
Dimorphic Computing

H. Andrés Lagar-Cavilla†, Niraj Tolia?, Rajesh Balan?,
Eyal de Lara†, M. Satyanarayanan?, David O’Hallaron?

†University of Toronto, ?Carnegie Mellon University

April 2006
CMU-CS-06-123

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Dimorphic computing is a new model of computing that switches between thick and thin client modes
of execution in a completely automated and transparent manner. It accomplishes this without imposing
any language or structural requirements on applications. This model greatly improves the performance
of applications that alternate between phases of compute- or data-intensive processing and intense user
interaction. For such applications, the thin client mode allows efficient use of remote resources such as
compute servers or large datasets. The thick client mode enables crisp interactive performance by eliminating
the harmful effects of Internet latency and jitter, and by exploiting local graphical hardware acceleration.
We demonstrate the feasibility and value of dimorphic computing through AgentISR, a prototype that
exploits virtual machine technology. Experiments with AgentISR confirm that the performance of a number
of widely-used scientific and graphic arts applications can be significantly improved without requiring any
modification.

This research was supported by the National Science Foundation (NSF) under grant numbers CNS-0509004 and
CCR-0205266, the National Science and Engineering Research Council (NSERC) of Canada under grant number
261545-3 and a Canada Graduate Scholarship, by the Canadian Foundation for Innovation (CFI), and the Ontario
Innovation Trust OIT) under grant number 7739. Any opinions, findings, conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the NSF, NSERC, CFI, OIT,
Carnegie Mellon University, or the University of Toronto. All unidentified trademarks mentioned in the paper are
properties of their respective owners.

Keywords: interactive response, network latency, network delay, network bandwidth virtual machines,
thin client, thick client, graphics hardware, agents, migration, Maya, QuakeViz, ADF, Kmenc15

1 Introduction

It has long been known that the strengths of thick and
thin clients complement each other. Thin clients are at-
tractive in CPU-intensive and data-intensive situations be-
cause application execution can occur on remote compute
servers close to large datasets. Unfortunately, high net-
work latency and jitter between the application execution
site and the user site can lead to poor interactive perfor-
mance. Thick clients offer a much better user experience
in that situation.

In this paper, we describe a new model of computing
called dimorphic computingthat combines the strengths
of thick and thin clients. During resource-intensive ap-
plication phases, a dimorphic client behaves like a thin
client. During interaction-intensive phases, it behaves as
a thick client. Transitions are completely transparent to the
user, who just sees excellent performance at all times. Di-
morphic computing does not require that applications be
modified in any way or that they be written in any spe-
cific programming language. It can be used with closed-
source legacy applications, an important distinction from
language-based mobile code approaches using Java or C#.
Further, dimorphic computing does not restrict applica-
tions to a specific operating system.

This new computing model is intended for a growing
class of applications that alternate between a resource-
intensivecrunch phase that involves little or no user in-
teraction, and acognitivephase that is intensely interac-
tive. Examples of these applications include digital anima-
tion and video editing in amateur and professional movie
production, simulation and visualization of phenomena in
scientific computing, computer assisted design in engineer-
ing, protein modeling for drug discovery in the pharmaceu-
tical industry, and computer-aided diagnosis in medicine.
Dimorphic computing optimizes performance for both the
crunch and the cognitive phase of such applications. The
user thus gets the best of both worlds: short completion
time for the crunch phase, and crisp interactive perfor-
mance in the cognitive phase.

We have implemented a prototype calledAgentISRthat
demonstrates the feasibility and value of dimorphic com-
puting. Our design uses virtual machine (VM) technol-
ogy to encapsulate application execution, a peer-to-peer
distributed storage system to transport VM state between
application execution sites, a graphical interface capable
of providing VMs with graphics hardware acceleration,
and a migration manager for automating relocation deci-
sions. Experiments with AgentISR confirm that a number
of widely-used applications from the scientific and graphic
arts domains, some commercial and closed-source, can be
run on AgentISR to yield good performance in both the
crunch and cognitive phases.

This paper makes four contributions. First, it introduces
the concept of dimorphic computing and shows how it fills

a gap in today’s computing landscape. Second, it shows the
feasibility and value of dimorphic computing by describing
a prototype implementation and experimental results from
its use on a number of demanding applications. Third, it
introduces a new approach to quantifying the interactive
performance of tightly-coupled applications under condi-
tions of high latency. Fourth, it describes a new tool for
conducting repeatable experiments of interactive user ses-
sions on tightly-coupled applications.

2 Origins

The roots of dimorphic computing reach deep into the past.
Its extensive use of multiple machines to meet the needs of
a single user reflects an evolutionary trend that began with
timesharing (fraction of a machine per user) and continued
through personal computing (single machine per user) and
client-server computing (local machine plus remote ma-
chines in fixed roles). Dimorphic computing continues this
evolution by seamlessly and transparently using local and
remote machines in flexible roles. It is driven by the re-
cent convergence of three forces, which we describe in the
following sections:

• Growth of relevant applications.

• Availability of graphics-accelerated thick clients and
renewed interest in thin clients.

• Coming of age of virtual machine technology.

2.1 Relevant Applications

There are a growing number of applications with both
crunch and cognitive phases in the domains of graphic arts,
science, and engineering. For example, the creator of a
high-definition animated movie will typically alternate be-
tween a crunch phase that generates an animation segment
from key frames, and a cognitive phase for artistic review
and refinement of that segment. As another example, in a
molecular modeling application, the output of the crunch
phase is an optimized 3-D model whose geometric prop-
erties are interactively examined by a scientist. Based on
insights from this cognitive phase, the scientist may mod-
ify the modeling parameters and iterate.

Depending on the application, the crunch phase may be
CPU-intensive, memory-intensive, disk-intensive or some
combination of all three. This often leads to the use of a re-
mote machine cluster or a supercomputer, possibly located
far away. Sometimes the crunch phase may use datasets
that are too large to mirror or cache locally. In domains
such as health care, regulatory or organizational policies
may forbid copying of the data and thus prevent mirroring
or caching. The only option in that case is to execute the
application at the site where the data is located. On the
other hand, the crisp interactive performance demanded by

1

RTTs (ms)End Points
Min Mean Max c

Berkeley – Canberra 189.0 189.1 199.0 79.9
Berkeley – New York 85.0 85.0 85.0 27.4
Berkeley – Trondheim 190.0 190.0 193.0 55.6
New York – Atlanta 28.0 28.0 29.0 8.0
New York – Zurich 108.0 108.0 109.0 42.2
New York – Taipei 245.0 245.7 248.0 83.7
Pittsburgh – Seattle 83.0 83.8 84.0 22.9

These RTT measurements were obtained from
NLANR [35] on April 14th, 2006. The end hosts
were all connected using high-bandwidth Internet2 links.
The c column gives the lower bound RTT between the
two endpoints at the speed of light.

Table 1: Observed Round Trip Times

the cognitive phase is only possible with low network la-
tency and jitter. This requires execution to occur very close
to the user.

During the crunch phase,short completion timeis the
primary performance goal, and computing resources are
the critical constraints. During the cognitive phase,crisp
interactive responseis the primary performance goal, and
user attention is the critical constraint. Optimizing both
phases is important for a good user experience.

2.2 Thick and Thin Clients

The term “thick client” is industry jargon for a full-fledged
personal computer that can operate stand-alone, in isola-
tion from network resources. Thick clients provide an
ideal platform for the cognitive phase of applications such
as scientific visualization and digital animation. The ab-
sence of display latency or jitter, combined the widespread
availability of 3D graphics acceleration hardware, results
in crisp user interaction during this phase. On the other
hand, a typical thick client such as a desktop may not be
able to meet the CPU or I/O performance demands of the
crunch phases of these applications.

