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Abstract

All programs interact with their environments in one way or another: they read and
write to memory, query users for input, print out results, send data to remote servers,
etc. Because increasingly complex environments result in increasingly difficult and
error-prone programming, programming languages should facilitate compile-time de-
tection of erroneous interactions with environments. In this dissertation, I propose
variants of modal logic with names, and their related λ-calculi, as a type theoretic
foundation for such languages.

In the first part of the dissertation, I review the judgmental formulation of propo-
sitional constructive modal logic, and the definitions of necessity and possibility as
universal and existential quantification over possible worlds. In the application to
functional programming, possible worlds in modal logic will correspond to execution
environments.

The second part investigates the notions of partial judgments; that is, judgments
satisfied under some abstract condition. Partial necessity and partial possibility
correspond to bounded universal and bounded existential quantification over possible
worlds. While the partiality condition may be specified in several different ways, in
this dissertation the focus is on the definition of partiality in terms of names. Names
are labels for propositions, and a set of names represents the partiality condition
obtained as a conjunction of the respective propositions.

In the third part, I discuss applications of modal logic to staged computation
and metaprogramming. In these applications, it is frequently necessary to consider
a primitive operation of capture-incurring substitution of program expressions into
a context, which is naturally expressed in a modal type system.

The last part of the dissertation develops modal type systems for effects. The
effects associated with partial possibility are those that permanently change the
execution environments, and therefore must be executed in a specific linear order.
Writing into a memory location is a typical example. The effects associated with
partial necessity are those that may depend on the execution environment, but do not
change it – they are benign, and do not need to be specifically serialized. Examples
include memory reads and control flow effects.
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Introduction

It is becoming increasingly important today to execute programs in very complex
run-time environments. Modern programs are often required to run in parallel, be
mobile, use distributed data owned by different authorities, accommodate dynam-
ically changing run-time conditions. Moreover, as the run-time environments are
becoming more complex, so is the programming for these environments.

When approaching complex programming problems, a language-enforced pro-
gramming discipline is crucial, and a natural way to enforce this discipline is through
the type mechanism of functional languages. Types express assumptions and guar-
antees required of expressions, and usually correspond to propositions in some logic.
The compiler can mechanically check if the expression matches its specified type,
thereby aiding the debugging process.

The type systems of languages today usually ensure that functions are invoked
with matching arguments but, unfortunately, ignore how programs interact with run-
time environments. In order to manage the increased complexity of programming, a
language-enforced typing discipline that takes environments into account seems like
a critical component. Indeed, if types could capture important aspects of run-time
environments, then the type system may also ensure that expressions are always
executed in matching environments.

What does it mean for an expression and an environment to match? The defini-
tion may be given in many different ways, depending on the particular application.
As an illustration of the concept, consider the following example. Assume that an
environment consists on a number of allocated memory locations (not necessarily
initialized). An expression interacts with this environment by reading or writing
into the locations. One possible definition of matching may, for example, insist that
each expression reading from a number of locations is always executed in a state of
memory where these locations are actually initialized.

A related issue is whether an expression only depends on the environment in
which it executes, or perhaps the execution of the expression may cause a change in
the environment. To refer to the previous example, a program that does not interact
explicitly with the memory locations will produce the same result irrespectively of the
particular values stored in the locations. We call such a program pure. If the program
reads from a certain location, then changing that location’s value may change the
result of the program. If the program actually writes into a location, then it not only
depends on the memory environment, but it also changes it. It may be beneficial
in several ways to make a typing distinction between expressions that are pure,
expressions that depend on the environment, and expressions that may change the
environment. A pure expression is self-contained. One can easily optimize it and
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INTRODUCTION

reason about it. If the expression is impure, optimizations and reasoning are much
harder, because interactions with unknown environments must be taken into account.
The reasoning is made easier if types could restrict the kinds of environments that
may be encountered, and also reflect the nature of the interaction.

A natural question then becomes: which logic may capture the properties of
run-time environments, and thus may serve as a foundation for type systems with
above properties? The proposed answer in this dissertation is: modal logic. More
specifically, the thesis statement of the dissertation is:

Partial modal logic with names provides an appropriate type theoretic
foundation for expressing diverse aspects of the interaction between a
functional program and the environment in which this program executes.

Modal logic is designed for reasoning about truth across various – abstract –
worlds. A proposition may be true in some world, but not true in some other.
The versions of modal logic that will be considered here feature two operators on
propositions: � (box) and 3 (diamond). The operator � is a universal quantifier:
�A is true at the current world iff A is necessary, i.e. true at all worlds. The operator
3 is an existential quantifier: 3A is true at the current world iff A is possible, i.e. true
in at least some world.

For the application to programming languages, we may assume that, intuitively,
the worlds from modal logic stand for the run-time environments in which the pro-
grams execute. Then, according to the proofs-as-programs paradigm of type theory,
deriving truth of a proposition A in a particular world, computationally corresponds
to producing a value of type A in a particular run-time environment.

We further introduce an additional condition C, which may or may not be satisfied
by any given world. The obtained logic will be called partial modal logic. Instead of
two modal operators � and 3, partial modal logic features two indexed families of
operators �C and 3C which correspond to bounded universal and bounded existential
quantification over worlds, respectively. The proposition �CA is true at the current
world iff A is true at every world in which C holds. The proposition 3CA is true at
the current world if there exists a world in which both C holds and A is true.

Computationally, the condition C represents properties of interest that the run-
time environment must satisfy in order for the considered expression to be evaluated.
In the previously mentioned example with memory reads and writes, C may be a
list of currently initialized memory locations. The type system may ensure that
expressions reading from locations listed in C are always executed in environments
in which locations from C are initialized.

The computational interpretation of the modal type �CA parallels its logical
meaning: �CA classifies expressions of type A that may execute in any environment
satisfying the condition C. The results of the execution may differ depending on the
particular environment, but it is important that the environment is not changed as
result of the execution. In our example with memory, �CA will classify expressions
that do not write into any locations, but may read from locations in C, before
computing a value of type A.

The interpretation of the modal type 3CA is dual: 3CA classifies expressions that
may change the current environment (and the condition C captures the aspects that
are subject to change) before producing a value of type A in the changed environment.
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INTRODUCTION

Such expressions correspond to bounded existential quantification. Indeed, they are
the witness that there exists an environment (i.e., the one obtained after the change
has been carried out) in which a value of type A can be computed. In the example
with memory, 3CA will classify expressions that may first write into the memory
locations C before computing a value of type A in the changed state.

Names are objects that are used to formally represent the partiality condition C.
In the example with memory, each memory location is associated with a name which
uniquely identifies this location. The condition C is a set of names, representing the
set of locations that are currently initialized. Names may be dynamically allocated
and introduced into the computation.

The idea to use types to differentiate pure from effectful expressions certainly
has been studied before. Here we only mention the most popular approaches: type-
and-effect systems [GL86, LG88, Wad98, JG91, TJ94, TT97], and monads [Mog91,
Wad92, Wad95, Wad98]. In modal logic, however, the emphasis is not on the effects
themselves, but is rather on the environments (as the reader has undoubtedly already
noticed). For example, in the framework of effect systems or monads, an expression
may be described as “causing the effects of reading from memory locations C”. In
modal logic, the same expression will be characterized as being “executable in any
state of memory in which the locations C are initialized”.

This switch of emphasis will allow modal systems that may express interactions
between programs and environments that are much more diverse than just effects.
In fact, the notion of a generic monad gives rise to a particularly simple version of
modal logic, called lax logic [FM97, BBdP98, PD01], and thus monads may be seen as
a special case of the modal approach. Of course, there are many other modal logics,
which may potentially capture many different aspects of programs and environments.
For example, Chapter 3 studies in more detail a version of modal logic suitable for
application to staged computation and metaprogramming, where programs may be
generated, compiled, and even inspected at run time.

The rest of this section describes the organization of the dissertation and the
contributions of each particular chapter.

Organization and contributions

Chapter 1: Constructive modal logic

The purpose of this chapter is to establish the main concepts that we operate with in
the rest of the document. We use the methodology of Martin-Löf [ML96] to clearly
separate between the notions of proposition and judgments, and then develop a
natural deduction for a particular version of modal logic. The modal logic in question
is called Constructive S4 (CS4), and it will be a basis for all the considerations in
the following chapters. In addition to the usual connectives of propositional logic,
CS4 contains the modal propositional operators � and 3 which express universal
and existential quantification over possible worlds.

The proof term assignment for the developed natural deduction defines a modal
extension of the λ-calculus, and provides the computational context for the modal
logic CS4. The modal λ-calculus is characterized by the new term constructors box
and let box (which correspond to the inference rules for the operator �) and dia
and let dia (which correspond to the inference rules for the operator 3).

3



INTRODUCTION

The chapter concludes with the formulation of the relevant expression substitu-
tions, and the corresponding substitution principles in the setting of both the natural
deduction and the modal λ-calculus.

The presentation in this chapter closely follows the work of Pfenning and Davies
[PD01], and does not add novel contributions.

Chapter 2: Partial modal logic

This chapter develops partial modal logic CS4, as an extension of ordinary CS4 from
Chapter 1. The main idea is to introduce a condition C that serves to characterize
arbitrary aspect of the possible worlds that may be of relevance for the eventual
applications. The condition C is called support. The basics of the logic are developed
with the support C kept abstract, so that the chapter is rather general. Eventually,
C is defined as a set of names (to be described below), but many other definitions
seem plausible.

The introduction of supports leads to the definition of modal operators �C and
3C , which are indexed by the support C. The indexed modal operators correspond
to bounded quantification over possible worlds. For example, �CA will intuitively be
true at the current world iff A is true at all possible worlds in which C holds. Dually,
3CA will be true at the current world iff there exists a world in which both C holds
and A is true.

The extensions of the logic will also influence the corresponding λ-calculus. In
order to preserve the completeness, we will add new term constructors. But most
importantly, the definition of supports will lead to a definition of a new and interest-
ing operation of modal substitution. Unlike ordinary substitution, which treats the
substituting terms parametrically, modal substitution allows the term to be mod-
ified before it is substituted in. It is important that a different modification may
be specified for each substituting occurrence. This process of modification is called
reflection, and may be defined in many ways, depending on the specific notions of
support.

This chapter also introduces names, which provide a particular way to specify
supports. Each name is associated with some proposition A, and serves as a place-
holder for a proof that A is true. The development is slightly more general, however,
as we want names to stand for proofs of other properties of interest, and not only for
truth. As already mentioned, the support C may be viewed as a set of names, and the
condition expressed by C is the conjunction of the propositions associated with each
name in C. The process of reflection is then defined as an explicit substitution for the
names in C. The proof-term assignment obtained for the partial modal logic with
names gives rise to an extension of a λ-calculus, which we call a modal ν-calculus.

The chapter concludes with the proofs of the main principles associated with
ordinary, modal and explicit substitutions. All the work presented in this chapter is
original.

Chapter 3: Staged computation and metaprogramming

In staged computation and metaprogramming, we are concerned with writing code
that generates other code. Frequently, the generated code may be seen as source code
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(i.e., a syntactic entity), and the operations of interest include not only generating
but also compiling and inspecting source code.

The type safety for metaprogramming applications has to guarantee that well-
typed metaprograms only generate well-typed source code. One of the most per-
sistent challenges related to the types in metaprogramming has been in devising a
type system that can differentiate between source code which is closed (i.e., does not
depend on free variables, and may therefore be compiled and executed at run time),
and source code which is open (i.e., may depend on free variables).

It turns out that the �-fragment of the modal ν-calculus from Chapter 2 directly
extends to a metaprogramming calculus with types for closed and open source code.
The type �CA classifies source code of type A which may depend on free variables
(i.e., names) listed in the set C. When the set C is empty, then �A classifies
closed source code. In this chapter, we also define the notion of polymorphism in
supports, so that we can write programs that manipulate source code of different or
even unknown support. The chapter also presents some initial development toward
extending the calculus with features for pattern matching against source code.

From the technical standpoint, the contributions of the chapter involve the devel-
opment of the logical relations for the �-fragment of the modal ν-calculus, as well as
proofs of the appropriate progress and type preservation theorems. The work lead-
ing to the results of this chapter has been presented previously in a form of several
papers and technical reports [Nan02a, Nan02b, NP02].

Chapter 4: Modal theory of effects

In this chapter we develop a general modal calculus in which types can distinguish
between two kinds of effects: effects that are persistent, and effects that are benign.
The execution of persistent effects inflicts a change upon the run-time environment,
while the benign effects only depend on the environment, but do not change it. A
typical persistent effect is writing into a memory location, while typical benign effects
are memory reads or control flow effects. The derived type system is able to differenti-
ate between values (which are ascribed non-modal types), computations with benign
effects (ascribed the indexed modal type �CA) and computations with persistent
effects (ascribed the type 3CA). This development is an original contribution.

The programming style enforced by this type system serializes the computations
with persistent effects. The persistent effects must be totally ordered, simply because
their execution changes the run-time environment, so any well-defined semantics has
to fix this order. Such a requirement, however, is not imposed on benign effects.

The idea to use types to differentiate between values and (possibly effectful)
computations has been extensively studied in the past. The most prominent rep-
resentative of this line of research are monads and the monadic λ-calculus [Mog91,
Wad92, Wad95, Wad98]. The notion of a generic monadic type operator© gives rise
to lax logic [FM97], which is a simple variant of modal logic.

It is interesting that lax logic may be embedded into the constructive modal logic
CS4, as discovered by Pfenning and Davies [PD01]. In this chapter, we present both
the lax logic and its embedding. While we adopt the approach of [PD01] in the
description of lax logic, the embedding itself is presented in a novel way. Rather
than insisting on the formal syntactic particulars of the embedding, we focus on its
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INTRODUCTION

more illustrative semantic importance, which is in identifying the concepts of truth
and necessity. This identification of truth and necessity may be formally achieved
by adjoining a single axiom schema A → �A to modal logic CS4. In this case, the
modal operator 3 becomes the monadic operator © from lax logic.

The development of the chapter proceeds by performing a similar modification to
partial modal logic. When truth and necessity are identified in partial modal logic
(or, equivalently, if partial modal logic is extended with the axiom schema A→ �A),
we obtain a general type system for benign and persistent effects described at the
beginning. This observation is also an original contribution.

The general calculus may be uniformly instantiated to treat various different
effects, and we do so to obtain novel calculi for memory reads and writes and calculi
for control effects like exceptions, catch-and-throw, and composable continuations.
As mentioned before, an important characteristics of these calculi is that benign
effects need not be explicitly serialized. This is an improvement when compared to
the monadic λ-calculus, where programs must explicitly specify a total ordering on
all effects. In the modal calculus, such total ordering is imposed only on persistent
effects. The modal formulation of benign effects may also potentially improve the
efficiency of the computations, when compared to the monadic treatment of the same
effects.

It is interesting that the �-fragment of the calculus for memory implements a
type-safe version of dynamic binding. In this calculus, computations that read from
memory are ascribed a universal bounded type �CA. The construct for dynamic
binding binds values to memory locations, and thus specifies an environment in
which a computation of type �CA may be executed. In this sense, dynamic binding
logically corresponds to instantiation of the bounded universal quantifier �C .

Dynamic binding has a long history in functional programming languages, which
dates back to the early versions of LISP. Several formulations have since been pro-
posed for various applications in functional programming and distributed computa-
tion [Mor97, LSML00, LF96, Dam96, Dam98, HO01, SSK02, BHS+02]. Despite these
developments, however, dynamic binding remained often criticized for its complexity
and lack of logical content. Thus, discovering the logic behind dynamic binding has
been a long-standing problem in functional programming.

The work leading to the results related to the calculi of effects given in this
chapter are original, and has been presented previously in a form of several papers
and a technical report [Nan03a, Nan03c, Nan03b]. The calculi are implemented, and
the sources for the type checker and the interpreter are accessible on the Web, at
“http://www.cs.cmu.edu/~aleks/papers/effects/nubox.tar.gz”.
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Chapter 1

Constructive modal logic

1.1 Natural deduction

1.1.1 Judgments and propositions

A modality is a logical operator that qualifies assertions about the truth of propo-
sitions. For example, given a certain proposition A, we may consider if A is true or
false, but may also be interested if A is necessarily true, or possibly true, will be true
at the next moment in time, is believed to be true, and so on.

The assertions expressed by modalities are customarily given formal semantics
using the approach of Kripke frames [Kri63]. A Kripke frame is a relational structure
(W, R), consisting of a set of possible worlds W, and a relation R ⊆ W × W of
accessibility. Then, a modally qualified proposition expresses an assertion about
truth across accessible worlds. The nature of the assertion is determined by the
nature of the accessibility relation.

We illustrate the concept of Kripke frames using a particularly simple example
of temporal modal logic, which is a logic for reasoning about truth in subsequent
moments in time. The appropriate Kripke frame for this logic defines the possible
worlds W as moments in time. The accessibility relation R is discrete and total,
determining the temporal relation between worlds. We have (w,w ′) ∈ R if and
only if w is a moment occurring sometime before w′. Because R is discrete, for
each moment w there is a w′ that can be chosen as a subsequent moment. Then
we can define a modality © as an operator on propositions expressing truth at the
subsequent time moment. More precisely, we say that ©A is true at time moment
w if and only if A is true at the subsequent time moment w ′.

Some other operators frequently considered in modal logic are the operator � of
necessity and the operator 3 of possibility. The two operators express universal and
existential quantification over accessible worlds, respectively. As an illustration, in
the temporal logic described above, we say that �A is true at some time moment w
if and only if A is true at all time moments in the future of w. Dually, 3A is true at
w if and only if A is true at some time moment in the future of w.

In this section, we review the results of Pfenning and Davies from [PD01] and
consider modal logic from intuitionistic and type theoretic perspective, rather than
from the perspective of Kripke frames and possible worlds. The intuitionistic ap-
proach puts special emphasis on the constructive import of propositions: A will be

7



1.1. NATURAL DEDUCTION CHAPTER 1. MODAL LOGIC

considered true, if and only if we can construct and exhibit evidence of it. In our
formulation, we follow the methodology of Martin-Löf [ML96] to clearly separate
the notions of judgments and propositions. Propositions are logical objects encod-
ing statements about the domain of discourse. Judgments represent properties of
propositions that are subject to proof.

For example, we can judge if a certain proposition A is well formed or not, and
we can formulate a judgment

A prop

defining what counts as a proof of well-formedness. If we assume that our logic
contains an operator ∧ for conjunction, then a conjunction of two propositions A
and B is a well-formed proposition whenever both A and B are well-formed. This
(rather self-evident) fact can be expressed as an inference rule of the judgment A prop
as follows

A prop B prop

A ∧B prop

The inference rule is oriented in a top-down manner: the judgments above the line
are premises, and the judgment below the line is a conclusion that may be inferred
after the premises have been judged satisfied (i.e., witnessed by a proof). In this
sense, a proof that A ∧B prop consists of the proofs that A prop and B prop.

A completely separate judgment has to be used to determine when a proposition
A is true, and what constitutes a proof, i.e. evidence for the truth of A. Appropriately
enough, we call this judgment

A true

and we implicitly assume that A prop is satisfied before we can judge if A true. In
intuitionistic logic, we have evidence for A ∧ B if and only if we have evidence for
each of the two propositions. We can express the if-then direction of this fact using
the introduction rule

A true B true

A ∧B true

and the only-if direction is encoded using the two elimination rules

A ∧B true

A true

A ∧B true

B true

The introduction rule defines when it is justified to conclude that a conjunction
of two propositions is true. The rule is named “introduction” because it allows us to
introduce the ∧ operator into the proposition A∧B. The elimination rules define how
to use a conjunction once it has been proved. In particular, we can always eliminate
the ∧ operator from A ∧B, and obtain A in isolation from B, or vice versa.

Of course, the introduction and elimination rules for a logical operator cannot
be completely arbitrary, but must satisfy certain coherence conditions which ensure
that the rules match. For example, the elimination rules should not be too strong
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and allow us to infer unjustified conclusions. We can make a conclusion from the
elimination rule only if we have enough evidence for the premises. This property is
known as local soundness. It is witnessed by local reduction which constructs evidence
for the conclusion of an elimination rule out of evidence for the premises. The local
reductions witnessing the local soundness of the elimination rules for conjunction are
stated in the following form.

A true B true

A ∧B true

A true

=⇒R A true

and

A true B true

A ∧B true

B true

=⇒R B true

The first local reduction shows that the conclusion A true obtained after eliminating
A ∧ B true could have already been obtained as a first premise of the rule that
introduced A∧B true. Therefore, the elimination rule is not too strong, because we
can only use it to establish something we already had. The local reduction shows
how the proof could have been derived without the detour of introducing and then
eliminating the conjunction. This is why it is called “reduction”; it establishes simpler
evidence for the conclusion obtained after conjunction elimination. The other local
reduction is completely symmetric, except that it uses the second elimination rule
for conjunction.

The elimination rules must not be too weak either. We should be able to use an
elimination rule in such a way that its premises can be recovered. This property is
known as local completeness. It is witnessed by local expansion, which applies the
elimination rules in order to obtain enough knowledge to reconstruct the original
judgment. It is called “expansion” because it obtains a more complex evidence for
the original judgment. In case of conjunction, the local expansion takes the following
form.

A ∧B true =⇒E

A ∧B true

A true

A ∧B true

B true

A ∧B true

As shown above, the local expansion eliminates A ∧ B true to obtain A true and
B true. The two are then combined to reintroduce A ∧B true.

1.1.2 Hypothetical judgments and implication

A further primitive notion that we need is that of a hypothetical judgment, i.e., a
judgment which is made under hypotheses, or assumptions. Hypothetical judgments
are needed in order to formalize the concept of implication. We would like to define
the implication A → B to be true if and only if B true can be proved whenever
A true can. But in order to formally state this causal dependence between A and B,
we need to define what it means to judge B true under an assumption that A true.

9
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The general form of a hypothetical judgment is written as

J1, . . . Jn ` J

which expresses that J can be proved under the hypotheses J1, . . . , Jn. We also refer
to J1, . . . , Jn as antecedents and J as the succedent of the hypothetical judgment.

The first specific hypothetical judgment that we consider in this section limits
J1, . . . , Jn, J to be instances of A true, and therefore has the form

A1 true, . . . , An true ` A true

The collection A1 true, . . . , An true is called a context of hypotheses. We use Γ and
variants to range over contexts, and will usually write the hypothetical judgment in
an abbreviated form

Γ ` A true.

When defining a new judgment, we need to state what counts as evidence, or
proof for it. In the particular case of the hypothetical judgment Γ ` A true, we
need to define a notion of hypothetical proof. What does it mean to derive A true
under assumptions Γ? In a hypothetical proof of A true under assumptions A1 true,
. . . , An true, we can use the hypotheses as if we knew them. Once a derivation of
Ai true is given (for some Ai), we can substitute it for the uses of the assumption
Ai true in the hypothetical proof, to obtain a judgment and a proof that no longer
depend on Ai true. In this sense, a proof of Γ ` A true prescribes how a proof A true
can be constructed, once proofs of A1 true, . . . , An true are given. The emphasis
in this construction is on the operation of substitution. When deriving A true, the
proofs of A1 true, . . . , An true may only be used as given, without any opportunity
for inspection or modification. Because of this particular property, we say that the
hypothetical judgment is parametric in its assumptions.

The nature of the hypothetical judgment and the dependence between antecedents
and succedent is usually stated in the form of the following substitution principle.

If Γ ` A true and Γ, A true,Γ′ ` B true, then Γ,Γ′ ` B true.

The substitution principle implicitly assumes that the proof of Γ ` A true is indeed
substituted into the proof of Γ, A true,Γ′ ` B true to obtain a proof of Γ,Γ′ ` B true.
Notice that the substitution principle is not an inference rule, but a metatheoretic
property which we will have to prove once all the inference rules of Γ ` A true are
defined.

In addition to the substitution principle, we impose some further structure of the
hypothetical judgment. In particular, we require the following structural properties.

1. Exchange. If Γ1, A1 true,Γ2, A2 true ` B true, then Γ1, A2 true,Γ2, A1 true `
B true.

This structural property of exchange states that the ordering of hypothesis in
the context Γ is irrelevant for the judgment. In other words, we may consider
Γ to be a multiset, rather than a list. We immediately put exchange to use in
order to abbreviate the statements about our hypothetical judgments.

10



CHAPTER 1. MODAL LOGIC 1.1. NATURAL DEDUCTION

2. Weakening. If Γ ` B true then Γ, A true ` B true.

3. Contraction. If Γ, A true,A true ` B true, then Γ, A true ` B true.

Using the structural properties of exchange and weakening, we can further sim-
plify the substitution principle for the truth judgment, and rephrase it as presented
below. It is this form of the substitution principle that we adopt in the rest of the
dissertation.

Principle (Substitution)

If Γ ` A true and Γ, A true ` B true, then Γ ` B true.

The hypothesis rule of the truth judgment formalizes the intuition that assumptions
in a hypothetical judgment may be used as if they were known. In particular, under
the assumption A true, we may always conclude A true. Following the structural
property of exchange, the rule ignores the ordering of the hypothesis in the context
Γ.

Γ, A true ` A true

After introducing all the machinery of hypothetical judgments and proofs, we
are finally ready to define implication A → B as a new form of propositions, which
expresses that B true may be derived when A true is given. We will frequently say
that implication internalizes hypothetical truth, because it provides means to reason
about hypothetical truth within the ordinary truth judgment.

As a first step in the definition of the new propositional operator, we need to
extend the formation judgment A prop so that it can treat the new case involving
the operator →. The appropriate formation rule simply states that A→ B is a well
formed proposition, whenever both A and B are.

A prop B prop

A→ B prop

More interesting are the inference rules that extend the truth judgment. Fol-
lowing the methodology of natural deduction that we previously used in the case
of conjunction, we provide an introduction and an elimination rule for implication.
The introduction rule formally states that A → B true can be derived if there is a
hypothetical proof of A true ` B true. The introduction rule therefore exactly serves
to define the operator of implication as an internalization of hypothetical judgments.

Γ, A true ` B true

Γ ` A→ B true

The elimination rule for implication realizes the substitution principle, and provides
a way to infer B true when both A→ B true and A true can be obtained.

Γ ` A→ B true Γ ` A true

Γ ` B true

11
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The rules are locally sound and complete, and therefore of matching strength. Local
reduction is presented below, and is justified by the substitution principle.

Γ, A true ` B true

Γ ` A→ B true Γ ` A true

Γ ` B true

=⇒R Γ ` B true

Indeed, the derivation of Γ ` B true may be obtained by substituting the premise
Γ ` A true into the premise Γ, A true ` B true, just as claimed by the substitution
principle.

The local completeness is witnessed by local expansion.

Γ ` A→ B true =⇒E

Γ, A true ` A→ B true Γ, A true ` A true

Γ, A true ` B true

Γ ` A→ B true

Local expansion first uses the structural property of weakening to modify Γ ` A →
B true into Γ, A true ` A → B true. Implication elimination is performed on this
premise to obtain Γ, A true ` B true, before reintroducing implication again and
conclude Γ ` A→ B true.

Example 1 The following are example judgments that can be derived in the logic
presented so far.

1. ` A→ A true

2. ` A→ B → A true

3. ` (A→ B → C)→ (A→ B)→ A→ C true

Derivation of ` A→ A true.

A true ` A true

` A→ A true

Derivation of ` A→ B → A true.

We first use the hypothesis rule to infer A true,B true ` A true, which is then
followed by two introductions.

A true,B true ` A true

A true ` B → A true

` A→ B → A true

12
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Derivation of ` (A→ B → C)→ (A→ B)→ A→ C true.

(A → B → C) true ` A → B → C true A true ` A true

(A → B → C) true,A true ` B → C true

(A → B) true ` A → B true A true ` A true

(A → B) true,A true ` B true

(A → B → C) true, (A → B) true,A true ` C true

(A → B → C) true, (A → B) true ` A → C true

(A → B → C) true ` (A → B) → A → C true

` (A → B → C) → (A → B) → A → C true

�

1.1.3 Necessity

In the previous sections we considered two versions of the judgment for truth: the
hypothetical version Γ ` A true, and the non-hypothetical version A true. The
hypothetical version Γ ` A true extends A true, in the sense that the later can be
recovered as · ` A true where the context Γ is chosen to be empty. The variant
· ` A true is known as a categorical judgment, because it does not depend on any
hypotheses. It can be seen as stating a universal fact, which does not rely on external
arguments. Categorical judgments are witnessed by categorical proofs. A categorical
proof is, again, a proof that does not depend on any hypotheses; a proof which is, in
some sense, closed.

In this section we isolate the notions of categorical judgment and categorical
proof, and consider them in and of themselves, rather than as special cases of hypo-
thetical judgments and proofs. To this end, we introduce the judgment for necessity

A nec

defined by the following two clauses.

1. If · ` A true, then A nec.

2. If A nec, then Γ ` A true.

The two clauses define that A nec holds if and only if · ` A true. Clause (1)
establishes the if-then direction, and clause (2) corresponds to the only-if direction.
Notice that we allow non-empty Γ in the definitional clause (2) in order to avoid
explicit context weakening.

The choice of the name for the necessity judgment is not accidental. As we
will soon demonstrate, the consideration of categorical proofs and categorically true
propositions very quickly leads to a formulation of modal logic. An informal but
useful intuition that relates categorical judgments to modal logic is based on the
following observation. Each context Γ of a hypothetical truth judgment may be seen
as selecting a set of possible worlds in a Kripke-style semantics. The selected worlds
are those that satisfy all the hypotheses in Γ. If the proposition A is categorically
true, i.e. if · ` A true, then A is true in a generic world about which we know

13



1.1. NATURAL DEDUCTION CHAPTER 1. MODAL LOGIC

nothing. In other words, A is true in all accessible worlds. In this sense, categorical
truth corresponds to universal quantification, and categorically true propositions are
necessary. On the other hand, the hypothetical judgment Γ ` A true only provides
evidence for the truth of A in the current world of reference. We will frequently rely on
this intuition to motivate particular design choices in our logic, but we do not pursue
further its formal side. The interested reader is referred to the work of Alechina et
al. [AMdPR01], which provides a Kripke semantics for a natural deduction somewhat
different from ours.

As evident from the definition, necessity is a judgment whose meaning is described
in terms of truth. Thus, necessity in itself does not introduce anything new, unless
we take a further step and extend the truth judgment so that it can depend on
necessary hypotheses. Because the order of hypotheses is not important, we separate
the context into two parts (separated by semi-colon for visual clarity), and consider
a judgment of the following form.

B1 nec, . . . , Bm nec;A1 true, . . . , An true ` A true

We use Γ to range over sets of hypotheses of the form A true, and ∆ to range over sets
of hypothesis A nec. We will implicitly assume that both the contexts are subject to
the structural properties of weakening, exchange and contraction.

To define what counts as a proof of the new hypothetical judgment, we need to
extend the notion of categorical proof that was introduced at the beginning of the
section. Similar to before, a categorical proof of ∆; Γ ` A true is a proof obtained
without any reference to truth hypotheses. However, a categorical proof is allowed
to depend on necessary hypotheses. This is only natural, because categorical proofs
are evidence for necessary propositions, and could therefore be substituted for nec-
essary hypotheses. The following substitution principle formally states the described
reasoning.

Principle (Substitution for necessity)
If ∆; · ` A true and (∆, A nec); Γ ` B true then ∆; Γ ` B true.

Note that the judgment ∆; · ` A true in the substitution principle does not depend
on true hypotheses. Its proof is categorical, and can therefore be substituted for the
hypotheses A nec to derive B true. The emphasis here is again on substitution. The
proof of A may not be modified or inspected in any way before it is used to derive
B true.

Related to the substitution principle for necessity is the rule for necessary hy-
potheses. The judgment A nec is witnessed by a categorical proof of A true, and a
categorical proof can always be viewed as an ordinary proof. Thus, given A nec, we
are justified in deriving A true, as the following rule for necessary hypotheses states.

(∆, A nec); Γ ` A true

After introducing the concept of necessity, the next step is to internalize it. To
that end, we introduce a new unary operator on propositions �, with the expected
formation rule.

A prop

�A prop
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The introduction rule follows the definition of necessity: we can derive �A true only
if there is a derivation of A nec, i.e. only if there is a categorical derivation of A true.

∆; · ` A true

∆;Γ ` �A true

The elimination rule follows the substitution principle for necessity. Given a deriva-
tion of �A true, we know by definition that ∆; · ` A true. If in addition we have
(∆, A nec); Γ ` B true, then by the substitution principle for necessity, we may
derive ∆; Γ ` B true.

∆; Γ ` �A true (∆, A nec); Γ ` B true

∆;Γ ` B true

This exact reasoning justifies the local reduction and local soundness.

∆; · ` A true

∆; · ` �A true (∆, A nec); Γ ` B true

∆;Γ ` B true

=⇒R ∆;Γ ` B true

The local completeness is established by the local expansion given below.

∆; Γ ` �A true =⇒E ∆;Γ ` �A true

(∆, A nec); · ` A true

(∆, A nec); Γ ` �A true

∆;Γ ` �A true

Example 2 The following are valid derivations in the modal logic of necessity pre-
sented so far.

1. ` �A→ A true

2. ` �A→ ��A true

3. ` �(A→ B)→ �A→ �B true

Derivation of ` �A→ A true.

�A true ` �A true A nec;�A true ` A true

�A true ` A true

` �A→ A true

Derivation of ` �A→ ��A true.

�A true ` �A true

A nec; · ` A true

A nec; · ` �A true

A nec;�A true ` ��A true

�A true ` ��A true

` �A→ ��A true
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Derivation of ` �(A→ B)→ �A→ �B true.

