
A Formal Model for A System’s Attack Surface

Pratyusa K. Manadhata Dilsun K. Kaynar
Jeannette M. Wing

July 2007
CMU-CS-07-144

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Practical software security metrics and measurements are essential to the development of secure
software [18]. In this paper, we propose to use a software system’s attack surface measurement as
an indicator of the system’s security; the larger the attack surface, the more insecure the system.
We formalize the notion of a system’s attack surface using an I/O automata model of the system
[15] and define a quantitative measure of the attack surface in terms of three kinds of resources
used in attacks on the system: methods, channels, and data. We demonstrate the feasibility of our
approach by measuring the attack surfaces of two open source FTP daemons and two IMAP servers.
Software developers can use our attack surface measurement method in the software development
process and software consumers can use the method in their decision making process.

This research was sponsored by the US Army Research Office (ARO) under contract no. DAAD190210389, SAP
Labs, LLC under award no. 1010751, and the Software Engineering Institute. The views and conclusions contained
in this document are those of the author and should not be interpreted as representing the official policies, either
expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: Attack Surface, Attack Surface Metric, Damage Potential-Effort Ratio

1 Introduction

The importance of developing secure software is steadily increasing with the growing dependence
on software in day-to-day life. Software industry has responded to the demands for improvement in
software security by increasing effort to create more secure software (e.g., Microsoft’s Trustworthy
Computing Initiative). How can software industry determine if the effort is paying off and how
can software consumers determine if industry’s effort has made a difference? Security metrics and
measurements are desirable to gauge progress with respect to security [5, 18, 25]; software developers
can use metrics to quantify the improvement in security from one version of their software to
another and software consumers can use metrics to compare alternative software that provide same
functionality.

Michael Howard of Microsoft informally introduced the notion of a software system’s attack
surface measurement as an indicator of the system’s security [12]. Howard, Pincus, and Wing mea-
sured the attack surfaces of seven versions of the Windows operating system [14] and Manadhata
and Wing measured the attack surfaces of four versions of Linux [16]. The Windows and Linux
measurement results showed that a system’s attack surface measurement is an indicator of a sys-
tem’s perceived security and the notion of attack surface is applicable to large real world systems.
Howard’s measurement method, however, relies on an expert’s deep understanding of a software
system’s features and past attacks on the system using these features (e.g., Open ports and services
are features of Windows often used in attacks on Windows). Thus, we seek a systematic attack
surface measurement method that does not require expert knowledge of a system and hence is easily
applicable to a diverse range of systems. A first step toward such a method is the formalization of
a system’s attack surface. In this paper, our high level contributions are a formal definition of a
system’s attack surface and a systematic attack surface measurement method based on the formal
definition.

More specifically, a system’s attack surface is the set of ways in which an adversary can attack
the system and potentially cause damage. We know from the past that many attacks such as buffer
overflow attacks and symlink attacks require an attacker to connect to a system using the system’s
channels (e.g., sockets and pipes), invoke the system’s methods (e.g., API), and send data items
(e.g., input strings, URLs, and files) into the system or receive data items from the system. Hence
we define a system’s attack surface in terms of the system’s methods, channels, and data items
(henceforth collectively referred to as the system’s resources). Not all resources, however, contribute
equally to the attack surface; a resource’s contribution depends on the the likelihood of the resource
being used in attacks. For example, a method running with root privilege is more likely to be used
in attacks than a method running with non-root privilege and hence makes a larger contribution.
We measure a system’s attack surface as the total contribution of the system’s resources along
three dimensions: methods, channels, and data. A system’s attack surface measurement does not
represent code quality; the measurement represents the system’s “exposure” to attacks. A large
attack surface measurement does not imply that a system has many vulnerabilities; instead, a
larger attack surface measurement indicates that an attacker is likely to exploit the vulnerabilities
present in the system with less effort and cause more damage to the system. Since a system’s code
is likely to contain vulnerabilities, a smaller attack surface mitigates the risk associated with the
exploitation of the vulnerabilities.

We make the following technical contributions in this paper.

1. We introduce the entry point and exit point framework based on an I/O automata model of

1

a system and define the system’s attack surface in terms of the framework.
2. We formally establish that with respect to the same attacker, a larger attack surface of a

system leads to a larger number of potential attacks on the system.
3. We introduce the notions of damage potential and effort to estimate a resource’s contribution

to the measure of a system’s attack surface and define a qualitative and a quantitative measure
of the attack surface.

4. We show that our quantitative attack surface measurement method is analogous to risk mod-
eling.

The rest of the paper is organized as follows. In Section 2, we discuss Howard’s informal mea-
surement method. In Section 3, we introduce the entry point and exit point framework culminating
in a definition of the attack surface. We introduce the notions of damage potential and effort in
Section 4 and define a quantitative measure of the attack surface in Section 5. In Section 6, we
briefly describe the results of measuring the attack surfaces of two FTP daemons and two IMAP
servers. We compare our approach to related work in Section 7 and conclude with a discussion of
future work in Section 8.

2 Background and Motivation

Our work on attack surface is inspired by Howard, Pincus, and Wing’s Relative Attack Surface
Quotient (RASQ) measurements of Windows. Their measurement method involved two key steps:
(1) identifying a set of attack vectors, i.e., the features of Windows often used in attacks on Windows
(e.g., services running as SYSTEM) and (2) assigning weights to the attack vectors to reflect their
attackability, i.e., the likelihood of a resource being used in attacks on Windows. A system’s RASQ
measurement is then the sum of the weights assigned to the attack vectors. Howard et al. used the
history of attacks on Windows to identify 20 attack vectors and assign weights to them.

We later generalized Howard et al.’s method in our Linux measurements. We defined a system’s
attack classes in terms of the system’s actions that are externally visible to its users and the system’s
resources that each action accesses or modifies. To enumerate all system actions and resources of
Linux, however, is impractical; hence we again used the history of attacks on Linux to identify 14
attack classes. We had no basis to assign weights to the attack classes; hence we used the number
of instances of each attack class as the measure of a system’s attack surface.

The results of both the Linux and Windows measurements confirmed perceived beliefs about
the relative security of the different versions and hence showed that the attack surface notion
held promise. For example, the Windows measurement results showed that Windows Server 2003
has a smaller attack surface compared to Windows XP and Windows 2000; similarly, the Linux
measurement results showed that Debian 3.0 has a smaller attack surface compared to Red Hat 9.0.
The measurement methods, however, was ad-hoc and did not include systematic ways to identify a
system’s attack vectors (classes) and assign weights to them. The methods relied on our intuition,
expert knowledge, and the past history of attacks on a system. Howard’s method was hard to
replicate in practice and we needed a systematic method that was applicable to a diverse range of
systems.

