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Abstract

Policy Reuse (PR) provides Reinforcement Learning algorithms with a mechanism to bias an ex-
ploration process by reusing a set of past policies. Policy Reuse offers the challenge of balancing
the exploitation of the ongoing learned policy, the exploration of new random actions, and the
exploitation of past policies. Efficient application of Policy Reuse requires a mechanism to build,
for each domain, a library of policies which is useful and accurate enough to efficiently solve any
task in such domain. In this work, we propose a mechanism to create a library of policies based
on a similarity metric among policies. If the new policy is similar to any of the past ones, it is not
added to the library. Otherwise, it is stored together with the other policies, so it can be reused in
the future. Thus, the Policy Library stores thebasisor eigen-policiesof each domain, i.e., the core
past policies that are effectively reusable. Empirical results demonstrate that the Policy Library
can be efficiently created and that the stored eigen-policies can be understood as a representation
of the structure of the domain.





1 Introduction

Policy Reuse (PR) is a learning process in which learned policies are saved and reused for similar
tasks in the same domain. The domain defines how the agent behaves in the environment, i.e. the
state transition function; each different task in the same domain is characterized through its reward
function.

Policy Reuse is built upon two previous contributions: symbolic plan reuse [10] and extended
rapidly-exploring random trees (E-RRT) [1]. Planning by analogical reasoning provides a method
for symbolic plan reuse. However, when reusing a past plan, if a step becomes invalid to use in the
new situation, the traditional reuse questions are: either(i) to resolve the locally failed step and
direct the search to return back to another past plan step, or(ii) to completely abandon the past plan
and re-plan from scratch from the failed step directly towards the goal. E-RRT solves this general
reuse question by guiding a new plan probabilistically witha past plan. The past experience is
effectively used as abias in the new search, and thus solving the general reuse problemin a
probabilistic manner.

Building upon these two approaches we have recently developed a probabilistic policy reuse
algorithm for tasks within the same domain in ReinforcementLearning, that we called PRQ-
Learning [4]. It is based on two cornerstones. Firstly, an exploration strategy able to bias the
exploration of the domain with a predefined past policy; and second, a similarity metric that allows
the estimation of the similarity of past policies with respect to a new one [3]. The PRQ-Learning
algorithm uses the similarity metric to estimate the usefulness of reusing each of the past policies,
so the most useful one is selected and exploited to learn the new one.

Policy Reuse requires a set of policies to reuse. Thus, a mechanism to create this set is re-
quired. In this work, we contribute an incremental method tobuild a library of policies. When
solving a new problem by reuse, the algorithm determines whether the learned policy is or is not
“sufficiently” different from the past policies, as a function of the effectiveness of the reuse. The
idea is to identify the core policies that need to be saved to solve any new task in the domain
within a threshold of similarity. Given a thresholdδ defining the success of the reuse, our algo-
rithm identifies a set of “δ-eigen-policies,” as the basis or learned structure of the domain. Thus,
our method to build the Policy Library has a novel “side-effect” in terms of learning the structure
of the domain, i.e., the basis or the “eigen-policies” of thedomain.

Policy Reuse and the learning of the structure of a domain arestill challenge areas, although
several related works can be found in the bibliography. For instance, the integration of previously
learned sub-policies or options is applied to improve the learning of new tasks [9, 6]. Hierarchical
RL [2] tries to find the relationship among different abstraction levels of action policies. Life-
long learning improves new learning processes by using the experience of past ones [7], and some
methods to find the structure of the domain can be found [8]. However, this is the first work in
which Policy Reuse is applied to learn the structure of a domain.

This report is organized as follows. Section 2 introduces Policy Reuse, the similarity metric
among policies, and the PRQ-Learning algorithm, which efficiently reuses a defined set of policies.
Section 3 defines the concept of Policy Library, and describes PLPR, an algorithm to build it.
Section 4 describes the experiments performed. Lastly, Section 5 summarizes the main conclusions
of this work.
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2 Policy Reuse

The goal of this section is to summarize Policy Reuse. Firstly, we describe the concepts of task,
domain, and gain. Then, we define how the reuse of a past policyis used as a bias in a new
exploratory process. We also introduce a similarity concept between policies, which motivation is
deeply described in [3]. Lastly, we describe the PRQ-learning algorithm [4].

