution.

Theorem 3.6.2 (Law of large numbers). When λ ∼ Planchn and n → ∞, the function λ
converges to Ω(x), the curve defined as

Ω(x) :=

{
2
π
(x arcsin x

2
+
√

4− x2), |x| ≤ 2,
|x| |x| ≥ 2.

This “ice cream cone”-shaped function is pictured in Figure 3.3 (c = 0 case). We note
that Ω is symmetric about the y-axis and that Ω(2) = Ω(−2) = 2, both as expected. Though
this curve is a limiting shape rather than the Russian notation of any Young diagram, it
is useful to think of it as a continual analogue of a Young diagram, as per the following
definition.

81

Definition 3.6.3. A continual diagram is a function f : R→ R satisfying (i) f is 1-Lipschitz
and (ii) f(x) = |x| when |x| is sufficiently large.

This definition originates in the paper of [Ker93a]. Note that if λ is a Young diagram, then
λ(x) is a continual diagram.

As in the case of random permutations, it is now reasonable to ask about the limiting
distribution of λ for large n, and it is at this point that research on the Plancherel measure
splits into two distinct streams. As Okounkov puts it [Oko00], one either cares about the
behavior of the limiting distribution in the bulk of the limiting shape, meaning λ(x) where
x ∈ (−2, 2) is away from the endpoints x = ±2, or one cares about the behavior near the
edge of the limiting shape, when x is close to ±2. The latter of these involves characterizing
the distribution of λ1, . . . ,λk for small k.

3.6.1 The bulk of the limit shape

The main result on the bulk of the limit shape is Kerov’s “central limit theorem” for the
Plancherel measure [Ker93b], which characterized the deviation of a random Young diagram
from the curve Ω(x) by a certain Gaussian process. A second proof of this result, also by
Kerov, was given in the paper of Ivanov and Olshanski [IO02]. Much of our work is based
on the techniques of this paper.

Theorem 3.6.4 (Central limit theorem). When λ ∼ Planchn and n → ∞, the function
λ(x) “fluctuates” as Ω(x) + 2√

n
∆(x), where

∆(z) =
1

π

∞∑
k=2

ξk√
k

sin(kθ),

where z = 2 cos θ for 0 ≤ θ ≤ π and ξ2, ξ3, . . . are independent standard real Gaussians.

In other words, to compute ∆, multiply each of the sine curves sin(kθ)/π
√
k, k ≥ 2, by an

independent standard Gaussian and sum the results. Then scale ∆ and add it to Ω.

3.6.2 The edge of the limit shape

Studying the edge of the limit shape involves studying λ1, . . . ,λk, for k small. From the
limit shape and the fact that λk ≤ λ1 ∼ 2

√
n, we also expect that λk ∼ 2

√
n. Determining

the limiting distribution of λk (and the joint limiting distribution of (λ1, . . . ,λk)) was ac-
complished by proving a natural generalization of Theorem 3.5.7. First, [BDJ00] generalized
this theorem to the second row λ2, and following this [Joh01] and [BOO00] independently
generalized it to the first k rows (see also another proof by [Oko00]).

Theorem 3.6.5. For any fixed k ≥ 1, the two k-valued random variables(√
2m1/6 · (λi(X)−

√
2m)

)
i∈[k]

and

(
λi −

√
2n

n1/6

)
i∈[k]

,

where X ∼ GUEm and π ∼ Planchn, converge to each other in distribution as m,n→∞.

82

3.7 RSK of random words

In this section, we can finally discuss the Schur-Weyl distribution. This distribution shares
many properties with the Plancherel distribution, such as the relationship with the Tracy-
Widom distribution, but also exhibits some basic differences, which partially arise due to
the fact that words allow for repeated letters while permutations do not. One example is
that the expected LIS of an α-random word has a surprisingly simple form.

Proposition 3.7.1. Ew∼α⊗n LIS(w)/n→ α1 as n→∞.

Proof. The lower bound follows from the fact that the all-ones subsequence of any word is
always increasing, and hence the longest increasing subsequence is only longer:

E
w∼α⊗n

LIS(w) ≥ E
w∼α⊗n

[# of 1’s in w] = α1n.

As for the upper bound, we note that any maximal increasing subsequence s in w splits the
interval [1, n] into d contiguous subintervals

I1 = [1, n1], I2 = [n1 + 1, n1 + n2], . . . , Id = [n− nd + 1, n],

so that s contains all the 1’s in w which fall in I1, the 2′s which fall in I2, and so forth. The
length of the increasing subsequence in w corresponding to this set of intervals is distributed
as X1 + . . .+Xn, where X i is Bernoulli with expectation αj if i ∈ Ij. Because α1 is the max
of the αi’s, the Chernoff bound states that the probability that X1 + . . .+Xn ≥ (α1 + ε)n
for some ε > 0 is at most exp(−2nε2). Union bounding over all such partitions of [1, n], we
get that

Pr[LIS(w) ≥ (α1 + ε)n] ≤ nd

e2nε2
.

This decays exponentially in n, and from here it is straightforward to derive the statement
in the proposition.

At a high level, this says that the LIS of an α-random word is not much longer than the all-
1’s subsequence. One might then expect the longest disjoint pair of increasing subsequences
to not be much longer than the all-1’s and all-2’s subsequences which, by Greene’s Theorem,
would tell us that λ2 ∼ α2n. Extending this intuition to all of λ, we expect that

E
w∼α⊗n

λ→ α as n→∞.

This fact has been independently proved several times, e.g. in [ARS88] and [KW01]. The
earliest reference we know of is by Kerov and Vershik in [KV86] (using a result from [VK81]).

One seeming difference between random words w and random permutations π is that
in Proposition 3.7.1 we could easily calculate the expected LIS of w, whereas calculating
the expected LIS of π was at one point a famous open problem (Ulam’s problem). This
difference is deceptive though: just as for random words, we can easily calculate E LIS(π)/n
as n → ∞: it just happens to be zero. For random permutations, the interesting behavior

83

occurs on the order of
√
n, not n. In fact, LISes of random words also have interesting

lower-order behavior around
√
n. For example, we will show below in Theorem 4.2.2 that

E
w∼α⊗n

LIS(w) ≤ α1n+ 2
√
n

in the case when α = Unifd is the uniform distribution. Using this, we may recover Theo-
rem 3.5.4 by taking d→∞ and applying Corollary 3.3.4. (We believe this statement holds
for all α, though we can only prove it by replacing the 2 with 2.83. See Lemma 4.2.1.)

The overall picture of SWn(α) is more complex than that of Planchn, as SWn(α) can look
fundamentally different for different values of α. For example, if w ∼ α⊗n in the case when
α1 � α2, then the longest increasing subsequence of w is relatively easy to construct: there
are so many more 1’s in w than 2’s, 3’s, etc., that the longest increasing subsequence in w
is practically forced to take almost all of the 1’s, along with perhaps a few other letters near
the end of w. In this case, the distribution of LIS(w) will be very close to Binomial(n, α1).
On the other hand, if α1 = α2, then it’s not clear whether the longest increasing subsequence
should take (almost) all of the 1’s, (almost) all of the 2’s, or some of the 1’s and then some
of the 2’s, and the situation becomes even more complicated when all of the αi’s are the
same.

This high-level picture is summarized in the following three cases.

1. If the αi’s are all distinct, then Eλi/n converges to αi. Furthermore, the fluctuations

√
n

(
λi
n
− αi

)
are Gaussian with covariance δijαi−αiαj. This is exactly what one would expect if λi
always were equal to the number of i’s in w.

2. If α1 = . . . = αd = 1
d
, i.e. α = Unifd, then λ1 ∼ n

d
+ 2
√
n, λd ∼ n

d
− 2
√
n, and the

other λi’s interpolate between these two values in a manner reminiscent of the limiting
curve for the Plancherel distribution Ω(x). Furthermore, their limiting distributions
are given by the eigenvalues of a suitable Gaussian random matrix.

3. In general, if some of the αi’s are the same and others are different, then we can bucket
the αi’s into blocks B1, . . . , Bm ⊂ [d] in which αi = αj if and only if i, j fall into the
same block Bk. Then across blocks a random λ will act as in case 1, but within blocks
it will act as in case 2. In other words, given a vector v ∈ Rd if we write v[k] =

∑
i∈Bk vi,

then Eλ[k]/n converges to α[k]. Furthermore, the fluctuations

√
n

(
λ[k]

n
− α[k]

)
are Gaussian with covariance δk`α[k]−α[k]α[`], just as in case 1. On the other hand, if
we suppose that Bk = [i, j], then we expect that λi ∼ αin+ 2

√
n and λj ∼ αjn− 2

√
n

(recalling that αi = αj), with the λ`’s in the middle interpolating between these two
values. Furthermore, their limiting distributions are given by the eigenvalues of a
suitable Gaussian random matrix.

84

This line of work is a continuation of the line of work for the Plancherel distribution
pertaining to the “edge of the limit shape” (Section 3.6.2), especially the work of Baik, Deift,
and Johansson [BDJ99]. Note that in this line of work for the Schur-Weyl distribution, α is
kept fixed while n is allowed to grow unbounded. As a result, there is a fixed number of rows
of λ, and so it is possible to prove convergence for the entire diagram λ. This contrasts with
the case of the Plancherel distribution, where the number of rows grows with n, but one can
only prove convergence to the limiting distribution for the first k rows, for any fixed k.

In this work, we are interested in the properties of SWn(α) when n is small. It would be
natural to try to show that SWn(α) converges quickly to its limiting distribution via some
sort of Berry-Esseen theorem, and then to use properties of the limiting distribution. Unfor-
tunately, such a Berry-Esseen theorem would necessarily have a convergence rate depending
on mini,j:αi 6=αj |αi − αj| because the character of the limiting distributions (Gaussian versus
Tracy-Widom) depends on whether two αi’s are equal. Hence, this strategy is unlikely to
give good small-n estimates. Nevertheless, we have found these limiting distributions useful
for providing intuition in the small-n case.

Let us now formalize this high level picture. Item 1 was originally proved in the quantum
computing literature in [ARS88] and then proved in the mathematics literature in [HX13]
(and reproved in the works of [Buf12], [Mél12], and [FMN13, Equation (55)]). We will trace
through the history of items 2 and 3 in the following section.

3.7.1 Convergence to the GUE

We will largely follow the treatment of [HX13] in this section. In [TW01], Tracy and Widom
considered the following distribution on random matrices.

Definition 3.7.2. The traceless GUE, denoted GUE0
d, is the probability distribution on

d × d Hermitian matrices X drawn according to the following two-step process: (i) sample
Y ∼ GUEd; (ii) output

X := Y − tr(Y)

d
· I.

The next fact characterizes the eigenvalues of the traceless GUE in the limit (cf. [HX13]).

Fact 3.7.3. Given X ∼ GUE0
d, then as d→∞,(

λ1(X)√
d

, . . . ,
λd(X)√

d

)
converges almost surely to the semicircle law with density

√
4− x2/2π, −2 ≤ x ≤ 2.

The main result of [TW01] was to connect this random matrix ensemble to the homo-
geneous random words problem (i.e. the case when α is the uniform distribution). They
showed that as n→∞ then given a random λ ∼ SWn

d ,

λ1 − n/d√
n/d

→ λ1(X),

in distribution, where X ∼ GUE0
d. They conjectured that this behavior extends to all of the

rows as in item 2, which Johansson [Joh01] confirmed in the following theorem. (See also
Kuperberg [Kup02] for a quantum-mechanics-inspired proof of this result.)

85

Theorem 3.7.4. Let d be fixed. As n→∞ then for λ ∼ SWn
d , the random variable(

λ1 − n/d√
n/d

, . . . ,
λd − n/d√

n/d

)
→ (λ1(X), . . . , λd(X)) (3.4)

in distribution, where X ∼ GUE0
d.

Using Fact 3.7.3, we expect λ1(X) ≈ 2
√
d and λd(X) ≈ −2

√
d. Thus, by Theorem 3.7.4,

λ1 ≈ n/d+ 2
√
n and λd ≈ n/d− 2

√
n, as guaranteed by Item 2.

Following this, Its, Tracy, and Widom [ITW01] considered the case of nonuniform αi’s
(the inhomogeneous random word setting). As we have seen before, the distribution SWn(α)
depends on the degeneracies present in α, i.e. whether distinct αi’s are equal to each other.
For this, we will need to establish some notation.

Notation 3.7.5. Let α = (α1, . . . , αd) be a sorted probability distribution. We will write
d1 + · · ·+ dm = d for the multiplicities of the αi’s, meaning that α1 occurs in α a total of d1

times, the next largest αi (i.e. αd1+1) occurs d2 times, and so on. In addition, we will write
α(k) for the α-value which occurs with multiplicity dk, and we will write α[k] := dkα

(k) for
the sum of the αi’s which occur with multiplicity dk.

Its, Tracy, and Widom [ITW01] introduced the following generalization of the traceless
GUE, which was named by Houdre and Xu [HX13].

Definition 3.7.6. Let α = (α1, . . . , αd) be a sorted probability distribution. The general-
ized traceless GUE, denoted GUE0(α), is the probability distribution on d × d Hermitian
matrices X drawn according to the following process:

• For each k ∈ [m], draw Y (k) ∼ GUEdk .

• Let Y be the d× d block-diagonal matrix whose k-th diagonal block is Y (k).

• Output the matrix X defined as

X i,i =

{
Y i,i −

√
αi
∑d

j=1

√
αj · Y j,j if i = j,

Y i,j if i 6= j.
(3.5)

Note that X, like Y , is a block diagonal matrix. We will write λ
(k)
1 (X), . . . , λ

(k)
dk

(X) for the
eigenvalues of the k-th block, sorted in decreasing order.

Counterintuitively, the generalized traceless GUE, as defined, is not always a trace zero
matrix. However, X does always satisfy the “traceless” condition

d∑
i=1

√
αi ·X i = 0

which, as we will see, arises naturally in this context. The main result of [ITW01] is a
generalization of Equation (3.4) to the case of nonuniform αi’s: as n → ∞ then given a
random λ ∼ SWn(α),

λ1 − α1n√
α1n

→ λ
(1)
1 (X)

86

in distribution. Following their paper, Houdre and Xu [HX13], in a work originally appearing
in 2009, extended this result to apply to the full Young diagram.

Theorem 3.7.7. Let α = (α1, . . . , αd) be a sorted probability distribution. As n→∞, then
for λ ∼ SWn(α), the random variable(

λ1 − α1n√
α1n

, . . . ,
λd − αdn√

αdn

)
→
(
λ

(1)
1 (X), . . . , λ

(1)
d1

(X), . . . , λ
(m)
1 (X), . . . , λ

(m)
dm

(X)
)

in distribution, where X ∼ GUE0
d.

Example 3.7.8. It is instructive to carry out Theorem 3.7.7 in the case when the αi’s are
distinct. In this case, a matrix X ∼ GUE0(α) can be simulated by drawing d independent
Gaussians g1, . . . , gd ∼ N (0, 1) and setting

X i,i = g1 −
√
αi

d∑
j=1

√
αj · gj,

for each i ∈ [d]. Because X is block diagonal with blocks of size one, we have that λ
(i)
1 (X) =

X i,i for all i ∈ [d]. Thus, by Theorem 3.7.7, as n→∞,(
λ1 − α1n√

α1n
, . . . ,

λd − αdn√
αdn

)
→ (X1, . . . ,Xd)

in distribution. Equivalently,(
λ1 − α1n√

n
, . . . ,

λd − αdn√
n

)
→ (
√
α1 ·X1, . . . ,

√
αd ·Xd)

in distribution. The coordinates of the right-hand side are Gaussian with covariance δijαi−
αiαj. As a result, we recover item 1.

If we write X(k) for the k-th diagonal block of X ∼ GUE0(α), then

X(k) = Y (k) −
√
α(k)

m∑
`=1

√
α(`)tr(Y (`)) · Idk×dk

by Equation (3.5). The trace of this matrix is

tr(X(k)) = tr(Y (k))− dk
√
α(k)

m∑
`=1

√
α(`)tr(Y (`)).

It can be checked that the traces of the m diagonal blocks of X are distributed as centered
Gaussian random variables with covariance δk`dk − dkd`

√
α(k)α(`). The following theorem,

sketched by Meliot in [Mél12, Theorem 4], shows that these Gaussian fluctuations can be
decoupled from the GUE fluctuations in the generalized traceless GUE.

87

Theorem 3.7.9. Let α = (α1, . . . , αd) be a sorted probability distribution. LetX ∼ GUE0(α),

let g1, . . . , gm be centered Gaussian random variables with covariance δk`dk − dkd`
√
α(k)α(`),

and let Y (k) ∼ GUE0
dk

, for each k ∈ [m]. Then we have the following equivalence in distri-
bution:

λ
(k)
i (X)

d
=
gk
dk

+ λi(Y
(k)),

where the left- and right-hand sides refer to joint random variables ranging over k ∈ [m] and
i ∈ [dk]. As a result, as n→∞, then for λ ∼ SWn(α), the random variable{

λ
(k)
i − α(k)n√
α(k)n

}
k∈[m],i∈[dk]

→
{
gk
dk

+ λi(Y
(k))

}
k∈[m],i∈[dk]

(3.6)

in distribution.

We note that Houdre and Xu show a similar, though reversed, statement in [HX13, Propo-
sition 2.6]: given Y and X as in Definition 3.7.6, the eigenvalues of Y are distributed
as the eigenvalues of X, plus some independent Gaussian random variables (g1, . . . , gd) of
covariance

√
αiαj.

Rewriting Equation (3.6),

λ
(k)
i − α(k)n√

n
→
√
α(k)gk
dk

+
√
α(k)λi(Y

(k)).

Hence,

λ[k]− α[k]n√
n

→
√
α(k)gk +

dk∑
i=1

√
α(k)λi(Y

(k)) =
√
α(k)gk.

The m random variables
√
α(k)gk are centered Gaussians with covariance δk`α[k]− α[k]α[`],

and within the k-th block we get GUE-style deviations, as stated in Item 3.

3.7.2 Schur-Weyl for uniform distribution

A parallel line of work has considered the distribution SWn
d in the case when d := d(n) is

a growing function with n (in contrast with item 2, where d is fixed). This line of work is
inspired by and extends the work focusing on the “bulk of the limit shape” (Section 3.6.1)
for the Plancherel measure. Here, it turns out that the features of a “typical” λ ∼ SWn

d

depend on the ratio c :=
√
n
d

.
Biane [Bia01] extended the Plancherel law of large numbers to the Schur-Weyl distri-

bution in the case when c is a fixed constant and n, d → ∞. In this case, for a random
λ ∼ SWn

d , the function λ will approach a certain limiting curve Ωc, specified as follows:

Theorem 3.7.10 ([Bia01]). Fix an absolute constant c > 0 and assume n, d → ∞ with√
n
d
→ c. Then

Pr
λ∼SWn

d

[
‖λ− Ωc‖∞ ≥ ε

]
→ 0,

88

c = 0 c = 1/2

c = 1 c = 2

Figure 3.3: The Biane limiting curves Ωc. The c = 0 case corresponds to the function Ω(x).

where Ωc is the continual diagram defined as follows:

Ω0(x) = Ω(x);

Ωc∈(0,1)(x) =

 2
π

(
x arcsin(x+c

2
√

1+cx
) + 1

c
arccos(2+cx−c2

2
√

1+cx
) +

√
4−(x−c)2

2

)
if |x− c| ≤ 2,

|x| otherwise;

Ωc=1(x) =

{
x+1

2
+ 1

π

(
(x− 1) arcsin(x−1

2
) +

√
4− (x− 1)2

)
if |x− 1| ≤ 2,

|x| otherwise;

Ωc>1(x) =

x+ 2

c
if x ∈ (−1

c
, c− 2)

2
π

(
x arcsin(x+c

2
√

1+cx
) + 1

c
arccos(2+cx−c2

2
√

1+cx
) +

√
4−(x−c)2

2

)
if |x− c| ≤ 2,

|x| otherwise.

These curves are pictured for various values of c in Figure 3.3 (which we have reproduced
from [Mél10a]).

One consequence is these results is that when n = o(d2), the function λ converges to the
ice cream cone curve Ω(x) from above. This is a manifestation of the fact that SWn

d tends to
Planchn as d→∞, as in Corollary 3.3.4. Indeed, Childs et al. [CHW07] showed that when
n = o(d), the two distributions are statistically indistinguishable.

Meliot [Mél10a, Mél10b] has extended Kerov’s central limit theorem to the Schur-Weyl
distribution, characterizing the fluctuations of λ around the limiting curves given by Biane.
Surprisingly, these fluctuations are identical to Kerov’s fluctuations, up to translation in the
x-axis.

Theorem 3.7.11. When λ ∼ SWn
d and n, d→∞ with

√
n
d
→ c, the function λ(x) fluctuates

as Ωc(x) + 2√
n
∆(x− c), where ∆(z) is as in Theorem 3.6.4.

89

We close this section by recording some simple concentration bounds on the width and
length of λ ∼ SWn

d . They are not as precise as what is suggested by the above limit
theorems, but they have the advantage of giving concrete error bounds. We follow a simple
line of argument similar to that in [Rom14, Lemma 1.5].

Proposition 3.7.12. Let λ ∼ SWn
d . For every B ∈ Z+ we have Pr[λ1 ≥ B] ≤

(
(1+B/d)e2n

B2

)B
.

The same bound holds for Pr[λ′1 ≥ B].

We will typically take B = Θ(n/d), in which case this bound becomes exp(−Θ(n/d)).

Proof of Proposition 3.7.12. By Theorem 3.2.4, Pr[λ1 ≥ B] (respectively, Pr[λ′1 ≥ B]) is
equal to the probability that a uniformly random word from [d]n contains a weakly increasing
(respectively, strongly increasing) subsequence of length exactly B. As weakly increasing
subsequences are more probable than strongly increasing ones, it suffices to bound

Pr[λ1 ≥ B] ≤
(

(1 +B/d)e2n

B2

)B
.

Letting S denote the number of weakly increasing subsequences of length B in a random
word we have

Pr[λ1 ≥ B] ≤ E[S] =

(
n

B

)
· c
dB
,

where c is the number of words in [d]B which are weakly increasing. Evidently c also equals
the number of “weak d-compositions of B”, which [Sta11, Chapter 1.2] is

(
d−1+B
B

)
≤
(
d+B
B

)
.

We conclude

Pr[λ1 ≥ B] ≤
(
n

B

)
·
(
d+B
B

)
dB

≤

(
en
B

)B ((1+B/d)ed
B

)B
dB

=

(
(1 +B/d)e2n

B2

)B
,

as needed.

3.8 Polynomial algebras

In Section 2.4.1, we discussed the power sum and Schur polynomials, which are elements
of the C-algebra Λ of symmetric polynomials in indeterminates x1, x2,

3 Important to
our work will be a closely related polynomial algebra Λ∗, the algebra of shifted symmetric
polynomials, formally introduced introduced in [OO98b]. This algebra consists of those
polynomials which are symmetric in the “shifted” indeterminates x̃i := xi − i + c, where
c is any fixed constant. (The definition does not depend on the constant c.) When we
view the inputs to the shifted symmetric functions x1, x2, . . . as the values λ1, λ2, . . . of a
partition λ, the result is (isomorphic to) Kerov’s algebra of polynomial functions on the set
of Young diagrams, also known as the algebra of observables of diagrams. In a nutshell, the

3Strictly speaking, these are families of bounded-degree polynomials, one for each number of indeter-
minates, which are stable in the sense that pλ(x1, . . . , xd, 0) = pλ(x1, . . . , xd), and similarly for sλ. See,
e.g., [Mac95] for a formal definition via projective limits.

90

importance of this algebra is that, on one hand, it still contains polynomials that are similar
to “power sums” or “moments” of the λi’s; and, on the other hand, it is easier to compute
their expected value under SWn(α) distributions.

We will need to study several families of observables/shifted symmetric polynomials, and
their relationships:

Definition 3.8.1. The following polynomials are known to be elements of Λ∗. (We describe
the first four as observables of Young diagrams.)

• For k ≥ 1,

p∗k(λ) :=

d(λ)∑
i=1

(
(a∗i)

k − (−b∗i)k
)

=
∞∑
i=1

(
(λi − i+ 1

2
)k − (−i+ 1

2
)k
)
.

These are the most basic polynomials on Young diagrams, giving the “moments” of
the coordinates. For more information on them see [IO02], where they are introduced
(in equation (1.4)) under the notation pk(λ). We use the notation p∗k(λ) to distinguish
them from the ordinary power sum symmetric polynomials. It is obvious from the
second definition above that the p∗k polynomials are in Λ∗. In fact they are algebraically
independent, and they generate Λ∗.

• For k ≥ 0, the k-th content sum polynomial is ck(λ) :=
∑
�∈[λ] c(�)k. Although these

polynomials are quite natural, we will have little occasion to use them. The fact that
they are in Λ∗ was proven in [KO94].

• For k ≥ 2,

p̃k(λ) := k(k − 1)

∫ ∞
−∞

xk−2σ(x) dx,

where σ(x) := 1
2
(λ(x) − |x|). These polynomials were introduced and shown to be

algebraically independent generators of Λ∗ in [IO02, Section 2]. They can shown to be
the “moments of the local extrema of λ(x)”, and are also useful for studying contin-
ual diagrams. We use them only briefly, to pass between the p∗k polynomials and p]k
polynomials defined below.

• For λ ` n and µ ` k, the central characters are defined by

p]µ(λ) =

{
n↓k · χλ(µ∪1n−k)

dim(λ)
if n ≥ k,

0 if n < k.

where µ ∪ 1n−k denotes the partition (µ, 1, 1, . . . , 1) ` n. In case µ = (k) we simply
write p]k(λ). Note that we are somewhat unexpectedly applying the character χλ
to (an extension of) µ, and not the other way around. The advantage of the p]µ
polynomials is that, by virtue of them being characters of the symmetric group (up to
some normalizations), their expectations under SWn

ρ can be easily calculated exactly,
as we will see below. A disadvantage is that, by virtue of them being characters of the
symmetric group, explicit formulas for them are famously quite complex [Las08, Fér10]

91

(though in Section 3.8.1 we will mention a formula that allows one to compute p]k for

small k fairly easily). Wassermann [Was81, III.6] showed that the p]k polynomials are
in Λ∗, and in fact [VK81, KO94, OO98b] more generally the polynomials p]µ form a
linear basis of Λ∗.

• For µ ` k, the shifted Schur polynomial in indeterminates x1, . . . , xd is

s∗µ(x1, . . . , xd) =
det
(

(xi − i+ d)↓(d+µj−j)
)
ij

det
(

(xi − i+ d)↓(d−j)
)
ij

if `(µ) ≤ d, else 0.

These polynomials are the shifted analogues of the Schur polynomials (cf. Theo-
rem 2.4.9). They were introduced by Okounkov and Olshanski [OO98b], and are similar
to the earlier-defined “factorial Schur functions” (see, e.g., [Mac95, I.3.20–21]), but with
the advantage that they are stable—i.e., s∗µ(x1, . . . , xd, 0) = s∗µ(x1, . . . , xd). They arise
for us because they can sometimes be used to express the ratio of two Schur functions
(see the “Binomial Formula” Theorem 6.3.1). To analyze them, we will use the fol-
lowing “shifted analogue” of Theorem 2.4.10, proved in [OO98b, Theorem 8.1], [IK01,
Theorem 9.1] (see also [Mél10b, p.25]):

Theorem 3.8.2. For µ ` k, let us think of the central character polynomial p]µ not
as an observable of Young diagrams (applied to λ1, . . . , λd) but as a shifted symmetric
polynomial in indeterminates x1, . . . , xd. In the context of Fourier analysis over the
group G = S(k), for each fixed x ∈ Cd we may think of p](·)(x) := π 7→ p]π(x) as a class
function. Then its Fourier coefficients are given by

p̃](·)(x)(µ) = s∗µ(x).

(Note that give the determinantal definition of the shifted Schur polynomials, one may
alternatively take this Theorem as a definition of the shifted symmetric polynomials
p]µ(x).)

As mentioned, the p]µ polynomials are especially important for us as because there is
a simple expression for their expectation under any Schur-Weyl distribution. This is the
subject of our next proposition.

Proposition 3.8.3. Let α = (α1, . . . , αd) be a probability distribution, and let µ ` k. Then

E
λ∼SWn(α)

[p]µ(λ)] = n↓k · pµ(α1, . . . , αd).

Proof. It’s immediate from the definitions that both sides are 0 if n < k, so we assume n ≥ k.
Applying Definition 2.6.2 and the definition of p]µ we obtain

E
λ∼SWn(α)

[p]µ(λ)] = n↓k ·
∑
λ`n

sλ(α) · χλ(µ ∪ 1n−k)

= n↓k · pµ∪1n−k(α),

where the second equation is from Theorem 2.4.10. But pµ∪1n−k(α) = pµ(α), since the two
quantities differ only by factors of p1(α) = α1 + · · ·+ αd = 1.

92

Note that in the case of α1 = . . . = αd = 1/d, we have that pµ(α) = d`(µ)−k. This gives
us the following important corollary:

Corollary 3.8.4. Let µ ` k. Then E
λ∼SWn

d

[p]µ(λ)] = n↓k · d`(µ)−k.

Applying Corollary 3.3.4 and the fact that `(µ) = k if µ = (k) and otherwise `(µ) < k, we
get the following corollary.

Corollary 3.8.5. Let µ ` k. Then E
λ∼Planchn

[p]µ(λ)] =

{
n↓k if µ = (k),
0 otherwise.

3.8.1 Working with the p]µ polynomials

As we will be working heavily with the p]µ polynomials, let us describe them further. Com-
puting p]µ(λ) is polynomial-time equivalent to computing the character χλ(µ∪1n−k) because
the dim(λ) term in the denominator is easily computed by the Hook-Length Formula (Defi-
nition 2.2.12). Unfortunately, computing characters of the symmetric group is known to be
#P-complete [Hep94], and even deciding whether a character is nonzero is NP-hard [PP14].
This means that the p]µ polynomials, especially when |µ| is large, are somewhat inexplicit
and rather cumbersome to work with. When |µ| is small, however, explicit formulas for p]µ
can be computed by the following theorem.

Theorem 3.8.6. The function p]µ is the unique element of Λ∗ such that the highest degree
term of p]µ is the power sum symmetric polynomial pµ and

p]µ(λ) = 0

for all λ such that |λ| < |µ|.

This characterization theorem is stated in the talk of Okounkov [Oko08], where he credits
it to the papers of [VK81] and [KO94], though we could not find it written explicitly in
either of these works. However, it follows immediately from known results by applying
Theorems 2.4.10 and 3.8.2 to a similar characterization theorem for shifted Schur functions
(which is stated identically except that the highest degree term of s∗µ is the ordinary Schur
function sµ) given by [OO98b].

As pointed out by Okounkov [Oko08], we can use Theorem 3.8.6 to obtain a relatively
simple finitary method for expressing p]µ polynomials in terms of the p∗j polynomials. The case
when µ = (k) is the most useful for us, so we will begin with it. By [IO02, Proposition 3.4],

p]k = p∗k +
{

polynomial in p∗1, . . . , p
∗
k−1 of gradation at most k − 1

}
, (3.7)

where gradation refers to the canonical grading in which
∏

i p
∗
λi

has gradation |λ|. Hence,

computing p]k involves determining the coefficients of this polynomial of gradation at most
k − 1, and the vanishing condition of Theorem 3.8.6 allows us to generate linear equations
in these unknowns, which can then be solved for by computer. In particular, we can deduce

p]1 = p∗1, p]2 = p∗2, p]3 = p∗3 − 3
2
(p∗1)2 + 5

4
p∗1, p]4 = p∗4 − 4p∗2p

∗
1 + 11

2
p∗2. (3.8)

93

(Having deduced these equations, Theorem 3.8.6 allows us to verify them easily.) We can of
course inductively invert (3.7), deducing that

p∗k = p]k +
{

polynomial in p]1, . . . , p
]
k−1 of gradation at most k − 1

}
. (3.9)

For example,

p∗1 = p]1, p∗2 = p]2, p∗3 = p]3 + 3
2
(p]1)2 − 5

4
p]1, p∗4 = p]4 + 4p]2p

]
1 − 11

2
p]2. (3.10)

This methodology can be extended to general µ via [IO02, Proposition 4.2]:

p]µ = p∗µ +
{

polynomial in p∗1, . . . , p
∗
|µ|−1 of gradation at most |µ| − 1

}
,

where p∗µ =
∏

i p
∗
µi

Recall that the more general p]τ polynomials (for τ ∈ Par) are known to linearly generate
the algebra of observables. This means that any product p]µ1p

]
µ2

can be converted to a linear
combination of p]τ ’s. In particular, if we applied this conversion in (3.10) we would get linear
expressions for the “low-degree moments of Young diagrams” (i.e., the p∗j ’s) in terms of p]τ ’s;
we could then compute the expectation of these, under any Schur-Weyl distribution, using
Proposition 3.8.3.

