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Abstract

Statistical models of the amino acid composition of the proteins within a fold family are widely
used in science and engineering. Existing techniques for learning probabilistic graphical models
from multiple sequence alignments either make strong assumptions about the conditional indepen-
dencies within the model (e.g., HMMs), or else use sub-optimal algorithms to learn the structure
and parameters of the model. We introduce an approach to learning the topological structure and
parameters of an undirected probabilistic graphical model. The learning algorithm uses block-
L1 regularization and solves a convex optimization problem, thus guaranteeing a globally optimal
solution at convergence. The resulting model encodes both the position-specific conservation sta-
tistics and the correlated mutation statistics between sequential and long-range pairs of residues.
Our model is generative, allowing for the design of new proteins that have corresponding statistical
properties to those seen in nature. We apply our approach to two widely studied protein families:
the WW and the PDZ folds. We demonstrate that our model is able to capture interactions that
are important in folding and allostery. Our results additionally indicate that while the network of
interactions within a protein is sparse, it is richer than previously believed.





1 Introduction
The patterns in the amino acid composition of the proteins within a fold family provide insights into
the constraints that govern structure, function, and dynamics. These constraints can reflect both
position-specific conservation (e.g., ‘position 3 is always a tryptophan’), or correlated mutations
(e.g., ‘position 4 is a tyrosine if position 10 is a glycine, but it is an arginine if position 10 is a
valine’). Such covariation can exist between sequential and long-range pairs of residues, reflecting
spatial proximity or functional coupling. In a series of elegant papers [22, 28, 24], Ranganathan and
colleagues demonstrated that conservation and covariation constraints together contain virtually all
the information required to specify a fold family. However, standard statistical models of amino
acid sequences, such as HMMs and their variants [10], neglect covariation constraints between
non-adjacent residues. The resulting model thus only partially reflects the evolutionary constraints
imposed on a particular protein family.

More recently, Thomas and colleagues [33] introduced the use of undirected probabilistic
graphical models, also known as a Markov Random Fields (MRFs), to compactly encode both the
conservation and covariation constraints present in a given multiple sequence alignment (MSA).
Their approach, including subsequent refinements [30, 31, 32], relies on a simple greedy algorithm
for learning both the structure and parameters of the MRF. Unfortunately, their greedy algorithms
have no guarantee as to the optimality of the resulting model. To address this deficiency, we intro-
duce a principled approach to learning MRFs from MSAs. Our learning algorithm uses block-L1

regularization and solves a convex optimization problem, and is thus guaranteed to produce a glob-
ally optimal solution at convergence.

Markov Random Fields are generative models, and can therefore be used in the context of
protein design (i.e., generating novel sequences with prescribed structure and/or function). While
structure-based approaches that explicitly consider physical constraints (e.g., [20]) have achieved
a great deal of success, protein design methods based on structure alone cannot account for inter-
actions that aren’t evident in the native structure including those important for function, folding,
or allosteric regulation. The consequences of ignoring such interactions can be significant. For
example, even successfully-designed proteins often exhibit non-natural behavior in terms of their
thermal stability and folding pathways [37]. Moreover, the amount of available sequence data
for most protein families is often one-to-two orders of magnitude larger than the corresponding
amount of structure data. Thus, there is a need for methods that incorporate information from
MSAs. Indeed, as [28] show, the constraints present in the patterns of sequence variation is one
such promising method.

We apply our approach to two widely studied protein families: the WW and the PDZ folds.
We demonstrate that our model is able to capture interactions that are important in folding and
allostery. Our results additionally indicate that while the network of interactions within a protein
is sparse, it is richer than previously believed. While this paper is limited to new more powerful
models constructed from MSAs, we have previously shown in [19], that it is possible to construct
MRFs that integrate constraints learned from both sequence and structure.
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(A) (B)

Figure 1: (A) A multiple sequence alignment (MSA) for a hypothetical domain family. (B) A
portion of a Markov Random Field encoding the conservation in and the coupling in the MSA.
The edge between random variables X1 and X4 reflects the coupling between positions 1 and 4 in
the MSA.

2 Modeling Domain Families with Markov Random Fields
A protein is a polypeptide chain consisting of one or more components called domains. A set of
evolutionarily related domains from different proteins is called a family1. The domains within a
family tend to have similar biological functions and three dimensional structures. Thus, by exam-
ining the statistical patterns of sequence conservation and diversity within a domain family, we can
gain insights into the constraints that determine structure and function. In what follows, we de-
scribe an approach to learning these statistical patterns from a given multiple sequence alignment.
The resulting model is a probability distribution over amino acid sequences for a particular domain
family.