These preliminary results motivated our work on formalizing a system’s attack surface. We
use the entry point and exit point framework to identify the relevant resources that contribute to
a system’s attack surface; hence our measurement method entirely avoids the need to identify a

2

system’s attack vectors (classes). We also use the notions of damage potential and effort to estimate
the weights of each such resource instead of relying on the history of attacks. We demonstrate that
our method is widely applicable by measuring the attack surfaces of software applications such as
IMAP servers and FTP daemons.

3 I/O Automata Model

In this section, we introduce the entry point and exit point framework and use the framework to
define a system’s attack surface. Informally, entry points of a system are the ways through which
data “enters” into the system from its environment and exit points are the ways through which
data “exits” from the system to its environment. The entry points and exit points of a system act
as the basis for attacks on the system.

3.1 I/O Automaton

We model a system and the entities present in its environment as I/O automata [15]. We chose
I/O automata as our model for two reasons. First, our notion of entry points and exit points map
naturally to the input actions and output actions of an I/O automation. Second, the composition
property of I/O automata allows us to easily reason about the attack surface of a system in a given
environment.

An I/O automaton, A = 〈sig(A), states(A), start(A), steps(A)〉, is a four tuple consisting
of an action signature, sig(A), that partitions a set, acts(A), of actions into three disjoint sets,
in(A), out(A), and int(A), of input, output and internal actions, respectively, a set, states(A), of
states, a non-empty set, start(A) ⊆ states(A), of start states, and a transition relation, steps(A) ⊆
states(A) × acts(A) ×states(A). An I/O automaton’s environment generates input and transmits
the input to the automaton using input actions. In contrast, the automaton generates output
actions and internal actions autonomously and transmits output to its environment. Our model
does not require an I/O automation to be input-enabled, i.e., unlike a standard I/O automation,
input actions are not always enabled in our model. Instead, we assume that every action of an
automaton is enabled in at least one state of the automaton. Notice that the composition property
of the I/O automaton still holds in our model. We construct an I/O automaton modeling a
complex system by composing the I/O automata modeling simpler components of the system. The
composition of a set of I/O automata results in an I/O automaton.

3.2 Model

Consider a set, S, of systems, a user, U , and a data store, D. For a given system, s ∈ S, we define its
environment, Es = 〈U, D, T 〉, to be a three-tuple where T = S \{s} is the set of systems excluding
s. The system s interacts with its environment Es, hence we define the entry points and exit points
of s with respect to Es. Figure 1 shows a system, s, and its environment, Es = 〈U, D, {s1, s2, }〉.
For example, s is a web server and s1 and s2 are an application server and a directory server,
respectively. We give an overview of our formal model in the following paragraphs.

We model every system s ∈ S as an I/O automaton, 〈sig(s), states(s), start(s), steps(s)〉. We
model the methods in the codebase of the system s as actions of the I/O automaton. We specify
the actions using pre and post conditions: for an action, m, m.pre and m.post are the pre and post
conditions of m, respectively. A state, s ∈ states(s), of s is a mapping of the state variables to

3

Figure 1: A system, s and its environment, Es.

their values: s: V ar → V al. An action’s pre and post conditions are first order predicates on the
state variables. A state transition, 〈s, m, s′〉 ∈ steps(s), is the invocation of an action m in state s
resulting in state s′. An execution of s is an alternating sequence of actions and states beginning
with a start state and a schedule of an execution is a subsequence of the execution consisting only
of the actions appearing in the execution.

Every system has a set of communication channels. The channels of a system s are the means
by which the user U or any system s1 ∈ T communicates with s. Specific examples of channels
are TCP/UDP sockets and named pipes. We model each channel of a system as a special state
variable of the system.

We also model the user U and the data store D as I/O automata. The user U and the data
store D are global with respect to the systems in S. For simplicity, we assume only one user U
present in the environment. U represents the adversary who attacks the systems in S.

We model the data store D as a separate entity to allow sharing of data among the systems
in S. The data store D is a set of typed data items. Specific examples of data items are strings,
URLs, files, and cookies. For every data item d ∈ D, D has an output action, readd, and an input
action, writed. A system s or the user U reads d from the data store through the invocation of
readd and writes d to the data store through the invocation of writed. To model global sharing of
the data items, we add a state variable, d, to every system s ∈ S and the user U corresponding to
each data item d ∈ D. When s or U reads the data item d from the data store, the value of the
data item is stored in the state variable d. Similarly, when s or U writes the data item d to the
data store, the value of the state variable d is written to the data store.

3.3 Entry Points

The methods in a system’s codebase that receive data from the system’s environment are the
system’s entry points. A method of a system can receive data directly or indirectly from the
environment. A method, m, of a system, s, receives data items directly if either i. the user U
(Figure 2.a) or a system, s′, (Figure 2.b) in the environment invokes m and passes data items as
input to m, or ii. m reads data items from the data store (Figure 2.c), or iii. m invokes a method of
a system, s′, in the environment and receives data items as results returned (Figure 2.d). A method
is a direct entry point if it receives data items directly from the environment. Few examples of the
direct entry points of a web server are the methods in the API of the web server, the methods of
the web server that read configuration files, and the methods of the web server that invoke the API
of an application server.

In the I/O automata model, a system, s, can receive data from the environment if s has an
input action, m, and an entity in the environment has a same-named output action, m. When the

4

Figure 2: Direct Entry Point.
Figure 3: Indirect Entry Point.

entity performs the output action m, s performs the input action m and data is transmitted from
the entity to s. We formalize the scenarios when a system, s′ ∈ T , invokes m (Figure 2.b) or when
m invokes a method of s′ (Figure 2.d) the same way, i.e., s has an input action, m, and s′ has an
output action, m.

Definition 1. A direct entry point of the system s is an input action, m, of s such that either i.
the user U has the output action m (Figure 2.a), or ii. a system, s′ ∈ T , has the output action m
(Figure 2.b and Figure 2.d), or iii. the data store D has the output action m (Figure 2.c).

A method, m, of s receives data items indirectly if either i. a method, m1, of s receives a data
item, d, directly, and either m1 passes d as input to m (Figure 3.a) or m receives d as result returned
from m1 (Figure 3.b), or ii. a method, m2, of s receives a data item, d, indirectly, and either m2

passes d as input to m (Figure 3.c) or m receives d as result returned from m2 (Figure 3.d). Note
that we use recursion in the definition. A method is an indirect entry point if it receives data items
indirectly from the environment. For example, a method in the API of the web server that receives
login information from a user might pass the information to another method in the authentication
module; the method in the authentication module is an indirect entry point.

