
Computing Equilibria by Incorporating
Qualitative Models1

Sam Ganzfried Tuomas Sandholm
March 3, 2010

CMU-CS-10-105

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

1This material is based upon work supported by the National Science Foundation under grants IIS-0427858 and
IIS-0905390. Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science Foundation. We also acknowledge Intel
Corporation and IBM for their machine gifts.

Keywords: Game theory, continuous games, games of imperfect information, equilibrium
computation, mixed integer programming, computer poker.

Abstract

We present a new approach for solving large (even infinite) multiplayer games of imperfect infor-
mation. The key idea behind our approach is that we include additional inputs in the form of qual-
itative models of equilibrium strategies (how the signal space should be qualitatively partitioned
into action regions). In addition, we show that our approach can lead to strong strategies in large
finite games that we approximate with infinite games. We prove that our main algorithm is correct
even if given a set of qualitative models (satisfying a technical property) of which only some are
accurate. We also show how to check the output in settings where all of the models might be wrong
(under a weak assumption). Our algorithms can compute equilibria in several classes of games for
which no prior algorithms have been developed, and we demonstrate that they run efficiently in
practice. In the course of our analysis, we also develop the first mixed-integer programming for-
mulations for computing an epsilon-equilibrium in general multiplayer normal and extensive-form
games based on the extension of our initial algorithm to the multiplayer setting, which may be of
independent interest. Experiments suggest that our approach of modeling a finite game with an
infinite one can outperform the state of the art, abstraction-based approaches on some games. In
addition, we demonstrate that our main algorithm can be used to improve play in two-player limit
Texas hold’em—the most studied imperfect-information game in computer science—by solving
endgames. Finally, we present experimental results on an infinite three-player game which suggest
the effectiveness of our algorithm in games with more than two players.

1 Introduction
Finding Nash equilibria in games of imperfect information is an important problem. Significant
progress has been made in the last few years. In particular, several algorithms have been developed
for solving large (finite) two-player zero-sum imperfect-information games (e.g., [11, 22]). On the
other hand, relatively little work has been done on developing algorithms for computing equilibria
in imperfect-information games that are non-zero sum (with some notable exceptions, e.g., [12]),
have more than two players (e.g., [10]), and/or are continuous (i.e., infinite) (e.g., [18]). Such
games are significantly harder to solve in the complexity-theoretic sense: two-player zero-sum
games can be solved in polynomial time, while two-player general-sum games are PPAD-hard [7],
and games with three or more players are FIXP-hard [8].

To make matters worse, many interesting real-world games are so large that computing an
equilibrium directly seems hopeless even in the two-player zero-sum case. The standard approach
to deal with this is to run an abstraction algorithm on the full game to construct a smaller game
that is strategically similar to the original game (e.g., [4]). Then the abstracted game is solved, and
its solution is mapped to a strategy profile in the original game. While this approach seems quite
natural and promising so far, recent research has shown that significant and surprising pathologies
can arise in which a finer-grained abstraction results in strategies that are actually much more
exploitable in the full game than the equilibrium strategies of a coarser abstraction [21]. Thus, this
abstraction-based approach is not theoretically sound.

We develop a new approach for solving large games. Rather than construct a smaller game via
an abstraction algorithm, we propose solving an infinite approximation of the original game, then
mapping the equilibrium of the infinite game to a strategy profile in the original game. Perhaps
counterintuitively, it is often the case that the infinite approximation can be solved much more
easily than the finite game. We show that sometimes very fine abstractions would be needed to
match the solution quality of our approach.

Our main algorithmic innovation takes advantage of the fact that in many multiagent settings
it is significantly easier to infer qualitative models of the structure of equilibrium strategies than
it is to actually compute an equilibrium. For example, in (sequences of) take-it-or-leave-it offers,
equilibria involve accepting offers above a certain threshold and rejecting offers below it [14].
Threshold strategies are also common in auctions (e.g., [6]) and in deciding when to make and
break partnerships and contracts (e.g., [16]). In poker the hole cards are private signals, and in
equilibrium, often the same action is taken in continuous regions of the signal space (e.g., [2]).

We develop an approach for exploiting such qualitative models in equilibrium finding. We
study a broad class of imperfect-information games where players are given private signals at
the start. We first consider the two-player (general-sum) case in which private signals are drawn
independently from finite sets. For this case, we develop an algorithm based on a mixed integer
linear feasibility program (MILFP) formulation that provably computes an equilibrium assuming
we are given a “correct” qualitative model as input. The size of the program is polynomial in the
parameters of the problem and the constraints are very sparse, suggesting that it can be solved
quickly in practice. Our experiments confirm that the algorithm runs very fast on a simplified
endgame of limit Texas hold’em, leading to a significant performance improvement.

Next, we generalize our algorithm to computing equilibria in the following important exten-

1

sions: many players, continuous private signal distributions, dependent private signal distributions,
and multiple candidate qualitative models that satisfy a certain technical property (some of which
can be incorrect). In most of these cases, we present the first algorithm that provably solves the
class of games. We also develop new mixed-integer programming based algorithms for computing
equilibria in general multiplayer normal and extensive-form games based on the extension of our
initial algorithm to the multiplayer setting, which may be of independent interest.

The remainder of the paper is organized as follows. In Section 2, we introduce continuous
games and present relevant definitions and results. In Section 3, we present a continuous two-
player game that is used to motivate the use of qualitative models and the setting of the remainder
of the paper. Section 4 presents the main setting of our paper, and Section 5 introduces parametric
(i.e., qualitative) models. Section 6 presents our main algorithm for solving large two-player games
given a parametric model, as well as a proof of correctness of the algorithm. Section 7 presents
several extensions of our main algorithm. Finally, Section 8 describes our experimental results:
in Section 8.1 we present evidence that approximating large finite games with infinite games can
outperform abstraction-based approaches; in Section 8.2 we demonstrate that our main algorithm
leads to improved play in two-player limit Texas hold’em; and in Section 8.3 we demonstrate the
effectiveness of our approach in the multiplayer setting.

2 Continuous Games
Continuous games generalize finite strategic-form games to the case of (uncountably) infinite strat-
egy spaces. Many natural games have an uncountable number of actions; for example, games in
which strategies correspond to an amount of time, money, or space. One example of a game that
has recently been modeled as a continuous game in the AI literature is computational billiards,
in which the strategies are vectors of real numbers corresponding to the orientation, location, and
velocity at which to hit the ball [3].

Definition 1. A continuous game is a tuple G = (N, S, U) where

• N = {1, 2, 3, . . . , n} is the set of players,

• S = (S1, . . . , Sn) where each Si is a metric space corresponding to the set of strategies of
player i, and

• U = (u1, . . . , un) where ui : S → R is the utility function of player i.

The main result regarding the existence of a Nash equilibrium in continuous games is the
following [9]:

Theorem 1. Consider a strategic-form game whose strategy spaces Si are nonempty compact
subsets of a metric space. If the payoff functions ui are continuous, there exists a (mixed strategy)
Nash equilibrium.

2

While this existence result has been around for a long time, there has been very little work
on practical algorithms for computing equilibria in continuous games. One interesting class of
continuous games for which algorithms have been developed is separable games [18]:

Definition 2. A separable game is a continuous game with utility functions ui : S → R taking the
form

ui(s) =

m1∑
j1=1

. . .

mn∑
jn=1

aj1...jn

i f j1
1 (s1) . . . f jn

n (sn),

where aj1...jn

i ∈ R and the f j
i : Si → R are continuous.

As we will see, this is a significant restriction on the utility functions, and many interesting
continuous games are not separable. Additionally, algorithms for computing approximate equi-
libria have been developed for several other classes of infinite games, including simulation-based
games [20] and graphical tree-games [17].

For a broad class of games, we will show that the equilibrium existence theorem above does
not hold directly, but we can nevertheless prove the existence of an equilibrium by incorporating a
qualitative equilibrium model. However, we show that these games are not separable, so the prior
algorithm does not apply. These are the topics of the next two sections. After that, we will develop
new algorithms for solving these games.

3 Motivating example
Consider the following simplified poker game [2]. Suppose two players are given private signals,
x1 and x2, independently and uniformly at random from [0,1]. Suppose the pot initially has size ρ
(one can think of this as both players having put in an ante of ρ

2
, or that we are at the final betting

round—aka final street—of a multi-street game). Player 1 is allowed to bet or check. If player 1
checks, the game is over and the player with the lower private signal wins the pot (following the
convention of [2]). If player 1 bets, then player 2 can call or fold. If player 2 folds, then player
1 wins the pot. If player 2 calls, then whoever has the lower private signal wins ρ + 1, while the
other player loses 1. This situation can be thought of as an abstraction of the final street of a hand
of limit Texas hold’em where raising is not allowed and player 2 has already checked.

It seems natural to define the strategy space S1 of player 1 as the set of functions from [0, 1]
to {check, bet} (i.e., to {0, 1}), and to define S2 for player 2 as the set of functions from [0, 1] to
{fold, call} (i.e., to {0, 1}). Let pi(a1, a2, x1, x2) denote the payoff of player i when the players
play actions ai and are given private signals xi. Formally, pi is defined as follows:

3

p1(1, 0, x1, x2) = ρ

p1(0, a2, x1, x2) =

0 : x1 > x2

ρ : x1 < x2
ρ
2

: x1 = x2

p1(1, 1, x1, x2) =

−1 : x1 > x2

ρ + 1 : x1 < x2
ρ
2

: x1 = x2

p2(a1, a2, x1, x2) = ρ− p1(a1, a2, x1, x2)

Given this definition of pi, the the utility of player i under the strategy profile s = (s1, s2) is
defined as

ui(s) =

∫ 1

x1=0

∫ 1

x2=0

pi(s1(x1), s2(x2), x1, x2)dx2dx1.

