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Abstract

The task of learning models for many real-world problems requires researchers to incorporate prob-

lem Domain Knowledge into the learning algorithms because there is rarely enough training data

to enable accurate learning of the structures and underlying relationships in the problem. Domain

Knowledge comes in many forms. Domain Knowledge about relevance of variables (Feature Selec-

tion) can help us ignore certain variables when building our model. Domain Knowledge specifying

conditional independencies among variables can guide our search over possible model structures.

This thesis presents a theoretical framework for incorporating a different kind of knowledge into

learning algorithms for Bayesian Networks: Domain Knowledge about relationships among param-

eters.

We develop a unified framework for incorporating general Parameter Domain Knowledge con-

straints in learning procedures for Bayesian Networks by formulating this as a constrained opti-

mization problem. We solve this problem using iterative algorithms based on Newton-Raphson

method for approximating the solutions of a system of equations. We approach learning from both

a frequentist and a Bayesian point of view, from both complete and incomplete data.

We also derive closed form solutions for our estimators for several types of Parameter Domain

Knowledge: parameter sharing, as well as sharing properties of groups of parameters (sum sharing

and ratio sharing). While models like Module Networks, Dynamic Bayes Nets and Context Spe-

cific Independence models share parameters at either conditional probability table or conditional

distribution (within one table) level, our framework is more flexible, allowing sharing at parameter

level, across conditional distributions of different lengths and across different conditional probabil-

ity tables. Other results include several formal guarantees about our estimators and methods for

automatically learning domain knowledge.

To validate our theory, we carry out experiments showing the benefits of taking advantage of

domain knowledge for modelling the fMRI signal during a cognitive task. Additional experiments

on synthetic data are also performed.
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Chapter 1

Introduction

1.1 Motivation

Probabilistic Modelshave become increasingly popular in the last decades because of the need

to characterize the non-deterministic nature of relationships among variables describing many real

world domains. Among these models,Bayesian Networkshave received a tremendous amount of

interest because of their ability to compactly encode uncertainty about random variables and to ef-

ficiently deal with missing data. Another major advantage of Bayesian Networks is that they are

relatively easy to interpret by a non-expert, unlike Neural Networks or Support Vector Machines.

Applications of Bayesian Networks include medical diagnosis, stock market prediction, fraud de-

tection, intelligent troubleshooting and language modelling.

A Bayesian Network[Hec99, Pea88] is a model that compactly represents the probability dis-

tribution over a set of random variables. It consists of two components: a structure and a set of

parameters. The structure is a Directed Acyclic Graph where one can think of the edges as cause-

effect relationships. The parameters describe how each variable relates probabilistically to its par-

ents. Intuitively, the parameters describe how probable each effect is given a combination of direct

causes.

Figure1.1shows a simplified version of a Bayesian Network that can be used for disease diag-

nosis. Typically, a diagnosis is reached by looking at a combination of risk factors and symptoms.

Risk factors likeSmoking(whether or not the patient smokes),FHxMI (whether or not the patient

has a family history positive for heart attack),Pollution (whether or not the area where the patient

lives has high air pollution) can all determine the presence of a disease. Given a disease is present,

the patient may or may not show certain symptoms:Fever, Chest Pain, Vomiting.

The task of learning models for many real-world problems requires researchers to incorporate

problemDomain Knowledgeinto the learning algorithm because there is rarely enough training

data to enable the learning of the structures and underlying relationships in the problem. Domain
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Pollution

Disease

FHxMI

Chest PainFever

Smoking

Vomiting

P(S) P(FHx) P(P)

P(D|S,FHx,P)

P(Fv|D) P(CP|D) P(V|D)

Figure 1.1:A simplified version of a Bayesian Network which models the interaction between risk factors,

diseases and symptoms for the purpose of disease diagnosis in Emergency Room patients. The variables in-

volved are:Smoking(S), Family History of Heart AttackFHxMI (FHx), Pollution(P), Disease(D), Fever(Fv),

Chest Pain(CP)andVomiting (V).

Knowledge comes in many forms. A domain expert can provide Domain Knowledge about rele-

vance of certain variables, also called Feature Selection, that can help us ignore certain variables

when building our model. Domain Knowledge specifying conditional independencies among vari-

ables can both guide our search over possible Bayesian Network structures and speed up inference.

Both these forms of Domain Knowledge have been extensively studied.

This thesis presents a theoretical framework for incorporating a different kind of knowledge

into Parameter Learningalgorithms for Bayesian Networks: Domain Knowledge about relation-

ships among parameters.Parameter Learningin a Bayesian Network is defined as the problem of

estimating the parameters of that network from a dataset of training cases. These cases can be either

fully or partially observable.

To see why one would need to take advantage ofParameter Domain Knowledge, consider the

network in the above example. In a real world situation, we can have tens of potential risk factors and

hundreds of potential symptoms. Also, theDiseasevariable can take values in very large set. With

only 20 binary risk factors, the number of parameters of the diagnosis Bayesian Network easily

runs in the millions. Unfortunately, clean and complete medical data is extremely hard to come

by in a quantity sufficient to allow us to estimate these parameters accurately. However, medical

Domain Knowledge is plentiful and it can come directly from physicians or can be extracted from

written/online medical material. For example, a doctor may say:All the other risk factors can be

ignored (have little additional influence) when deciding on a diagnosis of Heart Attack given that the

2



patient is a Smoker with a positive Family History of Heart Attack. Knowledge coming from medical

books may state:A patient with Heart Attack exhibits chest pain and, very frequently, vomiting.

While in the first case, domain knowledge asserts equality of a large number of parameters, in the

second case it asserts a deterministic relation betweenHeart AttackandChest Pain.

First, Parameter Domain Knowledgecan help by shrinking the space in which the parameters

can take values. In the case of equality constraints, we achieve dimensionality reduction in this

space (as we noticed in the above examples). Inequality constraints can significantly reduce the

volume of the feasible region in the space of parameters in the case when this region is bounded.

This is the case with Bayesian Networks that model only discrete variables, because each parameter

is a probability between0 and1. Second, since Parameter Domain Knowledge has the effect of

shrinking the space of allowed parameters and since the amount of training data does not change,

intuitively one would expect that algorithms that know how to take advantage of Parameter Domain

Knowledge will produce lower variance estimators, which would be a great plus when training data

is scarce.

Currently, most popular ways of representingParameter Domain Knowledgeare: Dirichlet

Priors and their variants andParameter Sharing(HMMs, Module Networks, Context Specific In-

dependence), each of them having serious limitations. With Dirichlet Priors, one can not represent

even simple equality constraints between parameters. Generalizations would allow this simple kind

of constraint by using priors on the parameters of the Dirichelet Prior but in this case the marginal

likelihood can not be computed in closed anymore. Second, when the Bayesian Network has a very

large number of parameters, it is often beyond the expert’s ability to specify a full Dirichlet Prior.

In models like Module Networks or HMMs, parameter sharing happens at the level of conditional

probability table while Context Specific Independence can specify parameter sharing at the level of

conditional probability distribution within the same table. No such model allows sharing at param-

eter level of granularity nor it is able to represent more complicated parameter constraints. We will

discuss these forms of Parameter Domain Knowledge in more detail in Chapter2.

In this thesis we will present a unifying framework for incorporating Parameter Domain Knowl-

edge to perform automatic Parameter Learning in Bayesian Networks. While this framework uses

an iterative procedure to approximate the parameters, we will also illustrate it with several Domain

Knowledge types where we can compute the estimators in closed form. In particular, we define a

Parameter Sharing Domain Knowledge type and show how current models that use Parameter Shar-

ing assumptions can all be represented by this type. Examples on both real world and synthetic data

will demonstrate the benefits of taking advantage of Parameter Domain Knowledge when compared

to baseline models.
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1.2 Research Approach

The derivation of our results relies heavily on optimization and approximation techniques. We will

formulate maximum likelihood parameter learning from complete data as a constrained maximiza-

tion problem. We will solve this optimization problem using Karush-Kuhn-Tucker theorem. This

is a generalization of Lagrange Multipliers theorem, which looks for a set of inequality constraints

that become equalities at the local optimum. As expected, the system of equations which results

from Karush-Kuhn-Tucker theorem may be difficult to solve in closed form in the general case.

However, this system has the same number of equations as variables and its solutions can be found

using the Newton-Raphson iterative method. For this method to work, we require that our Parame-

ter Domain Knowledge constraints be represented as twice differentiable functions with continuous

second derivatives.

The dimensionality of the optimization problem can make the above approach prohibitive. For-

tunately, in practice, most given constraints involve only a small fraction of the total number of

parameters. In addition, the objective function (likelihood function in general) is nicely decom-

posable and therefore we will be able to split the initial maximization problem into a set of many

independent maximization subproblems, each with its own set of constraints. These subproblems

have much lower dimensionality and therefore can be solved more easily with the above mentioned

method.

There are several approaches to parameter learning: from either a frequentist or a Bayesian

point of view, from either complete or incomplete data. The above method performs learning from

complete data from a frequentist point of view. In the case of incomplete data, we present several

ways to perform Maximum Likelihood estimation based on methods similar to the ones for complete

data. In particular, we notice that extending the Expectation Maximization algorithm for discrete

Bayesian Networks in the presence of Parameter Domain Knowledge constraints is just a matter

of applying in the M-Step the Maximum Likelihood estimators on the expected counts computed

in the E-Step. From a Bayesian point of view, we defineConstrained Parameter Priorsthat obey

the Parameter Domain Knowledge and show how the normalization constant can be computed via

a sampling algorithm. Based on these priors, we then discuss how one can perform Maximum

Aposteriori estimation and Bayesian model averaging for both complete and incomplete data.

While the above methods work for general constraints, it would be preferable to be able to

compute, in one step, closed form solutions for both the parameter estimators and the normalization

constants of theConstrained Parameter Priors. Unfortunately, this task is not always possible,

simply because of the fact that there is no known closed form solution for polynomial equations of

degree higher than four. Three chapters of this thesis will be dedicated to the derivation of closed

form estimators for several types of domain knowledge. We study Parameter Domain Knowledge

constraints for both discrete and continuous variables, with a special emphasis on parameter sharing.

4



However, we also investigate constraints between sets of parameters (sum sharing, ratio sharing). In

one of these three chapters, we compute closed form Maximum Likelihood estimators in the case

when the domain knowledge comes as inequality constraints. These derivations will be performed

by directly solving the system of equations that characterize the maximum point instead of resorting

to the iterative method.

To validate our approach, we perform experiments on both synthetic and real world data. We

compare our models with standard baseline models using theKL divergencein the case of synthetic

data and theAverage Log Score(which converges to the negative of cross-entropy on the long run)

in the case of real world data.

1.3 Contributions

In this thesis we isolated the problem of incorporating Parameter Domain Knowledge in learning

procedures for Bayesian Networks and developed mathematically sound methods to help solve this

problem. We feel that we barely scratched the surface of this new area and that further research

is needed to improve the methods described here. The main contributions of this research are the

following:

• We developed a unified framework for incorporating general Parameter Domain Knowledge

constraints in parameter learning procedures for Bayesian Networks by formulating this as

a constrained optimization problem. We developed sound methods to solve this problem

from both a frequentist and a Bayesian point of view and from both complete and incom-

plete data. Main contributions here include: computing Maximum Likelihood and Maximum

Aposteriori estimators via a Newton-Raphson iterative algorithm, computing the normaliza-

tion constant forConstrained Parameter Priorsand presenting several algorithms to deal

with incomplete data. All these methods work with arbitrary Parameter Domain Knowledge

constraints that are twice differentiable and with continuous second derivatives.

• We derived closed form solutions for our estimators in several cases. Parameter Domain

Knowledge types for which this is possible include different variants of parameter sharing, as

well as sharing properties of groups of parameters: sum sharing or ratio sharing. We created

a Parameter Sharing framework that can describe a broad class of models: Module Networks,

Dynamic Bayes Nets, Context Specific Independence models (Bayesian Multinetworks and

Bayesian Recursive Multinetworks). While in these models parameter sharing happens at

either conditional probability table or conditional distribution (within one table) level, our

framework is much more flexible, allowing sharing at parameter level, across conditional dis-

tributions of potentially different lengths and across different conditional probability tables.

5



We would like to point out the unexpected result that closed form estimators were also found

even in the case of several inequality Parameter Domain Knowledge constraint types.

• We developed methods to automatically learn Parameter Domain Knowledge constraints

based on two scores. The first score is similar to the marginal likelihood. This measure is

feasible in practice only if a domain expert can specify restrictions on the set of possible do-

main knowledge assumptions. The second score for a set of Parameter Domain Knowledge

constraints is computed as the cross-validation log-likelihood of the observed data based on

Maximum Likelihood Estimators.

• As an application of our methods, we developed a generative model for the activity in the

brain during a given cognitive task, as it is observed by an fMRI scanner. We employ the

second score described above to find clusters of voxels which can be learnt together using

Hidden Process Models with shared parameters. Our models taking advantage of parameter

sharing far outperform the baseline model.

• Several formal guarantees are presented about our theoretical results. We show that with

infinite amount of training data, our Maximum Likelihood Estimators converge to thebest

distribution (closest in terms of KL distance with the true distribution) that factorizes ac-

cording to the given Bayesian Network structure and obeys the expert’s parameter sharing

assumptions, even in the case when incorrect knowledge is supplied. In the case when cor-

rect parameter sharing assumptions are provided, we prove that our models will yield lower

variance estimates than standard learning methods that ignore this kind of domain knowledge.

1.4 Thesis Statement

Standard methods for performing parameter estimation in Bayesian Networks can be naturally ex-

tended to take advantage of domain knowledge that can be provided by a domain expert. These

new methods can help lower the variance in parameter estimates by reducing the number of degrees

of freedom in the space of allowed parameters. While with an infinite amount of training data one

would expect standard parameter estimation methods to perform very well, we show that the impact

of incorporating Domain Knowledge constraints is quite noticeable when training data is scare.

1.5 Thesis Outline

Chapter2 describes work related to this research. There we investigate several types of domain

knowledge and models that make certain domain knowledge assumptions. We discuss Dirichlet Pri-

ors (and their variants), Markov and Hidden Markov Models, Dynamic Bayesian Networks, Context

6



Specific Independence (and models that use it) and Probabilistic Rules. Also, that chapter provides

a brief tutorial on parameter estimation in standard Bayesian Networks, with both discrete and con-

tinuous variables.

In Chapter3 we formulate parameter learning in the presence of Parameter Domain Knowledge

as a constraint optimization problem and show how to solve this problem using an iterative Newton-

Raphson method. We study both a frequentist and a Bayesian approach, from both complete and

incomplete data.

Chapters4,5 and6 present the main theoretical contributions of this research. In chapters4 and

5 we derive methods that perform parameter estimation in Bayesian Networks involving discrete

random variables. Chapter4 shows how domain knowledge in the form of equality constraints can

be incorporated in learning procedures for Bayesian Networks. Here we show how to compute close

form estimators for several types of domain knowledge: known parameters, parameter sharing, pa-

rameter sum sharing and parameter ratio sharing. Both a frequentist and a Bayesian perspective are

investigated, using both complete and incomplete data. Chapter5 deals with domain knowledge

given by inequality constraints involving groups of parameters. In particular, we show how to esti-

mate parameters when the aggregate probability mass of a certain group of parameters is bounded

from above by a constant or by the aggregate probability mass of another group of parameters (e.g.

frequency of adjectives is less than frequency of nouns in a language). In chapter6 we look at

continuous random variables and equality constraints involving the parameters of these variables.

We derive maximum likelihood estimators in the case when certain parameters are shared and in the

case when certain parameters are proportional to given constants. There we also show an iterative

algorithm to perform maximum likelihood estimation for Shared Hidden Process Models.

Chapter7 provides some formal guarantees about our estimators. Here we present a theorem

proving that our parameter estimators based on domain knowledge provided by an expert have a

lower total variance than the ones computed with standard methods. This result assumes the domain

knowledge is correct. We also derive a theorem stating how well our model can perform when the

domain knowledge provided by the expert is not entirely correct.

To validate our models, in chapter8 we present experimental results on both synthetic and real

world data. There we model the fMRI signal using Hidden Process Models that are shared across

clusters of neighboring voxels. This is a very high-dimensional problem, for which we only have

several examples available. Since Domain Knowledge is not readily available, we automatically

learn the clusters from our data using a cross-validation approach.

In chapter9 we present a brief summary of this research and we conclude by listing several

interesting ideas for future work.
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Chapter 2

Related Work

In this chapter we present previous work which we will build on in this thesis, along with work

on models that use certain types of domain knowledge. First we give a brief tutorial on parameter

learning, from both a frequentist and a Bayesian point of view, from both complete and incomplete

data and for both discrete and continuous variables. In the second part of this chapter we present

several models that use parameter domain knowledge assumptions along with several of their short-

comings. We discussDirichlet Priors and related parameter priors,Hidden Markov Models, Dy-

namic Bayesian Networks, Kalman Filters, Context Specific Independence, Bayesian Multinetworks

andRecursive Multinetworks, Module Networks, Object Oriented Bayesian Networks, Probabilistic

Relational Models, Bilinear ModelsandProbabilistic Rules. Let us start by introducing several

important theoretical results that we will rely on subsequently.

2.1 Some Useful Results

In parameter learning we maximize a measure which depends on the parameters of a Bayesian

Network. This can be thought of as a constrained optimization problem. Therefore, we will first

state two theorems that characterize the optimum point of a constraint optimization problem. We

will start with Lagrange Multiplierstheorem [Arf85, BNO03, Zwi03], which deals with equality

constraints:

Theorem 2.1.1.(Lagrange Multipliers) If theregular pointx∗ is a local maximizer of the function

f(x) of n variables with respect to constraintsgi(x) = 0 for 1 ≤ i ≤ m, then there existsλ∗ =
(λ∗1, . . . , λ

∗
m) such that(x∗, λ∗) is the solution of the following system ofn + m equations with

n + m variables:
{
∇xf(x∗)−∑

i λ
∗
i · ∇xgi(x∗) = 0

gi(x∗) = 0

9



A similar characterization of the optimum points exists when certain constraints come in the

form of inequalities. In this case, the optimum satisfiesKarush-Kuhn-Tuckerconditions [Kar39,

KT51], which represent an extension ofLagrange Multiplierstheorem. The main idea here is that

any of the inequality constraints can be eithertight (satisfied) at the optimum ornot tight. The

Karush-Kuhn-Tuckertheorem basically looks for a set of constraints that are tight, describes the

optimum point for those constraints in a fashion similar toLagrange Multiplierstheorem, then

checks if this point satisfies the rest of the inequality constraints.

Theorem 2.1.2.(Karush-Kuhn-Tucker) If theregularpointx∗ is a local maximizer of the function

f of n variables with respect to constraintsgi(x) = 0 for 1 ≤ i ≤ m andhj(x) ≤ 0 for 1 ≤ j ≤ k,

then there existsλ∗ = (λ∗1, . . . , λ
∗
m) and µ∗ = (µ∗1, . . . , µ

∗
k) ≥ 0 such that(x∗, λ∗, µ∗) is the

solution of the following system ofn + m + k equations withn + m + k variables:




∇xf(x∗)−∑
i λ
∗
i · ∇xgi(x∗)−

∑
j µ∗j · ∇xhj(x∗) = 0

gi(x∗) = 0
µ∗j · hj(x∗) = 0

Both theorem2.1.1and theorem2.1.2work for regular points. A pointx is a regular point if

the gradients of the equality andtight inequality constraints atx are linearly independent. If we ap-

proximate the constraints with linear functions by using a Taylor expansion aroundx, the gradients

of the constraints atx would provide the coefficients of these lines. Therefore, if the gradients are

linearly dependent atx, one can intuitively think of these approximate linear constraints as either

redundant or contradictory atx. In real world optimization problems, it very frequently happens that

all points are regular. If non-regular points exist, they are only few and they almost never provide a

maximum solution for the constrained optimization problem. When deriving closed form solutions

for several types of domain knowledge in the subsequent chapters, we noticed that all feasible points

are regular points.

It is important to mention that the above theorems describe only optimum points strictly inside

the region on which the objective functionf and the constraints are defined. Indeed, consider

f(x) = 2x on [0, 1]: f is maximized forx∗ = 1, but the derivative off does not cancel in[0, 1].
If the domain off is a topologically open set (e.g. the interval(0, 1)), then this problem does

not exist. Otherwise, one must be careful to consider potential maxima on the boundary of the

domain of the objective function. When performing parameter estimation in a standard Bayesian

Network using Lagrange Multipliers, one can deal with this problem either enforcing the fact that

all observed counts are strictly positive (which might not be the case in real world situations) or by

using Dirichlet Priors.

Note that the above theorems state conditions that the optimum point must satisfy. While these

conditions are necessary, they are not sufficient. Next we state two propositions describing suffi-

ciency conditions for bothLagrange MultipliersandKarush-Kuhn-Tuckertheorems.
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Proposition 2.1.1. (Sufficiency Criterion 1) Letx∗ be a partial solution of the system of equations

in either theorem2.1.1or theorem2.1.2. Thenx∗ is a global maximum provided that:

• The objective functionf is concave.

• The equality constraints are linear functions and the inequality constraints are convex func-

tions.

This first sufficiency criterion [BV04] is a well known result in optimization theory. Its main

drawback is that it makes very restrictive assumptions about the equality constraints. In our research

we also deal with non-linear equality constraints. Below we present another set of sufficiency

conditions, along with a quick proof:

Proposition 2.1.2. (Sufficiency Criterion 2) Letx∗ be a partial solution of the system of equations

in either theorem2.1.1or theorem2.1.2. Thenx∗ is a global maximum provided that:

• All partial solutionsx̂ of the system of equations satisfyf(x̂) = f(x∗).

• There exists a topologically closed regionB that containsx∗ such thatf(x) < f(x∗) ∀x 6∈ B.

• The constraints define a compact set (the set is bounded and contains the limit of any sequence

of points from it).

In particular, if the above system has only one solution, then the last two conditions are sufficient

for that unique solution to be a global maximum.

Proof. Let C be the compact set defined by the constraints and letA = B ∩ C. SinceB is a

closed set andC is a compact set, it follows thatA is a compact set and therefore the continuous

function f would reach a global maximum onA in a pointx′ ∈ A. We havef(x) < f(x∗) ≤
f(x′) ∀x 6∈ B) and f(y) ≤ f(x′) ∀y ∈ A = B ∩ C. This impliesx′ is a global maximum

of the constrained optimization problem. Thereforex′ must be the partial solution of the system

given by either theorem2.1.1 or theorem2.1.2. From the first sufficiency condition it follows

that f(x′) = f(x∗) and consequently,x∗ is a global maximum for the constrained optimization

problem.

We have seen that the optimum of a constrained optimization problem is characterized by a sys-

tem which has the same number of equations and variables. For arbitrary constraints and objective

function, such a system might be difficult to solve in closed form. Fortunately, several numeric

techniques are available. Next we are going to present one of them, namely the Newton-Raphson

method:

11



Algorithm 2.1.1. (Newton-Raphson)Consider the following system ofn equations withn vari-

ables:




f1(x1, . . . , xn) = 0
. . .

fn(x1, . . . , xn) = 0

If x(0) = (x(0)
1 , . . . , x

(0)
n )T is an initial guess, the Newton-Raphson algorithm looks for a root of the

above system using the following recurrence until convergence is reached:

x(k+1) = x(k) − J(x(k))−1 · (f1(x(k)), . . . , fn(x(k)))T

In this method,J(x) denotes the Jacobian of the system of equations evaluated at the point

x = (x1, . . . , xn):

J(x1, . . . , xn) =




∂f1

∂x1
(x1, . . . , xn) . . . ∂f1

∂xn
(x1, . . . , xn)

. . . . . . . . .
∂fn

∂x1
(x1, . . . , xn) . . . ∂fn

∂xn
(x1, . . . , xn)




For the interested reader, we recommend [BNO03, BV04] and [PTV93] to learn more details

about the Newton-Raphson method as well as alternative optimization methods. As the authors point

out in [PTV93], all these methods have limitations in the case when the constraints are arbitrary,

non-linear functions.

This concludes our quick review of the optimization methods that we are going to employ in

this thesis. In the next section we will see some of these methods at work on the task of developing

parameter estimators for standard Bayesian Networks.

2.2 Parameter Estimation in Bayesian Networks

2.2.1 Bayesian Networks - The Basics

Bayesian Networks were introduced in [Pea88] as a means of representing probability distributions

over a set of random variables in a compact fashion. A Bayesian Network consists of a structure,

which is a Direct Acyclic Graph, and a set of parameters. The parameters are stored inConditional

Probability Tables (CPTs), one for each variable. These tables describe how a variable in the net-

work depends probabilistically on its parents (one can think of these parents as direct causes). In

other words, for each possible value that the parentsPA(X) of a variableX can take, the table will

contain aConditional Probability Distribution (CPD)over the values ofX.

In a Bayes Net, random variables will be denoted by capital letters while small letters will be

used for the values that these variables can take. LetX1, . . . , Xn be the variables in the network and
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let PAi be the set of parents ofXi. Note that specifying the setsPAi is equivalent to specifying

the structure of the Bayes Net. Given this notation, the structure of a Bayesian Network encodes the

following conditional independence assumption:

Property 2.2.1. Local Markov Assumption: A variableXi is conditionally independent of its non-

descendants given its parentsPAi.

Taking advantage of this property, one can derive all conditional independencies between groups

of variables in the Bayesian Network by using a criterion calledd-separation[Pea88] or its equiv-

alent variant, theBayes Ballalgorithm [Sha98]. If we think of the example we described in the

Introduction, the Bayes Net in figure1.1encodes the assumption that the symptoms are condition-

ally independent of risk factors given the disease of the patient.

Property2.2.1also allows us to obtain a factor representation of the joint probability distribution

overX1, . . . , Xn:

P (X1, . . . , Xn) =
∏

i

P (Xi|PAi)

The problems of interest concerning Bayesian Networks are:Structure Learning, Parameter

Learning, InferenceandFinding Hidden Variables. Structure Learningis the task of automatically

learning the structure of a Bayesian Network given a dataset of observed cases. This is a NP-

Hard problem [CGH94]. Common approaches to perform Structure Learning make use of certain

heuristics. TheIC Algorithm [Pea00, PV91] and thePC Algorithm[SGS00] are both looking for

conditional independencies in the observed data, then build a network structure consistent with these

independencies. Other methods perform hill climbing on the structure space by using measures like

the Bayesian Dirichet(BD) Score[CH92] or the Bayesian Dirichlet Likelihood-Equivalent (BDE)

Score[HGC95]. The Structural EM Algorithm[Fri98] allows structure learning in the case of

missing data.

Inferencein Bayesian Networks is the task of estimating the posterior probability of a set of

query variables in the network given the value of a vector of evidence variables. It can be shown

[Coo87] that Inference is a NP-Hard problem. Methods to carry out inference include:Variable

Elimination [Dec96], Message Passing on Junction Trees[Jen96, SS90], Markov Chain Monte

Carlo (MCMC)sampling methods [GG84, GRS96, Jor99, Mac98, Nea93]. In [Zha98a, ZP96] the

authors show methods to exploit conditional independencies in a Bayes Net to perform inference.

Learning Bayesian Networks in the presence of hidden variables was performed in [Fri97] via

an EM style algorithm, very similar to Structural EM.

Parameter Learningis the task of estimating the parameters in the Conditional Probability Ta-

bles of a Bayesian Network givenD = {d1, d2, . . .}, a set of potentially partially observed examples

assumed to be drawn independently at random from our Bayesian Network. We denote byX
(d)
i the
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value of the variableXi and byPA
(d)
i the value of the parents ofXi for exampled ∈ D. Once pa-

rameters are estimated, one can use the Bayesian Network to perform inference on future examples.

In the following subsections we give a brief tutorial on parameter learning in Bayesian Networks,

concentrating on the parts that we extended in this research. In particular, we assume the structure

of the Bayes Net is provided. We focus on parameter learning for models that involve discrete

variables, but we discuss the same task on particular types of models made of Gaussian random

variables. Before we continue, we would like to suggest several additional references on Bayesian

Networks for the interested reader: [CDL99, DHS01, Edw00, Hec99, Jen96, Jen01, Lau96, Mit97,

Pea00, RN95, Whi90].