We are therefore interested in the structure constants f τµ1µ2 of Λ∗ in the basis {p]τ}; i.e.,
the numbers such that

p]µ1p
]
µ2

=
∑
τ∈Par

f τµ1µ2p
]
τ .

These were first determined by Ivanov and Kerov [IK01] in terms of the algebra of partial
permutations. We quote the following formulation from [IO02, Proposition 4.5]:

Proposition 3.8.7. Let τ, µ1, µ2 ∈ Par. Fix a set R of cardinality |τ | and a permutation
w : R→ R of cycle type τ . Then

f τµ1µ2 =
zµ1zµ2
zτ

gτµ1µ2 ,

where gτµ1µ2 equals the number of quadruples (R1, w1, R2, w2) such that:

1. R1 ⊆ R, R2 ⊆ R, R1 ∪R2 = R;

2. |Ri| = |µi| and wi : Ri → Ri is a permutation of cycle type µi, for i = 1, 2;

3. w1w2 = w, where wi : R→ R denotes the natural extension of wi from Ri to the whole
of R.

We present an equivalent formulation we have found to be more convenient. We omit its
straightforward combinatorial deduction from Proposition 3.8.7.

Corollary 3.8.8. Let

Ct
r1r2

:=
r1!r2!

(t− r1)!(t− r2)!(r1 + r2 − t)!

94

if the positive integers r1, r2, t satisfy r1, r2 ≤ t ≤ r1 + r2, and let Ct
r1r2

:= 0 otherwise. Then
for µ ` r1, ν ` r2, τ ` t,

f τµν = Ct
r1r2
· Pr
w1,w2

[w1w2 has cycle type τ] ,

where w1 is a uniformly random permutation on {1, . . . , r1} of cycle type µ, and w2 is a
uniformly random permutation on {t− r2 + 1, . . . , t} of cycle type ν.

As very simple examples, we can compute

(p]1)2 = p](1,1) + p]1, p]2p
]
1 = p](2,1) + 2p]2, (p]2)2 = p](2,2) + 4p]3 + 2p](1,1). (3.11)

Substituting these into (3.8), we obtain the formulas

p∗1 = p]1, p∗2 = p]2, p∗3 = p]3 + 3
2
p](1,1) + 1

4
p]1, p∗4 = p]4 + 4p](2,1) + 5

2
p]2, (3.12)

which will be useful to us later.
Given the formula for the structure constants, it’s not hard to show that

p]µp
]
ν = p]µ∪ν +

{
linear combination of p]τ ’s with |τ | < |µ ∪ ν|

}
,

where µ∪ν denotes the partition formed by joining the parts of µ and ν and sorting them in
nonincreasing order (i.e., mw(µ ∪ ν) = mw(µ) + mw(ν)). In fact, we will require a stronger
statement, based on the following notion introduced in [IK01]:

Definition 3.8.9. For a partition λ ∈ Par, its weight is defined to be wt(λ) = |λ|+ `(λ).

Now Śniady [Śni06, Corollary 3.8] proved:

Proposition 3.8.10. p]µp
]
ν = p]µ∪ν+

{
linear combination of p]τ ’s with wt(τ) ≤ wt(µ) + wt(ν)− 2

}
.

At one point in Chapter 7, we will need explicit bounds on the coefficients of the polyno-
mial that appears in Equation (3.7), and this involves analyzing some expressions that arise
in the proof of this equation. The proof in [IO02] is based on an identity from [Was81, III.6]
(cf. [IO02, Proposition 3.3]) which uses generating functions:

p]k = [tk+1]

{
−1

k

k∏
j=1

(1− (j − 1
2
)t) · exp

(
∞∑
j=1

p∗j t
j

j
(1− (1− kt)−j)

)}
.

One may rewrite this (cf. [IO02, (3.3)]) as

p]k = [tk+1]

{
−1

k

k∏
j=1

(1− (j − 1
2
)t) ·

∞∑
i=0

(−1)i

i!
Qk(t)

i

}
, (3.13)

where

Qk(t) =
∞∑
m=1

Qk,mt
m+1, Qk,m = 1

1

(
m
0

)
kmp∗1 + 1

2

(
m
1

)
km−1p∗2 + 1

3

(
m
2

)
km−2p∗3 + · · ·+ 1

m

(
m
m−1

)
kp∗m.

(3.14)
It follows that in (3.13) we may restrict the sum on i to the range between 0 and k+1

2
,

and in (3.14) we can restrict the sum on m to the range between 1 and k. This gives a
separate, though less convenient, method for expressing the p]k polynomials in terms of the
p∗j ’s. Furthermore, one can derive (3.7) from this expression.

95

96

Chapter 4

Spectrum estimation

In this section, we consider the following natural algorithm for estimating the spectrum α
of a mixed state ρ ∈ Cd×d.

Definition 4.0.1 (Empirical Young diagram algorithm). Given ρ⊗n:

1. Sample λ ∼ SWn
ρ .

2. Output
λ

n
=

(
λ1

n
, . . . ,

λd
n

)
.

We will sometimes write λ for λ/n.

This algorithm was first proposed by Alicki, Rudnicki, and Sadowski [ARS88] who not
only showed that λ/n → α almost surely as n → ∞, but also proved a Gaussian central
limit theorem for λ/n. Later, it was independently suggested and analyzed by Keyl and
Werner [KW01]. In a non-quantum context, the fact that λ/n → α almost surely was, to
our knowledge, first shown by Kerov and Vershik in [KV86]. We note that though this is a
natural algorithm for spectrum estimation, it is not in general an unbiased estimator for α
(see Lemma 4.1.2 below).

Our first result upper bounds the expected `2
2 error of the EYD algorithm, proving The-

orem 1.4.6.

Theorem 4.0.2 (Theorem 1.4.6 restated). E
λ∼SWn(α)

‖λ− α‖2
2 ≤

d

n
.

Corollary 1.3.6 follows as an immediate consequence, giving an n = O(d2/ε2) bound for
spectrum estimation. Previously, the best bound for spectrum estimation was = O(d2/ε ·
log(d/ε)) [HM02, CM06].

We will also study the following natural modification of the EYD algorithm for solving
truncated spectrum estimation.

Definition 4.0.3 (Truncated EYD algorithm). Given ρ⊗n and an integer k ∈ [d]:

1. Sample λ ∼ SWn
ρ .

2. Output

(
λ1

n
, . . . ,

λk
n

)
.

97

Our next result upper bounds the expected trace distance error of the truncated EYD
algorithm, proving Theorem 1.4.8.

Theorem 4.0.4 (Theorem 1.4.8 restated). E
λ∼SWn(α)

d
(k)
TV(λ, α) ≤ 1.92 k + .5√

n
.

We complement our upper bounds with a matching lower bound for the EYD algorithm,
proving Theorem 1.4.10.

Theorem 4.0.5 (Theorem 1.4.10 restated). If ρ ∈ Cd×d is the maximally mixed state, then
the EYD algorithm fails to give an ε-accurate estimate in total variation distance with high
probability unless Ω(d2/ε2) copies are used.

In general, the best lower bound for spectrum estimation for all algorithms is n = Ω(d/ε2),
which follows from our Theorem 1.4.23. It is an interesting open question to determine the
copy complexity of spectrum estimation.

This chapter is organized as follows:

• Section 4.1 gives the proof of Theorem 4.0.2.

• Section 4.2 gives the proof of Theorem 4.0.4.

• Section 4.3 gives the proof of Theorem 4.0.5.

4.1 Spectrum estimation

We give two lemmas and then the proof of Theorem 4.0.2.

Lemma 4.1.1. Let α ∈ Rd be a probability distribution. Then

E
λ∼SWn(α)

d∑
i=1

λ2
i ≤

d∑
i=1

(nαi)
2 + dn.

Proof. Define the polynomial function

p∗2(λ) =

`(λ)∑
i=1

(
(λi − i+ 1

2
)2 − (−i+ 1

2
)2
)
.

By Proposition 2.34 and equation (12) of [OW15b], Eλ∼SWn(α)[p
∗
2(λ)] = n(n− 1) ·

∑d
i=1 α

2
i .

Hence,

E
d∑
i=1

λ2
i = E

[
p∗2(λ) +

d∑
i=1

(2i− 1)λi

]
≤ E p∗2(λ) +

d∑
i=1

(2i− 1)(n/d) ≤ n2 ·
d∑
i=1

α2
i + dn.

Here the first inequality used inequality (1.9) and λ � (n/d, . . . , n/d).

Lemma 4.1.2. Let λ ∼ SWn(α), where α ∈ Rd is a sorted probability distribution. Then
(Eλ1, . . . ,Eλd) � (α1n, . . . , αdn).

98

Proof. Let w ∼ α⊗n, so λ is distributed as shRSK(w). The proof is completed by linearity
of expectation applied to the fact that (λ1, . . . ,λd) � (#1w, . . . ,#dw) always, where #kw
denotes the number of times letter k appears in w. In turn this fact holds by Greene’s
Theorem: we can form k disjoint increasing subsequences in w by taking all its 1’s, all its
2’s, . . . , all its k’s.

Proof of Theorem 4.0.2. We have

n2 · E
λ∼SWn(α)

‖λ− α‖2
2 = E

d∑
i=1

(λi − αin)2 = E
d∑
i=1

(λ2
i + (αin)2)− 2

d∑
i=1

(αin) · Eλi

≤ dn+ 2
d∑
i=1

(αin)2 − 2
d∑
i=1

(αin) · Eλi ≤ dn+ 2
d∑
i=1

(αin)2 − 2
d∑
i=1

(αin) · (αin) = dn,

where the first inequality used Lemma 4.1.1 and the second used Lemma 4.1.2 and inequal-
ity (1.9) (recall that the coefficients αin are decreasing). Dividing by n2 completes the
proof.

4.2 Truncated spectrum estimation

The key lemma involved in the proof of Theorem 4.0.4 is the following:

Lemma 4.2.1. Let α ∈ Rd be a sorted probability distribution. Then for any k ∈ [d],

E
λ∼SWn(α)

k∑
i=1

λi ≤
k∑
i=1

αin+ 2
√

2k
√
n.

We remark that it is easy to lower -bound this expectation by
∑k

i=1 αin via Lemma 4.1.2.
We now show how to deduce Theorem 4.0.4 from Lemma 4.2.1. Then in Section 4.2.1 we
prove the lemma.

Proof of Theorem 4.0.4. Let w ∼ α⊗n, let RSK(w) = (P ,Q), and let λ = sh(P), so
λ ∼ SWn(α). Write w′ for the string formed from w by deleting all letters bigger than k.
Then it is a basic property of the RSK algorithm that RSK(w′) produces the insertion
tableau P ′ formed from P by deleting all boxes with labels bigger than k. Thus λ′ =
sh(P ′) = shRSK(w′). Denoting α[k] = α1 + · · · + αk, we have λ′ ∼ SWm(α′), where m ∼
Binomial(n, α[k]) and α′ denotes α conditioned on the first k letters; i.e., α′ = (αi/α[k])

k
i=1.

Now by the triangle inequality,

2n ·E d
(k)
TV(λ, α) = E

k∑
i=1

|λi − αin| ≤ E
k∑
i=1

(λi − λ′i) + E
k∑
i=1

|λ′i − α′im|+
k∑
i=1

|α′im− αin| .

(4.1)

99

The first quantity in (4.1) is at most 2
√

2k
√
n, using Lemma 4.2.1 and the fact that

E[
∑k

i=1 λ
′
i] = E[m] =

∑k
i=1 αin. The second quantity in (4.1) is at most k

√
n using Theo-

rem 4.0.2:

E
k∑
i=1

|λ′i − α′im| = E
m
m · E

λ′
‖λ′ − α′‖1 ≤ E

m
m
√
k
√

E
λ′
‖λ′ − α′‖2

2 ≤ kE
m

√
m ≤ k

√
n.

And the third quantity in (4.1) is at most
√
n:

E
m

k∑
i=1

|α′im− αin| = E
m

k∑
i=1

αi
α[k]

∣∣m− α[k]n
∣∣ = E

m
|m− α[k]n| ≤ stddev(m) ≤

√
n.

Thus 2n · E d
(k)
TV(λ, α) ≤ ((2

√
2 + 1)k + 1)

√
n, and dividing by 2n completes the proof.

4.2.1 Proof of Lemma 4.2.1

Our proof of Lemma 4.2.1 is essentially by reduction to the case when α is the uniform
distribution and k = 1. We thus begin by analyzing the uniform distribution.

The uniform distribution case

In this subsection we will use the abbreviation (1/d) for the uniform distribution (1/d, . . . , 1/d)
on [d]. Our goal is the following fact, which is of independent interest:

Theorem 4.2.2. E
λ∼SWn(1/d)

λ1 ≤ n/d+ 2
√
n.

We remark that Theorem 4.2.2 implies Lemma 4.2.1 (with a slightly better constant) in
the case of α = (1/d, . . . , 1/d), since of course λi ≤ λ1 for all i ∈ [k]. Also, by taking d→∞
we recover the well known fact that Eλ1 ≤ 2

√
n when λ has the Plancherel distribution.

Indeed, our proof of Theorem 4.2.2 extends the original proof of this fact by Vershik and
Kerov [VK85], which we presented in Section 3.5.4 (cf. the exposition in [Rom14]).

Proof. Consider the Schur-Weyl growth process under the uniform distribution (1/d, . . . , 1/d)
on [d]. For m ≥ 1 we define

δm = E[λ
(m)
1 −λ

(m−1)
1] = Pr[the m-th box enters into the 1st row] = E

λ∼SWm−1(1/d)

sλ+e1(1/d)

sλ(1/d)
,

where we used Corollary 3.4.3. By Cauchy–Schwarz,

δ2
m ≤ E

λ∼SWm−1(1/d)

(
sλ+e1(1/d)

sλ(1/d)

)2

=
∑

λ`m−1

dim(λ)sλ(1/d) ·
(
sλ+e1(1/d)

sλ(1/d)

)2

=
∑

λ`m−1

dim(λ)sλ+e1(1/d) ·
(
sλ+e1(1/d)

sλ(1/d)

)
=
∑

λ`m−1

dim(λ+ e1)sλ+e1(1/d) ·
(
d+ λ1

dm

)
(4.2)

≤ E
λ∼SWm(1/d)

(
d+ λ1

dm

)
=

(
d+ δ1 + . . .+ δm

dm

)
,

100

where the ratio in (4.2) was computed using the first formula of Definition 2.2.13 (and the
homogeneity of Schur polynomials). Thus we have established the following recurrence:

δm ≤
1√
dm

√
d+ δ1 + · · ·+ δm. (4.3)

We will now show by induction that δm ≤ 1
d

+ 1√
m

for all m ≥ 1. Note that this will complete

the proof, by summing over m ∈ [n]. The base case, m = 1, is immediate since δ1 = 1. For
general m > 1, think of δ1, . . . , δm−1 as fixed and δm as variable. Now if δm satisfies (4.3), it
is bounded above by the (positive) solution δ∗ of

δ =
1√
dm

√
c+ δ, where c = d+ δ1 + · · ·+ δm−1.

Note that if δ > 0 satisfies

δ ≥ 1√
dm

√
c+ δ (4.4)

then it must be that δ ≥ δ∗ ≥ δm. Thus it suffices to show that (4.4) holds for δ = 1
d

+ 1√
m

.
But indeed,

1√
dm

√
c+

1

d
+

1√
m

=
1√
dm

√
d+ δ1 + · · ·+ δm−1 +

1

d
+

1√
m

≤ 1√
dm

√√√√d+
m∑
i=1

(
1

d
+

1√
i

)
≤ 1√

dm

√
d+

m

d
+ 2
√
m =

1√
dm

(√
d+

√
m

d

)
=

1

d
+

1√
m
,

where the first inequality used induction. The proof is complete.

Reduction to the uniform case

Proof of Lemma 4.2.1. Given the sorted distribution α on [d], let β be the sorted probability
distribution on [d] defined, for an appropriate value of m, as

β1 = α1, . . . , βk = αk, βk+1 = . . . = βm = αk+1 > βm+1 ≥ 0, βm+2 = . . . = βd = 0.

In other words, β agrees with α on the first k letters and is otherwise uniform, except for
possibly a small “bump” at βm+1. By construction we have β � α. Thus it follows from our
coupling result, Theorem 1.5.4, that

E
λ∼SWn(α)

k∑
i=1

λi ≤ E
µ∼SWn(β)

k∑
i=1

µi,

and hence it suffices to prove the lemma for β in place of α. Observe that β can be expressed
as a mixture

β = p1 · D1 + p2 · D2 + p3 · D3, (4.5)

101

of a certain distribution D1 supported on [k], the uniform distribution D2 on [m], and the
uniform distribution D3 on [m+1]. We may therefore think of a draw µ ∼ SWn(β) occurring
as follows. First, [n] is partitioned into three subsets I1, I2, I3 by including each i ∈ [n] into

Ij independently with probability pj. Next we draw strings w(j) ∼ D⊗Ijj independently for

j ∈ [3]. Finally, we let w = (w(1),w(2),w(3)) ∈ [d]n be the natural composite string and
define µ = shRSK(w). Let us also write µ(j) = shRSK(w(j)) for j ∈ [3]. We now claim that

k∑
i=1

µi ≤
k∑
i=1

µ
(1)
i +

k∑
i=1

µ
(2)
i +

k∑
i=1

µ
(3)
i

always holds. Indeed, this follows from Greene’s Theorem: the left-hand side is |s|, where
s ∈ [d]n is a maximum-length disjoint union of k increasing subsequences inw; the projection
of s(j) onto coordinates Ij is a disjoint union of k increasing subsequences in w(j) and hence
the right-hand side is at least |s(1)|+ |s(2)|+ |s(3)| = |s|. Thus to complete the proof of the
lemma, it suffices to show

E
k∑
i=1

µ
(1)
i + E

k∑
i=1

µ
(2)
i + E

k∑
i=1

µ
(3)
i ≤

k∑
i=1

αin+ 2
√

2 k
√
n. (4.6)

Since D1 is supported on [k], the first expectation above is equal to E[|w(1)|] = p1n. By (the
remark just after) Theorem 4.2.2, we can bound the second expectation as

E
k∑
i=1

µ
(2)
i ≤ kEµ

(2)
1 ≤ kE |w(2)|/m+ 2kE

√
|w(2)| ≤ k(p2n)/m+ 2k

√
p2n.

Similarly the third expectation in (4.6) is bounded by k(p3n)/(m + 1) + 2k
√
p3n. Using

√
p2 +

√
p3 ≤

√
2, we have upper-bounded the left-hand side of (4.6) by

(p1 + p2
k
m

+ p3
k

m+1
)n+ 2

√
2 k
√
n =

(
k∑
i=1

βi

)
n+ 2

√
2 k
√
n,

as required.

4.3 The lower bound

In this section, we prove Theorem 4.0.5. Since ρ is the maximally mixed state, its spectrum
is the uniform distribution Unifd, and so our goal is to show that the λ output by the EYD
algorithm is ε-far from Unifd with constant probability unless n is sufficiently large.

Theorem 4.3.1. There is a δ > 0 such that for sufficiently small values of ε,

Pr
λ∼SWn

d

[dTV(λ,Unifd) > ε] ≥ δ

unless n = Ω(d2/ε2).

102

We will split the lower bound into two cases.

Theorem 4.3.2. For every constant C > 0, there are constants δ, ε > 0 such that

Pr
λ∼SWn

d

[dTV(λ,Unifd) > ε] ≥ δ

when n < C · d2 and d is sufficiently large.

Theorem 4.3.3. There are absolute constants C > 0 and 0 < δ < 1 such that

Pr
λ∼SWn

d

[dTV(λ,Unifd) > ε] ≥ δ

when n ≥ C · d2, unless n = Ω(d2/ε2).

To prove Theorem 4.3.1, let C and δ1 be the constants in Theorem 4.3.3. Apply
Theorem 4.3.2 with the value of C, and let δ2 and ε0 be the resulting constants. Set
δ := min{δ1, δ2}. Then we see that for all ε ≤ ε0,

Pr
λ∼SWn

d

[dTV(λ,Unifd)) > ε] ≥ δ

unless n = Ω(d2/ε2), giving Theorem 4.3.1.
Theorem 4.3.2 might look unnecessary, as Theorem 4.3.3 already proves the lower bound

for sufficiently large values of n (i.e., n ≥ C · d2), and intuitively having fewer copies of ρ
shouldn’t improve the performance of the EYD algorithm. However, this intuition, though
it may be true in some approximate sense, is false in general: there are regimes of state
estimation where the performance of the EYD algorithm does not increase monotonically
with the value of n. For example, if n is a multiple of d, then when λ ∼ SWn

d , λ will equal
Unifd with some nonzero probability. On the other hand, a random λ ∼ SWn+1

d will never be
uniform, because n+ 1 is not a multiple of d. Thus, decreasing the value of n can sometimes
help (according to some performance metrics), and this shows why we need Theorem 4.3.2
to supplement Theorem 4.3.3.

The proof of Theorem 4.3.2 is quite technical, and we defer it to Section 4.3.1. Our
proof of Theorem 4.3.3 is simpler and appears below. It is a good illustration of the ba-
sic technique of using polynomial functions on Young diagrams. The intuition behind the
proof is as follows: By the (traceless) Gaussian Unitary Ensemble fluctuations predicted
in [ITW01], we expect that for λ ∼ SWn

d , the empirical distribution λ will deviate from Unifd
by roughly Θ(1/

√
n) in each coordinate. This will yield total variation distance Θ(d/

√
n),

necessitating n ≥ Ω(d2/ε2) to achieve dTV(λ,Unifd) ≤ ε. Actually analyzing the precise rate
of convergence to Gaussian fluctuations in terms of n is difficult, and is overkill anyway;
instead, we use the Fourth Moment Method to lower bound the fluctuations.

Proof of Theorem 4.3.3. Our goal is to show that for n ≥ 1010d2, with 1% probability over
a random λ ∼ SWn

d , at least d
200

coordinates i ∈ [d] satisfy∣∣∣λi − n

d

∣∣∣ ≥ √n
1000

.

103

When this event occurs,

dTV(λ,Unifd) =
1

2
·

d∑
i=1

∣∣∣∣λin − 1

d

∣∣∣∣ =
1

2
·

d∑
i=1

1

n
·
∣∣∣λi − n

d

∣∣∣
≥ 1

2
· d

200
· 1

n
·
√
n

1000
=

1

400000
· d√

n
,

which is bigger than ε unless n = Ω(d2/ε2). Showing this will prove Theorem 4.3.3 with the
parameters C = 1010 and δ = .01.

To begin, let us define a family of polynomials.

Definition 4.3.4. Given k ≥ 1 and c ∈ R, we define p∗k,c(λ) :=
∑∞

i=1(λi− i− c)k− (−i− c)k.

This generalizes the definition of the p∗k polynomials, as p∗
k,− 1

2

= p∗k.

Fact 4.3.5. Let c ∈ R. Then

• p∗2,c = (−2c− 1)p]1 + p]2, and

• p∗4,c = (−4c3−6c2−4c−1)p]1+(6c2+6c+4)p]2+(−6c−3)p](1,1)+(−4c−2)p]3+4p](2,1)+p
]
4.

Proof. By explicit computation, one can check that

p∗2,c = 2(−c− 1
2
)p∗1 + p∗2, p∗4,c = 4(−c− 1

2
)3p∗1 + 6(−c− 1

2
)2p∗2 + 4(−c− 1

2
)p∗3 + p∗4.

(Indeed, it’s not hard to show that in general, p∗k,c =
∑k

j=1

(
k
j

)
(−c − 1

2
)k−jp∗j .) The claim

now follows from (3.12).

For any c, these formulas allow us to compute the expected value of p∗2,c and p∗4,c over a

random λ ∼ SWn
d , by using Corollary 3.8.4. Furthermore, for any k and d,

∑d
i=1(−i − c)k

is a constant which doesn’t depend on λ. Combining these two facts allows us to compute
average value over a random λ ∼ SWn

d of
∑d

i=1(λi − i− c)k, for k = 2, 4. In particular, we
are interested in computing this expectation when c = n

d
. Write Li := λi − i− n

d
. Then

E
λ∼SWn

d

[
d∑
i=1

L2
i

]
= −n

d
+ nd+ d3

3
+ d2

2
+ d

6
≥ −n

d
+ nd ≥ 3nd

4
, (4.7)

where in the last step we used the fact that n/d ≤ nd/4 because d ≥ 2.
Similarly, as n ≥ 1010d2 ≥ d2, we can use the bound

E
λ∼SWn

d

[
d∑
i=1

L4
i

]
= 2n− d

30
− 4n

d2
− 6n

d3
+ 2nd2 + d5

5
+ d3

3
+ 3n2

d3
+ d4

2
+ nd3 + 2n2d+ nd− 5n2

d
+ 4n

d

≤ 2n+ 2nd2 + d5

5
+ d3

3
+ 3n2

d3
+ d4

2
+ nd3 + 2n2d+ nd+ 4n

d
≤ 6n2d,

where the last step only uses trivial bounds involving the facts n ≥ d2 and d ≥ 2.

104

For a fixed λ, let L(λ) := {i ∈ [d] | |Li| ≥ 5
√
n}. Then

E
λ∼SWn

d

 ∑
i∈L(λ)

L2
i

 ≤ 1

25n
E

λ∼SWn
d

 ∑
i∈L(λ)

L4
i

 ≤ 1

25n
E

λ∼SWn
d

[
d∑
i=1

L4
i

]
≤ nd

4
.

Thus, by (4.7),

E
λ∼SWn

d

 ∑
i∈[d]\L(λ)

L2
i

 ≥ nd

2
.

Now define

M(λ) :=

{
i ∈ [d]

∣∣∣∣ √n200
≤ |Li| < 5

√
n

}
,

and let E be the event that |M(λ)| ≥ d/200. We claim that p = Pr[E] ≥ 1/100. This is
because if p < 1/100, then

E
λ∼SWn

d

 ∑
i∈[d]\L(λ)

L2
i

 ≤ p · 25nd+ (1− p) ·
(

25nd

200
+

(
1− 1

200

)
· nd

2002

)
<
nd

2
,

which is a contradiction.
Now let us use the assumption that n ≥ 1010d2. Consider any coordinate i ∈ [d] satisfying

|Li| =
∣∣∣λi − i− n

d

∣∣∣ ≥ √n
200

.

By our assumption that n ≥ 1010d2, this implies that∣∣∣λi − n

d

∣∣∣ ≥ √n
1000

.

As a result, when E holds, which happens with at least 1% probability, there are at least d
200

coordinates i ∈ [d] such that ∣∣∣λi − n

d

∣∣∣ ≥ √n
1000

.

This completes the proof.

4.3.1 The EYD lower bound (continued)

In this section, we prove Theorem 4.3.2.

Theorem 4.3.2 restated. For every constant C > 0, there are constants δ, ε > 0 such that

Pr
λ∼SWn

d

[dTV(λ,Unifd) > ε] ≥ δ

when n ≤ Cd2 and d is sufficiently large.

105

Proof. To prove Theorem 4.3.2, we show, at a high level, that when n ≤ Cd2, Biane’s law of
large numbers kicks in and λ approaches the limiting curve Ωθ, for θ :=

√
n
d

. Each of these
curves is constantly far from the curve produced by the uniform partition, and the lower
bound follows. However, carrying out this proof involves some subtle argumentation and
splitting of hairs which we will go into.

There is one regime where λ certainly does not approach Ωθ: when n is a fixed value
independent of the value of d, then λ will be always be constantly far from Ωθ. However,
we can rule this case out by noting that when n is too small as a function of d, then any
λ = (λ1, . . . , λd) with n boxes will have most of its λi’s zero, and so λ will be far from
uniform. In particular, when n = o(d), then we have that dTV(λ,Unifd)→ 1 as d→∞. As
a result, for sufficiently large d we can immediately assume that n ≥ f(d), where f(d) is any
function which is both ωd(1) and o(d). For concreteness, we will take f(d) :=

√
d.

We are now in the regime where Biane’s law of large numbers holds. Theorem 3.7.10 tells
us that if

√
n
d
∼ c for c some absolute constant, then there is some constant d(c) > 0 such

that for a random λ ∼ SWn
d , λ is ε-close (in L∞ distance) to Ωc whenever d ≥ d(c). The

main difficulty we have in applying Biane’s law of large numbers directly is that the function
d(c) is left unspecified and, for example, could be wildly different even for two close values of

c. This is problematic in our case, because for each value of d, the ratio θ =
√
n
d

may be any

real number in the interval [
√
f(d)/d,

√
C], and so θ may jump around and never converge

to a fixed value c. In particular, an adversary could potentially choose n (and therefore θ)
as a function of d cleverly so that for each d, we have that d < d(θ), and so Biane’s law of
large numbers never applies. Though seemingly unlikely, this possibility is not ruled out by
the statements of known theorems.

Our goal now is to show that the convergence to the limiting shapes guaranteed by Biane’s
theorem happens at roughly the same rate for all values of θ in our interval. First we will
need a definition.

Definition 4.3.6. Given continual diagrams f, g : R→ R, the L1 distance between them is

d1(f, g) :=

∫
R
|f(x)− g(x)| dx.

This defines a metric on the set of continual diagrams, and it is well-defined because f(x)−
g(x) = 0 whenever |x| is sufficiently large. If λ, µ are both partitions of n, then d1(λ, µ) =
4 · dTV(λ, µ).

We will prove the following result:

Theorem 4.3.7. Let C > 0 be an absolute constant, and let f(d) : N → N be ωd(1). Then
for any constant 0 < δ < 1, if f(d) ≤ n ≤ Cd2, then

Pr
λ∼SWn

d

[
d1(λ,Ωθ) ≥ δ

]
≤ δ,

for sufficiently large d, where θ =
√
n
d

.

106

Let us now complete the argument assuming Theorem 4.3.7. For κ > 0, define the
following continual diagram:

unifκ(x) :=

x+ 2

κ
if x ∈ (− 1

κ
, κ− 1

κ
]

−x+ 2κ if x ∈ (κ− 1
κ
, κ),

|x| otherwise.
(4.8)

To see how such a function arises, consider the uniform “partition”
(
n
d
, . . . , n

d

)
(“partition”

being in quotation marks because n
d

may not be integral). Drawing this in the French notation
gives a rectangle of width n

d
and height d whose bottom-left corner is the origin. Drawing this

in the Russian notation and dilating by a factor of 1/
√
n therefore gives the curve unifθ(x).

One consequence of this is that if λ is a partition of n, then d1(λ, unifθ) = 4 · dTV(λ,Unifd,).
Define the function ∆ : (0,

√
C]→ R≥0 by ∆(κ) := d1(unifκ,Ωκ). When κ < .3, ∆(κ) > .5

for all c. This is because Ωκ(x) = −x for all x ≤ −2 regardless of κ, whereas unifκ(x) =
−x+ 2κ in (κ− 1

κ
,−2]. Because κ < .3,

d1(unifκ,Ωκ) =

∫
R

∣∣unifκ(x)− Ωκ(x)
∣∣ dx ≥ 2κ ·

(
1
κ
− 2− κ

)
≥ 0.5.

Now, let us lower-bound ∆(κ) when κ ≥ .3. Write I for the interval [.3,
√
C]. (If .3 >

√
C

then this step can be skipped.) To begin, we note that ∆(κ) is continuous on I. By
comparing (4.8) with Theorem 3.7.10, it is easy to see that ∆(κ) > 0 for all κ > 0. We can
now apply the extreme value theorem, which implies that ∆ achieves its minimum on I at
some fixed point κ∗ ∈ I. We therefore have that ∆(κ) ≥ ∆(κ∗) > 0 for all κ ∈ I.

Combining the last two paragraphs, we now know that there is some value

δ := min{0.5,∆(κ∗)} > 0

such that ∆(κ) > δ for all κ ∈ (0,
√
C]. Crucially, δ is an absolute constant which depends

only on the constant C and is independent of n and d. Now, let us apply Theorem 4.3.7
with the values f(d) =

√
d, C, and δ

2
. Then with probability at least 1 − δ

2
, d1(λ,Ωθ) <

δ
2
.