In the I/O automata model, a system’s internal actions are not visible to other systems in the
environment. Hence we use a system’s internal actions to formalize the system’s indirect entry
points. We formalize data transmission using the pre and post conditions of a system’s actions. If
an input action, m, of a system, s, receives a data item, d, directly from the environment, then
the subsequent behavior of the system s depends on the value of d; hence d appears in the post
condition of m and we write d ∈ Res(m.post) where Res : predicate → 2V ar is a function such
that for each post condition (or pre condition), p, Res(p) is the set of resources appearing in p.
Similarly, if an action, m, of s receives a data item d from another action, m1, of s, then d appears
in the post condition of m1 and in the pre condition of m. Similar to the direct entry points, we
formalize the scenarios Figure 3.a and Figure 3.b the same way and the scenarios Figure 3.c and
Figure 3.d the same way. We define indirect entry points recursively.

Definition 2. An indirect entry point of the system s is an internal action, m, of s such that either
i. ∃ a direct entry point, m1, of s such that m1.post ⇒ m.pre and ∃ a data item, d, such that
d ∈ Res(m1.post)∧d ∈ Res(m.pre) (Figure 3.a and Figure 3.b), or ii. ∃ an indirect entry point, m2,
of s such that m2.post ⇒ m.pre and ∃ a data item, d, such that d ∈ Res(m2.post)∧d ∈ Res(m.pre)
(Figure 3.c and Figure 3.d).

The set of entry points of s is the union of the set of direct entry points and the set of indirect
entry points of s.

5

3.4 Exit Points

The methods of a system that send data to the system’s environment are the system’s exit points.
For example, a method that writes into a log file is an exit point. A method of a system can send
data directly or indirectly into the environment. A method, m, of a system, s, sends data items
directly if either i. the user U (Figure 4.a) or a system, s′, (Figure 4.b) in the environment invokes
m and receives data items as results returned from m, or ii. m writes data items to the data store
(Figure 4.c), or iii. m invokes a method of a system, s′, in the environment and passes data items
as input (Figure 4.d).

Figure 4: Direct Exit Point.
Figure 5: Indirect Exit Point.

In the I/O automata model, a system, s, can send data to the environment if s has an output
action, m, and an entity in the environment has a same-named input action, m. When s performs
the output action m, the entity performs the input action m and data is transmitted from s to the
entity.

Definition 3. A direct exit point of the system s is an output action, m, of s such that either i.
the user U has the input action m (Figure 4.a), or ii. a system, s′ ∈ T , has the input action m
(Figure 4.b and Figure 4.d) , or iii. the data store D has the input action m (Figure 4.c).

A method, m, of s sends data items indirectly to the environment if either i. m passes a data
item, d, as input to a direct exit point, m1 (Figure 5.a), or m1 receives a data item, d, as result
returned from m (Figure 5.b), and m1 sends d directly to the environment, or ii. m passes a data
item, d, as input to an indirect exit point, m2 (Figure 5.c), or m2 receives a data item, d, as result
returned from m (Figure 5.d), and m2 sends d indirectly to the environment. A method m of s is
an indirect exit point if m sends data items indirectly to the environment.

Similar to indirect entry points, we formalize indirect exit points of a system using the system’s
internal actions. If an output action, m, sends a data item, d, to the environment, then the
subsequent behavior of the environment depends on the value of d. Hence d appears in the pre
condition of m and in the post condition of the same-named input action m of an entity in the
environment. Note that we define indirect exit points recursively.

Definition 4. An indirect exit point of the system s is an internal action, m, of s such that either
i. ∃ a direct exit point, m1, of s such that m.post ⇒ m1.pre and ∃ a data item, d, such that
d ∈ Res(m.post)∧d ∈ Res(m1.pre) (Figure 5.a and Figure 5.b), or ii. ∃ an indirect exit point, m2,
of s such that m.post ⇒ m2.pre and ∃ a data item, d, such that d ∈ Res(m.post)∧d ∈ Res(m2.pre)
(Figure 5.c and Figure 5.d).

The set of exit points of s is the union of the set of direct exit points and the set of indirect
exit points of s.

6

3.5 Channels

An attacker uses a system’s channels to connect to the system and invoke a system’s methods. Hence
a system’s channels act as another basis for attacks on the system. An entity in the environment
can invoke a method, m, of a system, s, by using a channel, c, of s; hence in our I/O automata
model, c appears in the pre condition of a direct entry point (or exit point), m. Every channel of
s appears in the pre condition of at least one direct entry point (or exit point) of s.

3.6 Untrusted Data Items

The data store D is a collection of persistent and transient data items. The data items that are
visible to both a system, s, and the user U across different executions of s are the persistent data
items of s. Specific examples of persistent data items are files, cookies, database records, and
registry entries. The persistent data items are shared between s and U , hence U can use the
persistent data items to send (receive) data indirectly into (from) s. For example, s might read a
file from the data store after U writes the file to the data store. Hence the persistent data items
act as another basis for attacks on s. An untrusted data item of a system s is a persistent data item
d such that a direct entry point of s reads d from the data store or a direct exit point of s writes d
to the data store.

Definition 5. An untrusted data item of a system, s, is a persistent data item, d, such that either
i. ∃ a direct entry point, m, of s such that d ∈ Res(m.post), or ii. ∃ a direct exit point, m, of s
such that d ∈ Res(m.pre).

3.7 Attack Surface Definition

A system’s attack surface is the subset of the system’s resources that an attacker can use to attack
the system. An attacker can use a system’s entry points and exit points, channels, and untrusted
data items to either send (receive) data into (from) the system to attack the system. Hence the
set of entry points and exit points, the set of channels, and the set of untrusted data items are the
relevant subset of resources that are part of the attack surface.

Definition 6. Given a system, s, and its environment, Es, s’s attack surface is the triple, 〈M,C, I〉,
where M is the set of entry points and exit points, C is the set of channels, and I is the set of
untrusted data items of s.

Notice that we define s’s entry points and exit points, channels, and data items with respect to
the given environment Es. Hence s’s attack surface, 〈M,C, I〉, is with respect to the environment
Es. We compare the attack surfaces of two similar systems (i.e., different versions of the same
software or different software that provide similar functionality) along the methods, channels, and
data dimensions to determine if one has a larger attack surface than another.

Definition 7. Given an environment, EAB = 〈U, D, T 〉, the attack surface, 〈MA, CA, IA〉, of a
system, A, is larger than the attack surface, 〈MB, CB, IB〉, of a system, B iff either i. MA ⊃
MB ∧ CA ⊇ CB ∧ IA ⊇ IB, or ii. MA ⊇ MB ∧ CA ⊃ CB ∧ IA ⊇ IB, or iii. MA ⊇ MB ∧ CA ⊇
CB ∧ IA ⊃ IB.

