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Abstract

In a typical application storing some data, if the memory represen-
tations of the internal data structures are inspected, they may leave
significant clues to the past use of the application. For example, a data
structure with lazy deletions might retain an object that the user be-
lieves was deleted long ago; this is problematic in environments requir-
ing high security or strict privacy guarantees. We can eliminate such
problems entirely by demanding that a data structure implementation
store exactly the information specified by an abstract data type (ADT),
and nothing more. This property is sometimes called strong history in-
dependence. To attain it, it is often necessary and always sufficient to
ensure the data structure is uniquely represented. That is, any two se-
quences of operations which bring the ADT to the same logical state will
cause the implementation to generate the same memory representation.
This observation begs the following question.

For each abstract data type, what is the added cost for uniquely
represented implementations over their conventional counter-
parts, in terms of time, space, and randomness?

In this dissertation, we will answer this question for several impor-
tant abstract data types, and argue that the overhead for unique repre-
sentation is sufficiently low to warrant its widespread use in high secu-
rity and high privacy environments. Towards this end, we provide the
theoretical foundation for the development of efficient uniquely repre-
sented systems that provably store exactly the information their designs
specify, and nothing more.
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Gilpin, Varun Gupta, Benôıt Hudson, Yan Ke, Ryan Kelly, Lea Kissner, Ioannis Koutis,
Katrina Ligett, Sean McLaughlin, Viswanath Nagarajan, Sandeep Pandey, Harald
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Chapter 1

Introduction

Consider the following secure redaction problem: an organization possesses a classi-
fied version of some document. The organization wants to remove certain sensitive
information from the document to create an unclassified version of it which will be
released to the public. The unclassified version will then be analyzed by powerful
adversaries (henceforth called “observers”) that will try to extract all the informa-
tion they can from it. You are tasked with preparing the unclassified version of the
document. How can you prepare it so as to guarantee that the adversaries cannot
learn any sensitive information?

This question is of some practical importance. Hartline et al. [HHM+05] de-
scribe an example of a CIA document that was released by the New York Times
in 2000 as a PDF file with classified information redacted by overlaying black
boxes. Unfortunately the overlays could easily be removed revealing key infor-
mation about the CIA’s role in the 1953 overthrow of the Iranian Government. In
2005 the US military released a PDF report on the accidental shooting of Italian in-
telligence agent Nicola Calipari in Iraq, again with classified information redacted
by overlaying black boxes. Again the overlays could be removed, and among the in-
formation revealed was the name of the US military shooter, Mario Lozano. In 2007
the Fédération Internationale de l’Automobile leaked confidential technical infor-
mation about the McLaren and Ferrari racing cars in much the same way. These
are just a few prominent cases among many recent examples of such leaks.

The secure redaction problem is part of a more general problem. Computer
users on a typical system leave significant clues to their recent activities, in the
form of logs, unflushed buffers, files marked for deletion but not yet deleted, and
so on. This can have significant security implications. To address these concerns,
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2 Chapter 1: Introduction

the notion of history independent data structures was devised. Roughly, a data struc-
ture is history independent if an observer with access to the underlying hardware of
the system (i.e., the memory layout of the data structure) can learn no more infor-
mation than a legitimate user accessing the data structure via its standard interface.
Intuitively, this property is called history independence because the memory layout
of the data structure will in general be a function of the historical sequence of op-
erations performed on the system, and so any sensitive information that is leaked
can be thought of as containing some information about this historical sequence of
operations.

The most stringent form of history independence is called strong history inde-
pendence (SHI), which ensures that an observer with access to the memory layout
of the data structure at several different points in time can learn no more informa-
tion than a legitimate user accessing the data structure via its standard interface
at those points in time. In other words, strong history independence guarantees
that an abstraction provided by an interface cannot be violated by inspecting its
physical implementation in a machine.

Note that this notion of history independence is still underspecified. To opera-
tionalize it we must develop a formal notion of what information the abstraction
stores and what information the physical system stores. Such a formalism allows us
to relate each concrete state of a machine (e.g., a sequence of bits stored on a disk
drive) to abstract information (e.g., text, images, or music). We use the notion of
unique representation as a concrete implementation of strong history independence.
Unique representation is a slightly stronger condition than strong history indepen-
dence, and is defined formally in Chapter 2. Informally, a data structure is said to
be uniquely represented if its concrete state is uniquely determined by

1. the abstract information that the data structure is intended to be currently
storing (which determines the behavior of the data structure under its stan-
dard interface), and

2. a specification of the machine that is running the data structure and thus
providing the concrete representation of it.

Thus uniquely represented data structures have canonical representations on any
fixed machine1. For example, a uniquely represented solution to the secure redac-

1If the machine specification includes a random bit string, and we think of this random bit string
as a random variable, then it is more accurate to say that uniquely represented data structures have
canonical representations up to randomness.
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tion problem would specify a unique file (i.e., bit string) for each abstract document
that can be created (as specified by some abstract document data type). Thus, any
editing history resulting in some fixed abstract document results in the same file,
so that file provably contains no information about the editing history, and in par-
ticular provably contains no sensitive information that was previously present but
was deleted.

Uniquely represented data structures thus provide a principled solution to the
secure redaction problem. More generally, they provide a principled way to build
computer systems that provably store exactly the information specified in their de-
signs. Of course, any correctly implemented system must store at least the in-
formation specified in its design. However, until very recently it was not known
how to construct efficient systems that store no extra information beyond that re-
quired by their designs. Nor was it known whether efficient systems with such a
guarantee were even possible. More fundamentally, almost nothing was known
about the complexity of many important uniquely represented data structures in a
RAM model of computation, including such fundamental data structures as queues,
linked lists, heaps, hash tables, and binary search trees. In this dissertation, we
will resolve these questions for a wide range of data structures, and show that the
overhead for devising uniquely represented data structures is extremely low for
many fundamental abstract data types. We will provide the first efficient uniquely
represented implementations for several important abstract data types, including
hash tables, linked lists, queues, binary search trees, heaps, and many others, thus
paving the way for a wide variety of efficient uniquely represented systems.

We will also provide the first lower bounds proving a complexity gap between
uniquely represented and conventional implementations of some natural abstract
data types in the RAM model, namely union-find and meldable heaps. For example,
in stark contrast to the other abstract data types investigated in this dissertation,
taking the union of two sets in a union-find instance requires expected Ω( n

log n
)

time for any uniquely represented implementation, whereas a simple conventional
implementation performs unions and finds in O(log n) time. The discovery of fun-
damental barriers to efficient uniquely represented implementations for these ab-
stract data types accentuates the positive results discussed above. Finally, we will
provide a rigorous way to specify history dependence in Chapter 6, and initiate the
study of the tradeoffs between efficiency and history dependence.



4 Chapter 1: Introduction

1.1 Motivation: Theory and Applications

Uniquely represented data structures are interesting for many reasons, both the-
oretically and practically. We begin with potential applications and then discuss
developments in theoretical computer science related to unique representation.

1.1.1 Applications

Efficient uniquely represented data structures can be applied to a wide variety of
problems. In this section we discuss their applications, including some speculative
ones.

History Independence and Privacy in Computation. Perhaps the most natu-
ral application of uniquely represented data structures is the design of strongly
history-independent data structures. Uniquely represented data structures provide
the strongest possible guarantees on history-independence; they store the absolute
minimum amount of information necessary to be correct implementations. Here
are some concrete examples of applications.

• Filesystems that have the property that deleting a file provably leaves no trace
whatsoever that it ever existed, and reveals nothing about what order files
where created or last modified or last accessed, unless this is part of the
interface.

• Databases storing sensitive information (e.g., medical records) that provably
reveal nothing about the order of record insertions or records that have been
deleted, nor retain any evidence of previous queries.

• Voting Machines that provably store only the set of participating voters, and
nothing about the order in which they voted. Retaining information about
the order in which votes were cast might enable privacy violations, and some
voting protocols (e.g., ThreeBallot and VAV [RS07]) require that the order of
votes cast not be revealed.

• Web Browsers that support secure browsing sessions after which the browser
reverts to the precise state it was in before the session began.
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• Advanced File Formats that maintain search indices or other data structures
embedded in the file itself to speed up certain operations on the file, yet are
uniquely represented and thus provably store only the information specified
by their creator via a well specified interface.

There are various ad hoc partial solutions to each of these problems that would
address most of the risk associated with storing undesirable extra information.
However, as systems and file formats grow more complex the need for a principled
solution to the problem, such as that provided by uniquely represented data struc-
tures, will become more and more apparent. For example, already many document,
spreadsheet, and presentation file formats are based on the extensible markup lan-
guage (XML) and incorporate trees. It seems reasonable to assume that the current
trend towards more complex file formats incorporating various data structures will
continue. This trend is likely to further exacerbate the problem of sensitive informa-
tion leaks due to failed or incomplete attempts at redaction, and ad hoc solutions
are unlikely to scale well with this complexity.

It should be noted that because uniquely represented data structures are strongly
history independent, no attack on a previously uncompromised system will reveal
information that cannot be inferred by a user with access to the legitimate interface
immediately before the attack. For example, in a conventional filesystem timing at-
tacks might be used to extract information about previously deleted files, even if
the actual disk contents are not revealed to the attacker. In a uniquely represented
filesystem this is impossible; the timing of any operation depends only on the ma-
chine state, and is thus history independent.

Simplifying the Debugging and Verification of Parallel Computations. Paral-
lel programs are notoriously hard to debug, in large part because execution order
of the various threads of the program are not deterministic, but rather may change
with each execution. Uniquely represented data structures can help, by signifi-
cantly reducing the (possibly distributed) machine state’s dependence on the exe-
cution order of various threads. For example, consider a parallel computation that
runs in stages, and in each stage computes a well defined logical result. More con-
cretely, the computation might be a divide-and-conquer algorithm and the stages
might consist of either breaking up large problems into smaller subproblems or
combining the solutions to several subproblems into solutions to larger subprob-
lems. The computation must generate a particular set of logical results at the end
of each stage; if uniquely represented data structures are used, this implies that
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the computation must reach the unique machine state encoding that set of logical
results, independently of how the execution threads were scheduled during that
stage (or in previous stages). This can dramatically reduce the number of com-
putation traces that are possible, and allows the debugging to be done stage by
stage.

Certifying Parallel Computations. The remarks in the previous paragraph also
suggest the following possibility. If a parallel computation running in stages must
go through a particular sequence of machine states, one per stage, independent
of the thread scheduling, then we can produce a certificate that we performed the
computation by signing each machine state in this sequence. If called upon to
prove that we ran the computation, we simply rerun the computation, let a judge
sign the machine state at the end of each stage, and have the judge verify that these
signatures match the previously generated ones. This may require significantly less
space than other approaches which must take into account how the various threads
are scheduled.

Fast Equality Testing. Often a computation will test two concrete objects x and
y for equality. Typically, the notion of equality employed will be equality of the
abstract objects that x and y represent. For example, we might define two ordered
sets to be equal if they contain the same elements. Testing for this kind of equality
then requires us to traverse x and y. Using uniquely represented data structures,
equality testing takes time linear in the space used to store the object. Moreover,
the hash-consing technique discussed in Section 5.2 allows probabilistic equality
testing in constant time for some objects, with a small probability of error. Hav-
ing a canonical form for various data structures may have applications speeding
up theorem provers and verifiers, as was the case with ordered binary decision
diagrams.

1.1.2 Theoretical Connections

The investigation of unique/canonical representations or normal forms for various
objects is pervasive in mathematics, and developing such representations often re-
sults in important insights. Typically this due to the fact that the canonical form
preserves and highlights certain properties of the object that are deemed important
while eliminating other properties. For example, in linear algebra every normal
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matrix over the complex numbers can be converted into a diagonal matrix nor-
mal form (which is canonical up to reordering). That this normal form exists is
a consequence of the spectral theorem [HK71], and it very clearly highlights the
eigenvalues of the matrix. Eliminating unimportant or undesirable information
from the representation can have computational advantages as well. For example,
the development of Ordered Binary Decision Diagrams [Bry86], a unique repre-
sentation for boolean functions, was a crucial enabling factor in the development
of model checking2. The question of “what is the time and space complexity of
uniquely represented implementations of many fundamental data structures?” is
thus a natural one. As a bonus, unique representation may simplify proofs that
data structures have other properties. For example, we use this property to our ad-
vantage when bounding the running time of the uniquely represented hash table
of Section 3.1.

DFA Minimization. As we shall see in Section 1.3, the study of uniquely rep-
resented data structures goes back to the 1970s. However, the goal of repre-
senting all equivalent logical states in a computation by one machine state is
evident as far back as the 1950s in the work on minimization of deterministic fi-
nite automata (DFAs) by Huffman [Huf54], Moore [Moo56], Nerode [Ner58], and
Hopcroft [Hop71], among others. In this work, the goal is to find the DFA with the
smallest number of states representing some regular language R, where R may be
represented as another DFA. The connection with unique representation is perhaps
most evident in the Myhill-Nerode theorem [Myh57, Ner58] (see [Koz97] for a
treatment), which, among other things, shows how to construct the unique mini-
mal deterministic finite automata for a regular language R using the coarsest right
congruence refining R. This work can be thought of as deriving uniquely repre-
sented data structures for an abstract data type that allows the user to provide a
character, and outputs accept or reject based on whether the complete sequence of
characters provided so far is in some fixed regular language R. The abstract data
type is completely specified by R and an input alphabet, but must be implemented
as a DFA. The machine state is then merely a state of the DFA. The logical state
can be modeled as a function f from strings to {accept, reject} such that f(x) is
the output of the abstract data type if the user provides x as a sequence of charac-
ters. Each machine state q will encode such a function fq in a natural way: fq(x)

2Model checking is an important verification technology. Recently the Association for Computing
Machinery (ACM) recognized the value of model checking by awarding its primary developers the
2007 A.M. Turing Award.
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is computed by starting from state q, executing the DFA’s transition function on x,
and outputting accept if and only if the final state is an accepting state. The unique
minimal DFA for the regular language R ensures that all states q encode distinct
functions fq, and thus guarantees that each logical state is uniquely represented.

Ordered Binary Decision Diagrams. Binary Decision Diagrams are directed acyclic
graphs used to represent boolean formulae. Bryant [Bry86] introduced a particu-
larly useful variant, called Ordered Binary Decision Diagrams (OBDDs), together
with a set of procedures for manipulating them. The OBDD representation of a
boolean formula is unique up to isomorphism; two OBDDs for the same formula
will be isomorphic. This makes functional equivalence easy to test. Fast equality
testing is related to unique representation, and the technique used in OBDDs of
sharing common subgraphs is reminiscent of the hash-consing technique discussed
in Section 5.2. Ken McMillan applied OBDDs to model checking, and developed
Symbolic Model Checking, a widely used verification technique.

Dynamization and Incremental Computation. Dynamization is the process of
converting static algorithms that expect all of their input up front to dynamic al-
gorithms that support operations on dynamically changing inputs (see [ABH+04,
Aca05] and references therein). For example, a static sorting algorithm simply out-
puts an input set of numbers in sorted order, whereas a dynamic sorting algorithm
might allow the user to add and delete elements, and also print the stored elements
in sorted order at any time. The problem of automatically dynamizing static algo-
rithms is also known by the name incremental computation [Pug88]. The problem
can be restated as follows. Suppose we have already performed some expensive
computation on some input, and then the input changes slightly. Rather than redo
the computation from scratch, to what extent can we use the work we have already
done on the old input to speed up the computation on the new input? This clearly
useful in many practical situations, such as running expensive simulations (e.g.,
of the global climate) and testing multiple related scenarios as input (e.g., what
happens if we alter carbon dioxide emissions by ∆ for various values of ∆). Typi-
cally, the emphasis is on developing programming language tools to automatically
obtain such speed ups.

Effective incremental computation involves “rolling back” the computation when
the input changes, and then propagating the effects of the change in input forward.
This is typically done in such a way that the result is the same as running the static
algorithm on the entire input provided up front. To do incremental computation
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in some other way would in some sense be akin to designing a dynamic algorithm
for the problem and would likely require additional insight into the problem. It
is unclear how this could be done automatically. Thus incremental computation
schemes tend to produce the output of the static algorithm when run on the entire
(current) input. This implies the result is strongly history independent. If the data
structures used by the machinery set up to support incremental computation are
strongly history independent, then the entire data structure will be strongly history
independent as well. Indeed, techniques related to incremental computation are
often useful in the design of strongly history independent data structures. Some
hints of this can be seen in Section 5.10, where we obtain a uniquely represented
solution to the dynamic 2-D convex hull problem by modifying a data structure of
Overmars and van Leeuwen [OvL81] that makes use of a dynamization technique
that Overmars developed [Ove81, Ove83, Ove87]. Interestingly, uniquely repre-
sented data structures are also helpful in the construction of efficient schemes for
incremental computation, as Pugh discusses in his thesis [Pug88].

The connection between incremental computation and history independence
was noted by Acar et al. [ABH+04], whose approach to incremental computation
(i.e., automatic dynamization) has this property of outputting the result of the
static algorithm run on the current input. The running time of their algorithms
depend on the trace stability of the problem, which is a measure of how much the
computation preformed by the static algorithm changes as the input is changed.
We provide efficient strongly history independent versions of all of the data struc-
tures needed by the change propagation algorithm of Acar et al. for incremental
computation. This implies that if there exists a static algorithm for a problem with
trace stability f(n) (in the restricted RAM computational model in [ABH+04]) then
there exists a strongly history independent solution for the problem with running
time O(f(n) log f(n)) (see Theorem 4.1 of [ABH+04], reproduced as Theorem 26
on page 149). Since for virtually all natural abstract data types strong history in-
dependence implies unique representation, we can infer that in the computational
model in [ABH+04] efficient incremental computation (via any approach that out-
puts the solution the static algorithm would have if given the entire input up front)
is only possible if efficient uniquely represented data structures for the problem
exist. It remains an interesting open question whether or not a similar result holds
for the RAM model of computation.
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1.2 Outline and Overview of Our Contributions

Chapter 1: Introduction

This chapter includes the introduction, motivations, and related work on uniquely
represented and history independent data structures.

Chapter 2: Background

In Chapter 2 we provide formal definitions, models, and notations used throughout
this dissertation.

Chapter 3: Hashing

Hashing and Memory Allocation. Efficient uniquely represented memory allo-
cation is perhaps the most fundamental problem facing the would-be designer of
uniquely represented data structures. Often the development of a uniquely repre-
sented data structure can be partitioned into two tasks, namely, creating an obliv-
ious data structure [Mic97], and mapping that data structure onto a RAM in a
uniquely represented way. The latter problem essentially requires a uniquely rep-
resented memory allocator. Since such a memory allocator can be readily built
from a uniquely represented hash table supporting deletions, such hash tables are
particularly important.

With this in mind, we have developed a framework for constructing uniquely
represented hash tables using a variety of open address hashing schemes, which
appears in Chapter 3. This framework allows us to exploit a recent breakthrough
result of Pagh et al. [PPR07], who showed that linear probing with 5-universal hash
functions yields expected O(1 + 1/(1− α)3) time operations, where α is the load of
the hash table. Specifically, using linear probing with a 5-universal hash function
we obtain a uniquely represented hash table that stores n := αp keys in p slots of
space such that the expected time to perform any search, insertion, or deletion is
O(1 + 1/(1 − α)3). This framework also reveals a subtle connection between his-
tory independent hashing and the Gale-Shapley stable marriage algorithm [GS62],
which may be of independent interest.
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Dynamic Perfect Hashing. Dynamic perfect hashing is the problem of maintain-
ing a dynamic mapping from a set of keys to data items such that lookups are
supported in O(1) worst-case time. In previous work there are two approaches that
yield a hash table with O(1) worst-case time for lookups and O(1) amortized ex-
pected time for insertions and deletions, while using space linear in the number
of keys. The first approach is due to Dietzfelbinger et al. [DKM+94], and is an
extension of the scheme of Fredman et al. [FKS84]. The second approach, devised
by Pagh and Rodler [PR04], is quite different, and is called cuckoo hashing. In
this dissertation we will present a third way to achieve identical time and space
bounds while maintaining unique representation, assuming our machine has ac-
cess to a large sequence of random bits. See Section 3.2 for details. Unfortunately,
due to the nature of the unique representation property, we cannot sample random
bits “on demand.” On the other hand, our approach is novel and relatively simple.
Previously the only history independent hash table with these performance guaran-
tees was a WHI hash table due to Naor and Teague [NT01], who built on the work
in [DKM+94].

Uniquely represented data structures with worst-case guarantees, such as our
hash table, often require a potentially exponential amount of randomness, however
they serve as the basis for more practical data structures that either

(i) Retain the running times but make the data structure uniquely represented
with high probability and weakly history independent with certainty, or

(ii) Retain unique representation but replace worst-case time guarantees with
“with high probability” time guarantees.

In the case of dynamic perfect hashing, these practical variants require only
O(nδ) random bits for any constant δ > 0, and, in case (i), the ability to sample
random bits as needed. See Section 3.2.2 for details.

Chapter 4: Basic Data Structures

In Chapter 4 we cover arrays, stacks, linked lists, queues, binary search trees,
and heaps. Except for heaps, we match the running times of the best conven-
tional versions up to constant factors, ignoring the fact that the running time
guarantees for the uniquely represented versions are in expectation rather than
worst-case. Our uniquely represented binary search tree is based on randomized
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treaps [Vui80, SA96], which play a prominent role in many constructions through-
out this dissertation. In the case of heaps, we provide a uniquely represented
version that has good performance for most operations, but takes linear time to
perform merges. In contrast, Fibonacci heaps support amortized constant time
merges. However, in Chapter 7 we show that any uniquely represented heap must
take expected Ω(n/ log n) time to merge two heaps of size Θ(n); to the best of my
knowledge, this is the first complexity separation between uniquely represented
and conventional implementations for a natural abstract data type in a RAM model
of computation.

Chapter 5: Advanced Data Structures

Chapter 5 covers many additional uniquely represented data structures and tech-
niques for their construction. We match the running times of the best conventional
implementations for dynamic ordered dictionaries, dynamic order maintenance,
dynamic ordered subsets, skip lists, and dynamic trees, up to taking expectations.
We also provide efficient solutions for orthogonal range queries (range trees), hor-
izontal point location, orthogonal segment intersection, and dynamic 2D convex
hull whose running times are nearly as good as the best conventional versions.
This chapter also features the treap partitioning scheme, which is a way to select
a well-spaced random sample of points from an ordered set to partition it in a
strongly history independent manner. This scheme has several nice properties, and
we make extensive use of it, for example in the design of B-treaps. B-treaps are a
uniquely represented analogue of B-trees and were designed for an external mem-
ory model of computation. They have similar performance guarantees as B-trees,
and would be well suited to uniquely represented filesystems and databases.

Chapter 6: Adaptive Variants

In Chapter 6 we consider a relaxation of unique representation and strong history
independence, in which the representation is allowed to depend on certain infor-
mation about the historical use of the data structure that is specified up front. The
hope is that limited history dependence will allow the data structure to adapt to the
input and achieve improved performance without storing unauthorized informa-
tion about the historical use of the data structures. Designing such data structures
can be modeled as the task of designing a uniquely represented implementation
for an abstract data type that explicitly stores certain historical information in its
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logical state.

Chapter 7: Fundamental Limitations

Chapter 7 is concerned with fundamental barriers to the development of efficient
uniquely represented implementations for various abstract data types, specifically
those that do not plague conventional implementations. We show one such barrier;
intuitively, when an operation has the potential to “destroy” a large quantity of
historical information, any uniquely represented implementation must take a long
time to perform it. We use this argument to derive complexity separations for
uniquely represented implementations of the union-find abstract data type and of
meldable heaps.

Chapter 8: Uniquely Represented Systems

Finally, in Chapter 8 we discuss how to combine uniquely represented data struc-
tures together to obtain uniquely represented systems.

Source Materials

Many of the contributions in this dissertation have been published previously. The
constructions for uniquely represented hash tables (Chapter 3), binary search trees
(Section 4.5), ordered dictionaries (Section 5.4), order maintenance (Section 5.6),
dynamic trees (Section 5.12), and the treap partitioning scheme (Section 5.3) all
appear or are discussed in [BG07]. The technique of hash consing (Section 5.2)
and the technique of obtaining uniquely represented data structures from oblivi-
ous data structures (Section 5.11) are discussed in [BG06]. The constructions for
horizontal point location and orthogonal segment intersection (Section 5.9), or-
thogonal range queries (Section 5.8), 2-D dynamic convex hull (Section 5.10), and
dynamic ordered subsets (Section 5.7) appear in [BGV08a, BGV08b].

1.3 Overview of Related Work

Early Work on Uniquely Represented Data Structures. Snyder [Sny77] consid-
ered the problem of building uniquely represented dictionaries in a graph storage
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model. He proved that in order to uniquely represent a dictionary on n items with
a “tree-like” graph of bounded degree, Θ(

√
n) time per insertion, deletion, and

search is both necessary and sufficient. Moreover, Snyder [Sny77] states that his
results “suggest a new general rule: for dynamic problems, avoid uniquely repre-
sented data structures,” in stark contrast to the thesis presented here. We should
note that Snyder considers worst-case running times, and, as we will show, with
suitable randomization good bounds in expectation or with high probability can of-
ten be obtained. Additionally, Snyder’s notion of unique representation is unusual;
informally, he requires that two dictionaries with the same number of keys have
the same tree structure. This is in contrast to the more natural requirement that
any two dictionaries with the same set of keys have the same tree structure. We
differentiate the two concepts by using the term size-uniquely represented for the
former and uniquely represented for the latter.

Andersson and Ottmann [AO95] built on the work of Snyder, and considered
size-uniquely representing a dictionary with graphs of bounded outdegree, and de-
rive a matching lower and upper bound of Θ(n1/3) time per operation in the worst-
case. In a model similar to Snyder’s, Sundar and Tarjan [ST90] derive a bound of
Θ(
√
n) time per operation for the task of uniquely representing a dictionary with a

binary search tree.

A Brief History of History Independence. The notion of oblivious data struc-
tures, for which the pointer structure of a data structure reveals nothing about its
history, serves as a precursor to history-independent data structures and was first
studied by Micciancio [Mic97]. The two main notions of history independence,
weak and strong, were advanced by Naor and Teague [NT01], and further studied
by Hartline et al. [HHM+05]. They are defined formally in Section 2.2. Informally,
we say a data structure has a state, which maps each allowed operation to an out-
put and the following state. A data structure is weakly history independent (WHI)
if any two sequences of operations resulting in the same state result in the same
distribution over memory representations. Here, the distributions may vary with a
sequence of random bits hidden from the observer. The definition of strong history
independence is more involved (see Section 2.2), but was proved equivalent to
being uniquely represented by Hartline et al. [HHM+05] for reversible data struc-
tures, where a data structure is said to be reversible if any state is reachable from
any other state via a sequence of legal operations.

Long before Naor and Teague’s work on history independence, Amble and
Knuth [AK74] developed a uniquely represented hash table that does not support
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deletions. They showed that it has excellent performance assuming a random hash
function is used. Naor and Teague [NT01] similarly develop an efficient uniquely
represented hash table that does not support deletions, but require only O(log n)
pair-wise independent hash functions rather than a truly random hash function.
Naor and Teague also give a WHI hash table that supports deletion, is space effi-
cient, and takes expected amortized O(1) time for insertions and deletions, and
O(1) time for search.

Hartline et al. [HHM+05] gave an alternate characterization of SHI data struc-
tures, considered dynamically resizable data structures which are efficient against
a non-oblivious adversary selecting the sequence of operations, and prove upper
bounds for dynamically resizable WHI data structures and lower bounds for dy-
namically resizable SHI data structures.

Buchbinder and Petrank [BP06] studied the time complexity of WHI and SHI
heaps and queues in a comparison based model of computation. They show a large
complexity separation for these data structures. In particular, for a WHI heap they
obtain O(log n) time insert, increase-key, and extract-max operations, and an O(n)
time build heap operation on n items. Yet for a SHI heap, insert and increase key
must take Ω(n) time in the worst-case, and build heap Ω(n log n). For queues, the
maximum cost operation among {enqueue, dequeue} takes O(1) time in their WHI
implementation, and worst-case Ω(n) time in any SHI implementation.

There has also been work on history-independent data structures in machine
models with write-once memories. Molnar et al. [MKSW06] considered the prob-
lem of storing ballots in a voting machine with tamper-evident write-once memory
in a history independent manner. They obtain a SHI data structure that takes O(n)
time for insertions and O(n2) space to store n ballots, as well as more space and
time efficient WHI data structures. Moran et al. [MNS07] consider the same prob-
lem, and give a deterministic data structure for storing a set of at most n elements
from a universe of size N in space O(n ·polylog(N)) such that insertion takes amor-
tized O(polylog(N)) time.

Acar et al. [ABH+04] devised a model and algorithms to automatically dynamize
static algorithms. That is, they show how to run an off-line algorithm in an on-line
environment by maintaining enough state so that as the input changes the algo-
rithm can exploit its earlier work as much as possible rather than restarting the
computation from scratch each time. Acar et al. gave sufficient conditions for
strong history independence of dynamized algorithms, as well as a framework for
analyzing their performance. As an example, they gave an efficient SHI data struc-
ture for dynamic trees that supports expected O(log n) time link and cut operations



16 Chapter 1: Introduction

and uses O(n log n) space.

Subsequent to the development of our uniquely represented hash table and dy-
namic perfect hash table which support deletions and are based on linear probing,
Naor, Segev, and Wieder [NSW08] developed a uniquely represented dynamic per-
fect hash table which support deletions based on the Cuckoo Hashing scheme of
Pagh and Rodler [PR04]. We compare our dynamic perfect hash table with that of
Naor et al. in Section 3.2.3.

What Unique Representation Is Not. Uniquely represented data structures have
no redundancy of representation. This does not mean they cannot have redun-
dancy in the sense of having low entropy, e.g., to be used in error correcting codes.
Error correction is in some sense orthogonal to unique representation. Any code
that maps each message to exactly one codeword (which may depend on some ran-
dom bits used by the encoder) may be used. This will include all codes for which
the encoder takes the entire message as input before encoding it. An encoder that
did not have this property would need to maintain the codeword encoding a mes-
sage that was dynamically changing in accordance with some user operations —
an unusual coding scheme indeed.

Note that the guarantees on history independence provided by uniquely repre-
sented data structures are information theoretic rather than cryptographic. For the
purposes of what information is stored by the system, both the observer and the
user with access to the interface are assumed to be computationally unbounded.
(As we discuss in Chapter 2, it is often fine to constrain the user to use only poly-
nomial time computations.) We do not attempt to hide any information that the
system is required to store from either the user or the observer. However, unique
representation does not preclude the use the cryptography in the system; the infor-
mation the system is required to store may well be encrypted files. As with error
correcting codes, there is no difficulty if the encryption scheme is given the entire
file up front. However, one must be careful if incremental cryptography is used to
ensure history independence of the resulting encrypted files, independently of how
they are stored.



Chapter 2

Background and Semantic
Foundations

2.1 Basic Terminology and Notations

Elementary Notation

Let R denote the real numbers, Z denote the integers, Z+ denote the positive
integers, and N = {0, 1, 2, . . .} denote the natural numbers. For n ∈ Z, let [n] denote
{0, 1, 2, . . . , n − 1} and for a, b ∈ Z, let [a : b] := [a, b] ∩ Z. Let {ai}n

i=1 denote the
sequence a1, a2, . . . , an. We occasionally use the notation

∑
{x : P (x)} to denote the

sum over all elements x satisfying a predicate P , and similarly use
∏
{x : P (x)} to

denote the product over the same set. This notation can be viewed as interpreting∑
and

∏
as operators mapping sets of numbers to numbers. Throughout this

dissertation we use log(n) to denote log2(n) by default and ln(n) to denote loge(n).

Graph Theory Terminology

Graphs. We use the following standard graph theory terminology. A graph G is
a pair of sets (V,E) where V is the set of nodes (also called vertices) and E is the
set of edges. If there are many graphs to consider, we may use V [G] and E[G] to
denote the nodes and edges of G, respectively. In undirected graphs, each edge is
a set of nodes of size two, whereas in directed graphs each edge is an ordered pair
of nodes. A subgraph of (V,E) is a graph (V ′, E ′) such that V ′ ⊆ V and E ′ ⊆ E.

17
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A directed edge (u, v) is said to have u as its tail and v as its head. An undirected
edge {u, v} is said to be incident on u and v, and the degree of a node is the number
of edges incident on it. In directed graphs, the in-degree of a node v is the number
of edges with head v, i.e., |{(u, v) : u ∈ V, (u, v) ∈ E}|, and the out-degree of a
node v is the number of edges with tail v, i.e., |{(v, w) : w ∈ V, (v, w) ∈ E}|. A
node u is said be a neighbor of v in an undirected graph G = (V,E) if {u, v} ∈ E.
A path P in an undirected (directed) graph G is a sequence of nodes {vi}|P |i=1 such
that {vi, vi+1} ∈ E ((vi, vi+1) ∈ E) for all i ∈ [1 : P − 1]. A simple path is a path
in which no node appears more than once; paths that are not simple are called
complex. Where convenient, we will sometimes identify a path with the set of edges
between adjacent nodes in the path. A cycle is a path {vi}n

i=1 such that v1 = vn. A
graph with no cycles is called acyclic. An undirected graph such that there is a path
between any two nodes is called connected. A directed graph such that there is a
path between any two nodes is called strongly connected. An undirected graph that
is connected and acyclic is called a tree.

Trees. We use the following concepts related to trees. A leaf is a node in the
tree with degree one; any node that is not a leaf is called an internal node. A tree
T = (V,E) may be rooted at a distinguished node r ∈ V , which we call the root.
Rooting the tree induces various relationships on the nodes. The parent of a node
u is the neighbor of u that is on the unique u to root path in T ; every node but
the root has a parent. If v is the parent of u, then u is said to be a child of v. Let
R ⊂ V × V be the relation R = {(v, v) : v ∈ V } ∪ {(u, v) : v = parent(u)}. Let
(V,≤parent) be the partial order that is the transitive closure of R. We say that u is
an ancestor of v if v ≤parent u, and say that u is a descendant of v if u ≤parent v. In
other words, the ancestors of a node u are the nodes in the u to root path in T ,
and the descendants of u are those nodes v such that u lies on the v to root path
in T . We will sometimes refer to the proper ancestors or the proper descendants
of a node u, these are simply the ancestors or descendants of u excluding u itself,
respectively.

For a rooted tree T = (V,E), let |T | be the number of nodes in T , and for a node
v ∈ T , let Tv denote the subtree rooted at v, which is the subgraph (V ′, E ′) of T with
V ′ equal to the descendants of v and E ′ = {U ⊆ V ′ : |U | = 2} ∩E. Additionally, let
depth(x) denote the length of the path from x to the root of T minus one.
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Asymptotic Growth Notation

We use the asymptotic growth notation that is customarily used to describe the com-
plexity of algorithms. This notation sometimes goes by the name “big O notation.”
Fix two functions f : N → N and g : N → N.

• We write f = O(g) if there exist positive integers c, n0 such that f(n) ≤ c ·g(n)
for all n ≥ n0.

• We write f = Ω(g) if there exist positive integers c, n0 such that f(n) ≥ 1
c
·g(n)

for all n ≥ n0.

• We write f = Θ(g) if f = O(g) and f = Ω(g).

• We write f = o(g) if for all positive integers c there exists a positive integer
n0 such that f(n) ≤ 1

c
· g(n) for all n ≥ n0.

• We write f = ω(g) if for all positive integers c there exists a positive integer
n0 such that f(n) ≥ c · g(n) for all n ≥ n0.

Technically, O(g),Ω(g),Θ(g), o(g), and ω(g) are often defined as sets of functions
of type N → N, e.g., O(g) = {f : ∃c, n0 ∈ Z+ ∀n ≥ n0, f(n) ≤ c ·g(n)}. In this case
it would be more appropriate to write f ∈ O(g), however the convention is to abuse
notation and write f = O(g) instead. Another conventional abuse of notation is to
write f = O(e) for an expression e rather than a function; for example, we write
f = O(n2) instead of the technically correct f = O(n 7→ n2). Finally, we use the
notation f = poly(n) to indicate that there exists a c ∈ N such that f = O(nc).

Probability Theory Terminology

Let Pr[ε] denote the probability of event ε. Let E[X] denote the expectation of ran-
dom variable X. Throughout this dissertation, we let with high probability (whp)
mean with probability at least 1 − 1/nc, where c > 0 is any user defined con-
stant, and n is (as is customary) some natural measure of the size of the problem.
Sometimes for some random variable X we will write “X is O(f(n)) with high
probability” as shorthand for “for all constants c > 0 there exists a constant c′ such
that Pr[X ≤ c′ · f(n)] ≥ 1− 1/nc.” Likewise, we will write “X is Ω(f(n)) with high
probability” as shorthand for “for all constants c > 0 there exists a constant c′ such
that Pr

[
X ≥ 1

c′
· f(n)

]
≥ 1− 1/nc.”
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2.2 Unique Representation and History Independence

Abstract Data Types

An abstract data type (ADT) specifies data to be stored, as well as operations that
can be performed on the data. Abstract data types can be formally specified alge-
braically; for example, Micciancio uses Σ-algebras [Mic97]. We will use a more
lightweight formalism to model them. We view the ADT as defining a set of states,
and operations map their inputs and the current state to a new state and, option-
ally, an output. The ADT itself may then be thought of as a directed graph on its
states, with edges labeled by operation (including their inputs) and output. Fol-
lowing Hartline et al. [HHM+05], we call this directed graph the state transition
graph. Sequences of operations on the data structure then correspond to paths in
the state transition graph.

More precisely, we model an ADT as a set V of logical states, a special starting
state v0 ∈ V , a set of allowable operations O and outputs Λ, a transition function
τ : V × O → V , and an output function λ : V × O → Λ. The ADT is initialized to
v0, and if operation O ∈ O is applied when the ADT is in state v, the ADT outputs
λ(v,O) and transitions to state τ(v,O).

Models of Computation

A machine model M is itself an ADT, typically at a relatively low level of abstrac-
tion, endowed with a programming language. For our purposes a programming
language for M can be thought as a way to specify (possibly infinite) paths in M’s
state transition graph. A program is then identified with a set of paths P called
its trace set, where P ∈ P starting at v ∈ V represents the execution trace of
the program starting at state v. The program itself can be modeled as a function
p : V → V ∪ {∞} where p(v) is the machine state resulting from running p start-
ing from machine state v and p(v) = ∞ in the event that p does not terminate
when executed from initial state v. Example machine models include the random
access machine (RAM) with a simple programming language that resembles C, the
Turing machine (where the program corresponds to the finite state control of the
machine), and various pointer machines. For an detailed discussion of various ma-
chine models, we refer the interested reader to [vEB90].

An implementation of an ADT A on a machine model M is a mapping f from
the operations of A to programs over the operations of M.
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The machine model that we will typically use is the standard transdichotomous
random access memory (RAM) machine, specifically a word RAM. The model is
called transdichotomous to describe the fact that the machine is allowed to grow
with the problem size, in two ways. The machine we use has a array of words
of some finite length. The length is assumed to be large enough to accommodate
whatever program we are running on the input. Each word is simply a sequence of
w bits, and we assume w ≥ log |U|, where U is the universe of object labels (includ-
ing all indices in the word array). This ensures an object label can be stored in a
single word. We use a unit-cost RAM model, so that our machine can perform basic
arithmetic and logical operations (including multiplication, division, and modulo)
in one time step. These basic operations all take a constant number of arguments,
and, true to the RAM name, take only one time step regardless of where in the word
array their arguments are stored. We further assume that the machine model is en-
dowed with a programming language that resembles C in its capabilities. Thus,
the programming language should have integers, booleans, strings, pointers, if-
then-else conditionals, while loops, and functions. The machine model also has
separate (read-only) space for a program of finite length l to execute. We assume
w ≥ log(l). The problem input is initially written in the word array, and for dy-
namic data structures operations can be specified by writing data into the word
array and specifying a line in the program to start executing from. Finally, our
machine model has access to an infinitely long sequence of random bits, though
we will be careful to indicate how many random bits are required by each of our
data structures. We assume the machine’s programming language has a facility to
read from the sequence of random bits; in this way the random bits can affect how
programs alter the machine state.

History Independence and Unique Representation

Recall that our goal is to store exactly the information specified by an ADT, namely
its current state. However, this task is complicated by the fact that in any im-
plementation of the ADT, operations map their inputs and the current physical
machine state to a new physical machine state and, optionally, an output. We will
call a physical machine state corresponding to a ADT state a memory representa-
tion of that ADT state. History independence is defined in terms of how paths
through the state transition graph relate to changes in the memory representation.
The definitions of weak and strong history independence presented here are found
in [HHM+05], and are equivalent to the definitions given in [NT01].
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Definition 1 (Weak History Independence). A data structure is weakly history in-
dependent (WHI) if, for any two sequences of operations X and Y that take the data
structure from initialization to state A, the distribution over memory representations
after X is performed is identical to the distribution after Y is performed. (The distri-
bution in question is over the random bits that the WHI data structure may hide from
the observer.)

Definition 2 (Strong History Independence). Fix states A and B of an ADT, and two
(possibly empty) sequences of operations X and Y that take the ADT from state A to
state B. Let α be any memory representation of state A in some data structure im-
plementation of that ADT. The data structure is strongly history independent (SHI)
if, for any such A,B,X, Y , and α, the distribution over memory representations after
X is performed starting from memory representation α is identical to the distribu-
tion after Y is performed starting from memory representation α. (The distribution
in question is over the random bits that the SHI data structure may hide from the
observer.)

Strong history independence was defined to capture the notion that an observer
with access to the memory layout of the data structure at several different points
in time can learn no more information than a legitimate user accessing the data
structure via its standard interface at those points in time. Interestingly, the first
strongly history independent data structures were uniquely represented, in the
following sense.

Definition 3 (Unique Representation). A data structure is uniquely represented if
it has canonical representations up to initial randomness. Formally, given a machine
model M, an implementation f of some ADT (V, v0, τ, λ) is said be uniquely repre-
sented if for each ADT state v ∈ V , there is a unique machine state σ(v) of M that
encodes it. Thus, if for each ADT operation O we run on (V, v0, τ, λ) we run the the
program f(O) implementing O on M, and perform no additional operations on M,
then the machine is in state σ(v) iff the ADT is in logical state v.

The observation that early strongly history independent data structures were
uniquely represented led Naor and Teague [NT01] to ask “whether unique repre-
sentation is necessary for strong history independence.” Hartline et al. [HHM+05]
provide an affirmative answer in the case of data structures implementing reversible
abstract data types, defined as follows.

Definition 4 (Reversible Abstract Data Types [HHM+05]). An abstract data type is
reversible if and only if its state transition graph is strongly connected.
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In other words, reversible abstract data types are those for which there always
exists some sequence of operations which returns the data type to its initial state.
Typically this involves a sequence of deletions.

Theorem 1 ([HHM+05]). Any strongly history independent implementation of a
reversible ADT is uniquely represented.

In this dissertation, we will restrict ourselves to the study of uniquely repre-
sented data structures, and Theorem 1 provides additional justification for doing
so, at least within the context of a search for efficient strongly history independent
data structures.

Why Unique Representation is the Strongest Notion of History Independence

Fix an abstract data typeA = (V, v0, τ, λ) and a machine modelM = (V ′, v′0, τ
′, λ′,P)

implementing A. For a sequence ω of operations in A, let ω′ be the implementa-
tion of ω in M. Let v(ω) and v′(ω′) denote the logical and machine states obtained
after running ω and ω′, respectively, starting from the respective initial states of
A and M. We can model an observer as an interpretation from machine states
to some (arbitrary) information set I, that is, a function f : V ′ → I. The in-
terpretation models the strength of the observer. For example, the weakest ob-
server has a constant function as its interpretation; this observer cannot learn
anything at all from the machine state. The most powerful observer interprets
each machine state differently; in other words, the most powerful observer has
an injective interpretation. Uniquely represented data structures are the only data
structures that are history independent with respect to all such observers. This
is because in an uniquely represented implementation, if operation sequences ω0

and ω1 satisfy v(ω0) = v(ω1) then v′(ω′0) = v′(ω′1), which immediately implies
f(v′(ω′0)) = f(v′(ω′1)). Conversely, in a non-uniquely represented implementation
there exist ω0 and ω1 such that v(ω0) = v(ω1) and v′(ω′0) 6= v′(ω′1). Therefore any
observer with f(v′(ω′0)) 6= f(v′(ω′1)) will be able to distinguish these two historical
sequences of operations. This same argument can be easily extended to the case
in which the observer gets access to the machine state at several times, each time
between the execution of operations in some sequence of operations.
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History Independence as Distinguishability

The original goal of history independence – to ensure that the data structure stores
only the information specified by the abstract data type that it implements – can be
alternatively modeled as follows: the observer should not be able to make distinc-
tions that the user with access to the legitimate interface cannot. In other words, if
a user is given access to the interface of two systems implementing some abstract
data type, and the observer is given access to the machine state of those two sys-
tems, then the observer should be able to distinguish the two systems if and only if
the user can distinguish them.