�
(A → B) `

�
(A → B) true

�
A `

�
A true

A → B nec; · ` A → B true A nec; · ` A true

A → B nec, A nec; · ` B true

A → B nec, A nec; · `
�

B true

A → B nec;
�

A `
�

B true

�
(A → B),

�
A `

�
B true

�
(A → B) `

�
A →

�
B true

`
�

(A → B) →
�

A →
�

B true

�

1.1.4 Possibility

In modal logic, a proposition is necessarily true if it is true in all the accessible
worlds. A dual concept is that of possible truth. We say that A is possible if there
exists an accessible world in which A is true. The formulation of possible truth in
classical modal logic is usually in terms of necessity, simply because in classical logic
existential quantification may be expressed in terms of universal quantification. But
since we are interested in a constructive variant of modal logic, this approach is not
available — possibility should be defined in and of itself. Furthermore, we would
like to analyze possibility without actually referring to particular worlds within the
formal system, and without describing the totality of worlds and the accessibility
relation on it.

As discovered by Pfenning and Davies [PD01], this kind of a formulation can be
achieved if one adopts a judgmental approach and considers how the knowledge that
A is possibly true can be used to derive new facts. If A is possibly true, than there
exists a world about which we know nothing, except that A is true at that world.
Therefore, if we assume that A is true (but nothing else), and then conclude that B
is possible, then B must be possible. Notice that starting from the possibility of A,
we can only make conclusions about the possibility of B, but not about the truth
of B. To initially establish that A is possible, we simply need to show that A is
true. To formalize this reasoning, we introduce a new judgment A poss to witness
the possibility of A, and immediately consider its hypothetical variant

∆; Γ ` A poss

where ∆ and Γ abbreviate necessary and true assumptions, respectively. The possi-
bility judgment is defined by the following two clauses.

1. If ∆; Γ ` A true, then ∆; Γ ` A poss.

2. If ∆; Γ ` A poss and ∆;A true ` B poss, then ∆; Γ ` B poss.

Note that the definitional clause (2) makes the necessity assumptions ∆ available for
deriving B poss, but removes the truth assumptions Γ. This is because the context
∆ stands for propositions that are true in all possible worlds, while Γ stands for
propositions that are true only in the current world. Therefore, if A is possible
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in some world, then we may assume of that world that it validates ∆, but not Γ.
The definitional clause (2) takes form of a substitution principle, and establishes the
hypothetical nature of the judgment for possibility with respect to truth hypotheses.
On the other hand, the hypothetical character of possibility with respect to truth
and necessity hypotheses is described by the following versions of the substitution
principles for truth and necessity.

• If ∆; Γ ` A true and ∆; (Γ, A true) ` B poss, then ∆; Γ ` B poss.

• If ∆; · ` A true and (∆, A nec); Γ ` B poss, then ∆; Γ ` B poss.

Next we internalize possibility as a propositional operator 3, with the obvious
formation rule.

A prop

3A prop

The introduction rule for 3 simply encodes the fact that 3 internalizes possibility
into the truth judgment. The elimination rule for 3 follows the definitional clause
(2), except that instead of the assumption ∆; Γ ` A poss, it uses the internalized
variant ∆; Γ ` 3A true.

∆; Γ ` A poss

∆;Γ ` 3A true

∆;Γ ` 3A true ∆;A true ` B poss

∆;Γ ` B poss

We also need an inference rule in order to realize the definitional clause (1). This
rule takes the form of a judgmental coercion from truth into possibility.

∆; Γ ` A true

∆;Γ ` A poss

It is easy to see that the presented inference rules are locally sound and complete.
Local soundness is witnessed by the local reduction below.

∆; Γ ` A poss

∆;Γ ` 3A true ∆;A true ` B poss

∆;Γ ` B poss

=⇒R ∆;Γ ` B poss

This local reduction is justified on the grounds of the definitional clause (2). Indeed,
given the premises ∆; Γ ` A poss and ∆;A true ` B poss, the clause (2) leads to
the reduct ∆; Γ ` B poss.

Local completeness is witnessed by the local expansion, which itself relies on the
judgmental coercion from truth to possibility in order to derive ∆;A true ` A poss.

∆; Γ ` 3A true =⇒E
∆;Γ ` 3A true

∆;A true ` A true

∆;A true ` A poss

∆;Γ ` A poss

∆;Γ ` 3A true
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We need a yet further rule to realize the substitution principle for necessary
hypotheses within the judgment for possibility.

∆; Γ ` �A true (∆, A nec); Γ ` B poss

∆;Γ ` B poss

As explained in [PD01], without this rule, the logic will not possess the strict subfor-
mula property. For example, a proof of the judgment ·;�(A → B) true,3A true `
B poss, will first have to make a detour and establish a more complicated fact
·;�(A→ B) true,3A true ` 3B true, before eliminating 3B true to obtain B poss.
The new rule is sound, as witnessed by the following local reduction, justified on the
grounds of the substitution principle for necessary hypotheses.

∆; · ` A true

∆;Γ ` �A true (∆, A nec); Γ ` B poss

∆;Γ ` B poss

=⇒R ∆;Γ ` B poss

Example 3 The following are valid derivations in the judgments modal logic.

1. ` A→ 3A true

2. ` 33A→ 3A true

3. ` �(A→ B)→ 3A→ 3B true

Derivation of ` A→ 3A true.

A true ` A true

A true ` A poss

A true ` 3A true

` A→ 3A true

Derivation of ` 33A→ 3A true.

33A true ` 33A true

3A true ` 3A true

A true ` A true

A true ` A poss

3A true ` A poss

33A true ` A poss

33A true ` 3A true

` 33A→ 3A true
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Derivation of ` �(A→ B)→ 3A→ 3B true.

�
(A → B) true `

�
(A → B) true

3A true ` 3A true

(A → B) nec; · ` A → B true A true ` A true

(A → B) nec;A true ` B true

(A → B) nec;A true ` B poss

(A → B) nec;3A true ` B poss

(A → B) nec;3A true ` 3B true

�
(A → B) true,3A true ` 3B true

�
(A → B) true ` 3A → 3B true

`
�

(A → B) true → 3A → 3B true

�

Examples 2 and 3 together list six propositions whose truth is derivable in our
logic. It is of particular interests here to emphasize the connection between two pairs
of dual propositions

1. �A→ A and A→ 3A

2. �A→ ��A and 33A→ 3A

In classical modal logic these pairs correspond to particular properties of the acces-
sibility relation in the possible world semantics. The pair (1), for example, requires
that the accessibility relation between worlds is reflexive. The pair (2) requires that
the accessibility relation is transitive. The classical modal logic satisfying these two
requirements is known under the name of S4. In analogy with this notational conven-
tion, we call the logic presented here Constructive S4, or simply CS41. A formulation
of many other intuitionistic modal logics (including a yet another intuitionistic ver-
sion of S4) can be found in the Ph.D. dissertation of Alex Simpson [Sim94].

1.1.5 Summary of the system

We now summarize the formal system of modal logic with implication, necessity and
possibility, as described in the previous sections.

Propositions A,B ::= P | A→ B | �A | 3A
True hypothesis Γ ::= · | Γ, A true
Necessary hypothesis ∆ ::= · | ∆, A nec

The logic consists of three basic judgments A true, A nec and A poss, which
are used as hypotheses in two different hypothetical judgments ∆; Γ ` A true and
∆;Γ ` A poss. The rules of the hypothetical judgments are listed below.

1The name Constructive S4 has already been proposed in [AMdPR01] for a logic obtained when
the six propositions from Examples 2 and 3 are added to the axioms of the intuitionistic propositional
calculus. The inference rules of Constructive S4 include modus ponens and the rule of necessitation.
We take the liberty to use the same name for our logic, because we expect that it is equal to the
logic proposed in [AMdPR01]. This conjecture, however, has not been proved.
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∆; (Γ, A true) ` A true

∆; (Γ, A true) ` B true

∆;Γ ` A→ B true

∆;Γ ` A→ B true ∆;Γ ` A true

∆;Γ ` B true

(∆, A nec); Γ ` A true

∆; · ` A true

∆;Γ ` �A true

∆;Γ ` �A true (∆, A nec); Γ ` B true

∆;Γ ` B true

∆;Γ ` A true

∆;Γ ` A poss

∆;Γ ` A poss

∆;Γ ` 3A true

∆;Γ ` 3A true ∆;A true ` B poss

∆;Γ ` B poss

∆;Γ ` �A true (∆, A nec); Γ ` B poss

∆;Γ ` B poss

The inference rules indeed respect the definitional properties of the hypothetical
judgments, as the following theorem shows.

Theorem 1 (Substitution principles)
1. If ∆;Γ ` A true then

(a) if ∆; (Γ, A true) ` B true then ∆;Γ ` B true

(b) if ∆; (Γ, A true) ` B poss then ∆;Γ ` B poss

2. If ∆; · ` A true, then

(a) if (∆, A nec); Γ ` B true, then ∆;Γ ` B true

(b) if (∆, A nec); Γ ` B poss, then ∆;Γ ` B poss

3. If ∆;Γ ` A poss and ∆;A true ` B poss, then ∆;Γ ` B poss

Proof: Statements (1.a), (1.b), (2.a) and (2.b) are proved by straightforward induc-
tion over the derivation of the first judgment in each of the statements. Statement
(3) is proved by induction over its second judgment. �

1.2 Modal λ-calculus

1.2.1 Judgments and proof terms

Following the type-theoretic methodology of Martin-Löf [ML96], in this section we
annotate the judgments of our natural deduction with proof terms. A proof term
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serves as a witness for its corresponding judgment, in the sense that a derivation of
the judgment may be recovered by inspection of the proof term. If a judgment is
annotated with a proof term, then each judgment contains in itself an instruction on
how to discover its derivation. It is not necessary to look outside of the judgment to
establish evidence for it.

In this case, instead of A true and A poss, we will have judgments e : A and
f ÷ A. The meaning of the judgment e : A is that “e is a proof term witnessing that
A true”. The meaning of the judgment f ÷ A is that “f is a proof term witnessing
that A poss. The elements of the syntactic category e are called expressions, and the
elements of the syntactic category f are called phrases.

As an illustration, consider the rules for conjunction from Section 1.1.1, here
decorated with proof terms.

e1 : A e2 : B

〈e1, e2〉 : B

e : A ∧B

fst e : A

e : A ∧B

snd e : B

The proof-annotated rules uncover the computational content of the logic, as proofs
can be treated as programs, and propositions can be treated as types. For example,
the introduction rule for conjunction makes it explicit that the proof of A ∧ B can
be constructed using e1 : A and e2 : B as a pair 〈e1, e2〉 : A ∧ B. The elimination
forms fst e and snd e destruct a pair by taking its first or second component.

Local reduction and local expansions can now be stated using proof terms for
conjunction.

fst 〈e1, e2〉 =⇒R e1

snd 〈e1, e2〉 =⇒R e2

e : A ∧B =⇒E 〈fst e, snd e〉

As customary for type theory, the proof-annotated version of local reduction is what
carries the computational meaning of the logical construct, because it explains how
a program reduces toward a value. In the case of conjunction, for example, local
reductions formally specify what it means to select the first or the second element
of a pair. If the pair has the form 〈e1, e2〉 then, in order to compute its first element
we simply need to take the expression e1, and to compute the second element, we
need to take e2. On the other hand, local expansion implements the principle of
extensionality. In the case of conjunction, it states that every expression e:A ∧ B is
guaranteed to be equal (in an appropriate sense of equality which we do not define
here) to the pair 〈fst e, snd e〉.

To obtain the proof-annotated versions of the hypothetical judgments, we first
label the assumptions from the contexts Γ and ∆ with variables. We write x:A for
“x is a proof of A true”, and u::A for “u is a proof of A nec”. The usual assumptions
of variables contexts hold here as well: variables declared in ∆ and Γ are considered
different and we tacitly employ α-renaming to guarantee this invariant. We will call
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variables from Γ ordinary or value variables, while the variables from ∆ will be modal
variables. The decorated hypothesis rule now has the form

∆; (Γ, x:A) ` x:A

and the corresponding substitution principle formalizes how the hypothetical judg-
ments depend on the value variables.

Principle (Value substitution)
If ∆; Γ ` e1 : A then the following holds:

1. if ∆; (Γ, x:A) ` e2 : B, then ∆; Γ ` [e1/x]e2 : B.

2. if ∆; (Γ, x:A) ` f2 ÷ B, then ∆; Γ ` [e1/x]f2 ÷ B.

In this principle, we denote by [e1/x]e2 and [e1/x]f2 the result of capture-avoiding
substitution of e1 for x in the expression e2 and phrase f2, respectively. Because the
substitution principle now has access to proof terms, it can explicitly state that the
judgments are parametric with respect to variables. The expression e1 : A can only
be substituted for x in the hypothetical proofs, but cannot be used in any other way.
This reliance on substitution was only implicitly assumed in the previous formulations
of the principle, but once proof terms are provided, it can be stated explicitly.

The rules for implication introduction and elimination are annotated using λ-
abstraction and function application, respectively.

∆; (Γ, x:A) ` e : B

∆;Γ ` λx:A. e : A→ B

∆;Γ ` e1 : A→ B ∆;Γ ` e2 : A

∆;Γ ` e1 e2 : B

As usual, the local soundness and completeness are witnessed by local reduction and
expansion on the proof terms, which in this case are the ordinary β-reduction and
η-expansion of the λ-calculus.

(λx:A. e1) e2 =⇒R [e2/x]e1

e : A→ B =⇒E λx:A. (e x) where x not free in e

Example 4 The following are well-typed expression in the modal λ-calculus. In
this and in other examples we will omit the type information from the expressions,
when that improves readability.

1. ∆; Γ ` λx. x : A→ A

2. ∆; Γ ` λx. λy. x : A→ B → A

3. ∆; Γ ` λf. λg. λx. (f x) (g x) : (A→ B → C)→ (A→ B)→ A→ C

�

The hypothesis rule for modal variables is annotated as follows

(∆, u::A); Γ ` u : A
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and the corresponding substitution principle is given below.

Principle (Modal substitution)

If ∆; · ` e1 : A, then the following holds.

1. if (∆, u::A); Γ ` e2 : B, then ∆; Γ ` [[e1/u]]e2 : B

2. if (∆, u::A); Γ ` f2 ÷ B, then ∆; Γ ` [[e1/u]]f2 ÷ B

In this principle, the operations [[e1/u]]e2 and [[e1/u]]f2 are capture-avoiding substi-
tutions of e1 for the modal variable u in e2 and f2, respectively. We use a different no-
tation because the operation substitutes for a different kind of variable. The separate
notation will come handy in future sections, where we redefine modal substitution
so that it differs from ordinary substitution.

The proof-annotated forms of the introduction and elimination rules for � are as
follows.

∆; · ` e : A

∆;Γ ` box e : �A

∆;Γ ` e1 : �A (∆, u::A); Γ ` e2 : B

∆;Γ ` let box u = e1 in e2 : B

and the local soundness and completeness are witnessed by the local reduction and
expansion

let box u = box e1 in e2 =⇒R [[e1/u]]e2

e : �A =⇒E let box u = e in box u

Example 5 The following are well-typed expressions in the modal λ-calculus.

1. ∆; Γ ` λx. let box u = x in u : �A→ A

2. ∆; Γ ` λx. let box u = x in box box u : 2A→ ��A

3. ∆; Γ ` λx. λy. let box u = x in let box v = y in box u v
: �(A→ B)→ �A→ �B

�

The inference rules for possibility are easily annotated as well. The proof terms
that we use in this case belong to the syntactic category of phrases, and we start by
rewriting the definitional clauses for possibility (Section 1.1.4) to take phrases into
account.

1. If ∆; Γ ` e : A then ∆; Γ ` e ÷ A.

2. If ∆; Γ ` f1 ÷ A and ∆;x:A ` f2 ÷ B, then ∆; Γ ` 〈〈f1/x〉〉f2 ÷ B.
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The definitional clause (1) makes it evident that each expression e : A may be
considered as a phrase witnessing e ÷ A. The definitional clause (2) takes a form
of a phrase substitution principle. It uses a new operation of phrase substitution
〈〈f1/x〉〉f2 which we define below after introducing the other phrase constructors.

Just as in Section 1.1.4, the formulation of the proof-annotated possibility judg-
ment, uses an explicit inference rule to realize the definitional clause (1).

∆; Γ ` e : A

∆;Γ ` e ÷ A

The introduction and elimination rules are decorated using the new phrase construc-
tors dia and let dia as follows.

∆; Γ ` f ÷ A

∆;Γ ` dia f : 3A

∆;Γ ` e : 3A ∆;x:A ` f ÷ B

∆;Γ ` let dia x = e in f ÷ B

Notice that the typing rule for let dia erases the context Γ, and introduces a new
variable x:A, which is considered bound by the let dia constructor.

There is also an additional rule for eliminating � into the possibility judgment.

∆; Γ ` e : �A (∆, u::A); Γ ` f ÷ B

∆;Γ ` let box u = e in f ÷ B

let dia x = dia f1 in f2 =⇒R 〈〈f1/x〉〉f2

let box u = box e1 in f2 =⇒R [[e1/u]]f2

e : 3A =⇒E dia (let dia x = e in x)

The new substitution operation 〈〈f1/x〉〉f is defined in a slightly unusual way, by
induction on the structure of f1, rather than by induction on the structure of f .

〈〈e1/x〉〉f = [e1/x]f

〈〈let dia y = e1 in f2/x〉〉f = let dia y = e1 in 〈〈f2/x〉〉f

〈〈let box u = e1 in f2/x〉〉f = let box u = e1 in 〈〈f2/x〉〉f

Example 6 The following are well-typed terms in the modal λ-calculus.

1. ∆; Γ ` λx. dia x : A→ 3A

2. ∆; Γ ` λx. dia (let dia y = x in let dia z = y in z) : 33A→ 3A

3. ∆; Γ ` λx. λy. let box u = x in dia (let dia z = y in u z)
: �(A→ B)→ 3A→ 3B

�

24



CHAPTER 1. MODAL LOGIC 1.2. MODAL λ-CALCULUS

1.2.2 Summary of the system

This section summarizes the main aspects of the definition of the modal λ-calculus.

Types A,B ::= P | A→ B | �A | 3A
Expressions e ::= x | λx:A. e | e1 e2

| u | box e | let box u = e1 in e2

| dia f
Phrases f ::= e | let dia x = e in f

| let box u = e in f
Ordinary contexts Γ ::= · | Γ, x:A
Modal contexts ∆ ::= · | ∆, u::A

The calculus contains two typing judgments:

∆; Γ ` e : A and ∆;Γ ` f ÷ A

The first judgment states that the expression e has type A relative to the modal
context ∆ and ordinary context Γ. Alternatively, e is a proof of A true, under
necessary hypotheses ∆ and true hypotheses Γ. The second judgment states that
the phrase f has type A relative to the modal context ∆ and ordinary context Γ. The
alternative reading of this judgment is that f is a proof of A poss under necessary
hypotheses ∆ and true hypotheses Γ. The following are the inference rules of the
two judgments.

∆; (Γ, x:A) ` x:A

∆; (Γ, x:A) ` e : B

∆;Γ ` λx:A. e : A→ B

∆;Γ ` e1 : A→ B ∆;Γ ` e2 : A

∆;Γ ` e1 e2 : B

(∆, u::A); Γ ` u : A

∆; · ` e : A

∆;Γ ` box e : �A

∆;Γ ` e1 : �A (∆, u::A); Γ ` e2 : B

∆;Γ ` let box u = e1 in e2 : B

∆;Γ ` e : A

∆;Γ ` e ÷ A

∆;Γ ` f ÷ A

∆;Γ ` dia f : 3A

∆;Γ ` e : 3A ∆;x:A ` f ÷ B

∆;Γ ` let dia x = e in f ÷ B

∆;Γ ` e : �A (∆, u::A); Γ ` f ÷ B

∆;Γ ` let box u = e in f ÷ B

There are three different forms of capture-avoiding substitution in the calculus:

1. Ordinary substitution. [e1/x]e and [e1/x]f which replace the value variable x
by the expression e1
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2. Modal substitution. [[e1/u]]e and [[e1/u]]f which replace the modal variable u by
the expression e1

3. Phrase substitution. 〈〈f1/x〉〉f which replaces an ordinary variable x according
to a phrase f1.

The ordinary and modal substitutions are defined in a standard way, and for purposes
of completeness, we repeat here the definition of phrase substitution from the previous
section. Phrase substitution 〈〈f1/x〉〉f is defined by induction on the structure of f1,
as follows.

〈〈e1/x〉〉f = [e1/x]f

〈〈let dia y = e1 in f2/x〉〉f = let dia y = e1 in 〈〈f2/x〉〉f

〈〈let box u = e1 in f2/x〉〉f = let box u = e1 in 〈〈f2/x〉〉f

The following theorem proves that the presented formulation respects the substi-
tution principles stated before as definitional properties of the judgments.

Theorem 2 (Substitution principles)
1. If ∆;Γ ` e1 : A then

(a) if ∆; (Γ, x:A) ` e2 : B then ∆;Γ ` [e1/x]e2 : B

(b) if ∆; (Γ, x:A) ` f2 ÷ B then ∆;Γ ` [e1/x]f2 ÷ B

2. If ∆; · ` e1 : A, then

(a) if (∆, u::A); Γ ` e2 : B, then ∆;Γ ` [e1/u]e2 : B

(b) if (∆, u::A); Γ ` f2 ÷ B, then ∆;Γ ` [e1/u]f2 ÷ B

3. If ∆;Γ ` f1 ÷ A and ∆;x:A ` f2 ÷ B, then ∆;Γ ` 〈〈f1/x〉〉f2 ÷ B

Proof: By straightforward induction on the structure of the typing derivations
[PD01]. �

1.3 Notes

Related work on the proof theory of intuitionistic modal logics

As already mentioned, our presentation of constructive S4 from the previous section
was based on the work by Pfenning and Davies [PD01]. But other approaches to
natural deduction have also been proposed. For example, in the work of Alechina
et al. [AMdPR01], Bierman and de Paiva [BdP00], Benton, Bierman and de Paiva
[BBdP98], and Pfenning and Wong [PW95], the modalities are formulated in the
following way.

Γ ` e1 :
�

A1 · · · Γ ` en :
�

An x1 :
�

A1, . . . , xn :
�

An ` e : B

Γ ` box e with ē for x̄ :
�

B

Γ ` e :
�

A

Γ ` unbox e : A
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Γ ` e : A

Γ ` dia e : 3A

Γ ` e1 :
�

A1 · · · Γ ` en :
�

An Γ ` e : 3B x1 :
�

A1, . . . , xn :
�

An, y : B ` f : 3C

Γ ` let dia y = e in f with ē for x̄ : 3C

This formulation is similar to the approach by Prawitz in [Pra65]. Notice how the �-
introduction and 3-elimination rules require explicit substitution. This is avoided in
our presentation in Section 1 by separating ordinary variables from modal variables.

In fact, in the subsequent sections (Section 2 and Section 3) we will introduce
Partial CS4, which extends the ordinary CS4 with explicit substitutions. The use
of explicit substitutions there, however, will be directly opposite to the CS4 from
this note. In Partial CS4, it will be the �-elimination and 3-introduction rules that
use explicit substitutions. This kind of approach will provide a lot of additional
expressiveness and flexibility when compared to ordinary CS4.

Another approach to the natural deduction of constructive modal logic in gen-
eral, and versions of modal S4 in particular, is exemplified by the work of Alex
Simpson [Sim94]. The truth judgment used in this kind of approaches has the form
w : A, denoting that the proposition A is true at the world w. The inference rules
explicitly manipulate the accessibility relation R for the modal logic in question. We
show below the rules for modalities, in the form of derivation trees, as formulated
in [Sim94].

[wRw′]
...

w′ : A w′ − fresh

w : �A

w′ : �A w′Rw

w : A

w′ : A wRw′

w : 3A

w′ : 3A

[w′′ : A][w′Rw′′]
...

w : B w′′ − fresh

w : B

It is interesting that the version of modal logic formulated by Simpson is slightly
different from the Constructive S4 introduced in Section 1. In particular, Simpson’s
formulation, which is called Intuitionistic S4 (or IS4 for short), admits the following
theorem, which is not derivable in CS4.

(3A→ �B)→ �(A→ B)

In fact, if both logics are extended with ∨ and ⊥, even further differences arise.
For example, the following propositions are not provable in the extension of CS4
[AMdPR01], but are provable in the extension of IS4.

1. ¬3⊥
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2. 3(A ∨B)→ (3A ∨3B)

Simpson’s dissertation also axiomatizes many other intuitionistic modal logics, and
is a good source of historical references on this subject.

Related work on the Kripke semantics of Constructive S4

A Kripke model of CS4 is presented by Alechina et al. in [AMdPR01]. The model
consists of a set of worlds W and two accessibility relations, one for the intuitionistic
implication v, and one for the modalities →. More formally:

Definition 3
A Kripke model of CS4 is a structure M = (W,v,→, |=), where W is a non-empty
set of worlds, v and → are reflexive and transitive binary relations on W , and |= a
relation between elements of w ∈W and propositions A, such that:

• v is monotone with respect to atomic propositions, i.e. if w v w ′ and P is an
atomic proposition, then w |= P implies w′ |= P

• v and → are coherent in the following sense:

if w→ v and v v v′, there exists w′ such that w v w′ and w′ → v′

• the relation |= has the following properties

– w |= >

– w |= A ∧B iff w |= A and w |= B

– w |= A ∨B iff w |= A or w |= B

– w |= A→ B iff for all w′ w w, w′ |= A implies w′ |= B

– w |= �A iff for all w′ w w and u′ ← w′, u′ |= A

– w |= 3A iff for all w′ w w there exists u′ ← w′ such that u′ |= A

The definition does not require that w 6|= ⊥. Rather, inconsistent worlds are
permitted, as long as the following requirements are met:

– if w |= ⊥ and w v w′ then w′ |= ⊥

– if w |= ⊥ then for every atomic proposition P , w |= P

In his dissertation [Sim94], Simpson describes Kripke semantics for IS4, but not
for CS4. The differences between the two semantics include:

1. The semantics for IS4 does not allow inconsistent worlds. The inconsistent
worlds are the feature that eliminates the theorem ¬3⊥ in the CS4 semantics.

2. In IS4, w |= 3A iff there exists w′ w w such that w′ |= A. This definition
permits the theorem 3(A ∨B)→ (3A ∨3B).

3. In IS4, a further coherence condition is imposed between the two accessibility
relations. In particular, the IS4 semantics requires that

if w′ w w and w → v, then there exists v′ such that w′ → v′ and v′ w v

The presence of this condition in IS4 permits the theorem (3A → �B) →
�(A→ B).
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Related work on the categorical semantics of Constructive S4

Categorical semantics for CS4 has been considered by several authors, most no-
tably by Kobayashi [Kob97], Bierman and de Paiva [BdP00] and Alechina et al.
[AMdPR01]. As established in these papers, a categorical model for CS4 consists of
a Cartesian closed category with co-products C, together with a monoidal comonad
� and a �-strong monad 3.
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Chapter 2

Partial modal logic

2.1 Natural deduction

2.1.1 Partial judgments and supports

In this section, we develop the notion of partial truth judgments. The idea is to
capture that a derivation or a witness of some fact may be obtained, but only if a
certain condition is satisfied. The syntactic form of the partial truth judgment is

A true [C]

where A is a proposition, and C is a supporting condition, or support, for short. The
semantics of this judgment is to witness that a proof of A true can be obtained if
the condition C is fulfilled. To emphasize this contrast between the partial judgment
A true [C], and the ordinary judgment A true defined in Chapter 1, we will call the
later judgment total. Partial truth judgments resemble somewhat the idea behind
total hypothetical judgments. In a hypothetical judgment

A1 true, . . . , An true ` A true

the condition on A true consists of a set of hypotheses A1 true, . . . , An true, and a
derivation of A true can be obtained by means of substitution from the derivations of
A1 true, . . . , An true. Because these derivations must be substituted without any
inspection or modification, the judgment A1 true, . . . , An true ` A true is said to
be parametric in its hypotheses.

Partial judgments, however, are intended to be more general. For example, given
a derivation of A true [C] and a witness that the condition C is satisfied, it will be
possible to reconstruct a derivation of A true, but it is not required that the witness
for C is used only via substitution. In fact, any particular application may specify
a different way to obtain A true from a witness of C and a derivation of A true [C].
In this section, we remain uncommitted and treat this dependency in the abstract.
That will lead to properties of partial judgments that persist across a broader range
of applications.

The process of transforming the proof of A true [C], when a witness for C is
provided, is called reflection, and will typically be justified by the metatheoretic
properties of the truth judgment and its derivations. In this sense, a support C may
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be seen as a condition in the metalogical reasoning about derivability of A true.
Correspondingly, reflection allows that a conclusion obtained in the metalogic be
coerced into the truth judgment, when the condition C holds.

Reflection will have interesting consequences for the computational content of
partial truth, when propositions are seen as types, and proofs as programs. For
example, a proof of A true [C] may be considered as a program that produces a
value of type A, but only if executed in a run-time environment that satisfies the
condition C. In this case, reflection may be defined as evaluation, or for that matter,
any other kind of type-preserving program transformation.

In the remainder of this section, we embark on the formulation and analysis
of partial truth, which will eventually motivate a development of a whole modal
logic of partial judgments, with very diverse applications in functional programming.
Because supports are syntactic equivalents of metalogical propositions, any definition
of partial truth must start by formally explaining the correspondence between a given
support C and the proposition that C represents. For that purpose, we will use the
judgments

C supp and C sat

which will need to be defined for any particular application, but which we keep
abstract for the time being. The judgment C supp determines if a support C is
well-formed, and the judgment C sat determines if a condition represented by C is
satisfied. It is implicitly assumed that C sat is itself well-formed only if C is a valid
support, i.e. only if C supp.

In order to formally capture the causal dependency between supports, we need to
impose some further algebraic structure. In particular, we require that the set of all
supports is partially ordered by the reflexive, anti-symmetric and transitive relation
v, and that it has a minimal element 0. The idea is that C v D if and only if the
condition associated with D implies in the metalogic the condition associated with
C. In this case, the minimal support 0 simply corresponds to the condition that is
always, trivially, true. To formalize this intuition, the support judgments will contain
the derivation rules

0 supp and 0 sat

which establish that 0 is a well-formed support, and that 0 corresponds to a true
condition, respectively. We also require the following support weakening principle.

Principle (Support weakening)

If C v D, then any witness of D sat is a witness of C sat as well.

Having introduced the support judgments and ordering, we can now provide a
formal definition for the partial truth. Henceforth, we write

A true [C]

if and only if C sat implies A true. We assume here that the partial truth judgment
is well formed, i.e. that A prop and C supp. Notice that each particular application
will have to specify concretely the dependency between the derivations of C sat and
A true [C]. However, having in mind that the support 0 is always satisfied, we impose
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the requirement that A true [0] if and only if A true. This will allow us to regard
the total truth judgment as a special case of its partial counterpart.

We also consider a partial version of the support judgment C sat, and write

C sat [D]

if and only if D sat implies C sat. In order for this judgment to respect the support
ordering, we require the following as one of its derivation rules.

C v D

C sat [D]

Again, we insist that C sat [0] if and only if C sat, and treat C sat as a special case
of C sat [D], when D is the 0 support.

The two partial judgments are further required to respect the partial ordering v,
in the sense of the following support weakening principle. The support weakening
principle stated previously is subsumed as a special case (obtained when the support
D′ is taken to be 0).

Principle (Support weakening)
Let C and D be well-formed supports with C v D. Then the following holds:

1. if A true [C], then A true [D]

2. if C1 sat [C], then C1 sat [D]

3. if D sat [D1], then C sat [D1]

Finally, in order to relate partial truth with the partial support judgment, we impose
the following requirement phrased as a reflection principle.

Principle (Reflection)
If C sat [D], then the following holds:

1. if A true [C], then A true [D]

2. if C1 sat [C], then C1 sat [D]

Notice that if D is taken to be 0, then the reflection principle makes a connection
between the partial truth and support judgments and their total counterparts.

2.1.2 Hypothetical partial judgments

The next step in the development of the logic of partial truth is to extend the non-
hypothetical reasoning associated with supports and reflection, and parametrize the
judgments with respect to a context of hypotheses

A1 true, . . . , An true.

As customary, we use Γ to range over contexts, and generalize the judgments to the
following form

Γ ` C sat [D] and Γ ` A true [D].
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Of course, the usual coherence conditions apply to this generalization. In particular,
if Γ is the empty context, the new judgments reduce to the non-hypothetical partial
judgments from the previous section. Analogously, if D is the minimal support 0, we
require that the partial judgment Γ ` A true [0] be equivalent to the total judgment
Γ ` A true. In a similar fashion, we will abbreviate Γ ` C sat [0] simply as Γ ` C sat.
To simplify matters, the definition of the partial judgments will immediately assume
that Γ is a multiset, so that the judgment will satisfy the structural rule of exchange.

Henceforth, we define the judgment

Γ ` C sat [D]

to be satisfied only if a derivation of C sat [D] can be obtained given the derivations of
A1 true [D], . . . , An true [D]. It is important that the derivations of Ai true [D] must
be used parametrically – they may not be modified in any way, and in particular, they
are not subject to reflection. The rules of the judgment must extend accordingly, to
account for the context Γ. For example, the following is a rule of the hypothetical
support judgment which relates causally dependent contexts.