LetXi be the multinomial random variable representing the amino-acid composition at position
i of the MSA of the domain family taking values in {1...k} where the number of states, k, is 21
(20 amino acids with one additional state corresponding to a gap). Let X = {X1, X2, ..Xp} be the
multi-variate random variable describing the amino acid composition of an MSA of length p. Our
goal is to model P (X), the amino-acid composition of the domain family.

Unfortunately, P(X) is a distribution over a space of size kp, rendering the explicit modeling of
the joint distribution computationally intractable for naturally occurring domains. However, by ex-
ploiting the properties of the distribution, one can significantly decrease the number of parameters
required to represent this distribution.

To see the kinds of properties that we can exploit, let us consider a toy domain family repre-
sented by an MSA as shown in Fig. 1-(A). A close examination of the MSA reveals the following
statistical properties of its composition: (i) the Tyrosine (‘Y’) at position 2 is conserved across the
family; (ii) positions 1 and 4 are co-evolving – sequences with a (S) at position 1 have a Histidine
(H) at position 4, while sequences with a Phenylalanine (F) at position 1 have a Tryptophan (W) at
position 4; (iii) the remaining positions appear to evolve independent of each other. In probabilistic
terms we say that X1, X3 are co-varying, and that the remaining Xi’s are statistically independent.

1In this paper, the expression domain family is synonymous with protein family.
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We can therefore encode the joint distribution over all positions in the MSA by storing one joint
distribution P (X1, X4), and the uni-variate distributions P (Xi), for the remaining positions (since
they are all statistically independent of every other variables). The ability to factor the full joint
distribution, P (X), in this fashion has an important consequence in terms of space complexity.
Namely, we can reduce the space requirements from 217 to 212 + 5 ∗ 21 parameters. This dras-
tic reduction in space complexity translates to a corresponding reduction in time complexity for
computations over the distribution. While this simple example utilizes independencies in the dis-
tribution; this kind of reduction is possible in the more general case of conditional independencies.
A Probabilistic Graphical Model (PGM) exploits these (conditional) independence properties to
store the joint probability distribution using a small number of parameters.

Intuitively, a PGM stores the joint distribution of a multivariate random variable over a graph;
while any distribution can be modeled by a PGM with a complete graph, exploiting the conditional
independencies in the distribution leads to a PGM with a (structurally) sparse graph. Following
[30], we use a specific type of probabilistic graphical model called a Markov Random Field (MRF).
In its commonly defined form with pair-wise log-linear potentials, a Markov Random Field (MRF)
can be formally defined as a tupleM = (X, E ,Φ,Ψ) where (X, E) is an undirected graph over the
random variables, and Φ,Ψ are a set of node and edge potentials, respectively, usually chosen to
be log-linear functions of the form:

φs = (evs
1evs

2 ...evs
k); ψst =


ewst

11ewst
12 ...ewst

1k

ewst
21ewst

22 ...ewst
2k

...

ewst
k1ewst

k2 ...ewst
kk

 (1)

where v = {vs|s = 1 . . . p} and w = {wst|(s, t) ∈ E} are node and edge “weights”, and k is the
number of states that each random variable can take.

The probability of a particular sequence x = {x1, x2, . . . , xp} according to M is defined as:

PM(X) =
1

Z

∏
s∈V

φs(Xs)
∏

(s,t)∈E

ψst(Xs, Xt) (2)

where Z, the so-called partition function, is a normalizing constant defined as a sum over all pos-
sible assignments to X.

Z =
∑
X∈X

∏
s∈V

φs(Xs)
∏

(s,t)∈E

ψst(Xs, Xt) (3)

The structure of the MRF for the MSA shown in Fig. 1(A) is shown in Fig. 1(B). The edge
between variables X1 and X4 reflects the statistical coupling between those positions in the MSA.

3 Structure learning with L1 Regularization
In the previous section we outlined how an MRF can parsimoniously model the probability distri-
bution P (X). In this section we consider the problem of learning the MRF from an MSA. This
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problem can be divided into two parts: (i) structure learning — learning the edges of the graph,
and (ii) and parameter estimation — learning v,w (since they completely define the potentials
Φ,Ψ), given the structure of the graph.

Due to its importance and applicability in a broad spectrum of areas, the problem of struc-
ture learning for graphical models has received considerable attention from several communities.
Broadly, the previously considered approaches to this problem are either constraint-based [30, 29]
or score-based [8]. Constraint-based methods estimate conditional independencies from data using
hypothesis testing and then determine a graph that represents these independencies. Score-based
approaches combine a metric to measure goodness of fit with a metric to measure complexity of
the graph to score each graph. This is combined with a (typically greedy) search procedure that
generates candidate graphs. However, since the number of possible graphs is super exponential in
the number of vertices the search problem is computationally intractable, in general.

