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Abstract

Balcan et al. [3] show that the framework of the random sampling auction of Goldberg et al. [12] gives
a generic reduction in the context of unlimited supply profit maximization from mechanism design (e.g.,
Goldberg et al. [12]) to algorithm design (e.g., Guruswami et al. [14]). One major open question left in [3]
is to extend the results to limited supply settings. For the case that the seller has a large but limited supply of
each commodity, we answer this question by giving a non-trivial adaptation of the random sampling auction
framework to the limited supply setting, and prove bounds analogous to those of [3] for both the objectives of
profit maximization and welfare maximization. These results generalize the prior work on random sampling
limited supply auctions of Borgs et al. and Abrams [5, 1] which consider the special case where agents have
linear valuations and budgets.
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1 Introduction

Random sampling is a fundamental technique in the design of economic mechanisms. Election polls are
a vital part of a plurality voting system. Good pricing relies on good market analysis. In many contexts
auctions based on random sampling give good approximations to the optimal mechanism (e.g., [12, 11, 3]).
In this paper we extend the applicability of random sampling auctions to a very general multi-item, multi-
unit settings with large but limited supply. The bidders may have arbitrary preferences over bundles of items
and accompanying payments, though we assume that the demand by any one bidder for an item is small
compared to the total supply of the item. In this context we show that the random sampling auction can
optimize an arbitrary linear objective function such as the profit of the auctioneer or the social welfare of the
economy.

This work generalizes theoretical mechanism design results related to web advertising and sponsored
search when estimated supply is sold in batch. Borgs et al. [5] and Abrams [1] consider single-item, multi-
unit auctions when bidders have linear valuations and budgets and the seller has a limited supply. Aggarwal
and Hartline [2] consider single-item, multi-unit auctions for unit-demand advertisers with known click-
through-rates when the seller has a limited supply. Balcan et al. [3] consider general advertiser preferences
but in unlimited supply. In order for these models to be relevant for web advertising and sponsored search it
is important to consider the general preferences (e.g., with budgets), multiple-items (i.e., different keywords,
different web pages, etc.), and limited supply. This is setting is one of many covered by this paper.

The mechanism we discuss is based on the notion of an offer. An offer can be viewed as a menu
describing possible outcomes of the mechanism and accompanying payments. We assume that a bidder’s
preferences maps any possible offer to their most desired outcome and payment. It is standard in mechanism
design to assume that a bidder’s preference is given by a utility function which maps outcomes and payments
to a real number representing their happiness. Another standard assumption in mechanism design is that the
utility functions are quasi-linear, i.e., there is a valuation function which maps outcomes to values and
the utility function is just the difference between the valuation and the payment. In fact, even the celebrated
Vickrey-Clarke-Groves (VCG) mechanism [16, 7, 13], requires quasi-linear preferences. Our general results
make no such assumptions; however, it is natural to apply our results in these standard settings.

We consider direct revelation mechanisms, where each bidder is asked to submit as their “bid” a de-
scription of their preferences. A mechanism is truthful if, regardless of the actions of all other bidders, a
bidder will obtain their most desired result by specifying their true preferences as their bid. We endow an
offer with the following interpretation: given the preference of a bidder as their bid, select for the bidder the
outcome and payment that their bid indicates is their most preferred. Thus, an offer is the simplest direct
revelation, dominant strategy truthful mechanism.

The random sampling auction we consider can be stated simply as

1. Randomly partition the bidders into two parts.

2. Compute an “optimal offer” for each part.

3. “Use” each offer on the opposite part.

The terms “optimal offer” and “use” are deliberately vague, and we will specify their interpratations below.
This framework was first proposed for auctioning an unlimited supply of a single identical good to

indistinguishable consumers with the objective of maximizing the profit1 of the seller (a.k.a., the digital
good auction problem) [12]. In unlimited supply settings there is a natural notion of an “optimal offer” for a

1Maximizing welfare in unlimited supply settings is trivial.
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set of consumers. It is the one that maximizes the profit when made to each consumer independently. There
is also a natural interpretation of “using” an offer on a set of consumers as independently assigning each
consumer in the set the outcome that their reported preferences suggest that they most prefer. Since there are
no supply constraints, both of these interpretations are well defined. Balcan et al. [3] give a simple analysis
of this random sampling auction in any general unlimited supply setting. We believe that the simplicity and
generality of this approach suggests that it is the “right way” to view the random sampling auction and its
analysis in unlimited supply settings.

The challenge in adapting the random sampling auction framework to limited supply settings is in cor-
rectly specifying the notion of an “optimal offer” and “use” as it is no longer possible to making an offer to
a set of consumers by independently making the offer to each consumer in the set. The main result of this
paper provide a simple and general analysis that shows that if we

• interpret “use” as making an offer available “while supplies last” when the consumers are ordered in
a random permutation (as proposed by Borgs et al. [5]), and

• interpret “optimal offer” of a set of consumers as the one that maximizes the expected payoff when
made to consumers ordered by a random permutation,

then the performance of the random sampling auction is near optimal when specific, natural assumptions
hold. Again, we believe that the simplicity and generality of this approach suggest that it is the “right way”
to view the random sampling auction and its analysis in limited supply settings.