We would like to represent each player’s strategy set as a compact metric space, so that we can
apply Theorem 1. Unfortunately, the naive representation does not yield compact metric spaces; so,
we need to go through a number of transformations to achieve this goal. In particular, by iteratively
eliminating dominated strategies, we arrive at a representation where each player’s strategy space
is isomorphic to a compact subset of a Euclidean space.

In order for ui(s) to be defined, we must restrict the strategy spaces Si to consist of only the
measurable functions1. In addition, if we want to turn Si into a metric space, we need to define
a distance function. A natural distance function to use is the L1 distance function: di(si, s

′
i) =∫

Xi
|si(xi)−s′i(xi)|dxi. Note that (Si, di) does not quite define a metric space because the condition

di(s, t) = 0 iff s = t is not satisfied. To turn it into a metric space, we can let ∼ be the equivalence
relation defined by s ∼i s′ iff di(s, s

′) = 0. If we then let Si equal the set of equivalence classes
with respect to ∼i, then (Si, di) is a metric space.

Unfortunately, the metric space (Si, di) is not compact, and we cannot apply Theorem 1 to
guarantee the existence of an equilibrium.

Proposition 1. The metric space (Si, di) is not compact.

Proof. We prove this by showing that the space is not totally bounded; that is, that we cannot
cover the space with a finite number of ε-balls for at least one ε. Let ε = 0.5, and let {f1, . . . , fk}
be a finite set of elements of Si which is claimed to be a cover. For each j ∈ {1, . . . , k}, let
gj = {x : fj(x) = 0}, and let hj = {x : fj(x) = 1}. By the measurability of fj, both gj and
hj must consist of the union of intervals of [0, 1] of the following form: (a, b), (a, b], [a, b), [a, b].
Note that we can partition the interval [0, 1] by 0 = y0 < y1 < . . . < ym−1 < 1 = ym such
that (yi′ , yi′+1) is completely contained in one of the intervals of either gj or hj for all i′, j. Now
consider the function f ∗ defined as follows: for each interval [yi′ , yi′+1], f ∗ equals 0 for the first
half of the interval and equals 1 for the second half. Thenf ∗ will agree with each fj for exactly
half of the length of each interval. So di(f

∗, fj) = 0.5 = ε for all j; thus the set of ε-balls centered
at {f1, . . . , fk} is not a cover and we are done.

1Relevant definitions from measure theory can be found in Appendix A.

4

Similarly, the space fails to be compact if we use other common distance functions, such as the
discrete metric, any Lp metric, or L∞. So we can not simply use one of those distance functions
instead of L1 to get around Proposition 1.

However, the following observations allow us to restrict our attention to a much smaller set of
strategies.

Definition 3. Let Si be the set of pure strategies of player i. Then si ∈ Si is weakly dominated for
player i if there exists a strategy s∗i ∈ Si such that for all strategy profiles s−i ∈ S−i for the other
players, we have ui(s

∗
i , s−i) ≥ ui(si, s−i).

Definition 4. Let si be an equivalence class of player i’s pure strategies with respect to ∼i. Then
si is weakly dominated if si is weakly dominated for all si ∈ si.

Definition 5. The equivalence class si is undominated if it is not weakly dominated.

Proposition 2. The equivalence class of strategies s2 ∈ S2 of player 2 is undominated only if it
contains a unique strategy of the following form: call if x2 ≤ x∗2 and fold otherwise, for some x∗2.

Proof. First note that any equivalence class that contains a strategy of the desired form can only
contain a single such strategy (since otherwise it would contain two strategies that do not have zero
distance from each other). Now suppose s2 is undominated but does not contain any strategies of
the desired form. Let s2 ∈ s2 be arbitrary. Then there must exist an interval α1 of one of the
following forms with a < b: (a, b), (a, b], [a, b), [a, b], and an interval α2 of one of the following
forms with c < d: (c, d), (c, d], [c, d), [c, d], with b < c, where s2 calls with all private signals in α2

and folds with all private signals in α1. Now define s∗ to be the strategy that calls with all signals in
α1, folds with all signals in α2, and agrees with s2 otherwise. It is clear that s∗ (weakly)-dominates
s2, and we have a contradiction. So all equivalence classes of strategies that are undominated must
be of the desired form.

We can remove all of the strategies from S2 that are dominated according to Proposition 2
from our consideration, forming a much smaller strategy space. In addition, we can remove the
strategies not satisfying the threshold property given in the proposition from each equivalence class
s2 ∈ S2, thus turning the equivalence classes into singletons. In the remainder of our discussion,
we will let S2 denote this smaller set.

We can now iteratively remove many strategies from S1 by the following observation.

Proposition 3. The equivalence class of strategies s1 ∈ S1 of player 1 is a best response to some
element of S2 only if it contains a unique strategy of the following form: bet if x1 ≤ x∗1, check if
x∗1 ≤ x1 ≤ x∗1 and bet if x∗1 ≤ x1 ≤ 1, for some x∗1 ≤ x∗1

2.

Proof. The uniqueness part follows from the same reasoning as the proof of Proposition 2. Now
suppose player 2 is playing the following strategy: call if x2 ≤ x∗2 and fold otherwise. Let x1

denote player 1’s private signal.

2One can think of [0, x∗1] as player 1’s “value betting” range—where he bets hoping to get called by worse hands—
and [x∗1, 1] as his “bluffing” range—where he bets hoping to get better hands to fold.

5

• Case 1: 0 ≤ x1 ≤ x∗2
2
.

Then the expected payoff of betting is

(1− x∗2)ρ + (x∗2 − x1)(ρ + 1)− x1 = (1− x1)ρ + x∗2 − 2x1,

and the expected payoff of checking is (1− x1)ρ. So player 1’s best response is to bet.

• Case 2: x∗2
2
≤ x1 ≤ x∗2.

Then the formulas for the expected payoffs of betting and checking are the same as in Case
1. However, now the expected payoff of checking is larger, so player 1’s best response is to
check.

• Case 3: x∗2 ≤ x1 ≤ x∗2 ·
ρ+1

ρ
.

The expected payoff of betting is

(1− x∗2)ρ− x∗2 = ρ− ρx∗2 − x∗2,

while the expected payoff of checking is (1− x1)ρ. So player 1’s best response is to check.

• Case 4: x∗2 ·
ρ+1

ρ
≤ x1 ≤ 1.

The formulas for the expected payoffs are the same as in case 3, but now player 1’s best
response is to bet.

After removing the dominated strategies, the new strategy space for player 1 becomes isomor-
phic to a compact subset of R2, and the new strategy space for player 2 becomes isomorphic to a
compact subset of R. Let Ŝ1 and Ŝ2 now refer to these new strategy spaces.

It turns out that the functions ui are continuous in s for both players using the new strategy
spaces, if we define the distance between two strategy profiles s = (s1, s2) and s′ = (s′1, s

′
2) as

d(s, s′) = d1(s1, s
′
1) + d2(s2, s

′
2).

Proposition 4. For both players, the utility functions ui are continuous in s.

Proof. Let ε > 0 be arbitrary, and let δ = ε
2ρ+2

. Let s, s′ ∈ S be arbitrary, with s = (s1, s2) and
s′ = (s′1, s

′
2), and suppose that ||s− s′|| ≤ δ. Note that

||s− s′|| =
∫ 1

x=0

|s1(x)− s′1(x)|dx +

∫ 1

x=0

|s2(x)− s′2(x)|dx

and ||u1(s)− u1(s
′)|| equals∣∣∣∣∫

X

∫
Y

[u1((s1(x), s2(y)), (x, y))− u1((s
′
1(x), s′2(y)), (x, y))] dydx

∣∣∣∣ .

Note that the maximum possible value of the integrand is 2ρ + 2. So

||u1(s)− u1(s
′)|| ≤

6

(2ρ + 2)

∫ 1

x=0

∫ 1

y=0

I1(s1(x), s2(y), s′1(x), s′2(y))dydx,

where I1(s1(x), s2(y), s′1(x), s′2(y)) equals 0 iff s1(x) = s′1(x) and s2(y) = s′2(y) and equals 1
otherwise. With this definition, we have

I1(s1(x), s2(y), s′1(x), s′2(y)) ≤ |s1(x)− s′x(s)|+ |s2(y)− s′2(y)|.

So we have
||u1(s)− u1(s

′)|| ≤

(2ρ + 2)

∫
X

∫
Y

[|s1(x)− s′1(x)|+ |s2(y)− s′2(y)|] dydx

= (2ρ + 2)

[∫
X

|s1(x)− s′1(x)|dx +

∫
Y

|s2(y)− s′2(y)|dy

]
= (2ρ + 2)||s− s′|| ≤ 2(ρ + 2)δ = ε.

The continuity of u2 in s follows from the same argument, and we are done.

It follows from Theorem 1 that the game has a Nash equilibrium using the new strategy spaces
Ŝ1 and Ŝ2.

Now that the existence of an equilibrium is guaranteed, we must figure out how to compute
one. It turns out that the game is not separable, so one cannot apply the algorithm from prior
work [18].

Proposition 5. This game is not separable.

The proof of this result appears in Appendix B.
However, it turns out that we can still solve this game quite easily if we notice that every

equilibrium will have x∗1 ≤ x∗2 ≤ x∗1. Given this guess of the form of an equilibrium, it is easy to
compute an equilibrium by noting that a player must be indifferent between two actions at each
threshold. For example, at x∗1 player 1 must be indifferent between betting and checking. His
expected payoff of betting is (1−x∗2)ρ+(x∗2−x∗1)(ρ+1)−x∗1 and his expected payoff of checking
is ρ(1 − x∗1). Setting these two expressions equal to each other yields x∗2 = 2x∗1. We can create a
linear equation similarly for the other two thresholds. Thus we have a system of n linear equations
with n unknowns (where n is the total number of thresholds), which can be solved efficiently by
matrix inversion.

4 Our setting
The main setting of the rest of the paper will be a generalization of the setting of the above example
along several dimensions.