When this occurs,

dTV(λ,Unifd) =
1

4
d1(λ, unifθ) ≥

1

4

(
d1(Ωθ, unifθ)− d1(λ,Ωθ)

)
≥ δ

8
,

where the second step follows from the triangle inequality, and the third step uses the fact
that d1(Ωθ, unifθ) = ∆(θ) ≥ δ. This proves the theorem with the parameters 1− δ

2
and δ

8
.

It remains to prove Theorem 4.3.7, and this is done in the next subsection.

Proof of Theorem 4.3.7

Our goal is to give a rate of convergence of λ to Ωθ which depends only on d and is inde-
pendent of n. To do this, we will show that standard law of large numbers arguments give
convergence rates of this form. Biane’s [Bia01] proof of the law of large numbers for the
Schur-Weyl distribution does not use Kerov’s algebra of observables. Instead, we will follow
the proof of the law of large numbers (second form) for the Plancherel distribution in [IO02,

107

Theorem 5.5] and use results from [Mél10a] to extend this proof to the Schur-Weyl distribu-
tion. We emphasize that our proof contains no ideas not already found in [IO02, Mél10a],
and that our goal is just to show that proper bookkeeping of their arguments yields our
Theorem 4.3.7. (Finally, we note that Meliot [Mél10a] also sketches a proof the law of
large numbers for the Schur-Weyl distribution using Kerov’s algebra of observables at the
beginning of his Section 3.)

Write ∆λ(x) := λ(x)− Ωθ(x). Because λ and Ωθ are both continual diagrams, we know
that ∆λ is supported (i.e., nonzero) on a finite interval. We will need a stronger property,
which is that the width of this interval does not grow with d (or, equivalently, with n).
To show this, note that ∆λ(x) is zero when both Ωθ(x) = |x| and λ(x) = |x|. For the
first of these, we can consult Theorem 3.7.10 and see that Ωθ(x) = |x| outside the interval
[−2, θ+ 2]. On the other hand, λ(x) does not equal |x| outside a constant-width interval for
all λ ∼ SWn

d . (For example, with nonzero probability λ = (n), in which case λ(x) = |x| only
outside the interval (−1/

√
n,
√
n).) However, the next proposition shows that our desired

property occurs with high probability.

Proposition 4.3.8. With probability 1 − δ
2
, λ(x) 6= |x| only on an interval of width w =

Oδ(1).

Proof. We will show that λ1 and λ′1 ≤ β
√
n, each with probability 1−δ/4, for some constant

β which depends only on δ (and C). The proposition will then follow from the union bound,
as λ = |x| outside the interval [−λ1/

√
n,λ1/

√
n]. By Proposition 3.7.12,

Pr[λ1 ≥ β
√
n],Pr[λ′1 ≥ β

√
n] ≤

(
(1 + βθ)e2

β2

)β√n
≤ (1 + βθ)e2

β2
≤ (1 + β

√
C)e2

β2
.

This can be made less than δ/4 by choosing β to be a sufficiently large function of C and
δ.

Let I ′ be the constant-width interval guaranteed by Proposition 4.3.8. Clearly, I ′ contains
the point zero. Thus, if we define

I := [−2, θ + 2] ∪ I ′

then this is a single interval of width w = Oδ(1). This motivates the following definition:

Definition 4.3.9. We say that λ is usual if ∆λ is supported on I. By the previous discussion,
a random λ is usual with probability 1− δ/2.

Let us condition λ on it being usual, and let us suppose that d1(λ,Ωθ) ≥ δ. Then
there is some point x ∈ I such that |∆λ(x)| ≥ δ

w
. Now we will use the fact that Ωθ and λ

are continual diagrams, which implies that they are both 1-Lipschitz, and therefore ∆λ is
2-Lipschitz. Then if we consider the subinterval Ix ⊆ I defined as Ix := [x − δ

4w
, x + δ

4w
],

this Lipschitz property implies that |∆λ(y)| ≥ δ
2w

for all y ∈ Ix. (That Ix is contained in I
follows from the fact that ∆λ is nonzero on Ix and λ is usual.) We note that the width of
Ix is δ

2w
.

Let J be a set of d4w2

δ
e closed intervals of width δ

4w
which cover I. These intervals are

chosen to have half the width of Ix, the result being that there is some interval J∗ ∈ J which

108

is completely contained in Ix. For each interval J ∈ J , let ΨJ : R → R≥0 be a continuous
function supported on J which satisfies

∫
ΨJ(y)dy = 1 (such functions are known to exist;

e.g., bump functions). Then∣∣∣∣∫ ∞
−∞

∆λ(y)ΨJ∗(y)dy

∣∣∣∣ ≥ min
y∈Ix
|∆λ(y)| ·

∫ ∞
−∞

ΨJ∗(y)dy ≥ δ

2w
.

By the Weierstrass approximation theorem, we can approximate each ΨJ with a poly-
nomial function Ψ̃J such that for each x ∈ I, |ΨJ(x) − Ψ̃J(x)| ≤ δ

8w3 . (Outside of I, Ψ̃J

can—and will—be an arbitrarily bad approximator for ΨJ .) Because ∆λ is 2-Lipschitz and λ
is usual, |∆λ(x)| ≤ 2w for all x ∈ I and is zero everywhere else. As a result, for the interval
J∗,∣∣∣∣∫ ∞
−∞

∆λ(y)Ψ̃J∗(y)dy

∣∣∣∣ ≥ ∣∣∣∣∫ ∞
−∞

∆λ(y)ΨJ∗(y)dy

∣∣∣∣− ∣∣∣∣∫ ∞
−∞

∆λ(y)
(

ΨJ∗(y)− Ψ̃J∗(y)
)
dy

∣∣∣∣ ≥ δ

4w
.

The first inequality uses the triangle inequality, and the second inequality uses crucially the
fact that ∆λ is zero outside I.

In summary, we have

Pr
λ∼SWn

d

[
d1(λ,Ωθ) ≥ δ

]
≤ Pr
λ∼SWn

d

[
∃J ∈ J :

∣∣∣∣∫ ∞
−∞

∆λ(y)Ψ̃J(y)dy

∣∣∣∣ ≥ δ

4w

]
+
δ

2
, (4.9)

where the δ/2 comes from the event that λ is not usual. We will therefore show that∣∣∣∫ ∆λ(y)Ψ̃J(y)dy
∣∣∣ is at most δ

4w
for all J ∈ J with probability at least 1− δ

2
. By the union

bound, it suffices to show that for each J ∈ J ,
∣∣∣∫ ∆λ(y)Ψ̃J(y)dy

∣∣∣ ≤ δ
4w

with probability at

least 1− δ
2·|J | .

Let m be the maximum degree of the Ψ̃J functions, for all J ∈ J . Fix an interval J ∈ J .
Then we can write

Ψ̃J(x) =
m∑
k=0

a
(k)
J xk and

∫ ∞
−∞

∆λ(y)Ψ̃J(y)dy =
m∑
k=0

a
(k)
J

∫ ∞
−∞

xk∆λ(x)dx, (4.10)

where the a
(k)
J ’s are constants. The following proposition, found in [Mél10a, Lemma 7], gives

a nice expression for the integrals on the right-hand side.

Proposition 4.3.10. Let k ≥ 1. Then∫ ∞
−∞

xk∆λ(x)dx =
2 · q̃k+1(λ)

(k + 1)
√
n
,

where q̃k(λ) is the quantity defined as

q̃k(λ) :=
p̃k+1(λ)

(k + 1)nk/2
−
b k+1

2
c∑

`=1

k↓2`−1

(k + 1− `)`!(`− 1)!
· n

k/2+1−`

dk+1−2`
.

109

The key fact we will use is that we can upper bound the right-hand side of Equation (4.10)
by a quantity which decays with d, independent of the value of n. This is the subject of the
following lemma.

Lemma 4.3.11. The random variable
∣∣∣ q̃k(λ)√

n

∣∣∣, for λ ∼ SWn
d , has mean od(1), for all f(d) ≤

n ≤ Cd2.

Applying Proposition 4.3.10 and Lemma 4.3.11 to Equation (4.10), we see that

E
λ∼SWn

d

∣∣∣∣∫ ∆λ(x)Ψ̃J(x)dx

∣∣∣∣
is od(1). We may take d large enough to make this quantity arbitrarily small. Thus, select
dJ so that for all d ≥ dJ , this expectation is at most δ2

8w·|J | . Then by Markov’s inequality,∣∣∣∫ ∆λ(x)Ψ̃J(x)dx
∣∣∣ ≤ δ

4w
with probability at least 1− δ

2·|J | . If we set d0 to be the max of dJ

over all J ∈ J , then by Equation (4.9), Prλ∼SWn
d

[
d1(λ,Ωθ) ≥ δ

]
≤ δ so long as d ≥ d0, and

we are done.
Now we turn to the proof of Lemma 4.3.11.

Proof of Lemma 4.3.11. Define

Xk(λ) :=
∑

µ:wt(µ)=k

k↓`(µ)

m(µ)
· p]µ(λ)

and

q]k(λ) :=
Xk+1(λ)

(k + 1)nk/2
−
b k+1

2
c∑

`=1

k↓2`−1

(k + 1− `)`!(`− 1)!
· n

k/2+1−`

dk+1−2`
. (4.11)

Then by Proposition 7.2.5, q̃k(λ) and q]k(λ) differ from each other by n−k/2 times an observable
O(λ) of weight k. Thus,

E
λ∼SWn

d

∣∣∣∣ q̃k(λ)√
n

∣∣∣∣ ≤ E
λ∼SWn

d

∣∣∣∣∣q]k(λ)√
n

∣∣∣∣∣+ E
λ∼SWn

d

∣∣∣∣ O(λ)

n(k+1)/2

∣∣∣∣ .
By Cauchy–Schwarz, E |O(λ)/n(k+1)/2| ≤

√
EO(λ)2/nk+1. Because O has weight k, O2 has

weight 2k. As a result, we can use the next proposition to bound the contribution from this
term by od(1).

Proposition 4.3.12. Let O(λ) be an observable of weight at most 2k. Then

E
λ∼SWn

d

[
O(λ)

nk+1

]
= od(1).

Proof. As in the proof of Lemma 7.2.7, this reduces to showing that Eλ∼SWn
d

[
p]µ(λ)/nk+1

]
=

od(1), where µ is a partition of weight 2k, i.e. |µ|+ `(µ) ≤ 2k. By Corollary 3.8.4,

E
λ∼SWn

d

[
p]µ(λ)

nk+1

]
=
n↓|µ|

nk+1
· d

`(µ)

d|µ|
≤ n|µ|

nk+1
· d

`(µ)

d|µ|
=

n|µ|

nk+1
· d

wt(µ)

d2|µ| .

110

If |µ| < k + 1, then this expression is at most 1/n, which is od(1) because n ≥ f(d) = ωd(1).
On the other hand, if |µ| ≥ k + 1, then for all n ≤ Cd2 this expression is at most

(Cd2)|µ|

(Cd2)k+1
· d

wt(µ)

d2|µ| ≤ C |µ|−(k+1) · d
wt(µ)

d2(k+1)
,

which is od(1) as wt(µ) ≤ 2k.

It remains to bound E |q]k(λ)/
√
n| by od(1). First, we will show that q]k(λ) can be viewed

as (approximately) computing the deviation of a certain random variable from its mean. To
do this, let us compute the mean of the first term on the right-hand side of Equation (4.11).

E
λ∼SWn

d

Xk+1(λ)

(k + 1)nk/2
=

1

(k + 1)nk/2
·

∑
µ:wt(µ)=k+1

(k + 1)↓`(µ)

m(µ)
· n↓|µ|

d|µ|−`(µ)

=
1

(k + 1)nk/2
·
b k+1

2
c∑

`=1

(k + 1)↓`n↓k+1−`

dk+1−2`

∑
µ:wt(µ)=k+1

1

m(µ)

=
1

(k + 1)nk/2
·
b k+1

2
c∑

`=1

(k + 1)↓`n↓k+1−`

dk+1−2`
· 1

`!

(
k − `
`− 1

)

=

b k+1
2
c∑

`=1

k↓2`−1

(k + 1− `)`!(`− 1)!
· n↓k+1−`

nk/2 · dk+1−2`
,

where the third equality follows from [Mél10a, Lemma 11]. As a result, the difference

E
λ∼SWn

d

Xk+1(λ)

(k + 1)nk/2
−
b k+1

2
c∑

`=1

k↓2`−1

(k + 1− `)`!(`− 1)!
· n

k/2+1−`

dk+1−2`

can be written as a sum over terms of the form a·nb/dk+1−2`, where a is a constant coefficient,
1 ≤ b ≤ k/2 − `, and 1 ≤ ` ≤ bk+1

2
c. Given that n ≤ Cd2, each of these terms if ±od(1).

Thus, if we set

qk(λ) :=
Xk+1(λ)

(k + 1)nk/2
− E
λ∼SWn

d

Xk+1(λ)

(k + 1)nk/2
,

then

E
λ∼SWn

d

∣∣∣∣∣q]k(λ)√
n

∣∣∣∣∣ ≤ E
λ∼SWn

d

∣∣∣∣qk(λ)√
n

∣∣∣∣+ o1(d).

Finally, we show that E |qk(λ)/
√
n| = od(1). By Cauchy–Schwarz,

E

∣∣∣∣qk(λ)√
n

∣∣∣∣ ≤
√

E

(
qk(λ)√
n

)2

,

so it suffices to show that E (qk(λ)/
√
n)

2
= od(1). This expectation is simply the variance

of the random variable Xk+1(λ)/(k+ 1)n(k+1)/2, which itself is a weighted sum of a constant

111

number of random variables of the form p]µ(λ)/n(k+1)/2, where wt(µ) = k + 1. An easy
application of Cauchy–Schwarz shows that the variance of a weighted sum of a constant
number of random variables is od(1) if the variance of each random variables is od(1). Thus,
we will show that Var[p]µ(λ)/n(k+1)/2] = od(1) for all wt(µ) = k + 1.

Fix a partition µ of weight k + 1. Then

Var

[
p]µ(λ)

n(k+1)/2

]
= E
λ∼SWn

d

[
1

n(k+1)/2

(
p]µ(λ)p]µ(λ)− E[p]µ]2

)]

By Proposition 3.8.10, p]µ(λ) ·p]µ(λ) = p]µ∪µ(λ)+O(λ), where O(λ) is an observable of weight
at most 2 · wt(p]µ)− 2 = 2k. Then

Var

[
p]µ(λ)

n(k+1)/2

]
= E
λ∼SWn

d

[
1

nk+1
·
(
p]µ∪µ(λ)− E[p]µ]2

)]
+ E
λ∼SWn

d

[
1

nk+1
· O(λ)

]
.

The second term is ±od(1) by Proposition 4.3.12. As for the first term, Corollary 3.8.4,
shows that it equals

1

nk+1
·
(
n↓2|µ|d2`(µ)−2|µ| − n↓|µ|n↓|µ|d2`(µ)−2|µ|) =

1

d4|µ|−2(k+1)
·
(
n↓2|µ| − (n↓|µ|)2

nk+1

)
, (4.12)

where we used the fact that `(µ) = wt(µ) − |µ| = k + 1 − |µ|. The highest-degree term of
both n↓2|µ| and (n↓|µ|)2 is n2|µ|, so we can write

(4.12) =
1

d4|µ|−2(k+1)
·

2|µ|−(k+2)∑
b=−(k+1)

αb · nb

for some constants αb. When b < 0, nb/d4|µ|−2k−2 ≤ 1/n, which is od(1) because n ≥ f(d) =
ωd(1). On the other hand, when b ≥ 0, then this term is od(1) because n ≤ Cd2.

112

Chapter 5

Quantum tomography

In this chapter, we prove our quantum tomography and principal component analysis (PCA)
results. Quantum tomography is a fundamental problem with a vast field of research devoted
to it, and the research done varies wildly in its focus on issues such as current-day practicality
and error metrics. Many of these issues are beyond the scope of this thesis, but more
details can be found in the thesis of [Hua12]. Our focus here is on fully entangled quantum
measurements—those which may one day be implemented on a scalable quantum computer—
for which we can prove optimal trace distance error rates.

The “textbook” tomography algorithm [NC10, page 389] is the Pauli basis measurement
tomography algorithm. This algorithm uses a certain set of d2 d × d matrices called the
Pauli matrices which form a linear basis for the set of all d × d matrices. The goal of this
tomography algorithm is to learn the coefficients of the unknown ρ ∈ Cd×d in this basis,
thereby recovering ρ. Estimating each coefficient to sufficient accuracy requires O(d2/ε2)
copies, and as there are d2 matrices in total, learning ρ takes n = O(d4/ε2) copies in total
(see [FGLE12, Footnote 2] for details). Though this has an extra factor of d2 compared to our
bounds, the algorithm has more current-day practicality: it uses nonadaptive measurements,
and the measurement projectors are of a particularly nice form.

This was the best known upper bound for tomography until the 2014 work of [KRT14]
gave an algorithm using n = O(d3/ε2) copies. Though it also uses nonadaptive measure-
ments, its measurements are more-difficult-to-implement POVMs. We will discuss this algo-
rithm and give a related, though simpler, algorithm achieving the same bound in Section 5.1.

In this chapter, we focus on two related algorithms which use fully entangled measure-
ments. Both begin with the weak Schur sampling measurement and then follow up with a
measurement in the irrep space that the state collapses to. The first is an algorithm due
to Keyl [Key06] which uses the highest weight vector (Definition 2.4.12). The second is an
algorithm due to Haah et al.[HHJ+16] which is inspired by the pretty good measurement
(PGM) from quantum hypothesis testing [HW94]. For both, we are able to prove the exact
same copy complexity bounds.

Theorem 5.0.1 (Theorem 1.4.11 restated). Given n copies of a mixed state ρ ∈ Cd×d, let
ρ̂ be the random output of either Keyl’s algorithm or the PGM tomography algorithm. Then

E ‖ρ̂− ρ‖2
F ≤

4d− 3

n
.

113

Corollary 1.4.12 follows as an immediate consequence, showing that n = O(d2/ε2) copies are
sufficient for tomography.

In addition, we show that a natural truncated version of Keyl’s algorithm generalizes to
the case when ρ is approximately low rank.

Theorem 5.0.2 (Theorem 1.4.13 restated). Given n copies of a mixed state ρ ∈ Cd×d, let
ρ̂ be the rank k random output of the truncated version of Keyl’s algorithm. Then

E ‖ρ̂− ρ‖1 ≤ αk+1 + · · ·+ αd + 6

√
kd

n
.

Thus, quantum PCA can be solved with n = O(kd/ε2) copies.

Finally, we prove a lower bound showing that the dependence of Theorem 5.0.2 on k
and d is optimal.

Theorem 5.0.3 (Theorem 1.4.14 restated). There exists an absolute constant ε0 > 0 such
that the following holds: suppose with n copies of an unknown rank-r ρ ∈ Cd×d it is possible
(with constant probability) to produce an estimate ρ̂ ∈ Cd×d such that dtr(ρ, ρ̂) ≤ ε0. Then
n ≥ Ω(rd).

The chapter is organized as follows:

• Section 5.1 covers nonadaptive tomography and gives a new n = O(d3/ε2) algorithm.

• Section 5.2 covers the PGM-based tomography algorithm and proves the PGM half of
Theorem 5.0.1.

• Section 5.3 covers Keyl’s tomography algorithm and proves the corresponding half of
Theorem 5.0.1.

• Section 5.4 proves Theorem 5.0.2, the PCA result for Keyl’s algorithm.

• Section 5.5 proves Theorem 5.0.3, the tomography lower bound.

5.1 Tomography with unentangled measurements

In this section, we consider the following nonadaptive tomography algorithm. This algorithm
and its analysis are joint work with Akshay Krishnamurthy.

Definition 5.1.1 (Random basis tomography algorithm). Given n copies of ρ,

1. Measure each copy of ρ with the POVM {d |v〉 〈v| dv}.

2. For each i ∈ [n], if |vi〉 is the i-th measurement outcome, set ρi := (d+ 1) |vi〉 〈vi| − I.

3. Output ρ̂ := avgi∈[n]{ρi}.

Here, dv denotes the uniform measure on unit vectors |v〉 ∈ Cd.

114

Proposition 5.1.2. Both ρ̂ and the ρi’s are unbiased estimators for ρ, meaning E ρ̂ =
Eρi = ρ.

Proof. As ρ̂ is the average of the ρi’s, it suffices to prove the proposition for a fixed ρi. We
begin by analyzing the i-th POVM outcome.

E |vi〉 〈vi| = d

∫
v

|v〉 〈v| · tr(|v〉 〈v| ρ)dv = d

∫
v

trB ((|v〉 〈v| ⊗ |v〉 〈v|)(I ⊗ ρ)) dv

= d ·trB
((∫

v

|v〉 〈v| ⊗ |v〉 〈v| dv
)

(I ⊗ ρ)

)
=

1

d+ 1
·trB((I⊗I+SWAP)(I⊗ρ)) =

ρ+ I

d+ 1
,

where the fourth equality uses [Har13, Proposition 6]. The proposition follows after rear-
ranging.

Theorem 5.1.3. E ‖ρ̂− ρ‖2
F ≤

d2 + d− 1

n
and E dtr(ρ̂, ρ) ≤

√
d3 + d2 − d

4n
.

Proof. Using the fact that the variance of the sum of independent random variables is equal
to the sum of the variances,

E ‖ρ̂− ρ‖2
F =

1

n2
Var

[∑
ρi

]
=

1

n2

∑
i

Var[ρi] =
1

n2

∑
i

E ‖ρi − ρ‖2
F . (5.1)

For any i ∈ [n], E ‖ρi − ρ‖2
F = E tr(ρ2

i) − tr(ρ2) ≤ E tr(ρ2
i). By construction, ρi always

has the eigenvalue d with multiplicity 1 and the eigenvalue −1 with multiplicity d − 1.
Hence tr(ρ2

i) = d2 + d − 1. Plugging this into Equation (5.1) and summing over all i ∈ [n]
yields the Frobenius bound in the theorem. The trace distance bound then follows from
Cauchy-Schwartz.

The paper of Kueng, Rauhut, and Terstiege [KRT14] considers a similar tomography
scheme. They begin with the same measurement as in the random basis tomography algo-
rithm, but rather than averaging together the empirical outcomes, they use low rank matrix
recovery techniques to infer the value of ρ. They prove similar bounds as our Theorem 5.1.3
and also give improved bounds in the case when ρ is low rank.

Theorem 5.1.4 ([KRT14]). If ρ ∈ Cd×d is rank k, there is a tomography algorithm using
nonadaptive, unentangled measurements which outputs an estimate ρ̂ satisfying

‖ρ̂− ρ‖F ≤ O

(√
kd

n

)
and dtr(ρ̂, ρ) ≤ O

(√
k2d

n

)
with high probability. Thus, trace distance tomography is possible with n = O(k2d/ε2) copies.

An exposition of their result more in the style of this thesis can be found in the second
appendix of [HHJ+16]. Finally, at QIP 2016 Jeongwan Haah announced [Haa16] that he and
his coauthors [HHJ+16] had proven a matching lower bound, showing that n = Ω(k2d/ε2)
copies of ρ are necessary to learn a rank-k density matrix using only nonadaptive, unentan-
gled measurements. Compared with our Theorems 5.0.1 and 5.0.2, this shows that entangled
measurements can achieve strictly better copy complexity than nonadaptive measurements.
We note that their lower bound has yet to appear in print.

115

5.2 The pretty good measurement

In this section, we will consider the first of the two tomography algorithms introduced
in [HHJ+16].

Definition 5.2.1 (PGM tomography algorithm). Given n copies of ρ,

1. Perform weak Schur sampling on ρ, resulting in a random λ. Discard the permutation
irrep register. Then ρ collapses to πλ(ρ)/sλ(α).

2. Measure within the space Vd
λ using the POVM with elements

dim(Vd
λ)

sλ(λ)
πλ(Udiag(λ)U †)dU

for each U ∈ U(d).

3. Output Udiag(λ)U †.

That the POVM in step 2 is valid follows by averaging over all U ∈ U(d) and applying
Schur’s lemma. The weight the POVM gives a particular U ∈ U(d) is

dim(Vd
λ)

sλ(λ)sλ(α)
tr(πλ(ρ)πλ(Udiag(λ)U †))dU =

dim(Vd
λ)

sλ(λ)sλ(α)
tr(πλ(ρUdiag(λ)U †))dU

=
dim(Vd

λ)

sλ(λ)sλ(α)
sλ(ρUdiag(λ)U †)dU.

Integrating this quantity over the unitary group should yield 1, which (essentially) proves
the following well-known equation from reprsentation theory.∫

U

sλ(AUBU
†)dU =

sλ(A)sλ(B)

dim(Vd
λ)

, (5.2)

where here the sλ(·)’s are applied to the eigenvalues of their arguments.
Haah et al. show the following result [HHJ+16].

Theorem 5.2.2 ([HHJ+16]). The PGM tomography algorithm estimates an unknown mixed
state ρ ∈ Cd×d to error ε in infidelity using n = O(d2/ε · log(d/ε)) copies, or to error ε in
trace distance using n = O(d2/ε2 · log(d/ε)) copies.

(For the definition of infidelity, see [HHJ+16].)
We show the following result.

Theorem 5.2.3. E
λ∼SWn(α)
U∼PGMλ(ρ)

‖Udiag(λ)U † − ρ‖2
F ≤

4d− 3

n
.

This proves the PGM part of our Theorem 5.0.1, and it shows that the Haah et al. trace
distance bound in Theorem 5.2.2 holds with n = O(d2/ε2).

116

Proof of Theorem 5.2.3. Throughout the proof we assume λ ∼ SWn(α) and U ∼ PGMλ(ρ).
We have

n2 E
λ,U
‖Udiag(λ)U † − ρ‖2

F = E
λ,U

[
d∑
i=1

(αin)2 +
d∑
i=1

λ2
i − 2n2 · tr(ρUdiag(λ)U †)

]
. (5.3)

Let’s analyze the cross-term for a fixed λ:

E
U

tr(ρUdiag(λ)U †) =
dim(Vd

λ)

sλ(λ)sλ(α)

∫
U

tr(ρUdiag(λ)U †)sλ(ρUdiag(λ)U †)dU

=
dim(Vd

λ)

sλ(λ)sλ(α)

∫
U

d∑
i=1

sλ+ei(ρUdiag(λ)U †)dU (Pieri)

=
dim(Vd

λ)

sλ(λ)sλ(α)

d∑
i=1

sλ+ei(α)sλ+ei(λ)

dim(Vd
λ+ei

)
, (Equation (5.2))

=
d∑
i=1

Φλ+ei(α)

Φλ(α)
· sλ+ei(λ)

sλ(λ)
≥

d∑
i=1

Φλ+ei(α)

Φλ(α)
·
(
λi
n

)
.

Here this last step uses three facts: (i) that the Φλ+ei(α)’s form a decreasing sequence (by
a recent result of Suvrit Sra [Sra15]), (ii) Proposition 3.4.5 (applied to sλ+ei(λ)/sλ(λ)), and
(iii) equation 1.9, i.e. the elementary majorization inequality.

Plugging this into (5.3), we see that

n2 E
λ,U
‖Udiag(λ)U † − ρ‖2

F ≤ E
λ

[
d∑
i=1

(αin)2 +
d∑
i=1

λ2
i − 2n ·

d∑
i=1

Φλ+ei(α)

Φλ(α)
· λi

]
(5.4)

≤ dn+ 2
d∑
i=1

(αin)2 − 2n · E
λ

d∑
i=1

Φλ+ei(α)

Φλ(α)
· λi, (5.5)

using Lemma 4.1.1. Focusing on the last term,

E
λ

d∑
i=1

λi
Φλ+ei(α)

Φλ(α)
= E

λ

d∑
i=1

λi
sλ+ei(α)

sλ(α)

sλ(1, . . . , 1)

sλ+ei(1, . . . , 1)

≥ E
λ

d∑
i=1

λi
sλ+ei(α)

sλ(α)

(
2− sλ+ei(1, . . . , 1)

sλ(1, . . . , 1)

)
= 2 E

λ

d∑
i=1

λi
sλ+ei(α)

sλ(α)
−E
λ

d∑
i=1

λi
sλ+ei(α)

sλ(α)

sλ+ei(1, . . . , 1)

sλ(1, . . . , 1)
,

(5.6)

where we used r ≥ 2− 1
r

for r > 0. We lower-bound the first term in (5.6) by first using the
inequality (1.9) and Proposition 3.4.5, and then using inequality (1.9) and Lemma 4.1.2 (as
in the proof of Theorem 4.0.2):

2 E
λ

d∑
i=1

λi
sλ+ei(α)

sλ(α)
≥ 2 E

λ

d∑
i=1

λiαi ≥ 2n
d∑
i=1

α2
i . (5.7)

117

As for the second term in (5.6), we use the definition of the Schur Weyl distribution and the
first formula in Definition 2.2.13 to compute

E
λ

d∑
i=1

λi
sλ+ei(α)

sλ(α)

sλ+ei(1, . . . , 1)

sλ(1, . . . , 1)
=

d∑
i=1

∑
λ`n

dim(λ)sλ(α) · λi ·
sλ+ei(α)

sλ(α)

dim(λ+ ei)(d+ λi − i+ 1)

dim(λ)(n+ 1)

=
d∑
i=1

∑
λ`n

dim(λ+ ei)sλ+ei(α) · λi(d− i+ λi + 1)

n+ 1

≤
d∑
i=1

E
λ′∼SWn+1(α)

(λ′i − 1)(d− i+ λ′i)

n+ 1

≤ 1

n+ 1

(
E

λ′∼SWn+1(α)

d∑
i=1

(λ′i)
2 + E

λ′∼SWn+1(α)

d∑
i=1

(d− i− 1)λ′i

)

≤ 1

n+ 1

(
(n+ 1)n

d∑
i=1

α2
i +

d∑
i=1

(d+ i− 2)((n+ 1)/d)

)

= n
d∑
i=1

α2
i +

3

2
d− 3

2
(5.8)

where the last inequality is deduced exactly as in the proof of Lemma 4.1.1. Finally, com-
bining (5.3)–(5.8) we get

n2 · E
λ,U
‖Udiag(λ)U † − ρ‖2

F ≤ 4dn− 3n.

Dividing both sides by n2 completes the proof.

5.3 Keyl’s algorithm

In this section we analyze the tomography algorithm proposed by Keyl [Key06] based on
projection to the highest weight vector |Tλ〉.

Definition 5.3.1 (Keyl’s algorithm). Given n copies of ρ,

1. Perform weak Schur sampling on ρ, resulting in a random λ. Discard the permutation
irrep register. Then ρ collapses to πλ(ρ)/sλ(α).

2. Measure within the space Vd
λ using the POVM with elements

πλ(U) |Tλ〉 〈Tλ|πλ(U)† · dim(Vd
λ) dU

for each U ∈ U(d).

3. Output Udiag(λ)U †.

118

(To see that this is indeed a POVM — i.e., that

M :=

∫
πλ(U) |Tλ〉 〈Tλ|πλ(U)† · dim(Vd

λ) dU,

is the identity matrix, — first note that the translation invariance of Haar measure implies
πλ(V)Mπλ(V)† = M for any V ∈ U(d). Thinking of πλ as an irreducible representation of
the unitary group, Schur’s lemma implies M must be a scalar matrix. Taking traces shows
M is the identity.)

We write Kλ(ρ) for the probability distribution on U(d) associated to this POVM; its
density with respect to the Haar measure is therefore

tr
(
πλ(

1
sλ(α)

ρ)πλ(U) |Tλ〉 〈Tλ|πλ(U)† · dim(Vd
λ)
)

= Φλ(α)−1 · 〈Tλ| πλ(U †ρU) |Tλ〉 . (5.9)

Supposing the outcome of the measurement is U , Keyl’s final estimate for ρ is ρ̂ = Udiag(λ)U †.
Thus the expected Frobenius-squared error of Keyl’s tomography algorithm is precisely

E
λ∼SWn(α)
U∼Kλ(ρ)

‖Udiag(λ)U † − ρ‖2
F .

Theorem 5.0.1, which we prove in this section, bounds the above quantity by 4d−3
n

.

5.3.1 Integration formulas

Notation 5.3.2. Let Z ∈ Cd×d and let λ be a partition of length at most d. The generalized
power function ∆λ is defined by

∆λ(Z) =
d∏

k=1

pmk(Z)λk−λk+1 ,

where pmk(Z) denotes the k-th principal minor of Z (and λd+1 = 0).