More recently several authors [36, 21, 18, 25] have considered convex approximations to the
complexity metric and tractable (convex) approximations to the goodness of fit metric. Of these,
those based on L1 regularization are the most interesting because of their strong theoretical guaran-
tees (consistency in both parameters and structure, i.e. as the number of samples increases we are
guaranteed to find the true model, and high statistical efficiency, i.e. the number of samples needed
to achieve this guarantee is small). See [35] for a recent review of L1-regularization. We use a
similar convex optimization based approach for both structure learning and parameter estimation.
To that end, we first describe a suitable objective function for the problem.

The log-likelihood of the parameters Θ = (E ,v,w), given a set of sequences,
X = {X1,X2,X3, ....,Xn}, is

ll(Θ) =
1

n

∑
Xi∈X

∑
s∈V

logφs(X
i
s) +

∑
(s,t)∈E

logψst(X
i
s, X

i
t)

− logZ (4)

where the term in the braces is the unnormalized likelihood of each sequence, and Z is the global
partition function. The problem of learning the structure and parameters of the MRF is now simply
that of maximizing ll(Θ). To avoid over-fitting and learning densely connected structures, we need
to regularize the log-likelihood. In what follows we describe a method to learn sparse structures
by optimizing the pseudo-likelihood using block-L1 regularizers.

The general regularized structure learning problem can be formulated as:

max
Θ

ll(Θ)− R(Θ) (5)

For the specific case of block-L1 regularization, R(Θ) usually takes the form:

R(Θ) = λnode‖v‖2 + λedge

∑
1≤s<t≤p

‖wst‖q (6)

where λnode and λedge are regularization parameters that determine how strongly we penalize higher
(absolute) weights. The value of λnode and λedge control the trade-off between the log-likelihood
term and the regularization term in our objective function.
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The regularization described above groups all the parameters that describe an edge together in
a block. The second term in Eq. 6 is the sum of the norms of each block. The choice of norm is
usually selected from q ∈ {1, 2,∞}. Since norms are always positive, this is exactly equivalent
to penalizing the L1 norm of the vector of norms of each block with the penalty increasing with
higher values of λedge.

The choice of norm affects the nature of the sparsity. Using q = 1 is equivalent to penalizing
the likelihood by the sum of the L1 norms of the individual parameters. That is, using q = 1
encourages sparsity in the parameters, and this leads to sparsity in the edges indirectly (when all
parameters of an edge are zeroed out the edge is removed). In contrast, using q = {2,∞} directly
encourages structural sparsity (sparsity in the edges) through the implicit L1 norm described above,
but does not directly encourage individual parameters to be zeroed out.

In the following sections we present a method to tractably compute the objective, followed by
a method to optimize it.

3.1 Pseudo Likelihood
The log-likelihood as defined in Eq. 4 is smooth, differentiable, and concave. However, maxi-
mizing the log-likelihood requires computing the global partition function Z and its derivatives,
which in general can take upto O(kp) time. While approximations to the partition function based
on Loopy Belief Propagation [21] have been proposed as an alternative, such approximations can
lead to inconsistent estimates.

Instead of approximating the true-likelihood using approximate inference techniques, we use a
different approximation based on a pseudo-likelihood proposed by [6], and used in [36, 25]. The
pseudo-likelihood is defined as:

pll(Θ) =
1

n

∑
Xi∈X

p∑
j=1

log(P (X i
j|X i

−j))

=
1

n

∑
Xi∈X

p∑
j=1

logφj(X
i
j) +

∑
k∈V ′

j

logψjk(X
i
j, X

i
k)− logZj


where X i

j is the residue at the jth position in the ith sequence of our MSA, X i
−j denotes the

“Markov blanket” of X i
j , and Zj is a local normalization constant for each node in the MRF. The

set V ′j is the set of all vertices which connect to vertex j in the PGM. The only difference between
the likelihood and pseudo-likelihood is the replacement of a global partition function with local
partition functions (which are sums over possible assignments to single nodes rather than a sum
over all assignments to all nodes of the sequence). This difference makes the pseudo-likelihood
significantly easier to compute in general graphical models.

