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Abstract

Interactive exploration of large distributed collections of complex, non-text data such as medical
images is a challenging task because of the difficulty of creating useful indexes. To handle such
tasks, we introduce a new approach to search called discard-based search. In contrast to classic
search strategies that precompute indexes for all anticipated queries, discard-based search is an
on-demand strategy that performs content-based computation in response to a specific query. This
simple change in strategy turns out to have deep consequences for flexibility and user control, while
also enabling easy exploitation of CPU and storage parallelism on servers. This paper presents the
design and implementation of the OpenDiamond platform for discard-based search, describes some
of the applications that have been built with it, and offers experimental evidence that its workloads
exhibit easily-exploitable storage parallelism.
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1 Introduction
Discard-based search is the basis of a new approach to interactive exploration of complex, non-
indexed data. Examples of such data include large distributed repositories of digital photographs,
medical images, surveillance images, speech clips or music clips. The emphasis on “interactive” is
important: this work assumes that the most precious resource is the time and attention of the person
conducting the search rather than system resources such as network bandwidth, CPU cycles or
disk bandwidth. That person is assumed to be a high-value expert such as a doctor, pharmaceutical
researcher, military planner, or law enforcement official, rather than a mass-market consumer.

In contrast to classic search strategies that precompute indexes for all anticipated queries,
discard-based search uses an on-demand computing strategy that performs content-based com-
putation in response to a specific query. As discussed in Section 2, this simple change in strategy
has deep consequences for flexibility and user control. Server workloads in discard-based search
exhibit coarse-grained storage and CPU parallelism that is easy to exploit. Further, discard-based
search can take advantage of result caching at servers. This can be viewed as a form of just-in-time
indexing that is performed incrementally at run time rather than in bulk a priori.

We have been exploring this new search paradigm since late 2002 in the Diamond project,
and have gained extensive experience with both software infrastructure and domain-specific
applications. This experience has helped us to cleanly separate the domain-specific and domain-
independent functionality. We have encapsulated the latter into Linux middleware called the
OpenDiamond platform. Based on standard Internet component technologies, it is distributed in
open-source form (http://diamond.cs.cmu.edu/) under the Eclipse Public License.

For ease of exposition and for historical reasons, we use the term “Diamond” loosely in this
paper: as our project name, to characterize our approach to search (“the Diamond approach”),
to describe the class of applications that use this approach (“Diamond applications”), and so on.
However, the term “OpenDiamond platform” is always used in a precise technical sense to refer to
the open-source middleware.

This paper presents the design and implementation of the OpenDiamond platform, describes
some of the applications that have been built with it, and offers experimental evidence to confirm
that discard-based search workloads exhibit easily-exploitable storage parallelism.

2 Background

2.1 Need for Discard-based Search
Automated indexing of complex data such as images remains a challenging problem today for
several reasons. First, automated methods for extracting semantic content from many data types are
still rather primitive. This is referred to as the semantic gap [29] in information retrieval. Second,
the richness of the data often requires a high-dimensional representation that is not amenable to
efficient indexing. This is a consequence of the curse of dimensionality [7, 10, 43]. Third, realistic
user queries can be very sophisticated, requiring a great deal of domain knowledge that is often
not available to the system for optimization. Fourth, expressing a user’s vaguely-specified query
in a machine-interpretable form can be difficult. These problems constrain the success of indexed
search for complex, multi-dimensional, loosely-structured data.
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Figure 1: Discard-based Search with Early Discard Optimization

In contrast, discard-based search does not attempt to preprocess all data in advance of future
queries. Rather, it dynamically performs computation to eliminate objects that are clearly not
results for the query. An optimized version of this concept, called early discard, rejects most of the
irrelevant data as early as possible in the pipeline from storage to user. This improves scalability by
eliminating a large fraction of the data from most of the pipeline. Figure 1 illustrates this concept.

Since the knowledge needed to recognize irrelevant data is domain-specific, discard-based
search requires domain-specific algorithms to be executed on data objects during a search. In
Diamond, these algorithms are embodied in code components called searchlets. Early discard
requires searchlets to be executed close to storage. Ideally, discard-based search would reject
all irrelevant data without eliminating any desired data. This is impossible in practice because
of a fundamental trade-off between false-positives (irrelevant data that is not rejected) and false-
negatives (relevant data that is incorrectly discarded) [10]. The best one can do in practice is to
tune a discard algorithm to favor one at the expense of the other. Different search applications and
queries may need to make different trade-offs in this space.

2.2 Relative Merits of Indexed and Discard-based Search
The strengths and weaknesses of indexed search and discard-based search complement each other,
as discussed below. Speed and security favor indexed search, but discard-based search offers
other advantages. These include flexibility in tuning between false positives and false negatives,
dynamically incorporating new knowledge, and better integration of human expertise. The growing
interest in discard-based search suggests that it offers high value in several important domains.

