
Model Validation and Discovery for Complex Stochastic
Systems

Sumit Kumar Jha

CMU-CS-10-132

July 2, 2010

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Professor Christopher J. Langmead (Chair)

Professor Robert F. Murphy
Professor Russell S. Schwartz

Professor James R. Faeder, University of Pittsburgh Medical Center
Dr. Håkan L. Younes, Google Inc.

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2010 Sumit Kumar Jha

This research was sponsored by the National Science Foundation under grant numbers CCF-0926181, CCF-
0429120, and CNS-0411152; and Semiconductor Research Corporation under grant numbers 2008TJ1860
and 2005TJ1366. The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of any sponsoring insti-
tution, the U.S. government or any other entity.

Keywords: Computational Systems Biology, Computational Modeling, Model Dis-
covery, Model Validation, Model Calibration, Temporal Logic, Behavioral Specifications,
Stochastic Systems, Statistical Hypothesis Testing, Biochemical Pathways, Parameter Syn-
thesis

Dedicated to my awesome parents and younger brother.

iv

Abstract

In this thesis, we study two fundamental problems that arise in the mod-
eling of stochastic systems: (i) Validation of stochastic models against be-
havioral specifications such as temporal logics, and (ii) Discovery of kinetic
parameters of stochastic biochemical models from behavioral specifications.

We present a new Bayesian algorithm for Statistical Model Checking of
stochastic systems based on a sequential version of Jeffreys’ Bayes Factor
test. We argue that the Bayesian approach is more suited for application do-
mains like systems biology modeling, where distributions on nuisance pa-
rameters and priors may be known. We prove that our Bayesian Statistical
Model Checking algorithm terminates for a large subclass of prior probabili-
ties. We also characterize the Type I/II errors associated with our algorithm.
We experimentally demonstrate that this algorithm is suitable for the analy-
sis of complex biochemical models like those written in the BioNetGen lan-
guage. We then argue that i.i.d. sampling based Statistical Model Checking
algorithms are not an effective way to study rare behaviors of stochastic mod-
els and present another Bayesian Statistical Model Checking algorithm that
can incorporate non-i.i.d. sampling strategies.

We also present algorithms for synthesis of chemical kinetic parameters
of stochastic biochemical models from high level behavioral specifications.
We consider the setting where a modeler knows facts that must hold on the
stochastic model but is not confident about some of the kinetic parameters in
her model. We suggest algorithms for discovering these kinetic parameters
from facts stated in appropriate formal probabilistic specification languages.
Our algorithms are based on our theoretical results characterizing the proba-
bility of a specification being true on a stochastic biochemical model. We have
applied this algorithm to discover kinetic parameters for biochemical models
with as many as six unknown parameters.

vi

Acknowledgments

Thanks are due to my advisor Professor Christopher James Langmead for his constant
guidance and support. The thesis would not have been possible without the support of my
thesis committee members and that of the Director of the Graduate Program Professor Mor
Harchol-Balter. Catherine Copetas and Deborah A. Cavlovich have provided invaluable
help during my stay at Carnegie Mellon.

I am very grateful to Professor James Faeder (University of Pittsburgh Medical Center)
for introducing me to rule based modeling of biochemical systems and to many challenges
associated with stochastic modeling of biochemical systems. I am deeply indebted to
Professor Sethu Ramesh and Dr. Swarup Mohalik of General Motors India Science Lab
for many inspiring discussions on verification of embedded system models. My thanks
are also due to Dr. Sriram Rajamani (Microsoft Research India) and Professor Arvinda P.
Sistla (University of Illinois at Chicago) for their continued encouragement and guidance.

My sincere thanks to Professor Steve Shreve and Professor Kasper Larsen (Carnegie
Mellon University) for permitting me to take their courses on Stochastic Calculus and
stochastic models in finance at the Tepper School of Business. I also thank Professor
Surya T. Tokdar (Duke University) for introducing me to Bayesian Data Analysis during
his stay at Carnegie Mellon. Thanks are also due to Professor Bruce Krogh, Professor
Xuandong Li, and Professor Goran Frehse for guiding my work on hybrid systems during
my stay at Carnegie Mellon.

I am also grateful to Shengbing Jiang (GM Detroit), Thomas Fuhrman (GM Detroit),
Aditya Nori (Microsoft Research India), and Prasad Naldurg (Microsoft Research India)
for guiding and motivating me during my summer internships. My friends Mugizi Robert
Rwebangira, Varun Gupta, Jonathan Sia, Lei Bu, Niti Garg, Ashfaque Habib and Aditya
Prakash Bodicherla have made my stay in Pittsburgh pleasant over the years.

Thanks are also due to Professors A. Chakraborty, I. Sengupta, R. Mall, S. Pal , J.
Mukhopadhyay, D. Sarkar, M. Sinha, C. Chakaraborti, G. Biswas, P. Chakarabati, P. Das-
gupta and D. Rowchoudhary for their support during my stay at the IIT Kharagpur.

vii

viii

Contents

1 Introduction 1
1.1 Model Validation . 2

1.2 Model Discovery . 3

1.3 Contributions . 4

1.4 Outline of Thesis . 7

2 Definitions 9
2.1 Stochastic Models . 9

2.1.1 Continuous Time Markov Chains 10

2.1.2 Stochastic Differential Equations 14

2.2 Probabilistic Adapted Finitely Monitorable Specifications 16

2.3 Validation of Stochastic Systems . 21

2.4 Discovery of Stochastic Systems . 23

3 Previous Work 25
3.1 Validation of Stochastic Systems . 26

3.1.1 Existing algorithms . 28

3.2 Discovery of Stochastic Systems . 32

4 Bayesian Statistical Model Checking 35
4.1 Bayesian Statistics . 37

4.2 Bayes Factor Computation . 39

ix

4.3 Algorithm 1: Bayesian Statistical Model Checking 41

4.3.1 Theorems . 43

4.3.2 Empirical Performance of Algorithm 1 59

4.4 Algorithm 2: Cost Based Statistical Bayesian Model Checking 74

4.4.1 Theorems . 77

4.4.2 Empirical Performance of Algorithm 2 81

4.5 Algorithm 3: Non-i.i.d. Bayesian Statistical Model Checking 84

4.5.1 Background . 86

4.5.2 Algorithm . 94

4.5.3 Results on the Non-i.i.d. Statistical Verification algorithm 96

4.5.4 Testing Strategy for Probabilistic Reactive Modules encoding of
DTMCs . 101

4.5.5 Empirical Performance of Algorithm 3 104

4.6 Conclusion . 109

5 Discovery of Stochastic Biochemical Models 111
5.1 Introduction . 112

5.2 Stochastic Models of Biochemical Systems 116

5.3 Statistical Model Validation for Model Disovery 118

5.3.1 Survey Sampling based Statistical Model Validation 119

5.4 Problem Statement and Theorems . 122

5.4.1 Uniform Continuity in the Logarithmic Parameter Space 123

5.5 Parameter Synthesis Algorithms . 135

5.5.1 Algorithm 4: Parameter Synthesis using Uniform Continuity . . . 136

5.5.2 Algorithm 5: Faster Parameter Synthesis using Abstraction Re-
finement . 140

5.5.3 Algorithm 6: Parameter Search and Model Infeasibility using Gra-
dient Descent . 145

5.6 Experimental Results . 148

5.6.1 Parameter Synthesis using Uniform Continuity (Algorithm 4) . . 150

x

5.6.2 Parameter Synthesis using Abstraction Refinement (Algorithm 5) 155

5.6.3 Parameter Estimation using Gradient Descent (Algorithm 6) . . . 157

6 Conclusion and Future Work 161
6.1 Conclusions . 162

6.1.1 Bayesian Statistical Model Checking 163

6.1.2 Discovery of Stochastic Biochemical Systems against Behavioral
Specifications . 165

6.2 Future Work . 166

A Proofs 173
A.1 Termination of Bayesian Model validation Algorithm 173

A.2 Proof of Uniform Continuity . 176

xi

xii

List of Figures

2.1 Example of a CTMC model. 11

2.2 Sample Paths Obtained from an in-silico Stock Price Simulation 15

2.3 Observed Path: Dow Jones Index between 2000 and 2005 16

4.1 Shapes of Beta Priors . 40

4.2 Beta Priors: Uniform Prior Beta(1,1) and Biased Priors 41

4.3 Threshold Probability (ρ) vs. Number of Samples. Actual Probability (ρ0)
is 0.25. 60

4.4 Threshold Probability (ρ) vs. Number of Samples. Actual Probability (ρ0)
is 0.5. 60

4.5 Threshold Probability (ρ) vs. Number of Samples. Actual Probability (ρ0)
is 0.75. 61

4.6 Logarithm of the Bayes Factor Threshold (T) vs. Number of Samples.
Probability Threshold (ρ) is 0.5. 62

4.7 Logarithm of the Bayes Factor Threshold (T) vs. Number of Samples.
Probability of Satisfying the Formula (ρ0) is 0.25. 63

4.8 Logarithm of the Bayes Factor Threshold (T) vs. Number of Samples.
Probability of Satisfying the Formula (ρ0) is 0.9. 63

4.9 Logarithm of the Bayes Factor Threshold (T) vs. Number of Samples.
Probability of Satisfying the Formula (ρ0) is 0.8. The indifference region
is the interval [0.65, 0.85] and the probability in the specification is 0.75. . 64

4.10 Indifference Region vs. Number of Samples 64

4.11 Different Classes of Priors . 66

4.12 Bayes Factor at Termination. 67

xiii

4.13 Bayes Factor at Termination. 67

4.14 Number of Samples vs. Probability of the Formula being True 68

4.15 Overview of the TCR Signaling Model of Ref. [LHFH08]. 70

4.16 Traces from Deterministic (ODE) and Stochastic Simulation of the TCR
Signaling Model. N1 : 100, N2 : 3000. 72

4.17 Performance as a Function of Cost of Incorrect Decision 84

4.18 Statitisical Verification using i.i.d. Samples would need about 1010 Sam-
ples to observe the Erratic Behavior. 85

4.19 Non-i.i.d. Sampling: The property is true. 107

4.20 Increasing Change of Measure and Number of Samples 107

4.21 Non-i.i.d. Sampling: The property is false. 108

5.1 Parameter Synthesis Problem . 113

5.2 Central Idea behind the Abstraction Refinement Algorithm 142

5.3 Cartoon Representation of the Fibroblast Growth Factor Receptor Path-
way. 148

5.4 Cartoon Representation of the Cell Cyle Pathway 149

5.5 Synthesized 1-D Parameter Space . 151

5.6 Synthesized 2-D Parameter Space . 152

5.7 Synthesized Parameter Space for Fibroblast Growth Factor model 152

5.8 Synthesized Parameter Space for the Cell Cycle Model 154

5.9 Parameter Search in action for the Cell Cycle Model. 158

6.1 Probability of formula [True U60cyclin_bound = 0] for Cell Cycle Model.169

xiv

List of Tables

4.1 Jeffrey’s Subjective Interpretation of Bayes Factor 39

4.2 Illustrating the Frequentist Properties of Bayes Factor Test 58

4.3 Uniform Prior with Initial Number of Agonist pMHC : 100, Initial Number
of Antagonist pMHC : 1000 , Bayes Factor Threshold: 100 72

4.4 Uniform Prior with Initial Number of Agonist pMHC : 100, Initial Number
of Antagonist pMHC : 0 , Bayes Factor Threshold: 100 73

4.5 Performance of Cost based Bayesian Model Checking Algorithm - I . . . 82

4.6 Performance of Cost based Bayesian Model Checking Algorithm - II . . . 83

4.7 Number of Successful Samples observed using i.i.d. and non-i.i.d. Proce-
dures . 106

5.1 Abstraction Refinement: Parameter Synthesis for Probability above 0.15. 156

6.1 Summary of Algorithms . 164

xv

xvi

Chapter 1

Introduction

Many important phenomena in science, economics, and engineering are studied using

stochastic models. Unlike deterministic models, such as ordinary differential equations,

the dynamics of a stochastic model are at least partially governed by one or more random

processes. For example, a model of the dynamics of eukaryotic cell division may have a

deterministic component which follows an ordered sequence of state transitions (resting

phase is followed by interphase, which is followed by mitosis, and then the cell returns

to the resting phase), but the precise timing of these transitions may be determined by a

stochastic process. The semantics of the random factor(s) will be application-dependent,

but generally reflect the modeler’s incomplete knowledge about certain aspects of the sys-

tem (e.g., unmodeled cellular components in a cell model), the inability to control or mea-

sure certain external environmental factors (e.g., wind velocities in a vehicle dynamics

model), or something more fundamental about the nature of the universe (i.e., quantum

mechanics). These same random factors pose many computational challenges while work-

1

ing with computational models of stochastic processes. In this thesis, we consider two

of these challenges — and validation and model discovery, and introduce a number of

algorithms for addressing aspects of these problems in continuous-time Markov chains

(CTMC) and stochastic differential equations (SDE) models. Our examples will be drawn

from two application domains: computational biology and computational finance, but our

algorithms and the theorems supporting them should be applicable to other domains.

In the remainder of this chapter, we briefly summarize the model validation and dis-

covery problems, and then highlight the contributions of this thesis.

1.1 Model Validation

Model validation refers to the task of algorithmically deciding whether a given modelM

with the initial state s meets a given behavior ϕ, denotedM, s |= ϕ. For non-stochastic

systems, model checking algorithms [BK08] are often used to solve the validation prob-

lem. For example, model checking has been used to verify whether a third party Win-

dows device driver can exhibit undesirable behaviors, such as deadlock [BMMR01, BR02,

NRTT09]. Unfortunately, these same algorithms cannot be applied to stochastic systems

because stochastic systems are often ergodic, meaning that no behavior is truly impossible.

Here, it becomes necessary to compute (or bound) the probability that a given behavior ex-

ists. This is most often done by performing multiple stochastic simulations which can be

both costly to produce and are a poor way to investigate rare events. Thus, it is important

to both minimize the expected number of samples needed to validate the model and to

develop methods that are capable of investigating rare behavior. The validation algorithms

2

presented in this thesis achieve these goals.

1.2 Model Discovery

The construction of stochastic models is usually a two step process. Certain aspects of

the model like the structure of the state space model or the form of a stochastic differen-

tial equation are often obtainable from first principles. For example, our understanding

of chemical reactions enables us to implicitly encode the state space using a compact set

of rules [FBGH05]. Similarly, our assumptions about the behavior of a rational stock

price model may lead us to the realization that geometric stochastic differential equa-

tions [BS73] are suitable models for these prices. Unfortunately, the parameters of these

models (e.g., reaction rates and stock price volatilities) usually cannot be obtained from

first principles. The model discovery problem is the task of finding parameters for which

a given model satisfies a given specification. This problem is known to be a key challenge

for modelers of stochastic systems including those in systems biology [LHFH08] and in

finance [HT08]. Very often, the modeler uses her intuition to make an educated guess

about the parameters and then performs extensive manual validation to discover whether

her educated guess was correct. If a large number of guesses for the parameter values

do not lead to a model that can be validated against the behavioral expectations from the

system, the modeler is left in a dilemma: is it the case that she has not found the right pa-

rameter values yet or is the model of the stochastic system inherently flawed? The model

discovery algorithms presented in this thesis automate this model discovery process for

certain classes of stochastic models.

3

1.3 Contributions

In this thesis, we present algorithms for validation and discovery of stochastic models

against high level behavioral specifications encoded in a suitable probabilistic specification

language, such as probabilistic temporal logics. These specifications reflect the modeler’s

expectations about how the model should behave, based on domain knowledge (e.g., cell

division takes approximately 2 hours) or design goals (e.g., in the context of Synthetic

Biology). While we will use temporal logical specifications in our examples in this thesis,

our results hold true for any specification that can be decided by observing finite-length

simulations from the model.

The algorithms share a common set of inputs including: (a) an executable stochastic

modelMwith parameters Θ = {θ1, ..., θn}, denotedM(Θ), (b) a behavioral specification

ϕ that encodes the expected behavior of the system, (c) the probability ρ with whichM(θ)

should satisfy this behavioral specification, and (d) a confidence parameter T . Our model

validation algorithms decide whether M(θ), s |= P>ρ(ϕ) — that is, whether the model

M(θ) satisfies the property with probability at least ρ with confidence T . The model

discovery algorithms find a bounded volume V ⊆ Rn in a n-dimensional parameter space

such thatM(θ), s |= P>ρ(ϕ) for any θ ∈ V . If no such volume exists (i.e., the model is

infeasible), our algorithms says so and, thus, provides the modeler a proof that the model’s

design is flawed or incomplete.

Our validation and discovery algorithms use a new approach called Bayesian Statistical

Model Checking that automates the process of validating stochastic models against such

a probabilistic behavioral specification by implementing a sequential version of Jeffrey’s

4

Bayes Factor test [Jef61]. We derive new theorems on the properties of our Bayesian Sta-

tistical Model Checking algorithm, including guarantees on its termination, the probability

of producing an incorrect answer, and the number of sampled traces needed to achieve a

given error bound. The Bayesian Statistical Model Checking also plays an important role

in our model discovery algorithm. We also make novel use of survey sampling [SO96]

to prove the uniform continuity and monotonicity of the probability of the property with

respect to the parameters for certain classes of CTMCs.

The specific contributions of this thesis are as follows:

• The first Bayesian algorithm [JCL+09] for hypothesis-testing based statistical model

checking and theorems concerning that algorithm’s guarantees (Chapter 4). In par-

ticular, we characterize the conditions under which the algorithm terminates, present

bounds on the Type-I / Type-II errors of our algorithm, and compute the number of

samples needed for the algorithm to terminate [JL10a]. The performance character-

istic of the algorithm are also verified through a series of computational experiments

on a variety of models.

• We then extend our Bayesian Statistical Model Checking algorithm to accommodate

cost-based specifications (Chapter 4). Here, the user provides the possible loss of

producing an incorrect answer and the cost of obtaining a single simulation from the

stochastic model as inputs to the algorithm. The revised algorithm minimizes the

overall cost of validating the model and possible loss from producing an incorrect

answer. Thus, the algorithm stops when the cost of an additional simulation exceeds

the expected loss due to an incorrect decision. The performance characteristic of the

5

algorithm are also verified through a series of computational experiments.

• We then present another variation of our algorithm that uses non-independently and

identically distributed (i.i.d.) sampling to investigate rare behaviors (Chapter 4) and

apply it to analyze SDE models from computational finance. This algorithm pre-

serves guarantees of termination and we provide bounds on Type I/II error and the

number of samples needed by the algorithm [JL10a]. The performance character-

istic of the algorithm are verified through a series of computational experiments on

stochastic differential equations.

• We introduce the first algorithms for performing model discovery in a certain class

of CTMCs using statistical model checking (Chapter 5). We show that when the

probability that a given specification holds is uniformly continuous in the choice

of parameters, it is possible to synthesize an infinite number of parameters with a

finite number of experiments. We also show that this property holds for an important

class of CTMCs, namely those that arise due to rule-based biochemical models, like

BIONETGEN [FBGH05, FBH05, FBH08]. Our algorithms are the first attempt at

discovering kinetic parameters of stochastic biochemical models from high level

behavioral specifications. This algorithm was first published in [JL10b].

• We show that the probability of a model satisfying a given specification is mono-

tonic in the kinetic parameter space under mild technical conditions (Chapter 5).

This permits us to construct abstractions for stochastic biochemical models and use

them to discover the kinetic parameters more efficiently. We show that the mono-

tonicity property holds for kinetic parameters in biochemical models. This algorithm

6

was first published in [JL10b]. The performance characteristic of the algorithm are

established through a series of computation experiments.

• We introduce the use of survey sampling [SO96] as a means of proving the uniform

continuity of the probability of the property with respect to the parameters.

1.4 Outline of Thesis

In Chapter 2, we will summarize the kinds of stochastic models we discuss later in this

thesis. We also briefly discuss the formalism in which one can write high level behavioral

specifications about the model. We survey existing work on statistical model checking in

Chapter 3, and also present existing work on discovery of models. In Chapter 4, we discuss

our new Bayesian Statistical Model Checking algorithm, characterize its properties, and

establish its performance characteristics through a series of computational experiments.

In Chapter 5, we present our model discovery algorithms, the theorems guaranteeing cor-

rectness, and establish their performance characteristics through a series of computational

experiments. We discuss conclusions from our study of validation and synthesis of com-

plex stochastic models and survey several exciting directions for future work in Chapter 6.

The Appendix contains detailed proofs of the results in this thesis.

7

8

Chapter 2

Definitions

In this chapter, we will formally define the concepts that are used throughout the thesis. In

particular, we define the specific classes of stochastic models and behavioral specifications

admitted by our algorithms, as well as the the model validation and discovery problems.

2.1 Stochastic Models

Stochastic models can be broadly partitioned into discrete and continuous space categories.

Examples of discrete space models include Discrete Time Markov Chains (DTMCs) and

Continuous Time Markov Chains (CTMCs). Discrete space models are used when the un-

derlying phenomenon can be described in terms of a finite number of state variables, each

of which have only a discrete number of possible values. In this thesis, for example, we

consider biochemical systems which can be modeled as CTMCs where state variable Xi

counts the number of copies of the ith molecular species. Both DTMC and CTMC models

9

spontaneously jump from one state to another. The key difference between these models

lies in how they model the passage of time, as their names suggest. Continuous state mod-

els include stochastic differential equations (SDE) and jump diffusion processes [Shr04].

In such models both the passage of time and the values of state variables are continuous.

The algorithms in this thesis are limited to CTMCs and SDEs.

2.1.1 Continuous Time Markov Chains

A continuous time Markov chain (CTMC) is a stochastic model with a discrete number of

states but a continuous notion of time. The system being modeled jumps from one discrete

state to another while time continues to evolve continuously. We now formally define the

notion of a Labeled CTMC and illustrate the definition with an example.

Definition 1 (Labeled Continuous Time Markov Chain) A labeled CTMC is a three tu-

ple (S, L,R), where

(i) S is a finite set of states.

(ii) L : S → 2AP is a labeling function that labels each state s ∈ S with a set of atomic

propositions from a finite set of atomic propositions AP .

(iii) R : S × S → R is a rate transition matrix. R(s, s′) denotes the rate of transition

from state s to state s′. The notation R is used to denote the set of real numbers.

Example 1 Figure 1 below illustrates a CTMC model of a simple retransmission protocol.

The system goes from the initial state to the transmit state or stays at the initial state. Then,

it goes from the transmission state to either a state where the transmitted packet is lost or

10

the transmitted packet is successfully transmitted. From the collision state, the system will

go back to the initial state. Each transition is labeled with its transition rate.

Figure 2.1: Example of a CTMC model.

The evolution of a CTMC model can be simulated by a two step process. We can

first decide the time at which any of the outgoing transitions from a state should be taken.

The waiting time until the first outgoing transition from a state is exponentially distributed

and the rate constant of this exponential distribution is just the sum of the rates of all the

outgoing transitions from this state. Having decided the time at which one of the outgo-

ing transition is taken, we only need to decide which of the transitions should be taken.

The probability of taking a transition at a given moment is propotional to the rate of the

transition and the constant of proportionality is determined by the fact that probabilities

of disjoing and exhaustive events (in this case, taking one of the transitions) must sum

to 1. The problem with this approach is that we have to generate an exponentially dis-

11

tributed random number for the waiting time and a uniformly distributed random number

for choosing the transition. The direct generation of exponentially distributed random

samples is difficult.

In a technical report [Gil75] published at the Unites States Naval Weapons Center,

Daniel T. Gillespie suggested a method to simulate the evolution of CTMC models by only

using a pair of uniformly distributed random variables for each transition between states.

Building upon earlier work [Doo45], Gillespie argued that the following transformation is

sufficient to transform a uniformly distributed random number r into the waiting time w

at a state of the CTMC:

w =
1

a
log

1

r

Note that a is the sum of the rates of all outgoing transitions from this state. This in-

sight is important as it greatly reduces the amount of computational resources required for

simulating CTMCs.

The semantics of a labeled CTMC model can be readily understood in terms of a

labeled path and the probability density of observing such a path. We note that one cannot

talk about the probability of observing a path in a CTMC as the probability of observing a

particular path is zero.

Definition 2 (Labeled CTMC Path) A path σ in a labeled Continuous Time Markov

Chain is a timed sequence of states s0
∆0−→ s1

∆1−→ s2 · · ·
∆l−1−→ sl, where ∆i > 0 is

the amount of time spent in state si (0 6 i < l).

12

Example 2 In Figure 1, one possible path is Init 2.4−→ Transmit 1.1−→ Success. This path

corresponds to a behavior of the model where it spends time 2.4 units in the Init state, then

moves on to the Transmit state, spends 1.1 time units there and then finally reaches the

Success state.

Let E(s) denote the sum of the outgoing rate transitions from a state s in the CTMC

(S, L,R), i.e. E(s) =
∑
s′∈S

R(s, s′). The probability density P (s, s′,∆) of moving from

the state s to the state s′ after spending time ∆ in state s isR(s, s′) e−E(s)∆. The probability

density P (σ) associated with a given path, σ, is simply the product of the probabilities of

the transitions in the path. That is, P (σ) =
∏
06i<l

P (si, si+1,∆i).

Example 3 The probability density of the path σ ≡ Init 2.4−→ Transmit 1.1−→ Success 	

in the CTMC represented in Figure 1 is given by

P (σ) = P (Init, Transmit, 2.4) P (Transmit, Success, 1.1)

=

(
9

9 + 1
e−((9+1)2.4)

) (
3

3 + 6
e−((3+6)1.1)

)
=

(
9

10
e−24

) (
3

9
e−9.9

)
=

3

10
e−33.9 ≈ 5.68× 10−16

13

2.1.2 Stochastic Differential Equations

A stochastic differential equation (SDE) [Shr04] is a differential equation in which some

of the terms involve Brownian Motions. A typical SDE is of the following form:

dX = b(t,Xt) dt + v(t,Xt) dWt

where X is a system variable, b is a Riemann integrable function, v is an Itō integrable

function, and W is Brownian Motion. The Brownian Motion W is a continuous-time

stochastic process satisfying the following three conditions:

(i) W0 = 0

(ii) Wt is continuous (almost surely).

(iii) Wt has independent normally distributed increments:

• Wt −Ws and Wt′ −Ws′ are independent if 0 6 s < t < s′ < t′.

• Wt − Ws ∼ N (0, t − s), where N (0, t − s) denotes the normal distribution

with mean 0 and variance t− s. Note that the symbol ∼ is used to indicate “is

distributed as”.

Consider the time between 0 and t as divided into m discrete steps 0, t1, t2 . . . tm =

t. Further, the solution to a stochastic differential equation [Shr04] is the limit of the

following discrete difference equation, as m goes to infinity:

Xtk+1
−Xtk = b(tk, Xtk) (tk+1 − tk) + v(tk, Xtk) (Wtk+1

−Wtk)

14

Example 4 (Stochastic Models in Finance) The price of a stock is often modeled by a

geometric stochastic differential equation [HT08, BS73, Hes93, Hul06]. This is also the

model for stock prices used in the famous Black-Scholes-Merton equation:

dS = µ S dt + σ S dWt

Here, S represents the price of a stock, W is a Brownian Motion, µ is the constant market

interest rate and σ is the constant volatility of the stock. The equation says that the rate

of change in price of a stock in an infinitesimally small unit of time is the sum of a deter-

ministic term that represents the product of the market interest rate and the current price

of the stock, and a random term that depends on the inherent volatility of the market and

the current price of the stock.

0 1 2 3 4 5 6 7 8 9 10
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

5

Time

S
to

ck
 P

ri
ce

Sample Paths of a Geometric SDE Model for Stock Prices

Figure 2.2: Sample Paths Obtained from an in-silico Stock Price Simulation

15

Figure 2.3: Observed Path: Dow Jones Index between 2000 and 2005

In Fig. 2.2, we observe lines representing 10 different possible future evolutions of a

stock price that is worth 10 million initially. Note the qualitative similarity between the

simulated plots in Fig. 2.2 and the real shape of a plot1 of the Dow Jones index in Fig. 2.3.

2.2 Probabilistic Adapted Finitely Monitorable Specifica-

tions

In this section, we formally define the notion of high-level behavioral specifications that

we can use to express the expected behavior of stochastic systems. A specification is said

to be adapted to a stochastic process if the truth of the specification can be determined by

observing a trajectories sampled from the stochastic process. Naturally, we are interested

in specifications whose truth value can be decided by observing only a finite prefix of

the simulation of the stochastic process. We call the logical formulae that represent such

properties adapted finitely monitorable (AFM) specifications.

1Acknowledgement: This figure was produced using Google Finance

16

Due to the stochastic nature of our models, we generally seek to verify that a desired

behavior holds with a threshold probability. Given an AFM specification ϕ, the property

Pr>ρ(ϕ) is true for a stochastic system if and only if the property ϕ is true for a random

simulation of the stochastic system with probability at least ρ. We call such probabilistic

properties probabilistic adapted finitely monitorable (PAFM) specifications. We survey

two different kinds of PAFM specifications: Probabilistic Bounded Linear Temporal Logic

(PBLTL), and Probabilistic Bounded Metric Temporal Logic (PBMTL).

Probabilistic Bounded Linear Temporal Logic

A special subclass of PAFM specifications on a stochastic model M can be expressed

as formulas in Probabilistic Bounded Linear Temporal Logic (PBLTL). The logic PBLTL

is similar to Continuous Stochastic Logic (CSL) [KNP04, BCHG+97, BHHK03, You04]

but does not permit nested probability operators. Such nestings of probability operators

are not typically required to describe behaviors of interest in biological systems [LJ07a,

LJC06, LJ09, JCL+09, CFL+08, RBFS08, Fag06, Fag05, CCD+04, CF03, CFS06b]. We

first define the syntax and semantics of Bounded Linear Temporal Logic (BLTL) [Pnu77,

OL82, FS01].

For a stochastic model M, let the set of state variables V be a finite set of discrete-

valued variables. A Boolean predicate over V is a constraint of the form x∼v, where

x ∈ V, ∼ ∈ {>,6,=}, and v ∈ R. A BLTL property is built on a finite set of Boolean

predicates over V using Boolean connectives and temporal operators. The syntax of the

logic is given by the following grammar:

17

ϕ ::= x∼v | (ϕ1 ∨ ϕ2) | (ϕ1 ∧ ϕ2) | ¬ϕ1 | (ϕ1U
tϕ2),

where ∼ ∈ {>,6,=}, x ∈ V, v ∈ R, and t ∈ Q>0. We can define additional temporal

operators such as Ftψ = TrueUt ψ, or Gtψ = ¬Ft¬ψ in terms of the bounded until Ut.

Intuitively, the formula Ftψ implies that ψ holds sometime within t time units. Similarly,

the formula Gtψ implies that ψ holds at all moments for the next t time units into the

future.

We define the semantics of BLTL with respect to the paths ofM. The fact that a path

σ satisfies property ϕ is denoted by σ |= ϕ. Let σ = (s0,∆0), (s1,∆1), . . . be an execution

of the model along states s0, s1, . . . with durations ∆0,∆1, . . . ∈ R. We denote the path

starting at state i by σi (in particular, σ0 denotes the original execution σ). The value of

the state variable x in σ at the state i is denoted by V (σ, i, x). The semantics of BLTL is

defined as follows:

• σk |= x ∼ v if and only if V (σ, k, x) ∼ v;

• σk |= ϕ1 ∨ ϕ2 if and only if σk |= ϕ1 or σk |= ϕ2;

• σk |= ϕ1 ∧ ϕ2 if and only if σk |= ϕ1 and σk |= ϕ2;

• σk |= ¬ϕ1 if and only if σk |= ϕ1 does not hold (written σk ̸|= ϕ1);

• σk |= ϕ1U
tϕ2 if and only if there exists i ∈ N such that: (a) 0 6

∑
06l<i ∆k+l 6 t;

(b) σk+i |= ϕ2; and (c) for each 0 6 j < i, σk+j |= ϕ1.

Example 5 Consider the following BLTL formula:

¬(G100(Antibiotic > 0.05)) ∨ F 110(Infection < 0.01)

18

It says that if the value of Antibiotic stays above 0.05 for the first 100 units then the value

of Infection falls below 0.01 within the first 110 units.

It is known that finite paths of bounded duration are always sufficient for checking

BLTL formula on traces [CFL+08]. Given a BLTL formula, one can easily compute the

duration of the prefix of the path that one may need to evaluate the formula on the entire

path. We now define Probabilistic Bounded Linear Temporal Logic.

Definition 3 A Probabilistic Bounded LTL (PBLTL) formula is a formula of the form

P>ρ(ϕ), where ϕ is a BLTL formula and ρ ∈ [0, 1].

We say thatM satisfies PBLTL property P>ρ(ϕ), denoted byM |= P>ρ(ϕ), if and only if

the probability that a random path sampled from the modelM satisfies the BLTL property

ϕ is greater than or equal to ρ. This Model Checking problem is well-defined [YS06] since

one can always assign a unique probability measure to the set of executions of M that

satisfy a formula in BLTL.

Example 6 Consider the following PBLTL formula:

Pr>0.5

(
¬(G100(Antibiotic > 0.05)) ∨ F 110(Infection < 0.01)

)
It says that the following holds with probability at least 0.5: if the value of Antibiotic stays

above 0.05 for the first 100 units then the value of Infection falls below 0.01 within the first

110 units.

19

Probabilistic Bounded Metric Temporal Logic

Another widely used logic for defining behavioral expectations from simulations of contin-

uous (and possibly stochastic) systems is the Metric Temporal Logic [Koy90]. Monitoring

algorithms [GPS09, CSV09, SS08] can automatically generate “monitors” from suitable

logical specifications on simulations such that the monitor accepts a simulation of the sys-

tem if and only if the simulation satisfies the logical specification. There exist efficient

monitoring algorithms [TR05, DtS03] for Metric Temporal Logic. The logic extended

with a probability operator naturally defines yet another subset of PAFM specifications.

