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Abstract

We present a randomized algorithm for semi-supervised learning of Mahalanobis metrics over
Rn. The inputs to the algorithm are a set,U , of unlabeled points inRn, a set of pairs of
points, S = {(x, y)i}; x, y ∈ U , that are known to be similar, and a set of pairs of points,
D = {(x, y)i}; x, y ∈ U , that are known to be dissimilar. The algorithm randomly samplesS,
D, andm-dimensional subspaces ofRn and learns a metric for each subspace. The metric overRn

is a linear combination of the subspace metrics. The randomization addresses issues of efficiency
and overfitting. Extensions of the algorithm to learning non-linear metrics via kernels, and as a
pre-processing step for dimensionality reduction are discussed. The new method is demonstrated
on a regression problem (structure-based chemical shift prediction) and a classification problem
(predicting clinical outcomes for immunomodulatory strategies for treating severe sepsis).





1 Introduction

Many classification, clustering, and regression algorithms depend on a metric over the input space.
For example,k-means clustering,k-nearest-neighbor classification/regression, radial basis func-
tion networks, and kernel methods, such as SVMs, need to be given good metrics that accurately
reflect the important relationships between points. Many common distance metrics, such as the
Euclidean metric, assume that each feature is not only independent of the others, but also equally
important. Both assumptions are routinely violated in real-world applications. To address this
problem, a number of (semi)supervised distance metric learning algorithms have been proposed
(e.g., [14, 15]). Here, the user supplies a set of pairs of instances that are known to be similar
and/or dissimilar to each other; the distance metric learning algorithm finds a metric that respects
these relationships. In contrast to techniques like Multidimensional Scaling [6] and Principal Com-
ponents Analysis (PCA) [9], which simply find an embedding of the test points, a distance metric
learning algorithm learns a true metric, that can be incorporated intoany learning algorithm that
uses metrics, pseudo-metrics, or (dis)similarity measures.

This paper introduces a randomized approach to metric learning. In particular, given any algo-
rithm,λ, for learning a Mahalanobis metric,M , the new method can construct a new metricM̂ , by
callingλ as a subroutine on samples of the training data and subspaces ofRn. The randomization
serves two purposes: (1) The computational complexity of metric learning algorithms generally
depend on the number of training samples,z, and the dimensionality of the input space,n. The
new algorithm builds a metric by combining a constant number of metrics over random subspaces
of Rn, each trained on a small sample of the training data. While our algorithm has the same
computational complexity asλ, in practice, the decrease in training times is dramatic. Moreover,
the subspace metrics can be trained in parallel, yielding another constant factor speed-up. (2) In
the language of statistical learning theory (e.g., [8]), random sampling of training instances and
features reduces variance and thus guards against overfitting. Our approach to metric learning is
influenced by the Random Forest algorithm [2] which uses similar strategies for classification and
regression, but is not a technique for learning metrics.

We demonstrate the accuracy and efficiency of the new algorithm for representative problems
in biology and medicine. In particular we construct distance metrics over (i) nuclear electronic
environments and (ii) clinical data from patients with severe sepsis. We then use these metrics
in k-nearest neighbor regression and classification, respectively. Our results demonstrate that the
randomized algorithm is not only much faster than the deterministic algorithm (λ), but often pro-
duces metrics that improve the accuracy ofk-nearest neighbor regression and classification. This
indicates that the random algorithm resists overfitting and produces metrics that better generalize
to novel instances.

2 Distance Metric Learning

Consider a set of points,U = {xi}li=1 ⊆ Rn, and a distance metric of the form

dM(xi, xj) = ‖xi − xj‖ =
√

(xi − xj)T M(xi − xj), (1)
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whereM is a symmetric positive semi-definiten×n matrix. If M is an identity matrix, then Eq. (1)
is simply the un-weighted Euclidean distance. IfM is merely diagonal, then Eq. (1) is a diagonally
weighted Euclidean distance. More generally,M parameterizes a family of Mahalanobis distances
overRn and encodes the weights and correlations among variables.