A thin client [4, 30, 41] is the modern-day realization of
a “dumb terminal” from the timesharing era. It can be a
physical piece of hardware, or it can be software such as
VNC [42] that runs on a thick client and emulates a thin
client. Thin clients provide an elegant way to harness re-
mote computational resources, and are thus an ideal plat-
form for the crunch phase of demanding applications. Un-
fortunately, even trivial user-machine interactions on a thin
client incur network queuing delay. This queuing delay is
acutely sensitive to the vagaries of the external computing
environment. Whether a thin client can offer a satisfactory
user experience during the cognitive phase of an applica-
tion depends on both the application and on network qual-
ity. If near-ideal network conditions (low latency and high
bandwidth) can be guaranteed, thin clients offer a good
user experience; such conditions cannot be guaranteed on
the Internet, especially for distant sites.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 4 6 8 10 12 14 16 18

C
D

F

Smoothness (Frames Per Second)

1
2
3
4
5

1 2 3 4 5

100 Mbit/s - 100ms
100 Mbit/s - 66ms
100 Mbit/s - 33ms
100 Mbit/s - 0ms

1 Gbit/s - 0ms

This figure shows the distribution of observed display
frame rates for a highly interactive segment of roughly one
minute, when executed on a thin client at various band-
widths and latencies.

Figure 1: Network Latency Impact on Smooth Visualization

It is latency, not bandwidth, that is the greater challenge.
Table 1 shows measured round-trip time (RTT) values for a
representative sample of Internet2 sites. In every case, the
minimum observed RTT value far exceeds the lower bound
established by the speed of light. Technologies such as fire-
walls and overlay networks further exacerbate the problem.
Although bandwidths will continue to improve over time,
latency is unlikely to improve dramatically.

As latency and jitter increase, the interactive response of
thin clients suffers. Tolia et al. [52] show that tightly cou-
pled tasks such as graphics editing suffer more than loosely
coupled tasks such as web browsing. Even simple actions,
such as pressing a mouse button to pop up a menu or trac-
ing an arc in a figure, appear jerky and sluggish. This dis-
tracts the user and reduces the depth of cognitive engage-
ment with the application. Although users can adapt to
higher response times, they experience frustration with the
system and a drop in productivity.

Figure 1 illustrates the impact of latency on smoothness
of visualization of a highly interactive application on a thin
client. At 1 Gbit/s with zero latency, observed frame rates
span 8–16 FPS. At 100 Mbit/s with zero latency, they drop
slightly to 7–15 FPS. But the impact of increasing latency
is much greater: observed frame rates at 100 Mbit/s span
6–10 FPS with 33 ms latency, 4–8 FPS with 66 ms la-
tency, and 4–6 FPS with 100 ms latency. The sustainable
frame rate is limited by the end-to-end delay of the system,
and our experience confirms that this metric correlates well
with subjective user experience. At the lower frame rates
in Figure 1, the system’s interactive response is sluggish
and annoying.

2.3 Virtual Machines

VM technology is a critical building block for implement-
ing dimorphic computing. The use of VM migration makes
it possible to implement transitions between thick and thin

2

client execution in a way that is transparent to an appli-
cation and its entire runtime infrastructure, including the
operating system. Although the VM concept dates back
to the late 1960s [16], its realization on modern hard-
ware is of more recent origin. Today, the availability of
VMWare [19], Xen [5], and VT support for hardware vir-
tualization [54] collectively represent a maturing of VM
technology into a robust, field-deployable building block.

Process migrationis an alternative technology on which
to base dimorphic computing. This operating system capa-
bility allows a running process to be paused, relocated to
another machine, and continued there. It has been imple-
mented in many experimental operating systems such as
Demos [39], V [51], Mach [56], Sprite [11], Charlotte [3],
and Condor [55]. Yet, no operating system in widespread
use today (proprietary or open source) supports it as a stan-
dard facility because it is excruciatingly difficult to get the
details right. A typical implementation involves so many
external interfaces that it is easily rendered incompatible
by a modest external change. Process migration is thus
a brittle abstraction, and a much less attractive building
block for dimorphic computing.

3 AgentISR

To explore the applicability and value of dimorphic com-
puting, we have built a prototype calledAgentISR. Our
prototype leverages current VM technology, but extends it
with several new mechanisms specifically motivated by di-
morphic computing.

AgentISR has four key attributes, the first two of which
arise directly from the use of VMs, while the other two
result from our research efforts. First, applications do
not have to be modified, recompiled, or relinked to use
AgentISR. A corollary is that the source code for the ap-
plication does not have to be available. This greatly sim-
plifies real-world deployments where use of proprietary
rather than open-source applications may be unavoidable.
Second, the application does not have to be written in a
specific language, nor does it need to be built using specific
libraries. By requiring almost nothing of applications ex-
cept the existence of distinct crunch and cognitive phases,
AgentISR invites the broadest possible usage. Third, there
is a clear separation between migration policy and mech-
anism. The code to decide when to trigger a migration
is independent of the code that implements the migration.
Finally, migration is transparent and seamless to the user,
beyond the unavoidably noticeable (and desirable) effects
of improved interactive or computational performance.

3.1 Agent Abstraction

AgentISR implements the notion of anagent, a migrat-
able embodiment of an application that transparently and
seamlessly relocates itself to achieve optimal performance.

Internet

Compute Cluster

Improved
Data Access

Improved
Interactivity

Improved
Computation

Agent

Agent

Data Repository

User’s Desktop

Agent

This figure shows an example application that transitions
through data- and compute-intensive phases before re-
turning to the user for interaction-intensive usage.

Figure 2: Dimorphic Computing Example

We use this term for the entity that a user interacts
with in dimorphic computing because it resembles anau-
tonomous agent,as that term is used in artificial intelli-
gence (AI) [25]. Of course, our work differs in fundamen-
tal ways from the huge body of research on agent tech-
nology in AI. Most obviously, we take a low-level sys-
tems approach and strive for compatibility with unmodified
legacy applications. This contrasts with the high-level pro-
gramming environments typical of AI agents. We also pay
considerable attention to interactive performance, which is
typically not of interest in AI.

Figure 2 shows the example of an agent that starts at
the user’s desktop, where it executes in thick client mode
to favor interactive execution. It then migrates to several
remote sites where it executes in thin client mode to favor
CPU performance or I/O performance, and then returns to
the desktop for the next cognitive phase.

An agent may execute on any AgentISR-enabled host
for which its owner has SSH access privileges; these SSH
credentials are used to encrypt all communications. How-
ever, every agent has a uniquehomehost, which acts as the
authoritative machine on which commands used to mod-
ify agent state are issued. The home host is typically the
user’s local desktop or some other nearby computer where
the user spends most of her time interacting with the agent.

Table 2 shows the command line interface for AgentISR.
It includes commands for managing an agent’s life cycle,
for controlling agent migration, and for system administra-
tion. Migration control commands are typically used by
the migration manager described in Section 3.5. However,
they are available for explicit user control, if desired.

Migratable agents are implemented in AgentISR
through the combination of four components, which we de-
scribe in the rest of this section: a Virtual Machine Monitor
(VMM); WANDisk, a peer-to-peer system for transport-
ing an agent’s persistent state; an agent interface capable

3

Life Cycle Commands Migration Commands Administration Commands
createagent agentname suspend agentname addhost agentname hostname
launch agentname resume agentname hostname sync agentname hostname
kill agentname suspend-resume agentname hostnamemovehomeagentname newhome
purge agentname hostname listhosts agentname

Table 2: AgentISR Commands

of providing hardware accelerated graphics; and a migra-
tion manager that automatically triggers modality changes
from thick to thin and vice versa. While the first compo-
nent leverages existing work, the other three result from
our research.

3.2 Use of Xen

AgentISR uses a VMM to isolate each agent in its own
VM. An agent can thus be any application binary, writ-
ten in any programming language, running on any major
OS. The current version of AgentISR is based on the Xen
3.0.1 VMM. We chose Xen because its open-source na-
ture makes it attractive for experimentation. Our design is
sufficiently modular that using a different VMM such as
VMWare will only require modest changes.