Metric Temporal Logic (MTL) can specify both lower and upper bounds on the time

bounds associated with the temporal operators. The syntax of the MTL property is given

by the following grammar:

ϕ ::= x∼v | (ϕ1 ∨ ϕ2) | (ϕ1 ∧ ϕ2) | ¬ϕ1 | (ϕ1U
[t,t′]ϕ2),

where ∼ ∈ {>,6,=}, x ∈ V, v ∈ R, and t ∈ Q>0. We can also define additional

temporal operators such as F[t,t′]ψ = TrueU[t,t′] ψ, or G[t,t′]ψ = ¬F[t,t′]¬ψ in terms of

the bounded until U[t,t′]. The semantics of Bounded MTL for a trace σk starting at the kth

state (k ∈ N) is similar to that of BLTL except for the temporal operator U:

• σk |= ϕ1U
[t,t′]ϕ2 if and only if there exists i ∈ N such that (a) t 6

∑
06l<i ∆k+l 6 t′;

(b) σk+i |= ϕ2; and (c) for each 0 6 j < i, σk+j |= ϕ1.

Example 7 (t) Consider the following Bounded Metric Temporal Logic formula:

¬(G[0,100](Antibiotic > 0.05)) ∨ F [90,110](Infection < 0.01)

20

It says that if the value of Antibiotic stays above 0.05 for the first 100 units then the value

of Infection falls below 0.01 sometime between the first 90 units and the first 110 units.

We can now define Probabilistic Bounded Metric Temporal Logic.

Definition 4 A Probabilistic Bounded Metric Temporal Logic formula is a formula of the

form P>ρ(ϕ), where ϕ is a Bounded Metric Temporal Logic formula and ρ ∈ [0, 1].

We say thatM satisfies Probabilistic Bounded Metric Temporal Logic property P>ρ(ϕ),

denoted byM |= P>ρ(ϕ), if and only if the probability that a randomly sampled execution

ofM satisfies Bounded Metric Temporal Logic property ϕ is greater than or equal to ρ.

Example 8 Consider the following Probabilistic Bounded Metric Temporal Logic for-

mula:

Pr>0.9

(
¬(G[0,100](Antibiotic > 0.05)) ∨ F [90,110](Infection < 0.01)

)
It says that the following holds with probability at least 0.5: if the value of Antibiotic stays

above 0.05 for the first 100 units then the value of Infection falls below 0.01 sometime

between the first 90 units and the first 110 units.

2.3 Validation of Stochastic Systems

As outlined in Chapter 1, one of the key problems addressed by this thesis is validat-

ing properties of stochastic models. Our methods combine techniques from the fields of

21

model checking [CGP99, CE82] and Bayesian statistics, and build on the work of Younes,

who invented the technique known as statistical model checking [YS06, You04, YS02,

YKNP06].

Definition 5 (Model checking problem) Given a model M, an initial state s (or set of

initial states S), and a formal specification ϕ, algorithmically decide whetherM, s |= ϕ.

Traditional model checking algorithms focus on non-stochastic models. Since this

thesis concerns stochastic models, we define:

Definition 6 (Probabilistic model checking problem) Given a stochastic modelM, an

initial state s (or set of initial states S), an adapted finitely monitorable specification ϕ,

and a probability bound ρ, algorithmically decide whether theM satisfies the specification

ϕ with probability at least ρ, i.e.M, s |= P>ρ(ϕ).

There are two basic strategies that have been employed to solve the probabilistic model

checking problem. The first approach treats the problem as a probabilistic state space

exploration problem [KNP04, BCHG+97]. Such methods compute a numerical estimate

of the probability that the system satisfies ϕ, and then compare the numerically computed

value to ρ. The second approach, which we use in this thesis, is to use a simulation-

based approach to compute a statistical estimate of the probability that the system satisfies

ϕ. Here, a finite number of sample trajectories are drawn from the model. Each sample

trajectory is evaluated to determine whether it satisfies ϕ, and the number of satisfying and

non-satisfying traces is used to determine whetherM, s |= P>ρ(ϕ). We will review both

kinds of algorithms in the next chapter.

22

2.4 Discovery of Stochastic Systems

The second problem addressed in this thesis is the model discovery problem, also known as

the parameter synthesis problem. Modelers often summarize domain knowledge in terms

of high-level behavioral descriptions (e.g., “the system is bi-stable”) and want their models

to satisfy these high-level specifications with at least a certain probability. Parameter syn-

thesis is the task of identifying the bounded volume in parameter space that gives rise to

the prescribed behavior. Note that synthesis is a more challenging problem than parameter

estimation, because every possible parameter combination must be characterized as either

satisfying the property with the required probability, or not.

Definition 7 (Model discovery problem) Given a stochastic modelM with parameters

θ ∈ Rn, a high-level behavioral specification ϕ (e.g., a formula in temporal logic), and a

probability bound ρ, find the bounded volume V ⊆ Rn in parameter space such that for

any θ ∈ V ,M(θ) |= P>ρ(ϕ), and for any θ ̸∈ V ,M(θ) ̸|= P>ρ(ϕ)

In Chapter 5, we solve a variation of the model discovery problem for stochastic bio-

chemical models. Instead of characterizing the exact parameter space V that satisfies the

property ϕ with at least probability ρ, our algorithms build a parameterized approximation

Vη to the actual parameter space, where η > 1. Our approximations become more precise

as the parameter η gets close to 1.

Definition 8 (Approximate model discovery problem) Given a stochastic modelMwith

parameters θ ∈ Rn, a high-level behavioral specification ϕ (e.g., a formula in temporal

logic), a probability bound ρ, and an approximation parameter η > 1, find the bounded

23

volume Vη ⊆ Rn in parameter space such that for any θ ∈ V ,M(θ) |= P>ρ(ϕ), and for

any θ ̸∈ V ,M(θ) ̸|= P> ρ
η
(ϕ).

24

Chapter 3

Previous Work

In this chapter, we review and compare previous work in model validation and discovery

with the algorithms in this thesis. Formal description and validation of computer pro-

grams has enjoyed the attention of researchers for over the last forty years [Dij76, Hoa69,

Flo67, AO91, BM81]. The use of computers to build computational models of natural

phenomenon and engineered systems also started around the same time [Ams70, Hay69,

man63, Gil76] and is now well established [WF00, VAD98, TNO+03, Sta01, SDD+07,

MS95, BG96, FBGH05]. However, the trend of automatically validating and even dis-

covering computational models from behavioral specifications is relatively new [RBFS09,

RBFS08, Fag06, CFS06a, LJ07b, JL10b, JCL+09, CFL+08]. In this chapter, we will first

survey some of the techniques used for statistical validation of stochastic models against

behavioral specifications encoded in a suitable logic. Then, we will discuss existing liter-

ature on the discovery of computational models from specifications.

25

3.1 Validation of Stochastic Systems

There are two basic approaches for solving the probabilistic model checking problem,

which was defined in Section 2.3. The first approach is to treat the problem as a probabilis-

tic state space exploration problem [KNP04, BCHG+97]. Such methods compute a numer-

ical estimate of the exact probability that the system satisfies ϕ using symbolic methods,

and then compare the numerically computed value to ρ. Successful probabilistic model

checking algorithms [BHHK03, CY95, CG04, BCHG+97, KNP04] and tools [KNP04,

CB06] have been proposed for various classes of models, including DTMCs, CTMCs,

and Markov Decision Processes. Existing algorithms generally scale to systems with

more than 1010 states, although in previous work we have successfully applied such al-

gorithms to state spaces as large as 1023 states [LJ07a]. The scalability of these models

depends on the structure of the state space and is largely unpredictable even for small mod-

els [YBO+98, KNP05]. Most moderate sized biochemical models have more than 10100

states, and are beyond the reach of algorithms and tools based on numerical estimation.

The second approach to solving the probabilistic model checking problem is to use

a statistical framework. Here, a finite number of sample trajectories are drawn from the

model. Each sample trajectory is evaluated to determine whether it satisfies ϕ and the num-

ber of satisfying and non-satisfying traces is used to determine whetherM, s |= P>ρ(ϕ).

We refer to such strategies as Statistical Model Checking algorithms. The algorithms pre-

sented in Chapter 4 are statistical model checking algorithms. Statistical model checking

algorithms provide approximate answers, but generally provide bounds on the probability

of producing an incorrect answer. The advantage of statistical model checking algorithms

26

over their exact counterparts is that they scale to much larger systems.

Statistical model checking algorithms can be divided into two categories: those that es-

timate the true value of ρ [HLMP04, Lan09], and those that treat the probabilistic model

checking problem as deciding between two competing and mutually exclusive hypothe-

ses [YS02, YS06, JCL+09], H0 and H1, defined as:

Null Hypothesis H0 :M |= P>ρ[ϕ]

Alternate Hypothesis H1 :M |= P<ρ[ϕ]

Hypothesis-testing based approaches to probabilistic model checking are generally pre-

ferred over those that estimate the value of ρ because the task of deciding between two

competing hypotheses is generally easier than (i.e., requires fewer samples) than obtain-

ing an accurate estimate of ρ [You04]. The question of sample sizes is especially important

in domains where the cost of generating samples is high.

Hypothesis-testing based algorithms sample a set of independent and identically dis-

tributed (i.i.d.) simulation traces from the model and then apply a statistical test in order

to reject one of the two competing hypotheses. Given this, a Type I error is the rejection

of the null hypothesis H0 when it is in fact true. A Type II error is the rejection of the

alternate hypothesisH1 when it is true. It is generally desirable to bound the probability of

making Type I and II errors. This can be done by requiring the modeler to specify an upper

bound on the probability of making a wrong decision. Given this bound, it is then pos-

sible to determine the minimum number of samples required for the test to decide within

the chosen error probabilities. This is called fixed-size sampling. Alternatively, one can

27

iteratively draw samples from the model and terminate when enough evidence has been

obtained to reject one of the hypotheses. This is called sequential sampling, and often

leads to much smaller sample sizes because the sequential algorithm simply terminates

when it has enough evidence to reject one of the hypotheses [You04].

3.1.1 Existing algorithms

Having briefly reviewed the different categories of statistical model validation algorithms,

we now review the literature in more detail.

SPRT based Statistical Model Validation Younes and Simmons introduced one of the

first algorithms for statistical model validation [You04, YS02, YKNP06]. They were the

first to suggest the idea that statistical hypothesis testing may be used for model validation.

One of the statistical model checking algorithms suggested by Younes and Simmons

is based on statistical hypothesis testing and uses Wald’s Sequential Probability Ratio Test

(SPRT) [Wal47] in particular. The SPRT decides between the null hypothesis H ′
0 :M |=

P=ρ0(ϕ) against the alternate hypothesis H ′
1 : M |= P=ρ1(ϕ), where ρ0 ̸= ρ1 are two

probabilities. Note that these hypotheses are defined in terms of two distinct probability

values, ρ0 and ρ1, and completely specify the distribution of the probability with which

the model satisfies the formula ϕ. Such hypotheses are called simple. It can be shown

that the SPRT is optimal for simple hypothesis testing, in the sense that it minimizes the

expected number of samples among all statistical tests satisfying the same Type I and

II errors [WW48] when at least one of the two hypotheses is actually true. In the case

28

of statistical model validation, none of the two simple hypotheses may actually be true.

Notice that the probabilistic model checking problem is actually a choice between two

composite hypotheses H0 :M |= P>ρ(ϕ) versus H1 :M |= P<ρ(ϕ). The SPRT is known

not to be optimal for composite hypotheses.

Chernoff-Hoeffding Bound based Statistical Estimation Herault et al. [HLMP04]

have used the Chernoff-Hoeffding bound [Hoe63] on the sum of independent random vari-

ables to derive a fixed sample size estimator for the true value of the probability ρ with

which the modelM satisfies the specification ϕ. Given n i.i.d. Bernoulli random variables

Xi such that Xi = 1 with some probability p and 0 otherwise, the Chernoff-Hoeffding

bound gives an upper bound on the probability that the absolute difference between p and

the mean of the observed samples
∑n

i=1 Xi

n
exceeds a constant ϵ > 0.

P

(∑n
i=1Xi

n
− p > ϵ

)
6 e−2nϵ2 (3.1)

As the number of observed samples n increases to infinity, the bound on the probability

vanished to zero. Hence, it is possible to use this equation to estimate the value of the

probability pwith arbitrary degree of confidence. Since this approach is based on statistical

estimation, it may often need a larger number of samples than the approaches based on

hypothesis testing [You04]. On the other hand, it can estimate the true value with which

a model satisfies a given property. One can easily sequentialize this test by re-computing

Equation 3.1 after each observed sample to test the null hypothesis H ′
0 : M |= P=ρ0(ϕ)

against the alternate hypothesis H ′
1 : M |= P=ρ1(ϕ), and stopping the algorithm when

the probability of one of the two simple hypotheses has become sufficiently small so as

29

to reject it. The sequential statistical test so developed is still testing simple hypotheses

while the the probabilistic model checking problem is a choice between two composite

hypotheses H0 :M |= P>ρ(ϕ) versus H1 :M |= P<ρ(ϕ). Furthermore, we already know

results about the optimality of the SPRT test for simple hypotheses; hence, this sequential

test based on the Chernoff-Hoeffding bound is not going to be more efficient that the SPRT

test.

P-value based Statistical Model Validation Sen et al. [SVA04, SVA05] used the p-

value for the null hypothesis as a frequentist statistic for hypothesis testing. The p-value

is defined as the probability of obtaining observations at least as extreme as the one that

was actually seen, given that the null hypothesis is true. It is important to realize that a

p-value is not the probability that the null hypothesis is true [Goo99]. Consider a scenario

where the null hypothesis is a million times as likely as the alternate hypothesis a priori,

and the p-value is only 0.01. Here, the small p-value does not imply that the null hypoth-

esis is false. Indeed, the combination of the prior knowledge about the likelihood of the

hypotheses and the p-value together suggest that the null hypothesis is more likely than

the alternate hypothesis.

Monte Carlo based Statistical Model Validation Grosu and Smolka have also sug-

gested a Monte Carlo based approach for verifying formulas in LTL [GS05]. Their al-

gorithm uses a fixed-size sampling strategy that randomly samples lassos from a Büchi

automaton in an on-the-fly fashion. The algorithm terminates if it finds a counterexam-

ple. Otherwise, the algorithm provides statistical guarantees on the possible presence of

30

a counterexample in the model. This technique has been developed for non-deterministic

(and not stochastic) systems.

If the purpose of the algorithm is to detect errors in non-deterministic systems, uni-

form sampling algorithms are not particularly useful in detecting rare behaviors of non-

deterministic systems. Also, statistical guarantees about the correctness of a non-deterministic

system are not very useful as the construction of these statistical guarantees assumes a dis-

tribution on the inputs of the non-deterministic system. Simplifying assumptions on the

inputs of the non-deterministic system like uniform sampling of lassos from a Büchi au-

tomaton may not hold in practice.

Bayesian Estimation based Statistical Model Validation Langmead introduced the

first Bayesian technique for statistical model validation [Lan09]. This algorithm performs

Bayesian estimation the mean and variance of the Bernoulli distribution modeling the

probability that the formula is true. The parameters are estimated according to the follow-

ing well-known formulas:

ρ̂ =
k + α

α + β + n
ν̂ =

(α + k)(n− k + β)

(α + n+ β)2(α + n+ β + 1)

where ρ̂ and ν̂ are the estimated mean and variance of a Bernoulli distribution after see-

ing n sample trajectories, of which k satisfied the formula. The prior distribution over

ρ is specified in terms of the Beta distribution. α and β are the shape parameters of the

Beta distribution. Our algorithm is also Bayesian, but uses hypothesis testing, and is thus

expected to required fewer samples.

31

It is clear from this brief survey that there has been considerable research into statistical

model checking but several questions still remain open:

(i) Is there a statistical model checking algorithm that works directly on the compos-

ite hypothesis testing problem posed by the probabilistic model checking problem,

without reducing it to simple hypothesis tests?

(ii) Is there a Bayesian framework for performing hypothesis-based statistical model

checking?

(iii) If so, can we provide frequentist guarantees for such a Bayesian algorithm?

(iv) Can we use the cost of performing a simulation and the possible loss from making

an incorrect decision as the basis for a rational statistical model checking algorithm?

(v) Can we extend statistical model checking algorithms to use sampling strategies that

are not i.i.d. ?

In Chapter 4, we have answered these questions affirmatively.

3.2 Discovery of Stochastic Systems

Model discovery is closely related to the problem of verification of parameterized sys-

tems, and the latter can be posed as a model checking problem. A variety of algorithms

have been developed to address these problems using both symbolic [AAB00, ACH+95,

HHMWT00] and numerical methods [ADG05, DM07, MT00, SK03] for finite-state, con-

tinuous, and hybrid but non-stochastic systems. Such techniques differ from those pre-

sented in this thesis as they cannot be applied to stochastic models, and are restricted to

safety properties.

32

Our algorithm for model discovery uses a combination of statistical model check-

ing and abstraction refinement. A similar combination of techniques was first proposed

in [FJK08]. That method relies on an abstraction-refinement approach [JKWC07] for

model checking of linear hybrid systems which, unfortunately, cannot be easily adapted to

stochastic systems.

The literature for stochastic systems is primarily focused on sensitivity analysis [GCPD05]

or computing a point estimate for the parameters by fitting to observational data. Bayesian

approaches to parameter estimation [JU97, Kal60, KD01, vdMDdFW00]) can be inter-

preted as a form of parameter synthesis because they compute a probability distribution

over parameters. However, unlike our method, none of these methods admit the use of

high-level behavioral specifications.

There are a number of existing algorithms that have been developed to perform param-

eter synthesis and related tasks for biological processes, but these are either restricted to

non-stochastic models [BYWB07, CFS06a, CF03, DCS+08, DCL09, DCL10, DFTdJV06,

GTT03, RBFS08], or do not use high-level behavioral specifications [QBdB07]. Approx-

imate parameter synthesis against temporal specifications has also been studied for the

general class of CTMCs by using discretized parameter values and uniformization tech-

niques [HKM08]. We also note that the notions of robustness in metric temporal logics and

the use of the robustness in guiding a suitable search algorithm over the parameter space

for nonlinear continuous models were first introduced by [RBFS08]. They define a metric

temporal logic where a property is not just true or false, but can take an infinite contin-

uum of values. Further, these values of the property define a metric space. The algorithm

searches in the parameter space and chooses parameter values that make the model come

33

closer to satisfying the property. The search is continued until a point in the parameter

space is discovered such that the model satisfies the metric temporal logic specification.

Our algorithm extends some of these concepts to the case of CTMCs.

34

Chapter 4

Bayesian Statistical Model Checking

In this chapter, we present our new Bayesian Statistical Model Checking algorithm (Sec.

4.3) and two variants (Sec. 4.4 and Sec. 4.5) based on the cost of simulating a model and

the use of non-i.i.d. samples repectively. As we discussed in the previous chapters, the

Probabilistic Model Checking (PMC) problem is to decide whether a modelM satisfies

an adapted finitely monitorable (AFM) formula ϕ with probability at least ρ, i.e. whether

M |= P>ρ(ϕ), where ρ ∈ [0, 1]. Let u be the (unknown but fixed) probability of the model

satisfying ϕ: thus, the PMC problem can now be re-stated as deciding between the two

composite hypotheses about the distribution of the parameter u:

H ′
0 : u > ρ H ′

1 : u < ρ

These hypotheses are called composite because the parameter u isn’t specified completely,

but only in terms of a linear constraint. This may be contrasted with a simple hypothe-

35

sis test where the distribution of the parameter u is specified completely by each of the

two competing hypotheses. For example, the following is a choice between two simple

hypotheses:

H2 : u = ρ+ ϵ2 H3 : u = ρ− ϵ1 (0 6 ρ− ϵ1 < ρ < ρ+ ϵ2 6 1)

Our algorithm solves a slightly different version of the PMC problem. In particular,

our algorithm will verify whether one of the following two relaxed hypotheses is true:

H0 : u > ρ+ ϵ2 H1 : u < ρ− ϵ1 (0 6 ρ− ϵ1 < ρ < ρ+ ϵ2 6 1)

The interval [ρ − ϵ1, ρ + ϵ2], where 0 6 ρ − ϵ1 < ρ + ϵ2 6 1, is called the indifference

interval and the algorithm is permitted to accept any one of the hypotheses if the true

probability actually lies in this indifference interval. Intuitively, the null hypothesis H0

indicates that the modelM satisfies the AFM formula ϕ with probability at least ρ − ϵ1

while the alternate hypothesis H1 denotes that the model M does not satisfy the AFM

formula ϕ with probability ρ+ ϵ2 or more.

Recall that for any finite trace σi from a stochastic model and an adapted finitely mon-

itorable formula ϕ, we can deterministically decide whether σi satisfies ϕ. Therefore, we

can define a random variable Xi denoting the outcome of σi |= ϕ. Then, Xi will be a

Bernoulli random variable with probability mass function

f(xi|u) = uxi(1− u)1−xi

36

where xi = 1 if and only if σi |= ϕ, otherwise xi = 0. Note that the random variables

Xi (1 6 i 6 n) are i.i.d.

Since the probability with which the systemM satisfies ϕ is unknown, we can model

it as a random variable U , with a density g(u) called the prior density. The prior probabil-

ity distribution is usually based on our previous experiences and beliefs about the system.

A complete lack of information about the probability of the system satisfying the AFM

formula is usually summarized by a non-informative or objective prior probability distri-

bution [Ber85, GCSR03]. One example of a non-informative prior is Jeffreys’ prior. It

is a specially interesting prior as it is invariant under reparameterization of the parameter

space. This suggests that Jeffreys’ prior is at least independent of the specific choice of

the parameterization of the parameter space.

Example 9 (Jeffreys’ Prior for Bernoulli Distributions) For a Bernoulli random vari-

able that takes the value 1 with probability ρ and the value 0 with probability 1 − ρ, the

Jeffreys’ prior for the parameter ρ is the Beta probability distribution with shape parame-

ters 1/2 and 1/2.

Our algorithm takes as input the prior g(u), in addition to the modelM, the formula ϕ,

the threshold probability ρ, and the indifference region, [ρ− ϵ1, ρ+ ϵ2].

4.1 Bayesian Statistics

Suppose we have a sequence of random variables X1, . . . , Xn defined as above, and let

d = (x1, . . . , xn) denote a sample of those variables. Recall that the null hypothesis H0

37

indicates that the modelM satisfies the AFM formula ϕ with probability at least ρ − ϵ1

while the alternate hypothesis H1 denotes that the model M does not satisfy the AFM

formula ϕ with probability ρ + ϵ2 or more. The prior probability of a hypothesis H is

denoted by P (H), while the posterior probability of a hypothesis H conditioned on the

data d is denoted by P (H|d). Similarly, P (d|H) denotes the probability of observing the

sample data d = (x1, . . . , xn) given that the hypothesis H is true. Now, Bayes’ theorem

can be used to compute the posterior probability in terms of prior probability:

P (H0|d) =
P (d|H0)P (H0)

P (d)
P (H1|d) =

P (d|H1)P (H1)

P (d)

where P (d) = P (d|H0)P (H0) + P (d|H1)P (H1), which in our case is always non-zero.

The ratio of the posterior probability for hypotheses H0 and H1 given sample data d is

P (H0|d)
P (H1|d)

=
P (d|H0)

P (d|H1)

P (H0)

P (H1)
(4.1)

Definition 9 The Bayes factor B of sample d and hypothesesH0 andH1 is B =
P (d|H0)

P (d|H1)
.

The Bayes factor may be used as a measure of relative confidence in H0 vs. H1, as pro-

posed by Jeffreys [Jef61, KR95]. In particular, Jeffreys suggested that a value of the Bayes

factor greater than 100 provides decisive evidence in favor ofH0. Conversely, a Bayes fac-

tor less than 1/100 provides decisive evidence in favor of H1.

In order to test H0 vs. H1, we compute the Bayes factor B of the available data and

then compare it against 100 (or some other fixed threshold): we shall accept H0 if and

only if B > 100. In Table 4.1, we present Jeffreys [Jef61] subjective interpretation to the

38

Bayes Factor B Strength of Evidence
1 - 3 Not worth more than a mention

3 - 10 Substantial
10 - 100 Strong
> 100 Decisive

Table 4.1: Jeffrey’s Subjective Interpretation of Bayes Factor

values of the Bayes factor as a measure of the evidence in favor of the null hypothesis H0:

4.2 Bayes Factor Computation

We now discuss how to numerically compute the Bayes factor. According to Definition

9, we must calculate the ratio of the probability of the observed sample d = (x1, . . . , xn)

given the null hypothesis H0 to that given the alternate hypothesis H1. The probability of

the observed sample given a hypothesis is obtained by integrating the joint density h(d|u)

of the observations with respect to the prior g(u) over the interval that the hypothesis

believes u to be lying in. Since, we assume that the sample is drawn from i.i.d. variables,

we have that h(d|u) = f(x1|u)f(x2|u) · · · f(xn|u). Therefore,

P (x1, . . . , xn|H0) =

∫ 1

ρ+ϵ2

f(x1|u) . . . f(xn|u) · g(u) du (4.2)

P (x1, . . . , xn|H1) =

∫ ρ−ϵ1

0

f(x1|u) . . . f(xn|u) · g(u) du (4.3)

39

and the Bayes factor is the ratio of (4.2) and (4.3):

B =

∫ 1

ρ+ϵ2

f(x1|u) · · · f(xn|u) · g(u) du∫ ρ−ϵ1

0

f(x1|u) · · · f(xn|u) · g(u) du
. (4.4)

We observe that the Bayes factor depends on the data d and on the prior g, so it may be

considered a measure of confidence in H0 vs. H1 provided by the data x1, . . . , xn, and

“weighted” by the prior g.

Figure 4.1: Shapes of Beta Priors

For the sake of computational convenience, it is often desirable to choose aBeta distri-

bution as the prior probability of the formula being true. TheBeta distribution is conjugate

to our sampling distribution - the binomial distribution, and the choice of Beta distribu-

tion as the prior yields a posterior probability distribution that can be expressed as another

40

Beta distribution.

g(u) = β(a,b)(u), for all values of u ∈ [0, 1]

Here, a and b are called the shape parameters of theBeta distribution, and can be chosen so

as to reflect different degrees of faith in the property being true (See Fig. 4.1 and Fig. 4.2).

Figure 4.2: Beta Priors: Uniform Prior Beta(1,1) and Biased Priors

4.3 Algorithm 1: Bayesian Statistical Model Checking

Our Probabilistic Model Checking algorithm is essentially a sequential version of Jeffreys’

test [Jef61]. A sequential test does not decide on the number of samples to be observed a

priori and, instead, continues to sample more observations until one or the other hypothesis

can be rejected.

41

Our algorithm takes five inputs:

(i) System ModelM.

(ii) A Probabilistic Adapted Finitely Monitorable (PAFM) Property P>ρ(ϕ).

(iii) Indifference Region [ρ − ϵ1, ρ + ϵ2] such that (0 6 ρ − ϵ1 < ρ < ρ + ϵ2 6 1):

The algorithm is permitted to produce any answer if the actual probability lies in the

interval [ρ − ϵ1, ρ + ϵ2]. The indifference regions is usually very small. Intuitively,

if the true probability with which the system satisfies the AFM specification ϕ lies

in this interval, we do not care about the answer to the Model Checking query. Any

answer is almost right and hence, acceptable in this scenario.

(iv) Bayes Factor Threshold T > 1: The ratio of the posterior probability of one hypoth-

esis must exceed T times the posterior probability of the other hypothesis when the

algorithm stops. For example, if T = 100, our belief in one hypothesis must be 100

times stronger than our belief in the other hypothesis.

(v) Prior density g for the unknown parameter u: The algorithm also accepts a probabil-

ity density function g(u) that reflects our prior belief about the true probability with

which the systemM satisfies the AFM specification ϕ.

The algorithm iteratively draws i.i.d. sample traces σ1, σ2, ..., σn from modelM and checks

whether they satisfy ϕ. As explained earlier, we can model this procedure as independent

sampling from a Bernoulli distribution X of unknown parameter u - the actual probability

of the model satisfying ϕ. At stage n, the algorithm has drawn samples x1, . . . , xn. It

then computes the Bayes factor Bn according to Equation 4.4, and it stops iff (Bn > T

or Bn < 1
T
). When this occurs, it will accept H0 iff Bn > T , and it will accept H1 iff

Bn < 1
T

. The algorithm is illustrated in Algorithm 1.

42

Algorithm 1 Bayesian Statistical Model Checking
Require: System Model M, Probabilistic Adapted Finitely Monitorable (PAFM) Prop-

erty P>ρ(ϕ), Indifference Region [ρ − ϵ1, ρ + ϵ2], Threshold T > 1, Prior density g for
unknown parameter u

n := 0 {total number of traces drawn}
x := 0 {number of traces satisfying ϕ}

repeat
σ := draw an i.i.d. sample trace from the systemM
n := n+ 1
if σ |= ϕ then
x := x+ 1

end if
Bn := BayesFactor(n, x, ϵ1, ϵ2) {See Defn. (9)}

until (Bn > T ∨ Bn < 1
T
)

if (Bn > T) then
return M satisfies the PAFM Specification P>ρ(ϕ)

else
return M does not satisfy the PAFM Specification P>ρ(ϕ)

end if

4.3.1 Theorems

In this section, we prove properties of Algorithm 1. Before we do so, we recall the notions

of KL divergence, affinity, δ-separation and then an important result on the concentration

of Bayesian posteriors [CR08].

Definition 10 (Kullback-Leibler (KL) Divergence) Given a parameterized family of prob-

ability distributions {fρ}, the Kullback-Leibler (KL) divergenceK(ρ0, ρ) between the pa-

rameter distributions corresponding to the two parameters ρ and ρ0 is Eρ0

[
log

(
fρ
fρ0

)]
.

Note that Eρ0 is the expectation computed under the probability measure fρ0 , i.e. Eρ0 [g] =

43

∫∞
−∞ g fρ0(x) dx for any integrable random variable g.

The KL divergence between two distributions is a measure of the difference between two

probability distributions. The KL divergence is not symmetric in general and is thus not a

metric.

Definition 11 (Kullback-Leibler (KL) Neighborhood) Given a parameterized family of

probability distributions {fρ}, the KL neighborhood Kϵ(ρ0) of a distribution correspond-

ing to the parameter value ρ0 will be given by the parameter values in the set {ρ :

K(ρ0, ρ) < ϵ}.

Given a parameterized family of distributions, the KL neighborhood of a distribution is the

set of parameter values corresponding to distributions that are similar to this distribution

under the KL divergence notion of similarity.

Definition 12 (Kullback-Leibler (KL) Support) A parameter value ρ0 will be said to be

in the KL support of a prior Π if and only if for all ϵ > 0, Π(Kϵ(ρ0)) > 0.

Given an arbitrary prior probability distribution Π, a parameter value ρ0 is in the Kullback-

Leibler (KL) support of the prior Π if and only if every positive KL neighborhood of ρ0

has a non-zero prior probability.

Definition 13 (Affinity) Let f and g be two probability distributions on a probability

space R with probability measure µ. The affinity Aff(f, g) between the two densities f

and g is defined as the Lebesque integral
∫
R

√
fg dµ.

44

If F and G are discrete probability distributions of a random variable Y , then the above

definition of affinity between F and G i.e. Aff(F,G) reduces to
∑

y∈Y

√
F (y) G(y),

where Y is the set of possible values of the random variable Y .

The affinity of two probability distributions is another measure of the similarity between

those distributions. In particular, the affinity between two distributions is 1 if and only if

they are identical. If both the distributions never together assign a non-zero probability to

the same sample event, then the affinity between these two distributions is zero.

Definition 14 (Marginal Density) For a probability measure v on ρ where ρ ∈ ϱ , q(n)v is

the marginal density of X1, . . . , Xn, where Xi (1 6 i 6 n) are sampled i.i.d. from the

distribution fρ.

q(n)v (x1, x2, . . . , xn) =

∫
ϱ

fρ(x1) . . . fρ(xn) v(dρ)

Definition 15 (Strong δ-Separation) Let A ⊂ [0, 1] and δ > 0. The set A and the point

ρ0 are said to be strongly δ-separated if and only if for any probability measure v on A,

Aff
(
fρ0 , q

(1)
v

)
< δ

Note that q(1)v is the marginal density of one sample under the distribution fρ.

Example 10 Let A = [a0, a1] where 0 6 a0 < a1 6 1 and u be a point in [0, 1] such that

u ̸∈ A. Let {fρ} be a family of parameterized distributions. We will argue that the point u

and the set A are δ-separated. We choose any probability measure v on A.

45

(i) Computing the marginal density q(1)(v):

q(1)(v) =

∫
ϱ

fρ(x1) v(dρ) . . . ϱ is the sample space

=

∫
A

fρ(x1) v(dρ) . . . Since, v is defined on A

(ii) Computing the affinity Aff(fu, q
(1)
v):

Aff(fu, q(1)v)

=

∫
R

√
fu

∫
A

fρ v(dρ) dµ . . . R: sample space, µ: a measure on R.

=
∑

x∈{0,1}

√
fu

∫
A

fρ(.) v(dρ) . . .As f is discrete

=

√
fu(0)

∫
A

fρ(0) v(dρ) +

√
fu(1)

∫
A

fρ(1) v(dρ) . . .Algebraic Manipulation

6
√

(1− u) (1− a0) +
√
u a1 . . . fρ(0) 6 1− a0 and fρ(1) 6 a1

<
(1− u) + (1− a0)

2
+
u+ a1

2
. . .A.M.-G.M. Inequaltiy a0 ̸= u, a1 ̸= u

< 1 . . . u ̸∈ A =⇒ fu ̸=
∫
A

fρ(x1) v(dρ).

Hence, u and A are δ-separated for some δ < 1.

Theorem 1 If ρ0 and A = [a0, a1] are strongly δ−separated, and b0 = − log δ, then, for

all probability v on A, for all n,

Aff
(
f(x1|ρ0) . . . f(xn|ρ0),

∫ 1

0

f(x1|u) . . . f(xn|u) v(u)du
)
< e−nb0 (4.5)

46

Proof 1 Proof by Induction:

(i) Base Case: Aff
(
f(x1|ρ0),

∫ 1

0
f(x1|u)v(u)du

)
6 δ, where δ < 1. We know this from

Definition 15 and Example 10. Thus, Aff
(
f(x1|ρ0) . . . f(xn|ρ0),

∫ 1

0
f(x1|u) . . . f(xn|u)v(u)du

)
<

e−b0 , where b0 = − log δ.