The distance metric learning problem is to learnM givenU and a set,S = {(x, y)i}; x, y ∈ U .
The setS represents pairs of points inU that a domain expert has asserted are “similar”, but has
not defined precisely how or why they are similar. Optionally, the domain expert may also provide
a set of dissimilar pairs of points,D = {(x, y)i}; x, y ∈ U ; S ∩D = {}.

There are a number of approaches to learningM , givenU , S, and,D. Xing et al [15] pose the
following optimization problem:

M̂ = argmin
M

∑
(xi,xj)∈S

‖ xi − xj ‖2M (2)

s.t.
∑

(xi,xj)∈D

‖ xi − xj ‖M ≥ α (3)

M � 0, (4)

whereα is an arbitrary constant≥ 1. The constraints are convex and the objective is linear inM ,
thus Eq. 2 can be solved using convex-optimization techniques. Xinget al introduce two iterative
algorithms solving forM̂ . The first algorithm deals with the case whenM is diagonal, the second
algorithm solves the problem whenM is an arbitrary positive semi-definite matrix. Tsang and
Kwok [14] pose a different optimization problem (not shown here due to space considerations)
and derive a quadratic programming problem using the technique of Lagrangian multipliers. The
convex programming formulation of the problem has no user parameters (other than the sizes ofS
andD), but requires an iterative solution. The quadratic programming formulation of the problem
can be solved more efficiently but has several user parameters.

Both approaches learn a metric over the entire input space. This raises two possible concerns:
computational complexity and overfitting. The complexity of [15] isO(I2n3), whereI2 reflects the
nested iterations required to converge, and then3 term is the time needed to diagonalize ann× n
matrix; the complexity of [14] isO(z3 + n2), wherez = |D| and thez3 term is the time to solve a
quadratic programming problem withz variables. The second concern is overfitting; if the sizes of
S andD are small, it becomes difficult to estimate the parameters of the metric. Similarly, if the
input features are particularly noisy, spurious correlations among features may unduly influence
the parameter estimates. Both issues can be addressed using randomization.

3 Algorithm

Our algorithm is presented in Algorithm 1. Briefly, the setsS andD are randomly sampled (with
replacement) to construct setsSb andDb, whereb is the number of samples in the subsets. Next,
Sb andDb are modified using the functionRandom-Features (Sb, Db, m), wherem is the di-
mensionality of the subspace (m < n). The resulting sets,Sb

m andDb
m, contain points in the same
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Algorithm 1 Random Metric Learning Algorithm pseudocode. See text for details.
Input:

U : The unlabeled set of points inRn

S = {(x, y)i}; x, y ∈ U : a set of pairs of similar points
D = {(x, y)i}; x, y ∈ U : a set of pairs of dissimilar points (optional)
λ: an algorithm for learning metrics
c: the number of subspace metrics to learn
b: the number of subspace training samples
m: the dimensionality of the subspace

/* Initialize the metric */
M̂n×n ← In×n: ann× n identity matrix

for i = 1 to c do
/* Select random training instances */

Sb ← Random-Sample( S, b)
Db ← Random-Sample( D, b)

/* Select a random subspace */
Sb

m, Db
m, f ← Random-Feature( Sb, Db, m)

/* Learn the subspace metric */
M f

m×m ← λ(Sb
m, Db

m)

/* Update the complete metric */
M̂n×n ← update( M̂n×n, Mf

m×m, f )
end for
returnM̂

randomm-dimensional subspace ofRn. The functionRandom-Features also returns a vector,
f, whose components encode which dimensions were sampled.Sb

m andDb
m comprise a subspace

training set. This training set is passed to the given metric-learning algorithm,λ, which returns a
metric,M f , over the random subspace.M f is, by definition, anm ×m symmetric positive semi-
definite matrix. The choice ofλ dictates the properties of the subspace metric. For example, the
algorithms presented in [15] and [14] are guaranteed to converge to an optimal solution for a given
training set.

