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Abstract

In the field of cancer biology, there is currently great interest in the development of “targeted ther-
apeutics” that attack specific molecular abnormalities characterizing subsets of cancers. Computa-
tional methods have been essential in identifying subsets of tumors sharing a common molecular
mechanism, making it possible to identify meaningful groupings for targeted therapy. To date,
such approaches have been limited in their ability to infer the specific sequences of molecular
changes, or progression pathways, by which a tumor forms and increases in aggressiveness. In the
present work, we develop computational methods for inferring progression pathways from cell-by-
cell assays. Our methods bypass important limitations of the current approaches by recognizing
and taking advantage of tumor heterogeneity. We define a model for tumor progression and intro-
duce a procedure for cancer phylogenetics based on the inference of likely progression pathways
in individual patients. This procedure is formulated as a set of easily tractable graph problems.
We demonstrate the methods on a set of fluorescence in situ hybridization (FISH) assays, which
measure gene and chromosome gain and loss from a collection of fifty tumor samples. The results
are consistent with prior knowledge about the role of the genes examined in cancer progression,
and they suggest additional features of progression pathways involving the genes studied.





1 Introduction
Recent computational studies have profoundly transformed our understanding of cancer biology.
It has long been understood that cancer is not a single disease, but rather a seemingly innumer-
able collection of possible ways different genetic lesions might uncouple cell growth from normal
controls. Two cancers that appear identical to the clinician might in fact be driven by completely
distinct causes at the molecular level and may therefore have very different optimal treatment reg-
imens and patient outcomes. Computational methods have proven crucial in translating this basic
insight into the practical discoveries. In particular, the application of clustering methods to gene
expression microarray data [5, 22] has been able to identify sets of tumors exhibiting common
underlying molecular aberrances. Such approaches have also been valuable in sorting clinically
similar tumors into subsets representing common molecular causes [6, 14, 16], which in turn has
shown practical value in predicting patient prognosis [23, 27, 26, 24] and in predicting the effi-
cacy of particular treatments [3, 1]. Such successes have fueled hope that cancer treatment will be
dramatically improved by moving from broadly useful chemotherapeutics to “targetted therapeu-
tics” that are designed to address particular molecular lesions associated with a cancer subtype.
The most notable example is the drug trastuzumab (Herceptin), an antibody to the Her-2/neu gene
designed specifically to treat a subset of breast cancers in which that gene is known to be overex-
pressed [13].

Despite the utility of the notion of cancer subsets, it is a simplification. A cancer sub-type
represents not a single static entity but rather a general pathway of progression by which cells
accumulate molecular abnormalities [12, 20]. Any given patient may have progressed to vary-
ing degrees along this pathway. Furthermore, the degree of progression significantly influences
prognosis even for patients proceeding along the same pathway [15]. If we wish to understand the
molecular basis of cancer and maximize our ability to treat it, we need to know not only the general
changes characterizing the pathway as a whole, but also the specific steps along any given pathway.
A method was recently proposed by Desper et al. [4] to attempt to identify actual sequences of pro-
gression among tumors using phylogenetic methods. Working from microarray data and using a
distance metric similar to those used in clustering approaches, they showed that tumors could be
classified into meaningful evolutionary trees in which molecularly similar tumors group together
and in which distance from a normal-like state apparently corresponds to degrees of progression.

That approach also has its limitations, primarily because of the limitations of the kind of data
on which it is based. The method presumes that one can treat each tumor as a progression state and
find the likely evolutionary tree among all of those states. However, a tumor is not homogeneous.
Though cell proliferation rate generally increases with progression, cells in later states tend to
augment, not replace, cells in earlier states [19]. Figure 1 illustrates this process. Individual
cells in a tumor can thus be expected to span a range of progression states from fully healthy
to advanced. This heterogeneity suggests that individual tumors should be treated as evolving
populations each containing a partial record of the universe of cancer progression pathways. By
finding likely evolutionary pathways within single tumors, we can more precisely infer the fine-
level sequences of molecular events defining progression by any particular tumor type. Microarrays
do not yield insight into this process, because they give tissue-wide average expression levels that
obscure the specific fine-scale changes between individual progression states. Cancer prognosis
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can be significantly influenced by changes assessable at the single-cell level but not apparent at the
level of tissue-averaged assays [21].
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Figure 1: Illustration of cancer progression resulting in tumor heterogeneity. (a): A healthy mass
of cells labeled H . (b): A cell mutates into a diseased state D1, which encourages proliferation
and further progression. (c): The proliferating cell expands, leaving a heterogeneous population.
(d): A D1 cell reaches a further progression state D2, increasing potential for proliferation. (e):
Both populations continue to expand (f): The D2 population becomes dominant, and an additional
mutation results in a new disease state, D3.