(ii) Inductive Hypothesis: Aff
(
f(x1|ρ0) . . . f(xn|ρ0),

∫ 1

0
f(x1|u) . . . f(xn|u)v(u)du

)
<

e−nb0 , where b0 = − log δ.

(iii) Inductive Step:

Aff
(
f(x1|ρ0) . . . f(xn+1|ρ),

∫ 1

0

f(x1|u) . . . f(xn+1|u)v(u)du
)

=
∑

x∈Xn+1

√
f(x1|ρ0) . . . f(xn+1|ρ)

∫ 1

0

f(x1|u) . . . f(xn+1|u)v(u)du (By Definition)

=
∑

x∈Xn+1

(√
f(x1|ρ0) . . . f(xn|ρ0)f(xn+1|ρ)√∫ 1

0

f(x1|u) . . . f(xn|u)f(xn+1|u)v(u)du

)
(Algebraic Manipulation)

=
∑

x∈Xn+1

(√
f(x1|ρ0) . . . f(xn|ρ0)f(xn+1|ρ)√∫ 1

0

f(x1|u) . . . f(xn|u)v(u)du
∫ 1

0

f(xn+1|u)v(u)du

)
(E[AB] = E[A] E[B] if A ⊥ B)

=
∑

x∈Xn+1

(√
f(xn+1|ρ)

∫ 1

0

f(xn+1|u)v(u)du√
f(x1|ρ0) . . . f(xn|ρ0)

∫ 1

0

f(x1|u) . . . f(xn|u)v(u)du

)
(Alg. Manipulation)

=
∑
x∈Xn

√
f(x1|ρ0) . . . f(xn|ρ0)

∫ 1

0

f(x1|u) . . . f(xn|u)v(u)du

47

∑
xn+1∈X

√
f(xn+1|ρ)

∫ 1

0

f(xn+1|u)v(u)du (Algebraic Manipulation)

6 Aff
(
f(x1|ρ0) . . . f(xn|ρ0),

∫ 1

0

f(x1|u) . . . f(xn|u)v(u)du
)

Aff
(
f(xn+1|ρ0),

∫ 1

0

f(xn+1|u)v(u)du
)

(By Definition)

< e−nb.e−b = e−(n+1)b (From base case and inductive hypothesis)

Hence, proved by induction.

Theorem 2 (Bayesian Consistency Theorem [CR08]) If xi are i.i.d. samples of the

Bernoulli random variable Xi(1 6 i 6 n) with probability of success ρ0 such that ρ0

lies is in the KL support of the prior g, A = [a0, a1] is strongly δ- separated from ρ0

(for some δ > 0), and the prior probability measure on A is finite, then the posterior

probability of A decreases exponentially to 0 almost everywhere.

P


∫ a1

a0

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
> e−nb i.o.

 = 0

Here, b is a constant and the abbreviation i.o. stands for infinitely often.

Proof 2 For the details of the proof, please see [CR08]. We present a sketch of the Ap-

pendix.

48

Proof of Termination

Given the preceding theorem, we can now present a general theorem that characterizes the

priors under which our algorithm terminates almost surely:

Theorem 3 (Termination) The Bayesian Statistical Model Checking algorithm (with an

indifference region) terminates almost surely if the true probability with which the model

M satisfies the formula ϕ lies in the KL support of the proper1 prior probability distribu-

tion g.

Proof 3 There are two cases:

(i) Suppose the PAFM specification is true i.e. ρ0 > ρ+ϵ2, then the interval [0, ρ+ϵ2] is

strongly δ-separated from ρ0 for some non-zero constant δ (See Example 10). Then,

we know that

P


∫ ρ+ϵ2

0

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
> e−nb i.o.

 = 0 (4.6)

=⇒

∫ ρ+ϵ2

0

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
6 e−nb i.o. a.s.

=⇒

∫ ρ−ϵ1

0

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
6 e−nb i.o. a.s. (Probability densities are positive)

(4.7)

1A probability distribution is said to be proper if the integral of the probability over any interval is a finite
value.

49

=⇒ 1−

∫ ρ−ϵ1

0

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
> 1− e−nb i.o. a.s. (Subtracting from 1)

=⇒

∫ 1

ρ+ϵ2

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
> 1− e−nb i.o. a.s. (Algebraic Manipulation)

(4.8)

=⇒

∫ 1

ρ+ϵ2

f(x1|u) · · · f(xn|u) · g(u) du∫ ρ−ϵ1

0

f(x1|u) · · · f(xn|u) · g(u) du
> 1− e−nb

e−nb
= enb − 1 i.o. a.s. (From Eqns 4.7, 4.8)

(4.9)

The abbreviation a.s. is used to indicate the phrase “almost surely". We also recall

that the abbreviation i.o. stands for “infinitely often".

(ii) Suppose the PAFM specification is false i.e. ρ0 < ρ−ϵ1, then the interval [ρ−ϵ1, 1] is

strongly δ-separated from ρ0 for some non-zero constant δ (See Example 10). Then,

we know that

P


∫ 1

ρ−ϵ1

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
> e−nb i.o.

 = 0 (4.10)

=⇒

∫ 1

ρ−ϵ1

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
6 e−nb i.o. a.s.

50

=⇒

∫ 1

ρ+ϵ2

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
6 e−nb i.o. a.s. (Probability densities are positive)

(4.11)

=⇒ 1−

∫ 1

ρ−ϵ1

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
> 1− e−nb i.o. a.s. (Subtracting from 1)

=⇒

∫ ρ−ϵ1

0

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
> 1− e−nb i.o. a.s. (Algebraic Manipulation)

(4.12)

=⇒

∫ 1

ρ+ϵ2

f(x1|u) · · · f(xn|u) · g(u) du∫ ρ−ϵ1

0

f(x1|u) · · · f(xn|u) · g(u) du
6 e−nb

1− e−nb
=

1

enb − 1
i.o. a.s. (From Eqns 4.11, 4.12)

(4.13)

In the first case, we see that the Bayes Factor grows upwards towards infinity exponentially

and in the second case, we see that the Bayes Factor shrinks down towards 0 exponentially.

Hence, the algorithm always terminates.

Suppose that the specification is neither true nor false, i.e. the true probability ρ0 lies

in the indifference region [ρ − ϵ1, ρ + ϵ2]. We can spilt the scenario into two cases: the

true probability ρ0 lies in the region [ρ− ϵ1, ρ] or the true probability ρ0 lies in the region

[ρ, ρ+ ϵ2].

51

Suppose the true probability ρ0 lies in the region [ρ−ϵ1, ρ]. Then, the interval [ρ+ϵ2, 1]

is strongly δ-separated from ρ0 for some non-zero constant δ.

P


∫ ρ+ϵ2

0

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
> e−nb i.o.

 = 0

=⇒

∫ ρ+ϵ2

0

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
6 e−nb i.o. a.s.

=⇒

∫ ρ−ϵ1

0

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
6 e−nb i.o. a.s. (Probability densities are positive)

=⇒ 1−

∫ ρ−ϵ1

0

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
> 1− e−nb i.o. a.s. (Subtracting from 1)

=⇒

∫ 1

ρ+ϵ2

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
> 1− e−nb i.o. a.s. (Algebraic Manipulation)

=⇒

∫ 1

ρ+ϵ2

f(x1|u) · · · f(xn|u) · g(u) du∫ ρ−ϵ1

0

f(x1|u) · · · f(xn|u) · g(u) du
> 1− e−nb

e−nb
= enb − 1 i.o. a.s.

Thus, the Bayes Factor grows towards infinity exponentially when the true probability lies

in the interval [ρ− ϵ1, ρ].

52

Suppose the true probability ρ0 lies in the region [ρ, ρ+ϵ2]. Then, the interval [0, ρ−ϵ1]

is strongly δ-separated from ρ0 for some non-zero constant δ.

P


∫ 1

ρ−ϵ1

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
> e−nb i.o.

 = 0

=⇒

∫ 1

ρ−ϵ1

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
6 e−nb i.o. a.s.

=⇒

∫ 1

ρ+ϵ2

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
6 e−nb i.o. a.s. (Probability densities are positive)

=⇒ 1−

∫ 1

ρ−ϵ1

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
> 1− e−nb i.o. a.s. (Subtracting from 1)

=⇒

∫ ρ−ϵ1

0

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
> 1− e−nb i.o. a.s. (Algebraic Manipulation)

=⇒

∫ 1

ρ+ϵ2

f(x1|u) · · · f(xn|u) · g(u) du∫ ρ−ϵ1

0

f(x1|u) · · · f(xn|u) · g(u) du
6 e−nb

1− e−nb
=

1

enb − 1
i.o. a.s.

Thus, the Bayes Factor shrinks towards zero exponentially when the true probability lies

in the interval [ρ, ρ+ ϵ2].

53

Theorem 4 When the algorithm terminates and the true probability ρ0 of the model sat-

isfying the specification does not lie in the indifference region [ρ − ϵ1, ρ + ϵ2], the upper

bound on the number of samples needed is logarithmic in the Bayes Factor threshold T .

Proof 4 There are two cases:

(i) Suppose the PAFM specification is true i.e. ρ0 > ρ+ϵ2, then the interval [0, ρ+ϵ2] is

strongly δ-separated from ρ0 for some non-zero constant δ (See Example 10). Thus,

from Theorem 8, we know that there exist infinitely many n0 < ∞ such that the

following holds:

P


∫ 1

ρ+ϵ2

f(x1|u) · · · f(xn|u) · g(u) du∫ ρ−ϵ1

0

f(x1|u) · · · f(xn|u) · g(u) du
6 en0b − 1

 = 0

i.e.

∫ 1

ρ+ϵ2

f(x1|u) · · · f(xn0 |u) · g(u) du∫ ρ−ϵ1

0

f(x1|u) · · · f(xn0|u) · g(u) du
> en0b − 1 a.s.

For the algorithm to stop, it is sufficient to pick a n0 such that en0b − 1 > T i.e.

n0 > log(T + 1)

b
. Thus, the upper bound on the number of samples needed before

termination is a linear function of log(T + 1).

(ii) Suppose the PAFM specification is false i.e. ρ0 < ρ−ϵ1. Then the interval [ρ−ϵ1, 1] is

strongly δ-separated from ρ0 for some non-zero constant δ (See Example 10). Thus,

from Theorem 8, we know that there exist infinitely many n0 < ∞ such that the

following holds:

54

P


∫ 1

ρ+ϵ2

f(x1|u) · · · f(xn0 |u) · g(u) du∫ ρ−ϵ1

0

f(x1|u) · · · f(xn0|u) · g(u) du
> 1

en0b − 1

 = 0

i.e.

∫ 1

ρ+ϵ2

f(x1|u) · · · f(xn0 |u) · g(u) du∫ ρ−ϵ1

0

f(x1|u) · · · f(xn0 |u) · g(u) du
6 1

en0b − 1
a.s.

For the algorithm to stop, it is sufficient to pick a n0 such that 1
en0b−1

6 1
T

i.e.

n0 > log(T + 1)

b
. Thus, the upper bound on the number of samples needed before

termination is a linear function of log(T + 1).

Bounds on Type I/II errors

We can also derive frequentist bounds on the errors. If the null hypothesis H0 and the

alternate hypothesis H1 are mutually exclusive and γ is the ratio of the two prior proba-

bilities i.e. γ = P (H0)
P (H1)

, then the probability of the alternate hypothesis H1 being true can

be non-trivially bounded2 if the Bayes Factor T exceeds 1. Similarly, the probability of

the null hypothesis H0 being true can be bounded non-trivially if the Bayes Factor T falls

below 1. In other words, the Bayes Factor is related to the frequentist notions of Type I

and Type II errors. We recall that Type I error is the probability of rejecting H0 when the

sample data has been obtained from a system for which the null hypothesis H0 is true;

similarly, Type II error is the probability of rejecting H1 when the sample data has been

obtained from a system for which the alternate hypothesis H1 is in fact true.

2An upper bound larger than 1 on the value of any probability is trivial.

55

Theorem 5 If the Bayes Factor threshold is T and the ratio of priors is γ, then the prob-

ability of Type-II error is at most
1

Tγ + 1
.

Proof 5 We can bound the probability of the alternate hypothesis being true as follows:

P (H0|d)
P (H1|d)

=
P (d|H0)

P (d|H1)

P (H0)

P (H1)
. . .From Eq. 4.1

=⇒ P (H0|d)
P (H1|d)

> T
P (H0)

P (H1)
. . .From Definition 9 and algorithm termination

=⇒ P (H0|d)
P (H1|d)

> T γ . . . Since, γ is ratio of priors

=⇒ P (H0|d)
P (H1|d)

+ 1 > T γ + 1 . . .Adding 1 to both sides

=⇒ P (H0|d) + P (H1|d)
P (H1|d)

> T γ + 1 . . . Simplifying

=⇒ P (H1|d) 6 P (H0|d) + P (H1|d)
T γ + 1

. . .Rearranging terms

=⇒ P (H1|d) 6 1

T γ + 1
. . . Since, P (H0|d) + P (H1|d) 6 1

We note that the probability of the alternate hypothesis being true is inversely proportional

to two factors:

(i) The Bayes Factor threshold T : As the Bayes Factor grows larger, the bound on the

probability of the alternate hypothesis being true vanishes towards 0.

(ii) The ratio of the two prior probabilities i.e. γ = P (H0)
P (H1)

: As the ratio increases, the

probability of the alternate hypothesis being true becomes smaller. This reflects the

impact of the prior probability on our Bayesian Statistical Model Checking algo-

rithm.

56

An important point to note is that the ratio of the prior probabilities γ must not be zero;

otherwise, we obtain a trivial bound of 1 on the probability of the alternate hypothesis

being true. In practice, this is not a problem because one always chooses a non-zero

prior probability for the null hypothesis. A choice of zero prior probability for the null

hypothesis would indicate that one already knows the answer to the Bayesian Statistical

Model Checking query and is perfectly confident of it with probability 1.

Theorem 6 If the Bayes Factor threshold is T and the ratio of priors is γ, then the prob-

ability of the Type-I error is at most
1

T
γ
+ 1

.

Proof 6 We can bound the probability of the null hypothesis being true as follows:

P (H0|d)
P (H1|d)

=
P (d|H0)

P (d|H1)

P (H0)

P (H1)
. . .From Eq. 4.1

=⇒ P (H0|d)
P (H1|d)

6 1

T

P (H0)

P (H1)
. . .From Definition 9 and algorithm termination

=⇒ P (H0|d)
P (H1|d)

6 1

T
γ . . . Since, γ is ratio of priors

=⇒ P (H1|d)
P (H0|d)

> T

γ
. . . Inverting both sides

=⇒ P (H1|d)
P (H0|d)

+ 1 > T

γ
+ 1 . . .Adding 1 to both sides

=⇒ P (H1|d) + P (H0|d)
P (H0|d)

> T

γ
+ 1 . . . Simplifying

=⇒ P (H0|d) 6 P (H1|d) + P (H0|d)
T
γ
+ 1

. . .Rearranging terms

=⇒ P (H0|d) 6 1
T
γ
+ 1

. . . Since, P (H1|d) + P (H0|d) 6 1

57

We note that the probability of the null hypothesis being true is directly proportional to

two factors:

(i) The Bayes Factor threshold T : As the Bayes Factor grows smaller towards 0, the

bound on the probability of the null hypothesis being true vanishes towards 0.

(ii) The ratio of the two prior probabilities i.e. γ = P (H0)
P (H1)

: As the ratio increases, the

probability of the null hypothesis being true becomes larger. This reflects the impact

of the prior probability on our Bayesian Statistical Model Checking algorithm.

An important point to note is that the ratio of the prior probabilities γ must not be infinite.

Otherwise, the prior probability of the alternate hypothesis being true is 0. Thus, one al-

ready knows the answer to the Bayesian Statistical Model Checking query and is perfectly

confident of it with probability 1.

In Table 4.3.1, we also relate Bayes Factor with Type-I and Type-II errors. We note that

the Type-I and II errors are also influenced by the ratio of the priors. Note that our analysis

Ratio of Priors γ Bayes Factor T Type-I error Type-II error
1 100 1

101
No Bound

1 0.01 No Bound 1
101

100 100 1
10001

No Bound
100 0.01 No Bound 1

2

0.01 100 1
2

No Bound
0.01 0.01 No Bound 1

10001

Table 4.2: Illustrating the Frequentist Properties of Bayes Factor Test

does not bound both the Type-I and Type-II errors at the same time. One of the two bounds

turns out to be trivial as the bound on the probability is larger than 1 and we know that all

probabilities are trivially bounded by 1.

58

4.3.2 Empirical Performance of Algorithm 1

The performance of the Bayesian Statistical Model Checking algorithm depends on five

factors:

(i) the actual probability with which the system satisfies the PAFM formula (ρ0),

(ii) the probability threshold (ρ) in the PAFM formula,

(iii) the Bayes threshold (T),

(iv) the width of the indifference region, and

(v) the Prior Probability density (g).

It is independent of any other details of the precise model being studied. In this section,

we will study the performance of our algorithm in terms of these five factors.

Influence of the difference between ρ and ρ0

In Figure 4.3, we study the number of samples needed by our algorithm for a system

M which satisfies a specification ϕ with probability ρ0 = 0.25. We chose a symmetric

indifference region of size 0.001 and a Bayes Factor of 100. We repeated each experiment

100 times and have reported the average number of samples needed.

We see that the number of samples needed by our algorithm increases as the threshold

probability in our formula ρ gets closer to the actual probability of the formula being true

ρ0 . The same trend is also observed in Figures. 4.4 and 4.5, where we study systems that

satisfy the specification ϕ with probability ρ0 = 0.5 and ρ0 = 0.75 respectively. Thus, the

number of required samples is inversely proportional to |ρ− ρ0|.

59

Figure 4.3: Threshold Probability (ρ) vs. Number of Samples. Actual Probability (ρ0) is
0.25.

Figure 4.4: Threshold Probability (ρ) vs. Number of Samples. Actual Probability (ρ0) is
0.5.

60

Figure 4.5: Threshold Probability (ρ) vs. Number of Samples. Actual Probability (ρ0) is
0.75.

Influence of Bayes Factor Threshold (T) on the Performance of the algorithm

In Figure 4.6, we study the number of samples needed by our algorithm for a systemM

that satisfies a specification ϕ with probability ρ0 = 0.75. We test a property that holds

on the system with probability ρ = 0.5. We chose a symmetric indifference region of

size 0.001 and a Bayes Factor of 100. We repeated each experiment 10000 times and have

reported the average number of samples needed.

We find that the logarithm of the Bayes factor threshold and the number of samples

needed for our algorithm to terminate have a linear relationship, as predicted by Theorem

4. We see that the linear relationship also holds in Figures. 4.7 and 4.8, where we study

systems where the property holds on the system with probability ρ0 = 0.25 and ρ0 = 0.9

respectively. In Fig. 4.9, we study the case when the true probability of the formula being

61

Figure 4.6: Logarithm of the Bayes Factor Threshold (T) vs. Number of Samples. Proba-
bility Threshold (ρ) is 0.5.

true lies in the indifference region, and find that the number of samples is still linearly

related to the logarithm of the Bayes Factor threshold.

Influence of Indifference Region on the Performance of the algorithm

In Figure 4.10, we study the number of samples needed by our algorithm for a systemM

that satisfies a specification ϕ with probability ρ0 = 0.75 . We test a property that holds

on the system with probability ρ = 0.8. We chose a Bayes factor threshold of 100. We

repeated each experiment 1000 times and have reported the average number of samples

needed.

As expected, we find that a smaller indifference regions leads to an increase in the

number of the samples needed by our algorithm. However, as the indifference region con-

62

Figure 4.7: Logarithm of the Bayes Factor Threshold (T) vs. Number of Samples. Proba-
bility of Satisfying the Formula (ρ0) is 0.25.

Figure 4.8: Logarithm of the Bayes Factor Threshold (T) vs. Number of Samples. Proba-
bility of Satisfying the Formula (ρ0) is 0.9.

63

Figure 4.9: Logarithm of the Bayes Factor Threshold (T) vs. Number of Samples. Prob-
ability of Satisfying the Formula (ρ0) is 0.8. The indifference region is the interval
[0.65, 0.85] and the probability in the specification is 0.75.

Figure 4.10: Indifference Region vs. Number of Samples

64

tinues to shrink even further, the number of samples needed by the algorithm approaches

a constant asymptotically. This is also expected as the algorithm would terminate even

with a 0 indifference region as long as the true probability ρ0 of the system satisfying the

formula is not identical to the threshold probability ρ in the PAFM specification.

Performance with varying priors

We investigated the effect of priors on the performance of the Bayesian Model Checking

algorithm. We used two different priors - non-informative prior and an informative prior.

The priors and the number of samples needed by the Bayesian algorithm for these priors

is plotted in Fig. 4.11(a) and Fig. 4.11(b). The priors used are Beta distributions with

different shape parameters: (i) α = 1/2, β = 1/2: non-informative prior, (ii) α = 20, β =

1 : informative prior with a peak around 0.99.

We study the number of samples needed by our algorithm for a property which says

thatMwhich satisfies a specification ϕwith probability ρ0 = 0.99. We chose a symmetric

indifference region of size 0.01 and a Bayes Factor of 100. We repeated each experiment

100 times and have reported the average number of samples needed. For each choice of

prior probability, we varied the threshold probability (ρ) in the specification and recorded

the number of samples needed by our algorithm.

Fig. 4.11(b) shows that the number of samples needed by the Bayesian algorithm be-

comes smaller when the prior probability distribution is informative and supports the true

hypothesis. A completely non-informative prior does not perform as well as an informa-

tive prior. However, the algorithm still performs quite well, particularly when the actual

65

(a) Shape of the Priors used in our Experiments. (b) Number of Samples with Different Classes of Priors.

Figure 4.11: Different Classes of Priors

probability of the system is away from the threshold probability in the formula.

Performance of the Algorithm when the Threshold Probability is the Actual Proba-

bility of the Formula being true

An interesting scenario for Bayesian Statistical Model Checking arises when the threshold

probability ρ in the PAFM specification is identical to the actual probability ρ0 of the

formula being true.

We ran our algorithm multiple number of times on a system which satisfies a property

with probability 0.75. The threshold probability we chose was also 0.75, and we used a

symmetric indifference region of 0.01 on each side. In Figure 4.12, we plot the Bayes

Factor when the algorithm terminates for various runs of the Bayesian Statistical Model

Checking algorithm with these parameters.

66

Figure 4.12: Bayes Factor at Termination.

Figure 4.13: Bayes Factor at Termination.

67

Figure 4.14: Number of Samples vs. Probability of the Formula being True

We also ran our algorithm multiple number of times on another model which satisfies

a property with probability 0.5. The threshold probability we chose was also 0.5, and we

used a symmetric indifference region of 0.01 on each side. In Figure 4.13, we plot the

Bayes Factor when the algorithm terminates for various runs of the Bayesian Statistical

Model Checking algorithm with these parameters.

Influence of the difference between the True Probability and the Threshold Proba-

bility on the Performance of the Algorithm

We also experimentally studied the difference between the true probability of the property

being true on the model and the threshold probability of the specification.

In Fig. 4.14, we study the number of samples needed for the Bayesian Statistical Model

68

Checking algorithm to terminate when the threshold probability is 0.5 and we vary the

actual probability of the formula being true from 0.05 to 0.95. The shape of the curve in

the figure indicates that the number of samples is inversely related to the exponential of the

distance between the threshold probability and the actual porbability of the specification

being true on the model.

Case Study: T Cell Receptor Pathway

The previous experiments were on synthetic systems. In this section we apply Algorithm

1 to a model of the T cell receptor pathway. T lymphocytes, also known as T cells, play

a central role in the immune system by detecting foreign substances, known as antigens,

and coordinating the immune response. T cells detect the presence of antigen through

surface receptors, called T cell receptors (TCRs), which bind to specific polypeptide frag-

ments that are displayed on the surface of neighboring cells by a protein called the major

histocompatibility complex (MHC). Variable regions of the immunoglobulin chains that

comprise the TCR give rise to a broad range of TCR binding specificities. Individual T

cells (or clonal populations derived from the same precursor) express a unique form of

TCR. Processes of positive and negative selection during maturation of T cells in the thy-

mus select T cells possessing TCRs with a weak but nonzero affinity for binding MHC

molecules carrying peptides derived from host proteins. High-affinity binding between

TCR and peptide-MHC (pMHC) complexes induces a cascade of biochemical events that

leads to activation of the T cell and initiation of an immune response. To be effective in

detecting antigens while avoiding autoimmunity, T cells must generate strong responses

to the presence of minute quantities of antigen—as low as a few peptide fragments per

69

Figure 4.15: Overview of the TCR Signaling Model of Ref. [LHFH08].

antigen-presenting cell—while not responding to the large quantities of endogenous (host)

pMHC expressed on all cells. The T cell appears to maintain this delicate balancie between

sensitivity and selectivity through a combination of mechanisms that include kinetic proof-

reading, which discriminates against pMHC-receptor interactions that are too short, pos-

itive feedback, which amplifies the response and makes it more switch-like, and negative

feedback, which acts in concert with kinetic proofreading to dampen responses to weak

stimulation and with positive feedback to enhance the stability of the inactive state.

A computational model incorporating all three of these mechanisms has recently been

developed by Lipniacki et al. [LHFH08], and serves as the basis for the experiments

we conduct here. This model extends previous simplified models of kinetic proofreading

[McK95] and feedback regulation [RBL+96] by incorporating mechanistic detail about

the involvement of specific signaling molecules.

This model captures three important properties of T cell activation, which are sensitiv-

ity to small numbers of pMHC with high binding affinity, high selectivity between pMHCs

of different affinity, and antagonism, the inhibition of response by pMHC of intermediate

affinity. Because only small numbers of high-affinity pMHC ligands are displayed on cell

70

surfaces, stochastic effects have a major influence on the dynamics both of the model and

of the initiation of signaling through the TCR. The model also exhibits bistable ERK re-

sponses over a broad range of pMHC number and binding affinity. This bistable regime

has the interesting property that stochastic trajectories may exhibit completely different dy-

namics from the deterministic trajectory from the same initial state, and even the average

behavior of stochastic trajectories may differ qualitatively from the deterministic behavior

(see Fig. 7B of [LHFH08] for an example). This divergence between the stochastic and

deterministic dynamics was the motivation for using this model of TCR as the basis for the

current study, which aims to show that formal verification methods can be useful for the

characterization of rule-based biochemical models. As shown in Fig. 4.3.2, under many

input conditions traces from stochastic simulations may sample both stable steady states

and thus diverge from deterministic traces starting from the same initial conditions, which

sample only a single steady state.

We analyzed the T Cell Receptor model using the BioNetGen stochastic simulation

engine, which has a CTMC semantics. We chose the Bayes Factor threshold for our ex-

periments to be 100. We were interested in the truth of the hypothesis that the system

can go from the inactive state to the active state. We verified the following property with

various values of probability ρ.

Pr>ρ(F
100(ppERK/totalERK < 0.1) ∧ F400(ppERK/totalERK > 0.9))

The formula states that the ratio of ppERK to totalERK is below 0.1 within 100 time steps,

and the ratio of ppERK to totalERK is above 0.9 within 400 time steps. It basically says

71

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3
x 10

5

Time

C
on

ce
nt

ra
tio

n
of

 p
pE

R
K

SSA Simulation 1
SSA Simulation 2
SSA Simulation 3
SSA Simulation 4
SSA Simulation 5
ODE Simulation

Figure 4.16: Traces from Deterministic (ODE) and Stochastic Simulation of the TCR
Signaling Model. N1 : 100, N2 : 3000.

that the system can evolve from an inactive state to an active state within 400 time steps.

ρ Result Successful Samples Failure Samples Time

0.95 No 0 1 3s
0.75 No 0 3 10s
0.55 No 0 5 18s
0.25 No 0 16 55s

Table 4.3: Uniform Prior with Initial Number of Agonist pMHC : 100, Initial Number of
Antagonist pMHC : 1000 , Bayes Factor Threshold: 100

In our first experiment, there were 100 molecules of agonist pMHC and 1000 molecules

of antagonist pMHC. The results are presented in Table 4.3. As expected, the number of

samples needed to decide the property depends both upon the fraction of samples that sat-

isfied the property and the probability with which we want the property to be satisfied. If

72

ρ Result Successful Samples Failure Samples Time

0.95 No 41 6 4m2s
0.75 Yes 56 8 5m19s
0.55 Yes 10 1 57s
0.25 Yes 6 3 44s
0.15 Yes 1 0 5s

Table 4.4: Uniform Prior with Initial Number of Agonist pMHC : 100, Initial Number of
Antagonist pMHC : 0 , Bayes Factor Threshold: 100

the two probabilities are close together, we need a large number of samples. On the other

hand, we may need as few as 2 samples if these two probabilities are far apart.

Our second model started with 100 molecules of agonist pMHC (with dissociation

constant 1/20 per second) while antagonist pMHC was assumed to be absent in the initial

state. We also set the dissociation constant of agonist pMHC as 1/20 per second and that

of antagonist pMHC as 1/3. The results are illustrated in Table 4.4. Once again, we see

that the Bayesian algorithm needs to generate only a few samples if the probability of the

formula being true on the model and the probability threshold in the formula are very far

apart. On the other hand, if the probability of the formula being true and the probability

threshold in the formula are close together, the number of samples needed increases.

The second model showed a qualitative difference in behavior from the first. We veri-

fied the property that the stochastic model of the T Cell Receptor pathway can go from the

inactive to the active state with at least 0.75 probability in the second model. However, the

probability of this transition is at less than 0.25 in the first model.

73

4.4 Algorithm 2: Cost Based Statistical Bayesian Model

Checking

Most of the existing work in Statistical Model Checking is equipped with Frequentist

guarantees of Type I and II errors. One of the key advantages of a Bayesian approach is

that it can easily incorporate other decision criteria, such as the expected monetary costs

for generating samples and for returning an incorrect answer. In this section, we modify

Algorithm 1 and convert it into a cost-based algorithm. That is, one where we know the

cost of drawing samples from the model and the cost of making an incorrect decision. Our

algorithm will stop when the cost of making an additional observation is not offset by the

reduction in the expected loss from making a wrong decision [Gho, Ber93]. This is the

usual Bayesian way of managing the risk associated with making a wrong decision.

Consider the Model Checking query that a newly designed electronic braking system

is correct with 99.999999% probability. Each detailed simulation of such an event takes a

few days and is associated with a non-trivial computational cost. Each day of simulation

time of a single CPU node costs about $20 on the Amazon EC2 cluster. The cost of making

an incorrect decision is substantial. If an erratic model is released into the market, the cost

of a recall is prohibitive. In 2010, the cost of an automotive recall in the US was estimated

to be over $2 billion. The goal of the cost based Statistical Model Checking approach

is to use the information about the cost of sampling and the cost of making an incorrect

decision to decide the number of samples that should be observed.

We now suggest a Bayesian approach to deciding the Statistical Model Checking prob-

74

lem when the cost of generating each simulation and the cost of making a wrong decision

is known. When n independent simulation traces of the system have been analyzed against

an AFM formula ϕ and exactly x of these traces indeed satisfy the specification, then the

posterior distribution of the probability with which M satisfies the AFM formula ϕ is

given by the product of the prior probability and the probability of the observed samples.

After having made n observations, the probability that the system M satisfies the AFM

formula ϕ with probability at least ρ is

∫ ρ

0

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du

If C0 is the possible cost of the hazard associated with rejecting the property Pr>ρ(ϕ)

when the property is actually true, the expected cost Cost (N = n) associated with making

a wrong decision after N samples is then given by

Cost (N = n) =

∫ ρ

0

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
C0 (4.14)

If C1 is the possible cost of the hazard associated with accepting the property Pr>ρ(ϕ)

when the property is actually false, the expected cost Cost (N = n) associated with

75

making a wrong decision after N samples is then given by

Cost (N = n) =

∫ 1

ρ

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
C1 (4.15)

The Cost based Bayesian Model Checking algorithm is illustrated in Algorithm 1. The

algorithm takes six inputs:

(i) the modelM under investigation,

(ii) the Probabilistic Adapted Finitely Monitorable (PAFM) Formula Pr>ρ(ϕ) ,

(iii) the cost of generating each sample s,

(iv) the costs C0 and C1 of the possible hazard associated with the failure modes of the

property,

(v) the indifference region [ρ− ϵ1, ρ+ ϵ2] such that 0 6 ρ− ϵ1 < ρ < ρ+ ϵ2 6 1] such

that we are indifferent to the answer of the Statistical Model Checking algorithm if

the true probability of satisfying the formula ϕ lies within the tolerance region, and

(vi) the prior probability distribution g for the probability of the modelM satisfying the

formula ϕ.

The algorithm then performs i.i.d simulations of the model under investigation and records

the total number of simulation so far performed (n) and the number of simulations that

actually satisfy the AFM formula (x). After observing each sample, the algorithm veri-

fies whether the cost of observing another additional sample exceeds the reduction in the

expected loss from an incorrect decision by the Model Checking algorithm (irrespective

of the outcome of this additional sample). If an additional sample is less expensive to

76

generate than the associated reduction in the expected loss from an incorrect decision by

the Model Checking algorithm, the algorithm loops back and generates a new sample.

Otherwise, the algorithm stops and generates the answer to the model checking query of

the systemM satisfying the Probabilistic Adapted Finitely Monitorable (PAFM) formula

Pr>ρ(ϕ) depending on the value of the Bayes Factor after observing these samples.

4.4.1 Theorems

Theorem 7 The Cost based Bayesian Statistical Model Checking algorithm terminates

almost surely if the true probability with which the modelM satisfies the formula ϕ lies in

the KL support of the proper prior probability distribution g.

Proof 7 There are two cases:

(i) Suppose the PAFM specification is true i.e. ρ0 > ρ+ϵ2, then the interval [0, ρ+ϵ2] is

strongly δ-separated from ρ0 for some non-zero constant δ (See Example 10). Then,

we know that

P


∫ ρ+ϵ2

0

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
> e−nb i.o.