The next step is to update the matrix encoding the metric overRn. The matrixM̂ is initialized
as an × n identity matrix. Thus,M̂ is also a symmetric positive semi-definite matrix. Recall
that the components of vectorf indicate which dimensions ofRn were sampled. That is, the
components off correspond to rows and columns ofM . Consider the auxiliaryn × n matrix,
A : A(f(i), f(j)) = M f (i, j);∀ i, j ≤ m. The functionupdate (M̂ , M f , f) returns the matrix
M̂ + A. This whole procedure is repeatedc times, with different random samples of the training

3



data and features. It can be shown thatM̂ + A is a symmetric positive semi-definite matrix. That
is, the symmetric, positive semi-definiteness ofM̂ is an invariant property of the algorithm. Thus,
M̂ satisfies all the properties of a metric.

The computational complexity of the algorithm is a function of the size ofU , the parameters
c, b, andm, and the complexity of the underlying metric learning algorithm,λ. Let z = |U |. The
parametersc andb are generally set so that the productcb = O(z). The parameterm is generally set
so that the productcm = O(n). Let gλ(b, m) be the computational complexity ofλ on b instances
of m-dimensional data. Note thatgλ(b, m) varies by the choice of learning algorithm but is trivially
lower-bounded byΩ(max(b2, m2)) since them ×m matrix M must be explicitly realized andb2

pairwise similarities must be computed. The complexity of our algorithm isO(cn2 + cgλ(b, m)).
In practice, we setb ≈ z/10, m ≈ n/2, andc ≥ 10. Thus,c is a constant and sinceb = O(z)
andm = O(n), our algorithm has the same complexity asλ which, effectively, hasc = 1, b = z
andm = n. However, in practice, the randomized algorithm is much faster becauseb andm are
significantly smaller thanz andn, respectively. Finally, note that each subspace metric can be
trained in parallel giving a constant factor speedup forp processors (i.e.,O(cn2 + d c

p
egλ(b, m))).

An important feature of the algorithm is that thec subspace metrics are trained on different
samples and different features. Each subspace metric is optimal for that subspace and the data
used to construct it. The global metric isnot optimal for U , despite being built from optimal
subspace metrics. However, the random algorithm can be thought of as anensemblemethod for
metric learning. Ensemble methods in machine learning are well studied and have a number of
desirable properties (see, e.g., [7]). In particular, ensemble methods often generalize better to novel
instances than non-ensemble methods. Briefly, if the members of the ensemble are diverse, that is,
not highly correlated in their erroneous predictions, then it becomes very unlikely that two “bad”
predictors can conspire to affect the outcome. Conversely, two or more “good” predictors have a
better chance of affecting the outcome. In our algorithm, diversity is enforced by sampling both
the training instances and the features. We present empirical evidence in Sec. 5 that demonstrates
that the randomized algorithm always produces metrics that are as good as, and often better than,
the metrics produced using deterministic algorithms.

4 Experiments

We tested our metric learning algorithm in the contexts of regression and classification problems.
The data for each experiment were split into randomly selected, non-overlapping training and test
sets. The training set was used to learn the metric over the feature space. That metric was then used
to compute the distance of each test instance to the training instances. The predicted value (or class)
for each test instance was then computed usingk-nearest neighbor regression (or classification). A
variety of parameter settings (i.e.,b, c, m, z) were tested. The entire procedure was repeated 20
times to obtain error estimates for a given configuration of parameters.

The base metric learning algorithm (i.e.,λ) in our experiments was the technique of Xing
et al [15]. We will refer to our algorithm asλr for the purpose of comparison withλ. Both
algorithms were implemented in Matlab and the experiments were conducted on a 3 GHz Pentium
4 workstation running Linux. We did not use the parallel training option forλr. Finally, λr andλ
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were trained and tested on the same training and test sets, respectively, to ensure a fair comparison.