This perspective allows us define history independence with respect to compu-
tationally bounded users and observers. One subtle way in which this differs from
the definition of strong history independence given in Definition 2 is that for some
abstract data types, access to the legitimate interface alone might possibly be insuf-
ficient to infer the exact logical state. This may be true for the abstract data type for
deterministic finite automata described in Section 1.1.2, in which each operation
causes an update to the logical state. However, we will typically assume that the
exact logical state can be computed using the legitimate interface. For example, in
a binary search tree the interface may allow the user to do a traversal of the tree.
In a queue, it is possible to simply dequeue all the elements. A basic hash table
may not allow an efficient way to list its contents, however we can suppose a linear
time successor operation, or a polynomial time operation that lists the keys of the
hash table in sorted order.

Given that the logical state can be computed in polynomial time using the le-
gitimate interface, distinguishing the logical states of two systems then becomes a
non-isomorphism problem on the contents of the abstract data type. If this non-
isomorphism problem can be solved in polynomial time, then the uniquely repre-
sented implementation is strongly history independent with respect to a computa-
tionally unbounded observer and a polynomial-time bounded user. Note that if the
uniquely represented implementation is efficient then the non-isomorphism prob-
lem is likely to be easy. This is because if the user can find sequences of operations
generating the two logical states, then the user can run the uniquely represented
implementation on both sequences (on a separate machine controlled by the user)
and simply compare the memory representations generated; if the logical states
are equal, then the memory representations will be as well1.

1Alternately, if the non-isomorphism problem on the contents of the abstract data type is hard,
then no time and space efficient uniquely represented implementation will be forthcoming.
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Randomization and Unique Representation

Note that when constructing uniquely represented data structures, we allow the
machine representation of a logical state to depend on the random bits of the
machine, however the data structures will be uniquely represented and strongly
history independence no matter what random string is used. Therefore a compu-
tationally unbounded observer with access to the machine state, including the ran-
dom bits it uses, can learn no more than if told what the current logical state is. We
use randomization solely to improve performance; in our performance guarantees
we compute probabilities and expectations over these random bits. Our perfor-
mance guarantees assume the sequence of operations is chosen independently of
these random bits (i.e., the user may be an oblivious adversary but not an adaptive
adversary). Since we will focus on randomized data structures, we will also make
use of the following definitions.

Definition 5 (k-Universal Hash Family). A family H of functions from X to Y is
k-universal if for all distinct x1, x2, . . . , xk ∈ X and for all y1, y2, . . . , yk ∈ Y

Prh∈H

[
k∧

i=1

h(xi) = yi

]
≤ |Y |−k

where h is chosen uniformly at random from H.

Such hash families are often described as k-wise independent. We use the
phrases k-universal and k-wise independent interchangeably in this dissertation.

Universal hash families were defined by Carter and Wegman [CW79]. There
are various k-universal hash functions that can be evaluated in O(1) time and are
easy to sample. For example, the family of degree k − 1 polynomials over a fi-
nite field is k-wise independent, as was shown by Wegman and Carter [WC81].
Thorup and Zhang provide a 4-wise independent hash function that is very fast in
practice [TZ04]; Pagh et al. [PPR07] claim that this hash family is in fact 5-wise
independent. Where Θ(log n)-universal hash functions are needed, the construc-
tions of Siegel [Sie89, Sie95a], Östlin and Pagh [OP03], and Dietzfelbinger and
Woelfel [DW03] are suitable, assuming the keys are integers. The latter are also
suitable where full randomness is called for.

For technical reasons, some uniquely represented data structures with worst-
case performance guarantees require very large amounts of randomness in the
worst case. We will exclude the random bits used from the space usage, as consis-
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tent with our machine model. However, in the interests of full-disclosure, we will
refer to the space used by such data structures as data space rather than just space.

Definition 6 (Data Space). The data space of a data structure is the space it uses
excluding any space used to store random bits.

2.3 Basic Methods to Construct Uniquely Represented
Data Structures

Before proceeding to complex constructions, we note that there are some fairly
simple methods for generating uniquely represented data structures. We regard
the following methods as folklore, as they are based on the ideas of bit-vector
encodings, finite state automata, and sorting, respectively.

Foremost among these basic methods is to store the characteristic vector of some
factored representation of the state. For example, a subset S ⊂ U can be stored as
its characteristic vector χ(S) ∈ {0, 1}|U| defined by χ(S)e = 1 for all e ∈ S and
χ(S)e = 0 otherwise. By a factored representation, we mean that the state can be
uniquely represented by the truth values of a set of predicates – in this case, the
subset S can be uniquely represented by the collective truth values of the predicates
“e ∈ S” for all e ∈ U . Of course, this requires |U| bits of space to store, which may
make it inappropriate if |S| << |U|.

A second simple method for generating uniquely represented data structures
is to explicitly store the entire state transition graph (defined in Section 2.2), and
maintain a single pointer to the current state. Typically the state transition graph
is far too large to apply this method, however it may be helpful to represent some
small part of the state this way. This often amounts to table lookup. We use this
technique in our solution to the order maintenance problem in Section 5.6, to store
comparison information for very small subsets of the elements.

Yet another simple method for generating uniquely represented data structures
is to label the data items stored by the ADT, define a total ordering σ on the labels,
and store them in order according to σ. Thus, to store a set S of at most n integers,
one can create an array of size n, and store S at the |S| smallest indices of the
array, in sorted order. Though this method is typically very space efficient, updates
take linear time – not only in the worst-case but also on average when inserting or
deleting a random element.



Chapter 3

Uniquely Represented Hash Tables

In this chapter we describe our constructions of efficient uniquely represented hash
tables. We rely on the fact that the RAM provides a native implementation of the ar-
ray ADT that is uniquely represented (see Section 4.1). Uniquely represented hash
tables crucially underlie the development of uniquely represented data structures
for the RAM model of computation, because they provide a way to map various
structures, such as binary trees, into the one-dimensional memory provided by
the RAM in such a way that the mapping is one-to-one and supports fast updates.
In this context, supporting fast updates means that if the input structure is modi-
fied slightly, then the RAM memory configuration that it maps to is modified only
slightly, and we can efficiently implement the necessary modification. Interestingly,
the existence of efficient uniquely represented hash tables can be interpreted as
a trace stability result [ABH+04], which we will discuss further in the context of
dynamization in Section 5.12.

3.1 Efficient Uniquely Represented Hashing

Our approach is based on exploiting an interesting property of the stable marriage
algorithm of Gale and Shapley [GS62], stated below in Theorem 2. The stable
marriage problem is as follows: Given a set M of n men and a set W of n women,
and a preference list over the opposite sex for each person, find a stable matching
E ⊂ M ×W of size n. Here, a man’s preference list is a permutation over W , a
woman’s preference list is a permutation over M , and persons appearing earlier in
the permutation are considered strictly preferable to those appearing later in the

27
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permutation. A matching E is stable if for all (m,w), (m′, w′) ∈ E, it is not the case
that m prefers w′ to w and w′ prefers m to m′; such a case is called an instability.

Recall that in the Gale-Shapley stable marriage algorithm, the men propose to
the women in decreasing order of their preferences, and each woman is tentatively
matched with her favorite man among all those who have proposed to her. The
algorithm terminates when all men are tentatively matched with some woman.

Note that the algorithm is underspecified in the sense that there may be many
men who are not tentatively matched, and they may propose in arbitrary order.
Thus, there are many different valid implementations of this algorithm, correspond-
ing to various ways of selecting among tentatively unmatched men. Nevertheless,
the following theorem, implicit in [GS62] and treated explicitly in [KT06], shows
the outcome is not affected by the choice of valid implementation.

Theorem 2 ([GS62]). For each instance of the stable marriage problem, every valid
implementation of the Gale-Shapley algorithm outputs the same stable matching on
that instance.

We provide the proof for completeness.

Proof: We first prove by contradiction that the Gale-Shapley algorithm outputs
some stable matching E ⊂M ×W . Suppose {(m,w), (m′, w′)} ⊂ E is an instability
because m prefers w′ to w and w′ prefers m to m′. Then m must have proposed
to w′ before w and been rejected. Since each woman is tentatively matched with
her favorite man among all those who have proposed to her, this means that w′

must have been tentatively matched with a man m′′ that she preferred to m. Since
(m′, w′) ∈ E, this implies that w′ prefers m′ at least as much as m′′, and thus strictly
prefers m′ to m, contradicting our assumption. So there are no instabilities in E.

We next prove by contradiction that E is a perfect matching. Assume E is
not perfect, so that some man m is unmatched in E. Note a woman can only be
unmatched in E if no man ever proposes to her. However m must have proposed to
every woman, so every woman must be matched. Since there are an equal number
of men and women, this contradicts the assumption that E is not perfect.

Finally, we prove that every valid implementation of the Gale-Shapley algo-
rithm outputs the same stable matching E. For each man m ∈ M , define best(m)
to be m’s favorite woman in {w : ∃ stable matching E ′ s.t. (m,w) ∈ E ′}. In other
words, best(m) is the best match m can get among all stable matchings. We
claim that every valid implementation of the Gale-Shapley algorithm outputs E =
{(m, best(m)) : m ∈ M}, which if true is clearly sufficient to complete the proof.



3.1 Efficient Uniquely Represented Hashing 29

Suppose that this is not the case, so that some man m is rejected by best(m). Let
m be the first man rejected by best(m) in the execution of the algorithm, and
suppose best(m) is tentatively matched with m′ when rejecting m. Thus best(m)
prefers m′ to m. Now fix a stable matching E ′ with (m, best(m)) ∈ E ′ and suppose
(m′, w′) ∈ E ′. Returning to the execution of the Gale-Shapley algorithm, at the
moment m is rejected by best(m), by assumption m′ has not yet been rejected by
best(m′). This implies m′ has not yet been rejected by any woman that m′ prefers
less than or equally well as best(m′), including w′. From this we infer that m′

prefers best(m) to w′, which implies {(m, best(m)), (m′, w′)} is an unstable pair,
contradicting the stability of E ′.

The Framework. Theorem 2 suggests the following approach to constructing a
uniquely represented hash table that supports insertions and searches: interpret
the keys as men and the slots of the hash table as women, and construct a dis-
tribution on stable marriage instances between the universe of keys, U , and the
set of all slots. This distribution is based on the random bits of the hash table.
The correspondence between stable marriage and hashing that we use1 is given in
Table 3.1.

Stable Marriage Hashing
men keys

women slots
male preference lists key probe sequences

female preference lists collision/eviction policies
matchings hash table memory configurations

Table 3.1: The correspondence between stable marriage and hashing.

In particular, the probe sequence for a key k will equal k’s preference list over
the slots. (If the probe sequence has duplicate entries, retain only the first occur-
rence of each slot to obtain the preference list). The preference lists for each slot
will be used to resolve collisions. In this case, Theorem 2 ensures that for each
set of keys of size at most n, the resulting memory representation is the same no

1To the best of my knowledge, the first peer-reviewed paper identifying this correspondence
is [BG07], however an anonymous reviewer pointed out that Donald Knuth used this correspon-
dence in analyzing random stable matching instances during a lecture series at the Université de
Montréal. Scribe notes for these lectures were originally published in French, and are also available
in English [Knu97].
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matter what order the keys are inserted in. So the resulting hash table is uniquely
represented under insertions. To ensure that the hash table performs well, we must
ensure that

1. We can sample efficiently from the distribution on stable marriage instances.

2. Each instance in the distribution can be represented compactly, such that
the following operations take constant time: determining the ith slot in k’s
preference list, determining slot x’s rank in k’s preference list, and comparing
any two keys with respect to x’s preference list, for arbitrary i, k and x.

3. For each set of keys S ⊂ U such that |S| ≤ n, the expected running time
of the Gale-Shapley algorithm on an instance drawn from the distribution
and restricted to the set of men S is O(|S|) on every valid execution of the
algorithm in the set of valid executions that maintain a total order σ on the
keys and select tentatively unmatched keys in order of σ.

We note that the uniquely represented hash table of Naor and Teague [NT01],
which does not support deletions, fits directly into this framework. Intuitively, to
ensure property (3) it makes sense to construct the slot preference lists so that each
slot prefers keys that rank it high on their preference lists. Not surprisingly then,
Naor and Teague favor what they call “youth-rules” for collision resolution, which
do exactly this.

To enable support for deletions, the crux of the matter is efficiently computing,
for a slot x currently holding key k, the slot x′ of the most preferred key k′ 6= k
(according to x’s preference list) that prefers x to its current slot. This requirement
is what keeps us from extending the uniquely represented hash table of Naor and
Teague to support deletions. Though this is a function of the state of the hash table,
we will abuse notation slightly and denote it by next(x).

Pseudocode for insertion and deletion are given in Figure 3.1 on the next page.
In the pseudocode, probe(k, i) is the ith slot in k’s probe sequence, A is the array of
the hash table, and rank(k, x) = i if x is the ith slot in k’s probe sequence.

Implementation. Though there are many hashing schemes, such as quadratic
probing, that can be implemented in our framework to give efficient uniquely repre-
sented hash tables, perhaps the simplest implementation is based on linear probing.
Interestingly, specializing our framework to linear probing results in essentially the
same insertion algorithm as the linear probing specialization of Amble and Knuth’s
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find(key k)
For (i = 0, 1, 2, . . . , p− 1)

If (A[probe(k, i)] is empty OR slot
probe(k, i) prefers k to A[probe(k, i)])
return null;

Else if (A[probe(k, i)] equals k)
return probe(k, i);

insert(key k)
Set x = probe(k, 0), i = 0, and k′ = k;
While (A[x] not empty)

If (A[x] equals k′) then return;
Else if (slot x prefers A[x] to k′)

Increment i; Set x = probe(k′, i);
Else (slot x prefers k′ to A[x])

Swap the values of k′ and A[x];
Set i = rank(k′, x); Increment i;
Set x = probe(k′, i);

Set A[x] = k′; return;

delete(key k)
Let slot x = find(k).
If x is null, return.
While (next(x) is not null)

Set y = next(x); Set A[x] = A[y]; Set x = y;
Set A[x] to be empty; return;

Figure 3.1: Pseudocode for a generic uniquely represented hash table following
our framework.

‘Ordered hash table’ framework [AK74]. Of course, our hash table will also support
deletions.

To build a hash table for n keys we fix p = (1 + ε)n for some ε > 0, and a total
ordering on the keys. As long as we can compare two keys in constant time, this
ordering can be arbitrary, however for simplicity of exposition we will assume the
keys are integers and use the natural ordering. That is, each slot prefers k to k′ if
k > k′. Then sample a 5-universal hash function h : U → [p] that can be evaluated
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in constant time. The functions

probe(k, i) := (h(k) + i) mod (p), and
rank(k, x) := (x− h(k)) mod (p)

can both be computed in constant time.

Search proceeds in a fashion similar to a standard linear probing hash table.
Specifically, we try probe(k, i) for i = 0, 1, 2, etc., until reaching a slot containing k,
an empty slot, or a slot containing a key k′ such that k′ < k. In the last case, if k
had been inserted, it would have displaced the current contents of slot probe(k, i),
so we can report that k is not present.

Deletions are slightly more involved. We supply the pseudocode for next(·) in
Figure 3.2. In the case of linear probing, next(x) is the slot x′ containing the largest
key k′ that probed x but was rejected (or displaced) in favor of another key. Thus
k′ residing in slot x′ satisfies rank(k′, x) < rank(k′, x′). Furthermore, since all slot
preference lists are the same, next(x) is the slot y that minimizes (y − x) mod p
from among all slots with keys satisfying this condition.

next(slot x)
Set x′ = (x+ 1) mod (p);
While (A[x′] not empty)

If (rank(A[x′], x) < rank(A[x′], x′))
return x′;

Set x′ = (x′ + 1) mod (p);
return null;

Figure 3.2: Pseudocode for next(·) in the linear probing implementation.

Canonical Memory Representation. We first prove that any hash table following
our framework is indeed uniquely represented.

Theorem 3. For any hash table following our framework, after fixing the random
bits there is a unique representation of the slots array for each set of p or fewer keys.

We will sketch a proof of Theorem 3. Fix the hash table’s random bits and a set
of keys S such that |S| ≤ p. Searches do not change the memory representation of
the slots array, and thus we can safely ignore them. Defer the treatment of deletions
for the moment. We will use Theorem 2 to show that any sequence of insertions
resulting in the table having contents S results in the same memory representation.
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Suppose key k ∈ S is stored in slot s(k) ∈ [p]. Then {(k, s(k)) : k ∈ S} is the stable
matching output by the Gale-Shapley algorithm on a particular stable marriage
instance. In this instance, M := S and W := [p]. The preference lists for each
k ∈ M are built from the probe sequence for k: if rank(k, w) < rank(k, w′), then
k prefers w to w′. The preference lists for each w ∈ [p] can be arbitrary. It is
now straightforward to verify that any sequence of insertions corresponds to a
valid execution of the stable matching algorithm. Note also that Theorem 2 easily
extends to the case that |M | < |W |, and thus we can apply it to show that there
is a unique representation of the slots array if only insertions and searches are
permitted.

Finally, consider deletions. Proving that deletions preserve the unique represen-
tation property amounts to proving that any two sequences of operations ρ and ρ′

resulting in the same hash table contents result in the same representation. Sup-
pose that this holds for any sequence pairs (ρ, ρ′) such that ρ has no deletions and
ρ′ has at most one. Then an easy induction on the maximum number of deletions
in {ρ, ρ′} yields the desired result. So we consider (ρ, ρ′) such that ρ has no dele-
tions and ρ′ has exactly one. Without loss of generality, we can assume that the
deletion in ρ′ deletes a key that was present at the time, that neither ρ nor ρ′ has
any searches, and that the deletion in ρ′ is the last operation in ρ′. So suppose
ρ′ = (insert(k′1), insert(k′2), . . . , insert(k′r), delete(k′r)). Since insertions maintain the
unique representation and ρ contains only insertions, we know that ρ results in the
same representation as (insert(k′1), insert(k′2), . . . , insert(k′r−1)), so without loss of
generality we let ρ equal this sequence.

We will show that delete(k′r) exactly undoes all the changes insert(k′r) makes to
the slot array. Set k0 := k′r. During an insertion, whenever two keys collide and
the current key in the slot is evicted, we say that the evicted key is displaced by
the other key. In the pseudocode on page 31, k′ displaces A[x] when we reach the
case “x prefers k′ to A[x].” We will define ki as the key displaced by ki−1 during the
insertion of k0 ≡ k′r. Suppose the chain of displaced keys is {ki : i = 1, 2, . . . , d}.
Let s(k) be the slot containing k immediately after the operation insert(k0) in ρ′,
and let s′(k) be the slot containing k immediately before the operation insert(k0)
in ρ′. It is easy to see that s(ki) = s′(ki+1) for all i ∈ {0, 1, . . . , d − 1}, and that
the keys not in {ki : i ∈ [0 : d]} are not affected. Now consider delete(k0). It first
finds x = s(k0) = s′(k1). It then repeatedly sets A[x] to A[next(x)] and sets x to
next(x) while next(x) exists. To ensure this is the desired behavior, we require that
next(s(ki)) = s(ki+1). Fortunately, this is relatively easy to confirm via proof by
contradiction, as is the fact that the delete operation correctly clears the slot that
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used to contain kd, and leaves all other slots unaffected. Thus ρ′ results in the same
representation as ρ.

Since the linear probing hash table stores only the slot array, we can immedi-
ately infer the following.

Corollary 1. The hash table implementation described above is uniquely represented.

Space and Time Complexity. The hash table implementation based on linear
probing requires p = n/α slots to store n keys and requires no auxiliary memory
other than that used to store and compute the hash function. As we will show, the
expected cost for all operations is O(1/(1− α)3).

We bound the expected time per operation for our hash table implementation
by comparing it to a standard linear probing hash table. Recall that this standard
hash table selects a hash function h(·), uses probe sequences probe(k, i) = h(k) +
i mod (p), and resolves all collisions in favor of the key already residing in the
contested slot. In a recent breakthrough result, Pagh et al. [PPR07] showed that
linear probing with 5-universal hash functions yields expected O(1/(1 − α)3) time
operations.

Theorem 4. The linear probing hash table implementation described above performs
searches, insertions, and deletions in expected O(1/(1− α)3) time, where the hash
table has p slots and n = αp keys.

Proof: First consider only searches and insertions. Fix a set of keys S of size at
most n. It is easy to see that if the standard hash table and our hash table use the
same hash function h(·), then after inserting S (using any sequence of operations
that does not contain delete operations to do so) both hash tables will have exactly
the same set of occupied slots, even though they likely have different memory
representations. Note that for the standard hash table the cost to insert k /∈ S is
Θ(dh

S(k)), where dh
S(k) is one plus the smallest i such that slot (h(k) + i) mod (p)

is unoccupied. It is not hard to see that in our hash table, during insertion of k the
while loop is executed at most dh

S(k) times, and each iteration takes constant time.
Thus if the standard table takes time t to insert k after a sequence of operations
ρ, our hash table takes t′ = O(t) time. Using the result of Pagh et al. [PPR07],
E[t′] = O(E[t]) = O(1/(1− α)3).

Searching for k /∈ S takes the same amount of time as inserting k, up to multi-
plicative constants. Searching for k ∈ S similarly takes less time than inserting k,
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assuming we have inserted all keys in S \ k first. So this is expected O(1/(1− α)3)
time as well.

Now consider deletions. Suppose we insert a set of keys S and then delete key
k ∈ S. We can compute rank(·) in constant time. Looking at the pseudocode for
delete and next(·), it is easy to prove that delete(k) takes time O(dh

S(k)). So, as
before, we consider inserting all elements of S \ k before inserting k, and then
inserting k last before deleting it. By our analysis above, the insert(k) operation
takes time O(dh

S(k)) which is O(1/(1− α)3) in expectation, so the deletion takes
O(1/(1− α)3) in expectation as well. Note that for a hash table which is not
uniquely represented this line of reasoning is invalid, because changing the order
of insertions might change the memory representation of the hash table and con-
ceivably reduce the amount of time the delete operation takes. However we may
safely dispense with this concern because our hash table is uniquely represented.

Remark: Our result is modular in the following sense. If linear probing with a
hash function drawn from a hash family H results in f(α, n) expected time for
insertions, then using a hash function drawn from H in our construction results in
O(f(α, n)) searches, insertions, and deletions.

Dynamic Resizing. We can dynamically resize the hash table using the standard
technique of doubling its size and rehashing all keys upon reaching a threshold
number of keys. For good performance against an adversary, we select the thresh-
old randomly, as done in previous work [HHM+05, NT01].

3.2 Uniquely Represented Perfect Hashing

Building on the work of Fredman et al. [FKS84], Dietzfelbinger et al. [DKM+94]
gave a hash table with O(1) worst case time for lookups and O(1) amortized ex-
pected time for insertions and deletions, while using space linear in the number of
keys. Naor and Teague [NT01] then built on the work of Dietzfelbinger et al., and
developed a weakly history independent hash table with the same performance
guarantees. More recently, Pagh and Rodler [PR04] developed a different tech-
nique to obtain the same guarantees, called cuckoo hashing. In this section we will
present a third way to achieve identical time and data-space bounds while main-
taining unique representation (and thus strong history independence), assuming
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our machine has access to a large sequence of random bits. Unfortunately, for rea-
sons which we will discuss later, we cannot sample random bits “on demand.” On
the other hand, our approach is novel and relatively simple.

3.2.1 Our Construction Based on Linear Probing

For ease of exposition, we begin with an impractical design that requires exponen-
tially many random bits, and afterwords describe how to modify it for practical use.
We will assume that the number of keys to be stored, n, is known in advance2.

Theorem 5. There exists a uniquely represented hash table that executes insertions
and deletions in expected O(1) time, executes search in worst case O(1) time, and uses
O(n) data space to store n keys.

We will describe a simplified version of the hash table that works assuming
various low probability events do not occur, and then address these problematic
events.

The Simplified Version. We begin with an array with p = c0n slots to store the
keys, where c0 > 1 is a constant, and a fast Ω(log n)-universal hash function h
mapping keys to slots. We will insert and delete keys from the hash table as we did
in Section 3.1 using linear probing, but will need to maintain some additional state.
Let δ(k) denote the displacement of key k in the hash table, which, if the current
location of k is x, is defined as (x − h(k)) mod (p). Fix a parameter β = Θ(log n),
and maintain a fast 2-universal hash function f from keys to a set of labels L :=
{1, 2, . . . , |L|}, where β3 ≤ |L| = poly(β). Each key k receives a label f(k) when
inserted into the hash table. Each slot x will have an index Ix associated with it.
The index for x will store tuples (δ(k), f(k)) for each key k such that h(k) = x, in
sorted order.

Let us assume for the moment that the displacement of any key is O(log n).
(This occurs with high probability if the hash function is truly random [Jan05].)
In this case, each displacement requires only O(log log n) bits to store. Note that
the labels require only O(log log n) bits to store as well. It is well known that
using an c log n-universal hash function (with c sufficiently large) to hash n keys
into p ≥ (1 + ε)n slots (for ε > 0) ensures that at most O(log n/ log log n) keys are

2We can dispense with this assumption using a uniquely represented variant of the standard
resizing technique, as in Section 3.1.
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hashed to any one slot with high probability. Assuming this is the case, for each slot
x we can store its index Ix using a word-packed vector of only O(log n) bits. (For
simplicity, we will require all index tuples to use the same number of bits.) Word-
level parallelism then allows us to perform various queries and updates to the index
in constant time. For example, we can insert and delete tuples in constant time,
even while maintaining a canonical form (that is, the records should be maintained
in sorted order, and if r records are stored in Ix, they must be stored in the first
r spaces in the index). Thus, in the course of inserting and deleting keys, we can
amortize the cost of updating the index tuples for each key which moved against
the cost of moving it. We can also answer in constant time queries of the form “for
what values of d is there a tuple of the form (d, l) in Ix” for any l ∈ L. Assuming the
labels for each key hashed to slot x are distinct, we can use this fact to do searches
in constant time as follows. Find all d such that (d, f(k)) is in Ih(k). Since the labels
in Ix are distinct, the output contains at most one value for displacement, say d, at
which point we may immediately test the slot (x + d) mod (p) to see if it contains
key k.

The Full Version. In the simplified version we made three assumptions that are
false in general, namely we fixed constants c1 and c2 and assumed

1. No slot has more than c1 log n
log log n

keys hashed to it.

2. No key has a displacement more than c2 log n.

3. For all slots x, the keys hashed to x get distinct labels.

To remove assumption #1, it is tempting to simply sample a new the hash
function using fresh randomness whenever it is violated. However, we cannot do
this in a naive way and maintain unique representation. Instead, we maintain
a random permutation πhash on an Ω(log n)-universal family H of hash functions
mapping the keys to the p slots. The idea is that we will use the first hash function,
πhash

0 , in πhash until and unless assumption #1 is violated. In that case we will iterate
through the hash functions {πhash

i : i = 0, 1, . . .}, rehashing everything using the
current hash function πhash

i until we find the first one which satisfies the assumption
(and the “no block overflow assumption,” explained in the treatment of assumption
#2 below). We will denote the current hash function by h. To maintain unique
representation, we will need to take extra precautions during a deletion if the
current hash function is not πhash

0 . Specifically, we will need to completely clear the
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hash table, reset the current hash function to πhash
0 , and reinsert every key (other

than the one to be deleted) from scratch. (Note that it would not be uniquely
represented to simply iterate backwards through πhash and stop at πhash

i+1 if πhash
i is

the first hash function we encounter that violates assumption #1.)

We remove assumption #2 by essentially treating the hash table as Θ(n/ log n)
hash tables of size Θ(log n). We partition the slots into blocks, each block will be a
contiguous set of β = Θ(log n) slots (assume p is a multiple of β). Keys hashed
into a block do not leave it, unless h is changed. Rather, the probe sequence
wraps around the block boundaries. Formally, if the block B contains slots in the
range [a, b], then the probe sequence for a key k with h(k) ∈ [a, b] is given by
probe(k, i) := a + ((h(k)− a+ i) mod (β)). This ensures the displacement of any
key is at most β, assuming the block has at most β keys hash into it. Call this the
“‘no block overflow assumption.” If πhash

0 hashes more than β keys to some block,
we will ensure each block has at most β keys in it by iterating through the hash
functions {πhash

i : i = 1, . . .}, rehashing everything using the current hash function
πhash

i until we find the first one which satisfies the no block overflow assumption
(as well as assumption #1).

To remove assumption #3, we store a random permutation πlabel on a 2-universal
family H′ of hash functions mapping the keys to a set of labels L, where β3 ≤ |L| ≤
poly(β). Each block B will store a pointer to a hash function in πlabel, which we
will call its label function, and denote by fB. Each block’s label function initializes
to πlabel

0 , and we maintain the invariant that fB is the first hash function in πlabel

that gives distinct labels to every key which has been hashed to x, for each x ∈ B.
Again, we will need to be careful with deletions. Upon deleting a key k in block
B for which fB 6= πlabel

0 , we iterate through {πlabel
i : i = 0, 1, . . .}, relabeling all the

keys hashed into block B (excluding k) using πlabel
i until we find a label function

that satisfies assumption #3 for all slots in B with this set of keys.

Analysis. It is relatively straightforward to prove that the above data structure is
uniquely represented given the results of Section 3.1; we simply need to show that
the hash table state is a function of the set of keys and the random bits of the hash
table. We omit the details.

The space usage of the data structure is O(n) if we exclude the random bits. The
slots and their indices use O(n) space. Using, for example, the hash functions of
Östlin and Pagh [OP03] or Dietzfelbinger and Woelfel [DW03], the single pointer
into πhash requires O(n) words of space, and each pointer into πlabel, of which there
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are O(n/ log n), requires O(1) words of space each.

We now analyze the running time of each operation. First, consider a search for
key k. By construction, assumptions #1 through #3 hold. Thus in the worst case
we need only evaluate x := h(k), compute k’s label l, find any record of the form
(d, l) that may exist in Ix, compute y := probe(k, d), and determine if k is in slot y.
All of these are constant time operations.

Next, consider insertions and deletions of a key k under “best case circum-
stances”, which we define to mean that h = πhash

0 , fB = πlabel
0 where block B

contains h(k), and at most β/2 keys have been hashed into B. In this case, we
can amortize each index update (a constant time operation) against a specific op-
eration that moves a key. Thus we can ignore their cost. Note that inserting or
deleting k costs essentially the same as the corresponding operation into a hash
table with β slots and at most β/2 keys, using an Ω(β)-wise independent hash func-
tion – that is, expected constant time. Now relax the condition that a block B has
at most β/2 keys, and allow it to have up to β keys. The cost to do any operation is
bounded by β in this case. Let |B| denote the number of keys in B. We will argue
that Pr[|B| ≥ β/2] ≤ 1/nc if the parameters are set appropriately, and thus the cost
contribution from this case is negligible. We set p = 4e · n, β = 2c log n, γ := β/2
and use γ-universal hash functions in πhash. Then we get the following estimate:
Pr[|B| ≥ γ] ≤

(
n
γ

) (
β
p

)γ

≤ n−c.

Next, we consider the contribution of various bad events to the expected run-
ning time. Consider insertions. The probability that we must rehash everything
using the next hash function in πhash can be made as small as O(n−c) for any con-
stant c > 0 by adjusting various parameters, since this only occurs when more than
c1 log n/ log log n keys hash to some slot x, which occurs with probability O(n−c),
or when some block B gets more than β keys, which we have argued above occurs
with probability O(n−c). Thus we only have to rehash everything with probability
O(n−c). Since this takes O(n) expected time, its contribution to the expected run-
ning time is negligible. For a set of keys S, call a hash function in πhash bad for S if
it hashes more than β/2 keys from S into some block or more than c1 log n/ log log n
keys into some slot. Fix S with |S| ≤ n, let ε(S, i) denote the event that πhash

i is bad
for S, and note that for any i,

Pr

[
ε(S, i)

∣∣∣ ⋂
j<i

ε(S, j)

]
≤ Pr[ε(S, i)]

because by the principle of deferred decisions we can imagine selecting πhash
i after
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{πhash
j : j < i}, and noting that if the concentration of “bad for S” sets is higher

than average among {πhash
j : j < i}, then it must be lower than average among the

remaining hash functions, from which we draw πhash
i . Using this fact, we conclude

that the total expected time to do all the rehashing is O
(∑

t≥1 tn/n
ct
)

= o(1).

The expected cost of rehashing after a deletion can be bounded similarly. That
is, the probability that h = πhash

t is O(n−ct), and the work involved in this case
to rehash everything up to t times is O(tn). The total expected time to do the
rehashing is thus O

(∑
t≥1 tn/n

ct
)

= o(1).

Finally, we need to bound the cost due to relabeling within a block. Fix a block
B, and let S be the set of keys being stored in B. If a 2-universal hash function fB

is used to generate the labels, then we can bound the probability that all keys in B
get distinct labels as follows. Via the union bound the probability that two keys get
the same label (an event we call a label collision) is bounded by

Pr[label collision] ≤
∑

k,k′∈S

Pr
[
fB(k) = fB(k′)

]
Since fB is 2-universal, for any distinct k, k′ ∈ S,

Pr
[
fB(k) = fB(k′)

]
=

∑|L|
`=1 Pr

[
fB(k) = ` and fB(k′) = `

]
=

∑|L|
`=1 1/|L|2

= 1/|L|

Thus

Pr[label collision] ≤
(
|S|
2

)
1

|L|
≤ β(β − 1)

2|L|
.

Since we can relabel all |S| ≤ β keys in block B in O(β) time, and setting
|L| ≥ β3 ensures that Pr[label collision] = O(1/β), the expected work to relabel
everything once is O(1). By a similar argument as above, we can bound the proba-
bility that we relabel everything in a block t times by O(β−t), so the total expected
work from relabeling is O

(∑
t≥1 tβ/β

t
)

= O(1).

3.2.2 Practical Variants

Unfortunately, we cannot resort to sampling random bits “on demand.” To see why,
suppose we repeatedly insert keys S, then delete them, and S requires the hash
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table to sample new random bits. Whether or not we retain these new random
bits after deleting S, we will violate unique representation. Thus we are forced
to do all the sampling we will ever need to do during data structure initialization.
This will require access to a possibly exponential sized sequence of random bits.
We ensure the number of random bits we need is finite by sampling new hash
functions without replacement – in other words, we sample a random permutation
on a suitable hash family.

This is still hopelessly impractical. The saving grace is that our data structures
can be made to inspect only O(nδ) random words with high probability, for any
constant δ > 0, if we use the hash functions of Siegel [Sie95a] in πhash and those
of Östlin and Pagh [OP03] or Dietzfelbinger and Woelfel [DW03] for πlabel. This
suggests the following approach: set thresholds τhash, τ label ∈ N, and only sample
the first τhash elements of πhash and the first τ label elements of πlabel. Reasonable
values would be τhash = 1 and τ label = Θ(log n). Then, if the data structure should
ever need to access a hash function that has not been sampled, enter one of two
failure modes.

The first failure mode is to sample fresh random bits on demand from now on.
The resulting data structure is uniquely represented with high probability, weakly
history independent with certainty, and has the same running time guarantees as
before. Furthermore, if we additionally store the fresh random bits and treat them
as the needed elements of πhash and/or πlabel, then other than the random bits, the
data structure is uniquely represented. Thus the only historical information that
might be inferred in this case is that something was inserted and later deleted that
forced the data structure to sample additional random bits.

The second failure mode is to store everything as in the uniquely represented
hash table of Section 3.1. The whole data structure then remains uniquely repre-
sented with certainty, provided on each delete we reinsert everything from scratch
to determine if we should still be operating in this failure mode. The expected time
guarantees for insertions and deletions still hold, however searches now take O(1)
time with high probability rather than with certainty as before.

Another approach to making our dynamic perfect hash table more practical is
to use a secondary data structure, or stash, to store keys that are “problematic”
for the hash functions we have chosen. This approach is taken by Naor, Segev,
and Wieder [NSW08] in their construction, as we discuss in the next section. For
example, if a slot x has t > c1

log n
log log n

keys hashed to it, thus violating assumption
#1, we can store the largest t− c1

log n
log log n

keys hashed to x in the stash. (Note that
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we assume the keys have a natural total order on them.) Similarly, if a block B
overflows, so that t > β keys are hashed into it, we can store the largest t− β keys
hashed to B in the stash. We allow the keys to be relabeled in the event of a label
collision as before. With high probability the stash will be constant sized, and even
a small stash would go a long way towards making rehashing extremely unlikely.
As for implementations of the stash, any of those suggested by Naor, Segev, and
Wieder [NSW08] would be suitable, including our dynamic perfect hash table and
various static perfect hash tables.

Remark. Note that this approach is fairly general. It provides a method to convert
impractical uniquely represented data structures with worst case guarantees (and
require a random permutation over a suitable hash family) into more practical data
structures that either

(i) Retain the running times but make the data structure uniquely represented
with high probability and weakly history independent with certainty, or

(ii) Retain unique representation but replace worst-case time guarantees with
“with high probability” time guarantees.

3.2.3 Comparison to Uniquely Represented Cuckoo Hashing

Naor, Segev, and Wieder [NSW08] developed a uniquely represented dynamic per-
fect hash table which support deletions based on the cuckoo hashing scheme of Pagh
and Rodler [PR04]. Their hash table supports insertions and deletions in expected
constant time and lookups in worst case constant time assuming truly random hash
functions that can be evaluated in constant time. (The hash functions of Östlin and
Pagh [OP03] or Dietzfelbinger and Woelfel [DW03] are suitable substitutes). Let
us review the (conventional) cuckoo hashing scheme.

In the cuckoo hashing scheme, there are d ≥ 2 hash functions h1, h2, . . . , hd

from the universe of keys U to a set of slots [p]. Let H(k) := {hi(k) : 1 ≤ i ≤ d}.
Each key k stored in the hash table is guaranteed to be stored in a slot in H(k).
This ensures only d probes are needed to lookup any key, and thus yields a worst
case O(1) time guarantee for lookups. Deletions simply lookup the key and remove
it if it is present. The most complex operation is insertion. If when inserting k0

there is some empty slot in H(k0), simply place k0 there. Otherwise, the hash table
must select some slot x1 ∈ H(k0) storing a key k1, evict k1 and place k0 there. We
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then place k1 as if it had just been inserted, being careful to evict some key other
than k0 if assigning k1 to some slot in H(k1) requires an eviction. This process is
repeated until some evicted key kt has an unoccupied slot in H(kt) for it. There
is some small probability that this process will not terminate, for example if some
subset S of keys in the hash table satisfies

|
⋃
k∈S

H(k)| < |S|.

However, if d ≥ 2 this probability is O(1/n) and in general this problem can be
dealt with by storing some elements in a secondary data structure (often called a
stash).

Naor, Segev, and Wieder construct a uniquely represented version of a cuckoo
hash table (with d = 2) intended to store up to n keys using two tables T1, T2 of
size p = (1 + ε)n. For each i ∈ {1, 2}, the hash function hi maps keys to slots in Ti.
Given a set of keys S, they define the cuckoo graph G = (V,E) where V consists of
the slots of T1 and T2 and E = {{h1(k), h2(k)} : k ∈ S}. Let e(k) := {h1(k), h2(k)}.
Assume there is a total order on the universe of keys. For a connected component
C of G, define keys(C) to be the set of keys such that C contains the edges {e(k) :
k ∈ keys(C)}. Similarly define keys(E ′) for a set of edges E ′. Naor, Segev, and
Wieder ensure unique representation by enforcing the following constraints.

1. For a connected component C of G that is acyclic, store the minimum key k
in keys(C) in both h1(k) and h2(k), and store the remaining keys in keys(C)
in the unique way that satisfies the constraint that each key k′ is stored in a
slot in H(k′).

2. For a connected component G that has exactly one cycle C, store the mini-
mum key k in keys(C) in h1(k), and store the remaining keys in the compo-
nent in the unique way that satisfies the constraint that each key k′ is stored
in a slot in H(k′).

3. For a connected component C of G that has more than one cycle, repeat-
edly store the maximum key in some cycle in the stash until the remaining
elements in C have at most one cycle. Then store the remaining elements
as described above, depending on whether the remaining elements induce a
component with one or zero cycles.

4. The stash is a uniquely represented dictionary supporting lookups in worst
case O(1) time, and updates in polynomial time.
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This cuckoo hashing construction avoids the rehashing used in our dynamic per-
fect hash table. However, both uniquely represented dynamic perfect hash tables
perform updates in at most O(log n) time with high probability, so rehashing is very
infrequent. As mentioned in Section 3.2.2, the probability of rehashing can be sig-
nificantly reduced by augmenting our table with a stash. Our hash tables are also
significantly simpler, and the construction of Section 3.1 requires only 5-wise inde-
pendent hash functions (which can be sampled using only O(log n) random bits) to
guarantee expected constant time updates and lookups. Ultimately, both uniquely
represented hash tables based on linear probing and those based on cuckoo hash-
ing will likely prove useful in applications, just as both linear probing and cuckoo
hashing are used today.

3.3 Uniquely Represented Memory Allocation

The most basic structure that is required throughout this dissertation is a hash table
with insert, delete and lookup operations. The most common use of hashing in this
dissertation is for memory allocation. Traditional memory allocation depends on
the history since locations are allocated based on the ordering in which they are
requested. We maintain data structures as a set of blocks. Each block has its own
unique integer label which is used to hash the block into a unique memory cell. It
is not too hard to construct such block labels if the data structures and the basic
elements stored therein have them. For example, we can label points in Rd using
their coordinates and if a point p appears in multiple structures, we can label each
copy using a combination of p’s label, and the label of the data structure containing
that copy. For more information on labeling schemes, see Section 5.2.

This representation of memory contains no traditional pointers but instead uses
labels as “abstract pointers.” For example for a tree node with label lp, and two chil-
dren with labels l1 and l2, we store a cell containing (l1, l2) at label lp. This also
allows us to focus on the construction of data structures whose pointer structure is
uniquely represented; such structures together with this memory allocation scheme
yield uniquely represented data structures in a RAM. Note that nearly all of the tree
structures we use in later chapters have pointer structures that are uniquely rep-
resented. Given the memory allocation scheme above, the proofs that our data
structures are uniquely represented are thus quite straightforward and we will of-
ten omit them.
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3.4 Experimental Evaluation

In this section we present the results of some modest experiments on a proof-of-
principle implementation of the hash table described in Section 3.1, which we de-
note by URHashMap. We compare the URHashMap against the standard Java HashMap

data structure. In particular, we used the JavaTM 2 runtime environment, stan-
dard edition, version 1.5.0. The problem of garbage collection occurring at uncon-
trolled times was mitigated by ensuring that only one hash map resides in memory
at one time, and specifying the capacity of that hash map on initialization. The
System.gc() command was also used; this command encourages (but does not
actually force) the system to garbage collect when it is issued. Timing was per-
formed using System.currentTimeMillis(), which has a temporal resolution of 1
millisecond on the Linux workstation on which the tests were run.

The URHashMap implementation supported a generic map from keys to values,
where keys must implement a hashable interface – that is, they must support a
function that provides an integer label for hashing. It used essentially the same
hash function that the Java HashMap uses which is quite simple and works well in
practice, rather than more complex high performance hash functions (e.g., those
in [TZ04]). In general the URHashMap was implemented with simplicity rather than
high performance in mind, and further optimizations are possible.

Here is code for the hash function that the URHashMap used3.

public int hash(int x){

// this hash function requires that the capacity is a power of two.

x += ~(x << 9);

x ^= (x >>> 14);

x += (x << 4);

x ^= (x >>> 10);

return x &= (capacity-1);

}

Both the URHashMap and the Java HashMap were tested while instantiated with
type Integer → Integer, where Integer is the Java wrapper class for integers.

3The source code from which this function is derived is available from Sun Microsystems via
a Java Research License. Permission to publish “relevant excerpts that do not in the aggregate
constitute a significant portion of the Technology” in scholarly publications is granted by Section
III.A.3 of the Java Research License version 1.5.
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For both the URHashMap and the Java HashMap, a map of capacity C := 220 ≈
106 was created. The total time to insert xC keys was measured, for all x ∈
{0.01, 0.02, 0.03, . . . , 0.99}. Similarly, the total time to lookup all keys in a map
storing xC keys was measured for all x ∈ {0.01, 0.02, . . . , 0.99}, as was the time to
delete all keys stored in the map. The results, averaged over 20 trials, are displayed
in Figures 3.3 through 3.5 on page 48. Figure 3.6 depicts the (time) performance
ratio between the URHashMap and the Java HashMap for insertions, lookups, and
deletions. The figures reveal that at loads at or below 50%, the the URHashMap per-
forms insertions faster than the Java HashMap – about 50% faster at a load of 40% –
and performs lookups and deletions about 50% slower than the Java HashMap. At
higher loads the relative performance of the URHashMap degrades, so that with an
80% load it takes between 1.5 and 2 times as long for all operations. However, it is
worth noting that the typical load for a hash table based on open addressing is far
less than 80%, and the performance of the URHashMap is in fact better than these
figures would suggest because the Java HashMap is implemented using separate
chaining and uses more space than the URHashMap as the load factor approaches
one.