C v D

Γ ` C sat [D]

The partial hypothetical truth judgment is defined in the similar fashion. We say
that

Γ ` A true [D]

only if a derivation of A true [D] may be obtained from derivations of A1 true [D],
. . . , An true [D], by means of substitution. Notice how the scope of the support D
in the above definitions extends across the whole judgment. The support modifies
the hypotheses A1 true, . . . , An true, as well as the conclusions C sat and A true.1

As a coherence condition, we impose a support weakening principle for hypo-
thetical partial judgments analogous to the support weakening principle from the
previous section.

Principle (Support weakening)
Let C and D be well-formed supports with C v D. Then the following holds:

1. if Γ ` A true [C], then Γ ` A true [D]

2. if Γ ` C1 sat [C], then Γ ` C1 sat [D]

3. if Γ ` D sat [D1], then Γ ` C sat [D1]

The extensions of the reflection principle is also straightforward, but with one
essential restriction.

Principle (Reflection)
If Γ ` C sat [D], then the following holds:

1In the terminology of modal logic, we can say that the support D is a condition on the current
world. Because the hypotheses A1 true, . . . , An true are associated with the current world, their
derivations are allowed to be partial in D.
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1. if · ` A true [C], then Γ ` A true [D]

2. if · ` C1 sat [C], then Γ ` C1 sat [D]

It is of crucial importance to observe that the above reflection principle involve
premises that are categorical, i.e., do not depend on any hypotheses. In the case of
supports, we reflect a proof of · ` C1 sat [C], and in the case of truth, we reflected
a proof of · ` A true [C], but neither of these judgments depends on Γ. Indeed,
reflecting a hypothetical proof would violate its hypothetical nature, because the op-
erations of substitution and reflection need not commute. Any sound way to combine
hypothetical reasoning embodied by substitution, with the non-hypothetical reason-
ing embodied by reflection, must impose that reflection is only used on categorical
proofs.

The hypothetical nature of the partial judgments is axiomatized by means of the
hypothesis rule

Γ, A true ` A true [D]

The corresponding substitution principle simply axiomatizes the definitional proper-
ties.

Principle (Substitution)

If Γ ` A true [C], then the following holds:

1. if Γ, A true ` B true [C], then Γ ` B true [C]

2. if Γ, A true ` D sat [C], then Γ ` D sat [C]

The partial judgments also require rules to witness that proofs can be derived
by reflection. We state the appropriate rules here, but repeat that each specific
application may define its own notions of supports and reflection. For each of these
applications, we will have to prove that reflection is sound, i.e., that the reflected
and the derived proof are witnessing one and the same judgment.

Γ ` C sat [D] · ` A true [C]

Γ ` A true [D]

Γ ` C sat [D] · ` C1 sat [C]

Γ ` C1 sat [D]

Just as in the case of total judgments, we can internalize the hypothetical depen-
dence between an antecedent and a conclusion by means of the new propositional
constructor of implication A → B. We say that Γ ` A → B true [C] if and only if
Γ, A true ` B true [C] implies Γ ` B true [C]. The new operator is axiomatized by
standard introduction and elimination rules.

Γ, A true ` B true [C]

Γ ` A→ B true [C]

Γ ` A→ B true [C] Γ ` A true [C]

Γ ` B true [C]

The local reduction and expansion are similar as in the case of total judgments.
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Γ, A true ` B true [C]

Γ ` A→ B true [C] Γ ` A true [C]

Γ ` B true [C]

=⇒R Γ ` B true [C]

Γ ` A→ B true [C] =⇒E

Γ ` A→ B true [C]

Γ, A true ` A→ B true [C] Γ, A true ` A true [C]

Γ, A true ` B true [C]

Γ ` A→ B true [C]

2.1.3 Relativized necessity

As illustrated by the previous sections, dealing with partial judgments and reflection
puts a special emphasis on proofs that are categorical, i.e., do not depend on any hy-
potheses. It therefore seems particularly fruitful for the theory of partial judgments
if we could separate the notions of categorical and hypothetical partial truth. Such
a development will have many important consequences. For one, we could clearly
specify that reflection may only be performed over categorical proofs, but not over
hypothetical ones. But most importantly, categorical partial truth may be inter-
nalized. As described in Section 2.1.1, supports and partial proofs are intended to
capture aspects of the metatheory of the truth judgment. If we internalize categorical
partial truth, that would provide a way to reason, within the logic itself, about the
metatheoretic properties represented by the supports.

Motivated by the need for this distinction, we employ here the theory of modal
logic and modal λ-calculus from Section 1.2. The idea is to introduce a separate
judgment

A nec [C]

of partial, or relativized necessity, to witness the categorical partial truth of · `
A true [C].

The intuition behind necessity in modal logic can be given using the notion of
possible worlds (Section 1.1.3). We imagine the existence of a set of worlds, intercon-
nected in some way, so that some worlds are accessible from the others. Any given
proposition may be true at a certain world, but need not be true elsewhere. In the
hypothetical judgment Γ ` A true, the set of antecedents describes the propositions
that are known to be true at the current world, and the conclusion A is deemed true
at the same world. Therefore, if A nec, then · ` A true, establishing the truth of
A in a generic world that we know nothing about. In other words, if A nec, then A
is true in all accessible worlds — necessity is universal quantification over accessible
worlds.

The intuition behind the relativized necessity is similar, except that now A nec [C]
is a witness that A is true in all accessible worlds in which C sat. Relativized necessity
is bounded universal quantification over accessible worlds. The reflection principles
can then be viewed as specialization of bounded universal quantification. Indeed, if
we have a proof that is valid in all worlds where C sat, by reflection we can modify
and specialize it to correspond to the current world.
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Just as in Section 1.1.3, the interesting development begins once we introduce
hypotheses of relativized necessity, and extend the judgments Γ ` C sat [D] and
Γ ` A true [C] into

∆; Γ ` C sat [D] and ∆;Γ ` A true [D]

where ∆ is the set of hypotheses B1 nec [C1], . . . , Bm nec [Cm], and Γ is the set of
hypotheses A1 true, . . . , An true. Of course, we treat the necessity and truth hy-
potheses in different ways. Recall from Section 1.1, that the truth hypotheses in the
hypothetical judgments are used only in a parametric way, by means of substitu-
tions. We adopt a similar requirement here. Given derivations of A1 true [D], . . . ,
An true [D], they may only be substituted to obtain derivations of C sat [D] and
A true [D], respectively. Such a restriction is not imposed on necessity hypotheses.
Derivations of B1 nec [C1], . . . , Bm nec [Cm] in fact witness categorical judgments
· ` B1 true [C1], . . . , · ` Bm true [Cm], and may therefore be reflected before substi-
tution.

Because relativized necessity is defined via the notion of partial truth, we do not
require a separate judgment for hypothetical relativized necessity ∆ ` A nec [C]. It
can already be expressed as ∆; · ` A true [C].

The support weakening principle for the new judgment is a straightforward ex-
tension of the principle from the previous section.

Principle (Support weakening)
Let C and D be well-formed supports with C v D. Then the following holds:

1. if ∆; Γ ` A true [C], then ∆; Γ ` A true [D]

2. if ∆; Γ ` C1 sat [C], then ∆; Γ ` C1 sat [D]

3. if ∆; Γ ` D sat [D1], then ∆; Γ ` C sat [D1]

The extensions of the reflection principle still allows reflection to be perform only over
derivations that are obtained in a categorical way. In the judgments ∆; Γ ` C sat [D]
and ∆;Γ ` A true [D], a derivation is categorical if it does not use the ordinary truth
hypotheses from Γ. However, a categorical derivation may use hypotheses from ∆,
because the hypotheses from ∆ themselves stand for other categorical derivations.
This leads to the following reflection principle.

Principle (Reflection)
If ∆; Γ ` C sat [D], then the following holds:

1. if ∆; · ` A true [C], then ∆; Γ ` A true [D]

2. if ∆; · ` C1 sat [C], then ∆; Γ ` C1 sat [D]

In the axiomatization of the judgment ∆; Γ ` A true [C], the hypothetical na-
ture of the judgment with respect to relativized necessity is made explicit by the
hypothesis rule below.

(∆, A nec[C]); Γ ` C sat [D]

(∆, A nec[C]); Γ ` A true [D]
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The rule is justified on the following grounds: a proof of A nec [C] is a proof of
the categorical judgment · ` A true [C], and hence may be reflected into a proof of
A true [D], given the evidence of C sat [D]. The corresponding substitution principle
follows the definition of the hypothetical judgment.

Principle (Substitution for relativized necessity)

If ∆; · ` A true [C], then the following holds:

1. if (∆, A nec[C]); Γ ` B true [D], then ∆; Γ ` B true [D]

2. if (∆, A nec[C]); Γ ` D′ sat [D], then ∆; Γ ` D′ sat [D]

We refer to this principle as a substitution principle, even though, strictly speaking,
there is no requirement that the derivation of ∆; · ` A true [C] must, in fact, be used
unmodified. The reason for this terminology is that, while categorical proofs may be
modified by reflection, reflection is really the only operation that may be used for
this purpose. Therefore, we may still consider the judgments parametric in necessity
hypotheses, except that the concept of a parametricity is now extended to admit a
limited and well-specified way to alter derivations. 2

Finally, we internalize the judgment of relativized necessity into the truth judg-
ment, by introducing a new operator on propositions �. Unlike in Section 1.1.3, this
time we have a whole family �C operators, in order to express bounded universal
quantification over accessible worlds. When the support C is 0, we will simply write
�A instead of �0A. The formation rule for the �C operator is as follows:

A prop C supp

�CA prop

with the introduction and elimination rules similar as before, but this time indexed
by supports.

∆; · ` A true [C]

∆; Γ ` �CA true [D]

∆; Γ ` �CA true [D] (∆, A nec[C]); Γ ` B true [D]

∆; Γ ` B true [D]

While the elimination rule above is justified simply on the grounds of the substitution
principle for necessary hypothesis, it is the introduction rule that is interesting, as it
embodies the definition of the relativized necessity. Indeed, �CA is true if and only
if A true [C] can be proved categorically. This motivates the erasure of the context
Γ from the premise of the rule. In contrast, notice that the support C persists in
the judgment. Unlike Γ which represents hypotheses that are local to the current
world, the support condition C has a global nature. On the other hand, while the
conclusion �CA is obtained in a total way, we allow weakening with an arbitrary
support D in order to conform with the support weakening principle.

2The following analogy may be illustrative. The parametricity of truth hypotheses requires that
the corresponding proofs be used as black boxes. The proofs can be substituted into desired positions,
but they must remain unmodified. On the other hand, proofs of necessity hypotheses are black boxes
whose functionality may be controlled by a well-specified interface C, but by no other means.
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Local soundness is justified on the grounds of the substitution principle for rela-
tivized necessity.

∆; · ` A true [C]

∆; · ` �CA true [D] (∆, A nec[C]); Γ ` B true [D]

∆; Γ ` B true [D]

=⇒R ∆;Γ ` B true [D]

Local completeness is witnessed by the local expansion similar to Section 1.1.3.

∆; Γ ` �CA true [D] =⇒E

∆; Γ ` �CA true [D]

C v C

(∆, A nec[C]); · ` C sat [C]

(∆, A nec[C]); · ` A true [C]

(∆, A nec[C]); Γ ` �CA true [D]

∆; Γ ` �CA true [D]

Note that the local expansion employs the following rule of the support judgment

C v D

∆;Γ ` C sat [D]

to derive that (∆, A nec[C]); · ` C sat [C].

Example 7 Let C and D be well-formed supports such that C v D. Then the
following derivation (which we denote by DA

C,D) is a valid derivation of the judgment
A nec[C]; · ` A true [D].

C v D

A nec[C]; · ` C sat [D]

A nec[C]; · ` A true [D]

We next use this derivation to establish that ` �CA→ �DA true.

�CA true ` �CA true

DA
C,D

A nec[C]; · ` A true[D]

A nec[C]; · true ` �DA true

�CA true ` �DA true

` �CA→ �DA true

We also establish the support-decorated versions of the customary axioms of con-
structive modal logic S4 (Section 1.1.3):

1. ` �CA→ A true [D], if C v D

2. ` �CA→ ��CA true

3. ` �C(A→ B)→ �CA→ �CB true
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Derivation of ` �CA→ A true [D].

�CA true ` �CA true [D]

DA
C,D

A nec[C]; · ` A true [D]

�CA true ` A true [D]

` �CA→ A true [D]

Derivation of ` �CA→ ��CA true.

�CA true ` �CA true

DA
C,C

A nec[C]; · ` A true [C]

A nec[C]; · ` �CA true

A nec[C]; · ` ��CA true

�CA true ` ��CA true

` �CA→ ��CA true

Derivation of ` �C(A→ B)→ �CA→ �CB true.

To reduce clutter, we split the derivation into two parts. First, we obtain the
derivation D′ for the simpler judgment (A→ B) nec [C];�CA true ` �CB true.

�
CA true `

�
CA true

DA→B
C,C

(A → B) nec [C]; · ` A → B true [C]

DA
C,C

A nec [C]; · ` A true [C]

(A → B) nec [C], A nec [C]; · ` B true [C]

(A → B) nec [C], A nec [C]; · `
�

CB true

(A → B) nec [C];
�

CA true `
�

CB true

We then use D′ to obtain a derivation of ` �C(A→ B)→ �CA→ �CB true.

�C(A→ B) true ` �C(A→ B) true
D′

A→ B nec [C]; �CA true ` �CB true

�C(A→ B) true, �CA true ` �CB true

�C(A→ B) true ` �CA→ �CB true

` �C(A→ B)→ �CA→ �CB true

�

2.1.4 Simultaneous possibility

The dual concepts to bounded universal quantification and relativized necessity, are
of course, bounded existential quantification, and the related notion of simultaneous
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possibility. Where relativized necessity expresses that a proposition A is true in all
worlds in which C sat, simultaneous possibility expresses that there exists a world
in which C sat and also A true. In order to formalize the notion of simultaneous
possibility, we introduce a new judgment 〈C,A〉 poss, and immediately generalize it
to its partial and hypothetical variant

∆; Γ ` 〈C,A〉 poss [D]

When C is the 0 support, we omit it from the notation and abbreviate simply as
∆; Γ ` A poss [D]. The intuition behind this judgment is to establish the derivability
of both ∆; Γ ` C sat [D] and ∆;Γ ` A true [D], but where the second derivation may
be obtained by means of reflection using the first derivation.

Being intuitively specified in terms of C sat and A true, the new judgment is
required to satisfy similar weakening, reflection and substitution principles.

Principle (Support weakening)
If ∆; Γ ` 〈C1, A〉 poss [C] and C v D, then ∆; Γ ` 〈C1, A〉 poss [D].

Principle (Reflection)
If ∆; Γ ` C sat [D] and ∆; · ` 〈C1, A〉 poss [C], then ∆; Γ ` 〈C1, A〉 poss [D].

Principle (Substitution for truth)
If ∆; Γ ` A true [C] and ∆; (Γ, A true) ` 〈D,B〉 poss [C], then

∆; Γ ` 〈D,B〉 poss [C].

Principle (Substitution for relativized necessity)
If ∆; · ` A true [C] and (∆, A nec[C]); Γ ` 〈C1, B〉 poss [D], then

∆; Γ ` 〈C1, B〉 poss [D].

There are four ways simultaneous possibility can be established, giving raise to
four basic definitional principles.

1. If ∆; Γ ` A true [C], then ∆; Γ ` A poss [C].

2. If ∆; Γ ` C sat [D] and ∆; · ` A true [C], then ∆; Γ ` 〈C,A〉 poss [D].

3. If ∆; Γ ` 〈C1, A〉 poss [D] and ∆;A true ` B true [C1], then
∆; Γ ` 〈C1, B〉 poss [D].

4. If ∆; Γ ` 〈C1, A〉 poss [D] and ∆;A true ` 〈C2, B〉 poss [C1], then
∆; Γ ` 〈C2, B〉 poss [D].

Principle (1) is justified by the fact that ∆; Γ ` 0 sat [C] always trivially holds.
Taken together with the assumed ∆;Γ ` A true [C], this ensures that the two judg-
ments simultaneously hold in the current world, and are therefore simultaneously
possible.
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To justify principle (2), observe that given C sat [D] and A true [C], we can obtain
A true [D] by reflection. The derivations are in the current world, and are therefore
simultaneously true. The required reflection, however, can only be performed if
A true [C] is derived in a categorical way. Hence the restriction that the judgment
∆; · ` A true [C] uses no truth hypotheses.

Principle (3) is justified by the following observation: if C1 sat and A true are
simultaneously possible, then there exists a world about which we know nothing,
except that C1 sat and A true can be derived in it. If we can use these two facts, but
nothing else, to conclude that B true in the very same world, then certainly C1 sat
and B true are simultaneously true in this world, and are therefore simultaneously
possible. If the possibility of C1 sat and A true is partial in D, so would be the
concluded possibility of C1 sat and B true.

The reasoning behind the principle (4) is similar. If C1 sat and A true are
simultaneously possible in some world, and we can use these two facts, but nothing
else, to conclude the simultaneous possibility of C2 sat and B true, then the later
two are certainly possible. If the possibility of C1 sat and A true is partial in D, so
is the concluded possibility of C2 sat and B true.

In order to internalize simultaneous possibility of C sat and A true, we introduce
the indexed family of operators 3CA for bounded existential quantification over
possible worlds. When the support C is 0, we will simply write 3A instead of 30A.
The appropriate formation rule is

A prop C supp

3CA prop

and the introduction rule defines the operator as an internalization of simultaneous
possibility.

∆; Γ ` 〈C,A〉 poss [D]

∆; Γ ` 3CA true [D]

The axiomatization of the possibility judgment itself reflects the definitional princi-
ples outlined previously. For example, the principles (1) and (2) are directly trans-
lated into the following derivation rules.

∆; Γ ` A true [C]

∆; Γ ` A poss [C]

∆; Γ ` C sat [D] ∆; · ` A true [C]

∆; Γ ` 〈C,A〉 poss [D]

There are two elimination rules for 3C , arising from the definitional principles (3) and
(4). However, instead of the hypothesis 〈C1, A〉 poss, these rules use the internalized
version 3C1

A true.

∆; Γ ` 3C1
A true [D] ∆;A true ` B true [C1]

∆; Γ ` 〈C1, B〉 poss [D]

∆; Γ ` 3C1
A true [D] ∆;A true ` 〈C2, B〉 poss [C1]

∆; Γ ` 〈C2, B〉 poss [D]
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Local soundness is established by two local reduction, which are justified by the
definitional principles (3) and (4). Local completeness and local expansion are also
simple to verify.

∆; Γ ` 〈C1, A〉 poss [D]

∆; Γ ` 3C1
A true [D] ∆; A true ` B true [C1]

∆; Γ ` 〈C1, B〉 poss [D]

=⇒R ∆; Γ ` 〈C1, B〉 poss [D]

∆; Γ ` 〈C1, A〉 poss [D]

∆; Γ ` 3C1
A true [D] ∆; A true ` 〈C2, B〉 poss [C1]

∆; Γ ` 〈C2, B〉 poss [D]

=⇒R ∆; Γ ` 〈C2, B〉 poss [D]

∆; Γ ` 3CA true [D] =⇒E

∆; Γ ` 3CA true [D] ∆; A true ` A true [C]

∆; Γ ` 〈C, A〉 poss [D]

∆; Γ ` 3CA true [D]

Finally, similar to Section 1.1.4, we also have the additional rule for eliminating �C

in the new possibility judgment

∆; Γ ` �CA true [D] (∆, A nec[C]); Γ ` 〈C2, B〉 poss [D]

∆; Γ ` 〈C2, B〉 poss [D]

Example 8 Let C, C1 and D be well-formed supports. Then the following are
support-decorated versions of the customary axioms of constructive modal logic S4
(Section 1.1.4):

1. ` A→ 3A true

2. ` 3C1
3CA→ 3CA true, for any C, C1

3. ` �C(A→ B)→ 3DA→ 3DB true, for C v D

Derivation of ` A→ 3A true.

A true ` A true

A true ` A poss

A true ` 3A true

` A→ 3A true
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Derivation of ` 3C1
3CA→ 3CA true.

3C1
3CA true ` 3C1

3CA true

3CA true ` 3CA true [C1] A true ` A true [C]

3CA true ` 〈C, A〉 poss [C1]

3C1
3CA true ` 〈C, A〉 poss

3C1
3CA true ` 3CA true

` 3C1
3CA→ 3CA true

Derivation of ` �C(A→ B)→ 3DA→ 3DB true.

In this case, we first establish the simpler judgment (A→ B) nec [C];3DA true `
〈B,D〉 poss. We will make use of the derivation DA→B

C,D for (A→ B) nec [C]; · ` A→
B true [D], exhibited in Example 7.

3DA true ` 3DA true

DA→B
C,D

(A→ B) nec [C]; · ` A→ B true [D] A true ` A true [D]

(A→ B) nec [C]; A true ` B true [D]

(A→ B) nec [C]; 3DA true ` 〈B, D〉 poss

We can now use the above derivation (call it D ′), to infer the required ` �C(A →
B)→ 3DA→ 3DB true.

�C(A→ B) true ` �C(A→ B) true

D′

(A→ B) nec [C]; 3DA true ` 〈B, D〉 poss

(A→ B) nec [C]; 3DA true ` 3DB true

�C(A→ B) true, 3DA true ` 3DB true

�C(A→ B) true ` 3DA→ 3DB true

` �C(A→ B)→ 3DA→ 3DB true

�

2.1.5 Names

One possible way to specify the notion of support for the modal logic of partial
judgments from Section 2.1.1 is by using names. Names are elements of a countable
universe N , and will be used as labels witnessing a certain fact about the derivability
of truth judgments. Every name from N is associated with some proposition, and
for each proposition itself there is a countable number of names associated with it.
When the name X is associated with the proposition A, we will write that as

typeof(X) = A.
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The semantics of this relation between X and A may be defined in various ways. For
example, a particularly simple definition – and this is the semantics of names that
we consider in this chapter – is to associate X with the existence of a derivation of
A true.

Having intuitively explained names, we define the notion of support as a finite
set of names. If the support C consists of names X1, . . . , Xn, then the condition
represented by C is the conjunction of the properties represented by each of the
names. For example, if X1, . . . , Xn are associated with propositions A1, . . . , An,
respectively, then the whole support C stands for the metatheoretic statement that
the judgments A1 true, . . . , An true are all derivable. In such a case, the partial
judgment

A true [X1, . . . , Xn]

simply expresses the fact that A is true, given the derivability of A1 true, . . . ,
An true.

Notice that propositions may now contain names, as names specify supports and
propositions in our modal logic depend on supports. A careless definition of the
typeof relation may thus create a circular dependency between names and propo-
sitions. While such a circular dependency may be desirable for some applications
(see Section 4.9 for an example), we disallow it for the time being, and require that
typeof is well-founded. The notion of well-foundedness will be made precise in the
next section, where we introduce a context Σ assigning names to propositions, and
require that each proposition in Σ may contain only names appearing to the left of
it.

In the presented formulation, names obviously very much resemble ordinary vari-
ables in hypothetical judgments from Chapter 1, but there are several notable dis-
tinctions between the two. First of all, ordinary variables in the hypothetical judg-
ments have local nature. Variables do not have meaning other than as placeholders
for proofs that eventually substitute them. On the other hand, names are global
and each name possesses an identity that persists across the worlds. This prop-
erty gives names a semantic significance independent from variables and proofs. For
example, name identity will play a role in Chapter 3, where different names will
define semantically different program expressions. Also, in Section 3.3 we will con-
sider polymorphism in supports, and universally quantify over arbitrary finite sets of
names. Similar impredicative quantification over parts of variable contexts will not
be available.

Second distinction between names and variables involves the process of reflection.
The only way a hypothetical proof depending on A1 true, . . . , An true may be
used is by substituting the proofs of A1 true, . . . , An true when these proofs are
available. This is necessary if we want to preserve the parametric nature of the
ordinary hypothetical judgments. No such restriction applies to names. Names are
a new feature, and we have more freedom in defining their semantics. In particular,
we will allow a categorical proof that is partial in X1, . . . , Xn to be modified by
reflection before it is used in some substitution. The process of reflection may be
specified in many ways, and in the forthcoming chapters we consider several different
definitions, each useful in its own right.

We remark on a yet further distinction along the same lines. While an ordinary
variable of type A in a hypothetical judgment must stand for a derivability of the
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judgment A true, such a requirement is not enforced on names. It is possible that
a name X with typeof(X) = A stands for the derivations of other judgments related
to the proposition A. For example, X may represent that A true is provable in a
specific way, so that the proof satisfies some particular properties or invariants (e.g.,
the proof uses only introduction, or only elimination rules). Or, perhaps, X may
even stand for the fact that 6` A true. Combined with modalities and reflection, this
provides a way to encode diverse aspects of the metareasoning about derivability.

Having defined the universe of supports as the set Pfin(N ), we also need to
establish a partial ordering on it. For the purposes of this section, if C and D are
two supports, we will consider

C v D if and only if C ⊆ D

Then the empty support set is the minimal support in this ordering, corresponding to
the support 0 from the previous section. At this point, we change our notation, and
denote the empty support set as (·) in order to distinguish the particular name-based
definition of support, from the abstract notion considered previously.

The new concrete support definition requires additional rules for support forma-
tion.

· supp

C supp

C,X supp

The axiomatization of the judgments ∆; Γ ` A true [C] and ∆;Γ ` C sat [D] now
proceeds in a mutually recursive way. The most important rule is

typeof(X) = A
(∗)

∆; Γ ` A true [C,X]

specifying that if the name X witnesses the derivability of A true, then we can
certainly conclude that A is true partially in X. Notice that we allow weakening
with an arbitrary support set C in the conclusion, in order to give rise to the support
weakening principle. On the other hand, ∆; Γ ` C sat [D] is axiomatized using the
following two rules:

C ⊆ D

∆;Γ ` C sat [D]

∆; Γ ` A true [D] ∆; Γ ` (C \X) sat [D] typeof(X) = A

∆;Γ ` C sat [D]

where we denote by C \ X the set-difference between C and {X}. The first of the
above rules serves to establish the basic causal dependence between supports – if D
represents a stronger condition than C, then trivially C sat [D]. The second rule
formalizes that the support C actually represents the conjunction of the conditions
associated with the names in C. Indeed, if C consists of names X1, . . . , Xn, where
typeof(Xi) = Ai, then ∆; Γ ` C sat [D] if and only if ∆; Γ ` Ai true [D] for every
i = 1, . . . , n.

2.1.6 Name-space management

A notable feature of the formulation of partial judgments from the previous section
is the global nature of names. Names are given once and for all, and are shared by
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all the worlds. For computational purposes, however, it is beneficial to introduce
the notion of local names. Local names can dynamically be generated during the
derivation; each generated name is fresh, i.e., different from all the names generated
so far. Also, each local name will have a scope within which it can be used, and
outside of which it is inaccessible.

In order to deal with the freshness of local names, we make the judgments hypo-
thetical in a yet another context – the context of generated names. This context will
associate each generated name with its type. For example, the new truth judgment
will now have the form

Σ;∆; Γ ` A true [C]

where Σ consists of X1:A1, . . . , Xn:An, associating the names X1, . . . , Xn with
propositions A1, . . . , An, respectively. We denote by dom(Σ) the set of names
{X1, . . . , Xn}. Notice that Σ is a dependently typed context, because each proposi-
tion may itself depend on names. Henceforth, we impose on Σ the typical require-
ments of dependent contexts. In particular, we assume that the names X1, . . . , Xn

are all different, and that each Xi may be used only to the right of its declaration.
For example, the name X1 may appear in the propositions A2, . . . , An, as well as in
∆, Γ, A and C, but not in A1. The name X2 may not appear in A1 and A2, but may
appear elsewhere, and so on. Furthermore, we insist that a name can be used in this
judgment only if it is actually declared in the name context Σ. Thus, we rephrase the
rule (∗) of the truth judgment from the previous section, which now has the form:

X:A ∈ Σ

Σ;∆; Γ ` A true [C,X]

While we insist that the judgment Σ;∆; Γ ` A true [C] is well-formed only if all its
names are declared in Σ, we allow a bit more leeway in defining what counts as a proof
of Σ;∆; Γ ` A true [C]. In particular, the intended meaning of Σ;∆; Γ ` A true [C]
is that there exists a name context Σ1 (well-formed relative to Σ), and a proof for
∆; Γ ` A true [C], such that the names contained in this proof are declared in Σ,Σ1

(even though ∆, Γ, A, and C must still use only the names from Σ, in order to be
well-formed). In this sense, a proof of the judgment Σ;∆; Γ ` A true [C] will be
a pair consisting of both Σ1 and a proof of ∆; Γ ` A true [C] satisfying the above
requirement.

Notice that the outlined semantics of name contexts to serve as lists of currently
generated names does allow the following structural properties. Here we use J as an
abbreviation for the ∆; Γ ` A true [C], and Σ ` J as an abbreviation for Σ;∆; Γ `
A true [C].

1. Name localization. Let X be a name that does not appear in J . Then
(Σ, X:A) ` J if and only if Σ ` J .

Indeed, if X is not used in J , then Σ ` J is well-formed. Furthermore any
context Σ′ ⊇ (Σ, X:A) is also Σ′ ⊇ Σ, and thus a proof of (Σ, X:A) ` J is also
a proof of Σ ` J .

2. Renaming. If (Σ, X:A,Σ′) ` J and the name Y is not used in Σ, Σ′, A, or J ,
then (Σ, Y :A, [Y/X]Σ′) ` ([Y/X]J).
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3. Weakening. If Σ ` J , and X is not used in J , then (Σ, X:A) ` J .

This principle is justified on the grounds of the previous principle for renaming.
Indeed, if Σ ` J , then there exists a name context Σ′ ⊇ Σ and a proof of J
using Σ′. If Σ′ does not declare X, then Σ′, X:A is a well-formed name context
and the proof of J uses Σ′, X:A. If Σ′ declared X then we can rename that
occurrence of X in both Σ′ and the supplied proof of J .

4. Exchange. Permutation of name contexts is allowed if it does not violate the de-
pendencies between names and the propositions associated with them. In other
words, if (Σ, X:A,Σ′,Σ′′) ` J , and X is not used in Σ′, then (Σ,Σ′, X:A,Σ′′) `
J .

Motivated by the exchange property, we proceed to abuse the notation and
treat name contexts as if they were multisets. In particular, we consider Σ ′

and Σ to be equal if they only differ by a dependency-preserving reordering.
Similarly, we write Σ′ ⊇ Σ, if Σ′ extends Σ (with possible name reordering).

Notice however that contraction is not something we require of a name context.
We want to preserve the distinction between names: if the judgment B true is derived
by reflection using two different names X:A and Y :A, there is no requirement that
the same derivation is produced if X and Y are simultaneously renamed into some
new name Z:A. In accordance with the renaming principle, both X and Y may
sometimes be renamed individually into Z, but not at the same time.

The judgments ∆; Γ ` C sat [D] and ∆;Γ ` 〈C,A〉 poss [D] are extended with Σ in
a similar way. For example, the rules for introduction and elimination of implication
in the truth judgment now have the form

Σ;∆; (Γ, A true) ` B true [C]

Σ;∆; Γ ` A→ B true [C]

Σ;∆; Γ ` A→ B true [C] Σ;∆; Γ ` A true [C]

Σ;∆; Γ ` B true [C]

The elimination rule deserves further discussion. From the premises, we know
that there exist name contexts Σ1 and Σ2, both well-formed relative to Σ, such that
the proof of ∆; Γ ` A → B [C] uses only Σ,Σ1, and the proof of ∆; Γ ` A [C] uses
only Σ,Σ2. By the substitution principle for truth, we may then produce a derivation
of ∆; Γ ` B true [C], which uses the names from Σ,Σ1,Σ2. This derivation, together
with the name context (Σ1,Σ2) is a witness of Σ;∆; Γ ` B true [C]. Notice that Σ1

and Σ2 may be assumed disjoint, by the renaming principle.
We also need to account for Σ in the judgments for formation of supports and

propositions, and extend them into Σ ` C supp and Σ ` A prop. The relevant rules
of the new judgments are listed below.
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Σ ` · supp

Σ ` C supp X ∈ dom(Σ)

Σ ` C,X supp

Σ ` A prop Σ ` C supp

Σ ` �CA prop

Σ ` A prop Σ ` C supp

Σ ` 3CA prop

As customary, we will implicitly assume that the proposition and supports in our
judgments for truth, necessity and possibility are always well-formed according to
the above rules.

The next step in the axiomatization of the judgment Σ;∆; Γ ` B true [C], is to
internalize the dependence of the conclusion B true on names from Σ. With that
goal, we introduce a new constructor on propositions A 9 B, with the following
formation rule.

Σ ` A prop Σ ` B prop

Σ ` A 9 B prop

The judgment A 9 B true should be provable if and only if B true can be proved
using an arbitrary fresh name of type A. In other words, we have the following
introduction rule.

(Σ, X:A);∆; Γ ` B true [C]

Σ;∆; Γ ` A 9 B true [C]

In this rule we assume that X is fresh, i.e. X does not appear in Σ, ∆, Γ, A, B, or
C. Notice that the exact identity of the name X is irrelevant, as long as X is one of
the unused names with typeof(X) = A. Indeed, by the renaming principle for names,
any chosen fresh name would have produced the same derivation. Furthermore,
because X does not appear in Σ, ∆, Γ, A, B, or C, it remains local to the proof of
∆; Γ ` B true [C].

If we can prove Σ;∆; Γ ` A 9 B true [C], then there exists a proof of ∆; Γ `
B true [C] that uses names from some context Σ′ ⊇ (Σ, X:A), where X is fresh. But
then Σ′ ⊇ Σ, and therefore the same derivation proves Σ;∆; Γ ` B true [C] as well.
This reasoning gives rise to the following elimination rule for A 9 B.