4.1 Chemical Shift Prediction

The first study comprised 5 separate experiments for predicting the real-valued chemical shifts for
backbone nuclei (HN, Hα, 13Cα, 13C’, 15N) given a structural model of the protein.

4.1.1 Background

Chemical shifts are the most fundamental of spectral parameters in Nuclear Magnetic Resonance
(NMR) spectroscopy. Briefly, a spinI = 1/2 nucleus in an external magnetic field will have
two spin states whose energy difference is linearly proportional to the strength of the applied
magnetic field. Each nucleus, however, is influenced by the electrons in its vicinity. Relevant
factors include covalent bonding, the orientations of nearby aromatic rings, hydrogen bonding,
solvent interactions, and ionization constants. Thus, each nucleus feels a slightly different field
because it has a different local electronic environment. The experimentally measured chemical
shift for a given nucleus is proportional to the field felt by that nucleus.

Chemical shifts can most accurately be predicted from structure models using quantum me-
chanics. A purely quantum mechanical approach to chemical shift prediction involves determining
the wave function of the molecule; this is computationally intractable for large molecules, like
proteins. Consequently, hybrid methods for chemical shift prediction are used in practice; these
methods combine quantum calculations for local interactions and either classical or empirical cal-
culations for long-range interactions. There are a number of practical and important applications
of structure-based chemical shift prediction including: resonance assignment (e.g. [10]), structure
determination and model refinement (e.g., [3, 5]), high-throughput fold recognition (e.g. [11, 12]),
as well as a variety of assays for probing mutations and structure-activity relationships.

4.1.2 Features and Training/Test Data

The regression model for these experiments included variables (i.e., features) that represent quan-
tum and empirical factors. These contributions were computed in the manner of [16] and include
the effects of torsion angles, residue type, ring-currents, electrostatics, and hydrogen bonding. The
experimental data for these experiments were obtained from the REFDB [17] database. REFDB is
a carefully re-referenced subset of the BioMagResBank (BMRB) [13] that corrects some system-
atic errors within the BMRB. The REFDB also includes a mapping to specific Protein Data Bank
[1] (PDB) IDs; these structures were downloaded from the PDB and used to compute the quantum
and empirical features.

The resulting data set contained between 20,000 and 47,000 instances, depending on nucleus
type, across 454 different proteins1. Each instance comprised an experimentally measured chem-
ical shift (re-referenced, as needed), and a feature vector containing the quantum and empirical

1RefDB actually contains data from 601 proteins. We used a subset of proteins that did not include protein com-
plexes.
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calculations. The various nuclei types are sensitive to different affects, thus the specific feature-
vector size varied per nucleus type; the nuclei HN, Hα, 13Cα, 13C’, and15N had feature vectors of
size 5, 7, 6, 7, and 9, respectively. The goal is to learn a metric over these features.

4.2 Patient Outcome

In a different experiment, we examined the performance of our algorithm in a classification task. In
particular, we used a data set created by Clermontet al [4] for in silico modeling of immunomod-
ulatory interventions for severe sepsis. The goal here is to predict an outcome for each of 1000
simulated patients. The four possible outcomes are (i) helped by intervention; (ii) harmed by inter-
vention; (iii) lives regardless of intervention; (iv) dies regardless of intervention. The input space
consists of 26 features that include the levels, ratios, and products of a number of biomarkers at the
time of the disease detection and one hour following detection. The Clermont data set is divided
into separate training and test sets. The partitions between these two sets were maintained during
our experiments.