Definition 6. A continuous Bayesian game is a tuple G = (N, X,C, U, F) where

7

• N = {1, 2, 3, . . . , n} is the set of players,

• X = (X1, . . . , Xn) where each Xi is a compact subset of R corresponding to the set of
private signals of player i,

• C = (C1, . . . , Cn) where each Ci is a compact subset of R corresponding to the set of actions
of player i,

• U = (u1, . . . , un) where ui : C ×X → R is the measurable utility function of player i, and

• F = (F1, . . . , Fn) where Fi : Xi → [0, 1] is the cumulative distribution function (CDF) of
the private signal distribution of player i (i.e., Fi(xi) = Pr(Xi ≤ xi)).

The strategy space Si of player i is the set of all measurable functions from Xi to Ci. In this
paper we will assume that the sets Ci are finite.

To define mixed strategies in our setting, we will require several mathematical definitions which
are given in Appendix A. Let Λi be the mixed strategy space of player i defined according to
Definition 22. Let Λ = ×iΛi. A (mixed) strategy profile is σ = (σ1, . . . , σn), where σi ∈ Λi.
Recall that σi(xi, ci) denotes the probability that player i will take action ci given private signal xi.

Then define

ûi(σ,x) =
∑

c1∈C1

. . .
∑

cn∈Cn

[
ui(c, x)

n∏
j=1

σj(xj, cj)

]
.

Define ui|xi
(σ), where σ ∈ Λ, xi ∈ Xi, as follows:

ui|xi
(σ) =

∫
X1

. . .

∫
Xi−1

∫
Xi+1

. . .

∫
Xn

ûi(σ, x)fn(xn) . . . fi+1(xi+1)fi−1(xi−1) . . . f1(x1)

dxn . . . dxi+1dxi−1 . . . dx1,

where fi(xi) = d
dxi

F (xi) is the probability density function of Xi. This denotes the expected utility
of player i given that he has received private signal xi when strategy profile σ is played.

For i ∈ N, xi ∈ Xi, σi ∈ Λi and σ−i ∈ ×j 6=iΛj , define ui|xi
(σi, σ−i) as the expected utility of

player i given private signal xi when he plays σi and the other players play σ−i.
According to the definition of Nash equilibrium, player i can play arbitrarily in cases where he

has a private signal that has zero measure in the signal distribution Fi. Such behavior can result
in equilibria that violate our qualitative models (discussed later) even when “equivalent” equilibria
exist that satisfy the models. Thus, we define a slightly stronger notion of equilibrium in order to
rule out arbitrary behavior in these regions of measure zero. In other words, we require an agent
to play rationally even if he gets a private signal that has zero probability. (This strengthening of
the equilibrium concept is analogous to perfect Bayesian equilibrium, where each agent has to act
rationally even in information sets that are reached with zero probability due to the strategies of
the players. In our case the reaching with zero probability is due to nature’s action, i.e., giving the
agents types.)

8

Definition 7. Strategy profile σ ∈ Λ is an every-private-signal Bayesian (EPSB) equilibrium of G
if for all i ∈ N , for all xi ∈ Xi, and for all τi ∈ Λi, we have ui|xi

(σi, σ−i) ≥ ui|xi
(τi, σ−i).

Proposition 6. Let G be a game of the form given in Definition 6. Then G has an EPSB equilibrium
if and only if it has an equilibrium.

Proof. Consider some equilibrium σ. For i ∈ N, let

Zi = {xi ∈ Xi : ui|xi
(σi, σ−i) 6= arg max

τi∈Λi

ui|xi
(τi, σ−i)}.

Since σ is an equilibrium, Zi must have measure zero for all i. Now suppose for all i ∈ N and
all xi ∈ Zi, player i plays σ′i ∈ arg maxτi∈Λi

ui|xi
(τi, σ−i) and plays σi otherwise. Call the new

profile γ. Then γ and σ differ only on a set of measure zero, and thus γ is an equilibrium. Since
each player is playing a best response given each possible private signal under γ, γ is an EPSB
equilibrium.

The other direction is trivial because every EPSB equilibrium is also an equilibrium.

We now strengthen the notions of best response and dominated strategies analogously. These
will be useful when we analyze our algorithms.

Definition 8. Strategy σi is an EPSB best response for player i ∈ N to profile σ−i if for all xi ∈ Xi

and for all τi ∈ Λi, we have ui|xi
(σi, σ−i) ≥ ui|xi

(τi, σ−i).

Definition 9. Strategy σi is an EPSB ε-best response for player i ∈ N to profile σ−i if for all
xi ∈ Xi and for all τi ∈ Λi, we have ui|xi

(σi, σ−i) ≥ ui|xi
(τi, σ−i)− ε.

Definition 10. Strategy σi is EPSB-undominated if for all τi ∈ Σi there exist xi ∈ Xi, σ−i ∈ Σ−i

such that ui|xi
(σi, σ−i) > ui|xi

(τi, σ−i).

5 Parametric models
In many multiagent settings, it is significantly easier to infer qualitative models of the structure
of equilibrium strategies than it is to compute an equilibrium. The introduction gives several ex-
amples, including sequences of take-it-or-leave-it offers, certain auctions, and making or breaking
partnerships and contracts. In general, we call the values that divide the different strategic regions
thresholds (e.g., x∗1, x

∗
1, and x∗2 in the example above), and refer to the guess of the structure of an

equilibrium defined by these thresholds a parametric model. Many additional examples of games
that are solved by the procedure used in the above example appear in [2].

Definition 11. A parametric model of game G = (N, X,C, U, F) is a tuple P = (T,Q,≺) where

• T = (T1, . . . , Tn), where Ti denotes the number of regions for player i,

• Q = (Q1, . . . , Qn), where Qi is a sequence {qij : 1 ≤ j ≤ Ti}, where qij ∈ Ci denotes
the action taken by player i in his j’th region of the model (at a boundary the lower region’s
action is taken), and

9

• ≺ is a partial ordering over the set of tuples (yij, yi′j′), where yij ≺ yi′j′ if we require that
the lower threshold of player i’s j’th region is less than or equal to the lower threshold of
player i′’s j′’th region.

We saw in Section 3 that restricting the strategy spaces of a game by forcing all strategies to
conform to a specified parametric model can allow us to both guarantee the existence of an equi-
librium and to actually compute one when neither of these could be accomplished in the original
game by previously known techniques.

6 Our main algorithm
In this section we present our algorithm for computing an equilibrium given a parametric model.
While parametric models associate a pure action for each interval of signals, this can be prob-
lematic when the probability of obtaining individual private signals is nonzero. In this case, our
algorithm will actually output mixed strategies.

For now we assume the game is finite, has two players, and a single parametric model is
specified. We will extend the algorithm to more general settings along each of these dimensions in
Section 7.

6.1 Constructing a MILFP
Given a problem instance G = (N, X,C, U, F) and a parametric model P, we first construct a
mixed integer linear feasibility program (MILFP) that contains both integer and continuous vari-
ables. Since Xi is finite for all players, we assume without loss of generality that it is the set of
integers from 1 to n. Let {ti} denote the union of the sets of thresholds for both players under P.
For each threshold ti, we introduce two real-valued variables, xi and yi, where xi corresponds to
F1(ti) and yi corresponds to F2(ti). For each threshold ti and each integer j ∈ [1, n], we introduce
an indicator (0–1 integer) variable, zi,j , such that zi,j = 1 implies j − 1 ≤ ti ≤ j. So, overall we
have 2|T | + |T ||S| variables, where |T | is the number of thresholds in P and |S| is the number of
private signals.

Indifference constraints As the example in Section 3 demonstrates, we want to obtain indiffer-
ence between two actions at each threshold. Thus, we have |T | equality constraints where each is
of the form f(x, y) = 0 where f is linear in the xi and yi.

Threshold ordering constraints In order to guarantee that the solution conforms to the paramet-
ric model, we must add inequality constraints corresponding to the partial ordering ≺ . If ti ≺ tj,
then we add the constraints xi ≤ xj, yi ≤ yj.

Consistency constraints Next, we require that for each i, xi and yi are consistent in the sense
that there exists some value for ti such that F1(ti) corresponds to xi and F2(ti) corresponds to yi.

10

To accomplish this, we include indicator constraints of the following form for each i, j:

(zi,j = 1) ⇒ (F1(j − 1) ≤ xi ≤ F1(j)) (1)

(zi,j = 1) ⇒ (F2(j − 1) ≤ yi ≤ F2(j)) , (2)

where we define F1(−1) = F2(−1) = 0. Stated explicitly, we add the following 4 linear inequali-
ties for each i ∈ [1, |T |], j ∈ [0, n]:

xi − F1(j − 1)zi,j ≥ 0 xi − zi,j(F1(j)− 1) ≤ 1

yi − F2(j − 1)zi,j ≥ 0 yi − zi,j(F2(j)− 1) ≤ 1

Finally, we must ensure that for each i, zi,j = 1 for precisely one j (i.e., ti ∈ [j − 1, j] for some j).
We accomplish this by adding the equality constraint

∑n
j=0 zi,j = 1 for each i.

Thus, there are O(|T ||S|) consistency constraints, where |S| is the number of private signals.
There are more consistency constraints than constraints of any other type, and thus the MILFP has
O(|T ||S|) total constraints.

6.2 Obtaining mixed strategies from the MILFP solution
Once we obtain the xi and yi by solving the MILFP, we must map them into mixed strategies
of the game. Suppose player 1 is dealt private signal z ∈ [1, n] and consider the interval I =
[F1(z − 1), F1(z)]. Now define the intervals Ji = [xi−1, xi] where we define x−1 = 0. Let Oi

denote the overlap between sets I and Ji. Then player 1 will play the strategy defined by region i
with probability OiP

i Oi
. The strategy for player 2 is determined similarly, using the yi and F2.