Fortunately, it is possible to collect single-cell data on tumor samples, which has the potential
to resolve these issues. This type of data includes any kind of measurement that assays individual
cells rather than a tissue-wide average. One such technique is fluorescent in situ hybridization
(FISH), in which fluorescent probes are hybridized to cellular DNA and microscopy is used to
count the probes that anneal. FISH can be used to test for loss and gain of individual genes, genetic
regions, or entire chromosomes—all frequent events in cancer progression. Single-cell methods
are of great value because if we can identify cell populations in different progression states within
a single tumor and determine how they relate to one another, then we can pinpoint the specific
sequence of changes that led to cancer progression in that individual. Furthermore, if we can do
this for many individuals, we can identify the common pathways across the human population.

In the present work, we pursue the problem of performing phylogenetic analysis on single-
cell cytometric data from collections of patients to infer commonly used progression steps across
patient populations. In the remainder of this paper, we formalize a model for inference on this data,
present a method for inferring common progression pathways, and apply the method to a real data
set. We focus here on application to FISH data, demonstrating the methods on a set of such data
gathered for a prior study [7]. However, we believe the methods developed will generalize to other
kinds of single-cell tumor assays.

2



2 Methods
The intuition behind our approach derives from non-computational analyses of similar single-cell
data [18, 20]. We wish to find common progression pathways in the population by exploiting
heterogeneity in individual tumors. For the present study, we apply a two-stage approach. First,
we develop an evolutionary model for individual patients and construct an evolutionary tree for
each individual, using variants of standard methods for phylogeny inference. Then, we identify
pathways shared by a substantial fraction of the full patient population. The method, at a high
level, is illustrated in figure 2.
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Figure 2: High-level overview of the proposed cancer phylogenetics approach, illustrating the
method with three hypothetical tumor samples: (a) sample containing disease state D1, (b) sam-
ple containing disease state D2 and a small population of D3, and (c) sample containing large
populations of D1 and D2. First, likely phylogenies are referred for individual tumors based on
cell-by-cell measurements and a model of allowed progression steps. Second, a consensus graph
is formed by finding paths occurring in a significant subset of the individual phylogenies (two in
this illustration). The arrows point to the root (normal state) of the phylogenies.

2.1 Input Data
While the high-level approach is intended to be generic with regard to the data type, for the present
work we assume a particular data format available for this study. Input is presumed to be FISH
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copy number data for a set of cells, with each FISH assay counting copies of a targeted gene
and the centromere of its chromosome. We can therefore represent the input as an N by N two-
dimensional array M , where N is some maximum observed count. For the present work, N is 10
and any counts above 10 are collectively grouped into a single row or column of M representing
the count “greater than 10.” Element mij of M is then the fraction of cells of the sample that have
i copies of the chromosome and j copies of the gene. We refer to these cells as the population of
cells at state (i, j).

2.2 Mutation Model
For the purpose of phylogeny construction, we must establish a model for mutation events. Aber-
rant cell populations result from a series of progressive deviations from the normal diploid state,
(2, 2), and intermediate populations are often still identifiable in FISH data. For example, in a ma-
trix with a population at (2, 4) corresponding to diploid chromosomes but two extra copies of the
gene, it is likely that there were at least two mutation events corresponding to the addition of sur-
feit chromosomes, genes, or chromosome/gene pairs. We would therefore expect to see some other
population that is closer to the normal state (at (2, 3) for example). By linking “neighboring” states
(a term we will define presently) into a tree rooted at the normal state, we create a hypothetical
phylogeny for tumor cell populations.