Search Speed: Because all data is preprocessed, there are no compute-intensive or storage-
intensive algorithms to be run during an indexed search. It can therefore be much faster than
discard-based search. In practice, this speed advantage tends to be less dramatic because of result
caching by the OpenDiamond platform. Discard-based searches that have some overlap in their
queries with previous searches will benefit from the result caching. Over time, cache entries will
be created for many objects on frequently-used combinations of filters and filter parameters, thus
reducing the speed differential with respect to indexed search.

Server security: The early-discard optimization requires searchlet code to be run close to
servers. Although a broad range of sandboxing techniques [39], language-based techniques [40],
and verification techniques [30] can be applied to reduce risk, the essential point remains that user-
generated code may need to run on trusted infrastructure during a discard-based search. This is not
a concern with indexed search, since preprocessing is done offline. The higher degree of scrutiny
and trust that tends to exist within an enterprise suggests that initial uses of discard-based search
are most likely to be within the Intranets of enterprises.
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Precision and Recall: The preprocessing for indexed search represents a specific point
on a precision-recall curve, and hence a specific design choice in the tradeoff space between
false positives and false negatives. In contrast, discard-based search can change this tradeoff
dynamically as a search progresses through many iterations. An expert user with extensive domain-
specific knowledge may tune searchlets toward false positives or false negatives depending on
factors such as the purpose of the search, the completeness of the search relative to total data
volume, and the user’s expert judgement of results from earlier iterations in the search process.
It is also possible to return a clearly-labeled sampling of discarded objects during a discard-based
search to alert the user to what she might be missing, and hence to the likelihood of false negatives.

New knowledge: The preprocessing for indexing can only be as good as the state of knowledge
at the time of indexing. New knowledge may render some of this preprocessing stale. In contrast,
discard-based search is based on the state of knowledge of the user at the moment of searchlet
creation or parameterization. This state of knowledge may improve even during the course of
a search. For example, the index terms used in labeling a corpus of medical data may later be
discovered to be incomplete or inaccurate. Some cases of a condition that used to be called “A”
may now be understood to actually be a new condition “B.” Short of re-indexing the entire corpus,
this new knowledge cannot be incorporated into indexed search. Note that this observation is true
even if index terms were obtained by game-based human tagging approaches such as ESP [38].

User expertise: Discard-based search better utilizes the user’s expertise and judgement. There
are many degrees of freedom in searchlet creation and parameterization through which this
expertise and judgement can be expressed. In contrast, indexed search limits even experts to the
intrinsic quality of the preprocessing that produced the index.

3 Design and Implementation

3.1 Diamond Architecture
As Figure 2 illustrates, the Diamond architecture cleanly separates domain-specific application
code from a domain-independent runtime system. The OpenDiamond platform consists of domain-
independent client and server runtime software, the APIs to this runtime software, and a TCP-based
network protocol that spans Layers 5–7 of the OSI model. On a client machine, the user interacts
via a GUI with a particular search application.

To handle a user query, the application constructs a searchlet out of individual components
called filters. A filter consists of executable code combined with some specific parameters. As
an example, a content-based image search application might construct a searchlet using color
histogram filter code plus “dark red” color parameters, Gabor visual texture filter code plus “stone”
and “fur” texture parameters, and face detection code plus some default face detection parameters.
The parameters in each filter serve to tune it: the parameters to a color histogram filter determine
which colors are detected. The searchlet is composed and presented by the application through
the Searchlet API to the Diamond runtime system, which then distributes it to all of the servers
involved in the search task.

At each server, Diamond iterates through the locally-stored objects in a system-determined or-
der and presents them to filters for evaluation through the Filter API. Each filter can independently
discard an object. Diamond is ignorant of the details of filter evaluation, only caring about the
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Figure 2: Diamond System Architecture

scalar return value that is thresholded to determine whether a given object should be discarded or
passed to the next filter. Only those objects that pass through all of the filters in the searchlet are
transmitted to the client1.

A key architectural constraint of Diamond is that servers do not communicate directly with
each other; they only communicate with clients. The primary factor driving this design decision
is the simplification it achieves in the logistics of access control in multi-enterprise searches. If
a user has privileges to search servers individually in different enterprises, she is immediately
able to conduct searches that span those servers. A secondary factor is the simplification and
decomposability that it achieves in the server code structure. Our experience with the applications
described in Section 4 confirm that this architectural constraint is a good tradeoff. Only in one
instance (the online anomaly detection application in Section 4.4) have we found a need for even
limited sharing of information across servers during a search. Even in that case, the volume of
sharing is small: typically, a few hundred bytes to a few kilobytes every few seconds. This is
easily achieved through the use of session variables in the APIs described in Section 3.2.