Consider a system, A, and its environment, EA = 〈U, D, T 〉. We model the interaction of the
system A with the entities present in its environment as parallel composition, A||EA. Notice that

7

an attacker can send data into A by invoking A’s input actions and the attacker can receive data
from A when A executes its output actions. Since an attacker attacks a system either by sending
data into the system or by receiving data from the system, any schedule of the composition of A
and EA that contains an input action or an output action of A is a potential attack on A. We
denote the set of potential attacks on s as attacks(A). We show that with respect to the same
attacker and operating environment, if a system, A, has a larger attack surface compared to a
similar system, B, then the number of potential attacks on A is larger than B. Since A and B are
similar systems, we assume both A and B have the same set of state variables and the same sets
of resources except the ones appearing in the attack surfaces.

Definition 8. Given a system, s, and its environment, Es = 〈U, D, T 〉, a potential attack on s
is a schedule, β, of the composition, P = s ||U ||D || (||t∈T t), such that an input action (or output
action), m, of s appears in β.

Note that s’s schedules may contain internal actions, but in order for a schedule to be an attack,
the schedule must contain input actions or output actions.

Theorem 1. Given an environment, EAB = 〈U, D, T 〉, if the attack surface, 〈MA, CA, IA〉, of a
system, A, is larger than the attack surface, 〈MB, CB, IB〉, of a system, B, then everything else
being equal attacks(A) ⊃ attacks(B).

Proof. (Sketch)

• Case i: MA ⊃ MB ∧ CA ⊇ CB ∧ IA ⊇ IB

Without loss of generality, we assume that MA\MB = {m}. Consider the compositions
PA = A ||U ||D || (||t∈T t) and PB = B ||U ||D || (||t∈T t). Any method, m ∈ MB, that is
enabled in a state, sB, of B is also enabled in the corresponding state sA of A and for any
transition, 〈sB,m, s′B〉, of PB, there is a corresponding transition, 〈sA,m, s′A〉, of PA. Hence
for any schedule β ∈ attacks(B), β ∈ attacks(A) and attacks(A) ⊇ attacks(B).

– Case a: m is a direct entry point (or exit point) of A.
Since m is a direct entry point (or exit point), there is an output (or input) action m of
either U , D, or a system, t ∈ T . Hence there is at least one schedule, β, of PA containing
m. Moreover, β is not a schedule of PB as m /∈ MB. Since β is a potential attack on A,
β ∈ attacks(A) ∧ β /∈ attacks(B). Hence attacks(A) ⊃ attacks(B).

– Case b: m is an indirect entry point (or exit point) of A.
Since m is an indirect entry point (or exit point) of A, there is a direct entry point
(or exit point), mA, of A such that mA.post ⇒ m.pre (or m.post ⇒ mA.pre). Hence
there is at least one schedule, β, of PA such that m follows mA (or mA follows m) in β.
Moreover, β is not an schedule of PB as m /∈ MB. Since β is a potential attack on A,
β ∈ attacks(A) ∧ β /∈ attacks(B). Hence attacks(A) ⊃ attacks(B).

• Case ii: MA ⊇ MB ∧ CA ⊃ CB ∧ IA ⊇ IB

Without loss of generality, we assume that CA\CB = {c}. We know that c appears in
the pre condition of a direct entry point (or exit point), m ∈ MA. But c /∈ CB, hence
m is never enabled in any state of B and m /∈ MB. Hence MA ⊃ MB and from Case i,
attacks(A) ⊃ attacks(B).

• Case iii: MA ⊇ MB ∧ CA ⊇ CB ∧ IA ⊃ IB

The proof is similar to case ii.

8

Theorem 1 has practical significance in the software development process. The theorem shows
that if we create a newer version of a software system by adding more resources to an older version,
the newer version has a larger attack surface and hence a larger number of potential attacks. Hence
software developers should ideally strive towards reducing the attack surface of their software from
one version to another or if adding resources to the software (e.g., adding methods to an API),
then knowingly increase the attack surface.

4 Damage Potential and Effort

Not all resources contribute equally to the measure of a system’s attack surface because not all
resources are equally likely to be used by an attacker. A resource’s contribution to a system’s
attack surface depends on the resource’s damage potential, i.e., the level of harm the attacker can
cause to the system in using the resource in an attack and the effort the attacker spends to acquire
the necessary access rights in order to be able to use the resource in an attack. The higher the
damage potential or the lower the effort, the higher the contribution to the attack surface. In this
section, we use our I/O automata model to formalize the notions of damage potential and effort.
We model the damage potential and effort of a resource, r, of a system, s, as the state variables
r.dp and r.ef , respectively.

In practice, we estimate a resource’s damage potential and effort in terms of the resource’s
attributes. Examples of attributes are method privilege, access rights, channel protocol, and data
item type. We estimate a method’s damage potential in terms of the method’s privilege. An
attacker gains the same privilege as a method by using a method in an attack. For example, the
attacker gains root privilege by exploiting a buffer overflow in a method running as root. The
attacker can cause damage to the system after gaining root privilege. The attacker uses a system’s
channels to connect to a system and send (receive) data to (from) a system. A channel’s protocol
imposes restrictions on the data exchange allowed using the channel, e.g., a TCP socket allows raw
bytes to be exchanged whereas an RPC endpoint does not. Hence we estimate a channel’s damage
potential in terms of the channel’s protocol. The attacker uses persistent data items to send
(receive) data indirectly into (from) a system. A persistent data item’s type imposes restrictions
on the data exchange, e.g., a file can contain executable code whereas a registry entry can
not. The attacker can send executable code into the system by using a file in an attack, but the
attacker can not do the same using a registry entry. Hence we estimate a data item’s damage
potential in terms of the data item’s type. The attacker can use a resource in an attack if the
attacker has the required access rights. The attacker spends effort to acquire these access rights.
Hence for the three kinds of resources, i.e., method, channel, and data, we estimate the effort the
attacker needs to spend to use a resource in an attack in terms of the resource’s access rights.

We assume that we have a total ordering, �, among the values of each of the six attributes,
i.e., method privilege and access rights, channel protocol and access rights, and data item type
and access rights. In practice, we impose these total orderings using our knowledge of a system
and its environment. For example, an attacker can cause more damage to a system by using
a method running with root privilege than a method running with non-root privilege; hence
root � non-root. We use these total orderings to compare the contributions of resources to the
attack surface. Abusing notation, we write r1 � r2 to express that a resource, r1, makes a larger

9

contribution to the attack surface than a resource, r2.

Definition 9. Given two resources, r1 and r2, of a system, A, r1 � r2 iff either i. r1.dp �
r2.dp ∧ r2.ef � r1.ef , or ii. r1.dp = r2.dp ∧ r2.ef � r1.ef , or iii. r1.dp � r2.dp ∧ r2.ef = r1.ef .