2.1 Domain, Tasks and MDPs

A Markov Decision Process [5] is represented with a tuple< S,A, T ,R >, whereS is the set of
all possible states,A is the set of all possible actions,T is an unknown stochastic state transition
function,T : S ×A×S → <, andR is an unknown stochastic reward function,R : S ×A → <.
We focus on RL domains where differenttaskscan be solved. We introduce a task as a specific
reward function, but the other concepts,S,A andT stay constant for all the tasks. Thus, we extend
the concept of an MDP by introducing two new concepts: domainand task. We characterize a
domain,D, as a tuple< S,A, T >. We define a task,Ω, as a tuple< D,RΩ >, whereD is a
domain as defined before, andRΩ is the stochastic and unknown reward function.

In this work we assume that we are solving a task with absorbing goal states. Thus, ifsi is
a goal state,T (si, a, si) = 1, T (si, a, sj) = 0 for si 6= sj, andR(si, a) = 0, for all a ∈ A.
A trial starts by locating the learning agent in a random position in the environment. Each trial
finishes when a goal state is reached or when a maximum number of steps, sayH, is achieved.
Thus, the goal is to maximize the expected average reinforcement per trial, sayW , defined as
W = 1

K

∑K

k=0

∑H

h=0 γ
hrk,h, whereγ (0 ≤ γ ≤ 1) reduces the importance of future rewards, and

rk,h defines the immediate reward obtained in the steph of the trialk, in a total ofK trials. An
action policy,Π : S → A, defines for each state, the action to execute. The action policy Π∗ is
optimal if it maximizes the gain W in such a task, sayW ∗

Ω.
The goal of Policy Reuse is to describe how learning can be sped up if different policies, which

solve different tasks, are used to bias the exploration process of the learning of the action policy of
another similar task. Then, the scope of this work is summarized as: (i) we need to solve the task
Ω, i.e. learnΠ∗Ω; (ii) we have previously solved the set of tasks{Ω1, . . . ,Ωn}, so we have the set
of policies,{Π∗1, . . . ,Π

∗
n}, to solve them respectively; (iii) how can we use the previous policies,

Π∗i , to learn the new one,Π∗Ω?
An efficient solution to this problem is the PRQ-Learning algorithm. This algorithm automat-

ically answers two questions: (i) what policy, from the set{Π∗1, . . . ,Π
∗
n}, is used to bias the new

learning process? (ii) once a policyΠi is selected, how is it integrated in the learning process?
The algorithm is based on an exploration strategy,π-reuse, which is able to bias the learning of a
new policy with only one past policy. From this strategy, a similarity metric between policies is
obtained, providing a method to select the most accurate policy to reuse. Both theπ-reuse strategy
and the similarity metric, defined in [3], are summarized in the next subsection.

2.2 A Similarity Metric Between Policies

The goal of theπ-reuse strategy is to balance random exploration, exploitation of the past policy,
and exploitation of the new policy, which is being learned currently. Theπ-reuse strategy follows
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the past policy, sayΠpast, with a probability ofψ. However, with a probability of1−ψ, it exploits
the new policy. Obviously, random exploration is always required, so when exploiting the new
policy, it follows anε-greedy strategy, as defined in Table 1. Lastly, theυ parameter allows the
decay of the value ofψ in each trial.

π-reuse (Πold, K,H, ψ, υ).
for k = 1 toK

Set the initial state,s, randomly.
Setψ1 ← ψ

for h = 1 toH
With a probability ofψh, a = Πold(s)
With a probability of1− ψh, a = ε-greedy(Πnew(s))
Receiv current states′, and reward,rk,h

UpdateQΠnew(s, a), and therefore,Πnew

Setψh+1 ← ψhυ

Sets← s′

W = 1
K

∑K

k=0

∑H

h=0 γ
hrk,h

ReturnW andΠnew

Table 1:π-reuse Exploration Strategy.