6.3 Algorithm correctness
We are now ready to prove that our algorithm indeed yields an equilibrium.

Lemma 1. Suppose 0 ≤ x1 ≤ . . . ≤ xn ≤ 1 and 0 ≤ y1 ≤ . . . ≤ yn ≤ 1 and there exists a
k ∈ [1, n] s.t. xk 6= yk. Then there exists a j ∈ [1, n] s.t. xj 6= yj and yj−1 ≤ xj ≤ yj+1 (where we
define x0 = y0 = 0 and xn+1 = yn+1 = 1).

Proof. Let
i′ = min

i
s.t. xi 6= yi.

• Case 1: xi′ < yi′

Suppose xi′ < yi′−1. Then xi′−1 < yi′−1 which contradicts the definition of i′. So yi′−1 ≤
xi′ < yi′ and we are done.

• Case 2: xi′ > yi′

Let
z(i) = max

j
s.t. xj ≤ yi

11

and let
i∗ = min

i>i′
s.t. z(i) ≥ i.

Clearly i∗ exists since z(n + 1) = n + 1.

– Subcase 2.1: i∗ = i′ + 1.
By assumption we have xi∗−1 > yi∗−1. Suppose xi∗−1 > yi∗ . By definition of i∗ we
have z(i∗) ≥ i∗ and therefore xi∗ ≤ yi∗ . Since xi∗−1 ≤ xi∗ , we have a contradiction.
Thus yi∗−1 < xi∗−1 ≤ yi∗ and we are done.

– Subcase 2.2: i∗ > i′ + 1.
Suppose that xi∗−1 ≤ yi∗−1. By definition of i∗ we have z(i∗−1) < i∗−1. This implies
that xi∗−1 > yi∗−1 which gives a contradiction. Now suppose that xi∗−1 > yi∗ . We have
z(i∗) ≥ i∗ and therefore xi∗ ≤ yi∗ which gives a contradiction since xi∗−1 ≤ xi∗ . So
yi∗−1 < xi∗−1 ≤ yi∗ and we are done.

Theorem 2. Suppose that for all i ∈ N and for all σ−i ∈ Λ−i, all pure-strategy EPSB best
responses of player i to σ−i satisfy the given parametric model. Then our algorithm outputs an
equilibrium.

Proof. Suppose our algorithm outputs a non-equilibrium, s. Then there exists a player i and an
EPSB best response σi to s−i such that not all of the thresholds of σi and si are equal. Let {uj}
denote the thresholds of σi and {vj} denote the thresholds of si. By Lemma 1 there exists a j
such that uj 6= vj and uj−1 ≤ vj ≤ uj+1. Denote by a1 and a2 the two actions that player i is
indifferent between at vj . Suppose a1 is played at vj under σi. Now define the strategy profile s′i
as follows: s′i is identical to σi except with private signal vj action a2 is played. Clearly player i is
playing an EPSB best response since σi is an EPSB best response and he is indifferent between a1

and a2 against s−i at vj. So s′i is an EPSB best response of player i to s−i; however, s′i violates the
parametric model. This contradicts the premise.

The theorem directly implies the following corollary. In some settings it may be easier to check
the premise of the corollary than the premise of the theorem.

Corollary 1. Suppose all EPSB-undominated strategies follow the given parametric model. Then
our algorithm outputs an equilibrium.

7 Extensions to more general settings
In this section we describe several important extensions of our approach to more general settings.

12

7.1 Continuous private signal distributions
In this subsection we generalize the approach to continuous private signal distributions. If the
CDFs Fi are continuous and piecewise linear, we only need to alter the consistency constraints.
Suppose that {ci} denotes the union of the breakpoints of the CDFs of the Fi, and suppose Fi(x) =
ai,jx + bi,j for cj−1 ≤ x ≤ cj (where c−1 = 0).

Recall that for a given threshold tk, we have introduced variables xk and yk in the MILFP
such that tk corresponds to F1(xk) and F2(yk). In the case of continuous CDFs, we actually have
tk = F1(xk) = F2(yk). To achieve this, we will introduce new variables tk corresponding to the
actual thresholds, and include the following linear constraints for all k, j:

(zk,j = 1) →
(

tk =
xk − b1,j

a1,j

)
(zk,j = 1) →

(
tk =

yk − b2,j

a2,j

)
.

These constraints replace Constraints 1 and 2 from the discrete case.
Using the technique described in Section 7.3, we can also approximately solve the problem

for continuous CDFs that are not piecewise linear by approximating them with piecewise linear
functions.

7.2 Dependent private signals
Many common real-world situations have dependent private signal distributions. For example, in
card games such as Texas hold’em, the cards dealt to each player depend on what was dealt to the
other players (if one player is dealt the ace of spades, another player cannot also have it).

We will assume the private signals are given by a joint probability density function (PDF)
h(x, y) (rather than independent CDF’s F1 and F2 as before). Instead of having |T | variables xi

and yi corresponding to both players’ CDFs at the different thresholds, if the private signals are
dependent, we will use |T |2 variables xij, yij where xij corresponds to Pr(X ≤ ti|Y = tj) and yij

corresponds to Pr(Y ≤ tj|X = ti). We also need to add |T |2|S|2 indicator variables (where |S|
is the number of private signals) and corresponding consistency constraints using the given joint
PDF h(x, y). Thus, the overall size of the CSP is larger by approximately a factor of |T ||S|.

To construct the new consistency constraints, we define the following functions q1 and q2:

q1(x, y) ≡ Pr(X ≤ x|Y = y) =

∫ x

−∞ h(v, y)dv∫ ∞
−∞ h(v, y)dv

.

q2(x, y) ≡ Pr(Y ≤ y|X = x) =

∫ y

−∞ h(x, v)dv∫ ∞
−∞ h(x, v)dv

.

We will replace Constraints 1 and 2 from the independent case with the following constraints:

(zi,j,k,m = 1) ⇒ (q1(k − 1, m) ≤ xi,j ≤ q1(k,m))

(zi,j,k,m = 1) ⇒ (q2(k,m− 1) ≤ yi,j ≤ q2(k, m)) .

13

7.3 Many players
In games with more than two players, the indifference constraints are no longer linear functions of
the variables (while all other constraints remain linear). With n players the indifference constraints
are degree n − 1 polynomials. Therefore, there is a need to represent products of continuous
variables, xixj , using linear constraints only since we wish to model the problem as a MILFP.

7.3.1 Approximating products of continuous variables using linear constraints

In this subsection we describe how a modeling technique [5] can be applied to approximate the
nonlinear functions by piecewise linear functions. First we define two new variables

β1 =
1

2
(xi + xj)

β2 =
1

2
(xi − xj),

noting that β2
1 − β2

2 = xixj. To approximate w1 = β2
1 , we select k breakpoints from the interval

[0,1]—in our experiments we will use qi = i−1
k−1

, where k(ε) is a function of an input parameter ε.
Next, we add the constraint

k∑
i=1

λ1iq
2
i = w1,

where the λ1i are continuous variables. Next we add the constraint

k∑
i=1

λ1iqi = β1.

We also add the constraint
k∑

i=1

λ1i = 1,

where we also require that at most two adjacent λ′1is are greater than zero (we accomplish this in
the standard way of adding a binary indicator variable per segment and the appropriate constraints,
called SOS2 constraints). Then if we define the variable uij to represent the product xixj, we just
need to add the constraint

uij = w1 − w2,

where w2 and its additional constraints are defined analogously to w1.
Finally, we replace each indifference equation f(x) = 0 with the inequalities f(x) ≤ ε

2
and

f(x) ≥ − ε
2

where ε is an approximation parameter given as input to the algorithm.

14

7.3.2 Tying the accuracy of the approximation to the accuracy of the equilibrium

Suppose we select k + 1 breakpoints per piecewise linear curve, with

k ≥

√
(T + 2)(n−1)M(n− 1)

ε
, (3)

where T is the maximal number of thresholds of one of the parametric models for a player, M is
the difference between the maximum and minimum possible payoff of the game, n is the number
of players, and ε is an approximation parameter given as input to the algorithm.

Lemma 2. Suppose we obtain piecewise linear approximation f̂(x) of f(x) = x2 over [a, b] using
k + 1 breakpoints q0, . . . , qk with qi = a + (b − a) i

k
. If k ≥ b−a

2
√

ε
, then |f̂(x) − f(x)| ≤ ε for all

x ∈ [a, b].

Proof. Let x ∈ [a, b] be arbitrary and suppose qi ≤ x ≤ qi+1. Then we have

f̂(x) = f̂(qi) +
x− qi

qi+1 − qi

(f̂(qi+1)− f̂(qi)).

It is clear that f̂(x) ≥ x2, so consider the difference g(x) = f̂(x)−x2. Since g(qi) = g(qi+1) = 0,
the derivative of g must be zero at its maximum over the range [qi, qi+1]. Note that

g′(x) =
f̂(qi+1)− f̂(qi)

qi+1 − qi

− 2x.

Setting this equal to 0 yields

x∗ =
f̂(qi+1)− f̂(qi)

2(qi+1 − qi)
=

q2
i+1 − q2

i

2(qi+1 − qi)
=

qi+1 + qi

2
.

Thus the maximal value of g is

g(x∗) = f̂(qi) +
x∗ − qi

qi+1 − qi

(f̂(qi+1)− f̂(qi))− (x∗)2

=

(
b− a

2k

)2

≤ ε.

Theorem 3. Suppose that for all i ∈ N and for all σ−i ∈ Λ−i, all pure-strategy EPSB ε-best
responses of player i to σ−i satisfy the given parametric model. Furthermore suppose that the
number of breakpoints satisfies Equation 3. Then our algorithm outputs an ε-equilibrium.

15

Proof. By Lemma 2 we have

|f̂(x)− f(x)| ≤ ε

4(T + 2)(n−1)M(n− 1)
for all x ∈ [0, 1].