To formalize the problem of finding the optimal phylogeny, we translate the input matrix into
graph, G, in which we create a node (i, j) for each element mij of M for which mij > 0. We then
presume a limited number of allowed “local moves” from any given tumor state. We assume in
the model that it is possible for a single mutation event to cause gain or loss of a single gene copy,
or the simultaneous gain or loss of the gene and its chromosome. Additionally, if a cell is known
to contain a chromosome that is missing an allele (if i > j), we assume chromosomal gain or
loss may occur without a simultaneous change in allelic count. However, a single mutation cannot
result in simultaneous chromosomal loss and allelic gain or chromosomal gain and allelic loss.
We represent the potential mutations affecting state (i, j) with the connectivity matrix in Figure 3.
These local connectivity constraints define most of the edge set of G.

(i − 1, j − 1) (i − 1, j)

(i, j − 1) (i, j)oo
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(i + 1, j) (i + 1, j + 1)

Figure 3: Connectivity of a population of cells in a FISH matrix.

While other mutation events are possible — for example, duplication of a chromosome contain-
ing multiple gene copies, thus adding multiple genes in a single step — we assume a conservative
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mutation model as we lack an empirical basis for weighting probabilities of relatively rare sin-
gle moves. Since we will focus on the consensus of many trees, we expect the omission of very
unlikely transitions to have no ultimate effect on our analysis.

We have to modify the graph to deal with two special cases. First, it is possible G may be
disconnected, due either to an inaccurate assumption in the model or failure to detect some true
intermediate state. In order to connect the graph, we define a set of Steiner nodes and edges
connecting each disconnected component of the graph, using the shortest possible Steiner path
between any two islands, using the maximum frequency of the end points to break ties in the
choice of path. Second, we presume the normal diploid state is the root of all inferred phylogenies.
In the rare case that no cells are observed in the normal state, we create a (2, 2) node with zero
weight.

We next assign edge weights to the graph to represent likely probabilities of different transi-
tions. Intuitively, a well populated state is more likely than a lightly populated state to have be an
ancestor of another state that is near them both. A formulation that captures that intuition would be
to make G a directed graph, where the weight of an edge from state (i, j) to (k, l) is −mij . While
we could solve for this metric as a directed minimum spanning tree problem, it is algorithmically
convenient to use an equivalent undirected formulation in which we define G′ to be an undirected
graph containing the same vertices as G, where the weight of an edge from (i, j) to (k, l) is defined
to be − (mij + mkl).

Theorem 2.1 t is a minimum spanning tree for G′ iff t is a minimum spanning tree for G.

Proof: Let T be the set of all minimum spanning tree for G and let T ′ be the set of all minimum
spanning tree for G′. Then, (V, E) ∈ T is a spanning tree that minimizes∑

(v1,v2)∈E

−p(v1)

over all possible spanning trees in G. Similarly, (V, E ′) ∈ T ′ is a spanning tree that minimizes

∑
(v1,v2)∈E

−p(v1) − p(v2) =

 ∑
(v1,v2)∈E

−p(v1)

 −

 ∑
(v1,v2)∈E

p(v2)


over all possible spanning trees in G′. Because every node in a tree has in-degree 1,

∑
(v1,v2)∈E p(v2)

is a constant, and so T = T ′. �

We complete our model by specifying the metric for optimization. We assume each node has
a unique ancestor, and therefore we seek a tree G for each patient. Given our definition of edge
weight, an optimal tree T is simply a minimum spanning tree on G. Effectively, this means that the
optimal tree is one such that the sum of the weights of the end-points of all edges is maximized.
Because the root node is known to us, directionality in the final graph is implicit.
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2.3 Algorithms
Our computational task consists of two steps: finding the optimal patient phylogenies given the
preceding model and finding frequently used pathways given the phylogenies. Both problems are
fairly straightforward computationally. High level pseudocode for the full procedure is presented
as Algorithm 1.