Interestingly, theπ-reuse strategy also contributes a similarity metric between policies, based
on the gain obtained when reusing each policy. Let’s callWi the gain obtained while executing
theπ-reuse exploration strategy, reusing the past policyΠi. We callΠ∗Ω the optimal action policy
for solving the taskΩ. W ∗

Ω is the gain obtained when using the optimal policy,Π∗Ω, to solveΩ.
Therefore,W ∗

Ω is the maximum gain that can be obtained inΩ. Then, we can use the difference
betweenW ∗

Ω andWi to measure the similarity among both policies using the distance metric shown
in equation 1.

d→(Πi,Π) = W ∗
Ω −Wi (1)

In this case the distance metric is not symmetric, sod→(Πi,Πj) could be different from
d→(Πj ,Πi). This distance metric is also useful to estimate how useful to reuse the policyΠi

is to learn to solve the new task. Then, the most useful policyto reuse, from a set{Π1, . . . ,Πn},
is argΠi

max(Wi), i = 1, . . . , n. Notice thatW ∗
Ω has disappeared of the formula, given that is

independent ofi. Thus,Wi, or the average reward obtained when reusing the policyΠi with the
π-reuse exploration strategy, is used as an estimation of howsimilar the policyΠi is to the one we
are currently learning. The set ofWi values, fori = 1, . . . , n, is unknown a priori, but it can be
estimated on-line while the new policy is computed. This idea is formalized in the PRQ-Learning
algorithm.

3



2.3 PRQ-Learning Algorithm

The PRQ-Learning algorithm (Policy Reuse in Q-Learning) [4] is shown in Table 2. The learning
algorithm used is Q-Learning [11]. It has been chosen because it is an off-policy algorithm, and
therefore, it allows to learn a policy while following a different one. The goal is to solve a taskΩ,
i.e. to learn an action policyΠΩ. We haven past policies to solven different tasks respectively.
For simplicity of the notation, we will call these policiesΠ1, . . . ,Πn. Let’s callWi the expected
average reward that is received when reusing the policyΠi with theπ-reuse exploration strategy.
Also, let’s callWΩ the average reward that is received when following the policy ΠΩ greedily. The
algorithm uses theW values in a softmax way to choose between reusing a past policy with the
π-reuse exploration strategy, or following the ongoing learned policy greedily.

This algorithm has demonstrated to successfully reuse a predefined set of policies [4]. The
problem is that it requires the existence of such a set of policies. This work contributes a method
to incrementally construct the Policy Library, so each timea new policy is learned, the method
decides whether to add it to the library or not, depending on athreshold of similarity,δ. The
algorithm is described in the next section.

3 An Algorithm to Learn a Library of Policies

This section describes thePLPR algorithm (Policy Library through Policy Reuse). The algorithm
is based on an incremental learning of policies that solve different tasks. Notice that we are as-
suming that the tasks that the algorithm will be asked to solve are unknown a priori. Otherwise, a
method to learn them in parallel could be applied.

The algorithm works as follows. Let’s callPL the Policy Library, and let’s define it as a set
of policies. Initially, the Policy Library is empty,PL = ∅. Then, the first task, sayΩ1, needs to
be solved, so the first policy, sayΠ1, is learned. To learn the first policy, any exploration strategy
could be used but the policy reuse strategyπ-reuse, given that there is not any available policy to
reuse.Π1 is added to the Policy Library, soPL = {Π1}. When a second task needs to be solved,
the PRQ-Learning algorithm is applied, reusingΠ1. Thus,Π2 is learned. Then, we need to decide
whether to addΠ2 to the Policy Library or not. This decision is based on how similar Π1 is toΠ2,
following the similarity metric defined in equation 1, instantiated in equation 2. In the equation,
W2 is the average gain obtained when followingΠ2 greedily, andW1 is the average gain obtained
when reusingΠ1. Both values are computed in the execution of the PRQ-Learning algorithm, so
no additional computations are required.

d→(Π1,Π2) = W2 −W1 (2)

As defined in the previous section, this distance metric estimates how similarΠ1 is to Π2. In
our case, ifΠ1 is very similar toΠ2, i.e. d→(Π1,Π2) is close to 0, to include the second policy in
the library is unnecessary. However, if the distance is large,Π2 is included.

The PLPR algorithm is defined in Table 3. It is executed each time that a new task needs to be
solved. It inputs the Policy Library and the new task to solve, and outputs the learned policy and
the updated Policy Library.