Σ;∆; Γ ` A 9 B true [C]

Σ;∆; Γ ` B true [C]

The local reduction for the new type operator is justified by the name localization
principle, because of the assumption that X does not appear in Σ, ∆, Γ, B, C.

(Σ, X:A);∆; Γ ` B true [C]

Σ;∆; Γ ` A 9 B true [C]

Σ;∆; Γ ` B true [C]

=⇒R Σ;∆; Γ ` B true [C]
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The local expansion is justified by the weakening principle

Σ;∆; Γ ` A 9 B true [C] =⇒E

Σ;∆; Γ ` A 9 B true [C]

Σ;∆; Γ ` B true [C]

(Σ, X:A);∆; Γ ` B true [C]

Σ;∆; Γ ` A 9 B true [C]

2.1.7 Summary

We conclude this section with a summary of the system with names, as presented
thus far. We postpone proving its properties until Section 2.2 where we introduce
a proof-term calculus for the judgments. Proof terms will give us a way to describe
explicitly the process of reflection, and will provide a concrete notation for developing
our metatheory.

Names X,Y ∈ N
Supports C,D ::= · | C,X
Propositions A,B ::= P | A→ B | A 9 B | �CA | 3CA
True hypothesis Γ ::= · | Γ, A true
Necessary hypothesis ∆ ::= · | ∆, A nec[C]
Name context Σ ::= · | Σ, X:A

Name contexts Σ are dependent contexts, because types may depend on names.
Thus, we impose the following restriction on well-formed name contexts Σ: a name
declared in Σ may be used in the types appearing to the right of its declaration,
but not to the left. This ensures that no circular dependences are created in Σ, and
thus the relationship between names and their corresponding types is well-founded.
Similarly, propositional contexts ∆ and Γ can only contain types and supports that
are well-formed with respect to a given name context Σ.

The described restrictions are imposed by means of the judgment for formation
of name contexts, ` Σ ok, which in turn recursively depends on the judgments for
formation of supports Σ ` C supp, and propositions Σ ` A prop. In the later two
judgments, it is implicitly assumed that Σ is a well-formed name context.

Definition of ` Σ ok.

` Σ ok ` Σ ok Σ ` A prop X 6∈ dom(Σ)

` (Σ, X:A) ok

Definition of Σ ` C supp.

Σ ` · supp

Σ ` C supp X ∈ dom(Σ)

Σ ` C, X supp
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Definition of Σ ` A prop.

Σ ` P prop

Σ ` A prop Σ ` B prop

Σ ` A → B prop

Σ ` A prop Σ ` B prop

Σ ` A � B prop

Σ ` A prop Σ ` C supp

Σ `
�

CA prop

Σ ` A prop Σ ` C supp

Σ ` 3CA prop

We also require formation judgments for propositional contexts ∆ and Γ. These
judgments are defined in a straightforward way.

Definition of Σ ` Γ ok.

Σ ` · ok Σ ` Γ ok Σ ` A prop

Σ ` (Γ, A true) ok

Definition of Σ ` ∆ ok.

Σ ` · ok Σ ` ∆ ok Σ ` A prop Σ ` C supp

Σ ` (∆, A nec[C]) ok

The second group of judgments establishes partial truth Σ;∆; Γ ` A true [C], par-
tial support Σ;∆; Γ ` C sat [D], and simultaneous possibility Σ;∆; Γ ` 〈C,A〉 poss [D].

Definition of Σ;∆; Γ ` C sat [D].

C ⊆ D

Σ; ∆; Γ ` C sat [D]

Σ; ∆; Γ ` A true [D] Σ; ∆; Γ ` (C \ X) sat [D] X:A ∈ Σ

Σ; ∆; Γ ` C sat [D]

Σ; ∆; Γ ` C sat [D] Σ; ∆; · ` C1 sat [C]

Σ; ∆; Γ ` C1 sat [D]

Definition of Σ;∆; Γ ` A true [C].

X:A ∈ Σ

Σ; ∆; Γ ` A true [C, X]

Σ; ∆; Γ ` C sat [D] Σ; ∆; · ` A true [C]

Σ; ∆; Γ ` A true [D]

Σ; ∆; (Γ, A true) ` A true [C]
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Σ; ∆; (Γ, A true) ` B true [C]

Σ; ∆; Γ ` A → B true [C]

Σ; ∆; Γ ` A → B true [C] Σ; ∆; Γ ` A true [C]

Σ; ∆; Γ ` B true [C]

Σ; (∆, A nec[C]); Γ ` C sat [D]

Σ; (∆, A nec[C]); Γ ` A true [D]

Σ; ∆; · ` A true [C]

Σ; ∆; Γ `
�

CA true [D]

Σ; ∆; Γ `
�

CA true [D] Σ; (∆, A nec[C]); Γ ` B true [D]

Σ; ∆; Γ ` B true [D]

(Σ, X:A); ∆; Γ ` B true [C]

Σ; ∆; Γ ` A � B true [C]

Σ; ∆; Γ ` A � B true [C]

Σ; ∆; Γ ` B true [C]

Definition of Σ;∆; Γ ` 〈C,A〉 poss [D].

Σ; ∆; Γ ` A true [C]

Σ; ∆; Γ ` A poss [C]

Σ; ∆; Γ ` C sat [D] Σ; ∆; · ` A true [C]

Σ; ∆; Γ ` 〈C, A〉 poss [D]

Σ; ∆; Γ ` 〈C, A〉 poss [D]

Σ; ∆; Γ ` 3CA true [D]

Σ; ∆; Γ ` 3C1
A true [D] Σ; ∆; A true ` B true [C1]

Σ; ∆; Γ ` 〈C1, B〉 poss [D]

Σ; ∆; Γ ` 3C1
A true [D] Σ; ∆; A true ` 〈C2, B〉 poss [C1]

Σ; ∆; Γ ` 〈C2, B〉 poss [D]

Σ; ∆; Γ `
�

CA true [D] Σ; (∆, A nec[C]); Γ ` 〈C2, B〉 poss [D]

Σ; ∆; Γ ` 〈C2, B〉 poss [D]

2.2 Modal ν-calculus

2.2.1 Partial judgments and proof terms

In this section, we develop a proof-term system for the modal logic of partial judg-
ments, which we call the modal ν-calculus. The presentation will closely follow the
development and methodology of the modal λ-calculus from Section 1.2. Each of
the judgments ∆; Γ ` C sat [D], ∆; Γ ` A true [C], and ∆;Γ ` 〈C,A〉 poss [D] de-
fined in the previous sections, is now decorated with proof terms, and has the form
∆;Γ ` 〈Θ〉 : [C] ⇒ [D], ∆; Γ ` e : A [C], and ∆;Γ ` f ÷C A [D], respectively. As
can be noticed, we now have three separate syntactic categories that serve to encode
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proofs of our judgments.

1. Expressions are ranged over by e, and serve as proofs for partial truth and
partial necessity.

2. Phrases are ranged over by f , and serve to witness simultaneous possibility.

3. Explicit substitutions are ranged over by Θ, and serve as proof objects for the
support judgment C sat [D]. Correspondingly, they will be used to witness
derivation of proofs by reflection.

The assumptions from contexts ∆ and Γ are now labeled with variables. We write
x:A and u::A[C] to denote that x stands for a proof of A true and that u stands for
a proof of A nec[C], respectively. Just as in Section 1.2, we will refer to variables
x as ordinary or value variables, and to variables u as modal variables. The usual
assumptions of variable contexts apply here as well: variables declared in ∆ and Γ are
considered different, and we tacitly employ α-renaming to guarantee this invariant.

We start with the formulation of the λ-calculus fragment of the system. The
development is fairly standard. The decorated version of the hypothesis rule of the
truth judgment has the form

∆; (Γ, x:A) ` x:A [C]

The associated substitution principle is also customary. Because the judgments
∆; Γ ` f ÷D A [C] and ∆;Γ ` 〈Θ〉 : [D] ⇒ [C] are defined in a mutually recur-
sive fashion with the truth judgment, we list here the substitution principles for
value variables for all three judgments.

Principle (Value substitution)

Let ∆; Γ ` e1 : A [C]. Then the following holds:

1. if ∆; (Γ, x:A) ` e2 : B [C], then ∆; Γ ` [e1/x]e2 : B [C]

2. if ∆; (Γ, x:A) ` 〈Θ〉 : [D]⇒ [C], then ∆; Γ ` 〈[e1/x]Θ〉 : [D]⇒ [C]

3. if ∆; (Γ, x:A) ` f ÷D A [C], then ∆; Γ ` [e1/x]f ÷D A [C]

The rules for implication introduction and elimination are annotated using λ-
abstraction and application, respectively, and the local soundness and completeness
are witnessed by local reduction and expansion on proof terms.

∆; (Γ, x:A) ` e : B [C]

∆; Γ ` λx:A. e : A→ B [C]

∆; Γ ` e1 : A→ B [C] ∆; Γ ` e2 : A [C]

∆; Γ ` e1 e2 : B [C]

(λx:A. e1) e2 =⇒R [e2/x]e1

e : A→ B [C] =⇒E λx:A. (e x) where x not free in e
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Of course, the most important development in this section concerns names, par-
tiality and the treatment of reflection. In order to define the notion of proof for the
judgment of partial truth, we allow names into the syntactic category of expression.
Thus, for example, using names to derive partial truth is now formalized by the
following rule.

typeof(X) = A

∆;Γ ` X : A [C,X]

The justification for this rule is as follows. If X is associated with the proposition A,
then it stands for a proof of A true. Thus, we may use X itself as a proof of A true,
which is partial in X. Notice that we allow weakening with an arbitrary support C,
in order to provide for the support weakening principle.

Principle (Support weakening)

Let C ⊆ D be two supports. Then the following holds.

1. if ∆; Γ ` e : A [C], then ∆; Γ ` e : A [D]

2. if ∆; Γ ` 〈Θ〉 : [C1]⇒ [C], then ∆; Γ ` 〈Θ〉 : [C1]⇒ [D]

3. if ∆; Γ ` 〈Θ〉 : [D]⇒ [C1], then ∆; Γ ` 〈Θ〉 : [C]⇒ [C1]

4. if ∆; Γ ` f ÷C1
A [C], then ∆; Γ ` f ÷C1

A [D]

Associated with the notion of partial proofs is the reflection principle as a way
to remove or replace the support of a given derivation. In Section 2.1, we used the
judgment C sat [D] to formalize when a support C may be replaced by the support D
in any given derivation of partial truth. A proof-annotated version of this judgment
has the form ∆;Γ ` 〈Θ〉 : [C] ⇒ [D], where Θ belongs to the syntactic category of
explicit substitution.

Definition 4 (Explicit substitution, its domain and range)
An explicit substitution Θ is a finite partial function from names to expressions. If
Θ maps names X1, . . . , Xn into expressions e1, . . . , en, respectively, we represent it
using the following set-theoretic notation

Θ = {X1 → e1, . . . , Xn → en}

The domain and range of the explicit substitution Θ are defined as

dom(Θ) = {X | X → e ∈ Θ}

and

range(Θ) = {e | X → e ∈ Θ}

The set fv(Θ) of free variables of Θ is the set of free variables of expressions in
range(Θ). The set fn(Θ) of free names of Θ is the set of names in the domain and
range of Θ. The empty substitution is denoted as 〈 〉.
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Having defined explicit substitutions, we may now use them to axiomatize the
judgment ∆; Γ ` 〈Θ〉 : [C] ⇒ [D], which is the annotated version of the judgment
∆; Γ ` C sat [D] from Section 2.1.2. Observe that the judgment enforces the func-
tional nature of explicit substitutions, as it prohibits that any given name be defined
more than once by the substitution.

C ⊆ D

∆;Γ ` 〈 〉 : [C]⇒ [D]

∆; Γ ` e : A [D] ∆; Γ ` 〈Θ〉 : [C \X]⇒ [D] typeof(X) = A

∆;Γ ` 〈X → e,Θ〉 : [C]⇒ [D]

Every explicit substitution Θ determines a function [[Θ]] from names to expres-
sions, defined as follows.

[[Θ]](X) =

{
e if X → e ∈ Θ
X otherwise

This function can also be uniquely extended to a new function {Θ} that acts over
arbitrary expressions and phrases. We will define this function explicitly in Sec-
tion 2.2.3, once we introduce all the expression constructors of the ν-calculus. Here
we just present several typical rules.

{Θ} X = [[Θ]](X)
{Θ} x = x
{Θ} λx:A. e = λx:A. {Θ}e x 6∈ fv(Θ)
{Θ} e1 e2 = {Θ}e1 {Θ}e2

Given two explicit substitutions Θ and Θ′, we can define the operation of substi-
tution composition Θ ◦ Θ′, so that {Θ ◦ Θ′} is a composition of functions {Θ} and
{Θ′}. We also postpone the definition of this operation until Section 2.2.3.

The operation {Θ} is the crucial part of the ν-calculus, because it describes how
expressions are reflected, i.e. transformed from proofs of categorical partial judgments
into proofs of total judgments. For example, if e is an expression such that ` e : A [C],
and 〈Θ〉 : [C] ⇒ [ ], then reflection of e under Θ is defined as {Θ}e, and it will be
the case that {Θ}e : A. The typing properties of reflected categorical proofs are
established by the following explicit substitution principle, which is the equivalent of
the reflection principles in the logic of partial judgments.

Principle (Explicit substitution)

Let ∆; Γ ` 〈Θ〉 : [C]⇒ [D]. Then the following holds:

1. if ∆; · ` e : A [C], then ∆; Γ ` {Θ}e : A [D]

2. if ∆; · ` 〈Θ1〉 : [C1]⇒ [C], then ∆; Γ ` 〈Θ ◦Θ1〉 : [C1]⇒ [D]

3. if ∆; · ` f ÷C1
A [C], then ∆; Γ ` {Θ}f ÷C1

A [D]
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Because modal variables stand for proof expressions that are subject to reflection,
the hypothesis rule for modal variables must specify the explicit substitutions that
will guide the reflection. The annotated version of this rule has the following form.

(∆, u::A[C]); Γ ` 〈Θ〉 : [C]⇒ [D]

(∆, u::A[C]); Γ ` 〈Θ〉u : A [D]

As can be noticed, each use of modal variable u is now paired up with an explicit
substitution Θ (and when Θ is the empty substitution, we will abbreviate 〈Θ〉u sim-
ply as u). The above rule realizes a form of elimination for the bounded universal
quantification that is embodied by relativized necessitation. Indeed, if u::A[C] stands
for a proof that A true in any world in which C sat, and we have an explicit substi-
tution Θ proving that C sat [D] in the current world, then A true [D] must hold in
the current world. The proof of the later, however, is obtained by reflection.

This intuition gives rise to the new operation of modal substitution [[e/u]]e ′, which
substitutes the categorical proof e for u in e′. However, e may first be reflected, i.e.
modified in accordance with the explicit substitutions that are paired up with the
occurrences of u in e′. The new operation is defined by induction on the structure of
e′. Again, we postpone the complete definition for Section 2.2.3, where we introduce
all of our language constructs. Here we present the two most important cases, which
illustrate the gist of the operation of modal substitution.

[[e/u]]〈Θ〉u = {[[e/u]]Θ}e

[[e/u]]〈Θ〉v = 〈[[e/u]]Θ〉v u 6= v

It is essential to observe in these equations that substituting e for u in the term 〈Θ〉u
actually applies {[[e/u]]Θ} to e. This explicit substitution exactly carries out the
process of reflection mentioned above – the categorical expression e is reflected before
it is substituted for u. Reflection of categorical expressions is what differentiates
modal substitution from the ordinary value substitution. Ordinary value substitution
treats the substituted expressions parametrically, and is not allowed to modify them
in any way.

Principle (Modal substitution)
Let ∆; · ` e : A [C]. Then the following holds:

1. if (∆, u::A[C]); Γ ` e2 : B [D], then ∆; Γ ` [[e1/u]]e2 : B [D]

2. if (∆, u::A[C]); Γ ` 〈Θ〉 : [D′]⇒ [D], then ∆; Γ ` 〈[[e1/u]]Θ〉 : [D′]⇒ [D]

3. if (∆, u::A[C]); Γ ` f ÷C1
B [D], then ∆; Γ ` [[e1/u]]f ÷C1

B [D]

The introduction and elimination rules for relativized modal necessity operator
use the box and let box proof term constructors, just like in the modal λ-calculus.

∆; · ` e : A [C]

∆; Γ ` box e : �CA [D]

56



CHAPTER 2. PARTIAL MODAL LOGIC 2.2. MODAL ν-CALCULUS

∆;Γ ` e1 : �CA [D] (∆, u::A[C]); Γ ` e2 : B [D]

∆; Γ ` let box u = e1 in e2 : B [D]

However, in the ν-calculus, the local reduction is realized by means of the new
operation of modal substitution [[e1/u]]e2.

let box u = e1 in e2 =⇒R [[e1/u]]e2 : B [D]

The local expansion still has the same form as in Section 1.1.3.

e : �CA [D] =⇒E let box u = e in box u

Example 9 Let X be a name of type A. Then the term T defined as

let box u = (box X) in box (λy:A. 〈X → y〉u)

is well-typed, of type �(A→ A). The β-reduction of T is computed as

[[X/u]](box (λy:A. 〈X → y〉u))

= box (λy:A. {X → y}X)

= box (λy:A. y)

�

Example 10 Let C and D be well-formed supports such that C ⊆ D. Then the
following are valid typings in the modal ν-calculus.

1. (∆, u::A[C]); Γ ` u : A [D]

2. ∆; Γ ` λx. let box u = x in box u : �CA→ �DA

3. ∆; Γ ` λx. let box u = x in u : �CA→ A [D]

4. ∆; Γ ` λx. let box u = x in box box u : �CA→ ��CA

5. ∆; Γ ` λx. λy. let box u = x in let box v = y in box u v
: �C(A→ B)→ �CA→ �CB

�

The proof annotation of the judgment for simultaneous possibility starts with the
following two rules.

∆; Γ ` e : A [C]

∆; Γ ` e ÷ A [C]

∆; Γ ` 〈Θ〉 : [C]⇒ [D] ∆; · ` e : A [C]

∆; Γ ` [Θ, e] ÷C A [D]

The first rule follows the definitional property (1) of simultaneous possibility
from Section 2.1.4. If a proposition A is true in the current world, then A is possible
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(simultaneously with the empty support). If the witness for the truth of A is the
expression e, then e witnesses the possibility of A as well.

The second rule above is justified by the definitional property (2) of simultaneous
possibility. The rule prescribes the pair [Θ, e] as a witness for simultaneous truth of
∆; Γ ` C sat [D] and ∆;Γ ` A true [D]. In this pair, Θ is a proof of ∆; Γ ` C sat [D],
and e is a proof for ∆; · ` A true [C]. By reflection, these two can obtain a derivation
of ∆; Γ ` A true [D]. Notice that e has to be typed with an empty context Γ, in
order to enable reflection.

The introduction rule for 3C uses the phrase constructors dia to internalize the
judgment for simultaneous modal possibility, just like in the modal λ-calculus from
Section 1.1.4.

∆; Γ ` f ÷C A [D]

∆; Γ ` dia f : 3CA [D]

The elimination rules for simultaneous possibility follow the inference rules from
Section 2.1.4. We have two different let forms, which serve as proof terms corre-
sponding to two different definitional properties. For definitional property (3), we
use let cdia x = e1 in e2, where e2 is an expression; for the definitional property
(4), we use let dia x = e1 in f where f is a phrase. As customary in the judgments
for possibility, we also have a term constructor let box u = e in f , that serves to
eliminate relativized necessity in the judgment for simultaneous possibility.

∆; Γ ` e1 : 3C1
A [D] ∆;x:A ` e2 : B [C1]

∆; Γ ` let cdia x = e1 in e2 ÷C1
B [D]

∆; Γ ` e : 3C1
A [D] ∆;x:A ` f ÷C2

B [C1]

∆; Γ ` let dia x = e in f ÷C2
B [D]

∆; Γ ` e : �CA [D] (∆, u::A[C]); Γ ` f ÷C1
B [D]

∆; Γ ` let box u = e in f ÷C1
B [D]

Example 11 Let C, C1, D be well-formed supports such that C ⊆ D. Then the
following are valid typings in the modal ν-calculus.

1. ∆; Γ ` λx. dia x : A→ 3A

2. ∆; Γ ` λx. dia (let dia y = x in let cdia z = y in z) : 3C1
3CA→ 3CA

3. ∆; Γ ` λx. λy. let box u = x in dia (let cdia z = y in u z)
: �C(A→ B)→ 3DA→ 3DB

�
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The local reductions and expansions are

let cdia x = dia f1 in e =⇒R 〈〈f1/x〉〉e

let dia x = dia f1 in f =⇒R 〈〈f1/x〉〉f

e : 3C [D] =⇒E dia (let cdia x = e in x)

where the two operations 〈〈f1/x〉〉e and 〈〈f1/x〉〉f are defined by induction on the
structure of f1 as follows.

〈〈e1/x〉〉e = [e1/x]e

〈〈[Θ, e1]/x〉〉e = [Θ, ([e1/x]e)]

〈〈let cdia y = e1 in e2/x〉〉e = let cdia y = e1 in [e2/x]e

〈〈let dia y = e1 in f2/x〉〉e = let dia y = e1 in 〈〈f2/x〉〉e

〈〈let box u = e1 in f2/x〉〉e = let box u = e1 in 〈〈f2/x〉〉e

〈〈e1/x〉〉f = [e1/x]f

〈〈[Θ, e1]/x〉〉f = {Θ}φ([e1/x]f)

〈〈let cdia y = e1 in e2/x〉〉f = let dia y = e1 in [e2/x]f

〈〈let dia y = e1 in f2/x〉〉f = let dia y = e1 in 〈〈f2/x〉〉f

〈〈let box u = e1 in f2/x〉〉f = let box u = e1 in 〈〈f2/x〉〉f

We emphasize in the above definition the most characteristic case, which defines the
value of 〈〈let cdia y = e1 in e2/x〉〉f to be let dia x = e1 in [e2/x]f . Notice how
the elimination form was changed from let cdia in the argument of the substitution,
to let dia in the result.

The operation {Θ}φ applies the substitution Θ to an argument phrase and thus
realizes the reflection principle for phrases. It is defined by induction on the structure
of the argument phrase, using the operation {Θ} of substitution on expressions.

{Θ}φe = {Θ}e

{Θ}φ[Θ1, e] = [Θ ◦Θ1, e]

{Θ}φ(let cdia x = e1 in e2) = let cdia x = {Θ}e1 in e2

{Θ}φ(let dia x = e1 in f2) = let dia x = {Θ}e1 in f2

{Θ}φ(let box u = e1 in f2) = let box u = {Θ}e1 in {Θ}φf2

Notice here that we only apply {Θ}φ in the body of let box, but not in the bodies
of the other let forms. This fact closely corresponds to the presented typing rules for
simultaneous possibility and is therefore important for the soundness of the calculus.
Indeed, when compared to the other let forms, the rule for let box is the only one
using the same support D in both of the premises. Because the explicit substitution
Θ may change the support of a phrase it is applied to, we must apply Θ to both
the branch and the body of the let box in order to preserve the equality of their
supports.
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In the following sections, we will omit the index φ on the operation {Θ}φ, and
simply write {Θ}, just as we do in the case of explicit substitutions on expressions.
Which of the two substitutions is intended will always be clear from the context.

Example 12 Let X and Y be names of type A, and let e1, e2 be expressions such
that e1 : A, e2 : A→ A. Consider the phrase f defined as

f = let dia y = dia [〈X → e1〉, X ] in [〈X → e2 (X), Y → y〉, Y ].

The phrase f is well-typed, with f ÷X,Y A. The β-reduction of f is computed as

{X → e1}([X/y][〈X → e2 (X), Y → y〉, Y ])

= {X → e1}[〈X → e2 (X), Y → X〉, Y ]

= [(X → e1) ◦ (X → e2 (X), Y → X), Y ]

= [〈X → e2 (e1), Y → e1〉, Y ]

�

Principle (Phrase substitution)
If ∆; Γ ` f1 ÷C1

A [D], then the following holds:

1. if ∆;x:A ` e : B [C1], then ∆; Γ ` 〈〈f1/x〉〉e ÷C1
B [D].

2. if ∆;x:A ` f ÷C2
B [C1], then ∆; Γ ` 〈〈f1/x〉〉f ÷C2

B [D].

2.2.2 Name-space management

In Section 2.1.6, we decorated the judgments with the additional name context Σ, in
order to establish a discipline for dynamic introduction of names into derivation. For
example, the partial truth judgment Σ;∆; Γ ` A true [C] was defined to hold if and
only if: (1) the names appearing in ∆, Γ, A and C are all listed with their types in
Σ, and (2) there exists a name context Σ′ = (Σ,Σ1), and a proof of ∆; Γ ` A true [C]
which uses only the names from Σ′.

As a consequence of this semantics, it follows that a proof for the judgment
Σ;∆; Γ ` A true [C] should in fact consist of a name context Σ1 and an expression e
such that (Σ,Σ1) is a well-formed name context, and e is a proof of of the judgment
∆; Γ ` A true [C], under the restriction that e only uses names in (Σ,Σ1). The
proof-annotated version of this judgment has the form

Σ;∆; Γ ` Σ1. e : A [C]

and it holds if and only if e is an expression such that fn(e) ⊆ dom(Σ,Σ1) and
∆;Γ ` e : A [C], and ∆, Γ, Σ1, A and C are well-formed with respect to Σ. In the
sense of this definition, it may be said that Σ1 declares the names that are local to
the expression e.

The definition of the annotated judgment obviously motivates the following ver-
sions of the structural properties from the previous section.
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1. Name localization. Let X be a name that does not appear in ∆, Γ, B and C.
Then (Σ, X:A);∆; Γ ` Σ1. e : B [C] if and only if Σ;∆; Γ ` (X:A,Σ1). e : B [C].

2. Renaming. If (Σ, X:A,Σ′);∆; Γ ` Σ1. e : B [C], and the name Y is fresh, i.e. it
does not appear anywhere in the above judgment, then

(Σ, Y :A, [Y/X]Σ′); [Y/X]∆; [Y/X]Γ ` ([Y/X]Σ1). [Y/X]e : ([Y/X]B) [[Y/X]C]

3. Weakening. If Σ;∆; Γ ` Σ1. e : B [C], and X 6∈ dom(Σ1), then (Σ, X:A);∆; Γ `
Σ1. e : B [C].

Since the names appearing in the judgment are now declared in the name context,
we rephrase the rules to take this into account. In particular, instead of having the
rule

typeof(X) = A

∆;Γ ` X : A [C,X]

we can now introduce the following formulation.

X:A ∈ Σ

Σ;∆; Γ ` Σ1. X : A [C,X]

The other rules should be appropriately changed as well. For example, the old rule
for application substituted with

Σ;∆; Γ ` Σ1. e1 : A→ B [C] Σ;∆; Γ ` Σ2. e2 : A [C]

Σ;∆; Γ ` Σ1,Σ2. e1 e2 : B [C]
.

Here we assume the disjointness of Σ1 and Σ2, which is justified by the renaming
principle. The rest of the inference rules are updated following the same pattern.

In the case of introduction and elimination rules for the type A 9 B, we need to
introduce new proof terms νX:A. e and choose e, as follows.

(Σ, X:A);∆; Γ ` Σ1. e : B [C]

Σ;∆; Γ ` Σ1. (νX:A. e) : A 9 B [C]

Σ;∆; Γ ` Σ1. e : A 9 B [C]

Σ;∆; Γ ` Σ1. choose e : B [C]

In the introduction rule it is assumed that X is a fresh name, that is, X 6∈ dom(Σ,Σ1).
The exact identity of X is not important – as ensured by the renaming principle, any
unused name X such that as typeof(X) = A may be chosen. This observation justifies
the proof term νX:A. e which actually binds the name X and allows α-renaming X
into other unused names.

The local soundness of the new rules is established by the following local reduc-
tion, which we present in a form of a derivation tree.

(Σ, X:A);∆; Γ ` Σ1. e : B [C]

Σ;∆; Γ ` Σ1. (νX:A. e) : A 9 B [C]

Σ;∆; Γ ` Σ1. choose νX:A. e : B [C]

=⇒R Σ;∆; Γ ` (Σ1, X:A). e : B [C]

or in a more compact form, using proof terms:

Σ1. choose νX:A. e =⇒R (Σ1, X:A). e X − fresh
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The local reduction is justified by the strengthening principle. Indeed, if Σ1. e is
a witness for (Σ, X:A);∆; Γ ` B true [C], then ∆; Γ ` e : B [C], and X does not
appear in ∆, Γ, B or C. By definition, this is sufficient to ensure that (Σ1, X:A). e
is a witness for Σ;∆; Γ ` B true [C] as well.

Local completeness is established by local elimination as follows.

Σ;∆; Γ ` Σ1. e : A 9 B [C] =⇒E

Σ;∆; Γ ` Σ1. e : A 9 B [C]

Σ;∆; Γ ` Σ1. choose e : B [C]

(Σ, X:A);∆; Γ ` Σ1. choose e : B [C]

Σ;∆; Γ ` Σ1. (νX:A. choose e) : A 9 B [C]

or in a short form:

Σ1. e =⇒E Σ1. νX:A. choose e

The expanded derivation is justified by the weakening principle and name local-
ization, which allows us to conclude (Σ, X:A);∆; Γ ` (Σ1, X:A). choose e : B [C]
out of Σ;∆; Γ ` Σ1. choose e : B [C], under the assumption that Y is fresh, i.e.
X 6∈ dom(Σ,Σ1).

Observe that the names appearing in the expression e such that ∆; Γ ` e : A [C]
can always be recovered by simply inspecting e. Strictly speaking, therefore, it is
not really necessary that the rules of our judgments explicitly carry the second name
context Σ1. We can always keep Σ1 implicit, and only rely on Σ to declare which
names can be used in a well-formed judgment. Thus, we abbreviate the notation,
and instead of

Σ;∆; Γ ` Σ1. e : A [C]

simply write

(Σ,Σ1);∆; Γ ` e : A [C]

The introduction and elimination rules for A 9 B now have the following form.

(Σ, X:A);∆; Γ ` e : B [C]

Σ;∆; Γ ` νX:A. e : A 9 B [C]

Σ;∆; Γ ` e : A 9 B [C]

Σ;∆; Γ ` choose e : B [C]

It is important, however, to remember that this is just an abbreviation for the
old judgment. The name context Σ′, while made implicit, remains explicit in the
local reduction, and will therefore have a computational import. Once we ascribe
operational semantics to the ν-calculus, Σ′ will serve as a run-time context that lists
the currently generated names. It will be used to determine which names are fresh
and can therefore be introduced next time a fresh name is needed.

On a related note, the local reduction associated with the type constructor 9

will itself have a computational meaning – that of introducing a fresh name into the
computation. In the usual formulation of calculi for fresh name generation [PS93,
PG00, Ode94] , this operation is not related to a β-reduction, but is formulated
by a separate language construct. In this respect, our formulation is closer to the
λ-calculus, where computational content is always reserved for β-reduction.

Just as it is customary in λ-calculus to abbreviate the expression (λx. e2) (e1),
with let val x = e1 in e2, we can introduce a similar abbreviation in case of choose

62



CHAPTER 2. PARTIAL MODAL LOGIC 2.2. MODAL ν-CALCULUS

and ν. For example, we define a new expression constructor let name X:A in e to
stand for

(let name X:A in e) = choose (νX:A. e)

The typing rule for let name is appropriately derived as

(Σ, X:A);∆; Γ ` e : B [C]

Σ;∆; Γ ` let name X:A in e : B [C]

A similar constructor is introduced in the syntactic category of phrases, with the
following typing rule.

(Σ, X:A);∆; Γ ` f ÷C B [D]

Σ;∆; Γ ` let name X:A in f ÷C B [D]

In both of these rules, it is assumed that X is a fresh name, i.e. that X 6∈ dom(Σ).

2.2.3 Summary and structural properties

Syntax

The syntax of the modal ν-calculus is summarized in the table below. We assume
a countable universe of names, and use X, Y and variants to range over names.
Similarly, we have a countable set of ordinary variables (ranged over by x, y, z), and
a countable set of modal variables (ranged over by u, v, w). We also use P to range
over base types of the logic.

Supports C,D ::= · | C,X
Types A,B ::= P | A→ B | A 9 B | �CA | 3CA
Explicit substitutions Θ ::= · | X → e,Θ
Expressions e ::= X | x | 〈Θ〉u | λx:A. e | e1 e2

| box e | let box u = e1 in e2

| νX:A. e | choose e
| dia f

Phrases f ::= e | [Θ, e] | let cdia x = e1 in e2

| let dia x = e in f | let box u = e in f
Ordinary contexts Γ ::= · | Γ, x:A
Modal contexts ∆ ::= · | ∆, u::A[C]
Name context Σ ::= · | Σ, X:A

Type system

The type system consists of two groups of judgments. The first group establishes the
well-formedness of name contexts ` Σ ok, supports Σ ` C supp, types Σ ` A type,
as well as modal contexts Σ ` ∆ ok and ordinary variable contexts Σ ` Γ ok.

The second group consists of the typing judgments for substitutions Σ;∆; Γ `
〈Θ〉 : [C]⇒ [D], expressions Σ;∆; Γ ` e : A [C], and phrases Σ;∆; Γ ` f ÷C A [D].
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Definition of ` Σ ok.