 = 0 (4.16)

=⇒

∫ ρ+ϵ2

0

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
6 e−nb i.o. a.s. (4.17)

77

Algorithm 2 Cost based Bayesian Model Checking algorithm
Require: Model M, PAFM Formula Pr>ρ(ϕ) , Cost of each simulation s, the costs
C0 and C1 of the possible hazard associated with the failure modes of the property,
Indifference Region [ρ− ϵ1, ρ+ ϵ2], Prior density g for unknown parameter u

n← 0; /* Total Number of Samples observed so far */
i← 0; /* Samples satisfying the AFM formula */
ExpectedLoss =∞;

while ExpectedLoss > s do
n← n+ 1;
Observe an i.i.d. sample simulation σn;
if σn |= ϕ then
xn = 1, i← i+ 1; /*simulation satisfies the AFM formula */

else
xn = 0; /*simulation does not satisfy the AFM formula */

end if

ExpectedLoss=min


∫ ρ−ϵ1

0
f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0
f(x1|u) · · · f(xn|u) · g(u) du

C0,

∫ 1

ρ+ϵ2

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0
f(x1|u) · · · f(xn|u) · g(u) du

C1


end while

if


∫ ρ−ϵ1

0

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
C0 <

∫ 1

ρ+ϵ2

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
C1


then

print The formula Pr>ρ(ϕ) holds onM.
else

print The formula Pr>ρ(ϕ) does not hold onM.
end if

78

=⇒

∫ ρ−ϵ1

0

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
6 e−nb i.o. a.s. (Probability densities are positive)

(4.18)

=⇒

∫ ρ−ϵ1

0

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
C0 6 e−nbC0 i.o. a.s. (4.19)

(ii) Suppose the PAFM specification is false i.e. ρ0 < ρ− ϵ1, then the interval [ρ− ϵ1, 1]

is strongly δ-separated from ρ0 for some non-zero constant δ (See Example 10).

Then, we know that

P


∫ 1

ρ−ϵ1

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
> e−nb i.o.

 = 0 (4.20)

=⇒

∫ 1

ρ−ϵ1

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
6 e−nb i.o. a.s. (4.21)

=⇒

∫ 1

ρ+ϵ2

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
6 e−nb i.o. a.s. (Probability densities are positive)

(4.22)

=⇒

∫ 1

ρ+ϵ2

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
C1 6 e−nbC1 i.o. a.s. (4.23)

79

In both cases, the computed expected loss vanished to zero as we increase the number of

samples obtained. Thus, it will become strictly smaller that the cost of generating each

sample s and the algorithm stops.

Cost of Simulation much smaller than the Loss associated with an Erratic decision

An interesting scenario happens when the cost of generating each sample observation

through simulation for the model i.e. s is much smaller than the loss associated with

an error C i.e.
s

C
→ 0. The number of samples needed before the algorithm terminates

is bounded by the logarithm of the ratio
C

s
. Hence, even though the ratio

C

s
itself may

be very large, the number of samples needed for the algorithm to terminate only grows

logarithmically in this ratio.

Cost of Simulation close to the Loss associated with an Erratic decision

When the the cost of generating each sample observation through simulation for the model

i.e. s is close to the loss associated with an errorC i.e.
s

C
→ 1, then the number of samples

needed by our algorithm is approximately a linear function of the ratio
C

s
itself. This can

be demonstrated by using the observation that the Taylor series expansion for the term

log x is approximately x− 1, when x is close to 1 and the higher order nonlinear terms are

small enough to be ignored.

80

Cost of Simulation larger than the Loss associated with an Erratic decision

Another interesting scenario happens when the cost of generating each sample observation

through simulation for the model i.e. s is much larger than the loss associated with an

error C i.e.
C

s
< 1. In this case, it is clear that even drawing one sample the system

is going to be more expensive that the cost of an error made by the Cost based Bayesian

Statistical Model Checking algorithm. In this case, it is not useful to validate this model

using simulation based sampling.

4.4.2 Empirical Performance of Algorithm 2

We analyzed the performance of the algorithm on the T Cell Receptor pathway [LHFH08].

From experimental observations, we know that it takes at least 4 seconds to run a simu-

lation of this model on a 2.2 GHz Quad-Core AMD Opteron Processor. We also know

that the cost of running the simulation on an Amazon EC2 cluster for an hour is 8.5 cents.

Thus, the cost of generating a single sample for this model s is at least 9× 10−5 cents.

The loss from the algorithm producing an incorrect answer depends on the context of

the application in which this model checking problem arises. For example, if the incorrect

answer could lead to a product recall that costs $1 million, that would be the cost of

producing an incorrect answer. We study the number of samples required by the algorithm

as a function of the loss from the incorrect answer.

We analyzed a property that should hold on the model with at least probability 0.95.

We used uniform priors and no indifference region. We also know that this property is true

81

on the model with probability 0.88. We varied the cost of making an incorrect decision

but kept the losses due to the algorithm producing an incorrect answer symmetric i.e.

C0 = C1 = C(say).

Cost of Incorrect Decision (C) #Samples Needed Expected Loss at Termination

0.01 68 0.000073
0.1 127 0.000069
1 150 0.000071

10 158 0.000049
100 184 0.000065

1,000 241 0.000065
10,000 253 0.000067

100,000 273 0.000047
1,000,000 287 0.000056

Table 4.5: Performance of Cost based Bayesian Model Checking Algorithm - I

For the same system and the same property, we sought an answer to the question that

the property is true with probability at least 0.5. Again, we used uniform priors and no

indifference region for our algorithm. We varied the cost of making an incoorect decision

but kept the costs symmetric.

In Table 4.5 and Table 4.6, we present the number of samples needed by the Bayesian

Statistical Model Checking algorithm. We observe that the number of samples needed

increases as we increase the cost of making a wrong decision.

In Figure 4.17(a) and Figure 4.17(b), we plotted the number of samples observed be-

fore our algorithm terminates against the logarithm of the symmetric cost of making an

incorrect decision. An important point to note is that the number of samples only in-

creases logarithmically in the cost of an incorrect decision. This is explained by the fact

82

Cost of Incorrect Decision (C) #Samples Needed Expected Loss at Termination

0.01 13 0.000065
0.1 23 0.000077
1 27 0.000089

10 35 0.000065
100 39 0.000069

1,000 59 0.000059
10,000 64 0.000059

100,000 68 0.000069
1,000,000 85 0.000072

Table 4.6: Performance of Cost based Bayesian Model Checking Algorithm - II

that Bayesian posteriors concentrate exponentially as discussed in Theorems 2 and 8. We

also plot the expected loss from making an incorrect decision at the termination of the

algorithm. We see that the expected loss has fallen below the cost of a simulation when

the algorithm terminates.

The exponential decay in expected loss from an incorrect decision merits further dis-

cussion from the perspective of practical applications of this algorithm. If our upper es-

timate of making a wrong decision is off by a constant factor, the algorithm would only

need to draw constant many additional samples. Similarly, if our lower estimate on the

cost of drawing a single observation using simulation is off by a constant factor, the cost

based Bayesian Statistical Model Checking algorithm only needs to draw constant many

additional samples. While it is probably impossible to precisely compute the cost of each

simulation or the cost of making a wrong decision in advance, it is reasonable to assume

that good lower bounds on the cost of simulating the model and upper bounds on the cost

of making a wrong decision are readily available. The performance of our algorithm is

83

(a) Actual Probability = 0.88 (b) Actual Probability = 0.5

Figure 4.17: Performance as a Function of Cost of Incorrect Decision

not severely affected by the use of these approximate costs for simulation and making an

incorrect decision because of the exponential concentration of the Bayesian posterior in

our setting.

4.5 Algorithm 3: Non-i.i.d. Bayesian Statistical Model Check-

ing

Both of the Bayesian statistical model checking algorithms presented earlier in this chapter

use independent and identically distributed samples to explore the stochastic model. In-

deed, to the best of our knowledge, all existing statistical model checking algorithms [CFL+08,

JJ08, JCL+09, YS02, YKNP04, YKNP06, You05a, You05c, You05b, You04, GS05, SVA04,

84

START

BAD GOOD

10-10 1-10-10

1 1

Figure 4.18: Statitisical Verification using i.i.d. Samples would need about 1010 Samples
to observe the Erratic Behavior.

SVA05] sample from the model in an i.i.d. fashion. That is, each sample trace is drawn

from the same probability distribution, and all traces are mutually independent. In contrast,

our algorithm presented in this section draws sample traces in a non-identically distributed

manner, but ensures that all sample traces are mutually independent. We refer to this as

non-i.i.d. sampling.

The distinction between i.i.d. and non-i.i.d. sampling is important. In particular, the

error bounds reported by existing statistical model checking algorithms are calculated un-

der the assumption that the samples are generated in an i.i.d. fashion. That is, each trace

is generated independently and according to the same underlying probability distribution.

Unfortunately, i.i.d. sampling is a very poor way of investigating rare events. To see why,

consider Figure 4.18. A visual inspection of the model illustrates that the bad state is

reachable with probability 10−10. Thus, the expected number of i.i.d. samples needed to

produce one trace that visits the bad state is 1010. This highlights one of the fundamental

limitations of existing statistical model checking algorithms — rare events are unlikely

to be sampled. To address this problem, we develop a new approach to statistical model

85

checking based on non-i.i.d. sampling that can expose rare behaviors and yet still provide

statistical bounds on the probability of an incorrect answer.

The key idea behind our non-i.i.d. sampling strategy based algorithm is that we do not

treat the model as a black box. Instead, we allow the model to be explicitly but carefully

manipulated before generating each sample. Each individual perturbation changes the

measure on the sampled traces, but we ensure that combination of all perturbations is such

that the ratio between the true and a suitable defined “average” of perturbed measures is

bounded. This enables us to provide statistical bounds on the probability of an incorrect

answer.

4.5.1 Background

In this section, we will discuss the conditions under which (a) it is possible to bound

the error introduced by our change of measures, as in our non-i.i.d. sampling procedure,

and (b) that a Bayesian Sequential Hypothesis Testing based procedure is guaranteed to

terminate, almost surely even under the non- i.i.d. scenario.

A stochastic model M is naturally associated with a probability measure µ. Rather

than drawing samples σi fromM under µ (which is what an i.i.d. sampling strategy would

do), our sampling strategy can be thought of as the assignment of a set of probability

measures µ1, µ2, ... toM. Each unique sample σi is associated with an implied probability

measure µi and is generated fromM under µi in an i.i.d. manner. Our proofs require that

all the implied probability measures are equivalent. That is, an event is possible (resp.

impossible) under a probability measure if and only if it is possible (resp. impossible)

86

under the original probability measure µ.

There are two key technical challenges associated with our non-i.i.d. approach. The

first is constructing the implied probability measures for stochastic models. For stochastic

differential equation models, this is addressed using Girsanov’s theorem [Gir60]. For

models written in the probabilistic reactive module formalism, we will suggest a method

to generate the non-i.i.d. samples and their implied probability measures in Section. 4.5.4.

The second challenge is computing the Type-I/Type-II errors under a non-i.i.d. sampling

procedure. This is the subject of our discussion in this section.

Our method is related to importance sampling - a general technique for estimating

properties of one probability distribution, while only having samples generated from a

different probability distribution rather than the distribution of interest. In conjunction

with Monte Carlo estimation, the idea behind importance sampling is that certain values

of the input random variables have more impact on the parameter being estimated than

others. The basic approach in importance sampling is to choose a probability distribution

which favours the important values. Clearly, a direct use of biased distributions will result

in a biased estimator if applied directly. However, if the simulation outputs are weighted

to correct for the bias, and this ensures that the importance sampling based estimator is

unbiased.

The work presented here is different from importance sampling as we do not know the

probability distribution from which we wanted to sample. Moreover, we do not sample

from one fixed distribution but a number of biased probability distributions. Further, we

do not need the resulting samples to be completely free of bias but permit a small bias

87

in the samples we draw. While our work is closely related in spirit to the idea of impor-

tance sampling in that we also employ the general technique of change of measures, the

similarities end there.

Bounding Errors Under a Change of Measure

In this section, we develop the machinery needed to compute bounds on the Type-I/Type-

II errors for a testing strategy based on non-i.i.d. samples. In classical statistical model

checking, the samples are drawn from the probability space with a known measure µ in an

i.i.d. fashion and then Wald’s SPRT or Bayesian posterior computation is used to derive

bounds on the Type-I/II errors. However, this is no longer sufficient when the samples

are drawn in an independent but non-identically distributed fashion. Suppose a given

behavior, say ϕ, holds on the original model with an (unknown) probability ρ0.

P (ρ0 < ρ|Xi) =

∫ ρ

0

pµ(Xi|u) g(u) du∫ 1

0

pµ(Xi|u) g(u) du
(4.24)

Here, Xi is a Bernoulli random variable denoting the event that ith sample satisfies the

given behavior ϕ. Note that the Xis must be independent of one another. Now, we can

rewrite the above expression as:

P (ρ0 < ρ|Xi) =

∫ ρ

0

pµ(Xi|u)
pµi

(Xi|u)
pµi

(Xi|u) g(u)du∫ 1

0

pµ(Xi|u)
pµi

(Xi|u)
pµi

(Xi|u) g(u) du
(4.25)

88

Note that the term pµi
(Xi|u) denotes the probability of observing the event Xi under the

probability measure µi if the unknown probability ρ were u. We call the ratio
pµi

(Xi|u)
pµ(Xi|u)

the implied Radon-Nikodym derivative for the change of measure between the two equiva-

lent probability measures that we have constructed. Suppose, the testing strategy has made

n observations X1, X2, . . . Xn. Then,

P (ρ0 < ρ|X) =

∫ ρ

0

n∏
i=1

((
pµ(Xi|u)
pµi

(Xi|u)

)
pµi

(Xi|u)
)
g(u)du∫ 1

0

n∏
i=1

((
pµ(Xi|u)
pµi

(Xi|u)

)
pµi

(Xi|u)
)
g(u)du

(4.26)

Note that we cannot easily compute the change of measure pµi (Xi|u)
pµ(Xi|u) algebraically or

numerically. Our algorithm does not need to compute this quantity explicitly but only

lower and upper bounds on the change of measure. Note that pµi (Xi|u)
pµ(Xi|u) is not the change

of measure for the probability of a given observed sample; rather, it is the change of

probability of the AFM specification ϕ being true on the model. In other words, pµi (Xi|u)
pµ(Xi|u)

is the change in probability of any random sample drawn from the model satisfying the

formula ϕ, and is not related to the probability of observing a given particular randomly

drawn sample under the original and the new probability measure. In order to compute

this change of measure pµi (Xi|u)
pµ(Xi|u) explicitly, one would have to enumerate all the paths that

satisfy the specification ϕ. If the model were small enough to do such an enumeration

of paths, there would be no need to apply statistical model checking algorithm to such a

model. Hence, our algorithm avoids computing the change of measure explicitly.

Consider the following expression that is computable without knowing the implied

89

Radon-Nikodym derivative or change of measure explicitly. We simply draw an i.i.d. sam-

ple under the probability measure µi from the modelM and then compute the integrals.

Q(ρ0 < ρ|Xi) =

∫ ρ

0

pµi
(Xi|u) g(u) du∫ 1

0

pµi
(Xi|u) g(u) du

(4.27)

Now, we can rewrite the above expression as:

Q(ρ0 < ρ|Xi) =

∫ ρ

0

(
pµi

(Xi|u)
pµ(Xi|u)

)
pµ(Xi|u) g(u) du∫ 1

0

(
pµi

(Xi|u)
pµ(Xi|u)

)
pµ(Xi|u) g(u) du

(4.28)

Our result will exploit the fact that we do not allow our testing or sampling procedures

to have arbitrary implied Radon-Nikodym derivatives. This is reasonable as no statistical

guarantees should be available for an intelligently designed but adversarial test procedure

that (say) tries to avoid sampling from the given behavior. Suppose that the implied Radon-

Nikodym derivative pµi (Xi|u)
pµ(Xi|u) always lies between a constant c and another constant 1/c.

That is, the change of measure does not distort the probabilities of observable events by

more than a factor of c. Then, we observe that:

Q(ρ0 < ρ|Xi) =

∫ ρ

0

pµi
(Xi|u)

pµ(Xi|u)
pµ(Xi|u)g(u) du∫ 1

0

pµi
(Xi|u)

pµ(Xi|u)
pµ(Xi|u)g(u) du

(4.29)

6

∫ ρ

0

cpµ(Xi|u)g(u) du∫ 1

0

1

c
pµ(Xi|u)g(u) du

(4.30)

90

= c2 P (ρ0 < ρ|Xi) (4.31)

Furthermore,

Q(ρ0 < ρ|Xi) =

∫ ρ

0

pµi
(Xi|u)

pµ(Xi|u)
pµ(Xi|u)g(u) du∫ 1

0

pµi
(Xi|u)

pµ(Xi|u)
pµ(Xi|u)g(u) du

(4.32)

>

∫ ρ

0

1

c
pµ(Xi|u)g(u) du∫ 1

0

cpµ(Xi|u)g(u) du
(4.33)

=
1

c2
P (ρ0 < ρ|Xi) (4.34)

Thus, by allowing the sampling algorithm to change measures by at most c, we have

changed the posterior probability of observing a behavior given a single sample by at most

c2. Suppose, the testing strategy has made n observations X1, X2, . . . Xn. Then,

Q(ρ0 < ρ|X) =

∫ ρ

0

n∏
i=1

(
pµi

(Xi|u)
pµ(Xi|u)

pµ(Xi|u)
)
g(u) du∫ 1

0

n∏
i=1

(
pµi

(Xi|u)
pµ(Xi|u)

pµ(Xi|u)
)
g(u) du

(4.35)

6

∫ ρ

0

cn
n∏

i=1

(pµ(Xi|u)) g(u) du∫ 1

0

1

cn

n∏
i=1

(pµ(Xi|u)) g(u) du
(4.36)

= c2n P (ρ0 < ρ|X1, X2, . . . Xn) (4.37)

91

Similarly,

Q(ρ0 < ρ|X1, . . . Xn) >
1

c2n

∫ ρ

0

n∏
i=1

(pµ(Xi|u)) g(u) du∫ 1

0

n∏
i=1

(pµ(Xi|u)) g(u) du
(4.38)

=
1

c2n
P (ρ0 < ρ|X1, . . . Xn) (4.39)

Hence, we have changed the posterior probability of observing a behavior ϕ given n sam-

ples by at most c2n by permitting implied Radon-Nikodym derivatives of at most c.

Termination Conditions for non-i.i.d. Sampling

In Theorem 8, we have shown that a Bayesian Sequential Hypothesis testing procedure

with i.i.d. sampling will terminate almost surely. However, our algorithm 4.5.2 uses non-

i.i.d. samples and so we must consider the conditions under which such an algorithm will

terminate. First, note that the factor introduced due to the change of measure c2n in Equa-

tions 4.37 and 4.39 can easily outweigh the gain made by the exponential concentration of

the posterior probability measure P (ρ0 < ρ|X1, X2, . . . Xn) (See Theorem 2). This is not

surprising because our construction thus far does not force a sampling (testing) strategy

not to bias against a sample in an intelligent way. That is, a maliciously designed sampling

(testing) procedure could simply avoid the error prone regions of the design. To address

this, we define the notion of a fair testing strategy that does not engage in such malicious

sampling.

92

Definition 16 A testing strategy is η-fair (η > 1) if and only if the geometric average of

the implied Radon-Nikodym derivatives over a number of samples is within a constant

factor η of unity, i.e.,

1

η
6 n

√√√√ n∏
i=1

pµi
(Xi|u)

pµ(Xi|u)
6 η

Note that a fair test strategy does not need to sample from the underlying distribution

in an i.i.d. manner. However, it must guarantee that the probability of observing the given

behavior in a large number of observations is not altered substantially by the non-i.i.d.

sampling. Intuitively, we want to make sure that we bias for each sample as many times

as we bias against it. Our main result shows that such a long term neutrality is sufficient

to generate statistical guarantees on an otherwise non-i.i.d. testing procedure.

Definition 17 An η-fair test is said to be eventually fair if and only if 1 6 η4 < eb,

where b is the constant in the (exponential) Bayes posterior concentration theorem (See

Theorem 2).

The notion of a eventually fair test corresponds to a testing strategy that is not malicious

or adversarial, and is making an honest attempt to sample from all the events in the long

run. The testing strategy may bias in favor of the low probability events to draw some test

samples, but it would also bias against such an event to draw other test samples.

93

4.5.2 Algorithm

We now present our Statistical Verification algorithm in terms of an eventually fair non-

i.i.d. testing procedure sampling with “implied" change of measures. Our algorithm is

relatively simple and generalizes our previous Bayesian Statistical Model Checking algo-

rithm [JCL+09] to non-i.i.d. samples using change of measures.

The algorithm draws non-i.i.d. samples from the stochastic models under different

probability measures chosen by an eventually fair testing strategy. The eventually fair

testing strategy ensures that the average of the implied change of measure is appropriately

bounded so as to make the non-i.i.d. sampling approach converge to the same answer as

the i.i.d. sampling approach. The variable n denotes the number of samples obtained so

far and x denoted the number of samples that satisfy the AFM specification ϕ. Based upon

the samples observed, we compute the Bayes Factor using samples obtained under the

new probability measures. We know from Equations 4.37 and 4.39 that the Bayes Factor

so computed is within a factor of the original Bayes Factor under the natural probability

measure. Hence, the algorithm divides the Bayes Factor computed using samples obtained

under the new probability measures by the factor η2n if this computed Bayes Factor is

larger than one. If the Bayes Factor computed using samples obtained under the new

probability measures is less than one, the algorithm multiplies the computed Bayes Factor

by the factor η2n.

94

Algorithm 3 Non- i.i.d. Statistical Verification algorithm
Require: Stochastic ModelM, PAFM Specification Pr>ρ(ϕ) , Bayes Factor Threshold
T > 1, Bound on implied Radon-Nikodym derivatives η, Prior density g for unknown
parameter u

Initialize n=0; /*n is number of samples observed*/
Initialize x=0; /*x is number of successful samples*/
BF ← 1

while
(
BF > 1

T
and BF < T

)
do

n← n+ 1 ;

Choose an implied change of probability measure ci using an η-eventually fair testing
strategy.

Draw sample σn from the stochastic modelM under the new probability measure.

if σn |= ϕ then
Xn← 1 ; x← x+ 1

else
Xn← 0 ;

end if

BF ←

∫ 1

ρ

n∏
i=1

pµi
(Xi|u)g(u) du∫ ρ

0

n∏
i=1

pµi
(Xi|u)g(u) du

if BF > 1 then

BF ← 1

η2n
BF

else
BF ← η2nBF

end if

end while

95

4.5.3 Results on the Non-i.i.d. Statistical Verification algorithm

The key technical accomplishment in this section is the analysis of our non-i.i.d. statistical

verification algorithm. We prove the following general theorem that characterizes the

priors under which our algorithm terminates almost surely:

Theorem 8 (Termination) Our non-i.i.d. Bayesian Statistical Model Checking algorithm

for the PAFM specification Pr>ρ(ϕ) using eventually fair sampling strategies terminates

almost surely if the true probability ρ0 with which the modelM satisfies the formula ϕ lies

in the KL support of the proper prior probability distribution g and ρ0 ̸= ρ.

Proof 8 There are two cases:

(i) Suppose the PAFM specification is true i.e. ρ > ρ0, then the interval [0, ρ] is strongly

δ-separated from ρ0 for some non-zero constant δ (See Example 10). Then, we know

that

P


∫ ρ

0

fµ(x1|u) · · · fµ(xn|u) · g(u) du∫ 1

0

fµ(x1|u) · · · fµ(xn|u) · g(u) du
> e−nb i.o.

 = 0 (4.40)

=⇒ 1

η2n

∫ ρ

0

fµ1(x1|u) · · · fµn(xn|u) · g(u) du∫ 1

0

fµ1(x1|u) · · · fµn(xn|u) · g(u) du
6 e−nb i.o. a.s. (From Equation 4.37)

96

=⇒

∫ ρ

0

fµ1(x1|u) · · · fµn(xn|u) · g(u) du∫ 1

0

fµ1(x1|u) · · · fµn(xn|u) · g(u) du
6 η2ne−nb i.o. a.s. (Algebraic Manipulation)

(4.41)

=⇒

∫ 1

ρ

fµ1(x1|u) · · · fµn(xn|u) · g(u) du∫ 1

0

fµ1(x1|u) · · · fµn(xn|u) · g(u) du
> 1− η2ne−nb i.o. a.s. (Posterior integrates to 1)

(4.42)

=⇒ 1

η2n

∫ 1

ρ

fµ1(x1|u) · · · fµn(xn|u) · g(u) du∫ ρ

0

fµ1(x1|u) · · · fµn(xn|u) · g(u) du
> 1

η2n
1− η2ne−nb

η2ne−nb
(Using Eqns. 4.41 and 4.42)

> η−4nenb − 1 (Algebraic Manipulation)

(4.43)

(ii) Suppose the PAFM specification is false i.e. ρ < ρ0, then the interval [ρ, 1] is strongly

δ-separated from ρ0 for some non-zero constant δ (See Example 10). Then, we know

that

P


∫ 1

ρ

fµ(x1|u) · · · fµ(xn|u) · g(u) du∫ 1

0

fµ(x1|u) · · · fµ(xn|u) · g(u) du
> e−nb i.o.

 = 0 (4.44)

=⇒

∫ 1

ρ

1

c1
fµ1(x1|u) · · ·

1

cn
fµn(xn|u) · g(u) du∫ 1

0

1

c1
fµ1(x1|u) · · ·

1

cn
fµn(xn|u) · g(u) du

6 e−nb i.o. a.s. (From Equation 4.37)

97

=⇒

∫ 1

ρ

fµ1(x1|u) · · · fµn(xn|u) · g(u) du∫ 1

0

fµ1(x1|u) · · · fµn(xn|u) · g(u) du
6 η2ne−nb i.o. a.s. (Algebraic Manipulation)

(4.45)

=⇒

∫ ρ

0

fµ1(x1|u) · · · fµn(xn|u) · g(u) du∫ 1

0

fµ1(x1|u) · · · fµn(xn|u) · g(u) du
> 1− η2ne−nb i.o. a.s. (Posterior integrates to 1)

(4.46)

=⇒ η2n

∫ 1

ρ

fµ1(x1|u) · · · fµn(xn|u) · g(u) du∫ ρ

0

fµ1(x1|u) · · · fµn(xn|u) · g(u) du
6 η4ne−nb

1− η2ne−nb
(Using Eqns. 4.45 and 4.46)

6 1

η−4nenb − 1
(Algebraic Manipulation)

(4.47)

Note that 1 6 η4 < eβ (Using Definition 17). In the first case, we see that the Bayes

Factor grows upwards towards infinity exponentially and in the second case, we see

that the Bayes Factor shrinks down towards 0 exponentially. Hence, the algorithm

always terminates.

Computing the Number of Samples Needed

While it is clear that the algorithm eventually terminates because of the concentration

of Bayesian posteriors, it is interesting to compute the relationship between the number

of samples observed by the algorithm when it terminates and the Bayes Factor T . This

98

is particularly important for large stochastic models where each simulation involves the

generation of a large number of random numbers and is expensive.

Theorem 9 When the algorithm terminates, the upper bound on the number of samples

needed to be observed is logarithmic in the Bayes Factor threshold T .

Proof 9 There are two cases:

(i) Suppose the PAFM specification is true i.e. ρ0 > ρ, From the proof of the previous

theorem, we know that the following holds infinitely often almost surely,

∫ 1

ρ

fµ1(x1|u) · · · fµn(xn|u) · g(u) du∫ ρ

0

fµ1(x1|u) · · · fµn(xn|u) · g(u) du
> η−2nenb − 1

When the algorithm terminates, we know that η−4nenb− 1 > T i.e. n > log(T + 1)

b− 4 log η
.

(ii) Suppose the PAFM specification is false i.e. ρ0 < ρ.

∫ 1

ρ

fµ1(x1|u) · · · fµn(xn|u) · g(u) du∫ ρ

0

fµ1(x1|u) · · · fµn(xn|u) · g(u) du
6 1

η−2nenb − 1

When the algorithm terminates, we know that
1

η−4nenb − 1
6 1

T
i.e. n > log(T + 1)

b− 4 log η
.

99

Bounds on Type-I and Type-II Errors for Non-i.i.d. Bayesian Model Checking

While the value of Bayes Factor T is itself a sufficient stopping criteria for Bayesian

Sequential Model Checking, we now relate the Bayes Factor to the frequentist notions of

Type I and Type II errors. Suppose that our statistical hypothesis test stops when the lower

bound on the Bayes Factor exceeds the threshold T or the upper bound on the Bayes Factor

falls below the threshold 1
T

(accepting the null or the alternate hypothesis respectively). We

compute bounds on the Type I and Type II errors for such a test.

We now seek to characterize the Type-I/II error analytically in terms of the Bayes

Factor threshold T . We assume that the actual probability of the formula being true on

the model ρ0 lies in the KL support of a proper prior and is δ-separated from the null or

alternative hypothesis for some non-zero δ.

Theorem 10 If the Bayes Factor threshold is T and the ratio of priors is γ, then the

probability of the Type-I error using η-fair tests is at most
1

T γ + 1
and that of Type-II

error using η-fair tests is at most
1

T
γ
+ 1

.

The proof is identical to the case of Bayesian statistical model checking using i.i.d.

samples. We present it here for the sake of completeness. Note that Equations 4.48

and 4.49 are now justified using the definition of the Bayes Factor and Equations 4.37

and 4.39.

Proof 10 (i) Bound on the probability of the alternate hypothesis being true:

P (H0|d)
P (H1|d)

=
P (d|H0)

P (d|H1)

P (H0)

P (H1)
. . .From Eq. 4.1

100

=⇒ P (H0|d)
P (H1|d)

6 T
P (H0)

P (H1)
. . .Bayes Factor Threshold

(4.48)

=⇒ P (H0|d)
P (H1|d)

6 T γ . . . Since, γ is ratio of priors

=⇒ P (H0|d)
P (H1|d)

+ 1 6 T γ + 1 . . .Adding 1 to both sides

=⇒ P (H0|d) + P (H1|d)
P (H1|d)

6 T γ + 1 . . . Simplifying

=⇒ P (H1|d) 6 P (H0|d) + P (H1|d)
T γ + 1

. . .Rearranging terms

=⇒ P (H1|d) 6 1

T γ + 1
. . . Since, P (H0|d) + P (H1|d) 6 1

(ii) Similarly, bound on the probability of the null hypothesis being true:

P (H0|d)
P (H1|d)

=
P (d|H0)

P (d|H1)

P (H0)

P (H1)
. . .From Eq. 4.1

P (H0|d)
P (H1|d)

> 1

T

P (H0)

P (H1)
. . .Bayes Factor Threshold (4.49)

=⇒ P (H0|d) 6 1
T
γ
+ 1

. . . Since, P (H1|d) + P (H0|d) 6 1

4.5.4 Testing Strategy for Probabilistic Reactive Modules encoding of

DTMCs

We know that Girsanov’s theorem [Gir60] can be used to change measures of stochastic

differential equation models. In this section, we show that a similar approach can be used

when dealing with DTMC models. In particular, an eventually fair testing strategy can

be developed for DTMCs written as Probabilistic Reactive Modules [KNP04, BCHG+97,

101

dAKN+00] which subsumes a number of modeling formalisms, such as agent based mod-

eling.

Probabilistic Reactive Module is a precondition/postcondition based formalism for

specifying probabilistic systems. When a precondiiton is true in a reactive module, the

reactive module can make a transition such that the postcondition holds true after the

transition. In a probabilistic reactive module, this transition is only taken with a certain

probability or with a certain rate. In this section, we focus only on reactive module rep-

resentations of DTMCs. In that setting, the transition is taken with a certain probability.

Further, this probability distribution is assumed to be fixed in our setting. Thus, our subset

of probabilistic reactive modules can be considered a factored representation of Discrete

Time Markov Chains.

Example 11 (Example Probabilistic Reactive Module) Consider a server S and a client
C that talk to each other by sending messages.

Module Server

Init: State = Init; MessageId=0;

State = Init: 0.95 -> State = Transmit;

State = Transmit: 0.9 -> State = Init and MessageId++;

Module Client

Init: State = Init; MessageId=0;

State = Init: 0.99 -> State = Receive;

State = Transmit: 0.99 -> State = Init and MessageId++;

The server has two states: Init and Transmit. It also has a variable MessageId. The server

starts in the initial state and then moves on to the Transmit state with 95% probability; it

stays in the Init state with 5% probability. In the transmit state, it moves to the Init state

with 90

102

Obviously, the client is symmetric and it moves from the Init state to the Receive state with

99% probability and from the Receive state to the Init state with 99% probability.

Consider a probabilistic reactive module M with k different parameters λ1, . . . , λk

denoting the probability of transitions. An observable event in M is a path of length at

most l in the state space of the module M .

s1
p1→ s2

p2→ · · · pl−1→ sl

A testing strategy can essentially perturb some of the parameters λ1, . . . , λk into a

new set of parameters λj1, . . . , λ
j
k and then draw a random i.i.d. sample from the mod-

ified stochastic system. The probability of any given sample (observed event) such as

s1
pi1→ s2

pi2→ · · ·
pil−1→ sl under the probability measure µi is given by pi1p

i
2 . . . p

i
l−1 ≡

(λi1)
n1 (λi2)

n2 . . . (λik)
nk . Here, nj denotes the number of times λij occurs in the product

of the transition probabilities Our testing strategy needs to be eventually fair, i.e. the ge-

ometric average n

√∏
i

(
λi1
)n1
(
λi2
)n2 . . .

(
λik
)nk should be bounded within an η-multiple

of (λ1)
n1 (λ2)

n2 . . . (λk)
nk . One can check that the following is sufficient to guarantee the

above:

1
√
η
λj <

n

√√√√ n∏
i=1

λij 6
√
ηλj for each j, where 1 6 j 6 k

Intuitively, this ensures that every path is equally biased against of favored in the geometric

average. Now, the probability of a formula being true is just the sum of the probability of

the paths satisfying the formula. Since, the inequality holds on every path individually,

103

we can sum these inequalities to obtain the inequality for the set of paths satisfying the

formula.

Thus, we have designed a sampling strategy that only needs to store the geometric aver-

age of the probability parameters and ensure that this geometric average is not too far away

from the original value of the probability parameters in the reactive module description to

ensure that the testing strategy is eventually fair.

4.5.5 Empirical Performance of Algorithm 3

We used our algorithm to study two simple models from computational finance: the ex-

ponential SDE model of Stock prices used in the famous Black-Scholes option pricing

formula and the mean reverting Cox-Ingersoll-Ross model for interest rates.