3.2 Searchlet and Filter APIs
The OpenDiamond platform consists of two APIs: the Searchlet API and the Filter API. The
Searchlet API defines the programming interface for the application code (typically GUI-based)
that runs on the client. The Filter API defines the programming interface for filter code that runs
on a server.

Tables 1 through 4 list the calls of the Searchlet API, grouped by logical function. For
brevity, these tables omit the prefix “ls ” (for “libsearchlet”) from the names of calls. Table 1
includes the calls for initialization and scoping of a search session (discussed in Section 3.5).

1An exception to this is when the load balancing mechanism described in Section 3.6.2 offloads execution of some
filters from a slow or heavily-loaded server to a fast client.
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init search Allocate and initialize the global search object and threads.

set searchlist Set global search list to a set of 64-bit object disk group identifiers.

Table 1: Initialization and Scoping (Searchlet API)

set searchlet Load and parse a searchlet specification file to set up the current
searchlet. Also load a binary file containing some of the executable
code needed at the server.

add filter file Load an additional binary file into the current searchlet. Needed to
complete the searchlet based on the specification.

set blob Set the binary argument for a particular filter. Normal arguments can
only consist of strings of printable characters (except space). A
filter’s blob argument can be any binary data.

Table 2: Defining a Searchlet (Searchlet API)

Table 2 lists the calls used by an application to define searchlets and filters. The filter code
provided through these calls is transmitted by the OpenDiamond platform to each server involved
in the current scope. Table 3 shows the calls used by the application to control a search. After
issuing a start search, the application calls next object repeatedly as a result iterator.
When the user aborts the current search and goes back to the step of selecting a new filter or
changing the parameters of an existing one, the calls in Table 2 again become relevant. The
calls get dev session variables and set dev session variables in Table 3 allow
the client to obtain a small amount of search-specific data from each server and to disseminate
them to all servers. Table 4 shows calls that are typically used for debugging applications and for
performance analysis.

Tables 5 through 7 present the Filter API. For brevity, these tables omit the prefix “lf ” (for
“libfilter”) from the names of calls. The OpenDiamond runtime code on a server iterates through
objects within scope in an unspecified order, giving the storage subsystem an important degree of
freedom for future performance optimizations. Although we do not yet exploit this opportunity,
the Filter API design ensures that even applications written today are already able to cope with
any-order storage semantics. Each filter provides the set of callback functions shown in Table 5,
and the OpenDiamond runtime code invokes these functions at appropriate times.

The filter eval callback function is invoked once for each object in scope. Within this
function, the filter code can use the calls in Table 6 to obtain the contents of the object and the
calls in Table 7 to get and set attributes associated with the object. Attributes typically encode
intermediate results: for example, an image codec will read compressed image data and write out
uncompressed data as an attribute; an edge detector will read the image data attribute and emit a
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start search Start a search.

next object Get the next object from the result queue. If result
queue is empty, return immediately.

num objects Get the number of pending objects in the current pro-
cessing queue.

release object Free a previously returned object.

terminate search Tell servers to stop processing objects. Actual term-
ination occurs asynchronously at each server.

get dev session variables Get the names and values of the session variables as
stored on a server. Session variables are used to acc-
umulate application-specific values that can be
combined and distributed across all servers.

set dev session variables Set a server’s session variables to particular values
given here. After this call completes, all session var-
iables of get dev session variables
are set to zero.

Table 3: Controlling a Search (Searchlet API)

new attribute containing an edge map. As an object passes through the filters of a searchlet, each
filter can add new attributes to that object for the benefit of filters that are further downstream.

3.3 Result and Attribute Caching on Servers
Caching in the OpenDiamond platform takes two different forms: result caching and attribute
caching. Both are implemented entirely on the servers, and are invisible to clients except for
improved performance. Both caches are persistent across server reboots and are shared across
all users. Thus, users can benefit from each other’s search activities without any coordination or
awareness of each other. The sharing of knowledge within an enterprise, such as one member of a
project telling his colleagues what filter parameter values worked well on a project-related search
task, can give rise to significant communal locality in filter executions. One can thus view result
caching as a form of incremental indexing that occurs as a side-effect of normal use.

Result caching allows a server to remember the outcomes of object–filter–parameter combina-
tions. Since filters consist of arbitrary code and there can be many parameters of diverse types, we
use a cryptographic hash of the filter code and parameter values to generate a fixed-length cache
tag. The cache implementation uses the open-source SQLite embedded database [17] rather than
custom server data structures. When a filter is evaluated on an object during a search, the result is
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get dev list Get the list of servers involved in current search.

dev characteristics Get performance characteristics of a single server.

get dev stats Get search statistics for a single server. Statistics
include number of dropped objects, number of
searched objects, and total number of objects.

set user state Tell servers to log an integer value into their trace logs
for later analysis of user state timings.

terminate search extended Same as terminate search, but tell each server
the number of “queued” and “presented” objects as
reported in an application-specific way.