The pseudo-likelihood retains the concavity of the original problem, and so this approximation
makes the problem tractable. Moreover, this approximation is known to yield a consistent estimate
of the parameters [16]. That is, as the number of samples increases, parameter estimates using
pseudo-likelihood converge to the parameter values using true likelihood.
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3.2 Optimizing L1-regularized Pseudo-Likelihood
In the previous two sections we described an objective function, and then a tractable and consis-
tent approximation to it, given a set of weights (equivalently, potentials). However, to solve this
problem we still need to be able to find the set of weights that maximizes the likelihood under the
block-regularization form of Eq. 5. We note that the objective function associated with block-L1

regularization is no longer smooth. In particular, its derivative with respect to any parameter is
discontinuous at the point where the group containing the parameter is 0. We therefore consider
an equivalent formulation where the non-differentiable part of the objective is converted into a
constraint making the new objective function differentiable.

maxΘ,α ll(Θ)− λnode‖v‖2 −
∑

1≤s<t≤p αst

subject to: ∀(1 ≤ s < t ≤ p) : αst ≥ ‖wst‖q

where the constraints hold with equality at the optimal (Θ,α).
One way to solve this reformulation is through a two stage procedure involving the use of pro-

jected gradients. In the first stage, we ignore the constraints, compute the gradient of the objective,
and then take a step in this direction. If the step results in any of the constraints being violated we
solve an alternative (and simpler) Euclidean projection problem:

minΘ′α′‖
[

Θ′

α′

]
−

[
Θ
α

]
‖2

subject to: ∀(1 ≤ s < t ≤ p) : αst ≥ ‖wst‖q

which finds the closest parameter vector to the vector obtained by taking the gradient step (by
minimizing the Euclidean distance), while satisfying the original constraints. This problem can be
solved efficiently for block-L1 norms using Spectral Projected Gradients (SPG), as shown in [25].
Thus, we used the algorithm from [25] to solve this problem in our experiments. Methods based
on projected gradients are guaranteed to converge to a stationary point [7], and convexity ensures
that this stationary point is globally optimal.

4 Related Work
The study of co-evolving residues in proteins has been a problem of much interest due to its wide
utility. Much of the early work focused on detecting such pairs in order to predict contacts in a
protein in the absence of a solved structure [2, 17] and to perform fold recognition. The pioneering
work of [22] used an approach to determine probabilistic dependencies they call SCA and observed
that analyzing such patterns could provide insights into the allosteric behavior of the proteins and
be used to design new sequences [28]. Others have since developed similar methods [11, 13, 14].
By focusing on co-variation or probabilistic dependencies between residues, such methods conflate
direct and indirect influences and can lead to incorrect estimates. In contrast, [30] developed
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an algorithm that determine conditional independencies to learn a Markov Random Field over
sequences. Their constraint-based algorithm proceeds by determining conditional independencies
and adding edges in a greedy fashion. However, the algorithm can provide no guarantees on the
correctness of the networks it learns. They then extended this approach to incorporate interaction
data to learn models over pairs of interacting proteins [31] and also develop a sampling algorithm
for protein design using such models [32]. More recently, [38] use a similar approach to determine
residue contacts at a protein-protein interface. Their method uses a gradient descent approach using
Loopy Belief Propagation to approximate likelihoods. Also, their algorithm does not regularize the
model and can therefore be prone to over-fitting. In contrast, we use a Pseudo-Likelihood as our
objective function thereby avoiding problems of convergence that Loopy BP based methods can
face and regularize the model using block regularization to prevent over-fitting.

Block regularization is most similar in spirit to the group Lasso [40] and the multi-task Lasso
[3]. Lasso [34] is the problem of finding a linear predictor, by minimizing the squared loss of the
predictor with an L1 penalty. It is well known that the shrinkage properties of the L1 penalty lead to
sparse predictors. The group Lasso extends this idea by grouping the weights of some features of
the predictor using an L2 norm, [40] show that this leads to sparse selection of groups. The multi-
task Lasso solves the problem of multiple separate (but similar) regression problems by grouping
the weight of a single feature across the multiple tasks. Intuitively, we solve a problem similar to
a group Lasso, replacing the squared loss with an approximation to the negative log-likelihood,
where we group all the feature weights of an edge in an undirected graphical model. Thus, sparse
selection of groups gives our graphs the property of structural sparsity.

[21] introduced structure learning in MRFs with a pure L1 penalty, i.e. q = 1, but do not go
further to explore the cases when q = {2,∞}. They also use a different approximation to the
likelihood term, using Loopy Belief Propagation. [25] apply block-regularized structure learning
to the problem of detecting abnormalities in heart motion. Particularly they develop an efficient
algorithm for tractably solving the convex structure learning problem, based on projected gradients.
We use their algorithm in this paper.