Validation of Stock Models against High Level Properties

Consider the Stochastic Differential Equation representing the price of a stock S used in

the famous Black-Scholes-Merton equation:

dS = m S dt + v S dBt (4.50)

where B is the Brownian motion. Here, m is the market interest rate and v is the constant

volatility of the market. Intuitively, the model believes that the stock price deterministi-

cally appreciates at the same rate as the market interest ratem but has a random component

called its volatility v which is a measure of the uncertainty in the price of the stock.

104

We use the following definition of the change of measure process Zt as the Radon-

Nikodym derivative for changing the probability measure:

Zt = e(αBt− 1
2
α2t)

Note that α is a real constant, Zt is a martingale, and by Girsanov’s theorem [Gir60], an

equivalent measure Pα is defined for every α viz., Pα = Zt P . Under the probability

measure Pα, the SDE in (4.50) becomes:

dS = (m+ αv) S dt + v S dB̂t (4.51)

where B̂t is a Brownian Motion under the changed probability measure.

We require that the Radon-Nikodym derivatives have a geometric average in [1
η
, η],

where η is small enough to permit the exponential concentration of the Bayesian posterior

(See Definition 17). Starting with an initial price of $100,000, we asked if the probability

of the value of the stock being less than $81,000 exceeded 0.00001 within a thousand

time steps. The market interest rate was set at 0.05 and was held constant throughout the

simulation.

Pr>0.00001[F
1000 (S < 81000)]

In Table 4.7, we present the number of successful samples observed by the i.i..d sam-

pling and the Non-i.i.d. sampling algorithms respectively. The non-i.i.d. sampling exposes

the rare behavior satisfying the property that the stock value falls below $81,000. In Fig-

105

#Samples #Successful (IID) #Successful (NONIID)
10 0 0
25 0 0
50 0 0

100 0 0
500 0 0

1,000 0 1 (observed at 932th sample)
2,500 0 2 (stopped at 2412th sample)
5,000 0 2 (stopped at 2412th sample)
7,500 0 2 (stopped at 2412th sample)

10,000 1 2 (stopped at 2412th sample)

Table 4.7: Number of Successful Samples observed using i.i.d. and non-i.i.d. Procedures

ure 4.19, we study the lower bound on the Bayes Factor that we derived in Theorem 9. The

Bayes Factor crosses our threshold of 105 when we have observed about 2, 400 samples.

The points where the Bayes Factor curve shows a sudden jump are the points where a con-

firming sample was observed by our algorithm. Our answer obtained by looking at 2,500

samples is confirmed by the i.i.d. sampling algorithm that found a confirming sample after

10,000 samples.

We also study several scenarios where the property was actually false. We expect that

the number of samples needed by the non-i.i.d. sampling algorithm exceeds the number

of samples needed by the i.i.d. based sampling algorithm when the rare behaviors are not

needed to demonstrate the truth of our probabilistic specification. In Fig. 4.20, we plot the

increase in the number of samples as a function of the maximum permissible change in

the geometric mean of the change of measures η. The number of samples needed for the

case of i.i.d. sampling has been normalized to 1 million samples. We also assume that the

Bayes Factor is set to 105.

106

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Number of Samples

N
on

−
i.i

.d
. B

ay
es

 F
ac

to
r

Bayes Factor vs. Number of Samples for non−i.i.d. Samples

Figure 4.19: Non-i.i.d. Sampling: The property is true.

0 0.5 1 1.5 2

x 10
−6

1

1.5

2

2.5

3

3.5
x 10

6

Difference between Change of Measure and Unity

N
um

be
r

of
 S

am
pl

es

Effect of Change of Measure on Number of Samples

Figure 4.20: Increasing Change of Measure and Number of Samples

Validation of Cox-Ingersoll-Ross interest rate models

The Cox-Ingersoll-Ross (CIR) model is a mean reverting Stochastic Differential Equation

model that captures the short term effect of market risk to the evolution of interest rates.
107

The model is given by the following simple SDE:

dr

dt
= a(b− r)dt+ v

√
rdWt (4.52)

The parameter a represents the speed of adjustment of the interest rate, b corresponds to the

mean interest rate that the model keeps reverting to, and v represents the inherent volatility

of the model and captures the notion of market risk. Starting with an initial interest rate

0 2 4 6 8 10 12

x 10
4

−6

−5

−4

−3

−2

−1

0

1

2

3

4

Number of Samples

Lo
ga

rit
hm

 o
f B

ay
es

 F
ac

to
r

Bayes Factor vs. Number of Samples

Figure 4.21: Non-i.i.d. Sampling: The property is false.

of 0.25, we wanted to prove the property that the interest rate could fall below 10−8 with

probability at least 10−4.

Pr>0.0001[F
1000 (r < 10−8)]

108

Our experiments with i.i.d. sampling algorithms indicate that this is not true. We did

not see even one confirming sample in about 25,000 i.i.d. simulations of the system. We

ran our non-i.i.d. simulation algorithm and the Bayes Factor plot is shown in Fig. 4.21.

The non-i.i.d. algorithm also concurs that the property F1000 (r < 10−8) is not true with

probability at least 0.0001.

4.6 Conclusion

We have presented three new algorithms in this chapter. The first algorithm performs

Bayesian statistical model checking, and we have proved properties concerning its termi-

nation, the bounds on the number of samples needed to terminate, and frequentist bounds

on errors. We then extended the algorithm to incorporate costs associated with generating

samples and making a wrong prediction. Finally, we adapted our algorithm for non-i.i.d.

sampling, which is important when investigating rare behaviors. We then proved proper-

ties concerning its termination, the bounds on the number of samples needed to terminate,

and frequentist bounds on errors, demonstrating that the non-i.i.d. approach still provides

useful guarantees.

109

110

Chapter 5

Discovery of Stochastic Biochemical

Models

This chapter introduces new algorithms for discovering the kinetic parameters for Con-

tinuous Time Markov Chain (CTMC) models of biochemical reaction networks. Our al-

gorithms use the fact that the probability of a measurable set of paths on such CTMCs is

a uniformly continuous function of the kinetic parameters. In this chapter, we will first

introduce and discuss the model discovery problem. Then, in Section 5.2, we survey the

class of CTMC models that we are interested in. We present a Survey Sampling based

approach to Statistical Model Checking in Section 5.3. We will then present results that

characterize the probability with which an AFM specification is true on a model in Sec-

tion 5.4. Finally, we discuss model discovery algortihms in Section 5.5 and show results

on representative benchmarks in Section 5.6.

111

5.1 Introduction

A biochemical reaction network consists of a number of distinct molecular species that

interact dynamically according to a prescribed set of reaction rules. Each rule describes

the production, consumption, or transformation of a subset of species. For example, the

rule

A+B
k

GGGGGAA′ +B

describes the transformation of species A into A′. The transformation is mediated by B,

but B is otherwise unaffected by the process. The transformation occurs with a forward

reaction rate k.

Ordinary differential equations are often used to model biochemical systems. These

equation-based models are deterministic approximations to what is inherently a stochastic

process. In contrast, Continuous Time Markov Chain (CTMC) models precisely represent

the stochastic nature of biochemical interactions [Gil77, Gil07, RPCG03]. Here, the state

transitions in the CTMC model correspond to discrete changes in the number of copies of

each species, due to the execution of a reaction rule. The rates of the stochastic state transi-

tions are derived from the kinetic reaction rate constants in the biochemical reactions. One

of the most difficult challenges that arises in the development of reaction network models

is the discovery of kinetic reaction rate parameters that are consistent with the empirical

behavior of the biochemical system being modeled. In the biological modeling literature,

there are two common strategies for obtaining model parameters — measurement and esti-

mation. Rate parameters can be measured experimentally using, for example, calorimetry

or spectroscopy. Unfortunately, it can be difficult or even impossible to measure all the

112

Semantic Knowledge

about the Model

(Behavioral

Specification)

Biochemical

Model with

Unknown Kinetic

Parameters

Parameter

Synthesis

Algorithm

Fully Specified Biochemical Model Satisfying

the Behavioral Specification

Synthesized

Parameter SpaceParameter Space

Searched

Figure 5.1: Parameter Synthesis Problem

rate constants specified in a given model, especially those between short-lived, transient

species. Thus, parameter estimation is generally used to calibrate the model. This pro-

cess involves a time-consuming and often an ad hoc manual search through the parameter

space. The goal of the search is to calibrate the model to one or more empirically observed

high-level behaviors from the real system (e.g., turnover rates).

In this chapter, we consider an alternative strategy to manual model calibration — auto-

mated parameter synthesis (Fig. 5.1). Biologists frequently summarize experimental data

with high-level behavioral descriptions (e.g., “the system is bi-stable”). Modelers gener-

ally want their models to satisfy these high-level specifications and not the precise details

of any particular set of experimental observations (due to stochastic dynamics, measure-

ment errors, etc.). Parameter synthesis is the task of identifying the volume in parameter

113

space that gives rise to the prescribed behavior. Synthesis is a more challenging problem

than parameter estimation, because every possible parameter combination must be char-

acterized as either satisfying the property, or not. Synthesizing parameters for CTMCs is

especially challenging because of the stochastic nature of the model, and because there are

an uncountably infinite number of parameter combinations.

We introduce three algorithms for studying the parameter space of stochastic biochem-

ical models. The first two algorithms solve the synthesis problem for CTMCs using a

combination of statistical model validation (Chapter 4) and abstraction refinement. Specif-

ically, given a CTMC, M, with unknown parameters, a property specification, ϕ, and a

probability threshold, ρ, our algorithms obtain a region in parameter space, Ṽϕ,ρ, such that

for any choice of parameters θ ∈ Ṽϕ,ρ the resulting model,Mθ, will satisfy ϕ with prob-

ability at least ρ. That is, Mθ |= Pr>ρ(ϕ). Additionally, for any choice of parameters

such that θ ̸∈ Ṽϕ,ρ, Mθ ̸|= Pr> ρ
η
(ϕ) where η > 1 is an input parameter to the synthe-

sis algorithm that controls the quality of the synthesized parameter space. The computed

volume is an approximation to the true volume satisfying the specification, V , but the

difference between Ṽ and V can be made arbitrarily small at the expense of additional

computational resources (by making η closer to one). The second algorithm is a modi-

fied version of the first, and uses monotonicity and abstraction refinement to accelerate the

synthesis. The third algorithm performs a parameter search and finds an approximation to

the single parameter combination that maximizes the probability that the property holds.

All three algorithms can also decide whether a given probabilistic property is infeasible.

That is, there is no choice of parameters that satisfy the given behavioral specification with

probability at least ρ.

114

The specific contributions of this chapter are as follows:

1. We present an automated algorithm for the calibration of stochastic biochemical

models against high-level behavioral specifications of the underlying biochemical

system. The proofs underlying our algorithm use a new statistical model validation

algorithm based on survey sampling. To the best of our knowledge, our use of sur-

vey sampling based statistical model validation is a novel method of constructing

correctness proofs for synthesis algorithms of stochastic biochemical models. Our

survey sampling based approach to statistical model validation is the cornerstone

of our proofs as it allows us to reason about sample paths from all the possible pa-

rameterizations of a given model, without worrying about changes in the probability

measures of the individual paths.

2. We show that the logarithm of the probability of an adapted finitely monitorable

formula (see Ch. 2, Sec. 2.2) being true on a model is uniformly and jointly con-

tinuous with respect to the kinetic parameters in the stochastic biochemical model.

The correctness results of our algorithms use this property.

3. We apply our algorithm to synthesize up to 6 parameters simultaneously for a Fi-

broblast Growth Factor signaling model studied in literature [HKN+06, HKN+08].

We note that this is the first time that the synthesis of as many as six parameters for

stochastic models against probabilistic temporal logic properties has been reported.

We also demonstrate our ability to show infeasibility of probabilistic adapted finitely

monitorable specifications on a biochemical model in a given parameter range. Fi-

nally, when parameter estimation is desired, as opposed to synthesis, we show that

our approach can scale to even higher dimensional spaces, by identifying the single

115

parameter combination that maximizes the probability of the formula being true in

an 11-dimensional system.

5.2 Stochastic Models of Biochemical Systems

The stochastic process underlying a dynamic biochemical system can be modeled with a

Continuous Time Markov Chain (CTMC) [Gil77, Gil07, RPCG03]. The key arguments

behind the underlying theoretical derivation are that the state of a chemical system changes

only through the completion of a chemical reaction, and that the probability of a chemical

reaction occurring during a given interval of time is proportional to the probability that the

reactants come together with enough energy to overcome the reaction’s activation energy

barrier. We formally define the model on which our algorithms operate.

Our algorithms can be applied to CTMCs of a particular form. Namely, those modeling

the dynamics of biochemical reactions. We consider a biochemical reaction system with

n biochemical reactions r1, r2, . . . , rn among m biochemical species X1, X2, . . . , Xm:

r1 : α1
1X1 + · · ·+ α1

mXm

k1
GGGGGGA α′1

1X1 + · · ·+ α′1
mXm

r2 : α2
1X1 + · · ·+ α2

mXm

k2
GGGGGGA α′2

1X1 + · · ·+ α′2
mXm

.
kj

GGGGGGA

rn : αn
1X1 + · · ·+ αn

mXm

kn
GGGGGGA α′n

1X1 + · · ·+ α′n
mXm

The stoichiometric constants α1
1, . . . , α

n
m, α

′1
1, . . . , α

′n
m are non-negative integers, and ki ∈

116

R+ (1 6 i 6 n) are reaction rates. The labeled Continuous Time Markov Chain corre-

sponding to the biochemical system is the three tuple (S,R, L) where:

• S = {0, 1, 2, . . . N} × {0, 1, 2, . . . N} × · · · × {0, 1, 2, . . . N} (m times). Here, N

denotes the maximum number of copies of any biochemical species as the system

evolves with time.

• L(s) = s ≡ (x1(s), . . . , xm(s)) where xj(s) ∈ [0, N] denotes the number of entities

of biochemical species Xj .

• R(s, s′) =


kjx1(s)

αj
1 . . . xm(s)

αj
m if s′ results from executing reaction rj in state s

0 otherwise

The probability density of a transition from state s to state s′ after spending time ∆ in

s, denoted by P (s, s′,∆), is kjx1(s)α
j
1 . . . xm(s)

αj
m (e−

∑n
i=1 I(ri)kix1(s)

αi
1 ...xm(s)α

i
m ∆i). The

indicator function I(ri) is 1 if and only if it is possible to execute the reaction ri in the

state s; otherwise, the indicator function I(ri) is zero.

Each state in this discrete state-space model for biochemical systems is labeled with

the number of copies of various biochemical species in the biochemical system. No two

distinct states have exactly the same number of copies of various biochemical species. The

rate of transition from one state s to another state s′ is proportional to the number of copies

of each biochemical species raised to the stoichiometric coefficient for that species in the

reaction rj that takes the system from state s to state s′. The constant of proportionality is

given by the rate constant kj . Note that there is at most one biochemical reaction that can

take the system from a given state to another given state in a single transition.

117

5.3 Statistical Model Validation for Model Disovery

Our parameter synthesis algorithms use statistical model validation algorithms to solve key

subproblems. Additionally, we will be using statistical approaches to develop our proofs.

Instead of proving properties of an arbitrary (possibly infinite) set of paths, we will use

the notion of unbiased statistical estimators to develop the correctness arguments of our

results. In particular, we invoke survey sampling. Our survey sampling based approach to

statistical model validation is the cornerstone of our proofs as it allows us to reason about

sample paths from all the possible parameterizations of a given model, without worrying

about changes in the probability measures of the individual paths.

We will show in Sec. 5.4 that survey sampling leads to a powerful new proof technique

for stochastic systems where one analytically lifts proof arguments from one parameter-

ization of a stochastic system to another parameterization of the same stochastic system.

The two stochastic systems are identical, except for a change of probability measure on

the paths. We believe this new proof technique is perhaps one of the most interesting

contributions of this chapter.

In the rest of the chapter, we are only interested in knowing whether a stochastic model

satisfies a probabilistic adapted finitely monitorable logic formula with arbitrary high con-

fidence. That is, deciding whetherM |=q P>ρ(ϕ) orM |=q P<ρ(ϕ) is true. Here, q is the

confidence probability; it represents our confidence that our decision is correct. Statistical

model validation algorithms generally terminate with a decision when the probability of

Type-I/Type-II errors have fallen below a threshold such that the user specified confidence

probability q is respected.

118

There are a variety of statistical model validation algorithms from which to choose,

and our parameter synthesis algorithm itself is agnostic to the particular choice of the

statistical model validation algorithm. In Chapters 3 and 4, we discussed a number of

existing statistical model validation algorithms. We now introduce an additional statistical

model validation algorithm that is important for the construction of our proofs in this

chapter.

5.3.1 Survey Sampling based Statistical Model Validation

The common feature of the model validation algorithms in Chapters 3 and 4 is that they

sample from the set of unique trajectories defined by a stochastic model with known pa-

rameters (or prior distributions over parameters, for the Bayesian methods). These samples

are then used to reject the null or the alternate hypothesis or estimate the actual probability

with which a specification holds on the stochastic model. When the parameters (or priors

over parameters) of the model are given, then the appropriate sampling strategy is to gen-

erate sample trajectories according to the underlying probability distribution implied by

the parameters. That is, trajectories with higher probability tend to be sampled with higher

frequency than those with lower probability.

Our goal in this chapter is different. We seek to synthesize parameters for a given in-

completely specified stochastic model. Under these circumstances, we argue that survey

sampling [SO96] based on simple random sampling with replacement is the appropriate

theoretical framework for generating independent and identically distributed (i.i.d.) tra-

jectories from a parameterized family of models. In contrast to the sampling strategies

119

employed in other statistical model checking techniques, survey sampling draws samples

uniformly from all unique traces of the model. That is, the samples are generated without

respect to any particular choice of kinetic parameters. The fact that the samples are not

affected by the probability space on the paths is crucial to the construction of our proofs

and correctness arguments. We note that survey sampling [SO96] is primarily a mecha-

nism to construct the proofs; the actual computation during the synthesis may use any of

the aforementioned statistical model validation algorithms.

Suppose that n samples have been uniformly drawn from the unique traces of the

model. Then, for any choice of parameters, θ, we can (retroactively) label each trace σi

of the model M(θ) with a probability density value Pθ(σi). Each trace is also labeled

with an indicator variable I(σi) such that the indicator is 1 if the trace satisfies the given

adapted finitely monitorable property, and 0 otherwise. Given these, we define the random

variable Xi ≡ Pθ(σi)I(σi). Thus, the sample mean or expected value of Xi (taken over

the n samples) is an unbiased estimator of the probability that the model will satisfy the

adapted finitely monitorable formula. We recall that the bias of an estimator is the differ-

ence between that estimator’s expected value, and the true value of the parameter being

estimated. A zero bias estimator is said to be unbiased.

X = E[X] =
1

n

n∑
i=1

Xi

The variance of the sample mean, V ar(X), can be computed as follows:

V ar(X) =
1

n2

n∑
i=1

n∑
j=1

Cov(Xi, Xj) =
1

n2

n∑
i=1

n∑
j=1

V ar(Xi) =
σ2

n

120

The problem with this computation is that it expresses the variance of the mean of observed

sample traces in terms of the variance of the entire population of unique traces in the

system (σ) - the latter quantity is not readily computable. Hence, we would like to express

the variance of the sample traces in terms of computable statistics of the observed traces

themselves. An unbiased estimator of V ar(X) is given by:

s2
X
=
σ̂2

N

(
N − n
n− 1

)

where σ̂2 = 1
n

∑n
i=1(Xi −X)2 and N is the total number of samples.

We have shown how the mean and the standard deviation of the sampling distribution

of X can be computed. The central limit theorem can now be used to show that the

sampling distribution can be approximated using a Gaussian distribution. By the central

limit theorem,

P

(
Xn − µ
σ
√
n

6 z

)
→ Φ(z) as n→∞

where Φ is the cumulative distribution function of the standard normal distribution. To

summarize, if we have drawn n samples (and n is large) out of the N possible samples,

the distribution of the sample traces is given by the normal distribution:

N (X,
N − n

n(n− 1)N

n∑
i=1

(Xi −X)2)

Thus, survey sampling estimates the mean and the variance of the probability of the prop-

erty being true for the model. We note that the exact form of these expressions or the

computation of the sample mean and variance of the sample mean is not a subject of key

121

interest in this chapter. The fact that survey sampling can be used for statistical model

validation and the samples involved in survey sampling do not change with change in

probabiliity measures of a model is used to argue the correctness of our algorithms.

5.4 Problem Statement and Theorems

Given a parameterized biochemical systemM(Θ) with unknown kinetic parameters Θ and

a probabilistic adapted finitely monitorable logic formula Pr>ρ(ϕ), the parameter synthe-

sis problem is to discover a bounded region in parameter space, V , such that the system

M with parameter values θ ≡ (k1, . . . , kn) ∈ V , i.e.M(θ), satisfies the formula.

A brute-force approach to solving the synthesis problem would involve exhaustively

searching the space of all parameter values and using statistical model validation to es-

timate the probability that each parameter combination results in a model that satisfies

the formula. Unfortunately, a brute-force algorithm will not terminate because the search

space for the parameter values is uncountably infinite. An alternative approach is to dis-

cretize the parameter space and sample from the resulting finite search space. However,

two questions remain open:

I. Can we bound the probability of the formula ϕ being true on the modelM in a dense

set of parameters by sampling only finite points in this dense set?

II. What is a good discretization of the space of parameters?

This chapter provides an affirmative answer to the first question. Then, we present a

methodology to address the second problem by developing a new theoretical characteriza-

122

tion for the probability of a formula being true as a function of the reaction rate parame-

ters. We will show that bounded changes in the logarithm of reaction rates make bounded

changes in the logarithm of the probability density associated with any finite path of non-

zero probability measure, and that this change can be made arbitrary small by choosing

a sufficiently small change in the reaction rate parameters. To do this, we will use the

uniform continuity of the logarithm of the probability density of a path in a stochastic bio-

chemical model with respect to the logarithm of the reaction rate parameters in a bounded

parameter space to prove the correctness of our synthesis algorithms.

5.4.1 Uniform Continuity in the Logarithmic Parameter Space

The change in the logarithm of the probability density associated with any finite path of a

biochemical stochastic model can be bounded by a function of the change in the logarithm

of the reaction rate (kinetic) parameters. Moreover, this change in the logarithm of the

probability density can be made arbitrarily small by choosing a sufficiently small change

in the logarithm of the reaction rate parameters.

Theorem 11 If kj, k′j ∈ (0,M] and | log k′j − log kj| 6 δ, |k′j − kj| 6M(eδ − 1).

Proof 11 Without loss of generality, assume kj > k′j .

| log k′j − log kj| 6 δ

⇒ log kj − log k′j 6 δ

⇒ log
kj
k′j

6 δ

⇒kj
k′j

6 eδ

123

⇒kj 6 k′j e
δ (Taking exponential on both sides)

⇒kj − k′j 6 k′j
(
eδ − 1

)
(Subtracting k′j from both sides)

⇒|kj − k′j| 6 k′j
(
eδ − 1

)
⇒|kj − k′j| 6M

(
eδ − 1

)
(Since k′j 6M)

Consider a path σ in a biochemical stochastic systemM(Θ). We recall that Θ denotes

the reaction rate parameters. Further, let P (σ) denote the probability density associated

with the path inM(θ) while P ′(σ) denotes the probability density of the path inM(θ′).

We now show that the difference between the logarithm of P (σ) and the logarithm of P ′(σ)

can be made as small as needed by making the difference between θ and θ′ sufficiently

small.

Theorem 12 (Uniform Continuity of Path Probability Density in Parameter Space) For

every ϵ ∈ R+, there exists δ ∈ R+ such that | logP ′(σ) − logP (σ)| 6 ϵ holds whenever

| log k′j − log kj| 6 δ, for all j (1 6 j 6 n).

Proof 12 We present a detailed proof in Appendix section A.2. Here, we present an intu-

itive sketch of the proof. We know that the probability density of moving from state si to

state si+1 by executing reaction rji after time ∆i is given by

P (si
∆i−→ si+1) = kjix1(si)

α
ji
1 . . . xm(si)

α
ji
mexp

(
−

n∑
h=1

I(rh, i)khx1(si)α
h
1 . . . xm(si)

αh
m∆i

)

Taking logarithms on both sides,

logP (si
∆i−→ si+1)

124

= log
(
kjix1(si)

α
ji
1 . . . xm(si)

α
ji
m
)
−

n∑
h=1

I(rh, i)khx1(si)α
h
1 . . . xm(si)

αh
m∆i

= log
(
kjiγ

ji
(i,i+1)

)
−

n∑
h=1

khI(rh, i)γh(i,i+1)∆i

Here, γh(i,i+1)

def
≡ x1(si)

αh
1 . . . xm(si)

αh
m is a quantity independent of kh (1 6 h 6 n). And

so, | logP (si
∆i−→ si+1)− logP ′(si

∆i−→ si+1)|

= | log kji − log k′ji+
n∑

h=1

I(rh, i)(k′h − kh)γh(i,i+1)∆i |

6 | log kji − log k′ji|+ γmax
(i,i+1)∆i

n∑
h=1

|k′h − kh| (γmax
(i,i+1)

def
≡ max

16h6n
I(rh, i)γh(i,i+1), Triangle Ineq.)

Consider the finite path σ ≡ s0
∆0−→ · · · ∆l−1−→ sl. Let P (σ) be the probability density as-

sociated with the path in the modelM(θ) and P ′(σ) be the probability density associated

with the modelM(θ′). We know that P (σ) = P (s0
∆0−→ s1)× · · · × P (sl−1

∆l−1−→ sl).

So, | logP (σ)− logP ′(σ) |

6
l−1∑
i=0

| log kji − log k′ji|+
l−1∑
i=0

(
γmax
(i,i+1)∆i

n∑
h=1

|k′h − kh|
)

. . . Triangle Inequality

6 l max
ji,i∈[0,l−1]

| log kji − log k′ji|+
(n∑

h=1

|k′h − kh|
) l−1∑

i=0

(
γmax
(i,i+1)∆i

)
. . . Algebraic Manipulation

6 l | log kj − log k′j|max + γmax
(n∑

h=1

|k′h − kh|
) l−1∑

i=0

∆i

where γmax
def
≡ max

i∈[0,l−1]
γmax
(i,i+1) and | log kj− log k′j|max

def
≡ max

ji,i∈[0,l−1]
| log kji− log k′ji|. And

125

so, | logP (σ)− logP ′(σ) |

6 l| log kj − log k′j|max + γmax
(n∑

h=1

|k′h − kh|
)
∆total . . .∆total ≡

l−1∑
i=0

∆i

6 l δ + γmax
(n∑

h=1

M
(
eδ − 1

))
∆total . . .From Lemma 11

To show that | logP (σ)− logP ′(σ) | 6 ϵ, it is sufficient to show that the following holds:

l δ + γmax
(n∑

h=1

M
(
eδ − 1

))
∆total 6 ϵ

From the statement of our theorem, we know that | log kj − log k′j|max 6 δ. One can verify

that the following choice of δ is sufficient to show that | logP (σ)− logP ′(σ)| 6 ϵ:

δ = min

(
ϵ

l(n+ 1)
, log

(
ϵ

(n+ 1)max(γmaxM∆total, 1)
+ 1

))
def
≡ δ(ϵ,M).

In the rest of the chapter, we will use the notation δ(ϵ,M) to denote this value of δ.

The uniform continuity arguments we have presented allow us to establish results on

a finite set of points in a bounded parameter space and then extend the statements of these

results to the entire uncountably infinite parameter space. A natural follow-up investiga-

tion is to characterize the probability of a formula being true as a function on the parameter

space. In the following lemma, we define an unbiased statistical estimator of the probabil-

ity of a formula being true on a model.

126

Lemma 1 [Survey Sampling based Unbiased Statistical Estimator for the Probability of

a Finite Set of Paths] Given a finite set of independent and identically distributed (i.i.d.)

sample paths σ1, σ2, . . . , σT (of length at most l) drawn uniformly from a (possibly infinite)

set of paths T such that each path is labeled with either 0 or 1 i.e. L(σi) ∈ {0, 1}, an

unbiased statistical estimator for the probability of the set of paths with label 1 in T is

given by

P̂
def
≡

∑
L(σt)=1,16t6T P (σt)∑T

t=1 P (σt)

i.e.

P̂
def
≡
∑

L(σt)=1,16t6T

∏l
i=1 kji(σt)γ

ji
(i,i+1)(σt)exp(−

∑n
h=1 I(rh, i, σt)kh(σt)γh(i,i+1)(σt)∆i(σt))∑T

t=1

∏l
i=1 I(rh, i, σt)kji(σt)γ

ji
(i,i+1)(σt)exp(−

∑n
h=1 kh(σt)γ

h
(i,i+1)(σt)∆i(σt))

Here, kji(σt), γ
ji
(i,i+1)(σt), and ∆i(σt) represent the values of kji , γ

ji
(i,i+1) and ∆i corre-

sponding to the path σt. Also, γh(i,i+1)(σt)
def
≡ x1(si(σt))

αh
1 . . . xm(si(σt))

αh
m is a quantity

independent of kh(σt) (0 6 h 6 n, 1 6 t 6 T). The indicator function I(rh, i, σt)

indicated whether the reaction rh was fired at the ith step in the path σt

Theorem 13 (Uniform Continuity of the Unbiased Estimator) Let P̂ be the unbiased

statistical estimator of the probability with which an AFM specification ϕ is true on the

modelM(θ) and P̂ ′ be the unbiased statistical estimator of the probability with which ϕ

is true on the modelM(θ′). For every ϵ ∈ R+, there exists δ ∈ R+ such that | log P̂ ′ −

log P̂ | 6 ϵ holds whenever | log k′j − log kj| 6 δ, for all j (1 6 j 6 n).

Proof 13 Consider a survey sampling based unbiased statistical estimator of the probabil-

127

ity of the formula using T samples σ1, σ2 . . . σT . For any ϵ/2 ∈ R+, we know that there ex-

ists δi ∈ R+ such that | logP ′(σi)− logP (σi)| 6 ϵ
2

holds whenever | log kj ′− log kj| 6 δi.

Choose δ as the smallest of all δi (1 6 i 6 T).

P̂ ′ =

∑
σ|=ϕ P

′(σ)∑
σ P

′(σ)
Statistical Estimator Definition

6
∑

σ|=ϕ e
ϵ
2P (σ)∑

σ e
− ϵ

2P (σ)
Uniform Continuity of Paths

= eϵ
∑

σ|=ϕ P (σ
′)∑

σ P (σ
′)

Algebraic Manipulation

= eϵP̂ Statistical Estimator Definition

=⇒ log P̂ ′ − log P̂ 6 ϵ Taking log on both sides

Similarly, we can also argue that

P̂ ′ =

∑
σ|=ϕ P

′(σ)∑
σ P

′(σ)
Statistical Estimator Definition

>
∑

σ|=ϕ e
−ϵ
2 P (σ)∑

σ e
ϵ
2P (σ)

Uniform Continuity of Paths

= e−ϵ

∑
σ|=ϕ P (σ

′)∑
σ P (σ

′)
Algebraic Manipulation

= e−ϵP̂ Statistical Estimator Definition

=⇒ log P̂ ′ − log P̂ > −ϵ Taking log on both sides

Thus, we know that | log P̂ ′ − log P̂ | 6 ϵ. Hence, the logarithm of the unbiased statistical

estimator of the probability of the formula is uniformly continuous in the kinetic parameter

space.

128

If one could show that the probability of a formula being true is monotonic as a func-

tion on the parameter space, it would be possible to develop abstraction refinement algo-

rithms [CGJ+00, JBS07] by sampling with varying discretizations of the parameter space.

In the following theorem, we show that the probability density of a path is not necessarily

monotonic in the parameter space and compute the point in the parameter space where the

extremum of the probability density of a path is reached.

Theorem 14 (Non-Monotonicity of Path Probability Density in the Parameter Space)

The probability density of a path in a stochastic biochemical model is not necessarily

monotonic in the parameter space.

Proof 14

P (σ) = P (s0
∆0−→ s1)× · · · × P (sl−1

∆l−1−→ sl)

⇒ logP (σ) = logP (s0
∆0−→ s1) + · · ·+ logP (sl−1

∆l−1−→ sl)

⇒ 1

P (σ)

dP (σ)

dku
=

d

dku

l−1∑
i=0

(
log kji + log

(
γji(i,i+1)

)
−

n∑
h=1

I(rh, i)khγh(i,i+1)∆i

)
(rji is reaction at step i.)

⇒dP (σ)

dku
= P (σ)

l−1∑
i=0

(
I(u = ji)

1

ku
−I(ru, i)γu(i,i+1)∆i

)
(I is the indicator function.)

Clearly, dP (σ)
dku

can be either positive or negative depending upon the path in consideration

and the value of the kinetic parameters. Continuity ensures that the function dP (σ)
dku

is zero

129

for some value of ku.

Theorem 15 (Extremum of the Probability Density of a Path) The probability density

of a path σ ≡ s0
∆0−→ s1

∆1−→ s2 · · ·
∆l−1−→ sl in the stochastic model attains a unique

extremum at the point (kextrema
1 , . . . , kextrema

n), where

kextrema
u =

Nku∑l−1
i=0 I(ru, i)γu(i,i+1)∆i

and Nku is the number of times the reaction ru is executed along the path σ.

Proof 15

logP (σ) = logP (s0
∆0−→ s1) + · · ·+ logP (sl−1

∆l−1−→ sl)

=
l−1∑
i=1

log kji +
l−1∑
i=1

log
(
γji(i,i+1)

)
−

l−1∑
i=1

n∑
h=1

I(rh, i)khγh(i,i+1)∆i

Partially differentiating with respect to each reaction rate parameter and setting the

gradient so obtained to 0, we get the desired result.

Our negative results on the monotonicity of the probability density of a path with

respect to variations in the kinetic parameters make it difficult to argue the monotonicity

of the probability of a formula being true on a model. The definition of the unbiased

statistical estimator is used to argue that its value remains monotonic in any given positive

parameter space under a very mild technical condition. The only condition that we need

to satisfy is that the estimator should not take the values 0 or 1 anywhere in the positive

130

parameter space. This is indeed true for any non-trivial property of a realistic biochemical

system.