As noted by Keyl [Key06, equation (141)], when Z is positive semidefinite we have
〈Tλ| πλ(Z) |Tλ〉 = ∆λ(Z); this follows by writing Z = LL† for L = (Lij) lower triangular

with nonnegative diagonal and using the fact that ∆λ(Z) = ∆λ(L
†)2 =

∏d
k=1 L

2λk
kk . Putting

this into (5.9) we have an alternate definition for the distribution Kλ(ρ):

E
U∼Kλ(ρ)

f(U) = Φλ(α)−1 E
U∼U(d)

[
f(U) ·∆λ(U

†ρU)
]
, (5.10)

where U ∼ U(d) denotes that U has the Haar measure. For example, taking f ≡ 1 yields
the identity

E
U∼U(d)

∆λ(U
†ρU) = Φλ(α); (5.11)

this expresses the fact that the spherical polynomial of weight λ for GLd/U(d) is precisely
the normalized Schur polynomial (see, e.g., [Far15]). For a further example, taking f(U) =
∆µ(U †ρU) and using the fact that ∆λ ·∆µ = ∆λ+µ, we obtain

E
U∼Kλ(ρ)

∆µ(U †ρU) =
Φλ+µ(α)

Φλ(α)
; in particular, E

U∼Kλ(ρ)
(U †ρU)1,1 =

Φλ+e1(α)

Φλ(α)
. (5.12)

119

For our proof of Theorem 5.0.1, we will need to develop and analyze a more general formula
for the expected diagonal entry E(U †ρU)k,k. We begin with some lemmas.

Definition 5.3.3. For λ a partition and m a positive integer we define the following partition
of height (at most) m:

λ[m] = (λ1 − λm+1, . . . , λm − λm+1).

We also define the following “complementary” partition λ[m] satisfying λ = λ[m] + λ[m]:

(λ[m])i =

{
λm+1 i ≤ m,

λi i ≥ m+ 1.

Lemma 5.3.4. Let ρ ∈ Cd×d be a density matrix with spectrum α and let λ ` n have height
at most d. Let m ∈ [d] and let fm be an m-variate symmetric polynomial. Then

E
U∼Kλ(ρ)

fm(β) = Φλ(α)−1 · E
U∼U(d)

[
fm(β) · Φλ[m](β) ·∆λ[m]

(U †ρU)
]
,

where we write β = specm(U †ρU) for the spectrum of the top-left m×m submatrix of U †ρU .

Proof. Let V ∼ U(m) and write V = V ⊕ I, where I is the (d − m)-dimensional iden-
tity matrix. By translation-invariance of Haar measure we have UV ∼ U(d), and hence
from (5.10),

E
U∼Kλ(ρ)

fm(β) = Φλ(α)−1 E
U∼U(d),V ∼U(m)

[
fm(specm(V

†
U †ρUV)) ·∆λ(V

†
U †ρUV)

]
.

(5.13)
Note that conjugating a matrix by V does not change the spectrum of its upper-left k × k
block for any k ≥ m. Thus specm(V

†
U †ρUV) is identical to β, and pmk(V

†
U †ρUV) =

pmk(U
†ρU) for all k ≥ m. Thus using ∆λ = ∆λ[m]

·∆λ[m] we have

(5.13) = Φλ(α)−1 E
U∼U(d)

[
fm(β) ·∆λ[m]

(U †ρU) · E
V ∼U(m)

[
∆λ[m](V

†
U †ρUV)

]]
.

But the inner expectation equals Φλ[m](β) by (5.11), completing the proof.

Lemma 5.3.5. In the setting of Lemma 5.3.4,

E
U∼Kλ(ρ)

m
avg
i=1

{
(U †ρU)i,i

}
=

m∑
i=1

sλ[m]+ei(1/m)

sλ[m](1/m)
· Φλ+ei(α)

Φλ(α)
, (5.14)

where 1/m abbreviates 1/m, . . . , 1/m (repeated m times).

Remark 5.3.6. The right-hand side of (5.14) is also a weighted average — of the quan-
tities Φλ+ei(α)/Φλ(α) — by virtue of Fact 3.4.2. The lemma also generalizes (5.12), as
sλ[1]+e1(1)/sλ1 is simply 1.

120

Proof. On the left-hand side of (5.14) we have 1
m

times the expected trace of the upper-left

m ×m submatrix of U †ρU . So by applying Lemma 5.3.4 with fm(β) = 1
m

(β1 + · · · + βm),
it is equal to

Φλ(α)−1 · E
U∼U(d)

[
1

m
(β1 + · · ·+ βm) · sλ[m](β)

sλ[m](1, . . . , 1)
·∆λ[m]

(U †ρU)

]
= Φλ(α)−1 · E

U∼U(d)

[
1

m

m∑
i=1

sλ[m]+ei(β)

sλ[m](1, . . . , 1)
·∆λ[m]

(U †ρU)

]
(by Pieri’s rule)

= Φλ(α)−1 ·
m∑
i=1

sλ[m]+ei(1, . . . , 1)

m · sλ[m](1, . . . , 1)
· E
U∼U(d)

[
Φλ[m]+ei(β) ·∆λ[m]

(U †ρU)
]

= Φλ(α)−1 ·
m∑
i=1

sλ[m]+ei(1, . . . , 1)

m · sλ[m](1, . . . , 1)
· Φλ+ei(α),

where in the last step we used Lemma 5.3.4 again, with fm ≡ 1 and λ+ ei in place of λ. But
this is equal to the right-hand side of (5.14), using the homogeneity of Schur polynomials.

Lemma 5.3.7. Assume the setting of Lemma 5.3.4. Then ηi := EU∼Kλ(ρ)(U
†ρU)m,m is a

convex combination of the quantities Ri := Φλ+ei(α)/Φλ(α), 1 ≤ i ≤ m.1

Proof. This is clear for m = 1. For m > 1, Remark 5.3.6 implies

m
avg
i=1
{ηi} = p1R1 + · · ·+ pmRm,

m−1
avg
i=1
{ηi} = q1R1 + · · ·+ qmRm,

where p1 + · · · + pm = q1 + · · · + qm = 1 and qm = 0. Thus ηi =
∑m

i=1 riRi, where
ri = (mpi − (m− 1)qi), and evidently

∑m
i=1 ri = m− (m− 1) = 1. It remains to verify that

each ri ≥ 0. This is obvious for i = m; for i < m, we must check that

sλ[m]+ei(1, . . . , 1)

sλ[m](1, . . . , 1)
≥
sλ[m−1]+ei(1, . . . , 1)

sλ[m−1](1, . . . , 1)
. (5.15)

Using the Weyl dimension formula from Definition 2.2.13, one may explicitly compute that
the ratio of the left side of (5.15) to the right side is precisely 1 + 1

(λi−λm)+(m−i) ≥ 1. This
completes the proof.

We will in fact only need the following corollary:

Corollary 5.3.8. Let ρ ∈ Cd×d be a density matrix with spectrum α and let λ ` n have
height at most d. Then EU∼Kλ(ρ)(U

†ρU)m,m ≥ Φλ+em(α)/Φλ(α) for every m ∈ [d],

Proof. This is immediate from Lemma 5.3.7 and the fact that Φλ+ei(α) ≥ Φλ+em(α) whenever
i < m (assuming λ + ei is a valid partition). This latter fact was recently proved by
Sra [Sra15], verifying a conjecture of Cuttler et al. [CGS11].

1To be careful, we may exclude all those i for which λ+ ei is an invalid partition and thus Ri = 0.

121

5.3.2 Proof of Theorem 5.0.1

Throughout the proof we assume λ ∼ SWn(α) and U ∼ Kλ(ρ). We have

n2 · E
λ,U
‖Udiag(λ)U † − ρ‖2

F = n2 · E
λ,U
‖diag(λ)−U †ρU‖2

F

= E
λ

d∑
i=1

λ2
i+

d∑
i=1

(αin)2−2n E
λ,U

d∑
i=1

λi(U
†ρU)i,i ≤ E

λ

d∑
i=1

λ2
i+

d∑
i=1

(αin)2−2nE
λ

d∑
i=1

λi
Φλ+ei(α)

Φλ(α)
,

using Corollary 5.3.8. This equation is equal to Equation (5.4) which was shown to be at most
4dn− 3n in the proof of Theorem 5.2.3. Dividing by n2 gives the desired Frobenius-squared
bound. �

5.4 Principal component analysis

In this section we analyze a straightforward modification to Keyl’s tomography algorithm
that allows us to perform principal component analysis on an unknown density matrix
ρ ∈ Cd×d. The PCA algorithm is the same as Keyl’s algorithm, except that having mea-
sured λ and U , it outputs the rank-k matrix Udiag(k)(λ)U † rather than the potentially
full-rank matrix Udiag(λ)U †. (Here we use the notation diag(k)(λ) for the d × d matrix
diag(λ1, . . . ,λk, 0, . . . , 0).) Thus the expected Frobenius-squared error of Keyl’s tomogra-
phy algorithm is precisely

E
λ∼SWn(α)
U∼Kλ(ρ)

‖Udiag(k)(λ)U † − ρ‖2
F .

Theorem 5.0.2 bounds the above quantity by αk+1 + . . .+ αd + 6
√
kd/n.

Before giving the proof of Theorem 5.0.2, let us show why the case of Frobenius-norm PCA
appears to be less interesting than the case of trace-distance PCA. The goal for Frobenius
PCA would be to output a rank-k matrix ρ̂ satisfying

‖ρ̂− ρ‖F ≤
√
α2
k+1 + . . .+ α2

d + ε,

with high probability, while trying to minimize the number of copies n as a function of k, d,
and ε. However, even when ρ is guaranteed to be of rank 1, it is likely that any algorithm will
require n = Ω(d/ε2) copies to output an ε-accurate rank-1 approximator ρ̂. This is because
such an approximator will satisfy ‖ρ̂ − ρ‖1 ≤

√
2 · ‖ρ̂ − ρ‖F = O(ε), and it is likely that

n = Ω(d/ε2) copies of ρ are required for such a guarantee (see, for example, the lower bounds
of [HHJ+16], which show that n = Ω(d

ε2 log(d/ε)
) copies are necessary for tomography of rank-1

states.). Thus, even in the simplest case of rank-1 PCA of rank-1 states, we probably cannot
improve on the n = O(d/ε2) copy complexity for full tomography given by Theorem 5.0.2.

Now we prove Theorem 5.0.2. We note that the proof shares many of its steps with the
proof of Theorem 5.0.1.

122

Proof of Theorem 5.0.2. Throughout the proof we assume λ ∼ SWn(α) and U ∼ Kλ(ρ). We
writeR for the lower-right (d−k)×(d−k) submatrix of U †ρU and we write Γ = U †ρU−R.
Then

E
λ,U
‖Udiag(k)(λ)U † − ρ‖1 = E

λ,U
‖diag(k)(λ)−U †ρU‖1 ≤ E

λ,U
‖diag(k)(λ)− Γ‖1 + E

λ,U
‖R‖1.

(5.16)
We can upper-bound the first term in (5.16) using

E
λ,U
‖diag(k)(λ)−Γ‖1 ≤

√
2k E

λ,U
‖diag(k)(λ)−Γ‖F ≤

√
2k E

λ,U
‖diag(λ)−U †ρU‖F ≤

√
8kd

n
.

(5.17)
The first inequality is Cauchy–Schwarz together with the fact that rank(diag(k)(λ)−Γ) ≤ 2k
(since the matrix is nonzero only in its first k rows and columns). The second inequality
uses that diag(λ) − U †ρU is formed from diag(k)(λ) − Γ by adding a matrix, diag(λ) −
diag(k)(λ)−R, of disjoint support; this can only increase the squared Frobenius norm (sum
of squares of entries). Finally, the third inequality uses Theorem 5.0.1. To analyze the
second term in (5.16), we note that R is a principal submatrix of U †ρU , and so it is positive
semidefinite. As a result,

E
λ,U
‖R‖1 = E

λ,U
tr(R) = 1− E

λ,U
tr(Γ). (5.18)

By Corollary 5.3.8,

E
λ,U

tr(Γ) = E
λ

k∑
i=1

E
U

(U †ρU)i,i ≥ E
λ

k∑
i=1

Φλ+ei(α)

Φλ(α)
= E

λ

k∑
i=1

sλ+ei(α)

sλ(α)

sλ(1, . . . , 1)

sλ+ei(1, . . . , 1)

≥ E
λ

k∑
i=1

sλ+ei(α)

sλ(α)

(
2− sλ+ei(1, . . . , 1)

sλ(1, . . . , 1)

)
= 2 E

λ

k∑
i=1

sλ+ei(α)

sλ(α)
−E
λ

k∑
i=1

sλ+ei(α)

sλ(α)

sλ+ei(1, . . . , 1)

sλ(1, . . . , 1)
,

(5.19)

where we used r ≥ 2 − 1
r

for r > 0. The first term here is lower-bounded using Proposi-
tion 3.4.5:

2 E
λ

k∑
i=1

sλ+ei(α)

sλ(α)
≥ 2

k∑
i=1

αi. (5.20)

As for the second term in (5.19), we use the definition of the Schur-Weyl distribution and

123

the first formula in Definition 2.2.13 to compute

E
λ

k∑
i=1

sλ+ei(α)

sλ(α)

sλ+ei(1, . . . , 1)

sλ(1, . . . , 1)
=

k∑
i=1

∑
λ`n

dim(λ)sλ(α) · sλ+ei(α)

sλ(α)

dim(λ+ ei)(d+ λi − i+ 1)

dim(λ)(n+ 1)

=
k∑
i=1

∑
λ`n

dim(λ+ ei)sλ+ei(α) · (d− i+ λi + 1)

n+ 1

≤
k∑
i=1

E
λ′∼SWn+1(α)

(d− i+ λ′i)

n+ 1

≤ 1

n+ 1
· E
λ′∼SWn+1(α)

k∑
i=1

λ′i +
kd

n

≤
k∑
i=1

αi +
2
√

2k√
n

+
kd

n
, (5.21)

where the last step is by Lemma 4.2.1. Combining (5.16)–(5.21) we get

E
λ,U
‖Udiag(k)(λ)U †− ρ‖1 ≤

(
1−

k∑
i=1

αi

)
+

√
8kd

n
+

2
√

2k√
n

+
kd

n
≤

d∑
i=k+1

αi +

√
32kd

n
+
kd

n
,

where the second inequality used k ≤
√
kd. Finally, as the expectation is also trivially

upper-bounded by 2, we may use 6
√
r ≥ min(2,

√
32r + r) (which holds for all r ≥ 0) to

conclude

E
λ,U
‖Udiag(k)(λ)U † − ρ‖1 ≤

d∑
i=k+1

αi + 6

√
kd

n
.

5.5 A lower bound

We now prove Theorem 5.0.3. Similar to the lower bound proofs from [HHJ+16], we choose a
hard ensemble of mixed states for tomography and perform a careful analysis of their Holevo
information.

Proof of Theorem 5.0.3. From [FGLE12, Lemma 5], there exists a set of rank-r projectors
ρ1, . . . , ρs for which s ≥ 2Ω(rd) and dtr(ρi, ρj) ≥ ε0 for i 6= j, where ε0 is some absolute
constant. Consider the communication scenario in which Angela selects a message m ∈ [s]
uniformly at random, encodes it in the state ρ⊗nm , and then Bob measures the state ρ⊗nm to
produce the message m̃. Supposing that the tomography algorithm in the theorem statement
succeeds with probability (1 − η), then Bob can successfully decode Angela’s message with
probability (1− η). Thus, by Fano’s inequality (cf. [HHJ+16, Equation (21)])

I(m; m̃) ≥ (1− η) log(s) ≥ Ω(rd).

If we write E for the ensemble {1/s, ρi}i∈[s], then by Holevo’s theorem, I(m; m̃) ≤ χ(E),
where χ(E) is the Holevo information. Writing avg for the averaged state Em[ρ⊗nm], we have

124

that

χ(E) = H
(
E
m

[ρ⊗nm]
)
− E
m

[
H(ρ⊗nm)

]
= H(avg)− E

m

[
H(ρ⊗nm)

]
= H(avg)− n log r,

where the last equality uses the fact that every ρi is a rank-r projector. By Schur-Weyl
duality,

ρ⊗ni
∼=
⊕
λ`n
`(λ)≤d

πλ(ρi)⊗ Iλ ∼=
⊕
λ`n
`(λ)≤r

πλ(ρi)⊗ Iλ,

where the second step uses the fact that ρi is a rank-r projector. Here Iλ denotes the
dim(λ) × dim(λ) identity matrix acting on the Specht module Spλ. Each ρ⊗ni is supported
only on the subspace of the Schur basis corresponding to λ’s of height at most r, and so avg
is also supported only on the subspace of the Schur basis corresponding to λ’s of height at
most r. At worst, avg is maximally mixed on this subspace, meaning that

χ(E) = H(avg)− n log r ≤ log dim(λ ` n, `(λ) ≤ r)− n log r.

Write Parnr for the set of partitions λ ` n of height at most r. Our goal is to bound the
sum ∑

λ∈Parnr

dim(λ) dim(Vd
λ),

and we will do so with the following two facts:

• First,
∑

λ∈Parnr
dim(λ) ≤ rn. This follows from Schur-Weyl duality applied to (Cr)⊗n:

(Cr)⊗n ∼=
⊕
λ`n
`(λ)≤r

Spλ ⊗ Vr
λ.

Ignoring the Weyl modules, the dimensionality of the right-hand side is at least
∑

λ∈Parnr
dim(λ),

which is at most the dimensionality of the left-hand side, rn.

• Write H(x) = (1 + x)H(1
1+x

). Then for any λ ∈ Parnr , dim(Vd
λ) ≤ 2r(d−1)·H(n/r(d−1)).

This is because dim(Vd
λ) is equal to the number of semistandard tableaus of shape

λ and alphabet [d]. Given such a tableau, each row i contains a weakly increasing
sequence of length λi, and the total number of such sequences is at most(

λi + d− 1

d− 1

)
≤ 2(λi+d−1)H((d−1)/(λi+d−1)) = 2(d−1)H(λi/(d−1)).

Thus,

dim(Vd
λ) ≤ 2(d−1)

∑r
i=1H(λi/(d−1)) = 2r(d−1) avgi{H(λi/(d−1))}

≤ 2r(d−1)H(avgi{λi/(d−1)}) = 2r(d−1)·H(n/r(d−1)),

where the second inequality follows from Jensen’s inequality applied to the concave
H(·).

125

In summary,∑
λ∈Parnr

dim(λ) dim(Vd
λ) ≤

∑
λ∈Parnr

dim(λ) · 2r(d−1)·H(n/r(d−1)) ≤ rn · 2r(d−1)·H(n/r(d−1)).

Thus, the Holevo information is bounded by

χ(E) ≤ log
(
rn · 2r(d−1)·H(n/r(d−1))

)
− n log r = r(d− 1) ·H(n/r(d− 1)),

and so we have

r(d− 1) ·H(n/r(d− 1)) ≥ χ(E) ≥ I(m; m̃) ≥ Ω(rd).

Dividing both sides by rd, we require that H(n/r(d−1)) ≥ Ω(1). Inspecting H(·), it is clear
that this is satisfied only if n = Ω(rd).

126

Chapter 6

A quantum Paninski theorem

In this section, we prove Theorem 1.4.23, that Θ(d/ε2) copies are necessary and sufficient to
test whether or not a given state ρ ∈ Cd×d is the maximally mixed state, i.e., has spectrum
(1
d
, . . . , 1

d
).

6.1 The upper bound

The upper bound for Theorem 1.4.23 will follow from our analysis of the following simple
algorithm.

Definition 6.1.1.]Mixedness Tester] Given ρ⊗n, where ρ is d-dimensional:

1. Sample λ ∼ SWn
ρ .

2. Accept if p]2(λ) ≤
(

1 + ε2

2

)
· n(n−1)

d
. Reject otherwise.

We remark that the tester Childs et al. [CHW07] used to distinguish the maximally mixed
states of dimension d

2
and d also depended only on the magnitude of p]2(λ) = 2c1(λ);

see [CHW07, equations (49), (50)].

Theorem 6.1.2. The Mixedness Tester can test whether a state ρ ∈ Cd×d is the maximally
mixed state using n = O(d/ε2) copies of ρ.

Proof. We will run the Mixedness Tester with n = 100d/ε2. Both the “completeness” and
the “soundness” analysis will require the last identity from (3.11), namely

(p]2)2 = p](2,2) + 4p]3 + 2p](1,1). (6.1)

Completeness. Suppose first that ρ is the maximally mixed state, so that in fact λ ∼
SWn

d . We compute the mean and variance of p]2(λ) using (6.1) and Corollary 3.8.4:

E
λ∼SWn

d

[p]2(λ)] =
n(n− 1)

d
, (6.2)

Var
λ∼SWn

d

[
p]2(λ)

]
= E
λ∼SWn

d

[
p]2(λ)2

]
−
(

E
λ∼SWn

d

[p]2(λ)]

)2

=
2n(n− 1)(d2 − 1)

d2
≤ 2n(n− 1).

(6.3)

127

Thus by Chebyshev’s inequality,

Pr
λ∼SWn

d

[
p]2(λ) >

(
1 +

ε2

2

)
· n(n− 1)

d

]
≤ 8d2

n(n− 1)ε4
≤ 1

3
,

by our choice of n. Thus indeed when ρ is the maximally mixed state, the Mixedness Tester
accepts with probability at least 2/3.

Soundness. Suppose now that ρ is a density matrix whose spectrum η = (η1, . . . , ηd)
satisfies dsym

TV (η,Unifd) ≥ ε. Writing ηi = 1
d

+ ∆i, this means that

ε ≤ 1

2
·

d∑
i=1

|∆i| ≤
1

2

√√√√d ·
d∑
i=1

∆2
i ,

using Cauchy–Schwarz; hence
d∑
i=1

∆2
i ≥

4ε2

d
. (6.4)

Using (6.1) and Proposition 3.8.3, we can calculate the difference between the mean of p]2(λ)
and the cutoff used by the Mixedness Tester as

E
λ∼SWn

ρ

[
p]2(λ)

]
− n(n− 1)

d
·
(

1 +
ε2

2

)
= n(n− 1)

(
d∑
i=1

η2
i −

1

d

(
1 +

ε2

2

))
.

= n(n− 1)

(
d∑
i=1

∆2
i −

ε2

2d

)

≥ n(n− 1)

2

d∑
i=1

∆2
i ,

where the last line follows from (6.4). Similarly, we can calculate the variance of p]2(λ) as

Var
λ∼SWn

ρ

[
p]2(λ)

]
= n(n− 1)

(
2 + 4n

(∑
η3
i −

(∑
η2
i

)2
)

+ 6
(∑

η2
i

)2

− 8
∑

η3
i

)
≤ n(n− 1)

(
8 + 4n

(∑
η3
i −

(∑
η2
i

)2
))

= n(n− 1)

(
8 + 4n

(
1

d

∑
∆2
i +

∑
∆3
i −

(∑
∆2
i

)2
))

≤ n(n− 1)
(

8 + 8n
(∑

∆2
i

))
.

Applying Chebyshev’s inequality gives us

Pr
λ∼SWn

ρ

[
p](2)(λ) <

(
1 +

ε2

2

)
· n(n− 1)

d

]
≤ 1

n(n− 1)
(∑d

i=1 ∆2
i

)2 ·

(
32 + 32n

(
d∑
i=1

∆2
i

))

≤ 4

n2 (ε2/d)2 +
16

n (ε2/d)
,

128

where the second step follows from (6.4). By our choice of n, this is at most 1/3. Thus, when
ρ is ε-far from the maximally mixed state, the Mixedness Tester rejects with probability at
least 2/3, as required.

6.2 The lower bound: overview

For almost all of the lower bound proof we will assume d is even. In the end we will indicate
how to obtain the lower bound when d is odd. For 0 ≤ ε ≤ 1

2
, let Pεd denote the probability

distribution on [d] in which

Pεd(j) =
1 + (−1)j−12ε

d
.

This is essentially the same probability distribution that Paninski [Pan08] studies in his lower
bound. As usual, we also identify Pεd with the diagonal density matrix having these entries;
i.e.,

Pεd = diag

(
1 + 2ε

d
,
1− 2ε

d
,
1 + 2ε

d
,
1− 2ε

d
, . . . ,

1 + 2ε

d
,
1− 2ε

d

)
.

Note that dsym
TV (Pεd,Unifd) = ε. We also remark that when ε = 1

2
, the distribution Pεd is the

uniform distribution on d
2

elements (the odd-numbered ones). As in [Pan08], it proves to
be most convenient to study the chi-squared distance between SWn

Pεd
and SWn

d ; our main
theorem is the following:

Theorem 6.2.1. dχ2(SWn
Pεd
, SWn

d) ≤ exp((4nε2/d)2)− 1.

Since this distance is small unless n = Ω(d/ε2), our lower bound is complete. More
precisely:

Corollary 6.2.2. For even d, testing whether a d-dimensional mixed state ρ has the the
property of being the maximally mixed requires n ≥ .15d/ε2 copies.

Proof. In light of Theorem 2.6.3 we know that any ε-tester may as well make its testing
decision based on a draw λ ∼ SWn

ρ . Since dsym
TV (Pεd,Unifd) = ε, the tester must be able to

distinguish a draw from SWn
Pεd

and a draw from SWn
d with probability advantage 1/3; this

is possible if and only if dTV(SWn
Pεd
, SWn

d) ≥ 1/3. But

dTV(SWn
Pεd
, SWn

d) ≤ 1

2

√
dχ2(SWn

Pεd
, SWn

d) ≤ 1

2

√
exp((4nε2/d)2)− 1 < 1/3.

if n < .15d/ε2.

We remark that by taking ε = 1
2

we exactly recover the lower bound from Theorem 1.4.20
due to Childs et al. [CHW07].

There are two major steps in the proof of Theorem 6.2.1. The first major step will be
proving the following formula:

129

Theorem 6.2.3. Let x ∈ Rd satisfy x1 + · · ·+ xd = 0 . Then

E
λ∼SWn

d

[(
sλ(1 + x1, . . . , 1 + xd)

sλ(1, . . . , 1)
− 1

)2
]

=
∑
µ∈Par

0<`(µ)≤d

sµ(x)2

d↑µ · d|µ|
· n↓|µ|.

(The sum has only finitely many terms since n↓|µ| = 0 when |µ| > n.)

Once the above theorem is established, the following consequence is essentially immediate:

Corollary 6.2.4. Let x ∈ Rd satisfy x1 + · · ·+ xd = 0 and xi ≥ −1 for all i. We write Qx
for the probability distribution on [d] in which i has probability 1+xi

d
. Then

dχ2(SWn
Qx , SWn

d) =
∑
µ∈Par

0<`(µ)≤d

sµ(x)2

d↑µ · d|µ|
· n↓|µ|.

Proof. By definition, dχ2(SWn
Qx , SWn

d) is equal to

E
λ∼SWn

d

[(
SWn

Qx(λ)

SWn
d(λ)

− 1

)2
]

= E
λ∼SWn

d

(sλ(1+x1
d
, . . . , 1+xd

d
) dim(λ)

sλ(1
d
, . . . , 1

d
) dim(λ)

− 1

)2
 ,

where we used the definition of the Schur Weyl distribution. In turn, this equals the quantity
on the left in Theorem 6.2.3 after canceling the common factor of d−|λ| dimλ in the fraction
(recall the homogeneity of the Schur polynomials).

Let us sketch the intuition of the proof once Theorem 6.2.3 is established. We are
ultimately interested in the case x = 2ε · c, where ε > 0 is thought of as “small” and
c ∈ Rd satisfies c1 + · · · + cd = 0; specifically, c = c± := (+1,−1,+1,−1, . . . ,+1,−1). For
simplicity, let us write ε instead of 2ε. Since sµ is homogeneous of degree |µ|, this means
sµ(x)2 = sµ(c)2ε2|µ|. For the sake of intuition, let us consider the summands in Theorem 6.2.3
when |µ| = k is “small”; i.e., the coefficients on ε2k. For k = 1 we have only µ = (1), and
the associated summand actually drops out: this is because s(1)(x) = x1 + · · ·+ xd = 0. For
k ≥ 2, the term n↓|µ| is asymptotically nk and the denominator d|µ| ·d↑µ is asymptotically d2k.
It remains to analyze sµ(c±). This is the second major step in the proof of Theorem 6.2.1: in
Section 6.4 we establish an exact formula for it. Naively one might expect |sµ(c±)| to scale
like dk when |µ| = k; however, as we will see it scales only like dk/2 (and will in fact be 0

whenever k is odd). Thus the summands with |µ| = k small scale asymptotically as nk · ε2k
dk

,
whence we get that dχ2(SWn

Qε·c±
, SWn

d) is small if n� d
ε2

.

6.3 Proof of Theorem 6.2.3

To analyze the quantity in Theorem 6.2.3 we will require the so-called Binomial Formula.
(It generalizes the “usual” Binomial Formula, viz. (1 + x)` =

∑
m≥0 x

m`↓m/m!, in the case
d = 1.)

130

Theorem 6.3.1. The following polynomial identity holds:

sλ(1 + x1, . . . , 1 + xd)

sλ(1, . . . , 1)
=
∑
µ∈Par
`(µ)≤d

sµ(x)

d↑µ
· s∗µ(λ).

(The sum is actually finite since we may include the restriction µ ⊆ λ due to the factor
s∗µ(λ).)

In this form with the shifted Schur polynomials, the result appears in Okounkov and Ol-
shanski’s work [OO98b, Theorem 5.1] (see also [OO98a]). In a form involving factorial Schur
polynomials it dates back to Lascoux [Las78]; see [Mac95, Example I.3.10].

The µ = ∅ summand in Theorem 6.3.1 is always equal to 1; it follows that the quantity
on the left of Theorem 6.2.3 is

E
λ∼SWn

d

 ∑
0<`(µ)≤d

sµ(x)

d↑µ
· s∗µ(λ)

2 =
∑

0<`(µ),`(ν)≤d

sµ(x)sν(x)

d↑µd↑ν
E

λ∼SWn
d

[
s∗µ(λ)s∗ν(λ)

]
.

Therefore proving Theorem 6.2.3 reduces to proving

x1 + · · ·+ xd = 0 =⇒
∑

0<`(µ),`(ν)≤d

sµ(x)sν(x)

d↑µd↑ν
E

λ∼SWn
d

[
s∗µ(λ)s∗ν(λ)

]
=

∑
0<`(µ)≤d

sµ(x)2

d↑µ · d|µ|
· n↓|µ|.

(6.5)
This is the main difficult step of the proof; the surprising aspect here is that we only get
a contribution on the order of nk from the terms with |µ| = k, whereas naively one would
expect n2k. Showing that the nk+1, nk+2, . . . , n2k contributions “drop out” is the essence of
the proof.

In aid of proving (6.5), it’s tempting to guess that E[s∗µ(λ)s∗ν(λ)] = 1{µ=ν} · d
↑µ

d|µ|
· n↓|µ|;

however such a statement is false. Instead, what is true is the following:

Theorem 6.3.2. Let x ∈ Rd satisfy x1 + · · · + xd = 0 and let µ ∈ Par satisfy |µ| = r1 and
0 < `(µ) ≤ d. Assume r2 ≥ r1. Then∑

|ν|=r2
`(ν)≤d

sν(x)

d↑ν
E

λ∼SWn
d

[
s∗µ(λ)s∗ν(λ)

]
= 1{r2=r1} ·

sµ(x)

d|µ|
· n↓|µ|.

To deduce (6.5) from Theorem 6.3.2, simply write∑
0<`(µ),`(ν)≤d

sµ(x)sν(x)

d↑µd↑ν
E

λ∼SWn
d

[
s∗µ(λ)s∗ν(λ)

]
=
∑

r1,r2>0

∑
|µ|=r1
`(µ)≤d

∑
|ν|=r2
`(ν)≤d

sµ(x)sν(x)

d↑µd↑ν
E

λ∼SWn
d

[
s∗µ(λ)s∗ν(λ)

]
.

Then use Theorem 6.3.2 when r2 ≥ r1 and use it with the roles of µ and ν reversed when
r2 < r1.

As for the proof of Theorem 6.3.2 itself, the first step is to compute the expected prod-
uct of the shifted Schur polynomials. One possible approach for this might be to use

131

the Littlewood–Richardson rule for factorial Schur functions (see [MS99, Proposition 4.2]
or [Mol09, Corollary 3.3]) to write s∗µs

∗
ν as a linear combination of s∗τ polynomials. Unfor-

tunately, these Littlewood–Richardson coefficients seem somewhat difficult to work with.
Instead, we will expand the shifted Schur polynomials in terms of the central characters and
then multiply them via the known structure constants. We do this in the below lemma, car-
ried out for a generic Schur-Weyl distribution. In this lemma, S(R) denotes the symmetric
group acting on the finite set R.