5 Results
Given the probabilistic framework defined in Sec. 2, and the optimization objectives and algorithms
defined in Sec. 3, we are now in a position to learn a graphical model given the sequence record
of a protein family. The optimization framework has two major parameters that can be varied:
the norm of the block-regularizer (L1,L2,L∞) and the penalty parameters (λv, λe). To understand
the effects of these parameters, we first evaluated our method on artificial protein families whose
sequence records were generated from known, randomly generated models. This lets us evaluate
the success of the various components of our framework in a controlled setting where the ground
truth was known.

Our experiments involve comparing the performance of ranking edges and learning a graph
structure using a variety of techniques, including: (i) our algorithm using the three types of norms;
(ii) the greedy algorithm of [33, 30] (“GMRC method”); and (iii) a simpler greedy algorithm that
uses the metric suggested in [22] (“∆∆Gstat”). We also compare our performance with the Profile
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Figure 2: (A) Edge occurrence probability ρ versus F-score for the structure learning methods we
propose, and the method proposed in [30]. (B) L2 norm of the error in the estimated parameters
as a function of the weight of the regularization in stage two. The inset shows the case when
no regularization is used in stage two. The much higher parameter estimation error in this case
highlights the need for regularization in both stages

Hidden Markov Models [10] used by [4].
We note that the GMRC method only considers edges that meet certain coupling criteria (see

[33, 30] for details). In particular, it is only capable of learning sparse graphs (fewer than 100
edges), regardless of choice of run-time parameters. In contrast, our method returns a full spectrum
from disconnected to completely connected graphs. In our experiments, we use our parameter
estimation code on their graphs, and compare ourselves to the best graph they return.

In what follows, we demonstrate that the three block regularizers we consider consistently
perform comparably. Moreover, we find all our methods significantly out-perform each of the other
algorithms, in a variety of scenarios. We also applied our approach to two real protein families,
the PDZ and WW domains. By comparing the goodness-of-fit of various models to test sets, we
demonstrate that MRFs significantly out-perform profile HMM-based models. Additionally, our
models achieve higher goodness of fit to the test set than the GMRC method, even when we learn
models of similar sparsity. Our results demonstrate that the use of block-regularized structure
learning algorithms can result in higher-quality MRFs than those learnt by the GMRC method.

5.1 Simulations
We generated 32-node graphs. Each node had a cardinality of 21 states, and each edge was included
with probability ρ. Ten different values of ρ varying from 0.01 and 0.45 were used; for each value
of ρ, twenty different graphs were generated resulting in a total of 200 graphs. For each edge that
was included in a graph, edge and node weights were drawn from a Normal distribution (weights
∼ N (0,1)). Since each edge involves sampling 441 weights from this distribution, the edges tend
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Figure 3: (A) Qualitative grouping of edges missed by our methods and the GMRC method (B)
Sensitivity of structure learning to size of training set

to have many small weights and a few large ones.
For each of these 200 graphical models, we then sampled 1000 sequences using a Gibbs sam-

pler with a burn-in of 10,000 samples and discarding 1,000 samples between each accepted se-
quence. These 1000 sequences were then partitioned into two sets: a training set containing 500
sequences and a held-out set of 500 sequences used to test the model. The training set was then
used to train a model using each of the three block regularization norms.

We first test our accuracy on structure learning. Since the structure of the model directly de-
pends only on the regularization weight on the edges, the structures were learnt for each norm and
each training set with different values of λe (between 1 and 500), keeping λv fixed at 1.

Fig. 2-A shows the global comparison across the three regularizers as a function of ρ. The
accuracy is measured using the F-score (the harmonic mean of precision and recall) of the edge
set. In each case we use the best model learnt across the different values of λe (we consider the
F-scores as a function of λe for each method in the appendix). Figure 2-A also compares our
structure learning method with the algorithm in [30]. We evaluate their method over a wide range
of parameter settings and select the best model. Figure 2-A shows that our methods significantly
out-perform their method for all values of ρ. We see that over all settings our best model has an
average F-score of at least 0.6. We conclude that we are able to infer fairly accurate structures
given the proper choice of settings.

Figure 2-B, shows the error in our parameter estimates given the true graph as a function of
ρ. We also find that parameter estimation is reasonably robust to the choice of the regularization
weights, as long as the regularization weights are non-zero.

Fig. 3-A shows a qualitative analysis of edges missed by each method (we consider all sim-
ulated graphs and the best learnt graph of each method). We divide the missed edges into three
groups (weak, intermediate and strong) based on their true L2 norm. We see again that the three
norms perform comparably, significantly out-performing the GMRC method in all three groups.
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Finally, Fig. 3-B shows the sensitivity of our structure learning algorithms to the size of training
set. In particular, we see that for the simulated graphs around 400 sequences results in us learning
very accurate structures, as few as 50 sequences are enough to infer reasonable structures.