Equation 3 is the update equation for the policy library, derived from equation 2. It requires
the computation of the most similar policy, which is the policy Πj such asj = argi maxWi, for
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Policy Reuse in Q-Learning

• Given:

1. A set ofn policies,{Π∗

1 , . . . , Π∗

n} to solve different tasks

2. A new taskΩ we want to solve

3. A maximum number of trials to execute,K

4. A maximum number of steps per trial,H

• Initialize:

1. QΩ(s, a) = 0,∀s ∈ S, a ∈ A

2. Initialize WΩ to 0

3. Initialize Wi to 0

4. Initialize the number of trials where policyΠΩ has been chosen,UΩ = 0

5. Initialize the number of trials where policyΠi has been chosen,Ui = 0, ∀i = 1, . . . , n

• Fork = 1 to K do

– Choose an action policy,Πj , randomly, assigning to each policy the probability of being selected computed by the following
equation:

P (Πj) =
eτWj

Pn
p=0

eτWp

– Initialize the states to a random state

– SetR = 0

– for h = 1 to H do

∗ UseΠj to compute the next action to execute,a, following an exploitation strategy.

∗ Executea

∗ Receive current state,s′

∗ Receive current reward,r

∗ UpdateQΩ(s, a) using Q-Learning update function:

Q(s, a)← (1− α)Q(s, a) + α[r + γ max
a′

Q(s′, a′)]

∗ SetR = R + γhr

∗ Sets← s′

– SetWj =
WjUj+R

Uj+1

– SetUj = Uj + 1

– Setτ = τ + ∆τ

Table 2: PRQ-Learning

i = 1, . . . , n. The gain obtained by reusing such a policy is calledWmax. The new policy learned
is inserted in the library ifWmax is lower thanδ times the gain obtained by using the new policy
(WΩ), whereδ ∈ [0, 1] defines a similarity threshold.

The PLPR algorithm has an interesting “side-effect” in terms of learning the structure of the
domain. Notice that the Policy Library is initialized to empty, and a new policy is included only
if it is different enough with respect to the previously stored ones, depending on the thresholdδ.
When the number of policies stored is fully representative of the domain, no more policies are
stored. Thus, the stored ones can be considered as the basis or eigen-policiesof the domain, so any
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PLPR Algorithm

• Given:

1. A Policy Library, LP, composed ofn policies,{Π1, . . . ,Πn}

2. A new taskΩ we want to solve

3. A δ parameter

• Execute the PRQ-Learning algorithm, using LP as the set of past policies. Receive from
this executionΠΩ,WΩ andWmax, where:

– ΠΩ is the learned policy

– WΩ is the average gain obtained when the policyΠΩ was followed

– Wmax = maxWi, for i = 1, . . . , n

• Update PL using the following equation:

PL =

{

PL ∪ {ΠΩ} if Wmax < δWΩ

PL otherwise
(3)

Table 3: PLPR Algorithm

task can be efficiently learned by reusing such a library of tasks. The parameterδ has an important
role. If it receives a value of 0, the Policy Library stores only the first policy learned, given that
the average gain obtained by reusing it will be greater than zero in most cases, due to the positive
rewards obtained by chance. Ifδ = 1, most of the policies learned are inserted, due to the fact that
Wmax < WΩ, given thatWΩ is maximum if the optimal policy has been learned. Differentvalues
in the range(0, 1) provide different sizes of the library, as will be demonstrated in the experiments.
Thus,δ defines the size, and therefore the resolution, of the library.

4 Experiments

This section describes the experiments performed in a navigation domain, which is described next.

4.1 Navigation Domain

This domain consists of a robot moving inside of an office area, as shown in Figure 1(a), similar
to the one used in other RL works [8]. The environment is represented by walls, free positions and
goal areas, all of them of size1×1. The whole domain isN×M (24×21 in this case). The possible
actions that the robot can execute are “North”, “East”, “South” and “West”, all of size one. The
final position after each action is noised by a random variable following a uniform distribution in
the range(−0.20, 0.20). The robot knows its location in the space through continuous coordinates
(x, y) provided by some localization system. In this work, we assume that we have the optimal
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uniform discretization of the state space (which consists of 24 × 21 regions). Furthermore, the
robot has an obstacle avoidance system that blocks the execution of actions that would crash it into
a wall. The goal in this domain is to reach the area marked with’G’. When the robot reaches it, it
is considered a successful trial, and it receives a reward of1. Otherwise, it receives a reward of 0.
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(a) TaskΩ1 (b) 50 different goal areas

Figure 1: Office Domain.