2.2.2 Frequentist Approach from Complete Data for Discrete Variables

A frequentist tries to estimate a ”best set” of parametersθ. In general, this translates into finding

the set of parameters that maximize theData Likelihood: L(θ) = P (D|θ). Equivalently, one

can maximize theData Log-Likelihood: l(θ) = log P (D|θ). This measure has the following nice

property:

Property 2.2.2. Decomposability of Log-Likelihood. The Log-likelihood function can be writ-

ten as the sum ofn components, one for each variable in the Bayesian Network. The component

corresponding to variableX can be decomposed further into a sum of subcomponents, one for

each instantiation of the parents ofX. If there are no constraints between parameters describing

different subcomponents, then this decomposability will allow us to efficiently perform parameter

estimation in Bayesian Networks by solving a collection or smaller optimization problems, one for

each subcomponent.

Below we show how to derive the Maximum Likelihood Estimators for the parameters in a

Bayes Net since we are going to extend this framework in the subsequent chapters of this thesis.

Before getting to the main result, we need to introduce additional notations that will be used subse-

quently.

For a discrete variableX, let{x1, x2, . . .} be its values. If the variable is indexed, then the index

will be also kept. For example, the variableXi will have values{xi1, xi2, . . .}. To represent the

parameters in the network we follow the notation in [Mit97]. Let θijk = P (Xi = xij |PAi = paik).
Denote byθi∗∗ the set of parameters that appear in the Conditional Probability TableP (Xi|PAi).
In this table, rows are associated with values ofXi and columns with values ofPAi. Let θi∗k be the

set of parameters in columnk (PAi = paik) in this table.

Let us define the following indicator function over the training datasetD:

δijk(d) =

{
1 if Xi = xij andPAi = paik

0 otherwise
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In our training set, letNijk =
∑

l δijk(l) be the number of examples which haveXi =
xij and PAi = paik. Further, letNik =

∑
j Nijk be the number of cases in the training set

which havePAi = paik. One can think ofNijk as the observed count corresponding toθijk and of

Nik as the cumulative observed count associated with the parameters in columnk of the Conditional

Probability Table forXi.

With these notations, the data likelihood can be written as:P (D|θ) =
∏

i,j,k θ
Nijk

ijk . It is easy

to see that, at the point̂θ that maximizesP (D|θ) we can not havêθijk = 0 unlessNijk = 0. If all

the observed counts are positive, the maximum likelihood estimators are strictly positive and can be

found by maximizing log P (D|θ) =
∑

i,j,k Nijk · log θijk. We have the following theorem:

Theorem 2.2.1. If all Nijk are strictly positive, the Maximum Likelihood Estimators of the param-

eters in a Bayesian Network are given by:

θ̂ijk =
Nijk

Nik

Proof. Because of property2.2.2, the problem of maximizing the data log-likelihood can be broken

down into a set of independent optimization subproblems:

Pik : argmax hik(θi∗k) =
∑

j

Nijk · log θijk

{
gik(θi∗k) = (

∑
j θijk)− 1 = 0

The domain of the functionshik and gik is given byθi∗k ∈ ∏
j(0, 1), which is a topologi-

cally open set. Therefore, if a maximum exists, it must lie inside the region determined by the

domains ofhik and gik and thus we try to find the solution ofPik using Lagrange Multipliers

theorem. Introduce Lagrange Multiplierλik for the above constraint inPik. Let LM(θi∗k, λik) =
hik(θi∗k)−λik ·gik(θi∗k). Then the point which maximizesPik is among the solutions of the system

∇LM(θi∗k, λik) = 0. Let (θ̂i∗k, λ̂ik) be a solution of this system. We have:0 = ∂LM
∂θijk

= Nijk

θijk
− λ̂ik

for all j. Therefore:θ̂ijk = Nijk

λ̂ik
. Summing up for all values ofj, we obtain:

0 =
∂LM

∂λ
= (

∑

j

θ̂ijk)− 1 = (
∑

j

Nijk

λ̂ik

)− 1 =
Nik

λ̂ik

− 1

From the last equation we compute the value ofλ̂ik = Nik. This gives us:̂θijk = Nijk

Nik
. Because

all the counts are positive, the pointθ̂ is well defined.

Until now we only showed that, if a maximum point exists, it must be theθ̂ found above. Using

the sufficiency criterion2.1.1, it follows thatθ̂ must be a global maximum.
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In the case when some, but not all, of the observed counts in subproblemPik are zero, the corre-

sponding parameters don’t even appear in the likelihood function. ThereforePik has an inequality

constraint but eventually the Maximum Likelihood Estimators are given by the same formulas. If

all of the observed counts in subproblemPik are zero, any probability distribution over the values

of Xi will be a solution forPik.

2.2.3 Frequentist Approach from Incomplete Data for Discrete Variables

When training data is not fully observable, one can still perform approximate maximum likelihood

estimation via theExpectation Maximization (EM)algorithm [DLR77, MK96]. Assume we have

some incomplete dataX which is described by a set of parametersθ. The EM algorithm is an

iterative procedure that improves the data log-likelihoodlog (P (X|θ) at each step. IfZ is the set of

missing data, the parametersθt+1 (at iterationt + 1) are estimated from parametersθt (at iteration

t) using the following formula:

θt+1 = argmaxθ EP (Z|X,θt)
[log P (X,Z|θ)] (2.1)

This algorithm works in two steps. In theE-Stepit computesP (Z|X, θt), the posterior prob-

ability of missing data given observed data and current parameter estimates. In theM-Stepit re-

estimates the parameters by maximizinglog P (X, Z|θ), the expected log-likelihood of complete

data, assuming the missing data comes from the distribution computed in theE-Step. The EM is

guaranteed to converge to a zero of the log-likelihood function’s gradient. In [NH98] the authors

present an alternative formulation of the EM algorithm where each step is maximizing over a subset

of variables of a certain energy function. Based on that formulation, they derive a modified version

of the EM algorithm which allows for partial E-Steps.

In the case of Bayesian Networks, when the data is incomplete, we cannot compute the counts

Nijk andNik. However, they can be treated as random variables. The equation2.1becomes:

θt+1 = argmaxθ
∑

i,j,k

Eθt
[Nijk] · log θijk (2.2)

The above equation yields the following iterative EM algorithm for computing the Maximum

Likelihood Estimators for the parameters in a Bayes Net in the case when data is incomplete:

The EM Algorithm. Repeat the following two steps until convergence:

E-Step: Use any sound inference algorithm to compute the expected countsE[Nijk] andE[Nik]
under the current parameter estimatesθ̂. If just starting, assign̂θ randomly or according to some
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domain knowledge.

M-Step: Re-estimate the parameters by maximizing the data likelihood using Theorem2.2.1, as-

suming that the observed counts are equal to the expected counts given by the E-Step:

θ̂ijk =
E[Nijk]
E[Nik]

2.2.4 Bayesian Approach from Complete Data for Discrete Variables

From a Bayesian point of view, each choice of parameters is possible, but some choices have higher

prior probability of occurring. Therefore, to do model averaging, we need to specify priors over

the space of parameters. It can be proved [GH97], that under certain conditions, choosing Dirichlet

Priors over the parameters of a Bayesian Network is inevitable. Below we define Dirichlet Priors

and show how to perform Maximum Aposteriori and Bayesian estimation.

2.2.4.1 Dirichlet Distribution

Assume we have a distributionP (X) over the finite set of values{x1, x2, . . . , xn}. Letθi = P (X =
xi) be the parameters of this discrete distribution. Before seeing any data from this distribution we

may or may not know what the parameters are. In the case when we do not know them, for all

purposes, the parameters of distributionP can be seen as a random vectorθ = (θ1, θ2, . . . , θn). A

Dirichlet Distribution is a way of representing the uncertainty one has aboutθ before seeing any

data sampled fromP . It has the following formula:

P (θ) =

{
1
Z

∏n
i=1 θαi−1

i if
∑

i θi = 1 and θi ≥ 0 ∀i
0 otherwise

Here are some properties of the Dirichlet Distribution:

• The normalization constantZ can be computed by enforcing the fact that this is a valid prob-

ability distribution. In other words, we must have
∫∞
−∞ P dθ = 1. This yields:

Z =
∏n

i=1 Γ(αi)
Γ(α)

where α =
n∑

i=1

αi

HereΓ(·) represents theGamma Function, also known as theExtended Factorial.

•
E[θi] =

αi

α
and V ar[θi] =

E[θi] · (1−E[θi])
α + 1
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Intuitively one can think of a Dirichlet Distribution as an expert’s guess of the parametersθ.

Basically, the expert is telling us that he/she believesθi = αi
α , but is not completely sure,

therefore allows these parameters to vary around the guess with the variance given above.

Parametersαi can be thought of as how many times the expert believes he/she will observe

X = xi in a sample ofα examples drawn independently at random from distributionP . The

biggerα is, the lower the variance in each parameter and consequently, the larger the number

of observed cases needed to overturn expert’s belief.

• AssumeP (θ) is a Dirichlet Distribution. GivenD, a dataset of samples that are drawn in-

dependently at random fromP (X), it is easy to see thatP (θ|D) ∝ P (D|θ) · P (θ) is also a

Dirichlet Distribution. Because of this fact and becauseP (D|θ) is a Multinomial Distribu-

tion, Dirichlet Distribution is also referred to asthe conjugateof Multinomial Distribution.

2.2.4.2 Dirichlet Priors in Bayesian Networks

We saw above how one can define a prior over the parameters of a discrete probability distribution.

One can think of the parameters of a Bayesian Network as a set of conditional probability distri-

butions. Each table contains a subset of conditional probability distributions, one for each column

θi∗k. One can specify a probability distribution over the space of parameters in a Bayesian Net-

work by first specifying a Dirichlet Distribution for each conditional probability distribution in the

Graphical Model, then describe the way these Dirichlet Distributions are dependent on each other.

For the first part, let the Dirichlet Distribution associated to parametersθi∗k be:

P (θi∗k) =
1

Zik

∏

j

θ
αijk−1
ijk

To relate these Dirichlet Distributions to each other, in [SL90] the following assumptions are

made:

• Global Independenceassumption: parameters corresponding to different variables in the

Graphical Model are independent of each other. In other words,θi∗∗ ⊥ θj∗∗ for all i 6= j.

• Local Independenceassumption: parameters associated with different configurations of the

parents of the same random variable are independent of each other. This is equivalent to

θi∗k ⊥ θi∗l for all k 6= l.

Based on the considerations above, we can define a Dirichlet Prior over the space of parameters

in the Bayes Net:

P (θ) =
∏

i,k

P (θi∗k) =
1
Z

∏

i,j,k

θ
αijk−1
ijk

where the normalization constant is given by:Z =
∏

i,k Zik.
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Property 2.2.3. AssumeP (θ) is a Dirichlet Prior. GivenD a dataset of fully observable cases

drawn independently at random from the probability distribution represented by a Bayes Net, one

can easily see thatP (θ|D) ∝ P (D|θ) · P (θ) is also a Dirichlet Prior.

2.2.4.3 Maximum Aposteriori Estimators

In Maximum Aposteriori estimation we are looking for the parameters with the maximum posterior

probability given a dataset of observed cases:

P (θ|D) ∝ P (D|θ) · P (θ) ∝
∏

i,j,k

θ
Nijk+αijk−1
ijk

Note that, for the purpose of computing the maximum a posteriori estimates for parameters in

our Bayes Network,P (D) and the normalization constantZ do not matter. A theorem similar to

the one describing Maximum Likelihood Estimators can be derived in this case:

Theorem 2.2.2.The Maximum Aposteriori Estimators in a standard Bayes Net are given by:

θ̂ijk =
Nijk + αijk − 1

Nik +
∑

j′(αij′k − 1)

Proof. Given the formula forP (θ|D) above, one can see that the Maximum Aposteriori Estimators

are equal to the Maximum Likelihood Estimators of the same Bayes Net structure where the ob-

served countsNijk are incremented withαijk − 1. The result now follows from theorem2.2.1.

2.2.4.4 Bayesian Averaging

From a Bayesian point of view, we are interested in predicting the next data point given a set of

previously observed data pointsD = {D1, . . . , Dn}. This can be written as follows:

P (dn+1|D) =
∫

P (dn+1|θ) · P (θ|D) dθ

=
∫

(
∏

i,j,k

θ
δijk(dn+1)
ijk ) · P (θ|D) dθ

=
∏

i,j,k

(EP (θ |D)[θijk])
δijk(dn+1) dθ

One can easily see that the above prediction formula using Bayesian averaging will yield the

same results as predicting the next example using the Bayes Net model with parametersθ̂ijk =
EP (θ |D)[θijk]. We have the following theorem:
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Theorem 2.2.3.The Bayesian Averaging Estimators in a standard Bayes Net are given by:

θ̂ijk = EP (θ |D)[θijk] =
Nijk + αijk

Nik + αik
where αik =

∑

j′
αij′k

Proof. As stated in property2.2.3, P (θ|D) ∝ P (D|θ) · P (θ) is also a Dirichlet Prior. Our result

now follows from the basic properties stated above for Dirichlet Distributions.

2.2.5 Bayesian Approach from Incomplete Data for Discrete Variables

When data is incomplete, the MAP Estimators can be computed by slightly modifying the EM

Algorithm for computing the Maximum Likelihood Estimators. In order to do Bayesian Averaging

we write:

P (dn+1|d1, . . . , dn) =
∫

P (dn+1, . . . , d1|θ) · P (θ)dθ∫
P (dn, . . . , d1|θ) · P (θ)dθ

(2.3)

Let us take a look at the denominator. Denote byU the set of missing values such thatD ∪ U

is a complete dataset. Then,
∫

P (D|θ) · P (θ)dθ =
∑

U

∫
P (D, U |θ) · P (θ)dθ. It is easy to see

that
∫

P (D, U |θ) ·P (θ)dθ is the normalization constant for a Dirichlet Prior. Therefore, in the case

of incomplete data,
∫

P (D|θ) · P (θ)dθ is a sum of normalization constants for certain Dirichlet

Priors (one for each completion ofD). Since we know how to compute normalization constants

for Dirichlet Priors, we therefore know how to compute the denominator of the the equation2.3.

In a similar way we can compute the nominator and thus we just showed how to perform Bayesian

Averaging in the case when we are dealing with incomplete data.

The above procedure for performing Bayesian Estimation is computationally expensive because

the number of terms in the summation grows extremely quickly. If only one binary value is missing

in each of then training examples, there will be2n terms in the summation. Instead, techniques that

approximateP (D|θ) with a Dirichlet Prior [CDS96, TI76] are used when data is incomplete.

2.2.6 Learning with Continuous Variables

If a variableXi is continuous, it can take any value in an open set of the canonical topological

space defined over the real numbers. In this case we have to specify several parameters describing

the continuous conditional probability distribution ofXi given each instantiation of the parents. A

continuous random variableXi is characterized by several parameters that describe the conditional

probability distribution for each instantiation of the parents. Learning procedures differ depending

on the type of continuous random variable. Because of this fact, here we are only going to present
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learning in the setting when the conditional probability distributions corresponding toXi are Gaus-

sians whose means are linear combinations of the values of the parents. In other words, we have

Xi|PAi ∼ N(PAi ·θi, σ
2
i ) whereθi is a column vector of parameters of length equal to the number

of parents of variableXi.

Let us denote byX l
i the value ofXi and byPAl

i the value ofPAi in training exampledl. Define

Ai to be theParents Matrixandbi to be theVariable Vectorfor variableXi such that each has a row

corresponding to each example in the training set:

Ai =




PA1
i

PA2
i

. . .

PAm
i




and bi =




X1
i

X2
i

. . .

Xm
i




With these notations, we have the following theorem:

Theorem 2.2.4. If AT
i · Ai is non-singular, the Maximum Likelihood Estimators of the parameters

for gaussian variableXi are given by:

θ̂i = (AT
i ·Ai)−1 ·AT

i · bi

σ̂2
i =

||Ai · θ̂i − bi||2
m

Proof. We remind the reader that, because of property2.2.2, the problem of maximizing the data

log-likelihood can be broken down into a set of independent optimization problems, one for each

conditional probability distribution. The component of the log-likelihood corresponding to variable

Xi can be written as:

li(θi, σi) = −m

2
· log(2π)−m · log(σi)− 1

2 · σ2
i

·
∑

l

(X l
i − PAl

i · θi)
2

= −m

2
· log(2π)−m · log(σi)− 1

2 · σ2
i

· ||Ai · θi − bi||2

It is easy to see that the value ofθi that maximizesli for a givenσi is the same for all values

of σi. Therefore we can first maximizeli with respect toθi, then maximize with respect toσi.

Maximizing with respect toθi is equivalent to solving for the least squares solution of the system

Ai · x = bi. The solution to this problem is given by(AT
i ·Ai)−1 ·AT

i · bi. Therefore we have:

θ̂i = argmaxθ ||Ai · θ̂i − bi||2 = (AT
i ·Ai)−1 ·AT

i · bi

Now that we computed the Maximum Likelihood estimator forθi, we can maximize with respect

to σi by simply solving ∂li
∂σi

(θ̂i, σ̂i) = 0. The solution of this equation iŝσ2
i = ||Ai·θ̂i−bi||2

m and it is

easy to see that this is a maximum.
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If AT
i · Ai is singular,θi can still be estimated by minimizing||Ai · x − bi||2 using an SVD

approach. Oncêθi is computed, the estimator̂σ2
i can be found using the same formula as in the

above theorem.

A Bayesian Network where all variables in the network are gaussian is called aGaussian Net-

work. In this case, the joint probability distribution is also a Gaussian. Learning in Gaussian Net-

works was studied in [GH94]. A different approach to deal with continuous variables is presented

in [FG96a, FGL98] where the authors show how discretization of continuous random variables can

help on classification tasks.

In order to perform Maximum Aposteriori estimation and Bayesian Averaging in a Gaussian

Network, one has to define priors on the parametersθi andσi. Common choices areARD Priors

[LCT02] and Normal-Wishart Priors[Min00b]. When data is incomplete, parameter estimation

becomes very difficult. In [GH94] it is suggested that missing values can be filled with their expec-

tation under the current parameter estimates, an approach very similar to the EM algorithm. We are

not going to provide more details here because we did not extend the results in these papers to take

advantage of parameter related domain knowledge.

2.2.7 Estimating Performance in a Bayesian Network

In the previous subsections we showed how to perform parameter estimation in Bayesian Networks.

However, we provided no way of assessing the quality of the learnt parameters. The purpose of this

subsection is to describe ways to estimate the performance of a Bayesian Network.

A Bayesian Network is a compact way to represent a joint probability distributionQ over a

set of random variables. This distribution may or may not reflect accurately the true probability

distributionP that we are trying to estimate. A standard way to measure the distance between two

distributions over the same values is to compute theirKL Divergence:

KL(P,Q) =
∑

x

P (x) · log
P (x)
Q(x)

= H(P, Q)−H(P )

HereH(P ) stands for theEntropyof a probability distributionP andH(P, Q) stands for the

Cross-Entropybetween two probability distributionsP and Q over the same values. We sug-

gest [CT91] for a comprehensive review of Information Theory concepts. It is easy to see that

KL(P, P ) = 0 and that this measure is not symmetric. Using KL divergence to compute the per-

formance of our learnt distribution assumes we have access to the true distribution of the data. This

is possible only in a controlled environment. In the real world however, we rarely have access to the

underlying distribution of the data. In this case it is common to use theAverage Log-Score (ALS)

on a test setD:
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ALS =
∑m

i=1 log (P1(di))
m

As a consequence of the Law of Large Numbers, it is easy to see that the Average Log-Score

is a measure that approximates the negative of cross-entropy (−H(P,Q)) when the number of test

examples goes towards infinity. This score is negative and, the better the model, the higher the

score is. If the model is perfect, then the ALS score will be close to−H(P ) given enough testing

examples.

Now let us see how the improvement in the Average Log-Score translates in terms of improve-

ment in data likelihood. Assume we have two probabilistic models, one described byP1 and one by

P2. Also, assumeD = {d1, . . . , dm} is a test set withm examples drawn independently at random

from the true distribution we are trying to estimate. The differenceδ in ALS can be written as:

δ =
∑m

i=1 log (P1(di))
m

−
∑m

i=1 log (P2(di))
m

=

∑m
i=1 log P1(di)

P2(di)

m

This can be rephrased equivalently as: on the average,log P1(d)
P2(d) is equal toδ. This means on the

averageP1(d)
P2(d) is equal toeδ. To summarize, on the average (over the test set),P1 outperformsP2 by

a factor ofeδ in terms of data likelihood.

This concludes our mini-tutorial on learning parameters in Bayesian Networks. We remind

the reader that we focused only on the parts that we are going to extend in this research. A more

comprehensive tutorial on learning Graphical Models can be found in [Mur02].

2.3 Parameter Related Domain Knowledge: Previous Research

The standard way of representing Parameter Domain Knowledge in Bayesian Models is by using

Dirichlet Priors, which were presented in the previous section. In [GH97], it is shown that Dirichlet

Priors are the only possible priors provided certain assumptions hold. As mentioned before, one

can think of a Dirichlet Prior as an expert’s guess for the parameters in a Bayes Net, allowing room

for some variance around the guess. For example, when we want to create a language model for a

specific topic, we can take a global language model and ”guess” that the word probabilities in the

topic specific model are the same are as the ones in the global model before seeing any documents

on that specific topic. The total size of the documents in the global model will determine how

confident we are in this guess.

A Dirichlet Prior assumes a guess on all parameters in the model. However, in many real world

problems, a domain expert might not be able to specify a useful guess for all the parameters in the

model. In this case, one common use of Dirichlet Priors is to make sure all the counts corresponding

to parameters in the model become positive to overcome problems that may appear in Maximum
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Likelihood estimation with zero observed counts. Moreover, for the task of structure learning,

assigning Dirichlet Priors for all possible structures can be prohibitive. Uninformative Dirichlet

Priors are used in [CH92] in order to derive theK2 score, a version of theBD score used in

learning Bayes Net structures. An alternative is provided in [HGC95] where the authors show that,

if several conditions are satisfied, one can build informative Dirichlet Priors starting from a prior

Bayes Net. The problem of estimating the parameters of a Dirichlet Prior from a set of observed

probabilities coming from that prior is also difficult: there is no known closed form solution for

the maximum likelihood estimators, but [Min00a] presents an iterative method to estimate these

parameters.

Even though an expert can provide very useful information, this information might not be rep-

resentable as a Dirichlet Prior. Because a Dirichlet Prior consists of a collection of independent

Dirichlet Distributions, one for each column in each Conditional Probability Table, it can repre-

sent neither constraints among parameters in different columns of a table nor constraints among

parameters in different tables. Moreover, Dirichlet Priors can not even represent simple equality

constraints between two parameters in the same conditional distribution. They can represent equal-

ity constraints likeθ111 = θ121 = 0.1, but not the less restrictiveθ111 = θ121. In order to help

enforce such constraints, one can place priors on the parameters of the Dirichlet Prior. To illustrate,

we can consider thatα111 = α121 = µ whereµ ∼ U(0, 1). The problem with this approach is

that the marginal likelihood can not be computed in closed form anymore, even though approximate

sampling and iterative methods can be conceived, depending on the type of constraints one wants to

represent.

Dirichlet Tree Priors[Den91, Min99] are extensions of standard Dirichlet Priors. These pri-

ors work on a different parametrization of the Bayesian Network. Each parameter in a conditional

probability distribution in a standard Bayes Net is seen as a leaf of a tree and its value is equal to the

product of the probabilities assigned to the edges on the path from the root to the corresponding leaf.

For each node in the tree, the Dirichlet Tree Prior basically assigns a Dirichlet Prior on the proba-

bilities corresponding to edges coming out of that node. Even though Dirichlet Tree Priors allow a

little more correlation (between the parameters within one conditional probability distribution) than

standard Dirichlet Priors, they inherit the same problems with representing parameter constraints.

In addition, a Dirichlet Tree Prior may require up to twice as many parameters to represent.

Dirichlet Priors can be considered to be part of a broader category of methods that employ

parameter domain knowledge, called smoothing methods. A comparison of the common smoothing

methods for language models can be found in [ZL01]. In all the methods presented there, the

word probability model for each document is a combination of the document specific Maximum

Likelihood estimators with a global word model.

In subsection2.2.4we introducedLocal IndependenceandGlobal Independenceassumptions
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that allowed us to define Dirichlet Priors on the parameter space of a Bayes Net. However, these

are very restrictive assumptions which often do not hold in the real world. An approach to relax the

local independence assumption for binary variables is investigated in [GMC99], but the reported

results seem minimal on relatively simple networks.Dependent Dirichlet Priors[Hoo04] are a

generalization of Dirichlet Priors that allow for certain dependencies among different conditional

probability distributions in the same conditional probability table for a given variableX in the

network. These priors can be written as functions of independentGamma random variables. The

dependence among conditional probability distributions is due to the fact that, for each value ofX,

there are three types of suchGamma distributions: one corresponding to the specific instantiation

of the parents ofX, one corresponding to the specific value of each parent and one corresponding

to the variable itself. It can be shown theDependent Dirichlet Priors, when restricted to a specific

instantiation of the parents ofX, are standard Dirichlet distributions. TheseDependent Dirichlet

Priors can cover the case when all the conditional probability distributions ofX are independent

and also the case when all are equal. In this case, Bayesian estimators cannot be computed in closed

form, but in [Hoo04], the author presents a method to compute approximate estimators, which are

linear rational fractions of the observed counts and Dirichlet parameters, by minimizing a certain

mean square error measure.

Context Specific Independence (CSI)[BFG96] states conditional independencies that hold only

in certain contexts i.e. of the formP [X|Y, Z, C = c] = P [X|Z, C = c] and therefore can specify

that some conditional probability distributions (the ones withC = c whereC ⊆ PA(X)) in the

conditional probability table for a variableX are the same (they share all parameters in those distri-

butions). Context Specific Independence can be exploited to efficiently encode and learn conditional

probability tables using decision trees and decision graphs as described in [CHM97, FG96b]. The

role of Context Specific Independence for the task of probabilistic inference in Bayes Nets is dis-

cussed in [Zha98b, ZP99].

The Dependent Dirichlet Priors defined in [Hoo04] can represent a very restrictive set of Con-

text Specific Independence assumptions: for each context given by a subsetC ⊆ PAi, Xi and

PAi \ C are independent in the contextC = c for all values ofc. In other words,Xi is indepen-

dent ofPAi \ C givenC. Other models that use Context Specific Independence assumptions are:

Bayesian Multinets, Bayesian Recursive Multinets and Similarity Networks.Bayesian Multinets

[GH96] describe probability distributions as mixture distributions, where each mixture component

is represented using a Bayes Net. Each mixture determines a subpopulation. More precisely, a

Bayesian Multinet consists of an subpopulation indicator variableS and a collection of Bayes Nets,

one for each value ofS. Using the indicator variableS as the class variable, Bayesian Multinets

have been applied in [CG01, FGG97, GH96] for classification purposes. The conditional indepen-

dence relations among variables may differ from one subpopulation to another i.e. they hold within
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the context given by the value ofS. Dynamic Bayes Multinets, a temporal extension of Bayesian

Multinets, have been presented in [Bil00]. Similarity Networks[Hec90] were the basis for develop-

ing Bayes Multinets. They also encode different independence assumptions for different values/set

of values of the distinguished (class) variable.Recursive Bayesian Multinets[PLL02] are an exten-

sion of Bayes Multinets where the contexts are represented using a decision tree’s edges and each

leaf represents a Bayesian network over the variables not involved in the context.

A widely used form of parameter domain knowledge employed by Graphical Models isParam-

eter Sharing. Context Specific Independence (explained above) is used to represent assumptions

that certain conditional probability distributions which are part of the same conditional probability

table share all their parameters. Dynamical Models likeHidden Markov Models (HMMs)[Rab89],

Input-Output HMMs[BF96], Factorial HMMs[GJ97] andCoupled Hidden Markov Models[Bra96]

are all part ofDynamic Bayes Nets[Mur02], a broader category of models that make the parameter

sharing assumption that the conditional probability tables corresponding to a given variable are the

same at each point in time.Kalman Filters[Kal60, May79, WB95], a particular subclass ofLinear

Gaussian Models[RG99], express the current state of the system as a linear function of the previ-

ous state with zero mean gaussian noise while the current measurement/observation is modelled as

a linear function of the current state with zero mean gaussian noise. The assumption behind Kalman

Filters is these state-to-state and state-to-observation matrices are shared across all time instances.