5.2 Evaluating Structure and Parameters Jointly
In a simulated setting, structure and parameter estimates can be compared against known ground
truth. However, for real domain families we need other evaluation methods. We evaluate the
structure and parameters for real domain families by measuring the imputation error of the learnt
models. Informally, the imputation error measures the probability of not being able to “generate”
a complete sequence, given an incomplete one. The imputation error of a column is measured
by erasing it in the test MSA, and then computing the probability that the true (known) residues
would be predicted by the learnt model. This probability is calculated by performing inference on
the erased columns, conditioned on the rest of the MSA. The imputation error of a model is the
average of its imputation error over columns.

Using imputation error directly for model selection generally gives us models that are too
dense. Intuitively, once we have identified the true model, adding extra edges decreases the impu-
tation error by a very small amount, probably a reflection of the finite-sample bias. On the other
hand, we note that there is a distinct “knee” in the graphs of the number of edges versus the im-
putation error (see Fig. 5 and Fig. 6). We evaluated modified AIC (Akaike Information Criteria)
and BIC (Bayesian Information Criteria) for model selection due to their theoretically appealing
properties. In the finite sample case we find that BIC performs well when the true graph is sparse,
while AIC performs well when the true graph is dense. However, neither method performs as well
over the entire range of graphs as selecting a model at the knee of the imputation error curve. We
find this method is able to optimally trade-off accuracy and sparsity over a wider range of settings
due to which we use it in our experiments. We discuss the information criteria in the appendix, and
provide some general suggestions for their use.

5.3 A generative model for the WW domain
The WW domain family (Pfam id: PF00397 [4]) is a small protein interaction module with two
highly conserved tryptophans that adopts a curved three-stranded β-sheet structure with a binding
site for proline-containing peptides. In [28] and [24], the authors determine, using Statistical Cou-
pling Analysis (SCA), that the residues can be divided into two clusters: the first cluster contains
a set of 8 strongly coupled residues (highlighted in yellow in Fig. 4), and the second cluster con-
tains everything else. Based on this finding, the authors then designed 44 sequences that satisfy
co-evolution constraints of the first cluster, of which 12 actually fold in vivo. An alternative set of
control sequences, which did not satisfy the constraints, failed to fold.

We first constructed an MSA by starting with the PFAM alignment and removing sequences
to construct a non-redundant alignment (no pair of sequences was greater than 90% similar). This
resulted in an MSA with 700 sequences of which two thirds were used as a training set and the
rest were used as a test set. Each sequence in the alignment had 30 positions. The training set was
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Figure 4: Part of the WW MSA we used. In yellow are positions identified by [24] as being critical
to folding. Positions we additionally identify are in green. The conservation profile (top) shows
the entropy (scaled) at each position. The coupling profile is shown below the MSA.
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Figure 5: (A) Number of edges versus imputation error for the WW domain. The model at the knee
was a model that minimized the L1-L2 norm and had 122 edges (shown with a black diamond).
The model we used for AUC comparisons is shown with a black circle. In comparison, the GMRC
method returned a graph with 21 edges, which had an imputation error of 0.6522, the Profile HMM
had an imputation error of 0.7034. Our best model of comparable sparsity (28 edges) had a much
lower imputation error of 0.622. The graph also shows the imputation error for a method based
on statistical coupling (∆∆Gstat). (B) The edges of the model used in the discriminative task,
overlaid on the structure of the WW domain of a ubiquitin protein ligase(PDB id: 1I5H)[5]

used to learn models for each of the three norms, using multiple settings of λe. Given the structure
of the graph, parameters were learned using λv = 1, λe = 1.

Fig. 5-A shows the imputation error of each of the learnt models on the test set. As can be
seen, the first few edges contribute to a significant decrease (the first 20 edges contribute to a third
of the total decrease in imputation error). This is consistent with [28, 30] who find a small set of
vertices and edges to be important. However, the knee of the curve is much further down, at 122
edges. We compare our results to the GMRC method of [30], Profile HMMs [10] and to a method
that adds edges in the order of their statistical coupling (∆∆Gstat) (statistical coupling is also used
by the SCA method). We find that our imputation errors are considerably lower than the methods
we compare to (even at comparable levels of sparsity).

To see which residues are affected by these edges, we construct a “coupling profile”. We con-
struct a shuffled MSA by taking the natural MSA and randomly permuting the amino acids within
the same column for each column. The new MSA now contains no co-evolving residues but has
the same conservation profile as the original MSA. To build a coupling profile, we calculate the
difference in the imputation error of sequences in a held-out test set and the shuffled MSA. Intu-
itively, having a high imputation error difference means that the position was strongly constrained
in the original MSA. Fig. 4 shows the results of this analysis; we identify 15 positions in the MSA
including all 8 positions previously identified by [24].