Suppose the indifference inequalities have the form ĥ(x) ≤ ĝ(x) + ε
2

and ĝ(x) ≤ ĥ(x) + ε
2
. Note

that each term of g(x) and h(x) is a polynomial of degree n− 1 with coefficients of absolute value
at most M. Also, note that there are at most (T + 2)(n−1) such terms.

So |ĝ(x)− g(x)| ≤ ε
4

and |ĥ(x)− h(x)| ≤ ε
4
. So by the triangle inequality,

|g(x)− h(x)| ≤ |g(x)− ĝ(x)|+ |ĝ(x)− ĥ(x)|+ |h(x)− ĥ(x)| = ε.

Suppose our algorithm outputs a non-equilibrium, s. Then there exists a player i and an EPSB
best response σi to s−i such that not all of the thresholds of σi and si are equal. Let {uj} denote
the thresholds of σi and {vj} denote the thresholds of si. By Lemma 1 there exists a j such that
uj 6= vj and uj−1 ≤ vj ≤ uj+1. Denote by a1 and a2 the two actions that player i is ε-indifferent
between at vj . Suppose a1 is played at vj under σi. Now define the strategy profile s′i as follows: s′i
is identical to σi except with private signal vj action a2 is played. Then player i is playing an EPSB
ε-best response since σi is an EPSB best response and he is ε-indifferent between a1 and a2 against
s−i at vj. So s′i is a pure strategy EPSB ε-best response of player i to s−i; however, s′i violates the
parametric model. This contradicts the premise.

For particular games, the number of breakpoints needed to obtain a desired ε can actually be far
smaller. For example, if each indifference equation consists of the sum of at most T ∗ expressions,
for T ∗ < (T + 2)(n−1), then we can replace (T + 2)(n−1) with T ∗ to create a tighter upper bound.
Additional constant-factor improvements to Equation 3 will be described in detail in Section 8.3.

Additionally, even though the number of breakpoints in Equation 3 is exponential in the number
of players, we can actually model the problem as a MILFP using a polynomial number (in n) of
constraints and variables (i.e., using a number of constraints and variables that is logarithmic in the
number of breakpoints). This is accomplished by a recently published way of modeling piecewise
linear functions in a MIP [19]. (It uses a binary rather than unary encoding to refer to the pieces
via indicator variables.)

7.3.3 New MIP algorithms for computing equilibria in normal and extensive-form games

It is worth noting that the modeling approach of Section 7.3.1 can be used to develop new algo-
rithms for computing an ε-equilibrium in general-sum games with two or more players in both
normal and extensive form. In particular, the MIP Nash algorithm for computing an equilibrium
in two-player general-sum normal-form games [15] can be directly extended to a MIP formulation
of multiplayer normal-form games which contains some nonlinear constraints (corresponding to
the expected utility constraints). If we apply our approach using sufficiently many breakpoints, we
can obtain an ε-equilibrium for arbitrary ε by approximating the nonlinear constraints by piecewise
linear constraints. Additionally, we can represent the equilibrium-computation problem in multi-
player extensive-form games as a MIP if we write out the expected utility constraints separately on

16

a per-information-set basis. This leads to a new algorithm for computing equilibria in multiplayer
extensive-form games, an important class of games for which no algorithms for computing a Nash
equilibrium with solution guarantees were known.

7.4 Multiple parametric models
Quite often it is prohibitively difficult to come up with one parametric model, P , that is correct,
but one can construct several parametric models, Pi, and know that at least one of them is correct.
This is the case for our experiments on Texas hold’em in Section 8.2. This scenario could arise for
several reasons; for example, often we can immediately rule out many parametric models because
all strategies that satisfy them are dominated. We now generalize our approach to this situation.

We define the notion of model refinement in a natural way:

Definition 12. P = (T,Q,≺) is a refinement of P ′ = (T ′, Q′,≺′) if for each i ∈ N, Q′
i is a (not

necessarily contiguous) subsequence of Qi.

Definition 13. P is a US-refinement of P ′ if Q′
i corresponds to a unique subsequence of Qi for

each i.

For example, if N = {1} and Q′
1 = {1, 2} while Q1 = {1,2,3,2}, then P is a refinement of P ′, but

is not a US-refinement.
We now generalize our algorithm to the setting where the Pi have a common US-refinement

P ′. We first define an indicator variable ζi corresponding to each model. Next we replace each
indifference constraint f(x) = 0 corresponding to model Pi by the following two inequalities,
where K is a sufficiently large constant: f(x)−Kζi ≥ −K and f(x) + Kζi ≤ K.

Next we add certain inequalities corresponding to the models Pi that differ from P ′. For sim-
plicity, we will demonstrate these by example. Suppose that, under P ′, player 1 plays action a1

in his first region, a2 in his second region, and a3 in his third region. Suppose that in P1 he plays
a1 in his first region and a3 in his second region (recall that P ′ is a refinement of P1). Then we
must add two constraints that ensure that at the first threshold of P1, both a1 and a3 are (weakly)
preferred to a2. In general, whenever actions of P ′ are omitted by a Pi, we must add constraints to
the neighboring actions at their intersection ensuring that they are preferred to the omitted actions.

We also replace each order constraint xj − xj′ ≤ 0 corresponding to model Pi by xj − xj′ +
Kζi ≤ K. Finally, we add the equality

∑
i ζi = 1 to ensure that only the constraints corresponding

to one of the candidate parametric models are used in the solution.
The following theorem states that our approach is correct even in this setting where there are

multiple parametric models, assuming they have a common US-refinement.

Theorem 4. Let there be two players. Let {Pi} be a set of parametric models with a common
US-refinement. Suppose that for all i ∈ N and for all σ−i ∈ Λ−i, all pure-strategy EPSB best
responses of player i to σ−i satisfy at least one of the Pi (not necessarily the same Pi). Then our
algorithm outputs an equilibrium.

Proof. Suppose P ′ is the common US-refinement of the Pi. Suppose our algorithm outputs a non-
equilibrium, s. Then there exists a player i and an EPSB best response σi to s−i such that not all

17

of the thresholds of σi and si are equal. Since P ′ is a refinement of each Pi, σi must satisfy P ′. Let
{uj} denote the thresholds of σi and {vj} denote the thresholds of si.

• Case 1: There exists a vj that differs from all of the uj.
Then vj must lie in the interior of some region of σi—suppose action a1 is played in this
region. Suppose vj separates actions a2 and a3. If a1 6= a2, a3, then our algorithm requires
that a2 and a3 are both (weakly) preferred to a1 at vj. Suppose that player i plays σi except
with private signal vj plays a2. Then this must also be a pure-strategy EPSB best response
to s−i. However, it contradicts the premise of the theorem because no Pi can be a strict
refinement of P ′.

• Case 2: For all vj, there exists a uk such that uk = vj.

– Subcase 2.1: There exists a vj such that uk = vj and the action-regions that vj separates
are not both equal to the action regions that uk separates.
Suppose vj separates a1, a2 while uk separates b1, b2, and that a1 6= b1, b2. Then player
i can play σi except with private signal uk play a1. This must also be a pure-strategy
EPSB best response to s−i, since our algorithm ensures that a1 is (weakly) preferred to
all other actions at vj. However, it contradicts the premise of the theorem because no
Pi can be a strict refinement of P ′.

– Subcase 2.2: For all vj, there exists a uk such that uk = vj and vj, uk separate the same
action-regions.
Since not all of the thresholds of σi and si are equal, there must exist an additional
uk that does not equal any of the vj. Suppose that uk lies between vj and v′j, and
suppose that action a is played in this region under si. By the premise of this subcase, a
cannot be the action of either of the regions separated at uk. Also by the premise of this
subcase, a must be played both below and above uk. However, this would mean that
σi has two regions where a is played corresponding to the single region of si, which
contradicts the fact that P ′ is a US-refinement of the Pi.

We can also obtain a result with an ε guarantee similar to Theorem 3 for the case of more than
two players.

It is worth noting that the number of variables and constraints in the new MILFP formulation is
still O(|S||T |) (assuming a constant number of parametric models). Alternatively, we could have
solved several MILFP’s—one for each parametric model. While each MILFP would be smaller
than the one we are solving, each would still have O(|S||T |) variables and O(|S||T |) constraints,
and thus have the same size asymptotically as our formulation. This alternative formulation is also
potentially effective, assuming we have access to several processors to run the threads in parallel.

18

n 50 100 150 200 250
v(Gn) −0.0576 −0.0566 −0.0563 −0.0561 −0.0560
π(σn) −0.0624 −0.0612 −0.0579 −0.0583 −0.0560

Figure 1: Worst-case payoff of playing the projection of the equilibrium of G∞ (π(σn)) versus the
value of Gn (v(Gn)).

8 Experiments
We now present results from several experiments that investigate the practical applicability of
our algorithm and extensions, as well as the overall procedure of solving large finite games by
approximating them by continuous games.

8.1 Approximating large finite games by continuous games
In Section 3 we saw an example of a game with infinite strategy spaces that could be solved by
an extremely simple procedure (once we guessed a correct parametric model). If instead the set
of private signals were the finite set {1, . . . , n}, then it is clear that as n gets large, the running
time of computing an exact equilibrium of the game will get arbitrarily large; on the other hand,
solving the infinite approximation as n goes to infinity will still take essentially no time at all, and
we would expect the solution to the infinite game to be very close to the solution of the finite game.
In this section we will consider a similar game and show that very fine-grained abstractions would
be needed to match the solution quality of our approach.

Kuhn poker is a simplified version of poker that was one of the first games studied by game
theorists [13]. It works as follows. There are two players and a deck containing three cards: 1, 2,
and 3. Each player is dealt one card at random, and both players ante $1. Player 1 acts first and can
either check or raise by $1. If player 1 raises, player 2 can either call—in which case whoever has
the higher card wins the $4 pot—or fold—in which case player 1 wins the entire $3 pot. If player
1 checks, player 2 can check—in which case whoever has the higher card wins the $2 pot—or bet.
If player 1 checks and player 2 bets, player 1 can call—in which case whoever has the higher card
wins the $4 pot—or fold, in which case player 2 wins the $3 pot.