Object Oriented Bayes Nets[KP97] make the assumption that objects belonging to a certain

type class can be modelled using a single fragment Bayes Net. Each object can be influenced

from the outside via its input variables and can influence other objects via its output variables.

However, internal variables of an object are not accessible outside that object. A bigger Bayes

Net may involve multiple instances of the same type class, and therefore their inner conditional

probability tables can be learned jointly. The task of learning Object Oriented Bayes Nets was

addressed in [BLN01, LB01]. Similar models are presented in [BW00, LM97] and an extension

to Dynamic Object Oriented Bayes Netsis described in [FKP98]. Probabilistic Relational Models

[FGK99, Pfe00] are a more general class of models, where objects of a certain type class also share

the way they depend on related objects of other type classes. The assumption of independence of

examples given the model does not hold anymore for Probabilistic Relational Models: all objects

coexist and can influence each other. Learning a Probabilistic Relational Model is performed by

first unfolding the model as a Bayes Net and then by estimating the parameters from a single ”huge”

training example which contains all objects. This turns out to be a feasible approach because of the

parameter sharing assumption stated above.

Module Networks[SPR03, SSR03], can be used in domains where many variables exhibit sim-

ilar behavior. A Module Network is a Bayes Net where the variables have been partitioned in

modules. The variables in a module all share the same set of parents, same set of values and they
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depend probabilistically on their parents in the same way. This fact allows their corresponding

conditional probability tables to be learned together.

A different type of parameter sharing is found inBilinear Models[TF00]. Here, each instance

of the observed data vectorY of dimensionn is assumed to have a ”style” and a ”content”. An

observed exampleYsc in styles and contentc can be written asYsc ∼ N(As · bc, σ
2 · In) where all

As arenXk matrices, allbc arek dimensional vectors andσ2 is the variance (in the error) which

does not depend ons andc. As one can easily notice, all observations in a certain styles share the

matrixAs while all the observations with contentc share the vectorbc. In addition, all observations

share the variance in the error.

Another type of parameter related domain knowledge comes in the form ofProbabilistic Rules.

Using this kind of domain knowledge in the medical field was addressed in [RR03, RSN02, RSN03].

There, the authors present an approach for modelling disease state using probabilistic rules to spec-

ify the posterior probabilities of certain disease related outcomes given some phrases that appear

in doctors’ dictations. Each such rule generates a probabilistic observation about a certain variable

in a Bayes Net. The observations corresponding to a variable are then combined in a Naive Bayes

fashion to allow to estimate the most likely disease state for a specific patient. Probabilistic rules

can be used to assign values to certain parameters, but we are not aware of them being used beyond

that purpose for estimating the parameters of a Bayesian Network.

To summarize, the main methods to represent parameter related domain knowledge fall into

two categories: Dirichlet Priors and their variants (including smoothing techniques) and Parameter

Sharing of several kinds. One of the main problems with Dirichlet Priors and related models is

that it is impossible to represent even simple equality constraints between parameters without using

priors on the parameters of the Dirichelet Prior, in which case the marginal likelihood can not

be computed in closed form anymore and expensive approximate methods are required to perform

parameter estimation. A second problem is that it is often beyond the expert’s ability to specify a full

Dirichlet Prior on the parameters of a Bayes Net. Parameter Sharing methods can only represent

equalities among parameters, but no other, more complicated, constraints. Current models use

parameter sharing at either the level of conditional probability table (Module Networks, HMMs) or

at the level of conditional probability distribution (Context Specific Independence) within the same

table. No such model allows sharing at parameter level of granularity.

The main contribution of this thesis is an unified framework that allows us to incorporate any

kind of domain knowledge constraints (that obey certain differentiability assumptions) in parameter

learning procedures for Bayesian Networks. We present closed form solutions for several types of

Parameter Domain Knowledge which the methods described in this chapter can not represent. We

show how widely used models including Hidden Markov Models, Dynamic Bayesian Networks,

Module Networks and Context Specific Independence are just particular cases of one of our Pa-
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rameter Domain Knowledge types, namely the General Parameter Sharing Framework described in

section4.7. This framework is able to represent parameter sharing assumptions at parameter level of

granularity, which previous models were not able to do. While the domain knowledge presented in

this chapter can only accommodate simple equality constraints between parameters, we also derived

closed form solutions for Parameter Domain Knowledge types that involve relationships between

groups of parameters (sum sharing, ratio sharing). Moreover, we show how to compute closed form

Maximum Likelihood estimators when the domain knowledge comes in the form of several types of

inequality constraints. Along with our estimators come a series of formal guarantees that show the

benefits of taking advantage of the available domain knowledge and also study the performance in

the case when the domain knowledge might not be entirely accurate. Finally, we developed meth-

ods to automatically learn the domain knowledge, which we illustrate in Chapter8 on a task of

modelling the fMRI signal during a cognitive task.
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Chapter 3

Approach

In this chapter we present a unified framework that allows us to take advantage of Parameter Domain

Knowledge constraints in order to perform parameter learning in Bayesian Networks. There are

two approaches to parameter learning. A frequentist tries to estimate one set of parameters that best

explain the data, while a Bayesian assumes that different sets of parameters are possible, but some

of them are more likely to occur. In the sections below we develop sound methods to incorporate

Parameter Domain Knowledge in learning, from both a frequentist and Bayesian point of view, from

both complete and incomplete data. The constraints that we deal with here do not need to have any

specific form, but should satisfy certain differentiability assumptions. In the subsequent chapters

we will develop more efficient methods tuned to specific types of Parameter Domain Knowledge.

3.1 The Problem

In this section we describe the problem and state several assumptions that we are making when de-

riving our estimators. These assumptions will also apply to most of the types of domain knowledge

presented in the following chapter, unless otherwise specified.

The Problem. Our task is to perform parameter estimation in a Bayesian Network where the struc-

ture is known in advance. To accomplish this task, we assume a dataset of examples is available. In

addition, a set of Parameter Domain Knowledge equality and/or inequality constraints is provided

by a domain expert. Letgi(x) = 0 for 1 ≤ i ≤ m be the equality constraints and lethj(x) ≤ 0 for

1 ≤ j ≤ k be the inequality constraints, whereθ represents the set of parameters of the Bayesian

Network.

In our parameter estimation methods we assume the domain knowledge provided by the expert

is correct (in chapter7, we investigate what happens if this knowledge is not entirely accurate).
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Therefore, the space of feasible parameters is given by:

PDK = {θ | gi(θ) = 0 ∀ i ∈ {1, . . . , m}, hj(θ) ≤ 0 ∀ j ∈ {1, . . . , k}}

Next we will enumerate several assumptions that must be satisfied for our methods to work.

These are similar to common assumptions made when learning parameters in standard Bayesian

Networks. First of all, we consider that the examples in the training dataset are drawn independently

at random from the underlying distribution. In other words, examples are conditionally independent

given the parameters of the Graphical Model. Note that this assumption can be violated in the case

of specific Graphical Models such as Probabilistic Relational Models, where objects are related to

each other and the structure of the model varies depending on how many objects are in the dataset

used for training.

Second, we assume that all the variables in the Bayesian Network can take at least two different

values. This is a safe assumption since there is no uncertainty in a random variable with only one

possible value. If there are such variables in our Bayesian Network, we can safely delete them,

along with all the arcs that go in and out of the nodes corresponding to those variables.

Another important assumption that we will be using when computing parameter estimators in

the discrete case later in this thesis is that all observed counts corresponding to parameters in the

Bayesian Network are strictly positive. It is easy to see why we enforce this condition. Consider the

case when all the observed counts associated to parameters in one conditional probability distribu-

tion are equal to zero. In this case we will have adivide by zeroin the derivation of the maximum

likelihood estimators in standard Bayesian Networks. It turns out that in this case any valid dis-

tribution would be a maximum likelihood estimator for the conditional probability distribution to

estimate. This can be easily fixed by imposing the more relaxed constraint that the total observed

count corresponding to that conditional probability distribution is strictly positive. This will ensure

that there is a unique maximum likelihood estimator. However, if some of the observed counts (not

the total observed count) are zero in that distribution, the maximum likelihood estimators will be

zero for some parameters. AssumeNijk = 0 for fixed values ofi andj, but for all values ofk.

In other words,Xi = xij was not observed whenPA(Xi) = paik for all values ofk. This means

θ̂ijk = P (Xi = xij |PA(Xi) = paik) = 0 for all k and consequentlyP (Xi = xij) = 0. Therefore

anything that is conditional onXi = xij is not defined. This impacts inference negatively. Even

though these considerations are about parameter estimation in standard Bayes Nets, we are going

to face the same kind of problems with the domain knowledge enhanced estimators. Therefore

we decided to enforce the condition that all the observed counts are strictly positive when we are

computing estimators in the discrete case. However, in the real world there will be observed counts

which are zero. In this case we must use Dirichlet Priors and compute MAP estimators instead.

Dirichlet Priors have the effect of adding a positive quantity to the observed count and essentially
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create strictly positive new counts.

Finally, in order for the results in this chapter to hold, the functionsg1, . . . , gm andh1, . . . , hk

must be twice differentiable, with continuous second derivatives. This will allow for certain Tay-

lor series expansions that justify the Newton-Raphson method on the gradient of the Lagrangian

function.

3.2 Frequentist Approach from Fully Observable Data

A frequentist tries to learn one single model that ”best” fits the data. When the structure of the model

is known in advance, this often translates into finding theMaximum Likelihood (ML)estimators for

the parameters in the model. Subsequently, we are also going to discussMaximum Aposteriori

(MAP)estimators.

In Chapter2 we showed how one can derive Maximum Likelihood parameter estimators in

standard Bayesian Networks by using the Lagrange Multipliers theorem. When training data is

scarce, these estimators may have extremely high variance and therefore may violate the domain

knowledge provided by the domain expert. In this section we will extend the result in Theorem

2.2.1to an iterative procedure that computes Maximum Likelihood estimators that obey the domain

knowledge specified by the expert. Without loss of generality, we will consider that parameter

constraints that do not go into the log-likelihood function represent parameter domain knowledge.

For example, in the case of standard Bayesian Networks, the equality constraints state that the

parameters corresponding to a conditional probability distribution should sum up to one and the

inequality constraints state that all parameters are positive.

Using the notations in the previous section, Maximum Likelihood estimators can be found by

maximizing data log-likelihoodlog P (D|θ) whereθ ∈ PDK. In the case of fully observable data,

this is equivalent to solving the following Maximum Likelihood optimization problem:

θ̂ = argmax l(θ) = log P (D|θ) =
∑

d∈D

∑

i

log P (X(d)
i |PA

(d)
i , θ) (3.1)





g1(θ) = 0
...

gm(θ) = 0
h1(θ) ≤ 0

...

hk(θ) ≤ 0

This maximization problem can be solved using Karush-Kuhn-Tucker theorem that we intro-

duced in Chapter2. The maximum point (if it exists), can be found by solving a system of equa-

tions. With potentially arbitrary complex parameter domain knowledge constraints, the solution of
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this system might not be computed in closed form. To see that, it is sufficient to note that there is no

general closed form solution for a polynomial equation of degree higher than four. Fortunately, the

Karush-Kuhn-Tucker theorem yields a system of equations with the same number of equations as

variables, to which one can apply the Newton-Raphson iterative method (also described in Chapter

2) to compute its solutions. Putting the pieces together, the algorithm for computing Maximum

Likelihood parameter estimators in the presence of Parameter Domain Knowledge is as follows:

Algorithm 3.2.1. (Maximum Likelihood estimation with Parameter Domain Knowledge)

STEP 1.Build the following system of equations based on Karush-Kuhn-Tucker theorem:





∇θ l(θ)−∑
i λi · ∇θgi(θ)−∑

j µj · ∇θhj(θ) = 0
gi(θ) = 0

µj · hj(θ) = 0

STEP 2. Compute the solutions(θ̂, λ̂, µ̂) of the above system using the Newton-Raphson method

(potentially using random restarts to deal with local optima or possible divergence of this method

when the initial guesstimate is far from a solution).

STEP 3. For the solutions witĥµ ≥ 0, check if they are maximizers for the Maximum Likelihood

optimization problem. The sufficiency criteria in propositions2.1.1and 2.1.2might prove useful

here. If the domain on which the log-likelihood and the constraints are defined is not a topologically

open set, also check for potential maxima on the boundary. If multiple local maxima are found, keep

the one that achieves the highestl(θ̂) value.

With a large number of parameters in the Bayesian Network, the procedure described above

can be extremely expensive because it involves potentially multiple runs of the Newton-Raphson

method and each such run involves several expensive matrix inversions. Other methods for finding

the solutions of a system of equations can be employed here, but, as noted in in [PTV93], all these

methods have limitations in the case when the constraints are arbitrary, non-linear functions. The

worst case happens when there exists a constraint that explicitly uses all parameters in the Bayesian

Network. Fortunately, in practice, domain knowledge constraints may often only involve a small

fraction of the total number of parameters. Also, the data log-likelihood can be nicely decomposed

over examples, variables and values of the parents of each variable (in the case of discrete vari-

ables). Therefore, the Maximum Likelihood optimization problem can be split into a set of many

independent, more manageable, optimization subproblems, on which we can apply the algorithm we

just described. For example, in Theorem2.2.1, each such subproblem was defined over one single

conditional probability distribution. In general, in the discrete case, each optimization subproblem
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will span its own set of conditional probability distributions, as we will see later, in Chapter4. The

set of Maximum Likelihood parameters will be the union of the solutions of these subproblems.

3.3 Frequentist Approach from Incomplete Data

When data is only partially observable, we cannot write data log-likelihood as a double sum (equa-

tion 3.1) as we did in the previous section. However, one can represent the log-likelihood as the

logarithm of a combination of sums and integrals over the missing values, depending on whether

these values correspond to either discrete or continuous variables. Using this new objective function,

we can still perform Maximum Likelihood estimation as described by Algorithm3.2.1.

Because of the increase in complexity of the expression for data log-likelihood, this procedure

can be prohibitively expensive. To see why this happens, let us take a look at the case when all

variables are discrete and there is no additional domain knowledge (except for standard constraints

that parameters in a conditional probability distribution should be positive numbers that sum up to

one). If only one value is missing in every example, the complexity of performing Maximum Likeli-

hood estimation using the above algorithm becomes slower by a factor exponential in the number of

examples in the training dataset because the objective function will contain an exponential number

of summands under the logarithm. Moreover, in this case, the system provided by Algorithm3.2.1

doesn’t have a closed form solution anymore, as it did in when the data was fully observable (see

Theorem2.2.1).

If continuous variables have missing values, additional complexity is incurred when evaluating

the integrals over missing data, in the formula of the log-likelihood function. A common approach

is to use the trapezoid method [Cor96], which approximates the function under the integral with a

piecewise linear function.

An alternative to the approach described in the first paragraph of this section is to move the com-

bination of sums and integrals over missing values outside the logarithm by taking the expectation

of the log-likelihood of completed dataset over the missing values. If we restrict our search space

to parameters that obey the Parameter Domain Knowledge constraints (i.e.θ ∈ PDK), we obtain

the following Expectation Maximization algorithm:
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Algorithm 3.3.1. (Expectation Maximization with Parameter Domain Knowledge constraints)

Iterate using Algorithm3.2.1until convergence is reached:

θ̂t+1 = argmaxθ EP (Z|D,θ̂t)
[log P (D, Z|θ)]





g1(θ) = 0
...

gm(θ) = 0
h1(θ) ≤ 0

...

hk(θ) ≤ 0

This EM algorithm has the advantage that the data log-likelihood of the completed dataset is

cheap to compute. However, we still have a very expensive algorithm because of the expectation

taken over the missing dataZ. To overcome the complexity issue, in [GH94], the authors suggest

that missing values in a Gaussian Bayesian Network can be filled with their expectation given their

parents under the current parameter estimates. Adapting this idea for parameter estimation in the

presence of Parameter Domain Knowledge constraints yields the following algorithm that approxi-

mates (but is not guaranteed to find) the Maximum Likelihood estimators:

Algorithm 3.3.2. (Maximum Likelihood estimation by filling missing values)Repeat the follow-

ing two steps until convergence is reached:

STEP 1. Fill in the missing values with their expectations given their parents and current param-

eter estimateŝθt . Start with the variables that do not have any parents and end with the leaves of

the Bayesian Network. By the end of this step, each exampled ∈ D is a completed example.

STEP 2.Use Algorithm3.2.1to re-estimate the Maximum Likelihood solution given the completed

dataset from the previous step:

θ̂t+1 = argmaxθ log
∏

d∈D

∏

i

P (X(d)
i |PA

(d)
i , θ)





g1(θ) = 0
...

gm(θ) = 0
h1(θ) ≤ 0

...

hk(θ) ≤ 0
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Unlike the previous two algorithms, in the above procedure each iteration is as complex as the

fully observable case. Unfortunately, this procedure is a greedy approach that is not guaranteed to

converge to a local maximum of the likelihood function because at each iteration the missing data

is instantiated to one value, while all other possible values are ignored. An even cheaper method

would be to directly fill the missing values with their observed unconditional expectations, then

directly resort to the full data case described in previous section. Even though the last approach is

also not guaranteed to find the Maximum Likelihood estimators, it is frequently used in practice not

only in models like Bayesian Networks, but also in Decision Trees and Neural Networks to fill in

missing data.

In the discrete case, the complete data log-likelihood can be written asl(θ) =
∑

i,j,k Nijk ·
log θijk while in the incomplete data case, the objective function of the EM algorithm can be ex-

pressed asEP (Z|D,θ̂t)
[log P (D, Z|θ)] =

∑
i,j,k E[Nijk|θ̂t] · log θijk . It is easy to see that both

complete data log-likelihood and the objective of the EM algorithm have the same structure and

therefore, in the discrete case, each iteration of the EM algorithm will be same as expensive as Al-

gorithm3.2.1, provided that the expected counts are known. The EM algorithm in the discrete case

becomes:

Algorithm 3.3.3. (Expectation Maximization for discrete Bayesian Networks)Repeat the fol-

lowing two steps until convergence is reached:

E-Step: Use any inference algorithm to compute expected countsE[Nijk|θ̂t] andE[Nik|θ̂t] under

the current parameter estimatesθ̂t.

M-Step: Re-estimate the parametersθ̂t+1 using Algorithm3.2.1, assuming that the observed counts

are equal to the expected counts given by the E-Step.

We have seen that, because of its simplicity, our extended version of the EM algorithm can be

favored in the case of discrete Bayesian Networks. However, for Bayesian Networks that involve

both continuous and discrete variables, one should carefully consider picking one of the four ap-

proaches mentioned in this section based on the complexity versus potential estimation inaccuracy

trade-off.

3.4 Bayesian Approach from Fully Observable Data

To perform parameter learning from a Bayesian point of view, we need to define priors over the

parameters of the Bayesian Network. In Chapter2 we mentioned that these priors are Dirichlet

priors in the case of discrete Bayesian Networks and Normal-Wishart priors for Gaussian Bayesian
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Networks. When additional parameter constraints present, the region where parameters can vary is

restricted further and therefore the above standard priors no longer reflect the Domain Knowledge.

In this section we see how one can define parameter priors that are both consistent with the domain

knowledge provided by the expert and allow developing procedures for Bayesian parameter learn-

ing. We will first describe these priors, then we will argue how Maximum Aposteriori estimators

can be computed and finally we show how Bayesian model averaging can be performed for the

purpose of predicting a new data point.

3.4.1 Constrained Parameter Priors

In the previous chapter we have seen that the Dirichlet prior is well suited for performing Maxi-

mum Aposteriori estimation of the parameters in a Bayesian Network because it is the conjugate

of the probability distributionP (D|θ). In other words,P (D|θ) andP (θ|D) ∝ P (D|θ) · P (θ)
are the same type of functions ofθ for all complete datasetsD, but with different hyperparameters.

In the discrete case, forP (D|θ), the hyperparameters are the observed counts corresponding to

each parameter while forP (θ|D) the hyperparameters are the observed counts incremented with

the Dirichlet exponents. Following the same idea, we defineConstrained Parameter Priorswhen

Parameter Domain Knowledge constraints are provided.

Definition 3.4.1. A Constrained Parameter Prior for a Bayesian Network with a set of Parameter

Domain Knowledge constraints is a probability distribution such that:

P (θ) =

{
1

ZPDK
f(θ) if θ ∈ PDK

0 otherwise

andf(θ) is chosen such thatP (θ) is the conjugate ofP (D|θ) for all possible complete datasetsD.

Consequently,P (θ|D) is also a Constrained Parameter Prior.

In general, choosing the functionf(θ) is very intuitive, as he have seen in the previous chapter.

For example, one can definef(θ) = P (D′|θ) whereD′ is a fixed complete dataset of examples.

Under the assumption that examples are drawn independently at random from the distribution de-

scribed by the Bayesian Network, we obtainP (θ|D) ∝ P (D ∪D′|θ) and thereforeP (θ) defined

by f above is a validConstrained Parameter Prior.

Computing the normalization constantZPDK is the most difficult part about dealing with Con-

strained Parameter Priors. We haveZPDK =
∫
θ∈PDK f(θ) dθ. One may be tricked into thinking

that this is a very simple task since there are many methods to either compute or approximate an

integral. There are indeed many ways to accomplish this, but they rely on the fact that the region

to integrate on is explicitly given (for example a one-dimensional interval, a rectangle or a sphere).

In our case, the integration region is the intersection of regions described by potentially arbitrary
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equality and inequality constraints. In the general case it is impossible to parameterize the region

PDK and that makes the task of computing the normalization constantZPDK very difficult. An-

other difficulty arises because the regionPDK may not have the same dimension as the space of

parameters and therefore the integral is a surface integral instead of being a volume integral. In this

case, if we try to use a variant of trapezoid method by splitting the space in hypercubes, we cannot

assume that the surface integral is additive over these hypercubes. The worst case happens when

the surface has a part of positive area included in one of the faces of such a cube.

Here we present a method that will allow us to computeZPDK under the assumption that all

Parameter Domain Knowlewdge constraints can be extended to well defined constraints over the

whole multidimensional space of real numbers. This assumption allows us to consider, without

loss of generality, that the domain of the Parameter Domain Knowledge constraints is the whole

multidimensional space of real numbers because we can add any relationship that defines the domain

of Parameter Domain Knowledge constraints as a separate constraint. With these considerations,

one can approximate the constantZPDK using a sampling approach. The idea is to reduce the

surface integral to a volume integral which can be computed by sampling. To perform this reduction,

the constraints are approximated with linear functions on small hypercubes.

First, let us see how one can express a surfaceS parameterized by non-strict linear constraints

as a non-zero volume. We will eliminate a variable if it can be expressed as a linear function of the

other variables. After repeating this procedure for as long as possible, we are left with a region in

a lower dimensional space that has positive volume. The dimension of the initial surface is defined

as the dimension of this space. One can transform the surface integral into a volume integral of a

new function by making the corresponding substitutions in the formula forf . The procedure looks

is follows:

Algorithm 3.4.1. Computing the dimension of a surfaceS given by a set of linear constraints.

STEP 1. Write each equality constraint as two inequality constraints such that the surfaceS can

be described byS = {θ | aT
i · θ − bi ≤ 0 ∀ 1 ≤ i ≤ m} .

STEP 2.Use the simplex method [Dan63] to solve:

αi = min aT
i · θ − bi




aT
1 · θ − b1 ≤ 0

...

aT
m · θ − bm ≤ 0

STEP 3. If any of the above problems returns no feasible point, then the constraints are contradic-

tory and we STOP. Ifαi < 0 ∀ 1 ≤ i ≤ m, then STOP and declaredim(S) = m because there
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exists a point strictly in the interior of the region defined by the remaining constraints. Otherwise,

if there existsi such thatαi = 0, this means the constrainti is tight and we can express one of the

variables as a linear combination of the others. We therefore obtain a system of linear inequalities

with one less variable and one less constraint. Also, it might happen that the coefficients of some of

these new inequalities are all zeros (except for a negative free term), in which case we discard those

constraints as redundant. We adjustai, bi andm accordingly and then GO TO STEP 2.

Next we will see how one can compute the value of an integral over a bounded surface defined

by non-strict linear constraints. We assume that the bound is given by a hypercubeH. The idea is to

reduce the surface integral to a volume integral which can be computed using a sampling technique

based on the Law of Large Numbers. We use the notationS|H to denote the piece of the surface

S that lies inH. In terms of content, this is the same asS ∩ H, but should not be confused with

the surface of potentially lower dimensionality that is obtained by the intersection of the constraints

that describeS andH. In other words,S|H should be seen as a piece of surfaceS as opposed to a

new surface to integrate on.

Algorithm 3.4.2. Computing
∫
θ∈S|H f(θ) dθ when S is a surface given by a set of linear con-

straints and H is a hypercube.

STEP 1. Use Algorithm3.4.1to computem = dim(S) andm′ = dim(S ∩H). If m′ < m then

STOP and declare
∫
θ∈S|H f(θ) dθ = 0. This happens because the area ofS ∩ H is zero within

surfaceS. If m′ = m, it means thatS∩H is a positive area surface withinS and, using the elimina-

tion method described in Algorithm3.4.1, we can characterizeS∩H as a region of positive volume

in a space described by a subset{θ1, . . . , θm} ⊆ θ. We now reduced the initial surface integral∫
θ∈S|H f(θ) dθ to a volume integral

∫
(θ1,...,θm)∈V f̄(θ1, . . . , θm) dθ1 . . . dθm where positive volume

V is described by a series of constraints of the formcT · (θ1, . . . , θm)T − d ≤ 0. It is obvious that

V ⊆ H1..m, the m-dimensional hypercube which is the projection ofH on dimensions1, . . . ,m.

The second integral can now be computed using the sampling method described in STEPS 2 and 3.

STEP 2.(Computing V) Draw N uniform samples from(θ1, . . . , θm) ∈ H1..m. Let NV be the

number of times a sample falls inV . ApproximateV = NV
N · V (H1..m).

STEP 3.(Computing the integral)It is easy to see that

E[f̄(Uniform(V ))] =
∫

(θ1,...,θm)∈V

1
V
· f̄(θ1, . . . , θm) dθ1 . . . dθm

We can computeE[f ′(Uniform(V ))] using The Law of Large Numbers based on a sufficiently
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large number of samples and let
∫

θ∈S|H
f(θ) dθ =

∫

(θ1,...,θm)∈V
f̄(θ1, . . . , θm) dθ1 . . . dθm = V · E[f̄(Uniform(V ))]

Note that we could not use directly the sampling method on a surface which had volume zero

and therefore we needed to reduce the surface integral to a volume integral defined on a region of

positive volume. Also, the method breaks if the volume is infinite and that is why we required that

the integral be computed within the limits of a hypercube. However, if the surface is unbounded,

we can still use the above algorithm by taking the limit when the size of the bounding hypercube

increases towards infinity. We are now ready to present a method to compute the normalization

constantZPDK for arbitrary, non-linear constraints that obey the two assumptions discussed earlier

in this section.

Algorithm 3.4.3. Computing the Normalization ConstantZPDK .

STEP 1. Run Steps 2 and 3 to computeIl =
∫
θ∈PDK|H(l) f(θ) dθ for l ∈ {1, 2, . . .}. HereH(l)

represents the hypercube of sizel centered at the origin of the axes. We haveZPDK = liml→∞ Il.

In practice, we will stop once very little progress is made.

STEP 2. For a fixed smallε, split H(l) in hypercubes of sizeε: H1, . . . , Hs(ε). Run Step 3 to

computeIl,ε =
∑

1≤t≤s(ε)

∫
θ∈PDK|Ht

f(θ) dθ. We haveIl = limε→0 Il,ε. In practice, we will use

ε ∈ {1
2 , 1

3 , . . .} and we will stop once the progress made is below a certain threshold.