One of the main challenges addressed in this analysis is that for any given offer, the “bang per buck” of
each need not be constant, as in [5]; and the demand of an agent need not be publicly known, as in [2]. This
results in a knapsack like problem where each agent has a payoff and a demand and we wish to choose a set
of agents such that the total demand is within our supply; however, incentive constraints require that we use
neither the payoff nor demand when making our selection. Thus, our results are based on the study of this
stochastic knapsack problem which may be of independent interest.

We follow an approach from [3]; a high level of generality is obtained by observing that when making
an offer to a bidder the only relevant quantities are the payoff to our objective function and the demand
imposed on our limited supply. Thus, we can remove the complicated details of a bidder’s preference from
the situation and assume that our payoff and demands are some function of the bidder and the offer. This
allows us to express many objective functions with the only constraint being that the total payoff of our
objective function is a simple sum of the payoffs from each bidder (i.e., it is linear). The two most natural
objective functions to consider are auctioneer profit and social welfare. In the former, the payoff is simply
the payment made by the bidder. In the latter, (assuming a utility function) the payoff is the utility of the
bidder plus the payment made.2 Consider the following examples:

Auctions for Web Advertising. The bidders are advertisers and the auctioneer is a webserver selling ad-
vertising space on a web page. The supply is given by statistics that estimate the number of times the
web page will be viewed (in a given time interval). The advertisers’ preferences may be described
by a valuation per impression (i.e., views of their ad) and a budget for the maximum the advertiser
is willing to pay (E.g., in the model proposed by Borgs et al. [5]). The utility of such a bidder is
their valuation times the number of impressions obtained less their payment, as long as the payment
is at most their budget. The bidder’s utility for payments larger than their budget is negative infinity.
Suppose the website made the offer “five cents per impression” to an advertiser with value 15 cents

2In the quasi-linear case, this sum is simply be the valuation of the bidder.
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per impression and a budget of one dollar. The advertiser would buy 20 impressions for a total pay-
ment of one dollar. The utility of the advertiser is two dollars. The profit of the website is one dollar.
The social welfare of the economy (the total valuation of the advertiser) would be three dollars. The
supply consumed is 20 impressions.

Natural objectives to consider in this setting are profit maximization (as in [5]) and welfare maxi-
mization. Our work allows for results along the same lines as Borgs et al. but in much more general
contexts: e.g., if there are multiple web pages, multiple ads on each web page, or user search queries
such as in auctions for sponsored search. It also allows for more general advertiser preferences, e.g.,
with complicated valuations and budgeting conditions. Our bounds are similar to those of [5], though
we require stronger assumptions to obtain a wider applicability.

Multi-unit, Multi-item Combinatorial Auctions. An auctioneer has multiple units of multiple items for
sale (but limited supply). Bidders have quasi-linear preferences, i.e., a bidder has a function which
specifies their value for every bundle that they might receive. Their utility is the difference between
their value for a bundle and the price charged for it. Without computational constraints this mechanism
design problem is solved by the VCG mechanism. With computational constraints, Bartal et al. [4]
give mechanism that approximates the optimal social welfare.

Our techniques give near optimal results for the problem of maximizing profit or welfare. Our mech-
anism can be viewed as reducing the mechanism design problem to an algorithmic pricing problem
(computing the optimal offer for a set of consumers). The incentive properties and performance
bounds are preserved if an approximation algorithm is used in place of an optimal pricing algorithm.

For the objective of welfare maximization our results are interesting because the outcome we achieve
is based on making a single offer to all bidders. This restriction is closely related to the requirement
that the allocation and payments produced in the core, a mechanism design challenge recently consid-
ered by Milgrom [15] and Day and Raghavan [8]. To our knowledge, there was no truthful mechanism
for this problem prior to our work.

There are a number of immediate extensions of our work that we do not explicitly consider here. First,
the offers made to each bidder may use distinguishing features of the bidder to price discriminate. This
ability is captured by the treatment of attribute auctions by [3]. Our results solve the limited supply attribute
auction problem. Second, computational constraints may prevent exactly computing the optimal offers (as
required in Step 2, above). A β-approximation algorithm can be used instead and results in a β factor loss
in our objective function and slightly worse convergence rates (i.e., stronger assumptions on the size of
the input and the available supply). We do not give the proof details. Finally, approaches for reducing the
complexity of the class of offers by discretizing and running the auction restricted to a smaller class of offers
or by doing data-dependent analyses to show that the effective complexity of the class of offers is small can
be applied in our setting as well. We refer readers to [3] for details.

This paper is organized as follows. We start with our terminology and formal definitions in Section 2.
We analyze the simpler single commodity case in Section 3, and the multiple commodities case in Section 4.
We discuss computational issues and give conclusions in Section 5.

2 Preliminaries

The notions described in this section apply abstractly to mechanism design in limited supply settings. See
Appendix A to see the constructs below instantiated in in the context of a simple web advertising example.
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Suppose a seller is selling a limited supply C of some commodity. The seller could post an offer
for units of this commodity as a pricing schedule which indicates how much any given quantity of the
commodity costs. A buyer, endowed with a utility function which maps a quantity of the good and a price
to a utility value representing their happiness, given such an offer would choose the quantity and price pair
that maximizes their utility.