5 Results

We first compared the rates of increase in training times for the random and deterministic al-
gorithms. Figure 1(a) plots the accuracy and the number of seconds required to trainλ andλr

for z = 100, 200, ..., 1000 samples on the patient outcome data set. The test set consisted of
200 randomly selected instances and the classifications were made withk = 1 nearest neighbor
classification. Similar results are obtained for the other data sets. The parameters forλr were
c = 20, b = z/10, andm = n/2. Recall that the parameters forλ are, effectively,c = 1, b = z,
andm = n. The rates of increase in training time are dramatically different, as expected. The
accuracies under both metric increase with the size ofz. We note that the accuracies under the
λr metric are either statistically identical orhigher than those under theλ metric. That is,λr

provides the same level of accuracy, or better, thanλ while drastically reducing training times.
The accuracies under theλr metric were statistically higher than those under theλ metric for
z = 300, 400, 500, 1000. These results are consistent with the notion that randomization may be
an effective means for resisting overfitting a given training set.

Figures 1(a), 2(a), and 2(b) plot the accuracy and training times forλr various values ofb, c, and
m, respectively, while fixing the remaining variables (z = 200, c = 20, b = z/10, andm = n/2).
Training times increase dramatically with increasingb, but there is no statistical difference in
prediction accuracy betweenb = z × 0.1 andb = z × 0.9, suggesting that small values ofb are
sufficient. Similarly, training times increase linearly with increasingc, but there is no statistical
difference in accuracy betweenc = 10 andc = 100. Training times rise with increasingm, but not
as quickly as for increasingz, c, or b. Interestingly, there is a statistically significantdecreasein
accuracy (p < 0.001) asm increases. This result further supports the hypothesis that randomization
can lead to better metrics.

Finally, we evaluated the accuracy of the random algorithm on larger test sets. In these exper-
iments the parameters of the random algorithm werez = 1000, c = 20, b = z/10, andm = n/2.
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Figure 1:Left: Training times (solid lines) and accuracies (dashed lines) forλ andλr for varyingz. Right: Training
times (solid line) and accuracies (dashed line) forλr for varyingb. Note that left- and right hand axis scales are not
the same in the two figures.
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Figure 2:Left: Training times (solid line) and accuracies (dashed line) forλr for varyingc. Right: Training times
(solid line) and accuracies (dashed line) forλr for varyingm. Note that left- and right hand axis scales are not the
same in the two figures.

Using the complete training and test sets for the patient outcome data (1,000 instances each), the
classification accuracy fork = 1 nearest neighbor was 73% using theλr metric versus 68% for
using theλ metric. These results are in agreement with the smaller test cases, described above.
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SHIFTS λ Metric λr Metric
Nucleus Instances Mean Shift Range RMSE RMSE RMSE

HN 47,401 8.29 5.44 0.647 0.611 0.607
Hα 39,009 4.41 4.19 1.13 0.340 0.336
15N 34,196 119.62 35.18 5.16 3.87 3.87
13Cα 30,174 58.10 26.46 1.74 1.67 1.67
13C’ 19,877 176.15 15.40 1.88 1.54 1.53

Table 1:Chemical Shift Prediction: Accuracy and summary of training and test data for 5 differ-
ent nuclei. Column 2: the total number of instances for a given nucleus; 1,000 randomly selected
instances were selected for training, the remaining were used to test the learned metric usingk = 5
nearest neighbor regression. Columns 3-4, the mean shift value, and range (in ppm). Columns 5-7,
the root mean squared error (in ppm) for the programSHIFTS andk-NN under theλ metric and
under theλr metric, respectively. Errors are estimated based 20 random partitions into training and
test sets.

However, Clermontet al were able to obtain an 84% percent accuracy on the same training/test
data using logistic regression [4]. This suggests that a linear metric may not be optimal for these
data.