` Σ ok ` Σ ok Σ ` A type X 6∈ dom(Σ)

` (Σ, X:A) ok

Definition of Σ ` C supp.

Σ ` · supp

Σ ` C supp X ∈ dom(Σ)

Σ ` C, X supp

Definition of Σ ` A type.

Σ ` P type

Σ ` A type Σ ` B type

Σ ` A → B type

Σ ` A type Σ ` B type

Σ ` A � B type

Σ ` A type Σ ` C supp

Σ `
�

CA type

Σ ` A type Σ ` C supp

Σ ` 3CA type

We also require formation judgments for variable contexts ∆ and Γ. These judg-
ments are defined in a straightforward way.

Definition of Σ ` Γ ok.

Σ ` · ok Σ ` Γ ok Σ ` A type x 6∈ dom(Γ)

Σ ` (Γ, x:A) ok

Definition of Σ ` ∆ ok.

Σ ` · ok Σ ` ∆ ok Σ ` A type Σ ` C supp u 6∈ dom(∆)

Σ ` (∆, u::A[C]) ok

Next we proceed with the definition of the typing judgments for substitutions
Σ;∆; Γ ` 〈Θ〉 : [C] ⇒ [D], for expressions Σ;∆; Γ ` e : A [C], and for phrases
Σ;∆; Γ ` f ÷C A [D]. We implicitly assume that all types, supports and contexts
and well-formed.

Definition of Σ;∆; Γ ` 〈Θ〉 : [C]⇒ [D].

C ⊆ D

Σ; ∆; Γ ` 〈 〉 : [C] ⇒ [D]

Σ; ∆; Γ ` e : A [D] Σ; ∆; Γ ` 〈Θ〉 : [C \ X] ⇒ [D] X:A ∈ Σ

Σ; ∆; Γ ` 〈X → e, Θ〉 : [C] ⇒ [D]
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Definition of Σ;∆; Γ ` e : A [C].

X:A ∈ Σ

Σ; ∆; Γ ` X : A [X, C] Σ; ∆; (Γ, x:A) ` x : A [C]

Σ; (∆, u::A[C]); Γ ` 〈Θ〉 : [C] ⇒ [D]

Σ; (∆, u::A[C]); Γ ` 〈Θ〉u : A [D]

Σ; ∆; (Γ, x:A) ` e : B [C]

Σ; ∆; Γ ` λx:A. e : A → B [C]

Σ; ∆; Γ ` e1 : A → B [C] Σ; ∆; Γ ` e2 : A [C]

Σ; ∆; Γ ` e1 e2 : B [C]

Σ; ∆; · ` e : A [D]

Σ; ∆; Γ ` box e :
�

DA [C]

Σ; ∆; Γ ` e1 :
�

DA [C] Σ; (∆, u::A[D]); Γ ` e2 : B [C]

Σ; ∆; Γ ` let box u = e1 in e2 : B [C]

(Σ, X:A); ∆; Γ ` e : B [C]

Σ; ∆; Γ ` νX:A. e : A � B [C]

Σ; ∆; Γ ` e : A � B [C]

Σ; ∆; Γ ` choose e : B [C]

Definition of Σ;∆; Γ ` f ÷C A [D].

Σ; ∆; Γ ` e : A [C]

Σ; ∆; Γ ` e ÷ A [C]

Σ; ∆; Γ ` 〈Θ〉 : [C] ⇒ [D] Σ; ∆; · ` e : A [C]

Σ; ∆; Γ ` [Θ, e] ÷C A [D]

Σ; ∆; Γ ` f ÷C A [D]

Σ; ∆; Γ ` dia f : 3CA [D]

Σ; ∆; Γ ` e1 : 3C1
A [D] Σ; ∆; x:A ` e2 : B [C1]

Σ; ∆; Γ ` let cdia x = e1 in e2 ÷C1
B [D]

Σ; ∆; Γ ` e : 3C1
A [D] Σ; ∆; x:A ` f ÷C2

B [C1]

Σ; ∆; Γ ` let dia x = e in f ÷C2
B [D]

Σ; ∆; Γ ` e :
�

C1
A [D] Σ; (∆, u::A[C1]); Γ ` f ÷C2

B [D]

Σ; ∆; Γ ` let box u = e in f ÷C2
B [D]

Structural properties

As explained in Section 2.2.1, every explicit substitution can be uniquely extended
to a function over arbitrary expressions and phrases. The definition below formally
describes this operation.
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Definition 5 (Substitution application)
Given a substitution Θ, the operations {Θ}ηe and {Θ}φf for applying Θ over the
expression e or a phrase f , are defined by induction on the structure of e and f as
given below. Substitution application is capture-avoiding.

In the future text, we will omit the subscripts η and φ, and denote both operations
simply as {Θ}. It will always be possible to disambiguate between them from the
context in which they are used.

{Θ}η X = [[Θ]](X)
{Θ}η x = x
{Θ}η (〈Θ1〉u) = 〈Θ ◦Θ1〉u
{Θ}η (λx:A. e1) = λx:A. {Θ}ηe1 x 6∈ fv(Θ)
{Θ}η (e1 e2) = {Θ}ηe1 {Θ}ηe2

{Θ}η (box e1) = box e1

{Θ}η (let box u = e1 in e2) = let box u = {Θ}ηe1 in {Θ}ηe2 u 6∈ fv(Θ)
{Θ}η (νX:A. e1) = νX:A. {Θ}ηe1 X 6∈ fn(Θ)
{Θ}η (choose e1) = choose {Θ}ηe1

{Θ}η (dia f1) = dia {Θ}φf1

{Θ}φ e1 = {Θ}ηe1

{Θ}φ [Θ1, e1] = [Θ ◦Θ1, e1]
{Θ}φ let cdia x = e1 in e2 = let cdia x = {Θ}ηe1 in e2 x 6∈ fv(Θ)

{Θ}φ let dia x = e1 in f2 = let dia x = {Θ}ηe1 in f2 x 6∈ fv(Θ)

{Θ}φ let box u = e1 in f2 = let box u = {Θ}ηe1 in {Θ}φf2 u 6∈ fv(Θ)

An important aspect of the above definition is that substitution application does
not recursively descend under box. This property is important for the soundness of
the calculus as it preserves the distinction between the categorical and hypothetical
proofs. It is also justified, as applying explicit substitution Θ to the expression e is
intended to replace the names which are in the support of e, and names appearing
under box do not contribute to the support.

The operation of substitution application depends upon the operation of substi-
tution composition Θ1 ◦Θ2, which we define next.

Definition 6 (Composition of substitutions)
Given two substitutions Θ1 and Θ2, their composition Θ1 ◦Θ2 is the set

Θ1 ◦Θ2 = {X → {Θ1}([[Θ2]](X)) | X ∈ dom(Θ1) ∪ dom(Θ2)}

It will occasionally be beneficial to represent this set as a disjoint union of two
smaller sets Ψ1 and Ψ2 defined as:

Ψ1 = {X → [[Θ1]] (X) | X ∈ dom(Θ1) \ dom(Θ2)}

Ψ2 = {X → {Θ1}([[Θ2]] (X)) | X ∈ dom(Θ2)}

It is important to notice that, though the definitions of substitution applica-
tion and substitution composition are mutually recursive, both operations are well
founded. Substitution application is defined inductively over the structure of its ar-
gument, so the size of terms on which it operates is always decreasing. Computing
Θ1 ◦Θ2 only requires applying Θ1 to subterms in Θ2.
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Lemma 7
Let Θ1,Θ2,Θ3 be explicit substitutions. Then the following holds:

1. {Θ1}({Θ2}e) = {Θ1 ◦Θ2}e, for every expression e

2. {Θ1}({Θ2}f) = {Θ1 ◦Θ2}f , for every phrase f

3. Θ1 ◦ (Θ2 ◦Θ3) = (Θ1 ◦Θ2) ◦Θ3, for every explicit substitution Θ3.

Proof: By simultaneous induction on the structure of e, f and Θ3. We present the
characteristic cases.

case e = 〈Θ〉u. By definition, {Θ1}({Θ2}e) = 〈Θ1 ◦ (Θ2 ◦Θ)〉u. By second induc-
tion hypothesis, this is equal to 〈(Θ1 ◦Θ2) ◦Θ〉u = {Θ1 ◦Θ2}e.

case f = [Θ′, e]. Then {Θ1}({Θ2}f) = {Θ1}[Θ2 ◦Θ′, e] = [Θ1 ◦ (Θ2 ◦Θ′), e] =
{Θ1 ◦Θ2}f .

case Θ3 = (X 7→ e,Θ′). Let Z be an arbitrary name.

If Z = X, then {Θ1}([[Θ2 ◦Θ3]](Z)) = {Θ1}({Θ2}e). By first induction hy-
pothesis, this is equal to {Θ1 ◦Θ2}e = {Θ1 ◦Θ2}([[Θ3]](Z)).

If Z 6= X, then {Θ1} [[Θ2 ◦Θ3]](Z) = {Θ1} [[Θ2 ◦Θ′]](Z), but it is also {Θ1 ◦
Θ2} [[Θ3]](Z) = {Θ1 ◦Θ2} [[Θ

′]](Z). By second induction hypothesis, Θ1 ◦ (Θ2 ◦
Θ′) = (Θ1 ◦ Θ2) ◦ Θ′, and therefore {Θ1} [[Θ2 ◦Θ′]](Z) = {Θ1 ◦ Θ2} [[Θ

′]](Z).
Therefore, {Θ1} [[Θ2 ◦Θ3]](Z) = {Θ1 ◦Θ2} [[Θ3]](Z), thus concluding the proof.

�

We will frequently blur the distinction between a substitution Θ, and its corre-
sponding function [[Θ]], and write Θ(X) instead of [[Θ]](X), or {Θ}(X). Represen-
tations of substitutions that differ only in the ordering of the assignment pairs are
considered to define equal substitutions.

Theorem 8 (Structural properties)
The following are the structural properties of the judgment Σ;∆; Γ ` e : A [C].
Similar properties hold for Σ;∆; Γ ` 〈Θ〉 : [C]⇒ [D] and Σ;∆; Γ ` f ÷C A [D], but
we omit these for simplicity.

1. Context weakening Let Σ ⊆ Σ′, ∆ ⊆ ∆′ and Γ ⊆ Γ′. If Σ;∆; Γ ` e : A [C], then
Σ′;∆′; Γ′ ` e : A [C].

2. Contraction on variables

(a) if Σ;∆; (Γ, x:A, y:A) ` e : A [C], then Σ;∆; (Γ, w:A) ` [w/x,w/y]e : A [C]

(b) if Σ; (∆, u::A[C1], v::A[C1]); Γ ` e : A [C], then
Σ; (∆, w::A[C1]); Γ ` [w/u,w/v]e : A [C].

3. Renaming If (Σ, X:A,Σ1);∆; Γ ` e : B [C], and the name Y :A is fresh, then

(Σ, Y :A, [Y/X]Σ1); [Y/X]∆; [Y/X]Γ ` [Y/X]e : ([Y/X]B) [[Y/X]C]
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Proof: By straightforward induction on the structure of the derivations. �

Theorem 9 (Support weakening)
Support weakening is covariant on the right-hand side and contravariant on the left-
hand side of the judgments. More formally, let C ⊆ D ⊆ dom(Σ) be well-formed
supports. Then the following holds:

1. if Σ;∆; Γ ` e : A [C], then Σ;∆; Γ ` e : A [D]

2. if Σ;∆; Γ ` 〈Θ〉 : [C1]⇒ [C], then Σ;∆; Γ ` 〈Θ〉 : [C1]⇒ [D]

3. if Σ;∆; Γ ` f ÷C1
A [C], then Σ;∆; Γ ` f ÷C1

A [D]

4. if Σ; (∆, u::A[D]); Γ ` e : B [C1], then Σ; (∆, u::A[C]); Γ ` e : B [C1]

5. if Σ;∆; Γ ` 〈Θ〉 : [D]⇒ [C1], then Σ;∆; Γ ` 〈Θ〉 : [C]⇒ [C1]

6. if Σ; (∆, u::A[D]); Γ ` f ÷C1
B [C2], then Σ; (∆, u::A[C]); Γ ` f ÷C1

B [C2]

Proof: The first three statements are proved by simultaneous induction on the
structure of their derivations. The last three statements are also proved by simulta-
neous induction on the structure of their respective derivations, but are independent
of the first three. �

Theorem 10 (Explicit substitution principle)
Let Σ;∆; Γ ` 〈Θ〉 : [C]⇒ [D]. Then the following holds:

1. if Σ;∆; Γ ` e : A [C] then Σ;∆; Γ ` {Θ}e : A [D]

2. if Σ;∆; Γ ` 〈Θ′〉 : [C1]⇒ [C], then Σ;∆; Γ ` 〈Θ ◦Θ′〉 : [C1]⇒ [D]

3. if Σ;∆; Γ ` f ÷C1
A [C], then Σ;∆; Γ ` {Θ}f ÷C1

A [D]

Proof: By simultaneous induction on the structure of the derivations. Proving
the first and the third statement is easy. For the second induction hypothesis, let
Ψ = Θ ◦Θ′. We split Ψ into two disjoint sets:

Ψ′
1 = {X → Θ(X) | X ∈ dom(Θ) \ dom(Θ′)}

Ψ′
2 = {X → {Θ}(Θ′(X)) | X ∈ dom(Θ′)}

Let X:A. It suffices to show that

(a) if X 6∈ dom(Ψ) and X ∈ C1, then X ∈ D

(b) if X → e ∈ Ψ, then Σ;∆; Γ ` e : A [D]

To establish (a), observe that X 6∈ dom(Ψ) implies X 6∈ dom(Θ) and X 6∈
dom(Θ′), by definition. If X 6∈ dom(Θ′) and X ∈ C1, then X ∈ C by the typing of
Θ′. If X 6∈ dom(Θ) and X ∈ C, then X ∈ D, by the typing of Θ.

To establish (b), we need to consider two cases: (1) X → e ∈ Ψ′
1 and (2)

X → e ∈ Ψ′
2. In case (1), by the typing of Θ, we immediately have Σ;∆; Γ ` e : A [D].

In case (2), there exists a term e′ such that X → e′ ∈ Θ′ and e = {Θ}e′. By the
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typing of Θ′, we have Σ;∆; Γ ` e′ : A [C]. Because e′ is a subterm of Θ′, we can apply
the first induction hypothesis to obtain Σ;∆; Γ ` {Θ}e′ : A [D]. This concludes the
proof, since e = {Θ}e′. �

The following theorem is a version of the substitution principle for truth, deco-
rated with explicit proof terms in the judgments.

Theorem 11 (Value substitution principle)
Let Σ;∆; Γ ` e1 : A [C]. Then the following holds:

1. if Σ;∆; (Γ, x:A) ` e2 : B [C], then Σ;∆; Γ ` [e1/x]e2 : B [C]

2. if Σ;∆; (Γ, x:A) ` 〈Θ〉 : [C1]⇒ [C], then Σ;∆; Γ ` 〈[e1/x]Θ〉 : [C1]⇒ [C]

3. if Σ;∆; (Γ, x:A) ` f ÷C1
B [C], then Σ;∆; Γ ` [e1/x]f ÷C1

B [C]

Proof: By simultaneous induction on the first derivation in each of the three state-
ments. �

Definition 12 (Modal substitution)
Given an expression e and a modal variable u, we define the operations [[e/u]]η,
[[e/u]]σ and [[e/u]]φ of capture-avoiding substitutions of e for u in expressions, explicit
substitutions and phrases, respectively. The operations are defined in a mutually
recursive way, as presented below. Note that in the first clause of the definition,
substituting e for u in 〈Θ〉u is defined to actually carry out the explicit substitution.

In the future text, we will omit the indexes and denote all the operations simply
as [[e/u]]. The operations could always be disambiguated from the context in which
they are used.

[[e/u]]η 〈Θ〉u = {[[e/u]]σΘ}e

[[e/u]]η 〈Θ〉v = 〈[[e/u]]σΘ〉v u 6= v

[[e/u]]η x = x

[[e/u]]η X = X

[[e/u]]η λx:A. e1 = λx:A. [[e/u]]ηe1 x 6∈ fv(e)

[[e/u]]η e1 e2 = [[e/u]]ηe1 [[e/u]]ηe2

[[e/u]]η box e1 = box [[e/u]]ηe1

[[e/u]]η let box v = e1 in e2 = let box v = [[e/u]]ηe1 in [[e/u]]ηe2 v 6∈ fv(e)

[[e/u]]η νX:A. e1 = νX:A. [[e/u]]ηe1 X 6∈ fn(e)

[[e/u]]η choose e1 = choose ([[e/u]]ηe1)

[[e/u]]η dia f = dia ([[e/u]]φf)

[[e/u]]σ (·) = (·)
[[e/u]]σ (X → e1,Θ) = (X → [[e/u]]ηe1, [[e/u]]σΘ)

[[e/u]]φ e1 = [[e/u]]ηe1

[[e/u]]φ [Θ, e1] = [[[e/u]]σΘ, [[e/u]]ηe1]

[[e/u]]φ let cdia x = e1 in e2 = let cdia x = [[e/u]]ηe1 in [[e/u]]ηe2 x 6∈ fv(e)

[[e/u]]φ let dia x = e1 in f2 = let dia x = [[e/u]]ηe1 in [[e/u]]φf2 x 6∈ fv(e)

[[e/u]]φ let box v = e1 in f2 = let box v = [[e/u]]ηe1 in [[e/u]]φf2 v 6∈ fv(e)
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The following theorem is a version of the substitution principle for relativized
necessity.

Theorem 13 (Modal substitution principle)
Let Σ;∆; · ` e1 : A [C]. Then the following holds:

1. if Σ; (∆, u::A[C]); Γ ` e2 : B [D], then Σ;∆; Γ ` [[e1/u]]e2 : B [D]

2. if Σ; (∆, u::A[C]); Γ ` 〈Θ〉 : [C1]⇒ [D], then Σ;∆; Γ ` 〈[[e1/u]]Θ〉 : [C1]⇒ [D]

3. if Σ; (∆, u::A[C]); Γ ` f ÷C1
B [D], then Σ;∆; Γ ` [[e1/u]]f ÷C1

B [D]

Proof: By simultaneous induction on the two derivations. �

Definition 14 (Phrase substitution)
The operations 〈〈f1/x〉〉e and 〈〈f1/x〉〉f of substituting the phrase f1 into an expression
e or another phrase f2 are defined by induction on the structure of f as follows.

〈〈e1/x〉〉e = [e1/x]e

〈〈[Θ, e1]/x〉〉e = [Θ, ([e1/x]e)]

〈〈let cdia y = e1 in e2/x〉〉e = let cdia y = e1 in [e2/x]e

〈〈let dia y = e1 in f2/x〉〉e = let dia y = e1 in 〈〈f2/x〉〉e

〈〈let box u = e1 in f2/x〉〉e = let box u = e1 in 〈〈f2/x〉〉e

〈〈e1/x〉〉f = [e1/x]f

〈〈[Θ, e1]/x〉〉f = {Θ}([e1/x]f)

〈〈let cdia y = e1 in e2/x〉〉f = let dia y = e1 in [e2/x]f

〈〈let dia y = e1 in f2/x〉〉f = let dia y = e1 in 〈〈f2/x〉〉f

〈〈let box u = e1 in f2/x〉〉f = let box u = e1 in 〈〈f2/x〉〉f

Observe in the case of 〈〈let cdia y = e1 in e2/x〉〉f that the elimination form changes
from let cdia in the argument of the substitution, to let dia in the result.

The following theorem establishes that our calculus indeed satisfies the substitu-
tion principle for possibility from Section 2.2.1.

Theorem 15 (Phrase substitution principle)
If Σ;∆; Γ ` f1 ÷C1

A [D], then the following holds:

1. if Σ;∆;x:A ` e : B [C1], then Σ;∆; Γ ` 〈〈f1/x〉〉e ÷C1
B [D].

2. if Σ;∆;x:A ` f ÷C2
B [C1], then Σ;∆; Γ ` 〈〈f1/x〉〉f ÷C2

B [D].

Proof: By straightforward induction on the structure of f1. We just present a
selected case when f1 = let cdia y = e1 in e2. In this case, by assumption Σ;∆; Γ `
e1 : 3C1

A1 [D], and Σ;∆; y:A1 ` e2 : A [C1].

To establish the first statement, recall that Σ;∆;x:A ` e : B [C1]. Then by the
value substitution principle, Σ;∆; y:A1 ` [e2/x]e : B [C1]. According to the typing
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rule for let cdia, Σ;∆; Γ ` let cdia y = e1 in [e2/x]e ÷C1
B [D], which was required

to prove.

The proof of the second statement is similar. By assumption, Σ;∆;x:A ` f ÷C2

B [C1], and by the value substitution principle, Σ;∆; y:A1 ` [e2/x]f ÷C2
B [C1]. The

conclusion now follows by the typing rule for let dia. �

2.3 Notes

Related and future work on names

The work that explicitly motivated the developments presented in this dissertation
is described in the series of papers on Nominal Logic and FreshML [GP02, PG00,
Pit01, Gab00, SPG03]. The names of Nominal Logic are introduced as the urele-
ments of Fraenkel-Mostowski set theory. FreshML is a language for manipulation of
object syntax with binding structure based on this model. Its primitive notion is
that of swapping of two names which is then used to define the operations of name
abstraction (producing an α-equivalence class with respect to the abstracted name)
and name concretion (providing a specific representative of an α-equivalence class).

In FreshML, the name X is in a support of the expression e if the denotation of e
changes when X is permuted with some other name. In the early versions of FreshML
(now called FreshML 2000), the type system keeps track and infers the complement of
the expression’s support. In most cases, this not-in-the-support relation commutes
with the expression constructors. Thus, the above semantic definition of support
can informally be approximated by the following syntactic criterion: if X is a name
appearing in the expression e, then the support of e will contain X, unless X occurs
in dead code or is otherwise abstracted using the construct for name abstraction. An
exceptional case appears in the treatment of functional abstractions: a name X is
not in the support of the function e if it is not in the support of any free variable of e.
In FreshML 2000, names are introduced into the computation by new X in e which
is roughly equivalent to our let name X in e. The typing rule for new X in e
requires that X does not appear in the support of e. This way, the type system
prevents unabstracted names from escaping the scope of their introducing new.

Keeping track of supports in the type system significantly simplifies FreshML
2000 when compared to some previous calculi that use names. For example, the cal-
culus of Pitts and Stark [PS93] studies the interaction between names (here treated
as ML references of unit type), but unlike FreshML 2000, it does not track sup-
ports of expressions, and does not insist that X is absent from the support of e in
new X in e. As a consequence, the resulting language is effectful, and has a very
involved equational theory. In the current versions of FreshML, supports are elimi-
nated from the type system for practical reasons, and hence the impurities described
by Pitts and Stark are again allowed (albeit, the notion of support is still important
in the metatheory of FreshML). In the modal ν-calculus, rather than eliminating sup-
ports from the type system, we will consider polymorphic abstractions over supports,
as described in Section 3.3.

The λν-calculus of [Ode94] introduces a somewhat different idea for treating
names, characterized by reductions that push the name declaration inside other term
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constructors. A typical reduction rule in λν would be paraphrased in the notation
of ν

�

as

let name X in (λx. e) 7−→ λx. let name X in e

Just like the calculus of Pitts and Stark, λν does not keep track of which names
appear in the terms. As a consequence, it does not possess the usual progress and
preservation properties, as well-typed expressions in λν may get stuck. A typical
example is the expression νX. X, which does not denote any value.

All these cited name calculi are designed with the goal of providing the operation
of equality on names. In contrast to this goal, our modal ν-calculus uses names
primarily as a way of describing supports, i.e. as a way of specifying the partiality of
expressions. In fact, names in the modal ν-calculus are second-class objects – they
cannot be passed as arguments to other functions, and may not be tested for equality
directly.

The reason for second-class names has to do with the fact that names in the modal
ν-calculus may be ascribed an arbitrary type; a dynamic introduction of a name of
type A into a computation serves as a dynamic extension of the type A. Such an
extension may render partial the previously defined functions with domain A. We
discuss this issue in more detail in Section 3.2.3, where we define an operational
semantics for the modal ν-calculus.

This is not to say that names cannot be tested for equality indirectly. As will be
explained in Section 3, expressions of the type �CA may be interpreted as syntactic
expression with free variables listed in the set C. In Section 3.4, we exploit this
feature, and make some initial steps toward extending the ν-calculus with pattern-
matching against syntactic expressions. Since the syntactic expressions may contain
names, this will provide an indirect way to test for name equality.

Of course, other ways to extend the ν-calculus with first-class names and name
equality may be possible. For example, it may be interesting to define a new type
constructor

N : Type→ Type,

so that N(A) classifies all the names of type A. The question then becomes how
names interact with the modal operators. Of course, it is likely that all the difficulties
from the name calculi with first-class names (like the ν-calculus of [PS93]) will still
be present. We leave this research direction as an important future work.

Even when dealing with second-class names, it seems possible that other ap-
proaches may be employed for dynamic name management. For example, the variable
declaration u::A [C] may be viewed as binding the names listed in C, so that these
names have scope local to the explicit substitutions associated to u. This idea has
been employed in [NPP03] to define a dependently typed calculus for representing
metavariables in logical frameworks.

Ancona and Moggi in their recent work [AM04], motivated by the ν-calculus also
use indexed modal types to encapsulate nameful expressions. This systems employs
resolvers to specify the rebinding of names. Resolvers are similar to our explicit
substitutions, except that resolver variables are also admitted, and box is a binder
for resolver variables. Names are generated by a separate monadic construct, but
are not ascribed with a type at generation time. Rather, names are more similar to
labels in record calculi, as each name can be used with many different types.
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In this dissertation, we deliberately separate name generation from other lan-
guage constructs, and give names global semantic identity. In other words, a name
appearing in support of a type is not local to that type, but may appear in other
types and expressions as well. This will help avoid excessive renaming and rebinding.
Moreover, in Chapter 4, we will consider effectful computations where names cor-
respond to particular memory locations and exceptions. In practice today memory
locations and exceptions posses global identity in the above sense, so our approach
will faithfully capture this aspect of effects.

Related and future work on contexts and partiality in modal logic

Since the most important semantic model of modal logic considers truth of propo-
sitions relative to various worlds, it should not be a surprise that modal logic and
partiality are so closely related. This is especially true of the first-order modal logics
with equality (and also of higher-order modal logics), where the research questions
of interest are typically concerned with reasoning with and about individuals that
– in an appropriate sense – do not really exist. Derivations produced in this way
are partial in the existence at the given world of the individuals in question. The
names from the modal ν-calculus serve to specify the partiality condition, and thus
may be seen as a simplification (appropriate for the propositional partial CS4 that
we investigate) of the more general concept of an individual. In this sense, names
resemble the non-rigid designators considered by Fitting and Mendelsohn in [FM99],
names of Kripke [Kri80], and the virtual individuals of Scott [Sco70], but also touch
on the issues of existence and identity explored in [Sco79].

Frequently, modal reasoning is only valid under a certain set of hypotheses, i.e.
a context. A context need not include only the existence of individuals, but may
contain more general propositions. The study of contexts as first-class logical object
has been initiated by McCarthy [McC93], and we also list the work of Attardi and
Simi [AS95] as a continuation of this line of research. Most of the work on formalizing
contexts has been carried out in a classical setting, but there are also efforts related
to intuitionistic logic, like the recent work of de Paiva [dP03].

It may be particularly convenient to address the mentioned distinction between
the partiality in individuals and the partiality in propositions within the framework
of a modal type theory. As an illustration – and a rather far-fetched one, currently
– consider the following example.

Let X : real be an indeterminate number, for which we assume that X 2 = −1.
Such a real number clearly does not exist, and we may easily derive falsehood by
instantiating with X the universal quantification ∀x:real. x2 ≥ 0. However, as argued
by Scott in [Sco79], it may still be useful to use the fact that X 2 = −1 in order to
derive X3 = −X or X4 + X2 = 0, without stipulating that these equalities are
inconsistent.

If we had a modal theory with names, then perhaps the described equations
may be obtained by using the following two names: the name X : real to stand for
the indeterminate number, and the name P : Proof(X 2 = −1) to stand for a non-
existent proof that X2 = −1. It is important that X and P are names, rather than
ordinary variable. Variables only stand for individuals and proofs of appropriate type
that exist, while names may remain partial. Using X, P and the usual arithmetic
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properties of real numbers, we can then easily produce a proof Q so that

Q : Proof(X3 = −X) [X,P ]

As expected, this proof would be partial in X and P , and could be turned into a
total proof only if witnesses for X and P are exhibited. This partial derivation will
actually not be inconsistent, as the proposition ∀x:real. x2 ≥ 0 may not be used to
derive contradiction. In this proposition, the universal quantification is over existing
real numbers. Because X is a name of type real, it does not stand for any element
of type real, and thus it cannot be used to instantiate the universal quantifier.
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Chapter 3

Staged computation and

metaprogramming

3.1 Introduction

Staging is a programming technique for explicitly dividing a computation in order
to exploit early availability of some arguments [Ers77, GJ95, DP01]. For example,
consider filtering a set of points to see on which side of a line defined by two points
they lie. This is a typical test used in many convex hull algorithms. The test can
be staged by first forming the line and its normal, and then checking the position of
each point from the set. Such a staged test obviates the need to repeat the part of
the computation pertinent to the normal whenever a new point is tested, and can
potentially save a lot of work.

Because it is often quite cumbersome to design programs that fully exploit the
natural stage separation of their arguments, it is very desirable for a programming
language to provide support for early detection and reporting of staging errors. As
an illustration, let us look at the exponentiation function, presented below in ML-like
notation.

fun exp1 (n : int) (x : int) : int =

if n = 0 then 1 else x * exp1 (n-1) x

The function exp1 : int -> int -> int is written in curried form so that it can
be applied when only a part of its input is known. For example, if an actual param-
eter for n is available, exp1(n) returns a function for computing the n-th power of
its argument. From the computational standpoint, however, in most compilers the
outcome of this partial instantiation will be a closure waiting to receive an actual
parameter for x before it proceeds with evaluation. Thus, one can argue that the
following reformulation of exp1 is preferable.

fun exp2 (n : int) : int -> int =

if n = 0 then λx:int.1
else

let val u = exp2 (n - 1)

in

λx:int. x * u(x)

end
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Indeed, when only n is provided, but not x, the expression exp2(n) performs compu-
tation steps based on the value of n to produce a function specialized for computing
the n-th power of its argument. In particular, the resulting function will not perform
any operations or take decisions at run time based on the value of n; in fact, it does
not even depend on n – all the computation steps dependent on n have been taken
during the specialization.

A useful intuition for understanding the programming idiom of the above exam-
ple, is to view exp2 as a code generator; once supplied with n, it generates at run
time a specialized function for computing n-th powers. This immediately suggests
a stratification of expressions into two stages. Object stage (or the stage of gener-
ated expressions) consists of expressions that are to be viewed as data – they are
result of the process of code generation. In the exp2 function, such expressions are
(λx:int.1) and (λx:int. x * u(x)). Meta stage (or run-time stage) consists of ex-
pressions that are executable, i.e. they describe computational steps to be performed
at run time. This is why the above-illustrated programming style is referred to as
staged computation.

We further postulate that there exists an inclusion from the object stage into
the meta stage. In other words, code generated at the object stage as data, may be
coerced into the meta stage, and executed. The opposite inclusion, however, does not
exist, and in particular, we prohibit that meta-level variables appear in object-level
expressions. For example, in the function exp2, the variable n is absent from the
expressions (λx:int.1) and (λx:int. x * u(x)). This restriction guarantees that
none of the computation steps dependent on n are postponed beyond the time at
which n is specialized to a particular integer value.

As it has been noticed in the previous work [PD01, WLP98, WLPD98], the
fragment of the constructive modal logic S4 containing the � operator (Chapter 1),
and the associated proof-term calculus (called λ

�

-calculus) are naturally suited to
capture many aspects of program staging. We recall the syntax of λ

�

below, and the
relevant typing rules are presented in Figure 3.1.

Types A,B ::= P | A→ B | �A
Expressions e ::= x | u | λx:A. e | e1 e2 |

box e | let box u = e1 in e2

Ordinary contexts Γ ::= · | Γ, x:A
Modal contexts ∆ ::= · | ∆, u::A

The main observation relating staged computation to modal logic is already illus-
trated by our analysis of the exp2 function. Since generated code does not depend
on meta-level variables, the object expressions are either closed, or are computed by
substitution out of other object (and therefore closed) expressions. This operational
property of the object stage exactly matches the notion of categorical proof in modal
logic. As defined in Chapter 1.1.3, a categorical proof is closed with respect to value
variables, but it may depend on modal variables (which stand for other categorical
proofs).

Following the analogy between object expressions and categorical proofs, we can
use the type �A to classify generated code of type A. Under this computational
interpretation of the λ

�

calculus, the introduction form box e serves to coerce the
closed expression e into the object stage. The elimination form let box u = e1 in e2
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∆; (Γ, x:A) ` x : A (∆, u::A); Γ ` u : A

∆; (Γ, x:A) ` e : B

∆;Γ ` λx:A. e : A→ B

∆;Γ ` e1 : A→ B ∆;Γ ` e2 : A

∆;Γ ` e1 e2 : B

∆; · ` e : A

∆;Γ ` box e : �A

∆;Γ ` e1 : �A (∆, u::A); Γ ` e2 : B

∆;Γ ` let box u = e1 in e2 : B

Figure 3.1: Typing rules for λ
�

.

allows code to be generated by means of substitution: a code generated by e1 can
be substituted for u in e2. This way, the λ

�

-calculus makes the distinction between
stages explicit. The programmer can specify the intended staging using the term
constructors box and let box. Then the type system can check whether the writ-
ten program conforms to the staging specifications, turning staging errors into type
errors.