Let G be a class of allowable offers. As we have just discussed, given a particular offer g ∈ G, a
consumer will choose a quantity and price. Let p(i, g) be the payoff to the mechanism designer’s objective
function when offering g to consumer i. For example, if our objective is maximizing profit, then p(i, g) is the
price paid by the consumer i when given offer g. Similarly, let x(i, g) be the number of units they obtain.

Let S = {1, . . . , n} be a set of consumers. We extend the definitions of p(·, ·) and x(·, ·) to be the sum
of the payoffs and quantities desired if each consumer was able to take their most desired quantity. I.e.,
p(S, g) =

∑
i∈S p(i, g) and x(S, g) =

∑
i∈S x(i, g).

We are going to be interested in the payoff we obtain from offering g to a set of consumers S. If we
are lucky, the total quantity demanded by the consumers will be at most the supply, i.e, x(S, g) ≤ C, and
the payoff obtained by making such an offer will be p(S, g). On the other hand, if the demanded quantity
exceeds the supply, then the payoff obtained by such an offer is ill defined. To define the payoff in this case
we need to be more explicit about how such an offer is made to the set of consumers.

Definition 1 For a given offer g:

1. Let π be a random permutation.

2. Let k be the size of the largest prefix of π of consumers who can take what they want without exceeding
the supply constraint. I.e., k satisfies

0 ≤ C −
∑k

i=1
x(π(i), g) < x(π(k + 1), g).

3. Define our payoff as P (S, g, C) =
∑k

i=1 p(π(i), g).

The value P (S, g, C) is a random variable and is a lower bound on the true payoff we can obtain by an
offer. In fact, we define our benchmark based on the expected value of this quantity. Formally:

Definition 2 We define OPTG (S, C) to be maxg∈G [Eπ[P (S, g, C)]].

Since in general it is challenging to calculate the expected value of P (S, g, C) we instead estimate its
value with the following which, by design, is a simple function of x(S, g) and p(S, g).

Definition 3 The estimated payoff for g on S is

P̃ (S, g, C) =
C · p(S, g)

max[C, x(S, g)]
.

Definition 4 We define ÕPTG(S, C) = maxg∈G P̃ (S, g, C) and õptG(S, C) = argmaxg∈G P̃ (S, g, C).

Now we formalize the auction we will be discussing throughout this paper. It is a generalization of the
random sampling auctions of [12, 3, 5].
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Definition 5 (RSLS) The random sampling limited supply (RSLS) auction is parameterized by a class of
allowable offers G and an available supply C. For a set of bidders S:

1. Partition S into S1 and S2 by assigning each bidder to S1 or S2 independently with probability 1/2.

2. Compute g1 = õptG(S1, C/2) and g2 = õptG(S2, C/2).

3. Offer g1 to S2 and g2 to S1.

The estimated payoff of RSLS is P̃ (S2, g1, C/2)+P̃ (S1, g2, C/2). The actual payoff of RSLS is P (S2, g1, C/2)+
P (S1, g2, C/2).

We will show in the following section, that as long as both the maximum estimated payoff ÕPTG(S, C)
and the supply C are large compared to the complexity of our class of functions, the estimated payoff of
the RSLS mechanism is nearly as large as the maximum estimated payoff. Note that the following lemma is
immediate.

Lemma 1 Mechanism RSLS is truthful.

We state now a lemma from [3] which is essential in our analysis. We use the term tally function and
notation f(·, ·) to refer generically to both p(·, ·) and x(·, ·).

Lemma 2 Given S, a tally function f(·, ·), an offer g satisfying f(i, g) ≤ fmax for all i ∈ S, and a
tally level T ; if we randomly partition S into S1 and S2, then the probability that |f(S1, g) − f(S2, g)| ≥
εmax [f(S, g), T ] is at most 2e

[
− ε2T

2fmax

]
.

The following theorem follows from Lemma 2 by taking the union bound over all g ∈ G and all f ∈ T .

Theorem 1 Given

• a class of offers, G,

• a set T of m tally functions,

• Upper bound fmax on f(i, g) for all i ∈ S, and

• corresponding tally levels Tf (ε) = 2fmax

ε2
ln

(
2m|G|

δ

)
for all f ∈ T ,

With probability 1− δ a random partitioning of S into two sets S1 and S2 satisfies

|f(S1, g)− f(S2, g)| ≤ ε max [f(S, g), Tf (ε)] ,

simultaneously for all f ∈ T and g ∈ G.

Corollary 2 For a random partition of S into S1 and S2, with probability at least 1− δ, every offer g ∈ G
satisfies both

|x(S1, g)− x(S2, g)| ≤ εmax [x(S, g), Tx(ε)]

and
|p(S1, g)− p(S2, g)| ≤ ε max [p(S, g), Tp(ε)] .
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Definition 6 (ε-good) A partitioning of S into S1 and S2 is ε-good for g and tally function f if it satisfies
the conditions of Lemma 2. The partitioning is ε-good for G and tally set T if it satisfies the conditions of
Theorem 1.