AgentISR uses VM migration [29, 45] to dynamically
relocate the agent from a source to a target host. To migrate
an agent, its VM is first suspended on the source. The sus-
pended VM image, typically a few hundred MBs of meta-
data and serialized memory contents, is then transfered to
the target, where VM execution is resumed. AgentISR
useslive-migration [9] to allow a user to continue inter-
acting with the application during agent relocation. This
mechanism makes migration appear seamless, by itera-
tively prefetching the VM’s memory to the target while the
VM continues to execute on the source host. When the
amount of prefetched VM memory reaches critical mass, a
brief pause is sufficient to transfer control.

3.3 The WANDisk Storage System

VMM migration mechanisms only transfer memory and
processor state; they do not transfer VM disk state, which
is typically one to three orders of magnitude larger (many
GBs). Each VM disk operation after migration there-
fore involves network access to the source host. While
this may be tolerable on a LAN, it is unacceptable for
the high-latency WAN environments in which we envision
AgentISR being used. A distributed storage mechanism
is needed to take advantage of read and update locality in
disk references.

Distributed file systems are a mature technology today,
with many systems in production use. Examples include
NFS [43], AFS [22], Coda [47], and Lustre [7]. Storage
Area Networks (SANs) are also in extensive use today. Un-
fortunately, most of these systems are designed for a LAN
environment and perform poorly in WANs. Although AFS

Agent Admin VM

Local
Chunk Store

Remote
Chunk Store

Remote
Chunk Store

Figure 3: The WANDisk Storage System Architecture

and Coda do perform acceptably on WANs, they embody
a client-server architecture in which server creation is a
heavyweight action. This is a misfit for the dynamic us-
age model envisioned for AgentISR.

We have therefore implemented a distributed storage
system called WANDisk that provides efficient WAN ac-
cess to an agent’s virtual disk. Its design reflects the unique
set of challenges and opportunities that the AgentISR’s
deployment model presents. To provide flexibility in the
choice of migration site, WANDisk follows a peer-to-peer
(P2P) approach where any Internet host can maintain a per-
sistent replica of the agent’s state. Replicas are created on
demand as new migration sites are identified. WANDisk
relies on the persistence of the replicas to reduce data trans-
fers. Its replica control mechanism uses many techniques
for optimizing the efficiency of agent migration: partial
replication to reduce the startup cost of initializing a new
migration site; differential transfers between replicas to re-
duce synchronization overhead; and lazy synchronization
to avoid unnecessary data transfers to inactive migration
sites or for unused parts of a virtual disk.

Figure 3 shows the two-tiered WANDisk architecture,
which consists of akernel moduleand a user-spacedisk
manager, both operating within Xen’s administrative VM.
The kernel module presents a fake block device that is
mapped to an agent’s virtual block device. All agent-
originated block requests are handled by the fake device
and redirected into the user-space disk-manager.

The disk manager partitions the agent’s virtual disk into
chunksand uses achunk tableto keep track of versioning
and ownership information. Chunk size is configurable at

4

agent creation time; our implementation uses a chunk size
of 128 KB, which we have found to work well in practice.
As the agent modifies blocks in its virtual block device,
the mapped chunk’s version number is incremented, and
its ownership transferred to the host where the agent is ex-
ecuting. Each host thus “owns” the chunks which the agent
modified while executing there. Before the agent accesses
any of those chunks at a different host, the chunk table will
point WANDisk to the freshest copy of each chunk. The
chunk table thus becomes a critical extension of a Xen VM
migratable state. To account for this, we have modified live
migration in Xen to include the chunk table. We use the
rsync algorithm [53] to perform efficient chunk transfer.

The heavyweightsync command shown in Table 2 is
available for bringing any replica up to date under ex-
plicit user control. This command may be used for per-
formance or reliability reasons. The command blocks until
the replica at the specified migration site is both complete
and up to date. After that, agent execution can continue at
that site even if it is disconnected from other replicas.

3.4 Unified Graphical User Interface

The graphical user interface for an agent has to comply
with two requirements. First, a user should be able to in-
teract seamlessly with an agent, whether the agent is run-
ning on the user’s desktop or on a remote host. Second,
many of the applications targeted by dimorphic comput-
ing, e.g., scientific visualization or digital animation, re-
quire the use of 3D graphics acceleration hardware, a fea-
ture absent from most virtualized execution environments.

To meet these requirements AgentISR provides an en-
hanced thin client interface based on VNC. When the agent
is running on a remote host, the thin client protocol is used
to communicate screen updates and user input events (i.e.,
keystrokes and mouse) over the network. When the agent
is running on the user’s desktop, the network becomes a
loopback connection. Interaction is never interrupted as
the agent is relocated because network connections persist
through live-migrations: if the agent is relocated within the
same subnet, a gratuitous ARP-reply binds the IP address
to the new physical host. Relocations across subnets are
supported with VNETs [48], a Layer-2 proxy.

As efficient virtualization of graphics hardware requires
manufacturer support, we instead virtualize the OpenGL
API. We leverage Chromium [23], a framework that was
originally designed for distributed rendering on clusters.
Chromium uses library preloading to masquerade as the
system’s native GL driver and intercept all GL calls made
by an application. GL primitives are then forwarded over
the network to a rendering module running on the user’s
desktop, where they are rendered directly by the locally
available 3D graphics acceleration hardware. This solution
differs from other systems that also virtualize the OpenGL

VNC Server
Standard AppChromium

GL App

Direct Rendering
VNC Extension

Combined VNC Viewer

VNC Updates
Network GL Commands

VNC Updates

Network

User
Input

Agent User’s Desktop

Using VNC as an example, this figure shows how 3D-
intensive applications running within an agent can benefit
from hardware acceleration found on a user’s desktop.

Figure 4: Thin client extensions for 3D support

API [20] as it does not require application modification and
can support agent migration.

The architecture of our integrated rendering system
is shown in Figure 4. GL-primitives from applications
launched with Chromium bypass the thin client server, and
are rendered using GPU hardware on the client-side. Stan-
dard applications using non-3D APIs (e.g. Xlib) are ren-
dered by the thin client server on its virtual framebuffer
and shipped to the viewer. A modified thin client viewer
composes both streams and offers a combined image to the
user. Input events are handled entirely by the thin client
protocol.

3.5 Sensor-Driven Migration Manager

System-controlled agent relocation is a key requirement of
dimorphic computing. In other words, the decision to mi-
grate, the choice of migration site, and the collection of
information upon which to base these decisions should all
happen under the covers in a manner that is transparent
to the user and to the agent. We implement this require-
ment in AgentISR through amigration managermodule.
This module bases its migration decisions onperformance
sensorsthat extract relevant data from the VMM and the
AgentISR user interface.Migration profilesexpress the
rules for migration as transitions of a finite state machine
triggered by sensor readings. AgentISR’s clean separation
between policy and mechanism welcomes the use of differ-
ent profiles, different sensors, or even migration managers
based on completely different principles.

3.5.1 Performance Sensors

Our implementation currently provides performance sen-
sors forCPU utilization, network utilization, interaction
intensity,and interaction smoothness.The CPU and net-
work sensors periodically poll the VMM for CPU and net-
work usage by a particular agent. The poll interval is con-
figurable and has a default value of one second.

The interaction sensor is built into our enhanced thin
client viewer. As shown in Figure 5, it collects a stream
of time-stamped events corresponding to keyboard/mouse
inputs and screen updates. The intensity of the user’s inter-

5

t 1

Update 1 Update 3Update 2i i+1

t 2 t 3

Total Response Time (T)

This timeline shows the raw output of the interactivity
sensor. Screen updates Update1−3 are assumed to be
causally related to the mouse input event Inputi . The re-
sulting FPS is 3/T.

Figure 5: Measuring Interaction Intensity and Smoothness

active demand and the smoothness of the agent’s response
can both be inferred from this stream.