Theorem 16 (Absence of Local Extrema of the Unbiased Statistical Estimator) The un-

biased statistical estimator of a non-trivial probability (true with probability neither 0 nor

1) of a measurable set estimated using a finite number of finite length paths in a stochas-

tic biochemical model does not admit a local extrema anywhere in the positive kinetic

parameter space.

Proof 16 Assume that the statistical estimator P̂ does have a local extrema at ku (̸= 0),

for the sake of contradiction.

P̂
def
≡

∑
L(σt)=1,16t6T

∏l
i=1 kji(σt)γ

ji
(i,i+1)(σt) exp(−

∑n
h=1 kh(σt)γ

h
(i,i+1)(σt)∆i(σt))∑T

t=1

∏l
i=1 kji(σt)γ

ji
(i,i+1)(σt) exp(−

∑n
h=1 kh(σt)γ

h
(i,i+1)(σt)∆i(σt))

def
≡ Pone(ku)

Pall(ku)
(5.1)

Note that Pone(ku) represents the sum of the probability densities of all the sampled paths

that satisfy the AFM specification ϕ and are labeled 1, and Pall(ku) simply represents the

sum of the probability densities of all the sampled paths. Setting ∂P̂
∂ku

to 0, we get:

Pall(ku)
∂Pone(ku)

∂ku
− Pone(ku)

∂Pall(ku)
∂ku

= 0

⇒Pall(ku)
∂Pone(ku)

∂ku
= Pone(ku)

∂Pall(ku)

∂ku
Algebraic Manipulation (5.2)

⇒ 1

Pone(ku)

∂Pone(ku)

∂ku
=

1

Pall(ku)

∂Pall(ku)

∂ku
Algebraic Manipulation (5.3)

⇒ 1
Pone(ku)
Pall(ku)

∂Pone(ku)

∂ku
=

∂Pall(ku)

∂ku
Algebraic Manipulation (5.4)

131

⇒ 1

P̂ (ku)

∂Pone(ku)

∂ku
=

∂Pall(ku)

∂ku
Definition of P̂ (ku) (5.5)

Now, let Pzero(ku) represent the sum of the probability densities of all the sampled paths

that do not satisfy the AFM specification ϕ.

Pall(ku) = Pone(ku) + Pzero(ku) By Definition (5.6)

⇒∂Pall(ku)

∂ku
=
∂Pone(ku)

∂ku
+
∂Pzero(ku)

∂ku
Differentiating both sides (5.7)

⇒ 1

Pall(ku)

∂Pall(ku)

∂ku
=

∂Pone(ku)
∂ku

+ ∂Pzero(ku)
∂ku

Pone(ku) + Pzero(ku)
Dividing both sides by Pall(ku) (5.8)

Also,

∂Pone(ku)
∂ku

Pone

=

∂Pone(ku)
∂ku

+ ∂Pzero(ku)
∂ku

Pone + Pzero

From 5.3 and 5.8 (5.9)

⇒
∂Pone(ku)

∂ku

Pone

=

∂Pzero(ku)
∂ku

Pzero

Algebraic Manipulation (5.10)

⇒
∂Pone(ku)

∂ku

Pone/(Pone + Pzero)
=

∂Pzero(ku)
∂ku

Pzero/(Pone + Pzero)
Dividing both sides (5.11)

⇔ 1

P̂ (ku)

∂Pone(ku)

∂ku
=

1

1− P̂ (ku)
∂Pzero(ku)

∂ku
Estimator Definition (5.12)

Hence,

1

P̂ (ku)

∂Pone(ku)

∂ku
=

1

1− P̂ (ku)
∂Pzero(ku)

∂ku
=
∂Pall(ku)

∂ku
From Eqn. 5.5 and Eqn. 5.12

(5.13)

132

Now, given a finite set of paths S and the sum of probability density PS of these paths,

PS =
∑
σ∈S

P (σ) (By Definition) (5.14)

⇒δPS

δku
=

δ

δku

∑
σ∈S

P (σ) (5.15)

⇒δPS

δku
=
∑
σ∈S

δ

δku
(P (σ)) (Derivative of Finite Sums) (5.16)

⇒δPS

δku
=
∑
σ∈S

P (σ) l(σ)−1∑
i=0

(
I(u = ji(σ))

1

ku
−I(ru, i)γu(i,i+1)∆i(σ)

) (5.17)

⇒δPS

δku
=
∑
σ∈S

P (σ)

Nu(σ)

ku
−

l(σ)−1∑
i=0

(
I(ru, i)γu(i,i+1)∆i(σ)

) (5.18)

Now,

∂Pone(ku)
∂ku

= Pone(ku)
Pzero(ku)

∂Pzero(ku)
∂ku

From Equation 5.10 (5.19)

⇒
∑

σ∈S,σ|=ϕ P (σ)
(

Nu(σ)
ku
−
∑l(σ)−1

i=0 I(ru, i)γu(i,i+1)∆i(σ)
)

=
∑

σ∈S,σ|=ϕ P (σ)
(

1
Pzero(ku)

∂Pzero(ku)
∂ku

)
(5.20)

Consider a more accurate statistical estimator with one more sample s. Without loss of

generality, assume that the sample satisfies the formula ϕ. Let k′u be the point at which the

new estimator reached an extrema.

∑
σ∈S∪s,σ|=ϕ

P (σ)

Nu(σ)

k′u
−

l(σ)−1∑
i=0

I(ru, i)γu(i,i+1)∆i(σ)

 =
∑

σ∈S∪s,σ|=ϕ

P (σ)

(
1

Pzero(k′u)

∂Pzero(k
′
u)

∂ku

)
(5.21)

133

Thus, subtracting Eqn. 5.19 from Eqn. 5.21, we get

∑
σ∈S,σ|=ϕ

(
P (σ)

Nu(σ)

k′u
− P (σ)Nu(σ)

ku

)
+ P (s)

Nu(s)

k′u
−

l(s)−1∑
i=0

(
I(ru, i)γu(i,i+1)∆i(s)

)
=

∑
σ∈S,σ|=ϕ

(
P (σ)

1

Pzero(k′u)

∂Pzero(k
′
u)

∂ku
− P (σ) 1

Pzero(ku)

∂Pzero(ku)

∂ku

)
+ P (s)

(
1

Pzero(k′u)

∂Pzero(k
′
u)

∂ku

)

Since, 1
ku

, Pzero, P (σ), ∂Pzero

∂ku
are continuous functions of ku in the positive parameter

space, the following holds true as the number of samples used by the statistical estimator

increases and k′u → ku:

P (s)

Nu(s)

ku
−

l(s)−1∑
i=0

(
I(ru, i)γu(i,i+1)∆i(s)

) = P (s)

(
1

Pzero(ku)

∂Pzero(ku)

∂ku

)

⇒ ku =
Nu(s)(

1
Pzero(ku)

∂Pzero(ku)
∂ku

+
∑l(s)−1

i=0 I(ru, i)γu(i,i+1)∆i(s)
) (5.22)

The location of the extrema is a function of the new sample we chose unless 1
Pzero(ku)

∂Pzero(ku)
∂ku

→

∞. If Pzero(ku) ̸= 0, then the only possibility is ∂Pzero(ku)
∂ku

→ ∞ i.e.
∑

σ∈S P (σ)(
Nu(σ)
ku
−∑l(σ)−1

i=0 (I(ru, i)γu(i,i+1)∆i(σ))) → ∞. The latter is not possible as ku ̸= 0 and the other

terms are bounded for any simulation.

Thus, there is no extrema in the positive parameter space.

In this section, we have shown several important results about the probability of a

formula being true on a stochastic biochemical model:

134

(i) The logarithm of the probability density of a path in a stochastic biochemical model

is uniformly and jointly continuous in the logarithmic kinetic parameter space. Our

proof is constructive and hence, suggests a natural sampling based algorithm which

we present in Sec. 5.5.1. We are aware that a non-constructive proof would be sim-

pler but not algorithmically useful.

(ii) The probability density of a path is not necessarily monotonic in the parameter space.

Thus, the natural mechanism of using monotonicity of paths to argue the monotonic-

ity of the statistical estimator of the probability of a model satisfying a formula is not

available.

(iii) An indirect proof using survey sampling based unbiased statistical estimators es-

tablishes that the unbiased statistical estimator is indeed monotonic in the positive

parameter space. This provides the opportunity for constructing efficient synthesis

and search algorithms. We present these algorithms in Sec. 5.5.2 and Sec. 5.5.3

respectively.

5.5 Parameter Synthesis Algorithms

We have characterized the parameter space of an adapted finitely monitorable formula

being true on a stochastic biochemical model in the previous section. Now, we use our un-

derstanding of the parameter space to suggest efficient algorithms for parameter synthesis

of stochastic biochemical models against high-level behavioral specifications.

135

5.5.1 Algorithm 4: Parameter Synthesis using Uniform Continuity

We have shown that the probability density of a path does not change arbitrarily as we

change the reaction rate parameters of a stochastic biochemical system. This result will

now enable us to prove results on the dense parameter space (with uncountably many

parameter values) by sampling only finitely many parameter values in the parameter space.

Algorithm 4 takes five inputs:

(i) Stochastic Biochemical ModelM with unknown kinetic parameters Θ,

(ii) A high-level behavioral specification about the system specified in a probabilistic

adapted finitely monitorable logic Pr>ρ(ϕ),

(iii) The space in which the possible values θ of reaction parameters are to be searched:

θ ∈ [Θmin
1 ,Θmax

1]× · · · × [Θmin
nΘ

,Θmax
nΘ

]

(iv) An error tolerance η such that
√
ρ < η < 1: A number close to 1 which specifies

the acceptable error in the synthesis of parameters. All points within the synthesized

parameter set will satisfy the adapted finitely monitorable property with probability

at least ρ, and those outside the set satisfy the specification with probability no greater

than ρ
η2

.

(v) A confidence value, q, which will be passed to the statistical model validation algo-

rithm that is called as a subroutine.

The algorithm initializes the set of satisfying parameters to the empty set. It then

uses the error tolerance η to compute ϵ, the required resolution of the discretization of

the logarithm of the probability space. Next, the algorithm discretizes the logarithmic pa-

rameter space. Note that the notation [log Θmin
1 , log Θmax

1]δ is used to represent the set

136

Algorithm 4 Parameter Synthesis using Statistical model validation
Require: Parameterized Biochemical ModelM(Θ),

Probabilistic Adapted Finitely Monitorable Formula Pr>ρ(ϕ),
Parameter Space θ ∈ [Θmin

1 ,Θmax
1]× · · · × [Θmin

nΘ
,Θmax

nΘ
],

Error Tolerance in PAFM Specification
√
ρ < η < 1,

Confidence Probability q.
Ensure: Set Ṽϕ,ρ of parameter values such that

(i) ∀θ ∈ Ṽϕ,ρ, M(θ) |=q Pr>ρ(ϕ), and

(ii) ∀θ ̸∈ Ṽϕ,ρ, M(θ) |=q Pr6 ρ

η2
(ϕ).

// Initialize set of parameter values to the empty set.
Ṽϕ,ρ = {}
// Compute ϵ and δ from η.
ϵ = | log η|
δ = δ(ϵ/2,M)

// Search the discretized parameter space.
for all θlog ∈ [log Θmin

1 , logΘmax
1]δ × · · · × [log Θmin

nΘ
, logΘmax

nΘ
]δ do

// If a parameter value satisfies the PAFM formula with probability ρ
η

ifM(exp(θlog)) |=q Pr> ρ
η
(ϕ) then

// Add the δ-ball around this parameter value to the set S.
Ṽϕ,ρ = Ṽϕ,ρ ∪ {

∪
b∈Bδ(θlog)

{exp(b)}} // Bδ(x)
def
= {y | |x− y| 6 δ}

end if
end for
if Ṽϕ,ρ == {} then

Print “Model is infeasible".
end if

137

{log θ | log Θmin
1 6 log θ 6 logΘmax

1 , and log θ = z.δ for some z ∈ Z}. For each

discrete box in the logarithmic parameter space, the algorithm samples a point and tests

whether it satisfies the property with probability at least ρ
η
. If so, the algorithm adds the

exponential of this point (and the discrete hyperbox of size δ around it) to the set of synthe-

sized parameters. We use the notation Bδ((c1, . . . cn)) to represent the hyperbox of size δ

around the center point (c1, . . . cn) i.e. the set {(x1, . . . xn) | max16i6n |ci−xi| 6 δ}. The

algorithm terminates after each discrete box has been examined. If no parameter combi-

nation produces a model that satisfies the formula, the algorithm reports that the model is

infeasible with respect to the given high-level behavioral specification. Knowledge about

the infeasibility of a model is of practical importance, because it indicates that the model

itself has structural flaws (eg., missing biochemical pathways) which need to be addressed

before parameter synthesis can be attempted. This is really significant because manual ad

hoc search procedures can never prove the infeasibility of the model with respect to the be-

havioral specification, and the designer is left to wonder if the model is actually infeasible

or she has just not found the right parameters for the model yet.

Theorem 17 If θ is a point in the synthesized parameter set Ṽϕ,ρ returned by Algorithm 4,

M(θ) |=q Pr>ρ(ϕ).

Proof 17 Suppose θ is a point in Ṽϕ,ρ. Then,

(i) By the construction of the set Ṽϕ,ρ by the algorithm, there exists a θlog such that

θ ∈
∪

b∈Bδ(θlog)
{exp(b)} andM(exp(θlog)) |=q Pr> ρ

η
(ϕ).

(ii) Since θ ∈
∪

b∈Bδ(θlog)
{exp(b)} i.e. θ lies in the δ-neighbourhood of θlog, |θ−θlog| < δ.

(iii) By uniform continuity, we know thatM(θ) satisfies Pr>(ρ
η
eϵ)(ϕ). Note that eϵ < 1

138

by construction.

(iv) By our choice of η, we know that eϵ = η.

Hence,M(θ) satisfies Pr>ρ(ϕ) up to the confidence probability q.

Theorem 18 If θ is not a point in the synthesized parameter set Ṽϕ,ρ returned by Algo-

rithm 4,M(θ) satisfies Pr6 ρ

η2
(ϕ).

Proof 18 Suppose θ is not a point in Ṽϕ,ρ. Then,

(i) By the construction of the set Ṽϕ,ρ in the algorithm, there does not exists any point

θlog such that θ ∈
∪

b∈Bδ(θlog)
{exp(b)} andM(exp(θlog)) |=q Pr> ρ

η
(ϕ).

(ii) But the algorithm must have sampled a point θ′log such that θ ∈
∪

b∈Bδ(θ
′
log)
{exp(b)}.

(iii) Since the algorithm did not add this point to S, it must be the case thatM(exp(θ′log)) |=q

Pr< ρ
η
(ϕ).

(iv) Since θ ∈
∪

b∈Bδ(θ
′
log)
{exp(b)} i.e. θ lies in the δ-neighbourhood of θ′log, |θ−θ′log| < δ.

(v) By uniform continuity, we know thatM(θ) satisfies Pr6(ρ
η eϵ)

(ϕ).

(vi) By our choice of η, we know that eϵ = η.

Hence,M(θ) satisfies Pr6 ρ

η2
(ϕ) up to the confidence probability q.

Theorem 19 The number of discrete parameter values sampled by the algorithm is poly-

logarithmic in the error tolerance of the PAFM specification η.

Proof 19 Given the error tolerance η, the discretization ϵ chosen by the algorithm in the

logarithmic probability space is logarithmic in the error tolerance η. The discretization δ

of the logarithmic parameter space is Cϵ, where C is a factor independent of ϵ.

139

From the algorithm, we know that the number of parameter values to be sampled is(
max

16i6nΘ

nΘ log
Θmax

i

Θmin
i

1

δ

)nΘ

. Rewriting, the number of sampled values is
(

max
16i6nΘ

nΘ

δnΘ
log

Θmax
i

Θmin
i

)
,

which is the same as
(

max
16i6nΘ

nΘ

(C| log η|)nΘ
log

Θmax
i

Θmin
i

)
.

5.5.2 Algorithm 5: Faster Parameter Synthesis using Abstraction Re-

finement

We have also shown that the unbiased statistical estimator for the probability of a mea-

surable set of paths satisfying a formula does not admit any local extrema as we change

the reaction rate parameters, unless the probability of a formula being true on the model

is either unity or zero somewhere in the logarithmic parameter space being explored. We

can therefore modify the previous algorithm to perform a hierarchical search through the

parameter space to accelerate synthesis. We refer to this hierarchical decomposition of

the parameter space as abstraction-refinement. We are not the first to use hierarchical

abstractions and binary search refinements. Similar ideas have been pursued in the con-

text of nonlinear hybrid systems [JBS07] and stochastic systems [HKM08]. However, our

monotonicity results (see Section 5.4) considerably simplify our algorithm.

The central idea behind abstraction refinement is illustrated in Fig. 5.2. Suppose we

want to check that a certain formula is true with probability no more than 0.14. If all the

corners of a hyperbox satisfy the formula, or if all the corners do not satisfy the satisfy the

formula, then our monotonicity results (see Sec. 5.4) allows one to stop further analysis of

this hyperbox. In the figure, the lower right corner box clearly does not satisfy the PAFM

specification and need not be further analyzed at all.

140

Algorithm 5 Faster Parameter Synthesis using Abstraction Refinement
Require: Parameterized Biochemical ModelM(Θ), Probabilistic Adapted Finitely Mon-

itorable Formula Pr>ρ(ϕ), Parameter Space θ ∈ [Θmin
1 ,Θmax

1] × · · · × [Θmin
nΘ

,Θmax
nΘ

],
Error Tolerance in PAFM Formula

√
ρ < η < 1, Confidence Probability q.

Ensure: Set Ṽϕ,ρ of parameter values such that
(i) ∀θ ∈ Ṽϕ,ρ, M(θ) |=q Pr>ρ(ϕ), and

(ii) ∀θ ∈ Ṽc
ϕ,ρ, M(θ) |=q Pr<ρ(ϕ).

Ṽϕ,ρ = {}, Ṽc
ϕ,ρ = {} {Initialize satisfying (unsatisfying) parameter values}

ϵ = | log η| {Compute discretization constant ϵ from error tolerance η}
for all i = 1 to nC do
δi =

Cmax
i −Cmin

i

2

end for
U = [logCmin

1 , logCmax
1]δ1 × · · · × [logCmin

nC
, logCmax

nC
]δnC

{Search discretized space}
for all θlog ∈ U do

{H(x) is a hyperbox with each side of length δi around x.}
ifM(H(θlog)) |=q Pr>ρ(ϕ) then
Ṽϕ,ρ = Ṽϕ,ρ ∪{exp(H(θlog))} {Parameter value satisfies the spec. with probability
at least ρ} {Add hyperbox around this parameter value to S.}

end if
ifM(H(θlog)) |=q Pr<ρ(ϕ) then
Ṽc
ϕ,ρ = Ṽc

ϕ,ρ∪{exp(H(Θlog))} {Parameter value satisfies the spec. with probability
less than ρ.} {Add hyperbox around this parameter value to Sc.}

end if
U = U \ (Ṽϕ,ρ ∪ Ṽc

ϕ,ρ) {Update the unknown part of the parameter space.}
for all i = 1 to nC do
δi =

δi
2

end for
if δi < δ(ϵ/2,M) then

Report these hyperboxes as unknown. {Hyperbox Size is too small}
Break;

end if
U = [logCmin

1 , logCmax
1]δ1 × · · · × [logCmin

nC
, logCmax

nC
]δnC

{Further discretize the
unknown part of the parameter space.}

end for
if S == {} then

Print “Model is infeasible".
end if

141

0.1 100.05 200.1

100.05

200.1

Parameter 1

P
a

r
a

m
e

te
r
 2

0.149

0.007 0.151

0.002

No need to

explore this

hypercube

0.152

0.155

Figure 5.2: Central Idea behind the Abstraction Refinement Algorithm

The abstraction refinement based algorithm takes the same parameters as our earlier

algorithm. However, it assumes that the probability of the formula does not vanish or reach

unity anywhere in the parameter space being analyzed.

Given the monotonicity of the probability in each of the parameters, we can construct

underapproximate and overapproximate abstractions in a bounded parameter space. An

underapproximate (overapproximate) abstraction is the parameterized model which satis-

fies an AFM specification with the minimum (maximum) probability in a given parameter

space.

Definition 18 (Underapproximate Abstraction) Given parameters Θ and a bounded pa-

rameter space S = [Θmin
1 ,Θmax

1] × · · · × [Θmin
nΘ

,Θmax
nΘ

] over which the probability of the

142

AFM specification being true is monotonic in each of the parameters, the variable mi is

assigned the value 1 if the probability of a formula being true is monotonically increasing

in the parameter Θi; it is zero if the probability is monotonically decreasing.

The underapproximate abstraction of the set of modelsM(θ) in the bounded parameter

space θ ∈ [Θmin
1 ,Θmax

1] × · · · × [Θmin
nΘ

,Θmax
nΘ

] is given by the model M(θmin), where

θmin =
(
(1−m1)(Θ

max
1 −Θmin

1) + Θmin
1 , . . . , (1−mnΘ

)(Θmax
nΘ
−Θmin

nΘ
) + Θmin

nΘ

)
. We

also denote the underapproximate modelM(θmin) byM(S).

Definition 19 (Overapproximate Abstraction) Given parameters Θ and a bounded pa-

rameter space [Θmin
1 ,Θmax

1]× · · · × [Θmin
nΘ

,Θmax
nΘ

] over which the probability of the AFM

specification being true is monotonic in each of the parameters, the variable mi is as-

signed the value 1 if the probability of a formula being true is monotonically increasing in

the parameter Θi; it is zero if the probability is monotonically decreasing.

The overapproximate abstraction of the set of models M(θ) in the bounded parameter

space θ ∈ [Θmin
1 ,Θmax

1] × · · · × [Θmin
nΘ

,Θmax
nΘ

] is given by the model M(θmin), where

θmin =
(
m1(Θ

max
1 −Θmin

1) + Θmin
1 , . . . ,mnΘ

(Θmax
nΘ
−Θmin

nΘ
) + Θmin

nΘ

)
. We also denote

the overapproximate modelM(θmin) byM(S).

The algorithm first constructs two empty sets Ṽϕ,ρ and Ṽc
ϕ,ρ containing the space of

parameters that do and do not satisfy the specification, respectively. We also compute

a coarse-grained discretization of the parameter space by dividing each parameter value

into two parts. For each hyperbox formed, if the model satisfies the probabilistic adapted

finitely monitorable logic formula with probability more than ρ for the underapproximate

modelM in the parameter space defined by the hyperbox, then we add this hyperbox to

143

the set Ṽϕ,ρ of parameter values satisfying the specification. The monotonicity of the pa-

rameter values (See Theorem 16) provide the technical justification for doing so. On the

contrary, if the model satisfies the formula with probability less than ρ for the overapproxi-

mate modelM in the parameter space defined by the hyperbox, then we add this hyperbox

to the set Ṽc
ϕ,ρ of parameter values not satisfying the specification.

If a hyperbox is neither in the set of parameter values satisfying or not satisfying the

PAFM specification, and is larger than the minimal threshold size dictated by the error

tolerance of the PAFM specification η, we refine the hyperbox by splitting each parameter

value into two parts and we continue with the algorithm. If the hyperbox has become

smaller than the threshold size dictated by the error tolerance η, we stop analyzing this

hyperbox any further.

Theorem 20 If θ is a point in the set of unknown hyperboxes U in Algorithm 5 with error

tolerance η, thenM(θ) |=q Pr< ρ
η
(ϕ), andM(θ) |=q Pr>ρη(ϕ).

Proof 20 We will show thatM(θ) |=q Pr< ρ
η
(ϕ), andM(θ) |=q Pr>ρη(ϕ) if θ ∈ U .

(i) Suppose θ satisfies M(θ) |=q Pr> ρ
η
(ϕ). Consider the hyperbox H(θ) of size

δ(ϵ,M) around this point. By uniform continuity and our choice of discretization,

every point c in the hyperbox (in particular, the corners of the hyperbox) satisfy

M(c) |=q Pr> ρ
η
eϵ(ϕ). But, by construction, we know that eϵ = η. Hence, the

corners satisfy the formula Pr>ρ(ϕ) with confidence q. But, in that case, θ would be

in Ṽϕ,ρ and not in U .

(ii) Suppose that θ satisfies M(θ) |=q Pr6ρη(ϕ). Consider the hyperbox H(θ) of

size δ(ϵ,M) around this point. By uniform continuity, every point c in the hyperbox

144

(in particular, the corners of the hyperbox) satisfy M(c) |=q Pr6 ρη
eϵ
(ϕ). But, by

construction, we know that eϵ = η. But, in that case, M(c) |=q Pr6ρ(ϕ) and θ

would be in Ṽc
ϕ,ρ and not in U .

The theorem points out that the quality of the answer obtained by our abstraction re-

finement algorithm depends on the error tolerance parameter η. As η approaches one, the

size of the set U with unknown parameter values becomes smaller.

5.5.3 Algorithm 6: Parameter Search and Model Infeasibility using

Gradient Descent

The previous two algorithms solve the parameter synthesis problem. In this section, we

consider a slightly different problem, and find the parameter combination that maximizes

the probability that the given formula will hold on the model, or reports that the model and

the PAFM specification are mutually infeasible over the given parameter space. The algo-

rithm takes the same inputs as the parameter synthesis algorithms. It begins by computing

the smallest step size, δ, that will guarantee that the ratio of the probabilities associated

with any two points inside any hyperbox of length δ will not exceed η. Then, the algorithm

samples a random point in the parameter space and computes the gradient of the probabil-

ity at this point in the parameter space using the equations in Theorem 4. The algorithm

then moves by a step of δ in the direction of the gradient. If the algorithm crosses the

parameter space to be searched, it stops. The algorithm checks if the last point sampled in

the parameter space satisfies the adapted finitely monitorable property with probability at

least ρ. If so, it reports this point in the parameter space as the best parameter that can be

145

synthesized. Otherwise, it declares that the parameter space does not contain any param-

eter values that enable the model to η-robustly satisfy the PAFM specification i.e. there

exists no parameter value θ such thatM(θ) |=q Pr> ρ
η
(ϕ).

Algorithm 6 Synthesis and Infeasibility Analysis using Gradient Descent
Require: Parameterized Biochemical ModelM(Θ),

Probabilistic Adapted Finitely Monitorable Formula Pr>ρ(ϕ),
Parameter Space θ ∈ [Θmin

1 ,Θmax
1]× · · · × [Θmin

nΘ
,Θmax

nΘ
],

Error Tolerance in PAFM Formula
√
ρ < η < 1,

Confidence Probability q,
Ensure:

(i) A point θ0 of parameter values such thatM(θ0) |=q Pr>ρ(ϕ), or

(ii) Show that for all θ in the parameter spaceM(θ) |=q Pr< ρ
η
(ϕ)

{ Initialize parameter value to a random point}
θ0 = RandomPoint([Θmin

1 ,Θmax
1]× · · · × [Θmin

nΘ
,Θmax

nΘ
])

{Compute ϵ and δ from η}
ϵ = | log η|
δ = δ(ϵ/2,M)

{Search the discretized parameter space}
while θ0 ∈ [log Θmin

1 , log Θmax
1]δ × · · · × [log Θmin

nΘ
, log Θmax

nΘ
]δ do

Gradient(θ0) =
δP
δΘ

, whereM(exp(θ0)) |=q Pr=P (ϕ)

θ0 = θ0 +
Gradient(θ0)
|Gradient(θ0)|δ

end while

{If the parameter value satisfies the PAFM formula with probability ρ}
ifM(exp(θ0)) |=q Pr>ρ(ϕ) then

Print parameter exp(θ0). {Report this parameter value.}
STOP.

end if

Print “Model is infeasible".

Theorem 21 If the algorithm reports that the model is infeasible, then there does not exist

any parameter value θ in the specified parameter space such thatM(θ) |=q Pr> ρ
η
(ϕ).

146

Proof 21 Suppose the algorithm reports that the model is infeasible and there is actually

a point θ such thatM(θ) |=q Pr> ρ
η
(ϕ). Consider the δ(ϵ,M)-neighborhood of θ. If our

algorithm sampled a point θ′ in this neighborhood, it would have found that M(θ′) |=q

Pr>ρ(ϕ) (from Theorem 12) and stopped.

Hence, our algorithm must not have sampled a point in the δ(ϵ,M)-neighborhood of θ.

As the probability of a formula being true is monotonic over the parameter space, this is

only possible if our algorithm sampled a parameter value with a higher probability that

the probability associated with δ(ϵ,M)-neighborhood of θ. Thus, the algorithm could not

have reported that the model is infeasible, contradicting our assertion.

Lemma 2 If the algorithm reports that θ as the best synthesized parameter value with

probability ρsyn and θmax is the actual parameter value that satisfies the specification with

highest probability ρmax, then ρsyn > ηρmax.

Proof 22 Suppose the algorithm reports ρsyn such that ρsyn < ηρmax. But, θ is in the

δ(ϵ,M)-neighborhood of θmax; otherwise, the algorithm would not have stopped. By

invoking uniform continuity (from Theorem 12), we have a proof by contradiction.

Theorem 22 The number of parameter points that the algorithm may need is bounded by

Proof 23 Given a monotonic parameter space [Θmin
1 ,Θmax

1] × · · · × [Θmin
nΘ

,Θmax
nΘ

], the

algorithm moves only along the direction of increasing probability of the specification

being true for each dimension or probability. The total number of discrete points along

the ith dimension is ⌈Θ
max
i −Θmin

i

δ
⌉. Hence, the total number of points that the algorithm

may need to analyze is bounded by
∑

16i6nΘ
⌈Θ

max
i −Θmin

i

δ
⌉.

147

5.6 Experimental Results

We analyzed stochastic models [HKN+06, HKN+08] of the Fibroblast Growth Factor and

Cell Cycle biochemical signalling pathways against known behavioral specifications. Fi-

broblast growth factors (FGF) are a family of molecules involved in embryonic devel-

opment, healing of wounds, and the development of new blood vessels (angiogenesis).

As FGFs control the growth and differentiation of cells and are involved in angiogenesis,

perturbations of this pathway are relevant at various stages of the development of cancer.

����������

���

����

�	

����������

����

�

����

����

��������

����
�����

�����������

�������

������� �
�

����
�����

����������

����

��	�
���

���
������	
�����

��	�
��������

����
�����

Figure 5.3: Cartoon Representation of the Fibroblast Growth Factor Receptor Pathway.

148

The FGF model (Fig. 5.3) comprises 10 base species: (i) the FGF molecule; (ii) the

FGF receptor (FGFR); (iii) a FGFR-specific substrate (FRS2); (iv) the phosphatase Shp2;

(v-vi) the kinases PLC and Src; (vii) the inhibitor Spry; (viii) the ubiquitin ligase Cbl; (ix)

the adaptor protein Grb; and (x) the exchange factor Sos. These base species can bind

to form additional species (FGF-FGFR, FGFR-FRS2, Shp2-FRS2, Src-FRS2, Grb-FRS2,

PLC-FGFR,Spry-Src, Spry-Cbl,Spry-Grb, Grb-Sos), or degrade. The phosphatase and

kinases cause state changes in the species (i.e., dephosphorylation and phosphorylation,

respectively). The binding of Grb to Sos is an important event in the MAPK/ERK pathway,

which regulates translation and transcription in the cell.

���

������

	�
���

���� ����

��������
������

���

Figure 5.4: Cartoon Representation of the Cell Cyle Pathway
(Dashed arrows indicate catalysis/promotion of a reaction by a substrate)

We also studied a model of cell cycle control (Fig. 5.4) that consists of five species:

149

(i) cyclin; (ii) cyclin-dependent protein kinases (CDKs); (iii) cyclin-dependent kinase in-

hibitor (CKI); (iv) the phosphatase Cdc; and (v) the tumor suppressor gene Cdh1. CDKs

are activated by binding to cyclins, and they control DNA synthesis and chromosome con-

densation during the initial phases of cell division. CDK activity is regulated through mul-

tiple mechanisms including cyclin, CKIs, and phosphorylation. We studied the absence of

bound cyclin in our properties and the influence of kinetic parameters on the binding of

cyclin.

5.6.1 Parameter Synthesis using Uniform Continuity (Algorithm 4)

We first performed experiments using the simplest of our algorithms discussed in Sec-

tion 5.5.1. For the Fibroblast Growth Factor model, we perform parameter synthesis on

a high level behavioral specification expressed in Probabilistic Bounded Metric Temporal

Logic that was studied in [HKN+06, HKN+08]. The behavior concerns the probability

that molecule Grb2 is bound to molecule FRS2 (denoted by FRS2_GRB), and that FRS2

is not degraded at the time instant T .

In Fig. 5.5, we studied the influence of varying the FGF-FGFR dissociation parameter on

the probability of the formula being true. We show the results of using our algorithms on

the following formula:

Pr>3.0×10−4 [True U[1,1](FRS2_GRB > 0 & degFRS2 = 0)]

Our synthesized parameter space is correct with probability 0.99 (i.e., q = 0.99 in Al-

150

−1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−4

X: 2.854
Y: 0.0003333

Logarithm of the FGF−FGFR Dissociation Parameter

P
ro

ba
bi

lit
y

of
 th

e
F

or
m

ul
a

be
in

g
tr

ue

Parameter Space where the BLTL
formula is true with probability
atleast 0.0003

Figure 5.5: Synthesized 1-D Parameter Space
The parameter space to the left of the arrows satisfies the formula

Pr>3.0×10−4 [True U[1,1](FRS2_GRB > 0 & degFRS2 = 0)].

gorithm 4). We are able to demonstrate that the PBMTL formula is true whenever the

logarithm of the FGF-FGFR dissociation parameter lies between −1 s−1 and 2.854 s−1.

We considered the problem of synthesizing two parameters simultaneously — the

Spry-SRC and FGF-FGFR dissociation rates, using the PBLTL formula stated above. The

results of our experiments are plotted in Fig. 5.6. The region of the plot to the right of

the contour line denoting probability 0.00033 contains they only parameter values that en-

able the model to satisfy the PBLTL formula. Note that the reason the value is 0.00033,

and not 0.0003, is because we chose 0.91 as our choice of η in Algorithm 4. Hence, the

parameter space we can confidently state to satisfy the PAFM formula based on our dis-

cretized sampling algorithm is the one which satisfies the formula with probability at least

0.0003
0.91

= 0.00033.