For convenience, we also state here a simple lemma that we will be useful in our analysis.

Lemma 3 Let a, b, C be arbitrary non-negative real numbers. Then

1. max(a, C
2 )−max(b, C

2 ) ≤ a− b

2. 2max(a, C
2 ) ≤ max(a + b, C) + |a− b|

3. 2max(a, C
2 ) ≥ max(a + b, C)− |a− b|

Proof: The first part follows immediately from the fact that function f(x) = max(x, C
2 ) has slope at most 1

everywhere and is therefore 1-lipschitz. For the second part, note that 2a ≤ 2max(a, b) = (a+ b)+ |a− b|.
Thus max(2a,C) ≤ max(a + b + |a − b|, C) ≤ max(a + b, C) + |a − b|. The proof of the third part is
analogous. 2

3 The Single Commodity Case

The structure of this section is as follows. We start by showing, in Section 3.1, that if both the maximum
estimated payoff ÕPTG(S,C) and the supply C are large compared to the complexity of our class of offers,
then the estimated payoff of the RSLS mechanism is nearly as large as the maximum estimated payoff. We
describe a natural randomized knapsack algorithm in Section 3.2 and analyze its performance. In Section 3.3
we combine the bounds of the preceding sections to relate the actual payoff of RSLS its estimated payoff.

For clarity, we will assume in the following that the offer class G is finite. We can easily extend our
results to the case when the offer class is not finite, by using covering arguments as described in [3].

3.1 Analyzing the Estimated Payoff of the RSLS Mechanism

Using Corollary 2 we now prove that:

Theorem 3 Given the offer class G and a limited supply C, with probability at least 1 − δ the estimated
payoff of RSLS mechanism is at least (1− ε)ÕPTG(S, C) as long as

ÕPTG(S,C)
pmax

≥ 50
ε2

ln
(

4|G|
δ

)
, and C

xmax
≥ 100

ε2
ln

(
4|G|
δ

)
.

Proof: Let g1 be the offer in G selected by our mechanism over S1 and g2 be the offer in G selected over
S2. Let g∗ = õptG(S, C). Since the optimal offer over S1 is at least as good as g∗ on S1 (and likewise for
S2), we have P̃ (S1, g1, C/2) ≥ P̃ (S1, g

∗, C/2) and P̃ (S2, g2, C/2) ≥ P̃ (S2, g
∗, C/2).

From Corollary 2 we have that with probability 1 − δ, G is ε
10 -good, i.e., every offer g satisfies both

|x(S1, g)−x(S2, g)| ≤ ε
10 max [x(S, g), Tx (ε/10)] and |p(S1, g)−p(S2, g)| ≤ ε

10 max [p(S, g), Tp (ε/10)].
We will use this as well as the assumptions of the theorem statement that ÕPTG(S) ≥ Tp(ε/10) and
C ≥ 2Tx(ε/10), to show that:

P̃ (S1, g
∗, C/2) + P̃ (S2, g

∗, C/2) ≥
(
1− ε

5

)
P̃ (S, g∗, C) (1)
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and

P̃ (Sj , gi, C/2) ≥
(

1− 2ε

5

)
P̃ (Si, g

∗, C/2)− ε

10
ÕPTG(S), (2)

for i, j = 1, 2, j 6= i. These then imply that the estimated payoff of the RSLS mechanism, namely the sum
P̃ (S2, g1, C/2) + P̃ (S1, g2, C/2), is at least (1− ε)ÕPTG(S).

We start by proving (1). Let X max(C, x(S, g∗)), X1 = max(C/2, x(S1, g
∗)), X2 = max(C/2, x(S2, g

∗)).
From the fact that |x(S1, g

∗) − x(S2, g
∗)| ≤ ε

5X and Lemma 3,3 we conclude that 2X1 ≤ (1 + ε
5)X and

2X2 ≤ (1 + ε
5)X . Thus,

P̃ (S1, g
∗, C/2) + P̃ (S2, g

∗, C/2) =
(

Cp(S1, g
∗)

2X1
+

Cp(S2, g
∗)

2X2

)
≥

(
Cp(S1, g

∗)
(1 + ε

5)X
+

Cp(S2, g
∗)

(1 + ε
5)X

)

≥ (1− ε
5)P̃ (S, g∗, C).

It remains to prove (2). We show this for i = 1 and j = 2, i.e., P̃ (S2, g1, C/2) ≥ (
1− 2ε

5

)
P̃ (S1, g

∗, C/2)−
ε
10ÕPTG(S); the other case is identical. Now let X = max(C, x(S, g1)), X1 = max(C/2, x(S1, g1)),
X2 = max(C/2, x(S2, g1)). From the fact that |x(S1, g1)− x(S2, g1)| ≤ ε

10X and Lemma 3, we conclude

that 2X2 ≤ (1 + ε
10)X and 2X1 ≥ (1 − ε

10)X . Thus X2 ≤ 1+ ε
10

1− ε
10

X1 ≤ 1
1− 2ε

10

X1. If p(S, g1) ≥ Tp (ε/10),

then p(S2, g1) ≥ (1− 2ε
10)p(S1, g1). In this case

P̃ (S2, g1, C/2)
C

2
p(S2, g1)

X2
≥ C

2
(1− 2ε

10)p(S1, g1)
X1/(1− 2ε

10)
≥ (1− 2ε

5
)
C

2
p(S1, g1)

X1

= (1− 2ε

5
)P̃ (S1, g1, C/2).