Our measure ofinteraction intensityis the number of
input events per unit time. Our measure ofinteraction
smoothnessis the number of frames per second triggered
by an input event. This metric can be derived by assum-
ing that all screen updates are causally related to the old-
est outstanding input event. The frames per second (FPS)
triggered by that input event is thus the number of related
screen updates divided by the time from the event to the
last of those updates. The FPS metric reflects the smooth-
ness of an interactive response. Because most thin-client
algorithms are non-work-conserving, they skip frames un-
der adverse network conditions to “catch up” with the in-
put. These low-FPS responses result in jerky on-screen
tracking of mouse and keyboard inputs that can be an-
noying and distracting. We thus quantify the interaction
smoothness of an event window as the average FPS yielded
by all the inputs in that window. High interaction intensity
combined with low interaction smoothness is the cue used
by the migration manager to trigger a thin-to-thick transi-
tion.

3.5.2 Migration Profiles

A migration profile defines a finite state machine that is
used to model the agent’s behavior. As shown in Figure 6,
each state in this machine characterizes a particular level
of resource demand and/or interaction. The state transition
rules define when and how sensor readings should trigger
state transitions. The profile also specifies the amount of
past sensor information that should be used to evaluate the
rules. Each state defines an optimal execution site.

Profile creation involves a characterization of an agent’s
resource usage and may be done by application developers
or by third-parties such as user groups, administrators, or
technically adept users. In the absence of an agent-specific
profile, the migration manager uses a default profile that
identifies typical crunch and cognitive phases. In the fu-
ture, we plan to study the use of machine learning tech-
niques to automate the generation of migration profiles.
While we did not experience any “state-thrashing” phe-
nomena (an agent transitioning back and forth between two

CPU
Intensive
cycles.org

Network
Intensive
 data.edu

Interaction
Intensive
usr.home

Net > 4 Mbit/s

CPU > 90%

FPS < 10 & Input > 15

Net > 4 Mbit/s

FPS < 10
&

Input > 15

Partial diagram of agent states and transitions. Each state
includes its matching migration target (in boldface.)

Figure 6: Finite State Machine of Agent States

Application Domain Source
Maya Digital Animation Closed

QuakeViz Simulation Visualization Open
ADF Quantum Chemistry Closed

Kmenc15 Video Editing Open

Table 3: Application characteristics

states), traditional hysteresis mechanisms [39] can shield
the migration manager from adopting this erratic behavior.

4 Experimental Methodology

In this section, we present the methodology for the evalu-
ation of AgentISR’s performance. To demonstrate the ap-
plicability of dimorphic computing to a broad set of ap-
plication domains, we carried out experiments with four
applications, summarized in Table 3. The applications
include both open source as well as commercial closed
source products, and are representative of the domains of
professional 3D animation, amateur video production, and
scientific computing. For each application, we designed a
representative benchmark that includes both a crunch and
a cognitive phase.

In the rest of this section, we first describe our applica-
tions and the corresponding benchmarks. We then describe
the tool we implemented to enable consistent and repeat-
able replay of interactive user sessions. This is followed by
a description of the experimental testbed and methodology.

4.1 Application Benchmarks

4.1.1 Maya: Digital Animation

Maya [34] is a commercial close source high-end 3D
graphics animation package used for character modeling,
animation, digital effects, and production-quality render-
ing. It is an industry standard and has been employed in
several major motion pictures, such as “Lord of the Rings,”
“War of the Worlds,” and “The Chronicles of Narnia.”

6

(a) Maya: Character modeling (b) QuakeViz: Ground motion isosurface

(d) ADF: Energy density for an amino acid molecule (c) Kmenc15: Video Editing

Figure 7: Application Screenshots

Our benchmark consists of a user loading a partially-
complete animation project and completing it. The cog-
nitive phase, which lasts for approximately 29 minutes,
consists of specifying the degrees of freedom and motion
bounds for the joints of a digital cowboy character (see
Figure 7(a)), tweaking the character’s skeleton to obtain
desired intermediate positions, and scripting so that pat-
terns of movement are rhythmically repeated. As part of
this phase, the user periodically visualizes a low-fidelity
preview of the animation.

When the animation design is complete, the user initi-
ates a production-quality rendering, i.e., the crunch phase.
This is a CPU intensive task as each photo-realistic frame
is rendered with a number of lighting effects. The end-
result is a collection of frames that can be encoded in any
movie format.

4.1.2 QuakeViz: Simulation Visualization

QuakeViz is an interactive earthquake simulation visu-
alizer. Our benchmark consists of the visualization of
a 1.9 GB volumetric dataset depicting 12 seconds of
ground motion around a seismic source in the Los An-
geles Basin [2]. During a computationally intense crunch

phase, QuakeViz mines the dataset to extract ground mo-
tion isosurfaces: surfaces inside the volume for which all
points are moving in the same direction and at the same
speed. The result is a set of triangular meshes representing
an isosurface at successive points in time. A series of trans-
formations including decimation, smoothing, and normals
calculation, are then applied to generate a more visually
appealing result. QuakeViz is the only application we use
that accesses a remote dataset.

In the ensuing cognitive phase, the scene is synthe-
sized and the meshes are rendered on the screen (see Fig-
ure 7(b)). During this phase, the user examines the ren-
dered isosurfaces by zooming, rotating, panning, or mov-
ing forwards or backwards in time. The cognitive phase
of the benchmark last for approximately 23 minutes, and
involves exploration of the seismic reaction isosurfaces at
30 different time-steps. The results shown in Figure 1 were
obtained from a segment of QuakeViz benchmark’s cogni-
tive phase.

4.1.3 ADF: Quantum Chemistry

Amsterdam Density Functional (ADF) [49] is a commer-
cial closed-source tool, used by scientists and engineers to

7

model and explore properties of molecular structures. In
the ADF benchmark, the crunch phase consists of perform-
ing a geometry optimization of the threonine amino-acid
molecule, using the Self-Consistent Field (SCF) calcula-
tion method.

The CPU intensive SCF calculation generates a set of
results that are visualized in a subsequent cognitive phase:
isosurfaces for the Coulomb potential, occupied electron
orbitals, and cut-planes of kinetic energy density and other
properties (see Figure 7(c)). Analysis of these properties
through rotation, zooming, or panning, are examples of
the actions performed during the 26 minutes-long cogni-
tive phase.

4.1.4 Kmenc15: Video Editing

Kmenc15 (KDE Media Encoder) [28] is an open-source
digital editor for amateur video post production. Users
can cut and paste portions of video and audio, and apply
artistic effects such as blurring or fadeouts. Kmenc15 can
process AVI/MPEG-1 encoded video, and can export com-
posite movies to a number of formats.

In the cognitive phase of our benchmark, we load a
210 MB video of a group picnic and split it into four
episodes (see Figure 7(d)). We then edit each episode by
cropping and re-arranging portions of the recording and
adding filters and effects. In all, the cognitive phase takes
approximately 15 minutes. The user then starts the crunch
phase by converting to MPEG-4 format all four edited
episodes. As Kmenc15 can convert the four episodes si-
multaneously, significant gains can be obtained from exe-
cuting at a multiprocessor.

4.2 Interactive Session Replay

One of the challenges in evaluating interactive perfor-
mance is the reliable replay of user sessions. To address
this problem, we developedVNC-Redux, a tool based on
the VNC protocol that records and replays interactive user
sessions. During the session record phase, VNC-Redux
generates a timestamped trace of all user keyboard and
mouse input. In addition, before every mouse button click
or release, VNC-Redux also records a snapshot of the
screen area around the mouse pointer. During replay, the
events in the trace are replayed at the appropriate times.
To ensure consistent replay, before replaying mouse button
events the screen state is compared against the previously
captured screen snapshot. While VNC, like most other thin
client protocols, is non work-conserving and can skip in-
termediate frame updates on slow connections, the client
always reaches a stable and similar (albeit not always iden-
tical) state for a given input. This enables screen synchro-
nization to succeed and ultimately, given an identical initial
application state, allows for reliable replay of the recorded
interactive session.