The test sets for the chemical shift predictions contained between 19,000 to 46,000 instances,
depending on nucleus type. Accuracies are reported in terms of root mean squared error (RMSE)
in parts per million(ppm), the standard units of chemical shifts. The RMSEs for the chemical
shifts vary widely by nucleus type. This is due to the fact that the average magnitude and range
of different nuclei varies widely. For example the Hα nucleus has an average chemical shift of≈
4.4 ppm and a range of≈ 4.2 ppm; the15N nucleus, on the other hand, has an average chemical
shift of≈ 119.6 ppm and a range of≈ 35.2 ppm. Table 5 summarizes the training sets and reports
the RMSE for the programSHIFTS [16], and fork = 5 nearest neighbor regression under theλ
andλr metrics. The predictions errors under theλr metric are statistically significantly lower than
those of theSHIFTSprogram for all nuclei (p� 0.01). The predictions errors under theλr metric
are statistically lower than theλ metric for 13C’, Hα, and HN (p < 0.01); the errors for13Cα and
Hα are statistically identical under both metrics.

6 Discussion

The primary finding of these experiments is that the randomized algorithm produces metrics that
are equivalent, and sometimes better, than those produced by a deterministic metric learning al-
gorithm. The randomized algorithm, however, is much faster because the subspace metrics can
be trained on smaller sets of data. Indeed, the size of the training set (U ) has the greatest effect
on both training time and accuracy. An interesting finding is that accuracy drops whenm, the
dimensionality of the subspace, increases. This suggests that the sampling of random subspaces
may guard against overfitting.

There are a number of extensions to this work that are worthy of investigation. Our results
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demonstrate that the new algorithm constructs good linear metrics for the chemical shift data, but
that the linear metrics over the sepsis data produced by bothλ andλr are not competitive with a
logistic regression over the same variables. This suggests that a linear metric may not be optimal
for these data. Xinget al have noted that it is also possible to consider non-linear metrics by
introducing a non-linear feature map,φ,

dM(x, y) =
√

(φ(x)− φ(y))T M(φ(x)− φ(y)). (5)

This can also be thought of as learning a metric in a feature space associated with a kernel function
k(xi, xj) = φ(xi)Mφ(xj) [14]. The exploration of non-linear metrics is an interesting area for
future research.

Another interesting area of investigation is the use of dimensionality reduction schemes. Stan-
dard techniques for dimensionality reduction (e.g., via PCA) can be applied either before or after
the metric is learned. Dimensionality reduction prior to learning the metric will reduce training
times, as demonstrated above. However, applying dimensionality reduction after learning the met-
ric is also worthy of consideration. Note that because the matrixM is positive semi-definite, we
can writeM asAAT . The matrixA can be thought of as a projection into a different feature space.
The potential advantage to doing the dimensionality reduction in the feature space is that the user
implicitly defines the kinds of relationships that are important by constructingS andD. For some
problems, there may be several kinds of relationships that are of interest. For example, the patient
data defined “similar” in terms of mortality and the response to the intervention. But there may
also be other kinds of similarity that may be of interest, such as comorbidity. Here, the expert
can define a differentS andD that reflect the similarity of interest; the same training data can be
used, but a different metric will be learned. This additional flexibility is an attractive feature of any
metric learning algorithm.

7 Conclusion

We have introduced a randomized algorithm for learning metrics over an input space. The new
algorithm compares favorably with deterministic metric learning algorithms in terms of accuracy,
generalization, and performance. Training times are drastically reduced due to the sampling of the
training data and subspaces ofRn. At the same time, the metrics produced by the random algorithm
are equivalent to, and sometimes better than, the metrics produced by deterministic metric learning
algorithms.

We have demonstrated the effectiveness of these metrics on diverse data sets and in both classi-
fication and regression contexts. Our metric over electronic environments resulted in significantly
lower root mean squared errors than those of the programSHIFTS, which does not use a metric.
Our results on a classification task were somewhat mixed. On the one hand, our metric outper-
formed a metric produced by a deterministic algorithm. Still, the prediction accuracies were not as
high as those obtained using logistic regression. We believe that an investigation into non-linear
metrics may address this issue.