If p(S, g1) < Tp (ε/10), then

P̃ (S2, g1, C/2)
C

2
p(S2, g1)

X2
≥ C

2
p(S1, g1)− ε

10Tp (ε/10)
X1/(1− 2ε

10)
≥

(
1− 2ε

5

)
P̃ (S1, g1, C/2)− ε

10
ÕPTG(S)

This completes the proof. 2

Notice that this bound holds for all ε and δ simultaneously as these are not parameters of the mechanism.

3.2 The Uniform Knapsack Algorithm

In this section we present bounds on the performance of the following uniform knapsack algorithm for both
weighted and non-weighted instances. While this is a natural algorithm to consider, we know of no such
analysis already in the literature. We need these bounds in our main theorem to show that the actual payoff
of RSLS is close to its estimated payoff.

Definition 7 (Uniform Knapsack Algorithm, UKA) Given a knapsack instance, the uniform knapsack al-
gorithm (UKA) works as follows:

1. Pick an ordering of the objects uniformly at random.
3Note that we are using here the assumption that C ≥ 2Tx(ε/10).
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2. Insert the objects into the knapsack in order until the first time an object does not fit.

First some notation. A knapsack instance I is defined by the capacity of the knapsack, C, the number
of pieces, n, their sizes x1, x2, . . . , xn and weights (a.k.a., payoffs) p1, p2, . . . , pn. For any permutation
π ∈ Sn, the set of all permutation, let k(π) be the number of pieces that fit in the knapsack, if we fill the
knapsack in the order given by π, i.e., k(π) is such that 0 ≤ C−∑k(π)

i=1 xπ(i) < xπ(k(π)+1). Then the payoff
of UKA on the instance I with permutation π is defined to be

P (I, π) =
∑k(π)

i=1
pπ(i).

Consider the following definitions. The maximum size of an object is xmax = maxi{xi}. The total demand
is xsum =

∑
i xi. The total payoff if we could fit all objects into the knapsack would be psum =

∑
i pi.

Assume without loss of generality that xmax ≤ C ≤ xsum.

3.2.1 Bounds on Expectation

The main theorem of this section is the following. The proof of this theorem can be viewed as an approxi-
mate reduction from the weighted case to the non-weighted case.

Theorem 4
Eπ∈rSn [P (I, π)] ≥ psum (C − 4xmax)

xsum
.

Proof: Let Pi(I, π) be the payoff from piece i under permutation π, i.e., Pi(I, π) is equal to pi if π−1(i) ≤
k(π) and 0 otherwise. So

Eπ∈rSn [Pi(I, π)] = pi · Prπ∈rSn

[
π−1(i) ≤ k(π)

]
.

One way to pick a random permutation π on n elements is to pick a random permutation π−i on all the
elements but i, and then insert i randomly at one of n positions. π−1(i) ≤ k(π) if i is inserted in one of the
first k(π−i) positions in a knapsack of capacity C − xi. Lemma 4 (see below) implies,

Prπ∈rSn

[
π−1(i) ≤ k(π)

]
= Eπ−i∈rSn−1

[
k(π−i)

n

]
≥ (n− 1) ((C − xi)− 2xmax)

nxsum
,

Therefore,

Eπ∈rSn [P (I, π)] =
∑n

i=1
Eπ∈rSn [Pi(I, π)] =

∑n

i=1
pi·Eπ−i∈rSn−1

[
k(π−i)

n

]
≥ (n− 1)psum (C − 3xmax)

nxsum
.

Since xsum ≥ C implies that 1/n ≤ xmax/C, we have: Eπ∈rSn [P (I, π)] ≥ psum(C−4xmax)
xsum

. 2

Notice that k(π) is the payoff of UKA in the non-weighted case (i.e., when pi = 1 for all i). Thus,
the following main technical lemma in this section gives a bound on the expected performance of the UKA
algorithm in the non-weighted case.

Lemma 4 Eπ∈rSn [k(π)] ≥ n(C−2xmax)
xsum

.
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Proof: Step 1. We modify the distribution on the permutations so that the expectation only gets smaller.
Let π ∈ D be the probability distribution on the set of all permutations Sn obtained as follows: pick π(1) to
be i with probability proportional to xi, and then pick the rest of the permutation uniformly at random. The
distribution π ∈ D is such that bigger pieces have a higher probability of being picked as the first element.
Hence, the expected number of pieces that fit in the knapsack is only smaller. Thus, we have:

Eπ∈rSn [k(π)] ≥ Eπ∈D [k(π)] . (3)

Step 2. We define a “fractional” version of k(π) that considers the total fraction of the number of objects
in the knapsack of size C when we place the objects in on the [0, xsum] line according to π ∈r Sn but start
the knapsack at a uniformly random position q ∈ [0, xsum] and wrap around cyclically. For a permutation π,
starting position q, and supply C we let k(π, q, C) represent the total fractional number of objects placed in
the knapsack by this procedure. Formally, define the following regions on the [0, xsum] line:

• The region of objects taken into the knapsack is R defined as:

R =

{
[q, q + C] if q + C ≤ xsum, and
[q, xsum] ∪ [0, C − xsum + q] otherwise.