In addition we also performed a retrospective analysis of the artificial sequences designed by
[24]. We attempt to distinguish sequences that folded from those that didn’t. To make a fair
comparison we select a model of comparable sparsity (with 38 edges) to that in [24]. Although
this is a discriminative (folded or not) test of a generative model we achieve a high AUC of 0.883
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Figure 6: (A) Number of edges versus imputation error for the PDZ domain. Comparisons to a
method based on statistical coupling (∆∆Gstat) are shown. The imputation error of the model
returned by the GMRC method (with 41 edges) was 0.7596, and that of the Profile HMM was
0.7801. In comparison, our best model of comparable sparsity to the GMRC method had an impu-
tation error of 0.739. (B) Edges learnt from our models overlaid on the structure of PDZ domain of
PSD-95(PDB id:1BE9). Edge colors indicate the strength of the coupling (red being the strongest,
and blue being the weakest)

(the ROC curve is shown and described in the appendix). We therefore postulate that the additional
constraints we identify are indeed critical to the stability of the WW fold. In comparing our AUC
to the published results of [30] (AUC of 0.82) and the Profile HMM (AUC of 0.8319) we see that
we are able to better distinguish artificial sequences that fold from those that don’t.

5.4 Allosteric regulation in the PDZ domain
The PDZ domain is a family of small, evolutionarily well represented protein binding motifs. The
domain is most commonly found in signaling proteins and helps to anchor trans-membrane proteins
to the cytoskeleton and hold together signaling complexes. The PDZ domain is also interesting
because it is considered an allosteric protein. The domain, and its members have been studied
extensively, in multiple studies, using a wide range of techniques ranging from computational
approaches based on statistical coupling ([22]) and Molecular Dynamics simulations [9], to NMR
based experimental studies ([15]).

We use the MSA from [22]. The MSA is an alignment of 240 non-redundant sequences, with
92 positions. We chose a random sub-sample with two-thirds of the sequences as the training set
and use the rest as a test set. Using this training set, we learnt generative models for each of the
block regularizers, with multiple settings of λe in each case and then computed the imputation
error on the test set (shown in Fig. 6-A). For further analysis, we selected the model that formed
the knee on the curve with the best imputation error. This model had around 700 edges. Fig. 6-B
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shows a subset of the edges colored according to their strength(red strongest; blue weakest).
The SCA based approach of [22] identified a set of residues that were coupled to a residue near

the active site (HIS-70) including a residue at a distal site on the other end of the protein (GLY-
49 in this case). Since the SCA approach can only determine the presence of a dependence but
cannot distinguish between direct and indirect couplings, only a cluster of residues was identified.
Our model also identifies this interaction, but more importantly, it determines that this interaction
is mediated by ALA-74 with position 74 directly interacting with both these positions. By pro-
viding such a list of sparse interactions our model can provide a small list of hypotheses to an
experimentalist looking for possible mechanisms of such allosteric behavior.

In addition to the pathway between HIS-70 and GLY-49, we also identify residues not on the
pathway that are connected to other parts of the protein including, for example ASN-61 of the
protein. This position is connected to ALA-88 and VAL-60 in our model, and does not appear in
the network suggested by [22], but has been implicated by NMR experiments [15] as being dy-
namically linked to the active site. Thus, our method appears to capture a richer set of interactions
than those possible using SCA.

6 Discussion and Future Work
In this paper we have proposed a statistical sequence-based approach to modeling the evolutionary
pressures on a protein family. Overall, we find that by employing sound probabilistic modeling and
convex structure (and parameter) learning, we are able to find a good balance between structural
sparsity (simplicity) and goodness of fit. We demonstrate the utility of our method in identifying
constraints useful both in protein design and in furthering our understanding of protein function
and regulation.