Table 4: Debugging and Tuning (Searchlet API)

filter init This callback is called once at the beginning of a search. It provides arg-
uments to the filter and a way for the filter to specify some data to
be passed along with each object.

filter eval This callback is called once per object. It provides a handle to the current
object and the filter data created in the init call.

filter fini This callback is called once at the end of the search. It gives the filter one
last chance to do any necessary cleanup.

Table 5: Callback Functions (Filter API)

next block Read data from the object.

skip block Skip over some data in the object.

Table 6: Object Access (Filter API)

entered with its cache tag in the SQLite database on that server. When that object–filter–parameter
combination is encountered again on a subsequent search, the result is available without re-running
the potentially expensive filter operation. Note that cache entries are very small (few tens of bytes
each) in comparision to typical object sizes.

Attribute caching is the other form of caching in the OpenDiamond platform. Some
intermediate attributes can be costly to compute, while others are cheap. Some attributes can
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read attr Return a copy of a particular attribute.

ref attr Return a direct reference to a particular attribute.

write attr Create a new attribute. Existing attributes should not be
modified. Attributes cannot be deleted.

omit attr Mark a flag on this attribute to hint that this attribute
does not need to be sent over a network connection.

first attr Get a pointer to the first attribute and its data.

next attr Given an attribute, get a pointer to the next attribute and
its data.

get session variables Get the values of a subset of session variables.

update session variables Take a list of session variable names, values, and
updater functions of type (double, double)→ double.
Atomically update the given session variables using the
updater functions and values.

Table 7: Attribute & Session Variable Manipulation (Filter API)

be very large, and some can be small. It does not make sense to cache attributes that are large
and cheap to compute, since this wastes disk space and I/O bandwidth for little benefit. It is
best to cache attributes that are small but expensive to generate. To implement this policy, the
OpenDiamond platform dynamically monitors filter execution times and attribute sizes. Only when
an attribute is below a certain space-time threshold (currently one MB of attribute size per second
of computation) is it retained in the SQLite database. During subsequent searches, hits in the
attribute cache reduce server load and improve performance.

3.4 The OpenDiamond Network Protocol
The OpenDiamond platform uses a network protocol that logically separates control from data.
This has been done with an eye to the future, when different networking technologies may be
used for the two channels in order to optimize for their very different traffic characteristics.
Responsiveness is the critical attribute on the control channel; in contrast, high throughput is
the critical attribute on the data channel, which we refer to as the blast channel. Since many
individual searches in a search session tend to be aborted long before completion, the ability to
rapidly flush now-useless results in the blast channel would be valuable. This will improve the
crispness of response seen by the user, especially on a blast channel with a large bandwidth-delay
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product. Although this is not feasible on today’s Internet, we have structured the system to easily
accomodate future networking improvements.

Two separate TCP connections are used for the control and blast channels, thus resulting in a
pair of TCP connections between a client and each server involved in a search. Each control/blast
pair is associated via a nonce that is created on the server, passed to the client through one
connection, and returned on the other. Work is in progress to encrypt these connections.

The control channel uses an RPC library to provide the client synchronous control of various
aspects of a search. These controls, such as starting, stopping, or modifying a search, map directly
to RPC calls between the OpenDiamond client and server. For example, when the user clicks a
button to start a search, this results in an RPC call to each server. We currently use Sun RPC, but
are replacing it with a new RPC mechanism (http://minirpc.cs.cmu.edu/) that supports
encryption and IPv6.

The blast channel works asynchronously, since a single search can generate many results spread
over a long period of time. This TCP connection does not use a RPC mechanism, but instead uses
a very simple whole-object protocol.

3.5 Scoping and Access Control of a Search Session
When determining the subset of objects relevant to a particular search session, the OpenDiamond
platform is designed to take advantage of available rich metadata sources. The current implemen-
tation uses the concept of object collections. The search scoping can be done manually in advance
by creating OpenDiamond configuration files, or at runtime by connecting to a web server and
downloading these files (possibly generated dynamically by the web server).

Object collections are given semantically meaningful names when they are created by an
administrator. Each name is mapped to a group-ID that is 16 hex digits long. Each group-ID
is associated with one or more servers that contain objects in that group. When a client wants to
search through a collection, she must specify the name of the collection, the collection’s group ID,
and the servers in the group.