4.1 Modeling Damage Potential and Effort

In our I/O automata model, we use an action’s pre and post conditions to formalize effort and
damage potential, respectively. We present a parametric definition of an action, m, of a system, s,
below. For simplicity, we assume that the entities in the environment connect to s using only one
channel, c, to invoke m and m either reads or writes only one data item, d.

m(MA, CA,DA,MB, CB,DB)
pre : Ppre ∧ MA � m.ef ∧ CA � c.ef ∧ DA � d.ef
post : Ppost ∧ MB � m.dp ∧ CB � c.dp ∧ DB � d.dp

The parameters MA, CA, and DA represent the method access rights, channel access rights,
and data access rights acquired by an attacker so far, respectively. Similarly, the parameters MB,
CB, and DB represent the benefit to the attacker in using the method m, the channel c, and the
data item d in an attack, respectively. Ppre is the part of m’s pre condition that does not involve
access rights. The clause, MA � m.ef , captures the condition that the attacker has the required
access rights to invoke m; the other two clauses in the pre condition are analogous. Similarly, Ppost

is the part of m’s post condition that does not involve benefit. The clause, MB � m.dp, captures
the condition that the attacker gets the expected benefit after the execution of m; the rest of the
clauses are analogous.

We use the total orderings � among the values of the attributes to define the notion of weaker
(and stronger) pre conditions and post conditions. We first introduce a predicate, 〈m1, c1, d1〉 �at

〈m2, c2, d2〉, to compare the values of an attribute, at ∈ {dp, ef}, of the two triples, 〈m1, c1, d1〉 and
〈m2, c2, d2〉. We later use the predicate to compare pre and post conditions.

Definition 10. Given two methods, m1 and m2, two channels, c1 and c2, two data items, d1 and
d2, and an attribute, at ∈ {dp, ef}, 〈m1, c1, d1〉 �at 〈m2, c2, d2〉 iff either i. m1.at � m2.at ∧
c1.at � c2.at ∧ d1.at � d2.at, or ii. m1.at � m2.at ∧ c1.at � c2.at ∧ d1.at � d2.at or iii.
m1.at � m2.at ∧ c1.at � c2.at ∧ d1.at � d2.at.

Consider two methods, m1 and m2. We say that m1 has a weaker pre condition than m2 iff
m2.pre ⇒ m1.pre. Notice that if m1 has a lower access rights level than m2, i.e., m2.ef � m1.ef ,
then ∀MA.((MA � m2.ef) ⇒ (MA � m1.ef)); the rest of the clauses in the pre conditions are
analogous. Hence we define the notion of weaker pre condition as follows.

Definition 11. Given the pre condition, m1.pre =(Ppre ∧ MA � m1.ef ∧CA � c1.ef ∧DA �
d1.ef), of a method, m1, and the pre condition, m2.pre = (Ppre ∧MA � m2.ef ∧ CA � c2.ef ∧DA
� d2.ef), of a method, m2, m2.pre ⇒ m1.pre if 〈m2, c2, d2〉 �ef 〈m1, c1, d1〉.

We say that m1 has a weaker post condition than m2 iff m1.post ⇒ m2.post.

Definition 12. Given the post condition, m1.post =(Ppost ∧ MB � m1.dp∧CB � c1.dp ∧ DB �
d1.dp), of a method, m1 and the post condition, m2.post =(Ppost ∧MB �m2.dp ∧CB � c2.dp∧DB
� d2.dp), of a method, m2, m1.post ⇒ m2.post if 〈m1, c1, d1〉 �dp 〈m2, c2, d2〉.

10

4.2 Attack Surface Measurement

Given two systems, A and B, if A has a larger attack surface than B (Definition 7), then everything
else being equal, it is easy to see that A has a larger attack surface measurement than B. It is also
possible that even though A and B both have the same attack surface, if a resource, rA, belonging
to A’a attack surface makes a larger contribution than the same-named resource, rB, belonging
to B’s attack surface, then everything else being equal A has a larger attack surface measurement
than B. Given the attack surface, 〈MA, CA, IA〉, of a system, A, we denote the set of resources
belonging to A’s attack surface as RA = MA ∪ CA ∪ IA.

Definition 13. Given an environment, EAB = 〈U, D, T 〉, the attack surface, 〈MA, CA, IA〉, of
a system, A, and the attack surface, 〈MB, CB, IB〉, of a system, B, A has a larger attack surface
measurement than B iff either

1. A has a larger attack surface than B and everything else being equal, there is a set, R ⊆
RA ∩RB, of resources such that ∀r ∈ R.rA � rB, or

2. MA = MB ∧ CA = CB ∧ IA = IB and everything else being equal, there is a nonempty set,
R ⊆ RA ∩RB, of resources such that ∀r ∈ R.rA � rB.

We show that with respect to the same attacker and operating environment, if a system, A,
has a larger attack surface measurement compared to a system, B, then the number of potential
attacks on A is larger than B.

Theorem 2. Given an environment, EAB = 〈U, D, T 〉, if the attack surface of a system A is the
triple 〈MA, CA, IA〉, the attack surface of of a system, B, is the triple 〈MB,CB,IB〉, and A has a
larger attack surface measurement than B, then attacks(A) ⊇ attacks(B).

Proof. (Sketch)

• Case 1: This is a corollary of Theorem 1.
• Case 2: MA = MB ∧ CA = CB ∧ IA = IB

Without loss of generality, we assume that R = {r} and rA � rB.

Case i: rB.ef � rA.ef ∧ rA.dp � rB.dp
From definitions 11 and 12, there is an action, mA ∈ MA, that has a weaker precondition and
a stronger post condition than the same-named action, mB ∈ MB, i.e.,

(mB.pre ⇒ mA.pre) ∧ (mA.post ⇒ mB.post). (1)

Notice that any schedule of the composition PB (as defined in the proof sketch of Theorem 1)
that does not contain mB is also a schedule of the composition PA. Now consider a schedule,
β, of PB that contains mB and the following sequence of actions that appear in β:..m1mBm2...
Hence,

(m1.post ⇒ mB.pre) ∧ (mB.post ⇒ m2.pre). (2)

From equations (1) and (2), (m1.post ⇒ mB.pre ⇒ mA.pre)∧ (mA.post ⇒ mB.post ⇒
m2.pre). Hence, (m1.post ⇒ mA.pre)∧ (mA.post ⇒ m2.pre).

That is, we can replace the occurrences of mB in β with mA. Hence β is also a schedule of
the composition PA and attacks(A) ⊇ attacks(B).

Case ii and Case iii: The proof is similar to Case i.