Generalized Kuhn poker, Gn, has the same rules as Kuhn poker except that the deck contains
n cards instead of 3. Define G∞ to be the same as Gn except the players are both dealt a real
number drawn uniformly at random from the unit interval [0, 1]. Informally, G∞ is like the limit as
n approaches infinity of Gn. It turns out that G∞ has a relatively simple pure strategy Nash equi-
librium that is derived in [2]. It can be computed by solving a system of six linearly independent
indifference equations with six unknowns.

Once the infinite game, G∞, has been solved, its solution can be projected down to a corre-
sponding strategy profile in Gn: call this profile σn. We ran experiments for several settings of n.
We compared the performance of σn against its nemesis to the value of the game to player 1 (i.e.,
how an optimal strategy performs): the results are summarized in Figure 1. The payoffs agree to
four decimal points when n = 250.

19

Next, we considered different abstractions of G250 obtained by grouping consecutive private
signals together. For each abstraction, we computed an equilibrium in the corresponding abstracted
game, then determined the payoff of player 1’s component of that equilibrium against its nemesis
in the full game G250. As Figure 2 shows, 125 buckets are needed to obtain agreement with the

buckets 2 5 10 25 50 125
payoff −0.2305 −0.0667 −0.0593 −0.0569 −0.0562 −0.0560

Figure 2: Experiments for G250.

value of the game to four decimal places—something that σ250 accomplishes as we showed above.
As n gets even larger, we would expect to require even more buckets in our abstraction to obtain
a strategy with exploitability as low as that of σn. Thus we can potentially obtain a given level
of exploitability with a much lower runtime with our projection approach, since the computation
required by abstraction-based approaches increases dramatically as n increases, while solving G∞
and projecting its solution down to Gn requires very little computation.

To put these results in perspective, the game tree for two-player limit Texas hold’em has ap-
proximately 9.17×1017 states, while recent solution techniques can compute approximate equilib-
ria for abstractions with up to 1010 game states (e.g., [11]). Thus the ratio of the number of states in
the largest solvable abstraction to the number of states in the full game is approximately 10−8. On
the other hand, we saw in G250 that we require at least half of the number of states in the full game
in our abstraction to compete with the solution generated by the infinite game (assuming we are
restricting ourselves to uniform abstractions). Thus, it is conceivable that one can come up with
an infinite approximation of Texas hold’em (or one of its subgames) that results in less exploitable
strategies than the current strategies obtained by abstraction-based approaches.

In the next section we conduct an investigation of the feasibility of applying the algorithm and
extensions developed in this paper to large real-world games, using Texas hold’em as a benchmark.

8.2 Two-player Limit Texas hold’em
We ran our algorithm on a game similar to the river endgame of a hand of limit Texas hold’em.
In this game, there is an initial pot of ρ, and both players are dealt a private signal from [0,1]
according to piecewise linear CDFs F1 and F2. Player 1 acts first and can either check or bet $1. If
player 1 checks, then player 2 can check or bet; if he checks the game is over, and if he bets then
player 1 can call or fold. If player 1 bets, then player 2 can fold, call, or raise (by 1). If player 1
bets and player 2 raises, then player 1 can either call or fold. Thus, our game is similar to Game
10 in [2], except that we do not assume uniform private signal distributions.

To obtain a wide range of interesting prior distributions, we decided to use the actual prior
distributions generated by a high caliber limit Texas hold’em player. Once the river card is dealt
in Texas hold’em, there is no more information to be revealed and the game becomes a 1-street
game like the game described above (except that in limit Texas hold’em the private signals are
dependent3, and up to three raises are allowed in each betting round). If we assume that the full

3We do not expect the dependence to have a large effect in practice for this game due to the large number of

20

strategies of both players are known in advance, then when the river card is dealt we can create
a distribution over the possible 5-card hand rankings each player could have, given the betting
history so far (e.g., the probability he has a royal flush, a full house with 9’s over 7’s, etc.).

In particular, we obtained the strategies from GS4—a bot that performed competitively in the
2008 AAAI computer poker competition. To test our algorithm, we created a new bot GS4-MIP
that plays identically to GS4 on the first three streets, and on the river plays according to our
algorithm. Specifically, we assume that both players’ hand rankings on the river are distributed
assuming they had been following the strategy of GS4 until that point; these determine the private
signal distributions.

Given this game model, we developed three different parametric models that we expected equi-
libria to follow (depending on the private signal distributions at the given hand). This is noteworthy
since [2] only considers a single parametric model for their game, and our experiments revealed
that if we did not include all three models, our MILFP would sometimes have no solution, demon-
strating that all three models are necessary. The models are given in Appendix C. It is easy to see
that the first model is a US-refinement of the other two. To solve the MILFP, we used CPLEX’s
MIP solver on a single machine.

Once we solved this simplified game, we used a very naive mapping to transform it to a strategy
in the full 3-raise game4. Since this mapping was so simple, we suspect that most of the success of
the strategy was due to the solution computed by our algorithm.

We ran GS4-MIP against the top five entrants of the 2008 AAAI computer poker competition,
which includes GS4. For each pairing, we used 20,000 duplicate hands to reduce the variance.
GS4-MIP performed better against 4 of the 5 competitors than GS4 did. In the match between
GS4-MIP and GS4, GS4-MIP won at a rate of 0.018 small bets per hand. This is quite significant
since most of the top bots in the competition were separated by just 0.02–0.03 small bets per hand
overall, and the only difference between GS4 and GS4-MIP is on the river street, which is reached
only on some hands. Additionally, GS4-MIP averaged only 0.49 seconds of computation time
per hand on hands that went to the river (and 0.25 seconds of computation per hand overall) even
though it was solving a reasonably large MIP at runtime5 (1,000–2,000 rows and several hundred
columns). The actual competition allows an average of 7 seconds per hand, so our algorithm was
well within the time limit. Perhaps it is the sparsity of the constraints that enabled CPLEX to solve
the problems so quickly, as the majority of the constraints are indicator constraints which only
have a few non-zero entries.

It is worth noting that our algorithm is perhaps not the most effective algorithm for solving
this particular problem; in the discrete case of actual Texas hold’em, the river subgame can be
formulated as a linear program (which can probably be solved faster than our MILFP). On the

possible private signals. In addition, we have developed an efficient extension of our MILFP to deal with the case of
dependent private signals (see Section 7.2), which can be used if we expect dependence to have a significant effect.

4For example, we assumed player 1 will put in a second raise with hands in the top half of player 2’s raise range.
We omit a full discussion of our transformation to the 3-raise game, since it is fairly tangential.

5The reason we need to solve the MIP at runtime is that we have to solve a different MIP for each betting sequence
up until the river and each set of community cards (in the full game, not in the abstract game). Since there is such
a large number of such subgames, it is much easier to just solve them quickly at runtime than to solve them all in
advance.

21

other hand, continuous games, two player general-sum games, and multiplayer games cannot be
modeled as linear programs while they can be solved with our approach. Furthermore, the results
in the previous subsection show that large finite two-player zero-sum games can sometimes be
solved more effectively (both according to runtimes and quality of solutions) by approximating
them by a continuous game that is easier to solve, than by abstracting the game and solving a
smaller finite game.

8.3 Multiplayer experiments
To test the extensions of our algorithm to continuous distributions and multiple players, we ran our
algorithm on the following simplified three-player poker game. The game has one betting round,
and all players are given a private signal in [0, 1]. Player 2 initially has $1 invested in the pot, while
player 3 has $2 invested in the pot (i.e., the small and big blinds). Player 1 is first to act and he
can either fold or raise to $4. If player 1 folds, then player 2 can fold or raise to $4. If a player is
facing a raise in front of him, then he can either call or fold. Thus, this game is an extension of the
game in Section 3 to multiple players.

It is easy to see that all EPSB-undominated strategies will have the following form. If a player
is first to enter the pot, he will raise with his better hands and fold with his worse hands (and never
bluff). If a player is facing a raise ahead of him, he will call with his better hands and fold with his
worse hands. Thus given each betting history, the parametric model for each player will just have
a single threshold. The full parametric model is shown in Figure 6 in Appendix D.

We ran our algorithm on this game using a variety of continuous piecewise-linear cumulative
distribution functions, and obtained rapid convergence to an ε-equilibrium for tiny ε for all games
on which we experimented. In the remainder of this section, we will describe our results with
uniform CDF’s (i.e., each player is given his private signal uniformly at random from [0, 1]) in
detail.

Figure 8 in Appendix D shows our experimentally-obtained values of ε, as well as the worst-
case theoretical values of ε according to Equation 3. As noted in Section 7.3, the worst-case
bound for k as a function of ε is very loose, and we expect to require a much smaller value of k to
obtain a given ε in practice. Our results confirm this conjecture on this game. Figure 8(a) shows our
experimental values of ε as a function of the number of breakpoints. We obtained an ε of 0.01 using
just 5 breakpoints, and observed a rapid decrease of ε to about 10−5 as we increased the number of
breakpoints to 50. Figure 8(b) shows the ε guaranteed according to Equation 3. In sharp contrast,
an ε of almost 25 is guaranteed using 5 breakpoints, which is meaningless since the difference
between the best and worst-case payoffs of the game is only 12. Even using 50 breakpoints only
guarantees an ε of 0.24, which is also essentially meaningless for practical purposes. So our results
confirm that we are in fact able to obtain good performance results in practice despite the fact that
our worst-case theoretical bound is not very meaningful for such small numbers of breakpoints.

8.3.1 Conditional parametric model representation

In some cases, it can be beneficial to use an alternate, but equivalent, representation of parametric
models. For example, in this game, rather than use a model for player 3 with three different thresh-

22

olds, we could instead use three parametric models for player 3—where each one corresponds
to a different nonterminal betting sequence of the other two players (e.g., raise/call, raise/fold,
or fold/raise)—see Figure 7. Then each of these parametric models would only have a single
threshold, thus simplifying the representation of each model (though there are more of them). We
call such a representation a conditional parametric model, due to the fact that a player’s model is
conditional on the action sequences of the other players.