Since this is obviously a tedious bookkeeping exercise, we provide a tool that allows this
configuration information to be created at runtime from up-to-date server information kept on a
scope server. A PHP web application, called the OpenDiamond Gatekeeper, runs on the scope
server and provides a visual interface for selecting collections. It also provides access control,
allowing administrators to restrict access to collections by individual users. User authentication is
implemented using the extensible access control system provided by the Apache HTTPD Server.

Planned future work includes removing the concept of static object groups entirely, and instead
allowing a scope to be specified as the result of a query to a SQL database or other source of
structured data such as a patient record system. This architecture is shown in Figure 3. The scope
server handles all the details of determining the objects to search, the permissions of each object,
and the server location of each object. The scope server hands back an opaque cryptographic token
called a scope cookie that is effectively a time-limited capability for access to specific objects on
specific content servers. This scope cookie is presented to the content servers and remains as
implicit context for the search session until the user changes scope or the time limit expires.
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Figure 3: Scoping a Diamond Search

3.6 Self-Tuning
A key goal of Diamond is to offer good performance by dynamically adapting to changes in data
content, client and server hardware, network load, server load, etc. We refer to this concept as
self-tuning. By authoring an application on this platform, the developer benefits from self-tuning
because she is relieved of the need to provide application support for dealing with this complexity
of the environment. Self-tuning was one of the earliest areas of investigation in Diamond, and the
results have been reported in earlier papers [20, 19]. We therefore provide only a brief summary
here.

3.6.1 Filter Ordering

Filters in a Diamond search have only partial dependencies on each other. This means that, for
example, while both a texture filter and a face detection filter must run after an image decoding
filter, the texture filter can run before, after, or in parallel with the face detection filter. Diamond can
take advantage of this independence to order the filters to run most efficiently. The filter ordering
code of Diamond attempts to order filters so that the cheapest and most discriminating filters will
run first. This is achieved in a completely application-independent way by maintaining dynamic
measurements of both execution times and discard rates for each filter. This approach is robust
with respect to upgrading hardware or installing hardware performance accelerators for specific
filters. Further details can be found in an earlier paper [20].

3.6.2 Load Balancing

There may be some situations in which it may be advantageous to perform some or all of the
processing of objects on the client. For example, if a fast client is accessing an old, slow, heavily-
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loaded server over an unloaded gigabit LAN, there may be merit in executing some filters on
the client. Dynamic load balancing in Diamond is based on queue backpressure, and is thus
application-independent. Details can be found in earlier papers [20, 19].

4 Applications Built on the OpenDiamond Platform
We have implemented a number of applications on the OpenDiamond platform that give us
confidence that this indeed a versatile base for discard-based search. Most of these applications
have been built in close collaboration with domain experts from the medical and pharmaceutical
areas. We briefly describe a sampling of these applications in the rest of this section.

4.1 Searching Unorganized Digital Photographs
SnapFind, which was the very first Diamond application, enables users to interactively search large
collections of unlabeled photographs by quickly specifying searchlets that roughly correspond
to semantic content. Users typically wish to locate photos by semantic content (for example,
“Show me the whale watching pictures from our Hawaii vacation”), but this level of semantic
understanding is beyond today’s automated image indexing techniques. As shown in Figure 4(a),
SnapFind provides a GUI for users to create searchlets by combining simple filters that scan images
for patches containing particular color distributions, shapes, or visual textures. The user can either
select a pre-defined filter (for example, “frontal human faces”) or create new filters by clicking on
sample patches in other images (for example, a “blue jeans” color filter).

4.2 Investigating Masses in Mammograms
MassFind is an interactive tool for analyzing mammograms that combines a lightbox-style
interface that is familiar to radiologists with the power of Diamond interactive search. Radiologists
can browse cases in the standard four-image view, as shown in Figure 4(b). A magnifying tool is
provided to assist in picking out small detail. Also integrated is a semi-automated mass contour
tool that will draw outlines around masses on a mammogram when given a center point to start
from. Once a mass is identified, a Diamond search can be invoked to search for similar masses.
Distance metrics [42] and visual similarity search are used to find close matches from a mass
corpus. Attached metadata on each retrieved case gives biopsy results and a similarity score.
Radiologists can use MassFind to help categorize an unknown mass based on similarity to images
in an archive.