Of course, in order to use the λ
�

-calculus for programming, we need to extend
it with some primitive types and recursion. In our examples we will assume the
standard ML-like syntax and semantics for natural numbers, integers, booleans and
conditionals, recursive functions and pairs. Addition of these features to the λ

�

-
calculus does not present any theoretical problems.

Figure 3.2 presents the small-step operational semantics of λ
�

. We have decided
on a call-by-value strategy which, in addition, prohibits reductions under box. Thus,
if an expression is boxed, its evaluation will be suspended. Values of modal types
are thus boxed closed expressions encoding object-level programs.

We can now use the type system of λ
�

to make explicit the staging of exp2.

fun exp3 (n : int) : �(int->int) =

if n = 0 then box (λx:int. 1)

else

let box u = exp3 (n - 1)

in

box (λx:int. x * u(x))

end

Application of exp3 at argument 2 generates a function for squaring.

- sqbox = exp3 2;

val sqbox = box (λx:int. x *

(λy:int. y *

(λz:int. 1) y) x) : �(int -> int)

In the elimination form let box u = e1 in e2, the bound variable u belongs to the
context ∆ of modal variables, but it can be used in e2 in both modal positions (i.e.,
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under a box) and meta positions. Thus the calculus is not only capable of composing
generated programs, but can also explicitly force their evaluation. For example we
can use the generated function sqbox in the following way.

- sq = (let box u = sqbox in u);

val sq = [fn] : int -> int

- sq 3;

val it = 9 : int

This example demonstrates how closed object expressions can be reflected, i.e.
coerced from the object level into the meta level. The opposite coercion, referred to
as reification, is not possible. This suggests that λ

�

could be given even a more spe-
cific model in which reflection naturally exists, but reification does not. A possible
interpretation exhibiting this behavior considers object-level expressions as gener-
ated source code, i.e. actual closed syntactic expressions, or abstract syntax trees of
closed λ

�

-terms. In contrast, the meta-level expressions are compiled executables.
The operation of reflection corresponds to the natural process of compiling a source
program into an executable. The opposite operation of reconstructing source code
out of its compiled equivalent is not usually feasible, so this interpretation does not
support reification, just as required. Furthermore, the typing of λ

�

ensures that
only well-typed syntactic expressions can be represented in the calculus. This prop-
erty makes the λ

�

approach to syntax representation reminiscent of the well-known
methodology of higher-order abstract syntax [PE88].

The above intuitive “syntactic” model makes the λ
�

-calculus very appropriate not
only for staged computation, but also for metaprogramming. In metaprogramming,
expressions are again stratified into stages, but this time the syntactic structure
of object expressions may be inspected and analyzed. In metaprogramming, object
expressions represent source code which can be compared for syntactic equality and
even pattern-matched against.

In the rest of this chapter, we will frequently rely on the described syntactic
nature of object expressions in order to supply the intuition behind formal devel-
opments. However, whether a practical implementation actually needs to represent
object expression as syntax, will depend on the application. In staged computation,
for example, we are usually not interested in inspecting the structure of generated
programs, so the generated programs may be represented in some intermediate, or
even fully compiled form. At this point, we do not commit to any particular imple-
mentation strategy, but instead focus on the logical properties of the type system.

3.2 The ν
�-calculus

3.2.1 Motivation

If we adhere to the interpretation of categorical proofs as generated source code,
then the λ

�

staging of exp3 is rather unsatisfactory. The problem is that the object
programs generated by exp3 (e.g., sqbox), contain unnecessary variable-for-variable
redexes, and hence are not optimal. From the standpoint of syntax manipulation,
λ

�

is too restrictive. The reason for the deficiency lies in the requirement that the
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e1 7−→ e′1

e1 e2 7−→ e′1 e2

e2 7−→ e′2

v1 e2 7−→ v1 e′2 (λx:A. e) v 7−→ [v/x]e

e1 7−→ e′1

let box u = e1 in e2 7−→ let box u = e′1 in e2

let box u = box e1 in e2 7−→ [e1/u]e2

Figure 3.2: Operational semantics of λ
�

.

syntactic object expressions that λ
�

can represent and manipulate must always be
closed.

Furthermore, if we only have a type of closed syntactic expressions at our disposal,
we can’t ever type the body of an object-level λ-abstraction in isolation from the
λ-binder itself – subterms of a closed term are not necessarily closed themselves.
Thus, it would be impossible to ever inspect, destruct or recurse over object-level
expressions with binding structure.

What we need in order to avoid the problem of superfluous redexes, but also in
order to support code inspection, is the ability to represent open expressions and
specify substitution with capture. This need has long been recognized in the staged
computation and metaprogramming community, and Section 3.6 discusses several dif-
ferent systems and their solution of the problem. The technique predominantly used
in these solutions goes back to Davies’ λ©-calculus [Dav96]. The type constructor©
of this calculus corresponds to discrete temporal logic modality for propositions true
at the subsequent time moment. In a metaprogramming interpretation, the modal
type ©A stands for open object expression of type A, where the free variables of
the object expression are modeled by λ-bound variables from the subsequent time
moment.

In this chapter, we present a different approach to the problem of spurious redexes.
The approach is based on names and the fragment of the modal ν-calculus from
Section 2.2 that contains the � operator. We call this fragment ν

�

-calculus. The
idea is to employ names to stand for the free variables of object expressions, and
correspondingly, to employ explicit name substitutions to facilitate capture of free
variables. Intuitively, the expressions of the ν

�

-calculus are obtained by adjoining
names to the expressions of the λ

�

-calculus. The situation is somewhat analogous to
that in polynomial algebra, where one is given a base algebraic structure A and a set
of indeterminates (or generators) {X1, . . . , Xn}, which are then freely adjoined to A
into a structure of polynomials A[X1, . . . , Xn]. In our setup, the indeterminates are
the names, and we build “polynomials” over the base structure of λ

�

expressions.

When an object expression e contains a name X, we will say that e depends on
X, or that X is in the support of e. For example, assuming for a moment that X and
Y are names of type int, and that the usual operations of addition, multiplication

79



3.2. ν
�

-CALCULUS CHAPTER 3. METAPROGRAMMING

and exponentiation of integers are primitive in ν
�

, the term

e1 = X3 + 3X2Y + 3XY 2 + Y 3

would have type int and support set {X,Y }. The names X and Y appear in e1 at
the meta level, and indeed, notice that in order to evaluate e1 to an integer, we first
need to provide definitions for X and Y . On the other hand, if we box the term e1,
we obtain

e2 = box (X3 + 3X2Y + 3XY 2 + Y 3)

which has the type �X,Y int, but its support is the empty set, as the names X and
Y only appear at the object level (i.e., under a box). Thus, the support of a term
(in this case e1) becomes part of the type once the term itself is boxed. This way,
the types maintain the information about the support of subterms at all stages. For
example, assuming that our language has pairs, the term

e3 = 〈X2,box Y 2〉

would have the type int×�Y int with support {X}.
As illustrated by the above examples, if an object expression depends on some

names, then it is only partially specified. Such partially specified expressions cannot
be evaluated unless every name in the expression’s support is provided a definition.
We use explicit substitutions for this purpose. Explicit substitutions remove substi-
tuted names from the support, eventually turning non-executable expressions into
executable ones.

Example 13 Assuming that X and Y are names of type int, the ν
�

segment below
creates a “polynomial” expression over X and Y and then evaluates it at the point
(X = 1, Y = 2).

- let box u = box (X3 + 3X2Y + 3XY2 + Y3)

in

〈X -> 1, Y -> 2〉 u
end

val it = 27 : int

Notice how the explicit substitution 〈X → 1, Y → 2〉 captures the names X and Y
in the expression X3 + 3X2Y + 3XY 2 + Y 3, when this expression is substituted for
u. �

In addition to solving the problem of spurious redexes in staged computation,
the ν

�

-calculus has an application in metaprogramming as well. In Section 3.4, we
will extend the ν

�

-calculus with primitives for intensional code analysis i.e. pattern
matching over syntactic structure of object expressions. It is interesting that in-
tensional code analysis crucially depends on the fact that free variables of syntactic
expressions are represented by names, rather than by λ-bound variables (as it is the
case in λ© and other modal type systems based on it). Indeed, imagine a function
f that recurses over two expressions with binding structure to compare them for
syntactic equality modulo α-conversion. Whenever a λ-abstraction is encountered in
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both expressions, f needs to introduce a new symbol to stand for the bound variable
of that λ-abstraction, and then recursively proceed to compare the bodies of the
abstractions. But the construct that generates this new symbol should not be a type
introduction form. If it were, then the exact number, types and order of symbols that
f may generate will be apparent from and fixed by the type of f . As a consequence,
f could not be recursively invoked over the bodies of the abstractions, because of a
type mismatch.

3.2.2 Syntax and type checking

Here we recall the constructs of the ν-calculus that are relevant for the ν
�

-fragment,
and discuss these constructs in terms of their computational application to staging
and metaprogramming. For the logical and type theoretic consideration, we refer
the reader to Chapter 2 and Section 2.2.3. The table below recalls the syntax of the
ν

�

-calculus.

Names X,Y ∈ N
Supports C,D ::= · | C,X
Types A,B ::= P | A→ B | A 9 B | �CA
Explicit substitutions Θ ::= · | X → e,Θ
Expressions e ::= X | x | 〈Θ〉u | λx:A. e | e1 e2

| box e | let box u = e1 in e2

| νX:A. e | choose e
Ordinary contexts Γ ::= · | Γ, x:A
Modal contexts ∆ ::= · | ∆, u::A[C]
Name context Σ ::= · | Σ, X:A

The type system of ν
�

consists of two judgments of the modal ν-calculus:

Σ;∆; Γ ` e : A [C]

and
Σ;∆; Γ ` 〈Θ〉 : [C]⇒ [D]

The first judgment types expressions. Given an expression e it checks whether e
has type A, and depends on the support C. The second judgment types explicit
substitutions. Given a substitution Θ and two support sets C and D, the substitution
has the type [C]⇒ [D] if it maps expressions of support C to expressions of support
D.

Both judgments work with three contexts: Σ, ∆ and Γ. The name context Σ
ascribes types to names. Because each type may contain names, name contexts are
dependent. We assume that a name declared in Σ may only be used to the right
of its declaration. The context of modal variables ∆ ascribes types and supports
to modal variables. Modal variables are bound to object expressions by the term
constructor let box u = e1 in e2. Context of value variables Γ ascribes types to
ordinary variables (also called value variables). Ordinary variables are introduced
into Γ by λ-abstraction, and are bound to expressions from the meta stage. As
already described in the previous section, the meta-stage expressions correspond to
compiled executables. The typing rules of the ν

�

-calculus are presented in Figure 3.3,
and we discuss them next.
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Explicit substitutions

C ⊆ D

Σ; ∆; Γ ` 〈 〉 : [C] ⇒ [D]

Σ; ∆; Γ ` e : A [D] Σ; ∆; Γ ` 〈Θ〉 : [C \ {X}] ⇒ [D] X:A ∈ Σ

Σ; ∆; Γ ` 〈X → e, Θ〉 : [C] ⇒ [D]

Hypothesis

X:A ∈ Σ

Σ; ∆; Γ ` X : A [X, C] Σ; ∆; (Γ, x:A) ` x : A [C]

Σ; (∆, u::A[C]); Γ ` 〈Θ〉 : [C] ⇒ [D]

Σ; (∆, u::A[C]); Γ ` 〈Θ〉u : A [D]

λ-calculus

Σ; ∆; (Γ, x:A) ` e : B [C]

Σ; ∆; Γ ` λx:A. e : A → B [C]

Σ; ∆; Γ ` e1 : A → B [C] Σ; ∆; Γ ` e2 : A [C]

Σ; ∆; Γ ` e1 e2 : B [C]

Modality

Σ; ∆; · ` e : A [D]

Σ; ∆; Γ ` box e :
�

DA [C]

Σ; ∆; Γ ` e1 :
�

DA [C] Σ; (∆, u::A[D]); Γ ` e2 : B [C]

Σ; ∆; Γ ` let box u = e1 in e2 : B [C]

Names

(Σ, X:A); ∆; Γ ` e : B [C]

Σ; ∆; Γ ` νX:A. e : A � B [C]

Σ; ∆; Γ ` e : A � B [C]

Σ; ∆; Γ ` choose e : B [C]

Figure 3.3: Typing rules of the ν
�

-calculus.

A pervasive characteristic of the type system is support weakening. If the names
that an expression depends on are contained in the support set C, then they are
certainly contained in any support D ⊇ C. We recall here the formal statement
of the support weakening principle for the two judgments of the ν

�

-calculus. The
proof of the support weakening principle, as well as the proofs of the other formal
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statements that we present here, may be found in Section 2.2.3.

Principle (Support weakening)
Support weakening is covariant on the right-hand side and contravariant on the

left-hand side of the judgments. More formally, let C ⊆ D ⊆ dom(Σ) be well-formed
supports. Then the following holds:

1. if Σ;∆; Γ ` e : A [C], then Σ;∆; Γ ` e : A [D]

2. if Σ;∆; Γ ` 〈Θ〉 : [C1]⇒ [C], then Σ;∆; Γ ` 〈Θ〉 : [C1]⇒ [D]

3. if Σ; (∆, u::A[D]); Γ ` e : B [C1], then Σ; (∆, u::A[C]); Γ ` e : B [C1]

4. if Σ;∆; Γ ` 〈Θ〉 : [D]⇒ [C1], then Σ;∆; Γ ` 〈Θ〉 : [C]⇒ [C1]

Explicit substitutions. As explained in Chapter 2, applying the empty substi-
tution over a given term, does not change the term itself – the empty substitution
corresponds to the identity function on expressions. Thus, when an empty substi-
tution is applied to a term containing names from C, the resulting term obviously
contains the same names. The typing rule for empty substitutions formalizes this
property. We also allow weakening to an arbitrary superset D, in order to ensure
that the support weakening principle holds. We implicitly require that both the sets
are well-formed; that is, they both contain only names already declared in the name
context Σ. The rule for non-empty substitutions recursively checks if each of the
component expressions is well-typed.

The result of applying the substitution Θ over an expression e is denoted as {Θ}e.
We denote by Θ1 ◦Θ2 the composition of the substitutions Θ1 and Θ2. Both of these
operations are formally defined in Section 2.2.3.

When an explicit substitution Θ : [C] ⇒ [D] is applied over an expression
e : A [C], the result {Θ}e will have support D. Consider for example the explicit
substitution Θ = (X → 10, Y → 20), with domain dom(Θ) = {X,Y }. This sub-
stitution can be given (among others) the typings: [ ] ⇒ [ ], [X] ⇒ [ ], as well as
[X,Y,Z] ⇒ [Z]. And indeed, Θ does map a term of support [ ] into another term
with support [ ], a term of support [X] into a term with support [ ], and a term with
support [X,Y,Z] into a term with support [Z]. These typing properties of explicit
substitutions are summarized by the following explicit substitution principle.

Principle (Explicit substitution)
Let Σ;∆; Γ ` 〈Θ〉 : [C]⇒ [D]. Then the following holds:

1. if Σ;∆; Γ ` e : A [C] then Σ;∆; Γ ` {Θ}e : A [D]

2. if Σ;∆; Γ ` 〈Θ′〉 : [C1]⇒ [C], then Σ;∆; Γ ` 〈Θ ◦Θ′〉 : [C1]⇒ [D]

Hypothesis rules. Because there are three kinds of variable contexts, we have three
hypothesis rules. First is the rule for names. A name X can be used provided it has
been declared in Σ and is accounted for in the supplied support set. The implicit
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assumption is that the support set C is well-formed; that is, C ⊆ dom (Σ). The
rule for value variables is straightforward. The typing x:A can be inferred, if x:A
is declared in Γ. The actual support of such a term can be any support set C as
long as it is well-formed, which is implicitly assumed. Modal variables occur in a
term always prefixed with an explicit substitution. The rule for modal variables has
to check if the modal variable is declared in the context ∆ and if its corresponding
substitution has the appropriate type.

λ-calculus fragment. The rule for λ-abstraction is quite standard. Its implicit
assumption is that the argument type A is well-formed in name context Σ before
it is introduced into the variable context Γ. The application rule checks both the
function and the application argument against the same support set. Associated
with the λ-calculus fragment is the value substitution principle.

Principle (Value substitution)

Let Σ;∆; Γ ` e1 : A [C]. Then the following holds:

1. if Σ;∆; (Γ, x:A) ` e2 : B [C], then Σ;∆; Γ ` [e1/x]e2 : B [C]

2. if Σ;∆; (Γ, x:A) ` 〈Θ〉 : [C1]⇒ [C], then Σ;∆; Γ ` 〈[e1/x]Θ〉 : [C1]⇒ [C]

Modal fragment. Just as in λ
�

-calculus, the meaning of the rule for �-introduction
is to ensure the staging separation between expressions. In the term box e, the
expression e belongs to the object stage, and may be treated as a syntactic entity.
Correspondingly, the typing rule for box must typecheck e against an empty context
of value variables Γ. Indeed, value variables are bound to meta-level expressions, and
meta-level expressions correspond to compiled executables. If e is to be syntactic, it
must not depend on compiled code.

The �-elimination rule is also a straightforward extension of the corresponding
λ

�

rule. The only difference is that the bound modal variable u from the context ∆
now has to be stored with its support annotation.

Associated with modal variables and with the modal fragment of the calculus is
the operation of modal substitution [[e/u]]e2, where u is a modal variable, and e is a
closed syntactic expression. The operation substitutes e for u in e2, but so that e
is first transformed by the explicit substitution associated with each occurrence of
u in e2. For example, the following are the two most characteristic clauses in the
definition of modal substitution.

[[e/u]]〈Θ〉u = {[[e/u]]Θ}e

[[e/u]]〈Θ〉v = 〈[[e/u]]Θ〉v u 6= v

Note that the first clause of the definition actually applies to explicit substitution
Θ to e. The typing properties of this operation are formally stated in the modal
substitution principle below. Again, the complete definition of modal substitution
and the proof of the modal substitution principle can be found in Section 2.2.3.
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Principle (Modal substitution)
Let ∆; · ` e : A [C]. Then the following holds:

1. if (∆, u::A[C]); Γ ` e2 : B [D], then ∆; Γ ` [[e1/u]]e2 : B [D]

2. if (∆, u::A[C]); Γ ` 〈Θ〉 : [D′]⇒ [D], then ∆; Γ ` 〈[[e1/u]]Θ〉 : [D′]⇒ [D]

Names fragment. The introduction form for names is νX:A. e with its corre-
sponding type A 9 B. It introduces a name X:A into the computation determined
by e. It is assumed that the type A is well-formed relative to the context Σ. The
term constructor choose is the elimination form for A 9 B. It picks a fresh name
and substitutes it for the bound name in the ν-abstraction. In other words, the
operational semantics of the redex choose (νX:A. e) (formalized in Section 3.2.3)
proceeds with the evaluation of e in a run-time context in which a fresh name has
been picked for X. It is justified to do so because X is bound by ν and, by conven-
tion, can be renamed with a fresh name. In the ν-introduction rule, it is assumed
that the name X is completely new – it does not appear in the contexts of the
judgment, and in particular, it does not appear in the type B and support C. This
typing discipline effectively limits X to appear only in subterms of e which are not
encountered during evaluation (i.e. dead-code subterms), or in subterms from which
it will eventually be removed by some explicit substitution. For example, consider
the following expression.

νX:int. νY:int.
box (let box u = box X

box v = box Y

in

〈X -> 1〉 u
end)

This expression contains a substituted occurrence of X and a dead-code occurrence
of Y , and is well-typed (of type int 9 int 9 �int). Another way to paraphrase this
typing discipline is the following: in order to prevent the name bound in νX:A. e
from escaping the scope of its definition, when leaving this scope we have to turn the
“polynomials” depending on X into functions. An illustration of this technique is the
program presented in Example 14. The described aspect of fresh name generation is
important because it ensures the preservation and progress properties of ν

�

(Theo-
rems 16 and 17). Indeed, if during evaluation, X is encountered outside its defining
ν, the evaluation will get stuck, because there are no expression to substitute for X.

We will frequently abbreviate the β-redex

choose (νX:A. e)

simply as
let name X:A in e.

In fact, it will become apparent from the future examples in this document, that
the only way we actually use choose and ν is in some β-redex choose (νX:A. e),
and never in isolation from each other. Of course, all of these uses may have been
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abbreviated into a let name construct, which raises the following question: why
not define let name as primitive and omit choose and ν? The answer lies in the
logical considerations from Section 2.1.6. If let name is taken as primitive, then the
judgment Σ;∆; Γ ` A true [C] obtained by erasing the proof term e from Σ;∆; Γ `
e : A [C] would not be directed by the syntactic structure of the propositions A.

Example 14 To illustrate the language constructors, we present a version of the
staged exponentiation function that we can write in ν

�

-calculus. In this and in other
examples we resort to concrete syntax in ML fashion, and assume the presence of
the base type of integers, recursive functions and let-definitions.

fun exp (n : int) : �(int -> int) =

let name X : int

fun exp’ (m : int) : �Xint =

if m = 0 then box 1

else

let box u = exp’ (m - 1)

in

box (X * u)

end

box v = exp’ (n)

in

box (λx:int. 〈X -> x〉 v)

end

- sq = exp 2;

val sq = box (λx:int. x * (x * 1)) : �(int->int)

The function exp takes an integer n and generates a fresh name X of integer type.
Then it calls the helper function exp’ to build the expression v = X ∗ · · · ∗X

︸ ︷︷ ︸

n

∗1

of type int and support {X}. Finally, it turns the expression v into a function by
explicitly substituting the name X in v with a newly introduced bound variable x,
incurring capture. Notice that the generated residual code for sq does not contain any
unnecessary redexes, in contrast to the λ

�

version of the program from Section 3.1.
�

Example 15 This example presents the function conv for computing the convolution
of two integer lists. Convolution of lists x = [x1, . . . , xn] and y = [y1, . . . , yn], is the
list [xny1, . . . , x1yn]. We ignore the possibility that the two lists can be of different
sizes.

The function conv, which we present in Figure 3.4, is staged in the first argument,
so that given the list x, conv outputs a source code specialized for computing the
convolution with x. In this example, we assume the existence of a function lift :
int→ �int, mapping each integer n into box n. This is a reasonable assumption,
as the base type of integers is always considered observable; in any realistic situation,
it would be possible to coerce an integer value into its own syntactic representation.
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(*
* val conv : intlist ->
*

�
(intlist -> intlist)

*)

fun conv (xs : intlist) =
let name TL:intlist
(*
* conv’ : intlist ->

�
TLintlist

* ->
�
(intlist -> intlist)

*)

fun conv’ (nil) =
λz:

�
TLintlist.

let box u = z
in

box (λy:intlist.
<TL -> y>u)

end

| conv’ (x::xs’) =
let val f = conv’ (xs’)

box x’ = lift x
in

λz:
�

TLintlist.
let box u = z
in

f (box (
let val (hd::tl) = TL
in

x’*hd :: <TL -> tl>u
end))

end
end

in
conv’ xs (box nil)

end

Figure 3.4: Staged convolution.

The helper function conv’ recurses over the list x to build the output code; it keeps
the unfinished part of the output abstracted using the variable z:�TLintlist.

Specializing conv to the list [3,2], results in the following program.

- conv [3,2];

val it = box (λy:intlist.
let val (hd::tl) = y

in

2*hd :: let val (hd::tl) = tl

in

3*hd :: nil

end

end) : �(intlist -> intlist)

It remains a challenge to write a ν
�

program that could generate even more concise
specialized code, like for example the following fragment for convolution with [3,2]:

box (λy:intlist. let val (y1::y2::tl) = y in [2*y1, 3*y2])

�

3.2.3 Operational semantics

We define the small-step call-by-value operational semantics of the ν
�

-calculus through
the judgment

Σ, e 7−→ Σ′, e′

which relates an expression e with its one-step reduct e′. The expressions e and e′

do not contain any free variables, but they may contain free names. However, we
require that e and e′ must have empty support. In other words, we only consider for
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evaluation those terms whose names appear exclusively in boxed subterms, or are
otherwise captured by some explicit substitution. Because free names are allowed
under these conditions, the operational semantics has to keep track of them in the
run-time name contexts Σ and Σ′. The rules of the judgment are given in Figure 3.5,
and the values of the language are generated by the grammar below.

V alues v ::= c | λx:A. e | box e | νX:A. e

The rules agree with the β-reductions from Section 2.2.3, and are standard except
for two important observations. First of all, the β-redex for the type constructor
9 extends the run-time context with a fresh name before proceeding. This way, we
keep track of names that have been generated in the course of evaluation, so that we
can select a fresh name when it is needed.

Even more important is to observe that names in ν
�

are not values. This is a
direct consequence of the fact that names in ν

�

can be ascribed an arbitrary type.
If a name X : A were a value, then introducing X into the computation extends
the type A with a new value. Such a dynamic type extension effectively renders
the already defined functions of domain A incomplete. Suddenly, if a function f
has domain A, then it is forced to check at run time if its argument is a name-free
value (in which case f can be applied), or if its argument is an expression containing
a name X. This is where the modal constructor � comes in — it classifies object
expressions with names, so that the above checks can be done statically during type
checking. Thus, while X:A is not a value in ν

�

, the expression (box X) : �XA is.
In that sense, the requirement that names are not values is not really a restriction
in expressiveness.

The evaluation relation is sound with respect to typing, and it never gets stuck,
as the following theorems establish.

Theorem 16 (Type preservation)
If Σ; ·; · ` e : A [ ] and Σ, e 7−→ Σ′, e′, then Σ′ extends Σ, and Σ′; ·; · ` e′ : A [ ].

Proof: By a straightforward induction on the structure of e using the substitution
principles. �

Theorem 17 (Progress)
If Σ; ·; · ` e : A [ ], then either

1. e is a value, or

2. there exist a term e′ and a context Σ′, such that Σ, e 7−→ Σ′, e′.

Proof: By a straightforward induction on the structure of e. �

The progress theorem does not indicate that the reduct e′ and the context Σ′

are unique for each given e and Σ. In fact, they are not, as fresh names may be
introduced during the course of the computation, and two different evaluations of
one and the same term may choose the fresh names differently. The determinacy
theorem below shows that the choice of fresh names is actually the only difference
that may appear between two reductions of one and the same term. As customary,
we denote by 7−→n the n-step reduction relation.
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Σ, e1 7−→ Σ′, e′1

Σ, (e1 e2) 7−→ Σ′, (e′1 e2)

Σ, e2 7−→ Σ′, e′2

Σ, (v1 e2) 7−→ Σ′, (v1 e′2)

Σ, (λx:A. e) v 7−→ Σ, [v/x]e

Σ, e1 7−→ Σ′, e′1

Σ, (let box u = e1 in e2) 7−→ Σ′, (let box u = e′1 in e2)

Σ, (let box u = box e1 in e2) 7−→ Σ, [[e1/u]]e2

Σ, e 7−→ Σ′, e′

Σ, choose e 7−→ Σ′, choose e′

X 6∈ dom(Σ)

Σ, choose (νX:A. e) 7−→ (Σ, X:A), e

Figure 3.5: Structured operational semantics of ν
�

-calculus.

Theorem 18 (Determinacy)
If Σ, e 7−→n Σ1, e1, and Σ, e 7−→n Σ2, e2, then there exists a permutation of names
π : N → N , fixing dom(Σ), such that Σ2 = π(Σ1) and e2 = π(e1).

Proof: By induction on the length of the reductions, using the property that if
Σ, e 7−→n Σ′, e′ and π is a permutation on names, then π(Σ), π(e) 7−→n π(Σ′), π(e′).
The only interesting case is when n = 1 and e = choose (νX:A. e′). In that case, it
must be e1 = [X1/X]e′, e2 = [X2/X]e′, and Σ1 = (Σ, X1:A), Σ2 = (Σ, X2:A), where
X1, X2 ∈ N are fresh. Obviously, the involution π = (X1 X2) which swaps these two
names has the required properties. �

3.3 Support polymorphism

It is frequently necessary to write programs that are polymorphic in the support
of their arguments, because they manipulate syntactic expressions of unknown sup-
port. A typical example is a function that recurses over an expression with binding
structure. When this function encounters a λ-abstraction, it has to place a fresh
name instead of the bound variable, and recursively continue scanning the body of
the λ-abstraction, which is itself a syntactic expression but depending on this newly
introduced name1. For such uses, we extend the ν

�

-calculus with a notion of explicit
support polymorphism in the style of Girard and Reynolds [Gir86, Rey83].

1The calculus described in this document cannot support this scenario in full generality yet
because it lacks type polymorphism and type-polymorphic recursion, but support polymorphism is
a necessary step in that direction.
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To add support polymorphism to the simple ν
�

-calculus, we create a new syn-
tactic category of support variables, which stand for unknown support sets. Then
the rest of the syntax of ν

�

is extended to take support variables into account. We
summarize the changes in the following table.

Support variables p, q ∈ S
Supports C,D ::= . . . | C, p
Types A ::= . . . | ∀p. A
Expressions e ::= . . . | Λp. e | e [C]
Name contexts Σ ::= . . . | Σ, p
Values v ::= . . . | Λp. e

Before a support variable can be used, it has to be declared in the name context
Σ. For the new definition of Σ, we retain the same well-formedness conditions as
before. In particular, a support variable p ∈ Σ may only be used to the right of its
declaration. It is important that supports themselves are allowed to contain support
variables, to express the situation in which only a portion of a support set is known.
Consequently, the function fn(−) is updated to return the set of names and support
variables appearing in its argument. The family of types is extended with the type
∀p. A expressing universal support quantification. Its introduction form is Λp. e,
which binds a support variable p in the expression e. This Λ-abstraction will also be
a value in the extended operational semantics. The corresponding elimination form
is the application e [C] whose meaning is to instantiate the unknown support set
abstracted in e with the provided support set C.

The typing judgment has to be instrumented with new rules for typing support-
polymorphic abstraction and application.

(Σ, p);∆; Γ ` e : A [C]

Σ;∆; Γ ` Λp. e : ∀p. A [C]

Σ;∆; Γ ` e : ∀p. A [C]

Σ;∆; Γ ` e [D] : ([D/p]A) [C]

The ∀-introduction rule requires that the bound variable p is a fresh support vari-
able, as customary in binding forms. In particular, p 6∈ Σ, and consequently,
p 6∈ ∆,Γ, fn(A[C]). The rule for ∀-elimination substitutes the argument support
set D into the type A. It assumes that D is well-formed relative to the context Σ;
that is, D ⊆ dom(Σ). The operational semantics for the new constructs is also not
surprising.

Σ, e 7−→ Σ′, e′

Σ, (e [C]) 7−→ Σ′, (e′ [C]) Σ, (Λp. e) [C] 7−→ Σ, [C/p]e

90



CHAPTER 3. METAPROGRAMMING 3.3. SUPPORT POLYMORPHISM

The extended language satisfies the following substitution principle.

Lemma 19 (Support substitution principle)
Let Σ = (Σ1, p,Σ2) and D ⊆ dom(Σ1) and denote by (−)′ the operation of substi-
tuting D for p. Then the following holds.

1. if Σ;∆; Γ ` e : A [C], then (Σ1,Σ
′
2);∆

′; Γ′ ` e′ : A′ [C ′]

2. if Σ;∆; Γ ` 〈Θ〉 : [C1]⇒ [C2], then (Σ1,Σ
′
2);∆

′; Γ′ ` 〈Θ′〉 : [C ′
1]⇒ [C ′

2]

Proof: By simultaneous induction on the two derivations. We present one case
from the proof of the second statement.

case Θ = (X → e,Θ1), where X:A ∈ Σ.

1. by derivation, Σ;∆; Γ ` e : A [C2] and Σ;∆; Γ ` Θ1 : [C1 \ {X}]⇒ [C2]

2. by first induction hypothesis, (Σ1,Σ
′
2);∆

′; Γ′ ` e′ : A′ [C ′
2]

3. by second induction hypothesis, (Σ1,Σ
′
2);∆

′; Γ′ ` Θ′
1 : [(C1\{X})

′]⇒ [C ′
2]

4. because (C ′
1 \ {X}) ⊆ (C1 \ {X})

′, by support weakening (Lemma 9.5),
(Σ1,Σ

′
2);∆

′; Γ′ ` Θ′
1 : [C ′

1 \ {X}]⇒ [C ′
2]

5. result follows from (2) and (4) by the typing rule for non-empty substitu-
tions

�

The structural properties presented in Section 2.2.3 readily extend to the new
language with support polymorphism. The same is true of the type preservation
(Theorem 16) and progress (Theorem 17) whose additional cases involving support
abstraction and application are handled using the above Lemma 19.

Example 16 In a support-polymorphic ν
�

-calculus we can slightly generalize the
program from Example 14 by pulling out the helper function exp’ and parameterizing
it over the exponentiating expression. In the following program, we use [p] in the
function definition as a concrete syntax for Λ-abstraction of a support variable p.

fun exp’ [p] (e : �pint) (n : int) : �pint =

if n = 0 then box 1

else

let box u = exp’ [p] e (n - 1)

box w = e

in

box (u * w)

end

fun exp (n : int) : �(int -> int) =

let name X : int

box w = exp’ [X] (box X) n

in

box (λx:int. 〈X -> x〉 w)

end
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- sq = exp 2;

val sq = box (λx:int. x * (x * 1)) : �(int->int)

�

Example 17 As an example of a more realistic program we present the regular
expression matcher from [DP01] and [Dav96]. The example assumes the declaration
of the datatype of regular expressions:

datatype regexp =

Empty

| Plus of regexp * regexp

| Times of regexp * regexp

| Star of regexp

| Const of char

We also assume a primitive predicate null : char list -> bool for testing if the
input list of characters is empty. Figure 3.6 presents an ordinary ML implementation
of the matcher, and λ

�

and λ© versions can be found in [DP01, Dav96]. The helper
function acc1 in Figure 3.6 takes a regular expression e, a continuation function k,
and an input string s (represented as a list of characters). The function attempts
to match a prefix of s to the regular expression e. If the matching succeeds, the
remainder of s is passed to the continuation k to determine if s is accepted or not.