• The region taken up by object i is Ri defined as (the sum is over objects before i in π):

Ri = [0, xi] +
∑π−1(i)−1

j=1
xπ(j).

Let |R| be the size of a region. The value of k(π, q, C) =
∑

i
|R∩Ri|
|Ri| . Clearly,

Eπ∈rSn,q∈r[0,xsum)[k(π, q, C)] = nC
xsum

. (4)

Step 3. We now compare Eπ∈rSn,q∈r[0,xsum)[k(π, q, C)] with Eπ∈D[k(π)]. Notice that the probability that
an object is the first object in the knapsack according to π when we start at uniform q is proportional to its
size. The subsequent objects are identical to that of a random permutation from Sn−1. Thus, the order of
objects we attempt to place in the knapsack are the same under π ∈ D starting q = 0 and under π ∈r Sn

with start position q ∈r [0, xsum). In the former case, however, the first object is placed in the knapsack in its
entirety. This may block out an object at the end. Additionally, in the former case, we do not get credit for
any fractional objects at the end. We can remedy this by comparing the former case to the latter case with a
reduced knapsack capacity: the objects in the knapsack in the former case with capacity C is a superset of
the objects in the knapsack in the latter case with capacity C ′ = C − 2xmax. Thus,

Eπ∈D[k(π)] ≥ Eπ∈rSn,q∈r[0,xsum)[k(π, q, C − 2xmax)] . (5)

Combining (3), (4), and (5), we obtain the statement of the lemma. 2

3.2.2 Concentration Bounds

In this section we show that the random variable k(π) in Lemma 4 is tightly concentrated around its expected
value. Our main theorem on this topic is stated below, it is actually a immediate consequence of Theorem 9
which is given in the Appendix B. Notice that the assumption required for this bound is likely to be weaker
than the assumption required in Theorem 3.
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Theorem 5 With probability at least 1 − δ the the number of objects in the knapsack, k(π), is at least
(1− ε)Eπ[k(π)] as long as,

C ≥ 4(1 + ε)
ε2

x2
max

xavg
ln(1

δ ).

From this theorem we can derive a similar concentration result for the weighted version of the knapsack
problem; however, we do not need this result for the paper so we omit the details.

3.3 Analyzing the Actual Payoff of the RSLS Mechanism

Putting together the results in Sections 3.1 and 3.2, we are now able to derive a bound on the expected actual
payoff of the RSLS mechanism.

Theorem 6 Given the offer class G and a limited supply C, with probability at least 1 − δ the expected
actual payoff of RSLS is at least (1− ε)OPTG(S, C) as long as

ÕPTG(S)
pmax

≥ O
(

1
ε2

ln
(

4|G|
δ

))
and C

xmax
≥ O

(
1
ε2

ln
(

4|G|
δ

))
.

Proof: The expected actual payoff of RSLSmechanism which we denote by E[P (RSLS)] is Eπ[P (S2, g1, C/2)]+
Eπ[P (S1, g2, C/2)]; so using Theorem 4, we obtain:

E[P (RSLS)] ≥p(S2, g1) ·
(

C
2 − 4xmax

)

max(x(S2, g1), C
2 )

+
p(S1, g2) ·

(
C
2 − 4xmax

)

max(x(S1, g2), C
2 )

.

Note that by the second assumption, xmax < ε2C so that (C
2 − 4xmax) > (1− 8ε2)(C

2 ). Thus we get

E[P (RSLS)] ≥(1− 8ε2)

(
p(S2, g1) · (C

2 )
max(x(S2, g1), C

2 )
+

p(S1, g2) · (C
2 )

max(x(S1, g2), C
2 )

)
.

The expression in the parentheses is precisely the estimated payoff of mechanism. Thus Theorem 3 implies
that with probability at least 1− δ we have:

E[P (RSLS)] ≥ (1− ε̃)ÕPTG(S, C).

Finally, using Theorem 4 again as above implies that ÕPTG(S,C) ≥ (1 − 4ε2)OPTG (S, C), the claim
follows. 2

4 Multiple Commodities

Consider the case that there are m commodities with supply constraint C = (C1, . . . , Cm) with Cj giving
the available supply of commodity j. Now, each g is a menu giving a price for all possible bundles of the
m commodities (these bundles are multisets). We define p(i, g) as before and define xj(i, g) as the quantity
of item j that consumer i desires when offered g. We now extend the definitions of P (·, ·, ·) and P̃ (·, ·, ·) to
the multi-commodity case.