Lemma 6.3.3. Let q = (q1, . . . , qd) be a probability distribution on [d] and let µ ` r1, ν ` r2.
Then

E
λ∼SWn

q

[
s∗µ(λ)s∗ν(λ)

]
=

r1+r2∑
t=r1∨r2

Ct
r1r2
· n↓t · E

w1∼S(R1)
w2∼S(R2)

[χµ(w1)χν(w2)pw1w2(q)] .

Here, for each choice of t, we let R1, R2 denote (arbitrary but fixed) subsets of [t] having
cardinality r1, r2, respectively, with R1 ∪ R2 = [t]. (E.g., R1 = {1, . . . , r1}, R2 = {t −
r2 + 1, . . . , t}.) Also, w1 denotes the extension of w1 to S(t) formed by letting w1 fix each
element of [t] \R1; similarly for w2.

Proof. Recall the notation ρ(w) from Definition 2.3.1 used denote the cycle type of a per-
mutation w. In this proof, we also use the following notation: We write ρ ∼ S(r) to denote
that ρ is a random partition of r formed by first choosing w ∼ S(r) uniformly and then
taking ρ = ρ(w).

Using Theorem 3.8.2 for the first equality below, and Corollary 3.8.8 for the third equality,
we have

E
λ∼SWn

q

[
s∗µ(λ)s∗ν(λ)

]
= E
λ∼SWn

q

[
E

ρ1∼S(r1)
[χµ(ρ1) · p]ρ1(λ)] · E

ρ2∼S(r2)
[χν(ρ2) · p]ρ2(λ)]

]
= E
ρ1∼S(r1)
ρ2∼S(r2)

[
χµ(ρ1)χν(ρ2) · E

λ∼SWn
q

[
p]ρ1(λ) · p]ρ2(λ)

]]

= E
ρ1∼S(r1)
ρ2∼S(r2)

χµ(ρ1)χν(ρ2) · E
λ∼SWn

q

 r1+r2∑
t=r1∨r2

∑
τ`t

Ct
r1r2
· Pr
w1∼S(R1)|ρ1
w2∼S(R2)|ρ2

[ρ(w1w2) = τ] · p]τ (λ)

 ,
where here wi is chosen to be a uniformly random permutation on Ri (as in the lemma’s
statement), conditioned on having cycle type ρi. By Proposition 3.8.3 the above equals

E
ρ1∼S(r1)
ρ2∼S(r2)

χµ(ρ1)χν(ρ2) ·
r1+r2∑
t=r1∨r2

∑
τ`t

Ct
r1r2
· Pr
w1∼S(R1)|ρ1
w2∼S(R2)|ρ2

[ρ(w1w2) = τ] · n↓t · pτ (q)

=

r1+r2∑
t=r1∨r2

Ct
r1r2
· n↓t · E

ρ1∼S(r1), ρ2∼S(r2)
w1∼S(R1)|ρ1
w2∼S(R2)|ρ2

[
χµ(ρ1)χν(ρ2) ·

∑
τ`t

1{ρ(w1w2)=τ} · pτ (q)

]

132

The summation on the inside here simply equals pρ(w1w2)(q); we may also replace χµ(ρ1) with
χµ(w1), and similarly for χν(ρ2). Thus to complete the proof it remains to show that w1

and w2 have the same distribution as in the statement of the lemma. But this is clear: if we
first pick a random permutation of ri symbols, then take its cycle type, then set wi to be a
random permutation of ri symbols of this cycle type, this is the same as simply taking wi

to be a uniformly random permutation of ri symbols.

We will also require the following Fourier-theoretic lemma:

Lemma 6.3.4. For u ∈ S(r), ν ` r, and d ∈ Z+,

E
w∼S(r)

[χν(w) · d`(uw)] =
χν(u)d↑ν

r!
.

Proof. Define the class function e on S(r) by

e(v) = pv(1, . . . , 1︸ ︷︷ ︸
d entries

) = d`(v).

Since χν(w) = χν(w
−1) because χν is a class function, the quantity on the left in the

proposition’s statement is

E
w∼S(r)

[χν(w
−1) · d`(uw)] = E

v∼S(r)
[χν(v

−1u) · d`(v)] = (e ∗ χν)(u) =
∑
µ`r

ẽ ∗ χν(µ)χµ(u)

=
∑
µ`r

1
dimµ

ẽ(µ)χ̃ν(µ)χµ(u) = 1
dim ν

ẽ(ν)χν(u) = 1
dim ν

sν(1, . . . , 1)χν(u) =
χν(u)d↑ν

r!
,

the last equality being Definition 2.2.13

We can now complete the proof of Theorem 6.3.2 (and therefore also Theorem 6.2.3):

Proof of Theorem 6.3.2. We will use Lemma 6.3.3 in the case of SWn
d , i.e., q = (1

d
, . . . , 1

d
);

in this case, for τ ` t we have pτ (q) = d`(τ)−t. We thereby obtain

∑
|ν|=r2
`(ν)≤d

sν(x)

d↑ν
E

λ∼SWn
d

[
s∗µ(λ)s∗ν(λ)

]

=

r1+r2∑
t=r2

Ct
r1r2
· n
↓t

dt
· E
w1∼S(R1)

[
χµ(w1) ·

∑
|ν|=r2
`(ν)≤d

sν(x)

d↑ν
· E
w2∼S(R2)

[
χν(w2)d`(w1w2)

]]
. (6.6)

(Here we are using the convention `(w1w2) = `(ρ(w1w2)).) We now would like to analyze
the number of cycles of w1w2 within S(t). In w1’s cycle decomposition, there are some
cycles that act only on elements of R1 \R2. Let’s write `\(w1) for the number of such cycles,
and let’s define w∩1 ∈ S(t) to be w1 with those cycles deleted. Thus

`(w1w2) = `\(w1) + `(w∩1 ·w2).

133

Next, let w⊥1 denote the permutation obtained by deleting every element of R1 \R2 from the
cycle decomposition of w∩1 . Though w⊥1 acts only on R1 ∩R2, we will view it as an element
of S(R2). Although we don’t have w⊥1 ·w2 = w∩1 ·w2, it’s not too hard to see that

`(w∩1 ·w2) = `(w⊥1 ·w2).

Thus we obtain

(6.6) =

r1+r2∑
t=r2

Ct
r1r2
· n
↓t

dt
· E
w1∼S(R1)

[
χµ(w1)d`

\(w1) ·
∑
|ν|=r2
`(ν)≤d

sν(x)

d↑ν
· E
w2∼S(R2)

[
χν(w2)d`(w

⊥
1 ·w2)

]]
.

Applying Lemma 6.3.4, we deduce

(6.6) =

r1+r2∑
t=r2

Ct
r1r2
· n
↓t

dt
· E
w1∼S(R1)

[
χµ(w1)d`

\(w1) · 1

r2!

∑
|ν|=r2
`(ν)≤d

sν(x)χν(w
⊥
1)
]
.

Notice that we may extend the summation over ν to include `(ν) > d as well: since x has d
coordinates, sν(x) = 0 anyway when `(ν) > d by Proposition 2.4.8. Having done this, we
replace sν(x) with Ev∼S(r2)[χν(v)pv(x)], obtaining

(6.6) =

r1+r2∑
t=r2

Ct
r1r2
· n
↓t

dt
· E
w1∼S(R1)

[
χµ(w1)d`

\(w1) · 1

r2!

∑
|ν|=r2

E
v∼S(r2)

[χν(v) · pv(x)]χν(w
⊥
1)
]

=

r1+r2∑
t=r2

Ct
r1r2

r2!
· n
↓t

dt
· E
w1∼S(R1)

[
χµ(w1)d`

\(w1) · E
v∼S(r2)

[
pv(x) ·

∑
|ν|=r2

χν(v)χν(w
⊥
1)
]]
.

We claim that the inner expectation is 0 in most cases. First, pv(x) vanishes whenever v
has a fixed point, since p1(x) = x1 + · · ·+ xd = 0 by assumption. Next, suppose that v has
no fixed points. By the orthogonality relations of representation theory, the innermost sum
vanishes unless v and w⊥1 are conjugate. Since w⊥1 ∈ S(R2) acts only on R1 ∩ R2, it must
have a fixed point (and therefore not be conjugate to v) unless R2 \ R1 = ∅. Since r2 ≥ r1,
this can only happen if |µ| = r1 = r2 = t. We conclude that the inner expectation can only
be nonzero in case |µ| = r1 = r2 = t. In this case we have Ct

r1r2
= r2! and `\(w1) = 0,

whence

(6.6) = 1{r2=r1} ·
n↓r1

dr1
· E
w1∼S(r1)

[
χµ(w1) · E

v∼S(r1)

[
pv(x) ·

∑
|ν|=r1

χν(v)χν(w
⊥
1)
]]
.

Once again, the summation is 0 if v and w1 are not conjugate; otherwise it equals zρ(w1).
Further, having chosen w1, the probability that v is conjugate to w1 is precisely z−1

ρ(w1). Thus
these factors cancel and we obtain

(6.6) = 1{r2=r1} ·
n↓r1

dr1
· E
w1∼S(r1)

[χµ(w1) · pw1(x)] = 1{r2=r1} ·
n↓r1

dr1
· sµ(x),

completing the proof.

134

6.4 A formula for sµ(+1,−1,+1,−1, . . .)

For this formula we will need to recall the notion of the 2-quotient of a partition. This
definition essentially encodes the ways in which a partition can be tiled by dominoes.

Definition 6.4.1. Given a partition µ, a 2-hook in [µ] is a hook of length 2; i.e., a domino
whose removal from [µ] results in a valid Young diagram.

Definition 6.4.2. A partition µ is said to be balanced (or to have an empty 2-core) if [µ]
can be reduced to the empty diagram by successive removal of 2-hooks.

Definition 6.4.3. Given a partition µ we write [µ]even (respectively, [µ]odd) for the set of
boxes � ∈ [µ] with even (respectively, odd) content c(�).

Remark 6.4.4. It’s obvious from Definition 6.4.2 that if µ ` k is balanced then |[µ]even| =
k/2. In fact, the converse also holds (this follows from, e.g., [JK81, Theorem 2.7.41]).

0
15
2

13
2

11
2

97531
22222

1
2

3
2

5
2

7
2

9
2

11
2

13
2

15
2

d

Figure 6.1: The Russian and Maya diagrams for µ = (6, 4, 4, 3, 3) ` 20. The segments and
pebbles corresponding to the 2-quotient pair are colored green and red. The dashed lines
outline a 2-hook that could be removed; d is the square in this 2-hook with even content
(namely, −2).

0
7531
2222

1
2

3
2

5
2

7
2

Figure 6.2: The diagram for 2-quotient partition µ(0) = (2, 1) ` 3.

135

0
7531
2222

1
2

3
2

5
2

7
2

s

Figure 6.3: The diagram for 2-quotient partition µ(1) = (3, 2, 2) ` 7. The 1-hook square s
(with content −1) is associated to the 2-hook in Figure 6.1 that contains square d.

Definition 6.4.5. Let µ be a partition. From the Maya diagram for [µ], form two new Maya
diagrams by taking the two alternating sequences of pebbles. More precisely, for b ∈ {0, 1},
let µ(b) denote the partition whose Maya diagram is formed by the pebbles at positions
2z + (−1)b 1

2
, z ∈ Z. (See Figure 6.1, in which b = 0 is associated to green and b = 1 is

associated to red.) The pair (µ(0), µ(1)) is called the 2-quotient of µ. (See Figures 6.2, 6.3
respectively.)

Remark 6.4.6. Note that when the Maya diagrams for µ(0), µ(1) are formed, each of the
two origin mark positions may need to be adjusted from the former origin mark position
coming from µ’s origin mark. It is a fact (see, e.g., [RZ12, Section 2.1]) that µ is balanced
if and only if neither origin mark position must be adjusted.

Fact 6.4.7. A 2-hook in [µ] naturally corresponds to a sequence of three pebbles in [µ]’s
Maya diagram of the form (white, ∗, black). (See the dashed domino containing the label d
in Figure 6.1.) In turn, this corresponds to a “1-hook” in one of µ(0), µ(1); i.e., a square on
the rim whose removal leaves a valid Young diagram (see the square labeled s in Figure 6.3).
Removal of the 2-hook from [µ] corresponds to replacing the sequence (white, ∗, black) by
(black, ∗, white). (One thinks of the “filled” black pebble as jumping two positions to the left,
onto the “empty” white pebble.) In turn, this corresponds to removing the associated 1-hook
from either µ(0) or µ(1).

We will require the following lemma. It is likely to be known; however we were unable
to find its statement in the literature. The analogous lemma for hook lengths is well known
(see, e.g., [RZ12, Lemma 2.1.ii]).

Lemma 6.4.8. Let µ ` k be a balanced partition with 2-quotient (µ(0), µ(1)). Then the
multiset {c(�) : � ∈ [µ(0)],� ∈ [µ(1)]} is equal to the multiset {1

2
c(�) : � ∈ [µ]even}.

Proof. The statement is proved by induction on the deconstruction of µ from 2-hooks, with
the base case being µ = ∅. We rely on the fact that since µ is balanced, the Maya diagrams
of µ(0) and µ(1) can be seen alternating within the Maya diagram for µ, with all three origin
markers “lining up” (see Remark 6.4.6). By way of induction, suppose we consider the
removal of some 2-hook D from [µ]. This corresponds (see Fact 6.4.7) to removing a 1-hook

136

(square) s from µ(b), for some b ∈ {0, 1}. Exactly one of D’s two squares is in [µ]even; call
that square d. (See Figures 6.1, 6.3 for illustration.) By induction, it suffices to show that
1
2
c(d) = c(s). But this is easily seen from the combination of the Russian and Maya diagrams,

as the content of a square is simply the horizontal displacement of its center.

We are now ready to establish a formula for sµ(+1,−1,+1,−1, . . .).

Theorem 6.4.9. Let µ ` k and let d be even. Then

sµ(+1,−1,+1,−1, . . .︸ ︷︷ ︸
d entries

) =

0 if µ is not balanced,

χµ(2, 2, . . . , 2︸ ︷︷ ︸
k/2 entries

) · 1

k!!
· (d↑[µ]even) if µ is balanced.

Proof. The first part of the proof relies on a formula from [RSW04, Theorem 4.3], specialized
to the case of “t” = 2:

sµ(+1,−1,+1,−1, . . .︸ ︷︷ ︸
d entries

)

=

0 if µ is not balanced,

sgn(χµ(2, 2, . . . , 2︸ ︷︷ ︸
k/2 entries

)) · sµ(0)(1, 1, . . . , 1︸ ︷︷ ︸
d/2 entries

) · sµ(1)(1, 1, . . . , 1︸ ︷︷ ︸
d/2 entries

) if µ is balanced,

where (µ(0), µ(1)) is the 2-quotient of µ. Thus it suffices to show

sµ(0)(1, 1, . . . , 1) · sµ(1)(1, 1, . . . , 1) =
|χµ(2, 2, . . . , 2)| · (d↑[µ]even)

(k/2)! · 2k/2
(6.7)

assuming µ is balanced. Applying Definition 2.2.13, the left-hand side of (6.7) is

(d
2

↑µ(0)
) · (d

2

↑µ(1)
) · dimµ(0) · dimµ(1)

|µ(0)|! · |µ(1)|!
.

Next, we appeal to [RZ12, formula (2.2)], which states

χµ(2, 2, . . . , 2) = σµ ·
(
|µ|/2

|µ(0)|, |µ(1)|

)
· dimµ(0) · dimµ(1),

where σµ ∈ {±1} is a certain sign. Thus to verify (6.7) it remains to show

(d
2

↑µ(0)
) · (d

2

↑µ(1)
) =

d↑[µ]even

2k/2
. (6.8)

But this follows immediately from Lemma 6.4.8.

137

6.5 Wrapping up the lower bound

In this section we complete the proof of Theorem 6.2.1. We begin by applying Corollary 6.2.4
with x = (+2ε,−2ε,+2ε,−2ε, . . .). Using Theorem 6.4.9 and the homogeneity of Schur
polynomials, we obtain the following after a few manipulations:

Theorem 6.5.1. For d even and 0 ≤ ε ≤ 1
2
,

dχ2(SWn
Pεd
, SWn

d) =
∑

k=2,4,6,...

n↓k(2ε)2kd−k ·
(1

k!!2

∑
µ`k balanced

0<`(µ)≤d

χµ(2, . . . , 2)2 · d
↑[µ]even

d↑[µ]odd

)
. (6.9)

To estimate this quantity we will use the following very crude bound:

Proposition 6.5.2. Let d ∈ Z+ and let µ ` k be balanced, with 0 < `(µ) ≤ d. Then

d↑[µ]even

d↑[µ]odd
≤ 2k/2. (6.10)

Proof. Fix any domino-tiling for µ. Each of the k/2 dominoes contains one cell of even
content ce and one cell of odd content co, with |ce − co| = 1. Thus each contributes a factor
of d+ce

d+co
≤ 2

1
= 2 to (d↑[µ]even)/(d↑[µ]odd).

By character orthogonality relations we also have∑
µ`k balanced

0<`(µ)≤d

χµ(2, . . . , 2)2 ≤
∑
µ`k

χµ(2, . . . , 2)2 = z(2,...,2) = k!!. (6.11)

Combining (6.10), (6.11), we get that the parenthesized expression in (6.9) is at most
2k/2/k!! = 1/(k/2)!. Using also n↓k ≤ nk, the right-hand side of (6.9) is thus bounded
by ∑

k=2,4,6,...

nk(2ε)2kd−k/(k/2)! = exp((4nε2/d)2)− 1,

completing the proof of Theorem 6.2.1.

We end by indicating how to obtain the testing lower bound in the case when d ≥
3 is odd. In this case we define Pεd to be (1+2ε

d
, 1−2ε

d
, . . . , 1+2ε

d
, 1−2ε

d
, 1
d
). This distribu-

tion has dsym
TV (Pεd,Unifd) = d−1

d
ε ≥ 2

3
ε; since this differs from ε only by a constant fac-

tor, the lower bound of Ω(d/ε2) is not affected. Now Corollary 6.2.4 is applied with x =
(+2ε,−2ε, . . . ,+2ε,−2ε, 0). By stability of the shifted Schur polynomials we have

sµ(+1,−1, . . . ,+1,−1, 0) = sµ(+1,−1, . . . ,+1,−1),

where there are d − 1 entries in the latter. Now we get χµ(2, 2, . . . , 2) · 1
k!!
· (d − 1)↑[µ]even

out of Theorem 6.4.9, and we can simply upper-bound (d − 1) by d and proceed with the
remainder of the proof.

138

Chapter 7

Hardness of distinguishing uniform
distributions

In this section, we prove Theorem 1.4.25, namely that O(r2/∆) copies are sufficient to
distinguish between the cases when ρ’s spectrum is uniform on either r or r+ ∆ eigenvalues
(1 ≤ ∆ ≤ r), and that Ω̃(r2/∆) copies are necessary. To be more precise, our lower bound
on the number of copies n will be

n ≥ r2−O(1/ log.33 r)/∆. (7.1)

7.1 The upper bound

The proof of the upper bound is quite similar to that of Theorem 6.1.2 for the Mixedness
Tester. We employ the following tester:

Definition 7.1.1 (Uniform Distribution Distinguisher). Given ρ⊗n:

1. Sample λ ∼ SWn
ρ .

2. Accept if p]2(λ) ≤ e := n(n− 1) · 1
2

(
1
r

+ 1
r+∆

)
. Reject otherwise.

As for the analysis, from Equations (6.2) and (6.3):

E
λ∼SWn

m

[
p]2(λ)

]
=
n(n− 1)

m
, and Var

λ∼SWn
m

[
p]2(λ)

]
≤ 2n(n− 1).

We see that the variance is the same whether m = r or m = r + ∆; only the expectation is
different, and the tester’s acceptance cutoff e is precisely the midway point between the two
expectations. If m = r, then Chebyshev’s inequality implies

Pr
λ∼SWn

m

[
p]2(λ) ≥ e

]
≤ 8r2(r + ∆)2

n(n− 1)∆2
≤ 32r4

(n− 1)2∆2
,

and we have the same upper bound by Chebyshev for Prλ∼SWn
m

[
p]2(λ) ≤ e

]
when m = r+∆.

This upper bound is at most 1/3 provided n ≥ 4
√

6 · r2
∆

+ 1, completing the proof of the
upper bound in Theorem 1.4.25.

139

The end of Section 8.1 gives a different O(r2)-copy tester (the “Rank Tester”) for the
r-versus-(r + 1) case. In this case it’s superior to the Uniform Distribution Distinguisher in
that it has one-sided error (i.e., it never rejects in the rank-r case).

7.2 The lower bound

The bulk our work for the lower bound will be devoted to the case of ∆ = 1. The extension to
larger ∆ is very tedious and will be dealt with in Section 7.3. So let r ∈ Z+ be a parameter
which we think of as tending to infinity, and for brevity let r+ = r + 1. Our task is to
show that the distributions SWn

r and SWn
r+

are very close in total variation distance unless

n ≥ Ω̃(r2). For notational convenience we will write

n =
r2

ω2

and seek to show that SWn
r and SWn

r+
are close once ω is sufficiently large as a function

of r. Ultimately we will select ω = exp(Θ(log.67 r)). For now, though, let’s keep ω general,
subjecting it only to the following assumption:

200 ≤ ω ≤
√
r. (7.2)

7.2.1 Initial approximations

It proves more convenient to study the Kullback–Leibler divergence between SWn
r and SWn

r+
:

dKL(SWn
r , SWn

r+
) = E

λ∼SWn
r

[
ln

(
SWn

r [λ]

SWn
r+

[λ]

)]

= E
λ∼SWn

r

[
ln

(
rn+
rn
· r
↑λ

r↑λ+

)]
= n ln

(r+
r

)
+ E
λ∼SWn

r

[
ln

(∏
�∈[λ](r + c(�))∏
�∈[λ](r+ + c(�))

)]
, (7.3)

where the second equality used Proposition 3.3.3. (We remark that the logarithms above
are always finite since supp(SWn

r) ⊆ supp(SWn
r+

).)
Recalling that r+ = r + 1, it is very easy to verify (cf. [Mac95, Exercise I.1.11], [CGS04,

Section 2.5]) that the large fraction inside the inner logarithm of (7.3) is equal to

`(λ)∏
i=1

r − (i− 1)

r − (i− 1− λi)
= Φ(−(r + 1

2
);λ),

where Φ denotes a generating function for the modified Frobenius coordinates, defined
in [IO02] and similar to the “Frobenius function” from [Las08, CSST10]. Proposition 1.2
in [IO02] observes that

Φ(z;λ) =
∏
i

z + b∗i
z − a∗i

,

140

where the a∗i ’s and b∗i ’s are the modified Frobenius coordinates of λ; as a consequence,
Proposition 1.4 in [IO02] states that

ln Φ(z;λ) =
∞∑
k=1

p∗k(λ)

k
z−k. (7.4)

However we cannot immediately take z = −(r + 1
2
) and conclude

(7.3)
?
= n ln

(
1 +

1

r

)
+ E
λ∼SWn

r

[
∞∑
k=1

(−1)kp∗k(λ)

k(r + 1
2
)k

]
(7.5)

because (7.4) is merely a formal identity of generating functions and does not hold for all
real z. More specifically, it’s necessary that the Taylor series for ln(1 + bi/z) and ln(1 −
ai/z) converge, which happens provided |bi/(r + 1

2
)|, |ai/(r + 1

2
)| ≤ 1. These conditions

are equivalent to `(λ) = λ′1 ≤ r + 1 and λ1 ≤ r + 1. The first condition is automatic,
since λ ∼ SWn

r . The second condition does not always hold; however, we will show (see
Lemma 7.2.2 below) that it holds with overwhelming probability when n � r2. Indeed the
“central limit theorems” for the Schur-Weyl distributions suggest that both λ1 and λ′1 will
almost always be O(

√
n) = O(r

ω
). Let us therefore make a definition:

Definition 7.2.1. We say that λ ` n is usual if λ1, λ
′
1 ≤ 10

ω
r. Since we are assuming

ω ≥ 200, usual λ’s satisfy λ1, λ
′
1 ≤ 1

20
r ≤ r + 1.

Thus when λ is usual we may apply (7.5). Since the quantity inside the expectation
in (7.3) is clearly always negative, we may write

dKL(SWn
r , SWn

r+
) = (7.3) ≤ n ln

(
1 +

1

r

)
+ E
λ∼SWn

r

[
1{λ usual} · ln

(∏
�∈[λ](r + c(�))∏
�∈[λ](r+ + c(�))

)]

= n ln

(
1 +

1

r

)
+ E
λ∼SWn

r

[
1{λ usual} ·

∞∑
k=1

(−1)kp∗k(λ)

k(r + 1
2
)k

]

= n ln

(
1 +

1

r

)
− 1

r + 1
2

· E
λ∼SWn

r

[
1{λ usual} · p∗1(λ)

]
(7.6)

+ E
λ∼SWn

r

[
1{λ usual} ·

∞∑
k=2

(−1)kp∗k(λ)

k(r + 1
2
)k

]
. (7.7)

Recall that p∗1(λ) is simply |λ|; thus the expectation in (7.6) is simply nPr[λ usual]. As
Lemma 7.2.2 below shows, Pr[λ usual] = 1− δ for δ≪ 1

60r2
. Thus:

(7.6) = n

(
ln

(
1 +

1

r

)
− 1

r + 1
2

+
δ

r + 1
2

)
≤ n

(
1

12r3
+

1/(60r2)

r + 1
2

)
≤ n

10r3
=

1

10ω2r
. (7.8)

Lemma 7.2.2. Let λ ∼ SWn
r . Then Pr[λ unusual] ≤ 2−20r/ω.

141

Proof. Write B = d10
ω
re. By Proposition 3.7.12 and the fact that B ≤ r,

Pr[λ1 ≥ B],Pr[λ′1 ≥ B] ≤
(

2e2n

B2

)B
≤
(

2e2

100

)10r/ω

≤ 2−1−20r/ω.

The lemma now follows from the union bound.

Turning to (7.7), let’s write

L∗C(λ) :=
C∑
k=2

(−1)kp∗k(λ)

k(r + 1
2
)k

,

recalling that L∗∞(λ) is definitely convergent if λ is usual. The infinite sum in (7.7) is
inconvenient, as is the +1

2
in the denominator. We clean these issues up with the following

lemma:

Lemma 7.2.3. Assuming λ ` n is usual, if

C ≥ 3 log(10r)

log(ω/10)
,

it follows that

|L∗∞(λ)− LC(λ)| ≤ 201

ω3
,

where LC(λ) denotes the same quantity as L∗C(λ) except with no +1
2

in the denominator.

Proof. For any λ ` n (not necessarily usual), we have the crude bound |p∗k(λ)| ≤ 2
√
nBk

whenever λ1, λ
′
1 ≤ B. This is because each modified Frobenius coordinate a∗i or b∗i (of which

there are at most
√
n each) is at most B. For usual λ we may take B = 10

ω
r. Thus we have

|L∗∞(λ)− L∗C(λ)| ≤
∞∑

k=C+1

|p∗k(λ)|
k(r + 1

2
)k
≤

∞∑
k=C+1

2 r
ω

(10 r
ω

)k

krk
≤ 2r

∞∑
k=C+1

(
10

ω

)k
≤ 4r

(
10

ω

)C
≤ 1

250r2
,

where the last inequality used the assumption about C (and the second-to-last inequality
used ω ≥ 200 in a crude way). Further,

|L∗C(λ)− LC(λ)| ≤
C∑
k=2

|p∗k(λ)|
k

(
1

rk
− 1

(r + 1
2
)k

)
≤

C∑
k=2

2 r
ω

(10 r
ω

)k

k

(
k

2rk+1

)
=

1

ω

C∑
k=2

(
10

ω

)k
≤ 200

ω3
.

Finally, 200
ω3 + 1

250r2
≤ 201

ω3 by our assumption (7.2) that ω ≤
√
r.

Let us use this lemma in (7.7), and also apply (7.8) in (7.6). Assuming the lemma’s
hypotheses, we obtain

dKL(SWn
r , SWn

r+
) ≤ E

λ∼SWn
r

[
1{λ usual} · LC(λ)

]
+ 1

10ω2r
+ 201

ω3

≤ E
λ∼SWn

r

[LC(λ)]− E
λ∼SWn

r

[
1{λ unusual} · LC(λ)

]
+ 202

ω3 .

142

We can use Cauchy–Schwarz to bound∣∣∣∣ E
λ∼SWn

r

[
1{λ unusual} · LC(λ)

]∣∣∣∣ ≤√E[12
{λ unusual}]

√
E[LC(λ)2] ≤ 2−10r/ω

√
E[LC(λ)2], (7.9)

where the last inequality used Lemma 7.2.2. Finally, we can afford to use an extraordinarily
crude bound on E[LC(λ)2]:

E[LC(λ)2] ≤ C
C∑
k=2

E[p∗k(λ)2] ≤ C

C∑
k=2

(2
√
nnk)2 ≤ n3C ≤ r6C ,

where the second inequality used the crude bound on |p∗k(λ)| from the proof of Lemma 7.2.3.
(In fact, in Section 7.3 we will actually show that this quantity is quite tiny.) If we now
make the very weak assumption that C ≤ 3r

ω log r
, we may conclude (7.9) ≤ 2−r/ω � 1

ω3 .
Now we can summarize all of the preparatory work we have done so far:

Proposition 7.2.4. Assuming 3 log(10r)
log(ω/10)

≤ C ≤ 3r
ω log r

, for λ ∼ SWn
r we have

dKL(SWn
r , SWn

r+
) ≤ E [LC(λ)] + 203

ω3 ,

where

LC(λ) :=
C∑
k=2

(−1)kp∗k(λ)

krk
. (7.10)

(It is straightforward to check using (7.2) that the range of values for C is nonempty.)

We now come to the main task: showing that E[LC(λ)] is small.

7.2.2 Passing to the p] polynomials

In this section and the following one, we will use the notation

fact(µ) =
∏
w≥1

mw(µ)!

where, recall, mw(µ) is the number of parts of µ equal to w.
The following proposition is essentially immediate from known formulas:

Proposition 7.2.5. For any k ∈ Z+, we have the following identity on observables:

p∗k =
∑

µ : wt(µ)=k+1

k↓(`(µ)−1)

fact(µ)
p]µ +Ok,

where Ok is an observable with wt(Ok) ≤ k. More precisely,

Ok =
∑

µ : wt(µ)≤k

ck,µp
]
µ

for some rational coefficients ck,µ.

143

Proof. From [IO02, Corollary 2.8] we have

p∗k =
1

k + 1
· p̃k+1 +

{
a linear combination of p̃k, . . . , p̃2

}
.

From [IO02, Corollary 3.7] (cf. [Mél10b, Lemma 10.10]) we have

p̃k+1 =
∑

µ : wt(µ)=k+1

(k + 1)↓`(µ)

fact(µ)

∏
i≥1

(p]i)
mi(µ).

The result is now easily deduced from Proposition 3.8.10.

Substituting the above result into (7.10) yields:

LC(λ) =
C∑
k=2

(−1)k

krk
·
∑

wt(µ)=k+1

k↓(`(µ)−1)

fact(µ)
p]µ(λ) +

C∑
k=2

(−1)kOk(λ)

krk
. (7.11)

Taking the expectation over λ ∼ SWn
r , and using Corollary 3.8.4 to evaluate the expectation

of p]µ, we obtain:

E
λ∼SWn

r

[LC(λ)] =
C∑
k=2

(−1)k

krk
·
∑

wt(µ)=k+1

k↓(`(µ)−1)

fact(µ)
n↓|µ|r`(µ)−|µ| (7.12)

+
C∑
k=2

(−1)k Eλ∼SWn
r
[Ok(λ)]

krk
. (7.13)

We will show in Lemmas 7.2.7, 7.2.8 below that the “error term” (7.13) is small assuming
n� r2. Thus we focus on (7.12).

7.2.3 Showing the “main term” is small: some intuition

Before diving into manipulations, let’s take a high-level look at the contributions to (7.12)
from k = 2, 3, 4, 5, . . . , focusing on the powers of n and r. First consider the case of k = 2.
Here there is only one µ with wt(µ) = 3, namely µ = (2), which has |µ| = 2 and `(µ) = 1.

