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Abstract

Learning Factors Analysis (LFA) has been proposed as a generic solution
to evaluate and compare cognitive models of learning [Cen et al., 2006]. By
performing a heuristic search over a space of cognitive models, the researcher
may evaluate different representations of a set of skills. This search, how-
ever, is computationally intractable for large datasets. We introduce a scalable
application of this framework in the context of transfer in reading and demon-
strate it upon Reading Tutor data. Using an assumption of a word-level model
of learning as a baseline, we apply LFA to determine whether a representation
that permits transfer at the level of word roots better reflects actual student
learning data. In addition, we demonstrate an approximation to LFA which
allows it to scale tractably to large datasets. We find that using a word root-
based model of learning leads to an improved model fit, suggesting students
make use of this information in their representation of words. We present
evidence based on both model fit and learning rate relationships that low pro-
ficiency students tend to exhibit a lesser degree of transfer through the word
root representation than higher proficiency students. Additionally, we pro-
vide insight into developing metrics designed to classify in advance whether
particular operations within LFA will exhibit transfer.
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Chapter 1

Introduction

1.1 Defining a Problem

The task of modeling student cognition is at best an attempt to approximate how students

mentally represent a given task. On one hand, the researcher can never know exactly how a

student internally represents a problem, since often the student might not be exactly aware

either. Approaches such as think aloud protocols have been proposed to capture such rep-

resentations, but are generally too expensive and time-consuming to use in anything but

limited studies [Newell and Simon, 1972]. However, a reasonably simple assumption can

be made in this respect: if we build two models and one of them is a better fit to natural

student learning data, we can say that it is a closer approximation to the student’s mental

representation. The challenge lies in specifying a good model. Even for simple, well-

defined tasks, the obvious representation may not always be the right one. Symbolization

in word problems, for example, has led to some counter-intuitive results concerning how
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easy certain mental representations are for students [Heffernan and Koedinger, 1998]. In

fact, prior research has provided evidence that the choice of a model and its basic knowl-

edge components is nontrivial. Determining the best choice of meaningful knowledge

components, however, remains beyond the scope of this paper [Croteau et al., 2004].

We cannot, however, simply decide that ‘modeling student cognition’ is our goal.

There are countless ways of approximating this cognition, and similarly many ways of

evaluating how effective the approximations are. Instead, we decided to instantiate the

problem with a more specific focus, by looking at our cognitive models in terms of cogni-

tive transfer.

Before explaining how to analyze transfer, or even recognize it, we must first provide

a baseline definition of transfer, after which we can design a methodology by which to

systematically recognize it, and apply it to our modeling. In one of the premier texts on

cognitive transfer [Singley and Anderson, 1989], the following definition is offered:

“The study of transfer is the study of how knowledge acquired in one situation applies

(or fails to apply) in other situations.”

While Singley and Anderson refer to transfer in terms of ‘tasks,’ this definition is

particularly relevant in terms of the basic knowledge components in a cognitive model.

Consider any two skills (or, equivalently, tasks) that a model attempts to represent. Unless

we believe that these skills have nothing in common, then it is possible that some sub-

set of their underlying knowledge components overlap. Thus, transfer from one of these

skills to the other can potentially be observed, if practice on the knowledge components

involved with one are sufficient to improve performance on the other skill, due to these
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commonalities.

1.2 Identifying Transfer within a Domain

While we have offered some basic insight into transfer in cognitive modeling, the practi-

cal application of this observation requires that such cognitive transfer be palpable. For-

tunately, the advent of computing and its uses in the advancement of education though

cognitive modeling brought about the introduction of intelligent tutoring systems (ITS),

which allow for a more data-driven approach to be taken. Within such a system, there will

generally be a single expert-developed model of how the student is expected to learn the

task at hand. Such a model could be as simple as prompting until the student makes a

proper response, or as complex as involving model tracing and knowledge tracing to try

and maintain an accurate concept of the student’s mental state [Koedinger and Anderson,

1997]. Either way, the data collected from such a tutor is a rich source of knowledge about

actual student cognitive models. This student performance data can then be used as an

attempt to identify the knowledge components underlying the skills tested in the cognitive

model.

We shall address the issue of recognizing transfer in a model in terms of our particular

instantiation of the transfer problem. Learning Factors Analysis (LFA) has been proposed

as a generic solution to evaluate and compare many potential cognitive models of learning

[Cen et al., 2006]. As input, LFA takes an initial statistical model of student representa-

tion, and a set of legal operators to transition from one model to another. By performing

a heuristic search over statistical models, the researcher may evaluate different cognitive
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representations of a set of skills. This framework offers the capability to compare differ-

ent representations quantitatively, in terms of the statistical model chosen. Through such

manipulation, we can check many hypotheses about what skills have the most in common.

The advantage to this approach is that it bases all decisions about which model is best on

just the data and the transition operators. As was shown in [Cen et al., 2006], LFA can

locate skills that contain such commonalities.

From the perspective of a student’s representation, the research task is to approximate

how and where transfer occurs. The LFA framework attempts to model transfer between

skills under the assumption that if two skills A and B are better modeled as a single com-

bined skill rather than individual skills, then this will equivalently indicate that practice

on either A or B will transfer to the other. This in turn implies that transfer is symmetric

within an equivalence class of similar skills. The goal of the search is to identify these

equivalence classes.

Above all, LFA has a clear advantage in that the underlying approach is domain-

independent. The statistical model has no special knowledge about any particular field;

it merely requires that the domain is defined by some set of skills, or knowledge com-

ponents, which are then manipulated strictly based upon the learning data. Thus, any

advances in the performance, heuristics, or even the statistical model itself can be directly

applied to all such domains.