11

Theorem 2 also has practical significance in the software development process. The theorem
shows that if software developers modify the values of a resource’s attributes and hence modify
the resource’s damage potential and effort in the newer version of their software, then the attack
surface measurement becomes larger and the number of potential attacks on the software increases.

5 A Quantitative Metric

In the previous section, we introduced a qualitative measure of a system’s attack surface (Definition
13). The qualitative measure is an ordinal scale [8]; given two systems, we can only determine if one
system has a larger attack surface measurement than another. We, however, need a quantitative
measure to determine how much larger one system’s attack surface measurement is than another. In
this section, we introduce a quantitative measure of the attack surface; the measure is a ratio scale.
We quantify a resource’s contribution to the attack surface in terms of a damage potential-effort
ratio.

5.1 Damage Potential-Effort Ratio

In the previous section, we consider a resource’s damage potential and effort in isolation while
estimating the resource’s contribution to the attack surface. From an attacker’s point of view,
however, damage potential and effort are related; if the attacker gains higher privilege by using
a method in an attack, then the attacker also gains the access rights of a larger set of methods.
For example, the attacker can access only the methods with authenticated user access rights by
gaining authenticated privilege, whereas the attacker can access methods with authenticated
user and root access rights by gaining root privilege. The attacker is willing to spend more effort
to gain a higher privilege level that enables the attacker to cause damage as well as gain more
access rights. Hence we consider a resource’s damage potential and effort in tandem and quantify
a resource’s contribution to the attack surface as a damage potential-effort ratio. The damage
potential-effort ratio is similar to a cost-benefit ratio; the damage potential is the benefit to the
attacker in using a resource in an attack and the effort is the cost to the attacker in using the
resource.

We assume a function, derm: method → Q, that maps each method to its damage potential-
effort ratio belonging to the set, Q, of rational numbers. Similarly, we assume a function, derc:
channel → Q, for the channels and a function, derd: data item → Q, for the data items. In practice,
however, we compute a resource’s damage potential-effort ratio by assigning numeric values to the
resource’s attributes. For example, we compute a method’s damage potential-effort ratio from the
numeric values assigned to the method’s privilege and access rights. We assign the numeric values
based on our knowledge of a system and its environment; we discuss a specific method of assigning
numeric values in Section 6.1.

In terms of our formal I/O automata model, the damage potential of a method, m, determines
how strong the post condition of m is. m’s damage potential determines the potential number
of methods that m can call and hence the potential number of methods that can follow m in a
schedule. The higher the damage potential, the larger the number of methods that can follow m.
Similarly, m’s effort determines the potential number of methods that m can follow in a schedule.
The lower the effort, the larger the number of methods that m can follow. Hence the damage

12

potential-effort ratio, derm(m), of m determines the potential number of schedules in which m can
appear. Given two methods, m1 and m2, if derm(m1) > derm(m2) then m1 can potentially appear
in more schedules (and hence more potential attacks) than m2. Similarly, if a channel, c, (or a data
item, d) appears in the pre condition of a method, m, then the damage potential-effort ratio of c
(or d) determines the potential number of schedules in which m can appear. Hence we estimate a
resource’s contribution to the attack surface as the resource’s damage potential-effort ratio.

5.2 Quantitative Attack Surface Measurement

We quantify a system’s attack surface measurement along three dimensions: methods, channels,
and data.

Definition 14. Given the attack surface, 〈M,C, I〉, of a system, A, the attack surface measurement
of A is the triple 〈

∑
m∈M derm(m),

∑
c∈C derc(c),

∑
d∈I derd(d)〉.

Our attack surface measurement method is analogous to the risk estimation method used in risk
modeling [11]. A system’s attack surface measurement is an indication of the system’s risk from at-
tacks on the system. In risk modeling, the risk associated with a set, E, of events is

∑
e∈E p(e).C(e)

where p(e) is the probability of occurrence of an event, e, and C(e) is the consequences of e. The
events in risk modeling are analogous to a system’s resources in our measurement method. The
probability of occurrence of an event is analogous to the probability of a successful attack on the
system using a resource; if the attack is not successful, then the attacker does not benefit from the
attack. For example, a buffer overrun attack using a method, m, will be successful only if m has
an exploitable buffer overrun vulnerability. Hence the probability, p(m), associated with a method,
m, is the probability that m has an exploitable vulnerability. Similarly, the probability, p(c), as-
sociated with a channel, c, is the probability that the method that receives (or sends) data from
(to) c has an exploitable vulnerability and the probability, p(d), associated with a data item, d, is
the probability that the method that reads or writes d has an exploitable vulnerability. The con-
sequence of an event is analogous to a resource’s damage potential-effort ratio. The pay-off to the
attacker in using a resource in an attack is proportional to the resource’s damage potential-effort
ratio; hence the damage potential-effort ratio is the consequence of a resource being used in an
attack. The risk along the three dimensions of the system A is the triple, 〈

∑
m∈M p(m).derm(m),∑

c∈C p(c).derc(c),
∑

d∈I p(d). derd(d)〉, which is also the measure of A’s attack surface.
In practice, however, it is difficult to predict defects in software [7] and to estimate the likelihood

of vulnerabilities in software [9]. Hence we take a conservative approach in our attack surface mea-
surement method and assume that p(m) = 1 for all methods, i.e., every method has an exploitable
vulnerability. We assume that even if a method does not have a known vulnerability now, it might
have a future vulnerability not discovered so far. We similarly assume that p(c) = 1 (p(d) = 1)
for all channels (data items). With our conservative approach, the measure of a system’s attack
surface is the triple 〈

∑
m∈M derm(m),

∑
c∈C derc(c),

∑
d∈I derd(d)〉.

Given two similar systems, A and B, we compare their attack surface measurements along
each of the three dimensions to determine if one system is more secure than another along that
dimension. There is, however, a seeming contradiction of our measurement method with our
intuitive notion of security. For example, consider a system, A, that has a 1000 entry points each
with a damage potential-effort ratio of 1 and a system, B, that has only one entry point with
a damage potential-effort ratio of 999. A has a larger attack surface measurement whereas A is
intuitively more secure. This contradiction is due to the presence of extreme events, i.e., events

13

that have a significantly higher consequence compared to other events [11]. An entry point with a
damage potential-effort ratio of 999 is analogous to an extreme event. In the presence of extreme
events, the shortcomings of the risk estimation method used in the previous paragraph is well
understood and the partitioned multiobjective risk method is recommended [2]. In our attack
surface measurement method, however, we compare the attack surface measurements of similar
systems, i.e., systems with comparable sets of resources and comparable damage potential-effort
ratios of the resources; hence we do not expect extreme events such as the example shown to arise.

6 Empirical Results

In this section, we demonstrate the feasibility of our measurement method by measuring the attack
surfaces of real world systems. We also briefly discuss techniques to validate our measurement
method.