Thus from k = 2 we pick up a factor on the order of n2

r3
; more precisely, n↓2

2r3
. This looks

rather bad from the point of view of proving a quadratic lower bound for n: the term n↓2

2r3
is

not small unless n � r3/2. The main surprise in our proof is that this term will be exactly
canceled by “lower-degree” contributions from larger k.

To see an example of this, consider the k = 3 contribution in (7.12). Here there are two
µ’s with wt(µ) = 4, namely µ = (3) and µ = (1, 1). The first gives a contribution on the

order of n3

r5
; more precisely, −n↓3

3r5
. The second gives a contribution of −n↓2

2r3
, thereby precisely

canceling the k = 2 term. Thus we are left (so far) with −n↓3

3r5
, which is small if n � r5/3.

This is still far from a quadratic bound, but it’s better than the r3/2 bound we were faced
with previously.

In turn, the −n↓3

3r5
contribution will be canceled by a certain k = 3 term, namely n↓3

r5
from

µ = (2, 1), together with a certain k = 4 term, namely 2n↓3

3r5
from µ = (1, 1, 1). Indeed, if we

144

sum up through k = 6, the total contribution is −5n↓4

r7
− n↓5

5r9
, which is small if n� r7/4. This

gets us still closer to a quadratic bound.
In fact, looking carefully at small partitions suggests that perfect cancelation is achieved

if we group contributions according to |µ|. This proves to be the case, as we will show below.
In the end (7.12) does not precisely vanish because for m > C/2, not all µ’s with |µ| = m
appear in (7.12). However the “leftover contributions” are of the shape r(n

r2
)k for k > C/2,

a quantity we can ensure is small by taking ω and C large enough. (There is a tradeoff
involved preventing us from taking C too large: our “error bound” (7.13) increases with C.)

7.2.4 Proof that the “main term” is small

Although (7.12) has a double summation, the summed quantity is simply counted exactly
once for each µ with 3 ≤ wt(µ) ≤ C+1. As suggested above, let us rearrange the summation
according to |µ|. We will use the notation s = |µ|−1 and h = `(µ)−1, so that wt(µ) = s+h+2
(i.e., k = s+ h+ 1) and wt(µ) ≤ C + 1 ⇐⇒ h ≤ C − 1− s:

(7.12) =
C−1∑
s=1

min(s,C−1−s)∑
h=0

∑
µ`s+1

`(µ)=h+1

(−1)s+h+1

(s+ h+ 1)rs+h+1

(s+ h+ 1)↓h

fact(µ)
n↓(s+1)rh−s

=
C−1∑
s=1

(−1)s+1 · n
↓(s+1)

r2s+1

min(s,C−1−s)∑
h=0

(−1)h(s+ h)↓(h−1)
∑
µ`s+1

`(µ)=h+1

1

fact(µ)
.

(We remark that we switched from r+ 1
2

to r in Lemma 7.2.3 so as to obtain nice cancelations
on r here. We also recall the convention m↓(−1) = 1

m+1
.) It is not hard to show (see,

e.g., [Mél10a, Lemma 11]) that ∑
µ`s+1

`(µ)=h+1

1

fact(µ)
=

1

(h+ 1)!

(
s

h

)
.

Substituting this into the above, and also using (s+ h)↓(h−1) = (s+h)!
(s+1)!

, we get

(7.12) =
C−1∑
s=1

(−1)s+1 · n
↓(s+1)

r2s+1

min(s,C−1−s)∑
h=0

(−1)h
(s+ h)!

(s+ 1)!(h+ 1)!

(
s

h

)

=
C−1∑
s=1

(−1)s+1

s+ 1
· n
↓(s+1)

r2s+1

min(s,C−1−s)∑
h=0

(−1)h

h+ 1

(
s+ h

h

)(
s

h

)
.

We now obtain the promised cancelation. Specifically, it is a known combinatorial identity
(see, e.g., [GKP94, page 182]) that for all s ∈ Z+, the inner summation equals 0 provided h
ranges all the way up to s. In other words, all contributions from s ≤ C−1

2
vanish. For

larger s, it’s not hard to bound the inner “partial sum” crudely by, say, 9s in absolute value.
We therefore finally conclude:

|(7.12)| ≤
∑

C
2
≤s≤C−1

1

s+ 1
· n
↓(s+1)

r2s+1
· 9s ≤ n

r

∑
s≥C

2

(
9n

r2

)s
=

r

ω2

∑
s≥C

2

(
9

ω2

)s
≤ r

(
3

ω

)C
. (7.14)

145

7.2.5 Bounding the “error term”

In this section we bound the “error term” (7.13), using the following lemma:

Lemma 7.2.6. Suppose n = r2

ω2 . Then 0 ≤ E
λ∼SWn

r

[p]µ(λ)] ≤ rwt(µ) · (1/ω2)|µ|.

Proof. By Corollary 3.8.4, E
λ∼SWn

r

[
p]µ(λ)

]
= n↓|µ|r`(µ)−|µ| ≤ n|µ|rwt(µ)−2|µ| = rwt(µ) · (1/ω2)|µ|.

We will first use this lemma to bound (7.13) in a “soft” way, thinking of C as an absolute
universal constant. This is enough to get a testing lower bound like n ≥ Ωδ(r

2−δ) for every
δ > 0. Subsequently we do some technical work (which the uninterested reader may skip)
to get a more explicit lower bound.

Lemma 7.2.7. For all C ≥ 2 there is a constant AC such that |(7.13)| ≤ AC · 1
ω2 .

Proof. It suffices to show that for all k ≥ 2 there is a constant A′k such that

Eλ∼SWn
r
[Ok(λ)]

rk
≤ A′k ·

1

ω2
.

But recalling Proposition 7.2.5, the left-hand side is

∑
µ : wt(µ)≤k

ck,µ E
λ∼SWn

r

[
p]µ(λ)

rk

]
,

and each expectation here is at most (1
ω2)|µ| ≤ 1

ω2 by Lemma 7.2.6. This completes the
proof.

Lemma 7.2.8. In fact, the constants AC from Lemma 7.2.7 satisfy AC ≤ 2O(C2 logC).

Proof. The proof involves some tedious analysis using the results of Section 3.8.1. It suffices
to show that ∑

µ:wt(µ)≤k

|ck,µ| ≤ 2O(k2 log k), (7.15)

where, recall, the coefficients ck,µ are defined by

p∗k =
∑

µ : wt(µ)=k+1

k↓(`(µ)−1)

fact(µ)
p]µ +

∑
µ : wt(µ)≤k

ck,µp
]
µ. (7.16)

Let us return to the relationship between the p∗ and p] polynomials described in Section 3.8.1.
Specifically, we’ll need identities (3.13), (3.14), which express each p]k as a polynomial in
p∗1, . . . , p

∗
k via the power series Qk(t).

Given any polynomial R in indeterminates p1, . . . , pk (either p∗’s or p]’s), write ‖R‖ for
the sum of the absolute values of R’s coefficients. This is a submultiplicative norm. Observe

from (3.14) that ‖Qk,m‖ ≤ (k+ 1)m+1 (indeed, one may show it’s precisely (k+1)m+1−km+1−1
m+1

).

Thus the coefficient on ts in Qk(t)
i is a polynomial in p∗1, . . . , p

∗
k of norm at most O(k)s. Hence

146

the same is true for the coefficient on ts in the expression
∑∞

i=0
(−1)i

i!
Qk(t)

i from (3.14). As

the coefficient on each power of t in
∏k

j=1(1 − (j − 1
2
)t) is a number of magnitude at most

(k − 1
2
)k, we finally deduce that the relationship (3.7) can be expressed more quantitatively

as

p]k = p∗k +Rk(p
∗
1, . . . , p

∗
k−1), where 1 + ‖Rk‖ ≤ exp(bk log k), b a universal constant.

We inductively invert this relationship as in (3.9), writing

p∗k = Sk(p
]
1, . . . , p

]
k), where Sk = p]k+

{
polynomial in p]1, . . . , p

]
k−1 of gradation at most k − 1

}
.

(7.17)
If we let s(k) = ‖Sk‖, using convexity of exp(bk log k) we get the inductive bound

s(k) ≤ exp(bk log k)s(k − 1),

leading to the bound s(k) ≤ exp(O(k2 log k)). This is nearly enough to complete the proof;
the only issue is that in (7.17) we have a polynomial in the p]j’s, whereas in (7.16) we have the

products of p]j’s expanded out into linear combinations of p]µ’s. However Lemma 7.2.9 below,

which crudely bounds the magnitude of the structure constants for the p]’s, shows that each
monomial

∏
i p

]
λi

with gradation |λ| = w can be replaced by a linear polynomial in p]µ’s (with

|µ| ≤ w) wherein each coefficient has magnitude at most 4w
2 logw. Since w is always bounded

by k − 1 and since there are at most 2O(
√
k) � exp(O(k2 log k)) partitions µ with |µ| ≤ k,

we conclude that each of these linear polynomials has norm at most exp(O(k2 log k)). Thus
making these replacements in Sk only increases its norm by another multiplicative factor of
exp(O(k2 log k)). The proof is complete.

Lemma 7.2.9. Let λ ` w, and suppose

`(λ)∏
i=1

p]λi =
∑
µ

cµp
]
µ within Λ∗. Then |cµ| ≤ 4w

2 logw

for all µ.

Proof. The proof is an induction on ` = `(λ), the base case of ` = 1 being trivial. Now for
general λ with λ` = k we have

∏̀
i=1

p]λi =

(
`−1∏
i=1

p]λi

)
· p]k =

(∑
µ

dµp
]
µ

)
· p]k =

∑
µ

dµ
∑
τ

f τµkp
]
τ =

∑
τ

p]τ
∑
µ

dµf
τ
µk, (7.18)

where each |dµ| is at most 4(w−k)2 log(w−k) ≤ 4(w−1)2 log(w) by induction. By Corollary 3.8.8, the

structure constants f τµk satisfy |f τµk| ≤ |C
|τ |
|µ|k| ≤ |µ|!k! ≤ ww. Since the number of partitions

of (w − k) is trivially at most ww, the coefficient on p]τ in (7.18) has magnitude at most∑
µ

|dµf τµk| ≤ w2w ·max
µ
|dµ| ≤ w2w · 4(w−1)2 log(w) ≤ 4w

2 logw,

completing the induction.

147

7.2.6 Combining the bounds

Combining (7.14), and Lemmas 7.2.7, 7.2.8, we get that under the hypotheses of Proposi-
tion 7.2.4,

dKL(SWn
r , SWn

r+
) ≤ r

(
3

ω

)C
+ exp(O(C2 logC)) · 1

ω2
+ 203

ω3 ≤ exp(O(C2.01)) · 1

ω2
. (7.19)

In the above we used r
(

3
ω

)C ≤ r
(

10
ω

)C ≤ r
(

1
10r

)3 ≤ 1
ω3 , the second inequality here following

from the assumed lower bound on C. It’s now evident that we should take C as small as we
can; in particular, to equal d3 log(10r)

log(ω/10)
e. We conclude:

Theorem 7.2.10. For any 200 ≤ ω ≤
√
r, if n = r2

ω2 then

dKL(SWn
r , SWn

r+1) ≤ exp(O((log r)/(logω))2.01) · ω−2.

In particular, for ω = exp(O(log.67 r)) and hence n = r2−O(1/ log.33 r), the above bound is or(1).

By Pinsker’s inequality we may conclude also that dTV(SWn
r , SWn

r+
) ≤ or(1) unless n =

r2−O(1/ log.33 r) = Ω̃(r2). This completes the proof of the rank-r versus rank-(r + 1) testing
lower bound; in particular, the more precise bound (7.1) in the case ∆ = 1.

7.3 Extension to ∆ > 1

Let us henceforth fix the parameter C = d3 log(10r)
log(ω/10)

e. To recap the preceding section we saw
that

|E[LC(λ)]| ≤ exp(O(C2.01)) · 1

ω2
, and hence dKL(SWn

r , SWn
r+1) ≤ exp(O(C2.01)) · 1

ω2
.

(7.20)
If we apply Pinsker’s inequality to the latter bound we obtain

dTV(SWn
r , SWn

r+1) ≤ exp(O(C2.01)) · 1

ω
.

The key to getting a good lower bound when ∆ > 1 is to show that Pinsker’s inequality is
not sharp in our setting, and in fact the following is true:

Theorem 7.3.1. For any 200 ≤ ω ≤
√
r, if n = r2

ω2 then

dTV(SWn
r , SWn

r+1) ≤ exp(O(C2.01)) · 1

ω2
.

From this we can obtain the testing bound (7.1) for rank-r versus rank-(r + ∆) (where
1 ≤ ∆ ≤ r) simply by using the triangle inequality. Specifically, given r ≤ r′ ≤ 2r and n,

define ωr′ by n = (r′)2

ω2
r′

. Applying Theorem 7.3.1 for each r′, we get

dTV(SWn
r′ , SWn

r′+1) ≤ exp(O((log r′)/(logωr′))
2.01) · 1

ω2
r′

for all r ≤ r′ < 2r.

148

But ωr′ is within a factor of 2 of ωr for all r ≤ r′ ≤ 2r; thus by adjusting the constant in the
O(·), the above holds with ωr in place of ωr′ . Applying the triangle inequality, we get

dTV(SWn
r , SWn

r′+∆) ≤ exp(O((log r)/(logωr))
2.01) · 1

ω2
r

·∆.

Again, taking ωr = exp(O(log.67 r)), we get

dTV(SWn
r , SWn

r′+∆) ≤ n

r2−O(1/ log.33 r)
·∆,

and this completes the proof of the rank-testing lower bound (7.1).

Thus it remains to prove Theorem 7.3.1. The main result we need for this is the following:

Theorem 7.3.2. Var
λ∼SWn

r

[LC(λ)] ≤ exp(O(C2.01)) · 1

ω4
.

To prove Theorem 7.3.2 we will employ the following lemma:

Lemma 7.3.3. Let µ be a partition with wt(µ) = k ≥ 2. Then

Var
λ∼SWn

r

[p]µ(λ)] ≤ exp(O(k2 log k)) · r2k−2 · (1/ω4).

Proof. If |µ| = 1 then p]µ(λ) = n which has variance 0. Thus we may assume |µ| ≥ 2 and
hence k ≥ 3. Using Proposition 3.8.10,

Var[p]µ(λ)] = E[p]µ(λ)2]− E[p]µ(λ)]2 = E[p]µ∪µ(λ)]− E[p]µ(λ)]2 + E[qµ(λ)] (7.21)

where qµ(λ) is a certain linear combination of p]ν polynomials, each of weight at most 2k−2.
Regarding the first two quantities here, Corollary 3.8.4 tells us that

E[p]µ∪µ(λ)]− E[p]µ(λ)]2 = n↓(2|µ|)r2`(µ)−2|µ| − (n↓|µ|r`(µ)−|µ|)2 = r2`(µ)−2|µ|(n↓(2|µ|) − (n↓|µ|)2),

which is evidently nonpositive. Thus it suffices to prove the upper bound

|E[qµ(λ)]| ≤ exp(O(k2 log k)) · r2k−2 · (1/ω4). (7.22)

By Lemma 7.2.9, the coefficients on the p]ν ’s in the linear combination qµ(λ) each have

magnitude at most exp(O(k2 log k)), and there are at most 2O(
√
k) of them. Thus (7.22)

follows provided we can show E[p]ν(λ)] ≤ r2k−2/ω4 for all ν of weight at most 2k− 2. This is
immediate from Lemma 7.2.6 for all ν 6= (1), and when ν = (1) it still holds: Lemma 7.2.6
gives us the bound r2/ω2 ≤ r3/ω4 ≤ r2k−2/ω4, the first inequality using ω ≤

√
r and the

second using k ≥ 3.

We can now prove Theorem 7.3.2.

149

Proof of Theorem 7.3.2. Recall identity (7.11):

LC(λ) =
C∑
k=2

(−1)k

krk
·
∑

wt(µ)=k+1

k↓(`(µ)−1)

fact(µ)
p]µ(λ) +

C∑
k=2

(−1)kOk(λ)

krk
.

We claim that for each 2 ≤ k ≤ C,

Var

[
(−1)kOk(λ)

krk

]
≤ exp(O(C2.01)) · 1

ω4
, (7.23)

and that furthermore for each µ of weight k + 1 we have

Var

[
(−1)k

krk
· k
↓(`(µ)−1)

fact(µ)
p]µ(λ)

]
≤ exp(O(C2.01)) · 1

ω4
. (7.24)

This is sufficient to complete the proof, as in general

Var[X1 + · · ·+Xm] ≤ m(Var[X1] + · · ·+ Var[Xm]); (7.25)

in our particular case we have only m = exp(O(
√
C)) summands, and this factor can be

absorbed into the target variance bound of exp(O(C2.01)) · (1/ω4). To verify (7.23), first
recall that each Ok(λ) is a linear combination of p]ν(λ)’s for ν of weight at most k ≤ C;
further, the sum of the absolute value of the coefficients is at most exp(O(C2.01)) (see (7.15)).
Using (7.25) again, it therefore suffices to check that

Var

[
p]ν(λ)

rk

]
≤ exp(O(C2.01)) · 1

ω4

when wt(ν) ≤ k ≤ C. By Lemma 7.3.3 this is true, with a factor of r−2 to spare.

To verify (7.24), we may ignore the factor (−1)k

k·fact(µ)
, and also ignore the factor k↓(`(µ)−1)

as it contributes at most a multiplicative CC � exp(O(C2.01)). Thus it suffices to show
Var[p]µ(λ)/rk] ≤ exp(O(C2.01))/ω4 for µ of weight k+ 1 (and k ≤ C). But this is immediate
from Lemma 7.3.3.

We now work towards the proof of Theorem 7.3.1. Adding Theorem 7.3.2 and the square
of (7.20) we obtain

E
λ∼SWn

r

[LC(λ)2] ≤ exp(O(C2.01)) · 1

ω4
. (7.26)

We would now like to similarly claim that

E
λ∼SWn

r+

[L+

C(λ)2] ≤ exp(O(C2.01)) · 1

ω4
, (7.27)

where we are writing

L+

C(λ) :=
C∑
k=2

(−1)kp∗k(λ)

k(r + 1)k
.

150

To obtain this, it suffices to repeat all of the arguments beginning with Section 7.2.2 until
this point; the only thing that really changes is that ω = ωr needs to be replaced with ωr+1,
but this has a negligible effect on the bounds (and indeed usually very slightly improves
them).

Next, we claim that Lemma 7.2.3 continues to hold if we replace LC(λ) with the analogous
L+

C(λ). The key change to the proof comes in the last main inequality, where we need to
observe that the (

1

rk
− 1

(r + 1
2
)k

)
≤ k

2rk+1

continues to hold if the left-hand side is replaced with(
1

(r + 1
2
)k
− 1

(r + 1)k

)
.

We need one more definition for the proof of Theorem 7.3.1.

Definition 7.3.4. Say that λ ` n is usual+ if it is usual and if furthermore |L∗∞(λ)| ≤ 2.

Lemma 7.3.5. Both for λ ∼ SWn
r and λ ∼ SWn

r+
it holds that

Pr[λ not usual+] ≤ exp(O(C2.01)) · 1

ω4
.

Proof. For λ ∼ SWn
r , Lemma 7.2.2 tells us that

Pr[λ not usual] ≤ 2−20r/ω ≤ 2−Ω(
√
r) � exp(O(C2.01)) · 1

ω4

and it’s easy to check that this is also true with plenty of room to spare for λ ∼ SWn
r+

. Thus
it suffices to verify for both distributions on λ that the probability of |L∗∞(λ)| ≤ 2 satisfies
the same upper bound. By applying Markov’s inequality to (7.26), (7.27) we get

Pr
λ∼SWn

r

[LC(λ)2 ≥ 1], Pr
λ∼SWn

r+

[L+

C(λ)2 ≥ 1] ≤ exp(O(C2.01)) · 1

ω4
.

Finally, when λ is usual and |LC(λ)2| 6≥ 1, it follows that necessarily |L∗∞(λ)| ≤ 2, in light
of Lemma 7.2.3 and the fact that 201

ω3 ≤ 1. As noted earlier, the r+-analogue of Lemma 7.2.3
holds, and hence we may draw the same conclusion concerning L+

C(λ)2.

Finally we are ready to complete the proof of Theorem 7.3.1. We begin with

dTV(SWn
r , SWn

r+
) ≤ 1

2
Pr

λ∼SWn
r

[λ not usual+] +
1

2
Pr

λ∼SWn
r+

[λ not usual+]

+
1

2

∑
usual+ λ

∣∣SWn
r+

[λ]− SWn
r [λ]

∣∣ .
151

We can bound the first two terms above using Lemma 7.3.5. Indeed there is room to spare,
as the bound we get is the square of what we can tolerate. Thus it remains to bound the
third term by exp(O(C2.01)) · 1

ω2 . For it we use

∑
usual+ λ

∣∣SWn
r+

[λ]− SWn
r [λ]

∣∣ = E
λ∼SWn

r+

[
1{λ usual+} ·

∣∣∣∣∣1− SWn
r [λ]

SWn
r+

[λ]

∣∣∣∣∣
]

= E
λ∼SWn

r+

[
1{λ usual+} · |1− exp(u(λ))|

]
(7.28)

where

u(λ) = ln

(
SWn

r [λ]

SWn
r+

[λ]

)
= n ln

(
1 +

1

r

)
− n

r + 1
2

+ L∗∞(λ), (7.29)

the last equality holding from (7.5) (see also the sentence after (7.7)) under the assumption
that λ is usual (which we can indeed assume, since we’re multiplying against 1{λ usual+}).
As we noted after (7.7), the first two quantities in (7.29) sum to a positive quantity not
exceeding n

12r3
≤ 1

ω2 . Furthermore, because of the presence of the usual+-indicator in (7.28)
we may assume in analyzing (7.29) that |L∗∞(λ)| ≤ 2. Thus we may use the bound u(λ) ≤
2 + 1

ω2 ≤ 2.01. Since |1− exp(u)| ≤ 4|u| for u ∈ [−2.01, 2.01], we may conclude that

(7.28) ≤ 4 E
λ∼SWn

r+

[
1{λ usual+} ·

(
1

ω2
+ |L∗∞(λ)|

)]
.

Thus to complete the proof of Theorem 7.3.1 it remains to show

E
λ∼SWn

r+

[|L∗∞(λ)|] ≤ exp(O(C2.01)) · 1

ω2
.

By the r+-analogue of Lemma 7.2.3, it suffices to prove this with L+

C(λ) in place of L∗∞(λ),
because 201/ω3 � exp(O(C2.01))/ω2. But finally

E
λ∼SWn

r+

[|L+

C(λ)|] ≤
√

E
λ∼SWn

r+

[L+

C(λ)2] ≤ exp(O(C2.01)) · 1

ω2
,

using Cauchy–Schwarz and (7.27). The proof of Theorem 7.3.1—and hence also the testing
lower bound (7.1)—is therefore complete.

152

Chapter 8

Quantum rank testing

8.1 Testers with one-sided error

In this section, we prove the first part of Theorem 1.4.24, that Θ(r2/ε) copies are necessary
and sufficient to test whether or not a state has rank r with one-sided error. We will show
this by analyzing the following algorithm.

Definition 8.1.1 (Rank Tester). Given ρ⊗n,

1. Sample λ ∼ SWn
ρ .

2. Accept if `(λ) ≤ r. Reject otherwise.

Write α for ρ’s sorted spectrum, and let w ∼ α⊗n. By Theorem 3.2.4, `(λ) = LDS(w).
The key property we will need of the Rank Tester is the following:

Proposition 8.1.2. The Rank Tester is the optimal algorithm for testing whether or not a
state has rank r with one-sided error.

Proof. To show this, we need to show (i) that every λ satisfying `(λ) ≤ r occurs with nonzero
probability in SWn

ρ for some ρ of rank r and (ii) that no λ satisfying `(λ) > r occurs in SWn
ρ

for any ρ of rank r. The first follows because if ρ has r nonzero eigenvalues, then the word

w := r, . . . , r︸ ︷︷ ︸
λr letters

, (r − 1), . . . , (r − 1)︸ ︷︷ ︸
λr−1 letters

, . . . , 1, . . . , 1︸ ︷︷ ︸
λ1 letters

occurs in D⊗n with nonzero probability. It is easy to check that λ = RSK(w).
To show that (ii) holds, if ρ is rank r, then α has at most r nonzero entries. Thus, any

word w in the support of α⊗n will always satisfy LDS(w) ≤ r because w will contain at
most r distinct letters. As `(λ) = LDS(w), we are done.

As a result of Proposition 8.1.2, Theorem 1.4.24 follows from the following lemma.

Lemma 8.1.3. The Rank Tester tests whether or not a state has rank r with Θ(r2/ε) copies.

153

Proof. If ρ is ε-far from having rank r, then α is ε-far in TV distance from having support
size r. Thus, we can show the lemma by showing the following two facts about probability
distributions.

(i) For every probability distribution α which is ε-far from having support size r, a random
word w ∼ α⊗n satisfies LDS(w) ≥ r + 1 with probability at least 2/3 for some n =
O(r2/ε).

(ii) There exists an integer d and a probability distribution α which is ε-far from having
support size r such that, for a random word w ∼ α⊗n, LDS(w) ≤ r with probability
greater than 1/3 whenever n = o(r2/ε).

Proof of statement (i): We will need the following concentration bound for sums of
geometric random variables.

Proposition 8.1.4 ([Bro]). Write X = X1 + . . . + Xn, where the Xi’s are i.i.d. geometric
random variables with expectation µ. For any k > 1, Pr[X > knµ] ≤ exp

(
−1

2
kn(1− 1/k)2

)
.

We note that Proposition 8.1.4 also holds with the weaker hypothesis that the Xi’s are
independent (and not necessarily identically distributed), each with expectation at most µ.

Recall that α1 ≥ . . . ≥ αd. We will split into two cases, handled below: (1) αr+1 ≥ ε/4r
and (2) αr+1 < ε/4r.

(1) Because the probabilities are sorted, α1, . . . , αr+1 ≥ ε/4r. For the infinite random word
w ∼ α⊗∞, consider the number of letters one has to traverse through before finding
(r+1), r, . . . , 1 as a subsequence. This number is distributed as X = Xr+1 + . . .+X1,
where X i is a geometric random variable with success probability αi.

By assumption, αi ≥ ε/4r, and therefore EX i ≤ 4r/ε, for each i ∈ [r + 1]. By
Proposition 8.1.4, X is at most 24r2/ε with probability at least 2/3. Thus, if n =
24r2/ε, then w ∼ α⊗n has a strictly decreasing subsequence of size r + 1 with high
probability.

(2) Because the probabilities are sorted, αr+1, . . . , αd < ε/4r. Place the letters from {r +
1, . . . , d} into buckets as follows: starting from letter (r + 1) and proceeding in order,
add each letter to the current bucket until it contains at least ε/4r weight. At this
point, move to the next bucket and repeat this process starting with the current letter
until all letters have been bucketed.

Because these letters have weight ≤ ε/4r, each bucket has total weight in the interval
[ε/4r, ε/2r) (except possibly the final bucket). There must be at least 2r + 1 buckets
with nonzero total weight, as otherwise αr+1 + . . .+αd < ε, contradicting the fact that
α is ε-far from having support size r. This gives us at least 2r ≥ r+ 1 buckets each of
which contains at least ε/4r total weight.

Now we can use an argument similar to case (1) to show that when n = 24r2/ε, a
random w ∼ α⊗n will with probability ≥ 2/3 have a strictly decreasing subsequence in
which the first letter comes from bucket r + 1, the second letter comes from bucket r,
and so on (ending in a letter from the first bucket). This is a strictly decreasing
subsequence of size r + 1.

154

Proof of statement (ii): For d� r, define the probability distribution

α =

(
1− 2ε,

2ε

d− 1
, . . . ,

2ε

d− 1

)
.

Because d � r, α is ε-far from having support size r. For a string w ∈ [d]n, let w̃ be the
substring of w formed by deleting all occurrences of the letter “1” from w. It is easy to see
that LDS(w̃) ≤ LDS(w) ≤ LDS(w̃) + 1.

For a randomly drawn w ∼ α⊗n, let us condition on w̃ having a certain fixed length m.
The value of LDS(w̃) is distributed as the length of the longest decreasing subsequence in
a uniformly random word drawn from [d− 1]m. By Theorem 3.2.4, this is distributed as λ′1
for λ ∼ SWm

d−1. Setting B = d100
√
me, let us show that Pr[λ′1 ≥ B] is small. If B ≥ d,

then surely λ′1 < B always, as λ ∼ SWm
d−1 will always have height at most d − 1. On the

other hand, if B < d, then by Proposition 3.7.12,

Pr[λ′1 ≥ B] ≤
(

2e2m

B2

)B
≤ 2e2

10000
.

In summary, conditioned on w̃ having a certain fixed length m, LDS(w̃) ≤ O(
√
m) with all

but the above probability.
In expectation, for a random w ∼ α⊗n, w̃ has length 2εd. By Markov’s inequality, the

probability that the length of w̃ is greater than 200εd is at most 1/100. Conditioned on the
length of w̃ being at most 200εd, the above paragraph tells us that LDS(w̃) ≤ O(

√
εd) with

probability 1− 2e2/10000. Thus, when w ∼ α⊗n, we have with probability greater than 1/3
that LDS(w) ≤ O(

√
εd), which is o(r) unless d = Ω(r2/ε).

For our last result of this section, we will show that the copy complexity of the Rank
Tester can be improved in certain interesting cases. In particular, the Rank Tester matches
the upper bound of the Uniform Distribution Distinguisher from Definition 7.1.1 for the case
of r v. r + 1, and does so with one-sided error.

Proposition 8.1.5. The Rank Tester can distinguish between the case when ρ’s spectrum is
uniform on either r or r + 1 eigenvalues with O(r2) copies of ρ.

Proof. If ρ’s spectrum is uniform on r eigenvalues, then it is rank r and so the Rank Tester
never rejects. Thus, we need only show that the Rank Tester rejects with probability ≥ 2/3
when ρ’s spectrum is uniform on r + 1 eigenvalues for some n = O(r2). We will follow the
analysis in the proof of statement (i) above and show that a random word w ∼ Unif⊗nr+1 has
LDS(w) = r + 1 with high probability. The gain will come from the fact that Unifr+1 =
(1/(r + 1), . . . , 1/(r + 1)).

For the infinite random word w ∼ Unif⊗∞r+1, consider the number of letters one has to
traverse through before finding (r+1), r, . . . , 1 as a subsequence. This number is distributed
as X = Xr+1 + . . .+X1, where X i is a geometric random variable with success probability
1/(r+ 1) and expectation r+ 1. By Proposition 8.1.4, X is at most 6r2 with probability at
least 2/3. Thus, if n = 6r2, then w ∼ Unif⊗nr+1 has a strictly decreasing subsequence of size
r + 1 with high probability.

155

8.2 A lower bound for testers with two-sided error

In this section, we prove the second part of Theorem 1.4.24, that Ω(r/ε) copies are necessary
to test whether or not a state has rank r with two-sided error.

Proof. Let d � r. In this proof, we will take the viewpoint of a density matrix as a
probability distribution over pure states. Let ρ and σ be maximally mixed on subspaces of
dimension (r − 1) and (d− 1), respectively. Consider the following process for generating a
product state |Ψ〉 = |Ψ1〉 ⊗ · · · ⊗ |Ψn〉:

1. Let x ∈ {0, 1}n2ε be a uniformly random 2ε-biased string, meaning each coordinate is
selected independently according to Pr[xi = 1] = 2ε.

2. For each i ∈ [n] such that xi = 0, set |Ψ1〉 := |d〉.

3. Let b be an arbitrary {0, 1}-bit. For each i ∈ [n] such that xi = 1,

(a) if b = 0, then set |Ψi〉 to be a state vector sampled from ρ.

(b) if b = 1, then set |Ψi〉 to be a state vector sampled from σ.

If b is 0, then the mixed state output by this procedure has spectrum (1− 2ε, 2ε
r−1

, . . . , 2ε
r−1

),
which is rank r. On the other hand, if b is 1, then the mixed state output by this procedure
has spectrum (1− 2ε, 2ε

d−1
, . . . , 2ε

d−1
), which because d� r is ε-far from having rank r.