9



Acknowledgments

We would like to thank Dr. Gilles Clermont for use of his data and Dr. Eric Xing for use of his
code for his metric learning algorithm.

References

[1] H.M Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov,
and P.E. Bourne. The Protein Data Bank.Nucl. Acids Res., 28:235–242, 2000.

[2] L. Breiman. Random forests.Machine Learning, 45(1):5–32, 2001.

[3] D.A. Case, T.A. Darden, T.E. Cheatham III, C.L. Simmerling, J. Wang, R.E. Duke, R. Luo,
K.M. Merz, B. Wang, D.A. Pearlman, M. Crowley, S. Brozell, V. Tsui, H. Gohlke, J. Mongan,
V. Hornak, G. Cui, P. Beroza, C. Schafmeister, J.W. Caldwell, W.S. Ross, and P.A. Kollman.
AMBER 8. University of California, San Francisco, 2004.

[4] G. Clermont, J. Bartels, R. Kumar, G. Constantine, Y. Vodovotz, and C. Chow. In silico
design of clinical trials: A method coming of age.Crit. Care Med., 32(10):2061–2070, 2004.

[5] G. Cornilescu, F. Delaglio, and A. Bax. Protein backbone angle restraints from searching a
database for chemical shift and sequence homology.J Biomol NMR, 13(3):289–302, 1999.

[6] T. Cox and M. Cox.Multidimensional Scaling. Chapman and Hall, 1994.

[7] T.G. Dietterich. Ensemble methods in machine learning.Proc. of the First International
conference on Multiple Classifier Systems, Lecture Notes in Computer Science, pages 1–15,
2000.

[8] T. Hastie, R. Tibshirani, and J. Friedman.The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer-Verlag, 2001.

[9] I.T. Jolliffe. Principal Component Analysis.Springer-Verlag, New York, 1989.

[10] C. J. Langmead and B. R. Donald. An Expectation/Maximization Nuclear Vector Replace-
ment Algorithm for Automated NMR Resonance Assignments.J. Biomol. NMR., 29(2):111–
138, 2004.

[11] C. J. Langmead and B. R. Donald. High-Throughput 3D Homology Detection via NMR
Resonance Assignment.Proc. IEEE Computer Society Bioinformatics Conference (CSB),
Stanford University, Palo Alto, CA, pages 278–289, 2004.

[12] S.P. Mielke and V.V. Krishnan. Protein structural class identification directly from NMR
spectra using averaged chemical shifts.Bioinformatics, 19(16):2054–64, 2003.

10



[13] B.R. Seavey, E.A. Farr, W.M. Westler, and J.L. Markley. A Relational Database for Sequence-
Specific Protein NMR Data.J. Biom. NMR, 1:217–236, 1991.

[14] I. W. Tsang and J.T. Kwok. Distance Metric Learning with Kernels. InProceedings of the In-
ternational Conference on Artificial Neural Networks (ICANN), pages 126–129, Cambridge,
MA, June 2003.

[15] E.P. Xing, A.Y. Ng, M.I. Jordan, and S. Russell. Distance Metric Learning, with application
to clustering with side-information. InAdvances in Neural Information Processing Systems
15, Istanbul, Turkey, 2002. MIT Press.

[16] X.P Xu and D.A. Case. Automated prediction of 15N, 13C‘alpha‘, 13C‘beta‘ and 13C’
chemical shifts in proteins using a density functional database.J. Biomol. NMR, 21:321–333,
2001.

[17] H. Zhang, S. Neal, and D.S. Wishart. A Database of Uniformly Referenced Protein Chemical
Shifts. J. Biomol. NMR, 25(3):173–195, 2003.

11


	1 Introduction
	2 Distance Metric Learning
	3 Algorithm
	4 Experiments
	4.1 Chemical Shift Prediction
	4.1.1 Background
	4.1.2 Features and Training/Test Data

	4.2 Patient Outcome

	5 Results
	6 Discussion
	7 Conclusion