4.3 Digital Pathology Search
Based on analysis of expected workflow by a typical pathologist, a Diamond tool called PathFind
has been developed. As shown in Figure 4(c), PathFind incorporates a vendor-neutral whole-slide
image viewer that allows a pathologist to zoom and navigate a whole slide image just as he does
with a microscope and glass slides today. The PathFind interface allows the pathologist to identify
regions of interest on the slide at any level of magnification and then search for similar regions
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(a) SnapFind (b) MassFind

(c) PathFind (d) StrangeFind

(e) FatFind (f) ImageJFind

Figure 4: Screenshots of Some Diamond Applications

via Diamond across multiple slide formats. The results returned by Diamond can be viewed and
compared with the original image, and the case data for each result can also be retrieved.
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4.4 Online Anomaly Detection in Automated Cell Microscopy
StrangeFind is a Diamond application that does online anomaly detection across different
modalities and types of data. It was developed for assisting pharmaceutical researchers in
automated cell microscopy, where very high volumes of cell imaging are typical. Figure 4(d)
illustrates the user interface of this tool. Anomaly detection is separated into two phases: a
domain-specific image processing phase, and a domain-independent statistical phase. This split
allows flexibility in the choice of image processing and cell type, while preserving the high-level
aspects of the application. StrangeFind currently supports anomaly detection of adipocyte images
(where the image processing analyzes sizes, shapes, and counts of fat cells) and brightfield neurite
images (where the image processing analyzes counts, lengths, and sizes of neurite cells). Since
StrangeFind is an online anomaly detector, it does not require a preprocessing step or a predefined
statistical model. Instead, it builds up the model as it examines the data. While this can lead to a
higher incidence of false positives early in the analysis, the benefits of online detection outweigh
the additional work of screening false positives [14].

4.5 Quantitating Adipocytes
In the field of lipid research, the measurement of adipocyte size is an important but diffcult
problem. A Diamond tool called FatFind enables an imaging-based solution that combines precise
investigator control with semi-automated quantitation. FatFind enables the use of unfixed live cells,
thus avoiding many complications that arise in trying to isolate individual adipocytes. The standard
FatFind workflow consists of calibration, search definition and investigation. Figure 4(e) shows the
FatFind GUI in the calibrate step. In this step, the researcher starts with images from a small local
collection, and selects one of them to define a baseline. FatFind runs an ellipse extraction algorithm
(based on [24]) to locate the adipocytes in the image, and the investigator chooses one of these as
the reference image. He can then define a search in terms of parameters relative to this adipocyte.
Once a search has been defined, the researcher can interactively search for matching adipocytes
in the image repository. He can also make adjustments to manually override imperfections in the
image processing and obtain size distributions and other statistics of the returned results.

4.6 Leveraging ImageJ Macros as Searchlets
ImageJ is a public domain image processing tool that is supported by the National Institutes of
Health. It is widely used as an investigative tool by researchers in cell biology, pathology and
other areas. The ability to easily add Java-based plugins, and the ability to record macros of user
interaction are two valuable features of the tool. ImageJFind is a Diamond application that enables
an investigator to use an ImageJ macro as a Diamond searchlet. This enables the researcher to
create the macro on a small sample of images, and then apply it to a large collection of images.
Figure 4(f) shows a typical screenshot of this application. The implementation of ImageJFind
requires a copy of ImageJ to be running at each server, and this process is connected to the
OpenDiamond platform as a heavyweight filter. A similar approach has been used to integrate
the widely-used MATLAB R© tool with Diamond, resulting in a tool called MATLABFind.
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5 Storage-friendly Parallelism
The server workloads generated by Diamond applications exhibit high degrees of parallelism that
are compatible with storage-embedded processing. There has long been speculation regarding
the value of “intelligent storage” or “active disks” (e.g., [27, 28, 41]) in which application-visible
processing capability is integrated with persistent storage. Although conceptually promising, the
commercial viability of such hypothetical devices has faced a Catch-22: without a large established
base of applications that can exploit their novel capability, there is no market for such devices;
conversely, software developers have no incentive to create such applications in the absence of
supporting hardware.

Diamond has the potential to break this deadlock. Software developers are motivated to
create new search applications on the OpenDiamond platform because they provide valuable
new capabilities to end users. These applications can run on off-the-shelf commodity hardware
and operating systems that are available today. Yet, without conscious programmer intent or
effort, the resulting server workloads have attributes that are attractive to storage-embedded
processing with a high degree of parallelism. As the deployment and use of Diamond applications
becomes widespread, it has the potential to create a market for specialized hardware that improves
performance in terms of discards per second. A promising first step in this direction is the
recent emergence of a commercial product called Netezza [31] that was designed independently
of Diamond. As a performance accelerator for streaming data applications on relational databases,
Netezza provides application-visible processing close to disk storage. We hope to explore potential
synergies between Diamond and Netezza in the future.