Compute
Server

Storage
Server User Desktop

LAN
Emulated

WAN

Figure 8: Experimental Testbed

Unfortunately, the simple screen synchronization algo-
rithms used by other replay tools [44, 57] do not work
well in high-latency environments. These tools perform
a strict per-pixel comparison with a threshold that speci-
fies the maximum number of pixel mismatches allowed.
Something as simple as a mouse button release being de-
layed by a few milliseconds due to network jitter can cause
a 3D object’s position to be offset by a single pixel. In turn,
this offset causes the algorithm to detect a large number of
mismatches.

To address this problem, we use an algorithm based on
Manhattan distances to estimate image “closeness”. For
two pixels in the RGB space, the Manhattan distance is
the sum of the absolute differences of the corresponding
R, G, and B values. If a pixel’s Manhattan distance from
the original pixel captured during record is greater than a
given threshold, it is classified as a mismatch. If the num-
ber of mismatches are greater than a second threshold, the
screenshots being compared are declared to be different.
This improved matching algorithm proved to work well in
practice over high latency networks.

4.3 Experimental Testbed

Figure 8 shows our experimental testbed, which consists
of a user desktop, a compute server, and a storage server.
The user desktop was a commodity 3.6 GHz Intel Pentium
IV equipped with an ATI Radeon X600 Graphics Proces-
sor Unit (GPU). The compute server was a four-way SMP
(two dual-threaded cores) 3.6 GHz Intel Xeon. The stor-
age server was a commodity PC that serves QuakeViz’s
dataset through a NFS share1. The storage and compute
servers were connected via a gigabit LAN.

We used a paravirtualized 2.6.12 Linux kernel for the
AgentISR experiments and Fedora’s 2.6.12 Linux kernel
for the non-AgentISR experiments. Both kernels were
configured with 512 MB of RAM. AgentISR uses HPN-
SSH [40], a WAN-optimized transport, for all of its data
transfers.

The user desktop communicated with the storage and
compute servers through a WAN link emulated using
NetEm [21]. Based on recent Internet bandwidth measure-
ments on Planetlab [31] and Abilene [24], and representa-
tive latencies from NLANR [35], we configured the WAN
link with a bandwidth of 100 Mbit/s and chose network
round-trip times of 33, 66, and 100 ms.

1Note that QuakeViz uses NFS only for the dataset. The virtual disk
is still supported by WANDisk.

8

4.4 Benchmark Methodology

We replayed our benchmarks using the following three
configurations:

Thick Client: The application executes exclusively on
the user’s desktop without virtualization. During inter-
active phases, 3D graphics are rendered using the locally
available GPU. This represents the best scenario for the
cognitive phase, but the worst case for the crunch phase.

Thin Client: The applications executes exclusively in an
unvirtualized environment on the SMP compute server. As
all user interaction takes place over a standard VNC thin
client, 3D rendering on the remote server is software based.
This represents the best scenario for the crunch phase, but
the worst case for the cognitive phase.

Dimorphic Client: AgentISR is employed to dynami-
cally switch client thickness as appropriate. Both the user’s
desktop and remote compute server run the AgentISR in-
frastructure: Xen VMM, WANDisk, the enhanced agent
GUI, and the migration manager. All benchmarks are ini-
tiated in an agent running at the user’s desktop. We were
able to use a single generic application profile for all of our
experiments.

The objectives of the thin and thick client experiments
were to provide bounds for the crunch and interactive
performance of our target applications on this testbed.
We quantify theperformanceandoverheadof AgentISR
against these bounds. AgentISR’s ability to provide a
transparentandseamlessuser experience is measured by
the agility of its automated migration mechanisms.

5 Results

This section present the results of our experiments with
the four benchmarks introduced in Section 4.1. All bench-
marks include a cognitive and a crunch phase. In Maya and
Kmenc15, the cognitive phase precedes the crunch phase,
whereas in QuakeViz and ADF, the cognitive phase follows
the crunch phase.

5.1 Crunch Phase

Figure 9 shows the total completion time of the crunch
phase for the four benchmarks under three configurations:
thin, thick and AgentISR. We only show results for dif-
ferent network round trip latencies for AgentISR, as the
performance of the crunch phase for the thin and thick
client configurations was not affected by differences in the
network round trip times. This was expected for Maya,
ADF, and Kmenc15, which do not access remote data in
thick client configuration. However, we expected that dif-
ferences in network latency would affect the performance

45 46

67

22

97

10
7

12
6

43

50

59

75

24

51

61

77

24

52

63

80

24

0

20

40

60

80

100

120

140

Maya QuakeViz ADF Kmenc15

Application

Ti
m

e
(M

in
ut

es
)

Thin
Thick
AgentISR.33
AgentISR.66
AgentISR.100

This figure shows the crunch completion time for Thin,
Thick, and AgentISR clients. AgentISR was evaluated at
the 3 different WAN latencies. Results are the mean of
three trials; maximum standard deviation was 2% of the
corresponding mean.

Figure 9: Total Completion Time - Crunch Phase

of QuakeViz, which reads a single 1.9 GB file over NFS.
It appears that the NFS client’s readahead functionality ef-
fectively masked the impact from increased latency.

By migrating to the remote compute server, AgentISR
is able to significantly outperform the thick client con-
figuration. Specifically, at 33 ms, AgentISR reduced the
length of the crunch phase for Maya, QuakeViz, ADF,
and Kmenc15, by 49%, 44%, 41%, and 45%, respectively.
Moreover, it came within 29% of the performance of the
thin client configurations for all benchmarks. The crunch
phases of all the benchmarks are CPU intensive and bene-
fit from the increased computational power of the multi-
processor server. QuakeViz also takes advantage of the
lower latency and increased bandwidth connection to the
data server.

Table 4 show the time it takes the migration manager
to detect the transition into the crunch phase, and the time
it takes to migrate the agent over to the remote compute
server. The maximum time taken by the migration man-
ager was 14 seconds. Further, even with the worst-case la-
tency of 100 ms, agent migration never took more than 70
seconds to complete. In all cases, the agent spent less than
2 minutes on the user’s desktop after it entered a crunch
phase. The Table also shows that, for agent migration, the
maximum time for which an agent would appear to be un-
responsive to user input was very small and always less
than 7 seconds.

5.2 Cognitive Phase

Figure 10 shows the Cumulative Distribution Functions
(CDFs) of the number of frames per second (FPS) for each
of our four benchmarks under three configurations: thin,
thick, and AgentISR. We show results for different net-
work round trip latencies for the thin client and AgentISR
configurations. The cognitive phases for QuakeViz and

9

Time (seconds)
Best Latency = 33 ms Latency = 66 ms Latency = 100 ms

Application AgentISR Detect Migrate Suspend Detect Migrate Suspend Detect Migrate Suspend
Maya 2977 10.8 61.2 5.1 10.8 62.2 5.4 11.5 67.0 6.1

QuakeViz 3565 8.1 64.2 5.6 8.1 64.9 5.9 8.1 68.1 6.4
ADF 4478 12.5 63.3 5.5 11.5 61.0 5.4 13.1 65.2 6.8

Kmenc15 1424 8.1 51.8 4.7 9.1 54.0 5.7 8.4 59.5 6.7

The AgentISR column measures the best observed crunch time for AgentISR.. The Detect, Migrate, and Suspend
columns measures the time taken by the migration manager to detect the transition to a crunch phase, time spent in
live migration, and the time the agent was suspended for migration to complete. Results are the mean of three trials;
maximum standard deviation for Detect, Migrate, and Suspend was 22%, 3%, and 11% of the corresponding means.