Recall that in separate chaining each hash table slot contains a linked list, and
key collisions are resolved by storing all keys hashing to a particular slot in its
corresponding list. Thus a map with m slots and n entries, each of which is a pair
of integers, will require m+3n words of space if implemented via separate chaining
– one pointer per slot, and two integers and one pointer per entry. In contrast, the
URHashMap is based on open addressing and thus requires 2m words of space – two
per slot. Thus if a separate chaining implementation I stores n entries of type
Integer → Integer with load α and an open addressing implementation stores n
entries using the same amount of space as I but with load α′, then n

α
+ 3n = 2n

α′
or

equivalently

α′ =
2α

1 + 3α
.

Assume that the the expected time to perform an operation in the URHashMap is a
function of the load alone, so that, for example, inserting a key into a hash table
with 2n slots and n keys takes the same amount of time as inserting a key into
a hash table with 4n slots and 2n keys. This is true in the limit as n → ∞ and
is reasonable for hash maps with more than a few hundred elements. Using this
assumption, we can define the space adjusted performance of the URHashMap against
separate chaining hash maps. The space adjusted performance of the URHashMap is
displayed in Figures 3.3 through 3.5 on page 48 as a blue broken line. Given a load
x for the separate chaining implementation I with n keys, compute the time per



3.4 Experimental Evaluation 47

operation for the URHashMap at load α′(x) := 2x
1+3x

and multiply it by n to obtain an
upper bound on the time to insert n keys into a URHashMap using the same amount
of space as I. Since the time per operation for the URHashMap is a non-decreasing
function of the load, we use the time per operation at load α′(1) = 1

2
as an upper

bound on the time per operation at lower loads.

The space adjusted performance ratios are displayed in Table 3.2. For example,
at the Java HashMap default load of 0.75, the URHashMap is roughly 29% faster on
insertions, 41% slower on lookups, and 46% slower on deletions.

Performance Ratios at Various Loads
50% 75% 100%

insert 0.722 0.773 1.03
lookup 1.48 1.41 1.27
delete 1.61 1.46 1.51

Table 3.2: The space adjusted performance ratios of the URHashMap against that of a
separate chaining implementation at loads of 50%, 75%, and 100%. The correspond-
ing loads for the URHashMap are 40%, approximately 46%, and 50%, respectively.
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Figure 3.3: The total time to insert x · 220

keys into a map of capacity 220, displayed
as a function of x.

Figure 3.4: The total time to lookup all
keys in a map of capacity 220 with x · 220

keys stored in it, as a function of x.

Figure 3.5: The total time to delete all
keys from a map of capacity 220 with x·220

keys stored in it, as a function of x.

Figure 3.6: The raw performance ra-
tios of the URHashMap and the Java
HashMap for insertions, lookups, and dele-
tions, based on the data displayed in
Figures 3.3 through 3.5 and suitably
smoothed.



Chapter 4

Basic Data Structures

In this chapter we discuss efficient uniquely represented implementations of vari-
ous elementary abstract data types. To simplify the exposition, we consider only
statically allocated data structures here, and defer the treatment of dynamically
allocated data structures to Chapter 8. That is, we assume that a contiguous block
of memory is allocated to the data structure in question on initialization, and the
memory locations allocated to the data structure do not change over time. For
concreteness, this can be achieved by having just one data structure on a RAM and
allocating the entire RAM memory to it.

The data structures presented here have many variants, so we will define the
relevant abstract data types carefully. For further information about these abstract
data types and their various implementations, we refer the reader to [AHU83,
CLRS01].

4.1 Arrays

The array abstract data type provides a finite set S of slots, where each slot is la-
beled with a distinct integer in {0, 1, 2, . . . , |S|−1} called its index. Once initialized,
the array supports the following operations.

• length(): return the length of the array, |S|.
• read(x): return the contents of array slot with index x.
• write(x, v): set the contents of array slot with index x to v.

49
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The read and write operations are valid for x ∈ {0, 1, 2, . . . , |S| − 1}. Of course,
the RAM model of computation natively supports arrays, with all operations tak-
ing worst-case constant time. The RAM’s memory is in fact a large array whose
slots can each store a word (i.e., bit-strings of fixed length). Furthermore, it is easy
to see that the native implementation of arrays provided by the RAM is uniquely
represented, if we neglect the problem of memory allocation. Fortunately, the ar-
ray corresponding to the RAM’s entire memory need not be dynamically allocated,
and we can use this giant array as the foundation for a uniquely represented mem-
ory allocator built from a uniquely represented hash table of Chapter 3. In this
way we can bootstrap our way to dynamically allocated uniquely represented data
structures as described in Chapter 8.

4.2 Stacks

The stack abstract data type stores a list of objects and supports the following
operations.

• push(x): append x to the end of the list.
• pop(): remove the last object in the list and return it.
• length(): return the length of the list.

A bounded stack is a stack with an upper limit on the length of its list. If the objects
to be stored in the stack have a fixed size, these operations can be implemented in
worst-case constant time. Furthermore, in this case there is a particularly simple
implementation of a bounded stack that is uniquely represented. This implementa-
tion stores a bounded stack of length at most n in an array of length n, and simply
stores the ith element of the list in the slot with index i. It also stores the length of
the stack in an integer field. To ensure this implementation is uniquely represented,
we need only make sure to clear the array slot storing the last list element during
a pop(). We thus obtain the following result.

Proposition 1. There exists a uniquely represented implementation of a bounded
stack whose memory is statically allocated and stores elements of a fixed size, such
that the above operations run in O(1) worst-case time.
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4.3 Linked Lists

The linked list abstract data type stores an ordered list with the operations listed in
Table 4.1. The running times are from a conventional doubly-linked list implemen-
tation.

Name Description Running Time
first() Return the first element of the list O(1) time
last() Return the last element of the list O(1) time
next(x) Return the list element following list element x O(1) time
previous(x) Return the list element preceding list element x O(1) time
insert(x, y) Insert y immediately following list element x O(1) time
delete(x) Delete list element x O(1) time

Table 4.1: The linked list operations, with the running times for a conventional
implementation.

We postpone the problem of dynamic memory allocation by restricting our at-
tention to lists of bounded size, and whose list elements can be stored in a constant
number of words. The latter requirement is not very restrictive, in the sense that
typical link lists of large objects will store the pointers to those objects rather than
the objects themselves. We show how to implement dynamically allocated link
lists of dynamically allocated objects without adversely affecting the running time
guarantees in Chapter 8.

Our linked list implementation is initialized with a capacity N , which denotes
the maximum number of list elements allowed at any one time. We will also require
that each list element be distinct and hashable in the following sense.

Definition 7 (Hashable). A set of elements E is hashable if there is a family of hash
functions H from E to N which is sufficiently independent, whose hash functions
can be evaluated in constant time, and which can be efficiently sampled from. (The
sufficient level of independence depends on the hash tables used and the corresponding
running time guarantees that they result in. Typically, 5-wise independence will do.)

Note that since we have assumed the list elements can be stored in O(1) words,
it is possible to treat them as integers and thus they are hashable. We will prove
the following.
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Proposition 2. There exists a uniquely represented implementation of a bounded
linked list whose memory is statically allocated and stores elements of a fixed size,
such that first() and last() take O(1) worst-case time, and all other operations in
Table 4.1 take O(1) expected time. Furthermore, this implementation requires only
O(logN) random bits, and requires only O(N) space to store a linked list of capacity
N .

Our implementation consists of two list element fields, first and last, and an
array A of (1 + ε)N slots for some ε > 0, where each slot is large enough to hold
a list element and two integers. These may be allocated in order on the available
RAM memory, as shown below.

first last array A

We now describe how a given list appears in memory. Each element e is stored
along with the previous and next elements in the list, in fields we denote by e.prev
and e.next. (We fix some label associated with the null list element.) The location
of the triple (e, e.prev, e.next) is determined by hashing it into a hash table H built
on top of array A. Of course, H must be a uniquely represented hash table, such
as the one described in Section 3.1. Finally, first stores the first element in the list,
and last stores the last element in the list.

Given this layout, it is fairly simple to describe the operations. The first()
and last() operations merely output the contents of the corresponding fields. The
next(x) and previous(x) operations perform a hash table lookup on x followed by
a hash table lookup on x.next or x.prev, respectively. The insert(x, y) operation in-
volves a looking up x in the hash table, finding z := next(x), inserting (y, x, z) into
the hash table (recall the triples have the form (e, e.prev, e.next)) and setting x.next
to y and z.prev to y. The delete(x) operation is similar. Look up w := previous(x)
and y := next(x) in the hash table, delete (x,w, y) from the hash table, set w.next to
y and y.prev to w. The running times of this uniquely represented implementation
are O(1) worst-case time for first() and last(), and O(1) expected time for all of the
other operations.

Reducing Space Usage with Element Labels

In the above implementation, we store each list element three times (except the
first and last element, which are stored twice). Though this may seem wasteful,
if the list elements take up no more space than pointers (e.g., if they are inte-
gers) then this scheme uses essentially the same amount of space as conventional
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doubly-linked list implementations. If the list elements are significantly larger than
pointers, we can reduce the space usage at the cost of allowing the linked list to
fail with some tiny probability (e.g., 1/nc for any user specified constant c, where
there are n elements in the list) as follows. We generate labels for the list elements
by hashing them into the set {0, 1, . . . , L− 1} for some L to be determined. As long
as all the elements in the list have distinct labels, we may hash on the labels rather
than the list elements themselves, and store the label of x in place of x in the prev
field of its successor in the list and in the next field of its predecessor in the list. The
parameter L determines a tradeoff between the probability of failure (i.e., if two
list elements get the same label) and the space requirements for the labels. Clearly,
the space to store an integer in {0, 1, . . . , L− 1} is dlog2 Le bits or dlog2 L/we words
where each machine word is w bits. Let X be the set of list elements being stored,
so that n = |X|. If a pairwise independent hash function h is used to generate the
labels, then via the union bound the probability that two elements get the same
label can be bounded by

Pr[collision] ≤
∑

x,x′∈X

Pr[h(x) = h(x′)]

By the pairwise independence of h, for any distinct x, x′ ∈ X,

Pr[h(x) = h(x′)] =
∑L−1

k=0 Pr[h(x) = k and h(x′) = k]

=
∑L−1

k=0 1/L2

= 1/L

Thus

Pr[collision] ≤
(
|X|
2

)
1

L
≤ n(n− 1)

2L
.

Interestingly, the probability of a collision does not decrease much if an n-wise
independent or truly random hash function is used to generate the labels. In this
case, the probability that two elements get the same label is

1−
n−1∏
k=0

(
1− k

L

)
.

We can bound this quantity as follows.
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1−
∏n−1

k=0

(
1− k

L

)
≤ 1−

∏n−1
k=0 exp

(
− k

L
− k2

L2

)
[assuming L ≥ 2n]

= 1− exp
(
−
∑n−1

k=0
k
L
−
∑n−1

k=0
k2

L2

)
= 1− exp

(
−n(n−1)

2L
− (2n−1)(n−1)n

6L2

)
≤ n(n−1)

2L
+ (2n−1)(n−1)n

6L2

Above we have used the fact that 1− x ≥ e−x−x2 for all x ∈ [0, 1/2] on the first line,
the facts that

∑k
x=0 x = k(k+1)

2
and

∑k
x=0 x

2 = (2k+1)(k+1)k
6

on the third line, and the
fact that e−x ≥ 1− x for all x ∈ R on the fourth line.

The failure probability is thus O(n2

L
) in both cases. In fact it is straightforward

to prove that the probability is Θ(n2

L
) if L ≥ 2n and a truly random hash function

is used. Thus using a truly random hash function only reduces the collision prob-
ability by at most a constant factor. However, in either case the failure probability
decreases exponentially in the number of bits used to store a label.

4.4 Queues

The queue abstract data type stores a list of objects and supports the following
operations.

• enqueue(x): append x to the end of the list.
• dequeue(): remove the first object in the list and return it.

A queue can easily be implemented using a doubly-linked list, so conventional
implementations exists supporting the above operations in worst-case O(1) time.
Using the data structure of Section 4.3, we can support these operations in ex-
pected O(1) time if the assumptions for the linked list hold. That is, we require the
queue be bounded, meaning that it is initialized with a capacity N specifying the
maximum length the queue’s underlying list is allowed to reach. Furthermore, we
require that the objects in the queue can be stored in a constant number of words.
We show how to remove these assumptions in Chapter 8.
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4.5 Binary Search Trees via Treaps

There is no single definitive binary search tree abstract data type. Instead, there
is a proliferation of binary search tree data structures providing various running
time guarantees for various operations. Some better-known examples include AVL
trees [AVL62], randomized treaps (also known as randomized search trees) [SA96],
red-black trees [Bay72, GS78], and splay trees [ST85]. In the most abstract setting,
we may consider binary search trees as storing a set of elements from an ordered
universe (called keys), where each element may have some auxiliary data stored
with it. Formally, the abstract data type states may be modeled as partial func-
tions from an ordered universe to auxiliary data items. We call the element along
with its auxiliary data a node of the tree. Of course, we would like to support the
broadest set of operations possible. Table 4.2 lists the operations that our uniquely
represented binary search tree will support.

Name Description
lookup(x) Given key x, find the tree node containing x.
insert(x, d) If a node with key x already exists, set its auxiliary data to d.

Otherwise insert key x with auxiliary data d.
delete(x) Delete the tree node containing x, if it exists.
join(T1, T2) Given two binary search trees T1 and T2 such that x1 < x2 for

all keys x1 ∈ T1 and x2 ∈ T2, join T1 and T2 into a single tree
{(x, d) : (x, d) ∈ T1 or (x, d) ∈ T2}.

split(T, x) Given binary search tree T and key x, split T into two trees
T1 := {(y, d) : (y, d) ∈ T, y ≤ x} and T2 := {(y, d) : (y, d) ∈ T, y > x}.

Table 4.2: The binary search tree operations that our uniquely represented imple-
mentation will support.

Let n denote the number of keys in the tree. A modified red-black tree can sup-
port lookup, insert, delete, and split in O(log n) worst-case time, and join operations
in amortized O(log n) time [Tar83]. We present a uniquely represented implemen-
tation that supports all of the above operations in expected O(log n) time, using
randomized treaps [SA96]. As in previous sections, we defer the treatment of
dynamic memory allocation to Chapter 8. Thus in this section we restrict our atten-
tion to bounded treaps which may store at most N keys (where N is provided as
a parameter on initialization), and assume each key (along with its auxiliary data)
can be stored in a constant number of machine words.
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Recall the definition of a treap.

Definition 8 (Treap). A treap is a binary search tree in which each node has both a
key and a priority. The nodes appear in-order by their keys (as in a standard binary
search tree) and are heap-ordered by their priorities, so that the each parent has a
higher priority than its children.

Figure 4.1 shows two depictions of a treap. Treaps were first described by
Vuillemin [Vui80], who called them Cartesian trees. The term “treap” comes from
McCreight [McC85], who used it for a different data structure. McCreight later
changed the name of these data structures to priority search trees. The current
usage of the term is due to Seidel and Aragon [SA96], who analyzed randomized
treaps in depth and proved many useful facts about them.

We use treaps in large part because there is a unique treap for each fixed set
of keys and priorities, when treaps are interpreted as rooted, node-labeled binary
trees. This is not the case with AVL trees, red-black trees, or splay trees. For
example, Figure 4.2 on the facing page illustrates two red-black trees with the
same set of keys. The suitability of treaps for constructing uniquely represented
trees (for a pointer machine) has been noted before; Seidel and Aragon report that
Bob Tarjan suggested the idea to them. Our contribution here is to implement
uniquely represented binary search trees in a RAM.
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Figure 4.1: Two representations of a treap, one standard and one geometric.

Claim 1. Given a ordered universe of keys U , an ordered universe of priorities V , and
a mapping p : U → V , there is a unique treap for each finite set of keys S ⊂ U with
relative priorities determined by a total order <p given by p with ties broken by the
key order.
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Figure 4.2: Two red-black trees with the same set of keys.

Proof: Formally, the total ordering <p on S is defined via x <p y if p(x) <
p(y) or if p(x) = p(y) and x < y. We use <p to compare priorities. We now
proceed by induction on |S|. The base case |S| ≤ 1 is trivial. For the induction
step, find the maximum element e ∈ S with respect to <p and make it the root.
By the heap invariant e must be the root of any treap on S, and the keys in its
left and right subtree must be, respectively, {x : x < e} and {x : x > e}. By the
inductive hypothesis there are unique treaps T1 and T2 for these sets, so the left
and right subtrees of e must be T1 and T2. Moreover, by construction there can be
no violations of the heap constraint or the key in-order constraint involving e, nor
can there be any constraint violations involving one node from T1 and one node
from T2. Since any treap constraint violation has a witness consisting of two nodes,
it is straightforward to show by induction that the resulting tree is indeed a treap.

Claim 1, together with the performance guarantees of randomized treaps, allow
us to reduce the problem of constructing a uniquely represented binary search tree
to the problem of providing sufficiently independent priorities to the keys in a
principled way and dynamically maintaining a canonical mapping from keys to
memory slots.

To generate priorities, we sample a hash function p from a suitable hash family
from keys to N. The priority of a key e is then p(e). (If p(e) = p(e′), use the key
ordering to resolve priorities, so that the larger key has higher priority.) This en-
sures that there is a total order on the priorities of the keys that does not change as
keys are inserted and deleted. The idea of generating priorities via a hash function
is not new; it appears in [SA96], where Seidel and Aragon attribute it to Danny
Sleator. Given this total order on priorities, the treap implementations of the oper-
ations in Table 4.2 remain essentially the same, and we use a uniquely represented
hash table to map tree nodes to memory locations.

Let us briefly review the treap operations. An essential primitive operation in
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the treap is rotation about an edge, of the standard variety common to many binary
search trees. Figure 4.3 depicts a rotation about edge {x, y}.

y

x
x

y

A B

C A

B C

Rotate right

Rotate left

Figure 4.3: A binary search tree rotation about edge {x, y}.

Lookup: Searching for a key x proceeds as usual. That is, start at the root, and if
the current node is v, proceed to v’s left child if x < v, proceed to v’s right
child if x > v, return v if x = v, and return null if v is null.

Insertion: To insert a key x that is not already present, search for it until reaching
the leaf position it would have occupied if it were in the treap and had the
minimum priority of all keys in the treap. Insert x at that leaf position, and
then repeatedly rotate on the edge between x and its parent until its parent
has higher priority than it.

Deletion: To delete a key x, search for it, then repeatedly rotate on the edge be-
tween x and its higher priority child until x is a leaf, and then delete it from
the tree.

Join: To join two treaps T1 and T2 where all keys in T1 precede all keys in T2,
construct a new node v such that x < v < y for all nodes x ∈ T1 and y ∈ T2,
and set v to the root of the treap with left subtree T1 and right subtree T2.
Finally, delete v from the treap as described above.

Split: To split a treap T along x, first insert x into T if it is not already in T , then
repeatedly rotate on the edge between x and its parent until x is the root. Let
T1 be the left subtree of x and T2 be the right subtree. If x was not originally
in T , then return T1 and T2. Otherwise, insert x into T1 and return T1 and T2.

Treaps have many desirable properties when priorities are randomly generated.
For ease of reference, we list some these properties proved by Seidel and Aragon
in Theorem 6.
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Theorem 6 (Selected Treap Properties [SA96]). Let T be a random treap on n
nodes with priorities generated by an 8-wise independent hash function from nodes to
[p], where p ≥ n3. Then for any x ∈ T ,

(1) E[depth(x)] ≤ 2 ln(n) + 1, so access and update times are expected O(log n).

(2) Given a predecessor handle, the expected insertion or deletion time is O(1).

(3) If the time to rotate a subtree of size k is f(k) for some f : N → R≥1 such that
f(k) is polynomially bounded, then the total time due to rotations to insert or
delete an element is O

(
f(n)

n
+
∑

0<k<n
f(k)
k2

)
in expectation. Thus even if the cost

to rotate a subtree is linear in its size (e.g., f(k) = Θ(k)), updates take expected
O(log n) time.

To store the treap, we first construct nodes, each of which has fields for a key, a
left and right child key, and a parent key. We denote these fields key, left, right, and
parent. Given a node v, we use the field v.key to hash v into a hash table of capacity
(1+ ε)N for some ε > 0. By analogy with our linked list construction in Section 4.3,
the left, right, and parent fields store the keys of v’s left child, right child, and parent,
respectively. These are used in lieu of pointers.

The main reason for avoiding pointers is that in a uniquely represented imple-
mentation, unlike its conventional counterpart, an object may need to be moved
repeatedly – perhaps even every operation depending on the sequence of opera-
tions. If there are many pointers into that object, they will all need to be updated
every time it moves. Thus instead of pointers we seek labels for our objects that
are unique, immutable, and allow us to locate the objects in memory quickly. The
simplest labeling scheme is use the object itself as its own label, and hash on these
labels to determine where in memory the object is stored.

In addition to the hash table storing the treap nodes, we keep an extra copy
of the root in a special root field. Using a uniquely represented hash table from
Chapter 3, each pointer dereference is replaced by a hash table lookup that takes
expected constant time. Moreover, treaps support the operations in Table 4.2 in
expected O(log n) time even if an 8-wise independent hash function from keys to
[N3] is used to generate the priorities. If we use different random bits for the hash
table and the treap priorities, we obtain the following result.

Theorem 7. There exists a uniquely represented implementation of a bounded treaps
whose memory is statically allocated and stores elements of a fixed size, such that
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all of the operations in Table 4.2 take expected O(log n) time. Furthermore, this
implementation requires only O(logN) random bits, and requires only O(N) space to
store a treap of capacity N .

To formally prove Theorem 7, we need to show that if there are a random
number X of treap pointer dereferences (i.e., accesses to fields v.left, v.left and
v.parent), each of which generates a hash table operation that takes expected O(1)
time, then the total expected time will be O(E[X]). We prove this below. We will
end up using the following lemma many times in running time analyses in this
dissertation.

Lemma 1. Let X be a random variable taking values in N, and let {Yi : i ≥ 1} be
a set of random variables such that E[Yi] ≤ µ for all i. Furthermore, suppose X has
finite expectation and is independent of Yi for all i. Then

E

[
X∑

i=1

Yi

]
≤ E[X] · µ.

Proof: Define indicator random variables Xi such that Xi = 1 if X ≥ i, and
Xi = 0 otherwise. Clearly, Xi is independent of Yi. Also note that X =

∑∞
i=1Xi.

By linearity of expectation and the fact that E[AB] = E[A] · E[B] for independent
random variables A and B, we infer

E

[
X∑

i=1

Yi

]
= E

[
∞∑
i=0

Xi · Yi

]

=
∞∑
i=1

E[Xi] · E[Yi]

≤ µ

∞∑
i=1

E[Xi]

= µE

[
∞∑
i=1

Xi

]
= µE[X].
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Lemma 1 allows us to “multiply expectations” when bounding the running time
of our data structure. This means that we can support many other operations that
randomized treaps support in the same running time, up to constant factors. In
Table 4.3 on the next page we present some additional operations that treaps are
known to support [SA96], along with their running times.

4.6 Heaps via Treaps

A heap is a tree on keys from an ordered set that satisfies the heap constraint,
namely that each node is less than its parent. (This variant is known as a max-
heap. Another variant where each node is greater than its parent is known as a
min-heap. For the rest of this section we will consider the implementation of max-
heaps. The implementation of min-heaps is analogous.) At its most abstract, the
(max-)heap abstract data type stores an ordered set and supports the operations
listed in Table 4.4 on the following page.

There are several heap implementations, for example binary heaps [Wil64],
binomial heaps [Vui78], and Fibonacci heaps [FT87]. Table 4.5 lists their perfor-
mance guarantees, together with those of our uniquely represented implementa-
tion. As in previous sections, we restrict out attention to statically allocated heaps,
and defer the treatment of dynamic memory allocation to Chapter 8. Thus in this
section we restrict our attention to bounded heaps which may store at most N keys
(where N is provided as a parameter on initialization), and assume each key can
be stored in a constant number of machine words.

We will prove the following result.

Theorem 8. There exists a uniquely represented implementation of a bounded heap
whose memory is statically allocated and stores elements of a fixed size, such that all of
the operations in Table 4.4 are supported with the running time guarantees indicated
in Table 4.5. Furthermore, this implementation requires only O(logN) random bits,
and requires only O(N) space to store a heap of capacity N .

Table 4.5 reveals some tradeoffs between the running times for the uniquely
represented implementation versus Fibonacci heaps. The Fibonacci heap is faster
for insert and increase-key, but slower for delete-max and delete. This is because
our uniquely represented implementation stores the keys in sorted order, whereas
Fibonacci heaps do not. Overall the performance of our uniquely represented heap
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Name Description Expected
Running Time

finger-insert(x, d, y) Given a pointer to the predecessor or O(1)
successor y of the new key x, insert
key x with auxiliary data d.

finger-delete(x) Given a pointer to key x, delete it. O(1)
finger-search(x, y) Given a pointer to key x, find y, where O(log d)

there are d keys between x and y
Costly-updates An insertion or deletion where we O(log n)

perform O(s) work when rotating
subtrees of size s

Costly-updates An insertion or deletion where we O(f(n)
n

+
∑n−1

k=1
f(k)
k2 )

perform f(s) work when rotating
subtrees of size s, with f non-negative.

Table 4.3: Some additional treap operations our uniquely represented implemen-
tation will support. See [SA96] for more detail.

Name Description
build-heap(A) Given a (possibly unsorted) array A with n keys, construct a

heap on those keys.
insert(x) Insert key x into the heap.
delete-max() Delete the maximum key from the heap and return it.
find-max() Return the maximum key in the heap.
increase-key(x,∆) Given a pointer to x in the heap, increase its key by ∆
delete(x) Given a pointer to x in the heap, delete it.
merge(H1, H2) Given two heaps H1 and H2, merge them into a single heap
(also called meld) with all the keys from both H1 and H2.

Table 4.4: The heap operations.
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Binary Binomial Fibonacci Uniquely Represented
build-heap(A) O(n) O(n)‡ O(n)‡ O(n log n)†

insert(x) O(log n) O(1)‡ O(1)‡ O(log n)†

delete-max() O(log n) O(log n)‡ O(log n)‡ O(1)†

find-max() O(1) O(1) O(1) O(1)
increase-key(x,∆) O(log n) O(log n)‡ O(1)‡ O(log n)†

delete(x) O(log n) O(log n)‡ O(log n)‡ O(1)†

merge(H1, H2) O(n) O(1)‡ O(1)‡ O(n)†

† indicates the running time guarantee is in expectation.
‡ indicates the running time guarantee is amortized.

Table 4.5: Running times for various heap implementations with n keys. Running
times for binary heaps are taken from [CLRS01], while those for binomial and
Fibonacci heaps are either taken from [Koz91] or may be inferred from the imple-
mentation described therein.

implementation compares well with conventional implementations, with the ex-
ception of the merge operation. Unfortunately, we will show in Chapter 7 by a
very general argument that every uniquely represented heap implementation us-
ing polynomial space must take Ω( n

log n
) expected time to merge two heaps. See

Section 7.3 for details.

Implementation via Treaps. We use the treap of Section 4.5 to implement heaps.
Given a set of keys from an ordered universe (U,<), we simply store them in
uniquely represented treap. The binary relation < on keys serves as the binary
search tree order within the treap, and priorities are generated by hashing the keys
into a sufficiently large integer range. Thus, the root of the treap is the key with
the maximum priority, as opposed to the maximum element with respect to <. The
operations are then implemented as follows.

Build-Heap: Build heap is implemented in the näıve way. Simply run through
the array inserting each element in turn into the treap. Since each insertion
takes expected O(log n) time, the total time for this operation is O(n log n).
Note that, once the treap is built, we may output the elements in sorted order
in expected O(n) time using the fast finger-search supported by the treap.
Since the input array for build-heap is initially unsorted, this fact combined
with the Ω(n log n) lower bound for sorting in a comparison-based model of
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computation implies that there is no asymptotically faster way to build the
treap.

Insertion: Simply use the treap insertion method, which takes expected O(log n)
time.

Find-Max: Our implementation will store a copy of the maximum key in a special
field called max key. To implement find-max we simply return its contents in
worst case constant time.

Delete-Max: Find the maximum key x via a find-max operation as described above.
Hash the key to find the treap node v containing x. Then use fast finger search
to find the successor y of x in the treap in expected O(1) time. Finally, set
max key to y and use fast finger delete to delete x from the treap in expected
O(1) time.

Increase-Key: To increase the key of x by ∆, construct a copy x′ of x with its key
increased by ∆. Do a fast finger search for the predecessor y of x′ in the
treap. (This can be done by searching for x′ itself. See [SA96] for details.)
Then use y to do a fast finger insertion of x′. Finally, do a fast finger delete of
x. Inserting x′ given y and deleting x both take expectedO(1) time. Searching
for y takes expected O(log d) time, where d is the distance between x and y
(i.e., the number of keys z such that x < z ≤ y). Clearly d ≤ n so this
operation runs in expected O(log n) time.

Delete: If the key to be deleted is not the maximum key, simply use fast finger
deletion to delete the relevant key from the treap in expected O(1) time.
Otherwise, call delete-max.

Merge: Let H1 and H2 be the heaps to be merged. Because we wish to defer the
treatment of dynamic memory allocation to Chapter 8, we will assume that
H1 and H2 are stored in separate memory blocks, and that the we have allo-
cated a third memory block to store the result of the merge operation, which
we denote by H3. In this section we focus on ensuring that H3 is uniquely rep-
resented within its block, without concern to where within the RAM memory
that block resides. First, initialize H3 to be a uniquely represented heap with
the desired capacity. This might be the sum of the capacities of H1 or H2, or
we could add a parameter to the merge operation allowing the user to spec-
ify it. We can easily set H3.max key to be the maximum of H1.max key and
H2.max key. The remainder of the merge operation is given in pseudocode
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in Figure 4.6. In the figure Ti is the treap storing the keys of heap Hi and
pred(x,Hi) = max{y : y ∈ Hi, y < x} is the predecessor of x in the treap Ti.
If the predecessor does not exist pred(x,Hi) returns null. Additionally, null is
less than all keys for purposes of comparison.

merge-heaps(heap H1, heap H2, heap H3)
Set x1 and x2 to be the maximum keys in H1 and H2, respectively.
Set i = arg-max{xj : j ∈ {1, 2}}.
Set y = xi.
Insert y into the treap T3 storing H3.
Set xi = pred(xi, Hi).
While (x1 6= null or x2 6= null){

Set i = arg-max{xj : j ∈ {1, 2}}.
Insert xi into T3 using fast finger insertion with y.
Set y = xi.
Set xi = pred(xi, Hi).

}

Figure 4.4: Pseudocode for merging two uniquely represented heaps.

The pseudocode in Figure 4.6 runs in expected O(n) time, where there are n
keys in the union of H1 and H2. Given a binary search tree, let the reverse-
order traversal be the traversal that visits the right subtree of a node v, then v,
then finally the left subtree of v. Thus the reverse-order traversal is basically
an in-order traversal in reverse, where we start with the maximum node
and proceed towards the minimum node. The pseudocode essentially does
a staggered reverse-order traversal of H1 and H2, and inserts the greater of
the two currently visited nodes into H3 in a manner strongly resembling the
merging of two sorted arrays à la merge-sort. Thus, while each individual
call to pred(xi, Hi) takes expected O(1) time via fast finger search [SA96], all
of these calls together traverse less than 2n treap edges and take expected
O(n) time. Also, each insertion into H3 other than the first one is a fast
finger insertion taking expected O(1) time. (Note that even though y is a
key and not a treap node, we can find the treap node in T3 corresponding
to y in expected constant time using the hash table underlying T3). Thus,
the insertions collectively take expected O(n) time as well. The entire merge
operation therefore takes expected O(n) time.
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To complete the proof of Theorem 8, note that the bounds on the number of
random bits required and the space usage are immediate consequences of the prop-
erties of uniquely represented treaps stated in Theorem 7 on page 59.



Chapter 5

Advanced Data Structures and
Techniques

In this chapter we continue our discussion of efficient uniquely represented imple-
mentations for various abstract data types, and cover more complex implementa-
tions than those encountered in Chapter 4. We additionally discuss various tech-
niques that may be employed to construct uniquely represented data structures, in
the hope that they may prove useful in expanding the range of abstract data types
with efficient uniquely represented implementations in the future.

As in Chapter 4, we will simplify the exposition here by considering only stat-
ically allocated data structures. We defer the treatment of dynamically allocated
data structures to Chapter 8. That is, we assume that a contiguous block of memory
is allocated to the data structure in question on initialization, and which memory
locations are allocated to the data structure does not change over time.

5.1 Skip Lists

Skip lists were developed by William Pugh [Pug90] as a simple randomized al-
ternative to balanced binary search trees. They implement the binary search tree
abstract data type described in Section 4.5 on page 55. Figure 5.1 depicts a skip list
and Table 5.1 lists the operations that skip lists support, all of which take expected
O(log n) time. We will provide a uniquely represented skip list implementation that
supports the same guarantees.

67
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Theorem 9. There exists a uniquely represented implementation of a bounded skip
list whose memory is statically allocated and stores elements of a fixed size, such that
all of the operations in Table 5.1 take expected O(log n) time. Furthermore, with
high probability this implementation requires only O(N) space to store a skip list of
capacity N .
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Figure 5.1: A skip list, with the search path for key 12 illustrated.

Name Description
lookup(x) Given key x, find the skip list node in L1 containing x.
insert(x) Insert key x into the skip list.
delete(x) Delete x from the skip list, if it exists.
join(La, Lb) Given two skip lists La and Lb such that xa < xb for

all keys xa ∈ La and xb ∈ Lb, join La and Lb into a single skip list
with all keys from both La and Lb.

split(L, x) Given skip list L and key x, split L into two skip lists
L≤ := {y : y ∈ L, y ≤ x} and L> := {y : y ∈ L, y > x}.

Table 5.1: The skip list operations that our uniquely represented implementation
will support.

Let U be the set of elements we wish to store. The idea behind skip lists is assign
a random positive integer level to each element u ∈ U , such that Pr[level(u) = k]
decreases exponentially in k, and for each k such that some element has level(u) ≥
k, maintain a list Lk on all elements u with level(u) ≥ k. We also assume there is a
special element front that is in every list and is smaller than all other elements, so
as to be at the front of every list. Note that each list Lk = 〈u1, u2, . . . , ut〉 partitions
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the elements into contiguous subsets

{{u : ui ≤ u < ui+1} : 1 ≤ i < t} ∪ {{u : ut ≤ u}}

and the partition of Lk−1 refines1 the partition of Lk. Additionally, we maintain
pointers from each element u ∈ Lk to u ∈ Lk−1. Let ui be the representative of
{u : ui ≤ u < ui+1}. When searching for an element u, we start at the highest level
list Lk and search for the representative vk of the level k partition set containing u,
then starting from vk in Lk−1 search for the representative vk−1 of the level k − 1
partition set containing u, and so on until reaching the representative v1 = u of the
level one partition set containing u.

The original skip list paper [Pug90] sets element levels by repeatedly flipping a
biased coin up to (β− 1) times, for some parameter β which bounds the maximum
allowable level. The level of the element is then set to one plus the number of coin
flips to obtain an outcome of ’heads’. If all (β − 1) coin flips turn up ’tails,’ then the
level is set to β. The distribution over levels is thus parameterized by the coin bias
p ∈ (0, 1) and a bound β on the maximum allowable level. Specifically, it is

Pr[level(u) = k] =


p−(k−1)(1− p) if 1 ≤ k < β
p−(β−1) if k = β
0 if k < 1 or k > β

Using this distribution to sample the levels independently for each node, all the
operations in Table 5.1 can be implemented in O(log n) time [Pug90, PMP90].

Inspecting Figure 5.1, it is fairly easy to see that the pointer structure of the
skip list is uniquely represented if the levels are generated using a hash function.
Pugh [Pug90] recognized this, and notes various advantages of having uniquely
represented (with respect to the pointer structure) skip lists:

“If we combine this idea [of unique representation] with an applicative
(i.e., persistent) probabilistically balanced data structure and a scheme
such as hashed–consing [All78] which allows constant-time structural
equality tests of applicative data structures, we get a number of inter-
esting properties, such as constant-time equality tests for the represen-
tations of sequences. This scheme also has a number of applications for
incremental computation [PT89]. Since skip lists are somewhat awk-
ward to make applicative, a probabilistically balanced tree scheme is
used.”

1A partition {A1, . . . , Ar} of U is said to refine a partition {B1, . . . , Br} of U if for all Ai there is
a Bj such that Ai ⊆ Bj .
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Using n-wise independent hash functions, such as those of Östlin and Pagh [OP03]
or Dietzfelbinger and Woelfel [DW03], we can obtain skip lists that are uniquely
represented with respect to their pointer structure, and have the same running time
guarantees as those in [Pug90]. Given a hash function h from keys to [1 : r] for
some parameter r ≥ n, we set the level of u to be the largest value of k such that
r − h(u) ≤ r · 2−(k−1). This implementation of skip lists is similar in many respects
to the treaps of Section 4.5 on page 55. Unlike the case with the treaps, however,
the skip list has several nodes with exactly the same key. This complicates the task
of mapping the nodes of the skip list into the RAM memory. For skip lists there is
a fairly simple solution — we can label the copy of v in list Lk with the numeric
value of the string v⊕k, where ⊕ is the concatenation operator. For a more general
way of generating hashable labels, see Section 5.2.

With these observations, we are now ready to prove Theorem 9. Labeling the
nodes using the numeric value of v ⊕ k results in distinct labels. Using a uniquely
represented hash table such as the one from Section 3.1 on page 27 implies that
each constant time operation in the normal skip list operations (e.g., dereferencing
or updating a pointer, creating or deleting a node) corresponds to an expected con-
stant time operation for our uniquely represented implementation (e.g., hash table
lookup, changing a key, inserting or deleting a node from the hash table). Since
we use independent random bits for the hash tables and the skip list node levels,
we can use Lemma 1 on page 60 to show that our running times are expected
O(f(n)) whenever they are f(n) for skip lists. Using the running time guaran-
tees for skip lists provided by Pugh [Pug90], we conclude that our implementation
supports lookups, insertions, deletions, splits, and joins is expected O(log n) time,
where there are n keys. As for the space, it is easy to prove that in expectation
there are at most 2 copies of any given node, using the level-generating scheme
described above. Thus there are at most 2n nodes in expectation, each occupying
a constant number of words of space. Since the hash table from Section 3.1 on
page 27 requires only (1 + ε)N slots to store N elements, this implies we need
only O(N) words of space in expectation to store up to N skip list elements. More-
over, if the levels are generated by an n-wise independent hash function, we can
prove strong measure-concentration results for the total number of nodes. For ex-
ample, a straightforward application of Azuma-Hoeffding inequality (see [AS00]
or [MR95] for a treatment) proves that with high probability the skip list has a
total of 2n+O(n1/2(log n)3/2) nodes.
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5.2 Generating Hashable Labels: The Hash–Consing
Technique

In the previous section we encountered skip lists, which may have multiple nodes
with the same key. To allocate these nodes to memory locations, we need to provide
them with distinct labels in a strongly history-independent manner. In the case of
skip lists, there is a simple way to do this. However, in later sections we will have
need of a general, principled way of generating hashable labels. Our solution to the
more general labeling problem is based on the technique of hash–consing [Got74,
All78].

5.2.1 Labels via Subtrees

Before discussing the use of hash–consing to generate labels, we will describe the
related idea of generating labels via subtrees. Suppose we have a binary tree T =
(V,E) rooted at r ∈ V , where each node v has an associated value xv ∈ N, and
we wish to assign a unique integer labels to each node in V . Furthermore, suppose
we wish the labeling scheme to be strongly history independent. To simplify the
exposition, we may assume that the children of each node v are ordered in T . Such
trees are serializable, in the sense that there is a unique string representation for
each such tree using the grammar

tree ::= empty | node(x, 〈tree, tree〉)

where x ∈ N. For example,

node(2, 〈node(1, 〈empty, empty〉), node(3, 〈empty, empty〉)〉)

is the three node tree with a root r that has two children a and b, and xr = 2, xa =
1, and xb = 3. Assuming we can convert such strings to integers, this suggests
the following labeling scheme: label v with the integer corresponding to the string
representation of Tv, where Tv is the subtree of T rooted at v.

This labeling scheme has the property that u and v get the same label if and only
if the string representations of Tu and Tv are equal, which only occurs if Tu and Tv

are isomorphic as node labeled rooted trees. Under a functional programming
paradigm where the subtrees are immutable, it will be acceptable to consider u
and v to be the same node, and store them accordingly. In other words, we may
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define an equivalence relation ≈ such that u ≈ v if Tu is isomorphic to Tv. Formally,
u ≈ v if

• Both u and v are leaves and xu = xv, or
• Neither u nor v is a leaf, xu = xv, and for all i, ui ≈ vi where ui is the ith child

of u and vi is the ith child of v.

We then label the nodes such that u and v get the same labels if and only if u ≈ v.

5.2.2 The Hash–Consing Technique

One significant disadvantage of the above labeling scheme is that the labels them-
selves are huge. Note that we only generate at most n labels, and the space of
possible node-labeled subtrees on up to n nodes is rather large. This suggests that
hashing the subtrees into the integer range [r] for some suitable r = poly(n), to ob-
tain compact representations of the trees. The hash–consing technique does this in
a particular way, and labels a node v by first labeling its children and then hashing
on the labels of its children and its associated value to obtain its label. It requires
a hash function h that takes as input a list of values. See Figure 5.2.

hash-cons-label(node u)
If (u is a leaf)

Return h(xu);
Else

For each child ui of u
Set li to hash-cons-label(ui);

Let t be the number of u’s children.
Return h(l1, l2, . . . , lt;xu);

Figure 5.2: Psuedocode for a hash-consing based labeling scheme.

Hash-consing was originally devised as a space saving mechanism. Ershov [Ers58]
showed how to quotient trees by the equivalence relation ≈ described above by
traversing the tree from the leaves up. By collapsing the equivalence classes into
single nodes, the tree can be represented by a directed acyclic graph with poten-
tially many fewer nodes. Goto [Got74] exploited this fact by implementing a
memory allocator for the LISP programming language that labeled all cons-cells
and avoided creating duplicates by testing whether a newly created cons-cell had
the same label as a previously generated one. Hash–consing has also been imple-
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mented for the Standard ML of New Jersey [AG93] and Objective Caml [FC06]
programming languages. Related ideas have also been used to efficiently store
certain infinite trees [Mau00].

An alternate way to label the nodes of the tree would be to use a trie, and label
a node v with the root to v path. This approach has some disadvantages relative to
hash-consing.

1. In a tree T , rotating about edge {u, v} will alter the trie derived labels of
every node in the subtrees Tu and Tv, but will only alter the hash–consing
derived labels of the ancestors of u and v (including u and v themselves).

2. Trie derived labels, unlike hash–consing derived labels, do not expose isomor-
phisms in the underlying subtrees that allow us to save space.

3. Hash–consing effortlessly extends to the case of directed acyclic graphs, where
there are multiple “roots” (i.e., zero indegree nodes) and possibly multiple
paths with the same endpoints. Simply use the out-neighbors of u, Γout(u) :=
{v : (u, v) ∈ E}, in lieu of children, and use nodes with out-degree zero in
lieu of leaves. This yields the following definition of ≈ for directed acyclic
graphs. Nodes u and v satisfy u ≈ v if

• Both u and v have zero out-degree and xu = xv, or
• Neither u nor v has zero out-degree, xu = xv, and for all i, ui ≈ vi where
ui is the ith element of Γout(u) and vi is the ith child of Γout(v).

Labeling schemes based on tries do not easily extend to directed acyclic
graphs.

We can also relax the assumption that the out-edges of each node u are ordered.
Simply find the labels of all nodes in Γout(u) := {v : (u, v) ∈ E}, and order them by
their labels.

Dynamic Updates. The update rules for hash–consing derived labels are quite
simple. If a node v is altered, such that its children or its associated value change,
then every node u such that v is reachable from u must have its label recomputed.
In a rooted tree (without parent pointers), this means that whenever a node v
is altered, all of its ancestors must have their labels recomputed. Unfortunately,
this can have some implications for performance. For example, in the context
of uniquely represented skip lists and uniquely represented treaps, this labeling
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scheme rules out expected constant time finger insertions and finger deletions but
still allows for expectedO(log n) time operations. So, how can we efficiently relabel
all the ancestors of an altered node v in a tree without parent pointers? One way
is to traverse and temporarily store the root to v path P during any operation. This
allows us to update the labels of all nodes along P in expected O(|P |) time. See
Figure 5.3 for a recursive procedure that does this when given the root and P as
input. A simple iterative version of this procedure also exists.

hash-cons-label(node v, path P )
Let t be the number of v’s children, and let lj be the label of v’s jth child.
If (v has a child vi ∈ P )

Set li to hash-cons-label(vi, P ).
Return h(l1, l2, . . . , lt;xv)

Else v has no children in P
Return h(l1, l2, . . . , lt;xv)

Figure 5.3: Psuedocode for a updating the hash-consing based labels in a tree,
given a path P from the root to the altered node.