STEP 3. Within the hypercubeHt, approximate the constraints with linear constraints obtained

via a first order Taylor expansion around any point inHt. Apply Algorithm3.4.2 to compute∫
θ∈PDK|Ht

f(θ) dθ.

In the above algorithm, Step 1 is only needed in the case when the surfacePDK is not bounded.

In Step 2 the Parameter Domain Knowledge constraints are approximated by linear constraints

within each small hypercube. This approximation allows us to transform the surface integral into

a volume integral within each small hypercube so that we can apply Algorithm3.4.2. We choose

not to approximate the constraints with the same linear functions for allH(l) because a first order

Taylor expansion can potentially be very inaccurate on large regions of the space.

Figure3.1 illustrates the above algorithm on the task of estimating the normalization constant

for the unnormalized priorf(µ, σ) (for example,f can be an unnormalized Normal-Wishart prior)

on parametersµ andσ of a Gaussian. The domain knowledge constraints are given by:g(µ, σ) =
4σ2 + (2µ − 1)2 − 1 = 0, h1(µ, σ) = −µ ≤ 0 andh2(µ, σ) = −σ ≤ 0. The figure shows what

happens whenl = 1 andε = 1
2 . In Step 2 of algorithm3.4.3, H(1) is split in 16 smaller squares of
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Figure 3.1:Algorithm 3.4.3at work. The goal is to estimate the normalization constant for an unnormalized

prior f(µ, σ) on parametersµ andσ of a Gaussian, given the constraintsg(µ, σ) = 4σ2 +(2µ−1)2−1 = 0,

h1(µ, σ) = −µ ≤ 0 andh2(µ, σ) = −σ ≤ 0.

sizeε and then, in Step 3, the non-linear constraintg is approximated with a line segment in each

of these squares. The only two squares where the approximation is non-empty areH7 andH8. In

H7, using a Taylor expansion around(1
4 ,
√

3
4 ), we haveg(µ, σ) ∼ −2(µ − 1

4) + 8
√

3
4 (σ −

√
3

4 ). In

H8, using a Taylor expansion around(3
4 ,
√

3
4 ), we haveg(µ, σ) ∼ 2(µ − 3

4) + 8
√

3
4 (σ −

√
3

4 ). The

algorithm then proceeds by substitutingσ in f with a linear function ofµ (see algorithm3.4.1) to

obtainf̄(µ). Within either of the squaresH7 or H8, the integral off is therefore simplified to the

integral of f̄(µ) whereµ varies within an interval. To compute these two integrals off̄(µ), the

sampling technique described in algorithm3.4.2is then used.

Note that, in order to have additivity in Step 2 of Algorithm3.4.3, we assumed that the intersec-

tion of surfacePDK with the boundaries of the hypercubes has area zero. However, for particular

constraints and for particular values ofε, it may happen thatPDK has some positive area subsur-

face that lies on a boundary of some of the hypercubes. Note however, that in Step 2 we are taking

a limit whenε → 0 and therefore our algorithm still works if there exists a sequenceεj → 0 that

obeys our assumption. Alternatively, when positive areas ofPDK are found on the boundaries of

the hypercubes, one may subtract the value of the integrals on these areas from the sum in Step 2 so
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that they are counted only once.

In practice, the likelihood can be decomposed nicely and therefore the conjugateConstrained

Parameter Priorswill inherit the same property. Also, as mentioned before, each constraint will

only relate a small fraction of the total number of parameters and therefore the integralZPDK =∫
θ∈PDK f(θ) dθ can be written as a product of several, easier to compute, independent integrals.

As we will see in the following chapter, in many cases we will be able to compute the normaliza-

tion constant in closed form and therefore we do not need to go through the expensive procedure

described above.

3.4.2 Maximum Aposteriori Estimators

In chapter2, we have seen that the problem of computing Maximum Aposteriori estimators can be

reduced to the problem of computing Maximum Likelihood estimators in the case of fully observ-

able data for standard Bayesian Networks. Let us see what happens in the presence of arbitrary

Parameter Domain Knowledge constraints. To compute Maximum Aposteriori estimators, we need

to maximize the posteriorP (θ|D) ∝ P (D|θ) · P (θ) subject to Parameter Domain Knowledge

constraints. If we pickConstrained Parameter Priorsas described in the previous subsection, then

P (D|θ) andP (θ|D) are the same type of functions ofθ for all complete datasetsD. Therefore,

we can carry out Maximum Aposteriori estimation exactly in the same fashion with Maximum

Likelihood estimation described earlier in this chapter.

3.4.3 Bayesian Model Averaging

From a Bayesian point of view, we are interested in predicting the next data point given previous

data points by averaging over all possible models. This task can be written as follows:

P (dn+1|dn, . . . , d1) =

∫
θ∈PDK P (dn+1, . . . , d1|θ) · P (θ)dθ∫

θ∈PDK P (dn, . . . , d1|θ) · P (θ)dθ

If P (θ) is a Constrained Parameter Prior, then it follows from the definition that both the

integrals above are normalization constants for differentConstrained Parameter Priors. We have

seen previously that these constants can be computed using sampling Algorithm3.4.3and therefore

we have a method to perform Bayesian model averaging.

3.5 Bayesian Approach from Incomplete Data

When data is incomplete, one can easily adapt the methods described in section3.3 to perform

Maximum Aposterior estimation by multiplying the objective function by theConstrained Param-
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eter Prior P (θ). For example, the iteration performed by a modified version of the Expectation

Maximization algorithm will be :

θ̂t+1 = argmaxθ∈PDK EP (Z|D,θ̂t)
[log (P (D,Z|θ) · P (θ))]

From the definition ofConstrained Parameter Priors, it follows thatP (D, Z|θ) · P (θ) are the

same type of functions ofθ and therefore there is no additional complexity incurred when running

the modified version of the EM algorithm to perform Maximum Aposteriori estimation subject to

Parameter Domain Knowledge constraints.

The problem of performing Bayesian model averaging in the presence of Parameter Domain

Knowledge constraints becomes more difficult when data is incomplete. In this case both integrals∫
θ∈PDK P (dn+1, . . . , d1|θ) · P (θ) dθ and

∫
θ∈PDK P (dn, . . . , d1|θ) · P (θ) dθ are no longer nor-

malization constants forConstrained Parameter Priors, but they are a combination of sums and

integrals (which can be evaluated using the trapezoid method) over the missing data of such nor-

malization constants, depending on whether the missing values correspond to discrete or continuous

variables. The amount of missing data determines the complexity of computing the above two inte-

grals. If every example is missing at least one value, then the computation of the two integrals may

require evaluating the normalization constants for an exponential number ofConstrained Parameter

Priors. This approach is again very expensive. One idea to lower its exponential complexity is to

incrementally approximate the posterior of parameters with aConstrained Parameter Priorevery

time we observe a new example. However, investigating this approach is beyond the scope of this

research.

3.6 Comparing Different Parameter Domain Knowledge Schemes

Define aParameter Domain Knowledge Scheme PDKSover a Bayesian Network as a set of Parame-

ter Domain Knowledge constraints for that network. As mentioned before, we denote byPDK the

set of feasible parameters for such a scheme. We remind the reader that in all our work, the structure

of the model is given and does not change. Thus, allParameter Domain Knowledge Schemeswill be

defined over the same structure and parameter sets. Learning structure in the presence of parameter

sharing is a subject for future work.

Later in this thesis we will see that taking advantage of aParameter Domain Knowledge Scheme

helps reduce the variance in parameter estimates. We will also show experimentally that parameter

estimators based on Parameter Domain Knowledge yield distributions closer in KL distance to the

true underlying distribution than the ones estimated without taking advantage of such knowledge.
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Therefore it is important to recover as much Domain Knowledge as possible, even when the expert

can specify only a limited part of it. Also, if two experts provide two different, potentially incorrect

or inconsistent with each other,Parameter Domain Knowledge Schemes, we would like to be able

to decide in a principled fashion which one (or which combination of the two) to use. To be able to

do this, we need to come up with a method to scorePDKS, a givenParameter Domain Knowledge

Scheme. We propose a metric similar to the one used for structure search i.e. we try to find the

PDKS (among our possible choices) that maximizesP (D|PDKS). Averaging over all sets of

feasible parametersθ ∈ PDK for PDKS, we obtain:

P (D|PDKS) =
∫

θ∈PDK
P (D|θ, PDKS) · P (θ|PDKS) dθ

Assuming that the priorP (θ|PDKS) is aConstrained Parameter Prior, it is easy to notice that

the above integral is the normalization constant for a differentConstrained Parameter Priorand

therefore it can be computed using Algorithm3.4.3under the assumption that the dataD is com-

plete. In the case of incomplete data, the score is a combination of sums and integrals (over missing

values) of normalization constants forConstrained Parameter Priors, which can be computed as

mentioned in the previous section.

One drawback of this score is that it tries to find theParameter Domain Knowledge Scheme

that best fits the training data. An alternative is to compareParameter Domain Knowledge Schemes

based on their cross-validation log-likelihood. Briefly, the idea is to split the dataset ink folds, then

train a model form a frequentist point of view usingk − 1 folds and theParameter Domain Knowl-

edge Scheme, then use that model to compute the log-likelihood of the remaining fold. Repeating

this procedure for each fold yields the log-likelihood for all datasetD, computed in such a way that

test data was not used in training. Because of this fact and because it is much faster to perform

frequentist parameter learning, we suggest this measure is to be preferred instead ofP (D|PDKS)
when comparing differentParameter Domain Knowledge Schemes. This cross-validation score was

employed in our experiments on fMRI data in Chapter8 to derive the optimal clustering of brain

voxels during a cognitive task.

The scores defined above can be used to choose between several different availableParameter

Domain Knowledge Schemes. One can also imagine an automated approach to learning an optimal

Parameter Domain Knowledge Schemefrom training data via some hill climbing techniques. We

can derive the current scheme candidate from previous one by using small modifications, in a fashion

similar to the one employed by structure search. The search space however is prohibitively large, so

restricting the set of potential candidates can be extremely useful. For instance, in module networks

one can restrict the variables that can belong together in a module. In addition, an expert who knows

a subset of Parameter Domain Knowledge constraints can restrict further the search space.
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Chapter 4

Equality Constraints for Discrete

Variables

In the previous chapter we developed general methods to perform parameter learning in Bayesian

Networks when a domain expert specifies in advance a set of Parameter Domain Knowledge con-

straints. While these methods can deal with arbitrary parameter constraints that obey several smooth-

ness assumptions, they can potentially be very slow since they involve expensive iterative and sam-

pling procedures. However, for certain particular types of Parameter Domain Knowledge, we do

not need to go into the Newton-Raphson iterative procedure because the system of equations in

Algorithm 3.2.1can be solved in closed form. Also, in some of these cases we might be able to

find a closed form formula for the normalization constant of the corresponding Constrained Param-

eter Prior. This and the following two chapters address the problem of finding such closed form

solutions for several types of Parameter Domain Knowledge.

In the next sections we look at incorporating parameter equality constraints in learning algo-

rithms for discrete Bayesian Networks. We have already shown in Chapter3 that, in the discrete

case, the Expectation Maximization algorithm to deal with missing data as well as the Bayesian

approach for learning from both complete and incomplete data can be derived in a straightforward

fashion from the Maximum Likelihood estimators procedure and based on the normalization con-

stant of the Constrained Parameter Prior. Therefore, for all types of domain knowledge that we

introduce in this chapter, we only need to come up with closed form solutions for the Maximum

Likelihood estimators from complete data and for the normalization constant for the correspond-

ing Constrained Parameter Priors. The conjugate of the multinomial distribution is the Dirichlet

distribution and therefore our Constrained Parameter Priors will beConstrained Dirichlet Priors.

The results in this chapter build on work previously presented in [NMR05]. We start by an-

alyzing several types of Parameter Domain Knowledge equality constraints that span only inside
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conditional probability distributions and then we extend these results to domain knowledge types

that involve parameters across multiple such distributions. A set of conditional probability distribu-

tions will form the scope of a Parameter Domain Knowledge constraint. Different constraint types

can be defined over disjoint sets of conditional probability distributions, but only one constraint

type can be applied to any such set. Because of the decomposability of data log-likelihood, one can

learn independently the parameters involved in each type of domain knowledge constraint. Also,

the normalization constant for the Constrained Dirichlet Prior can be computed over the scope of a

certain constraint and then all such constants are multiplied to obtain the normalization constant for

the prior over the whole set of parameters of the Bayesian Network.

4.1 A Note on Normalization Constants and Dirichlet Integrals

When computing the normalization constant of a Dirichlet distribution overθ = (θ1, . . . , θn), the

idea is to writeθn = 1−∑n−1
i=1 θi and compute the normalization constantZn for:

p(θ1, . . . , θn−1) =
1

Zn
· (1−

n−1∑

i=1

θi)
αn−1 ·

n−1∏

i=1

θαi−1
i

If we eliminatedθ1 instead ofθn, we would have estimated the normalization constant for a

distribution over(θ2, . . . , θn) instead. Luckily, all these constants are equal no matter which variable

we eliminate. However, with Constrained Dirichlet Priors, this will not be the case anymore. For

example, consider learning with the constraint
∑

i bi · θi = 1, which may appear in the case when

certain parameters are shared within the same distribution. Here parameterθi appears inbi different

known places in the distribution. We are looking forGeneralized Dirichlet Priorsof the form:

P (θ) =

{
1
Z

∏n
i=1 θαi−1

i if θ ≥ 0,
∑

bi · θi = 1
0 otherwise

If we eliminateθn, we have to estimate theGeneralized Dirichlet Integral:

Zn =
∫

θ≥0,
∑

bi·θi=1
(
1−∑n−1

i=1 bi · θi

bn
)αn−1 ·

n−1∏

i=1

θαi−1
i dθ1 dθ2 . . . dθn−1 (4.1)

This integral is reduced to a standard Dirichlet Integral by making the substitutionxi = bi · θi

for 1 ≤ i ≤ n− 1. We obtain:

Zn =
bn∏n

i=1 bαi
i

·
∏n

i=1 Γ(αi)
Γ(

∑n
i=1 αi)

(4.2)
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If we eliminatedθ1 first, we would have obtained a potentially different normalization constant

Z1 over the remainingn − 1 parameters. In the case of standard Dirichlet Distribution, allbi

were equal to 1. Even though then possible distributions overn − 1 have different normalization

constants, they are essentially the same distribution as they can be obtained from one another via a

variable substitution.

In general, when coming up with Constrained Parameter Priors, we eliminate several parameters

and we actually compute a distribution over a smaller subset of parameters that determine the elim-

inated ones in a deterministic fashion. Depending on the elimination order, we may obtain different

normalization constants. Note however, that the elimination order does not matter for any of our

learning procedures. Therefore it will be enough to show that we can compute the normalization

constant for any elimination order.

4.2 Known Parameters

The simplest type of Parameter Domain Knowledge consists ofKnown Parameters. The domain

expert directly specifies the values of certain parameters in the Bayesian Network. The correspond-

ing constraints have the formθijk = c wherec is a known value. For example, an expert can state:

”If a patient has a heart attack (Disease = ”Heart Attack”), then there is a90% probability that the

patient will experience chest pain.”

4.2.1 Maximum Likelihood Estimation from Complete Data

The above constraints do not span across multiple conditional probability distributions and there-

fore, because of the decomposability of log-likelihood, we can break the bigger Maximum Likeli-

hood optimization problem into a set independent subproblems, one for each conditional probability

distribution. Ifθi are the unknown parameters of a conditional probability distribution,Ni their cor-

responding counts,N =
∑

i Ni the total observed counts andS the sum of known parameters of

this distribution, we have the following theorem:

Theorem 4.2.1.The Maximum Likelihood Estimators for parametersθ in our distribution are given

by:

θ̂i = (1− S) · Ni

N

Proof. Our optimization problem becomes:

P : argmax {h(θ) | g(θ) = 0}

whereh(θ) =
∑

i Ni log θi andg(θ) = (
∑

i θi)− (1− S) = 0
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When all counts are positive, it can be easily proved thatP has a global maximum which is

achieved in the interior of the region determined by the constraints. In this case the solution ofP

can be found using Lagrange Multipliers. Introduce Lagrange Multiplierλ for the constraint inP .

Let LM(θ, λ) = h(θ)− λ · g(θ). Then the point which maximizesP is among the solutions of the

system∇LM(θ, λ) = 0. Let (θ̂, λ) be a solution of this system. We have:

0 = ∂LM
∂θi

= Ni
θi
− λ for all i. Therefore:θ̂i = Ni

λ . Summing up for all values ofi, we obtain:

0 = ∂LM
∂λ = (

∑
i θ̂i)− (1− S) = (

∑
i

Ni
λ )− (1− S) = Ni

λ − (1− S)
From the last equation we compute the value ofλ = Ni. This gives us:θ̂i = Ni

N . From

Sufficiency Criterion2.1.1, it follows thatθ̂ is the set of Maximum Likelihood estimators.

4.2.2 Constrained Dirichlet Priors

For this type of domain knowledge, the Constrained Dirichlet priors have the following form:

P (θ) =

{
1
Z

∏n
i=1 θαi−1

i if θ ≥ 0,
∑

θi = 1− S

0 otherwise

This a Generalized Dirichlet Prior withbi = 1
1−S and therefore the normalization constant is

given by:

Zn = (1− S)
∑n

i=1 αi−1 ·
∏n

i=1 Γ(αi)
Γ(

∑n
i=1 αi)

4.3 Parameter Sharing within One Distribution

Here we allow certain parameters to be shared within the same conditional probability distribution.

This corresponds to statements like:”Given this combination of causes, several effects are equally

likely” . Since the scope of these additional constraints does not go beyond the conditional proba-

bility distribution level, the problem of maximizing the data likelihood can again be split in a set of

independent optimization subproblems, one for each such conditional probability distribution. Let’s

look at one of these subproblems (for a variableX and a specific valuePA(X) = pa of the parents).

Assume that a domain expert is stating that certain parameters are equal: parameterθi appears inki

different positions in our distribution. Denote byNi the cumulative observed count corresponding

to θi. The cumulative observed count is the sum of all the observed counts corresponding to theki

positions whereθi appears in the distribution. LetN =
∑

i Ni be the sum of all observed counts in

this conditional probability distribution i.e. the total number of observed cases withPA(X) = pa.

One may believe that Maximum Likelihood estimation can be performed using standard meth-

ods by introducing new variables that describe what group of shared parameters a given param-

eter belongs to. To see that this is not the case, consider the following example. Assume a
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variableX with values{1, 2, 3, 4} depends onY . Moreover, assume the expert is stating that

P (X = 1|Y = 0) = P (X = 2|Y = 0) andP (X = 3|Y = 0) = P (X = 4|Y = 0). Then

one can introduce variableX12 which is 1 if X ∈ {1, 2} and0 otherwise. This variable is as-

sumed dependent onY and added as a parent ofX. It is easy to see thatP (X|X12 = 0, Y = 0)
must be equal to the distribution on{1, 2, 3, 4} that assigns half probability to each of3 and4.

Therefore, ifY takes only one value, the task of finding Maximum Likelihood estimators with

Parameter Sharing is reduced to the one of finding standard Maximum Likelihood estimators for

X12|Y = 0. However, ifY takes only one value, then we can safely remove it as a parent of

X. WhenY can take two values,0 and1, assume the expert states the additional assumption that

P (X = 1|Y = 1) = P (X = 3|Y = 1) = P (X = 4|Y = 1). Now we need to introduce a new

variableX134 that depends onY and add it as a parent ofX. It is straightforward to see that in this

case, the conditionalP (X|X12 = 0, X134 = 1, Y = 1) is not a constant distribution anymore and

therefore the above approach of reducing our parameter sharing problem to a Maximum Likelihood

optimization problem in standard Bayesian Networks fails. Also, the structural assumption thatX12

andX134 are conditionally independent givenY is not true. Same argument holds for all types of

Parameter Domain Knowledge presented in this chapter.

4.3.1 Maximum Likelihood Estimation from Complete Data

Theorem 4.3.1.The Maximum Likelihood Estimators for the parameters in the above conditional

probability distribution are given by:

θ̂i =
Ni

ki ·N
Proof. Our optimization subproblem can be restated as:

P : argmax {h(θ) | g(θ) = 0}

whereh(θ) =
∑

i Ni log θi andg(θ) = (
∑

i ki · θi)− 1 = 0

When all counts are positive, it can be easily proved thatP has a global maximum which is

achieved in the interior of the region determined by the constraints. In this case the solution ofP

can be found using Lagrange Multipliers. Introduce Lagrange Multiplierλ for the constraint inP .

Let LM(θ, λ) = h(θ)− λ · g(θ). Then the point which maximizesP is among the solutions of the

system∇LM(θ, λ) = 0. Let (θ̂, λ) be a solution of this system. We have:0 = ∂LM
∂θi

= Ni
θi
− λ · ki

for all i. Therefore,ki · θ̂i = Ni
λ . Summing up for all values ofi, we obtain:

0 =
∂LM

∂λ
= (

∑

i

ki · θ̂i)− 1 = (
∑

i

Ni

λ
)− 1 =

N

λ
− 1
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From the last equation we compute the value ofλ = N . This gives us:̂θi = Ni
ki·N . The fact that

θ̂ is the set of Maximum Likelihood estimators follows again from Sufficiency Criterion2.1.1.

4.3.2 Constrained Dirichlet Priors

For this type of domain knowledge, the Constrained Dirichlet priors have the following form:

P (θ) =

{
1
Z

∏n
i=1 θαi−1

i if θ ≥ 0,
∑

ki · θi = 1
0 otherwise

As we have seen in section4.1, the normalization constant depends on the elimination order. If

θn is eliminated first, we get:

Zn =
kn∏n

i=1 kαi
i

·
∏n

i=1 Γ(αi)
Γ(

∑n
i=1 αi)

4.4 Proportionality Constants within One Distribution

This is a slight generalization of Parameter Sharing. We partitionθ, the set of parameters of a

conditional probability distribution in subsetsSi = {θi1, θi2, . . .} such that the parameters inSi

are proportional to given constantsci1, ci2, . . .. This corresponds to statements like:”Given a

combination of health risk factors, disease A is twice as likely to occur than disease B is.”. A set of

shared parameters are proportional with a set of ones. An unconstrained parameter can be thought

of as a parameter that is shared in just one place. Letci =
∑

j cij be the sum of the constants

corresponding toSi andNi =
∑

j Nij the sum of the observed counts of parameters inSi. Also,

let N =
∑

i,j Nij be the total number of observations we have about our conditional probability

distribution. With these notations, we are ready to present the main result of this section.

4.4.1 Maximum Likelihood Estimation from Complete Data

Theorem 4.4.1.The Maximum Likelihood Estimators for the parameters in the above distribution

are given by:

θ̂ij =
cij

ci
· Ni

N

Proof. Let γi be the proportionality factor for setSi. We are going to make a change of variable

from θ to γ. We haveθij = cij · γi for all i, j. Therefore maximizing
∑

i,j Nij · log θij is equivalent

to maximizing
∑

i,j Nij · log γi =
∑

i Ni · log γi. The constraint
∑

i,j θij = 1 is equivalent to∑
i,j cij · γi =

∑
i ci · γi = 1.
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Our optimization subproblem can be restated as:

P : argmax {h(γ) | g(γ) = 0}

whereh(γ) =
∑

i Ni · log γi andg(γ) = (
∑

i ci · γi)− 1 = 0

In this case the solution ofP can be found using Lagrange Multipliers. Introduce Lagrange

Multiplier λ for the constraint inP . Let LM(γ, λ) = h(γ) − λ · g(γ). Then the point which

maximizesP is among the solutions of the system∇LM(γ, λ) = 0. Let (γ, λ) be a solution of this

system. We have:

0 = ∂LM
∂γi

= Ni
γi
− λ · ci for all i. Therefore:ci · γi = Ni

λ . Summing up for all values ofi, we

obtain:0 = ∂LM
∂λ = (

∑
i ci · γi)− 1 = (

∑
i

Ni
λ )− 1 = N

λ − 1
From the last equation we compute the value ofλ = N . This gives us:γi = Ni

ci·N . Therefore

the estimators for the parameters in our model can be computed asθ̂ij = cij · γi = cij

ci
· Ni

N . From

Sufficiency Criterion2.1.1, it follows thatθ̂ is the set of Maximum Likelihood estimators.

4.4.2 Constrained Dirichlet Priors

For this type of domain knowledge, we define priors on the hyperparametersγ:

P (θ) =

{
1
Z

∏n
i=1 γαi−1

i if γ ≥ 0,
∑

ci · γi = 1
0 otherwise

This is again aGeneralized Dirichlet Distributionand therefore the normalization constant given

that we first eliminateγn is:

Zn =
cn∏n

i=1 cαi
i

·
∏n

i=1 Γ(αi)
Γ(

∑n
i=1 αi)

4.5 Sum Sharing within One Distribution

Sum Sharing is similar to Parameter Sharing, but here several sets of parameters within one dis-

tribution have the same aggregate probability mass. If two sets of parametersA andB have this

property we will writeA
.= B. This corresponds to statements like:”A patient who is a smoker

has the same chance of having a Heart Disease (Heart Attack or Congestive Heart Failure) as

having a Pulmonary Disease (Lung Cancer or Chronic Obstructive Pulmonary Disease).”. For-

mally, suppose a domain expert tells us that within one of the distributions in the graphical model,

S11
.= S12

.= . . .
.= S1k1 , . . ., Sl1

.= Sl2
.= . . .

.= Slkl
where the sets of parametersSij are

mutually disjoint. Equivalently, the expert can state that the sets inSi∗ = {Si1, Si2, . . . , Siki} have
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the same sum and that holds for alli between1 andl. We can consider that each parameter in the

given distribution belongs to one ofSij . Otherwise we can create a newS(l+1)1 which contains all

these parameters. Denote byθk
ij the kth parameter inSij and byNk

ij its corresponding observed

count. Again, letN =
∑

i,j,k Nk
ij be the total number of samples from this conditional probability

distribution.

4.5.1 Maximum Likelihood Estimation from Complete Data

Theorem 4.5.1.The Maximum Likelihood Estimators for the parametersθh
ij are given by:

θ̂k
ij =

Nk
ij∑

k′ N
k′
ij

·
∑

j,k Nk
ij

ki ·N
Proof. Denote bysi the sum of parameters in any of the setsSij . The constraints of our problem

can be rewritten as
∑

k θk
ij = si for all i, j and

∑
i ki · si = 1. Our optimization subproblem can be

restated as:

P : argmax {h(θ, s) | g(θ, s) = 0, gij(θ, s) = 0}

whereh(θ, s) =
∑

i,j,k Nk
ij · log θk

ij), g(θ, s) = (
∑

i k1 · si)− 1 = 0 and

gij(θ, s) = (
∑

k θk
ij − si) = 0

In this case the solution ofP can be found using Lagrange Multipliers. Introduce Lagrange

Multiplier λ for the constraintg and lagrange Multipliersτij for constraintgij . LetLM(θ, s, λ, τ) =
h(θ, s)−λ ·g(θ, s)−∑

i,j τij ·gij(θ, s). Then the point which maximizesP is among the solutions

of the system∇LM(θ, s, λ, τ) = 0. Let (θ̂, s, λ, τ) be a solution of this system. We have:

0 =
∂LM

∂θk
ij

=
Nk

ij

θk
ij

− τij∀i, j (4.3)

0 =
∂LM

∂si
= −ki · λ +

∑

j

τij∀i (4.4)

Therefore:θ̂k
ij =

Nk
ij

τij
. Summing up for all values ofk, we obtain:

0 =
∂LM

∂τij
= −(

∑

k

θ̂k
ij − si) = si −

∑
k Nk

ij

τij

Therefore:

τij =

∑
k Nk

ij

si

52



Summing this up for all values ofj we get:0 = ∂LM
∂si

= −λ · ki +
∑

j τij = −λ · ki +
∑

j,k Nk
ij

si

Therefore

ki · si =

∑
j,k Nk

ij

λ

. Summing this for all values ofi yields:

0 = ∂LM
∂λ = −(

∑
k ki · si − 1) = 1−

∑
i,j,k Nk

ij

λ = 1− N
λ

From the last equation we compute the value ofλ = N . This gives us:

si =

∑
j,k Nk

ij

ki ·N

τij = (
∑

k

Nk
ij) ·

ki ·N∑
j,k Nk

ij

θ̂k
ij =

Nk
ij∑

k′ N
k′
ij

·
∑

j,k Nk
ij

ki ·N
The fact that̂θ is the set of Maximum Likelihood estimators is again a consequence of sufficiency

conditions2.1.1.