Let us consider the choice of x in the first step, and set wt(x) to be the number of 1’s
in x. In expectation, wt(x) will be 2εn, and so by Markov’s inequality wt(x) will be at
most 200εn with probability at least 99/100. There must exist an x with wt(x) ≤ 200εn
conditioned on which the algorithm succeeds with probability at least 3/5, as otherwise it
will succeed in total with probability at most 1/100 + 99/100 · 3/5 < 2/3.

Fix any such x. The job of the algorithm is reduced to distinguishing between the cases
when those |Ψi〉’s for which xi = 1 came from ρ which is maximally mixed on a subspace
of dimension (r − 1) (when b = 0) or from σ which is maximally mixed on a subspace of
dimension (d − 1) (when b = 1). Because d � r, we have by Theorem 1.4.20 that this
requires at least Ω(r) copies to succeed with probability at least 3/5. Thus, we must have
200εn ≥ Ω(r), in which case n = Ω(r/ε).

156

Chapter 9

Majorization for the RSK algorithm

In this section we prove Theorem 1.5.4. The key to the proof will be the following strength-
ened version of the d = 2 case, which we believe is of independent interest.

Theorem 9.0.1. Let 0 ≤ p, q ≤ 1 satisfy |q − 1
2
| ≥ |p − 1

2
|; in other words, the q-biased

probability distribution (q, 1 − q) on {1, 2} is “more extreme” than the p-biased distribution
(p, 1 − p). Then for any n ∈ N there is a coupling (w,x) of the p-biased distribution on
{1, 2}n and the q-biased distribution on {1, 2}n such that for all 1 ≤ i ≤ j ≤ n we have
LIS(x[i .. j]) ≥ LIS(w[i .. j]) always.

We now show how to prove Theorem 1.5.4 given Theorem 9.0.1. Then in the following
sections we will prove Theorem 9.0.1.

Proof of Theorem 1.5.4 given Theorem 9.0.1. A classic result of Muirhead [Mui02] (see also [MOA11,
B.1 Lemma]) says that β � α implies there is a sequence β = γ0 � γ1 � · · · � γt = α such γi
and γi+1 differ in at most 2 coordinates. Since the � relation is transitive, by composing cou-
plings it suffices to assume that α and β themselves differ in at most two coordinates. Since
the Schur-Weyl distribution is symmetric with respect to permutations of [d], we may assume
that these two coordinates are 1 and 2. Thus we may assume α = (α1, α2, β3, β4, . . . , βd),
where α1 + α2 = β1 + β2 and α1, α2 are between β1, β2.

We now define the coupling (λ,µ) as follows: We first choose a string z ∈ ({∗} ∪
{3, 4, . . . , d})n according to the product distribution in which symbol j has probability βj
for j ≥ 3 and symbol ∗ has the remaining probability β1 + β2. Let n∗ denote the number
of ∗’s in z. Next, we use Theorem 9.0.1 to choose coupled strings (w,x) with the p-biased
distribution on {1, 2}n∗ and the q-biased distribution on {1, 2}n∗ (respectively), where p =
α1

β1+β2
and q = β1

β1+β2
. Note indeed that |q− 1

2
| ≥ |p− 1

2
|, and hence LIS(x[i .. j]) ≥ LIS(w[i .. j])

for all 1 ≤ i ≤ n∗. Now let “z ∪w” denote the string in [d]n obtained by filling in the ∗’s
in z with the symbols from w, in the natural left-to-right order; similarly define “z ∪ x”.
Note that z ∪ w is distributed according to the product distribution α⊗n and likewise for
z ∪ x and β⊗n. Our final coupling is now obtained by taking λ = shRSK(z ∪ w) and
µ = shRSK(z ∪ x). We need to show that µ� λ always.

By Greene’s Theorem, it suffices to show that if s1, . . . , sk are disjoint increasing subse-
quences in z ∪w of total length S, we can find k disjoint increasing subsequences s′1, . . . , s

′
k

in z∪x of total length at least S. We first dispose of some simple cases. If none of s1, . . . , sk

157

contains any 1’s or 2’s, then we may take s′i = si for i ∈ [k], since these subsequences all
still appear in z ∪ x. The case when exactly one of s1, . . . , sk contains any 1’s or 2’s is also
easy. Without loss of generality, say that sk is the only subsequence containing 1’s and 2’s.
We may partition it as (t, u), where t is a subsequence of w and u is a subsequence of the
non-∗’s in z that follow w. Now let t′ be the longest increasing subsequence in x. As t is
an increasing subsequence of w, we know that t′ is at least as long as t. Further, (t′, u) is an
increasing subsequence in z ∪ x. Thus we may take s′i = si for i < k, and s′k = (t′, u).

We now come to the main case, when at least two of s1, . . . , sk contain 1’s and/or 2’s.
Let’s first look at the position j ∈ [n] of the rightmost 1 or 2 among s1, . . . , sk. Without loss
of generality, assume it occurs in sk. Next, look at the position i ∈ [n] of the rightmost 1
or 2 among s1, . . . , sk−1. Without loss of generality, assume it occurs in sk−1. We will now
modify the subsequences s1, . . . , sk as follows:

• all 1’s and 2’s are deleted from s1, . . . , sk−2 (note that these all occur prior to position i);

• sk−1 is changed to consist of all the 2’s within (z ∪w)[1 .. i];

• the portion of sk to the right of position i is unchanged, but the preceding portion is
changed to consist of all the 1’s within (z ∪w)[1 .. i].

It is easy to see that the new s1, . . . , sk remain disjoint subsequences of z ∪ w, with total
length at least S. We may also assume that the portion of sk between positions i+ 1 and j
consists of a longest increasing subsequence of w.

Since the subsequences s1, . . . , sk−2 don’t contain any 1’s or 2’s, they still appear in z∪x,
and we may take these as our s′1, . . . , s

′
k−2. We will also define s′k−1 to consist of all 2’s within

(z∪x)[1 .. i]. Finally, we will define s′k to consist of all 1’s within (z∪z)[1 .. i], followed by the
longest increasing subsequence of x occurring within positions (i + 1) .. j in z ∪ x, followed
by the portion of sk to the right of position j (which does not contain any 1’s or 2’s and
hence is still in z ∪x). It is clear that s′1, . . . , s

′
k are indeed disjoint increasing subsequences

of z ∪ x. Their total length is the sum of four quantities:

• the total length of s1, . . . , sk−2;

• the total number of 1’s and 2’s within (z ∪ x)[1 .. i];

• the length of the longest increasing subsequence of x occurring within positions (i +
1) .. j in z ∪ x;

• the length of the portion of sk to the right of position j.

By the coupling property of (w,x), the third quantity above is at least the length of the
longest increasing subsequence of w occurring within positions (i+ 1) .. j in z ∪w. But this
precisely shows that the total length of s′1, . . . , s

′
k is at least that of s1, . . . , sk, as desired.

9.1 Substring-LIS-dominance: RSK and Dyck paths

In this section we make some preparatory definitions and observations toward proving The-
orem 9.0.1. We begin by codifying the key property therein.

158

Definition 9.1.1. Let w,w′ ∈ An be strings of equal length. We say w′ substring-LIS-
dominates w, notated w′ �� w, if LIS(w′[i .. j]) ≥ LIS(w[i .. j]) for all 1 ≤ i ≤ j ≤ n. (Thus
the coupling in Theorem 9.0.1 satisfies w �� v always.) The relation �� is reflexive and
transitive. If we have the substring-LIS-dominance condition just for i = 1 we say that w′

prefix-LIS-dominates w. If we have it just for j = n we say that w′ suffix-LIS-dominates w.

Definition 9.1.2. For a string w ∈ An we write behead(w) for w[2 .. n] and curtail(w) for
w[1 .. n− 1].

Remark 9.1.3. We may equivalently define substring-LIS-dominance recursively, as follows.
If w′ and w have length 0 then w′ �� w. If w′ and w have length n > 0, then w′ �� w if
and only if LIS(w′) ≥ LIS(w) and behead(w′) �� behead(w) and curtail(w′) �� curtail(w).
By omitting the second/third condition we get a recursive definition of prefix/suffix-LIS-
dominance.

Definition 9.1.4. Let Q be a (nonempty) standard Young tableau. We define curtail(Q) to
be the standard Young tableau obtained by deleting the box with maximum label from Q.

The following fact is immediate from the definition of the RSK correspondence:

Proposition 9.1.5. Let w ∈ An be a nonempty string. Suppose RSK(w) = (P,Q) and
RSK(curtail(w)) = (P ′, Q′). Then Q′ = curtail(Q).

The analogous fact for beheading is more complicated.

Definition 9.1.6. Let Q be a (nonempty) standard Young tableau. We define behead(Q)
to be the standard Young tableau obtained by deleting the top-left box of Q, sliding the
hole outside of the tableau according to jeu de taquin (see, e.g., [Ful97, Sag01]), and then
decreasing all entries by 1. (The more traditional notation for behead(Q) is ∆(Q).)

The following fact is due to [Sch63]; see [Sag01, Proposition 3.9.3] for an explicit proof.1

Proposition 9.1.7. Let w ∈ An be a nonempty string. Suppose RSK(w) = (P,Q) and
RSK(behead(w)) = (P ′, Q′). Then Q′ = behead(Q).

Proposition 9.1.8. Let w,w′ ∈ An be strings of equal length and write RSK(w) = (P,Q),
RSK(w′) = (P ′, Q′). Then whether or not w′��w can be determined just from the recording
tableaus Q′ and Q.

Proof. This follows from the recursive definition of �� given in Remark 9.1.3: whether
LIS(w′) ≥ LIS(w) can be determined by checking whether the first row of Q′ is at least
as long as the first row of Q; the recursive checks can then be performed with the aid of
Propositions 9.1.5, 9.1.7.

Definition 9.1.9. In light of Proposition 9.1.8 we may define the relation �� on standard
Young tableaus.

1Technically, therein it is proved only for strings with distinct letters. One can recover the result for
general strings in the standard manner; if the letters wi and wj are equal we break the tie by using the order
relation on i, j. See also [vL13, Lemma].

159

Remark 9.1.10. The simplicity of Proposition 9.1.5 implies that it is very easy to tell, given
w,w′ ∈ An with recording tableaus Q and Q′, whether w′ suffix-LIS-dominates w. One only
needs to check whether Q′1j ≤ Q1j for all j ≥ 1 (treating empty entries as ∞). On the other
hand, it is not particularly easy to tell from Q′ and Q whether w′ prefix-LIS-dominates w;
one seems to need to execute all of the jeu de taquin slides.

We henceforth focus attention on alphabets of size 2. Under RSK, these yield standard
Young tableaus with at most 2-rows. (For brevity, we henceforth call these 2-row Young
tableaus, even when they have fewer than 2 rows.) In turn, 2-row Young tableaus can be
identified with Dyck paths (also known as ballot sequences).

Definition 9.1.11. We define a Dyck path of length n to be a path in the xy-plane that
starts from (0, 0), takes n steps of the form (+1,+1) (an upstep) or (+1,−1) (a downstep),
and never passes below the x-axis. We say that the height of a step s, written ht(s), is the
y-coordinate of its endpoint; the (final) height of a Dyck path W , written ht(W), is the
height of its last step. We do not require the final height of a path to be 0; if it is we call
the path complete, and otherwise we call it incomplete. A return refers to a point where
the path returns to the x-axis; i.e., to the end of a step of height 0. An arch refers to a
minimal complete subpath of a Dyck path; i.e., a subpath between two consecutive returns
(or between the origin and the first return).

Definition 9.1.12. We identify each 2-row standard Young tableau Q of size n with a Dyck
path W of length n. The identification is the standard one: reading off the entries of Q from
1 to n, we add an upstep to W when the entry is in the first row and a downstep when it
is in the second row. The fact that this produces a Dyck path (i.e., the path does not pass
below the x-axis) follows from the standard Young tableau property. Note that the final
height of W is the difference in length between Q’s two rows. We also naturally extend the
terminology “return” to 2-row standard Young tableaus Q: a return is a second-row box
labeled 2j such that boxes in Q labeled 1, . . . , 2j form a rectangular 2 × j standard Young
tableau.

Definition 9.1.13. In light of Definition 9.1.9 and the above identification, we may define
the relation �� on Dyck paths.

Of course, we want to see how beheading and curtailment apply to Dyck paths. The
following fact is immediate:

Proposition 9.1.14. If W is the Dyck path corresponding to a nonempty 2-row standard
Young tableau Q, then the Dyck path W ′ corresponding to curtail(Q) is formed from W by
deleting its last segment. We write W ′ = curtail(W) for this new path.

Again, the case of beheading is more complicated. We first make some definitions.

Definition 9.1.15. Raising refers to converting a downstep in a Dyck path to an upstep;
note that this increases the Dyck path’s height by 2. Conversely, lowering refers to converting
an upstep to a downstep. Generally, we only allow lowering when the result is still a Dyck
path; i.e., never passes below the x-axis.

160

Proposition 9.1.16. Let Q be a nonempty 2-row standard Young tableau, with corresponding
Dyck path W . Let W ′ be the Dyck path corresponding to behead(Q). Then W ′ is formed
from W as follows: First, the initial step of W is deleted (and the origin is shifted to the new
initial point). If W had no returns then the operation is complete and W ′ is the resulting
Dyck path. Otherwise, if W had at least one return, then in the new path W ′ that step (which
currently goes below the x-axis) is raised. In either case, we write W ′ = behead(W) for the
resulting path.

Proof. We use Definitions 9.1.6 and 9.1.12. Deleting the top-left box of Q corresponds to
deleting the first step of W , and decreasing all entries in Q by 1 corresponds to shifting the
origin in W . Consider now the jeu de taquin slide in Q. The empty box stays in the first
row until it first reaches a position j such that Q1,j+1 > Q2,j — if such a position exists.
Such a position does exist if and only if Q contains a return (with box (2, j) being the first
such return). If Q (equivalently, W) has no return then the empty box slides out of the
first row of Q, and indeed this corresponds to making no further changes to W . If Q has
its first return at box (2, j), this means the jeu de taquin will slide up the box labeled 2j
(corresponding to raising the first return step in W); then all remaining slides will be in the
bottom row of Q, corresponding to no further changes to W .

Remark 9.1.17. Similar to Remark 9.1.10, it is easily to “visually” check the suffix-LIS-
domination relation for Dyck paths: W ′ suffix-LIS-dominates W if and only if W ′ is at least
as high as W throughout the length of both paths. On the other hand, checking the full
substring-LIS-domination relation is more involved; we have W ′��W if and only if for any
number of simultaneous beheadings to W ′ and W , the former path always stays at least as
high as the latter.

Finally, we will require the following definition:

Definition 9.1.18. A hinged range is a sequence (R0, s1, R1, s2, R2, . . . , sk, Rk) (with k ≥ 0),
where each si is a step (upstep or downstep) called a hinge and each Ri is a Dyck path
(possibly of length 0) called a range. The “internal ranges” R1, . . . , Rk−1 are required to be
complete Dyck paths; the “external ranges” R0 and Rk may be incomplete.

We may identify the hinged range with the path formed by concatenating its components;
note that this need not be a Dyck path, as it may pass below the origin.

If H is a hinged range and H ′ is formed by raising zero or more of its hinges (i.e.,
converting downstep hinges to upsteps), we say that H ′ is a raising of H or, equivalently,
that H is a lowering of H ′. We call a hinged range fully lowered (respectively, fully raised)
if all its hinges are downsteps (respectively, upsteps).

9.2 A bijection on Dyck paths

Theorem 9.2.1. Fix integers n ≥ 2 and 1 ≤ λ2 ≤ bn2 c. Define

W =
{

(W, s1) : W is a length-n Dyck path with exactly λ2 downsteps;

s1 is a downstep in W
}

161

and

W ′ =
λ2⋃
k=1

{
(W ′, s′1) : W ′ is a length-n Dyck path with exactly λ2 − k downsteps;

s′1 is an upstep in W ′ with k + 1 ≤ ht(s′1) ≤ ht(W ′)− k + 1;

s′1 is the rightmost upstep in W ′ of its height
}
.

Then there is an explicit bijection f : W → W ′ such that whenever f(W, s1) = (W ′, s′1) it
holds that W ′ ��W .

Remark 9.2.2. Each length-n Dyck path with exactly λ2 downsteps occurs exactly λ2

times in W . Each length-n Dyck path with strictly fewer than λ2 downsteps occurs exactly
n− 2λ2 + 1 times in W ′.

Proof of Theorem 9.2.1. Given any (W, s1) ∈ W , we define f ’s value on it as follows. Let s2

be the first downstep following s1 in W having height ht(s1)− 1; let s3 be the first downstep
following s2 in W following s2 having height ht(s2) − 1; etc., until reaching downstep sk
having no subsequent downstep of smaller height. Now decompose W as a (fully lowered)
hinged range H = (R0, s1, R1, . . . , sk, Rk). Let H ′ = (R′0, s

′
1, R

′
1, . . . , s

′
k, R

′
k) be the fully

raised version of H (where each R′j is just Rj and each s′j is an upstep). Then f(W, sk) is
defined to be (W ′, s′1), where W ′ is the Dyck path corresponding to H ′.

First we check that indeed (W ′, s′1) ∈ W ′. As W ′ is formed from W by k raisings,
it has exactly λ2 − k downsteps. Since ht(sk) ≥ 0 it follows that ht(s1) ≥ k − 1 and
hence ht(s′1) ≥ k + 1. On the other hand, ht(s′1) + (k − 1) = ht(s′k) ≤ ht(W ′) and so
ht(s′1) ≤ ht(W ′)− k + 1. Finally, s′1 is the rightmost upstep in W ′ of its height because H ′

is fully raised.
To show that f is a bijection, we will define the function g :W ′ →W that will evidently

be f ’s inverse. Given any (W ′, s′1) ∈ W , with W ′ having exactly λ2−k downsteps, we define
g’s value on it as follows. Let s′2 be the last (rightmost) upstep following s′1 in W ′ having
height ht(s′1)+1; let s′3 be the last upstep following s′2 inW ′ having height ht(s′2)+1; etc., until
s′k is defined. That this s′k indeed exists follows from the fact that ht(s′1) ≤ ht(W ′)− k + 1.
Now decompose W ′ as a (fully raised) hinged range H ′ = (R′0, s

′
1, R

′
1, . . . , s

′
k, R

′
k). The fact

that R′k is a Dyck path (i.e., does not pass below its starting height) again follows from the
fact that ht(s′k) = ht(s′1) + k − 1 ≤ ht(W ′). Finally, let H = (R0, s1, R1, . . . , sk, Rk) be the
fully lowered version of H ′, and W the corresponding path. As W has exactly λ2 downsteps,
we may define g(W ′, s′1) = (W, s1) provided W is indeed a Dyck path. But this is the case,
because the lowest point of W occurs at the endpoint of sk, and ht(sk) = ht(s1) − k + 1 =
ht(s′1)− 2− k + 1 = ht(s′1)− k − 1 ≥ 0 since ht(s′1) ≥ k + 1.

It is fairly evident that f and g are inverses. The essential thing to check is that the
sequence s1, . . . , sk determined from s1 when computing f(W, s1) is “the same” (up to rais-
ing/lowering) as the sequence s′1, . . . , s

′
k′ determined from s′1 in computing g(W ′, s′1), and

vice versa. The fact that the sequences have the same length follows, in the g ◦ f = id case,
from the fact that ht(W ′) = ht(W) + 2k; it follows, in the f ◦ g = id case, from the fact
that R′k is a Dyck path. The fact that the hinges have the same identity is evident from the
nature of fully raising/lowering hinged ranges.

It remains to show that if f(W, s1) = (W ′, s′1) then W ′��W . Referring to Remark 9.1.17,
we need to show that if W ′ and W are both simultaneously beheaded some number of times b,

162

then in the resulting paths, W ′ is at least as high as W throughout their lengths. In turn,
this is implied by the following more general statement:

Claim 9.2.3. After b beheadings, W ′ and W may be expressed as hinged ranges H ′ =
(R0, s

′
1, R1, . . . , s

′
k, Rk) and H = (R0, s1, R1, . . . , sk, Rk) (respectively) such that H ′ is the

fully raised version of H (i.e., each s′j is an upstep).

(Note that we do not necessarily claim that H is the fully lowered version of H ′.)
The claim can be proved by induction on b. The base case b = 0 follows by definition

of f . Throughout the induction we may assume that the common initial Dyck path R0 is
nonempty, as otherwise s1 must be an upstep, in which case we can redefine the common
initial Dyck path of W and W ′ to be (s1, R1) = (s′1, R1).

We now show the inductive step. Assume W ′ and W are nonempty paths as in the claim’s
statement, with R0 nonempty. Suppose now that W ′ and W are simultaneously beheaded.
The first step of W ′ and W (an upstep belonging to R0) is thus deleted, and the origin
shifted. If R0 contained a downstep to height 0 then the first such downstep is raised in both
behead(W ′) and behead(W) and the inductive claim is maintained. Otherwise, suppose R0

contained no downsteps to height 0. It follows immediately that W ′ originally had no returns
to height 0 at all; hence the beheading of W ′ is completed by the deletion of its first step.
It may also be that W had no returns to height 0 at all; then the beheading of W is also
completed by the deletion of its first step and the induction hypothesis is clearly maintained.
On the other hand, W may have had some downsteps to 0 within (s1, R1, . . . , sk, Rk). In
this case, the first (leftmost) such downstep must occur at one of the hinges sj, and the
beheading of W is completed by raising this hinge. The inductive hypothesis is therefore
again maintained. This completes the induction.

We derive an immediate corollary, after introducing a bit of notation:

Definition 9.2.4. We write SYTn(=λ2) (respectively, SYTn(≤λ2)) for the set of 2-row
standard Young tableaus of size n with exactly (respectively, at most) λ2 boxes in the second
row.

Corollary 9.2.5. For any integers n ≥ 2 and 0 ≤ λ2 ≤ bn2 c, there is a coupling (Q,Q′)
of the uniform distribution on SYTn(=λ2) and the uniform distribution on SYTn(≤λ2 − 1)
such that Q′ ��Q always.

Proof. Let (W , s1) be drawn uniformly at random from the setW defined in Theorem 9.2.1,
and let (W ′, s′1) = f(W , s1). Let Q ∈ SYTn(=λ2), Q′ ∈ SYTn(≤λ2−1) be the 2-row
standard Young tableaus identified with W , W ′ (respectively). Then Theorem 9.2.1 tells
us that Q′ �� Q always, and Remark 9.2.2 tells us that Q and Q′ are each uniformly
distributed.

Corollary 9.2.6. For any integers n ≥ 0 and 0 ≤ λ′2 ≤ λ2 ≤ bn2 c, there is a coupling (Q,Q′)
of the uniform distribution on SYTn(≤λ2) and the uniform distribution on SYTn(≤λ′2) such
that Q′ ��Q always.

Proof. The cases n < 2 and λ′2 = λ2 are trivial, so we may assume n ≥ 2 and 0 ≤ λ′2 <
λ2 ≤ bn2 c. By composing couplings and using transitivity of ��, it suffices to treat the case

163

λ′2 = λ2 − 1. But the uniform distribution on SYTn(≤λ2) is a mixture of (a) the uniform
distribution on SYTn(=λ2), (b) the uniform distribution on SYTn(≤λ2 − 1); and these can
be coupled to SYTn(≤λ2−1) under the �� relation using (a) Corollary 9.2.5, (b) the identity
coupling.

Before giving the next corollary, we have a definition.

Definition 9.2.7. Let A be any 2-letter alphabet. We write Ank for the set of length-n
strings over A with exactly k copies of the larger letter, and we write Ank,n−k = Ank ∪ Ann−k.

Corollary 9.2.8. For A a 2-letter alphabet and integers 0 ≤ k′ ≤ k ≤ bn
2
c, there is a coupling

(w,w′) of the uniform distribution on Ank,n−k and the uniform distribution on Ank′,n−k′ such
that w′ ��w always.

Proof. We first recall that if x ∼ Ank is uniformly random and (P ,Q) = RSK(x), then the
recording tableau Q is uniformly random on SYTn(≤k). This is because for each possible
recording tableau Q ∈ SYTn(≤k) there is a unique insertion tableau P of the same shape
as Q having exactly k boxes labeled with the larger letter of A. (Specifically, if P ` (λ1, λ2),
then the last k−λ2 boxes of P ’s first row, and all of the boxes of P ’s second row, are labeled
with A’s larger letter.) It follows that the same is true if x ∼ Ank,n−k is uniformly random.
But now the desired coupling follows from Corollary 9.2.6 (recalling Definition 9.1.9).

In fact, Corollary 9.2.8 is fundamentally stronger than our desired Theorem 9.0.1, as we
now show:

Proof of Theorem 9.0.1. For r ∈ [0, 1], suppose we draw an r-biased string y ∈ {1, 2}n and
define the random variable j such that y ∈ {1, 2}nj,n−j . (Note that given j, the string y is
uniformly distributed on {1, 2}nj,n−j .) Write Lr(`) for the cumulative distribution function
of j; i.e., Lr(`) = Pr[y ∈ ∪j≤`{1, 2}nj,n−j], where y is r-biased.

Claim: Lq(`) ≥ Lp(`) for all 0 ≤ ` ≤ bn
2
c.

Before proving the claim, let us show how it is used to complete the proof of Theo-
rem 9.0.1. We define the required coupling (w,x) of p-biased and q-biased distributions as
follows: First we choose θ ∈ [0, 1] uniformly at random. Next we define k (respectively, k′)
to be the least integer such that Lp(k) ≥ θ (respectively, Lq(k

′) ≥ θ); from the claim it
follows that k′ ≤ k always. Finally, we let (w,x) be drawn from the coupling on {1, 2}nk,n−k
and {1, 2}nk′,n−k′ specified in Corollary 9.2.8. Then as required, we have that x′��w always,
and that w has the p-biased distribution and x has the q-biased distribution.

It therefore remains to prove the claim. We may exclude the trivial cases ` = n
2

or
q ∈ {0, 1}, where Lq(`) = 1. Also, since Lr(`) = L1−r(`) by symmetry, we may assume
0 < q ≤ p ≤ 1

2
. Thus it suffices to show that d

dr
Lr(`) ≤ 0 for 0 < r ≤ 1

2
. Letting h denote

the “Hamming weight” (number of 2’s) in an r-biased random string on {1, 2}n, we have

Lr(`) = Pr[h ≤ `] + Pr[h ≥ n− `] = 1−Pr[h > `] + Pr[h > n− `− 1]

⇒ d

dr
Lr(`) = − d

dr
Pr[h > `] +

d

dr
Pr[h > n− 1− `].

164

(The first equality used ` < n
2
.) But it is a basic fact that d

dr
Pr[h > t] = n

(
n−1
t

)
rt(1−r)n−1−t.

Thus
d

dr
Lr(`) = n

(
n− 1

`

)(
−r`(1− r)n−1−` + rn−1−`(1− r)`

)
,

and we may verify this is indeed nonpositive:

−r`(1− r)n−1−` + rn−1−`(1− r)` ≤ 0 ⇐⇒ 1 ≤
(

1−r
r

)n−1−2`
,

which is true since 0 < r ≤ 1
2

and n− 1− 2` ≥ 0 (using ` < n
2

again).

165

166

Chapter 10

Open problems

10.1 Identity testing

What is the copy complexity of identity testing, i.e. of testing whether ρ = σ for a known
σ ∈ Cd×d. In the classical setting, it is known that the sample complexity of testing whether
an unknown distribution α equals a known distribution β is maximized when β is the uni-
form distribution. Analogously, we expect that the copy complexity of testing ρ = σ is
maximized in the case of σ being the maximally mixed state, which is n = Θ(d/ε2) copies by
Theorem 1.4.23. In the classical setting, several algorithms for distribution identity testing
work by reduction to the case of uniformity testing (e.g. [BFF+01, DK16]), but these reduc-
tions do not appear to translate to the quantum setting. Other distribution identity testing
algorithms use modified chi-squared tests [VV14, ADK15], and it is possible that something
in this vein might be appropriate in the quantum setting as well.

10.2 Spectrum estimation

What is the copy complexity of learning ρ’s spectrum α? We know that n = O(d2/ε2)
copies are sufficient by Corollary 1.4.7 and that n = Ω(d/ε2) copies are necessary by The-
orem 1.4.23. Furthermore, we know that the EYD algorithm requires n = Ω(d2/ε2) copies
by Theorem 1.4.10. The classical analogue of this problem is to learn the multiset of values
{α1, . . . , αd}; in other words, to output an estimate α̂ which is ε-close to α in the dsym

TV dis-
tance. By Corollary 1.3.6, this can be done with n = O(d/ε2) samples. As for lower bounds,
for fixed ε this is known to require n = Ω(d/ log(d)) samples [VV11a]. We expect that there
should be a way to prove a quantum version of this lower bound, showing that spectrum
estimation requires Ω(d2/ log(d)) copies, though we also believe that this will be difficult to
prove.

10.3 Graph isomorphism

A somewhat remarkable fact is that the standard setup for quantum algorithm for graph
isomorphism has many similarities with our setup for quantum state learning. Here one

167

is given many copies of a “coset state” ρ and is asked to determine if ρ encodes a pair of
isomorphic graphs or not. Given a single copy of ρ, one is able to perform a measurement
called “weak Fourier sampling”, analogous to our weak Schur sampling measurement, and to
follow this measurement with a “strong Fourier sampling” measurement, analogous to our
strong Scnur sampling measurement [HMR+10]. Weak Fourier sampling produces a Young
diagram λ distributed according to Planchn or a related distribution. It is natural to ask
whether the connection between Planchn and longest increasing subsequences, which does
not appear to have been previously observed in this literature, can help give new upper or
lower bounds here. For example, it is possible to reprove prior lower bounds in this area,
e.g. [HRTS03], using the techniques in this thesis. We hope that our techniques might also
lead to new quantum algorithms for graph isomorphism.

10.4 Miscellaneous

(1) More spectrum learning questions: What is the copy complexity of approximating
the rank and von Neumann entropy?

(2) Diagonality testing: How many copies are needed to test whether ρ is diagonal in
the standard basis?

(3) Equivalence testing: How do our techniques generalize to testing properties of two
unknown mixed states? For example, how many copies are needed to test whether
ρ = σ when both ρ and σ are unknown? The answer to the corresponding classical
question is given in [BFR+00].

(4) Separability testing: This is an open question from [MdW13]. Given a bipartite
quantum state ρ, what is the copy complexity of testing whether ρ is separable?

(5) Necessity of entangled measurements: Do entangled measurements offer provable
advantages over unentangled measurements? E.g. can one show that unentangled
measurements require ω(d) copies to test mixedness?

(6) Necessity of Schur sampling: Is it possible to replicate any of the tight Schur-
sampling-based lower/upper bounds with arguments that do not reference Schur sam-
pling?

(7) Distribution of the p∗2 statistic: The statistic p∗2(λ) occupies a special place in our
work; it appears in two of our property testing algorithms as well as in the analysis
of the EYD algorithm. It is known [Ker93b, IO02] that when λ is sampled from
the Plancherel distribution, p∗2(λ) is distributed as a Gaussian. Furthermore, explicit
convergence rates of p∗2(λ) to the Gaussian distribution have been shown in [Ful05,
Ful06b, SS06, Ful06a] via Stein’s-method-based arguments. Does a similar limiting
statement (with explicit error bounds) hold when λ ∼ SWn

ρ for an arbitrary mixed
state ρ?

(8) Connection to classical distribution estimation: Is there a strong connection to
classical distribution estimation, for example one that would allow us to take classical

168

property testing algorithms and apply them in a black-box manner to get tight quantum
property testing algorithms?

(9) Poissonization: A central technique in distribution estimation [RRSS09, Val08] is
Poissonization, in which one replace the number of samples n with a number of sam-
ples which is distributed as a Poisson random variable with parameter n. A similar
Poissonization trick has found application in various limiting statements for Plancherel
and Schur-Weyl distributions [BDJ99, Xu08]. Is Poissonization helpful for mixed state
learning?