One domain with perennial significance in the field of education is reading, where

knowledge transfer has a clearly defined meaning. If a student reads a word, are there

other words in the language at which we believe he may have become more proficient?
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One extreme approach would be the “bag of words” model, where every word is entirely

independent. Reading a word in this representation will have no bearing on any other.

However, this approach seems lacking, or else teaching students to read would simply

consist of memorization of a significant subset of the English language, word by word.

At the other extreme, one might suggest that every pair of words has some dependence.

This implies that every time a student reads a word, he becomes (marginally) better at

every other word in the language. This alternative approach also seems counterintuitive,

as the authors feel that a student, both before and after reading the words ‘dog’ and ‘cat’

for the first time, will fail with similar probability on a word like ‘supercalifragilisticexpi-

alidocious’. However, we could reasonably assume that the student would perform more

accurately on ‘dogs’ and ‘cats’, relative to a similar student with no practice on any of

these words.

We will return to and expand upon each of these ideas in turn. However, now that we

have developed the basics behind identifying transfer, we must present our domain-specific

information more formally.

1.3 Domain Instantiation

In order to guide our efforts in extending and improving LFA as a tool for exploring student

cognitive model improvement, we required a test bed containing an appropriate corpus of

data. We selected our data from the Project LISTEN Reading Tutor in the 2003-2004

school year. The Reading Tutor [Mostow and Aist, 2001] is a type of intelligent tutoring

system (ITS), which assists children in learning how to read. Using speech recognition
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technology, the Tutor listens to and records student utterances with which it compiles a

database of information relating to student performance [Mostow et al., 2002]. Addition-

ally, it attempts to help students based on its recognition of these utterances.

Users of the Tutor were elementary school students in grades 1-6, generally between

the ages of 5 and 12, mainly from the Pittsburgh, PA area. Paper tests were given both at the

beginning and end of the year to assess individual reading level and improvement over the

course of the school year. In 2003-2004 alone, the Reading Tutor collected approximately

6.9 million attempts by 650 elementary school students to read words. It is worth noting

that the correctness of an attempt is defined as whether the automated speech recognizer

(ASR) decided whether the student spoke the correct word. Analyses show that ASR

correctly flags around one quarter of misread words, with a false positive rate of around 4%

[Banerjee et al., 2003]. Among the additional data collected by the tutor are a timestamp

to maintain a temporal ordering among a student’s interactions with the Tutor, information

about help asked for by the student, and latencies between utterances of words.

In an attempt to minimize the noise in our results, we chose to pre-process the database

and screen out instances that seemed to poorly represent the trends present in the data. To

this end, we first chose to only consider instances where a word was being read by a

student for the first time in a day. This decision is supported by the observations in [Beck,

2006], where it was noted that “in general, massed practice is not helpful to learning.”

Additionally, we chose to screen out a list of 36 common stop words to avoid placing a

great deal of weight on words that were already mastered by most students, and for which

it would likely be difficult to discern a learning curve. To reduce the dimensionality of the

data and avoid problems with sparsely estimated parameters, we screened out all attempts
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where there were not at least five students who had encountered the word at least five times

(subject to the above constraints). Finally, since little gain in word decoding skill is to be

expected after the word is read many times, we only considered the first 50 exposures to

each word by a student. This screening process resulted in a set of 651,301 attempts by

469 students to read 1011 distinct words.

The advantages to using the Reading Tutor as a data source are numerous. Above all

it is ecologically valid, in the sense that all data collected are from a natural learning envi-

ronment, unhindered by some of the biasing effects that might be present in a laboratory

setting. The autonomous nature of data collection avoids both grader bias and inconsis-

tency. Additionally, it allows for longitudinal, fine-grained, and comprehensive data to be

collected with minimal effort, as opposed to a more typical and controlled psychological

study where data generally must be aggregated by hand. The obvious trade-off is the in-

accuracy associated with ASR, but this is quickly outweighed by the ease with which 6.9

million natural data points can be collected.
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Chapter 2

Learning Factors Analysis:

Infrastructure and Approach

Learning Factors Analysis (LFA) has been proposed as a method by which to “combine

statistics, human expertise and combinatorial search to evaluate and improve a cognitive

model” [Cen et al., 2006]. The LFA framework has three functional aspects.

First, since our goal is to attempt representation of student cognition, it must rely on

some data-driven approximation to the students and their performance. We describe the

use of a logistic regression model as a statistical approximation in the following subsection

“The Original Statistical Model,” which also includes a rationale for this choice of model.

The second functional aspect of LFA is the expert-defined transition function from one

state/model to another. Referred to as ‘difficulty factors’ in [Cen et al., 2006], these are

intuitively a way of defining the entire legal model space for the domain. In “Choosing a

9



Transition Function” we discuss at a higher level the basic idea behind what these factors

can accomplish, and how we specifically adapted them to our domain-specific task. We

proceed to introduce a new transition-based statistical model in the subsequent section,

designed as a fast approximation to the original. Note that the new model we propose is

domain-independent, and has no dependency on the specific transitions we describe.

The final aspect of LFA is the combinatorial search through the space of all models

defined by the difficulty factors described. This search will be described in the subsection

“Searching the Model Space”.

2.1 The Original Statistical Model

The original logistic model is listed in Equation 2.1. In this model, we define the param-

eters as follows. ’p’ represents the probability that an item is correct. The capital letters

represent the variables in our logistic model. X represents the set of variables denoting the

students. Y represents the set of variables denoting the skills performed. T represents the

variables for the number of skill practice opportunities, of which we have one variable for

each skill. Hence, ’YT’ denotes the interaction between a skill and its number of practice

opportunities. The Greek letters denote the coefficients learned by the logistic model on

each variable. The α coefficients, for each student, are designed to represent individual

student proficiency, or ’smarts.’ The β coefficients are designed to represent individual

skill difficulty relative to the other skills. Finally, the γ coefficients represent the learning

rates for each of the skills, learned by the logistic model.