6.1 Attack Surface Measurement Results

We have measured the attack surfaces of two open source File Transfer Protocol (FTP) daemons
that run on the Linux platform: ProFTPD 1.2.10 and Wu-FTPD 2.6.2 [17]. The ProFTP codebase
contains 28K lines of C code [20] and the Wu-FTP codebase contains 26K lines of C code [10]; we
only considered code specific to the FTP daemon.

As proposed by DaCosta et al. [6], we assume that a method of a system can either receive data
from or send data to the system’s environment by invoking specific C library methods (e.g., read
and fwrite). We identified a set, Input (Output), of C library methods that a method must invoke
to receive (send) data items from (to) the environment. From the call graphs of both codebases,
we identified the methods that contained a call to a method in Input (Output) as the direct entry
points (exit points). We could not find a source code analysis tool that enables us to identify
indirect entry points or indirect exit points. We determined the privilege and access rights levels
of the methods by locating the uid-setting system calls and the user authentication functions in
the codebase, respectively. Statically determining the channels opened by a system and the data
items accessed by the system is difficult. Hence we monitored the run time behavior of the default
installations of the FTP daemons to determine the open channels and the protocol and access
rights level of each such channel. Similarly, we identified the untrusted data items and the type
and access rights of each such data item by runtime monitoring.

To compute a resource’s damage potential-effort ratio, we imposed total orderings among the
values of the six attributes and assigned numeric values in accordance to the total orderings. For
example, we assumed that the attacker can cause more damage to a system with root privilege
than authenticated user privilege; hence root � authenticated in our total ordering and we
assigned a higher number to root than authenticated. The numeric values were on a ratio scale
and reflected the relative damage an attacker can cause to a system with different privilege levels;
we assigned numeric values based on our knowledge of the FTP daemons and UNIX security.
Similarly, we imposed total orderings among the access rights levels using our knowledge of UNIX
security and assigned numeric values according to the total orderings. Both FTP daemons opened
only TCP sockets and accessed data items of only file type; hence assigning numeric values to
channel protocols and data item types was trivial. We then estimated the total contribution of the
methods, channels, and data items of both FTP daemons. We show the results in Figure 6.

14

Figure 6: FTP Measurements. Figure 7: IMAP Measurements.

The measure of ProFTPD’s attack surface is the triple 〈312.99, 1.00, 18.90〉 and the measure of
Wu-FTPD’s attack surface is the triple 〈392.33, 1.00, 17.60〉. The attack surface measurements tell
us that ProFTPD is more secure along the method dimension, ProFTPD is as secure as Wu-FTPD
along the channel dimension, and Wu-FTPD is more secure along the data dimension. In order to
choose one FTP daemon over another, we use our knowledge of the FTP daemons and the operating
environment to decide which dimension of the attack surface presents more risk, and choose the
FTP daemon that is more secure along that dimension. For example, if we are concerned about
privilege elevation on the host running the FTP daemon, then the method dimension presents
more risk, and we choose ProFTPD over Wu-FTPD. If we are concerned about the number of open
channels on the host running the FTP daemon, then the channel dimension presents more risk,
and we may choose either of the daemons. If we are concerned about the safety of files stored on
the FTP server, then the data dimension presents more risk, and we choose Wu-FTPD.

We also have measured the attack surfaces of two open source Internet Message Access Protocol
(IMAP) servers: Courier-IMAP 4.0.1 and Cyrus 2.2.10. The Courier and Cyrus code bases contain
33K and 34K lines of C code specific to the IMAP daemon, respectively. The Courier IMAP dae-
mon’s attack surface measurement is the triple 〈522.00, 2.25, 72.13〉 and the Cyrus IMAP daemon’s
attack surface measurement is the triple 〈383.60, 3.25, 66.50〉. We show the results in Figure 7.

6.2 Validation

A key challenge in security metric research is the validation of the metric. We take a two-fold
approach to validate the steps in our measurement method. We conducted an expert survey to
validate the steps in our method [24].

Linux system administrators are potential users of our measurement method; hence we chose
20 experienced administrators from 10 universities, 4 corporates, and 1 government agency as the
subjects of the study. The survey results show that a majority of the subjects agree with our choice
of methods, channels, and data as the dimensions of the attack surface and our choice of the damage
potential-effort ratio as an indicator of a resource’s likelihood of being used in attacks. A majority
of the participants also agreed that a method’s privilege is an indicator of damage potential and a
resource’s access rights is an indicator of attacker effort. The survey results for protocols and data
item types, however, were not statistically significant. Hence we could not conclude that channel
protocols and data item types are indicators of damage potential.

We also statistically analyzed the data collected from Microsoft Security Bulletins to validate
our choice of the six attributes as indicators of damage potential and effort. Each Microsoft Security
Bulletin describes an exploitable vulnerability in Microsoft software and assigns a severity rating to

15

the vulnerability. The ratings are assigned based on the impact of the exploitation on the software’s
users and the difficulty of exploitation [3]. In our attack surface measurement method, the impact
on the users is directly proportional to damage potential and difficulty of exploitation is directly
proportional to effort. Hence we expect an indicator of damage potential to be an indicator of the
severity rating and to be positively correlated with the severity rating. Similarly, we expect an
indicator of effort to be an indicator of the severity rating and to be negatively correlated with the
severity rating. We collected data from 110 bulletins published over a period of two years from
January 2004 to February 2006. The results of our analysis using Ordered Logistic Regression and
two sided z-tests [27] show that the six attributes are indicators of the severity rating and positively
or negatively correlated with the rating as expected. Hence we conclude that the six attributes are
indicators of damage potential and effort.

While we validated the steps in our measurement method, we did not validate specific mea-
surement results (e.g., the FTP measurement results). As part of future work, we plan to validate
a system’s attack surface measurement by correlating the measurement with real attacks on the
system. There is, however, anecdotal evidence suggesting the effectiveness of our metric in assessing
relative security of software. Our attack surface measurements show that ProFTPD is more secure
than Wu-FTPD along the method dimension. The project goals mentioned on the ProFTPD web-
site validate our measurements [21]. ProFTPD was designed and implemented from the ground up
to be a secure and configurable FTP server compared to Wu-FTPD.

7 Related Work

Our attack surface measurement method differs from prior work on quantitative assessment of
security in two key aspects. First, previous work assumes the knowledge of past and current
vulnerabilities present in a system to assess the security of a system [1, 26, 19, 22]. Our measurement
is independent of any vulnerabilities present in the system and is based on a system’s inherent
attributes. Our identification of all entry points and exit points encompasses all past and current
vulnerabilities as well as future vulnerabilities not yet discovered or exploited. Second, while prior
work makes assumptions about attacker capabilities and behavior to assess a system’s security
[19, 22], our measurement is based on a system’s design and is independent of the attacker’s
capabilities and behavior.