To illustrate this distinct character of Diamond workloads, consider two alternative organiza-
tions of server storage. One organization is striping, in which a large file is broken into fixed-size
units (whose size is the “stripe unit”) and these units are distributed round-robin across a fixed
number of disks (this number is the “stripe factor”). Striping, which is the basis of RAID storage,
is the dominant server storage organization today. Unfortunately, striping is unfriendly to storage-
embedded processing because the embedded processors do not have access to entire objects. The
other organization is to simply place each object in its entirety on a single disk, and to map a set
of objects round-robin on to the available disks. This is referred to as a JBOD organization (“just
a bunch of disks”). JBOD is much friendlier to storage-embedded processing because each object
is available in its entirety to the embedded processor. In the context of Diamond, this means that
searchlet algorithms do not require radical revision for use in storage-embedded processors.

Since discard-based search imposes no particular ordering on objects, they can be read and
discarded in the most efficient order for the storage system. On a server with multiple disks and
multiple CPUs, the most flexible organization is to have a pool of worker threads assigned to each
disk. Since the I/O scheduling is under control of the runtime software in a JBOD configuration,
the number of worker threads (level of concurrency) can be dynamically adjusted so as to make
the most efficient use of each disk (e.g., by monitoring disk utilization and spawning/killing
worker threads as necessary). Although RAID presents a simpler programming model (i.e., server
storage looks like a single giant disk), JBOD offers better coupling of storage parallelism to CPU
parallelism. This is especially valuable in an early discard system, where there tends to be high
variance in processing time across different objects: some objects may be rejected very quickly,
others may survive a number of filter stages before rejection, and the very few that pass the entire
gauntlet of filters require considerable processing.
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Figure 5: Comparison of RAID and JBOD for Discard-based Search

Based on our observations of the applications described in Section 4, we designed a synthetic
benchmark that generates a discard-based search storage workload. Using an object count and an
object size distribution as input parameters, the benchmark creates a synthetic storage repository in
which files corresponding to objects are laid out sequentially, nose to tail, on one or more storage
devices. Whole object reads are issued using direct device I/O. The repository can be scanned
sequentially, or specific objects may be accessed randomly given additional settings such as the
query pass rate and the probability that results for an object are cached. Passing objects are assumed
to be distributed uniformly throughout the repository. Repositories may be read concurrently using
a specified number of threads per device. Multiple threads synchronize on a work queue consisting
of the list of objects in the repository, their sizes and locations.

We ran a series of experiments with this benchmark on an Intel R© SSR212CC storage system.
The hardware consisted of a 2.8GHz Intel R© XeonTMCPU with hyperthreading, 1GB of main
memory, and 12 disks each of 200 GB capacity. Five of these disks on one controller were used
in a JBOD configuration, while five disks on an identical controller were configured as a RAID
array with 64KB stripe units. The operating system on the server was Ubuntu 7.04 with Linux
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kernel version 2.6.20. We explored object sizes ranging from 500 KB to 16 MB. Our figure of
merit in these experiments is I/O efficiency: the ratio of the achieved bandwidth to the maximum
sequential bandwidth of the five-disk array. Each of our disks can sustain a maximum transfer rate
of 74MB/s, so our aggregate maximum bandwidth is 370MB/s for a five-disk array.

Figure 5(a) through 5(f) present our results for different object sizes. Each graph compares the
I/O efficiency of JBOD and RAID at increasing levels of CPU concurrency from left to right. In
each graph, the arrow shows the maximum efficiency achieved for a given object size. The results
show that across all object sizes, the highest I/O efficiency was achieved with JBOD rather than
RAID. This maximum efficiency was attained at a concurrency level of one or two threads. The
amount of concurrency needed to saturate the storage system decreases as object size increases.
JBOD achieves a higher I/O efficiency at the peak operating point in part because RAID is limited
by the speed of the slowest disk.

These results strongly suggest that one does not have to sacrifice I/O efficiency in order to
use a configuration(JBOD) that is friendly to storage-embedded processing. This key attribute of
discard-based workloads may help to catalyze future innovation in intelligent storage systems.

6 Related Work
To the best of our knowledge, Diamond is the first attempt to build a system that enables efficient
interactive search of large volumes of complex, non-indexed data. While unique in this regard,
Diamond does build upon many insights and results from previous work.

Recent work on interactive data analysis [16] outlines a number of new technologies that
will be required to make database systems as interactive as spreadsheets — requiring advances
in databases, data mining and human-computer interaction. Diamond and early discard are
complementary to these approaches, providing a basic systems primitive that furthers the promise
of interactive data analysis.

Effective tools exist for analyzing workloads in relational databases to determine those indexes
that might be most beneficial e.g., [2, 9]. Indexing methods for text applications are well-
known (e.g., [34]). Feature-space indexes (e.g., QBIC [12]) have shown some success in content-
based retrieval of whole images and recent work on low-level feature detectors and descriptors
(e.g., SIFT [26]) has led to efficient schemes for index-based sub-image retrieval (e.g., [22].
However, all of these methods rely on the hope that the user’s semantic needs can be sufficiently
characterized by the system’s limited concept of keypoints.