The assumptions behind this original model can be found in [Cen et al., 2006]. This
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ln

(
pijt

1− pijt

)
=

∑
αiXi +

∑
βjYj +

∑
γjYjTijt

Figure 2.1: The Original Logistic Equation for LFA

model is conceptually similar to item response theory, in the sense that it uses a logistic

shape to map student characteristics to a type of probabilistic performance response. How-

ever, LFA goes a step further and does not make the assumption that student knowledge is

static. Instead, it allows modeling student improvement through practice. The model itself

is data-driven, and based upon a set of 0/1 training data including time-ordered triples of

students, skills practiced, and the logged success or failure for each of these instances.

There are three separate types of variables. We have one variable for each student, which

is designed to account for the fact that each student will be operating at his own level of

proficiency. The second set of variables relates directly to the skills being practiced, or

in the Reading Tutor instantiation, the words being read. We note that for our domain,

the terms ‘word’ and ‘skill’ are nearly synonymous. The only difference lies in the fact

that we use the conventional definition for ‘word,’ whereas a skill can represent a more

generic construct. This construct may consist of a single word, or it may consist of a set

of words, as we shall later describe. There is one variable for each of these skills, which is

designed to represent the difficulty of that particular skill. Finally, the third set of variables

is designed to represent the learning rate associated with each of the skills.

For a comprehensive analysis of the model, we also include complexity, since tractabil-

ity is a crucial practical concern. As described, for a regression model with X students and

Y skills, the number of parameters is X + 2Y . This alone may initially seem reasonable,
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in order to get a proper view of a cognitive model for the entire population in which we are

interested. However, this is merely the number of parameters of the model; it doesn’t take

into account the asymptotic running time of a logistic regression model, which depends

both upon the number of parameters as well as the number of instances upon which the

model is trained.

Logistic regression as a classification technique is a well-researched method, and has

become one of the core tools used in data mining and related fields [Komarek and Moore,

2005]. As such, a number of implementations, each with their own set of assumptions,

optimizations, and features have been developed. However, since our data have no guar-

antees regarding sparsity or other features, it is reasonable to expect no better running

time than a basic implementation [Komarek and Moore, 2003]. Our implementation re-

lied on an iteratively re-weighted least squares (IRLS) method within the framework of R,

an open source statistical package [Ihaka and Gentleman, 1996]. IRLS logistic regression

is generally run for a constant number of iterations or until convergence on a maximum

likelihood estimate of the best model. Even in this second case, the number of iterations is

empirically found to be rarely more than a small constant. Each update in a basic straight-

forward implementation, however, requires O(M3 + MR) time, where M is the number

of parameters in the model, and R is the number of instances of data [Komarek, 2004].

If we are willing to consider an approximation using conjugate gradients then , then the

computation of a single iteration can be reduced to the number of non-zero entries in the

matrix representing the value of every parameter for every instance [Shewchuck, 1994].

An upper bound on this value is O(MR). While much improved from the base implemen-

tation, it is still clear that logistic regression is a computationally intensive procedure on
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all but the smallest datasets.

Since this scaling issue would be rather impractical for the Reading Tutor dataset as

described earlier, we considered ways in which to minimize the size of the model, while

attempting to maintain as close an approximation to the effects of LFA as possible. We

shall return to this intuition after introducing model transitions, which make simpler the

conceptualization of our novel approximate model.

2.2 Choosing a Transition Function

Specifically, prior work on LFA [Cen et al., 2006] has proposed that models can be trans-

formed via ‘split’, ‘add’, and ‘merge’ operators which generally act on a single skill at a

time, making incremental transitions between similar models. In general, expert-defined

intrinsic factors pertaining to observed skills are encoded along with the input. In order to

allow a proper combinatorial search, starting from the model created from the initial data,

these factors define changes that can be made to the current model in order to derive a new

one. Essentially, the transitional operators are relabeling the instances of data to form a

new dataset, derived from the original. For the purposes of this paper, we decided to focus

our efforts on analyzing a word root-based hypothesis of transfer. In terms of the original

LFA operations, words are themselves atomic skills. We allow merges of words on only

those skills which have the same word root, according to the Porter stemming algorithm

[van Rijsbergen et al., 1980]. For example, consider Figure 2.2, which depicts merging

‘cat’ and ‘cats’. This illustrates two students who read a series of words, listed in the

‘Skill’ column. The left side denotes the number of practice opportunities on each word

13



Student Skill Practice

Opportunities

A cat 1

A dog 1

A cats 1

A cat 2

B platypus 1

B cats 1

B cat 1

Student Skill Practice

Opportunities

A cat*cats 1

A dog 1

A cat*cats 2

A cat*cats 3

B platypus 1

B cat*cats 1

B cat*cats 2

Figure 2.2: Left: Original Data, Right: Data after Merging ‘cat’ and ‘cats’

if we assume that every word is atomic, and has no effect on any other. The right side

denotes the number of practice opportunities if we consider the hypothesis that the words

‘cat’ and ‘cats’ are similar enough that practicing one of them is equivalent to practicing

the other, resulting in a single skill we label ‘cat*cats’.

2.3 Designing a Faster, Approximate Model

As described in the preceding two sections, the original approach to LFA required that

the entire statistical model be recomputed after every operation. This model, as described

Equation 2.1, requires a complex logistic regression computation, as we earlier analyzed.