It is easy to see that conditional parametric models are equivalent to our standard parametric
models both in terms of representation power and size, and that they will create the exact same
MILFP. However, they often lead to a simpler visual representation, making them more useful
in certain situations. In addition, T in Equation 3 (recall this refers to the maximum number of
thresholds in a parametric model of any player) can now be replaced by T̂ which denotes the
maximum number of thresholds in a conditional parametric model of any player. In our example,
T is three while T̂ is only one. This actually gives an exponential improvement with respect to
the number of players in the worst-case number of breakpoints needed according to Equation 3 in
cases where T̂ < T .

8.3.2 Computing best responses

To determine the ε’s in the experiments, we need to be able to compute the best response for
each player to a given strategy profile of the other players. This is relatively easy if we are sure in
advance that for each strategy profile of the other players, there exists a best response that conforms
to the given parametric model (e.g., as in the premise of Theorem 2). However, often we are not
sure in advance that this is the case, and might only be able to come up with a set of parametric
models such that a best response satisfies at least one of them.

In the game considered in this section, it is not the case that every best response satisfies the
given parametric model. For example, suppose that if player 1 raises, then players 2 and 3 will call
with every hand. Then player 1 will only want to raise some of his hands, and fold his bad hands.
Thus his threshold will be below the calling thresholds of the other players, which differs from the
equilibrium parametric model given above.

We now present an algorithm for computing a best response in the setting where we are able
to construct a set of parametric models for which we can prove that for each player and a given
strategy profile of the other players, there exists a best response that satisfies at least one of the
models. It is easy to see that our game satisfies this property. First, notice that every EPSB-
undominated strategy for each player must satisfy the given threshold structure. However, it is
not clear how the thresholds for the different players will relate to each other. But note that given
strategies of the other players, there are at most 4 possible parametric models consistent with the
threshold structure (i.e., the relevant threshold of the player in question must lie somewhere with
respect to the other thresholds).

Our algorithm is the following. For each player, we fix the given strategies σ−i of the other
players and iterate over all the possible parametric models. Then we compute the best response
for the given player i using each fixed model. This can be accomplished by treating the values
xi = Fi(ti) of player i’s CDF evaluated at the thresholds as variable, and writing the formula for
the expected profit of player i given σ−i in terms of the xi’s. This yields a polynomial function

23

of degree at most n in terms of the xi’s, where n is the number of players. This constrained
optimization problem can be solved efficiently by standard techniques (e.g., using Matlab which
presumably uses Newton’s method), to determine the expected profit of the best response satisfying
the given parametric model. We do this for each model, and take the highest value—call it π∗.
The difference between π∗ and the expected payoff of player i under σ yields εi—the difference
between the payoff of his best response and his actual payoff. We do this for each player, and set ε
equal to the maximum of the εi’s.

This algorithm can be used as an ex-post checking procedure even if the premises of Theorem 2
(i.e., every EPSB-best response satisfies the given parametric model) or of Theorem 4 are not
satisfied. As long as we can construct a set S of parametric models such that there (provably)
exists a best response of each player i to the strategy profile σ−i of the other players output by
our algorithm that is consistent with a model in S, then we have computed an ε-equilibrium of the
game, where ε is determined by the above procedure. Thus, the results of this section show that our
algorithm can still be successful even in cases for which the premises of our theorems are not met.
This is important, especially in light of the relatively strong premises of the theorems. Future work
could look into relaxing the premise of the theorems, and proving the correctness of our algorithm
in a wider range of settings.

8.3.3 Algorithm performance

Figure 9 shows the running times of our experiments, as a function of the number of breakpoints
used. As shown in the figure, runtimes increased steadily from 0.3 seconds with 5 breakpoints to
8.9 seconds with 50 breakpoints.

Despite a clear positive correlation, the runtimes do not increase monotonically with the num-
ber of breakpoints. This is due to the fact that CPLEX is solving a fundamentally different MILFP
for each number of breakpoints, and the runtimes of CPLEX’s MIP solver are notoriously un-
predictable (even on inputs that are seemingly quite similar). We saw a similar deviation from
monotonicity of ε as a function of the number of breakpoints in Figure 8(a). Therefore, for large
problems one may want to try several different numbers of breakpoints, since even consecutive
values can lead to drastically different runtimes and values of ε. The optimal number to use will
clearly depend on the desired ε and running time limitations. However, one implication of our re-
sults is that often far fewer breakpoints are needed to obtain a given ε than one might expect based
on our theoretical bound in Equation 3. So a reasonable algorithm to use in practice might be to
start by running our algorithm with some small number of breakpoints (such as 5), then increment
the number of breakpoints by 1 and repeat until a desired ε or time limit is reached. This procedure
could be easily parallelized by running our algorithm with different numbers of breakpoints on
different cores, since the computations do not depend on each other.

9 Conclusions and future research
We presented a new approach for solving large (even infinite) multiplayer games of imperfect in-
formation. The key idea behind our approach is that we include additional inputs in the form of

24

qualitative models of equilibrium strategies (how the signal space should be qualitatively parti-
tioned into action regions). In addition, we showed that our approach can lead to strong strategies
in large finite games that we approximate with infinite games. We proved that our main algorithm
is correct even if given a set of qualitative models (with a common US-refinement) of which only
some are accurate.

In two player settings, our algorithm finds an exact equilibrium. The solution technique uses a
mixed integer linear feasibility program. With more than two players, the models include nonlinear
elements, which we approximate with piecewise linear functions. We showed how the accuracy
of ε-equilibrium depends on the number of those pieces—both with a worst-case theorem and
experiments that show that significantly fewer pieces are needed in practice.

For settings where our algorithm outputs a solution but we do not know that even one of the
qualitative models is correct, we developed an ex post procedure for checking whether the solu-
tion is an equilibrium or an ε-equilibrium. The ex post check works under a significantly weaker
assumption than our theorems, namely that we use qualitative models for which we can prove that
for each player and the given strategy profile of the other players, there exists a best response that
satisfies at least one of the models.

Experiments suggest that approximating a finite game with an infinite one can outperform
abstraction-based approaches on some games. We constructed a game in which only a tiny amount
of abstraction can be performed while obtaining strategies that are no more exploitable than the
equilibrium strategies of our infinite approximation. Thus our approach presents a viable alterna-
tive to abstraction-based approaches. This is particularly promising in light of the recently uncov-
ered abstraction pathologies.

We also showed how to extend our algorithm to the cases of more than two players, continuous
private signal distributions, and dependent private signal distributions. In most of these cases, we
presented the first algorithm that provably solves the class of games. Our experiments show that
the algorithm runs efficiently in practice in both two-player and multi-player settings. It leads to a
significant performance improvement in two-player limit Texas hold’em poker—the most studied
imperfect-information game in computer science—by solving endgames.

While in this paper we inferred the infinite approximations of finite games and the parametric
models manually, future research could attempt to develop methods for generating them systemati-
cally and automatically. It is also possible that in future research one could prove that our approach
works under less restrictive premises than are currently used in the main theorems.

References
[1] C. D. Aliprantis and K. C. Border. Infinite Dimensional Analysis: A Hitchhiker’s Guide.

Springer-Verlag, 2006.

[2] J. Ankenman and B. Chen. The Mathematics of Poker. ConJelCo LLC, 2006.

[3] C. Archibald and Y. Shoham. Modeling billiards games. In International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), Budapest, Hungary, 2009.

25

[4] D. Billings, N. Burch, A. Davidson, R. Holte, J. Schaeffer, T. Schauenberg, and D. Szafron.
Approximating game-theoretic optimal strategies for full-scale poker. In Proceedings of the
18th International Joint Conference on Artificial Intelligence (IJCAI), 2003.

[5] J. Bisschop. AIMMS—Optimization Modeling. Paragon Decision Technology, 2006.

[6] L. Blumrosen, N. Nisan, and I. Segal. Auctions with severely bounded communication.
Journal of Artificial Intelligence Research, 28:233–266, 2007.

[7] X. Chen and X. Deng. Settling the complexity of 2-player Nash equilibrium. In Proceedings
of the Annual Symposium on Foundations of Computer Science (FOCS), 2006.

[8] K. Etessami and M. Yannakakis. On the complexity of Nash equilibria and other fixed points
(extended abstract). In Proceedings of the Annual Symposium on Foundations of Computer
Science (FOCS), pages 113–123, 2007.

[9] D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.

[10] S. Ganzfried and T. Sandholm. Computing equilibria in multiplayer stochastic games of
imperfect information. In Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI), 2009.

[11] A. Gilpin, S. Hoda, J. Peña, and T. Sandholm. Gradient-based algorithms for finding Nash
equilibria in extensive form games. In 3rd International Workshop on Internet and Network
Economics (WINE), San Diego, CA, 2007.

[12] D. Koller, N. Megiddo, and B. von Stengel. Efficient computation of equilibria for extensive
two-person games. Games and Economic Behavior, 14(2):247–259, 1996.

[13] H. W. Kuhn. Simplified two-person poker. In H. W. Kuhn and A. W. Tucker, editors, Con-
tributions to the Theory of Games, volume 1 of Annals of Mathematics Studies, 24, pages
97–103. Princeton University Press, Princeton, New Jersey, 1950.

[14] T. Sandholm and A. Gilpin. Sequences of take-it-or-leave-it offers: Near-optimal auctions
without full valuation revelation. In International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), 2006.

[15] T. Sandholm, A. Gilpin, and V. Conitzer. Mixed-integer programming methods for finding
Nash equilibria. In Proceedings of the National Conference on Artificial Intelligence (AAAI),
pages 495–501, Pittsburgh, PA, 2005. AAAI Press / The MIT Press.