In more traditional database research, advanced indexing techniques exist for a wide variety of
specific data types including multimedia data [11]. Work on data cubes [15] takes advantage of the
fact that many decision support queries are well-known; such queries can be used to pre-process a
database and then perform queries directly from the more compact representation. The developers
of new indexing technology must constantly keep up with new data types, and with new user
access and query patterns. A thorough survey of indexing and the outline of this tension appear in
a recent dissertation [35], which also details theoretical and practical bounds on the (often high)
cost of indexing.

In addition, in high-dimensionality data (such as feature vectors extracted from images to
support indexing), sequential scanning is often competitive with even the most advanced indexing
methods because of the curse of dimensionality [43, 7, 10]. Efficient algorithms for approximate
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nearest neighbor in certain high-dimensional spaces, such as locality-sensitive hashing [13], are
available. However, these require the similarity metric to be known in advance (so that the data
can be appropriately pre-indexed using the proximity-preserving hashing functions) and that the
similarity metric satisfy certain properties. Diamond addresses searches where neither of these
constraints is satisfied.

Work on approximate query processing, recently surveyed in [6], complements these efforts
by observing that users can often be satisfied with approximate answers when they are simply
using query results to iterate through a search problem. There has also been some recent interest
in applying link analysis techniques (e.g., [8]) to large collections of unstructured data, such
as images on the web [21, 25]. These techniques require significant offline analysis of a large
number of documents but the extracted information could complement the Diamond approach. In
particular, the existence of multiple semantically-disjoint clusters in real-world data highlights the
applicability of efficient discard based search strategies.

In systems research, our work builds on the insight of active disks [1, 23, 32] where the
movement of search primitives to extended-function storage devices was analyzed in some detail,
including for image processing applications. Additional research has explored methods to improve
application performance using active storage [27, 28, 33, 41]. The work of Abacus [3], Coign [18],
River [4] and Eddies [5] provide a more dynamic view in heterogeneous systems with multiple
applications or components operating at the same time. Coign focuses on communication links
between application components. Abacus automatically moves computation between hosts or
storage devices in a cluster based on performance and system load. River handles adaptive dataflow
control generically in the presence of failures and heterogeneous hardware resources. Eddies [5]
adaptively reshapes dataflow graphs to maximize performance by monitoring the rates at which
data is produced and consumed at nodes. The importance of filter ordering has also been the object
of research in database query optimization [36]. The addition of early discard and filter ordering
bring a new set of semantic optimizations to all of these systems, while retaining the basic model
of observation and adaptation while queries are running.

Standardization efforts in object-based storage devices (OSD) [37] provide the basic primitives
on which we build our semantic filter processing. In order to most efficiently process searchlets,
active storage devices must contain whole objects, and must understand the low-level storage
layout. We can also make use of the attributes that can be associated with objects to store
intermediate filter state and to save filter results for possible re-use in future queries. Offloading
space management to storage devices provides the basis for understanding data in the more
sophisticated ways necessary for early discard filters to operate.

7 Conclusion
The past decade has witnessed great improvements in many aspects of disk technology such as
capacity, cost per bit, rotational speed, and aggregate bandwidth. Ways to rapidly fill empty disk
space have also grown. The emergence of digital photography allows any consumer to easily
generate large volumes of image data on his or her personal computer. More importantly, industrial
applications of imaging technologies have grown tremendously in scale and importance.

A daunting problem arises from this ease of data creation and storage. How does one find
a few vaguely-specified items in many terabytes or petabytes of complex and loosely-structured
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data such as digital photographs, video streams, CAT scans, AutoCAD drawings, or USGS maps?
If the data has already been indexed for the query being posed, the solution is well-understood.
Unfortunately, a suitable index is often not available and a user has no choice but to perform an
exhaustive search over the entire volume of data. While author, date, and other meta-data can be
used to restrict the search space, the user still has an enormous number of items to examine.

Without a system like Diamond, scanning such a large volume of data would be so slow that
it could only performed in the context of well-planned data mining. Enabling this kind of search
allows users to discover a small set of relevant items buried in a huge collection. And as discussed
in this paper, aggressive filtering of the data is essential to permit the user to focus his or her
limited attention on the most promising candidates. To enable the creation of applications for
interactive exploration of non-indexed data, we have created the OpenDiamond platform. Instead
of precomputing indexes for all anticipated queries, the OpenDiamond platform embodies support
for discard-based search. This approach performs content-based computation in response to a
specific query. Our rethinking of search from first principles has favorable consequences for
flexibility and user control, while also enabling easy exploitation of CPU and storage parallelism
on current and future hardware.
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