In certain special cases we may retain the parent points and still use hash–
consing to generate labels. This is safe so long as whenever u ≈ v, u.parent =
v.parent. It is fairly easy to see that this is the case with skip lists. In fact, in a skip
list no two nodes u and v satisfy u ≈ v. Treaps have this property as well, since no
two treap nodes have the same associated value.

Example: Skip Lists. With these observations, we are ready to show how to use
hash–consing to generate labels for skip list nodes such that Theorem 9 remains
true (omitting the treatment of hash collisions resulting in non-distinct labels,
which we discuss below). Simply use the standard skip list operations from [Pug90]
(and the obvious implementations of split and join), together with the hash–consing
labeling scheme described above and a uniquely represented hash table such as the
one from Section 3.1 on page 27. For the purposes of computing the labels, we treat
the skip list L as a binary tree T (L) as follows2. Let (v, k) denote the copy of v in
the list Lk of nodes at level k or higher. Then for each (v, k), if (v, k+ 1) exists then
let (v, k + 1) be the parent of (v, k), and otherwise let the predecessor of v in Lk

be the parent of (v, k). If we use a hash function that can be evaluated in constant

2This binary tree is unrelated to the so-called skip tree data structure [Mes97].
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time, we can amortize the time to update the labels against the search time for
the input key for all operations except join. For joins, we can amortize the time
to update the labels against the length of the search path for a key that is strictly
between the keys in the input skip lists, which is O(log n) in expectation. Since
the hash table operations take expected constant time, and we use independent
random bits for the hash table and for the skip list levels, we can use Lemma 1 on
page 60 to bound the total time for lookups, insertions, deletions, splits, and joins
at expected O(log n) time, where there are n keys.

Detecting Hash Collisions. Using a hash of Tv rather than Tv to label v creates
the possibility of a hash collision, such that two nodes u and v with u 6≈ v receive
the same label. Since we are using the labels as identifiers, this creates the un-
acceptable situation of identifying two distinct nodes. Fortunately, we can detect
such collisions as follows. Whenever u is assigned the same label as existing node
v, check that their associated values are the same (i.e., xu = xv) and that the labels
of out-neighbors Γout(u) and Γout(v) are equal as lists (i.e., for all i, if ui and vi are
the ith elements of Γout(u) and Γout(v) respectively, then ui and vi have the same
label). If so, then u ≈ v and so u and v should receive the same label. Otherwise, if
we assume no hash collision has occurred before, then u 6≈ v and a hash collision
has occurred. Thus we may detect the first hash collision in this manner with ex-
pected constant time overhead per operation, even if we cannot detect subsequent
collisions.

Dealing with Hash Collisions. If a hash collision occurs, we must relabel at least
some of the nodes. There are several possible ways to do this that still allow us to
support expected O(log n) time operations, and we list some of them below.

1. Sample a fresh labeling hash function and relabel all nodes with it. Note that,
as with uniquely represented dynamic perfect hash table, we cannot sample
random bits “on demand” and must instead maintain a permutation π on a
suitable hash family, and use the first hash function in π that is collision-free
on the current set of keys. See Section 3.2 for details.

2. Give up on using a hash table for memory allocation. Instead, define a total
ordering on the nodes, and store them in order in the memory array. One
potential total ordering can be obtained via the lexicographic order on strings
obtained from serializing the subtrees Tv for all nodes v, as in the full subtree
labeling scheme of Section 5.2.1.
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3. Store the set S of nodes involved in some collision (i.e., those nodes u such
that there exists v such that u 6≈ v and u and v receive the same label from
the original hash function h), and relabel them in some principled fashion.
One possible method is to maintain a part of the label space specifically for
such nodes, say the interval [a : b], and sort the nodes v ∈ S according to
a value yv generated from the labels of the children of v and the value xv

associated with v. If v is the ith node in S sorted by y values, then give v label
a + i. Compute the labels of nodes v /∈ S as before, ignoring how the labels
of Γout(v) are generated.

Of these, perhaps the third is the most practical. Note that in all of these cases,
if the tree is altered in such as way as the original hash function does not generate
any label collisions, then by the unique representation property we must revert
the data structure to using the original hash-consing derived labels. However, the
probability of a collision can be made as small asO(1/nc) for any user-specified con-
stant c, and we can accommodate these constraints while maintaining the expected
O(log n) time guarantees on the operations. The details are similar to Section 3.2,
and we omit them.

Bounding the Probability of Collisions. Let h be the hash function used to gen-
erate the labels, and suppose h maps keys to [r], for some parameter r ∈ N. We
will prove the following.

Proposition 3. If h is pairwise independent hash function from keys to [r], then using
h to generate labels for the nodes of a directed acyclic graph via the hash–consing
scheme described above results in a label collision with probability O(n2/r), where
there are n nodes in the graph.

Proof: We claim that if there is a collision on labels, then there exist nodes
u 6≈ v that collide (i.e., are given the same label) such that u and v give different
arguments to h to obtain their labels. To prove this, select any two nodes u 6≈ v
that collide. If they additionally give identical arguments to h to obtain their labels,
then they must have the same number of out-neighbors (i.e., |Γout(u)| = |Γout(u)|),
and they must have the same associated value (i.e., xu = xv). Thus, by definition of
≈, they must have out-neighbors ui and vi with such that ui 6≈ v yet ui and vi have
the same label. If ui and vi give different arguments to h to obtain their labels, then
we are done. Otherwise, just apply the same argument to ui and vi. Each time we
apply this argument, we advance along a chain in the graph, and since the graph is
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acyclic, the longest chain has length at most n. Thus this process must terminate at
the desired colliding nodes that give different arguments to h to obtain their labels.

Let X be the set of arguments given to h to obtain all the labels for nodes in the
graph. Since the graph has n nodes, |X| ≤ n. Suppose h is at least pairwise inde-
pendent. Then using the above claim and the analysis of Section 4.3 on page 51,
the probability of a collision can be bounded by O(n2/r).

5.3 The Treap Partitioning Technique

In the sections that follow, we will have need of a uniquely represented partitioning
scheme that partitions a dynamic ordered set U into contiguous subsets of size at
most β, where β is a user-defined parameter. Formally, the ordered set partitioning
abstract data type, when initialized with some fixed value for β, should store a
partition {Ui : i ≥ 0} of an ordered set U such that

• (Contiguous sets): For all i 6= j, either max{u ∈ Ui} < min{u ∈ Uj} or
max{u ∈ Uj} < min{u ∈ Ui}.

• (Size bound): For all i, |Ui| ≤ β.

The ordered set partitioning abstract data type also supports the following op-
erations.

• insert(u): Insert u into the set U .

• finger-insert(u, v): Given a pointer to the predecessor v of u in U , insert u into
the set U .

• finger-delete(u): Given a pointer to u, delete it from U .

• find(u): Return a representative of Ui, namely an element v ∈ Ui. This opera-
tion must maintain the invariant that at all times, for all partition sets Ui and
for all u, u′ ∈ Ui, find(u) = find(u′).

Without loss of generality, we may also store U in a doubly linked list, and support
expected constant time successor and predecessor queries.

A uniquely represented implementation of this abstract data type must satisfy
the additional constraint that the representative of each partition set Ui must be a
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function only of the current partition, and not of the historical sequence of opera-
tions that generated it. Our uniquely represented implementation, which we call
treap partitioning, first appeared in [BG07] and works as follows.

5.3.1 The Construction

Given a treap T and an element x ∈ T , let its weight w(x, T ) be the number of its
descendants, including itself. For a parameter s, let

Ls[T ] := {x ∈ T : w(x, T ) ≥ s} ∪ {root(T )}

be the weight s partition leaders of T 3. We will often refer to these nodes simply as
leaders. For every x ∈ T let `(x, T ) be the least (deepest) ancestor of x in T that is
a partition leader. Here, each node is considered an ancestor of itself. We will call
a node x a follower of its leader `(x, T ). The weight s partition leaders partition
the treap into the sets {{y ∈ T : `(y, T ) = x} : x ∈ Ls[T ]}, each of which is a
contiguous block of keys from T consisting of the followers of some leader. It is not
hard to see that each set in the partition has at most 2s− 1 elements, since a leader
can have at most s − 1 followers less than it and at most s − 1 followers greater
than it in key order. To ensure each partition set has size at most β, we set s =

⌈
β
2

⌉
.

The representative of the partition set {y ∈ T : `(y, T ) = x} is x. Figure 5.4 on the
next page depicts the treap partitioning.

We implement treap partitioning by storing the set U in a treap, where each
node v has a key field storing an element of U that induces an ordering on treap
nodes in the obvious way: u < v if and only if u.key < v.key. Also, the treap priority
for a node u is generated by hashing u.key, and the treap nodes are hashed into
memory using their keys. Each node v additionally has a leader field which stores
the representative of the set it is in, namely `(v, T ).key, the key of the deepest
leader node that is an ancestor of v. Thus, the treap partitioning scheme yields the
partition {{y.key : y ∈ T, `(y, T ) = x} : x ∈ Ls[T ]}.

For a key x, we let node(x) denote the treap node containing x, if it exists. We
will prove the following.

Theorem 10. There exists a uniquely represented implementation of the ordered set
partitioning abstract data type, whose memory is statically allocated and stores ele-
ments of a fixed size, such that insertions take expected O(log n) time, and fast finger

3For technical reasons we include root(T ) in Ls[T ] ensuring that Ls[T ] is nonempty.
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Figure 5.4: A depiction of the treap partitioning scheme.

insertions, fast finger deletions, and find operations take expected O(1) time. Fur-
thermore, this implementation requires only O(logN) random bits, and requires only
O(N) space to store an ordered set partition of capacity N .

Let T be the treap storing the partition. In addition to the leader fields, we must
store some additional information to support fast finger insertions and deletions.
One approach is to store the size of the subtree Tv for all nodes v. Unfortunately
this would require updating the subtrees sizes for each ancestor of a newly inserted
node, thus guaranteeing the insert operation will take expected Ω(log n) time. In-
stead we will store the subtree size information for some subset of these nodes.
Define the leader frontier F as the elements of Ls[T ] which have more than one ele-
ment in their partition set (or equivalently, that have at least one child with weight
less than s). To maintain unique representation, each node v will have a size field,
and we will maintain an invariant on what the contents of these fields must be.
We will first describe an invariant in Section 5.3.2 that leads to expected Θ(log β)
time finger insertions and deletions as opposed to expected O(1) time as promised
by Theorem 10. We then describe a modified invariant with modified operations
in Section 5.3.3 that support finger insertions and deletions in expected O(1) time.
We also provide detailed correctness proofs for both versions.

5.3.2 The Basic Version

In this section we will use the following invariant.
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The basic size field invariant:
For all v with |Tv| < s, v.size = |Tv|. Otherwise v.size = ∞.

The operations may then be implemented as follows.

Insertion: To insert a key, create a new node u with that key, then search for the
predecessor v of u via treap search, and finally perform a fast finger insertion
of u using v.

Finger Insertion: Suppose we have created a node u with the key to be inserted
and have its predecessor v and now now wish to insert it. Proceed with a
treap fast finger insert of u. We must be careful to maintain the basic size
field invariant. Thus, as we rotate u up from its initial starting point – the
leaf it would occupy if it had the lowest priority of all keys – we update the
size fields during the rotations. Once u has reached its proper location, if
necessary we continue up the u to root path, incrementing the size fields until
we reach a node w with |Tw| ≥ s.

Next, we must update the leader fields. Set u.leader appropriately. It is possible
that inserting u resulted in the “promotion” of a node w to leadership status.
We can detect this by determining if the child w of node(node(u.parent).leader)
that is an ancestor of u has |Tw| = s, using the size fields of the children
of w. In this event, traverse w’s subtree setting the leader fields of all of its
descendants to w.key. Then set size field of w and its parent to ∞.

If u is itself a leader, find its predecessor a and successor b. Proceed up
the a-to-root and b-to-root paths looking for the deepest nodes with subtree
size at least s, denoted `(a) and `(b). Let a′ and b′ be the children of `(a)
and `(b) that are ancestors of a and b, respectively. Update the leader fields
of all of the descendants of a′ (to `(a).key) and b′ (to `(b).key) via subtree
traversals. Also update the leader fields of `(a) and `(b) if necessary. Finally,
set u.leader = u.key.

Finger Deletion: Deletion is similar to insertion. Let u be the node to be deleted.
(Note that given a key to be deleted, we can find its corresponding node in
expected constant time using the underlying hash table.) Rotate u down to
a leaf position, updating the subtree size information appropriately on each
rotation. Make sure to account for the fact that u will ultimately be deleted
from the treap when updating these size fields.
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If initially |Tu| < s, and |Tnode(u.leader)| > s (i.e., deleting u does not result in
any “demotions” of nodes from leaders to non-leaders), just delete u.

If initially |Tu| < s, and |Tnode(u.leader)| = s (so that u’s leader must be de-
moted), traverse Tnode(u.leader), setting the leader field of each node in that
subtree to the key of the parent of node(u.leader).

If u was initially a leader, maintain a list L of nodes x such that we rotated on
edge {x, u} when rotating u down to a leaf position. Delete u from the treap.
Find the lowest priority node v in L that has |Tv| ≥ s. For each node x ∈ L,
in order of increasing priority, if x is a descendant of v and has a child x′ with
x′.leader 6= v.key, update the leader field of each node in Tx′ to v.key. Also set
x.leader = v.key For each ancestor x of v in L, set x.leader = x.key. Also, if x
has a child y of with |Ty| < s then for each such child y with |Ty| < s test if
y.leader 6= x.key. If so, do a traversal of Ty and update the leader field of each
node in that subtree to x.key.

Find: Given an input key, find the corresponding node u using the underlying hash
table, then simply search for the node with key u.leader in the hash table
storing T in expected O(1) time.

Proof of Correctness. We break the proof of correctness into the following three
propositions.

Proposition 4. The above data structure is a correct uniquely represented implemen-
tation of the ordered set partitioning abstract data type, assuming the basic size field
invariant is maintained, and that the leader fields are set according to the specification
in Section 5.3.1.

Proof: The data structure is clearly uniquely represented, assuming the operations
maintain the alternative size field invariant and the correct leader fields. The treap
is uniquely represented. The size fields are a deterministic function of the treap
together with the constraint imposed by the alternative size field invariant. The
induced partitioning {{y ∈ T : `(y, T ) = x} : x ∈ Ls[T ]} is also a deterministic
function of the treap, as are the correct contents of the leader fields. Everything is
thus a function of the current abstract data type state and the RAM’s random bits,
and is uniquely represented.

Note that if the basic size field invariant is maintained and the leader fields are
set correctly, then the find operation is clearly correct. The remainder of this section
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is devoted to showing that the insertion and deletion operations described above
do in fact maintain the alternative size field invariant and the correct leader fields.

Proposition 5. Insertions are implemented in such a way as to maintain the correct
setting of the size and leader fields.

Proof: Suppose we insert a node u containing a new key. The basic size field
invariant is fairly easy to maintain during rotations. Rotating on edge {x, y} only
affects the subtree size of Tx and Ty, and we can update the field size as normal,
using the modified arithmetic that z +∞ = ∞ for all quantities z.

So consider the task of updating the leader fields. The two cases that |Tu| < s
(both with and without a node promotion) are straightforward. Thus we focus on
the case that u is a leader.

By Lemma 2 on page 90, inserting u can only change the leaders of nodes
v within distance s from u. Proceeding from the predecessor a of u to its post-
insertion leader `(a), we claim that the subtree T`(a) contains all of nodes within
distance s of u that are less than u. If this is not the case, there must be a node x
within distance s from u not in T`(a), which can only happen if x has higher priority
than `(a). If x has higher priority than `(a), it must be an ancestor of `(a). If
`(a) < x, then this contradicts the fact that `(a) is an ancestor of a. If x < `(a),
then this contradicts the fact that |T`(a)| ≥ s, since it can only contain keys between
x and u exclusive.

Thus T`(a) contains all of nodes within distance s of u that are less than u, and
their leader fields should all be set to `(a). While this can be done in O(s) time,
the operation specifies updating only `(a).leader and the leader fields of nodes in
the subtree of a′, the child of `(a) that is an ancestor of a. Let a′′ be the other
child of `(a). We claim that the leader fields of its descendants should remain
unchanged. This is because the insertion of u leaves Ta′′ unaffected, and can only
decrease |T`(a)| which is at least s after the insertion, and thus must have been at
least s beforehand. Therefore the insertion correctly updates the leader fields of all
nodes within distance s from u that are less than u. By a symmetric argument, the
insertion correctly updates the leader fields of all nodes within distance s from u
that are greater than u. Since we also set u.leader correctly, Lemma 2 on page 90
guarantees that we have updated all of the leader fields correctly.

Proposition 6. Deletions are implemented in such a way as to maintain the correct
setting of the size and leader fields.



5.3 The Treap Partitioning Technique 83

Proof: Suppose we delete a node u. As with insertions, the basic size field invari-
ant is fairly easy to maintain during rotations. We thus omit the correctness proof
for it and focus on the leader fields.

The two cases that |Tu| < s (both with and without a node demotion) are
straightforward. Thus we focus on the case that u is a leader.

We claim that the only way a node x can have its leader changed during the
deletion of u is to have an ancestor on the rotation path of u consisting of the nodes
{y : we rotated on {u, y} during this operation}. This is because a change of leader
for x can occur only due to one of following two scenarios.

1. The set of ancestors of x changes (i.e., an ancestor a of x changes parent
during a rotation on its parent).

2. The subtree size of an ancestor y of x changes (which can only occur during
a rotation involving y).

Next we claim that if a node x in a subtree of some node y on the rotation path of u
has a change in leader, then so does the child of y that is an ancestor of x. Suppose
x’s change in leader is due to the first case above. That is, suppose an ancestor a
of x has its parent changed to y during a rotation involving y. It is not hard to see
that changing a’s parent to y resulted in a change of leader for x, then a is not a
leader so |Ta| < s, which implies that the leader of every other node in Ta changes
as well. Next, suppose x’s change in leader is due to the second case above. In the
second case, let a be the child of y that is an ancestor of x. Again, a cannot be a
leader, so the change of leader experienced by x also occurs for all nodes in Ta.

The above claim implies that to find all the nodes whose leader fields need to be
changed, we need only find all the nodes whose leader fields need to be changed
among the children of nodes in the list L of rotated nodes. The delete operation
does this explicitly for nodes whose leader field should be set to v.key, where v is
the lowest priority node in L that has |Tv| ≥ s. For all other nodes w ∈ L, namely
those with priority greater than v, any node x whose leader field should be set to
w.key satisfies the following property: w is the deepest node in L that is an ancestor
of x. Thus in this case, the child of w that is an ancestor of x also has its leader field
set incorrectly, and we detect this. Thus the deletion operation correctly detects all
nodes that require updates to their leader field, and updates them appropriately.
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5.3.3 Achieving Expected Constant Time Updates

Though we have not proved it, the running time of the finger insert and delete
operations in Section 5.3.2 are dominated by the need to update the size fields of
all ancestors v of u with |Tv| < s in the common case that u is not a leader. In
expectation there will be Θ(log β) such nodes. Using the size field invariant below,
we can reduce the number of nodes whose size field we must update in the common
case that u is not a leader to at most 3.

The size field invariant: For all v that are children of nodes in F , v.size = |Tv|.
For all v that are ancestors of some node in F , v.size = ∞. For all remaining
nodes v, v.size = null.

Standard insertion and find operations proceed exactly as in Section 5.3.2. The
fast finger updates proceed as follows.

Finger Insertion: Suppose we have created a node u with the key to be inserted
and have its predecessor v and now now wish to insert it. Proceed with a
treap fast finger insert of u. For now, make no changes to the size field of any
node.

Next, we must update the size and leader fields. Determine if u is a leader by
testing if either of the following conditions is true:

1. u has a child v with v.size = ∞.
2. u has a child v with v.size = s− 1.

We will first consider the case that u is not a leader. It is possible that inserting
u resulted in the “promotion” of a node w to leadership status. Determine if
this is the case as follows. Set the leader field of u to equal the leader field of its
parent node. Find the child of node(u.leader) that is an ancestor of u, which
we denote by u′. Then there is a promotion if and only if u′.size = s − 1. If
there is no promotion and u′ 6= u, then merely increment u′.size. If there is no
promotion and u′ = u, then set u.size equal to one plus the maximum value
of the size fields among u’s children, and set the size fields of u’s children to
null. If u′ is promoted, set u′.size = ∞ and traverse Tu′ changing the leader
fields of all the nodes therein to u′.key, and simultaneously compute the size
of the subtrees of T rooted at the children of u′. Update the size fields of the
children of u′ to their subtree sizes accordingly.



5.3 The Treap Partitioning Technique 85

If u is itself a leader, find its predecessor a and successor b. Proceed up the a-
to-root and b-to-root paths looking for the deepest nodes with subtree size at
least s, denoted `(a) and `(b). We can find `(a) and `(b) in expected O(s) time
without using any of the size fields. (For example, to find `(a) proceed up the
a-to-u path P , and compute the subtree size of a node v ∈ P by traversing
the subtree of the child of v not in P to compute its size, and combining this
information with the previously computed subtree size of v’s child in P . Of
course, we may stop in the middle of a traversal as soon as we detect that the
subtree is large enough to ensure v is a leader.)

Let a′ and b′ be the children of `(a) and `(b) that are ancestors of a and
b, respectively. Update the leader fields of all of the descendants of a′ (to
`(a).key) and b′ (to `(b).key) via subtree traversals. Also update the size and
leader fields of `(a) and `(b) if necessary. Set the size fields of a′ and b′ to |Ta′|
and |Tb′|, respectively. Also, for each node v that is either in the a-to-a′ path or
is a child of a node that is (with the exception of a′), set v.size = null. Likewise,
for each node v that is either in the b-to-b′ path or is a child of a node that is
(with the exception of b′), set v.size = null. Finally, set u.leader = u.key.

Finger Deletion: Let u be the node to be deleted. (Note that given a key to be
deleted, we can find its corresponding node in expected constant time using
the underlying hash table.) Add the size fields of u’s leader’s children to
determine if |Tnode(u.leader)| > s. Rotate u down to a leaf position.

If u was not initially a leader (i.e., u.size < ∞), then there are two cases to
consider. Either deleting u will result in a demotion of some node, or not. If
|Tnode(u.leader)| > s, then no demotion occurs. In this case, simply decrement
the size field of of child of u’s leader that is an ancestor of u, and delete u
from the treap. Otherwise the leader of u is demoted when u is deleted. Let
`(u) := node(u.leader) be the leader of u. In this case, set `(u).size = s−1, and
set the size fields of the children of `(u) to be null. Then traverse T`(u), setting
the leader field of each node in that subtree to the key of the parent of `(u).
Finally, delete u from the treap.

If u was initially a leader, maintain a list L of nodes x such that we rotated
on edge {x, u} when rotating u down to a leaf position. Keep L sorted in
order of depth. Delete u from the treap. Find the deepest node v in this
list with |Tv| ≥ s in O(s) using tree traversals, as discussed in the finger
insert operation. Set the size fields of the children of v to their subtree sizes,
computed via tree traversal. Set the size field of all ancestors of v in L to ∞.
For all children w of ancestors of v in Lwhose size field is null, set w.size = |Tw|
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as computed via a traversal of Tw. Next, for each node w that is a descendant
of v in L, or is a child of a descendant of v in L, with the exception of v and
its children, set w.size = null.

That takes care of the size fields. For the leader fields, we proceed as in Sec-
tion 5.3.2. For each descendant w of v in L, in order of increasing priority, if
w has a child w′ with w′.leader 6= v.key, update the leader field of each node
in Tw′ to v.key. Also set w.leader = v.key. For each ancestor w of v in L, set
w.leader = w.key. Also, if there is a child y of w with |Ty| < s (as indicated by
y.size <∞), then for each such child y with |Ty| < s test if y.leader 6= w.key. If
so, do a traversal of Ty and update the leader field of each node in that subtree
to w.key.
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An alternate Illustration of Treap Partitioning.
Leader nodes provide the boundaries for the
partition sets. 
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Figure 5.5: An illustration of an update to a Treap Partitioning instance.

Proof of Correctness. Assume that the finger insertion correctly determines if u
is a leader or if u causes the promotion of another node or if u does not alter the set
of leaders. Further assume that the deletion operation correctly determines if u is a
leader or if deleting u causes a demotion of some node. Given these assumptions, it
is not hard to prove that the fast finger insertion and deletion operations described
above update the leader fields exactly as in the basic version of Section 5.3.2, so the
proofs of correctness in that section apply to them with respect to the leader fields.
We will thus prove that these assumptions hold, and that the size fields are updated
correctly, so as to maintain the size field invariant.
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Before inserting After inserting

Partition sets

Figure 5.6: An illustration of an update to a Treap Partitioning instance, showing
how a single operation may lead to several partition sets being merged together.

Proposition 7. The finger insertion operation described above correctly determines if
u is a leader, and correctly determines if inserting u causes a promotion of some node.

Proof: We start with the task of detecting if u is a leader. Fix a treap T ′, and
insert node u to obtain treap T . Node u is inserted into T ′ by inserting it at the
leaf position leaf(u, T ′) it would have occupied if it had the lowest priority of all
keys, and rotating u up to its correct location. By assumption, the nodes of T ′

previously satisfied the size field invariant, and the size fields were not altered as u
was rotated up. Let v be the child of u such that {u, v} was the final edge rotated
on as we rotated u up. (If v does not exist, then u is a leaf, and hence obvious not
a weight s leader if s > 1). We claim |Tu| = |T ′v|+ 1. To simplify the proof of this
claim, let us add two infinite priority nodes to T ′ — one less than all nodes in T
and one greater than all nodes of T . (This simply adds a parent and a grandparent
for the root of T ′.) Let a (respectively, b) be the minimum distance node from v
that is less than (respectively, greater than) v and has higher priority than v. Then
|T ′v| = distT ′(a, b)− 1, where distT ′(a, b) is the distance between a and b among the
set of keys stored in T ′. Moreover, the lower priority node in {a, b} is the parent
of v in T ′. Therefore, the lower priority node in {a, b} is the parent of u in T , so a
and b both have higher priority than u. Since u has higher priority than all nodes
strictly between a and b,

|Tv| = distT (a, b)− 1 = distT ′(a, b) = |T ′v|+ 1.
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Thus, u is a leader if and only if |T ′v| ≥ s−1, which occurs if and only if v.size ≥ s−1
(where for all integers m we let m < ∞ and null < m by convention). Of course,
this is precisely what the operation tests for.

Next we consider the task of determining if inserting u resulted in the “promo-
tion” of a node w to leadership status. This can only occur if u is not a leader, since
the promoted node w must be an ancestor of u and if u is a leader in T , then

s ≤ |Tu| ≤ |Tw| − 1 = |T ′w|

which contradicts the fact that w was not a leader in T ′.

So assume that u is not a leader. Let `(u, T ) be the leader of u in T . If a node
was promoted by the insertion of u then it must have been `(u, T ), and `(u, T ) was
promoted if and only if |T ′`(u,T )| = s− 1.

We first show that if there is a promotion, then we will detect it. From |T ′`(u,T )| =
s − 1 we infer that the parent v of `(u, T ) in T ′ was a weight s leader in T ′. Also,
since v is an ancestor of u, |Tv| = |T ′v| + 1 so v is a leader in T and furthermore,
every node in the subtree of T ′ rooted at `(u, T ) has v as its leader in T ′. Moreover,
since u is not a leader, its parent node must be a descendant of its leader `(u, T ),
so v = node(node(u.parent).leader) and the operation correctly detects the promo-
tion by finding the child u′ of v that is an ancestor of u, and determining that u′ is
promoted if u′.size = s− 1.

Next, assume that u is not a leader and there was no promotion. If there is not
a promotion, then `(u, T ) is the leader of u’s parent node in T ′. Thus `(u, T ) equals
node(node(u.parent).leader), and so the children of that node have subtree sizes less
than s− 1 by assumption, and the operation correctly determines this.

Proposition 8. The deletion operation described above correctly determines if u is a
leader, and correctly determines if deleting u causes a demotion of some node.

Proof: Clearly, u is a leader if and only if u.size = ∞ prior to the deletion. If
a node is demoted, then it is `(u, T ) = node(u.leader). This occurs if and only if
|T`(u,T )| = s, which we can determine by summing the size fields of the children of
`(u, T ), using m+∞ = ∞ for all integers m.

Proposition 9. The finger insertion and deletion operations described above correctly
update the size fields.

Proof: Let u be the node that we either insert or delete. In the case that u is
not a leader, updating the size fields to maintain the size field invariant is fairly
straightforward, so we omit the correctness proof for that case.
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So suppose u is a leader. To maintain the size field invariant, we need only
worry about three groups of nodes:

1. Nodes whose leadership status changes during the operation.
2. Children of nodes whose leadership status changes during the operation.
3. Nodes whose subtree size changes during the operation.

Any node that is not in one of these groups should not have its size field changed
in response to the operation.

First consider a finger-delete(u) operation. This operation stores a temporary
list L containing nodes on the rotation path of u. We claim that the nodes in the
three groups above are a subset of nodes in L and their children. Observe that
for any node v, there are only two ways |Tv| can change during the deletion of u.
The first is that v is involved in a rotation about edge {u, v} during the deletion
(i.e., v ∈ L). The second is that v was an ancestor of u. Clearly, the only way the
leadership status of v can change is via a change in |Tv|. Finally, note that since
u is leader in T , its ancestors have subtree sizes of at least s + 1, and will not be
demoted by by the deletion of u. Thus leadership status does not change and their
size fields should remain unaltered at ∞. It is not hard to verify that the operation
correctly sets the size field of all nodes in L as well as all children of nodes in L.

Next consider a finger-insert(u) operation. As with deletion, the changes in
leadership status require changes in subtree size, and changes in subtree size occur
only for nodes on the rotation path P of u. Also, since u is leader in T , its ancestors
have subtree sizes of at least s+ 1, and thus were leaders before the insertion of u.
It follows that the nodes in the three groups above are a subset of nodes in P and
their children.

We next claim that P is a subset of the nodes in the a-to-u path Pa and the
nodes in the b-to-u path Pb, where a and b are the predecessor and successor of
u, respectively. This can be proved by induction. Let P̂a and P̂b denote the a-to-u
path and b-to-u path after the insertion of u is completed. We allow Pa and Pb

denote the corresponding paths at any point in time, including in the middle of
the insertion. Our induction hypothesis is that after k rotations of u, there are
non-negative integers ka and kb such that

• ka + kb = k.
• If ka > 0 then a ∈ Tu and the a-to-u path consists of the first ka nodes in P̂a.
• If kb > 0 then b ∈ Tu and the b-to-u path consists of the first kb nodes in P̂b.
• The a-to-u and b-to-u paths consist entirely of nodes in the rotation path P .

We omit the details.
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We have show that we need only consider Pa ∪ Pb and the children of nodes in
Pa ∪ Pb. We claim that `(a) and `(b) and their ancestors were leaders before the
insertion of u, and so their size fields remain unchanged. This is because inserting a
node u with higher priority that a node v can either split Tv, thus reducing its size,
or leave it alone. Furthermore, the children of ancestors of `(a) and `(b) (except for
the children of `(a) and `(b) themselves) were not involved in rotations, and thus
their size fields remain unchanged as well. Thus, for the purposes of updating the
size fields, we only need to consider elements in the a-to-`(a) and b-to-`(b) paths,
together with their children. These are precisely the nodes the operation updates,
and it is easy to prove that it sets these fields correctly.

5.3.4 Performance Analysis and Some Additional Facts

Before proving Theorem 10 on page 78, we will prove several useful lemmata.

Lemma 2. Fix any treap T . Inserting or deleting a node u can alter the assignment
of nodes to their weight s leaders in T for at most 2s other nodes in T , namely those
within distance s of u.

Proof: We will prove this lemma by showing how to find the leader of any node x
while inspecting only those nodes y at distance at most s from x. This guarantees
that the existence or non-existence of other nodes at distance greater than s from
x can have no effect on who the leader of x is.

Let dist(u, v) denote the distance between u and v in key-space. Thus dist(u, v) =
k if there are k + 1 keys between u and v, inclusive. Fix a treap T on elements U .
Let A := {y : y ∈ U, y ≤ x, and dist(x, y) ≤ s} and B := {y : y ∈ U, y >
x, and dist(x, y) ≤ s} be the keys within distance s of x. Let a and b be the maxi-
mum priority elements of A and B, respectively. Without loss of generality, suppose
a has a higher priority than b. By the definition of a treap, all the keys in A ∪ B
must be descendants of a, and all the keys in B must be descendants of b. If we
assume that |A| = |B| = s, then we may infer that a and b are weight s leaders in
T . Furthermore, the path from x to the root of T must go through b. The leader of
x is thus the deepest node on the path from x to b with weight at least s, and this
node must lie between a and b, inclusive.

If |A| < s and |B| = s, we may safely add a dummy node that is less than
all elements of A in key order and has infinite priority, and apply the previous
argument. Likewise, if |B| < s and |A| = s, we may safely add a dummy node that
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is greater than all elements of B in key order and has infinite priority, and apply
the previous argument. Finally, if |A| < s and |B| < s, then there are no nodes at
distance greater than s from x, so there is nothing to prove.

Lemma 3. Fix any treap T . Inserting or deleting a node u can alter the size fields (set
according to the size field invariant) for at most 2s other nodes in T , namely those
within distance s of u.

The proof of Lemma 3 is very similar to the proof of Lemma 2, so we omit it.

Lemma 4. Let s ∈ Z+ and let T be a treap of size n with priorities generated by
an 11-wise independent hash function h from keys to [r] for some r ≥ n3. Then
Pr[|Tv| = k] = O(1/k2) for any 1 ≤ k < n, Pr[|Tv| = n] = O(1/n), and for any s ≥ 1,
Pr[|Tv| ≥ s] = O(1/s), so each node is a weight s partition leader with probability
O(1/s).

Proof: It is easy to prove that probability of a collision on priorities is at most(
n
2

)
/r < 1/2n. In this case, we use the trivial bound |Tv| ≤ n to show that

Pr[w(x) = k] ≤ Pr[w(x) = k | no collisions] + 1/2n

So assume there are no collisions on priorities. Let S be the set of points in T .
A useful lemma due to Mulmuley [Mul94] implies that a collection X of random
variables satisfies the d-max property (see Definition 9 on the next page) if X is
(3d + 2)-wise independent, and thus if h is the priority generating hash function
and U is any set of keys, {h(u) : u ∈ U} satisfies the d-max property for d ≤ 3.

Now consider the probability that |Tv| = k for some k. Relabel the nodes
{1, 2, . . . , n} by their key order. Note that |Tv| = k if and only if the maximal
interval I containing v such that v has the maximum priority in I has size |I| = k.
If k = n, then by the 1-max property Pr[|Tv| = n] = O(1/n). So suppose k < n,
and further suppose I = [a : b] := {a, a + 1, . . . , b}. Then either a − 1 has priority
higher than v, or a − 1 does not exist, and similarly with b + 1. If a − 1 does not
exist and |I| = k, then h(b+ 1) > h(v) > max{h(i) : i ∈ I and i 6= v}, which occurs
with probability O(1/k2) by the 2-max property. The case that b + 1 does not exist
is analogous. If both a − 1 and b + 1 exist, then min{h(a − 1), h(b + 1)} > h(v) >
max{h(i) : i ∈ I and i 6= v}. By the 3-max property, this occurs with probably
O(1/k3).

Taking a union bound over all intervals I ⊂ [1 : n] of length k that contain v,
we obtain

Pr[|Tv| = k] = O(1/k2).
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Given this fact, it is straightforward to show that Pr[|Tv| ≥ s] = O(1/s) for all s ≥ 1,
which completes the proof.

Definition 9 (d-max property). A finite collection X of random variables has the
d-max property iff there is some constant c such that for any subset of X and for any
enumeration X1, X2, . . . , Xm of the elements of that subset, we have

Pr[X1 > X2 > · · · > Xd > max{Xi : i > d}] ≤ c/md

where md :=
∏d−1

i=0 (m− i).

If the priorities are generated via a truly random hash function without colli-
sions, then it is relatively easy to work out the appropriate constants for Lemma 4.
For any node v and integer k such that 1 ≤ k < n, Pr[|Tv| = k] ≤ 3/k2. Further-
more, if v has at least k nodes less than it and greater than it, then Pr[|Tv| = k] =

2
(k+1)(k+2)

.

Lemma 5. Let s ∈ Z+ and let T be a treap of size at least s with priorities generated
by an 11-wise independent hash function from keys to [N3], where N is an upper
bound on the size of T . Let T ′ be the treap induced on the weight s partition leaders
in T . Then the probability that inserting a new element into T or deleting an element
from T alters the structure of T ′ is at most c/s for some absolute constant c.

Proof: We consider insertions first. There are only two ways the insertion of u into
T could change T ′. The first is that u may become a leader. Lemma 4 guarantees
that this occurs with probability O(1/s). The other possibility is that u may cause
an “overflow”, resulting in the promotion of a node that formerly had exactly s− 1
descendants to leadership status. By Lemma 2, if an overflow occurs it must occur
in a node within distance s of u. There are at most 2s such nodes, and by Lemma 4
each has a O(1/s2) probability of having exactly s − 1 descendants prior to the
insertion of u. Taking a union bound over these 2s possibilities, the probability of
an overflow is thus O(1/s).

Now consider deletions. Let S be the set of nodes in T . By the unique repre-
sentation property, deleting u returns T to the unique machine state with key set
S\{u}. The probability that this deletion alters T ′ is precisely equal to the probabil-
ity that inserting u into a treap storing S \ {u} alters T ′. However we have already
proved above that the probability of the latter event is O(1/s).

Lemma 6. Let s ∈ Z+ and let T be a treap of size at least s with priorities gen-
erated by a 12-wise independent hash function from keys to [N3], where N is an
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upper bound on the size of T . Let T ′ be the result of adding an element to T . Then
E[|Ls[T ]4Ls[T

′]|] ≤ c/s for some absolute constant c. Here X4Y := (X−Y )∪(Y −
X). Similarly, if deleting an element from T yields treap T ′′, then E[|Ls[T ]4Ls[T

′′]|] ≤
c/s for some absolute constant c.

Proof: By unique representation, it suffices to prove the lemma for insertions, as
each deletion can be interpreted as “undoing” some corresponding insertion. So
consider the insertion of x into T to yield treap T ′. Let X := |Ls[T ] 4 Ls[T

′]|,
X+ = |Ls[T

′] \ Ls[T ]| and let X− = |Ls[T ] \ Ls[T
′]|, so that X = X− +X+.

We first claim that X+ ≤ 1 unconditionally. Note that if y is an ancestor of x
in T ′, then |T ′y| = |Ty| + 1. Otherwise, |T ′y| ≤ |Ty| as inserting x either leaves Ty

unaffected or “cuts away” nodes from Ty. For example, if y < x and y has lower
priority than x, then inserting x will cut away all nodes in Ty greater than x; these
nodes will not be present in T ′y. Thus, if X+ > 0 then Ls[T

′] \ Ls[T ] consists of
ancestors of x, possibly including x. However, if x ∈ Ls[T

′] \ Ls[T ], then all of its
proper ancestors y satisfy |T ′y| ≥ s + 1, so |Ty| ≥ s and y was a leader in T . So
x ∈ Ls[T

′] \ Ls[T ] implies X+ = 1. If x /∈ Ls[T
′] \ Ls[T ], it is clear that there is at

most one ancestor y of x such that |Ty| < s and |T ′y| ≥ s, so X+ ≤ 1 in this case as
well.

Next we claim that E[X− | x /∈ Ls[T
′]] = 0. Each element y ∈ Ls[T ] \ Ls[T

′]
must have had its subtree size reduced when x was inserted. Note that only nodes
on the rotation path for x (from the leaf position x would have occupied if it had
priority −∞ to its current location) can have their subtree sizes reduced. All of
these nodes are descendants of x in T ′. If x is not a leader, which implies that none
of its descendants are either. Thus X− = 0 in this case.

Finally we claim that E[X− | x ∈ Ls[T
′]] = O(1). Lemma 2 implies that there

are only elements within distance s of x can lose their leadership status in response
to the insertion of x. However, by Lemma 4 each of these elements is a leader
in T with probability O(1/s), so only O(1) of these elements are leaders in T in
expectation. (We can apply Lemma 4 independent of the priority of x since fixing
the priority of x induces an 11-wise independent hash family on the remaining
priorities.) This immediately yields a bound on X− conditioned on x ∈ Ls[T

′].

We bound E[X] = E[X+] + E[X−] as follows. Since X+ ≤ 1 unconditionally,
E[X+] = Pr[X+ > 0] ≤ c/s from Lemma 5. Furthermore, E[X− | x /∈ Ls[T

′]] = 0,
so that E[X−] = E[X− | x ∈ Ls[T

′]] · Pr[x ∈ Ls[T
′]]. From our remarks above and

Lemma 4, this is bounded by c′/s for some absolute constant c′.
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Lemma 7. Let s ∈ Z+ and let T be a treap of size n with priorities generated by
an 11-wise independent hash function h from keys to [r] for some r ≥ n3. Then the
expected size of a partition in the weight s treap partition of T is Ω(s).

Proof: Let X be a random variable equal to the number of weight s leaders in T .
By Lemma 4, for any node v, Pr[|Tv| ≥ s] = O(1/s), so by linearity of expectation
E[X] =

∑
v Pr[|Tv| ≥ s] ≤ cn/s for some suitable constant c. Moreover, for any

fixed set of leaders, the average size of a partition is exactly n/X. By Jensen’s
inequality (reproduced as Theorem 11 below, see [Ste04] for a treatment), for any
positive random variable such as X, E

[
1
X

]
≥ 1

E[X]
. Thus the expected average size

of a partition is at least n
E[X]

≥ s
c
.

Theorem 11 (Jensen’s Inequality [Jen06]). Fix a convex function f : [a, b] → R and
a finite sequence of nonnegative numbers {pi}n

i=1 whose sum is one. Fix xi ∈ [a, b] for
i = 1, 2, . . . , n. Then f(

∑n
i=1 pixi) ≤

∑n
i=1 pif(xi).

We now commence with the proof of Theorem 10, whose statement may be found
on page 78.

Proof of Theorem 10: We are only using 11-wise independent hash functions
to generate priorities, so O(logN) random bits suffice. The fact that the data
structure requires only O(N) space to store an ordered set partition of capacity
N follows from the space efficiency of our uniquely represented bounded treap
(see Section 4.5). The expected O(log n) time insertion follows from the O(log n)
expected depth of a random treap, assuming fast finger search takes O(log n) ex-
pected time. Clearly, find operations take expected O(1) time, and could in fact
be implemented in worst-case constant time using a dynamic perfect hash table
to map the treap nodes onto the RAM memory. It remains only to prove that fast
finger insertions and deletions take expected O(1) time.

We begin with fast finger insertions. The high-level approach is to show that
either inserting u takes expected O(1) time if u does not changes the set of leaders,
and takes expected O(s) time if u changes the set of leaders. Since the latter event
occurs with probability O(1/s) by Lemma 5, the overall time bound is still constant
in expectation.

So consider a fast finger insertion of u. The actual insertion (i.e., the fast finger
search and rotations) takes expected O(1) time [SA96]. The tricky part is main-
taining the additional state, namely the leader and size fields. If u’s proper location
is below the frontier F and no node is promoted to a leader by the addition of u,
then it is easy to see that the insertion takes expected O(1) time.
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If a node u′ is promoted, then the time to perform the insertion is dominated
by the time to update the leader fields of the descendants of u′ and the time to
compute the sizes of the subtrees rooted at the children of u′ to update their size
fields properly. We can do both tasks at once, in expected O(s) time, by performing
a traversal on Tu′. Lemma 5 bounds the probability that a node is promoted by
O(1/s), so this scenario contributes expected constant time to the running time.

The third and final possibility is that u becomes a leader. (Note that we can
detect if u is leader or generated a promotion or neither of the above in expected
constant time.) We find the predecessor a and successor b of u in expected constant
time using fast finger search. As noted, we then can find `(a) and `(b) in expected
O(s) time using a non-standard but still fairly simple tree traversal. Let a′ and b′ be
the children of `(a) and `(b) that are ancestors of a and b, respectively.

Updating the leader fields of all of the descendants of a′ and b′ takes expected
O(s) time. Updating the size and leader fields of `(a), `(b), and u takes constant time.
Setting the size fields of a′ and b′ to |Ta′| and |Tb′| takes constant time, assuming
we computed these subtree sizes around during the search for `(a) and `(b). Alter-
nately, we can compute them in expected O(s) time via subtree traversals. Finally,
the nodes whose size fields must be set to null are all descendants of a′ or b′, and
thus they take only expected O(s) time to update. The whole process takes O(s)
time (after the rotations on u are complete). Lemma 5 bounds the probability that
u is a leader by O(1/s), so this scenario also contributes only expected constant
time to the running time. The total running time is thus O(1) in expectation.