Table 4: Crunch Phase - Agent Migration Times

Time (seconds)
Latency = 33 ms Latency = 66 ms Latency = 100 ms

Application Detect Migrate Suspend Detect Migrate Suspend Detect Migrate Suspend
Maya Not Relevant

QuakeViz 10.8 52.9 4.2 11.5 55.6 5.2 11.5 57.2 7.0
ADF 16.3 58.2 4.6 10.2 63.8 6.0 10.2 62.4 7.2

Kmenc15 Not Relevant

The Detect, Migrate, and Suspend columns measures the time taken by the migration manager to detect the transition
to a crunch phase, time spent in live migration, and the time the agent was suspended for migration to complete. Maya
and Kmenc15 results are not relevant as they begin interaction in thick client mode and do not need to migrate. Results
are the mean of three trials; maximum standard deviation for Detect, Migrate and Suspend was 2%, 1%, and 12% of
the corresponding means.

Table 5: Cognitive Phase - Agent Migration Times

ADF start on the remote compute server soon after the
crunch phase terminates. The migration manager detects
this transition and migrates promptly back to the user’s
desktop. On the other hand, the cognitive phase of Maya
and Kmenc15 start with the agent already running on the
user’s desktop.

Our results show that AgentISR performs much better
than thin clients for both the median (50th percentile) and
the 95th percentile cases. For Maya, Figure 10 (a) shows
that, in the median case, AgentISR delivers 3.9 times more
FPS than a thin client at 33 ms latency and 4.7 times more
FPS at 100 ms latency. The results are similar for the 95th

percentile where AgentISR delivers between 2.8 and 3.8
times more FPS. The results for Kmenc15 are similar.

Results from the QuakeViz benchmark, seen in Fig-
ure 10 (b), show that even though the agent has to migrate
from the compute server to the user’s desktop, AgentISR’s
cognitive performance tends to be independent of the WAN
latency. As Table 5 shows, this occurs because both the
time taken before the decision to migrate is made and the
time required to migrate the agent are independent of the
network latency. In the median case, AgentISR delivers
2.7 to 4.3 times more FPS for the 33 and 100 ms latency
cases respectively. In the 95th percentile case, it delivers
3.0 to 4.8 times more FPS for the 33 and 100 ms latency
cases respectively.

The results from the ADF benchmark are almost iden-
tical to the QuakeViz results. However, it is interesting
to note that it takes the migration manager slightly longer

to invoke migration for ADF in the 33 ms case. This is
because the thin client, at 33 ms, delivers adequate per-
formance during the initial ramp-up part of the cognitive
phase.

While AgentISR delivers a much better user experience
that thin clients, the results show the FPS delivered are not
as high as those of thick clients. Thick clients delivered
anywhere between 1.1 to 2.6 times more FPS in the me-
dian case and between 1.3 to 2.2 times more FPS in the
95th percentile case. This difference is not a fundamen-
tal limitation of dimorphic computing but instead an arti-
fact of the OpenGL virtualization described in Section 3.4.
Chromium, the software used to intercept OpenGL calls,
proved to be very CPU intensive. Adding another CPU
core to the user’s desktop or optimizing Chromium’s im-
plementation would bring AgentISR’s performance much
closer to that of an unvirtualized thick client. Further, un-
like thin clients, the median number of FPS delivered by
AgentISR is above the long established 20 FPS threshold
needed for crisp interactivity [1].

6 Discussion and Future Work

The results presented in Section 5 confirm the feasibility
and value of dimorphic computing for some real-world ap-
plications. It is important to note that none of these ap-
plications were written by us, or modified for use with
AgentISR. Two of the applications (Maya and ADF) are

10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

C
D

F

Smoothness (Frames Per Second)

Thin AgentISR Thick

Thin - 100ms
Thin - 66ms
Thin - 33ms

AgentISR
Thick

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

C
D

F

Smoothness (Frames Per Second)

Thin AgentISR Thick

Thin - 100ms
Thin - 66ms
Thin - 33ms

AgentISR - 100ms
AgentISR - 66ms
AgentISR - 33ms

Thick

(a) Maya (b) Quake

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

C
D

F

Smoothness (Frames Per Second)

Thin AgentISR Thick

Thin - 100ms
Thin - 66ms
Thin - 33ms

AgentISR - 100ms
AgentISR - 66ms
AgentISR - 33ms

Thick
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

C
D

F

Smoothness (Frames Per Second)

Thin

AgentISR

Thick

Thin - 100ms
Thin - 66ms
Thin - 33ms

AgentISR
Thick

(c) ADF (d) Kmenc15

This figure shows the distribution of interactive responses for the cognitive phases of Maya, Quake, ADF, and Kmenc15.
AgentISR results for Maya and Kmenc15 are independent of latency as they begin interaction in thick client mode and
do not need to migrate.

Figure 10: Interactive Response

commercial products whose viability in the marketplace
confirms their importance. The other two applications
(Quake and Kmenc15) have substantial open source user
communities. All four are representative of a growing class
of applications that embody distinct crunch and cognitive
phases. An important aspect of our future work will be the
identification of other application domains that can benefit
from dimorphic computing.

The key figure of merit for an implementation of dimor-
phic computing isagility. This includes both the swift-
ness with which migration can be triggered, and the ef-
ficiency with which it can be completed. A complemen-
tary attribute isstability,which characterizes the ability of
the implementation to resist frivolous migrations that may
lead to thrashing. It is well known from control theory
that agility and stability are two sides of the same coin,
and have to be considered together in the design of an
adaptive system. Our current implementation has reason-
able agility. Detection and change of modality occurs in

roughly 10 seconds, while the migration that follows typi-
cally takes about 60 seconds. Since we have not observed
any instances of thrashing, we infer that the stability of our
prototype is reasonable for the tested applications.

Improving agility would broaden the class of applica-
tions for which AgentISR is attractive. A highly agile im-
plementation would enable applications with short crunch
times to benefit from AgentISR. It would also allow them
to take advantage of remote resources that only offer mod-
est crunch speedup. The combination of short crunch time
and modest crunch speedup defines a particularly challeng-
ing workload for AgentISR. To improve its ability to han-
dle such workloads we are exploring the use of prefetching
WANDisk chunks as well as improvements to the CPU,
network, and interaction sensors.

AgentISR’s agility in cognitive phases is already accept-
able for many applications. Even under extreme network-
ing conditions in which thin client execution is frustrating,
a user can be confident that the client will morph into a

11

thick client within roughly a minute. However, interactive
performance under these conditions is noticeably poorer
than that of a thick client even though it is much better
than that of a thin client. We plan to address this by signif-
icantly streamlining the combined Chromium-VNC stack,
and thus removing several sources of processing overhead
and latency.

In the recent past, PlanetLab [37] has emerged as a
widely-used computing infrastructure that offers an ap-
plication multiple vantage points on the Internet. It is
thus ready to catalyze the growth of dimorphic comput-
ing. By migrating to a PlanetLab node that is close to a
large dataset on the Internet, AgentISR can potentially im-
prove crunch phase performance. We plan to explore this
symbiotic relationship between dimorphic computing and
PlanetLab in our future work.

7 Related Work

Closest in spirit to AgentISR is the large body of research
on process migration. However, as described in Sec-
tion 2.3, process migration is a brittle abstraction: it breaks
easily, and long-term maintenance of machines with sup-
port for process migration requires excessive effort. In con-
trast, AgentISR requires no host operating system changes,
and builds on the very stable and rarely-changing inter-
face to hardware provided by its virtual machine moni-
tor (VMM). As long as the VMM can be easily deployed,
so too can AgentISR. The myriad interfaces that must be
preserved during migration are part of the guest OS, and
so the code implementing these interfaces is transported
with the application. This stability of interfaces comes at
a price. The VM approach of AgentISR involves a much
larger amount of state than process migration. Fortunately,
much of this state rarely changes and can therefore be per-
sistently cached at potential destinations.