While this is sufficient for reasonable small datasets with low dimensionality, it is in-

tractable for the Reading Tutor dataset, or anything with a similar order of magnitude.
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Since reducing the complexity of logistic regression or reducing the size of the dataset

are not reasonable alternatives, we are left with one remaining dimension to reduce: the

number of parameters in the logistic regression model.

We noted that there are three types of variables in the LFA model. We shall focus first

on the student variables. The original purpose of these variables in the model was to act

as identifiers which mapped students to their instances in the dataset. This allowed for the

computation of initial knowledge levels for each student, or individual student smarts as

we called it in Equation 2.1. If we wished to focus on student performance as a primary

factor in our results, this level of granularity would be useful. However, as we wish to

mainly explore transfer between words in reading, the student variables in the model seem

like a reasonable starting place for our approximation.

Regarding student variability, the assumption has already been made that students learn

at the same rate. Hence, we want to model initial student knowledge level, or “smarts.”

We propose the use of an aggregate student smarts variable, rather than individual ones

for each student. As an approximation, we computed the proportion of words accepted

as correct in our dataset, for each student. This value was used for our reduced dataset,

so that each instance of data was related to a “smarts” proportion, rather than a particular

student. The rationale behind using this value is that we are still allowing our model

to take into account student knowledge variance, while not modeling specific, individual

variance. Thus, if we had X students in our dataset, we still only need a single variable in

the logistic regression model to approximate the difference between student smarts, rather

than X parameters as did the original LFA model. We assume that these approximate

smarts proportions remain constant throughout the course of our modeling. Hence, we
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ln

(
p

1− p

)
= αX + βY1,2 + γ1Y1T1 + γ2Y2T2

Figure 2.3: The New Approximate Logistic Model Equation, Before Merging

avoid the recalculation of parameters for every student.

Having reduced the number of parameters significantly from the student perspective,

we then focused on developing an approximation for the other part of the model; namely,

those parameters relating to the skills. The immediate problem at hand is still that of

tractability; LFA was originally designed to recalculate the entire model after each transi-

tion, which requires using the entire dataset to perform the regression. And while we have

significantly reduced the model with respect to the student variables, we still have another

set of parameters whose size is twice the number of skills. As mentioned earlier, we are

focusing on analyzing the word root model of decoding representation, which means that

each transition involves a merge of a pair of related words. This focus implies that (now

that the specific student parameters are gone) much of the data, and hence many of the

skill variables, remains unaffected by a merge.

To this end, we developed a transition-based model. Each transition is characterized

by a ‘before’ and an ‘after’ state. That is, the model prior to the merge being performed,

and the model after the merge has occurred. In the original model, these would each be a

full computation of the model, representing our cognitive world. Now, our reduced model

would merely attempt to approximate the local effect of the transition, by measuring the

change in model score (which we shall introduce in the next section) between the ‘before’

and ‘after’ states.
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The ‘before’ state needs only one variable for the students, one variable to represent

the relative skill difficulty, and two variables to represent the learning rates for each skill

prior to the merge, for a total of 4 parameters. We illustrate this model in Equation 2.3,

in a format similar to how we described the original LFA model in Equation 2.1. In this

new model, we once again define the parameters as follows. ’p’ represents the probability

that an item is correct. The capital letters represent the variables in our logistic model. X

represents the single covariate representing aggregate student smarts, where the values it

takes are the proportion of words each student were determined to get correct by the data.

Y represents the variable denoting the relative difficulty difference between the two skills.

T represents the variables for the number of skill practice opportunities, of which we have

one variable for each of the two initial skills. Hence, ’YT’ denotes the interaction between

each skill and its number of practice opportunities. The Greek letters similarly denote the

coefficients learned by the logistic model on each variable. The α coefficient is designed

to represent aggregate ’student smarts.’ The β coefficient is designed to represent relative

skill difficulty between the skills. Finally, the γ coefficients represent the learning rates for

each of the two skills, learned by the logistic model.

The ‘after’ model, on the other hand, needs only the single student variable and a

variable for the learning rate for the resulting skill after merging. A difficulty parameter

would not be interpretable since it would be relative to itself in such a model. Hence, the

‘after’ model only requires 2 parameters.

Since each transition is characterized by a small constant number of parameters, we

can ignore the ‘M’ parameter listed in the running times listed for the original logistic

model. This yields a running time of O(R), where R is the number of instances in the
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dataset. In the case of the Reading Tutor dataset, this is an improvement of several orders

of magnitude over the original model.

Note that this model is still intrinsically domain-independent; we are essentially just

taking a local view of the world and focusing on a small specific set of skills, rather than

globally attempting to estimate the entire model. From an asymptotic and theoretic stand-

point this is an immense improvement, with respect to time and memory, compared to the

original model. It remains to be seen whether our weaker model representation can be of

any practical use. Our results address this question directly, as well as other more specific

questions.

2.4 Searching the Model Space

The final aspect of LFA is the combinatorial search, which takes the initial statistical model

and our defined set of transitions as input, and proceeds to attempt finding the best possi-

ble state in model space, according to some scoring metric. Given unlimited computing

time, some form of k-fold cross validation would be the best metric of comparison, due

to its resistance to bias and overfitting. However, due to the inherent complexity of this

approach, it would be an infeasible metric for this application, where analysis of many

models would be necessary.

Numerous scoring metrics have already been proposed for LFA, including Akaike’s

An Information Criterion (AIC), the Bayesian Information Criterion (BIC), log likelihood

of the data, as well as the coefficient of determination (R-squared).