Performing a task consists of trying to solve itK = 2000 times. Each of these times is called
a trial. Each trial consists of a sequence of actions until the goal is achieved or until the maximum
number of actions,H = 100, is executed. Notice that there is no separation between learning and
test, so the correct balance between exploration and exploitation must be achieved to maximize the
average gain in each performance.

In the following experiments, 50 different tasks are sequentially performed, each of them with
a different reward function, located in different positions of the different rooms of the domain, as
shown in Figure 1(b). Notice that the figure does not represent a unique task with 50 different
goals, but the 50 different goal areas of the 50 different tasks. The results provided are the average
of 10 different executions, in which the 50 different tasks are sequentially performed following a
random order.

4.2 Results

In the experiments, the following parameter setting is used. For the Q-Learning algorithm,γ =
0.95 andα = 0.05. For theπ-epsilon exploration strategy,ψ = 1, υ = 0.05, andε is set to1− ψh

in each step. In the PRQ-Learning algorithm,τ is initially set to 0, and is increased by 0.05 after
each trial. All the previous parameters have empirically demonstrated that provide good results in
this domain [3, 4].

The first element to study is the size of the Policy Library built while performing the tasks
with the PLPR algorithm, i.e. the number of eigen-policies stored in the Policy Library, shown
in Figure 2. The figure shows in they axis the size of the Policy Library, and in thex axis, the
number of tasks performed up to that moment. As introduced inSection 3, whenδ = 0, only 1
policy is stored. Whenδ = 0.25, the number of eigen-policies is around 14. Interestingly,this is
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the number of rooms in the domain. While increasingδ, the number of eigen-policies increases
and whenδ = 1, almost all the learned policies are stored.
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Figure 2: Number of eigen-policies obtained.

Figure 3 shows an example of the eigen-policies obtained in one execution, withδ = 0.25. It
represents the Policy Library obtained after performing the 50 tasks which, in this case, is com-
posed of 14 eigen-policies. In the figure, we assume that a policy is represented by the goal area
of the task that it solves. An eigen-policy is represented also by the goal area, but in this case, the
area is shaded. The figure demonstrates that for most of the rooms, one and only one eigen-policy
has been learned. The algorithm has discovered that if two different tasks are given two goal areas
in the same room, their respective policies are very similar, so only one of them needs to be stored
in the Policy Library. That allows us to say that the structure of the domain has been learned by
the PLPR algorithm, and is represented by the eigen-policies.
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Figure 3: Eigen Policies.

These results demonstrate empirically the influence of theδ parameter in the size of the library,
and enforce the idea of defining theδ-eigen-policies as the policies stored in the Policy Library,
when learning with the PLPR algorithm with a defined value ofδ. Lastly, Figure 4 shows the
average gain obtained when performing the 50 different tasks with the PLPR algorithm, for the
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different values ofδ. In most of the cases,δ = 0.25, 0.50, 0.75 and1, the average gain increases
up to more than 0.2, and no significant differences exist between them. Only in the case ofδ = 0,
the average gain stays low, around 0.16, given that, as introduced above,δ = 0 generates a Policy
Library with only one policy (the first one learned). For comparisons, the same learning process
has been executed with the Boltzmann exploration strategy,with different settings of the tempera-
ture parameter. The maximum average gain obtained by them isaround 0.12, demonstrating that
Policy Reuse obtains an increment of almost a 100% gain in theperformance of the 50 tasks over
the results obtained when the 50 tasks are learned from scratch.
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Figure 4: Average gain obtained in the life long term.

5 Conclusions

The goal of this work is to extend Reinforcement Learning to domains where policies to solve
different tasks, must be learned. In this report we describea method, the PLPR algorithm, to build
a library of policies based on the concepts of Policy Reuse and similarity between polices. The
work contributes three main results. Firstly, the PLPR algorithm allows the construction of the
Policy Library. Second, reusing the policies stored in the Policy Library for learning a new policy
provides a better performance than when learning the new policy from scratch. And last, the Policy
Library is composed of a set of eigen-policies, which has demonstrated to represent the structure
of the domain. Future work is oriented to the use of the knowledge learned about the structure of
the domain, and how it can be transferred to new learning processes.
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