151

Figure 5.6: Synthesized 2-D Parameter Space
The synthesized parameter space lying to the right of the contour 0.00033 satisfies

Pr>3.0×10−4 [True U[1,1](FRS2_GRB > 0 & degFRS2 = 0)]

Figure 5.7: Synthesized Parameter Space for Fibroblast Growth Factor model
The synthesized parameter space lying to the right of the contour 0.22 satisfies the formula
Pr>0.2 [True U[60,60](FRS2_GRB > 0 & degFRS2 = 0)]

152

We also analyzed the following PBMTL property:

Pr>0.2 [True U[60,60](FRS2_GRB > 0 & degFRS2 = 0)]

Note that the two differences between this and the previous property are the time and

probability bounds. The results obtained by our analysis are shown in Fig. 5.7. The

algorithm reports that the combination of parameters to the right of the contour labeled

0.22 satisfy the formula.

Next, we analyzed the Cell Cycle model using uniform continuity arguments against

the following Probabilistic Bounded Linear Temporal Logic property:

Pr>0.4 [True U60cyclin_bound = 0]

The results of our analysis are presented in Fig. 5.6.1. The algorithm reports that the

combination of parameters below the contour labeled 0.22 satisfy the formula.

Algorithm 4 is computationally quite expensive; it required about three days on a forty

node cluster to run our experiments for a two dimensional system. The search for algo-

rithms with low computational requirements yields the abstraction refinement algorithm

that we present in the next section. The abstraction refinement based synthesis algorithms

are more scalable and we discuss an benchmark example with six dimensions.

153

Figure 5.8: Synthesized Parameter Space for the Cell Cycle Model
The synthesized parameter space lying below the contour 0.44 satisfies

Pr>0.4 [True U60cyclin_bound = 0]

154

5.6.2 Parameter Synthesis using Abstraction Refinement (Algorithm

5)

In this section, we report the results of using our abstraction refinement based algorithm

(see Algorithm 5). We studied the performance of building abstractions using the FGF

signal transduction pathway model (see Fig. 5.3) with as many as six parameters. We first

asked our algorithm to synthesize the parameter where following statement is true:

Pr>0.8 [True U[60,60](FRS2_GRB > 0 & degFRS2 = 0)]

Our implementation took 30.7 minutes and confirmed that it is infeasible for the model to

satisfy the formula in the parameter range being searched. Naturally, we cannot visualize

the surface in a 6-dimensional space, as we could for the 1 and 2 dimensional cases.

We note that our uniform continuity based algorithms would not be able to answer this

question within a reasonable amount of time. For example, assuming a discretization of

0.1 in the logarithmic parameter space, it would take over 500 years for the proof to be

completed. Thus, monotonicity is a really important property for tackling problems in

high dimensions.

In Table 5.1, we used the following property for synthesizing the parameter space:

Pr>0.15 [True U[1,1](FRS2_GRB > 0 & degFRS2 = 0)]

Note that the number of hyperboxes to be explored and the time taken for the exhaus-

155

#Hyperboxes
(Exhaustive
Search)

Time (Exhaus-
tive Search)

#Hyperboxes
(Algorithm 5)

Time (Algo-
rithm 5)

64 27.46 min. 64 27.46 min.
4,096 9.8 hours 640 1.55 hours
262,144 13.9 days* 15,744 20.1 hours
16,777,216 1.7 years* <1,007,616* <38 days*

Table 5.1: Abstraction Refinement: Parameter Synthesis for Probability above 0.15.
A ∗ next to a value means that it was estimated by extrapolating from the run-times for

problems with a smaller number of hyperboxes. For example, the 13.9 days estimate for
262, 144 hyperboxes was obtained by extrapolating from the 9.8 hours it took for 4, 096
hyperboxes.

tive search columns in Table 5.1 provide a lower bound for the time taken by Algorithm 4.

Here, we just studied the performance of guided refinement on various abstractions with

64, 4096 and 262144 hyperboxes. In each of these cases, a naive algorithm would need

to analyze all of these hyperboxes by refining them into even smaller hyperboxes. We

found that an analysis of the 64 hyperboxes formed at the first step showed that only 10

of them needed to be refined and further analyzed. While the analysis of 4096 boxes takes

9.8 hours, the analysis of the 10 well-chosen boxes (by exploring 640 hyperboxes) takes

about one and a half hours. The savings become much more impressive as we refine the

size of the hyperbox and increase the number of hyperboxes. If we were to analyze all of

262, 144 boxes, we estimate (via extrapolation) that it would take over 13.9 days. On the

other hand, if we use abstraction refinement based on the monotonicity argument, we only

need to analyze at most 15, 744 hyperboxes and that takes about 20 hours. We further esti-

mate that the exhaustive analysis of all 16, 777, 216 smaller hyperboxes would take about

1.7 years, but that the refinement algorithm would take no more than 38 days.

156

When abstractions can be built over a space of models (as opposed to over parame-

ters), abstraction refinement is often an efficient technique to employ. This may lead to

considerable savings in many cases. On the other hand, one can cleverly construct cases

where abstraction refinement may have to work as hard as the original analysis algorithm.

However, this is not possible in our case, because we are performing abstractions over

the parameters. The monotonicity of the parameter space ensures that abstraction refine-

ment will always run faster in synthesizing kinetic parameters of stochastic biochemical

systems.

5.6.3 Parameter Estimation using Gradient Descent (Algorithm 6)

Gradient descent based algorithms for synthesizing single parameter values are truly scal-

able to high dimensions as they do not need to do a search (exhaustive or otherwise) of

the entire probability space. We applied our gradient descent algorithm to the problem

of synthesizing the lb and bb kinetic parameters for the Cell Cycle model. We wanted to

find a parameter value that satisfies the following Probabilistic Bounded Metric Temporal

Logic specification:

Pr>0.45 [True U[60,60]cyclin_bound = 0]

The results of our algorithm are plotted in Figure 5.9. The algorithm suggests the

parameter tuple (0.349, 0.124) as a parameter value that satisfies the specification. The

algorithm took only 21 minutes to produce this result. We further ran our algorithm to find

the maximal value in the parameter space between 0.01 and 200 for both the parameters.

157

Our algorithm reported that the maximum value of the probability is 0.539 and lies at the

point (0.0101, 0.0101) which is the closest point we sampled to one of the corners of the

given parameter space.

Figure 5.9: Parameter Search in action for the Cell Cycle Model.

Our cell cycle model has 11 kinetic parameters that can be varied. We considered

the parameter synthesis problem involving all of the eleven parameters with the aim of

satisfying the following formula:

Pr60.4 [True U[60,60]cyclin_bound = 0]

We restricted search space for the kinetic parameters between 0.001 and 1. Our binary

search based implementation of Algorithm 6 took 3.4 hours to report the parameter value

(0.112512, 0.5005, 0.5005, 0.5005, 0.5005, 0.5005, 0.5005, 0.165856, 0.5005, 0.5005, 0.5005)

158

that satisfies the formula with probability 0.3986.

We then searched for a parameter that satisfies the following formula:

Pr>0.99 [True U[60,60]cyclin_bound = 0]

Our implementation took 52.3 minutes to produce the following parameter values that

satisfy the property with probability exceeding 0.9902: (0.5005, 0.5005, 0.5005, 0.5005,

0.5005, 0.326276, 0.5005, 0.5005, 0.5005, 0.5005, 0.5005). We also asked our algorithm

to find the maximum value of the parameter possible and we obtained 0.9999 as the answer

within the probability space we were searching.

159

160

Chapter 6

Conclusion and Future Work

In this thesis, we have presented a new Statistical Model Checking algorithm based on a

sequential version of the Bayes Factor test. Our Bayesian algorithm directly solves the

composite hypothesis testing problem posed by Statistical Model Checking and does not

need to reduce it to a simple hypothesis testing problem. We have also complemented

our algorithm with the analysis of its frequentist properties including the Type I/II error

probabilities and a proof of termination of the algorithm.

We have also suggested a cost based approach to Statistical Model Checking. This

is useful in those practical settings where a lower bound on the cost of generating each

sample and an upper bound on the cost of making an incorrect decision are both known.

We also study the influence of the cost of making an incorrect decision on the number of

samples needed by our algorithm.

While traditional Statistical Model Checking uses independent and identically dis-

161

tributed samples from a system, such an approach is not very useful for detecting rare

errors in systems. We have also suggested a new Bayesian Statistical Model Checking

algorithm that allows one to use non-identically distributed samples. Our results suggest

that a long-term neutrality of the sampling procedure is sufficient to ensure both the termi-

nation of the algorithm and maintain statistical guarantees on the Type I/II errors for our

algorithm.

We have also investigated the synthesis of stochastic biochemical models against be-

havioral properties. Kinetic parameters of biochemical models are often hard to measure

experimentally. On the other hand, a number of experimentally known facts about the

model are documented in literature. We have proposed a new framework for the synthesis

of kinetic parameters from known facts about biochemical models. In the process, we

have characterized the probability of a biochemical model satisfying a specification as a

uniformly continuous function of the kinetic parameters. Our proof uses the fact that the

samples used by survey sampling based statistical estimation methods are independent of

the value of the kinetic parameters of the biochemical model. We believe that this is the

first time that survey sampling has been used as a proof mechanism to prove correctness

of an algorithm in biochemical model simulation or discovery.

6.1 Conclusions

In this thesis, we have presented a number of algorithms for the validation and synthesis

of various subclasses of stochastic systems. In Table 6.1, we study the various algorithms

that we have discussed in the thesis including expectations from the stochastic model that

162

can be analyzed by these algorithms.

6.1.1 Bayesian Statistical Model Checking

Our study of the Bayesian Statistical Model Checking algorithm indicates i.i.d. sampling

is a good choice when analyzing soft stochastic systems, like biochemical models, where

the probability of an adapted finitely monitorable specification being true is neither very

close to one nor zero. In scenarios where a stochastic system may satisfy a formula

with probability very close to unity or zero, i.i.d. sampling methods are not efficient at

discovering these rare behaviors or so-called “black swans1" [Tal07]. In these cases, non-

i.i.d. sampling strategies (like Algorithm 3) are preferred. Alternatively, symbolic testing

approaches combined with statistical methods[AKRS08] may be a more attractive frame-

work for such hard verification problems. However, we note that many stochastic systems

of interest, like those arising from biochemical systems, are often too large for analysis

by symbolic methods. Fortunately, many of these systems can be simulated, numerically,

and so simulation-based verification techniques, like ours, can still be used when symbolic

methods fail.

Our Bayesian approach provides a natural framework for incorporating information

about prior beliefs about the system being analyzed and for analyzing models with prob-

ability distributions over parameters. This situation arises frequently in modeling of bio-

chemical systems where the model is often parametric and we only know probability dis-

tributions on these model parameters. The ability to explicitly incorporate prior beliefs can

1The hypothesis that all swans are white had an incredibly strong statistical support based on millions of
samples until the discovery of black swans in 1697 by European explorers in Western Australia.

163

Algorithm Nature of Stochastic
Model

Purpose of Algorithm Additional Remarks

Bayesian
Statistical
Model
Checking

Discrete Time Markov
Chains, Continuous Time
Markov Chains, (Dis-
cretely Sampled) Stoch.
Differential Eqns

To validate if a stochas-
tic model satisfies a
given behavioral speci-
fication with at least a
given probability

Bayes Factor as the crite-
rion for termination

Cost based
Bayesian
Statistical
Model
Checking

Discrete Time Markov
Chains, Continuous Time
Markov Chains, (Dis-
cretely Sampled) Stoch.
Differential Eqns

To validate if a stochas-
tic model satisfies a
given behavioral speci-
fication with at least a
given probability

Cost of simulation and
cost of making an error as
the criterion for termina-
tion

Non-i.i.d.
Bayesian
Statistical
Model
Checking

Discrete Time Markov
Chains specified as Proba-
bilistic Reactive Modules,
(Discretely Sampled)
Stoch. Differential Eqns

To validate if a stochas-
tic model satisfies a
given behavioral speci-
fication with at least a
given probability

Bayes Factor as the crite-
rion for termination

Uniform
Continu-
ity based
Parameter
Synthesis

Biochemical Continuous
Time Markov Chains

To synthesis chemical
kinetics parameters
such that the model
satisfies a given proba-
bilistic specification

An acceptable error toler-
ance of the boundary of
the synthesized parameter
space.

Abstraction
Refinement
based Pa-
rameter
Synthesis

Monotonic Parameter
Spaces in Biochemical
Continuous Time Markov
Chains

To synthesis chemical
kinetics parameters
such that the model
satisfies a given proba-
bilistic specification

An acceptable error toler-
ance of the boundary of
the synthesized parameter
space.

Parameter
Search

Monotonic Parameter
Spaces in Biochemical
Continuous Time Markov
Chains

To find a parameter val-
ues that maximizes the
probabiity of a given
specification being true

An acceptable error toler-
ance of the boundary of
the synthesized parameter
space.

Table 6.1: Summary of Algorithms

164

also accelerate the model validation process. On the other hand, the computational cost of

the Bayesian approach may not make it amenable for deployment in applications where

energy or computational resource may be a constraint, like embedded systems. If a Statis-

tical Model Checking algorithm needs to be incorporated into a smart embedded system,

we recommend the use of Younes’ technique, which is computationally attractive [You04].

6.1.2 Discovery of Stochastic Biochemical Systems against Behavioral

Specifications

We have introduced new algorithms to discover kinetic parameter values that enable a bio-

chemical model to satisfy a Probabilistic Adapted Finitely Monitorable logic specification.

The specification captures the biological knowledge that is known about the biochemical

system being modeled. We applied our algorithms to two benchmark models from the

literature, viz. Fibroblast Growth Factor and Cell Cycle model. We demonstrated that

our abstraction-refinement based algorithm is capable of synthesizing six parameters si-

multaneously. To the best of our knowledge, this is the largest number of parameters that

have been synthesized at once for stochastic models against a given formula. Moreover,

our gradient search algorithm is capable of finding the single parameter combination that

maximizes the probability of the formula being true over 11 parameters simultaneously.

A key feature of theses algorithms is that they can also demonstrate the infeasibility of a

model with respect to a high level behavioral specification in a given parameter space. This

is a very useful debugging tool for biochemical modeling, and ensures that the modeler

does not waste her time searching for a non-existent parameter combinations. The gradient

165

search algorithm is capable of carrying out infeasibility analysis in very high dimensional

parameter spaces.

An important feature of our synthesis algorithm based on uniform continuity is the

lack of any assumptions about the shape of the parameter space that we seek to synthe-

size. This is a crucial different between our algorithm and approaches based on learning

Bayesian probability distributions over the parameter space. In the Bayesian learning ap-

proach [GCSR03], a prior distribution over the probability with which a parameter value

satisfies a given specification is updated. Then, sampling approaches are used to update

this prior information by actually computing the probability of the parameter value satisy-

ing a specification for some parameter values. A serious weekness in the approach lies

in its inability to change the effect of the form of the chose prior distribution on the final

outcome. For example, if one tries to fit a Gaussian distribution to the parameter space,

one has already made the assumption that the subset of the parameter space that satisfies

the given specification with the required probability is connected and symmetric. Similar

constraints hold for other choices of probability distributions. Such knowledge about the

parameter space being synthesized is not usually available before we start the synthesis

procedure and hence, the choice of a suitable probabilit distribution becomes difficult.

6.2 Future Work

Several interesting directions of future work remain open. We have used an off-the-shelf

simulator for biochemical systems (BioNetGen [FBGH05, FBH08, FBH05, BFGH04])

that isn’t designed to draw samples from biochemical models with different kinetic param-

166

eters. It is possible to design a more efficient simulator that can take account of variation in

kinetic parameters and draw samples from a family of parameterized biochemical systems

more efficiently. The intuitive idea is that the same pair of random numbers can be used to

generate transitions in all models of a parameterized family. Also, many paths in closely

related parameterized models would share a lot of common transitions.

Our experiments have used rather restricted PAFM specifications like Probabilistic

Bounded Linear Temporal Logic (PBLTL) and Continuous Specification Logic (CSL).

One can envision the development of a specialized logic for simulation based validation

of biochemical stochastic systems. VLSI design and validation engineers use a syntactic

sugar for Linear Temporal Logic called ForSpec [AFF+02] (developed at Intel). It would

be useful to collect specifications from biochemical modelers, and develop a syntactic

sugar specially meant for biochemical systems.

Bayesian Statistical Model Checking algorithm can be extended to accommodate nested

probability operators. While nested probability operators are permitted in Continuous

Specification Logic (CSL), they are not used very often in practice. However, it is still a

theoretical curiosity to extend the algorithm to analyze properties with nested probability

operators.

The most intriguing problem is to perform statistical validation of non-deterministic

systems with no natural notion of a probability measure, such as hardware and software

systems. More research is needed to determine if any of the methods presented in this

thesis can be adapted to such systems.

We have shown how non-i.i.d. sampling can be used with Stochastic differential equa-

167

tions and probabilistic reactive modules. An interesting direction of future work is to ex-

tend the non-i.i.d. sampling based Bayesian statistical model checking algorithm to Con-

tinuous Time Markov Chains. The probability of a transition in a CTMC is a function of

the transition rates: P (s → s′) = ks→s′e
−
∑

t ks→t where s, s′ and t are state of the CTMC

and ks→s′ denotes the rate of transition between s and s′. Clearly, preserving the geomet-

ric average of the transition rates does not preserve the geometric average of the transition

probabilities.

Similarly, it is not clear how one would develop fair sampling strategies for non-i.i.d.

sampling from complex probabilistic distributions on inputs of otherwise deterministic

models. Intuitively, we need to preserve the geometric average of the probability distri-

butions on each input. However, the exact nature of the geometric average would depend

upon the form of the probability distribution. We are investigating the forms of probability

distributions that give rise to a tractable approach for developing fair non-i.i.d. sampling

approaches.

Our results and constructive proofs for discovery of kinetic parameters in biochemical

stochastic systems can be extended to study the impact of variation in different parameters

on the probability of an adapted finitely monitorable formula being true on a model. Such

an algorithmic sensitivity analysis of the probability of a formula being true with respect to

the various parameters can then be used as a preprocessing step to guide parameter search

algorithms in very high dimensional parameter spaces. For example, consider Figure 6.1

which shows the variation in probability as we vary the lb and bb parameters of the cell

cycle model. It is clear that variation along one of the parameters impacts the model much

more than along the other dimension. Such a preliminary sensitivity analysis could be used

168

to pick a small number of parameters out of a large number of unknown parameters before

parameter synthesis is attempted on the smaller parameter set. We also note that the proof

of Lemma 1 provides a framework of computing sensitivity using statistical sampling and

can be developed into an efficient sensitivity analysis algorithm for stochastic biochemical

models.

Figure 6.1: Probability of formula [True U60cyclin_bound = 0] for Cell Cycle Model.
Note that the variation along parameter 1(lb) is much smaller than variation along parameter 2(bb).

Another interesting direction for future work is to develop a monitoring framework

for stochastic biochemical systems. It is unrealistic to assume that biochemists will ever

translate their knowledge into fragments of temporal logics. On the other hand, MATLAB

and even high level languages like C are now standard in many undergraduate programs

across the world. It is important to construct a suitable framework for developing monitors

in these languages that can be used directly by biochemists. While some work has been

169

done on automatically mining formal knowledge bases or ontologies from biochemical

literature, the use of these ontologies to validate models is limited at best. It would be

interesting to bridge the gap and provide formal methods based tools to verify models

against existing ontologies.

We also note that existing stochastic biochemical models are often hard-wired with a

“best-guess" value of the parameters that makes the model “work". Unfortunately, when

different models are combined in a modular fashion (e.g., combining models of different

pathways), those models that “work" in isolation might not work together as components

of the larger system. These inconsistencies will come into focus as the science of Compu-

tational Systems Biology matures, and we begin putting models built by different scientists

together. An interesting question that we are investigating is the re-synthesis of parameter

regimes when putting models together as components. In this context, it is clear that bio-

chemical models should not be hard-wired with “best-guess" values of kinetic parameters.

Instead, a model should be accompanied with a set of kinetic parameters that enable the

model to satisfy every known behavior about the model. When models are put together,

we will have new properties and biological insights about the larger and more complex

biochemical system. This will enable us to refine our models and parameter values.

An important contribution of the thesis is a new technique for constructing proofs

about stochastic biochemical models based on survey sampling. Parameterized biochem-

ical models give rise to families of CTMCs, each of which has a different probability

measure over the set of possible paths. The key point, however, is that the set of possible

paths is the same. Further, the sample paths that (do not) satisfy the property also remain

unchanged across all CTMCs in a family of CTMCs. Thus, survey sampling provides a

170

natural framework to develop analytic arguments about biochemical models. We believe

that this technique for developing proofs may be important in areas beyond model vali-

dation and parameter synthesis. Particularly, the formal sensitivity analysis of τ -leaping

methods [CGP07, AGK09] may be susceptible to an analysis along these lines. We are

currently investigating this direction along with our collaborators.

The synthesis algorithm we discussed assumes that the initial state of the stochastic

biochemical model is completely specified. One is often interested in understanding the

influence of initial configuration of the stochastic biochemical model on the parameters

synthesized using behavioral specifications. One possibility is to use a probability distri-

bution on the initial configurations of the stochastic model and then use statistical sampling

approaches to compute Bayesian averages of the probability of the specification being true

over all possible initial configurations.

Our algorithms based on abstraction refinement require that the probability of a spec-

ification being true on a model be monotonic in the parameter space. It may be possible

to develop a hierarchy of abstractions using upper bounds on the partial derivatives of the

probability of the specification being true with respect to each of the parameters. The cen-

tral idea would be to bound the probability of the specification being true in a parameter

space by sampling one or more points in the parameter space and then reasoning that the

probability values can not change any faster than that dictated by the upper bounds on the

partial derivative of the probability with respect to reach of the parameters.

While the algorithms for discovery of stochastic biochemical models have focused

on CTMCs, DTMCs naturally capture the semantics of Agent Based Models (ABMs).

171

We have developed discovery algorithms based on uniform continuity and monotonicity

arguments. Because of the discrete nature of DTMCs and the finite number of finite-

length paths, the proofs for the correctness of discovery algorithms for DTMCs are sim-

pler [JKL10].

Another interesting direction of research that we are currently pursuing is the discovery

of parameters in stochastic differential equation (SDE) models. Financial models are often

modeled as continuous time SDEs and the synthesis of such models from behavioral spec-

ifications would be of interest. This is particularly challenging because even the number of

possible states of the solution to a SDE is infinite. Hence, it is difficult to adapt our proofs

directly to the setting of stochastic differential equations. There has been recent work on

developing robustness arguments for solutions of ordinary differential equations and ap-

plying them for model discovery [DCL10]. However, it is known that Brownian Motion

is unbounded everywhere except at zero and thus, reachability is trivially true. Hence,

adapting the robustness argument for reachability in ODEs [DCL10] is not feasible for

SDEs.

172

Appendix A

Proofs

A.1 Termination of Bayesian Model validation Algorithm

Lemma 3 If ρ and A = [a0, a1] are strongly δ−separated, and b0 = − log δ, then, for all

probability v on A, for all n,

Aff
(
f(x1|ρ) . . . f(xn|ρ),

∫ 1

0

f(x1|u) . . . f(xn|u)v(u)du
)
< e−nb0 (A.1)

Proof 24 Proof by Induction:

Base Case: Aff
(
f(x1|ρ),

∫ 1

0
f(x1|u)v(u)du

)
< δ

Inductive Hypothesis: Aff
(
f(x1|ρ) . . . f(xn|ρ),

∫ 1

0
f(x1|u) . . . f(xn|u)v(u)du

)
< e−nb0

173

Inductive Step:

Aff
(
f(x1|ρ) . . . f(xn|ρ)f(xn+1|ρ),

∫ 1

0

f(x1|u) . . . f(xn|u)f(xn+1|u)v(u)du
)

=

∫ 1

0

√
f(x1|ρ) . . . f(xn|ρ)f(xn+1|ρ)

∫
Θ

f(x1|u) . . . f(xn|u)f(xn+1|u)dv dµ

6
∫ 1

0

√
f(x1|ρ) . . . f(xn+1|ρ)(

∫
Θ

[f(x1|u) . . . f(xn|u)]2dv)1/2 (

∫
Θ

[f(xn+1|u)]2dv)1/2 dµ

6
∫ 1

0

√
f(x1|ρ) . . . f(xn+1|ρ)(

∫
Θ

f(x1|u) . . . f(xn|u)dv) (

∫
Θ

f(xn+1|u)dv) dµ

6
∫ 1

0

√
f(x1|ρ) . . . f(xn|ρ)(

∫
Θ

f(x1|u) . . . f(xn|u)dv) f(xn+1)(

∫
Θ

f(xn+1|u)dv) dµ

6

√∫ 1

0

f(x1|ρ) . . . f(xn|ρ)
∫
Θ

f(x1|u) . . . f(xn|u)dv dµ

√∫ 1

0

f(xn+1)

∫
Θ

f(xn+1|u)dv dµ

6
∫ 1

0

√
f(x1|ρ) . . . f(xn|ρ)

∫
Θ

f(x1|u) . . . f(xn|u)dv dµ

∫ 1

0

√
f(xn+1)

∫
Θ

f(xn+1|u)dv dµ

< e−nb.e−b = e−(n+1)b

The above steps make repeated use of Holder’s inequatilty for integrals and expectations.

Hence, proved by induction.

Theorem 23 (Bayesian Consistency Theorem [CR08]) If xi are i.i.d. samples of the

Bernoulli random variable Xi(1 6 i 6 n) with probability of success ρ such that ρ lies

is in the KL support of the prior g, A = [a0, a1] is strongly δ- separated from ρ (for some

δ > 0), and the prior probability measure on A is finite, then the posterior probability of

A decreases exponentially to 0 almost everywhere.

174

P


∫ a1

a0

f(x1|u) · · · f(xn|u) · g(u) du∫ 1

0

f(x1|u) · · · f(xn|u) · g(u) du
> e−nb i.o.

 = 0

Here, b is a constant and the abbreviation i.o. stands for infinitely often.

Proof 25 For the details of the proof, please see [CR08].

P

(√∫ a1

a0

f(x1|u)
f(x1|ρ0)

· · ·
f(xn|u)
f(xn|ρ0)

· g(u) du > e−nb

)

6 enb E

[√∫ a1

a0

f(x1|u)
f(x1|ρ0)

· · ·
f(xn|u)
f(xn|ρ0)

· g(u) du
]

. . .Markov’s Inequality

= enb
∑

x∈Xn

√∫ a1

a0

f(x1|u)
f(x1|ρ0)

· · ·
f(xn|u)
f(xn|ρ0)

· g(u) du f(x1|ρ0) . . . f(xn|ρ0) . . .Definition of Expectation

= enb
∑

x∈Xn

√∫ a1

a0

f(x1|u) · · · f(xn|u) · g(u) du
√

f(x1|ρ0) . . . f(xn|ρ0) . . .Algebraic Manipulation

= enb
∑

x∈Xn

√√√√√√√√
∫ a1

a0

f(x1|v)
f(x1|ρ0)

· · ·
f(xn|v)
f(xn|ρ0)

· g(v) dv∫ 1

0

f(x1|v)
f(x1|ρ0)

· · ·
f(xn|v)
f(xn|ρ0)

· g(v) dv√√√√√√√√
∫ a1

a0

f(x1|u) · · · f(xn|u) ·

∫ 1

0

f(x1|v)
f(x1|ρ0)

· · ·
f(xn|v)
f(xn|ρ0)

· g(v) dv∫ a1

a0

f(x1|v)
f(x1|ρ0)

· · ·
f(xn|v)
f(xn|ρ0)

· g(v) dv
g(u) du

√
f(x1|ρ0) . . . f(xn|ρ0) . . .Algebraic Manipulation

= enb
∑

x∈Xn

√√√√√√√√
∫ a1

a0

f(x1|v)
f(x1|ρ0)

· · ·
f(xn|v)
f(xn|ρ0)

· g(v) dv∫ 1

0

f(x1|v)
f(x1|ρ0)

· · ·
f(xn|v)
f(xn|ρ0)

· g(v) dv√∫ a1

a0

f(x1|u) · · · f(xn|u) · g∗(u) du
√

f(x1|ρ0) . . . f(xn|ρ0) . . . g∗ is restriction of g on [a0, a1]

6 enb max
x∈X

√√√√√√√√
∫ a1

a0

f(x1|v)
f(x1|ρ0)

· · ·
f(xn|v)
f(xn|ρ0)

· g(v) dv∫ 1

0

f(x1|v)
f(x1|ρ0)

· · ·
f(xn|v)
f(xn|ρ0)

· g(v) dv

∑
x∈Xn

√∫ a1

a0

f(x1|u) · · · f(xn|u) · g∗(u) du
√

f(x1|ρ0) . . . f(xn|ρ0) . . .Algebraic Manipulation

175

6 enb max
x∈Xn

√√√√√√√√
∫ a1

a0

f(x1|u)
f(x1|ρ0)

· · ·
f(xn|u)
f(xn|ρ0)

· g(u) du∫ 1

0

f(x1|u)
f(x1|ρ0)

· · ·
f(xn|u)
f(xn|ρ0)

· g(u) du

Aff
(
f(x1|ρ0) . . . f(xn|ρ0),

∫ a1

a0

f(x1|u) . . . f(xn|u)g∗(u)du
)

. . .Definition of Affinity

6 enb
√

Πmax([a0, a1]) e−nb0 . . .Using Eqn. 4.5

6 enb (1) e−nb0 . . .Probability is at most 1

Choosing b = b0/4, we see that

P (

√∫ a1

a0

f(x1|u)
f(x1|ρ0)

· · · f(xn|u)
f(xn|ρ0)

· g(u) du > e−nb i.o.) = 0

We know that limn→∞ enb

√∫ 1

0

f(x1|u)
f(x1|ρ0)

· · · f(xn|u)
f(xn|ρ0)

· g(u) du =∞ a.s.

Hence, the result follows.

A.2 Proof of Uniform Continuity

Theorem 24 (Uniform Continuity of Logarithm of Path Probability Density) For ev-

ery ϵ ∈ R+, there exists δ ∈ R+ such that | logP ′(σ) − logP (σ)| 6 ϵ holds whenever

| log kj ′ − log kj| 6 δ, for all j (1 6 j 6 n).

Proof 26 We know that the probability density of moving from state si to state si+1 by

176

executing reaction rji after time ∆i is given by

P (si
∆i−→ si+1) = kjix1(si)

α
ji
1 . . . xm(si)

α
ji
mexp

(
−

n∑
h=1

khx1(si)
αh
1 . . . xm(si)

αh
m∆i

)

Taking logarithms on both sides,

logP (si
∆i−→ si+1) = log

(
kjix1(si)

α
ji
1 . . . xm(si)

α
ji
m
)
−

n∑
h=1

khx1(si)
αh
1 . . . xm(si)

αh
m∆i

= log
(
kjiγ

ji
(i,i+1)

)
−

n∑
h=1

khγ
h
(i,i+1)∆i

= log kji + log
(
γji(i,i+1)

)
−

n∑
h=1

khγ
h
(i,i+1)∆i

Here, γh(i,i+1)

def
≡ x1(si)

αh
1 . . . xm(si)

αh
m is a quantity independent of kh (1 6 h 6 n). And

so, | logP (si
∆i−→ si+1)− logP ′(si

∆i−→ si+1)|

= | [log kji + log
(
γji(i,i+1)

)
−

n∑
h=1

khγ
h
(i,i+1)∆i]

−[log k′ji + log
(
γji(i,i+1)

)
−

n∑
h=1

kh
′γh(i,i+1)∆i] |

= | [log kji−
n∑

h=1

khγ
h
(i,i+1)∆i]− [log k′ji−

n∑
h=1

kh
′γh(i,i+1)∆i] |

= | log kji − log k′ji+
n∑

h=1

(k′h − kh)γh(i,i+1)∆i |

6 | log kji − log k′ji|+ |
n∑

h=1

(k′h − kh)γh(i,i+1)∆i| (Triangle Inequality)

177

6 | log kji − log k′ji|+ γmax
(i,i+1)∆i|

n∑
h=1

(k′h − kh)| (γmax
(i,i+1)

def
≡ max

16h6n
γh(i,i+1))

6 | log kji − log k′ji|+ γmax
(i,i+1)∆i

n∑
h=1

|k′h − kh| (Triangle Inequality)

Consider the finite path σ ≡ s0
∆0−→ s1 · · ·

∆l−1−→ sl. Let P (σ) be the probability

density associated with the path in the modelM(Θ) and P ′(σ) be the probability density

associated with the path in the modelM(Θ′).

P (σ) = P (s0
∆0−→ s1)× · · · × P (sl−1

∆l−1−→ sl)

⇒ logP (σ) = logP (s0
∆0−→ s1) + · · ·+ logP (sl−1

∆l−1−→ sl)

So,

| logP (σ)− logP ′(σ) |

6
l−1∑
i=0

| log kji − log k′ji|+
l−1∑
i=0

(
γmax
(i,i+1)∆i

n∑
h=1

|k′h − kh|
)

6 l max
ji,i∈[0,l−1]

| log kji − log k′ji|+
(n∑

h=1

|k′h − kh|
) l−1∑

i=0

(
γmax
(i,i+1)∆i

)
6 l| log kj − log k′j|max + γmax

(n∑
h=1

|k′h − kh|
) l−1∑

i=0

∆i

where γmax
def
≡ maxi γ

max
(i,i+1) and | log kj − log k′j|max

def
≡ maxji,i∈[0,l−1] | log kji − log k′ji|.

178

And so,

| logP (σ)− logP ′(σ) |

6 l| log kj − log k′j|max + γmax
(n∑

h=1

|k′h − kh|
)
∆total, where ∆total ≡

l−1∑
i=0

∆i

6 l| log kj − log k′j|max + γmax
(n∑

h=1

M
(
e| log k

′
h−log kh| − 1

))
∆total

To show that | logP (σ) − logP ′(σ) | 6 ϵ, it is sufficient to show that the following

holds:

l| log kj − log k′j|max + γmax
(n∑

h=1

M
(
e| log k

′
h−log kh| − 1

))
∆total 6 ϵ

.