18



An in-depth discussion of the pros and cons of each of the criteria is beyond the scope

of this paper, for which the authors refer you to [Cen et al., 2005]. However, for the

purposes of this paper we chose to consider directing our searches using AIC and BIC

[Akaike, 1974]. Log likelihood of the data doesn’t account for the parsimony of the learned

model, and thus can be prone to overfitting to the data. The coefficient of determination

was ruled out due to the lack of agreement by experts as to its usefulness in the logistic

model [Meynard, 2000]. Both AIC and BIC take log likelihood into account, and offer

a penalty term for the complexity of the model. They differ in that the penalty of AIC

is dependent only on the complexity of the model, whereas BIC more strongly penalizes

a complex model as more data is available. For our domain, there is no obvious choice

between these two. As such, we present results from each for the experiments where it is

warranted, offering a contrast between the conclusions made by these metrics. A ‘good’

merge (i.e. one that should be allowed) is defined to be one where the scoring metric of

the model improved when the words are merged.

Now that we have sufficiently defined a model scoring comparator, we must describe

the search to be done. As in [Cen et al., 2006], we perform a best-first search over the

search tree of possible models. In essence, we maintain a set of models that we have

evaluated at any given point in time, and choose the next model to consider based on the

scores of those we have evaluated. Intuitively, this methodology assumes that a path in the

search tree that has been beneficial is more likely to become increasingly beneficial. One

of the greatest potential problems with this method is the necessity to store all previously

computed nodes, in order to determine the best one evaluated so far. As the amount of data

increases, this becomes memory-intensive. Additional complications stem from the com-
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plexity of quickly recognizing equivalent models prior to computing them redundantly.

However, it is worth noting that the concerns we address with respect to the search are all

practical issues that do not have any effect upon the results, and are problems that can be

solved or at least minimized with an efficient implementation.

20



Chapter 3

Experiments and Results

So far, we have described our changes to the LFA framework. It remains to be seen,

however, whether we can observe anything substantial from our modifications. Within our

domain of reading, the first significant step would simply be to acquire results of any sort

from the Reading Tutor data.

3.1 Identifying Main/Aggregate Effects through Transfer

and Model Improvement

Our first task is to attempt to determine whether all words are indeed independent as hy-

pothesized by the “bag of words” theory mentioned earlier, or alternately, whether the

word root model we are considering can in fact lead us to a better model of cognitive rep-

resentation. The results for the main effect of our experiment are seen in Figure 3.1 for
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Main Effect By AIC Score
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Figure 3.1: Aggregate Impact of Merging for AIC

the AIC score improvement, and Figure 3.1 for the BIC score improvement. Each index

on the horizontal axis represents a pair of skills which we could potentially merge, in an

attempt to improve our model. Each point above the 0 line on the vertical axis indicates

that there was a benefit from performing that particular merge.

In the context of related literature, this is in some respect an attempt to examine one

aspect of the dilemma of specificity of transfer. For instance, the doctrine of formal dis-

cipline states that the content being studied is irrelevant, since all topics of study exercise

the mind, which is a “collection of general facilities” [Singley and Anderson, 1989]. If

the doctrine of formal discipline is to be believed, then learning any word would help with

the proficiency of any other word, and thus every potential merge should produce some

improvement to the model. In the other direction, if we ascribe to the opposite end of the
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Main Effect By BIC Score
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Figure 3.2: Aggregate Impact of Merging for BIC

spectrum (for example, an extremist’s take on Thorndike’s theory of identical elements),

then we might be hard pressed to find a set of skills that would demonstrate significant

transfer. From a total of 385 potential merges, 137 (35%) produced some model improve-

ment by merging using the AIC scoring metric, whereas 287 (75%) produced some model

improvement by merging them together using the BIC score. Within the framework of our

experiments, it seems that something in between the two extremist theories of transfer is

closer to reality.

One of the first things we note is the difference in prediction between these two metrics

of model fit. In the case of BIC, an overwhelming majority of skills seem to benefit from

merging, whereas in the other case, only a third of them seem to glean any benefit from

the more parsimonious model. With respect to the domain in question, we have no a priori
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reason to believe that either scoring technique is more correct than the other. As such, our

discussion and results from this point on will include both scoring metrics, and the choice

of the more believable one shall be left as a future research direction.

Discussion about scoring metrics aside, these results indicate that if our statistical ap-

proximation to the student’s cognitive model is to be believed, then the word root model of

representation does in fact have some degree of influence on transfer in reading. This re-

sult alone lends credence to our hypothesis that we can observe the transfer effect by using

a word root model. However, we can further explore this result along a new dimension, by

disaggregating students into several groups.

3.2 Analysis through Student Proficiency Disaggregation

In order to observe relative improvements to the students’ representation due to the use

of the word root model, we grouped students into subsets which we hypothesized would

exhibit varying degrees of transfer. We felt that the word identification component of

the Woodcock Reading Mastery Test (WRMT) [Woodcock, 1998], designed to assess a

student’s ability to read words of varying difficulty, would be a productive way to separate

students. The WRMT is a paper-based exam. It was administered to the students by a

teacher once prior to usage of the Reading Tutor as a pre-test, and then once again after

the conclusion of their usage of the Tutor at the end of the school year, as a post-test.

For this experiment, we divided students’ data in two ways. First, we separated students

into three equal-size groups based on their pre-test performance. Second, we created three

equal-size groups based on the student gains from pre- to post-test. The first split reflects
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AIC Improvement By Pretest Score
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Figure 3.3: Disaggregate Impact of Merging by Pre-test Divisions for AIC

the impact of student knowledge on mental representation; the second split reflects whether

the students’ rates of learning and mental representations are intertwined. Perhaps students

learn more quickly because they have a more efficient representation of the domain?