One limitation associated with a sequence-only approach to learning a statistical model for
a domain family is that the correlations observed in the MSA can be inflated due to phylogeny
[23, 12]. A pair of co-incident mutations at the root of the tree can appear as a significant depen-
dency even though they correspond to just once co-incident mutation event. To test if this was the
case with the WW domain, we constructed a phylogenetic tree from the MSA using Junes-Cantor
measure of sequence dissimilarity. In the case of WW, this resulted in a tree with two clear sub-
trees, corresponding to two distinct (nearly equal-sized) clusters in sequence space. Since each
sub-tree had a number of sequences, we re-learnt MRFs for each sub-tree separately. The resulting
models for each sub-tree did not vary significantly from our original models – a case that would
have occurred if there were co-incident mutations at the root that lead to spurious dependencies.
Indeed the only difference between the models was in the C-terminal end was an edge between
positions 1 and 2 that was present in sequences from the first sub-tree but was absent in the second
sub-tree. This occurred because in the second sub-tree, these positions were completely conserved
due to which our model was not able to determine the dependency between them. While this does
not eliminate the possibility of confounding due to phylogeny, we have reason to believe that our
dependencies are robust to significant phylogenetic confounding in this family. A similar analysis
for the PDZ domain, found 3 sub-trees, and again we found that the strongest dependencies were
consistent across models learnt on each sub-tree separately.
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However, there are a number of other ways to incorporate phylogenetic information directly
into our model. For example, given a phylogenetic clustering of sequences, we can incorporate a
single additional node in the graphical model reflecting the cluster to which the sequence belongs.
This would allow us to distinguish functional coupling from coupling caused due to phylogenetic
variations.

Designing proteins from a generative sequence based model such as ours could be greatly
enhanced by incorporating structure based information which explicitly models the physical con-
straints of the protein. Such information could easily be incorporated either through the use of
informative priors (e.g., interaction energies, etc), or by the addition of edge features.

Finally, we find that while block-regularization with q = 1 takes only a few hours to learn a
single model for the PDZ domain (and a few minutes for the WW domain), while using q = {2,∞}
can take as long as a day. We have experimented with several efficiency tricks including warm-
starts and pruning edges using a mutual information based cut-off [38]. Using these, we have run
experiments on families with upto 800 positions in a few hours. [26] recently proposed a new
method specifically to optimize costly functions, using a quasi-Newton algorithm which uses local
curvature of the objective to approximate its second derivative. Typically, this leads to much faster
convergence, and we expect this to be applicable directly to our methods.

A Appendix

A.1 Comparison of structures learnt at different regularization levels
Fig. 7 shows our performance in predicting the true structure by using L1-L2 (Fig. 7-A), L1-L∞
(Fig. 7-B), and L1 (Fig. 7-C). The accuracy is measured using the F-score (the harmonic mean
of precision and recall) of the edge set. We observe that for all settings of ρ each of the block
regularizers learn fairly accurate graphs at some value of λe. We find that L1−L∞ requires higher
regularization than the other norms to achieve comparable F-scores and sparsity. This is because
the L∞ norm of a vector is strictly less than its L2 and L1 norms.

A.2 Model selection using information criteria
We consider modifications to two widely used model selection strategies. The Bayesian Informa-
tion Criterion (BIC) [27], is used to select parsimonious models and is known to be asymptotically
consistent in selecting the true model. The Akaike Information Criterion (AIC) [1], typically se-
lects denser models than the BIC, but is known to be asymptotically consistent in selecting the
model with lowest predictive error. In general, they do not however select the same model and
their strengths cannot be shared [39].

We use the following definitions,
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Figure 7: F-scores of structures learnt by using (A) L1-L2 norm, (B) L1-L∞ norm and (C) L1 norm.
Each figure shows the average and standard deviation of the F-score across 20 different graphs as
a function of ρ, the probability of edge-occurrence.
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Figure 8: Graph density versus the rank correlation for ranking and selection using (A) BIC (B)
AIC
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Figure 9: Receiver operating characteristic (ROC) curve of our model for the task of distinguishing
artificial WW sequences that fold from those that don’t.

BIC(λ) = −2pll(λ) + log(n)df(λ)

AIC(λ) = −2pll(λ) + 2df(λ)

Where we use the pseudo log-likelihood approximation to the log-likelihood. We evaluate the
likelihood on the training sample to score the different models. We use the L1-norm of the learned
weight vectors as an estimate of the degrees of freedom (df), and n is the number of training
sequences. We typically select the model which has the lowest AIC/BIC score.

Figure 8 shows the performance of the two model selection strategies at different sparsity levels.
We evaluate the performance by learning several graphs (at different levels of regularization) and
comparing the Spearman rank-correlation between the F-score of the graphs and their rank. We
can clearly see that when the true graph is sparse the modified BIC has a high rank-correlation,
whereas when the true graph is dense the modified AIC does well.

A.3 Receiver operating characteristic curve
We consider the task of distinguishing artificial sequences that were found to take the WW fold
from those that did not. All sequences and their labels (folded in vivo or not) are from [24].
The ROC curve (Fig. 9) is obtained by varying a threshold on scores (we use the unnormalized
likelihood as the score). Sequences above the threshold are predicted to fold. For each threshold
we calculate the sensitivity and specificity and show the resulting curve.
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