4.6 Ratio Sharing within One Distribution

Ratio Sharing is similar to the Proportionality type of Domain Knowledge defined in section4.4, but

here several equally sized sets of parameters are proportional to each other. In other words, these

sets of parameters can be obtained from one another by multiplying with a constant. If two sets

of parametersA andB have this property we will writeA ∼ B. This type of domain knowledge

corresponds to statements like:”In a bilingual corpus, the relative frequencies of certain groups of

words are the same, even though the aggregate frequencies of these groups may be different.”Such

groups of words can be: ”words about computers” (”computer”, ”mouse”, ”monitor”, ”keyboard” in

both languages) or ”words about business”, etc. In some countries computer use is more extensive

than in others and one would expect the aggregate probability of ”words about computers” to be

different. However, it would be natural to assume that the relative proportions of the ”words about

computers” are the same within the different languages.

Formally, suppose a domain expert tells us that within one of the distributions in the Bayesian

Network,T11 ∼ T12 ∼ . . . ∼ T1k1 , . . ., Tl1 ∼ Tl2 ∼ . . . ∼ Tlkl
where the sets of parametersTij

are mutually disjoint. Equivalently, the expert can state that the sets inTi∗ = {Ti1, Ti2, . . . , Tiki
}

are proportional to each other and that holds for alli between1 andl. We can consider that each

parameter in the given distribution belongs to one ofTij . Otherwise we can create a newT(l+1)1

which contains all these parameters. Denote byθk
ij parameter in positionk in Tij . Because of

53



our ratio sharing assumption, the position of a parameter within a setTij matters. As before, let

N =
∑

i,j,k Nk
ij be the total number of observed counts corresponding to our conditional probability

distribution.

4.6.1 Maximum Likelihood Estimation from Complete Data

Theorem 4.6.1.The Maximum Likelihood Estimators for the parameters in the above distribution

are given by:

θ̂k
ij =

∑
j Nk

ij ·
∑

k Nk
ij

N ·∑j,k Nk
ij

Proof. BecauseTi1 ∼ Ti2 ∼ . . ., there must exist a vectorpi = (pi1, pi2, pi3, . . .) and multiplication

factorsci1, ci2, . . . such thatTij = cij · pi or, equivalently,θk
ij = cij · pik for all i, j, k. Therefore

maximizing
∑

i,j,k Nk
ij ·log θk

ij is equivalent to maximizing
∑

i,j,k Nk
ij ·log (cij · pik). The constraint∑

i,j,k θk
ij = 1 is equivalent to

∑
i,j,k cij · pik = 1.

Our optimization subproblem can be restated as:

P : argmax {h(c, p) | g(c, p) = 0}

whereh(c, p) =
∑

i,j,k Nk
ij · log (cij · pik) andg(c, p) = (

∑
i,j,k cij · pik)− 1 = 0

In this case the solution ofP can be found using Lagrange Multipliers. Introduce Lagrange

Multiplier λ for the constraint inP . Let LM(c, p, λ) = h(c, p)− λ · g(c, p). Then the point which

maximizesP is among the solutions of the system∇LM(c, p, λ) = 0. Let (c, p, λ) be a solution of

this system. We have:

0 =
∂LM

∂cij
=

∑
k Nk

ij

cij
− λ ·

∑

k

pik∀i, j (4.5)

0 =
∂LM

∂pik
=

∑
j Nk

ij

pik
− λ ·

∑

j

cij∀i, k (4.6)

Therefore: cij ·
∑

k pik =
∑

k Nk
ij

λ . Summing up4.5 for all values ofi and j, we obtain:

0 = ∂LM
∂λ = (

∑
i cij · pik)− 1 = (

∑
i

Nk
ij

λ )− 1 = N
λ − 1

From the last equation we compute the value ofλ = N . This gives us:cij =
Nk

ij

N ·∑k pik
.

Consequently,
∑

j cij =
∑

j,k Nk
ij

N ·∑k pik
. Using4.6 we getpik =

∑
j Nk

ij∑
j,k Nk

ij
·∑k′ pik′ . For each value of
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∑
k′ pik′ we will obtain a stationary point ofLM . However, for all these stationary points we get

θ̂k
ij = cij · pik =

∑
j Nk

ij ·
∑

k Nk
ij

N ·∑j,k Nk
ij

. Let (p̂, ĉ) be one such maximizer forh and let:

B = {(p, c) | cij · pik ≥ e2·h(p̂,ĉ) ∀ i, j, k}

It is obvious thath(b) < h(p̂, ĉ) for all b 6∈ B. Now, from Sufficiency Criterion2.1.2, it follows that

θ̂ is the set of Maximum Likelihood estimators.

4.7 A General Parameter Sharing Framework

Here we present a General Parameter Sharing Framework that describes learning in a broad category

of graphical models. AGeneral Parameter Sharingassumption is specified by an expert over a set

C of conditional probability distributions. Multiple such assumptions can be provided for disjoint

sets of distributions, potentially covering all the set of conditional probability distributions in the

Bayesian Network. Every assumption states that some parameters (denote their set byGk) are

shared (appear exactly once in each of the different distributions) within the setC, but not shared

within the same distribution or outsideC. For example, if we consider the Bayesian Network in

Figure1.1, a parameter sharing assumption may state:”The probability that a person will have a

heart attack given that he/she is a smoker with a family history of heart attack is the same no matter

whether or not the patient lives in a polluted area”.Let L = C \G be the set of local (not shared)

parameters. LetNg represent the cumulative count corresponding to shared parameterθg andNlc

be the count corresponding to local parameterθlc (in distributionc ∈ C).

We now discuss several graphical models which all fit within our framework and satisfyGeneral

Parameter Sharingassumptions. For instance, in HMMs and Dynamic Bayesian Networks, the

same variable has the same conditional probability table at different time instants. Therefore, in this

case,C is made out of the distributions in the tables which correspond to a given variableX and the

same instantiation of the parentsPA(X) = pa across all time instants. In Module Networks, all

variables in the same module share the same set of parents and have the same conditional probability

tables. Consequently,C consists of the set of distributions corresponding to all variables in a module

for a given instantiation of the parents of those variables. Context Specific Independence is used to

specify conditional independencies that hold in certain contexts and therefore is useful to specify

which distributions should be equal in a conditional probability table for a fixed random variable. In

this case,C contains those distributions which are assumed to be equal in a specific table. However,

note that our framework allows for much more flexibility in parameter sharing. We can share at the

level of each parameter, not just at the whole distribution or table level. Also, the distributions in

C do not need to be the same size. Moreover, a shared parameter does not need to be in the same

position in different distributions withinC.
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4.7.1 Maximum Likelihood Estimation from Complete Data

Theorem 4.7.1.The Maximum Likelihood Estimators for the parameters inC are given by:

θ̂g =
Ng∑

θ
g′∈G Ng′ +

∑
θlc∈L Nlc

θ̂lc =

∑
θ
l′c′∈L Nl′c′∑

θg∈G Ng +
∑

θ
l′c′∈L Nl′c′

· Nlc∑
θ
l′c∈L Nl′c

Proof. Our optimization problem can be stated as:

P : argmax θ{h(θ) | gc(θ) = 0,∀c ∈ C}

wheregc(θ) = (
∑

θg∈G θg) + (
∑

θlc∈L θlc)− 1 = 0

We are searching for the solution ofP using Lagrange Multipliers. Introduce Lagrange Multi-

pliersλ = (λc)c∈C for each distribution inC. Let LM(θ, λ) = h(θ)−∑
c∈C λc · gc(θ). Then the

point which maximizesP is among the solutions of the system∇LM(θ, λ) = 0. It turns out that

this system has a unique solution which is in fact the one in the statement of the theorem. Accord-

ing to Sufficiency Criterion2.1.1, it follows that this solution provides the Maximum Likelihood

Estimators for the parameters in the distributions inC.

Note that the Maximum Likelihood estimators for shared parameters look similar to the ones

in the case of standard Bayesian Networks. However, the estimators for local parameters are a

product of two factors. First factor represents the probability mass that remains after subtracting the

shared parameters. The second factor basically says that this remaining ”local” probability mass in

a distribution inC is split into values proportional to the observed counts corresponding to the local

parameters in that distribution.

4.7.2 Constrained Dirichlet Priors

We consider Constrained Dirichlet Priors defined by:

P (C) =





1
ZC

·∏θg∈G θ
αg−1
g ·∏θlc∈L,c∈C θαlc−1

lc

if
∑

θg∈G θg +
∑

θlc∈L θlc = 1 ∀c ∈ C

0 otherwise
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It is easy to evaluate the normalization constant. We have:

ZC =
∫

∑
θg+

∑
θlc=1 ∀c∈C

∏
θ

αg−1
g ·

∏
θαlc−1
lc d θ

=
∫

∑
θg≤1

∏
θ

αg−1
g ·

∏

c∈C

(
∫

∑
θlc=1−∑

θg

∏
θαlc−1
lc d θLc) d θG

whereθLc represents the set of local parameters in distributionc ∈ C andθG denotes the set of

shared (global) parameters. First, we note that the portion of the integral over the local parameters

in each distributionc ∈ C is a Generalized Dirichlet Integral, which can be computed using the

result in4.1. Then, it is easy to see that the remaining part of the integral over the shared parameters

is a standard Dirichlet Integral. We obtain:

ZC =
∏
g

Γ(αg) ·
∏
c

∏
Γ(αlc)

Γ(
∑

lc αlc)
· Γ(

∑
lc αlc − |C|+ 1)

Γ(
∑

lc αlc +
∑

g αg − |C|+ 1)

There are several interesting properties of this Constrained Dirichlet Prior. First, the joint prob-

ability distribution over the shared parameters is a standard Dirichlet. Second, with no parameter

sharing, this distribution is a product of independent standard Dirichlet distributions, one for each

distribution inC. However, if there are both shared and local parameters, then the joint probability

(obtained by marginalization) over a distributionc ∈ C is not a standard Dirichlet.

4.8 Hierarchical Parameter Sharing Framework

Here we present a hierarchical extension of the framework in the previous section. This will address

some of the limitations of the constraints that could be incorporated in the parameter sharing frame-

work described before. In hierarchical parameter sharing, several parameters are shared across a set

of distributions, then this set is partitioned and shared parameters are further specified for each sub-

set of distributions. For example, the frequency of ”international words” (for instance ”computer”)

may be shared across both Latin languages (Spanish, Italian) and Slavic languages (Russian, Bul-

garian). Other Latin words will have the same frequency only across Latin languages and the same

holds for Slavic Languages. Finally, other words will be language specific (for example names of

country specific objects) and their frequencies will not be shared with any other language.

In order to derive our main results, we need to make some simplifying notations. We will denote

by θ1, . . . , θn the distinct parameters involved in the conditional probability distributions on which

Hierarchical Parameter Sharing is specified. LetNθi
represent the cumulative observed count for

parameterθi (which may appear in multiple places in the Bayesian Network).
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We are now ready to describe our Hierarchical Parameter Sharing learning framework. First of

all, we present Parameter Sharing Trees as a way to encode hierarchical parameter sharing assump-

tions and second we show how one can take advantage of such a Parameter Sharing Tree in order to

alleviate learning.

4.8.1 Parameter Sharing Trees

Let C represent a set of conditional probability distributions in our Bayesian Network. Each such

distribution introduces a constraint on the possible values that the parametersθ can take. AParam-

eter Sharing Tree (PST)is a tree with the following properties:

• Each nodev of the tree consists of a pair(Scope(v), Shared(v)), whereScope(v) is a

subset of distributions fromC andShared(v) represents a non-empty set of parameters that

are shared across these distributions. A parameter fromShared(v) is a parameter that is

known to appear exactly once in each of the distributions inScope(v), but it is not shared

multiple times within one distribution, nor with distributions outside theScope.

• By convention,Scope(Root) = C (this amounts to the fact that we would like to allow for

the situation when a parameter is shared by all distributions inC).

• TheScopes of the direct descendants of a nodev form a partition ofScope(v). Therefore,

the Parameter Sharing Tree will describe a recursive way of partitioningC, with the leaf level

being the finest grain of such partition.

• A parameter cannot be shared in multiple places (different nodes of the tree). Because of

the recursive partitioning ofC, this amounts to the fact thatShared(v) is disjoint with all

Shares on the path fromv to the root of the tree.

• Each parameterθ in a distribution inC is shared exactly once i.e. there exists exactly one node

v such thatθ ∈ Shared(v). One may argue that there are parameters which are not shared at

all, but for all nodesv that have distributions in theirScope such that there remain unshared

parameters, one can partition those nodes further in leaves that have only one distribution

in their Scope, for which previously unshared parameters become shared at the level of that

single distribution.

Denote byAncestors(v) the set of nodes on the path fromv to the root of the tree and

Shared(Ancestors(v)) =
⋃

v′∈Ancestors(v) Shared(v′). Let Desc(v) be the set of descendants

of nodev (included) in and letShared(Desc(v)) =
⋃

v′∈Desc(v) Shared(v′).
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4.8.2 Maximum Likelihood Estimation from Complete Data

Assume we are given a graphical model with known structure that satisfies a set of hierarchical

parameter sharing assumptions given by a Parameter Sharing TreeT . In this section we present

a theorem that will justify an algorithm for finding the Maximum Likelihood Estimators for the

parameters in such a graphical model.

Theorem 4.8.1.Letv be a node ofT andθi ∈ Shared(v). The following equality holds:

θ̂i = ( 1−
∑

θj∈Shared(Ancestors(v))

θ̂j ) · Nθi∑
θk∈Shared(Desc(v)) Nθk

Proof. By definition,

θ̂ = argmaxθ {
∑

θi

Nθi
· log θi | θ satisfies T}

Each conditional probability distributionc ∈ C represents a constraint on the space of param-

eters:gc(θ) = (
∑

θj∈c θj) − 1 = 0. Because of parameter sharing, these constraints can involve

some common variables. It is easy to show that, if all the cumulative counts are positive, the likeli-

hood function has a global maximum inside the region determined by the constraints inT . Since the

maximum is reached in the interior of the domain, one can apply Lagrange Multipliers to optimize

for Pik. Therefore, let us introduce new variablesλc for each constraint (CPD)c ∈ C. The new

function to optimize will be:

LM(θ, λ) =
∑

θi

Nθi
· log θi −

∑
c

λc · gc(θ)

According to Lagrange Multipliers theory, any point that is a local maximum or minimum for

the initial optimization problem and it is NOT on the border of the region defined by the constraints

will be obtained as a (partial) solution of the system of equations:

∇LM(θ, λ) = 0

Thereforeθ̂ verifies the above system for some values ofλ. Because∂L(θ |D)
∂θi

=
Nθ

i
θi

and ∂gc

∂θi
= λc

if distribution c containsθi (otherwise the partial derivative is zero) , we get:

θ̂i =
Nθi∑

c∈Scope(v) λc
∀θi ∈ Shared(v) (4.7)

Let S(v) =
∑

θj∈Shared(Desc(v)) θ̂j . We will prove by induction the following stronger claim:
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S(v) =

∑
θj∈Shared(Desc(v)) Nθj∑

c∈Scope(v) λc

and

θ̂i = ( 1−
∑

θj∈Shared(Ancestors(v))

θ̂j ) · Nθi∑
θk∈Shared(Desc(v)) Nθk

Base case:If v is a leaf, then the distributions inScope(v) are equal. The first part of the claim is

verified directly from4.7and the second part follows because of the fact that the probabilities that

add up toS(v) are proportional to their corresponding counts.

Induction Step:Assumev is not a leaf and has direct descendantsd1, . . . , dk for which the claim

holds. It is obvious thatS(d1) = . . . = S(dk). Now, using the induction hypothesis, we obtain

S(d1) = . . . = S(dk) =
∑k

l=1

∑
θ
j
∈Shared(Desc(dl))

Nθ
j∑

c∈Scope(v) λc
. This combined with4.7gives us the first part

of the claim. The second part of the claim now follows from4.7and the fact that

1∑
c∈Scope(v) λc

=
S(v)∑

θj∈Shared(Desc(v)) Nθj

The above theorem yields an obvious recursive top-down, breadth-first algorithm to compute

the ML Estimates of the parameters. The correctness of the algorithm is justified by theorem4.8.1

and the fact that a nodev is processed sometime after all the nodes on the path fromv to the root

are processed. The algorithm uses a queueQ to perform breadth-first traversal of the tree.

Algorithm 4.8.1. (Maximum Likelihood Estimators with Hierarchical Parameter Sharing)

STEP 1.Enqueue the root of the tree in Q.

STEP 2. If Q = ∅, STOP. Else,v ← Dequeue(Q).

STEP 3.Computêθi for all θi ∈ Shared(v).

STEP 4.Enqueue all children ofv. GO TO STEP 2.
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4.8.3 Constrained Dirichlet Priors

We again choose our priors of the following form:

P (θ) =
1

Z(T )

∏
θαi−1
i

Note that these priors are defined over the whole space of parameters and that a parameterθi can

appear in multiple places in the graphical model (according to the givenParameter Sharing Tree).

In addition, the normalization constant depends heavily on the structure of the parameter sharing

tree sinceT describes the constraints among parameters (the sum of parameters shared on the path

from the root to any leaf should sum up to 1).

Z(T ) =
∫
θ obeys T

∏
θαi−1
i dθ can be recursively computed as follows. First, note that this

integral can be evaluated starting with the parameters from the leaf level. For each leafv, the

integral over the parameters involved inShared(v) is aGeneralized Dirichlet Integral. The effect of

computing this integral is to get the constant given by the Standard Dirichlet and propagate upwards

a single parameterS(v) with cumulative Dirichlet parameter(
∑

θi∈Shared(v) αi) − 1. Now, it is

easy to see that this parameter is the same for all leaves that belong to the same parentp. This will

make the integral over the parameters inShared(p) and the new parameter to be also aGeneralized

Dirichlet Integral and the procedure continues as described above until we end the computation at

the root level. This concludes or sketch of showing how one can recursively computeZ(T ) using

Generalized Dirichlet Integrals.

4.9 Probability Mass Sharing

Here we show how to perform Maximum Likelihood learning in the case when the aggregate prob-

ability mass of a certain parameter type is the same across all distributions in a given setC. For

example, we would like to show how to take advantage of constraints like: ”The frequency of nouns

in Italian is the same as the frequency of nouns in Spanish”, when modelling the word probability

in each of the two languages. In these case, types would be: nouns, verbs, etc.

Before stating the main result of this subsection, let us introduce a few notations. Assume the

parameters inC may have the following types:T1, . . . , Ts. Denote byθj
i the ith parameter injth

distribution inC. Let N j
i represent the observed count for parameterθj

i . Each parameter has ex-

actly one type. For example, in the above example,P (Computer|Italian) has type Noun, while

P (Blue|Italian) has type Adjective. We would like to stress the fact that in our framework,C

is an arbitrary subset of conditional probability distributions in our Bayesian Network. These dis-

tributions can have different numbers of parameters and they can belong to different conditional

probability tables. Formally, theProbability Mass Sharing Assumptionstates that for all typesTl
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and for anyjth
1 andjth

2 distributions inC, we have:

∑

θ
j1
i ∈Tl

θj1
i =

∑

θ
j2
i ∈Tl

θj2
i

Back to our example, this translates into: ”The aggregate probability of Nouns is the same in

all modelled languages and the same holds for other grammatical categories/types.” It might seem

a little restrictive to have each parameter belong to one type because, for instance, one may argue

that maybe only the probability of Nouns is being shared across languages. However, even if one

specifies the Probability Mass Sharing Assumption only for Nouns, the rest of the parameters (non-

nouns) must obey the same constraint and therefore that is equivalent to introducing a new dummy

type that contains every other parameter inC.

With these considerations we are now ready to compute Maximum Likelihood estimators for

the parameters in our model.

4.9.1 Maximum Likelihood Estimation from Complete Data

Theorem 4.9.1.The maximum likelihood estimatorθ̂j
i for a parameterθj

i in C that has typeTl is

given by:

θ̂j
i =

N j
i∑

θj

i′∈Tl
N j

i′
·
∑

θj′
i′ ∈Tl

N j′
i′

∑
θj′
i′

N j′
i′

Proof. We introduce new variablesA = (Al)1...s that represent the probability mass associated

with typeTl in any of the distributions inC. With the newly introduced variables, our optimization

problem can be restated as maximizingf(θ, A) =
∑

N j
i · log θj

i subject to the constraints that∑
θj
i∈Tl

θj
i = Al for all typesTl and for anyjth distribution inC. In addition to these constraints,

we also have
∑

i θ
j
i = 1. Similarly to the previous theorems, it is easy to show that, if all counts

are positive, then the functionf reaches a maximum inside the region on which the constraints

andf are defined. In this case, we also apply Lagrange Multipliers theory, introducing a lagrange

multiplier for each constraint:λj
l for the first type of constraints (probability mass equalities) and

λj for the second type (distributions should sum up to 1). Therefore, differentiating with respect to

θ andA, the point that maximizesf inside the region given by the constraints should also verify:

N j
i = θ̂j

i · (λj + λj
l ) ∀θj

i ∈ Tl (4.8)

∑

j

λj
l = 0 ∀ l (4.9)
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For a fixedj andl, summing up4.8for all i such thatθj
i ∈ Tl we get:

∑

θj
i∈Tl

N j
i = Al · (λj + λj

l ) (4.10)

For a fixedl, summing up4.10for all j and using4.9we obtain:

∑

θj
i∈Tl

N j
i = Al ·

∑

j

λj (4.11)

Further, summing4.11over all values ofl and using the fact that the distributions sum up to 1,

we can compute:

∑

i,j

N j
i =

∑

j

λj (4.12)

Now we can use4.12in 4.11to getAl which is further used in4.10to obtainλj + λj
l which,

substituted in4.8 will yield the formulas in the statement of the theorem. From Sufficiency Criterion

2.1.1, it follows thatθ̂ represents the set of Maximum Likelihood estimators.

4.10 Probability Ratio Sharing

In the previous section, we showed how to compute parameter estimators when certain parameter

types share their aggregate probability mass across different distributions. Now assume we want

instead to enforce the constraint that the relative proportions of parameters in a certain type are

the same for every distribution withinC. This corresponds to statements like:”In two different

countries (A and B), the relative frequency of Heart Attack to Angina Pectoris as the main diagnosis

is the same, even though the the aggregate probability of Heart Disease (Heart Attack and Angina

Pectoris) may be different because of differences in lifestyle in these countries.”In this example,

the types areDisease Types: Heart Disease (Heart Attack, Angina Pectoris), Pulmonary Disease

(Pneumonia, Chronic Obstructive Pulmonary Disease, Lung Cancer), etc.

We keep the same notations as in the previous section. However, there are two major differences

from the setting presented in the previous section. First, in this case, we must have the same number

of parameters of typeTl in each of the distributions inC. For example, we must have the same

number of ”Heart Diseases” in both countries. This allows us to permute the parameters in the

distributions inC such that corresponding parameters inTl are located on the same position in each

of the distributions. For example, we can assumeP (HeartAttack|A) andP (HeartAttack|B) are

both on the first position in the two diagnosis distributions. This allows us to write that a specific
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position i ∈ Tl. Second, now there may be parameters that do not belong to any typeTl. For

example, the expert may specify that only the ”Heart Diseases” preserve their relative probability

ratios across the two countries.

Formally, theProbability Ratio Sharing Assumptionstates that for any fixed typeTl and for

fixed i1, i2 ∈ Tl, the following holds:

θj
i1

θj
i2

= constant ∀ j

Next we derive Maximum Likelihood estimators that take advantage of the Ratio Assumptions

provided by the domain expert.

4.10.1 Maximum Likelihood Estimation from Complete Data

Theorem 4.10.1.The maximum likelihood estimatorθ̂j
i for a parameterθj

i in C is given by:

a) if i ∈ Tl: θ̂j
i =

∑
j′ N

j′
i∑

i′∈Tl,j
′ Nj′

i′
·

∑
i′∈Tl

Nj

i′∑
i′ N

j

i′

b) if θj
i does not have a type:̂θj

i = Nj
i∑

i′ N
j

i′

Proof. Again, we use Lagrange Multipliers theory to derive our estimators. Parameters in each

distribution should sum up to 1 and that translates in the constraint(
∑

i θ
j
i ) − 1 = 0. Let the

corresponding lagrange multiplier beλj . TheProbability Ratio Sharing Assumptionimplies that

there existAj
l and τi such thatθj

i − Aj
l · τi = 0 for all i ∈ Tl. Aj

l represent proportionality

constants for distributionj for parameters of typeTl and τi are reference constants that, when

multiplied with the proportionality constants yield the parameters on positioni in each distribution.

Let λj
i be the lagrange multipliers corresponding to the last type of constraints. Our new objective

function becomesf(θ, A, τ) =
∑

N j
i · log θj

i . When applying Lagrange Multipliers theory to our

optimization problem, differentiating with respect toθ and the newly introducedAj
l and τi, we

obtain:

N j
i = θ̂j

i · (λj + λj
i ) ∀i ∈ Tl (4.13)

N j
i = θ̂j

i · λj ∀i 6∈ ∪Tl (4.14)

∑

j

λj
i ·Aj

l = 0 or
∑

j

λj
i · θ̂j

i = 0 ∀i ∈ Tl (4.15)
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∑

j

λj
i · τi = 0 or

∑

i∈Tl

λj
i · θ̂j

i = 0 ∀ j, l (4.16)

For fixedj andl, summing up4.13for all i ∈ Tl, then using4.16we get:

∑

i∈Tl

N j
i = λj

∑

i∈Tl

θ̂j
i (4.17)

If we further sum over alll and use4.14we obtain:

λj =
∑

i

N j
i (4.18)

Becauseθ̂
j1
i

θ̂
j2
i

= A
j1
l

A
j2
l

for all j1,j2, l andi ∈ Tl, we can write:

Aj1
l

Aj2
l

=

∑
i∈Tl

θ̂j1
i∑

i∈Tl
θ̂j1
i

=
λj2

λj1
·
∑

i∈Tl
N j1

i∑
i∈Tl

N j2
i

(4.19)

For a fixedi ∈ Tl summing up4.13over allj and using4.15we have:

∑

j

N j
i = θ̂j

i · (λj +
∑

j′ 6=j

λj′ · θ̂j′
i

θ̂j
i

) (4.20)

Using4.18and4.19in 4.20proves part a) of the theorem. Part b) follows from4.14and4.18.

The fact that̂θ are the Maximum Likelihood Estimators follows from Sufficiency Criterion2.1.2,

with an argument similar to the one in the proof of Theorem4.6.1.
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Chapter 5

Inequality Constraints for Discrete

Variables

While in Chapter4 we have seen how to derive closed form Maximum Likelihood estimators for

the parameters in a discrete Bayesian Network when the domain knowledge constraints come in

the form of equalities, here we investigate how to perform the same task when Parameter Domain

Knowledge is provided as inequality constraints. Unlike in the case of equality constraints, we

were not able to compute the normalization constant for the corresponding Constrained Dirichlet

Priors in closed form and therefore we will limit our presentation to the derivation of the Maximum

Likelihood estimators.