Our results from the second of these divisions yielded no significant or interesting

results for this and subsequent experiments, and have thus been left out of our documenta-

tion from this point forward. Figure 3.2 and Figure 3.2 represent our results for the pretest

student division experiment with AIC and BIC respectively. From these visualizations,

it seems clear that as the proportion of skills merged seems quite positively correlated

with the pretest score division. Hence, our lack of statistically significant results from the

test gains divisions is puzzling, as we would intuitively expect proficiency to be highly

correlated to performance during the school year.
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BIC Improvement By Pretest Score
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Figure 3.4: Disaggregate Impact of Merging by Pre-test Divisions for BIC

To further characterize these results, consider Table 3.1. Here, we have discretized

the results from Figure 3.2 and Figure 3.2, in terms of the proportions of words merged

for each scoring metric. We use the proportion rather than the absolute value since each

group contains a different number of merges, after having been screened by the criteria

mentioned earlier. There is a decisive upward trend for the BIC results, and the high

proficiency students in the AIC grouping also seem to have far more numerous beneficial

merges than do the low or medium proficiency groups.

Upon performing a χ2 test of reliability on the results, we found that the only two

reliably different relationships present in the AIC test score measure were between the

high proficiency students and each of the other two groups. Using the BIC test score

measure, all three pairs of student divisions was found to be reliably different.

26



Table 3.1: Percent of Possible Merges that Demonstrate Transfer

Test Score Measure

Student Group AIC BIC

Low 31% 64%

Medium 36% 80%

High 62% 94%

To analyze these results at yet a finer grain we proceeded to perform statistical relia-

bility testing for these proportions in the form of statistical bootstrapping. Bootstrapping

is a resampling approach made popular by Efron in 1979 [Efron, 1979]. Among the ap-

proach’s several desirable traits is a complete independence from assumptions concerning

the distribution of the population, which is unknown for our application. In this case, our

population is the set of differences in AIC score for each pair of student divisions. We

bootstrapped 20,000 examples, from which we determined that there was a reliable differ-

ence (with 95% confidence) between each of the three pairs for both AIC and BIC. More

specifically, between the low and medium proficiency groups there was a statistically re-

liable difference with p-values of .02 and .004 for AIC and BIC respectively, while all

other p-values were less than .001. Note that all p-values subsequently mentioned were

generated in the same fashion.

These results indicate that initial pre-test scores are positively correlated with more

compact word root models. We can conclude that there exists a reliable difference between

these student divisions, using pre-test scores as an indicator. And, while each pair of

divisions was determined to have a reliable difference, the numbers themselves yield the
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observation that high proficiency students exhibit more transfer at the word root level than

medium or low proficiency students, by a large margin.

We performed one additional experiment as a potential metric for measuring the degree

of transfer. An alternate way of exploring the models developed by LFA is to focus on

the learning rate for each of the skills. Specifically, prior to merging two skills such as

‘cat’ and ‘cats’, the regression model has two different parameters, as seen in Equation 2,

which represent the learning rates for each skill. We can similarly analyze the learning

rate obtained from the merged skill. For instance, the skill ‘cat’ might have a learning rate

coefficient of .46, and the skill ‘cats’ might have a learning rate coefficient of .23. Upon

merging these skills, the learning rate coefficient for ‘cat*cats’ might be .32 (since the

units of a logistic regression are in logits, such direct examination of coefficient values is

not immediately intuitive).

We set up a linear regression model with the average of the initial learning rates for

each pair of skills as our dependent variable (from our example, .345), and the learning

rate of the final merged skill against it as the independent variable (from the example,

.32). In theory, the more positive the resulting slope is, the more transfer is reflected by

the data. In general, this ratio represents the fact that if a skill has very little associated

transfer, we can expect that the merged skill will have a lower learning rate than if the

word had exhibited a high degree of transfer.

Perhaps more importantly, we can compare these values within our student divisions, to

determine what types of students seem to get the most transfer from the word root model.

In order to maintain our goal of computing interpretable results, we decided to remove any
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data points which had values greater than five times the absolute value of any other data

points for a particular regression. This definition of outlier resulted in the removal of one

data point from the high proficiency pre-test division.

Our results for this division-based experiment are as follows. For the low proficiency

group, we regressed a slope of .28. The medium proficiency group had a slope of .27, and

for the high proficiency group, the slope was computed to be .38. It is especially worth

noting that while the low and medium proficiency student seem to have essentially the

same degree of transfer under this metric, the high proficiency student have a much higher

rate. Once again, as an analysis of the reliability of these results, we bootstrapped 20,000

samples at 95% confidence. As was perhaps expected based on a quick examination of the

numbers, we found that there were statistically reliable differences that existed between

the high proficiency students and the other two divisions (p<.01), whereas there was no

such difference between the lower and medium proficiency students (p=.85). This lends

further credence to the idea that the word representation used by high proficiency students

involves, to some degree, the use of word roots.

We then proceeded to take the previous experiment one step further, by recognizing

that the set of skills specifically merged could be (and was) different for each of the three

divisions. As such, we hypothesized that a potentially more fair approach to determining

where transfer would occur would be to only consider the set of words that were merged

under all three divisions. Using BIC as our metric of whether a skill was merged or not,

there were 65 pairs of skills which were merged in all three divisions. One outlier was

removed from the low proficiency group, using the previous definition of outlier.
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Our results from this related experiment are summarized as follows. For the low pro-

ficiency group, we regressed a slope of .27. The medium proficiency group had a slope

of .29, and for the high proficiency group, the slope was computed to be .33. While

the low and medium proficiency divisions performed essentially the same on this set of

words, there was a decrease in the degree of transfer for the high proficiency division under

this metric. We once again used the same bootstrapping procedure in order to determine

whether any statistically reliable differences existed. For this limited set of skills, these

slopes were not found to be reliably different. This result does not support the previous

hypothesis that high proficiency students perform better. However, there exist a number of

factors that might affect this, given the group of words considered. For instance, this set

of words might be a set of ‘average’ words, in that they lack defining characteristics that

would cause higher proficiency students to catch on or learn them faster (or equivalently

have challenging factors that would hinder low proficiency students).