169

170

Bibliography

[AD99] David Aldous and Persi Diaconis. Longest increasing subsequences: from pa-
tience sorting to the Baik-Deift-Johansson theorem. Bulletin of the American
Mathematical Society, 36(4):413–432, 1999. 3.1

[ADK15] Jayadev Acharya, Constantinos Daskalakis, and Gautam C Kamath. Optimal
testing for properties of distributions. In Advances in Neural Information Pro-
cessing Systems, pages 3577–3598, 2015. 10.1

[ARS88] Robert Alicki, S lawomir Rudnicki, and S lawomir Sadowski. Symmetry properties
of product states for the system of N n-level atoms. Journal of mathematical
physics, 29(5):1158–1162, 1988. (document), 1.4.1, 1.5, 2, 3.7, 3.7, 4

[BAH+16] Michael Beverland, Gorjan Alagic, Jeongwan Haah, Gretchen Campbell,
Ana Maria Rey, and Alexey Gorshhkov. Implementing a quantum algorithm
for spectrum estimation with alkaline earth atoms. In 19th Conference on Quan-
tum Information Processing, 2016. QIP 2016. 1.4.1

[Bat01] Tuğkan Batu. Testing properties of distributions. PhD thesis, Cornell University,
2001. 1.3.2, 1.5

[BB68] Robert Baer and Paul Brock. Natural sorting over permutation spaces. Mathe-
matics of Computation, 22(102):385–410, 1968. 3.5

[BDJ99] Jinho Baik, Percy Deift, and Kurt Johansson. On the distribution of the length
of the longest increasing subsequence of random permutations. Journal of the
American Mathematical Society, 12(4):1119–1178, 1999. 3.5, 3.5, 3.7, (9)

[BDJ00] Jinho Baik, Percy Deift, and Kurt Johansson. On the distribution of the length
of the second row of a Young diagram under Plancherel measure. Geometric &
Functional Analysis, 10(4):702–731, 2000. 3.6.2

[BFF+01] Tuğkan Batu, Eldar Fischer, Lance Fortnow, Ravi Kumar, Ronitt Rubinfeld,
and Patrick White. Testing random variables for independence and identity. In
Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer
Science, pages 442–451, 2001. 1.3.2, 10.1

[BFR+00] Tuğkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren Smith, and Patrick
White. Testing that distributions are close. In Proceedings of the 41st Annual

171

IEEE Symposium on Foundations of Computer Science, pages 259–269, 2000.
(document), 1.3.2, 1.3.2, (3)

[BFR+13] Tuğkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren Smith, and Patrick
White. Testing closeness of discrete distributions. Journal of the ACM, 60(1):4,
2013. 1.3.2

[Bia01] Philippe Biane. Approximate factorization and concentration for characters of
symmetric groups. International Mathematics Research Notices, 2001(4):179–
192, 2001. 3.7.2, 3.7.10, 4.3.1

[BOO00] Alexei Borodin, Andrei Okounkov, and Grigori Olshanski. Asymptotics of
plancherel measures for symmetric groups. Journal of the American Mathemat-
ical Society, 13(3):481–515, 2000. 3.6.2

[Bro] Daniel Brown. How I wasted too long finding a concentration inequality for
sums of geometric variables. Found at https://cs.uwaterloo.ca/~browndg/

negbin.pdf. 8.1.4

[BS00] Sergei Bespamyatnikh and Michael Segal. Enumerating longest increasing subse-
quences and patience sorting. Information Processing Letters, 76(1):7–11, 2000.
6

[Buf12] Alexey Bufetov. A central limit theorem for extremal characters of the infinite
symmetric group. Functional Analysis and Its Applications, 46(2):83–93, 2012.
3.7

[Can16] Clément Canonne. A survey on distribution testing: Your data is big. but
is it blue?, 2016. http://www.cs.columbia.edu/~ccanonne/files/misc/

2015-survey-distributions.pdf. 1.3.2

[CEM99] Juan Cirac, Artur Ekert, and Chiara Macchiavello. Optimal purification of single
qubits. Physical review letters, 82(21):4344, 1999. 1.5

[CGS04] Sylvie Corteel, Alain Goupil, and Gilles Schaeffer. Content evaluation and class
symmetric functions. Advances in Mathematics, 188(2):315–336, 2004. 7.2.1

[CGS11] Allison Cuttler, Curtis Greene, and Mark Skandera. Inequalities for symmetric
means. European Journal of Combinatorics, 32(6):745–761, 2011. 5.3.1

[CHW07] Andrew Childs, Aram Harrow, and Pawe l Wocjan. Weak Fourier-Schur sampling,
the hidden subgroup problem, and the quantum collision problem. In 24th Annual
Symposium on Theoretical Aspects of Computer Science, pages 598–609, 2007.
1.4.2, 1.5, 2, 2.6, 3.3, 3.3, 3.7.2, 6.1, 6.2

[CM06] Matthias Christandl and Graeme Mitchison. The spectra of quantum states and
the Kronecker coefficients of the symmetric group. Communications in mathe-
matical physics, 261(3):789–797, 2006. 1.4.1, 1.5, 2, 4

172

https://cs.uwaterloo.ca/~browndg/negbin.pdf
https://cs.uwaterloo.ca/~browndg/negbin.pdf
http://www.cs.columbia.edu/~ccanonne/files/misc/2015-survey-distributions.pdf
http://www.cs.columbia.edu/~ccanonne/files/misc/2015-survey-distributions.pdf

[CP10] Maxime Crochemore and Ely Porat. Fast computation of a longest increasing
subsequence and application. Information and computation, 208(9):1054–1059,
2010. 6

[CSST10] Tullio Ceccherini-Silberstein, Fabio Scarabotti, and Filippo Tolli. Representa-
tion theory of the symmetric groups: the Okounkov-Vershik approach, character
formulas, and partition algebras. Cambridge University Press, 2010. 7.2.1

[DF09] Persi Diaconis and Jason Fulman. Carries, shuffling, and symmetric functions.
Advances in Applied Mathematics, 43(2):176–196, 2009. 1.4.2

[Dia14] Ilias Diakonikolas. Beyond histograms: structure and distribution esti-
mation. Found at http://www.iliasdiakonikolas.org/stoc14-workshop/

diakonikolas.pdf, 2014. 1.3.1

[DK16] Ilias Diakonikolas and Daniel Kane. A new approach for testing properties of
discrete distributions, 2016. 10.1

[DL01] Luc Devroye and Gábor Lugosi. Combinatorial methods in density estimation.
Springer, 2001. 1.3.1

[EJ08] Funda Ergün and Hossein Jowhari. On distance to monotonicity and longest
increasing subsequence of a data stream. In Proceedings of the 19th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 730–736, 2008. 6

[ES35] Paul Erdős and George Szekeres. A combinatorial problem in geometry. Com-
positio Mathematica, 2:463–470, 1935. 3.5, 3.5.1

[Far15] Jacques Faraut. Rayleigh theorem, projection of orbital measures and spline
functions. Advances in Pure and Applied Mathematics, 2015. 5.3.1

[Fér10] Valentin Féray. Stanley’s formula for characters of the symmetric group. Annals
of Combinatorics, 13(4):453–461, 2010. 3.8.1

[FGLE12] Steven Flammia, David Gross, Yi-Kai Liu, and Jens Eisert. Quantum tomog-
raphy via compressed sensing: error bounds, sample complexity and efficient
estimators. New Journal of Physics, 14(9):095022, 2012. 1.4.1, 1.4.1, 1.4.1, 5, 5.5

[FMN13] Valentin Féray, Pierre-Löıc Méliot, and Ashkan Nikeghbali. Mod-φ convergence
I: Normality zones and precise deviations. Technical report, arXiv:1304.2934,
2013. 3.7

[Fre75] Michael L Fredman. On computing the length of longest increasing subsequences.
Discrete Mathematics, 11(1):29–35, 1975. 6

[FRT54] James Frame, Gilbert Robinson, and Robert Thrall. The hook graphs of the
symmetric group. Canadian Journal of Mathematics, 6:316–324, 1954. 2.2.12

[Ful97] William Fulton. Young tableaux: with applications to representation theory and
geometry. Cambridge University Press, 1997. 9.1.6

173

http://www.iliasdiakonikolas.org/stoc14-workshop/diakonikolas.pdf
http://www.iliasdiakonikolas.org/stoc14-workshop/diakonikolas.pdf

[Ful05] Jason Fulman. Stein’s method and Plancherel measure of the symmetric group.
Transactions of the American Mathematical Society, 357(2):555–570, 2005. (7)

[Ful06a] Jason Fulman. An inductive proof of the Berry-Esseen theorem for character
ratios. Annals of Combinatorics, 10(3):319–332, 2006. (7)

[Ful06b] Jason Fulman. Martingales and character ratios. Transactions of the American
Mathematical Society, 358(10):4533–4552, 2006. (7)

[GG10] Anna Gál and Parikshit Gopalan. Lower bounds on streaming algorithms for
approximating the length of the longest increasing subsequence. SIAM Journal
on Computing, 39(8):3463–3479, 2010. 6

[GJKK07] Parikshit Gopalan, Thathachar Jayram, Robert Krauthgamer, and Ravi Kumar.
Estimating the sortedness of a data stream. In Proceedings of the 18th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 318–327, 2007. 6

[GKP94] Ronald Graham, Donald Knuth, and Oren Patashnik. Concrete mathematics: a
foundation for computer science. Addison–Wesley, second edition, 1994. 7.2.4

[Gog99] Dave Goggin. The Schensted algorithm demo (1.0.2), 1999. http://www.math.

uconn.edu/~troby/Goggin/BumpingAlg.html. 1.5

[GR11] Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs.
In Studies in Complexity and Cryptography. Miscellanea on the Interplay between
Randomness and Computation, pages 68–75. Springer, 2011. 1.3.2, 1.3.2

[Gre74] Curtis Greene. An extension of Schensted’s theorem. Advances in Mathematics,
14:254–265, 1974. 1.5, 3.2

[GT09] Otfried Gühne and Géza Tóth. Entanglement detection. Physics Reports,
474(1):1–75, 2009. 1

[GW09] Roe Goodman and Nolan Wallach. Symmetry, representations, and invariants.
Springer, 2009. 2.2.13, 2.4, 2.5

[Haa16] Jeongwan Haah. Sample-optimal tomography of quantum states, 2016. https:

//www.youtube.com/watch?v=1biogtHaMxw. 1.4.1, 5.1

[Hal15] Brian Hall. Lie groups, Lie algebras, and representations: an elementary intro-
duction. Springer, 2015. 2.1.1

[Ham72] John Hammersley. A few seedlings of research. In Proceedings of the Sixth
Berkeley Symposium on Mathematical Statistics and Probability, pages 345–394,
1972. 3.1, 3.5

[Har05] Aram Harrow. Applications of coherent classical communication and the Schur
transform to quantum information theory. PhD thesis, Massachusetts Institute
of Technology, 2005. 2.4, 2.5

174

http://www.math.uconn.edu/~troby/Goggin/BumpingAlg.html
http://www.math.uconn.edu/~troby/Goggin/BumpingAlg.html
https://www.youtube.com/watch?v=1biogtHaMxw
https://www.youtube.com/watch?v=1biogtHaMxw

[Har13] Aram Harrow. The church of the symmetric subspace. Technical report,
arXiv:1308.6595, 2013. 5.1

[Har15] Aram Harrow, 2015. http://dabacon.org/pontiff/?p=10785. 1

[HE02] Pawe l Horodecki and Artur Ekert. Method for direct detection of quantum
entanglement. Physical review letters, 89(12):127902, 2002. 1

[Hep94] Charles Hepler. On the complexity of computing characters of finite groups. PhD
thesis, University of Calgary, 1994. 3.8.1

[HGG09] Jonathan Huang, Carlos Guestrin, and Leonidas Guibas. Fourier theoretic prob-
abilistic inference over permutations. The Journal of Machine Learning Research,
10:997–1070, 2009. 2.3.1

[HHJ+16] Jeongwan Haah, Aram Harrow, Zhengfeng Ji, Xiaodi Wu, and Nengkun Yu.
Sample-optimal tomography of quantum states. In Proceedings of the 48th An-
nual ACM Symposium on Theory of Computing, August 2016. Preprint. (docu-
ment), 1, 1.4.1, 1.4.1, 5, 5.1, 5.2, 5.2, 5.2.2, 5.2, 5.4, 5.5

[HHR+05] Hartmut Häffner, Wolfgang Hänsel, Christian Roos, Jan Benhelm, Michael
Chwalla, Timo Körber, Umakant Rapol, Mark Riebe, Piet Schmidt, Christoph
Becher, Otfried Günhe, Wolfgang Dür, and Rainer Blatt. Scalable multiparticle
entanglement of trapped ions. Nature, 438(7068):643–646, 2005. 1, 1.2

[HJ13] Roger Horn and Charles Johnson. Matrix analysis. Cambridge University Press,
2nd edition, 2013. 1.4.1

[HM02] Masahito Hayashi and Keiji Matsumoto. Quantum universal variable-length
source coding. Physical Review A, 66(2):022311, 2002. 1.4.1, 1.5, 2, 4

[HMR+10] Sean Hallgren, Cristopher Moore, Martin Rötteler, Alexander Russell, and
Pranab Sen. Limitations of quantum coset states for graph isomorphism. Journal
of the ACM (JACM), 57(6):34, 2010. 2, 10.3

[HR18] G. H. Hardy and Srinivasa Ramanujan. Asymptotic formulae in combinatory
analysis. Proceddings of the London Mathematical Society, 2(17):75–115, 1918.
2.2

[HRTS03] Sean Hallgren, Alexander Russell, and Amnon Ta-Shma. The hidden subgroup
problem and quantum computation using group representations. SIAM Journal
on Computing, 32(4):916–934, 2003. 10.3

[HS77] James Hunt and Thomas Szymanski. A fast algorithm for computing longest
common subsequences. Communications of the ACM, 20(5):350–353, 1977. 6

[Hua12] Zhu Huangjun. Quantum State Estimation and Symmetric Informationally Com-
plete POMs. PhD thesis, National University of Singapore, 2012. 1, 5

175

http://dabacon.org/pontiff/?p=10785

[HW94] Paul Hausladen and William Wootters. A ‘pretty good’ measurement for dis-
tinguishing quantum states. Journal of Modern Optics, 41(12):2385–2390, 1994.
5

[HX13] Christian Houdré and Hua Xu. On the limiting shape of Young diagrams asso-
ciated with inhomogeneous random words. In High Dimensional Probability VI,
volume 66 of Progress in Probability, pages 277–302. Springer Basel, 2013. 3.7,
3.7.1, 3.7.1, 3.7.1, 3.7.1, 3.7.1

[IK01] Vladimir Ivanov and Sergei Kerov. The algebra of conjugacy classes in symmetric
groups and partial permutations. Journal of Mathematical Sciences, 107(5):4212–
4230, 2001. 3.8.1, 3.8.1, 3.8.1

[IO02] Vladimir Ivanov and Grigori Olshanski. Kerov’s central limit theorem for the
Plancherel measure on Young diagrams. In Symmetric functions 2001: surveys
of developments and perspectives, pages 93–151. Springer, 2002. 3.6.1, 3.8.1,
3.8.1, 3.8.1, 3.8.1, 4.3.1, 7.2.1, 7.2.2, (7)

[ITW01] Alexander Its, Craig Tracy, and Harold Widom. Random words, Toeplitz deter-
minants and integrable systems I. In Random Matrices and their Applications,
pages 245–258. Cambridge University Press, 2001. 3.7.1, 3.7.1, 3.7.1, 4.3

[JK81] Gordon James and Adalbert Kerber. The representation theory of the symmetric
group. Addison–Wesley, 1981. 6.4.4

[Joh01] Kurt Johansson. Discrete orthogonal polynomial ensembles and the Plancherel
measure. Annals of Mathematics, 153(1):259–296, 2001. 3.6.2, 3.7.1

[Ker93a] Sergei Kerov. The asymptotics of root separation for orthogonal polynomials.
Algebra i Analiz, 5(5):68–86, 1993. 3.6

[Ker93b] Sergei Kerov. Gaussian limit for the Plancherel measure of the symmetric group.
Comptes Rendus de l’Académie des Sciences, Série 1, 316:303–308, 1993. 3.6.1,
(7)

[Key06] Michael Keyl. Quantum state estimation and large deviations. Reviews in Math-
ematical Physics, 18(01):19–60, 2006. 1.4.1, 5, 5.3, 5.3.1

[Knu70] Donald Knuth. Permutations, matrices, and generalized Young tableaux. Pacific
Journal of Mathematics, 34(3):709–727, 1970. 1.5, 3.2

[KO94] Sergei Kerov and Grigori Olshanski. Polynomial functions on the set of Young
diagrams. Comptes Rendus de l’Académie des Sciences, Série 1, 319(2):121–126,
1994. 3.8.1, 3.8.1

[KRT14] Richard Kueng, Holger Rauhut, and Ulrich Terstiege. Low rank matrix recovery
from rank one measurements. Technical report, arXiv:1410.6913, 2014. 1.4.1,
1.4.1, 5, 5.1, 5.1.4

176

[Kup02] Greg Kuperberg. Random words, quantum statistics, central limits, random
matrices. Methods and Applications of Analysis, 9(1):99–118, 2002. 4, 3.7.1

[KV86] Sergei Kerov and Anatoly Vershik. The characters of the infinite symmetric
group and probability properties of the Robinson-Schensted-Knuth algorithm.
SIAM Journal on Algebraic Discrete Methods, 7(1):116–124, 1986. 3.7, 4

[KW01] Michael Keyl and Reinhard Werner. Estimating the spectrum of a density oper-
ator. Physical Review A, 64(5):052311, 2001. (document), 1.4.1, 1.5, 2, 2.6, 3.7,
4

[Lan07] Isaiah Lankham. Patience Sorting and Its Generalizations. PhD thesis, Univer-
sity of California, Davis, 2007. 3.1

[Las78] Alain Lascoux. Classes de chern d’un produit tensoriel. Comptes Rendus de
l’Académie des Sciences, Série 1, 286:385–387, 1978. 6.3

[Las08] Michel Lassalle. An explicit formula for the characters of the symmetric group.
Mathematische Annalen, 340(2):383–405, 2008. 3.8.1, 7.2.1

[LNVZ06] David Liben-Nowell, Erik Vee, and An Zhu. Finding longest increasing and com-
mon subsequences in streaming data. Journal of Combinatorial Optimization,
11(2):155–175, 2006. 6

[LS77] Benjamin Logan and Larry Shepp. A variational problem for random Young
tableaux. Advances in Mathematics, 26(2):206–222, 1977. 3.5, 3.6

[Mac95] Ian Macdonald. Symmetric functions and Hall polynomials. Oxford University
Press, 1995. 2.4.1, 3, 3.8.1, 6.3, 7.2.1

[Mal62] Colin Mallows. Problem 62-2, patience sorting. SIAM Review, 4(2):148–149,
1962. 3.1

[Mal63] Colin Mallows. Problem 62-2, patience sorting. SIAM review, 5(4):375–376, 1963.
3.1

[MdW13] Ashley Montanaro and Ronald de Wolf. A survey of quantum property testing.
Technical report, arXiv:1310.2035, 2013. 1.4.2, 1.4.2, 2.6, (4)

[Mél10a] Pierre-Löıc Méliot. Kerov’s central limit theorem for Schur-Weyl measures of
parameter 1/2. Technical report, arXiv:1009.4034, 2010. 3.7.2, 3.7.2, 4.3.1, 4.3.1,
4.3.1, 7.2.4

[Mél10b] Pierre-Löıc Méliot. Partitions aléatoires et théorie asymptotique des groupes
symétriques, des algèbres d’Hecke et des groupes de Chevalley finis. PhD thesis,
University Paris-Est Marne-la-Vallée, 2010. 3.7.2, 3.8.1, 7.2.2

[Mél12] Pierre-Löıc Méliot. Fluctuations of central measures on partitions. In 24th In-
ternational Conference on Formal Power Series and Algebraic Combinatorics,
pages 385–396, 2012. 3.7, 3.7.1

177

[MHS+12] Xiao-Song Ma, Thomas Herbst, Thomas Scheidl, Daqing Wang, Sebastian
Kropatschek, William Naylor, Bernhard Wittmann, Alexandra Mech, Johannes
Kofler, Elena Anisimova, Vadim Makarov, Thomas Jennewein, Rupert Ursin,
and Anton Zeilinger. Quantum teleportation over 143 kilometres using active
feed-forward. Nature, 489(7415):269–273, 2012. 1, 1.2

[MOA11] Albert W Marshall, Ingram Olkin, and Barry Arnold. Inequalities: theory of
majorization and its applications. Springer Series in Statistics, 2011. 9

[Mol09] Alexander Molev. Littlewood-Richardson polynomials. Journal of Algebra,
321(11):3450–3468, 2009. 6.3

[Mon09] Ashley Montanaro. Symmetric functions of qubits in an unknown basis. Physical
Review A, 79(6):062316, 2009. 1.5

[Mon14] Ashley Montanaro. Personal communication, 2014. 1.4.1

[MS99] Alexander Molev and Bruce Sagan. A Littlewood-Richardson rule for fac-
torial Schur functions. Transactions of the American Mathematical Society,
351(11):4429–4443, 1999. 6.3

[Mui02] Robert Muirhead. Some methods applicable to identities and inequalities of sym-
metric algebraic functions of n letters. Proceedings of the Edinburgh Mathematical
Society, 21:144–162, 1902. 9

[Nar06] Hariharan Narayanan. On the complexity of computing Kostka numbers
and Littlewood-Richardson coefficients. Journal of Algebraic Combinatorics,
24(3):347–354, 2006. 2

[NC10] Michael Nielsen and Isaac Chuang. Quantum computation and quantum infor-
mation. Cambridge university press, 2010. 1.2.1, 1.4, 1.4.1, 5

[O’C03] Neil O’Connell. Conditioned random walks and the RSK correspondence. Journal
of Physics A: Mathematical and General, 36(12):3049, 2003. 3.4

[O’D16] Ryan O’Donnell. Random words, longest increasing subsequences, and quantum
pca, 2016. https://www.youtube.com/watch?v=qrli_ZgM4cM. 1.5

[Oko00] Andrei Okounkov. Random matrices and random permutations. International
Mathematics Research Notices, 2000(20):1043–1095, 2000. 3.6, 3.6.2

[Oko08] Andrei Okounkov. Characters of Symmetric Groups, 2008. 3.8.1

[OO98a] Andrei Okounkov and Grigori Olshanski. Asymptotics of Jack polynomials as
the number of variables goes to infinity. International Mathematics Research
Notices, 13:641–682, 1998. 6.3

[OO98b] Andrei Okounkov and Grigori Olshanski. Shifted Schur functions. St. Petersburg
Mathematical Journal, 9(2):239–300, 1998. 2.2.7, 3.8, 3.8.1, 3.8.1, 6.3

178

https://www.youtube.com/watch?v=qrli_ZgM4cM

[OR00] Andrew Odlyzko and Eric Rains. On longest increasing subsequences in random
permutations. Contemporary Mathematics, 251:439–452, 2000. 3.5

[OW15a] Ryan O’Donnell and John Wright. A note on the Haah et al. tomography algo-
rithm, 2015. http://www.cs.cmu.edu/~jswright. 1.4.1, 1.6

[OW15b] Ryan O’Donnell and John Wright. Quantum spectrum testing. In Proceedings
of the 47th Annual ACM Symposium on Theory of Computing, 2015. 1.6, 4.1

[OW16] Ryan O’Donnell and John Wright. Efficient quantum tomography. In Proceedings
of the 48th Annual ACM Symposium on Theory of Computing, 2016. To appear,
QIP 2016. 1.4.1, 1.6

[Pan08] Liam Paninski. A coincidence-based test for uniformity given very sparsely sam-
pled discrete data. IEEE Transactions on Information Theory, 54(10):4750–4755,
2008. (document), 1.3.2, 1.3.14, 6.2

[Pil90] Shaiy Pilpel. Descending subsequences of random permutations. Journal of
Combinatorial Theory, Series A, 53(1):96–116, 1990. 3.5

[PP14] Igor Pak and Greta Panova. On the complexity of computing Kronecker coeffi-
cients. Computational Complexity, pages 1–36, 2014. 3.8.1

[Rob38] Gilbert de Beauregard Robinson. On the representations of the symmetric group.
American Journal of Mathematics, 60(3):745–760, 1938. 1.5, 3.2

[Rom14] Dan Romik. The surprising mathematics of longest increasing subsequences.
Cambridge University Press, 2014. 2.2, 3.1, 3.5, 3.7.2, 4.2.1

[RRSS09] Sofya Raskhodnikova, Dana Ron, Amir Shpilka, and Adam Smith. Strong lower
bounds for approximating distribution support size and the distinct elements
problem. SIAM Journal on Computing, 39(3):813–842, 2009. (9)

[RS92] Ronitt Rubinfeld and Madhu Sudan. Self-testing polynomial functions efficiently
and over rational domains. In Proceedings of the 3rd Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 23–32, 1992. 1.3.2

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials
with applications to program testing. SIAM Journal on Computing, 25(2):252–
271, 1996. (document), 1.3.2

[RSW04] Victor Reiner, Dennis Stanton, and Dennis White. The cyclic sieving phe-
nomenon. Journal of Combinatorial Theory. Series A, 108(1):17–50, 2004. 6.4

[RZ12] Rodolfo Ŕıos-Zertuche. Near-involutions, the pillowcase distribution, and
quadratic differentials. PhD thesis, Princeton University, 2012. 6.4.6, 6.4, 6.4

[Sag01] Bruce E Sagan. The symmetric group: representations, combinatorial algorithms,
and symmetric functions. Springer, 2001. 2.2.12, 2.3, 2.3.1, 2.3.1, 9.1.6, 9.1

179

http://www.cs.cmu.edu/~jswright

[Sch61] Craige Schensted. Longest increasing and decreasing subsequences. Canadian
Journal of Mathematics, 13(2):179–191, 1961. 1.5, 3.1, 3.2

[Sch63] Marcel-Paul Schützenberger. Quelques remarques sur une construction de Schen-
sted. Mathematica Scandinavica, 12:117–128, 1963. 9.1

[Sei59] Abraham Seidenberg. A simple proof of a theorem of Erdös and Szekeres. Journal
of the London Mathematical Society, 1(3):352–352, 1959. 3.5

[Śni06] Piotr Śniady. Asymptotics of characters of symmetric groups, genus expansion
and free probability. Discrete mathematics, 306(7):624–665, 2006. 3.8.1

[Sra15] Suvrit Sra. On inequalities for normalized Schur functions. European Journal of
Combinatorics, 2015. 5.2, 5.3.1

[SS06] Qi-Man Shao and Zhong-Gen Su. The Berry-Esseen bound for character ratios.
Proceedings of the American Mathematical Society, 134(7):2153–2159, 2006. (7)

[SS10] Michael Saks and Comandur Seshadhri. Estimating the longest increasing se-
quence in polylogarithmic time. In Proceedings of the 51st Annual IEEE Sym-
posium on Foundations of Computer Science, pages 458–467, 2010. 6

[Sta99] Richard P Stanley. Enumerative combinatorics Volume 2. Cambridge University
Press, Cambridge, 1999. 2.2.13, 2.4.1, 2.4.1, 2.4.1, 2.4.1

[Sta11] Richard P Stanley. Enumerative combinatorics Volume 1. Cambridge University
Press, Cambridge, 2011. 3.7.2

[Ste95] John Steele. Variations on the monotone subsequence theme of Erdös and Szek-
eres. In Discrete probability and algorithms. Springer, 1995. 3.5

[Ste11] Benjamin Steinberg. Representation theory of finite groups: an introductory
approach. Springer Science and Business Media, 2011. 2.1, 2.1.1

[SW07] Xiaoming Sun and David Woodruff. The communication and streaming complex-
ity of computing the longest common and increasing subsequences. In Proceed-
ings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
336–345, 2007. 6

[TW01] Craig Tracy and Harold Widom. On the distributions of the lengths of the longest
monotone subsequences in random words. Probability Theory and Related Fields,
119(3):350–380, 2001. 3.7.1, 3.7.1

[TW09] Craig Tracy and Harold Widom. The distributions of random matrix theory
and their applications. In New Trends in Mathematical Physics, pages 753–765.
Springer, 2009. 3.5.6

[Ula61] Stanislaw Ulam. Monte Carlo calculations in problems of mathematical physics.
Modern Mathematics for the Engineers, pages 261–281, 1961. 3.5

180

[Val08] Paul Valiant. Testing symmetric properties of distributions. PhD thesis, Mas-
sachusetts Institute of Technology, 2008. 1.5, (9)

[vEB77] Peter van Emde Boas. Preserving order in a forest in less than logarithmic time
and linear space. Information processing letters, 6(3):80–82, 1977. 6

[VK77] Anatoly Vershik and Sergei Kerov. Asymptotic behavior of the Plancherel mea-
sure of the symmetric group and the limit form of Young tableaux. Soviet Math-
ematics Doklady, 18:118–121, 1977. 3.5, 3.6

[VK81] Anatoly Vershik and Sergei Kerov. Asymptotic theory of characters of the sym-
metric group. Functional analysis and its applications, 15(4):246–255, 1981. 3.7,
3.8.1, 3.8.1

[VK85] Anatoly Vershik and Sergei Kerov. Asymptotic of the largest and the typi-
cal dimensions of irreducible representations of a symmetric group. Functional
Analysis and its Applications, 19(1):21–31, 1985. 3.5, 4.2.1

[vL13] Mark van Leeuwen, 2013. http://mathoverflow.net/a/140739/658. 1

[VV11a] Gregory Valiant and Paul Valiant. Estimating the unseen: an n/ log(n)-sample
estimator for entropy and support size, shown optimal via new CLTs. In Pro-
ceedings of the 43rd Annual ACM Symposium on Theory of Computing, pages
685–694, 2011. 1.3.1, 1.3.2, 10.2

[VV11b] Gregory Valiant and Paul Valiant. The power of linear estimators. In Proceedings
of the 52nd Annual IEEE Symposium on Foundations of Computer Science, pages
403–412, 2011. 1.3.1

[VV14] Gregory Valiant and Paul Valiant. An automatic inequality prover and instance
optimal identity testing. In Proceedings of the 55th Annual IEEE Symposium on
Foundations of Computer Science, 2014. 1.3.2, 10.1

[Wal14] Michael Walter. Multipartite quantum states and their marginals. PhD thesis,
ETH Zurich, 2014. 2.4

[Was81] Antony John Wassermann. Automorphic actions of compact groups on operator
algebras. PhD thesis, University of Pennsylvania, 1981. 3.8.1, 3.8.1

[Xu08] Hua Xu. Aspects of Random Matrix Theory: Concentration and Subsequence
Problems. PhD thesis, Georgia Institute of Technology, 2008. (9)

181

http://mathoverflow.net/a/140739/658

	Introduction
	Quantum states
	A quantum primer
	Quantum measurements

	Classical distribution learning and testing
	Distribution learning
	Distribution testing

	Quantum problems and our results
	Quantum state learning
	Quantum state testing

	Our methodology
	Outline

	Representation theory
	Introduction to representation theory
	Decomposing representations
	The regular representation
	Characters
	Branching rules

	Partitions and Young diagrams
	Young diagrams
	Young tableaus

	The irreducible representations of the symmetric group
	James submodule theorem
	Young's orthogonal basis

	The irreducible representations of the unitary and general linear groups
	Symmetric polynomials
	The Gelfand-Tsetlin basis

	Schur-Weyl duality
	Quantum algorithms from representation theory

	Longest increasing subsequences and the RSK algorithm
	Patience sorting
	The Robinson-Schensted-Knuth algorithm
	Random words and permutations
	The Schur-Weyl growth process
	Longest increasing subsequences of random permutations
	RSK of random permutations
	The bulk of the limit shape
	The edge of the limit shape

	RSK of random words
	Convergence to the GUE
	Schur-Weyl for uniform distribution

	Polynomial algebras
	Working with the p polynomials

	Spectrum estimation
	Spectrum estimation
	Truncated spectrum estimation
	Proof of Lemma 4.2.1

	The lower bound
	The EYD lower bound (continued)

	Quantum tomography
	Tomography with unentangled measurements
	The pretty good measurement
	Keyl's algorithm
	Integration formulas
	Proof of Theorem 5.0.1

	Principal component analysis
	A lower bound

	A quantum Paninski theorem
	The upper bound
	The lower bound: overview
	Proof of Theorem 6.2.3
	A formula for s(+1, -1, +1, -1, …)
	Wrapping up the lower bound

	Hardness of distinguishing uniform distributions
	The upper bound
	The lower bound
	Initial approximations
	Passing to the p polynomials
	Showing the ``main term'' is small: some intuition
	Proof that the ``main term'' is small
	Bounding the ``error term''
	Combining the bounds

	Extension to > 1

	Quantum rank testing
	Testers with one-sided error
	A lower bound for testers with two-sided error

	Majorization for the RSK algorithm
	Substring-LIS-dominance: RSK and Dyck paths
	A bijection on Dyck paths

	Open problems
	Identity testing
	Spectrum estimation
	Graph isomorphism
	Miscellaneous