From the statement of our theorem, we know that | log kj − log k′j|max 6 δ. One can

verify that the following choice of δ is sufficient to show that | logP (σ)− logP ′(σ) | 6 ϵ:

δ = min

(
ϵ

l(n+ 1)
, log

(
ϵ

(n+ 1)max(γmaxM∆total, 1)
+ 1

))
def
≡ δ(ϵ,M).

179

180

Bibliography

[AAB00] Aurore Annichini, Eugene Asarin, and Ahmed Bouajjani. Symbolic tech-

niques for parametric reasoning about counter and clock systems. In

E. Allen Emerson and A. Prasad Sistla, editors, CAV, volume 1855 of

Lecture Notes in Computer Science, pages 419–434. Springer, 2000. 3.2

[ACH+95] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Hen-

zinger, Pei-Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis,

and Sergio Yovine. The algorithmic analysis of hybrid systems. Theor.

Comput. Sci., 138(1):3–34, 1995. 3.2

[ADG05] E. Asarin, T. Dang, and A. Girard. Hybridization methods for verification

of non-linear systems. In ECC-CDC’05 joint conference: Conference

on Decision and Control CDC and European Control Conference ECC,

2005. 3.2

[AFF+02] Roy Armoni, Limor Fix, Alon Flaisher, Rob Gerth, Boris Ginsburg,

Tomer Kanza, Avner Landver, Sela Mador-Haim, Eli Singerman, An-

dreas Tiemeyer, Moshe Y. Vardi, and Yael Zbar. The forspec temporal

181

logic: A new temporal property-specification language. In TACAS ’02:

Proceedings of the 8th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, pages 296–211, London,

UK, 2002. Springer-Verlag. 6.2

[AGK09] David F. Anderson, Arnab Ganguly, and Thomas G. Kurtz. Error analysis

of tau-leap simulation methods, 2009. 6.2

[AKRS08] Rajeev Alur, Aditya Kanade, S. Ramesh, and K. C. Shashidhar. Symbolic

analysis for improving simulation coverage of simulink/stateflow models.

In EMSOFT ’08: Proceedings of the 8th ACM international conference

on Embedded software, pages 89–98, New York, NY, USA, 2008. ACM.

6.1.1

[Ams70] Arnold E. Amstutz. Computer Simulation of Competitive Market Re-

sponse, volume 1 of MIT Press Books. The MIT Press, October 1970.

3

[AO91] K. R. Apt and E.-R. Olderog. Verification of sequential and concurrent

programs. Springer-Verlag, 1991. 3

[BBB07] Alberto Bemporad, Antonio Bicchi, and Giorgio C. Buttazzo, editors.

Hybrid Systems: Computation and Control, 10th International Work-

shop, HSCC 2007, Pisa, Italy, April 3-5, 2007, Proceedings, volume 4416

of Lecture Notes in Computer Science. Springer, 2007. A.2

[BCHG+97] Christel Baier, Edmund M. Clarke, Vassili Hartonas-Garmhausen,

182

Marta Z. Kwiatkowska, and Mark Ryan. Symbolic model checking for

probabilistic processes. In Pierpaolo Degano, Roberto Gorrieri, and Al-

berto Marchetti-Spaccamela, editors, ICALP, volume 1256 of Lecture

Notes in Computer Science, pages 430–440. Springer, 1997. 2.2, 2.3,

3.1, 4.5.4

[Ber85] J.O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer-

Verlag, 1985. 4

[Ber93] James O. Berger. Statistical Decision Theory and Bayesian Analysis

(Springer Series in Statistics). Springer, 1993. 4.4

[BFGH04] M. L. Blinov, J. R. Faeder, B. Goldstein, and W. S. Hlavacek. BioNet-

Gen: software for rule-based modeling of signal transduction based on

the interactions of molecular domains. Bioinformatics, 20(17):3289–

3291, 2004. 6.2

[BG96] M. Broadie and P. Glasserman. Estimating security price derivatives us-

ing simulation. Management Science, 42:269–285, 1996. 3

[BHHK03] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-

Pieter Katoen. Model-checking algorithms for continuous-time markov

chains. IEEE Trans. Software Eng., 29(6):524–541, 2003. 2.2, 3.1

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.

The MIT Press, May 2008. 1.1

183

[BM81] R. S. Boyer and J. S. Moore, editors. The Correctness Problem in Com-

puter Science. Academic Press, 1981. 3

[BMMR01] Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Raja-

mani. Automatic predicate abstraction of C programs. In PLDI, pages

203–213, 2001. 1.1

[BR02] T. Ball and S.K. Rajamani. The SLAM project: debugging system soft-

ware via static analysis. In POPL 2002: Proceedings of the 29th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages,

pages 1–3, 2002. 1.1

[BS73] F. Black and M. Scholes. The pricing of options and corporate liabilities.

Journal of Political Economy, 81:637–654, 1973. 1.2, 4

[BYWB07] Gregory Batt, Boyan Yordanov, Ron Weiss, and Calin Belta. Robust-

ness analysis and tuning of synthetic gene networks. Bioinformatics,

23(18):2415–2422, 2007. 3.2

[CB06] Frank Ciesinski and Christel Baier. Liquor: A tool for qualitative and

quantitative linear time analysis of reactive systems. In QEST, pages

131–132. IEEE Computer Society, 2006. 3.1

[CCD+04] N. Chabrier-Rivier, M. Chiaverini, V. Danos, F. Fages, and V. Schãchter.

Modeling and querying biomolecular interaction networks. Theor. Com-

put. Sci., 325(1):25–44, 2004. 2.2

184

[CE82] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of syn-

chronization skeletons using branching-time temporal logic. In Logic of

Programs, Workshop, pages 52–71, London, UK, 1982. Springer-Verlag.

2.3

[CF03] Nathalie Chabrier and François Fages. Symbolic model checking of bio-

chemical networks. In Corrado Priami, editor, CMSB, volume 2602 of

Lecture Notes in Computer Science, pages 149–162. Springer, 2003. 2.2,

3.2

[CFL+08] Edmund M. Clarke, James R. Faeder, Christopher James Langmead,

Leonard A. Harris, Sumit Kumar Jha, and Axel Legay. Statistical model

checking in biolab: Applications to the automated analysis of t-cell re-

ceptor signaling pathway. In Monika Heiner and Adelinde M. Uhrma-

cher, editors, CMSB, volume 5307 of Lecture Notes in Computer Science,

pages 231–250. Springer, 2008. 2.2, 2.2, 3, 4.5

[CFS06a] Laurence Calzone, François Fages, and Sylvain Soliman. Biocham: an

environment for modeling biological systems and formalizing experi-

mental knowledge. Bioinformatics, 22(14):1805–1807, 2006. 3, 3.2

[CFS06b] Laurence Calzone, Francois Fages, and Sylvain Soliman. Biocham: an

environment for modeling biological systems and formalizing experi-

mental knowledge. Bioinformatics, 22(14):1805–1807, July 2006. 2.2

[CG04] F. Ciesinski and M. Größer. On probabilistic computation tree logic. In

185

Validation of Stochastic Systems, LNCS, 2925, pages 147–188. Springer,

2004. 3.1

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut

Veith. Counterexample-guided abstraction refinement. In E. Allen Emer-

son and A. Prasad Sistla, editors, CAV, volume 1855 of Lecture Notes in

Computer Science, pages 154–169. Springer, 2000. 5.4.1

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT

Press, Cambridge, MA, 1999. 2.3

[CGP07] Yang Cao, Daniel T. Gillespie, and Linda R. Petzold. Adaptive explicit-

implicit tau-leaping method with automatic tau selection. The Journal of

Chemical Physics, 126(22):224101, June 2007. 6.2

[CR08] T. Choi and R. V. Ramamoorthi. Remarks on consistency of posterior

distributions. ArXiv e-prints, May 2008. 4.3.1, 2, 2, 23, 25

[CSV09] Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan. On the ex-

pressiveness and complexity of randomization in finite state monitors. J.

ACM, 56(5), 2009. 2.2

[CY95] Costas Courcoubetis and Mihalis Yannakakis. The complexity of proba-

bilistic verification. Journal of the ACM, 42(4):857–907, 1995. 3.1

[dAKN+00] Luca de Alfaro, Marta Z. Kwiatkowska, Gethin Norman, David Parker,

and Roberto Segala. Symbolic model checking of probabilistic processes

using mtbdds and the kronecker representation. In Susanne Graf and

186

Michael I. Schwartzbach, editors, TACAS, volume 1785 of Lecture Notes

in Computer Science, pages 395–410. Springer, 2000. 4.5.4

[DCL09] Alexandre Donzé, Gilles Clermont, and Christopher James Langmead.

Parameter synthesis in nonlinear dynamical systems: Application to sys-

tems biology. In Serafim Batzoglou, editor, RECOMB, volume 5541 of

Lecture Notes in Computer Science, pages 155–169. Springer, 2009. 3.2

[DCL10] Alexandre Donzé, Gilles Clermont, and Christopher James Langmead.

Parameter synthesis in nonlinear dynamical systems: Application to sys-

tems biology. J. Comp. Biol., 17(3):325–336, 2010. 3.2, 6.2

[DCS+08] Bryan C. Daniels, Yan-Jiun Chen, James P. Sethna, Ryan N. Gutenkunst,

and Christopher R. Myers. Sloppiness, robustness, and evolvability in

systems biology, May 2008. 3.2

[DFTdJV06] Samuel Drulhe, Giancarlo Ferrari-Trecate, Hidde de Jong, and A. Viari.

Reconstruction of switching thresholds in piecewise-affine models of ge-

netic regulatory networks. In João P. Hespanha and Ashish Tiwari, edi-

tors, HSCC, volume 3927 of Lecture Notes in Computer Science, pages

184–199. Springer, 2006. 3.2

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Inc.,

October 1976. 3

[DM07] Alexandre Donzé and Oded Maler. Systematic simulation using sensitiv-

ity analysis. In Bemporad et al. [BBB07], pages 174–189. 3.2

187

[Doo45] J. L. Doob. Markoff chains–denumerable case. Transactions of the Amer-

ican Mathematical Society, 58(3):455–473, Nov 1945. 2.1.1

[DtS03] Doron Drusinsky and Man tak Shing. Monitoring temporal logic specifi-

cations combined with time series constraints. J. UCS, 9(11):1261–1276,

2003. 2.2

[ER05] Kousha Etessami and Sriram K. Rajamani, editors. Computer Aided Veri-

fication, 17th International Conference, CAV 2005, Edinburgh, Scotland,

UK, July 6-10, 2005, Proceedings, volume 3576 of Lecture Notes in Com-

puter Science. Springer, 2005. A.2

[Fag05] François Fages. Temporal logic constraints in the biochemical abstract

machine biocham. In Patricia M. Hill, editor, LOPSTR, volume 3901 of

Lecture Notes in Computer Science, pages 1–5. Springer, 2005. 2.2

[Fag06] François Fages. From syntax to semantics in systems biology towards

automated reasoning tools. 3939:68–70, 2006. 2.2, 3

[FBGH05] James R. Faeder, Michael L. Blinov, Byron Goldstein, and William S.

Hlavacek. Rule-based modeling of biochemical networks. Complexity,

10(4):22–41, 2005. 1.2, 1.3, 3, 6.2

[FBH05] J. R. Faeder, M. L. Blinov, and W. S. Hlavacek. Graphical rule-based

representation of signal-transduction networks. In SAC ’05: Proceedings

of the 2005 ACM symposium on Applied computing, pages 133–140, New

York, NY, USA, 2005. ACM. 1.3, 6.2

188

[FBH08] J. R. Faeder, M. L. Blinov, and W. S. Hlavacek. Rule-based modeling of

biochemical systems with BioNetGen. In I. V. Maly, editor, Systems Bi-

ology, Methods in Molecular Biology. Humana Press, Totowa, NJ, 2008.

1.3, 6.2

[FJK08] Goran Frehse, Sumit Kumar Jha, and Bruce H. Krogh. A

counterexample-guided approach to parameter synthesis for linear hybrid

automata. In Magnus Egerstedt and Bud Mishra, editors, HSCC, volume

4981 of Lecture Notes in Computer Science, pages 187–200. Springer,

2008. 3.2

[Flo67] R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,

Mathematical Aspects of Computer Science, Proceedings of Symposia

in Applied Mathematics 19, pages 19–32, Providence, 1967. American

Mathematical Society. 3

[FS01] Bernd Finkbeiner and Henny Sipma. Checking finite traces using alter-

nating automata. In In Proceedings of Runtime Verification (RV01) [1,

pages 44–60, 2001. 2.2

[GCPD05] R. Gunawan, Y. Cao, L. Petzold, and F. J. Doyle. Sensitivity analysis of

discrete stochastic systems. Biophys J, 88(4):2530–2540, April 2005. 3.2

[GCSR03] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin.

Bayesian Data Analysis, Second Edition (Texts in Statistical Science).

Chapman & Hall/CRC, 2 edition, July 2003. 4, 6.1.2

189

[Gho] Ghosh, editor. Handbookofsequentialanalysis. Dekker. 4.4

[Gil75] D. T. Gillespie. The monte carlo method for evaluating integrals. Tech-

nical report, National Weapons Center, 1975. 2.1.1

[Gil76] D. T. Gillespie. A general method for numerically simulating the stochas-

tic time evolution of coupled chemical reactions. J. Comp. Phys., 22:403–

434, 1976. 3

[Gil77] D. T. Gillespie. Exact stochastic simulation of coupled chemical reac-

tions. The Journal of Physical Chemistry, 81(25):2340–2361, 1977. 5.1,

5.2

[Gil07] Daniel T. Gillespie. Stochastic simulation of chemical kinetics. Annual

review of physical chemistry, 58(1):35–55, 2007. 5.1, 5.2

[Gir60] I. V. Girsanov. On transforming a certain class of stochastic processes

by absolutely continuous substitution of measures. Theory of Probability

and its Applications, 5(3):285–301, 1960. 4.5.1, 4.5.4, 4.5.5

[Goo99] S. N. Goodman. Toward evidence-based medical statistics. 1: The p value

fallacy. Ann Intern Med, 130(12):995–1004, June 1999. 3.1.1

[GPS09] Kalpana Gondi, Yogeshkumar Patel, and A. Prasad Sistla. Monitoring the

full range of omega-regular properties of stochastic systems. In Neil D.

Jones and Markus Müller-Olm, editors, VMCAI, volume 5403 of Lecture

Notes in Computer Science, pages 105–119. Springer, 2009. 2.2

190

[GS05] Radu Grosu and Scott A. Smolka. Monte carlo model checking. In Nico-

las Halbwachs and Lenore D. Zuck, editors, TACAS, volume 3440 of Lec-

ture Notes in Computer Science, pages 271–286. Springer, 2005. 3.1.1,

4.5

[GTT03] Ronojoy Ghosh, Ashish Tiwari, and Claire Tomlin. Automated symbolic

reachability analysis; with application to delta-notch signaling automata.

[MP03], pages 233–248. 3.2

[Hay69] G. G. Hays. Computer-aided design: Simulation of digital design logic.

IEEE Trans. Comput., 18(1):1–10, 1969. 3

[Hes93] S. L. Heston. A closed-form solution for options with stochastic volatil-

ity with applications to bond and currency options. Review of Financial

Studies, 6:327–343, 1993. 4

[HHMWT00] T. A. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Toi. Beyond

HYTECH: Hybrid systems analysis using interval numerical methods. In

HSCC, Lecture Notes in Computer Science, pages 130–144. Springer,

2000. 3.2

[HKM08] T. Han, J. P. Katoen, and A. Mereacre. Approximate parameter synthesis

for probabilistic time-bounded reachability. In Proceedings of the IEEE

Real-Time Systems Symposium (RTSS 2008), Barcelona, Spain, pages

173–182, Los Alamitos, December 2008. IEEE Computer Society Press.

3.2, 5.5.2

191

[HKN+06] J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn.

Probabilistic model checking of complex biological pathways. In

C. Priami, editor, Proc. Computational Methods in Systems Biology

(CMSB’06), volume 4210 of Lecture Notes in Bioinformatics, pages 32–

47. Springer Verlag, 2006. 3, 5.6, 5.6.1

[HKN+08] J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn.

Probabilistic model checking of complex biological pathways. Theoreti-

cal Computer Science, 319(3):239–257, 2008. 3, 5.6, 5.6.1

[HLMP04] T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate

probabilistic model checking. In Proc. 5th International Conference on

Verification, Model Checking and Abstract Interpretation (VMCAI’04),

volume 2937 of LNCS. Springer, 2004. 3.1, 3.1.1

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Com-

mun. ACM, 12(10):576–580, 1969. 3

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random

variables. Journal of the American Statistical Association, 58(301):13–

30, 1963. 3.1.1

[HT08] Espen G. Haug and Nassim N. Taleb. Why we have never used the black-

scholes-merton option pricing formula. Social Science Research Network

Working Paper Series, January 2008. 1.2, 4

192

[Hul06] J. C. Hull. Options, Futures, and Other Derivatives. Prentice-Hall, Upper

Saddle River, N.J., sixth edition, 2006. 4

[JBS07] Susmit Jha, Bryan A. Brady, and Sanjit A. Seshia. Symbolic reachability

analysis of lazy linear hybrid automata. In Jean-François Raskin and

P. S. Thiagarajan, editors, FORMATS, volume 4763 of Lecture Notes in

Computer Science, pages 241–256. Springer, 2007. 5.4.1, 5.5.2

[JCL+09] Sumit Kumar Jha, Edmund M. Clarke, Christopher James Langmead,

Axel Legay, André Platzer, and Paolo Zuliani. A bayesian approach to

model checking biological systems. In Pierpaolo Degano and Roberto

Gorrieri, editors, CMSB, volume 5688 of Lecture Notes in Computer Sci-

ence, pages 218–234. Springer, 2009. 1.3, 2.2, 3, 3.1, 4.5, 4.5.2

[Jef61] Harold Jeffreys. Theory of probability / by Harold Jeffreys. Clarendon

Press, Oxford, 3rd ed. edition, 1961. 1.3, 4.1, 4.1, 4.3

[JJ08] Susmit Jha and Sumit Kumar Jha. Randomization based probabilistic

approach to detect trojan circuits. In HASE, pages 117–124. IEEE Com-

puter Society, 2008. 4.5

[JKL10] Sumit Kumar Jha, Runpinder Paul Khandpur, and Christopher James

Langmead. Model discovery for agent based models using bayesian sta-

tistical model checking and abstraction refinement. In Submitted, 2010.

6.2

[JKWC07] Sumit Kumar Jha, Bruce H. Krogh, James E. Weimer, and Edmund M.

193

Clarke. Reachability for linear hybrid automata using iterative relaxation

abstraction. In Bemporad et al. [BBB07], pages 287–300. 3.2

[JL10a] Sumit Kumar Jha and Christopher James Langmead. Statistical model

checking of stochastic differential equation models using non-i.i.d. sam-

pling. In Under Review, 2010. 1.3

[JL10b] Sumit Kumar Jha and Christopher James Langmead. Synthesis and in-

feasibility analysis for stochastic models of biochemical systems using

statistical model checking and abstraction refinement. Theoretical Com-

puter Science, page In Press, 2010. 1.3, 3

[JU97] S. Julier and J. Uhlmann. A new extension of the kalman filter to nonlin-

ear systems. In Int. Symp. Aerospace/Defense Sensing, Simul. and Con-

trols, Orlando, FL, 1997. 3.2

[Kal60] Rudolph Emil Kalman. A new approach to linear filtering and predic-

tion problems. Transactions of the ASME–Journal of Basic Engineering,

82(Series D):35–45, 1960. 3.2

[KD01] Jayesh H. Kotecha and Petar M. Djuric. Gaussian particle filtering. In

Proceedings of the 11th IEEE Signal Processing Workshop on Statistical

Signal Processing, pages 429–432, 2001. 3.2

[KNP04] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Prism 2.0:

A tool for probabilistic model checking. In QEST, pages 322–323. IEEE

Computer Society, 2004. 2.2, 2.3, 3.1, 4.5.4

194

[KNP05] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic model check-

ing in practice: Case studies with PRISM. ACM SIGMETRICS Perfor-

mance Evaluation Review, 32(4):16–21, 2005. 3.1

[Koy90] Ron Koymans. Specifying real-time properties with metric temporal

logic. Real-Time Syst., 2(4):255–299, 1990. 2.2

[KR95] Robert E. Kass and Adrian E. Raftery. Bayes factors. Journal of the

American Statistical Association, 90(430):773–795, 1995. 4.1

[Lan09] C.J. Langmead. Generalized Queries and Bayesian Statistical Model

Checking in Dynamic Bayesian Networks: Application to Personalized

Medicine. In Proc. of the 8th International Conference on Computational

Systems Bioinformatics (CSB), pages 201–212, 2009. 3.1, 3.1.1

[LHFH08] T. Lipniacki, B. Hat, J. R. Faeder, and W. S. Hlavacek. Stochastic effects

and bistability in T cell receptor signaling. J. Theor. Biol., page in press,

2008. (document), 1.2, 4.15, 4.3.2, 4.3.2, 4.4.2

[LJ07a] Christopher James Langmead and Sumit Kumar Jha. Predicting protein

folding kinetics via temporal logic model checking. In Raffaele Gian-

carlo and Sridhar Hannenhalli, editors, Algorithms in Bioinformatics, 7th

International Workshop, volume 4645 of Lecture Notes in Computer Sci-

ence, pages 252–264. Springer, 2007. 2.2, 3.1

[LJ07b] C.J. Langmead and S. K. Jha. Predicting protein folding kinetics via

195

model checking. Lecture Notes in Bioinformatics: The 7th Workshop on

Algorithms in Bioinformatics (WABI), pages 252–264, 2007. 3

[LJ09] C.J. Langmead and S.K. Jha. Symbolic Approaches to Finding Control

Strategies in Boolean Networks. J. Bioinf. and Comp. Biol., 7(2):323–

338, 2009. 2.2

[LJC06] C. J. Langmead, S. Jha, and E. M. Clarke. Temporal-logics as query lan-

guages for dynamic bayesian networks: Application to d. melanogaster

embryo development, 2006. 2.2

[man63] Manned spacecraft simulation, 1963. 3

[McK95] T.W. McKeithan. Kinetic proofreading in T-cell receptor signal transduc-

tion. Proc Natl Acad Sci, 92(11):5042–5046, 1995. 4.3.2

[MP03] Oded Maler and Amir Pnueli, editors. Hybrid Systems: Computation

and Control, 6th International Workshop, HSCC 2003 Prague, Czech

Republic, April 3-5, 2003, Proceedings, volume 2623 of Lecture Notes

in Computer Science. Springer, 2003. A.2

[MS95] H. McAdams and L. Shapiro. Circuit simulation of genetic networks.

Science, 269:650–656, 1995. 3

[MT00] Ian Mitchell and Claire Tomlin. Level set methods for computation in

hybrid systems. In Nancy A. Lynch and Bruce H. Krogh, editors, HSCC,

volume 1790 of Lecture Notes in Computer Science, pages 310–323.

Springer, 2000. 3.2

196

[NRTT09] Aditya V. Nori, Sriram K. Rajamani, SaiDeep Tetali, and Aditya V.

Thakur. The Yogi Project: Software property checking via static anal-

ysis and testing. In Stefan Kowalewski and Anna Philippou, editors,

TACAS, volume 5505 of Lecture Notes in Computer Science, pages 178–

181. Springer, 2009. 1.1

[OL82] Susan S. Owicki and Leslie Lamport. Proving liveness properties of

concurrent programs. ACM Trans. Program. Lang. Syst., 4(3):455–495,

1982. 2.2

[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57.

IEEE, 1977. 2.2

[QBdB07] Minh Quach, Nicolas Brunel, and Florence d’Alché Buc. Estimating

parameters and hidden variables in non-linear state-space models based

on odes for biological networks inference. Bioinformatics, 23(23):3209–

3216, 2007. 3.2

[RBFS08] Aurélien Rizk, Grégory Batt, François Fages, and Sylvain Soliman. On

a continuous degree of satisfaction of temporal logic formulae with ap-

plications to systems biology. In CMSB ’08: Proceedings of the 6th In-

ternational Conference on Computational Methods in Systems Biology,

pages 251–268, Berlin, Heidelberg, 2008. Springer-Verlag. 2.2, 3, 3.2

[RBFS09] Aurélien Rizk, Gregory Batt, François Fages, and Sylvain Soliman. A

197

general computational method for robustness analysis with applications

to synthetic gene networks. Bioinformatics, 25(12):i169–i178, 2009. 3

[RBL+96] J.D. Rabinowitz, C. Beeson, D. S. Lyonsdagger, M. M. Davisdagger, and

H. M. McConnell. Kinetic discrimination in T-cell activation. Proc Natl

Acad Sci, 93(4):1401–1405, 1996. 4.3.2

[RPCG03] Muruhan Rathinam, Linda R. Petzold, Yang Cao, and Daniel T. Gille-

spie. Stiffness in stochastic chemically reacting systems: The implicit

tau-leaping method. The Journal of Chemical Physics, 119(24):12784–

12794, 2003. 5.1, 5.2

[SDD+07] David E. Shaw, Martin M. Deneroff, Ron O. Dror, Jeffrey S. Kuskin,

Richard H. Larson, John K. Salmon, Cliff Young, Brannon Batson,

Kevin J. Bowers, Jack C. Chao, Michael P. Eastwood, Joseph Gagliardo,

J. P. Grossman, C. Richard Ho, Douglas J. Ierardi, István Kolossváry,

John L. Klepeis, Timothy Layman, Christine McLeavey, Mark A.

Moraes, Rolf Mueller, Edward C. Priest, Yibing Shan, Jochen Spengler,

Michael Theobald, Brian Towles, and Stanley C. Wang. Anton, a special-

purpose machine for molecular dynamics simulation. In ISCA ’07: Pro-

ceedings of the 34th annual international symposium on Computer archi-

tecture, pages 1–12, New York, NY, USA, 2007. ACM. 3

[Shr04] Steven E. Shreve. Stochastic Calculus for Finance II: Continuous-Time

Models, volume 2. Springer Science+Business Media, Inc, 2004. 2.1,

2.1.2, 2.1.2

198

[SK03] Olaf Stursberg and Bruce H. Krogh. Efficient representation and compu-

tation of reachable sets for hybrid systems. In Maler and Pnueli [MP03],

pages 482–497. 3.2

[SO96] William Mendenhall Scheaffer, Richard L. and Lyman Ott. Elementary

Survey Sampling. Duxbury Press, 1996. 1.3, 5.3.1

[SS08] A. Prasad Sistla and Abhigna R. Srinivas. Monitoring temporal prop-

erties of stochastic systems. In Francesco Logozzo, Doron Peled, and

Lenore D. Zuck, editors, VMCAI, volume 4905 of Lecture Notes in Com-

puter Science, pages 294–308. Springer, 2008. 2.2

[Sta01] J. Staum. Simulation in financial engineering. In B. A. Peters, J. S.

Smith, D. J. Medeiros, and M. W. Rohrer, editors, Proceedings of the

2001 Winter Simulation Conference, pages 123–133. IEEE Press, 2001.

3

[SVA04] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Statistical model

checking of black-box probabilistic systems. In Rajeev Alur and Doron

Peled, editors, CAV, volume 3114 of Lecture Notes in Computer Science,

pages 202–215. Springer, 2004. 3.1.1, 4.5

[SVA05] Koushik Sen, Mahesh Viswanathan, and Gul Agha. On statistical model

checking of stochastic systems. In CAV, LNCS 3576, pages 266–280,

2005. 3.1.1, 4.5

199

[Tal07] Nassim N. Taleb. The Black Swan: The Impact of the Highly Improbable.

Random House, April 2007. 6.1.1

[TNO+03] Makoto Taiji, Tetsu Narumi, Yousuke Ohno, Noriyuki Futatsugi, Atsushi

Suenaga, Naoki Takada, and Akihiko Konagaya. Protein explorer: A

petaflops special-purpose computer system for molecular dynamics sim-

ulations. In SC ’03: Proceedings of the 2003 ACM/IEEE conference on

Supercomputing, page 15, Washington, DC, USA, 2003. IEEE Computer

Society. 3

[TR05] Prasanna Thati and Grigore Rosu. Monitoring algorithms for metric tem-

poral logic specifications. Electr. Notes Theor. Comput. Sci., 113:145–

162, 2005. 2.2

[VAD98] F. Vázquez-Abad and D. Dufresne. Accelerated simulation for pricing

Asian options. In Proceedings of the 1998 Winter Simulation Conference,

pages 1493–1500. IEEE Press, 1998. 3

[vdMDdFW00] Rudolph van der Merwe, Arnaud Doucet, Nando de Freitas, and Eric A.

Wan. The unscented particle filter. In Todd K. Leen, Thomas G. Diet-

terich, and Volker Tresp, editors, NIPS, pages 584–590. MIT Press, 2000.

3.2

[Wal47] A. Wald. Sequential Analysis. New York: John Wiley and Son, 1947.

3.1.1

200

[WF00] R. Wu and M. C. Fu. Optimal exercise policies and simulation-based

valuation for American-Asian options. manuscript, April 2000. 3

[WW48] A. Wald and J. Wolfowitz. Optimum character of the sequential proba-

bility ratio test. Ann. Math. Statist., 19(3):326–339, 1948. 3.1.1

[YBO+98] Bwolen Yang, Randal E. Bryant, David R. O’Hallaron, Armin Biere,

Olivier Coudert, Geert Janssen, Rajeev K. Ranjan, and Fabio Somenzi. A

performance study of bdd-based model checking. In FMCAD ’98: Pro-

ceedings of the Second International Conference on Formal Methods in

Computer-Aided Design, pages 255–289, London, UK, 1998. Springer-

Verlag. 3.1

[YKNP04] Håkan L. S. Younes, Marta Z. Kwiatkowska, Gethin Norman, and David

Parker. Numerical vs. statistical probabilistic model checking: An empir-

ical study. In Kurt Jensen and Andreas Podelski, editors, TACAS, volume

2988 of Lecture Notes in Computer Science, pages 46–60. Springer, 2004.

4.5

[YKNP06] Håkan L. S. Younes, Marta Z. Kwiatkowska, Gethin Norman, and David

Parker. Numerical vs. statistical probabilistic model checking. STTT,

8(3):216–228, 2006. 2.3, 3.1.1, 4.5

[You04] Hakan Lorens Samir Younes. Verification and planning for stochastic

processes with asynchronous events. PhD thesis, Pittsburgh, PA, USA,

2004. Chair-Reid G. Simmons. 2.2, 2.3, 3.1, 3.1.1, 3.1.1, 4.5, 6.1.1

201

[You05a] Håkan L. S. Younes. Probabilistic verification for "black-box" systems.

In Etessami and Rajamani [ER05], pages 253–265. 4.5

[You05b] Håkan L. S. Younes. Verification and Planning for Stochastic Processes

with Asynchronous Events. PhD thesis, Carnegie Mellon, 2005. 4.5

[You05c] Håkan L. S. Younes. Ymer: A statistical model checker. In Etessami and

Rajamani [ER05], pages 429–433. 4.5

[YS02] Håkan L. S. Younes and Reid G. Simmons. Probabilistic verification of

discrete event systems using acceptance sampling. In CAV, LNCS 2404,

pages 223–235. Springer, 2002. 2.3, 3.1, 3.1.1, 4.5

[YS06] Håkan L. S. Younes and Reid G. Simmons. Statistical probabilistic model

checking with a focus on time-bounded properties. Information and Com-

putation, 204(9):1368–1409, 2006. 2.2, 2.3, 3.1

202

	1 Introduction
	1.1 Model Validation
	1.2 Model Discovery
	1.3 Contributions
	1.4 Outline of Thesis

	2 Definitions
	2.1 Stochastic Models
	2.1.1 Continuous Time Markov Chains
	2.1.2 Stochastic Differential Equations

	2.2 Probabilistic Adapted Finitely Monitorable Specifications
	2.3 Validation of Stochastic Systems
	2.4 Discovery of Stochastic Systems

	3 Previous Work
	3.1 Validation of Stochastic Systems
	3.1.1 Existing algorithms

	3.2 Discovery of Stochastic Systems

	4 Bayesian Statistical Model Checking
	4.1 Bayesian Statistics
	4.2 Bayes Factor Computation
	4.3 Algorithm 1: Bayesian Statistical Model Checking
	4.3.1 Theorems
	4.3.2 Empirical Performance of Algorithm 1

	4.4 Algorithm 2: Cost Based Statistical Bayesian Model Checking
	4.4.1 Theorems
	4.4.2 Empirical Performance of Algorithm 2

	4.5 Algorithm 3: Non-i.i.d. Bayesian Statistical Model Checking
	4.5.1 Background
	4.5.2 Algorithm
	4.5.3 Results on the Non-i.i.d. Statistical Verification algorithm
	4.5.4 Testing Strategy for Probabilistic Reactive Modules encoding of DTMCs
	4.5.5 Empirical Performance of Algorithm 3

	4.6 Conclusion

	5 Discovery of Stochastic Biochemical Models
	5.1 Introduction
	5.2 Stochastic Models of Biochemical Systems
	5.3 Statistical Model Validation for Model Disovery
	5.3.1 Survey Sampling based Statistical Model Validation

	5.4 Problem Statement and Theorems
	5.4.1 Uniform Continuity in the Logarithmic Parameter Space

	5.5 Parameter Synthesis Algorithms
	5.5.1 Algorithm 4: Parameter Synthesis using Uniform Continuity
	5.5.2 Algorithm 5: Faster Parameter Synthesis using Abstraction Refinement
	5.5.3 Algorithm 6: Parameter Search and Model Infeasibility using Gradient Descent

	5.6 Experimental Results
	5.6.1 Parameter Synthesis using Uniform Continuity (Algorithm 4)
	5.6.2 Parameter Synthesis using Abstraction Refinement (Algorithm 5)
	5.6.3 Parameter Estimation using Gradient Descent (Algorithm 6)

	6 Conclusion and Future Work
	6.1 Conclusions
	6.1.1 Bayesian Statistical Model Checking
	6.1.2 Discovery of Stochastic Biochemical Systems against Behavioral Specifications

	6.2 Future Work

	A Proofs
	A.1 Termination of Bayesian Model validation Algorithm
	A.2 Proof of Uniform Continuity