3.3 Predicting What Skills Demonstrate Transfer

In the prior experiments, we have demonstrated that there is a noticeable difference be-

tween some skills in terms of how much transfer occurs. However, one question we might

ask ourselves is “What, if any, characteristics of words render them more likely to demon-

strate transfer at a word root level?” Compared to other recent domain applications of LFA

(see [Cen et al., 2006] and [Rafferty and Yudelson, 2007]), the use of a reading domain has

another drastic difference- a much larger set of skills to be considered. Because of this, we

can consider addressing the problem of predicting whether a particular pair of skills will

30



be improved by being merged. This problem is equivalent to the problem of predicting

what skills demonstrate transfer, by our earlier reasoning.

Up until now, attempting such classification with LFA made little sense. Even the

Geometry Tutor dataset, perhaps the most recent application of LFA, had data which fit

into a set of 15 skills. In order to approach the task of classification for reading, however,

we must determine what features are reasonable for consideration.

We first make a distinction between two types of features pertaining to a potential

merge. The first type to be considered is a set of features pertaining to the words them-

selves, which is domain-dependent. We chose to consider the following five features: the

length of the root of the words involved, whether the root itself was one of the two words

involved in the merge, whether the word root began with a vowel, the suffix of the word

(which fell mainly into three buckets, those words ending in ‘s’, ‘ed’, or ‘ing’), and finally

the length of the longest affix involved in the merge, where affix is defined to be the part

of the word after the root itself. For instance, if we are examining a merge of the words

‘swims’ and ‘swimming’, the length of the longest affix would be 4 (since the root is

‘swim’). Our goal in performing this classification is to determine a set of characteristics

of words that demonstrate transfer. This would have the potential to uncover new insights

about students’ mental representations.

We trained a logistic regression model based on the results obtained on the aggregate

data. Note that for all of the following tables relating to classification, a positive coefficient

value represents an increased likelihood to merge as the value of that covariate increases.

Let us consider Table 3.2 and Table 3.3, containing these domain-dependent word
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features. Note that the absence of the ‘-ing’ column is due to the intrinsic collinearity of

the three covariates involving word suffixes. Since our dataset had few merged results with

other suffixes, these three classes had to represent the entire population. We can first note

that, with the exception of the statistical significance when the root is one of the words,

the difference between the AIC and the BIC results is largely superficial.

There are three features that seem to have some reliable effect on the demonstration

of transfer. First, the length of the affix has a negative effect on both model scores. This

intuitively makes sense, since the word root may be reasonably seen as a less significant

part of the word, as the word itself increases in length. The other two features are the

two suffixes ‘-ed’ and ‘-ing’. We note that the effect of both seems to be against transfer,

which initially seems odd. One potential reason for this is that words with these suffixes

sometimes will change in structure (e.g. ‘study’ becomes ‘studies’ or ‘studied’). This

change may make these suffixes more difficult than one like ‘-ing’, where most of its

applications require only appending the suffix to the end of the word (as per the example,

‘studying’).

The second type of features to consider is based upon our model fit prior to performing

any merge, which is domain-independent. We described our model approximation earlier,

and this model led up to the following set of three features: the absolute value of the ratio

between the difficulty levels for each of the two skills (henceforth referred to as the ‘Ab-

solute Difficulty Ratio’), the ratio between the learning rates for the skills (the Learning

Rate Ratio, set to 0 in the event of a negative learning rate), and thirdly a parameter for the

‘student smarts’, which was normalized in order to standardize its values as a covariate.

Table 3.4 and Table 3.5 represent the AIC and BIC results for the model features. Once

32



Table 3.2: Word Feature Classification on Aggregate Data, AIC

Word Features (AIC)

Student

Data

Root

Length

One

Skill is

Root

Affix

Length

Starts

with

Vowel

Suffix:

-ed

Suffix:

-s; -es

Suffix:

-ing

Aggregate .113

(p=.31)

-.660

(p=.01)

-.502

(p<.01)

.340

(p=.38)

-1.024

(p=.01)

-.903

(p=.03)

- -

Table 3.3: Word Feature Classification on Aggregate Data, BIC

Word Features (BIC)

Student

Data

Root

Length

One

Skill is

Root

Affix

Length

Starts

with

Vowel

Suffix:

-ed

Suffix:

-s; -es

Suffix:

-ing

Aggregate -.132

(p=.27)

-.456

(p=.11)

-.383

(p=.01)

.266

(p=.53)

-.843

(p=.07)

-1.262

(p<.01)

- -
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Table 3.4: Model Feature Classification on Aggregate Data, AIC

Model Feature Coefficients (AIC)

Student Data Absolute

Difficulty Ratio

Learning

Rate Ratio

Normalized

Student Smarts

Aggregate -1.217 (p<.01) .248 (p=.55) -.020 (p=.87)

Table 3.5: Model Feature Classification on Aggregate Data, BIC

Model Feature Coefficients (BIC)

Student Data Absolute

Difficulty Ratio

Learning

Rate Ratio

Normalized

Student Smarts

Aggregate -.617 (p<.01) -.624 (p=.14) .071 (p=.55)

again, a positive coefficient value represents an increased likelihood to merge as the value

of that covariate increases. Similarly, a negative coefficient implies a decreased likeli-

hood of a merge (and hence a decreased likelihood that merges with high values for that

covariate will demonstrate transfer).