Definition 8 For a given offer g:

10



1. Let π be a random permutation.

2. Let kj be the size of the largest prefix of π of consumers who can take what they want without exceeding
the supply constraint of item j (ignoring the supply constraint of other bundles). I.e., kj satisfies

0 ≤ Cj −
∑kj

i=1
xj(π(i), g) < xj(π(kj + 1), g).

3. Define Pj(S, g, Cj) =
∑kj

i=1 p(π(i), g).

4. Define our payoff as P (S, g,C) = minj Pj(S, g, Cj).

We estimate P (S, g,C) value with the following which, by design, is a simple function of x(S, g) and
p(S, g).

Definition 9 Let P̃j(S, g, Cj) = Cj ·p(S,g)
max[Cj ,xj(S,g)] and define the estimated payoff for g on S as

P̃ (S, g,C) = minj P̃j(S, g, Cj).

Theorem 7 Given the offer class G and a limited supply C, with probability at least 1 − δ the estimated
payoff of RSLS is at least (1− ε)ÕPTG(S,C) as long as

ÕPTG(S,C)
pmax

≥ 50
ε2

ln
(

2(m+1)|G|
δ

)
and Cjxj,avg

xj,max
≥ 100

ε2
ln

(
2(m+1)|G|

δ

)

for all items j.

Proof: Theorem 1 implies that with probability 1− δ all the m demand tally functions x1(·, ·), . . . , xm(·, ·)
and the payoff tally function p(·, ·) are ε

5 -good for sampling S1 and S2.
Let g1 = õpt(S1) and g2 = õpt(S2) and g∗ = õpt(S). If follows from the proof of Theorem 3 and our

assumptions on ÕPTG(S,C) and C that for all items j,

P̃j(S2, g1, Cj/2) + P̃j(S1, g2, Cj/2) ≥ (1− ε)P̃j(S, g∗, Cj).

Our estimated payoff is simply the minimum over these over items j of the estimated payoff for that
item. Thus the profit of RSLS is at least (1− ε)ÕPTG(S,C). 2

Theorem 8 Given the offer class G and a limited supply C, with probability at least 1 − δ the expected
actual payoff of RSLS is at least (1− ε)OPTG(S,C) as long as

ÕPTG(S)
pmax

≥ O
(

1
ε2

ln
(

2(m+1)|G|
δ

))
and Cj

x2
j,max

≥ O
(

1
ε2

ln
(

2(m+1)|G|
δ

))
,

for all items j.

Proof: (sketch)

1. Consider g1 on S2 and the supply constraint Cj for item j (assume all other supplies are infinite).
Use Theorem 5 to argue that the actual number of bidders able to satisfy their demand for item j with
respect to item j is close to the estimated number (with probability 1− δ/m).
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2. Use the union bound on all items j to argue that the actual number of bidders able to satisfy their
demand, with respect to the most constrained item supply, is close to the estimated number (with
probability 1− δ).

3. Use the reduction approach (which relates the weighted knapsack bound to the non-weighted bound)
implied by the proof of Theorem 4 to show that the expected actual payoff from g1 on S2 is close to
the estimated payoff for g1 on S2.

4. Use Theorem 7 to conclude that the actual payoff is close to the optimal estimated payoff which in
turn is close to the optimal actual payoff.

2

5 Conclusions, Discussion and Open Problems

In this paper we have described a very general random sampling mechanism for multi-item, multi-unit
settings with large but limited supply. We have proved bounds analogous to those of [3] that can be applied
to both the objectives of profit maximization and welfare maximization.

Computational Issues. While our mechanism and analysis are very general, they rely on the existence of
an algorithm that computes õptG(S, C) or an approximation to it. This raises the natural algorithmic pricing
question: Can this be computed efficiently? It turns out that even in the unlimited supply setting [3] (which
we generalize here) computing these optimal offers is intractable for most interesting problems [14, 9, 6].
None-the-less there may be interesting pricing problems in our setting that are tractable and it is interesting
to consider the problem for special classes of consumer preferences and offers.

We now consider special cases of the above problem. Suppose the class of offers G is the set of all item-
pricings (i.e., prices are a linear function of the quantity demanded). Suppose further that the consumers
preferences are specified by a linear valuation function and a budget that is their maximum willingness
to pay. For the case of a single commodity, this precisely the model considered in the auctions for web
advertising example in the introduction of this paper. It is easy to see that there is a simple algorithm for the
case. For the case of multiple commodities, the prices that maximize profit are exactly the market clearing
prices. Hence one can use efficient market clearing algorithms to find the prices. Such algorithms are known
only for divisible goods [10], and in fact market clearing prices may not exist for indivisible goods. Since
the supply for each commodity is large, it is a reasonable approximation to treat the goods as divisible.
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A Web Advertising Example

Our notions of offers, payoffs, and demands are fairly abstract. To gain some appreciation for them we
demonstrate how they can be applied to the objective of profit maximization in the web advertising example
discussed briefly in the introduction. For the purpose of this example define notation vi as the per-impression
valuation of advertiser i and Bi as their total budget. A reasonable class of offers, G, are those of the form
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gq = “buy as many impressions as you want at price q each.” As our objective is profit maximization,
p(i, gq) is the payment advertiser i makes. Now consider what happens when advertiser i faces offer gq. If
vi ≥ q then the advertiser has positive utility for buying and will buy up to their budget. Thus, the payment
made is p(i, gq) = Bi. The supply demanded is the total number of impressions they can afford given the
price-per-impression cost q and their budget, i.e., x(i, gq) = Bi/q.