5.1 Inequalities between Sums of Parameters

Briefly, this type of Parameter Domain Knowledge states that the sum of several parameters within

one conditional probability distribution is bounded by the sum of other parameters in the same

distribution of the Bayesian Network. Intuitively, one can think of this constraint in terms of the

parts of speech of a language. Usually, an adverb comes along with a verb and therefore it is

reasonable to assume that a language expert can specify that the aggregate probability mass of

adverbs is no greater than the aggregate probability mass of the verbs in a given language. Formally,

in this type of domain knowledge, the parameters of a conditional probability distribution, denoted

by θ1, . . . , θn, can be partitioned intoθ = ∪s
k=1Ak ∪s

k=1 Bk ∪C such that
∑

θi∈Ak
θi ≤

∑
θi∈Bk

θi

for all 1 ≤ k ≤ s. Let us denote byNAk
the sum of the observed counts corresponding to parameters

in Ak. Similar definitions hold forNBk
andNC . Let N be the sum of all observed countsNi

corresponding to parametersθ. We have the following theorem:
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Theorem 5.1.1.If all Ni are strictly positive, the Maximum Likelihood Estimators of parametersθ

are given by:

a) θ̂i = Ni
N · NAk

+NBk
2·NAk

if θi ∈ Ak andNAk
≥ NBk

b) θ̂i = Ni
N · NAk

+NBk
2·NBk

if θi ∈ Bk andNAk
≥ NBk

c) θ̂i = Ni
N if θi ∈ Ak ∪Bk andNAk

< NBk

d) θ̂i = Ni
N if θi ∈ C

Proof. Finding Maximum Likelihood estimators is equivalent to maximizingl(θ) =
∑

i Ni · log θi

subject to the domain knowledge constraints, including the constraint thatg(θ) =
∑

i θi − 1 = 0.

Since this problem contains inequality constraints, we can attempt to solve it using Karush-Kuhn-

Tucker theorem. We introduce the Lagrange Multiplierλ for g andµk for inequality constraint

hk(θ) =
∑

θi∈Ak
θi−

∑
θi∈Bk

θi ≤ 0. According to Theorem2.1.2, we are looking for the optimum

θ̂ among the solutions of the system:





∇θ l(θ̂)− λ · ∇θg(θ̂)−∑
k µk · ∇θhk(θ̂) = 0

g(θ̂) = 0
µk · hk(θ̂) = 0

hk(θ̂) ≤ 0
µk ≥ 0

From the first equation we obtain:

θ̂i =





Ni
λ+µk

if θi ∈ Ak

Ni
λ−µk

if θi ∈ Bk

Ni
λ if θi ∈ C

Therefore,
∑

θi∈Ak
θ̂i =

NAk
λ+µk

and
∑

θi∈Bk
θ̂i =

NBk
λ−µk

. Based on whether constraintk is tight

or not we have:

• If hk(θ̂) = 0, then
NAk
λ+µk

=
NBk
λ−µk

. This implies
NAk
λ+µk

=
NBk
λ−µk

=
NAk

+NBk
2λ and therefore

∑
θi∈Ak∪Bk

θ̂i =
NAk

+NBk
λ . In this case, we also haveλ · (NAk

−NBk
) = µk · (NAk

+NBk
).

Sinceµk ≥ 0, we also must haveNAk
≥ NBk

in order for constraintk to be tight.

• If hk(θ̂) < 0, thenµk = 0 and therefore we again have
∑

θi∈Ak∪Bk
θ̂i =

NAk
+NBk
λ . In this

case we also havehk(θ̂) =
NAk

−NBk
λ and sincehk(θ̂) < 0, we must also haveNAk

< NBk
.
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The above observations allow us to conclude that a constraint is tight if and only ifNAk
≥ NBk

.

Now, summing up over all parameters in the conditional probability distribution we get:

1 =
∑

i

θ̂i =
NC +

∑
k(NAk

+ NBk
)

λ
=

N

λ

This gives us:λ = N and therefore:

θ̂i =





Ni
N+µk

if θi ∈ Ak

Ni
N−µk

if θi ∈ Bk

Ni
N if θi ∈ C

Assume now thatNAk
≥ NBk

. According to the observations above, it means constraintk

is tight and we have:
NAk

N+µk
=

NBk
N−µk

=
NAk

+NBk
2·N . From this we immediately derive:̂θi =

Ni
N · NAk

+NBk
2·NAk

if θi ∈ Ak andNAk
≥ NBk

andθ̂i = Ni
N · NAk

+NBk
2·NBk

if θi ∈ Bk andNAk
≥ NBk

.

If NAk
< NBk

, then, as discussed above,µk must be0 and thereforêθi = Ni
N if θi ∈

Ak∪Bk andNAk
< NBk

. From Sufficiency Criterion2.1.1, it follows thatθ̂ is the set of Maximum

Likelihood estimators. This concludes the proof of our theorem.

5.2 Upper Bounds on Sums of Parameters

Here the domain expert provides upper bounds on the sum of several parameters within one con-

ditional probability distribution in the Bayesian Network. Consider the same language example

described in the introduction of the previous section. Here the expert may state that the aggre-

gate probability of nouns is no greater than0.4, the aggregate probability of verbs is no greater

than0.4 and the aggregate probability of adjectives is no greater than0.3. Even though the com-

bined probability mass of all words equals one, the sum of the upper bounds provided by the expert

can be greater than one. Formally, in this type of domain knowledge, the parameters of a condi-

tional probability distribution, denoted byθ1, . . . , θn, can be partitioned inθ = ∪s
k=1Ak such that∑

θi∈Ak
θi ≤ αk for all 1 ≤ k ≤ s, whereαk is a given positive constant. Again, denote byNAk

the sum of the observed counts corresponding to parameters inAk and byN be the sum of all

observed countsNi corresponding to parametersθ. If there are parameters not involved in any of

these constraints, then we can consider they belong to their own setAk with αk = 1.

In the previous section we found an easy way to decide whether a constraint is tight or not at

the optimum point. For the type of constraints that we deal with in this section, we are not able

to derive such a simple criterion. However, we show a simple, linear algorithm that computes the

set of tight constraints at the optimum point. This algorithm starts with an empty set and at each
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step adds one of the final tight constraints. Let us start with the theorem describing the Maximum

Likelihood estimators:

Theorem 5.2.1.Assume all observed countsNi are strictly positive and also assume we know the

setK = {k1, . . . , kl} of constraints that are tight at the point given by the Maximum Likelihood

estimatorŝθ. Then, we have:

a) θ̂i = αk · Ni
NAk

if θi ∈ Ak andk ∈ K

b) θ̂i = (1−∑
j∈K αj) · Ni∑

m6∈K NAm
if θi ∈ Ak andk 6∈ K

Proof. We can approach the problem of finding the Maximum Likelihood estimators in a similar

fashion as in Theorem5.1.1. The data log-likelihood is given byl(θ) =
∑

i Ni · log θi which we

have to maximize with respect to the domain knowledge constraints, including the constraint that

g(θ) =
∑

i θi − 1 = 0. Again, we use Karush-Kuhn-Tucker theorem. We introduce the Lagrange

Multiplier λ for g andµk for inequality constrainthk(θ) =
∑

θi∈Ak
θi − αk ≤ 0. According to

Theorem2.1.2, we are looking for the optimum̂θ among the solutions of the system:





∇θ l(θ̂)− λ · ∇θg(θ̂)−∑
k µk · ∇θhk(θ̂) = 0

g(θ̂) = 0
µk · hk(θ̂) = 0

hk(θ̂) ≤ 0
µk ≥ 0

From the first equation we obtain:

θ̂i =
Ni

λ + µk
if θi ∈ Ak

Therefore,
∑

θi∈Ak
θ̂i =

NAk
λ+µk

. Based on whether constraintk is tight or not we have:

• If hk(θ̂) = 0 i.e. k ∈ K, then
NAk
λ+µk

= αk. This impliesθ̂i = Ni
λ+µk

= αk · Ni
NAk

.

• If hk(θ̂) < 0 i.e. k 6∈ K, thenµk = 0 and therefore we have
∑

θi∈Ak
θ̂i =

NAk
λ .

Summing up over all parameters not involved in the tight constraints, we get:

(1−
∑

j∈K

αj) =
∑

θi∈Ak,k 6∈K

θi =

∑
j 6∈K NAj

λ
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We obtainλ =
∑

m6∈K NAm

1−∑
j∈K αj

and further:θ̂i = (1 − ∑
j∈K αj) · Ni∑

m6∈K NAm
if θi ∈ Ak and

k 6∈ K. From Sufficiency Criterion2.1.1, it follows that θ̂ is the set of Maximum Likelihood

estimators. This concludes our derivation of the Maximum Likelihood estimators when we know in

advance which constraints are satisfied by our estimators.

Next we describe the algorithm that finds the setK of tight constraints:

Algorithm 5.2.1. (Finding the set of tight constraints if
∑

j αj 6= 1)

STEP 1.Start withK = ∅ and at each step add a constraint to K.

STEP 2. If K = {k1, . . . , kl}, let λl =
∑

m6∈K NAm

1−∑
j∈K αj

as in the above theorem.

STEP 3. If there existskl 6∈ K such that
NAkl
αkl

≥ λl, let K = K ∪ {kl} and GO TO Step 2.

Otherwise STOP and declareK the set of tight constraints.

Proof. (Correctness of Algorithm) We start by making the following observation, based on the

proof of Theorem5.2.1:

• If hk tight, then
NAk
λ+µk

= αk. Becauseµk ≥ 0, we must have
NAk
αk

≥ λ.

• If hk not tight, thenµk = 0 and therefore we have0 > hk(θ̂) =
NAk

λ − αk and therefore we

must have
NAk
αk

< λ. It is obvious thatλ ≥ 0 must hold, otherwise we would have negative

parameters.

We have just developed a criterion to test if a setK of constraints is the set of tight constraints:

Lemma 5.2.1. Givenλ computed as in Theorem5.2.1, K is the set of tight constraints if and only

if
NAk
αk

≥ λ for all k ∈ K and
NAk
αk

< λ for all k 6∈ K.

Before proving that our algorithm produces the set of tight constraints, let us prove another

useful result:

Lemma 5.2.2. If
∑

j αj 6= 1 thenN = λ0 ≥ λ1 ≥ . . ., and the quantity1 −∑
j∈K αj is always

strictly positive.

Proof. (of lemma) Since initiallyK = ∅, it is obvious that1 −∑
j∈K αj ≥ 0. It is also obvious

λ0 = N . Let us verify the induction step.

From
NAkl
αkl

≥ λl and because1−∑
j∈K αj > 0 we get:
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NAkl
· (1− αkl

−
∑

j∈K

αj) ≥ αkl
·

∑

m6∈K∪{kl}
NAm (5.1)

It follows (1 −∑
j∈K∪kl

αj) ≥ 0 with equality if and only if we processed all constraints, in

which case we have1 =
∑

j αj and it is obvious that all constraints must be tight. However, since

we assumed
∑

j αj 6= 1, we must have(1 −∑
j∈K∪kl

αj) > 0 and the first part of the induction

step is proved.

If in both sides of inequality5.1we add the quantity(1− αkl
−∑

j∈K αj) ·
∑

m6∈K∪{kl}NAm ,

we obtain:

(1− αkl
−

∑

j∈K

αj) ·
∑

m6∈K

NAm ≥ (1−
∑

j∈K

αj) ·
∑

m6∈K∪{kl}
NAm

which, given that1− αkl
−∑

j∈K αj > 0, is equivalent toλl ≥ λl+1. This concludes the proof of

our lemma.

Applying Lemma5.2.2, it follows that, in the case when
∑

j αj 6= 1, the Algorithm5.2.1ends

at a stepl such that
NAkj

αkj
≥ λj ≥ λl for all kj ∈ K and

NAk
αk

< λl for all k 6∈ K. From Lemma

5.2.1 it follows that K is the set of tight constraints in the case when
∑

j αj 6= 1 and therefore

Algorithm 5.2.1is correct. Another case is when all constraints are processed and we are not left

with aλl to compare with. This situation can not happen, because, at the last step, we would have:

NAks

1−∑
j 6=ks

αj
≤ NAks

αks

and therefore either
∑

j αj = 1 or
∑

j αj < 1. In the second case, the constraints are contradictory,

which can not happen because we assume the domain expert provides accurate domain knowledge.

If
∑

j αj = 1 (case which is not covered by Algorithm5.2.1), it is obvious that the all constraints

must be tight not only for the Maximum Likelihood estimators, but for every feasible value ofθ.
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Chapter 6

Equality Constraints for Continuous

Variables

In this chapter we illustrate how to efficiently compute Maximum Likelihood estimators that take

advantage of Parameter Domain Knowledge in the case of Bayesian Networks with continuous

random variables. Unlike in the discrete case, there are many different types of continuous random

variables, each parameterized in a different way, so we decided to focus our investigation on the

most commonly used type: Gaussian random variables. We study parameter sharing and parameter

proportionality for learning in Gaussian Bayesian Networks as well as parameter sharing in Hidden

Process Models that involve Gaussian random variables.

6.1 Parameter Sharing in Gaussian Bayesian Networks

Here we look at Gaussian Bayesian Networks, where the conditional probability of each variable is

a Gaussian whose mean is a linear combination of the value of the parents. IfPAi = (Y1, . . . , Yk) is

the set of parents of variableXi, we can writeXi|PAi ∼ N(PAi·θi, σ
2
i ) whereθi = (θi1, . . . , θik)

T

is a column vector of parameters of lengthk.

In this section we will present Maximum Likelihood estimators for the parametersθi, provided

that the domain expert is telling us that”The parameters in coefficient vectorθi can be partitioned

in subsetsT1, . . . , Ts such that all parameters in any given subset are equal”. If a parameter is not

shared, then its corresponding setTj has only one element. Intuitively, one can think of the coef-

ficientsθip as the magnitude of the contribution of parentYp to the value ofXi. Consequently, the

above parameter sharing assumptions specify that the contribution of several of its parents is same

as important to the value ofXi. For example, one can predict the stock of computer makerDELL

as a weighted sum of the stocks of software makerMicrosoft (MSFT)and chip makerIntel (INTL).
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Parameter sharing corresponds to the statement thatMSFT and INTL have the same importance

(weight) for predicting the value of stockDELL.

Let θ
′
ij be the common value of parameters inTj . Therefore, the new vector of parameters

to estimate will beθ
′
i = (θ

′
i1, . . . , θ

′
is)

T . Similar constraints can be independently specified on

variables other thanXi. Let us introduce a new variableZj to denote the sum of parents ofXi

corresponding to parameters in subsetTj i.e. Zj =
∑

θip∈Tj
Yp. We call PA′i = (Z1, . . . , Zs)

the vector ofAbstracted Parentsof Xi. If we denote byX l
i the value ofXi and byPAl

i the value

of PA′i in training exampledl, we can defineAi to be theAbstracted Parents Matrixandbi to be

theVariable Vectorfor variableXi such that each has a row corresponding to each example in the

training set:

Ai =




PA
′1
i

PA
′2
i

. . .

PA
′m
i




and bi =




X1
i

X2
i

. . .

Xm
i




With these notations, the Maximum Likelihood estimators are given by the following theorem:

Theorem 6.1.1. If AT
i · Ai is non-singular, the Maximum Likelihood Estimators of the parameters

for Gaussian variableXi are given by:

θ̂
′

i = (AT
i ·Ai)−1 ·AT

i · bi

σ̂2
i =

||Ai · θ̂i − bi||2
m

Proof. The decomposability of log-likelihood, allows us to compute Maximum Likelihood estima-

tors by solving a set of independent optimization problems, one for each conditional probability

distribution in the Gaussian Bayesian Network. BecauseXi|PAi ∼ N(PAi · θi, σ
2
i ), based on the

parameter sharing assumptions provided by the expert, we get:Xi|PAi ∼ N(PA′i · θ
′
i, σ

2
i ). Com-

bined with the independence of the optimization problems corresponding to different variables in

the network, this allows us to substitute the parents ofXi with its Abstracted Parentsand therefore

the result follows directly from Theorem2.2.4.

6.2 Parameter Proportionality in Gaussian Bayesian Networks

Parameter Proportionalityin Gaussian Bayesian Networks is a straightforward extension of Param-

eter Sharing. In this type of domain knowledge, parameters are not necessarily equal to each other,

but they are proportional to some constants given by the domain expert. In other words, the expert
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knows the relative strengths of the contributions of several parents to the value of a variableXi in

the network. Let us extend the example in the previous section. Here we want to predict the stock

of computer makerDELL as a weighted sum of the stocksMSFT, INTL and the stock of aPower

Supply Maker (PSUPPLY). While the expert is stating thatMSFTandINTL have the same impor-

tance (weight) for predicting the value of stockDELL, he also states thatPSUPPLYhas 3 times less

importance (weight).

The Parameter Proportionality constraints supplied by the expert will look like:”The param-

eters in coefficient vectorθi can be partitioned in subsetsT1, . . . , Ts such that the parameters in

Tj are proportional to some known constants”. If Tj = {θij1
, . . . , θijt

} then there exists an un-

known valueθ
′
ij such thatTj = θ

′
ij · {cj1 , . . . , cjt}. The set of parameters to estimate becomes

θ
′
i = (θ

′
i1, . . . , θ

′
is)

T . Parameter Sharing presented in the previous section can be seen as a particu-

lar case when all constantsc are equal to one.

In this case, letZ1, . . . , Zs be theAbstracted Parentsdefined asZj =
∑

θijp
∈Tj

cjp ·Yp. It is now

easy to see that the Maximum Likelihood estimators in the presence of Parameter Proportionality

constraints within one conditional probability distribution can be found by using Theorem6.1.1

based on our newAbstracted Parents.

6.3 Parameter Sharing in Hidden Process Models

A Hidden Process Model (HPM)is a probabilistic framework that predicts the value of atarget

variableX at a given point in time as the sum of the values of certainHidden Processesthat are

active. This model is inspired from observations of the fMRI signal in the brain when a subject

performs a cognitive task. One can think of the target variable as the value of the fMRI signal in

one small cube inside the brain (also called a voxel). A hidden process may be thought of as the

fMRI activity that happens as a response to an externalstimulus. For example, a”Picture” process

may describe the fMRI signal that happens in the brain starting when the subject is presented with

a picture. A”Sentence”process may provide the same characterization for the situation when a

subject is reading a sentence. In the real world several stimuli may be active at some point in

time and it is conjectured that the observed fMRI signal is the sum of the corresponding processes,

translated according to their starting times.

Formally, aHidden Process Modelis a collection of time series (also called hidden processes):

P1, . . . , PK . For each processPk with 1 ≤ k ≤ K, denote byPkt the value of its corresponding

time series at timet after the process started. Also, letXt be the value of the target variableX at

time t. If processPk starts at timetk, then a Hidden Process Model is predicting theXt using the

following distribution:
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Xt ∼ N(
∑

k

Pk(t−tk+1), σ
2)

whereσ2 is considered to be the variance in the measurement and it is kept constant across time.

For the above formula to make sense, we considerPkt = 0 if t < 0. While in the real world it may

happen that the subject is presented with the same kind of stimulus multiple times across time, here

we make the assumption that each process is active at most once within each example. Figure6.1

shows an example of a Hidden Process Model for the fMRI activity in a voxel in the brain during a

cognitive task involving reading a sentence and looking at a picture.

In an fMRI experiment, the subject may perform the same cognitive task multiple times and

that leaves us with multiple observations aboutXt, the value ofX at time t. In our framework

we denote byXnt the value ofXt and bytnk the starting point of processPk in examplen in the

dataset of observations aboutX, where each observation tracks the value ofX across time given

a combination of processes that can start at any times. LetN be the total number of observations.

Now we can write:

Xnt ∼ N(
∑

k

Pk(t−tnk+1), σ
2)

While not entirely necessary for our method to work, several assumptions will allow us to make

a more compact presentation of Hidden Process Models, based on some characteristics of the fMRI

dataset that we are going to use in Chapter8. First, we assume thatX is tracked across the same

time length in each observation. LetT be the length of every such observation (trial). Since we

are not modelling what happens whent > T , we can also consider that each process has lengthT .

Second, in our fMRI dataset, we know in advance when the stimuli are presented and therefore in

our model we assume thattnk, the starting times of the processes, are fully observable.

The same stimuli may influence the activity in multiple voxels of the brain during one cognitive

task. For example, looking at a picture may activate many voxels in the visual cortex. The activation

in these voxels may be different at each given point in time. Intuitively, that means the same stimulus

may produce different hidden processes in different voxels. However, certain groups of voxels that

are close together often have similar shape time series, but with different amplitude. In this case,

we believe it is reasonable to assume that the underlying hidden processes corresponding to these

voxels are proportional to each other. Experiments performed in Chapter8 will prove that this

assumption will help learn better models than the ones that choose to ignore it.

In the above paragraph we explained intuitively that sometimes it makes sense to share the same

base processes across several time-varying random variables, but allow for different scaling factors.

Formally, we say that time-varying random variablesX1, . . . , XV share their correspondingHidden

Process Modelsif there exist base processesP1, . . . , PK and constantscv
k for 1 ≤ v ≤ V such that:
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Figure 6.1:A Hidden Process Model for the cognitive task when a subject is asked to read a sentence and

to look at a picture. In half of the observations, the sentence is presented first, then the picture is shown.

In the other half of the observations, the picture is presented first. The activity in a given voxelX in the

brain is modelled as a Hidden Process Model with two processes: ”Sentence” (P1) and ”Picture” (P2). Each

observation has lengthT = 32 fMRI snapshots (16 seconds) and the same holds for both processes. This

figure shows an observation where the sentence is presented at timet1 = 1 and the picture is shown at

t2 = 17 (8 seconds aftert1). After time t2, the two processes overlap and the fMRI signalXt′ is the sum

of the corresponding values of the two processes plusN(0, σ2) measurement variance. The blue dotted line

represents the fMRI activity that would happen after timeT .

77



Xv
nt ∼ N(

∑

k

cv
k · Pk(t−tvnk+1), σ

2)

and the values of different variablesXv are independent given the parameters of the model. Here

σ2 represents the variance in measurement which is also shared across these variables.

Next we will study how to efficiently perform Maximum Likelihood estimation of the param-

eters of the variablesX1, . . . , XV , assuming that they share their corresponding Hidden Process

Model parameters as described above. We make the additional assumption that we know the start-

ing times and identities of the hidden processes (HPMs have been studied under this assumption in

[Dal99]). The parameters to estimate are the base process parametersPkt where1 ≤ k ≤ K and

1 ≤ t ≤ T , the scaling constantscv
k (one for each variableV and processk) where1 ≤ v ≤ V and

the common measurement varianceσ2. Let P = {Pkt | 1 ≤ k ≤ K, 1 ≤ t ≤ T} be the set of

all parameters involved in the base processes and letC = {cv
k | 1 ≤ k ≤ K, 1 ≤ v ≤ V } be the

set of scaling constants. We remind the reader thatN represents the number of observations. The

log-likelihood of the model is given by:

l(P, C, σ) = −NTV

2
· log(2π)−NTV · log(σ)− 1

2 · σ2
·
∑
n,t,v

(xv
nt −

∑

k

cv
k · Pk(t−tvnk+1))

2

It is easy to see that the value of(P, C) that maximizesl is the same for all values ofσ. There-

fore, in order to maximizel, we can first minimizel′(P, C) =
∑

n,t,v(x
v
nt −

∑
k cv

k · Pk(t−tvnk+1))2

with respect to(P, C) and then maximizel with respect toσ based on the minimum point forl′.
One may notice thatl′ is a sum of squares, where the quantity inside each square can be seen as a

linear function in bothP andC. Therefore one can imagine an iterative procedure that first min-

imizes with respect toP , then with respect toC using the Least Squares method. Once we find

M = min l′(P, C) = l′(P̂ , Ĉ), the value ofσ that maximizesl is given byσ̂2 = M
NV T . This can be

derived in a straightforward fashion by enforcing∂l
∂σ (P̂ , Ĉ, σ̂) = 0. With these considerations, we

are now ready to present an algorithm to compute Maximum Likelihood estimators(P̂ , Ĉ, σ̂) of the

parameters in the shared Hidden Process Model:

Algorithm 6.3.1. (Maximum Likelihood Estimators in a Shared Hidden Process Model)

Let X̄ be the column vector of valuesxv
nt. Start with a random guess(P̂ , Ĉ) and then repeat Steps

1 and 2 until they converge to the minimum of the functionl′(P, C).

STEP 1.Write l(P̂ , Ĉ) = ||A · P̂ − X̄||2 whereA is aNTV byKT matrix that depends on current

estimatorĈ of the scaling constants. Minimize with respect toP̂ using ordinary Least Squares to

get a new estimator̂P = (AT ·A)−1 ·AT · X̄.
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STEP 2.Write l(P̂ , Ĉ) = ||B · Ĉ− X̄||2 whereB is aNTV byKV matrix that depends on current

estimatorP̂ of the base processes. Minimize with respect toĈ using ordinary Least Squares to get

a new estimator̂C = (BT ·B)−1 ·BT · X̄.

STEP 3.Once convergence is reached by repeating the above two steps, letσ̂2 = l′(P̂ ,Ĉ)
NV T .

It might seem that this is a very expensive algorithm because it is an iterative method. However,

we applied it in our experiments of modelling the fMRI signal during a cognitive task and it turns

out it usually converges in 3-5 repetitions of Steps 1 and 2. We believe that the main reason why

this happens is because at each partial step during the iteration we compute a closed form global

minimizer on eitherP̂ or Ĉ instead of using a potentially expensive gradient descent algorithm. In

Chapter8 we will experimentally prove the benefits of this algorithm over methods that do not take

advantage of parameter sharing assumptions, i.e. the shared Hidden Process Models corresponding

to neighboring voxels in the brain when the subject is performing a cognitive task.

79



80



Chapter 7

Formal Guarantees

In the Introduction, we motivated that taking advantage of Parameter Domain Knowledge can be

beneficial to learning because, intuitively, it has the effect of lowering the variance in parameter

estimators by shrinking the degrees of freedom of the model. In this chapter we provide a formal

proof of this fact on Parameter Sharing within One Distribution type of domain knowledge, which

was introduced in section4.3. In order for our proof to work, we make the assumption that the

true distribution factorizes according to the given Bayesian Network structure and that it obeys the

parameter sharing assumptions. The second interesting result presented in this chapter will give

theoretical guarantees in the case when the Parameter Domain Knowledge provided by the expert

might not be entirely accurate. We will prove this result on another type of domain knowledge:

Parameter Sharing across Multiple Distributions, first introduced in section4.7. While we only

investigate two different types of Parameter Domain Knowledge, we strongly believe that the same

kind of formal guarantees describe all other types of domain knowledge presented in this thesis.

7.1 Variance Reduction by Using Parameter Domain Knowledge

Assume we want to learn a Bayesian Network in the case when a domain expert provides Param-

eter Domain Knowledge constraints specifying that certain parameters appear multiple times (are

shared) within a conditional probability distribution (see section4.3). Each conditional probability

distribution in the Bayesian Network can have its own such constraints. Also, the case when all

parameters are distinct within one such distribution may be seen as a particular case of Parameter

Sharing within One Distribution, where each parameter is shared exactly once.

We have two ways to perform Maximum Likelihood parameter learning in the above Bayesian

Network. First, we may choose to ignore the domain knowledge given by the expert and use The-

orem2.2.1to estimate parameters. A second option is to incorporate the domain knowledge in the

learning method, in which case we can use the results described in Section4.3. One would intu-
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itively expect that taking advantage of the domain knowledge provided by the expert would reduce

the variance in parameter estimates when compared to the first approach.