[16] T. Sandholm and V. R. Lesser. Leveled commitment contracts and strategic breach. Games
and Economic Behavior, 35:212–270, 2001.

[17] S. P. Singh, V. Soni, and M. P. Wellman. Computing approximate Bayes-Nash equilibria in
tree-games of incomplete information. In Proceedings of the ACM Conference on Electronic
Commerce (ACM-EC), pages 81–90, New York, NY, 2004. ACM.

26

[18] N. D. Stein, A. Ozdaglar, and P. A. Parillo. Separable and low-rank continuous games.
International Journal of Game Theory, 37(4):475–504, 2008.

[19] J. P. Vielma and G. L. Nemhauser. Modeling disjunctive constraints with a logarithmic num-
ber of binary variables and constraints. In Conference on Integer Programming and Combi-
natorial Optimization (IPCO), 2008.

[20] Y. Vorobeychik and M. Wellman. Stochastic search methods for Nash equilibrium approxi-
mation in simulation-based games. In International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), Estoril, Portugal, 2008.

[21] K. Waugh, D. Schnizlein, M. Bowling, and D. Szafron. Abstraction pathologies in exten-
sive games. In International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), 2009.

[22] M. Zinkevich, M. Bowling, M. Johanson, and C. Piccione. Regret minimization in games
with incomplete information. In Proceedings of the Annual Conference on Neural Informa-
tion Processing Systems (NIPS), 2007.

A Math background
Most of the definitions presented in this section are taken or adapted from [1].

Definition 14. A nonempty family A of subsets of a set T is an algebra of sets if it is closed under
finite unions and complementation. That is,

G, H ∈ A →
[
G ∪H ∈ A and GC = T\G ∈ A

]
.

A σ-algebra is an algebra that is also closed under countable unions. That is,

{Gi} ⊂ A implies ∪∞i=1 Gi ∈ A.

Definition 15. A measurable space is a pair (T, Σ), where T is a set and Σ is a σ-algebra of
subsets of T.

Definition 16. Let AT and AY be nonempty families of subsets of T and Y, respectively. A function
f : T → Y is (AT , AY)-measurable if f−1(A) belongs to AT for each A in AY . We say that f is
AT -measurable when AY is clearly understood, and we say that f is measurable when both AY

and AT are clearly understood.

Definition 17. Let Σ be a σ-algebra over a set T. A function µ from Σ to the extended real number
line is called a measure if it satisfies the following properties:

1.
µ(E) ≥ 0 for all E ∈ Σ.

27

2.
µ(∅) = 0.

3. For all countable collections {Ei} of pairwise disjoint sets in Σ:

µ (∪iEi) =
∑

i

µ(Ei).

Definition 18. A measure space is a triplet (T, Σ, µ), where Σ is a σ-algebra of subsets of T and
µ : Σ → [0,∞] is a measure. If µ(T) = 1, then µ is a probability measure.

Definition 19. Let (T, Σ) and (Y, Θ) be measurable spaces. A Markov kernel is a mapping k :
T ×Θ → [0, 1] satisfying the following two properties.

1. For each t ∈ T, the set function k(t, ·) : Θ → [0, 1] is a probability measure.

2. For each θ ∈ Θ, the mapping k(·, θ) : T → [0, 1] is Σ-measurable.

Definition 20. Let (T, Σ) be a measurable space and let Y be a finite set. A discrete Markov kernel
is a mapping k : T × Y → [0, 1] satisfying the following two properties.

1. For each t ∈ T, the set function k(t, ·) : Y → [0, 1] is a probability mass function.

2. For each y ∈ Y, the mapping k(·, y) : T → [0, 1] is Σ-measurable.

Definition 21. Let Σi be the set of all intervals of the form (a, b), (a, b], [a, b), [a, b] for a ≤ b that
are completely contained in Xi. (Note that Xi is defined in Definition 6). Then Σi is a σ-algebra,
and (Xi, Σi) is a measurable space.

Definition 22. Let Λi denote the set of all discrete Markov kernels from (Xi, Σi) to Ci (note that
we assume Ci is finite). We call Λi the mixed strategy space of player i.

B Proof of Proposition 5

Let ∆i denote the space of Borel probability measures over Ŝi, which we call the set of mixed
strategies of player i. Let Vi denote the space of all finite-valued signed measures on Ŝi.

Definition 23. Two measures σi, τi ∈ Vi are almost payoff equivalent if uj(σi, s−i) = uj(τi, s−i)

for all j 6= i and all s−i ∈ Ŝ−i.

Let 0 denote the zero measure in Vi, and define

Yi = {measures almost payoff equivalent to 0}.

Definition 24. The rank of a continuous game is the n-tuple ρ = (ρ1, . . . , ρn) where ρi = dim ∆i

Yi
.

A game has finite rank if ρi < ∞ for all i.

28

Theorem 5. A continuous game is separable iff it has finite rank.

The preceding definitions and theorem were presented and proved in [18].

Proposition 5. The game considered in Section 3 is not separable.

Proof. Suppose there exists a measure (not equal to 0) for player 2 that is almost payoff equivalent
to 0; call this τ2. (Note that 0 refers to always folding.) Let

k =
3
∫ 1

0
xdτ2(x)

4
.

Now let s1 ∈ Ŝ1 be the strategy of always raising in [k, 1] and always folding in [0, k). Then when
player 1 has private signal in [k, 1], he will have a negative profit since he will raise and will win
less than 1

4
of the time when he is called. When player 1 has private signal in [0, k), his payoff will

be 0 since he will fold. So u1(s1, τ2) < 0. However, if player 2 plays 0, then player 1 will have
positive profit in [k, 1] since he will raise and player 2 will fold, and will have zero profit in [0, k),
since he folds. So u1(s1, 0) > 0. Therefore, u1(s1, τ2) 6= u1(s1, 0), and τ2 is not almost payoff
equivalent to 0. So we have a contradiction, and must have Y2 = ∅. So ρ2 = ∞, and the game does
not have finite rank. Therefore, by Theorem 5, it is not separable.

C Parametric models for limit Texas hold’em experiments
In this section we present the parametric models used for our experiments in Section 8.2 on limit
Texas hold’em.

The first parametric model, shown in Figure 3, is identical to the model presented in [2] (with
the thresholds renamed). For player 1, the action before the hyphen specifies the first action taken
in the betting round, and the action after the hyphen specifies the next action taken if the betting
gets back to player 1. For example, between thresholds b and c player 1 will check first, and if
player 2 bets he will call. A bluff denotes a bet with a bad hand (where the player betting is hoping
the other player folds). So with a private signal between d and 1 player 1 will bet, and he will
fold if player 2 raises. For player 2, the first action listed denotes the action taken when player 1
bets, and the second action (after the slash) denotes the action taken when player 1 checks. For
example, between f and g player 2 will call if player 1 bets and check if player 1 checks. The
second parametric model, shown in Figure 4, is identical to the first model except that threshold i
is shifted above threshold d. In the third parametric model (Figure 5), player 1 only checks when
he is first to act (and never bets).

29

Figure 3: First parametric model.

30

Figure 4: Second parametric model.

31

Figure 5: Third parametric model.

32

D Figures for multiplayer experiments
In this section we present the parametric models relating to the multiplayer experiments described
in Section 8.3. The parametric model is shown in Figure 6. For player 2, the first action listed
denotes the action taken when player 1 raises, and the second action (after the slash) denotes the
action taken when player 1 folds. For player 3, the first action listed denotes the action taken when
player 1 raises and player 2 calls, the second action denotes the action taken when player 1 raises
and player 2 folds, and the third action denotes the action taken when player 1 folds and player 2
raises.

Figure 6: Parametric model for the three-player poker game.

The equivalent conditional parametric model representation (as described in Section 8.3.1) is
given in Figure 7. The first column denotes player 1’s action, the second column denotes player
2’s action when player 1 raises, the third column denotes player 2’s action when player 1 folds, the
fourth column denotes player 3’s action when player 1 raises and player 2 calls, the fifth column
denotes player 3’s action when player 1 raises and player 2 folds, and the sixth column denotes
player 3’s action when player 1 folds and player 2 raises.

These two representations are equivalent in terms of their expressive power, the representation

33

sizes of the action spaces, and the MILFP program that gets generated. For example, while only
one column corresponds to player 3’s action space in Figure 6 and three columns do in Figure 7, the
length of the size of player 3’s action (e.g., FOLD/FOLD/CALL) is three times larger in Figure 6.

Figure 7: Conditional parametric model representation of the model given in Figure 6.

34

(a) Empirical solution quality, ε, as a function of the number of breakpoints.

(b) Solution quality, ε, guaranteed by Equation 3 as a function of the number of breakpoints.

Figure 8: Experimental values of, and the theoretical bound on, ε.

35

Figure 9: Running time (in seconds) as a function of the number of breakpoints.

36

	1 Introduction
	2 Continuous Games
	3 Motivating example
	4 Our setting
	5 Parametric models
	6 Our main algorithm
	6.1 Constructing a MILFP
	6.2 Obtaining mixed strategies from the MILFP solution
	6.3 Algorithm correctness

	7 Extensions to more general settings
	7.1 Continuous private signal distributions
	7.2 Dependent private signals
	7.3 Many players
	7.3.1 Approximating products of continuous variables using linear constraints
	7.3.2 Tying the accuracy of the approximation to the accuracy of the equilibrium
	7.3.3 New MIP algorithms for computing equilibria in normal and extensive-form games

	7.4 Multiple parametric models

	8 Experiments
	8.1 Approximating large finite games by continuous games
	8.2 Two-player Limit Texas hold'em
	8.3 Multiplayer experiments
	8.3.1 Conditional parametric model representation
	8.3.2 Computing best responses
	8.3.3 Algorithm performance

	9 Conclusions and future research
	A Math background
	B Proof of Proposition 5
	C Parametric models for limit Texas hold'em experiments
	D Figures for multiplayer experiments