There are several observations we can make from these tables, concerning domain-

independent features. First, the only covariate that seems to have any statistically reliable

impact was the Absolute Difficulty Ratio. This result implies that as the variance in dif-

ficulty of two words with the same root increases, the less likely they will demonstrate

transfer.

Overall, these attempts at classification resulted in reasonable preliminary results.
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Aside from developing a novel technique to predict transfer, we have additionally doc-

umented several reliable effects discovered by this method. From these observations, we

believe that there is a great deal of potential in this approach to evaluating skills within

student models. Perhaps future insights will lead to more meaningful results or alternate

approaches to this problem.
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Chapter 4

Contributions, Future Work, and

Conclusions

4.1 Contributions

Within the framework of LFA, we have made four distinct contributions. First, from a tech-

nical standpoint, we have provided advancements to the methodology behind the model.

Instead of the original full statistical model, we have introduced a fast transition-based

approximation. By doing so, we have rendered LFA tractable on datasets which are orders

of magnitude larger than those originally used [Cen et al., 2006].

Second, we have introduced the framework of LFA to a new domain: student modeling

in reading. Our new technical contributions have allowed us to demonstrate that the use of

a word root model of representation can improve our representation of student knowledge,
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using both AIC and BIC as model scoring metrics. Despite this concurring result between

the metrics, we also demonstrate that the different model complexity penalties in these

metrics lead to differing degrees of transfer. This contribution not only demonstrates the

utility of LFA as a modeling technique to the reading community, but it also serves the

purpose of providing evidence that LFA can be used as a cognitive modeling technique in

a domain independent manner.

Additionally, by examining our results along a new dimension of student proficiency,

we have found a positive correlation between pre-test scores and the proportion of word

merges that are predicted to improve the fit of our model. Not only does this third contri-

bution provide a technique for extracting trends by disaggregating data through LFA, but

it more importantly implies that this disaggregation is nontrivial.

Lastly, we have introduced a new approach to examining skills in the context of an

LFA model. Our analysis concerning prediction skills which demonstrate transfer is a

novel approach in this context. Our analysis demonstrates both domain dependent and

domain independent methods of performing such a prediction. We have identified several

domain dependent and independent traits which have a reliable effect when predicting

transfer at the word root level. It seems likely that this approach, as well as these results,

hold great promise for the potential of LFA in yet another dimension.

4.2 Future Work

While this research represents a step forward both in terms of the LFA framework itself

as well as its potential results, there remain a number of unresolved points. First, from a
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more technical standpoint, a great deal of optimization could be done to an implementation

in order to make LFA into a more efficient modeling approach. For instance, we could

include an improvement to the underlying model search, where each state is represented

not by an additional copy of the data, but by a set of operators performed to reach the state.

This optimization would drastically improve memory management for LFA when used on

large datasets, and would require a relatively small amount of computation to apply all of

the operators to generate the data when necessary.

Additionally, while we have contrasted the potential for the original model of Learning

Factors Analysis and our smaller approximation, it seems reasonable that some middle

road might yet be found. Perhaps a hybrid model of computation that would sometimes

take advantage of the representational power of the full original model, and other times

use our approximation’s speed to best perform a search among potential cognitive models.

For our domain instantiation, we were faced with a relatively simple search to perform.

Such a hybrid model might be more useful or perhaps necessary in order to represent a

more complex domain, or one in which more operators are allowed.

Our attempts to design methods of classifying and predicting operations are also a

prime source for potential future work. As our results indicate, we failed at the task of

separating words that merge from those that do not given our classification techniques. It

is possible that focusing on a dimension of the problem such as what features to use or

other methods of classification might yield more fruitful results. Such an advance would

have an immediate impact on both the domain in which it was demonstrated, as well as to

the cognitive modeling and AIED communities.
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4.3 Conclusions

Implications of our results to relevant communities such as Intelligent Tutoring Systems,

Cognitive Modeling, and Artificial Intelligence in Education abound. LFA itself is de-

signed to be a domain-independent automated approach to finding an optimal cognitive

model. Our results show that we indeed find an improved model. More importantly,

though, our results imply that we have no reason to believe one of the basic tenets of tu-

toring systems: using a canonical model of student cognition is the best way to teach. Our

results specifically imply the potential for different domain models across student profi-

ciency. For example, we have seen that high proficiency students have a more compact

domain representation than low or medium proficiency students, when considering a word

root level of representation in reading.

Additionally, we have introduced a new manner of examining student cognitive mod-

els within the LFA framework. In the context of student proficiency, we have developed an

approach to examining differences in cognitive skills across disaggregated student groups.

Our contrast of the AIC and BIC scoring metrics illustrate how varying conclusions can be

made about even an extensive dataset, by making only slightly different scoring assump-

tions. Both metrics come to the decision that transfer is observable at a word root level.

However, their differing penalties for model complexity yield significant differences in the

degree of transfer that is observed.

Next, despite failing to identify any significant results with the test gains divisions at

any dimension, our other preliminary results seem to indicate that these differences are not

trivial, as we previously noted upon a positive correlation between the merging of words
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in our model and the proficiencies of the corresponding student divisions. This result is

itself surprising, given that it seems intuitive that high proficiency students would also

have much overlap with students with high performance during the school year.

The approaches and results represented in this paper represent a significant step for-

ward both in terms of developing the Learning Factors Analysis framework specifically, as

well as furthering the causes of any research community involved with the task of creating,

evaluating, or working with cognitive models. This preliminary work presents beneficial

potential for this framework, and has offered a number of dimensions by which it can both

be utilized and further developed.
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