Next we consider fast finger deletions. We can detect if u is leader or will
generate a demotion or neither of the above in expected constant time.

If u is not a leader and its deletion will cause no demotion, then the operation
clearly takes expected constant time. As with insertions, the actual deletion (i.e.,
rotating u down to a leaf position and pruning it) takes expected O(1) time [SA96].

If u is not a leader but causes a demotion of a node `(u), the operation takes
expected constant time to update the size fields of `(u) and its children, and takes
expected O(s) time to update the leader fields of each node in T`(u) to the key of the
parent of `(u). Lemma 5 bounds the probability that u causes a demotion O(1/s),
so this scenario also contributes only expected constant time to the running time.

The third scenario is that u is a leader. It takes expected O(s) time to find the
deepest node v in the list L of rotated nodes with |Tv| ≥ s. Computing |Tw| for
each child w of v to update w.size takes expected O(s) time. Updating the size and
leader fields of all ancestors of v in L takes expected O(|L|) time, which we amortize
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against the rotations of u. The same amortization applies to updating the size fields
of all descendants of v in L, and the children of such nodes. Thus updating the size
fields takes expected O(s) time in the case that u is a leader. It remains to bound
the time to update the leader fields. Note that we only update the leader fields of
either single nodes or entire subtrees. Furthermore, when we proceed to update
a subtree, every node in the subtree initially has its leader field set incorrectly, as
per the remarks in the proof of Proposition 6 on page 82. Therefore, updating the
leader fields of k nodes takes expected O(k+ |L|) time. We amortize the O(|L|) term
against the cost to do the rotations, and apply Lemma 2 to prove that k ≤ 2s + 1.
Thus the operation takes expected O(s) time (ignoring the costs amortized against
the rotations of u) if u is a leader. Lemma 5 bound the probability of this scenario
by O(1/s), so this scenario contributes expected O(1) time to the running time, for
an overall running time guarantee of expected O(1) time.

We also note that if the relative priorities are drawn from an random permuta-
tion, then the number of weight s leaders is O(n/s) with high probability, as the
following lemma states.

Lemma 8. Let T be a random treap with relative priorities determined by a random
permutation selected uniformly at random. Let n be the number of nodes in T and fix
s ≤ n. Then |Ls[T ]| = O(n/s) with probability 1−O

(
exp{− 2n

s(s+1)
}
)

.

Proof: Lemma 4 states that a node is a weight s partition leader with probability
O(1/s), so we may immediately infer that the expected number of weight s leaders
is O(n/s). In fact, since the priorities are fully random, it is not hard to show that
the probability of any node being in Ls[T ] is at most 3/(s− 1).

While this is encouraging, we aim to prove high probability bounds. Our task
is complicated by the fact that the events {v ∈ Ls[T ]} are dependent. Let Xv be
the indicator random variable for the event {v ∈ Ls[T ]} (i.e., Xv = 1 if this event
occurs, and zero otherwise). Then X =

∑
v∈T Xv equals the size of Ls[T ]. We

cannot simply use Chernoff bounds (see Theorem 12) on X. Instead, we partition
X as X =

∑
i Yi for dependent Yi that are each the sum of independent random

variables in {Xv : v ∈ T}. Lemma 2 on page 90 implies that the random variables in
{Xu : u ∈ W} are independent so long as the minimum distance (in the key space)
between any two elements of W is at least s + 1. Relabel the keys u1, u2, . . . , un,
with u1 < u2 < . . . < un. Define Wi := {u(i+j(s+1)) : j ∈ N} ∩ [1, n] for each i such
that 1 ≤ i ≤ s, and let

Yi :=
∑
u∈Wi

Xu.
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Applying the Chernoff bound variant of Theorem 12 to each Yi yields

Pr[Yi ≥ 3E[Yi]] ≤ exp (−E[Yi])

(Note that we make no attempt to optimize constants here.) We next apply Theo-
rem 13 to the Yi’s to obtain

Pr[X ≥ 3E[X]] ≤ max
i

(exp (−E[Yi]))

It is not hard to show that E[Yi] = 2n
(s+1)2

+ Θ(1), using the following facts.

• For all i, Pr[|Tui
| = n] = 1

n
.

• For all i such that s < i < n − s, and for all k such that s ≤ k < n,
Pr[|Tui

| = k] = 2
(k+1)(k+2)

= 2
(

1
k+1

− 1
k+2

)
.

• For all i such that i ≤ s or n − s ≤ i ≤ n, and for all k such that s ≤ k < n,
Pr[|Tui

| = k] = λ 2
k(k+1)(k+2)

+ 1
k(k+1)

≥ 1
k(k+1)

, where λ := min{i− 1, n− i}.

Therefore

Pr[X ≥ 3E[X]] ≤ O

(
exp

(
− 2n

s(s+ 1)

))
.

In particular

Pr
[
X ≥ 9n

s− 1

]
≤ O

(
exp

(
− 2n

s(s+ 1)

))
.

There are several Chernoff bounds, though we find the following one particularly
convenient.

Theorem 12. A Chernoff Bound (Theorem 5 of [CL06]). Let {Xi : 1 ≤ i ≤ n} be
independent binary random variables with Pr[Xi = 1] = pi and Pr[Xi = 0] = 1 − pi.
Fix any positive a1, . . . , an and let Y :=

∑
i aiXi, let µ := E[Y ] =

∑
i aipi, let β :=∑

i a
2
i pi, and let a := maxi{ai}. Then

Pr[Y ≤ µ− λ] ≤ exp
(
−λ2/2β

)
(5.1)

Pr[Y ≥ µ+ λ] ≤ exp
(
−λ2/2(β + aλ/3)

)
(5.2)

Siegel proved the following useful theorem (see Result 2.1 and Theorem 3 of [Sie95b]).

Theorem 13. [Sie95b]. Let X = X1 + X2 + · · · + Xk be the sum of k dependent
random variables. Let a = a1 + a2 + · · · + ak be partitioned so that the Chernoff-
Hoeffding estimates for Pr[Xi − E[Xi] ≥ ai] are at most C for all 1 ≤ i ≤ k. Then
Pr[X − E[X] ≥ a] ≤ C.
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5.4 Dynamic Ordered Sets & Dictionaries

The dynamic ordered sets abstract data type maintains an subset S ⊆ U from an
ordered universe U and supports the following operations.

• lookup(x): determine if x ∈ S.

• insert(x): insert x into S.

• delete(x): delete x from S.

• pred(x): For any x ∈ U , return the predecessor of x, max{y ∈ S : y < x}.

The related dynamic dictionary abstract data type also maintains auxiliary data
with each element, which can be updated via an insert operation and inspected
via a lookup operation. It is not hard to see that the two problems are essentially
equivalent, assuming the auxiliary data is a constant number of words (e.g., a
pointer to, or a label of, some other object). We will thus focus on the dynamic
ordered sets problem, and will consider two classes of inputs.

1. U = {0, 1, . . . , nO(1)} and uses the standard ordering on the integers.

2. U is an arbitrary set with an arbitrary permutation σ inducing a total ordering
<σ on U , and a black-box comparator f such that for all x, y ∈ U , f(x, y)
returns true if x <σ y and false otherwise.

Let n := |S| be the number of elements we are currently storing. In the first
case, the van Emde Boas structure [vEBKZ77] described by Mehlhorn and Na-
her [MN90a] requires only O(n) space and supports lookup and predecessor op-
erations in O(log log n) worst-case time and insertions and deletions in expected
O(log log n) time. The same guarantees can be obtained using the y-fast tries of
Willard [Wil83, Wil84]. It turns out that this is optimal up to constant factors
for any data structure using only n(log n)O(1) space [PT06], though data structures
that use nΘ(1) space may be slightly faster [BF02]. In the second case, a standard
binary search tree such as AVL trees [AVL62] will support all operations in worst
case O(log(n)) time while using only linear space. This is optimal by the Ω(n log n)
sorting lower bound for a universe with a comparator4. We will achieve the same

4This folklore result is proved by modeling any sorting algorithm as a decision tree T branching
on the output of the comparator. The tree must have at least n! leaves corresponding to the n!
possible orderings on U , and since the comparator only provides a bit of information per query T
must be a binary tree. It follows that its average depth is Ω(n log2(n)).
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performance guarantees, up to randomization, for uniquely represented implemen-
tations of the dynamic ordered set abstract data type, as described in Theorems 14
and 15.

5.4.1 Integer Keys

Theorem 14. A uniquely represented ordered dictionary on n keys from the do-
main U = {1, 2, . . . , nc} for any constant c can support lookup and predecessor in
O(log log n) worst-case time, and insertion and deletion in O(log log n) expected time,
while using O(n) data space5.

We will prove Theorem 14 by modifying the y-fast trie [Wil83] to make it
uniquely represented. First we review the construction of y-fast tries.

y-Fast Tries. Suppose we are given a set S ⊆ U of keys, where x ∈ S has asso-
ciated data d(x). We treat each x ∈ U as a bit string, and store each prefix p of
each element x ∈ S in a dynamic perfect hash table H. Each element x has d(x)
stored with it, and each proper prefix p has min{x : x ∈ S, p is a prefix of x} and
max{x : x ∈ S, p is a prefix of x} stored with it. We also maintain all elements in a
linked list L, sorted in order. This implementation requires O(n log |U |) space, and
can support insertions and deletions in expected O(log |U |) time. It can also sup-
port predecessor queries in O(log log |U |) time as follows. Given x, find the longest
prefix p of x such that p is in the hash table H. This can be done via a binary
search on the length of p (in bits) in O(log log |U |) time. If p · 1 is a prefix of x, then
max{x′ : x′ ∈ S, p · 0 is a prefix of x′} is the predecessor of x. Otherwise, p · 0 is a
prefix of x, and min{x′ : x′ ∈ S, p · 1 is a prefix of x′} is the successor of x, which
is adjacent to the predecessor of x in L. In either case, we can find the predecessor
in O(1) time after finding p.

To reduce the space usage toO(n) and the update time to expectedO(log log |U |),
Willard used indirection. This technique involves partitioning S into Θ(n/ log |U |)
groups of size O(log |U |), and selecting a single representative from each group.
The representatives are stored in the structure described above using O(n) space.
Each group is stored in a balanced binary search tree, so that updates and prede-
cessor queries within each tree take O(log log |U |) time.

We now proceed with the proof of Theorem 14.
5See Definition 6 on page 26.
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Proof: We use the uniquely represented dynamic perfect hash tables of Section 3.2
instead of conventional dynamic perfect hash tables. It is not hard to see that in
this case, the simple version of the data structure (that may use Θ(n log |U |) space)
is uniquely represented. The set of prefixes and keys stored, along with the values
stored with them, is a function of the dictionary contents and the random bits only,
and is history independent.

For the indirection, we can use the treap partitioning scheme of Section 5.3 with
partition size parameter β = Θ(log |U |). The partition leaders can be stored as de-
scribed above, and each group (i.e., each partition set) can be stored in a uniquely
represented binary search tree such as may be found in Section 4.5. (The differ-
ent structures can be have memory dynamically allocated to them as described in
Chapter 8.) This will maintain unique representation and assuming there are only
O(n/ log |U |) leaders the resulting structure will use O(n) space. By Lemma 8, this
assumption holds with very high probability (i.e., 1 − exp{−Ω(n/ log2 |U |)}). To
ensure the data structure uses O(n) data space with certainty rather than with very
high probability, we can select a permutation on hash functions for the treap parti-
tioning scheme as we do for the dynamic perfect hash table of Section 3.2. As with
the dynamic perfect hash table, the cost to reconstruct everything using the lowest
index hash function adds only o(1) expected time to the operations. We omit the
details.

Finally, we bound the running time. If there are only O(n/ log |U |) leaders, the
running times for lookups and predecessor queries are the same as conventional y-
fast tries. Consider the insertion or deletion of an element x. If the operation does
not change the set of leaders, then we need only find the group that x belongs
to (using a predecessor query this takes O(log log |U |) time), and insert it into the
corresponding uniquely represented binary search tree (in expected O(log log |U |)
time). If the operation does change the set of leaders, as happens with probability
O(1/ log |U |) by Lemma 5 on page 92, it changes the leaders of at most O(log |U |)
keys by Lemma 2. Inserting these keys into the appropriate binary search trees thus
costs expected O(log |U | log log |U |), so this part of the operation takes O(log log |U |)
time in expectation. Additionally, some of these keys may have to be added or
removed from the dynamic perfect hash table, along with all of their prefixes. This
takes expected O(log |U |) time per key that is added or removed from the set of
leaders. Lemma 6 on page 92 proves that the expected number of keys that are
added or removed from the set of leaders is O(1/ log |U |) per update, so this part
of the operation takes only O(1) time in expectation.
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Using van Emde Boas Structures. We note that the construction described by
Mehlhorn and Naher [MN90a] based on the van Emde Boas structure [vEBKZ77,
vEB77] can also be converted into a uniquely represented solution to the ordered
dictionary problem. This is the approach taken in [BG07]. The basic idea is
to use the uniquely represented dynamic perfect hash tables of Section 3.2 in-
stead of conventional hash tables in the algorithm described by Mehlhorn and
Naher [MN90a], and to use treap partitioning for indirection (to reduce the space
usage from O(n log log |U |) to O(n)). It is also necessary to dynamically resize the
hash tables and devise a means to label the hash tables in a uniquely represented
manner for purposes of memory allocation. While this is all certainly possible,
y-fast tries appear to offer a slightly simpler solution.

5.4.2 Keys with a Comparator

In the case that the keys come from a general universe with a comparator we use
a variant of treaps [SA96]. We assume every element has a unique label that can
be used by a hash function.

Theorem 15. A uniquely represented ordered dictionary on n keys from a totally
ordered domain U can support lookup and predecessor in O(log n) worst-case time,
and insertion and deletion in O(log n) expected time, while using O(n) data space.

Proof: We store all elements in a treap using a uniquely represented hash table to
locate the elements in memory. The space bound is thus an immediate consequence
of Theorem 7. We use a random hash function to generate priorities. From Lemma
4.8 of [SA96] we have Pr[depth(x) ≥ 1 + 2c lnn] < 2(n/e)−c ln(c/e). For a set of keys
S, we will call a priority function f good if the corresponding treap on S using f
has depth at most, say, 8 lnn, and bad otherwise. In the unlikely event that the
initial priority function is bad, we would ordinarily just respond by generating a
new random priority function and reconstructing the tree with the new priorities.
To maintain the property of unique representation, however, we must be careful.
As with dynamic perfect hashing (see Section 3.2), on initialization we select a
random permutation on a suitable family of priority functions πprio, and iterate
through {πprio

i : i = 0, 1, 2, . . .} until we find the first priority function which is
good for the current keys. As with hashing, after deleting a key we will need to
reconstruct the treap using each πprio

i in increasing order of i until we find the first
one which is good for the current set of keys. However since the probability that
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we need reconstruct the treap t times is O(n−λt) with λ = 4 ln(4/e) ≈ 1.545, the
expected reconstruction cost is o(1).

5.5 B-Treaps: A Uniquely Represented Alternative to
B-Trees

B-trees were invented by Bayer and McCreight [BM72], and are often used to
organize information on magnetic disk drives so as to minimize disk I/O operations.
B-trees are typically analyzed in an external memory model of computation.

An External Memory Model. For concreteness, we describe a variant of the par-
allel disk model of Vitter [Vit06], with one processor and one disk. This model
focuses on the performance bottleneck due to disk I/Os, and thus measures per-
formance in terms of them6. In it, there are two types of memory: internal and
external. Internal memory is modeled as in a RAM, as a large one dimensional
array of data items. External memory is modeled as a very large one dimensional
array of blocks of data items. A block is a sequence of β data items, where β is
a parameter of the model called the block transfer size. The external memory can
read (or write) a single block of data items to (or from) internal memory during a
single I/O. Other parameters include the problem size, n, and the internal memory
size m, both measured in units of data items. It is typically assumed that m = ω(β),
so that any constant number of blocks can be stored in internal memory. Note that
we state the performance guarantees of B-treaps in terms of B-treap nodes read or
altered instead of the number of blocks read or written. When each B-treap node
fits in a block, these measures are equal up to constants.

B-trees layout. B-trees exploit the external memory model by storing at each
node v a set of keys Xv = {x1, x2, . . . , xk} in sorted order at each node v, and
maintaining pointers {pi : 0 ≤ i ≤ k} to children of v, such that pi points to a
child u of v storing a set keys between xi and xi+1. (Here, we define x0 to be the
largest key in some ancestor of v that is less than x1, if it exists, and otherwise x0

is a key less than every other key. Similarly, we define xk+1 to be the smallest key
in some ancestor of v that is greater than xk, if it exists, and otherwise xk is a key

6In current hardware, disk I/Os are roughly 106 times slower than internal memory accesses.
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greater than every other key.) Moreover, the subtree rooted at the node pi points
to contains all keys between xi and xi+1. The main advantage of B-trees is that if
the sets of keys stored at a node are always of size at least α, then the depth of the
tree is at most logα(n), as opposed to the log2(n) lower bound for the depth of any
binary tree on n nodes. Often, α is set to nε for some constant ε > 0, so that the
depth of the tree is constant. More information on B-trees and their variants (e.g.,
the B+-tree and the B∗-tree) can be found in almost any data structures textbook
(see e.g., [AHU83, CLRS01, Vit06]) or in the survey of Comer [Com79].

We will not attempt to create a uniquely represented variant of a B-tree. Instead
we will construct a uniquely represented tree that is a suitable replacement. We
call the resulting data structure a B-treap, for “bushy-treap7.” It will support the
following operations.

• insert(x): insert key x into the B-treap.

• delete(x): delete key x from the B-treap.

• lookup(x): determine if x is present in the B-treap, and if so, return a pointer
to it.

It is easy to associate auxiliary data with the keys, though for simplicity of expo-
sition we will assume there is no auxiliary data being stored. We will prove the
following result.

Theorem 16. There exists a uniquely represented implementation of a bounded B-
treap whose memory is statically allocated and stores keys of a fixed size, such that if
the B-treap contains n keys and stores Θ(α) keys in each node, where α = Ω

(
(ln(n))1/(1−ε)

)
for some ε > 0, then lookup, insert, and delete each touch at most O(1

ε
logα(n)) B-

treap nodes in expectation. Furthermore, in this case the B-treap has depthO(1
ε
logα(n))

with high probability, and if α = O(n
1
2
−δ) for some δ > 0, then with high probability

this implementation requires only linear space to store the B-treap.

We will devote the remainder of this section to proving Theorem 16. The organi-
zation, implementation, and analysis of B-treaps are all discussed in the following
sections.

7According to Comer [Com79], “The origin of ‘B-tree’ has never been explained by the authors
[Bayer and McCreight]. [...] ‘balanced,’ ‘broad,’ or ‘bushy’ might apply.”
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5.5.1 B-Treaps Organization

Fix a parameter α > 2. Our construction will store at most 2α− 1 keys in any given
node. See Figure 5.7 for a depiction of a B-treap. Suppose we wish to store a set
of keys U . We first describe how the B-treap is organized, and then discuss how to
implement the operations.

a
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e

f

g

h

i

j

k

l

d,h

b,f i,k

a,c e,g j,l

A treap on keys {a, b, ..., l} and the corresponding B-Treap with           .

The treap has frontiers {b, f, k} for the weight     leaders, {d, h} for the 
2nd-iterated weight     leaders, and {h} for the 3rd-iterated weight     leaders.

The shaded regions indicate partition sets whose leaders on are a frontier.

Figure 5.7: A depiction of a B-treap.

First consider a uniquely represented treap T from Section 4.5 storing U . We
first describe the organization of the B-treap informally, and then give a formal
description. We make use of a refinement of the treap partitioning scheme of
Section 5.3. Let Lα[T ] be the weight α leaders of T , and let `(u) be the leader of u
in Lα[T ]. We will make use of the following definition.

Definition 10 (Frontier). For a set of nodes S ⊆ U , let the frontier of S, denoted
F [S], be the nodes in S that have at least one child not in S.

We will store the followers in the partition sets whose leaders are in the frontier,
one per node of the B-treap. That is, for each v ∈ F [Lα[T ]], we create a node for
the B-treap and store {u : `(u) = v} \ {v} in it. These will be the leaves of the B-
treap. We then remove all the followers (i.e., elements of U \ Lα[T ]), and perform
the same procedure on the remaining portion of T . A B-treap leaf storing key set
{u : `(u) = v} \ {v} has as its parent the node containing key v. We repeat the
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process until T has less than α nodes left, in which case all the remaining nodes
are assigned to the root node of the B-treap.

Formally, the B-treap T̄ is organized as follows, to maintain what we will call
the B-treap organization invariant. Fix the random bits of the RAM. Given a set of
keys S ⊆ U , let treap(S) be the uniquely represented treap on key set S. As before,
let Lα[T ] be the weight α leaders of T . We will need the following definitions.

Definition 11 (Iterated Leaders of T ). The ith–iterated weight α leaders of T , de-
noted Li

α[T ], are defined inductively as follows.

• If i = 0, Li
α[T ] is the set of all keys in T .

• If i ≥ 1 and |Li−1
α [T ]| > 1, then Li

α[T ] = Lα[treap(Li−1
α [T ])].

• If i ≥ 1 and |Li−1
α [T ]| ≤ 1 then Li

α[T ] = ∅.

Furthermore, let `i(u) be the deepest ancestor of u in T that is an ith–iterated weight
α leader of T .

Definition 12 (Rank). The rank of a node v in T , denoted rank(v), is the maximum
integer k such that v ∈ Lk

α[T ]. The rank of a tree is the rank of its root.

Let k = rank(T ) be the rank of the root of T . We will store the keys in Lk−1
α [T ]

as well as the root of T at the root of the B-treap T̄ . For i = k− 1 to 1 in decreasing
order, for each node v ∈ F [Li

α[T ]], construct a node v̄ in T̄ corresponding to v with
a key set consisting of the followers of v in the ith level treap partition, excluding v.
Formally, the key set of v̄ is {u : u 6= v, `i(u) = v, and u ∈ Li−1

α [T ]}. Finally, make v̄
a child of the node in T̄ corresponding to `i+1(v). Note that it is possible for a node
v to be in two different frontiers, so that v ∈ F [Li

α[T ]] and v ∈ F [Lj
α[T ]] for i < j.

In this case, we create a B-treap node corresponding to each instance in which
v is in some frontier. In other words, we create a B-treap node corresponding
to (v, i) and another one corresponding to (v, j). In this case, the key set of the
former is {u : u 6= v, `i(u) = v, and u ∈ Li−1

α [T ]} and the key set of the latter is
{u : u 6= v, `j(u) = v, and u ∈ Lj−1

α [T ]}. In the future, we will simply refer to the
B-treap node corresponding to v, since it can always be inferred from the context
which copy is meant.

We have described above how to assign keys to B-treap nodes. In fact, the
B-treap will not store merely a set of keys in each node, rather it will store the
corresponding treap nodes, with left and right fields for the left and right child of
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the current node. The idea is that each node of the B-treap will store a portion
of the treap, which will allow us to perform the B-treap operations while touching
relatively few (i.e., O(logα n)) B-treap nodes. In particular, the treap node set
stored at each B-treap node will induce at most two connected components in the
treap. Finally, if a treap node v stored in B-treap node v̄ has a child u that is stored
in a different B-treap node ū, we store the label of ū with v. Thus each treap node
should have two more fields left b-treap child and right b-treap child. (Alternately,
we may store two additional bits with each node indicating whether the left and
right fields correspond to a “local” treap nodes stored in the same B-treap node or
to another B-treap node. Given the B-treap node ū containing, e.g., v’s left child
in T , we can find v’s left child in T by scanning the treap nodes stored in ū and
selecting the highest priority node less than v.) These B-treap node labels may be
generated in several ways. For example, we may use the minimum key in the set of
treap nodes stored in the B-treap node. Alternately, we may use the hash-consing
technique in Section 5.2.2.

By storing small regions (i.e., (nearly) connected subgraphs) of the treap in
each B-treap nodes, and storing abstract pointers (in the form of labels) corre-
sponding to treap edges that cross from one region to another, we can search the
B-treap for a key by using the underlying treap that it stores. In effect, we have
described how to simulate the treap with the B-treap. However, this is not enough
information to dynamically maintain the B-treap organization invariant. For that,
we must implement several layers of treap partitioning.

5.5.2 Iterated Treap Partitioning

As before, let k = rank(T ). We wish to dynamically maintain k treap partitioning
instances simultaneously on the same treap T , where the ith instance stores the
weight α partition of treap(Li−1

α [T ]). Surprisingly, this is indeed possible. Consider
the basic treap partitioning scheme of Section 5.3.3, particularly the basic size field
invariant of Section 5.3.2:

For all v with |Tv| < α, v.size = |Tv|. Otherwise v.size = ∞.

Note that the size fields of leaders are set to ∞ by convention, because they are
there and must be set to some default to ensure unique representation. We could
have just as easily set it to be any other value that is distinguished from the subtree
sizes. For the iterated treap partitioning scheme, we can thus modify the size fields
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to store a pair of integers and modify the invariant as follows. (Below, for a treap
T and set of nodes S, we define T ∩ S as though T where the set of the nodes it
contains.)

The size field invariant (iterated version):
For each treap node v, v.size = (rank(v), |Tv ∩ Lrank(v)

α [T ]|).

The invariant describing what the leader fields should be set to must also be
modified. In particular, each node v with v.size ∈ {i} × N should have its leader
field set to `i+1(v), its deepest ancestor in Li+1

α [T ]. (From v.size ∈ {i} × N we may
easily infer that v ∈ Li

α[T ], so if i ≥ 1, v is its own jth-iterated leader for all j ≤ i.)
Then v will be stored in the B-treap node corresponding to node(v.leader).

5.5.3 Implementing B-Treaps

Let T̄ be a B-treap storing a treap T . We implement the operations as follows.

Lookup: Given an input key u, start at the root r̄ of T̄ , find the root r of the treap T
(by finding the highest priority node stored in r̄) and proceed as in a regular
treap lookup, jumping from one B-treap node to the next as necessary.

Insertion: To insert a key, create a new node u with that key and search for the
leaf position leaf(u) that u would occupy in the treap T , if it had the lowest
priority of any node. Rotate u up to its proper position in T , updating the size
fields appropriately during the rotations, so as to maintain the iterated size
field invariant. This can be done in constant time per rotation, and ensures
that the size fields of all descendants of u are correct.

Suppose u is a leader in some partition – that is, rank(u) > 0. As in the treap
partitioning scheme of Section 5.3, find the predecessor predecessor a and
successor b of u in T . Proceed up the a-to-u and b-to-u paths looking for `i(a)
and `i(b) for all i ∈ {1, 2, . . . , rank(u)}. (Recall `i(v) is the deepest ancestor
of v in Li

α[T ].) These are easy to find given the information stored in the size
fields. If a node v was in F [Li

α[T ]] and no longer is, then the corresponding
B-treap node must be destroyed. Similarly, if a node v is now in F [Li

α[T ]]
and was not previously, then a corresponding B-treap node must be created.
Furthermore, whenever a node has its leader field changed, we must move it
to the B-treap node corresponding to its new leader.
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Let a′i and b′i be the children of `i(a) and `i(b) that are ancestors of a and b,
respectively. For each i ∈ 1, 2, . . . rank(u), update the leader fields of all of
the descendants of a′i in Li−1

α [T ] to `i(a).key and move them to the B-treap
node corresponding to `i(a). Do likewise for the the descendants of b′i in
Li−1

α [T ], with `i(b) in place of `i(a). Make sure to destroy all B-treap nodes
that become empty of treap nodes during this process.

That addresses the descendants of u with rank less than rank(u). The de-
scendants of u with rank equal to rank(u) will have their fields set correctly
unless inserting u causes some node to be promoted. We will deal with that
possibility later, and will now focus on setting u’s leader field correctly. To
do so, we find `rank(u)+1(u). As in the case with treap partitioning, inserting
u may cause a “promotion” of some ancestor of u into Lrank(u)+1

α [T ]. We can
determine this as in treap partitioning. Specifically, set the leader field of u
to equal the leader field of its parent node. Find the child of node(u.leader)
that is an ancestor of u, which we denote by u′. Then there is a promotion
if and only if u′.size ∈ N × {s − 1} and u′ 6= u. If there is no promotion,
then merely increment the second coordinate of w.size for each w on the path
from u to u′ (excluding u and including u′), and insert u into the B-treap node
corresponding to node(u.leader).

If u′ is promoted, create a new B-treap node ū′ corresponding to it. Traverse
Tu′ ∩ Lrank(u)

α [T ] move all nodes therein to ū′, and change their leader fields
to u′.key. Note that this correctly updates the leader fields and placements of
the descendants of u with rank equal to rank(u). Additionally, increment the
second coordinate of w.size for each w on the path from u to u′ (excluding u
and u′).

Finally, we must consider the possibility that the promotion of u′ into Lrank(u)+1
α [T ]

may cause an additional promotion of some node into Lrank(u)+2
α [T ], which

may in turn cause an additional promotion of some node into Lrank(u)+3
α [T ],

and so on, potentially all the way up to the root. However, the promotion of
a node w into Lk

α[T ] is like an insertion of w into the weight α partition on
Lk

α[T ] with the additional fact that w is a leaf of treap(Lk
α[T ]). Hence we can

handle it as discussed above.

Deletion: Let u be the node to be deleted. First, we deal with potentially cascading
demotions. We repeat the following process until the demotion or deletion of
the current node w does not cause a demotion of its leader. Initialize w to u.

Proceed up the path P from w to wl := node(w.leader), decrementing the
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second coordinate of w′.size for each w′ ∈ P \ {w,wl}. Use the size fields
of the children of wl to determine if |Twl

∩ Lrank(wl)−1
α [T ]| = α before the

deletion or demotion of w.

If |Twl
∩ Lrank(wl)−1

α [T ]| = α then wl will be demoted, in which case we
create a new B-treap node corresponding to the parent of wl. Traverse
Twl

∩ Lrank(w)
α [T ], move all of the nodes therein to the newly created B-

treap node, and set their leader fields to the key of the parent of wl. Also,
decrement the first coordinate of wl.size (i.e., its rank) and set its second
coordinate to α− 1.

Set w = wl.

Next, rotate u down to a leaf position, updating the subtree size information
appropriately on each rotation. This can be done in constant time per rota-
tion. (Make sure to account for the fact that u will ultimately be deleted from
the treap when updating these size fields.)

If initially rank(u) = 0, then just delete u. If initially rank(u) ≥ 1, maintain a
list L of nodes x such that we rotated on edge {x, u} when rotating u down
to a leaf position. Within the list, mark nodes whose rank changed. (Note
that we can determine if rank(x) changes during the rotation of edge {x, u} in
constant time, given the nodes x and u and their children.) Delete u from the
treap, but retain a temporary copy of its fields. Let rank(u) denote the initial
rank of u. For i ∈ {1, 2, . . . , rank(u)} in increasing order, find the deepest
element vi of Li

α[T ] in L. For each i, if there is no B-treap node corresponding
to vi then create one. For each node x ∈ L, in order of increasing priority, if
x ∈ Li−1

α [T ] is a descendant of vi and has a child x′ ∈ Li−1
α [T ] with x′.leader 6=

vi.key, update the leader field of each node in Tx′ ∩ Li−1
α [T ] to vi.key. Move

all such nodes to the B-treap node corresponding to vi. Also set x.leader =
vi.key and move it to the B-treap node corresponding to vi. Throughout the
whole operation, make sure to destroy all B-treap nodes that are emptied of
treap nodes. If the deletion of u did not cause any demotions, then for each
ancestor x of vrank(u) in L set x.leader = u.leader. Also, if x has a child y of
with rank(y) < rank(x) then for each such child y test if y.leader 6= x.key. If so,
do a traversal of Ty ∩ Lrank(y)

α [T ], update the leader field of each node in that
subtree to x.key, and move each such node to the B-treap node corresponding
to x.
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5.5.4 The Analysis of B-Treaps

Proving Correctness

The correctness proofs for the B-treap operations are slightly more complicated
than those for the treap partitioning technique of Section 5.3, however they employ
almost exactly the same reasoning as may be found in Section 5.3.2 and offer no
further insight. The crux of the matter is to show that the field invariants are
maintained. We omit the details.

Bounding the Space Usage

We next analyze the space usage of the B-treap, and ultimately show that if the
treap priorities are generated via an n-wise independent hash function and α =
O(n

1
2
−ε), then the space usage is linear with overwhelming probability (roughly

1 − exp (n/α2)). Towards this end, Proposition 10 bounds the space needed for
any given B-treap node at O(α) words, and Lemmas 9 and 10 together bound the
number of B-treap nodes at O(n/α). All together, this implies that a B-treap with
n keys uses only O(n) words of space with high probability, thus proving the space
bounds of Theorem 16.

Proposition 10. Each B-treap node v̄ has at most 2α− 1 treap nodes stored in it.

Proof: Assume the operations maintain the B-treap organization invariant. Fix
any B-treap node v̄. The keys stored at v̄ must be a subset of a weight α partition
of some subtree of T , and thus, as per the discussion in Section 5.3.1, each B-treap
node has at most 2α− 1 treap nodes stored in it.

Lemma 9. A B-treap T̄ on n ≥ α keys obtained from the iterated weight α partition
of a random treap T uses O(n+αl) words of space, where l is the number of leaves in
the B-treap.

Proof: A chain C of T is a connected set of degree two nodes in T such that for
all u, v ∈ C, u is an ancestor of v or v is an ancestor of u. Thus, each chain C
can be written as ancestors(u) ∩ descendants(v) for some nodes u, v ∈ C, called the
endpoints of C. It is not hard to see that any chain C of T has all of its nodes stored
in at most

⌊
|C|
α

⌋
+2 nodes in the B-treap T̄ . If, for example, |C| ≥ α/2, then we may

amortize the storage required for these
⌊
|C|
α

⌋
+ 2 nodes (each of which takes O(α)
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words of space) against the |C| treap nodes at a rate of O(1) words of space per
treap node. We thus mark all B-treap nodes that store at least one treap node from
any chain of T of length at least α/2. As per our previous remarks, the marked
nodes take up O(n) words of space.

Next, consider the unmarked nodes. We claim that the number of unmarked
nodes is at most 2l, where l is the number of leaves in the B-treap (either marked
or unmarked). To prove this, we first prove that in the B-treap, each unmarked
internal node v̄ other than the root has at least two children. Since v̄ is an internal
node, each treap node u stored in it has rank(u) ≥ 1, so that |Tu| ≥ α. Suppose the
treap nodes in v̄ have rank k. Then each u ∈ F [Lk

α[T ]] stored in v̄ corresponds to
a child of v̄ in T̄ . However, if there were only one such node, then v̄ must store a
chain of length at least α−1, contradicting the fact that v̄ is an unmarked, internal,
non-root node. This allows us to bound the number of unmarked nodes as follows.
Let m be the number of marked, internal, non-root nodes in T̄ . Let i be the number
of unmarked, internal, non-root nodes in T̄ . There are thus m+ l + i+ 1 nodes in
the B-treap. Each marked, internal, non-root node has degree at least two, each
leaf has degree one, and each unmarked, internal, non-root node has degree at
least three. Using the well-known facts that in any undirected graph G = (V,E),∑

v∈V deg(v) = 2|E| and in a tree |E| = |V | − 1, we may infer

l + 2m+ 3i+ 1 ≤
∑
v∈V

deg(v) = 2|E| = 2(m+ l + i)

Canceling terms yields i + 1 ≤ l, so that the total number of unmarked nodes
in the B-treap is at most twice the number of leaves l. Since each B-treap node
takes O(α) words of space, this implies that the total space requirement for the
unmarked nodes is O(αl)

Lemma 10. Let T̄ be a B-treap on n ≥ α keys obtained from the iterated weight
α partition of a random treap T with relative priorities determined by a random
permutation selected uniformly at random. Let l be the number of leaves of T̄ . Then
l = O(n/α) with probability O

(
exp{− 2n

α(α+1)
}
)

.

Proof: The number of leaves in T̄ equals |F [Lα[T ]]|, which is bounded by |Lα[T ]|.
The result thus follows from Lemma 8 on page 96.
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Bounding the Depth

The whole purpose of the B-tree is to reduce the depth of the search tree from,
e.g., 2 log2(n) (for red-black trees) or ∼ 1.44 log2(n) (for AVL trees), to logα n for
a suitable parameter α. As mentioned previously, α is often set to nε for some
constant ε, to make the tree height roughly 1/ε. So it is reasonable to require any
proper B-tree alternative to also have height O(logα(n)). The B-treap does indeed
have this property with high probability if α is sufficiently large, though proving
this fact involves invoking some subtle inductive probabilistic conditioning.

Theorem 17. Fix a random treap T on n nodes with relative priorities determined
by a random permutation selected uniformly at random. Let T̄ be the corresponding
B-treap generated from the iterated weight α partitioning of T . If α = Ω

(
ln(n)1/(1−ε)

)
for some positive constant ε, then rank(T ) = O

(
1
ε
logα(n)

)
with high probability.

Furthermore, since the B-treap depth is bounded by the rank of its root node, these
bounds apply to the B-treap depth as well.

Proof: Let

f(m, k) := Pr[A random treap T on m nodes has rank(T ) > k]

In the definition of f , we assume the treap T has priorities determined by a truly
random permutation on the keys. (We do not use a hash function to determine the
priorities, to avoid having to deal with collisions. Nevertheless, the probability of
a collision on priorities can be made as small as 1/nc for any constant c, so using
hash functions does not affect the result.)

First we claim the intuitively natural statement that adding a node to the treap
cannot improve the B-treap depth “on average.” More precisely, we claim that for
any m and k, f(m, r) ≤ f(m + 1, r). In other words, adding a node to the treap
results in a distribution over rank(T ) that stochastically dominates (at first order)
the previous distribution over rank(T ). Perhaps the easiest way to see this is to fix a
treap T on n nodes and consider adding a new node v that is greater than all others.
No matter what priority v has, it cannot split any subtree of T . As such, v cannot
affect the rank of any nodes that are not ancestors of it. Furthermore, inserting v
can only increase the rank of its ancestors, if it changes them at all. Suppose for a
contradiction that node u is the deepest ancestor of v whose rank decreased when
v was inserted. Suppose u had rank k before inserting v and has rank k′ < k after
inserting v. Since u’s rank decreased, inserting v must have decreased the number
of descendants of u of rank exactly k− 1. Since inserting v can only affect the rank
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of its ancestors, this means that some node w that is an ancestor of v and a proper
descendant of u must have had its rank changed. Previously, the rank of w was
k − 1. If the rank of w increased to k′′ ≥ k, then w must have higher priority than
u after the insertion of v; this contradicts the fact that on any path to the root the
ranks are non-decreasing. If the rank of w decreased, this contradicts our choice of
u as the deepest ancestor of v whose rank decreased. We conclude that the rank of
the root does not decrease as we add v, and hence f(m, r) ≤ f(m+ 1, r).

Having proved f(m, r) ≤ f(m+ 1, r) for any m and k, we proceed by induction
on the treap size. Specifically, we will use the following induction hypothesis, for
suitable constants c1, c2 and c3. We will not attempt to optimize constants here, as
it adds unnecessary clutter to the proof.

f

((
α

c2 ln(n)

)k

, c1k

)
≤ (3(α+ 1))k

nc3
(5.3)

For the basis, k = 1, note that with less than α nodes, rank(T ) = 1 with certainty,
so if c1 ≥ 1 and c2 ≥ 1/ ln(n), f( α

c2 ln(n)
, c1) = 0.

For the induction step, we assume the induction hypothesis is true for k − 1

and prove it for k. Consider a treap T on m =
(

α
c2 ln(n)

)k

nodes, with keys X :=

{1, 2, . . . ,m}. Let Y be the α nodes of T with the highest priorities. Since the
priorities are random, Y is will be distributed uniformly at random on {V : V ⊂
X, |V | = α}. Let Y = {y1, y2, . . . , yα}, with y1 < y2 < · · · < yα, and let y0 =
0, yα+1 = m+ 1. Define Zi := {z : yi < z < yi+1} for all 0 ≤ i ≤ α. We claim that

rank(T ) ≤ max
0≤i≤α

(rank(treap(Zi))) + 2 (5.4)

Let k := max0≤i≤α (rank(treap(Zi))). Note that the only rank k + 1 nodes in T must
be in Y itself, since all the nodes in any Zi have rank at most k. Thus T contains at
most α nodes of rank k + 1, and hence the root of T can have rank at most k + 2.

Next we obtain a high probability bound on max0≤i≤α (rank(treap(Zi))) using

Lemma 11 and the induction hypothesis. LetAi be the event that |Zi| >
(

α
c2 ln(n)

)k−1

,
and let A := ∪iAi. Setting the parameter c in Lemma 11 to c2 m

m+1
, we then obtain

Pr[A] ≤ m

nc2
m

m+1

≤ 1

nc2/2−1
(5.5)

Note that if we condition on all the Zi’s being sufficiently small (i.e., the event Ā),
then the priorities on the nodes of each Zi are still random, and so we may apply
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the induction hypothesis to obtain

∀i : Pr[rank(treap(Zi)) > c1(k − 1)] ≤ (3(α+ 1))k−1

nc3
(5.6)

Let B be the event that there exists an i such that rank(treap(Zi)) > c1(k − 1).
Taking another union bound, we conclude

Pr
[
B|Ā

]
≤ (3(α+ 1))k−1(α+ 1)

nc3
(5.7)

Equation (5.4) then implies that

f

((
α

c2 ln(n)

)k

, c1(k − 1) + 2

)
≤ Pr[A ∪B] = Pr[A] +

Pr
[
B|Ā

]
Pr
[
Ā
] (5.8)

Plugging in the bounds from Equations (5.5) and (5.7), and making some addi-
tional assumptions (namely, 1

nc2/2−1 ≤ 1/2 and c2/2− 1 ≥ c3) we obtain

Pr[A] +
Pr
[
B|Ā

]
Pr
[
Ā
] ≤ 1

nc2/2−1
+

(3(α+ 1))k−1(α+ 1)

nc3
· 1

1− 1
nc2/2−1

(5.9)

≤ 1

nc2/2−1
+

(3(α+ 1))k−1(α+ 1)

nc3
· 2 (5.10)

≤ (3(α+ 1))k

nc3
(5.11)

In going from (5.9) to (5.10) we have used the fact that 1
1−x

≤ 1+2x for x ∈ [0, 1/2]

and the assumption that 1
nc2/2−1 ≤ 1/2. In going from (5.10) to (5.11) we have used

the assumption that c2/2− 1 ≥ c3.

Note that if c1 ≥ 2, then c1(k−1)+2 ≤ c1k, and thus we completed the induction
step by proving that

f

((
α

c2 ln(n)

)k

, c1 · k

)
≤ (3(α+ 1))k

nc3
.

Let d(n) := ln(n)

ln(
3(α+1)
c2 ln(n)

)
. The fact that f(m, r) ≤ f(m + 1, r) for all m and r, implies

that

f(n, c1 dd(n)e) ≤ (3(α+ 1))dd(n)e

nc3
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Assume that α is sufficiently large so that there exists a constant ε > 0 such that
αε = 3(α+1)

c2 ln(n)
. In this case, d(n) = 1

ε
logα(n), and (3(α+ 1))d(n) ≤ α2d(n) = n

2
ε , and so

f

(
n, c1

⌈
1

ε
logα(n)

⌉)
≤ n

2
ε
−c3

Suppose we wish to make this probability as small as 1/nλ, so that c3 ≤ λ− 2
ε
. Let

us review the assumptions we have made so far.

• c1 ≥ 2.
• c3 ≤ c2/2− 1.
• 1/n(c2/2−1) ≤ 1/2, so that c2 ≥ 2 + 2 ln(2)

ln(n)
.

• 3(α+ 1) ≤ α2, so that α ≥ 4.
• αε = 3(α+1)

c2 ln(n)
, so that α = (c2 ln(n)/3)1/(1−ε) for some constant ε > 0.

To complete the proof, it suffices to set c3 = λ + 2/ε, c2 = 2(c3 + 1), and c1 = 2.
Then we obtain the following result. If α ≥

(
2
3
(λ+ 2

ε
+ 1) ln(n)

)1/(1−ε), then

f

(
n, 2

⌈
1

ε
logα(n)

⌉)
≤ 1

nλ

For a more concrete example, for any positive λ, if α ≥
(

1
3
(2λ+ 10) ln(n)

)2 then

f (n, d4 logα(n)e+ 1) ≤ 1

nλ

Lemma 11. Fix α,m ∈ N with α < m. Let X = {1, 2, . . . ,m}. Select a subset Y of
X uniformly at random from {V : V ⊂ X, |V | = α}. Let Y = {y1, y2, . . . , yα}, with
y1 < y2 < · · · < yα, let y0 = 0, yα+1 = m+ 1, and let ∆ = maxi{yi+1 − yi − 1}, where
i ranges from zero to α. Then for all c and n, Pr

[
∆ > cm+1

α
ln(n)

]
≤ m

nc .