Language-based code mobilityis another well-explored
approach to moving computation. The best early exam-
ple of work in this genre is Emerald [26]. A more recent
example isone.world[18]. The growth in popularity of
Java and its support forremote method invocation[38] has
made this approach feasible and relevant to a wide range
of computing environments. Unfortunately, this approach
does not work for legacy applications that were not writ-
ten in the specified language. In contrast, AgentISR does
not require applications to be written in any particular lan-
guage, and even the internal structure of the application
is unconstrained. For example, the application can be a
single monolithic process, or it can be a tool chain with
scripts that glue the chain together. The crunch phase can
have further fine structure, such as the use of multiple large
datasets each of which is located at a different Internet site.

Grid computing toolkitssuch as Globus [14], Con-
dor [50], and OGSA [15] are widely used by the scientific

computing community today. While there is considerable
variation in the functionality provided by each toolkit, a
representative sample includes finding idle machines, au-
thenticating and logging in users, remotely executing an
application on a machine, transferring results from one ma-
chine to another, checkpointing and restarting applications,
and so on. A developer typically constructs a script or
wrapper application that uses one of the above toolkits to
chain together a sequence of individual computations and
data transfers across a collection of machines. AgentISR
complements the functionality provided by these toolkits.
It transforms a single monolithic application into an en-
tity that can be easily migrated under toolkit control. More
recently, the use of VMs has also been advocated for the
Grid [13, 27, 48]. The closest work in this area, from the
Virtuoso project [32], focuses on resource scheduling for
interactive VMs running on a single host.

Researchers have developed a number of systems that
support distributed visualization of large remote datasets.
Examples include Dv [33], GVU [10], Visapult [6],
SciRun [36], and Cactus [17]. Unlike AgentISR, these
tools require their applications to be written to a particu-
lar interface and are therefore useful only when application
source code is available.

From a broader perspective, AgentISR was inspired by
the substantial body of recent work on applying VM tech-
nology to a wide range of systems problems [8, 12, 45].
The Internet Suspend/Resume (ISR) project [29, 46] has
been the most direct influence, and this ancestry is reflected
in the similarity of names.

8 Conclusion

We showed that thin and thick clients fail on their own
to optimize the performance of a growing class of appli-
cations that alternate between a resource-intensivecrunch
phase that involves significant processing, and acognitive
phase that is intensely interactive. Examples of these appli-
cations include computer animation and video editing, sci-
entific visualization of complex physical phenomena, and
computer-aided drug design.

We introduceddimorphic computinga new computa-
tional model that combines the strengths of thin and thick
clients, without having their limitations. During the ap-
plication’s crunch phase, the dimorphic client behaves like
a thin client, taking advantage of remote resources such
as compute servers and large datasets. During the cogni-
tive phase, the dimorphic client behaves like a thick client
and takes advantage of local graphical hardware accelera-
tion to provide crisp interactive performance. Transitions
are transparent and seamless to the user, who experiences
good performance at all times.

We described the implementation of AgentISR, a dimor-
phic computing prototype that uses virtual machine migra-

12

tion to move application execution state between hosts. In
experiments with open as well as close-source commercial
applications, AgentISR achieves interactive performance
that far exceeds that achievable by a thin client, while its
crunch phase performance is significantly better than that
obtained through thick client execution. AgentISR suc-
cessfully detected application transitions between crunch
and cognitive phases, and automatically morphed to the
most appropriate thin or thick client mode.

Acknowledgments

We would like to thank Nilton Bila, Angela Demke Brown,
Debabrata Dash, Jan Harkes, Jing Su, and Alex Varshavsky
for their feedback on early versions of this paper. We
would also like to thank Beatriz Irigoyen for her help with
ADF, Julio Lopez for his help with QuakeViz, Brian Paul
for his help with Chromium, and Karan Singh for his help
with Maya.

References
[1] J. M. Airey, J. H. Rohlf, and J. Frederick P. Brooks. Towards image

realism with interactive update rates in complex virtual building en-
vironments. InSI3D ’90: Proc. 1990 Symposium on Interactive 3D
Graphics, pages 41–50, Snowbird, UT, 1990.

[2] V. Akcelik, J. Bielak, G. Biros, I. Epanomeritakis, A. Fernandez,
O. Ghattas, E. J. Kim, J. Lopez, D. O’Hallaron, T. Tu, and J. Ur-
banic. High resolution forward and inverse earthquake modeling
on terasacale computers. InProc. ACM/IEEE conference on Super-
computing, Phoenix, AZ, Nov. 2003.

[3] Artsy, Y., Finkel, R. Designing a Process Migration Facility: The
Charlotte Experience.IEEE Computer, 22(9):47–56, 1989.

[4] Baratto, R., Potter, S., Su, G., Nieh, J. MobiDesk:Virtual Desktop
Computing. InProc. 10th Annual ACM International Conference on
Mobile Computing and Networking, Philadelphia, PA, Sept. 2004.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of vir-
tualization. InProc. 19th ACM Symposium on Operating Systems
Principles (SOSP), pages 164–177, Bolton Landing, NY, Oct. 2003.

[6] W. Bethel. Visapult: A prototype remote and distributed visual-
ization application and framework. InProc. SIGGRAPH Annual
Conference, New Orleans, LA, July 2000.

[7] P. J. Braam. The lustre storage architecture, Nov. 2002.http:
//www.lustre.org/docs/lustre.pdf .

[8] R. Chandra, N. Zeldovich, C. Sapuntzakis, and M. S. Lam. The
Collective: A Cache-Based System Management Architecture. In
Proc. 2nd Symposium on Networked Systems Design & Implemen-
tation (NSDI), Boston, MA, 2005.

[9] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines. In
Proc. 2nd USENIX Symposium on Networked Systems Design and
Implementation (NSDI), Boston, MA, May 2005.

[10] K. Czajkowski, M. Thiebaux, and C. Kesselman. Practical resource
management for grid-based visual exploration. InProc. IEEE Inter-
national Symposium on High-Performance Distributed Computing
(HPDC), San Francisco, Aug. 2001.

[11] F. Douglis and J. Ousterhout. Transparent Process Migration: De-
sign Alternatives and the Sprite Implementation.Software Practice
and Experience, 21(8):1–27, 1991.

[12] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen.
Revirt: enabling intrusion analysis through virtual-machine logging
and replay. InProc. 5th Symposium on Operating Systems Design
and Implementation (OSDI), Boston, MA, Dec. 2002.

[13] R. J. Figueiredo, P. A. Dinda, and J. A. B. Fortes. A case for grid
computing on virtual machines. InProc. 23rd International Con-
ference on Distributed Computing Systems (ICDCS ’03), page 550,
Providence, RI, 2003.

[14] I. Foster and C. Kesselman. Globus: A metacomputing infrastruc-
ture toolkit. The International Journal of Supercomputer Applica-
tions and High Performance Computing, 11(2):115–128, Summer
1997.

[15] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The physiol-
ogy of the grid: An open grid services architecture for distributed
systems integration, June 2002.http://www.globus.org/
alliance/publications/papers/ogsa.pdf .

[16] Goldberg, R.P. Survey of Virtual Machine Research.IEEE Com-
puter, 7(6), June 1974.

[17] T. Goodale, G. Allen, G. Lanfermann, J. Masso, T. Radke, E. Sei-
del, and J. Shalf. The cactus framework and toolkit: Design and
applications. InVector and Parallel Processing - VECPAR ’2002,
5th International Conference. Springer, 2003.

[18] Grimm, R., Davis, J., Lemar, E., Macbeth, A., Swanson, S., An-
derson, T., Bershad, B., Borriello, G., Gribble, S., Wetherall, D.
System Support for Pervasive Applications.ACM Transactions on
Computer Systems, 22(4):421–486, 2004.

[19] L. Grinzo. Getting Virtual with VMware 2.0.Linux Magazine, June
2000.

[20] J. G. Hansen. Blink: 3d multiplexing for virtualized applications.
Technical Report 06-06, Dept. of Computer Science, University of
Copenhagen, Apr. 2006.

[21] S. Hemminger. Netem - emulating real networks in the lab. InProc.
Linux Conference Australia, Canberra, Australia, April 2005.