We now want to use the ν
�

-calculus to stage the program from Figure 3.6 so
that it can be specialized with respect to a given regular expression. For that pur-
pose, it is useful to view the helper function acc1 from Figure 3.6 as a code gen-
erator. Indeed, acc1 may be seen as follows: it first generates code for matching
a string against a regular expression e, and then appends k to that code. This
is the main idea behind the function acc, and the ν

�

program in Figure 3.7. In
this program, we use the name S for the input string to be matched by the code
that acc generates. The continuation k is not a function anymore, but code to be
attached at the end of the generated result. We want code k to contain further
names standing for yet unbound variables, and hence the support-polymorphic typ-
ing acc : regexp -> ∀p.(�S,pbool -> �S,pbool). The support polymorphism
pays off when generating code for alternation Plus(e1, e2) and iteration Star(e).
For example, observe in the alternation case that the generated code does not dupli-
cate the “continuation” code of k. Rather, k is emitted as a separate function which
is a joining point for the computation branches corresponding to e1 and e2. Simi-
larly, in the case of iteration, we set up a loop in the output code that would attempt
zero or more matchings against e. The support polymorphism of acc enables us to
produce code in chunks without knowing the exact identity of the above-mentioned
joining or looping points. Once all the parts of the output code are generated, we
just stitch them together by means of explicit substitutions.

At this point, it may be illustrative to trace the execution of the program on a con-
crete input. Figure 3.8 presents the function calls and the intermediate results that
occur when the ν

�

matcher is applied to the regular expression Star(Empty). The
resulting specialized program does not contain variable-for-variable redexes, thanks
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(*
* val acc1 : regexp -> (char list -> bool) ->
* char list -> bool
*)

fun acc1 (Empty) k s = k s

| acc1 (Plus (e1, e2)) k s =
(acc1 e1 k s) orelse (acc1 e2 k s)

| acc1 (Times (e1, e2)) k s =
(acc1 e1 (acc1 e2 k)) s

| acc1 (Star e) k s =
(k s) orelse

acc1 e (λs’ =>
if s = s’ then false
else acc1 (Star e) k s’)

| acc1 (Const c) k s =
case s
of nil => false
| (x::l) =>

((x = c) andalso (k s))

(*
* val accept1 : regexp -> char list -> bool
*)

fun accept1 e s = acc1 e null s

Figure 3.6: Unstaged regular expression matcher.

to the features and expressiveness of ν
�

, but it unnecessarily tests if t = t. Remov-
ing these extraneous tests requires some further examination and preprocessing of
e, but the thorough description of such a process is beyond our scope. We refer to
[Har99] for an insightful analysis. �

3.4 Intensional program analysis

3.4.1 Syntax and type checking

As explained in Section 3.2, it is possible to consider the type �CA intuitively as
the set of closed syntactic expressions e, such that Σ; ·; · ` e : A [C]. The calculus
presented so far contains constructs for creating elements of type �CA, but it is
impossible to inspect the syntactic structure of these elements, let alone take them
apart.

In this section, we extend the support-polymorphic ν
�

-calculus with primitives
for pattern matching against syntactic expressions with binding structure. Our ex-
tension is limited to only test if an expression is a name, a λ-abstraction or an ap-
plication, and limit all other cases for future work. It is not clear, however, whether
the expressiveness of pattern matching can be extended to handle a larger subset of
the object stage of ν

�

, without significant additions to the meta stage. The prob-
lem is that any such addition would require extensions to pattern match against the
additions, which would itself require new extensions to the meta stage, and so on.
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(*
* val accept : regexp ->
*

�
(char list -> bool)

*)

fun accept (e : regexp) =
let name S : char list

(*
* acc : regexp -> ∀p.(

�
S,pbool

* ->
�

S,pbool)
*)

fun acc (Empty) [p] k = k

| acc (Plus (e1, e2)) [p] k =
let name JOIN : char list

-> bool
box u1 =
acc e1 [JOIN] box(JOIN S)
box u2 =
acc e2 [JOIN] box(JOIN S)
box kk = k

in
box(let fun join t =

<S->t>kk
in

<JOIN->join>u1
orelse

<JOIN->join>u2
end)

end

| acc (Times (e1, e2)) [p] k =
acc e1 (acc e2 k)

| acc (Star e) [p] k =
let name T : char list

name LOOP : char list
-> bool

box u =
acc e [T, LOOP]

box(if T = S then false
else LOOP S)

box kk = k
in

box(let fun loop t =
<S->t>kk
orelse

<LOOP->loop,
T->t,S->t>u

in
loop S

end)
end

| acc (Const c) [p] k =
let box cc = lift c

box kk = k
in

box(case S
of (x::xs) =>

(x = cc) andalso
<S->xs>kk

| nil => false)
end

box code = acc e [] box (null S)
in

box (λs:char list. <S->s>code)
end

Figure 3.7: Regular expression matcher staged in the ν
�

-calculus.
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� accept (Star (Empty))

� acc (Star(Empty)) [] (box (null S))

� acc Empty [T, LOOP] (box (if T = S then false
else LOOP S))

� box (if T = S then false else LOOP S)

� box (let fun loop (t) =
null (t) orelse
if t = t then false else loop(t)

in
loop S

end)

� box (λs. let fun loop (t) =
null (t) orelse
if t = t then false else loop(t)

in
loop s

end)

Figure 3.8: Example execution trace for a regular expression matcher in ν
�

. Function
calls are marked by � and the corresponding return results are marked by an aligned
�.

The syntactic extensions that we consider in this section are summarized in the
the table below.

Pattern variables w ∈ W
Higher-order patterns π ::= (w x1 . . . xn):A[C] | X | x | λx:A. π | π1 π2

Pattern assignments σ ::= · | w → e, σ
Terms e ::= . . . | case e of box π ⇒ e1 else e2

We use higher-order patterns [Mil90] to match against syntactic expressions with
binding structure. In higher-order patterns, we distinguish between pattern variables
and bindable variables. Pattern variables are placeholders intended to bind syntactic
subexpressions in the process of matching and pass them to the subsequent compu-
tation. Bindable variables are introduced by patterns for binding structure λx:A. π
and are syntactic entities that can match only themselves. We use x, y and variants
to range over bindable variables, and w and variants to range over pattern variables.

The basic pattern (w x1 . . . xn):A[C] declares a pattern variable w which matches
a syntactic expression of type A and support C subject to the condition that the
expression’s bindable variables are among x1, . . . , xn. We require that the basic
patterns are linear, i.e. that the bindable variables x1, . . . , xn that appear in the
pattern are always distinct. Pattern X matches a name X from the global name
context. Pattern λx:A. π matches a λ-abstraction of domain type A. It declares a
new bound variable x which is local to the pattern, and demands that the body of the
matched expression conforms to the pattern π. The bound variable x matches only
the pattern x. Pattern π1 π2 matches a syntactic expression representing application.
Notice that the decision to explicitly assign types to every pattern variable forces the
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D ⊆ C p 6∈ Σ

Σ; (Γ, x1:A1, . . . , xn:An) ` ((w x1 . . . xn):A[D]) : A [C]

=⇒ w:∀p. �pA1 → · · · → �pAn → �p,DA

X:A ∈ Σ

Σ;Γ ` X : A [X,C] =⇒ · Σ; (Γ, x:A) ` x : A [C] =⇒ ·

Σ; (Γ, x:A) ` π : B [C] =⇒ Γ1

Σ;Γ ` λx:A. π : A→ B [C] =⇒ Γ1

Σ;Γ ` π1 : A→ B [C] =⇒ Γ1 Σ;Γ ` π2 : A [C] =⇒ Γ2 fn(A) ⊆ dom(Σ)

Σ; Γ ` π1 π2 : B [C] =⇒ (Γ1,Γ2)

Figure 3.9: Typing rules for patterns.

pattern for application to be monomorphic. In other words, the application pattern
cannot match a pair of expressions representing a function and its argument if the
domain type of the function is not known in advance. It is an important future work
to extend intensional analysis to allow patterns which are type-polymorphic in this
sense. No pattern variable occurs more than once in a pattern.

The typing judgment for patterns has the form

Σ;Γ ` π : A [C] =⇒ Γ1.

The judgment is hypothetical in the global context of names Σ, and the context of
locally declared bound variables Γ. It checks if the pattern π has type A and support
C and if the pattern variables from π conform to the typings given in the residual
context Γ1. The typing rules are presented in Figure 3.9. Most of them are straight-
forward and we do not explain them, but the rule for pattern variables deserves
special attention. As it shows, in order for the pattern expression (w x1 . . . xn):A[C]
to be well-typed, the bound variables x1:A1, . . . , xn:An have to be declared in the
local context Γ. We also allow strengthening of the support: if w is required to match
expressions of support C, than any expression with support D ⊆ C is eligible for
matching. If the pattern expression (w x1 . . . xn):A[C] is well-typed, then w will
match only expressions of type A with the given bound variables and the names
declared in D. The residual context types w as a function over types �pAi with
polymorphic support. This hints at the operational semantics that will be assigned
to higher-order patterns. If an expression e with a local bound variable x:A matches
a pattern variable w, then w will residualize to a meta-level function whose mean-
ing is as follows: it takes a syntactic expression e′:A and returns back the syntactic
expression [e′/x]e.

In order to incorporate pattern matching into ν
�

, the syntax is extended with
a new term constructor case e of box π ⇒ e1 else e2. The intended operational
interpretation of case is to evaluate the argument e to obtain a boxed expression
box e′, then match e′ to the pattern π. If the matching is successful, it creates an
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environment with bindings for the pattern variables, and then evaluates e1 in this
environment. If the matching fails, the branch e2 is taken.

Example 18 Consider the (rather restricted) function reduce that takes a syntactic
expression of type A, and checks if it is a β-redex (λx:A. w1) (w2). If the answer is
yes, it applies the “call-by-value” strategy: it reduces w2, substitutes the reduct for
x in w1 and then continue reducing thus obtained expression. If the answer is no, it
simply returns the argument.

fun reduce (e : �A) : �A =

case e of

box ((λx:A. ((w1 x):A[])) (w2:A[])) =>

(* w1 : ∀q. �qA -> �qA *)

(* w2 : ∀q. �qA *)

let val e2 = reduce (w2 [])

in

reduce (w1 [] e2)

end

else e

Ideally, one would want to reduce an arbitrary expression, not just simple top-level
redexes. We cannot currently write such a function mainly because our language
lacks type-polymorphic patterns and type-polymorphic recursion. In particular, if
the syntactic argument we are dealing with is an application of a general term of
type A → A rather than a λ-abstraction, we cannot recursively reduce that term
first unless the language is equipped with type-polymorphic recursion.

Nevertheless, reduce is illustrative of the way higher-order patterns work. Pat-
terns transform an expression with a bound variable into a function on syntax that
substitutes the bound variable with the argument. That way we can employ meta-
level reduction to perform object-level substitution. This is reminiscent of the idea
of normalization-by-evaluation [BS91, BES98] and type-directed partial evaluation
[Dan96]. �

The typing rule for case is:

Σ; ∆; Γ ` e :
�

DA [C] Σ; · ` π : A [D] =⇒ Γ1 Σ; ∆; (Γ, Γ1) ` e1 : B [C] Σ; ∆; Γ ` e2 : B [C]

Σ; ∆; Γ ` case e of box π ⇒ e1 else e2 : B [C]

Observe that the second premise of the rule requires an empty variable context, so
that patterns cannot contain outside value or modal variables. However (and this is
important), they can contain names. It is easy to incorporate the new syntax into
the language. We first extend explicit substitution over the new case construct

{Θ} (case e of box π ⇒ e1 else e2) =

= case ({Θ}e) of box π ⇒ ({Θ}e1) else ({Θ}e2)

and similarly for expression substitution, and then all the structural properties de-
rived in Section 2.2.3 easily hold. The only complication comes in handling names
and support substitution because patterns are allowed to depend on names and sup-
port variables from the global context Σ. However, the lemmas below establish the
required invariants.
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Σ; ·; (x1:A1, . . . , xn:An) ` e : A [D]

Σ; (Γ, x1:A1, . . . , xn:An) ` e � ((w x1 . . . xn):A[D]) : A

=⇒ [w → Λp. λyi:�pAi. let box xi = yi in box e]

(Σ, X :A); Γ ` X � X : A =⇒ · Σ; (Γ, x:A) ` x � x : A =⇒ ·

Σ; (Γ, x:A) ` e � π : B =⇒ σ

Σ; Γ ` λx:A. e � λx:A. π : (A→ B) =⇒ σ

Σ; Γ ` e1 � π1 : A→ B =⇒ σ1 Σ; Γ ` e2 � π2 : A =⇒ σ2

Σ; Γ ` e1 e2 � π1 π2 : B =⇒ (σ1, σ2)

Figure 3.10: Operational semantics for pattern matching.

Lemma 20 (Structural properties of pattern matching)
1. Exchange Let Σ′, Γ′ and Γ′

1 be well-formed contexts obtained by permutation
from Σ, Γ and Γ1 respectively and Σ;Γ ` π : A [C] =⇒ Γ1. Then Σ′; Γ′ ` π :
A [C] =⇒ Γ′

1

2. Weakening Let Σ ⊆ Σ′ and Σ;Γ ` π : A [C] =⇒ Γ1. Then Σ′; Γ ` π :
A [C] =⇒ Γ1

Proof: By straightforward introduction on the structure of the typing derivations.
�

Lemma 21 (Support substitution principle for pattern matching)
Let Σ = (Σ1, p,Σ2) and D ⊆ dom(Σ1) and denote by (−)′ the operation of substi-
tuting D for p. Assume also that Σ;Γ ` π : A [C] =⇒ Γ1. Then (Σ1,Σ

′
2); Γ

′ ` π′ :
A′ [C ′] =⇒ Γ′

1.

Proof: By straightforward induction on the structure of π. �

3.4.2 Operational semantics

Operational semantics for pattern matching is established by the new judgment

Σ; Γ ` e � π =⇒ σ

which reads: in a global context of names and support variables Σ and a context
of locally declared free variables Γ the matching of the expression e to the pattern
π generates an assignment of values σ to the pattern variables of π. The rules for
this judgment are given in Figure 3.10. Most of the rules are self-evident, but the
rule for pattern variables deserves more attention. Its premise requires a run-time
typecheck of the expression e, in order to preserve soundness. Because of this reason,
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the judgment for operational semantics of ν
�

-calculus with pattern matching must
keep track of a run-time name context Σ. The context Σ not only lists the used
names, but it also assigns types to the used names. The following lemma relates the
typing judgment for patterns and their operational semantics.

Lemma 22 (Soundness of pattern matching)
Let π be a pattern such that Σ;Γ ` π : A [C] =⇒ Γ1, where Γ1 = (w1:A1, . . . , wn:An).
Furthermore, let e be an expression matching π to produce a pattern assignment σ,
i.e. Σ;Γ ` e � π : A =⇒ σ. Then σ = (w1 → e1, . . . , wn → en) where Σ; ·; · ` ei : A1,
for every i = 1, . . . , n.

Notice that in the lemma we did not require that e be well-typed, or even syntactically
well-formed. If it were not well-formed, the matching simply would not succeed.

Proof: By induction on the structure of π. We present the base case below.

case π = (w x1 . . . xn):A[D], where Γ = Γ2, xi:Ai.

1. let e′ = (Λp. λyi:�pAi. let box xi = yi in box e) and A′ = ∀p. �pA1 →
· · · → �pAn → �p,DA

2. by typing derivation, D ⊆ C and xi:Ai ∈ Γ and also Γ1 = (w:A′)

3. by matching derivation, Σ; ·; (x1:A1, . . . , xn:An) ` e : A [D], and σ =
(w → e′)

4. by straightforward structural induction, Σ; (x1:A1, . . . , xn:An); · ` e :
A [D]

5. it is simply to show now that, (Σ, p); (x1:A1[p], . . . , xn:An[p]); · ` e :
A [D, p]

6. and thus also, (Σ, p); (x1:A1[p], . . . , xn:An[p]); · ` box e : �D,pA [ ]

7. and therefore (Σ, p); ·; (y1:�pA1, . . . , yn:�pAn) ` let box xi = yi in box e :
�D,pA [ ]

8. and finally, Σ; ·; · ` e′ : A′ [ ]

�

The last piece to be added is the operational semantics for the case statement, and
the required rules are given below. Notice that the premise of last rule makes use of
the fact that the operational semantics for patterns is decidable; the rule applies if
the expression and e and the pattern π cannot be matched.

Σ, e 7−→ Σ′, e′

Σ, (case e of box π ⇒ e1 else e2) 7−→ Σ′, (case e′ of box π ⇒ e1 else e2)

Σ; · ` e � π : A =⇒ (w1 → e′1, . . . , wn → e′n)

Σ, (case box e of box π ⇒ e1 else e2) 7−→ Σ, [e′1/w1, . . . , e′n/wn]e1

Σ; · ` e � π 6=⇒ σ for any σ

Σ, (case box e of box π ⇒ e1 else e2) 7−→ Σ, e2
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Finally, using the lemmas established in this section, we can easily augment the proof
of the preservation and progress theorems (Theorem 16 and 17) to cover the extended
language. The statements of the theorems are unchanged.

Example 19 The following examples present a generalization of our old exponenti-
ation function. Instead of computing only powers of integers, we can compute powers
of functions too, i.e. have a functional for mapping f 7→ λx. (fx)n. The functional
is passed the source code for f , and an integer n, and returns the source code for
λx. (fx)n. The idea is to have the resulting source code be as optimized as possible,
while still computing the extensionally same result. We rely on programs presented
in Section 3.2 and Examples 14 and 16.

For comparison, we first present a λ
�

version of the function-exponentiating
functional.

fun fexp1 (f : �(int->int)) (n : int) : �(int->int) =

let box g = f

box p = exp3 n

in

box (λv:int. (p (g v)))

end

- fexp1 (box λw:int. w + 1) 2;

val it = box (λv:int. (λx.x*(λy.y*(λz.1)y)x) ((λw.w+1)v)) :

�(int->int)

Observe that the residual program contains a lot of unnecessary redexes. As could
be expected, the ν

�

-calculus provides a better way to stage the code2, simply by
using the function exp from Example 14 instead exp3 from Section 3.1.

fun fexp2 (f : �(int->int)) (n : int) : �(int->int) =

let box g = f

box p = exp n

in

box (λv:int. p (g v))

end

-fexp2 (box λw:int. w + 1) 2;

val it = box (λv:int. (λx.x*(x*1)) ((λw.w+1) v)) : �(int->int)

In fact, there is at least one other way to program this functional: we can eliminate
the outer β-redex from the residual code, at the price of duplicating the inner one.

fun fexp3 (f : �(int->int)) (n : int) : �(int->int) =

let name X : int

box g = f

box e = exp’ [X] (box (g X)) n

in

box (λv:int. 〈X -> v〉e)
end

2And similar programs can be written in λ© and MetaML, as well.
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- fexp3 (box (λw:int. w + 1)) 2;

val it = box (λv:int. ((λw.w+1) v) * ((λw.w+1) v) * 1) :

�(int->int)

However, neither of the above implementations is quite satisfactory, since, evidently,
the residual code in all the cases contains unnecessary redexes. The reason is that
we do not utilize the intensional information that the passed argument is actually
a boxed λ-abstraction, rather than a more general expression of a functional type.
In a language with intensional code analysis, we can do a bit better. We can test
the argument at run time and output a more optimized result if the argument is a
λ-abstraction. This way we can obtain the most simplified, if not the most efficient
residual code.

fun fexp (f : �(int->int)) (n : int) : �(int->int) =

case f of

box (λx:int. (w x:int[])) =>

(* w : ∀q. �qint -> �qint *)

let name X : int

box F = exp’ [X] (w [X] (box X)) n

in

box (λv:int. 〈X->v〉F)
end

else fexp2 f n

- fexp (box λx:int. x + 1) 2;

val it = box(λv:int.(v + 1) * (v + 1) * 1) : �(int->int)

�

Example 20 This example is a (segment of the) meta function for symbolic differ-
entiation with respect to a distinguished indeterminate X.

fun diff (e : �Xreal) : �Xreal =

case e of

box X => box 1

| box ((w1:real[X]) + (w2:real[X])) =>

let box e1 = diff (w1 [])

box e2 = diff (w2 [])

in

box (e1 + e2)

end
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| box ((λx:real. ((FX x):real[X])) (GX:real[X])) =>

(* FX : ∀q. �qreal -> �q,Xreal *)

(* GX : ∀q. �q,Xreal *)

(* check if FX really depends on X *)

let name Y : real

in

case (FX [Y] (box Y)) of

box (F:real[Y]) =>

(* FX is independent of X;

apply the chain rule *)

let box f = F []

box f’ = diff (box 〈Y->X〉f)
box gx = GX []

box gx’ = diff (GX [])

in

box (〈X->gx〉f’ * gx’)

end

else diff (FX [X] (GX []))

end

else (box 0) (* the argument is a constant *)

The most interesting part of diff is its treatment of application. The same limita-
tions encountered in Example 18 apply here too, in the sense that we can pattern
match only when the applying function is actually a λ-abstraction. Although it is
wrong, we currently let all the other cases pass through the default case. Neverthe-
less, the example is still illustrative.

After splitting the application into the function part f and the argument part
g we test if f is independent of X. If that indeed is the case, it means that our
application was actually a composition of functions f (g X), and thus we can apply
the chain rule to compute the derivative as f ′ (g X)∗(g′ X). Otherwise, if f contains
occurrences of X, the chain rule is inapplicable, so we only reduce the β-redex and
differentiate the result. �

3.5 Logical relations for program equivalence

In this section we develop the notion of equivalence between programs in the core
ν

�

-calculus (without recursion and support polymorphism), with which we establish
the intensional properties of the modal operator, and justify our intuitive view of
�CA as classifying syntactic expressions.

To that end, we consider two notions of equivalence. The first is intensional,
or syntactic, by which two programs are equal if and only if their abstract syntax
representations are the same; the programs may only differ in the names of their
bound variables, and possibly also in the representation of their explicit substitutions.
On the other hand, two programs are extensionally equivalent if, in some appropriate
sense which we will define shortly, they produce the same results. Of course, if two
expression are intensionally equivalent, they should also be extensionally equivalent.
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One of the questions that we explore in this section is an interplay between in-
tensional and extensional equivalences of programs. The ν

�

-calculus is particularly
appropriate for investigating and combining the two notions, because we can use the
modal constructs as explicit boundaries between the different notions of equivalence.
In particular, we can treat values of modal types as being observable, i.e. amenable
to inspection of their structure. Then two general expressions of modal type will
be extensionally equivalent if and only if their values are intensionally equivalent.
We are also interested in exploring the properties of the calculus when only exten-
sional equivalence is used, as the present formulation of ν

�

does not contain any
constructs for inspecting the structure of modal values. In both of these cases, we
will establish that our formulation of ν

�

is purely functional, in the sense that it
satisfies the logical equivalences arising from the β-reductions and η-expansions of
the language. The development presented here will follow the methodology of logical
relations, as used, for example, in other works concerned with names in functional
programming [PS93]. However, the details of our approach are different because we
want to make the identity of locally declared names irrelevant for the purposes of
expression comparison.

To motivate our approach, we first present several examples of intensional and ex-
tensional equivalences that we would like our programs to satisfy. We use the symbol
∼= for extensional equivalence, and = for intensional equivalence. The equivalences
will always be considered at a certain type and support.

Example 21 In the examples below, we assume that X is a name of integer type.

1. (λx:int. x + 1) 2 ∼= (λx:int. x + 2) 1 ∼= 3 : int, because all three terms evaluate
to 3; however, neither of them is intensionally equivalent to any other.

2. (λx:int. x+X) 2 ∼= 2+X ∼= X +2 : int [X], because whenever X is substituted
by e (and x is not free in e), the three terms evaluate to the same value.

3. (λx:�X int. 2) (box X) ∼= (1 + 1) : int, because both terms evaluate to 2.
Notice that X does not appear in the second term, nor in the type and support
of comparison.

4. box (X + 1) ∼= box (X + 1) : �X int, because X + 1 = X + 1 : int [X]
intensionally, as syntactic expressions.

�

As illustrated by this example, in our equivalence relations we should distinguish
between two different kinds of names: (1) names which may appear in either of the
compared terms, as well as their type and support (Example 21 cases 2 and 4), and
(2) names which are local to some of the terms (Example 21 case 3). The later kind
of names should not influence the equivalence relations – these names could freely
be renamed.

The described requirement leads to the following formulation of the judgment for
extensional equivalence.

Σ;∆; Γ ` Σ1. e1
∼= Σ2. e2 : A [C]
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Here we assume that Σ is a well-formed name context and that ∆, Γ, Σ1, Σ2, A
and C are all well-formed with respect to Σ. Intuitively, the context Σ declares the
names that matter when comparing two terms; hence the requirement that ∆, Γ, A
and C contain only the names from Σ. On the other hand, the contexts Σ1 and Σ2

declare the names that may appear in e1 and e2, but these names are, in some sense,
irrelevant. They will be subject to renaming, as they do not appear in ∆, Γ, A or
C. The contexts Σ1 and Σ2 are disjoint from Σ.

For the purposes of this section, we further restrict our considerations of in-
tensional equivalence to only modal terms which are themselves part of the simply
typed fragment of ν

�

. In other words, we introduce new categories of simple types
and simple terms as follows:

1. a type A is simple iff A = b, or A = A1 → A2 or A = A1 9 A2 where A1, A2

are simple types

2. a term e is simple if it does not contain the modal constructs box and let box.

Then we only allow modal types �CA if A is simple, and modal terms box e if e
is simple. We justify this restriction by a desire to avoid impredicativity arising in
a language that can intensionally analyse the whole set of its expressions. In fact,
it seems rather improbable that a language with such strong intensional capabilities
can be designed at all. Indeed, we added names and modal constructs in order
to represent syntax with free variables. But, the modal constructs can also bind
variables, so a new category of names and modalities seems to be required in order
to analyze these new bindings, and then a new category of names and modalities
is required for the bindings by the previous class of modalities, etc. Thus, here we
limit the intensional equivalence to the simply-typed fragment, and leave the possible
extensions to larger fragments for future work.

The next step in the development is to formally define the notion of extensional
equivalence. As already mentioned before, the idea is that two expressions are con-
sidered extensionally equivalent, if and only if they evaluate to the same value. The
values that we will consider for comparison are the values at base type b of natural
numbers, and values at modal types �CA which are closed simple terms of type A
and support C, which we compare for intensional equivalence.

A standard approach to logical relations starts with a somewhat different premise.
Rather than evaluating two expressions and checking if their values are the same,
we need to check if the values are extensionally equivalent themselves. The later
notion is much more permissive, which is particularly important when comparing
values of functional types: two functions are extensionally related if they map related
arguments to related results.

Thus, we need to define two mutually recursive judgments: one for the extensional
equivalence of (closed) expressions, and another for extensional equivalence of values.
Our judgment for extensional equivalence of expressions has the form

Σ ` Σ1. e1
∼= Σ2. e2 : A [C]

and the judgment for extensional equivalence of values has the form

Σ ` Σ1. v1 ∼ Σ2. v2 : A

104



CHAPTER 3. METAPROGRAMMING 3.5. LOGICAL RELATIONS

The first is defined by induction on the structure of A and C, by appealing to the
second judgment when the support C is empty. The second is defined by induction
on the structure of the type A.

Σ ` Σ1. e1
∼= Σ2. e2 : A [ ] iff (Σ,Σ1), e1 7−→∗ (Σ,Σ′

1), v1, and
(Σ,Σ2), e2 7−→∗ (Σ,Σ′

2), v2, and
Σ ` Σ′

1. v1 ∼ Σ′
2. v2 : A

Σ ` Σ1. e1
∼= Σ2. e2 : A [C] iff Σ ` Σ′

1. {σ1}e1
∼= Σ′

2. {σ2}e2 : A [ ] for any
Σ′

i ⊇ Σi, such that Σ ` Σ′
1. σ1

∼= Σ′
2. σ2 [C]

Σ ` Σ1. v1 ∼ Σ2. v2 : b iff v1 = v2 ∈ N

Σ ` Σ1. v1 ∼ Σ2. v2 : A→ B iff vi = λx:A. ei and Σ ` Σ′
1. [v′1/x]e1

∼=
Σ′

2. [v2/x]e2 : B, for any Σ′
i ⊇ Σi, such that

Σ ` Σ′
1. v′1 ∼ Σ′

2. v′2 : A
Σ ` Σ1. v1 ∼ Σ2. v2 : �CA iff vi = box ei and e1 = e2 and Σ ` Σ1. e1

∼=
Σ2. e2 : A [C]

Σ ` Σ1. v1 ∼ Σ2. v2 : A 9 B iff vi = νX:A. ei and Σ ` (Σ1, X:A). e1
∼=

(Σ2, X:A). e2 : B [ ], where X is a fresh name.

Here we abbreviated:

Σ ` Σ1. σ1
∼= Σ2. σ2 [C] iff σ1, σ2 are explicit substitutions for the names

in C, such that Σ ` Σ1. σ1(X) ∼= Σ2. σ2(X) :
B [ ] for any name X ∈ C such that X:B ∈ Σ.

The most important parts of the above definition are the cases defining the rela-
tion for values at functional, modal types and 9 types. The definition for values at
functional types formalizes the intuition that we outlined before: two functions are
related if they map related arguments to related results. The definition for values
at modal types contrasts the notions of intensional vs. extensional. We consider
two values box e1 and box e2 extensionally related iff the expressions e1 and e2

are intensionally related. Observe, however, that in the definition we actually insist
on the additional requirement that e1 and e2 be extensionally related as well. This
extra clause is added because, at this stage of development, it is not obvious that
intensional equivalence of expressions implies their extensional equivalence. For that
matter, it is not obvious at this point that that the two new relations are indeed
equivalences at all. We will prove both of these properties in due time, but we need
to start the development with a sufficiently strong definition. The definition for val-
ues νX. e1 and νX. e2 at the A 9 B type generates a fresh name X, and then tests
e1 and e2 for equivalence in the local contexts extended with X.

Notice that the above definitions are well-founded. In order to establish this fact,
let us define ordΣ(X) to be the position in which the name X first appears in the
name context Σ. Also, given a type A and support C, let maxΣ(A[C]) be the last
position in Σ in which a name from A and C appears. More formally,

maxΣ(A[C]) = max{ordΣ(X) | X ∈ fn(A[C])}.

Because of the restriction that each type in Σ may only refer to the names to the
left of it, it is clear that if X:A ∈ Σ, then maxΣ(A) < ordΣ(X). We can now order
the pairs of type A and support C as follows. The pair A[C] is smaller than B[D] iff
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• maxΣ(A[C]) < maxΣ(B[D]), or

• maxΣ(A[C]) = maxΣ(B[D]), but the number of type constructors of A is
smaller than the number of type constructors of B.

It is now easy to observe that each inductive step in the definitions of the relations
strictly decreases this ordering. Indeed, the relation on values preserves the number
of names in the type and support, but makes inductive references using types of
strictly smaller structure. The relation on expressions with non-empty support C
relies on explicit substitutions over the names in C. But for each name X ∈ C with
X:B ∈ Σ, it is clear that maxΣ(B) < ordΣ(X) ≤ maxΣ(fnA[C]).

We next extend our relations to handle expressions with free variables. We start
with expressions of empty support.

Σ; ·; Γ ` Σ1. e1
∼= Σ2. e2 : A [ ] iff Σ ` Σ′

1. [ρ1/Γ]e1
∼= Σ′

2. [ρ2/Γ]e2 : A [ ] for any
Σ′

i ⊇ Σi, such that Σ ` Σ′
1. ρ1 ∼ Σ′

2. ρ2 : Γ

In this definition, ρ1, ρ2 are arbitrary substitutions of values for variables in Γ, and
we write:

Σ ` Σ1. ρ1 ∼ Σ2. ρ2 : Γ iff Σ ` Σ1. ρ1(x) ∼ Σ2. ρ2(x) : A whenever
x:A ∈ Γ

In the next step, we consider expressions of arbitrary support.

Σ; ·; Γ ` Σ1. e1
∼= Σ2. e2 : A [C] iff Σ; ·; Γ ` Σ′

1. {σ1}e1
∼= Σ′

2. {σ2}e2 : A [ ] for
any Σ′

i ⊇ Σi, such that Σ; Γ ` Σ′
1. σ1

∼=
Σ′

2. σ2 [C]

where σ1, σ2 are explicit substitutions, and

Σ; Γ ` Σ1. σ1
∼= Σ2. σ2 [C] iff Σ; ·; Γ ` Σ1. σ1(X) ∼= Σ2. σ2(X) : B [ ] for

any name X ∈ C such that X:B ∈ Σ

Finally, the relation is extended with the context ∆ as follows.