Proof: Clearly, there are
(

m
α

)
possible choices of Y . Fix any k ∈ N. If ∆ > k, then

there must be an interval [a : b] ⊂ X containing exactly k integers such that for all
i, yi /∈ [a : b]. For any fixed values of a and b, this can occur in

(
m−k

α

)
different ways.

Taking the union bound over all m− k + 1 choices of [a : b], we obtain

Pr[∆ > k] ≤
(m− k + 1) ·

(
m−k

α

)(
m
α

)
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Using
(

n
k

)
= n!

(n−k)!k!
and simplifying yields

Pr[∆ > k] ≤ (m− k + 1)
α−1∏
i=0

(
1− k

m− i

)
(5.12)

≤ (m− k + 1) exp

(
−

α−1∑
i=0

k

m− i

)
(5.13)

≤ (m− k + 1) exp

(
−k
∫ m+1

x=m−α+1

1

x
dx

)
(5.14)

= (m− k + 1) exp

(
−k ln

(
m+ 1

m− α+ 1

))
(5.15)

= (m− k + 1)

(
m− α+ 1

m+ 1

)k

(5.16)

≤ (m− k + 1) exp

(
− kα

m+ 1

)
(5.17)

Above we have used the fact that 1− x ≤ e−x for all x ∈ R. Setting k = cm+1
α

ln(n)
and some simple algebra then completes the proof.

Bounding the Running Time

We measure the running time of the B-treap operations in terms of the number of
B-treap nodes they inspect or alter. This is in line with the computational model of
B-trees, in which the time to access a B-tree node on disk far exceeds the time to
subsequently copy its contents into main memory and perform “reasonable” (e.g.,
linear time) operations on the contents.

By this measure, lookups clearly inspect only depth(T̄ ) B-treap nodes. Inserting
u may require inspecting up to depth(T̄ ) nodes to find leaf(u). After that, if P is the
rotation path of u from leaf(u) to its proper location in treap T , then the operation
might modify all the B-treap nodes containing treap nodes in P , as well as B-treap
nodes corresponding to elements of F := P ∩ (∪i≥1F [Li

α[T ]]). Moreover, it is not
hard to see that these are the only B-treap nodes that need to be updated. The
number of B-treap nodes storing treap nodes in P is of course bounded by depth(T̄ ).
Bounding |F | is trickier. Note that E[|F |] = O(1), since |F | ≤ |P | is bounded by the
number of rotations in P , and E[|P |] = O(1) in a random treap [SA96]. The same
argument holds true for deletions, so we have proven the following result.
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Lemma 12. In a B-treap T̄ , the lookup operation inspects depth(T̄ ) nodes, and inser-
tions and deletions inspect or modify depth(T̄ ) +O(1) nodes in expectation.

Combining Lemma 12 with Theorem 17 then proves the running times bounds
of Theorem 16.

5.5.5 Empirical Observations

Figure 5.8 on the following page depicts how the B-treap depth grows as a function
of its size. These data were obtained from simulations in which the treap priorities
were provided by a pseudorandom number generator. For each size, the depth was
averaged over ten rounds, however this tended not to matter as the depth was
often the same in all ten rounds and would always be within ±1 of the average. As
the figure shows, the depth is empirically bounded by 1.5 logα(n).

Figure 5.9 depicts the observed distribution of B-treap size, as measured by the
number of B-treap nodes, for a B-treap storing 105 elements. As with the previous
simulations, the treap priorities were provided by a pseudorandom number gen-
erator. As we would expect from our analysis in Section 5.5.4, the space usage
appears to be tightly concentrated about the mean, which is approximately 1.5n

α

B-treap nodes in the figures. Since each B-treap node has space for 2α − 1 treap
nodes, these modest experiments suggest that we can typically store n elements
in the space required for about 3n treap nodes. If this space utilization is judged
unacceptably low, there are various ways the it might be improved at the cost of in-
creasing the average number of I/Os per operation. For example, for any k ∈ N, we
may divide each block into k equally sized parts, hash block parts rather than full
blocks into external memory, and allocate dkq/(2α− 1)e block parts to a B-treap
node with q treap nodes.

5.6 Dynamic Order Maintenance

The order-maintenance problem involves creating a data structure that stores a total
ordering σ while supporting the following operations.

• insert(x, y): insert new element y right after x in σ.

• delete(x): delete element x from σ.
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Figure 5.8: B-treap depth as a function of n with α = 10 and α = 100, averaged
over 10 runs. Here, the depth is the number of edges in the longest root to leaf
path.

Figure 5.9: The observed distributions on the number of nodes in a B-treap on
n = 105 nodes, with α = 10 and α = 100, using 1000 samples.
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• compare(x, y): determine if x precedes y in σ.

Let n be the number of elements in σ. Dietz and Sleator [DS87] developed a
data structure that supports all three operations in worst case O(1) time. (Note
that the inputs are assumed to be pointers to the elements in the data structure.)
Bender et al. [BCD+02] later developed simpler data structures with the same per-
formance guarantees. Both structures depend significantly on the history and we
see no simple modifications to make them uniquely represented. In this section we
describe a randomized uniquely represented data structure for order maintenance
that takes worst-case O(1) time for compare and expected O(1) time for updates.
We assume each element has a unique label l ∈ U that can be hashed. We can use
the labels, for example, to place the elements into our uniquely represented hash
table.

Bender et al. describe a general technique for the list-labeling problem based on
a certain class of weight-balanced trees. The list-labeling problem is to maintain a
dynamic list (with insertions and deletions) along with a mapping from elements in
the list to integer labels in the range [0, u) such that the ordering in the list matches
the ordering of the labels. The list-labeling problem can be used to implement
order-maintenance by using the integer labels for comparison. We say that the
weight w(x) of a node x in a tree is the number of its descendants (including itself),
and the weight cost of an operation is the sum of the weights of all modified nodes
in the tree plus the running time for the operation. We then have:

Theorem 18 ([BCD+02]). Any balanced-tree structure with (amortized) weight cost
f(n) for insertions, maximum degree d, and depth h yields a strategy for list labeling
with (amortized) cost O(f(n)) and tags from universe [0, dh).

For a binary tree, the idea of the technique is to label each node x with the
binary representation of the path from the root to x, where left branches yield 0
and right branches 1. Since internal nodes might have path labels that are prefixes
of other nodes’ path labels, all paths can be terminated with an additional 1 giving
the desired (lexicographic) ordering. It is straightforward to show that Theorem 18
also applies for expected weight costs, and the expected weight cost for updates to
a treap is known to be O(log n) [SA96]. Furthermore our treaps from Section 4.5
are uniquely represented. This yields a uniquely represented data structure for
the list-labeling problem that supports O(log n) expected time updates and O(1)
time comparisons with high probability (since labels have O(log n) bits with high
probability).
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To make updates O(1) amortized time, previous work used a two level structure
in which the top level stores a partition of the elements into Θ(n/ log n) sets of size
O(log n), such that updates to the top level take O(log n) time and are relatively
rare, and updates to the second level take O(1) time (see e.g., [DS87]). Unfor-
tunately the bottom level technique is highly dependent on history. To achieve
unique representation (and history independence) we use two levels based on The-
orem 18 and a third level using state transitions with table lookup; this uses our
hashing scheme in an interesting way.

Theorem 19. There exists a uniquely represented order maintenance data structure
that supports worst-case O(1) time comparisons and expected O(1) time updates, and
uses linear data space.

Proof: We dynamically resize the data structure by reconstructing it from scratch
whenever the number of elements crosses a threshold in {

⌈
α · 2k

⌉
: k ∈ Z+},

where α is chosen uniformly at random from [1, 2]. This allows us to assume we
have an upper bound, N , on the current number of elements, n, being stored,
such that N/2 ≤ n ≤ N . To bound the expected reconstruction cost for each
update, note that the probability of any operation crossing a threshold is O(1/n),
constructing the necessary lookup tables (defined below) takes o(nε) time for any
ε > 0, and reinserting all the elements takes expected O(n) time (assuming updates
take O(1) expected time), so this adds only O(1) time in expectation to any update.

So assume we know N , and N/2 ≤ n ≤ N . We make use of the treap partition-
ing technique described in Section 5.3. Let s = dlogNe and s′ = dlog logNe. We
will store all elements in a uniquely represented treap T as described in Section 4.5,
using an n-wise independent hash function h to generate priorities. Furthermore,
T will be partitioned at weight s as described in Section 5.3.3 and again at weight
s′. Let the frontier of S, denoted F [S], be defined as in Definition 10 on page 104.
Let Lα[T ] be the weight α leaders of T , as defined in Section 5.3.1 on page 78. It is
relatively straightforward to modify the treap partitioning scheme so that the same
treap can store both of the above partitions simultaneously. The modification is
trivial if each node is provided with a set of size and leader fields for each partition.
However, it is not difficult to manage with only one set of size and leader fields if
we use the following invariants.

Size fields: For all v that are children of nodes in F [Ls[T ]]∪F [Ls′ [T ]], v.size = |Tv|.
For all other nodes, v.size = null.

Leader fields: For all v ∈ Ls′ [T ], v.leader is set to the key of the weight s leader of
v. All other nodes v have v.leader set to the key of their weight s′ leader.
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We will additionally maintain a path field with each node. For an ancestor u of
v, we encode the path from u to v as a binary string, with left branches encoded as
0 and right branches encoded as 1 as in a binary trie. A basic implementation sets
the path field according to the following invariant.

The basic path field invariant: For all v ∈ Ls[T ], v.path stores the path from
root(T ) to v. For all v ∈ Ls′ [T ] \ Ls[T ], v.path stores the path from the v’s
weight s leader to v. For all v /∈ Ls′ [T ], v.path stores the path from the v’s
weight s′ leader to v.

To compare nodes x and y, we first compare their weight s leaders using their
path fields. If x and y have the same weight s leader, compare their weight s′

leaders, again using their path fields. Finally, if x and y have the same weight s′

leader, compare them directly using their path fields. (Note that to achieve worst
case O(1) comparisons we must be able to compare two path fields (which are
numbers in [0 : 2d − 1], where d is the depth of the top-level treap) in constant
time. Thus, we require that d = O(w), where w = Ω(logN) is the word size of
our machine. We will ensure the treap has sufficiently small depth as we did in the
proof of Theorem 15 on page 101, using πprio. As before, the additional expected
cost to do this is o(1).) It is possible to show that this construction yields expected
O(log log log n) time updates, and we could add levels to achieve expected O(log∗ n)
time updates. To get constant time we use table lookup rather than list labeling for
the third level. For this more sophisticated implementation we use the following
invariant.

The path field invariant: For all v ∈ Ls[T ], v.path stores the path from root(T ) to
v. For all v ∈ Ls′ [T ]\Ls[T ], v.path stores the path from the v’s weight s leader
to v. For all v /∈ Ls′ [T ], v.path = null.

The idea of the third-level is to maintain the l ≤ 2s′ = 2 dlog logNe nodes per
second level partition in a uniquely represented hash table of size t = Θ(log logN).
Specifically, each v /∈ Ls′ [T ] is stored in a hash table corresponding to its weight
s′ leader. (Thus only nodes that are weight s′ followers of nodes in F [Ls′ [T ]] are
stored in hash tables.) These nodes still have their treap node fields, however they
now also have hash table locations associated with them which we can use for
comparisons. We use these locations for comparisons as follows. The hash table
by itself does not define the ordering among the elements, so we represent each
possible ordering among the occupied hash-table locations as a distinct state. The
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number of possible states is at most
∑t

x=0

(
t
x

)
· x! =

∑t
x=0

t!
(t−x)!

≤
∑t

x=0 t
x ≤ 2 · tt.

Since t is O(log logN), the number of states is o(N ε) for all ε > 0. We can thus
represent the state in a single word of memory which we store with each table.
To allocate space for the uniquely represented hash tables we can use another
uniquely represented hash table with the partition leader as part of the key. For
example, given a hash tableH with t slots corresponding to node v, we could create
labels for each element of {(v.key, 0), (v.key, 1), . . . , (v.key, t−1)}, and allocate space
for the ith slot of H using the uniquely represented memory allocator (which is
essentially one large uniquely represented hash table) with the label for (v.key, i).

Each state defines a function q : [t] × [t] → {<,>, undefined}, where q(a, b) re-
turns whether the element stored at location a comes before or after the element
at location b or undefined if either location is unoccupied. This function can be
represented as a lookup-table with t2 two-bit entries. The total space for repre-
senting all functions is therefore o(N ε(log logN)2) bits, which is o(nδ) for all δ > ε.
To implement the compare operation between elements that fall in the same ta-
ble (second-level partition) we find the location of each in the table and use q to
compare the locations. If two elements appear in different second-level partitions,
we compare their weight s′ or weight s partition leaders using their path fields as
described above. This takes worst case constant time if we can compare two path
fields in worst case constant time, and can find the weight s′ and weight s lead-
ers of a given node v in worst case constant time. We have discussed above how
to ensure the former condition by guaranteeing that the path fields are O(log n)
bits. The latter condition can be ensured by using a uniquely represented dynamic
perfect hash table such as the one from Section 3.2 for memory allocation.

We also need to define state transition tables for updates in a second level
partition. The insertion of an element into a hash table can be broken down into
a sequence of (possibly zero) swaps, followed by an insertion into an empty slot.
Deletion is symmetric. We therefore only need state transitions for insertion into an
empty slot, deletion from a slot, and swapping of two slot. Each can be represented
as a table with t2 entries, with one such table per state. For example, when inserting
key k into an empty slot, the transition is specified by the slot y to insert k into, as
well as the slot (if it exists) containing the key that immediately precedes k, among
those stored in the relevant hash table. As with the comparison function q, these
tables will use o(nδ) bits.

The overall scheme for an insert(x, y) can be outlined as follows. Insert y into
the treap partitioning instances as described in Section 5.3 using fast finger inser-
tion. Additionally, create and destroy hash tables corresponding to each node that
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is added or removed from F [Ls′ [T ]], respectively. Move each node v to the appro-
priate hash table whenever its weight s′ leader changes, and update the state of
each hash table using the state transition tables as appropriate. This additional
work can be amortized against the normal treap partitioning operations and does
not change the running time for the insertion, namely expected O(1) time. Fi-
nally, maintain the correct settings of the path fields. This involves changing the
path fields of each node in Tv ∩ Ls′ [T ] (respectively, Tv ∩ Ls[T ]) whenever some
v ∈ Ls′ [T ] \Ls[T ] (respectively, v ∈ Ls[T ]) has its parent changed during a rotation.
Using subtree traversals, this can be done in expected time linear in the number of
nodes requiring updates. If the inserted node y causes a change in Ls[T ], the ex-
pected time to update the path fields is O(s), since the expected time to perform an
insertions in treaps is O(log n) even when the cost to rotate about an edge {u, v}
is Θ (max{|Tu|, |Tv|}) [SA96], and s = Θ(log(n)). By Lemma 5, this occurs with
probability at most O(1/s), so this adds at most expected constant time to the oper-
ation. The same reasoning applies to the work caused if the inserted node y causes
a change in Ls′ [T ]. The overall insertion time is thus O(1) in expectation.

The overall scheme for an delete(x) is similar. Delete x from the treap partition-
ing instances as described in Section 5.3 using using fast finger deletion. As with
insertions, create and destroy hash tables corresponding to nodes that are added
or removed from F [Ls′ [T ]], respectively. Move each node v to the appropriate hash
table whenever its weight s′ leader changes, and update the state of each hash ta-
ble using the state transition tables as appropriate. Maintain the correct settings of
the path fields as discussed for insertions. The running time analysis for deletions
is very similar to that for insertions, so we omit it.

Finally we consider the space usage. Each element is stored in a treap node with
a constant number of additional fields. So the elements of Ls′ [T ] take O(|Ls′ [T ]|)
words of space to store. The remaining nodes are stored in hash tables. As we
have described the construction, all of these nodes are stored in hash tables of size
t = Θ(s′). Lemma 8 on page 96 implies that the number of such hash tables will be
O(n/s′) with probability 1 − O(exp{− 2n

s′(s′+1)
}). Thus the total space usage (aside

from the random bits used) will be O(n) with extremely high probability. To make
the space usage O(n) with certainty, we may use hash tables that dynamically
resize to store the second level partitions of nodes in F [Ls′ [T ]]. In this case we
would require state transition tables and state functions of type [t′] × [t′] → {<,>
, undefined} for each potential hash table size t′ ≤ t. However this can increase the
space to store these tables by at most a factor of t = Θ(log logN), so the space to
store all such tables and functions is still o(nδ) for all δ > 0.
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5.7 Dynamic Ordered Subsets

The dynamic ordered-subsets problem is to maintain a total ordering (L,<) and
a collection of subsets of L, denoted S = {S0, . . . , Sq−1}, while supporting the
order maintenance operations from Section 5.6 on L and the following ordered
dictionary operations on each subset in S:

• insert(x, Sk): insert x ∈ L into set Sk.

• delete(x, Sk): delete x from Sk.

• pred(x, Sk): For x ∈ L, return max{e ∈ Sk : e < x}.

Typically, the number of sets, q = |S|, is assumed to be part of the input during ini-
tialization. Alternately, we can support operations create-set(k) and delete-set(Sk),
which creates a new empty subset Sk with integer label k, or delete Sk, respectively.

Dietz [Die89] first describes this problem in the context of fully persistent ar-
rays, and gives a solution yieldingO(log logm) expected amortized time operations,
where m := |L| +

∑q−1
i=0 |Si| is the total number of element occurrences in subsets.

Mortensen [Mor03a] describes a solution that supports updates to the subsets in
expected O(log logm) time, and all other operations in O(log logm) worst case
time. We will describe a uniquely represented data structure for this problem that
supports the order maintenance operations on L in expected O(1) time and the dy-
namic ordered dictionary operations on the subsets in expected O(log logm) time.
We use a somewhat different approach than Mortensen [Mor03a], and our solution
is more self-contained. Furthermore, our results improve on Mortensen’s results by
supporting insertion into and deletion from L in O(1) instead of O(log logm) time.

Theorem 20. Let m := |{(x, k) : x ∈ Sk}|+ |L|. There exists a uniquely represented
data structure for the ordered subsets problem that uses expectedO(m) space, supports
all order maintenance operations in expected O(1) time, and all other operations in
expected O(log logm) time.

We devote the rest of this section to proving Theorem 20. To construct the data
structure, we start with a uniquely represented order maintenance data structure
on L, which we will denote by L≤ (see Section 5.6). Whenever we are to compare
two elements, we simply use L≤.

In the construction of L≤ (see Section 5.6, and also [BG07]) the elements of the
order are treap partitioned twice using the technique of Section 5.3, at weight sL =
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Θ(log |L|) and again at weight Θ(log log |L|). The partition sets at the finer level of
granularity with more than one element are then stored in uniquely represented
hash tables. In the rest of the exposition we will refer to the treap on all of L as
T (L≤). The set of weight sL partition leaders of T (L≤) is denoted by L[T (L≤)], and
the treap on these leaders by T (L[L≤]).

The other main structure that we use is a treap T containing all elements from
the set L̂ = {(x, k) : x ∈ Sk} ∪ {(x, 0) : x ∈ L[T (L≤)]}. Treap T is depicted in Fig-
ure 5.10. It is partitioned by weight s = Θ(logm) partition leaders. Each of these
leaders is labeled with the path from the root to it (0 for left, 1 for right), so that the
label of each v is the binary representation of the root to v path. The subtreap of
T on L[T ] thus forms a trie. We also keep a hash table H that maps path labels to
nodes. It is important that only the leaders are labeled since otherwise insertions
and deletions would require O(logm) time. We maintain a pointer from each node
of T to its leader. In addition, we maintain pointers from each x ∈ L[T (L≤)] to
(x, 0) ∈ T . As usual, all of the pointers that we use are actually abstract pointers,
that is, labels used to for memory allocation as discussed in Section 5.2.
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Figure 5.10: Ordered subsets treap T storing L̂.

We store each subset Sk in its own treap Tk, also partitioned by weight s =
Θ(logm) leaders. When searching for the predecessor in Sk of some element x, we
use T to find the leader ` in Tk of the predecessor of x in Sk. Once we have `, the
predecessor of x can easily be found by searching in the partition of Sk associated
with leader `, which is either {`} or is stored in an O(logm)-sized subtree of Tk

rooted at `. To guide the search for `, we store at each node v of T the minimum
and maximum Tk-leader labels in the subtree rooted at v, if any. Since we have
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multiple subsets we need to find predecessors in, we actually store at each v a
mapping from each subset Sk to the minimum and maximum leader of Sk in the
subtree rooted at v. For efficiency, for each leader v ∈ T we store a hash table Hv,
mapping k ∈ [1 : q] to the tuple (min{u : u ∈ L[Tk] and (u, k) ∈ Tv}, max{u :
u ∈ L[Tk] and (u, k) ∈ Tv}), if it exists. Recall Tv is the subtreap of T rooted at v.
The high-level idea is to use the hash tables Hv to find the right “neighborhood” of
O(logm) elements in Tk which we will have to update (in the event of an update to
some Sk), or search (in the event of a predecessor or successor query). Since these
neighborhoods are stored as treaps, updating and searching them takes expected
O(log logm) time. We summarize these definitions, along with some others, in
Table 5.2.

w(x, T ) number of descendants of node x of treap T
`(x, T ) the partition leader of x in T
L[T ] weight s = Θ(logm) partition leaders of treap T
Tk treap containing all elements of the ordered subset Sk, k ∈ [1 : q]

T (L≤) the treap on L
T (L[L≤]) the subtreap of T (L≤) on the weight s = Θ(logm) leaders of T (L≤)

L̂ the set {(x, k) : x ∈ Sk} ∪ {(x, 0) : x ∈ L[T (L≤)]}
T a treap storing L̂
H hash table mapping label i ∈ {0, 1}∗ to the key of the leader node

in T with label i
Hv hash table mapping k ∈ [1 : q] to the tuple (if it exists)

(min{u : u ∈ L[Tk] ∧ (u, k) ∈ Tv}, max{u : u ∈ L[Tk] ∧ (u, k) ∈ Tv})
Ix for x ∈ L, a fast ordered dictionary (see Section 5.4) mapping each

k ∈ {i : x ∈ Si} to (x, k) in T
Jx for x ∈ L[T (L≤)], a treap containing

{u ∈ L : `(u, T (L≤)) = x and ∃ i : u ∈ Si}

Table 5.2: Some useful notation and definitions of various structures we maintain
for the ordered subsets implementation.

We use Lemma 5 on page 92 to bound the number of changes to the set of
partition leaders. It bounds the probability that inserting or deleting an element
changes the set of weight s leaders by O(1/s).

Note that each partition set has size at most O(logm). The treaps Tk, Jx and
T , and the dictionaries Ix from Table 5.2 are stored explicitly. We also store the
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minimum and maximum element of each L[Tk] explicitly. We use a total ordering
for L̂ as follows: (x, k) < (x′, k′) if x < x′ or if x = x′ and k < k′.

Order Maintenance Insert & Delete Operations: These operations remain largely
the same as in the order maintenance structure of [BG07]. We assume that when
x ∈ L is deleted it is not in any set Sk. The main difference is that if the set
L[T (L≤)] changes we will need to update the treaps {Jv : v ∈ L[T (L≤)]}, T , and
the tables {Hv : v ∈ L[T ]} appropriately.

Note that we can easily update Hv in time linear in |Tv| using in-order traversal
of Tv, assuming we can test if x is in L[Tk] in O(1) time. To accomplish this, for
each k we can store L[Tk] in a hash table. Thus using Theorem 6 on page 59 we
can see that all necessary updates to {Hv : v ∈ T } take expected O(logm) time.
Clearly, updating T itself requires only expected O(logm) time. Finally, we bound
the time to update the treaps Jv by the total cost to update T (L[L≤]) if the rotation
of subtrees of size k costs k + logm, which is O(logm) by Theorem 6. This bound
holds because |Jv| = O(logm) for any v, and any tree rotation on T (L≤) causes at
most 3s elements of T (L≤) to change their weight s leader. Therefore only O(logm)
elements need to be added or deleted from the treaps {Jv : v ∈ T (L[L≤])}, and
we can batch these updates in such a way that each takes expected amortized O(1)
time. However, we need only make these updates if L[T (L≤)] changes, which by
Lemma 5 occurs with probability O(1/ logm). Hence the expected overall cost is
O(1).

Predecessor & Successor: Suppose we wish to find the predecessor of x in Sk.
(Finding the successor is analogous.) Let pred(z, T ) be the predecessor of z in the
set or treap T , and let succ(z, T ) be the successor of z in T . If x ∈ Sk we can test
this in expected O(log logm) time using Ix. So suppose x /∈ Sk. We will first find
the predecessor pred((x, k), T ) of (x, k) in T as follows. (We can handle the case
that pred((x, k), T ) does not exist by adding a special element to L that is smaller
than all other elements and is considered to be part of L[T (L≤)]). First search Ix
for the predecessor k2 of k in {i : x ∈ Si} in O(log logm) time. If k2 exists, then
pred((x, k), T ) = (x, k2). Otherwise, let y be the leader of x in T (L≤), and let y′

be the predecessor of y in L[T (L≤)]. Then either pred((x, k), T ) ∈ {(y′, 0), (y, 0)}
or else pred((x, k), T ) = (z, k3), where z = max{u : u < x and u ∈ Jy ∪ Jy′} and
k3 = max{i : z ∈ Si}. Thus we can find pred((x, k), T ) in expected O(log logm)
time using fast finger search for y′, treap search on the O(logm) sized treaps in
{Jv : v ∈ L[T (L≤)]}, and the fast dictionaries {Ix : x ∈ L}.
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We will next find the predecessor pred(x,L[Tk]) or the successor succ(x,L[Tk])
of x in L[Tk]. Note that if we have pred(x,L[Tk]) we can find succ(x,L[Tk]) quickly
via fast finger search, and vice-versa. Note that if pred((x, k), T ) ∈ L[Tk]×{k}, then
pred((x, k), T ) = pred(x,L[Tk]) and we can test this in constant time if we store the
subtree sizes in the treaps Tk. So assume pred((x, k), T ) /∈ L[Tk] × {k}. We start
from pred((x, k), T ) and consider its leader `(pred((x, k), T )) in T . We first binary
search on the path P from the root of T to `(pred((x, k), T )) for the deepest node u′

such that Tu′ contains at least one node from L[Tk]×{k}. (In particular, this means
that this subtreap also contains a node (u, k) where u is either the predecessor
or successor of x in L[Tk]. If no node on the path has this property, then Sk is
empty.) The binary search is performed on the length of the prefix of the label of
`(pred((x, k), T )). Given a prefix α, we look up the node p with label α using H,
and test whether Tp contains at least one node from L[Tk]×{k} using Hp. If so, we
increase the prefix length. Otherwise we decrease it.

Next use Hu′ to obtain umin = min{u : u ∈ L[Tk] and (u, k) ∈ Tu′} and umax =
max{u : u ∈ L[Tk] and (u, k) ∈ Tu′}. Note that either (1) umax < x, or (2) umin > x,
or (3) umin < x < umax.

In the first case, we claim that umax is the predecessor of x in L[Tk]. To prove this,
note that the predecessor of x in L[Tk] is the predecessor of pred((x, k), T ) in L[Tk]
under the extended ordering for L̂. Now suppose for a contradiction that z 6= umax

is the predecessor of pred((x, k), T ) in L[Tk]. Thus umax < z ≤ pred((x, k), T ).
Clearly, z /∈ Tu′, for otherwise we obtain a contradiction from the definition of
umax. However, it is easy to see that every node that is not in Tu′ is either less than
umax or greater than pred((x, k), T ), contradicting the assumption that umax < z ≤
pred((x, k), T ). In the second case, we claim that umin is the successor of x in L[Tk].
The proof is analogous to the first case, and we omit it.

Thus, in the first two cases we are done. Consider the third case. We first
prove that u′ = `(pred((x, k), T )) in this case. Note that umin < x < umax implies
umin ≤ pred((x, k), T ) < umax. Since there is an element of L[Tk] × {k} on either
side of pred((x, k), T ) in Tu′, the child u′c of u′ that is an ancestor of pred((x, k), T )
must have an element of L[Tk] × {k} in its subtree. From the definition of u′, we
may infer that u′c was not on the `(pred((x, k), T )) to root path in T . Thus u′ is
the deepest node on this path, or equivalently u′ = `(pred((x, k), T )). Given that
u′ = `(pred((x, k), T )) and umin ≤ pred((x, k), T ) < umax, we next prove that at
least one element of {umin, umax} is within distance s = Θ(logm) of pred((x, k), T )
in T . Note that because u′c /∈ L[T ], its subtree Tu′c has size at most s. If u′c is the left
child of u′, then umin is in this subtree as is pred((x, k), T ). The distance between
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umin and pred((x, k), T ) is thus at most s = Θ(logm) in T . If u′c is the right child
of u′, then we may argue analogously that umax and pred((x, k), T ) are both in Tu′c

and thus umax is within distance s of pred((x, k), T ).

Once we have obtained a node (unear, k) in T such that unear ∈ L[Tk] and
(unear, k) is within distance d = O(logm) of pred((x, k), T ) in T , we find the pre-
decessor pred(x,L[Tk]) and successor succ(x,L[Tk]) of x in L[Tk] via fast finger
search on Tk using unear. Note that the distance between unear and the nearest of
{pred(x,L[Tk]), succ(x,L[Tk])} is at most d. This is because if unear ≤ pred(x,L[Tk]),
then every element e of L[Tk] between unear and pred(x,L[Tk]) must have a cor-
responding node (e, k) ∈ Tu′c between (unear, k) and pred((x, k), T ), and there are
at most d such nodes. Similarly, if unear ≥ succ(x,L[Tk]), then every element e of
L[Tk] between succ(x,L[Tk]) and unear must have a corresponding node (e, k) ∈ Tu′c

between pred((x, k), T ) and (unear, k), and there are at most d such nodes. Note
that finding the predecessor and successor of x in Tk given a handle to a node in
Tk at distance d from x takes O(log(d)) time in expectation [SA96]. In this case,
d = O(logm) so this step takes O(log logm) time in expectation.

Once we have found pred(x,L[Tk]) and succ(x,L[Tk]), the predecessor and suc-
cessor of x in L[Tk], we simply search their associated partitions of Sk for the
predecessor of x in Sk. These partitions are both of O(logm) size and can be
searched in expected O(log logm) time. The total time to find the predecessor is
thus O(log logm) in expectation.

Ordered Subsets Insert and Delete: delete(x, Sk) is analogous to insert(x, Sk),
hence we focus on insert(x, Sk). Suppose we wish to add x to Sk. First, if x is not
currently in any sets {Si : i ∈ [1 : q]}, then find the leader of x in T (L≤), say y, and
insert x into Jy in expected O(log logm) time. Next, insert x into Tk as follows. Find
the predecessor w of x in Sk, then insert x into Tk in expected O(1) time starting
from w to speed up the insertion.

Find the predecessor w′ of (x, k) in T as in the predecessor operation, and insert
(x, k) into T using w′ as a starting point. If neither L[Tk] nor L[T ] changes, then
no modifications to {Hv : v ∈ L[T ]} need to be made. If L[Tk] does not change
but L[T ] does, as happens with probability O(1/ logm), we can update T and {Hv :
v ∈ L[T ]} appropriately in expected O(logm) time by taking time linear in the size
of the subtree to do rotations. If L[Tk] changes, we must be careful when updating
{Hv : v ∈ L[T ]}. Let L[Tk] and L[Tk]

′ be the leaders of Tk immediately before
and after the addition of x to Sk, and let ∆k := (L[Tk] − L[Tk]

′) ∪ (L[Tk]
′ − L[Tk]).
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Then we must update {Hv : v ∈ L[T ]} appropriately for all nodes v ∈ L[T ] that
are descendants of (x, k) as before, but must also update Hv for any node v ∈ L[T ]
that is an ancestor of some node in {(u, k) : u ∈ ∆k}. It is not hard to see that
these latter updates can be done in expected O(|∆k| logm) time. From Lemma 6
we know that E[|∆k|] = O(1/ logm). Since the randomness for Tk is independent
of the randomness used for T , these expectations multiply, for a total expected
time of O(1) for this part of the operation. Finally, insert k into Ix in expected
O(log logm) time, with a pointer to (x, k) in T .

Space Analysis. We now prove that our ordered subsets data structure uses O(m)
space in expectation. Table 5.2 lists the objects that that the data structure uses.
The order maintenance structure uses O(|L|) space. The hash table H, treap T ,
the collection of treaps {Tk : k ∈ [1 : q]}, and the collection fast dictionaries
{Ix : x ∈ L} each use only O(m) space. The collection {Jx : x ∈ L[T (L≤)]} uses
only O(|L|) space. That leaves the space required by {Hv : v ∈ L[T ]}. We claim
these hash tables useO(m) space in expectation. To prove this, letXu,k be a random
variable denoting the number of hash tables in {Hv : v ∈ L[T ]} that map k to a
tuple of the form (u, ∗) or (∗, u), where ∗ denotes a wildcard that matches all nodes
or null. (If Hv maps k the record (u, u), we may count that record as contributing
two to Xu,k). The space required for {Hv : v ∈ L[T ]} is then linear in the total
number of entries of all hash tables, which is

∑
u∈L

∑q−1
k=0Xu,k. Clearly, if u /∈ Sk

then Xu,k = 0. On the other hand, we claim that if x ∈ Sk then E[Xu,k] = O(1),
in which case E

[∑
u∈L

∑q−1
k=0Xu,k

]
= O(m) by linearity of expectation. Assume

u ∈ Sk. Note that if u /∈ L[Tk], then Xu,k = 0, and Pr[u ∈ L[Tk]] = O(1/ logm)
(the probability of any node being a weight s leader is O(1/s), which is an easy
corollary of Theorem 6). Furthermore

E[Xu,k | u ∈ L[Tk]] ≤ E[depth of (u, k) in T ]

= O(logm).

It follows that

E[Xu,k] = E[Xu,k | u ∈ L[Tk]] · Pr[u ∈ L[Tk]]

= O(logm · 1
log m

)

= O(1).
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5.8 Range Trees

Let P = {p1, p2, . . . , pn} be a set of points in Rd. The well studied orthogonal
range reporting problem is to maintain a data structure for P while supporting
queries which given an axis aligned box B in Rd returns the points P ∩ B. The
dynamic version allows for the insertion and deletion of points. Chazelle and
Guibas [CG86] showed how to solve the two dimensional dynamic problem in
O(log n log log n) update time and O(log n log log n + k) query time, where k is the
size of the output. Their approach used fractional cascading [CG86, MN90b]. More
recently Mortensen [Mor06] showed how to solve it in O(log n) update time and
O(log n+ k) query time using a sophisticated application of Fredman and Willard’s
q-heaps [FW94]. All of these techniques can be generalized to higher dimensions
at the cost of replacing the first log n term with a logd−1 n term [dBvKOS97].

Here we present a uniquely represented solution to the problem. It matches the
bounds of the Chazelle and Guibas version, except our bounds are in expectation
instead of worst-case. Our solution does not use fractional cascading and is instead
based on ordered subsets. Our solution is simple and avoids any explicit discussion
of weight balanced trees (the required properties fall directly out of known prop-
erties of treaps). One might possibly derive a uniquely represented version based
on fractional cascading, but making dynamic fractional cascading uniquely repre-
sented would require significant work8 and is unlikely to improve the bounds.

Theorem 21. Let P be a set of n points in Rd. There exists a uniquely represented
data structure for the orthogonal range query problem that uses expectedO(n logd−1 n)
space and O(d log n) random bits, supports point insertions and deletions in expected
O(logd−1 n · log log n) time, and queries in expected O(logd−1 n · log log n + k) time,
where k is the size of the output.

If d = 1, simply use the dynamic ordered dictionaries solution [BG07] and have
each element store an abstract pointer to (i.e., the label of) its successor for fast
reporting. For simplicity we first describe the two dimensional case. The remaining
cases with d ≥ 3 can be implemented using standard techniques [dBvKOS97] if
treaps are used for the underlying hierarchical decomposition trees, as we describe
below.

We will assume that the points have distinct coordinate values; therefore, if
(x1, x2),(y1, y2) ∈ P , then xi 6= yi for all i. (There are various ways to remove

8A variant of Sen’s approach [Sen95] might work.
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this assumption, for example the composite-numbers scheme or symbolic perturba-
tions [dBvKOS97].) We store P in a random treap T using the ordering on the first
coordinate as our binary search tree ordering. We additionally store P in a second
random treap T ′ using the ordering on the second coordinate as our binary search
tree ordering, and also store P in an ordered subsets instance D using this same
ordering. We cross link these and use T ′ to find the position of any point we are
given in D. The subsets of D are {Tv : v ∈ T}, where Tv is the subtree of T rooted
at v. We assign each Tv a unique integer label k using the coordinates of v, so that
Tv is Sk in D. The structure is uniquely represented as long as all of its components
(the treap and ordered subsets) are uniquely represented.

To insert a point p, we first insert it by the second coordinate in T ′ and using
the predecessor of p in T ′ insert a new element into the ordered subsets instance D.
This takes O(log n) expected time. We then insert p into T in the usual way using its
x coordinate. That is, search for where p would be located in T were it a leaf, then
rotate it up to its proper position given its priority. As we rotate it up, we can recon-
struct the ordered subset for a node v from scratch in time O(|Tv| log log n). Using
Theorem 6 on page 59, the overall time is O(log n · log log n) in expectation. Finally,
we must insert p into the subsets {Tv : v ∈ T and v is an ancestor of p}. This re-
quires expected O(log log n) time per ancestor, and there are only O(log n) of them
in expectation. Since these expectations are computed over independent random
bits, they multiply, for an overall time bound of O(log n · log log n) in expectation.
Deletion is similar.

To answer a query (p, q) ∈ R2 × R2, where p = (p1, p2) is the lower left and
q = (q1, q2) is the upper right corner of the box B in question, we first search for
the predecessor p′ of p and the successor q′ of q in T (i.e., with respect to the first
coordinate). Please refer to Figure 5.11. We also find the predecessor p′′ of p and
successor q′′ of q in T ′ (i.e., with respect to the second coordinate). Let w be the
least common ancestor of p′ and q′ in T , and let Ap′ and Aq′ be the paths from p′

and q′ (inclusive) to w (exclusive), respectively. Let V be the union of right children
of nodes in Ap′ and left children of nodes in Aq′, and let S = {Tv : v ∈ V }. It is
not hard to see that |V | = O(log n) in expectation, that the sets in S are disjoint,
and that all points in B are either in W := Ap′ ∪ {w} ∪ Aq′ or in ∪S∈SS. Compute
W ’s contribution to the answer, W ∩ B, in O(|W |) time by testing each point in
turn. Since E[|W |] = O(log n), this requires O(log n) time in expectation. For each
subset S ∈ S, find S ∩ B by searching for the successor of p′′ in S, and doing an
in-order traversal of the treap in D storing S until reaching a point larger than q′′.
This takes O(log log n + |S ∩ B|) time in expectation for each S ∈ S, for a total of
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Predecessor
of p under 
x-coordinate
ordering.

Successor 
of q under 
x-coordinate
ordering.

Node set W is the
path from p' to q'.

Node set V consists
of the roots of the
shaded subtrees.

Input points P with 
range query box (p,q), 
inside a vertical stripe.

q'p'

p

q

p'

q'

path W

Figure 5.11: Answering 2-D range query (p, q). Path W together with the shaded
subtrees contain the nodes in the vertical stripe between p′ and q′.

O(log n · log log n+ k) expected time.

To bound the space required, note that each point p is stored in depth(p) + 1
subsets in the ordered subsets instance D, where depth(p) is the depth of p in treap
T . Since E[depth(p)] = O(log n), we infer that E[

∑
v |Tv|] = O(n log n), and so D

uses O(n log n) space in expectation. Since the storage space is dominated by the
requirements of D, this is also the space requirement for the whole data structure.

Extending to Higher Dimensions. We show how to support orthogonal range
queries for d ≥ 3 dimensions by reducing the d-dimensional case to the (d − 1)-
dimensional case. That is, we complete the proof Theorem 21 via induction on d,
where the base cases d ∈ {1, 2} are proven above. So assume Theorem 21 is true
in the (d − 1)-dimensional case. Let P ⊂ Rd be the input set of n points as before,
and suppose the dimensions are labeled {1, 2, . . . , d}. Store P in a random treap T
using the dth coordinate of the points to determine the binary search tree ordering,
and a fresh 8-wise independent hash function to generate priorities. (Using fresh
random bits implies that certain random variables are independent, and hence the
expectation of their product is the product of their expectations. This fact aids
our analysis considerably.) For each node v ∈ T , maintain a (d − 1)-dimensional
uniquely represented range tree data structure Rv on the points in Tv, where the
point (x1, x2, . . . , xd) is treated as the (d − 1)-dimensional point (x1, x2, . . . , xd−1).
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Inserting a point p then involves inserting p into T and modifying {Rv : v ∈ T}
appropriately. Deleting a point is analogous. We can bound the running time for
these operations as follows.

Inserting p into T takes O(log n) time. We will also need to update Rv for
each v that is an ancestor of p in T , by inserting p into it. Note that p has
expected O(log n) depth by Theorem 6, and we can insert p into any Rv in ex-
pected O(logd−2 n · log log n) time by the induction hypothesis, Thus we can update
{Rv : v is an ancestor of p in T} in expected O(logd−1 n · log log n) time. (Here we
have used the fact that the depth of p and the time to insert p into some fixed Rv

are independent random variables.) Finally, inserting p into T will in general have
involved rotations, thus requiring significant changes to some of the structures Rv

for nodes v that are descendants of p in T . However, it is relatively easy to see that
we can rotate along an edge {u, v} and update Ru and Rv in expected time

O
(
(|Tu|+ |Tv|) logd−2 n · log log n

)
using the induction hypothesis. Using Theorem 6 on page 59 with rotation cost
f(k) = O(k logd−2 n · log log n) then implies that these rotations take a total of
O(logd−1 n · log log n) expected time. (Here we rely on the fact that for any fixed
u and v, |Tu| and the time to update Rv are independent.) This yields an overall
running time bound for insertions of expected O(logd−1 n · log log n) time. The same
argument applies to deletions as well.

Queries in higher dimensions resemble queries in two dimensions. Given a d-
dimensional box query (p, q), we find the predecessor p′ of p in T and the successor
q′ of q in T . Let w be the least common ancestor of p′ and q′ and let Ap′ and Aq′

be the paths from p′ and q′ (inclusive) to w (exclusive), respectively. Let V be the
union of right children of nodes in Ap′ and left children of nodes in Aq′. For each
v ∈ Ap′∪{w}∪Aq′, test if v is in box (p, q). This takes O(d log n) time in expectation,
which is O(logd−1 n) for d ≥ 2. Finally, issue a query (p̄, q̄) to each Rv for each
v ∈ V , where x̄ is the projection of x onto the first (d−1) dimensions, so that if x =
(x1, . . . , xd) then x̄ = (x1, . . . , xd−1). The results of these queries are disjoint, each
takes O(logd−2 n · log log n+k) time in expectation by the induction hypothesis, and
and there are O(log n) of them in expectation. Since the query times (conditioned
on the set of points stored in each structure Rv) and the number of queries made
are independent random variables, the total running time isO(logd−1 n·log log n+k)
in expectation, where k is the size of the output.

We now show that the space usage of our data structure is O(n logd−1 n) in
expectation. As before, we proceed by induction on d. Assume that the space usage
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is O(n logd−2 n) in expectation for a (d− 1)-dimensional point set. The space usage
is dominated by the structures {Rv : v ∈ T}, which by the induction hypothesis
and linearity of expectation require

O

(∑
v∈T

|Tv| logd−2 |Tv|

)
which is O

(∑
v∈T

|Tv| logd−2 n

)
space in expectation, where T is a random treap. Computing the expectation over
the choice of random treap, the space usage is thus bounded by

E

[∑
v∈T

|Tv| logd−2 n

]
= E

[∑
v∈T

|Tv|

]
· logd−2 n

However treaps have expected logarithmic subtree size [SA96], so E
[∑

v∈T |Tv|
]

=∑
v∈T E[|Tv|] =

∑
v∈T O(log n) = O(n log n). The total space required is therefore

O(n logd−1 n).

5.9 Horizontal Point Location & Orthogonal Segment
Intersection

Let S = {(xi, x
′
i, yi) : i ∈ [1 : n]} be a set of n horizontal line segments. In

the horizontal point location problem we are given a point (x̂, ŷ) and must find
(x, x′, y) ∈ S maximizing y subject to the constraints x ≤ x̂ ≤ x′ and y < ŷ. In
the related orthogonal segment intersection problem we are given a vertical line
segment s = (x, y, y′), and must report all segments in S intersecting it, namely
{(xi, x

′
i, yi) : xi ≤ x ≤ x′i and y ≤ yi ≤ y′}. In the dynamic version we must ad-

ditionally support updates to S. As with the orthogonal range reporting problem
(see Section 5.8), both of these problems can be solved using fractional cascading
and in the same time bounds [CG86] (k = 1 for point location and is the num-
ber of lines reported for segment intersection). Mortensen [Mor03b] improved
orthogonal segment intersection to O(log n) updates and O(log n+ k) queries.