Let us first derive the variance in standard Maximum Likelihood parameter estimators in a

Bayesian Network, ignoring any additional Parameter Sharing assumptions:

Lemma 7.1.1. Let θ be the true parameters of a Bayesian Network describing a distributionP

that factorizes according to that network. Letθ̂ be the maximum likelihood estimators of these

parameters as given by Theorem2.2.1. Then the variance of̂θijk is given by:

V ar[θ̂ijk] = θijk · (1− θijk) · E[
1

Nik
|Nik 6= 0]

Proof. According to Theorem2.2.1, θ̂ijk = Nijk

Nik
and it is well defined conditioned on the fact that

Nik 6= 0. To compute the variance of a random variableX we use:V ar(X) = E[X2] − E2[X].
Given thatθijk = P (Xi = xij |PAi = paik), it follows that the number of times that we are

going to observeXi = xij in b independent trials whenPAi = paik is a binomial random variable

P (Nijk|Nik = b) ∼ Binomial(b, θijk). Using this observation, let us first compute the expected

value ofθ̂ijk:

E[θ̂ijk] = E[
Nijk

Nik
|Nik 6= 0]

=
∑

b≥1,0≤a≤b

a

b
· P (Nijk = a,Nik = b|Nik 6= 0)

=
∑

b≥1,0≤a≤b

a

b
· P (Nijk = a|Nik = b) · P (Nik = b|Nik 6= 0)

=
∑

b≥1,0≤a≤b

a

b
·
(

b

a

)
θa
ijk · (1− θijk)

b−a · P (Nik = b|Nik 6= 0)

=
∑

b≥1

P (Nik = b|Nik 6= 0) ·
∑

0≤a≤b

a

b
·
(

b

a

)
θa
ijk · (1− θijk)

b−a

=
∑

b≥1

P (Nik = b|Nik 6= 0) ·
∑

1≤a≤b

(
b− 1
a− 1

)
θa
ijk · (1− θijk)

b−a

=
∑

b≥1

P (Nik = b|Nik 6= 0) · θijk ·
∑

1≤a≤b

(
b− 1
a− 1

)
θa−1
ijk · (1− θijk)

(b−1)−(a−1)

= θijk ·
∑

b≥1

P (Nik = b|Nik 6= 0) · (θijk + (1− θijk))
b−1

= θijk ·
∑

b≥1

P (Nik = b|Nik 6= 0)

= θijk
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The formula forE[θ̂2
ijk] can be computed in a similar fashion:

E[θ̂2
ijk] = E[

N2
ijk

N2
ik

|Nik 6= 0]

=
∑

b≥1,0≤a≤b

a2

b2
· P (Nijk = a,Nik = b|Nik 6= 0)

=
∑

b≥1

P (Nik = b|Nik 6= 0) ·
∑

0≤a≤b

a2

b2
·
(

b

a

)
θa
ijk · (1− θijk)

b−a

=
∑

b≥1

P (Nik = b|Nik 6= 0) · 1
b
·

∑

1≤a≤b

a ·
(

b− 1
a− 1

)
θa
ijk · (1− θijk)

b−a

=
∑

b≥1

P (Nik = b|Nik 6= 0) · θijk

b
· (

∑

1≤a≤b

(
b− 1
a− 1

)
θa−1
ijk · (1− θijk)

(b−1)−(a−1) +

+(b− 1) · θijk ·
∑

2≤a≤b

(
b− 2
a− 2

)
θa−2
ijk · (1− θijk)

(b−2)−(a−2))

=
∑

b≥1

P (Nik = b|Nik 6= 0) · θijk

b
· (1 + (b− 1) · θijk)

= θijk ·
∑

b≥1

P (Nik = b|Nik 6= 0) · (1
b

+ θijk −
θijk

b
)

= θ2
ijk + θijk · (1− θijk) · E[

1
Nik

|Nik 6= 0]

Therefore, we haveV ar[θ̂ijk] = E[θ̂2
ijk]− E2[θijk] = θijk · (1− θijk) · E[ 1

Nik
|Nik 6= 0]

We have just seen how to compute the variance in standard Maximum Likelihood estimators

in a Bayesian Network. The following lemma gives us a way of calculating the variance in Maxi-

mum Likelihood parameter estimators that take advantage of parameter sharing constraints that hold

within one conditional probability distribution:

Lemma 7.1.2.Assume a domain expert is specifying constraints of the form:”within distribution

Xi|PAi = paik, parametersθij1k, . . . , θijsk are shared (have equal value)”. If we computêθ, the

Maximum Likelihood estimators that take advantage of this domain knowledge via Theorem4.3.1,

then the variance in̂θ is given by:

V ar[θ̂ijtk] = θijtk · (
1
s
− θijtk) · E[

1
Nik

|Nik 6= 0] ∀ 1 ≤ t ≤ s

Proof. When the expert reveals us that true probability distribution described by the Bayesian Net-

works satisfiesθij1k = . . . = θijsk, we denote byNij1..sk the sum of observed counts corresponding
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to these parameters i.e.Nij1..sk =
∑

1≤t≤s Nijtk. In other words,Nij1..sk is the number of times

Xi ∈ {xij1 , . . . , xijs} whenPAi = paik. Theorem4.3.1yields the following Maximum Like-

lihood estimator:θ̂ijtk
= Nij1..sk

s·Nik
. Given thatP (Xi ∈ {xij1 , . . . , xijs}|PAi = paik) = sθijtk

,

we conclude that, inb independent trials in whichPAi = paik is observed,Nij1..sk|Nik = b is a

binomial variable distributedP (Nij1..sk|Nik = b) ∼ Binomial(b, sθijtk
). With this observation,

let us first compute the expected value ofθijtk
:

E[θ̂ijtk] = E[
Nij1..sk

s ·Nik
|Nik 6= 0]

=
∑

b≥1,0≤a≤b

a

s · b · P (Nij1..sk = a, Nik = b|Nik 6= 0)

=
∑

b≥1,0≤a≤b

a

s · b · P (Nij1..sk = a|Nik = b) · P (Nik = b|Nik 6= 0)

=
∑

b≥1,0≤a≤b

a

s · b ·
(

b

a

)
(sθijtk)

a · (1− sθijtk)
b−a · P (Nik = b|Nik 6= 0)

=
1
s
·
∑

b≥1

P (Nik = b|Nik 6= 0) ·
∑

0≤a≤b

a

b
·
(

b

a

)
(sθijtk)

a · (1− sθijtk)
b−a

=
1
s
·
∑

b≥1

P (Nik = b|Nik 6= 0) ·
∑

1≤a≤b

(
b− 1
a− 1

)
(sθijtk)

a · (1− sθijtk)
b−a

=
1
s
·
∑

b≥1

P (Nik = b|Nik 6= 0) · s · θijtk · (sθijk + (1− sθijk))
b−1

= θijtk ·
∑

b≥1

P (Nik = b|Nik 6= 0)

= θijtk

Using the same approach, we can compute the formula forE[θ̂2
ijk]:

E[θ̂2
ijtk] = E[

N2
ij1..sk

s2 ·N2
ik

|Nik 6= 0]

=
∑

b≥1,0≤a≤b

a2

s2 · b2
· P (Nij1..sk = a,Nik = b|Nik 6= 0)

=
1
s2
·
∑

b≥1

P (Nik = b|Nik 6= 0) ·
∑

0≤a≤b

a2

b2
·
(

b

a

)
(sθijtk)

a · (1− sθijtk)
b−a

=
1
s2
·
∑

b≥1

P (Nik = b|Nik 6= 0) · 1
b
·

∑

1≤a≤b

a ·
(

b− 1
a− 1

)
(sθijtk)

a · (1− sθijtk)
b−a
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=
1
s2
·
∑

b≥1

P (Nik = b|Nik 6= 0) · sθijtk

b
· (1 + (b− 1) · sθijtk)

=
θijk

s
·
∑

b≥1

P (Nik = b|Nik 6= 0) · (1
b

+ sθijtk −
sθijtk

b
)

= θ2
ijtk + θijtk · (

1
s
− θijtk) · E[

1
Nik

|Nik 6= 0]

Therefore, we haveV ar[θ̂ijtk
] = E[θ̂2

ijtk
]−E2[θijtk

] = θijtk
· (1

s −θijtk
) ·E[ 1

Nik
|Nik 6= 0]

Combining the above two lemmas, we obtain the following theorem:

Theorem 7.1.1.Assuming a domain expert can specify parameter sharing assumptions that take

place inside the conditional probability distributions of a Bayesian Network, the Maximum Like-

lihood estimators that use this domain knowledge as computed with Theorem4.3.1 have lower

variance than standard Maximum Likelihood estimators computed with Theorem2.2.1, ignoring

the domain knowledge. More specifically, for one parameterθijk that is shareds ≥ 1 times within

P (Xi|PAi = paik), denote bŷθML
ijk the Maximum Likelihood estimator that ignores domain knowl-

edge and bŷθPS
ijk the Maximum Likelihood estimator that uses the parameter sharing assumptions

specified by the expert. We have the following identity:

V ar[θ̂ML
ijk ]− V ar[θ̂PS

ijk ] = θijk · (1−
1
s
) · E[

1
Nik

|Nik 6= 0] ≥ 0

Proof. From Lemma7.1.1and Lemma7.1.2we obtain:

V ar[θ̂ML
ijk ] = θijk · (1− θijk) · E[

1
Nik

|Nik 6= 0]

and

V ar[θ̂PS
ijk ] = θijk · (

1
s
− θijk) · E[

1
Nik

|Nik 6= 0]

The difference in variance is then given by:

V ar[θ̂ML
ijk ]− V ar[θ̂PS

ijk ] = θijk · (1−
1
s
) · E[

1
Nik

|Nik 6= 0] ≥ 0

with equality whens = 1 i.e. θijk is not shared multiple times.
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7.2 Performance with Potentially Inaccurate Domain Knowledge

Sometimes it may happen that the Parameter Domain Knowledge provided by an expert is not

completely accurate. In all our methods so far, we assumed that the domain knowledge is correct

and therefore errors in domain knowledge can prove detrimental to the performance of our learned

models. In this section we investigate the relationship between the true, underlying distribution of

the observed data and the distribution estimated using our methods based on Parameter Domain

Knowledge. In particular, we come up with an upper bound on how well our estimated model can

perform given a set of potentially incorrect Parameter Domain Knowledge constraints. While in the

previous section we illustrated the main result via Parameter Sharing within One Distribution type

of domain knowledge, here we will prove our results for the general Parameter Sharing framework

described in section4.7. In this type of domain knowledge, a parameter can be either shared once

in every conditional probability distribution in a given set or it is local within its corresponding

probability distribution. Shared parameters are also called global parameters.

In order to present these results, we will follow the notations in section4.7. Assume an expert

specified a set of Parameter Sharing assumptions across a set of conditional probability distribu-

tions in our Bayesian Network as described above. Let us introduce the notion ofTrue Proba-

bilistic Counts(TPC). SupposeP is the true distribution from which data is sampled. Ifθlck is the

local parameter of the graphical model that is supposed to describeP (X = x|PA(X) = pa),
then letTPClck = P (X = x, Pa(X) = pa). If θgk is the global parameter of the graphical

model that is supposed to describe the set ofallegedlyequal parameters{P (X1 = x1|PA(X1) =
pa1), . . . , P (Xs = xs|PA(Xs) = pas)}, let TPCgk =

∑s
i=1 P (Xi = xi, PA(Xi) = pai). Let

P ∗ be the distribution that factorizes according to the structure provided by the expert and has pa-

rameters given by theorem4.7.1where the observed counts are replaced by theTrue Probabilistic

Counts.

Theorem 7.2.1.P ∗ is the closest distribution toP (in terms ofKL(P, ·)) that factorizes according

to the given structure and obeys the expert’s parameter sharing assumptions.

Proof. Let Q be such a distribution. MinimizingK(P, Q) is equivalent to maximizing
∑

d P (d) ·
log Q(d). Let θ be the set of parameters that describe this distributionQ. After breaking the

logarithms into sums of logarithms based on the factorization given by the provided structure, our

optimization problem reduces to the maximization of
∑

TPCgk · log θgk +
∑

TPClck · log θlck.

This is exactly the objective function used in theorem4.7.1. This is equivalent to the fact thatP ∗(see

the definition above) minimizesKL(P, ·) out of all the distributions that factorize according to the

given structure and obey the expert’s sharing assumptions.
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Theorem 7.2.2.With an infinite amount of data, the distribution̂P given by the Maximum Likeli-

hood estimators in Theorem4.7.1converges toP ∗ with probability 1.

Proof. Assume the number of data points in a dataset sampled fromP is denoted byn. According

to the Law of Large Numbers, we havelimn→∞Nlck
n = TPClck andlimn→∞

Ngk

n = TPCgk with

probability 1. This is equivalent to the fact thêP converges toP ∗ with probability 1.

Corollary 7.2.1. If the true distributionP factorizes according to the given structure and if the

parameter sharing provided by the expert is completely accurate, then the distributionP̂ given by

the Maximum Likelihood estimators in Theorem4.7.1converges toP with probability 1.

Again, we mention that we analyzed the formal guarantees presented in this chapter using only

two different types of Parameter Domain Knowledge. We are confident that these results can be

extended to all other types of Parameter Domain Knowledge for which we derived closed form

solutions in this thesis.
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Chapter 8

Experiments

In this chapter we present experiments that demonstrate the benefits of Bayesian Network models

that take advantage of Parameter Domain Knowledge when compared to similar models which

choose to ignore this kind of knowledge. We present experiments on both synthetic and real world

data. The purpose of creating artificial data is threefold. First, it allows us to control and know

the Parameter Domain Knowledge involved in the model, in the absence of a Domain Knowledge

expert. Second, we are able to assess the performance of our models in terms of KL divergence from

the true underlying distribution, which would be impossible in a real world situation. Finally, we

can control and study the effect of variations of different parameters in the true distribution (e.g. the

fraction of parameters that are truly shared) as well as the effect of varying the size of the training

set. However, for real world data, we do not have access to the true underlying distribution and

therefore we cannot compute the KL divergence. In this case we will assess our models using the

Average Log Score described in Chapter2. A reason to use this measure is that, according to the

Law of Large Numbers, this score converges to the negative of the Cross-Entropy between the true

and estimated distributions when the number of test examples goes to infinite. Another reason to

use the Average Log Score is that it is proportional to the Log-Likelihood of the test data.

Previously published experiments involving learning with Module Networks, HMMs, DBNs or

Context Specific Independence all support the theory presented in this thesis since they are particular

cases of our Parameter Sharing Framework. However, the parameter sharing assumptions in these

earlier models are at the level of either entire conditional probability table or entire conditional prob-

ability distribution. In the first two sections of this chapter we present experimental results showing

the benefits of incorporating finer-grained parameter sharing assumptions when training Bayesian

Networks on a task of learning a discrete probability distribution and on a task of modelling email

coming from various sources. Third section will show how parameter sharing in the case of Hidden

Process Models can help to better describe the fMRI signal associated with a cognitive task.
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8.1 Synthetic Data - Estimating Parameters of a Discrete Variable

In this section we present experiments on one of the simplest forms of Parameter Domain Knowl-

edge: Parameter Sharing within One Distribution. The purpose of these experiments is purely

demonstrative and more complicated scenarios will be presented in the following sections of this

chapter.

8.1.1 Experimental Setup

Our task is to estimate the set of parameters of a Bayesian Network which consists of one discrete

variableX. We assume that the distribution ofX shares some parameters and that the sharing can

be provided by a domain expert. Without loss of generality, we may consider that the Parameter

Domain Knowledge states that the parameters to estimate are given byθ = {θ1, . . . , θn} where

eachθi appears inki ≥ 1 known places in the distribution ofX.

Let us see how our synthetic dataset was created. First, we randomly generated a distribution

T (the ”true distribution”) that exhibits parameter sharing. This distribution described a variableX

with 50 values, which had a total of roughly50% shared parameters i.e.
∑

ki>1 ki ≈
∑

ki=1 ki.

Each distinct parameter appeared at most 5 times. We start with an empty distribution and generate

a uniformly random parameterv between 0 and 1. Then we generate a random integers between 2

and 5 and sharev in the firsts places of the distribution. We continue to generate shared parameters

until we reach 25 (50% of 50 parameters). After that, we generate the rest of parameters uniformly

randomly between 0 and 1. After all 50 parameters are obtained using this procedure, we normalize

to yield a valid probability distribution. Once this distribution was generated, we sampled it to

obtain a dataset of 1000 examples which were used subsequently to perform parameter estimation.

In our experiments we compare two models that estimate the parameters of distributionT over

X. One is a standard Bayesian Network (STBN) that is learnt using standard Bayesian Networks

estimators from Theorem2.2.1. The second model (PDKBN) is a Bayesian Network that is learnt

by using the results in4.3assuming the correct parameter sharing was specified by an oracle. While

STBN needs to estimate
∑n

i=1 ki parameters, PDKBN only needs to estimaten parameters. To

deal with potentially zero observed counts, we used priors on the parameters of the two models and

then perform Maximum Aposteriori estimation. For STBN we introduced a Dirichlet count of 2 for

each parameter while for PDKBN we used a Constrained Dirichlet count ofki + 1 for each distinct

parameterθi.

8.1.2 Results and Discussion

We performed parameter estimation of models STBN and PDKBN by varying the number of ex-

amples in the training set from 1 to 1000. Since we were using synthetic data, we were able to
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assess performance by computing KL(T,STBN) and KL(T,PDKBN), the KL divergence from the

true distributionT .
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Figure 8.1:KL divergence of PDKBN and STBN with respect to correct model T.

Figure 8.1 shows a graphical comparison of the performance of the two models. It can be

seen that our model (PDKBN) that takes advantage of Parameter Domain Knowledge consistently

outperforms the standard Bayesian Network model. The difference between the two models is

higher when the learning is performed from a smaller number of examples. The highest observed

difference between KL(T,STBN) and KL(T,PDKBN) was 0.05 and was observed when the two

models were trained using 30 examples. As expected, when the amount of training data increases,

the difference in performance between the two models decreases dramatically, since both STBN

and PDKBN are unbiased models that will eventually converge to the true distributionT .

Training Examples KL(T,PDKBN) Examples needed by STBN

5 0.191 16

40 0.094 103

200 0.034 516

600 0.018 905

650 0.017 > 1000

Table 8.1:Equivalent training set size so that STBN achieves the same performance as PDKBN.

To get a better idea how beneficial Parameter Domain Knowledge is in this case, we want to see
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”how far STBN is behind PDKBN”. For a model PDKBN learnt from a dataset of a given size, this

can be measured by the number of examples that STBN needs to be learnt from in order to achieve

the same performance. Table8.1provides these numbers for several training set sizes for PDKBN.

For example, STBN uses 16 examples to achieve same KL divergence as PDKBN at 5 examples,

which is a factor of3.2 (the maximum observed) increase in the number of training samples required

by STNB. On the average, STBN needs1.86 times more examples to perform as well as PDKBN.

As mentioned previously, this section was intended to be only a proof of concept. Next we

will see experimental results on much more complex tasks involving multiple random variables and

Parameter Domain Knowledge constraints across several conditional probability distributions.

8.2 Semi-synthetic Data - Email Experiments

Automatic modelling of email documents is a problem of considerable interest, and has been studied

as a means of automatically sorting email into a user’s email subfolders, or into other topical cate-

gories such as “email spam” [SDH98]. Given a set (population) of email, one natural way to model

it is by using a Bayesian Multinetwork where each distinct emailauthor is regarded as a generator

of email from a different distribution, forming a different subpopulation. This is reasonable because

different people use somewhat different vocabularies and figures of speech. At the same time, there

are many content words that are shared (used in a similar proportion) by all authors when emails

address specific topics. The conditional probabilities of these words given that the email is about a

certain topic should therefore be specified as globally shared parameters across the subpopulations

in the Bayesian Multinet.

8.2.1 Experimental Setup

In our experiments we generated synthetic data that captures the characteristics of a real email data

set: the PW CALO email corpus, produced by people in a role-playing game at SRI. During four

days, a group of six players assumed different work roles (e.g. project leader, finance manager,

researcher, administrative assistant, etc), and communicated via email. The number of emails sent

per author varied from 19 to 52, forming a total corpus containing 215 distinct emails. One common

task performed through these email exchanges was to setup a meeting and so the emails were man-

ually labelled in emails about or not about meetings. Of the 215 emails, 68 were about meetings,

with the per-author fraction of meeting emails varying from 0.17 to 0.47. After eliminating stop

words, the entire email corpus contained a vocabulary of 1070 distinct words. With few exceptions,

the emails contained less than 150 words each.

Consider the task of scheduling a meeting. In this case, each email author may have a different

style of wording meeting invitations. Some authors may use more formal wording (“would you
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please meet with me ...”), whereas others may use a different more informal phrasing (“let’s get

together ...”). Given these different styles, it is reasonable to model incoming email in terms of a

Multinetwork of author-specific Bayesian networks. Notice there are certain words whose probabil-

ity given a meeting email is likely to be globally shared across users, such as the words “monday”

or “tuesday”. The conditional probabilities of these words should therefore be specified as globally

shared parameters across the Bayesian Multinetwork.

Based on the corpus mentioned above, we generated several artificial datasets. Each data point

consists of a triple: (Author, Email andTopic/Class). The Topic says whether or not the email is

about a meeting. In all experiments we generated simulated email from six authors, using the same

prior probabilities of an email belonging to an author as in the PW CALO corpus, and generating

emails from each author to match that author’s topic priors in this corpus. For each given author

and topic, we generate emails according to a ”Bag of Words” probability model, where each email

contains between 0 and 150 words (to be consistent with the data observed in PW, even though we

are not including stop words in our artificial dataset). The words are chosen from a vocabulary of

1070 words (same size as in PW). The word given topic probability models are generated randomly

and differ from user to user, but also have some fraction of parameters in common (the so called

shared parameters in our framework). The fractionf of shared parameters was varied from 0 to

1. First we uniformly randomly pick anf fraction of the word given topic parameters that are

going to be shared across all email authors. We uniformly at random generate the word given topic

probability distributions for the first author (we generate randomly parameters between 0 and 1

and then normalize to obtain valid probability distributions), then we copy the shared parameters

across the distributions corresponding to all authors. After this step, for all authors except the first

one, the non-shared (local) parameters are generated uniformly randomly between 0 and 1 and

then normalized so that, when summed up with the shared parameters, they yield valid probability

distributions.

In our experiments we compare three models. First, a General Naive Bayes model (GNB)

learned from all training examples. Second, a Bayesian Multinet (SSNB) in which each compo-

nent network is a Naive Bayes model, and for which an oracle has indicated which parameters are

shared when generating the data. Finally, a Bayesian Multinet (PSNB) identical to SSNB, but with

no parameters shared among component networks. Note all three models are essentially Bayesian

Multinets, conditioned on the email author which is observed in the header of the email. Each com-

ponent network in each Bayes Multinet is a full naive Bayes model including both the Class/Topic

variable and the word features in the email. One can think of GNB as a Bayesian Multinet where

the component Bayes nets are copies of the GNB learned model. The only difference among the

three is in the training procedure. They differ in their sharing of parameters (all shared in GNB,

some shared in SSNB, not shared in PSNB). There is also a slight difference in the way we assign
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Dirichlet priors (we train all three models using MAP estimates, as is common when training Naive

Bayes models from sparse data). In the case of GNB the effect is to increase each word count by

one (equivalent to Dirichlet priors with all parameters equal to 2). In the case of PSNB and SSNB,

for each subpopulation the effect is to increase that subpopulation’s word counts by one. For PSNB,

this is equivalent to Dirichlet priors with all parameters equal to 2 for each subpopulation, while for

SSNB this is equivalent to assigning subpopulation-specific Dirichlet priors with parameters equal

to 7 for shared parameters (7 is the number of subpopulations plus 1 in our experiments), and equal

to 2 for local parameters.

Notice also that whereas the GNB model is biased (i.e., unable to represent precisely the distri-

bution used to generate the data), both the SSNB and PSNB models are unbiased. Furthermore, the

SSNB model has the additional benefit that it mixes global and local parameters in modelling the

generating distribution, resulting in lower variance parameter estimates than PSNB.

8.2.2 Results and Discussion

We trained the three different models while varying the number of training examples, and the frac-

tion of word-given-class model parameters that were global (identical across authors). For each

model, we measured both the KL divergenceKL(T, M) of the learned modelM to the true gener-

ating modelT , and the accuracy of the correspondingmeeting versus non-meetingclassifier.
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Figure 8.2:KL divergence of learned models with respect to correct model T.

Figure8.2 shows a plot of the KL divergence for each of the three models, as the number of

training examples varies, keeping the fraction of general parameters constant at 0.5. As expected,
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KL(T, ∗) decreases with increasing training set size for all three models (here∗ stands for any

possible model we are studying). However, SSNB outperforms the other two models across the

entire range of training set size. It dominates PSNB especially at small training set sizes, because its

shared global parameters allow it to produce lower-variance parameter estimates, especially when

data is sparse. The highest difference between KL(T,PSNB) and KL(T,SSNB) was 0.045 and was

observed for a training set of 160 emails. SSNB dominates GNB especially with larger training sets,

because it is capable of representing the correct model, whereas GNB considers a strictly smaller

model class that does not contain the correct model. The highest difference between KL(T,GNB)

and KL(T,SSNB) was 0.092 and was observed for a training set of 5000 emails. Note that asymp-

totically, as the training set size approaches infinity, the SSNB and PSNB models will both converge

to the correct model, whereas GNB will not.

We also study the impact of varying the fraction of global parameters in the true underlying

probability model from 0 to 1, while holding the training set size constant at 1000 emails. Here the

KL(T,PSNB) is essentially constant as the fraction of true global parameters varies, because PSNB

does not take advantage of parameter sharing. In contrast, both GNB and SSNB improve con-

siderably with an increasing fraction of global parameters. However, GNB performs poorly when

parameters are not shared, because it assumes all parameters are shared. Again, SSNB dominates

the other two methods, as it can mix global and local parameters in its model.

In addition to KL divergence, we also considered classification accuracies of the models, again

varying training set size and holding the fraction of global parameters at 0.5. Training accuracy

was measured over a set of 10,000 examples which was not touched by training. The relative per-

formance of GNB, SSNB, and PSNB followed the same trends as when measuring KL divergence,

although the margins separating the methods were less dramatic. In fact, accuracies of all three

methods were quite high, reaching .978, .988, and .985 respectively when training on 5000 exam-

ples. Similar trends with lower accuracies were observed when using a reduced number of words

per document. It is well known that the naive Bayes algorithm can in some cases achieve high

accuracies even when the underlying generative model of the data is inaccurate [DP97].

Another interesting way to analyze the results is to look at the training set size needed by PSNB,

the model that does not use Parameter Domain Knowledge, to achieve the same KL divergence or

accuracy as the SSNB model. Table8.2shows these numbers for several training set sizes used by

model SSNB. For example, PSNB uses 670 examples to achieve same KL divergence as SSNB at

350 examples, which is a factor of1.91 (the maximum observed) increase in the number of training

samples needed by PSNB. As an another example, PSNB uses 1300 examples to achieve the same

accuracy as SSNB at 550 examples, which is a factor of2.36 (the maximum observed) increase

in training set size for PSNB. On the average, PSNB needs1.69 times more examples than SSNB

to achieve the same KL divergence and it needs1.97 times more examples to achieve the same
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Training KL(T,SSNB) Examples needed Accuracy of SSNB Examples needed

Examples by PSNB by PSNB

100 0.209 180 0.937 180

350 0.097 670 0.976 620

550 0.074 970 0.981 1300

1000 0.049 1690 0.983 2100

3000 0.018 4790 0.987 > 5000

Table 8.2:Equivalent training set size so that PSNB achieves the same performance as SSNB.

accuracy. Note that it does not make sense to perform a similar comparison between SSNB and

GNB because, on the long run, GNB can never catch up withSSNB in terms of KL divergence.

To summarize, taking advantage of Parameter Domain Knowledge on this email modelling task

had not only the effect of obtaining much better estimators for small training set size, but also had

the effect of reducing by a big factor the number of examples that would otherwise be needed by a

model which does not use any Parameter Domain Knowledge to achieve the same performance.

8.3 Real World Data - fMRI Experiments

Functional Magnetic Resonance Imaging (fMRI) is a technique for obtaining three-dimensional im-

ages of activity in the brain throughout time. More precisely, fMRI measures the ratio of oxygenated

hemoglobin to deoxygenated hemoglobin in the blood with respect to a control baseline, at many

individual locations within the brain. This is often referred to as the blood oxygen level dependent

(BOLD) response. The BOLD response is taken as an indicator of neural activity.

An fMRI scanner records a 3D image of the brain as a collection of parallel slices. Each such

slice contains a collection of small cells, called voxels. A voxel has a resolution of few tens of cubic

milliliters and can contain hundreds of thousands of neurons. In our dataset, there are eight parallel

slices for each fMRI snapshot and the dimension of each voxel is few tens of cubic millimeters.

Typically, there are ten to fifteen thousand voxels in a human brain. However, only a part of them

are available in our dataset.

During an fMRI experiment, a subject is asked to perform several trials of a cognitive task

while the fMRI scanner is monitoring the BOLD signal. It is common for a trial to last few tens

of seconds, a snapshot of the brain being captured once or twice per second. A common use for

the data collected in these trials is to come up with regions of the brain that are active during the

performed cognitive task. A slightly different approach was taken in [Mit02, Mit03, Mit04], where

the authors used the fMRI signal to classify different cognitive states in which the subject may be at
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different points in time. As is the case with the Naive Bayes classifier, it is well known that models

that perform very well on a classification task may represent poorly the underlying structure of the

data.