Now suppose we have two advertisers, S = {1, 2}, with valuation and budgets, v1 = 10, B1 = 20,
v2 = 5, B2 = 30; and supply, C = 5. The relevant offers are g5 and g10, the offers of $5 per impression and
$10 per impression, respectively. It is easy to verify that

p(1, g10) = 20 x(1, g10) = 2
p(2, g10) = 0 x(2, g10) = 0
p({1, 2}, g10) = 20 x({1, 2}, g10) = 2

p(1, g5) = 20 x(1, g5) = 4
p(2, g5) = 30 x(2, g5) = 6
p({1, 2}, g5) = 50 x({1, 2}, g5) = 10

Clearly, P̃ (S, g10, C) = 20 and P̃ (S, g5, C) = 25 so ÕPT{g5,g10}(S, C) = 25 and õpt{g5,g10}(S,C) = g5.

B Proofs of Concentration Bounds for the Uniform Knapsack Algorithm

In this section we given the main theorem necessary to show the concentration result for the uniform knap-
sack algorithm in the non-weighted case (Theorem 5). We obtain this result by studying a much simpler
random object, the sum of k numbers selected randomly without replacement from a set of n numbers.
The concentration results we obtain for this problem follow naturally from the method of average bounded
differences; proofs are given for completeness.

Theorem 9 Let Xk be a random variable representing the sum of k numbers drawn without replacement
from a set of n numbers with maximum magnitude xmax and average xavg, then

Pr[Xk ≥ (1 + ε)E[Xk]] ≤ exp(−ε2( xavg

xmax
)2 k)

2 .

Notice that if k > 4
ε2

(xmax
xavg

)2 ln(1
δ ), then with probability (1− δ), Xk < (1 + ε)E[Xk] = (1 + ε)kxavg.

Setting k = C
(1+ε)xavg

and flipping this around, we get Theorem 5 which is given and discussed in Sec-
tion 3.2.2.

Our proof is based on the following theorem from the method of average bounded differences.

Theorem 10 (Method of Average Bounded Differences) Let Z1, . . . , Zk be an arbitrary set of random
variables and let Xk be some function of Z1, . . . , Zk satisfying, for each i ∈ {1, . . . , k}, there is a ci with

|E[Xk|Z1, . . . , Zi]− E[Xk|Z1, . . . , Zi−1]| ≤ ci.

Then,
Pr[Xk > E[Xk] + t] ≤ exp(−t2/2

∑
i
c2
i ).
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Lemma 5 Drawing k numbers without replacement from a set of n numbers with magnitude at most xmax,
let Zi represent the ith number drawn and Xi =

∑
j≤i Zj . Then,

E[Xk|Z1, . . . , Zi]− E[Xk|Z1, . . . Zi−1] ≤ xmax.

Proof: Let x1, . . . , xn represent the n numbers with sum xsum =
∑

i xi. Picking k of n numbers has
expected sum E[Xk] = k

nxsum. For j ≤ i,

E[Xk|Z1, . . . , Zj ] = E[Xi|Z1, . . . , Zj ] + E[Xk −Xi|Z1, . . . , Zj ]

To calculate the last term above, notice that Xk −Xi given Z1, . . . , Zj is the sum of k− i numbers selected
from n− i numbers with total sum xsum − E[Xi|Z1, . . . , Zj ]. Thus,

E[Xk|Z1, . . . , Zj ] = E[Xi|Z1, . . . , Zj ] + k−i
n−i (xsum − E[Xi|Z1, . . . , Zj ])

= n−k
n−i E[Xi|Z1, . . . , Zj ] + k−i

n−ixsum. (6)

Renumber the objects x1, . . . , xk in the order they are drawn, thus, for j ≤ i, E[Zj |Z1, . . . , Zi] = xj . Note
that E[Xi|Z1, . . . , Zi−1] = E[Zi|Z1, . . . , Zi−1] + E[Xi−1|Z1, . . . , Zi−1]. Using this fact and equation (6)
substituting j = i− 1 and j = i and subtracting, we have,

|E[Xk|Z1, . . . , Zi]− E[Xk|Z1, . . . , Zi−1]| = n−k
n−i |E[Xi|Z1, . . . , Zi]− E[Xi|Z1, . . . , Zi−1]|

= n−k
n−i |xi − E[Zi|Z1, . . . , Zi−1]|

≤ xmax.

2

The proof of Theorem 9 follows from Theorem 10 and Lemma 5 by plugging in ci = xmax.
Proof: (of Theorem 9) Recall that E[Xk] = k

nxsum = kxavg. Using Theorem 10 with t = εE[Xk],
ci = xmax, we get that the failure probability

Pr[Xk > (1 + ε)E[Xk]] ≤ exp(−ε2k2x2
avg/2x2

maxk)

≤ exp(−ε2(
xavg

xmax
)2

k

2
)

2
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