We extend our ordered subsets approach to obtain the following results for
horizontal point location and range reporting.

Theorem 22. Let S be a set of n horizontal line segments in R2. There exists a
uniquely represented data structure for the point location and orthogonal segment in-
tersection problems that uses O(n log n) space, supports segment insertions and dele-
tions in expected O(log n · log log n) time, and supports queries in expected O(log n ·
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log log n+ k) time, where k is the size of the output. The data structure uses O(log n)
random bits.

5.9.1 The Data Structures

We will first obtain a hierarchical decomposition D of the plane into vertical slabs
(in a manner akin to segment trees) using a random treap T on the endpoints E
of segments in S. The treap T uses the natural ordering on the first coordinate
to determine the binary search tree ordering. For a, b ∈ R2 with a = (ax, ay) and
b = (bx, by), we let [a, b] denote the vertical slab {(x, y) : ax ≤ x ≤ bx, y ∈ R}. The
decomposition has as its root the whole plane; for concreteness we may imagine it
as the vertical slab [(−∞, 0), (+∞, 0)]. A node [a, b] in D has children [a, c] and [c, b]
if c = (cx, cy) ∈ E is the highest priority node in T such that ax < cx < bx. Note
that the decomposition tree D has nearly the same structure as T . To obtain the
structure of D from T , it suffices to add nodes to T so that the root has degree two,
and every other original node in T has degree three. It will be useful to associate
each node v ∈ T with a node v̄ ∈ D, as follows: label the nodes of T and D as in a
trie, and for u ∈ T and w ∈ D let w = ū iff u and w have the same label.

Each [a, b] ∈ D also has an associated subset of line segments in S, which we
denote by S[a,b]. In particular, line segment (x, x′, y) ∈ S is associated with [a, b] if
[a, b] ⊆ [x, x′] and for all ancestors [a′, b′] of [a, b], [a′, b′] * [x, x′]. Note that s ∈ S
may be associated with as many as O(log n) nodes in D, in expectation. We store
the sets {S[a,b] : [a, b] ∈ D} in an ordered subsets structure, using the natural order
on the second coordinate as our total order. As with range searching we also keep
a treap T ′ on S ordered by the second coordinate which is used to insert new
elements into the ground set L of the ordered subset structure.

To answer a point location query on a point p = (x, y), first search for the
narrowest slab [a, b] ∈ D with a ≤ x ≤ b. Let P be the path from this node to the
root of D. Insert y into L of the OSP instance (using T ′) and for each [a, b] ∈ P ,
search S[a,b] for the predecessor of y using ordered subsets. Of these |P | segments,
return the highest one.

To answer a segment intersection query on a vertical segment (x, y, y′), find the
path P as in a point location query for (x, y). For each [a, b] ∈ P , search S[a,b] for the
successor si of y, and report in order all segments in S[a,b] from si to the greatest
segment at height at most y′.

To insert a segment (x, x′, y), insert (x, y) and (x′, y) into the treap T . As (x, y)
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and (x′, y) are rotated up to their correct positions, modify D accordingly and con-
struct the sets S[a,b] of newly created slabs [a, b] from scratch. We construct a set
S[a,b] as follows. For each descendant e of a or b in T , determine if the segment with
endpoint e is associated with [a, b] in constant time. If so, insert the segment into
S[a,b]. In order to guarantee that this procedure correctly constructs S[a,b], we show
the following: Every segment associated with [a, b] in D has an endpoint that is a
descendant of either a or b in T . See Claim 2 on the following page for the proof.

Finally, we may need to insert (x, x′, y) into sets S[a,b] for slabs [a, b] that were not
affected by the insertions of x and x′ into T and the corresponding modifications to
D. To find the sets to modify, find the path P from (x, y) to (x′, y) in T , and consider
S[a,b] for each [a, b] that is a child of some node in {v̄ : v ∈ P}. For each, test in
constant time if the new segment should be added to it, and add it accordingly.
Deletion is similar.

5.9.2 The Analysis

a

b
A

B C

a

b

A B

C

[p,q]

[p,b] [b,q]

[p,a] [a,b]

[p,q]

[a,q]

[b,q]

[p,a]

[a,b]

Figure 5.12: Rotation of the decomposition D and treap T about edge {a, b}, start-
ing with slab [p, q].

We start with the running time for queries. Note that the decomposition tree D
has nearly the same structure as T . To obtain the structure of D from T , it suffices
to add nodes to T so that the root has degree two, and every other original node
in T has degree three. Thus the path P has expected logarithmic length and can
be found in logarithmic time. Performing the O(|P |) predecessor queries takes
expected O(|P | log log n) time. In a point location query, finding the maximum
height result takes O(|P |) time for a total of expected O(log n · log log n) time. For
a segment intersection query, if there are k[a,b] segments in S[a,b] intersecting the
query segment, we can report them in expected time O(log log n + k[a,b]) by either
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performing fast finger searches in the treap T[a,b] which stores S[a,b] (thus finding
the successor of a node in expected O(1) time), or by storing pointers at each treap
node v ∈ T[a,b] to its successor. The total expected time is thus O(|P | log log n +∑

[a,b]∈P k[a,b]). Since each segment in the answer appears in exactly one set S[a,b],
this total is O(log n · log log n+ k).

We now analyze the running time for insertions. We first bound the cost to
insert (x, y) and (x′, y) into T , do rotations in D, and create S[a,b] for newly created
slabs. Note that this costs the same as updating T , up to constant factors, if the
cost to rotate a subtree of size z is z log log n. Thus, by Theorem 6 on page 59 the
update time per insertion is O(log n · log log n) in expectation. Next we bound the
cost to update S[a,b] for preexisting slabs [a, b]. Let P be the path from (x, y) to (x′, y)
in T . It is easy to prove using Theorem 6 that the expected length of P is O(log n).
Thus the total time to make these updates is again O(log n · log log n) in expectation.
The analysis for deletions is similar.

Finally we consider the space usage. Using Claim 2 and the definition of seg-
ment association, it is not difficult to prove that a segment with endpoints e and
e′ can be associated with at most |Pe,e′| slabs, where Pa,b is the path from a to b
in T . Since this is logarithmic in expectation, we conclude that each segment is
stored at most O(log n) times in expectation. Since treaps and our ordered subset
structure take linear space in expectation, the total space usage is thus O(n log n)
in expectation.

Claim 2. In the data structure of Section 5.9.1, every segment associated with [a, b]
in D has an endpoint that is a descendant of either a or b in T .

Proof: Fix a segment s = (x, x′, y) with endpoints e = (x, y), e′ = (x′, y). Let P
be the treap path from e to e′, and let T ′ be the subtree of T containing P and all
descendants of nodes in P . Suppose for a contradiction that s is associated with
[a, b] but neither of its endpoints is a descendant of a or b. Thus [a, b] ⊆ [x, x′] and
for all ancestors [a′, b′] of [a, b], [a′, b′] * [x, x′]. Let a = (ax, ay) and b = (bx, by). Since
s is associated with [a, b], this implies x < ax ≤ bx < x′. Note that [a, b] ∈ D implies
that one of {a, b} is a descendant of the other in T . Suppose b is a descendant of a
(the other case is symmetric). We consider two cases: a ∈ T ′ and a /∈ T ′.

In the first case, clearly a /∈ P , so a must be a descendant of some node v ∈ P .
Then if c = (cx, cy) is the parent of a, then either cx < ax or cx > bx, since otherwise
[a, b] would not be in D. However, c ∈ T ′, thus x < cx < x′, and so either [a, c] or
[c, b] contains [a, b] and is contained in [x, x′], a contradiction.

In the second case, a /∈ T ′. By assumption, neither e nor e′ is a descendant of
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a, and x < ax < x′, so there must be a treap node d with x < dx < ax with higher
priority than both a and e, and a node d′ with ax < d′x < x′ with higher priority
than both a and e′. However, a must be a descendant of at least one node in {d, d′},
and P must pass through ancestors of both d and d′ (where each node is included
among its own ancestors), contradicting the case assumption that a /∈ T ′.

5.10 2-D Dynamic Convex Hull

In this section we obtain a uniquely represented data structure for maintaining the
convex hull of a dynamic set of points S ⊂ R2. The convex hull of S is defined as
the minimal convex set containing S. The vertices of the convex hull of S are those
points which cannot be written as convex combinations of the other points in S.
For our purposes, the convex hull is represented by an ordered set consisting of the
vertices of the convex hull. (For concreteness we may define the ordering as start-
ing with the point with minimum x-coordinate and proceeding in clockwise order
about the centroid of S.) To ease exposition, we will refer to this representation as
the convex hull, and refer to the minimal convex set containing S as the interior of
the convex hull.

Our approach builds upon the work of Overmars & van Leeuwen [OvL81]. Over-
mars & van Leeuwen use a standard balanced binary search tree T storing S to
partition points along one axis, and store the convex hull of Tv for each v ∈ T in
a balanced binary search tree. In contrast, we use treaps in both cases, together
with the hash table of Section 3.1 for memory allocation. Our main contribution
is then to analyze the running times and space usage of this new uniquely repre-
sented version, and to show that even using only O(log n) random bits to hash and
generate treap priorities, the expected time and space bounds match that of the
original version up to constant factors. Specifically, we prove the following.

Theorem 23. Let n = |S|. There exists a uniquely represented data structure for
2-D dynamic convex hull that supports point insertions and deletions in O(log2 n)
expected time, outputs the convex hull in O(k) time, where k is the number of points
in the convex hull, reports if a query point is in the convex hull or in its interior in
O(log k) expected time, finds the tangents to the convex hull from an exterior query
point in O(log k) expected time, and finds the intersection of the convex hull with a
query line in O(log k) expected time. Furthermore, the data structure uses O(n) space
in expectation and requires only O(log n) random bits.
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Our Approach. We will discuss how to maintain only the upper convex hull, the
lower convex hull is kept analogously. (The upper convex hull consists of all ver-
tices v of the convex hull such that if we move vertically upward from v we imme-
diately exit the interior of the convex hull.) Let U ⊆ R2 be the universe of possible
points, S be our set of points, and N be an upper bound on the number of points
to be stored. We maintain a top level random treap T on the points, using an
11-wise independent hash function h : U → [N3] to generate priorities, and using
the natural ordering on the x-coordinates of the points as the key-ordering. That
is, (x, y) < (x′, y′) in the key ordering iff x < x′. (For simplicity, we will assume
no two points have the same x-coordinate, and that no three points are collinear.)
Let V [Tv] denote the points in Tv. Each node v stores a point p ∈ S as well as the
convex hull of V [Tv]. This convex hull is itself stored in a modified treap on V [Tv],
which we call Hv. Each treap in {Hv : v ∈ T} obtains key priorities from the same
8-wise independent hash function g : U → [N3], and they all use the same key-
ordering as T . We will also maintain with each node u in each Hv pointers to its
predecessor and successor in Hv according to the key ordering. Abusing notation
slightly, we will call these pointers pred(u) and succ(u). Maintaining these pointers
during updates is relatively straightforward, so we omit the details. Note that as
usual all of the pointers that we use are actually abstract pointers, that is, labels
used to for memory allocation as discussed in Section 5.2.

Insertions. Suppose we are currently storing point set S, and insert point p. First
we identify the leaf position l that p would occupy in T if it had priority −∞, and
then rotate it up to its proper position (given its priority h(p)). We then must
recompute Hv for all v in the path P from l to the root of T . For v ∈ P that are
ancestors of p, we need only add p to Hv as described below. For each v ∈ P that is
either p and one of its descendants, we must merge the convex hulls of v’s children,
and then add v to the result.

Adding a Point. We first consider adding a point u to Hv, assuming that u is not
already in Hv. First, we can determine if u is in the upper convex hull of V [Tv]
in expected O(log |Hv|) as follows. Find the nodes a := max{w : w < u} and
b := min{w : w > u}, which takes expected O(log |Hv|) time. Then do a line side
test to see if u is above or on line segment (a, b). Point u is in the hull if and
only if u is above or on (a, b), otherwise not. If u is not in the hull, we leave Hv

unchanged. If u is in the hull, we must find the points x and y such that the upper
hull is {w ∈ Hv : w ≤ x} ∪ {u} ∪ {w ∈ Hv : w ≥ y}. Once these are found, we can
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split Hv at x and y, join the appropriate pieces, and add u to get the upper hull in
O(log |Hv|) time.

We now discuss how to find x. Finding y is analogous. Let line(p, q) denote the
line containing points p and q. Given a point w < u, we can conclude that x ≤ w
if u is above or on line(w, succ(w)). Additionally, we can conclude that x ≥ w if u
is below line(pred(w), w). Thus we can do a binary search for x by traversing the
path from the root to x in Hv. Since we have the pointers to find succ(·) and pred(·)
in constant time, it follows that we can find x in O(depth(x)) time, where depth(x)
is the depth of x in Hv. By Theorem 6 on page 59, E[depth(x)] ≤ 2 ln(|Hv|) + 1, so
adding a point takes expected O(log |Hv|) time.

The total time spent in adding points is O(log2 n) in expectation. To see this,
note that each addition takesO(log n) time in expectation, and there are at most the
depth of l in T of them. Theorem 6 states that depth(l) is O(log n) in expectation.
Finally, depth(l) is independent of the time taken for any point additions, since the
former depends on h and the latter on g, so the expectation of their product is the
product of their expectations.

Merging Two Upper Hulls. When rotating up the newly inserted point p in T ,
we must recompute Hv for each v involved in a rotation. We do this by merging
the hulls of the children of v, say u and w, and then add v as described above. We
can do this so that the expected time for all merges when adding a point to the
top-level treap is O(log n). Our approach mimics that of [OvL81].

Suppose we want to merge the hulls of the children of v, say u and w, and then
add v as described above. We initially begin with Hu and Hw such that all of the
points in the former are smaller than all the points in the latter. We must find the
bridge between them, that is, the pair of points (x, y) such that the upper hull of
V [Tu] ∪ V [Tw] is {q ∈ Hu : q ≤ x} ∪ {q ∈ Hw : q ≥ y}. Once we find x and y, two
splits and a join immediately gives us the treap representation of the desired upper
hull in O(log |V [Tv]|) expected time.

To find the bridge (x, y), we start with a guess (x0, y0) = (root(Hu), root(Hw)).
We iteratively develop improved guesses (xt, yt), maintaining the invariant that xt

is an ancestor of x and yt is an ancestor of y. In each step, we replace at least one
of {xt, yt} with one of its children to get (xt+1, yt+1), being careful to maintain the
invariant. Clearly, after depth(x) + depth(y) steps, we find the bridge.

To compute (xt+1, yt+1) from (xt, yt), we first find pred(xt), pred(yt), succ(xt),
and succ(xt). Then, line-side tests can be used to find an improving move. Fig-
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Figure 5.13: Finding the bridge. Both the convex hull and treaps storing them are
displayed, with the bridge nodes in black. To test the current guess for the bridge
(thick dotted line), we employ line-side tests. The thin dotted lines denote lines
of interest in each of the three cases. Nodes marked “X” are discovered not to be
incident on the bridge.

ure 5.13 shows three of four cases, where the forth case is identical to case (b) if
we swap the role of xt and yt. More specifically, we apply the following tests in
order.

1. Test if line(pred(xt), xt) is below yt (or equivalently, if line(pred(xt), yt) is
above xt). If so, we may infer that x < xt in the binary search tree order, and
thus we set xt+1 to be the left child of xt. This is the case in Figure 5.13(a).

2. Test if line(yt, succ(yt)) is below xt (or equivalently, if line(xt, succ(yt)) is above
yt). If so, we may infer that y > yt in the binary search tree order, and thus
we set yt+1 to be the right child of yt. This is the case in Figures 5.13(a)
and 5.13(b).

3. If neither of the above tests allowed us to make progress (i.e., line(pred(xt), xt)
is above yt and line(yt, succ(yt)) is above xt), then test if line(xt, yt) is below
either succ(xt) or pred(yt). If so, arbitrarily select a vertical line l such that all
points in Hu are to the left of l and all points in Hw are to the right of it. Let
z0 be the intersection of line(xt, succ(xt)) and l, and let z1 be the intersection
of line(pred(yt), yt) and l. If z0 is above z1, then we may infer x > xt and set
xt+1 to be the right child of xt. Otherwise, we may infer y < yt and set yt+1 to
be the left child of yt, as is the case in Figure 5.13(c).

If no three points are collinear and none of these tests make any progress, then
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we may infer that we have found the bridge, i.e., x = xt and y = yt. Though we
omit the proof of this fact, Figure 5.14 illustrates some of the relevant cases, and is
suggestive of how the proof goes. See [OvL81] for further details.

In each case above, we may eliminate points in the shaded oval from consideration.

If test #2 passes, If test #1 passes, 

A possible scenario for test #3.

If then
but 

and 

Another possible scenario for test #3.

If then
but 

and 

Figure 5.14: Illustrations of some of the cases encountered when merging two
convex hulls, with proof sketches.

In expectation, there are E[depth(x) + depth(y)] = O(log |V [Tv]|) steps to find
the bridge, and each step takes O(1) time using the pointers for pred(·) and succ(·).
Since treaps provide expected logarithmic time insertions even if tree rotations take
linear time, and the cost to merge is independent of the top level treap’s structure,
the expected time for all merges when adding a point to the top-level treap is
O(log n).

Deletions. To delete a point p, we rotate p down to its correct leaf position l
(by treating it as though its priority were −∞), then cut the leaf. We must then
update Hv and H ′

v for each v on the path from l to the root. Working our way up,
and recomputing Hv and H ′

v by merging their children’s corresponding treaps, and
then adding v itself, we can update all the necessary entries in O(log2 n) expected
time. The running time argument is similar to that for insertions, and we omit it
here.
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The Convex Hull Queries. To obtain the convex hull we simply do an in-order
traversal of Hr, where r is the root of T . This clearly takes time linear in the size
of the hull.

To determine if a query point p is in the convex hull, we simply search Hr for
it, where r is the root of T . To determine if p is in the interior of the convex hull,
find the predecessor uup and successor vup of p in the upper hull. Then find the
predecessor ulow and successor vlow of p in the lower hull. Then p is in the interior
of the convex hull if and only if line(uup, vup) is above p and line(ulow, vlow) is below
p. Given random treaps containing the upper and lower convex hulls, both of these
queries clearly take expected O(log k) time, where k is the number of points in the
convex hull.

Finding the tangents to the convex hull from an exterior query point p involves
searching the treap storing the convex hull, where lines side tests involving a can-
didate node u and its predecessor and successors allow one to determine whether
a tangent point is in the left or right subtree of u in constant time. Determining the
intersection of the convex hull with a query line is similar. Both queries can thus be
done in expected O(log k) time. We omit the details on how to guide the searches,
and instead refer the reader to [OvL81].

Space Usage. The top level treap T clearly requires only O(n) space. Most of
the space required is in storing {Hv : v ∈ T}. We store these treaps function-
ally, so storing Hv requires only O(log |V [Tv]|) pointers in expectation. Specifically,
suppose v has children u and w. Given Hu and Hw, storing Hv requires storing
a split path in each of Hu and Hw, and the insertion path for v. Each of these
requires O(log |V [Tv]|) pointers in expectation [SA96]. Thus the total space is
O(
∑

v log |V [Tv]|) in expectation, and we need to bound E[log |V [Tv]|] for each v.
Lemma 13 states that E[log |V [Tv]|] = O(1) for each v, so the total space usage is
O(n) in expectation.

Lemma 13. A treap T on n nodes with priorities drawn from an 11-wise independent
hash function h : U → {0, 1, . . . , r} with r ≥ n3 satisfies E[log |Tv|] = O(1).

Proof: It is easy to prove that probability of a collision on priorities is at most(
n
2

)
/r < 1/2n. In this case, we use the trivial bound |Tv| ≤ n to show that

E[log |Tv|] ≤ log(n)/2n+ E[log(|Tv|) | no collisions].

So assume there are no collisions on priorities. Lemma 4 on page 91 states that
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Pr[|Tv| = k] = O(1/k2) for any 1 ≤ k < n and Pr[|Tv| = n] = O(1/n). Thus
E[log |Tv|] =

∑n
k=1 Pr[|Tv| = k] · log(k) =

∑n−1
k=1 O( log k

k2 ) +O( log n
n

) = O(1).

5.11 Unique Representation via Obliviousness

In this section we will present a new general technique for converting certain obliv-
ious data structures implemented on a pure pointer machine into a RAM data struc-
ture that is uniquely represented with high probability. Oblivious data structures
were introduced by Daniele Micciancio [Mic97]. The general definition of oblivi-
ousness is somewhat technical, however for our purposes obliviousness is merely
weak history independence (see Definition 1 on page 21) in a suitable machine
model. In the specific case of oblivious trees, obliviousness is merely weak history
independence in a pointer machine model. In other words, a tree is oblivious if
all sequences of operations (starting from the initial state) that induce the same
logical state induce the same distribution over the pointer structure of the tree. By
analogy with strong history independence, we say that a data structure is strongly
oblivious if all sequences of operations (starting from the initial state) that induce
the same logical state induce the same pointer structure. Our derived RAM data
structure will have nearly the same space and time efficiency as the original, and
will be uniquely represented if the original data structure is strongly oblivious.
This reduces the problem of developing a uniquely represented data structure to
developing a strongly oblivious data structure on a pure pointer machine. This
applies, for example, to the treaps of Seidel and Aragon [SA96], and many of the
dynamized algorithms of Acar et al. [ABH+04].

We introduce some terminology before formally stating our result. For our
purposes, a pure pointer machine is a machine with a finite set of registers, which
can create nodes called cons cells. Each cons cell has two fields, each of which
may store either a pointer to a cons cell or a word of data. Similarly, each register
may store either a pointer to a cons cell or a word of data. The machine may
do arithmetic on data in registers, but not on pointers. All access to cons cells
is through following pointers. The machine is called pure because the fields of
each cons cell may be set only on creation. Thus all data stored in the graph is
immutable as in a purely functional language, and the pointer machine can only
create directed acyclic graphs. See [BA95] for an explanation of various pointer
machines models.

For a state σ of the pointer machine, let ri(σ) be the contents of register i in
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state σ, let G(σ) be the directed graph of cons cells reachable from the registers
in state σ, and let fi(v, σ) be the value in the ith field of cons cell v ∈ V [G(σ)] in
state σ. Let FD(σ) and FC(σ) denote all fields of vertices in G(σ) storing data and
pointers to cons cells, respectively. For a pointer p, let [p] denote the object it points
to. Two states of the pointer machine, σ1 and σ2, are said to be structurally equal if
for all registers i storing data in σ1, ri(σ1) = ri(σ2), and there exists an isomorphism
g : V [G(σ1)] → V [G(σ2)] such that for all registers i storing pointers to cons cells in
σ1, g([ri(σ1)]) = [ri(σ2)] and for all fields fj(v, σ1) ∈ FD(σ1), fj(v, σ1) = fj(g(v), σ2),
and for all fields fj(v, σ1) ∈ FC(σ1), fj(v, σ1) = v′ ⇐⇒ fj(g(v), σ2) = g(v′).

We are now ready to state the theorem. We defer the proof to the end of this
section.

Theorem 24. Any algorithm on a pure pointer machine can be mapped on to a RAM
such that with high probability the (multiplicative) space overhead is constant, f(n)
time operations in the pointer machine take amortized expected O(f(n)) time in the
RAM, and structural equality of two states in the pointer machine implies equality of
the memory representation of the two states in the RAM.

We use the technique of hash-consing [Got74] to obtain this result. Hash-
consing is the technique of hashing a cons cell into memory using both of its
fields together as the key (see Section 5.2). Thus if two cons cells have identi-
cal contents, they hash to the same location. One limitation of this approach is that
all accesses to the data structure in a pure pointer machine must proceed down
through the data structure starting at a register. Thus, whereas some operations
in some data structures may be significantly faster if one is given the right initial
pointer, uniquely represented data structures constructed with this technique will
not in general be able to exploit such speedups. It remains an open problem to
obtain a result akin to Theorem 24 using a construction that allows one to exploit
such speedups. On the positive side, we conclude that any algorithm implemented
on a pure pointer machine that is strongly oblivious (i.e., where each state has a
unique pointer structure) can be implemented as an computation in a RAM which
with high probability is uniquely represented, has only constant space overhead,
and has constant expected slowdown.

Proof of Theorem 24: We first show how to simulate the pointer machine on a
RAM. Simulating the pointer machine registers via an array is trivial. Let C be the
set of cons cells, and let D be the set of data values. To reduce the probability of
collisions, we assign labels drawn from a large set L as follows. Select fast pairwise
independent hash functions ϕD : D → L and ϕL : L2 → L. When a cons cell is
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created, compute its label using ϕL applied to the labels associated with its fields.
Proposition 3 on page 76 then guarantees that the probability that there exists two
cons cells with the same label is O(n2/|L|), where there are n cons cells. Thus using
a set of labels of size nc, where c > 2 is user specified, with high probability no two
cons cells receive the same label. Should any two cons cells receive the same label,
we abort.

When simulating the pointer machine algorithm, we simply store labels (rather
than pointers) in fields. We can now use these labels as keys when hashing the cons
cells into RAM using, e.g., the uniquely represented hash table of Section 3.1. To
maintain unique representation, we will also have to implement garbage collection,
however if we use a reference counting garbage collector (see e.g., [Jon96]) we
can easily amortize the cost of garbage collection against the cost of creating the
cons cells.

Because the labels are assigned using ϕD, ϕL, and the labels of a cell’s children’s
labels, it is straightforward to prove via structural induction that two structurally
equal states σ1 and σ2 with isomorphism g satisfy the condition that v ∈ V [G(σ1)]
and g(v) ∈ V [G(σ2)] receive the same label. Thus they define the same set of keys
(with identical auxiliary data) to be stored in the uniquely represented memory
allocator, and have identical memory representations in the RAM.

It remains to prove the claimed performance guarantees. Assume no two cons
cells receive the same label. The n cons cells can be stored in a uniquely repre-
sented hash table with O(n) slots, where each slot is large enough to store a cons
cell. The hash functions ϕD and ϕL require only O(1) words of RAM to store. Thus
the whole simulation requires only O(n) cons cells worth of space. As for time, con-
sider a pointer machine operation that takes f(n) time, for some function f . The
operation may perform the following native pointer machine operations: derefer-
ence a pointer, read data from cons cells and registers, perform basic computations
on that data, create a cons cell, and alter the contents of a register. We consider
each of these actions in turn.

Dereference a Pointer. Dereferencing pointers is simulated by a hash table lookup
on the appropriate label, and thus each pointer dereference is simulated in
expected constant time.

Read Data and Perform Basic Computations. Reading data from cons cells and
registers takes constant time per read in a RAM, and the RAM can perform
all the basic computations supported by the pointer machine in constant time.
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Thus the time to perform these actions in simulation can be charged against
the time to perform them in the pointer machine.

Create a Cons Cell. To simulate the creation of a cons cell, the RAM must create
the cell, generate a label for it, and hash it into memory. This takes expected
constant time. Note that because we are dealing with a pure pointer machine,
when a cons cell is created it has no cons cells pointing to it. Thus, the
creation of a cons cell cannot affect the labels of any other cons cells.

Alter the Contents of a Register. Altering the contents of a register takes constant
time on the RAM. However, if the register previously stored a pointer and up-
dating it caused some subgraph G′ = (V ′, E ′) stored by the pointer machine
to become unreachable from all of the registers, then the unique representa-
tion constraint requires eager garbage collection of G′. It is straightforward
to see that this can be accomplished in expected O(|V ′|) time by traversing
G′, using, for example, depth-first search, and deleting all the cons cells that
compose it. We amortize the cost of this garbage collection against the cost
to create the cons cells. That is, we may use Φ = |C|, the number of cons
cells, as the potential function for the amortization scheme.

Each native pointer machine operation is thus simulated in amortized expected
constant time, so that a pointer machine operation that takes f(n) time will take
amortized expected O(f(n)) time when simulated on a RAM. Finally, note that
amortization is used only for garbage collection; any pointer machine operation
that does not require garbage collection and takes f(n) time will take expected
O(f(n)) time when simulated on a RAM.

5.12 Dynamic Trees and Unique Representation via
Dynamization

Acar et al. [ABH+04] considered the problem of running an off-line algorithm in an
online environment while maintaining enough state so that as the input changes
the algorithm can exploit its earlier work as much as possible rather than restarting
the computation from scratch each time. Their machine model is a non-standard
RAM in which each memory location can be written to only once, and reads must
occur during a function call. The first restriction simplifies the problem and is
satisfied by all purely functional programs, while the second restriction simplifies
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the tracking of memory reads. In this model, Acar et al. define a notion of the
stability of a program with respect to changes in the input, which is an upper
bound on the amount of recalculation that must be done when the input changes.
More formally, given an algorithm A and an input I define the trace of A on I,
denoted AT (I), to be the function-call tree of the execution of A on I. Let ∆ be the
class of valid input changes, with (I, I ′) ∈ ∆ if there is a valid way to change I to
I ′. Define a distance function on traces, δ, which is the sum of the costs of function
calls that are different in the two input traces. Then A is O(f(n))-stable if

max
(I,I′)∈∆, |I|=n

{δ(AT (I), AT (I ′))} = O(f(n)).

Finally, an algorithm is said to be r-round parallel if it operates in r rounds where
reads occurring in round i only read locations written to in rounds j < i, for all i.
Acar et al. then prove the following theorems.

Theorem 25 (Theorem 4.2 of [ABH+04]). Let A be an r-round parallel algorithm
that is O(f(n))-stable for some class of input changes ∆, then the output of A can
be updated in O(f(n) + r) time for any change in ∆. Furthermore, if each location
is read only a constant number of times, then there is a strongly history independent
implementation of the resulting dynamic algorithm.

Theorem 26 (Theorem 4.1 of [ABH+04]). Let AT be a the trace-generator for an
algorithm A. If AT is O(f(n))-stable for a class of input changes ∆, then the output
of A can be updated in O(f(n) log f(n)) time for any change from ∆.

We discuss applications of these theorems in the following subsections.

5.12.1 Dynamic Trees

The dynamic trees abstract data type stores a collection of vertex-disjoint trees and
supports the following operations.

• make-tree(x): create a new singleton tree on a new vertex labeled x.

• link(u, v, x): add edge {u, v} of cost x. This operation assumes u and v initially
reside in different trees.

• cut({u, v}): delete the edge {u, v}.
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• update(u, v, x): add real number x to the costs of all edges on the path from
u to v, assuming such a path exists.

• cost({u, v}): return the cost of edge {u, v}.

• min-cost(u, v): return the minimum cost edge e on the the path from u to v,
assuming such a path exists.

The dynamic trees abstract data type was originally introduced in a different
form by Sleator and Tarjan [ST83, ST85]. The original specification stores a collec-
tion of vertex-disjoint rooted trees and supports the following operations.

• make-tree(x): create a new singleton tree on a new vertex labeled x.

• cut(v): delete the edge (v, parent(v)).

• link(u, v, x): add edge {u, v} of cost x and make v the parent of u. This
operation assumes u and v initially reside in different trees, and u is the root
of its tree.

• evert(v): Make v the root of the tree that contains it.

• root(v): return the root of the tree containing vertex v.

• update(v, x): add real number x to the costs of all edges on the path from v
to root(v).

• parent(v): return the parent of v.

• cost(v): return the cost of edge {v, parent(v)}.

• min-cost(v): return the vertex w closest to root(v) such that edge {w, parent(w)}
has minimum cost among edges on the tree path from v to root(v).

Sleator and Tarjan gave two data structures supporting all of the above op-
erations (and a few additional ones) in amortized O(log n) time and worst-case
O(log n) time, respectively [ST83, ST85]. Their solution represents each tree as
a collection of vertex-disjoint paths. Their implementation presumably influenced
their choice of operations and we favor the abstract data type definition involving
unrooted trees, which is arguably more natural. Note that any implementation
of that abstract data type can easily be extended to an implementation of Sleator
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and Tarjan’s abstract data type. From now on when we refer to the dynamic trees
abstract data type, we will be referring to the one on unrooted trees.

There has been extensive additional work on the dynamic trees problem. For
a detailed discussion, we refer the reader to Werneck’s thesis [Wer06]. Among
the various approaches to the problem is tree contraction via the rake and compress
trees of Miller and Reif [MR89, MR91]. This is the approach used by Acar et al.,
who develop a strongly history independent solution that supports all the dynamic
tree operations expected O(log n) time using O(n log n) space [ABH+04, ABV05].
Using the uniquely represented hash tables of Section 3.1 to store the elements in
their data structure, we can immediately reduce the space to O(n) and obtain the
following result.

Theorem 27. There exists a uniquely represented implementation of dynamic trees
that supports make-tree, cut, link, update, cost, and min-cost operations in expected
O(log n) time, and uses O(n) space.

Acar et al. [ABV05] also mention several other queries that their data structure
can support in expected O(log n), all of which carry over to the uniquely repre-
sented version. Let c(e) denote the cost of edge e. The edge costs induce a distance
function d on pairs of nodes, where d(u, v) is equal to the sum of the edge costs
among edges in the path from u to v. The supported queries include the following.

Path Queries: Fix an arbitrary associative operator⊕ : R×R → R that can be com-
puted in constant time. Given u and v in the same tree, let P = 〈w1, . . . , wt〉
be the path from u to v. Return c({w1, w2})⊕ c({w2, w3})⊕· · ·⊕ c({wt−1, wt}).

Subtree Queries: Fix an associative and commutative operator ⊕ : R × R → R
that can be computed in constant time. Given v and r in the same tree T , let
Tv denote the subtree of v in the tree obtained from rooting T at r. Let E be
the edges of Tv. Return

⊕
e∈E c(e).

Diameter: Given a node v in tree T , return the diameter of T , defined as the cost
of the maximum cost simple path in T .

Centers: Given a node v in tree T , return a center of T , defined as a node u mini-
mizing the maximum distance to any other node in T .

Set Distance: Given a node u and set of nodes S, return d(u, S) := minv∈S{d(u, v)}.
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LCA: Given u, v, and r in the same tree T , return the least common ancestor (LCA)
of u and v in the tree obtained from rooting T at r, defined as the common
ancestor of u and v at maximum distance from the root.

5.12.2 Unique Representation via Dynamization

The automatic dynamization technique of Acar et al., in their own words,

“[. . .] builds a dynamic dependence graph [that encodes dependencies
between code and data] to represent an execution and uses a change
propagation algorithm to update the output and the dependencies when-
ever the input changes [ABH06]. A dynamic dependence graph main-
tains the relationship between code and data in a way that makes it
easy for the change-propagation algorithm to identify code, called a
reader, that depends on a changed value. Readers are stored as clo-
sures, i.e., functions with environments. This enables re-execution of
a reader in the same state as before — modulo of course the changed
values. The change-propagation algorithm maintains a queue of read-
ers affected by changes and re-executes them in sequential execution
order. When a reader is re-executed, the dependencies that it created
in the previous execution are deleted and dependencies created dur-
ing re-execution are added to the dependence graph. It is in this way
that the dependence graphs are dynamic. Re-executing a reader may
change other data values, whose readers are then inserted into the
queue. Change propagation terminates when the reader queue becomes
empty.” [ABH+04]

Acar et al. note that the dependence graph itself is strongly history indepen-
dent. To make the dynamized data structure strongly history independent, it is
thus necessary and sufficient to ensure that the supporting data structures used
for the dynamization are also strongly history independent (including the memory
allocator). The required data structures are a hash table, a priority queue, and an
order maintenance data structure. Efficient strongly history independent versions
of these data structures can be found in Chapter 3, Section 4.5, and Section 5.6,
respectively. Applying Theorem 26 (Theorem 4.1 of [ABH+04]), we immediately
obtain the following result.
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Theorem 28. Fix a computational problem P and an abstract data type A that is a
dynamic version of problem P. Let ∆ be the class in input changes allowed by A. If
there is an algorithm A for P in the restricted RAM model of [ABH+04] with a trace-
generator AT that is O(f(n))-stable for ∆ then there is a strongly history independent
implementation of A on a RAM model enhanced with direct support for function calls
that supports changes in ∆ in expected O(f(n) log f(n)) time.

Moreover, if A is reversible then by same argument used in the proof of Theo-
rem 1 on page 23 the implementation is uniquely represented as well.





Chapter 6

Adaptive Variants of Uniquely
Represented Data Structures

In previous chapters we have considered uniquely represented data structures that
are strongly history independent, and thus store absolutely no information about
their historical use beyond that required by their abstract data types. We have
demonstrated uniquely represented implementations of several important abstract
data types that match, or very nearly match, the time and space complexity of
the best corresponding conventional implementations, up to taking expectations.
However, our running time guarantees are typically worst-case (with respect to the
instance) expected time bounds. Many data structures are specifically designed
to store information about the historical sequence of operations, in some form or
another, in order to allow the data structure to adapt to its workload and thus pro-
vide superior amortized performance. Splay trees [ST85] and the union-find data
structure [Tar75] (see Section 7.2) are two examples. Unfortunately, there is no
hope of creating uniquely represented data structures that adapt to the historical
sequence of operations in this manner. Indeed, the phrase “adaptive uniquely rep-
resented data structures” is something of a contradiction in terms. In this chapter
we consider a novel relaxation of unique representation and strong history inde-
pendence, in which the representation is allowed to depend on certain information
about the historical use of the data structure that is specified up front. The hope
is that limited history dependence will allow the data structure to adapt to the in-
put and achieve improved performance without storing unauthorized information
about the historical use of the data structures.
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6.1 Relaxing Unique Representation

Given an abstract data type A = (V, v0, τ, λ) with operations O, we model the prob-
lem of developing an “adaptive uniquely represented data structure” (relative to
some notion of what history we are allowed to reveal) as the problem of devel-
oping a uniquely represented implementation for a related abstract data type A′.
Before specifying how we obtain A′ from A, we describe formally how to model
what historical information we are allowed to reveal. Let H be an arbitrary set,
called the set of histories, and fix a historical transition function

ψ : V ×O ×H → H.

Also define a distinguished history h0 ∈ H called the initial history. The historical
information that the implementation is allowed to store given that it has histori-
cally performed the sequence of operations 〈O0, O1, O2 . . . , Ok−1〉 is then hk, where
hi+1 := ψ(vi, Oi, hi) and vi is the logical state of the data structure after operations
〈O0, O1, O2 . . . , Oi−1〉 (i.e., vi := τ (vi, Oi) for all i ≥ 0). We call hk the current history
in this case.

Once we have H and ψ, we can defineA′ = (V ′, v′0, τ
′, λ′) as follows. The logical

states V ′ of A′ consist of all pairs (v, h) ∈ V × H that are reachable from (v0, h0),
by which we mean there is a sequence of operations that puts A in logical state v
with current history h. The start state is simply v′0 := (v0, h0). The operations for
A′ are the same as for A. For all operations O the transition function is

τ ′((v, h), O) := (τ(v,O), ψ(v,O, h))

and the output function is

λ′((v, h), O) := λ(v,O).

This formalism provides a versatile means to specify just what historical infor-
mation is allowed to be stored and revealed. Here are some examples.

1. If H = {h0}, then we recover the original notions of unique representation
and strong history independence.

2. If H equals all (possibly complex) paths of length k or less in the state transi-
tion graph G = (V,E) of A, h0 = 〈v0〉, and ψ is defined as

ψ(v,O, 〈u0, u1, . . . , uj〉) =

{
〈u0, u1, . . . , uj, τ(v,O)〉 if j < k − 1
〈u1, . . . , uj, τ(v,O)〉 if j = k − 1
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then the current history is precisely the previous k logical states that the
abstract data type was in.

3. For a data structure storing a set of elements from a universe U , if H =
{X : X ⊆ U, |X| ≤ k} and h0 = ∅, then by defining ψ appropriately
we can ensure the current history is the set of the previous k elements in-
serted/deleted/accessed.

4. For an abstract data type with k operations, if H = {0, 1, . . . , p − 1}k we
can store counts of how many times each operation was performed modulo
some large number p. Similarly, we can keep track of how many times each
element was accessed or modified. For example, if the abstract data type is a
binary search tree of keys from universe U , then we can set H to be all partial
functions from U to N, and set ψ to ensure that the current history h has as
its domain the current set of keys being stored and that h(e) is the number of
times e has been accessed.

In general, in our setting we can model any notion of what history we are
allowed to reveal as an equivalence relation ∼ over the set of all finite sequences
of operations H. The revealed history is then an equivalence class. Without loss of
generality, ∼ refines the equivalence relation ≈, where ω ≈ ω′ if and only if ω and
ω′ ∈ H lead to the same logical state. Any such notion can be expressed by some
pair (H,ψ) using our formalism. More complex notions of what history we are
allowed to reveal are possible if, for example, there is some probabilistic model of
user behavior or if the machine can hide random bits from the observer. We leave
such matters for future work. Finally, note that we can also use this formalism to
characterize what history is leaked by existing conventional data structures.

6.2 Adaptive Uniquely Represented Search Trees

We initiate the study of adaptive uniquely represented data structures starting with
the binary search tree abstract data type (see Section 4.5). Among binary search
trees that adapt to their sequence of operations, the splay trees of Sleator and
Tarjan [ST85] are distinguished for their many performance guarantees when ser-
vicing various access patterns. We present two adaptive uniquely represented data
structures that each have at least one of these desirable guarantees, namely static
optimality and the working set bound, yet do not store very much history. The first
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construction is actually due to Kalai and Vempala [KV05], whereas the second is
a slight variant of a data structure due to Bădoiu et al. [BCDI07]. Here are the
corresponding results for splay trees.

Theorem 29 (Static Optimality Theorem for Splay Trees [ST85]). Fix a splay tree
on n elements. For any item i, let qi be the access frequency of item i, that is, the total
number of times i is accessed. Let m be the total number of accesses. If every item is
accessed at least once, then the total access time is O(m+

∑m
i=1 qi log(m/qi)).

Theorem 30 (Working Set Theorem for Splay Trees [ST85]). Fix a splay tree on n
elements. Fix a sequence {ai}m

i=1 of m accesses. For i ∈ [1 : m], let ti be the number of
different elements accessed before the ith access since the last access of element ai, or
since the beginning of the sequence if i is the first index at which element ai appears.
Then the total access time is O(n log n+m+

∑m
i=1 log(ti + 1)).

The static optimality theorem is so named because the best fixed binary search
tree for a sequence of m accesses in which each element e is accessed qe > 0 times
requires Ω(m+

∑m
i=1 qi log(m/qi)) time in total to perform the accesses. This is an

easy corollary of Shannon’s source coding theorem (see Theorem 9 of [Sha48]);
simply treat the fixed search tree as a coding scheme in which each symbol is
encoded as the path from the root to it, as in a trie.

6.2.1 Achieving Static Optimality

As Theorem 29 suggests, static optimality is really only helpful when accesses
greatly outnumber insertions and deletions. Thus in this section we focus on the
case that the set of keys is fixed; the tree in this section will support only lookup
operations.

Fix any infinite sequence of accesses ρ = 〈a1, a2, a3, . . .〉 on n keys. Let ρi =
〈a1, a2, . . . , ai〉. Kalai and Vempala [KV05] designed a binary search tree data struc-
ture that has the following property.

For i ∈ Z+, let C∗
i be the total cost of the best fixed search tree for ρi to

perform ρi, and let Ci be the total cost of our data structure to perform
ρi. Then

lim
k→∞

E[Ck]

C∗
k

= 1.
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Kalai and Vempala obtain this result using techniques for online algorithms
from the field of machine learning (see [Blu98] for a survey). We present a slight
modification that stores relatively little historical information. (See Section 1.2
of [KV05] for the original construction.) Since Kalai and Vempala do not appear
to be concerned with limiting the storage of historical information, it seems that
this is one of those auspicious occasions in research where a result has previously
unsuspected implications.

Theorem 31. Fix any T ∈ N and any sequence of T accesses ρ = 〈a1, a2, . . . , aT 〉 on
n keys. Let C∗

T be the total cost of the statically optimal tree for ρ. Then there exists a
tree such that

1. The only historical information the tree maintains are two functions

e 7→ |{i : i ≤ t1, ai = lookup(e)}| and e 7→ |{i : i ≤ t2, ai = lookup(e)}|

with domain equal to the elements being stored at time t1 and t2, respectively.

2. if CT is the cost of the tree on ρ, then E[CT ] ≤ C∗
T + 2n

√
nT and thus

E[CT ]
C∗

T
≤ 1 + 2n

√
n√

T
.

Above, t1 is the time at which the tree was last modified and t2 is the current time.