Given the problem definition, single-patient phylogeny construction can be trivially solved
by any classic minimum spanning tree (MST) algorithm. For this purpose, we apply Kruskal’s
algorithm [9]. For a group of n samples, application of the MST method to each patient sample
will result in a forest F of n phylogenies.

We next seek to infer frequent paths across all phylogenies, which we propose represent likely
progression states. We define a frequent path to be any path starting from the (2, 2) state that occurs
in a fraction at least f of the single-tumor phylogenies, where f is a user-specified parameter.

We can find common paths by iterating over all phylogenies and, for each phylogeny, over all
non-root nodes by depth first search. This procedure identifies candidate paths. For each path, we
can then count how many phylogenies contain all edges in the path. If the count exceeds f ·n, then
we record the path. Finally, we can take the union of all such frequent paths, creating a consensus
graph C of frequent progression pathways. In practice, we use a faster but more involved method.

Algorithm 1 High-level procedure for forming consensus trees
1: given a collection of samples C
2: for all S ∈ C do
3: convert the FISH matrix for S into a graph G
4: add weighted edges to G according to the connectivity model
5: join islands in G by the minimum length, maximally popular path
6: find a minimum spanning tree which contains all the nodes of G
7: let P be the set of all paths that occur in at least a fraction f of the individual MSTs
8: the consensus graph C is the union of all the paths in P

3 Results and Discussion
We applied our methods to a data set that was gathered for a prior study on amplification patterns
in human breast cancers [7] and used FISH to obtain cell-by-cell counts of gene and chromosome
centromere copy numbers [18, 7]. Our dataset consists of a subset of tumor samples from 50
patients, each of which was examined by two FISH assays. One assay measured copy numbers
of the Her-2/neu gene and chromosome 17 (on which Her-2/neu is found). The second exam-
ined copy numbers of c-myc and chromosome 8 (on which c-myc is found). These genes are of
interest because both are known to be cancer-associated. Her-2/neu amplification promotes cell
proliferation and is associated with a class of breast cancers [17, 25], while c-myc amplification
is associated with aneuploidy, particularly when in combination with the loss of the p53 tumor
suppressor gene [10, 2, 11, 29]. The data set contained an average of 98 single-cell measurements
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per patient for Her-2/neu and chromosome 17 and an average of 52 single-cell measurements per
patient for c-myc and chromosome 8.

We first inferred phylogenies for the c-myc data. For this data set, 86% of patients show
strictly normal profiles (two copies of both gene and chromosome). This result is consistent with
prior indications that amplification of c-myc is a relatively late event in progression of a subset of
cancers [19]. In our dataset, four of the five patients that amplify c-myc also amplify Her-2/neu,
likewise consistent with the indications that c-myc is a late event in particularly aggressive Her-
2/neu amplifying tumors. Figure 4(a) shows the inferred progression pathways common to at least
10% of patients. The figure is quite simple, showing only two short chains of progression. One cor-
responds to a single amplification of c-myc alone, without amplification of the chromosome. The
other corresponds to amplification of both the gene and chromosome, with triploid and tetraploid
states observed in a significant fraction of the patients. This result again fits prior expectations,
as c-myc amplification is known to be associated with stable tetraploidy in cancerous cells [29].
Each of the two pathways corresponds to approximately 10% of the patients, again consistent with
c-myc amplification being part of either a rare pathway or a late stage in the pathway.

We next inferred phylogenies for the Her-2/neu data. Figure 4(b) shows all pathways inferred
for at least 10% of the patients. The graph is far more complicated than the one inferred for c-
myc. Several features are worth noting. The two largest components of the graph correspond to
Her-2/neu amplifying pathways. One pathway, observed in 70% of patients, proceeds to the right
from the root node, corresponding to amplification of the gene independent of the chromosome. A
second, observed in 66% of patients, proceeds diagonally down from the root node, corresponding
to amplification of the gene and chromosome simultaneously. This latter pathway shows some
additional variability around the major diagonal axis, with subsets of patients exhibiting gene gain
or loss. The frequency of the pathways indicates that a large fraction of patients exhibit both of
them in independent sets of cells. It has been previously observed that Her-2/neu gene amplifica-
tion can occur in diploid cells or coincident with polyploidy [7], consistent with the observation
of these two dominant pathways. We also observe that individual cells can shift amplification
mechanisms, as at least 42% of chromosome-amplifying lines contain populations that appear to
switch from chromosome amplification to gene amplification at some point in the progression. We
do not, however, observe a significant fraction of gene-amplifying cells switching to chromosome
amplification late in the tree.