[22] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan,
R. Sidebotham, and M. West. Scale and performance in a distributed
file system.ACM Transactions on Computer Systems, 6(1), Febru-
ary 1988.

[23] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D.
Kirchner, and J. T. Klosowski. Chromium: a stream-processing
framework for interactive rendering on clusters. InProc. 29th
Annual Conference on Computer Graphics and Interactive Tech-
niques, pages 693–702, New York, NY, USA, 2002.

[24] Abilene Weathermap. Indiana University Global Network Opera-
tions Center, Apr. 2006.http://weathermap.grnoc.iu.
edu/abilene_jpg.html , Correct as of 7th April 2006.

[25] N. R. Jennings and M. J. W. (Editors).Agent Technology: Founda-
tions, Applications and Markets. Springer-Verlag, 2002.

[26] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility
in the emerald system.ACM Transactions on Computer Systems, 6
(1):109–133, 1988.

[27] K. Keahey, I. Foster, T. Freeman, X. Zhang, and D. Galron. Virtual
workspaces in the grid.Lecture Notes in Computer Science, 3648:
421–431, Aug. 2005.

[28] Kmenc15.http://kmenc15.sourceforge.net/ .

[29] M. Kozuch and M. Satyanarayanan. Internet suspend/resume. In
Proc. Fourth IEEE Workshop on Mobile Computing Systems and
Applications, Callicoon, New York, June 2002.

[30] Lai, A., Nieh, J. Limits of Wide-Area Thin-Client Computing. In
Proc. ACM SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems, Marina Del Rey, CA,
June 2002.

[31] S.-J. Lee, P. Sharma, S. Banerjee, S. Basu, and R. Fonseca. Mea-
suring bandwidth between planetlab host. InProc. 6th Passive and
Active Measurement Workshop (PAM), Boston, MA, Mar. 2005.

[32] B. Lin and P. Dinda. Vsched: Mixing batch and interactive virtual

13

http://www.lustre.org/docs/lustre.pdf
http://www.lustre.org/docs/lustre.pdf
http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://weathermap.grnoc.iu.edu/abilene_jpg.html
http://weathermap.grnoc.iu.edu/abilene_jpg.html
http://kmenc15.sourceforge.net/

machines using periodic real-time scheduling. InProc. ACM/IEEE
Conference on High Performance Networking and Computing (SC
2005), Seattle, WA, Nov. 2005.

[33] J. López and D. O’Hallaron. Evaluation of a resource selection
mechanism for complex network services. InProc. IEEE Inter-
national Symposium on High-Performance Distributed Computing
(HPDC), San Francisco, CA, Aug. 2001.

[34] Maya. http://www.autodesk.com/maya .

[35] RTT And Loss Measurements. National Laboratory for Applied Net-
work Research (NLANR), Apr. 2006.http://watt.nlanr.
net/active/maps/ampmap_active.php .

[36] S. Parker and C. Johnson. Scirun: A scientific programming envi-
ronment for computational steering. InProc. ACM/IEEE conference
on Supercomputing, San Diego, CA, Dec. 1995.

[37] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint
for introducing disruptive technology into the internet.SIGCOMM
Computing and Communication Review, 33(1), 2003.

[38] Pitt, E., McNiff, K. java.rmi: The Remote Method Invocation
Guide. Addison-Wesley Professional, 2001.

[39] M. L. Powell and B. P. Miller. Process migration in demos/mp.
In Proc. 9th ACM Symposium on Operating Systems Principles
(SOSP), Oct. 1983.

[40] C. Rapier and M. Stevens. High Performance SSH/SCP - HPN-
SSH, http://www.psc.edu/networking/projects/
hpn-ssh/ .

[41] Ricardo A. Baratto and Jason Nieh and Leo Kim. THINC: A Re-
mote Display Architecture for Thin-Client Computing. InProc.
20th ACM Symposium on Operating Systems Principles (SOSP),
Brighton, UK, Oct. 2005.

[42] Richardson, T., Stafford-Fraser, Q., Wood, K. R., and Hopper, A.
Virtual Network Computing. IEEE Internet Computing, 2(1):33–
38, Jan/Feb 1998.

[43] Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., Lyon, B. De-
sign and Implementation of the Sun Network File System. InSum-
mer Usenix Conference Proceedings, Portland, OR, June 1985.

[44] H. Sandklef. Testing Applications with Xnee.Linux Journal, 2004
(117):5, 2004. ISSN 1075-3583.

[45] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and
M. Rosenblum. Optimizing the migration of virtual computers. In
Proc. 5th Symposium on Operating Systems Design and Implemen-
tation (OSDI), Dec. 2002.

[46] M. Satyanarayanan, M. A. Kozuch, C. J. Helfrich, and D. R.
O’Hallaron. Towards seamless mobility on pervasive hardware.
Pervasive and Mobile Computing, 1(2):157–189, 2005.

[47] Satyanarayanan, M. The evolution of coda.ACM Transactions on
Computer Systems, 20(2), May 2002.

[48] A. I. Sundararaj and P. A. Dinda. Towards virtual networks for
virtual machine grid computing. InProc. 3rd Virtual Machine Re-
search and Technology Symposium, pages 177–190, San Jose, CA,
May 2004.

[49] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. F. Guerra, S. J. A.
van Gisbergen, J. G. Snijders, and T. Ziegler. Chemistry with ADF.
Journal of Computational Chemistry, 22(9):931–967, 2001.

[50] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in
practice: The condor experience.Concurrency and Computation:
Practice and Experience, 17:323–356, February-April 2005.

[51] Theimer, M., Lantz, K., Cheriton, D. Preemptable Remote Execu-
tion Facilities for the V-System. InProc. 10th Symposium on Oper-
ating System Principles (SOSP), Orcas Island, WA, Dec. 1985.

[52] Tolia, N., Andersen, D., Satyanarayanan, M. Quantifying Interac-
tive Experience on Thin Clients.IEEE Computer, 39(3), Mar. 2006.

[53] A. Tridgell and P. Mackerras. The rsync algorithm. Technical
Report TR-CS-96-05, Department of Computer Science, The Aus-
tralian National University, Canberra, Australia, 1996.

[54] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M. Martins,

A. V. Anderson, S. M. Bennett, A. Kägi, F. H. Leung, and L. Smith.
Intel virtualization technology.IEEE Computer, 38(5):48–56, 2005.

[55] Zandy, V.C., Miller, B.P., Livny, M. Process Hijacking. InProc. 8th
International Symposium on High Performance Distributed Com-
puting (HPDC), Redondo Beach, CA, Aug. 1999.

[56] E. Zayas. Attacking the Process Migration Bottleneck. InProc. 11th
ACM Symposium on Operating System Principles (SOSP), Austin,
TX, Nov. 1987.

[57] N. Zeldovich and R. Chandra. Interactive performance measure-
ment with vncplay. InProc. USENIX Annual Technical Conference,
FREENIX Track, Anaheim, CA, Apr. 2005.

14

http://www.autodesk.com/maya
http://watt.nlanr.net/active/maps/ampmap_active.php
http://watt.nlanr.net/active/maps/ampmap_active.php
http://www.psc.edu/networking/projects/hpn-ssh/
http://www.psc.edu/networking/projects/hpn-ssh/

	Introduction
	Origins
	Relevant Applications
	Thick and Thin Clients
	Virtual Machines

	AgentISR
	Agent Abstraction
	Use of Xen
	The WANDisk Storage System
	Unified Graphical User Interface
	Sensor-Driven Migration Manager
	Performance Sensors
	Migration Profiles

	Experimental Methodology
	Application Benchmarks
	Maya: Digital Animation
	QuakeViz: Simulation Visualization
	ADF: Quantum Chemistry
	Kmenc15: Video Editing

	Interactive Session Replay
	Experimental Testbed
	Benchmark Methodology

	Results
	Crunch Phase
	Cognitive Phase

	Discussion and Future Work
	Related Work
	Conclusion