Kalai and Vempala’s tree employs the follow the perturbed leader algorithm, and
periodically computes the statically optimal tree for the current sequence of ac-
cesses with some added noise and then uses it for the next several accesses. Given
a vector of frequencies of accesses, the optimal static tree for it can be found in
O(n2) time using a clever dynamic programming algorithm due to Knuth [Knu71].
We provide pseudocode for our modification of Kalai and Vempala’s algorithm for
the case that T is fixed in advance in Figure 6.2.1 on the next page. Our modifica-
tions consist of setting vi according to a hash function, and storing both fi and ri

terms. In the pseudocode, fi denotes the observed frequency of access of element i
at the time of the previous tree modification, and ri denotes the number of accesses
to element i since then. The history stored then consists of e 7→ fe and e 7→ (fe+re).

The performance guarantee of Theorem 31 follows from that of Kalai and
Vempala’s original tree. The fact that the leaked history is exactly e 7→ fe and
e 7→ (fe+re) follows from the fact that these functions are stored, and the tree struc-
ture is a deterministic function of them and the random bits of the machine. In fact,
we have ensured that our implementation stores these functions to aid in precisely
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lazy-leading-tree(integer N)
For (i = 1, 2, . . . , n)

Set fi = 0 and ri = 0;
Set vi = h(i) where h is a hash function from elements
to {1, 2, ..., N} drawn from a suitable hash family.

Start with the best static tree as if there were vi accesses to element i.
Let ρ = 〈a1, a2, . . . , aT 〉 be the access sequence.
For each access at = lookup(i)

Set ri = ri + 1;
If (fi + ri ≥ vi)

Set vi = vi +N ;
For (i = 1, 2, . . . , n)

Set fi = fi + ri and ri = 0;
Change trees to the best static tree if there were vi accesses
to each element i.

Figure 6.1: Pseudocode for Kalai and Vempala’s “lazy leading tree” [KV05], slightly
modified from the original. For Theorem 31, N is set to

√
T/n.

specifying what historical information is stored. A variant that stores only (fi + ri)
instead of both fi and ri would store strictly less historical information, though
characterizing exactly what history this variant stores is slightly more complex;
rather than the function e 7→ fe indicating the number of accesses of each element
at the time of the last tree modification, this variant would store an equivalence
class of possible candidates for the function, of the form {f : ∀i vi−N ≤ f(i) < vi}.

6.2.2 Achieving the Working Set Bound

The main feature of the working set bound is that as the number of accesses m in-
creases beyond n log n, the average amortized cost of a lookup(e) is O(log k) where
there were k distinct elements accessed since the last lookup(e) operation. Stan-
dard binary search trees would typically guarantee a time bound of O(log n) in
this scenario. Given a binary search tree abstract data type storing n elements
{1, 2, . . . , n}, we will allow the implementation to reveal the order in which the
elements were last accessed. For example, if n = 4 and the sequence of accesses
was 〈4, 1, 3, 2, 4, 2, 3, 2〉 the revealed history would be 〈2, 3, 4, 1〉 because 2 is the
most recently accessed element (last accessed during operation #8) followed by 3



6.2 Adaptive Uniquely Represented Search Trees 161

(operation #7), 4 (operation #5), and finally 1 (operation #2). We describe the
revealed history formally in the next paragraph. The constructions of this section
will support lookup, insert, and delete operations, but not join and split. We prove
the following theorem.

Theorem 32. There is a data structure for the binary search tree abstract data type
that reveals only the history (H,ψ) described below, supports insert and delete opera-
tions in expected O(log n) time, and lookup(e) in expected O(log k) time, where there
were k distinct elements in the tree accessed since the last access of e. Moreover, the
data structure requires only linear space and O(log n) random bits.

The Revealed History

Let U be the universe of elements. Let H, the set of histories, consist of all per-
mutations of all subsets of U . We use the convention that a permutation of S is a
sequence in which each element of S appears exactly once. We let h0 be the empty
permutation on the empty set. We define the historical transition function ψ by
describing how to evaluate it case by case. Let h = 〈u1, u2, . . . , uj〉 be the current
history.

• ψ(v, insert(e), h): If e /∈ {u1, u2, . . . , uj}, append e to the front of h to obtain
the new current history 〈e, u1, . . . , uj〉. If e ∈ {u1, u2, . . . , uj} so that e = ui,
delete ui from h and then append e to the front of h to obtain the new current
history 〈e, u1, . . . , ui−1, ui+1, . . . , uj〉.

• ψ(v, delete(e), h): Remove e from h to obtain the new current history. Thus if
e = ui, the new current history is 〈u1, . . . , ui−1, ui+1, . . . , uj〉.

• ψ(v, lookup(e), h): If e is among the stored elements, that is, e ∈ {u1, . . . , uj},
then ψ(v, lookup(e), h) = ψ(v, insert(e), h). Otherwise ψ(v, lookup(e), h) = h.

The Construction

Our construction is a slight variant of the working-set structure of Bădoiu et al. [BCDI07].
The main difference is that we use uniquely represented binary search trees and
linked lists instead of conventional versions of those data structures. We include
the construction and its analysis for completeness.
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Let h = 〈u1, u2, . . . , un〉 be the current history. Define an infinite sequence
{si}i≥0 via s0 = 0 and si = 22i for all i ≥ 1. We will maintain a collection of τ
uniquely represented binary search trees {T1, . . . , Tτ} and τ uniquely represented
linked lists {L1, . . . , Lτ} where τ := min{i : si ≥ n} = dlog log ne. We maintain the
invariant that Ti and Li store {uj : si−1 < j ≤ si} for all 1 ≤ i ≤ τ . In each tree Ti

the elements will be stored in binary search tree order according to their natural
ordering, whereas in each Li the elements will be ordered according to the current
history. We cross-link the nodes (with labels rather than actual pointers), so that
given e ∈ Ti we can find e ∈ Li and vice-versa in expected constant time. We also
store the total number of elements being stored, and the number of trees τ being
stored in each collection.

Before discussing how to implement the operations, we note some properties
of this construction. Observe that si+1 = s2

i for i ≥ 1 so that the expected depth
of any element in Ti+1 should be about twice the expected depth of any element in
Ti, assuming 1 ≤ i < τ − 1. Note also that the space usage is linear, since the each
element is stored in one uniquely represented binary search tree and one uniquely
represented linked list. We implement the operations as follows.

Lookup: To lookup element u, run lookup(u) in each tree Ti ∈ {T1, . . . , Tτ} in in-
creasing order of i. If u is not found in any Ti, report that u is not present.
Otherwise u is present in the data structure. In this case, let i(u) be the index
of the tree in {T1, . . . , Tτ} containing u. Thus the lookup(u) operation is suc-
cessful in Ti(u) and the correct output is the result of this lookup. However,
before returning this result we must do some work to maintain the invariants
for {T1, . . . , Tτ} and {L1, . . . , Lτ}. Let h = 〈u1, u2, . . . , un〉 be the current his-
tory before the performance of the current lookup of u. Insert u into T1 and at
the front of L1. Delete u from Ti(u) and Li(u), using u’s location in Ti(u) to find
its location in Li(u). For i = 1, 2, . . . , i(u) − 1, let vi be the last element of Li

(i.e., the least recently accessed element in Li), delete vi from Ti and Li and
insert vi into Ti+1 and at the front of Li+1. Finally, return u and its auxiliary
data, if any.

Insertion: Consider operation insert(u, d). If u already exists in the data struc-
ture, then this operation merely updates its auxiliary data to d. This can be
achieved exactly as a lookup operation, with the minor modification that the
auxiliary data of u should be set to d at the end of the operation instead of
returning u and its auxiliary data.

So suppose u does not already exist in the data structure. Insert u into T1 and
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at the front of L1. T1 can also store d with u. For i = 1, 2, . . . , τ − 1, let vi be
the last element of Li (i.e., the least recently accessed element in Li), delete
vi from Ti and Li and insert vi into Ti+1 and at the front of Li+1. If the number
of elements, n, now equals sτ + 1 then it is time to add new (initially empty)
structures Tτ+1 and Lτ+1 to the collections. In this case, define vτ analogously
to v1 through vτ−1, delete vτ from Tτ and Lτ , and insert vτ into Tτ+1 and Lτ+1.

Deletion: Consider operation delete(u), where we assume u is present in the data
structure. For each i ∈ {1, 2, . . . , τ} search for u in Ti. Suppose u ∈ Ti(u).
Delete u from Ti(u). For i = i(u) + 1, . . . , τ , let vi be the first element of Li

(i.e., the most recently accessed element in Li), delete vi from Ti and Li and
insert vi into Ti−1 and at the end of Li−1. If the number of elements, n, now
equals sτ−1 then we must also delete (the now empty) structures Tτ and Lτ .

We now proceed to prove Theorem 32 on page 161.

Proof of Theorem 32: We have already argued above that the space usage is
linear, since each element is stored once in a uniquely represented linked list and
once in a uniquely represented binary search tree and by Proposition 2 on page 52
and Theorem 7 on page 59 the space usage of these structures is linear. The fact
that only O(log n) random bits are required likewise follows from Proposition 2
and Theorem 7. So consider the running times.

We begin with the expected O(log k) bound for a lookup(u) operation, where
where there were k distinct elements in the tree accessed since the last access of u.
Note that for our purposes accesses include insertions and updates to auxiliary data.
If u is not present, then the cost of the operation is the cost to perform lookup(u)
operations in each tree in {T1, . . . , Tτ}. This takes expected O(

∑τ
i=1 log |Ti|) time,

however for 1 < i ≤ τ we have

|Ti| ≤ 22i − 22i−1

.

This in turn implies log |Ti| ≤ 2i, so that
τ∑

i=1

log |Ti| ≤ 2τ+1 ≤ 4 log(n).

Thus O(
∑τ

i=1 log |Ti|) is O(log n). However, in this case k = n, so the operation
takes expected O(log k) time as promised.

So suppose u is present in tree Ti(u). In this case we must perform one search,
insertion, and deletion within Ti as well as one insertion and deletion within Li
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for each i ∈ {1, 2, . . . , i(u)}. Since the operations on lists take expected O(1) time,
the running time is dominated by the tree operations. Each such operation takes
expected O(log |Ti|) time, so the total expected time is O(

∑i(u)
i=1 log |Ti|). From our

comments above,
i(u)∑
i=1

log |Ti| ≤ 2i(u)+1

and we claim this is O(log k). From the definition of k and i(u), we may infer
si(u)−1 < k ≤ si(u). If i(u) = 1 the claim is trivial, so suppose i(u) > 1. In this case,
22i(u)−1

< k so that 2i(u)−1 ≤ log(k). Therefore 2i(u)+1 ≤ 4 log(k) and
∑i(u)

i=1 log |Ti| is
bounded at O(log k).

The running time for insert(u, d) operations that update the auxiliary data for
u rather than inserting a new element u likewise take O(log k) time, by the same
analysis as for lookup operations. The running times for insert(u, d) operations
that add a new element u to the set, and likewise for delete(u) operations, can
be bounded via an analysis analogous to the one above for lookup(u) operations
where u is not in the set of elements being stored. We omit the precise details.

Finally, we prove that the only history revealed is the order of last accesses to
the elements, that is, the current history h defined by (H,ψ) above. Note that once
the random bits of the uniquely represented binary search trees and the memory
allocator have been fixed, the machine representation of the data structure is a
deterministic function of h. Also note that the h is in fact stored by the data struc-
ture, as it can be computed by appending the lists in {L1, . . . , Lτ}. Together these
observations imply that h is precisely the historical information that is revealed by
the machine state.



Chapter 7

Lower Bounds

In previous chapters we have shown that many fundamental abstract data types
have efficient uniquely represented implementations. Indeed, after seeing those re-
sults one is tempted to ask if there is a general theorem stating that the overhead for
unique representation is extremely low for all abstract data types. Unfortunately
that is not the case. In this chapter we present the first complexity gap between
uniquely represented and conventional implementations of a natural abstract data
type in the RAM model, and shed some light on a particular barrier that uniquely
represented implementations face and conventional implementations do not.

Our lower bounds hold in the cell probe model [Yao81]. The cell probe model
assumes a RAM is used for computation, however it assumes a more lenient cost
model, in which the cost (time complexity) of a computation is the number of word
reads and writes. All other computations are free. The word size w is a parameter
of the model. This more lenient cost model implies that lower bounds in the cell
probe model hold for the RAM as well; lower bounds for the cell probe model are
thus stronger than corresponding results for the RAM.

7.1 The Information-Destruction Bound

As mentioned, uniquely represented data structures are strongly history indepen-
dent. This means that no evidence of the historical sequence of operations that
led to the current logical state may be stored in any way. However, some abstract
data type operations might destroy significant amounts of historical information,
in ways we will make precise shortly. Destroying information is expensive for all
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implementations, however uniquely represented implementations must do so ea-
gerly whereas conventional implementations need not do so at all. This is the basis
of what we will call the information-destruction bound.

To formalize what we mean by the destruction of information, consider the
state transition graph of a RAM M. Recall from Section 2.2 that the state tran-
sition graph has a vertex for each configuration of the RAM, and an edge (u, v)
for each u and v such that a single RAM operation can take the machine from
configuration u to configuration v. Fix an abstract data type A and a uniquely
represented implementation of A on M. For a logical state v, let σ(v) denote the
unique machine state in M encoding v. Consider some fixed operation of A, which
we identify with a function f of type VA → VA, where VA is the set of logical states
of A. Informally we say applying f destroys information if we are in logical state
v, and there exists logical state u 6= v such that f(u) = f(v). A measure of the
information destroyed is |f−1(f(v))|, where f−1(w) := {u : f(u) = w}. Given a
logical state u, we call |f−1(u)| the in-degree of f at u. We also call this quantity the
in-degree of the operation corresponding to f . The basic idea of the lower bound
is then to show that if the in-degree of an operation is large enough, then the RAM
implementation will have to perform many operations to transform the machine
from a configuration appropriately chosen from {σ(u) : u ∈ f−1(v)} to the configu-
ration σ(v). The proof of this fact then relies on a volumetric argument; essentially,
the set of states that are near some machine state σ in the state transition graph
must be small, so any large set of states must contain many states that are far from
σ.

Fix a directed graph G = (V,E) with positive edge costs. For u, v ∈ V let
dG(u, v) be the minimum cost of any u to v path in G (where the cost of a path P
is the sum of costs for all edges in P ). Let BallG(v, r) denote the closed in-ball of
radius r around v, i.e., {u : dG(u, v) ≤ r}. In the state transition graph of a RAM,
dG(u, v) is the minimum number of words one needs to change to convert u to v,
where u and v are configurations of the word array of the RAM. The above line of
reasoning leads to the following lemmata.

Lemma 14. Let G = (V,E) be the state transition graph of a RAM with w bit words
and with a word array of length m. Then for any v ∈ V and r ∈ [0,m],

|BallG(v, r)| =
r∑

k=0

(
m

k

)
(2w − 1)k ≤ mr · 2w·r

and if r ≤ m/3 then
(

m
r

)
(2w − 1)r ≤ |BallG(v, r)| ≤ 2

(
m
r

)
(2w − 1)r.
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Proof: In G, a path from u to v with k edges can be uniquely specified by selecting
k words from the word array and selecting new values for the k words. There are(

m
k

)
choices for words, and for each word, 2w − 1 possible word values that differ

from the current one. Thus there are
(

m
k

)
(2w − 1)k paths of length k starting from

any machine state v. Summing over k yields the formula for |BallG(v, r)|.
We next prove that |BallG(v, r)| ≤ mr · 2wr. This inequality holds because we

can specify any element of u ∈ BallG(v, r) given v by specifying a list L0 of r array
indices including all those modified in the path from u to v (and possibly some
others), and a list L1 of the r word values that those indices store in state u. There
are mr · 2wr such pairs of paths (L0, L1), so this is an upper bound on |BallG(v, r)|.

Finally, consider the case that r ≤ m/3. Given the exact formula for |BallG(v, r)|,(
m
r

)
(2w − 1)r ≤ |BallG(v, r)| trivially. To prove |BallG(v, r)| ≤ 2

(
m
r

)
(2w − 1)r, it

suffices to prove that
(

m
k−1

)
(2w − 1)k−1 ≤ 1

2

(
m
k

)
(2w − 1)k for all k ≤ m/3, in which

case |BallG(v, r)| ≤
∑r

k=0 2k−r
(

m
r

)
(2w − 1)r ≤ 2

(
m
r

)
(2w − 1)r. However,(

m
k−1

)
(2w − 1)k−1(

m
k

)
(2w − 1)k

≤ k

(m− k + 1) · (2w − 1)
≤ m/3

(2m/3) · (2w − 1)
≤ 1

2
.

Lemma 15. Let G = (V,E) be the state transition graph of a RAM with w bit words
and with a word array of length m, so that V is the set of configurations the word
array can take. For u, v ∈ V let dG(u, v) be the minimum number of words one needs
to change to convert u to v. Fix any S ⊆ V and v ∈ V . Then

max
u∈S

(d(u, v)) ≥ log |S|
w + log(m)

− 1

and in expectation when sampling u uniformly at random from S,

Eu∼S [d(u, v)] ≥
(

1− 1

m · 2w

)(
log |S|

w + log(m)
− 1

)
.

Proof: We first address the worst-case bound concerning maxu∈S (d(u, v)). Clearly,
if |BallG(v, r)| < |S| then maxu∈S (d(u, v)) > r. So it suffices to prove |BallG(v, r)| <
|S| when r = log |S|

w+log(m)
− 1. From Lemma 14 we know that |BallG(v, r)| ≤ mr2wr =

(m · 2w)r, and we have set r = logb |S| − 1 where the base b = m · 2w. This implies
|BallG(v, r)| ≤ |S|/(m · 2w) < |S|.
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Now consider Eu∼S [d(u, v)]. Note that

Eu∼S [d(u, v)] =
1

|S|

m∑
r=0

(|S| − |S ∩ BallG(v, r)|) (7.1)

≥ 1

|S|
max
r∈N

((r + 1) · (|S| − |S ∩ BallG(v, r)|)) (7.2)

Using |BallG(v, r)| ≤ mr2wr, we set r =
(

log ε|S|
w+log(m)

)
−1 and infer |BallG(v, r)| ≤ ε|S|,

|S| − |S ∩ BallG(v, r)| ≥ (1− ε)|S| and

Eu∼S [d(u, v)] ≥ (1− ε)

(
log ε|S|

w + log(m)

)
(7.3)

Setting ε = 1/(m · 2w) then yields

Eu∼S [d(u, v)] ≥
(

1− 1

m · 2w

)(
log |S|

w + log(m)
− 1

)
(7.4)

as claimed.

We put Lemma 15 to good use in the lower bound proofs of the following
sections. We will also make use of Yao’s Minimax Principle (see [MR95] for a treat-
ment).

Theorem 33 (Yao’s Minimax Principle [Yao77]). Let A be a finite set of algorithms
for some problem Π, and let I be a finite set of instances of Π. Let DA be the set of
all distributions over A and let DI be the set of all distributions over I. For π ∈ DA,
let Aπ denote a random algorithm drawn from A according to distribution π, and
similarly for π ∈ DI let Iπ denote a random instance drawn from I according to
distribution π. Fix any function c : A × I → N, where c(A, I) denotes the cost of
running algorithm A on instance I. Then

max
π∈DI

min
A∈A

E[c(A, Iπ)] ≤ min
π∈DA

max
I∈I

E[c(Aπ, I)]

Observe that maxπ∈DI minA∈A E[c(A, Iπ)] is the worst-case performance of the
best deterministic algorithm A in A (where A may be tailored to the distribution π)
on a distribution fromDI . Also observe that minπ∈DA maxI∈I E[c(Aπ, I)] is the worst
case performance of the best randomized algorithm (in the set {Aπ : π ∈ DA}) on
an input selected from I. With these observations in mind, Yao’s minimax principle
yields Corollary 2.
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Corollary 2. Fix any function s : N → N, an abstract data type, and some (possibly
infinite) set Â of deterministic data structures implementing that abstract data type.
If for some input distribution every deterministic data structure in Â that uses at
most s(n) space takes at least f(n) time in expectation to perform some operation,
then every randomized algorithm that uses at most s(n) space and always terminates
requires at least f(n) time in expectation to perform that operation in the worst case.

The first expectation mentioned above is computed over the input distribution,
whereas the second is computed over the random bits of the randomized algorithm.
A meticulous reader might be concerned with the finiteness conditions for A and I,
and how they are absent from the statement of Corollary 2. We offer the following
proof sketch.

Proof: We provide a proof by contradiction. Consider a counterexample to Corol-
lary 2. Fix an operation and let c(A, I) be the time to run deterministic algorithm
A that performs that operation on input I. The counterexample must include a
randomized algorithm Aπ for the operation such that

max
I∈I

E[c(Aπ, I)] < f(n0)

where I is the set of instances of size n0 ∈ N and Aπ uses at most s(n0) words of
space. In other words, Aπ must have an expected performance guarantee strictly
better than f(n0) for all inputs in I. Let A ⊆ Â be the set of deterministic algo-
rithms that make up the support of Aπ (i.e., the algorithms that Aπ has positive
probability of executing).

We claim that the support of Aπ must be finite. This is because the RAM has
finitely many configurations, namely 2ws where w is the word size and s is the
length of the word array, and this is the entire state of the system. Let G = (V,E)
be state transition graph of the RAM. Each program p can be modeled as a set of
paths {Pv : v ∈ Vp} where Pv is the execution trace of p when starting from state
v ∈ Vp and Vp ⊆ V is the set of valid starting states for program p. (The execution
trace is the sequence of machine configurations p will take the machine through as
it executes. We assume that for each abstract data type operation the data structure
ensures the RAM is in a valid starting state for the program implementing that
operation whenever it is called.) Note that if there is a cycle in Pv then p does not
terminate when starting from v, since it will repeatedly transition through the cycle
forever. Since the randomized algorithm always terminates when started from a
valid starting state by assumption, these paths must all be simple. This implies
that the number of programs is finite. Note that this argument is independent of
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whatever read-only objects are present in the RAM, including the finite program
itself and the infinite sequence of random bits, which allows us to conclude that
the support of Aπ is finite as claimed.

Finally, the counterexample to Corollary 2 must also ensure that there exists
some input distribution π ∈ DI such that every deterministic data structure in Â
using at most s(n) space takes f(n) time in expectation to perform the operation
on inputs sampled from π. This implies

max
π∈DI

min
A∈A

E[c(A, Iπ)] ≥ f(n0).

However, this contradicts Yao’s minimax principle, using I, A, and c as defined
above. Note that with s(n) set sufficiently large (e.g., s(n) = 22n) the space usage
constraint is not particularly restrictive.

Extensions to Data Structures that are Nearly Uniquely Represented. Note
that the proof of Lemma 15 easily extends to give the following lower bounds:

max
u∈S

min
v∈T

d(u, v) ≥ log(|S|/|T |)
w + log(m)

− 1

and

Eu∼S

[
min
v∈T

d(u, v)

]
≥
(

1− 1

m · 2w

)(
log(|S|/|T |)
w + log(m)

− 1

)
.

These bounds are useful to prove lower bounds for data structures that have a small
number of machine representations for any particular abstract data type state, if we
interpret T as the set of machine states representing some abstract data type state.
This can be used to lower bound the number of machine representations (and thus
the number of bits of historical information) that an implementation must have to
circumvent the lower bound arguments in the following sections. The calculations
are quite straightforward and we omit the details.

7.2 Union-Find

The union-find abstract data type, also known as the disjoint-set abstract data type,
maintains a labeled partition on a set of elements U under the following operations:
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• union(A,B,C): Given labels A and B of sets in the partition and a label C,
merge the two sets with labels A and B into a single set with label C. (To
maintain the invariant that different sets of the partition have different labels,
C may not be equal to the labels of any other sets in the partition, with the
exception of A and B.)

• find(u): Given u ∈ U , return the label of the set of the partition containing u.

The union-find abstract data type was introduced by Galler and Fisher [GF64],
though they did not require the user to specify labels for the sets. Their approach
is to store each set as a rooted tree, and store the label of the set at the root. Let
TL be the rooted tree with label L. To perform union(A,B,C), simply make the
root of TA a child of the root of TB and change the label of the root of TB to C.
This approach can be improved by applying two heuristics, path compression and
union by rank. Path compression is a postprocessing step after a find(u) operation,
in which each vertex v on the path from u to the root r of the tree containing u
has its parent changed to r. Union by rank simply involves making the smaller of
TA and TB the subtree of the larger when performing a union(A,B,C) operation.
Tarjan [Tar75] proved that the resulting data structure performs m ≥ n finds and
n − 1 unions in Θ(mα(m,n)), where α(x, y) is an inverse of Ackermann’s function
defined below.

Definition 13 (Ackermann’s Function and Inverse). Define Ackermann’s function1

A : N× N → N via

A(0, x) = 2x ∀x ∈ N, A(x, 0) = 0 ∀x ∈ N
A(x, 1) = 2 ∀x ∈ N, A(x, y) = A(x− 1, A(x, y − 1)) ∀x ≥ 1, y ≥ 2

Define Ackermann’s inverse by α(x, y) := min{k : A(x, k) ≥ log(y)}.

Fredman and Saks [FS89] proved that the Θ(mα(m,n)) bound is optimal in the
cell probe model with w = O(log n). This result subsumed several earlier lower
bounds in weaker computational models [Pou96, Tar79]. The above implementa-
tion of the union-find abstract data type is therefore in some sense optimal. Unions
take constant time, and m finds, if m is sufficiently large, take O(mα(m,n)) time.
The function n 7→ α(m,n) grows exceedingly slowly for even modest values of m.
For example, Tarjan points out that α(2, n) = O(log∗(n)). Theorem 34 shows that
the picture for uniquely represented implementations is quite different.

1Unfortunately, there are various inequivalent definitions of Ackermann’s function. We use the
definition in [Tar75].
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Theorem 34. In the cell probe model with word size w, any uniquely represented
implementation of union-find on n elements and using at most s space must take
expected Ω( n

w+log(s)
) time per union operation in the worst case. In the typical case of

w = O(log n) and s = poly(n), each union operation takes expected Ω( n
log n

) time in
the worst case.

Proof: Let U = {1, 2, . . . , n} and assume n is even. Let G = (V,E) be the state
transition graph of a RAM with word size w and s words of memory. Let P be the
set of partitions of U into two nonempty sets, and let VP ⊂ V be the set of machine
states corresponding to partitions in P .

Let û ∈ V be the unique state obtained after all of U is merged into one set
(with some arbitrarily fixed label). Ignoring the labels, there are |P | different states
v from which we could reach û via a single union operation, and which contain two
non-empty subsets of U . Lemma 15 then guarantees that if we sample v uniformly
at random from VP , then

E[dG(v, û)] ≥
(

1− 1

s · 2w

)(
log |VP |
w + log(s)

− 1

)
Define a distribution π on union-find instances that uniformly samples an initial
state from P and then asks the data structure to perform a union to merge the two
partitions into one set containing all elements. Clearly, any deterministic uniquely
represented implementation must take the machine to state û, which will cost at
least dG(v, û) starting from state v in the cell probe model. Let Â be the set of
all deterministic uniquely represented implementations of the union-find abstract
data type. Corollary 2 then implies that any randomized uniquely represented
implementation of union-find using only s space in a RAM with word size w makes
at least

(
1− 1

s·2w

) ( log |VP |
w+log(s)

− 1
)

word writes in expectation. Since |VP | = 2|U | − 2,

this implies the claimed lower bound of Ω( |U |
w+log(s)

).

Amortized Bounds. A natural question to ask is if there is an amortized lower
bound for a sequence of union operations, perhaps something like Ω( |U |1+ε

w+log(s)
) for

some ε > 0. However, it is not too hard to see that this is not possible. We can
develop a uniquely represented implementation of the union-find abstract data
type by storing each set as a treap in which each node stores the label of the root of
the tree that contains it, each root stores the set-label of its tree, and node labels are
generated via the hash-consing technique of Section 5.2. If we implement unions
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by inserting the elements of the smaller set, one at a time, into the treap storing the
larger set then each node is inserted into a treap at most blog |U |c times, and each
insertion takes expected O(log |U |). By this reasoning the total time to perform a
sequence of unions generating a set S ⊆ U is at most O(|S| log2 |S|) in expectation.
This implementation also supports expected O(1) time find operations. We have
proved the following theorem.

Theorem 35. There exists a uniquely represented implementation of a bounded union-
find structure of capacity N whose memory is statically allocated and stores elements
of a fixed size, such that

• the union operation takes expected O(|A| log |B|) time to merge two sets A
and B with |A| ≤ |B|, and the total time to perform any sequence of union
operations that creates a set S starting from {{e} : e ∈ S} is O(|S| log2 |S|) in
expectation,
• the find operation takes expected O(1) time,
• the implementation requires O(logN) random bits, and
• the implementation uses only O(N) space.

We show in Chapter 8 how to remove the assumptions that the size of the data
structure is bounded and the memory is is statically allocated.

7.3 Meldable Heaps

In Section 4.6 we presented uniquely represented heaps, and in particular de-
scribed a good uniquely represented analogue of a binary heap. However, our
heap did not support fast merges, as binomial heaps and Fibonacci heaps can (see
table 4.5 on page 63). The following theorem provides justification for this failure;
building a uniquely represented heap that supports fast merges is impossible in a
RAM.

Theorem 36. In the cell probe model with word size w, any uniquely represented
implementation of meldable heaps on n elements and using at most s space must take
expected Ω( n

w+log(s)
) time per merge operation in the worst case. In the typical case of

w = O(log n) and s = poly(n), each merge operation takes expected Ω( n
log n

) time in
the worst case.



174 Chapter 7: Lower Bounds

Proof: The proof of Theorem 36 is essentially the same as the proof of Theorem 34
in Section 7.2. The only difference is that VP should now be the set of machine
states corresponding to two nonempty heaps that together contain all n elements.



Chapter 8

Putting It All Together: Uniquely
Represented Systems

In this, the concluding chapter, we discuss how to convert the statically memory-
allocated uniquely represented data structures from previous chapters into dynam-
ically memory-allocated versions, and how to compose these data structures into
uniquely represented computational systems. We also discuss various additional
considerations when designing such systems, and directions for future work.

8.1 Dynamic Memory Allocation

We have made certain assumptions about the uniquely represented data structures
of the previous chapters, namely that

• they have bounded size, and
• they have a block of memory statically allocated to them on initialization.

In this section we will discuss how to remove these assumptions.

As discussed in Section 3.3, we use a uniquely represented hash table to serve as
a memory allocator, assuming the data structure components have hashable labels.
Components refer to constant sized parts of the data structure, for example graph
nodes, integer variables, and array slots. These labels can be generated using a
variety of methods, including hash-consing (see Section 5.2), and are essential to
map pointer structures into the one dimensional memory array provided by both
the RAM model of computation and real machines.

175
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If desired, the labeling schemes that we have provided for each construction in
this dissertation can be augmented to further differentiate components from differ-
ent data structures as follows. We assume that each data structure has a unique
name that is strongly history independent; that is, the name of a data structure
does not depend on the sequence of operations. Then a component labeled l be-
longing to a data structure with name η can be labeled f(η, l) for some function f
such as concatenation. Note that this is strictly optional, and in some cases it might
be advantageous not to do so. For example, if we have a collection of binary search
trees that have many subtrees in common, then hash-consing provides a way to
store a single copy of each distinct subtree and thus save space. In any event, we
will have to be wary of two inequivalent components1 receiving the same label, and
take the steps described in Section 5.2.2 to ensure that inequivalent components
receive different labels.

Given these component labels, we present two ways to dynamically allocate
memory for data structures in a uniquely represented manner. We describe each
in turn. In both cases, a uniquely represented array A of blocks is implemented on
top of the RAM memory, where a block is any fixed number of words. This array
is statically allocated the entire RAM memory. A uniquely represented hash table
(see Chapter 3) is implemented on top of A and serves as the memory allocator.

One-Level Allocation. In its most basic form, the memory allocator stores in
each block a single component and its label. When a data structure with name η
requires more space, it issues a request for k more components worth of space, for
some k ∈ N. When requesting the space, the data structure also provides k labels
{l1, . . . , lk}. The memory allocator then assigns these labels to the data structure.
Reads and updates take place as if the data structure had control of the entire
RAM memory though a uniquely represented hash table interface, however the
hash table ensures that no two inequivalent components receive the same label, as
discussed above and in Section 5.2.2.

In this scheme, unlike the one described in the next paragraph, there is only
one level of uniquely represented hashing. The price we pay for this is that locality
of reference is completely destroyed.

1For pointer machines, inequivalent with respect to the ≈ equivalence relation of Section 5.2.2.
More generally, inequivalent in the sense that it is essential to store both components separately.
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Two-Level Allocation. Assume each component belongs to a named data struc-
ture. When a data structure with name η requires more space, it issues a request for
k more words, for some k ∈ N. Suppose each block has β words, so that k words
amounts to k′ := dk/βe blocks. The memory allocator keeps track of the number of
blocks bη that η is using, and assigns keys {η ⊕ (bη + i) : i ∈ [1 : k′]} to be under the
control of η, where ⊕ is the concatenation operator. The data structure η may then
assume it has control of k′ additional blocks, and when reading or writing to the ith

block under its control, it (transparently) is actually reading or writing to the block
that η⊕ i hashes to. Of course, η is stored in a uniquely represented manner within
the blocks Bη assigned to it. The blocks under η’s control can then be treated as
a word array of length β · |Bη|, where the block with key η ⊕ i for i ∈ [1 : |Bη|]
contains slots with indices from (i− 1)β to i · β − 1. This word array then serves as
the foundation for the uniquely represented constructions of previous sections.

We call this style of allocation two-level because there is a system-wide memory
allocator assigning blocks to data structures, and then within each data structure
there is a memory allocator assigning space to each component. This style of al-
location maintains more locality among the components of any particular data
structure at the cost of adding another level of hashing. This is likely to improve
performance in external memory models of computation and in real systems with
memory hierarchies.

8.1.1 Dynamic Resizing

Some data structures, for example arrays and hash tables, have built-in capacities.
A standard way to remove the capacities is to dynamically resize the data structure
as needed. Thus, an array A with storing n elements might have 2dlog ne words
of space allocated to it, and as dlog ne changes value the space allocated to A
may be cut in half or doubled as required. This approach will not yield good
expected performance against any oblivious adversary however. Simply consider
the sequence of operations that adds 2k elements and then repeatedly adds and
deletes an element so that the array must resize on every operation. To fix this
problem, we choose a random threshold for resizing. In the case of arrays, select
real number r ∈ [1, 2] uniformly at random, define a set of thresholds T := {

⌈
r2k
⌉

:
k ∈ N}, and ensure that an array storing n elements has exactly min{t : t ∈ T, t ≥
n} words of space. (A nearly identical solution is to ensure that an array storing n
elements has exactly

⌈
r · 2dlog(n/r)e⌉ words of space allocated to it.) In either case, a

fixed insertion or deletion causes the number of elements to cross a threshold with
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probability Θ(1/n); if in this case we spend expected O(nf(n)) time to resize the
data structure the unconditional expected time only increases by O(f(n)).

More precisely, fix any n ∈ N. We consider an insertion, so that the number of
elements increases from n to n + 1. This causes a resizing event if there exists a k
such that n ≤

⌈
r2k
⌉

and n + 1 >
⌈
r2k
⌉
. This can only occur for k = blog nc. We

claim that
Pr
[
n ≤

⌈
r2k
⌉

and n+ 1 >
⌈
r2k
⌉]
≤ 2

n
.

To see this, note that n ≤
⌈
r2k
⌉

implies r > (n − 1)/2k and n + 1 >
⌈
r2k
⌉

implies
r ≤ n/2k. Thus this event occurs only if r ∈ [n−1

2k ,
n
2k ] which occurs with probability

1/2k. However, k = blog nc ≥ log(n) − 1 so 1/2k ≤ 2/n. The case for deletions is
proved analogously.

8.1.2 Eager Garbage Collection

For obvious reasons, uniquely represented data structures require eager garbage col-
lection. In other words, whenever a part of the data structure is no longer needed,
it must be removed (i.e., garbage collected) immediately to put the data structure
in the same state as if it had never existed. For a comprehensive treatment of
garbage collection, we refer the reader to the textbook of Jones and Lins [JL99]. A
suitable way to do this is with a reference counting garbage collector. Typically, this
type of garbage collector maintains a counter for each object indicating how many
references to that object exist. References to x include pointers to x, instances of
x in the call stack of a program, or any other handles on x. When a reference to
an object x is deleted, if there are no references into x then x is deleted and all
of the objects x references (e.g., points to) have their counts decremented. This
description is something of a simplification; for example we have not considered
directed cycles of pointers with no references into the cycle (e.g., x points to y and
y points to x, but nothing else references either x or y), but these too must be
garbage collected immediately.

It is relatively straightforward to modify a standard reference counting garbage
collector to work in a uniquely represented computing environment. Pointers are
replaced with abstract pointers (i.e., labels) and deletions must occur via calls
to the uniquely represented memory allocator instead of some other way. The
whole process must be done eagerly. None of these considerations presents any
difficulties. Note that the space overhead for a reference counting garbage collector
is a multiplicative constant. Also note that because the time to update counters
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can be amortized against the time to create or delete references and the time to
delete objects during garbage collection can be amortized against the time to create
them in the first place, the time overhead is amortized expected O(f(n)) for any
operation taking expected f(n) time.

8.1.3 Dynamically Memory Allocated, Unbounded, Uniquely
Represented Data Structures

Using the techniques of this section we can obtain the following result in a straight-
forward manner.

Theorem 37. Every statically memory allocated uniquely represented data structure
of bounded size in this dissertation can be implemented as a dynamically memory allo-
cated uniquely represented data structure of unbounded size with the same amortized
expected running time and space guarantees, up to multiplicative constant factors.

8.2 Composability & Uniquely Represented Systems

The uniquely represented data structures in this dissertation are composable, by
which we mean that they can be combined together to yield more complex uniquely
represented constructions. This can be shown as follows. All of the uniquely rep-
resented data structures in this dissertation can be broken up into components, as
discussed in Section 8.1. These components are constant sized pieces of the data
structure that are given unique labels. There are two tasks implicit in all of our
constructions of uniquely represented data structures.

1. Create a set of components that is strongly history independent (and thus
uniquely represented), yet supports the requested operations efficiently.

2. Store this set of components in RAM in a strongly history independent (and
thus uniquely represented) and efficient manner. That is, provide an effi-
cient strongly history independent dynamic map of components into the one
dimensional memory provided by the RAM.

It is not hard to prove that performing these two tasks is sufficient to obtain an
efficient uniquely represented implementation for some abstract data type. Now,
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fix any collection of uniquely represented data structures C. We can think of C as
implementing some abstract data type A obtained by combining the abstract data
types implemented by the data structures in C. In Section 8.1 we have discussed
how to ensure that no two inequivalent components from the set of components
obtained from C receive the same label. Since the labels are generated in a uniquely
represented manner, the set L of such labels is a deterministic function of the RAM’s
random bits and the contents of the data structures in C. Thus if we imagine C as
a single data structure implementing A, we have satisfied the first condition for
it. In Section 8.1 we also discussed how to use L to map the components into
the one dimensional memory provided by the RAM, essentially by simply using
uniquely represented hash tables. Thus we have also satisfied the second condition
for obtaining a uniquely represented implementation of A.

The composability of uniquely represented data structures enables the creation
of efficient uniquely represented systems, to the extent that the state of a system
can be modeled as a collection of data structures in some computational model. Of
course, real systems possess various complicating sources of state including

• Hidden CPU registers, e.g., those used for diagnostic purposes
• Cache lines and multilevel memory hierarchies
• Multiple sources of storage, e.g., modern video cards, network cards, printers,

and optical drives typically have buffers or other forms of storage.

It is beyond the scope of this dissertation to address how current systems might
most easily be modified to make them entirely uniquely represented. The complex-
ity of modern systems means that such a task would require significant engineering
effort. However, the constructions we have presented provide the theoretical foun-
dation for the design of efficient uniquely represented systems and applications
that store precisely the information their designs specify, including

• Filesystems,
• Databases,
• Voting Machines,
• Information kiosks,
• Web Browsers, and
• Advanced file formats.

The main contribution of this dissertation is to show that efficient uniquely repre-
sented data structures do indeed exist in the RAM model of computation, and thus
there are no significant fundamental barriers to the development of uniquely rep-
resented systems. We anticipate other uses for efficient uniquely represented data
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structures as well, as articulated in Section 1.1.1.

8.3 Future Work & Open Problems

The results in this dissertation represent a significant increase in our understanding
of what is possible with respect to uniquely represented data structures in the RAM
model of computation. However, there are several lines of inquiry and future work
that remain.

Exploiting Existing Results in Practice

A natural line of future work is to exploit the theoretical results described in this
dissertation and implement the applications discussed in Section 1.1.1, including
filesystems, databases, voting machines, information kiosks, advanced file formats,
web browsers, certification of computations, and faster equality testing for theorem
provers and verifiers. There are also questions about how uniquely represented
data structures and the ideas behind them can be exploited with minimal mod-
ifications to the computational infrastructure that exists today. This perspective
provides us with an interesting variant of the secure redaction problem, namely
that of purging historical information from files.

Purging Historical Information from Files. This problem involves generating a
history independent version of an arbitrary file in some known format. For exam-
ple, can we create a program that when given an arbitrary document in Adobe PDF
format generates a “clean” version that stores exactly the information available via
the legitimate interface for reading and editing PDFs? Such a program would al-
low us to solve the file redaction problem for PDFs without having to alter the PDF
specification. This would also allow us to use conventional data structures rather
than uniquely represented ones when editing the newly cleaned file. One difficulty
with this approach is that it may be unclear exactly what the document is intended
to store. For example, there may be multiple legitimate interfaces for reading and
editing PDFs that reveal different answers to the same queries on some document.
However, suppose we fix a particular interface. There is still the problem that the
document format may use data structures such as AVL trees [AVL62] or red-black
trees [Bay72, GS78] that are not uniquely represented. Simply replacing such data
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structures with uniquely represented analogues of them would require changing
the document format specification, which we are attempting to avoid in deference
to existing software infrastructure. Instead, we need to augment each data struc-
ture with a canonicalize operator that converts it to a canonical form. For example,
a canonical form for AVL trees can be obtained by inserting the keys in sorted order
into a fresh AVL tree. That is, we ensure that the result is history independent by
enforcing a canonical historical sequence of operations to generate the tree. This
technique applies to many other search trees and many other data structures as
well. Once put in canonical form, we must then map the data structure into the
one dimensional byte array provided by a RAM in a canonical manner. This latter
task can often be accomplished by storing the components of the data structure
(such as nodes in a tree) in sorted order. Thus it appears likely that a principled
solution to this version of the file redaction problem exists which does not require
modifying existing document formats.

Mapping the Theoretical Terrain in More Detail

For which abstract data types do there exist uniquely represented implementations
matching the performance of the best conventional implementations? While we
have provided efficient uniquely represented implementations for many of the most
widely used abstract data types, there remain several without uniquely represented
implementations that match the performance of the best conventional implemen-
tations. For example, our constructions for orthogonal range queries (range trees),
horizontal point location, orthogonal segment intersection, and dynamic 2D con-
vex hull have gaps of O(log log n) or O(log n) in time and space relative to the
best known conventional implementations. We have not addressed certain ab-
stract data types at all, for example counters supporting worst case O(1) time in-
crement, dynamic connectivity, and dynamic minimum spanning tree. Conversely,
the information-destruction bound of Section 7.1 provides useful lower bounds for
uniquely represented implementations of a few abstract data types, but tells us
nothing useful about most of them. Are there other barriers to the development of
efficient uniquely represented data structures?

More generally, is there a general result that characterizes which abstract data
types have uniquely represented implementations matching the performance of the
best conventional implementations?

Another set of questions pertains to the number of random bits needed to get
good expected performance. The uniquely represented hash table of Section 3.1 im-
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plements the dynamic (unordered) dictionary abstract data type in expected O(1)
for all operations using only O(log n) random bits by exploiting a breakthrough
result of Pagh, Pagh, and Ružić [PPR07]. It is an interesting question whether the
same running times can be obtained with even fewer random bits. However, it
remains an open problem to determine, even for conventional implementations,
the minimum number of random bits necessary to achieve these running times for
dynamic (unordered) dictionaries. The complexity of conventional deterministic
dictionaries is better understood – for example, there is a deterministic dictionary
supporting all operations in O(

√
log n/ log log n) time [BF02] – however open prob-

lems remain concerning tradeoffs of query time versus update time (see [Ruž08]
and the references therein). Interestingly, many of the deterministic dictionary
constructions make use of dynamization, the technique discussed in Section 5.12.
It is thus natural to ask if there are uniquely represented deterministic dictionar-
ies matching the performance of their conventional counterparts. To the best of
my knowledge, it is still open if there is even a uniquely represented deterministic
dictionary that is space efficient and supports insertions, deletions, and lookups in
o(n) time, let alone O(log n) or even O(

√
log n/ log log n) time.

Finally, another line of inquiry concerns the adaptive uniquely represented data
structures of Chapter 6. Just what is the tradeoff between history dependence and
adaptivity? This seems related to the question of learning in severely space limited
settings.
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