We can further observe prominent shorter pathways in the Her-2/neu consensus graph corre-
sponding to gene or chromosome loss. Large fractions of cells exhibit Her-2/neu loss and simul-
taneous loss of chromosome 17 and Her-2/neu. These pathways are not explained by the known
activity of Her-2/neu in promoting certain cancers by amplification. However, we do not observe
similar loss states in the c-myc data, and therefore believe that their observance at high frequency
is reliable.

We can partially attribute these extra states to the coincidental fact that chromosome 17 also
contains p53, a critical tumor suppressor gene whose loss is implicated in many human cancers.
FISH data for p53 and chromosome 17 is available from the same study for a subset of 13 of the
50 cancer patients, allowing us to validate this hypothesis. Of the 13 patients for which we have
both Her-2/neu and p53 data, 6 exhibit Her-2/neu loss, and all of them also exhibit p53 loss. This
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(a) Consensus tree for c-myc and chromosome 8.

(b) Consensus tree for Her-2/neu and chromosome 17.

Figure 4: Commonly occurring progression pathways detected in the breast cancer data set. Each
graph consists of the union of all pathways from the root state (2, 2) found in at least 5 (10%) of
the patients. Increasing gene copy numbers proceed to the right and increasing chromosome copy
numbers proceed down. Labels on nodes show the fraction of all cell measurements corresponding
to the given state and labels on edges the number of patients whose inferred phylogenies possessed
the given edge.
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supports our hypothesis that the chromosome loss observed in the Her-2/neu data is in fact part
of progression pathways characterized by early p53 loss, with simultaneous Her-2/neu loss being
incidental. Overall, 11 patients (85%) either exhibit loss in both Her-2/neu and p53 datasets or loss
in neither.

This hypothesis does not explain why we would observe many cases of loss of the Her-2/neu
gene without chromosome 17; Her-2/neu and p53 sit on opposite arms of the chromosome, so it
is unlikely both would be lost without losing the chromosome centromere. The Her-2/neu gene
loss pathway may in fact reflect a more complicated series of steps than the single mutation event
inferred by the model, or it may be an incidental result of some other mutation process. In par-
ticular, we can propose that this state may reflect a pathway involving allelic loss of the tumor
suppressor BRCA1, another breast-cancer associated gene which happens to co-occur on the same
arm of chromosome 17 as Her-2/neu. While BRCA1 is predominantly associated with hereditary
breast cancer, somatic loss or mutation of the gene has been found to be associated with sporadic
cases of breast cancer [28, 8].

4 Conclusions
We have defined a model and methods for computationally inferring cancer progression from het-
erogeneous tumor samples and demonstrated them on cell-by-cell gene and chromosome copy
number data from breast cancer tumors. The results are consistent with prior knowledge about the
role of the genes studied in cancer progression and suggest several features of their progression
pathways beyond that derived from the prior work. This work shows how an important problem in
human biology can be addressed by adapting methods from a well-studied field of computational
biology.

While the work presented is a first step, much more remains to be done. Several aspects of
the model might be improved. Better models of experimental noise may lead to more effective
ways to infer long paths without overwhelming them with erroneous states. More sophisticated
computational tools from the field of phylogenetics may prove useful in improving the quality of
the inferences, particular with regard to inferring missing (Steiner) states. It is also possible that
better use of multiple data sets could be made by converting the two-stage approach adopted here
into a single optimization and by developing methods to join trees across multiple assays. Other
kinds of cytometric assay, particularly single-cell expression measurements, may also prove more
broadly informative than gene and chromosome copy numbers. Similar methods for phylogenetics
on cytometric assays may also prove useful in other applications, such as examining expression or
epigenetic changes in organismal development or in cell signaling networks of mature tissues.
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