Alves-Foss et al. use the System Vulnerability Index (SVI) as a measure of a system’s vulnera-
bility to common intrusion methods [1]. A system’s SVI is obtained by evaluating factors grouped
into three problem areas: system characteristics, potentially neglectful acts, and potentially malev-
olent acts. They, however, identify only the relevant factors of operating systems; their focus is
on operating systems and not individual software applications such as FTP daemons and IMAP
servers.

Voas et al. propose a minimum-time-to-intrusion (MTTI) metric based on the predicted period
of time before any simulated intrusion can take place [26]. The MTTI value, however, depends
on the threat classes simulated and the intrusion classes observed. In contrast, the attack surface
measurement does not depend on any threat class. Moreover, the MTTI computation requires the
knowledge of system vulnerabilities.

Ortalo et al. model a system’s known vulnerabilities as attack state graphs and analyze the
attack state graphs using Markov techniques to estimate the effort an attacker might spend to
exploit the vulnerabilities; the estimated effort is a measure of the system’s security [19]. Their

16

technique, however, requires the knowledge of the vulnerabilities present in the system and the
attacker’s behavior.

Schneier uses attack trees to model the different ways in which a system can be attacked and
to determine the cost to the attacker in the attacks [22]. Given an attacker goal, the estimated
cost is a measure of the system’s security. Construction of an attack tree, however, requires the
knowledge of system vulnerabilities, possible attacker goals, and the attacker behavior.

8 Summary and Future Work

In this paper, we have formalized the notion of a system’s attack surface and introduced a systematic
method to quantitatively measure a system’s attack surface. Our results are significant in practice;
Mu Security’s Mu-4000 Security Analyzer uses parts of the attack surface framework for security
analysis [23]. Attack surface measurement is also used in a regular basis as part of Microsoft’s
Security Development Lifecycle [13].

In the future, we plan to extend our work in three directions. First, we are collaborating with
SAP to apply our measurement method to an industrial-sized software system [4]. Second, we plan
to extend our entry point and exit point framework to formalize the attack surface of a system of
systems (e.g., the set of software applications running on a host, a network comprising of a number
of hosts, and a set of web services). Third, we plan to explore the feasibility of using attack surface
measurements to provide guidelines for “safe” software composition. We consider a composition of
two system, A and B, to be safe iff the attack surface measurement of the composition is not greater
than the sum of the attack surface measurements of A and B. We plan to identify conditions under
which the composition of two given systems is safe.

References

[1] J. Alves-Foss and S. Barbosa. Assessing computer security vulnerability. ACM SIGOPS
Operating Systems Review, 29(3):3–13, 1995.

[2] E. Asbeck and Y. Y. Haimes. The partitioned multiobjective risk method. Large Scale Systems,
6(1):13–38, 1984.

[3] Microsoft Corporation. Microsoft security response center security bulletin severity rating
system. http://www.microsoft.com/technet/security/bulletin/rating.mspx.

[4] SAP Corporation. SAP - business software solutions applications and services. http://www.
sap.com/.

[5] Computing Research Association (CRA). Four grand challenges in trustworthy computing.
http://www.cra.org/reports/trustworthy.computing.pdf, November 2003.

[6] D. DaCosta, C. Dahn, S. Mancoridis, and V. Prevelakis. Characterizing the security vul-
nerability likelihood of software functions. In Proc. of International Conference on Software
Maintenance, 2003.

[7] N. E. Fenton and M. Neil. A critique of software defect prediction models. IEEE Transactions
on Software Engineering, 25(5), 1999.

17

[8] N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous and Practical Approach. PWS
Publishing Co., Boston, MA, USA, 1998.

[9] R. Gopalakrishna, E. Spafford, , and J. Vitek. Vulnerability likelihood: A probabilistic ap-
proach to software assurance. In CERIAS Tech Report 2005-06, 2005.

[10] The WU-FTPD Development Group. Wu-ftpd. http://www.wu-ftpd.org/.

[11] Y. Y. Haimes. Risk Modeling, Assessment, and Management. Wiley, 2004.

[12] M. Howard. Fending off future attacks by reducing attack surface. http://msdn.microsoft.
com/library/default.asp?url=/library/en-us/dncode%/html/secure02132003.asp,
2003.

[13] M. Howard and S. Lipner. The Security Development Lifecycle. Microsoft Press, 2006.

[14] M. Howard, J. Pincus, and J.M. Wing. Measuring relative attack surfaces. In Proc. of Work-
shop on Advanced Developments in Software and Systems Security, 2003.

[15] N. Lynch and M. Tuttle. An introduction to input/output automata. CWI-Quarterly, 2(3):219–
246, September 1989.

[16] P. Manadhata and J. M. Wing. Measuring a system’s attack surface. In Tech. Report CMU-
CS-04-102, 2004.

[17] P. K. Manadhata, J. M. Wing, M. A. Flynn, and M. A. McQueen. Measuring the attack
surfaces of two FTP daemons. In ACM CCS Workshop on Quality of Protection, October
2006.

[18] G. McGraw. From the ground up: The DIMACS software security workshop. IEEE Security
and Privacy, 1(2):59–66, 2003.

[19] R. Ortalo, Y. Deswarte, and M. Kaâniche. Experimenting with quantitative evaluation tools for
monitoring operational security. IEEE Transactions on Software Engineering, 25(5):633–650,
1999.

[20] The ProFTPD Project. The ProFTPD project home. http://www.proftpd.org/.

[21] The ProFTPD Project. Project goals. http://www.proftpd.org/goals.html.

[22] B. Schneier. Attack trees: Modeling security threats. Dr. Dobb’s Journal, 1999.

[23] Mu Security. What is a security analyzer. http://www.musecurity.com/solutions/
overview/security.html.

[24] W. R. Shadish, T. D. Cook, and D. T. Campbell. Experimental and Quasi-Experimental
Designs for Generalized Causal Inference. Houghton Mifflin Company, Boston, MA, 2001.

[25] R. B. Vaughn, R. R. Henning, and A. Siraj. Information assurance measures and metrics
- state of practice and proposed taxonomy. In Proc. of Hawaii International Conference on
System Sciences, 2003.

18

[26] J. Voas, A. Ghosh, G. McGraw, F. Charron, and K. Miller. Defining an adaptive software secu-
rity metric from a dynamic software failure tolerance measure. In Proc. of Annual Conference
on Computer Assurance, 1996.

[27] J. M. Wooldridge. Econometric Analysis of Cross Section and Panel Data. The MIT Press,
Cambridge, MA, USA, 2002.

19