As opposed to the approaches above, in this section we present a generative model of the activity

in the brain during a cognitive task based on parameter sharing assumptions for the Hidden Process

Models (see section6.3) that describe the fMRI signal. These parameter sharing assumptions are not

readily available, but we successfully employ the methods described in section3.6to automatically

discover clusters of voxels that can be learnt together using Shared Hidden Process Models. We

show that our methods far outperform the baseline Hidden Process Model that is learnt on a per

voxel basis.

8.3.1 Experimental Setup

We experimented using theStarPlusdataset ([CJK99]). The StarPlus experiment was designed to

engage several different cortical areas, in order to look at their interaction. In this dataset, each

subject first sees a sentence(semantic stimulus) for 4 seconds, such as “The plus sign is above on

the star sign.”, then a blank screen for 4 seconds, and finally a picture(symbol stimulus) such as

+

*

for another 4 seconds. At any time after the picture was presented, the subject may press a button

for “yes” or “no”, depending on whether the sentence matches the picture seen or not. The subject

is instructed to rehearse the sentence in his/her brain until the picture is presented rather than try to

visualize the sentence immediately. The second variant switches the presentations of sentences and

pictures, and the instruction is to keep the picture in mind until the presentation of the sentence.

In this dataset, the voxels are grouped in 24 ROIs (Regions of Interest, defined based on brain

anatomy), each voxel having a resolution of 3 by 3 by 5 millimeters. A snapshot of the brain is taken

every half second. In this dataset there are three main conditions:fixation(the subject is looking at

a point on the screen),sentence followed by pictureandpicture followed by sentence. We have 10

trials in fixationand 20 in each of the other two conditions. For each trial, we kept 32 (16 seconds)

snapshots of the brain.

Our goal is to come up with a model that best explains the activity in the brain when a subject is

either reading a sentence or looking at a picture. After we discard the fixation trials (they contain no

information relevant to our task), we are left with a total of 40 examples per subject, each example

consisting of activity generated by both stimuli. While there is data available for multiple subjects,

there are difficulties in merging this data for the purpose of parameter estimation. This happens

because different subjects have different brain shapes and because different subjects exhibit different
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intensity in activity when presented with the same cognitive task. Therefore we limited to analyzing

data separately for each subject. The results reported in this section are all based on the same subject

(04847). For this particular subject, our dataset tracked the activity of 4698 voxels.

We consider that the activity in each voxel is described by a Hidden Process Model with two

processes, corresponding to the two stimuli: aSentenceprocess and aPictureprocess. The starting

time of these processes are known in advance, given the structure of the trials described above. In

half of the trials, theSentenceprocess starts at time1 and in the other half it starts at time17. The

same holds for thePictureprocess. We make the assumption that the activity in different voxels is

independent given the hidden processes corresponding to these voxels.

In our experiments we compare three models. Since the true underlying distribution is not

available in this case, we use the Average Log Score (see section2.2.7) to assess performance.

Because the data is scarce, we can not afford to keep a held-out testing set. Therefore we employ

a leave-two-out cross-validation approach to estimate the performance of our models. First model

StHPM, which we will consider as a baseline, consists of a standard Hidden Process Model learnt

independently for each voxel. The second modelShHPMis a Hidden Process Model, shared for

all the voxels in an ROI. In other words, all voxels in a specific ROI share the same shape hidden

processes, but with different amplitudes (see Section6.3for more details).ShHPMis learned using

Algorithm 6.3.1.

With only 40 training examples, the task of estimating the parameters can prove more than

challenging. Therefore we would definitely benefit from an expert’s domain knowledge saying

which groups of neighboring voxels are described by a Shared Hidden Process Model. We have seen

thatShHPMmakes the assumption that each ROI is a Shared Hidden Process Model. However, this

assumption might not always be true. In the absence of a domain expert, we propose an algorithm

which allows us to both automatically discover clusters of voxels that form a Shared Hidden Process

Model and estimate the corresponding parameters. This third model (HieHPM) uses a nested cross-

validation hierarchical approach to both come up with a partition of the voxels in clusters that form

a Shared Hidden Process Model and estimate its corresponding performance on examples not used

in training:

Algorithm 8.3.1. (Hierarchical Partititioning and Hidden Process Models learning)

STEP 1. Split the 40 examples in a set of 20 foldsF = {F1, . . . , F20}, each fold containing one

example where the sentence is presented first and an example where the picture is presented first.

STEP 2.For all 1 ≤ k ≤ 20, keep foldFk aside and learn a model from the remaining folds using

Steps 3-5.
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STEP 3. Start with a partition of all voxels in the brain by their ROIs and mark all subsets asNot

Final.

STEP 4. While there are subsets in the partition that areNot Final, take any such subset and try

to split it using equally spaced hyperplanes on all three directions (in our experiments we split

each subset in 2 by 2 by 4 smaller subsets). If the cross-validation Average Log Score of the model

learnt from these new subsets using Algorithm6.3.1(based on foldsF \Fk) is lower than the cross-

validation Average Log Score of the initial subset for folds inF \ Fk, then mark the initial subset

asFinal and discard its subsets. Otherwise remove the initial subset from the partition and replace

it with its subsets which then mark asNot Final.

STEP 5. Given the partition computed by STEPS 3 and 4, based on the 38 data points inF \ Fk,

learn a Hidden Process Model that is shared for all voxels inside each subset of the partition. Use

this model to compute the log score for the examples/trials inFk.

STEP 6. In Steps 2-4 we came up with a partition for each foldFk. To come up with one single

model, compute a partition using STEPS 3 and 4 based on all 20 folds, then, based on this partition

learn a model as in STEP 5 using all 40 examples. The Average Log Score of this last model can be

estimated by averaging the numbers obtained in STEP 5.

8.3.2 Results and Discussion

We estimated the performance of our models using the Average Log Score (described in section

2.2.7) based on a leave two out cross-validation approach, where each fold contains an example

where the sentence is presented first and an example where the picture is presented first.

Our first set of experiments, summarized in Table8.3, compared the three models based on

their performance in the Visual Cortex (CALC). This is one of the ROIs actively involved in this

cognitive task and contains 318 voxels. The training set size was varied from 6 examples to all 40

examples, in multiples of two. As in the previous sections, sharing parameters of Hidden Process

Models proved very beneficial and the impact was observed best when the training set size was the

smallest. With an increase in the number of examples, the performance ofShHPMstarts to degrade

because it makes the biased assumption that all voxels in CALC can be described by a single Shared

Hidden Process Model. While this assumption paid off with small training set size because of the

reduction in variance, it definitely hurt in terms of bias with larger sample size. Even though the

bias was obvious in CALC, we will see in other experiments that in certain ROIs, this assumption

holds and it those cases the gains in performance may be pretty big. Also, note that the Average Log

Score computed at small sample size may not be a very reliable measure of the true performance.
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Training No Sharing All Shared Hierarchical Cells

Trials (StHPM) (ShHPM) (HieHPM) (HieHPM)

6 -30497 -24020 -24020 1

8 -26631 -23983 -23983 1

10 -25548 -24018 -24018 1

12 -25085 -24079 -24084 1

14 -24817 -24172 -24081 21

16 -24658 -24287 -24048 36

18 -24554 -24329 -24061 37

20 -24474 -24359 -24073 37

22 -24393 -24365 -24062 38

24 -24326 -24351 -24047 40

26 -24268 -24337 -24032 44

28 -24212 -24307 -24012 50

30 -24164 -24274 -23984 60

32 -24121 -24246 -23958 58

34 -24097 -24237 -23952 61

36 -24063 -24207 -23931 59

38 -24035 -24188 -23921 59

40 -24024 -24182 -23918 59

Table 8.3:The effect of training set size on the Average Log Score of the three models in the Visual

Cortex (CALC) region.

However, it is the best we can do based on a small dataset.

As expected, the hierarchical modelHieHPM performed better than bothStHPMandShHPM

because it takes advantage of Shared Hidden Process Models while not making the restrictive as-

sumption of sharing across whole ROIs. The highest difference betweenHieHPM andStHPM is

observed at6 examples, in which caseStHPMbasically fails to learn a ”decent” model while the

highest difference betweenHieHPMandShHPMhappened with the maximum number of examples,

whenShHPMstarted to be hurt by its bias. As the amount of training data increases, bothStHPM

andHieHPM tend to perform better and better and one can see that the difference in performance

given by the addition of two new examples tends to shrink as both models approach convergence.

While with infinite amount of data, one would expectStHPM andHieHPM to converge to the

true model, at40 examples,HieHPM still outperforms the baseline modelStHPMby a difference

of 106 in terms of Average Log Score, which is an improvement ofe106 in terms of data likelihood.
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Probably the measure that shows best how much better isHieHPM than the baselineStHPMis

given by how many more examplesStHPMneeds to achieve the same performance asHieHPM. It

turns out that on the average,StHPMneeds roughly 2.9 times more examples in order to perform

same as well asHieHPM in the Visual Cortex (CALC).

The last column of Table8.3displays the number of clusters of voxels in whichHieHPMparti-

tioned CALC. As one may notice, at small sample size,HieHPMdraws its performance from gains

in variance by using only one cluster of voxels. However, as the amount of data increases,HieHPM

improves by finding more and more refined partitions. This number tends to stabilize around 60

clusters once the number of examples reaches 30, which means an average of more than 5 voxels

per cluster given that CALC is made of 318 voxels. For a training set of 40 examples, the largest

cluster has 41 voxels while a lot of clusters are made of only one voxels.

The second set of experiments (see Table8.4) describes the performance of the three models on

all 24 ROIs of the brain as well on all the brain. While we have seen thatShHPMwas biased in

CALC, we may see here that there are several ROIs where it makes sense to characterize all voxels

by a Shared Hidden Process Model. In fact, in most of these regions,HieHPM finds only one

cluster of voxels. Actually,ShHPMoutperforms the baseline modelStHPM in 18 out of 24 ROIs

while HieHPMoutperformsStHPMin 23 ROIs. One may ask how can possiblyStHPMoutperform

HieHPM on a ROI, sinceHieHPM may also represent the case when there is no sharing? The

explanation is that the hierarchical approach can get stuck in a local maximum of the data log-

likelihood over the search space if it cannot improve by splitting at a specific step since it does not

look beyond that split for a finer grained partition. Fortunately, this problem is extremely rare, as

we have seen in our experiments.

Over the whole brain,HieHPM outperformsStHPMby a factor ofe1792 in terms of data likeli-

hood whileShHPMoutperformsStHPMonly by a factor ofe464. However, the main drawback of

theShHPMis that it can be biased and therefore our experiments recommendHieHPMas the clear

winner. Next we are going to give the reader a feel of what the modelHieHPM looks like.

As mentioned above,HieHPM automatically learns clusters of voxels that can be represented

using a Shared Hidden Process Model. Figure8.3 shows the portions of these learned clusters in

slice five of the eight vertical slices of the image of the brain taken by the fMRI scanner. Neighboring

voxels that were assigned byHieHPM to the same cluster are pictured with the same color. Note

that there are several very large clusters in this picture. This may be because of the fact that it makes

sense to represent whole ROIs using a Shared Hidden Process Model if the studied cognitive task

does not involve those areas of the brain. However, large clusters are also found in areas like CALC,

which we know is directly involved in any visual activity.

In Figure8.4we can see the learnedSentencehidden process for the voxels in the Visual Cor-

tex (CALC). Again, the graphs corresponding to voxels that belong to the same cluster have been
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ROI Voxels No Sharing All Shared Hierarchical Cells

(StHPM) (ShHPM) (HieHPM) Hierarchical

CALC 318 -24024 -24182 -23918 59

LDLPFC 440 -32918 -32876 -32694 11

LFEF 109 -8346 -8299 -8281 6

LIPL 134 -9889 -9820 -9820 1

LIPS 236 -17305 -17187 -17180 8

LIT 287 -21545 -21387 -21387 1

LOPER 169 -12959 -12909 -12909 1

LPPREC 153 -11246 -11145 -11145 1

LSGA 6 -441 -441 -441 1

LSPL 308 -22637 -22735 -22516 4

LT 305 -22365 -22547 -22408 18

LTRIA 113 -8436 -8385 -8385 1

RDLPFC 349 -26390 -26401 -26272 40

RFEF 68 -5258 -5223 -5223 1

RIPL 92 -7311 -7315 -7296 11

RIPS 166 -12559 -12543 -12522 20

RIT 278 -21707 -21720 -21619 42

ROPER 181 -13661 -13584 -13584 1

RPPREC 144 -10623 -10558 -10560 1

RSGA 34 -2658 -2654 -2654 1

RSPL 252 -18572 -18511 -18434 35

RT 284 -21322 -21349 -21226 24

RTRIA 57 -4230 -4208 -4208 1

SMA 215 -15830 -15788 -15757 10

All Brain 4698 -352234 -351770 -350441 299

Table 8.4:Per ROI performance of the three models when learned using all 40 examples.

painted in the same color, which is also the same with the color used in Figure8.3. To make these

graphs readable, we only plotted the base process, disregarding the scaling (amplitude) constants

corresponding to each voxel within a given cluster (consult Section6.3for more details about Shared

Hidden Process Models).

A magnified example of the baseSentencehidden process in one voxel from CALC is shown

102



Figure 8.3:Parameter Sharing found using modelHieHPM. Slice five of the brain is showed here. Shared

neighboring voxels have the same color.

Figure 8.4:Per voxel baseSentenceprocesses in the Visual Cortex(CALC).

in figure 8.5. This curve is consistent with a typical BOLD response given a stimulus: when the

stimulus is presented, there is a surge in activity in a voxel which peaks after several seconds, then,
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Figure 8.5:Magnified example of theSentenceprocess in a shared voxel in the Visual Cortex (CALC). The

horizontal axis represents the fMRI snapshot (one each half second) after the sentence was presented and the

vertical axis represents the value of the fMRI signal corresponding to theSentenceprocess.

after the stimulus is gone, the activity in that voxel will eventually drop back to the baseline rest

signal.

Figure 8.6:Magnitude of the scaling constants corresponding to theSentenceprocess.
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While in Figure8.4we presented the baseSentenceprocess for each voxel in CALC, in Figure

8.6we color coded the scaling/amplitude of theSentencesignal in each of these voxels. Same color

amplitude for voxels that belong to the same cluster means those voxels exhibit the same activity

when the subject is reading a sentence. ColorRedcorresponds to higher values of the amplitude,

while Bluestands for low such values. It is easy to see there exists a slight grouping of the voxels

based on their amplitudes: within one cluster, there tends to exist a group of voxels with high

amplitude while when going farther away from that group, the amplitude decreases.

To summarize, in this section we learned three different generative models for the fMRI signal

during a cognitive task, all based on Hidden Process Models. We proved that Parameter Sharing for

Hidden Process Models (as defined in Section6.3) can greatly benefit learning. Our hierarchical

HieHPM model outperformed the other two models because it is both unbiased and able to reduce

variance in the parameter estimators by automatically finding clusters of voxels that can be described

by a Shared Hidden Process Model.

105



106



Chapter 9

Conclusions and FutureWork

The research presented in this thesis is intended to be a first step in methods aimed at taking advan-

tage of Parameter Domain Knowledge for the task of learning Bayesian Networks. We foresee a lot

of potential for additional research in this area. In this chapter we summarize the contributions of

this thesis and we suggest several interesting directions for future work.

9.1 Conclusions

Building accurate models from a small amount of available training data can sometimes prove to

be a great challenge. Expert domain knowledge can be often used to alleviate this burden. In this

thesis we presented the basis of a sound mathematical framework for incorporating Parameter Do-

main Knowledge in learning procedures for Bayesian Networks. We proved both theoretically and

experimentally that the standard methods of performing parameter estimation in Bayesian Networks

can be naturally extended to take advantage of Parameter Domain Knowledge that can be provided

by a domain expert.

The most important contribution of this thesis was the development of a unified framework for

incorporating general Parameter Domain Knowledge constraints in estimators for the parameters

of a Bayesian Network by phrasing the goal as a constraint optimization problem. We showed

how to compute Maximum Likelihood estimators using an iterative procedure based on Newton-

Raphson method. This procedure can be computationally expensive, but fortunately, in practice, the

optimization problem can be broken down into a set of many smaller, independent, optimization

subproblems. Then, we discussed how to define Constrained Parameter Priors and perform learning

from a Bayesian point of view. We also demonstrated how our methods can be extended in the case

when the data is partially observable.

107



Parameter Domain Results

Knowledge Type

Known Parameters, Discrete Closed Form MLEs, MAP, Normalization Constant

Parameter Sharing, One Closed Form MLEs, MAP, Normalization Constant

Distribution, Discrete

Proportionality Constants, Closed Form MLEs, MAP, Normalization Constant

One Distribution, Discrete

Sum Sharing, One Closed Form MLEs

Distribution, Discrete

Ratio Sharing, One Closed Form MLEs

Distribution, Discrete

General Parameter Sharing, Closed Form MLEs, MAP, Normalization Constant

Multiple Distributions, Discrete

Hierarchical Parameter Sharing,Closed Form MLEs, MAP, Normalization Constant

Multiple Distributions, Discrete

Sum Sharing, Multiple Closed Form MLEs

Distributions, Discrete

Ratio Sharing, Multiple Closed Form MLEs

Distributions, Discrete

Inequalities between Sums Closed Form MLEs

of Parameters, One

Distribution, Discrete

Upper Bounds on Sums Closed Form MLEs

of Parameters, One

Distribution, Discrete

Parameter Sharing, One Closed Form MLEs

Distribution, Continuous

Proportionality Constants, Closed Form MLEs

One Distribution, Continuous

Parameter Sharing for Efficient Iterative Method

Hidden Process Models to Compute MLEs

Twice Differentiable with Iterative Methods: Frequentist, Bayesian,

Continuous Second Derivatives Complete and Incomplete Data

Table 9.1:Domain Knowledge Types studied in this thesis: description and results.
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The iterative procedure mentioned above can be quite expensive. Therefore, it is preferable to

derive closed form solutions for our estimators. This is not possible for general domain knowl-

edge constraints but fortunately it is possible for several types of constraints, including parameter

sharing of different kinds, as well as relationships among groups of parameters. Table9.1 sum-

marizes the results that we derived for these types of Parameter Domain Knowledge. Examples

for each specific type of domain knowledge were described in Tables9.2 and9.3. We approached

learning of both discrete and continuous variables, in the presence of both equality and inequality

constraints. While for most of these types of Domain Knowledge we can derive closed form Max-

imum Likelihood estimators, we come up with a very efficient iterative algorithm to perform the

same task for Shared Hidden Process Models. In many of these cases, for discrete variables, we

are also able to compute closed form normalization constants for the corresponding Constrained

Parameter Priors, which allows us to perform closed form MAP and Bayesian estimation when the

data is complete. We want to point out here that our General Parameter Sharing Framework can

encompass models including HMMs, Dynamic Bayesian Networks, Module Networks and Context

Specific Independence as particular cases, but allows for much finer grained sharing, at parameter

level, across different variables and across distributions of different lengths. It is also important to

note that we can mix different types of Parameter Domain Knowledge constraints when learning the

parameters of a Bayesian Network as long as the scopes of these constraints do not overlap.

Experimental results on fMRI data proved that taking advantage of domain knowledge can be

very beneficial for learning. Since the domain knowledge was not always readily available, we

developed methods to automatically uncover this knowledge. Using these methods we discovered

clusters of voxels that can be learned together using Shared Hidden Process Models. Our results

showed that the effect of the learned Parameter Domain Knowledge can be equivalent to almost

tripling the size of the training set on this task. This was a pessimistic estimate of the benefits

since we had to extract the domain knowledge from the training data itself via the cross-validation

approach described in section3.6. Experiments on synthetic data were also performed and they

exhibited the same beneficial effect of incorporating Parameter Domain Knowledge.

A very important result that we managed to prove was that the estimators taking advantage of

a simple form of Parameter Sharing achieved total variance lower than the one of estimators that

ignored such domain knowledge. We conjecture that similar results hold for other types of domain

knowledge, but their proof is left as future work.

In all the approaches above, we assumed the domain knowledge is correct. However, even when

the domain expert makes mistakes, we proved that, with infinite amount of data, our Maximum

Likelihood estimators would converge to the ”best distribution” (the closest in terms of KL distance

from the true distribution) that obeys the expert’s assumptions and factorizes according to the given

structure.
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DK Type 1: Known Parameters, Discrete

Example: If a patient has a heart attack (Disease = ”Heart Attack”), then there is a90% probability

that the patient will experience chest pain.

DK Type 2: Parameter Sharing, One Distribution, Discrete

Example: Given a combination of risk factors, several diseases are equally likely.

DK Type 3: Proportionality Constants, One Distribution, Discrete

Example: Given a combination of risk factors, disease A is twice as likely to occur than disease B is.

DK Type 4: Sum Sharing, One Distribution, Discrete

Example: A patient who is a smoker has the same chance of having a Heart Disease (Heart Attack or

Congestive Heart Failure) as having a Pulmonary Disease (Lung Cancer or Chronic Obstructive

Pulmonary Disease).

DK Type 5: Ratio Sharing, One Distribution, Discrete

Example: In a bilingual corpus, the relative frequencies of certain groups of words are the same,

even though the aggregate frequencies of these groups may be different. Such groups of words can be:

”words about computers” (”computer”, ”mouse”, ”monitor”, ”keyboard” in both languages) or ”words

about business”, etc. In some countries computer use is more extensive than in others and one would

expect the aggregate probability of ”words about computers” to be different. However, it would be

natural to assume that the relative proportions of the ”words about computers” are the same within

the different languages.

DK Type 6: General Parameter Sharing, Multiple Distributions, Discrete

Example: The probability that a person will have a heart attack given that he is a smoker with a

family history of heart attack is the same no matter whether the patient lives in a polluted area.

DK Type 7: Hierarchical Parameter Sharing, Multiple Distributions, Discrete

Example: The frequency of severalinternational words(for instance ”computer”) may be shared

across both Latin languages (Spanish, Italian) and Slavic languages (Russian, Bulgarian). Other

Latin words will have the same frequency only across Latin languages and the same holds for Slavic

Languages. Finally, other words will be language specific (for example names of country specific

objects) and their frequencies will not be shared with any other language.

DK Type 8: Sum Sharing, Multiple Distributions, Discrete

Example: ”The frequency of nouns in Italian is the same as the frequency of nouns in Spanish.

Table 9.2:Domain Knowledge Types studied in this thesis: description and examples.

110



DK Type 9: Ratio Sharing, Multiple Distributions, Discrete

Example: In two different countries (A and B), the relative frequency of Heart Attack to Angina

Pectoris as the main diagnosis is the same, even though the the aggregate probability of Heart

Disease (Heart Attack and Angina Pectoris) may be different because of differences in lifestyle in

these countries.

DK Type 10: Inequalities between Sums of Parameters, One Distribution, Discrete

Example: The aggregate probability mass of adverbs is no greater than the aggregate probability

mass of the verbs in a given language.

DK Type 11: Upper Bounds on Sums of Parameters, One Distribution, Discrete

Example: The aggregate probability of nouns in English is no greater than0.4.

DK Type 12: Parameter Sharing, One Distribution, Continuous

Example: The stock of computer makerDELL as a Gaussian whose mean is a weighted

sum of the stocks of software makerMicrosoft (MSFT)and chip makerIntel (INTL).

Parameter sharing corresponds to the statement thatMSFTandINTL have the same

importance (weight) for predicting the value of stockDELL.

DK Type 13: Proportionality Constants, One Distribution, Continuous

Example: Suppose we also throw in the stock of a Power Supply maker (PSUPPLY) in the linear

mix in the above example. The expert may give equal weights to INTL and MSFT, but five times

lower to PSUPPLY.

DK Type 14: Parameter Sharing for Hidden Process Models

Example: Several neighboring voxels in the brain exhibit similar activation patterns, but

with different amplitudes when a subject is presented with a given stimulus.

Table 9.3:Domain Knowledge Types studied in this thesis: description and examples.

This research provided a new perspective of looking at learning procedures in the presence of

domain knowledge about relationships among parameters. We feel that there is a lot of room for

additional improvement in this exciting area of Parameter Domain Knowledge, an area which was

barely explored so far.

9.2 Future Work

9.2.1 Interactions among Different Types of Parameter Domain Knowledge

In chapter3 we presented an iterative method for estimating parameters in the presence of arbitrary

constraints that respect some smoothness assumptions. Since this method can be expensive due
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to the dimensionality of the problem, it is of course preferable to be able to compute closed form

estimators whenever possible. In chapters4,5 and6 we showed how this can be done for several

types of domain knowledge. It is easy to see that our results do not break if we have a mixture of

these types in the same Bayesian Network, in the case when different domain knowledge types are

specified over disjoint sets of parameters. However, our results do not hold anymore if, for example,

same set of distributions are constrained together by both a parameter sharing assumption and a ratio

sharing assumption. It would be interesting to see if our methods can be extended to compute close

form estimators for constraints of different domain knowledge types that have overlapping scopes

in the space of parameters.

9.2.2 Parameter Domain Knowledge for Learning Bayesian Network Structure

Whereas this research considered the task of parameter learning when the structure of the Bayesian

Network is known in advance, we believe that Parameter Domain Knowledge can also help perform

automatic structure learning of a Bayesian Network. This can prove challenging because when

the structure changes, other parameters are involved in the model. It would be very expensive to

make the expert specify Parameter Domain Knowledge for each intermediary structure in the search.

Ideally one would like the expert to specify a set of Parameter Domain Knowledge assumptions at

startup and then guide the search according to these constraints.

Assume the structure search is performed via a hill climbing algorithm using the Bayesian

Dirichlet (BD) score. The structure at a given step was obtained from the previous structure by ei-

ther adding or deleting or inverting an edge such that the marginal likelihood increases. We suggest

that the initial Parameter Domain Knowledge constraints can be adapted to the current parameteri-

zation of the Bayesian Network by using a simple change of variable. Most of the parameters will

be the same in the current and previous structure, except for the ones involving the two variables

involved in the transition. Additional research is needed to validate this approach.

9.2.3 Hard versus Soft Domain Knowledge Constraints

The Domain Knowledge constraints that we studied in this thesis are allhard constraints, in the

sense that they are stated with100% confidence. However, in real life, even an expert may have

a certain amount of doubt about a constraint. We would like to be able to allow the expert to

assign confidences to the specified constraints, creating what we callsoft constraints. For example,

such a constraint may state:”I am 90% confident that parametersa and b have equal values.”

Incorporating soft constraints may prove to be a difficult task because it may require development

of probabilistic constrained optimization techniques, which are not readily available as far as we are

aware.
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9.2.4 Parameter Domain Knowledge for Undirected Graphical Models

Our research so far focused on Bayesian Networks, which are directed graphical models. We conjec-

ture it is much easier to specify domain knowledge about directed models because their parameters

are easier to interpret. Undirected graphical models describe the joint probability distribution over

a set of variables as the normalized exponential of an energy function. Commonly, this energy

function is a quadratic function in the values of the random variables, where a coefficient can be

thought of as the strength of relationship between two variables. Multivariate normal distributions

and Boltzmann Machines are some examples of such undirected graphical models. It would be in-

teresting to investigate if Parameter Domain Knowledge can help learn undirected graphical models,

to the extent that it is intuitive to acquire such knowledge from an expert.

9.2.5 Other Extensions

We would like to study the possibility of deriving closed form parameter estimators for other types

of Parameter Domain Knowledge constraints. Immediate candidates include hierarchical versions

of sum sharing and ratio sharing (which we expect are similar to the hierarchical variant of parame-

ter sharing), as well as domain knowledge about continuous variables of types other than gaussian.

In the case of gaussian variables, more work needs to be done to define proper Constrained Param-

eter Priors that allow us to derive closed form Maximum Aposteriori estimators. Another direction

to investigate would be to compute closed form estimators by taking advantage of inequality con-

straints involving more than one conditional probability distribution. Finally, we would definitely

benefit from algorithms that extend the results in section3.6 to automatically learn Parameter Do-

main Knowledge constraints.
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