Σ;∆; Γ ` Σ1. e1
∼= Σ2. e2 : A [C] iff Σ; ·; Γ ` Σ′

1. [[δ1/∆]]e1
∼= Σ′

2. [[δ2/∆]]e2 :
A [C] for any Σ′

i ⊇ Σi, such that Σ `
Σ′

1. δ1 = Σ′
2. δ2 : ∆

where δ1, δ2 are arbitrary substitutions of expressions for modal variables in ∆, and

Σ ` Σ1. δ1 = Σ2. δ2 : ∆ iff δ1(u) = δ2(u) and Σ ` Σ1. δ1(u) ∼=
Σ2. δ2(u) : A [C] whenever u:A[C] ∈ ∆

The above definitions are well-founded, as each one refers only to already intro-
duced definitions. For the sake of completeness, we also parametrize the intensional
relation = with the context ∆, as this will be needed in the statement of Lemma 28.

Σ;∆ ` Σ1. e1 = Σ2. e2 : A [C] iff [[δ1/∆]]e1 = [[δ2/∆]]e2 for any Σ′
i ⊇ Σi,

such that Σ ` Σ′
1. δ1 = Σ′

2. δ2 : ∆
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Example 22 Let Σ = X:int. Then the following are valid instances of intensional
equivalence.

1. Σ; · ` X + 1 = X + 1 : int [X]

2. Σ;u:int[X] ` (Y :int). 〈X → 1, Y → 2〉u = 〈X → 1〉u : int [ ]

�

Example 23 Consider the simple expression e such that

Σ;∆; Γ ` choose (νX:B. box e) : �int.

We will show that Σ;∆; Γ ` choose (νX:B. box e) ∼= choose (νX:B. box e) : �int.

First notice that we can assume Γ to be empty as, by typing, e cannot contain
variables from Γ. We can assume that ∆ is empty as well; this will not result in
any loss of generality because the relation of intensional equivalence is closed with
respect to modal substitutions δ.

The above relation holds if and only if the two instances of the expression
choose (νX:B. box e) evaluate to related values. But, indeed they do, as the
particular choice of X in the evaluation of the expressions does not influence e. In
fact, because e is a simple expression, the only names that may appear in box e are
the ones appearing in its type. In this case, the type in question is �int, and it does
not contain any names.

Because of reflexivity of α-equivalence, e = e. By determinacy of evaluation, it is
also the case that Σ ` e ∼= e : int. Thus, we can conclude that Σ ` box e ∼= box e :
�int. �

Lemma 23 (Name permutation)
Let R1 : Σ1 → Σ′

1 and R2 : Σ2 → Σ′
2 be bijections where Σ′

1 and Σ′
2 are well-formed

in Σ. Then:

1. if Σ ` Σ1. e1
∼= Σ2. e2 : A [C], then Σ ` Σ′

1. R1 e1
∼= Σ′

2. R2 e2 : A [C]

2. if Σ ` Σ1. v1 ∼ Σ2. v2 : A, then Σ ` Σ′
1. R1 v1 ∼ Σ′

2. R2 v2 : A

Proof: By induction on the structure of the definition of the two judgments.

For the first induction hypothesis, we start by considering the base case when
C is empty. In this case, if (Σ,Σi), ei 7−→

∗ (Σ,Σi,Ψi), vi, then by parametricity of
the evaluation judgment, we also have (Σ,Σ′

i), ei 7−→
∗ (Σ,Σ′

i,Ψi), Ri vi. Then we
appeal to the second induction hypothesis, to derive that Σ ` (Σ′

1,Ψ1). R1 v1 ∼
(Σ′

2,Ψ2). R2 v2 : A. The result is easily extended to the case when C is not empty.

For the second induction hypothesis, the only interesting case is when A = �DB,
which is proved by appealing to the first induction hypothesis, and the fact that
name permutation does not change the = relation on simple terms. �
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Lemma 24 (Name localization)
If C is a well-formed support in Σ, then the following holds:

1. (Σ,Σ′) ` Σ1. e1
∼= Σ2. e2 : A [C] if and only if Σ ` (Σ′,Σ1). e1

∼= (Σ′,Σ2). e2 :
A [C]

2. (Σ,Σ′) ` Σ1. v1 ∼ Σ2. v2 : A if and only if Σ ` (Σ′,Σ1). v1 ∼ (Σ′,Σ2). v2 : A

Proof: By induction on the structure of the definition of the two judgments.
For the first induction hypothesis, we start by considering the case when C is

empty. Let (Σ,Σ′,Σi), ei 7−→
∗ (Σ,Σ′,Ψi), vi, and (Σ,Σ′) ` Ψ1. v1 ∼ Ψ2. v2 : A.

By second induction hypothesis, Σ ` (Σ′,Ψ1). v1 ∼ (Σ′,Ψ2). v2 : A, and thus also
Σ ` (Σ′,Ψ1). e1

∼= (Σ′,Ψ2). e2 : A. The opposite direction is symmetric. The result
is easily extended to the case of non-empty C.

For the second induction hypothesis, we present the case when A = A1 → A2,
and vi = λx:A1. ei. In this case, consider Σ′

i ⊇ Σi, such that Σ ` (Σ′,Σ′
1). v′1 ∼

(Σ′,Σ′
2). v′2 : A1. We need to show Σ ` (Σ′,Σ′

1). [v′1/x]e1
∼= (Σ′,Σ′

2). [v′2/x]e2 : A2.
By induction hypothesis at type A1, we have that (Σ,Σ′) ` Σ′

1. v′1 ∼ Σ′
2. v′2 : A1, and

therefore (Σ,Σ′) ` Σ′
1. [v′1/x]e1

∼= Σ′
2. [v′2/x]e2 : A2. By induction hypothesis at type

A2, we can push Σ′ back inside to get Σ ` (Σ′,Σ′
1). [v′1/x]e1

∼= (Σ′,Σ′
2). [v′2/x]e2 : A2.

The opposite direction is symmetric. �

Lemma 25 (Weakening)
Let Σ′ ⊇ Σ, Σ′

1 ⊇ Σ1 and Σ′
2 ⊇ Σ2, so that Σ′

1 and Σ′
2 are well-formed with respect

to Σ′. Then the following holds:

1. if Σ ` Σ1. e1
∼= Σ2. e2 : A [C], then Σ′ ` Σ′

1. e1
∼= Σ′

2. e2 : A [C]

2. if Σ ` Σ1. v1 ∼ Σ2. v2 : A, then Σ′ ` Σ′
1. v1 ∼ Σ′

2. v2 : A

Proof: By name localization (Lemma 24), it suffices to consider Σ′ = Σ. The proof
is by simultaneous induction on the definition of the two judgments.

For the first statement, we only consider the case when C is empty, as the result
is easily generalized to non-empty C. In this case, let (Σ,Σi), ei 7−→

∗ (Σ,Σi,Ψi), vi,
such that Σ ` (Σ1,Ψ1). v1 ∼ (Σ2,Ψ2). v2 : A. By name permutation, we could as-
sume that Ψ1,Ψ2 are disjoint from Σ′

1,Σ
′
2, so that also (Σ,Σ′

i), ei 7−→
∗ (Σ,Σ′

i,Ψi), vi.
Then by second induction hypothesis, Σ ` (Σ′

1,Ψ1). v1 ∼ (Σ′
2,Ψ2). v2 : A, and

therefore Σ ` Σ′
1. e1

∼= Σ′
2. e2 : A.

For the second induction hypothesis, the only interesting case is when A =
A′ → A′′, and vi = λx:A′. ei. In this case, consider Σ′′

i ⊇ Σ′
i, such that Σ ` Σ′′

1. v′′1 ∼
Σ′′

2 . v′′2 : A′. By definition, Σ ` Σ′′
1. [v′′1/x]e1

∼= Σ′′
2. [v′′2/x]e2 : A′′, simply because

Σ′′
i ⊇ Σ′

i ⊇ Σi. �

Lemma 26 (Symmetry and transitivity)
1. If Σ ` Σ1. e1

∼= Σ2. e2 : A [C], then Σ ` Σ2. e2
∼= Σ1. e1 : A [C].

2. If Σ ` Σ1. v1 ∼ Σ2. v2 : A, then Σ ` Σ2. v2 ∼ Σ1. v1 : A.

3. If Σ ` Σ1. e1
∼= Σ2. e2 : A [C], and Σ ` Σ2. e2

∼= Σ3. e3 : A [C], then
Σ ` Σ1. e1

∼= Σ3. e3 : A [C]
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4. If Σ ` Σ1. v1 ∼ Σ2. v2 : A, and Σ ` Σ2. v2 ∼ Σ3. v3 : A, then Σ ` Σ1. e1 ∼
Σ3. v3 : A

Proof: Symmetry is obvious, so we present the proofs for transitivity. The proofs
are by induction on the definition of the judgments. For transitivity of the relation
on expressions, we only consider the case when the supports Ci are empty, as it is
easy to generalize to the case of non-empty supports.

By assumptions, (Σ,Σ1), e1 7−→ (Σ,Ψ1), v1, and (Σ,Σ2), e2 7−→ (Σ,Ψ2), v2, such
that Σ ` Ψ1. v1 ∼ Ψ2. v2 : A. Also, (Σ,Σ2), e2 7−→ (Σ,Ψ′

2), v
′
2, and, (Σ,Σ3), e3 7−→

(Σ,Ψ3), v3, such that Σ ` Ψ′
2. v′2 ∼ Ψ3. v3 : A.

By determinacy of evaluation, we know that there is a permutation of names π
such that Ψ2 = π(Ψ′

2) and v2 = π(v′2), and thus by Lemma 23, Σ ` Ψ2. v2 ∼ Ψ3. v3 :
A. Then, by the last induction hypothesis, Σ ` Ψ1. v1 ∼ Ψ3. v3 : A, and therefore,
Σ ` Σ1. e1 ∼ Σ3. e3 : A.

For the relation on values, we only present the case A = A1 → A2 and vi =
λx:A1. ei. In this case, let Σ′

1 ⊇ Σ1 and Σ′
3 ⊇ Σ3, such that Σ ` Σ′

1. v′1 ∼ Σ′
3. v′3 : A1.

By name permutation, we can assume that Σ′
3 and Σ2 are disjoint; otherwise, we can

just rename the conflicting names in Σ2. By symmetry and transitivity at type A1,
we obtain Σ ` Σ′

3. v′3 ∼ Σ′
3. v′3 : A1. By weakening, Σ ` Σ′

1. v′1 ∼ Σ2,Σ
′
3. v′3 and

Σ ` Σ2,Σ
′
3. v′3 ∼ Σ′

3. v′3; therefore Σ ` Σ′
1. [v′1/x]e1

∼= (Σ2,Σ
′
3). [v′3/x]e2 : A2 and

Σ ` (Σ2,Σ
′
3). [v′3/x]e2

∼= Σ′
3. [v′3/x]e3 : A2. Finally, by first induction hypothesis at

type A2, we get Σ ` Σ′
1. [v′1/x]e1

∼= Σ′
3. [v′3/x]e3 : A2. �

It is simple now to extend the above results to logical relations over expressions
with free variables. The following lemma restates the relevant properties.

Lemma 27
1. (Name permutation) Let R1 : Σ1 → Σ′

1 and R2 : Σ2 → Σ′
2 be bijections where

Σ′
1 and Σ′

2 are well-formed in Σ. If Σ;∆; Γ ` Σ1. e1
∼= Σ2. e2 : A [C], then

Σ;∆; Γ ` Σ′
1. R1 e1

∼= Σ′
2. R2 e2 : A [C].

2. (Name localization) Let ∆, Γ, A, C are well-formed in Σ. Then (Σ,Σ′);∆; Γ `
Σ1. e1

∼= Σ2. e2 : A [C] if and only if Σ;∆; Γ ` (Σ′,Σ1). e1
∼= (Σ′,Σ2). e2 : A [C].

3. (Weakening) Let Σ′ ⊇ Σ, and Σ′
1 ⊇ Σ1, Σ′

2 ⊇ Σ2, ∆′ ⊇ ∆, Γ′ ⊇ Γ and
C ′ ⊇ C, so that Σ′

1,Σ
′
2,∆

′, Γ′ and C ′ are well-formed with respect to Σ′. If
Σ;∆; Γ ` Σ1. e1

∼= Σ2. e2 : A [C], then Σ′;∆′; Γ′ ` Σ′
1. e1

∼= Σ′
2. e2 : A [C ′].

4. (Symmetry) If Σ;∆; Γ ` Σ1. e1
∼= Σ2. e2 : A [C], then Σ;∆; Γ ` Σ2. e2

∼=
Σ1. e1 : A [C].

5. (Transitivity) If Σ;∆; Γ ` Σ1. e1
∼= Σ2. e2 : A [C], and Σ;∆; Γ ` Σ2. e2

∼=
Σ3. e3 : A [C], then Σ;∆; Γ ` Σ1. e1

∼= Σ3. e3 : A [C]

Proof:

The proofs proceed in a straightforward manner, following the definition of the
judgment on open expressions. First we consider the case when Γ is non-empty, but
both C and ∆ are empty. Then we generalize to the case of non-empty C, before
finally a non-empty context ∆ is considered. Just as in the definition of the logical
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relations, it is easy to check that in each step of the proof we only rely on the previ-
ously established results. �

To complete the logical relations argument, we need to define the notion of exten-
sional relation on the remaining syntactic category of ν

�

– the category of explicit
substitutions. This definition will be utilized in the statement and the proof of
Lemma 28 to establish that term constructors of ν

�

(in particular, the constructs
for explicit substitutions and modal variables) preserve extensional equivalence.

The judgment for logical relation of extensional equivalence between two explicit
substitutions Θ1 and Θ2 has the form

Σ;∆; Γ ` Σ1. 〈Θ1〉 ∼= Σ2. 〈Θ2〉 : [C]⇒ [D]

and is defined by the following clauses:

Σ; ·; Γ ` Σ1. 〈Θ1〉 ∼=
Σ2. 〈Θ2〉 : [C]⇒ [D]

iff Σ; ·; Γ ` Σ′
1. {Θ1}e1

∼= Σ′
2. {Θ2}e2 :

A [D], for any Σ′
i ⊇ Σi, such that

Σ; ·; Γ ` Σ′
1. e1

∼= Σ′
2. e2 : A [C]

Σ;∆; Γ ` Σ1. 〈Θ1〉 ∼=
Σ2. 〈Θ2〉 : [C]⇒ [D]

iff Σ; ·; Γ ` Σ′
1. 〈[δ1/∆]Θ1〉 ∼=

Σ′
2. 〈[δ2/∆]Θ2〉 : [C] ⇒ [D]

for any Σ′
i ⊇ Σi, such that

Σ ` Σ′
1. δ1 = Σ′

2. δ2 : ∆

As in the case of previous judgments, the relation ∼= on explicit substitutions
satisfies the properties of name permutation, name localization, weakening, symmetry
and transitivity.

Lemma 28
Logical relation is preserved by all the expression constructors of ν

�

. More precisely:

1. (Σ, X:A);∆; Γ ` Σ1. X ∼= Σ2. X : A [X,C]

2. Σ;∆; (Γ, x:A) ` Σ1. x ∼= Σ2. x : A [C]

3. if Σ; (∆, u:A[D]); Γ ` Σ1. 〈Θ1〉 ∼= Σ2. 〈Θ2〉 : [D]⇒ [C], then
Σ; (∆, u:A[D]); Γ ` Σ1. 〈Θ1〉u ∼= Σ2. 〈Θ2〉u : A [C]

4. if Σ;∆; (Γ, x:A) ` Σ1. e1
∼= Σ2. e2 : B [C], then Σ;∆; Γ ` Σ1. λx:A. e1

∼=
Σ2. λx:A. e2 : A→ B [C]

5. if Σ;∆; Γ ` Σ1. e1
∼= Σ2. e2 : A → B [C] and Σ;∆; Γ ` Σ1. e′1

∼= Σ2. e′2 : A [C],
then Σ;∆; Γ ` Σ1. e1 e′1

∼= Σ2. e2 e′2 : B [C]

6. If Σ;∆ ` Σ1. e1 = Σ2. e2 : A [C], and Σ;∆; · ` Σ1. e1
∼= Σ2. e2 : A [C], then

Σ;∆; Γ ` Σ1. box e1
∼= Σ2. box e2 : �CA [D]

7. if Σ;∆; Γ ` Σ1. e1
∼= Σ2. e2 : �DA [C] and Σ; (∆, u:A[D]); Γ ` Σ1. e′1

∼= Σ2. e′2 :
B [C], then Σ;∆; Γ ` Σ1. let box u = e1 in e′1

∼= Σ2. let box u = e2 in e′2 :
B [C]
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8. if Σ;∆; Γ ` (Σ1, X:A). e1
∼= (Σ2, X:A). e2 : B [C], then

Σ;∆; Γ ` Σ1. νX:A. e1
∼= Σ2. νX:A. e2 : A 9 B [C]

9. if Σ;∆; Γ ` Σ1. e1
∼= Σ2. e2 : A 9 B [C] then Σ;∆; Γ ` Σ1. choose e1

∼=
Σ2. choose e2 : B [C]

10. Σ;∆; Γ ` Σ1. 〈 〉 ∼= Σ2. 〈 〉 : [C]⇒ [D] if C ⊆ D

11. if Σ;∆; Γ ` Σ1. e1
∼= Σ2. e2 : A [D], and Σ;∆; Γ ` Σ1. 〈Θ1〉 ∼= Σ2. 〈Θ2〉 : [C \

X]⇒ [D], and X:A ∈ Σ, then Σ;∆; Γ ` Σ1. 〈X → e1,Θ1〉 ∼= Σ2. 〈X → e2,Θ2〉 :
[C]⇒ [D]

Proof: To reduce clutter, we just present the selected cases as if the contexts ∆,
Γ and the support C were empty. The general results are recovered by considering
the interaction between value substitutions ρ, explicit substitutions σ and modal
substitutions δ, which is well-behaved in all the cases of the lemma.

In case of (3), consider Σ′
i ⊇ Σi such that e1 = e2, and Σ ` Σ′

1. e1
∼= Σ′

2. e2 : A [D].
We need to show that Σ; ·; · ` Σ′

1. {[[e1/u]]Θ1}e1
∼= Σ′

2. {[[e2/u]]Θ2}e2 : A [ ]. From
the assumption, we have Σ; ·; · ` Σ′

1. 〈[[e1/u]]Θ1〉 ∼= Σ′
2. 〈[[e2/u]]Θ2〉 : [D] ⇒ [ ], and

then the required equality follows by definition of extensional equivalence for explicit
substitutions

In case of (7), by equivalence of e1 and e2, there exist name sets Ψ1,Ψ2, such
that (Σ,Σ1), e1 7−→

∗ (Σ,Ψ1),box t1 and (Σ,Σ2), e2 7−→
∗ (Σ,Ψ2),box t2, where

t1 = t2 : A [D], and Σ ` Ψ1. t1 ∼= Ψ2. t2 : A [D]. Then it suffices to show that Σ; ·; · `
Ψ1. [[t1/u]]e′1

∼= Ψ2. [[t2/u]]e′2 : B [ ]. But this follows from the second assumption, by
definition of extensional equivalence.

In case of (11), again consider Σ′
i ⊇ Σi, such that Σ′; ·; · ` Σ′

1. e′1
∼= Σ′

2. e′2 :
B [C]. To be consistent with the notation, in this case we assume that D, rather
than C, is empty. To reduce clutter, denote by σ1, σ2 the explicit substitutions
σ1 = 〈X → e1,Θ1〉 and and σ2 = 〈X → e2,Θ2〉. Then we need to show that
Σ; ·; · ` Σ′

1. {σ1}e
′
1
∼= Σ′

2. {σ2}e
′
2 : B [ ]. To establish this, it suffices to prove that

Σ; · ` Σ′
1. σ1

∼= Σ′
2. σ2 [C], i.e. that Σ; ·; · ` Σ′

1. σ1(Z) ∼= Σ′
2. σ2(Z) : A′ [ ] for any

name Z ∈ C such that Z:A′ ∈ Σ. Then the result would follow from the extensional
equivalence of e′1 and e′2. We consider two cases: Z = X, and Z ∈ C \X. If Z = X,
then A′ = A and σi(Z) = ei and by first assumption, Σ; ·; · ` Σ1. σ1(Z) ∼= Σ2. σ2(Z) :
A. By weakening, this implies Σ; ·; · ` Σ′

1. σ1(Z) ∼= Σ′
2. σ2(Z) : A. If Z ∈ C \X, then

σi(Z) = {Θi}Z, and also obviously Σ; ·; · ` Σ′
1. Z ∼= Σ′

2. Z : A′ [C \X]. Then by the
second assumption, Σ; ·; · ` Σ′

1. σ1(Z) ∼= Σ′
2. σ2(Z) : A′ [ ]. The two cases combined

demonstrate Σ; · ` Σ′
1. σ1

∼= Σ′
2. σ2 [C], and this completes the proof. �

Now we can prove that our logical relations are reflexive, and thus indeed equiv-
alences.

Lemma 29 (Reflexivity)
1. If Σ;∆; Γ ` e : A [C], then Σ;∆; Γ ` e ∼= e : A [C]

2. If Σ;∆; Γ ` 〈Θ〉 : [C]⇒ [D], then Σ;∆; Γ ` 〈Θ〉 ∼= 〈Θ〉 : [C]⇒ [D]

Proof: By induction on the structure of e and Θ, using Lemma 28. �
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We reiterate that the current development, and in particular Lemma 29, restricts
e and Θ to only contain simple boxed subterms, because we only defined intensional
equivalence to hold on simple subterms. When considered on this domain, the lemma
has several more interesting consequences. As a first observation, it shows that the
ν

�

-calculus, as considered in this section (i.e. with no recursion), is terminating.
Indeed, our definition of logical relations on expressions required that related expres-
sions evaluate to related values. Thus, if a well-typed expressions of the calculus is
related to itself, than it must have a value.

The second consequence of the lemma is that intensionally related expressions
are at the same time extensionally related as well. In other words, if Σ;∆ ` Σ1. e1 =
Σ2. e2 : A [C], where e is a simple term, then Σ;∆; · ` Σ1. e1

∼= Σ2. e2 : A [C].
This property trivially follows from the reflexivity, simply because the intensional
equivalence, as defined on closed simple terms equates two terms if and only if they
are the same (up to α-renaming) and – more importantly – well-typed. Then the
reflexivity lemma can be applied to extensionally relate these two terms. As a result,
extensional equivalence of modal expressions box e1 and box e2 need not compare
e1 and e2 for extensional equivalence (as it is required by the definition), but can only
rely on their intensional equivalence. This is important, as intensional equivalence,
contrary to the extensional one, is defined inductively, and can be carried out as an
algorithm.

Lemma 30 (Fundamental property of logical relations)
If Σ;∆; Γ ` Σ1. e1

∼= Σ2. e2 : A [C], then

1. if Σ;∆; (Γ, x:A) ` e : B [C], then Σ;∆; Γ ` Σ1. [e1/x]e ∼= Σ2. [e2/x]e : B [C]

2. if Σ;∆; (Γ, x:A) ` 〈Θ〉 : [C1]⇒ [C], then
Σ;∆; Γ ` Σ1. 〈[e1/x]Θ〉 ∼= Σ2. 〈[e2/x]Θ〉 : [C1]⇒ [C]

Proof: By straightforward simultaneous induction on the structure of the two typ-
ing derivations, using the fact that the term constructors of the language preserve
the logical relation. �

After developing the theory of the two relations, we will use it to prove some
interesting equivalences in the calculus. But before we do that in the next lemma,
let us remark on an important property of the our presentation. If we dropped the
requirement of intensional equivalence when comparing values of modal types that
would correspond to treating modal values extensionally, rather than intensionally.
In fact, that may be a more relevant approach for this section, as the current devel-
opment of logical relations does not consider any constructs for structural analysis
of modal expressions. In this case, we do not have to limit the modal expressions to
only simple expressions. In particular, the reflexivity lemma (Lemma 29) holds in
full generality.

Finally, the next lemma lists some equivalences which hold in ν
�

(irrespective of
the treatment of modal values as intensional or extensional entities). Observe that
the list includes all the β-reductions and η-expansions of ν

�

. In this sense, we can
claim that the calculus presented in this paper is purely functional.
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Lemma 31
In the logical equivalences below we assume that all the judgments are well-formed
and that the terms are well-typed in appropriate contexts.

1. Σ;∆; Γ ` (λx. e1) e2
∼= [e2/x]e1 : A [C]

2. Σ;∆; Γ ` e ∼= λx. (e x) : A→ B [C]

3. Σ;∆; Γ ` let box u = box e1 in e2
∼= [[e1/u]]e2 : B [C]

4. Σ;∆; Γ ` e ∼= let box u = e in box u : �DB [C]

5. Σ;∆; Γ ` choose (νX:A. e) ∼= (X:A). e : B [C]

6. Σ;∆; Γ ` (X:A). e ∼= νX:A. choose e : A 9 B [C]

7. Σ;∆; Γ ` λz:A. choose (νX:A1. e) ∼= choose (νX:A1. λz:A. e) : A→ B [C]

8. Σ;∆; Γ ` νX. νY. e ∼= νY. νX. e : A 9 A 9 B [C]

9. Σ;∆; Γ ` e1 (choose (νX:A. e2)) ∼= choose (νX:A. (e1 e2)) : B [C]

10. Σ;∆; Γ ` (choose (νX:A. e1)) e2
∼= choose (νX:A. (e1 e2)) : B [C]

Proof: Again, in order to reduce clutter, we present the proofs of these statements
in the case when ∆, Γ, C are empty. In the general cases, we need to consider interac-
tions between value substitutions ρ, explicit substitutions σ and modal substitutions
δ, but these pose no problems.

In the case ∆, Γ and C are empty, the statements (3) and (4) are trivial, as the
two expressions evaluate to the same value. In (5), the expressions evaluate to the
same value, modulo the choice of a local name Y to stand for X in choose (νX:A. e).
But this choice is irrelevant, by the name permutation property. The statement (10)
is completely symmetric to (9).

To establish (1), let Σ; ·;x:B ` e1 : A, and Σ; ·; · ` e2 : B. As the calculus is
termination, there exist Ψ and v2 such that Σ, e2 7−→

∗ (Σ,Ψ), v2, and therefore also
Σ ` e2

∼= Ψ. v2 : B. By the fundamental property of logical relations (Lemma 30),
Σ ` [e2/x]e1

∼= Ψ. [v2/x]e1 : A. But it is also the case that Σ ` (λx. e1) e2
∼=

Ψ. [v2/x]e1 : A, simply because the two expressions evaluate to the same value.
Then by transitivity, we get Σ ` (λx. e1) e2

∼= [e2/x]e1 : A.
To establish (2), let Σ, e 7−→∗ (Σ,Ψ), (λx. e′), so that Σ; ·; · ` e ∼= Ψ. (λx. e′) :

A → B. By transitivity, this holds if Σ ` Ψ. λx. e′ ∼ λx. (e x) : A → B. In
order to prove this, consider Σ′

1,Σ
′
2 such that Σ ` Ψ,Σ′

1. v1 ∼ Σ′
2. v2 : A. It

suffices to show Σ ` (Ψ,Σ′
1). [v1/x]e′ ∼= Σ′

2. (e v2) : B. By the name permutation
property (Lemma 23), we can assume that Ψ and Σ2 are disjoint. By the properties
of evaluation, (Σ′,Σ′

2), (e v2) 7−→
∗ (Σ′,Σ′

2,Ψ), [v2/x]e′, and thus

Σ ` Σ′
2. (e v2) ∼= (Ψ,Σ′

2). [v2/x]e′ (*)

By type preservation, (Σ,Ψ); ·;x:A ` e′ : B [ ], and thus by reflexivity Σ; ·;x:A `
Ψ. e′ ∼= Ψ. e′ : B [ ]. Then by definition,

Σ ` (Ψ,Σ′
1). [v1/x]e′ ∼= (Ψ,Σ′

2). [v2/x]e′ : B (**)
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Finally, from (*) and (**), by transitivity, we obtain the required

Σ ` (Ψ,Σ′
1). [v1/x]e′ ∼= Σ′

2. (e v2) : B.

To establish (6), let (Σ, X:A), e 7−→ (Σ, X:A,Ψ), (νY :A. e′). Then, by definition,
we have Σ ` (X:A). e ∼= (X:A,Ψ). (νY :A. e′) : A 9 B. By transitivity, it suffices to
show that Σ ` (X:A,Ψ). νY :A. e′ ∼ νX:A. choose e : A 9 B

By definition of the logical relation for values at the type A 9 B, this holds
if and only if Σ ` (X:A,Ψ, Y :A). e′ ∼= X:A. choose e : B. Indeed, we could
chose X:A in the local context of the second argument by the name permutation
property. But the last equation is obviously true, as (Σ, X:A), choose e 7−→∗

(Σ, X:A,Ψ), choose (νY :A. e′) 7−→ (Σ, X:A,Ψ, Y :A), e′.
For (7), the considered equivalence holds iff Σ ` λz:A. choose (νX:A1. e) ∼=

(X:A1). λz:A. e : A → B, iff Σ; ·; z:A ` choose (νX:A1. e) ∼= (X:A1). e : B. But
this is true by (6).

To establish (8), notice that by definition, the required equivalence holds if and
only if Σ ` (X:A, Y :A). e ∼= (Y :A,X:A). e : B. In this equation, we are justified in
choosing the same names X and Y in both sides, by the name permutation property
(Lemma 23). But the contexts (X:A, Y :A) and (Y :A,X:A) are same, because the
type A does not depend on neither X nor Y . Thus, the result follows by reflexivity
of ∼=.

To establish (9), it suffices to show that Σ ` e1
∼= (X:A). e1 : B′ → B and that

Σ ` choose (νX:A. e2) ∼= (X:A). e2 : B′. Then the result would be implied by the
fact that term constructors preserve the equivalence. The first of the above equiva-
lences follows by reflexivity and weakening. The second has already been established
as the β-reduction for the type A 9 B ′. �

The developed logical relations analyze the equivalence of terms from the outside,
rather than by considering their observable operational behavior. A more general
notion of equivalence is the contextual equivalence, by which two terms e1 and e2 are
related if and only if any observable behavior produced by a use of e1 in a complete
program is also produced by a use of e2, and vice versa.

Logical relations, however, are related to contextual equivalence in the following
sense. Whenever two terms are logically equated, their behavior in any program
context is indiscernible. In other words, logical equivalence is sound with respect to
the contextual equivalence. We establish this result in the remainder of the section.
The opposite direction of this implication, that is, the completeness of the logical
relations with respect to contextual equivalence remains future work.

We start by formalizing what it means to use an expression in a program. For that
reason, we define two notions of program contexts: a notion of expression contexts,
and a notion of substitution context. An expression context (resp. substitution
context) is an expression E (substitution F) with a hole, where the whole can be
filled with some expression. We write E [e] (F [e]) for the expression (substitution)
obtained when the hole of E is filled with e. Furthermore, we consider only contexts
that are extensional, i.e. whose hole does not appear under a box, as we want to
relate the extensional logical equivalence to contextual equivalence.

A more formal definition of extensional expression and substitution contexts is
given in the table below.
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Extensional expression contexts E ::= [ ] | X | x | 〈F〉u | λx:A. E | E1 E2 |
box e | let box u = E1 in E2 |
νX:A. E | choose E

Extensional substitution contexts F ::= · | X → E ,F

Now we can prove that the extensional ordering on expressions and substitutions,
as defined previously is a congruence with respect to extensional contexts.

Lemma 32 (Congruence)
If Σ;∆; Γ ` Σ1. e1

∼= Σ2. e2 : A [C], and E , F are an expression and substitution
context respectively, then the following holds.

1. Σ′;∆′; Γ′ ` Σ′
1. E [e1] ∼= Σ′

2. E [e2] : B [D], if E [e1], E [e2] are well-typed in their
appropriate variable contexts.

2. Σ′;∆′; Γ′ ` Σ′
1. 〈F [e1]〉 ∼= Σ′

2. 〈F [e2]〉 : [D]⇒ [D′], if F [e1], F [e2] are well-typed
in their appropriate variable contexts.

Proof: By straightforward simultaneous induction on the structure of E and F ,
using Lemma 28. �

The use of an expression in a complete program context of base type defines the
contextual equivalence between expressions in the following way.

Definition 33 (Extensional contextual equivalence)
Let e1, e2 be well-typed expressions such that Σ,Σ1;∆; Γ ` e1 : A [C], and Σ,Σ2;∆; Γ `
e2 : A [C], where Σi are local to ei. Then e1 and e2 are contextually equivalent, writ-
ten

Σ;∆; Γ ` Σ1. e1
∼=ctx Σ2. e2 : A [C]

if and only if for every extensional expression context E such that ` E [e1] : b and
` E [e2] : b, we have

E [e1] 7−→
∗ v iff E [e2] 7−→

∗ v.

It is trivial to show that the defined relation is indeed an equivalence. We can now
proceed to establish the soundness of the logical relations with respect to contextual
equivalence, as we only need to restrict the attention to program contexts of base
types.

Lemma 34
If Σ;∆; Γ ` e1

∼= e2 : A [C], then Σ;∆; Γ ` e1
∼=ctx e2 : A [C].

Proof: By the congruence property of ∼= (Lemma 32), for any well-typed exten-
sional context E , we have that E [e1] ∼= E [e2]. In the special case when E [ei] are closed
and of base type b, the relation ` E [e1] ∼= E [e2] : b by definition implies that E [e1] and
E [e2] evaluate to the same value. Because E is chosen arbitrarily, the expressions e1

and e2 are contextually equivalent. �
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3.6 Notes

Related work on staged computation and run-time code generation

An early reference to staged computation is [Ers77] which introduces staged com-
putation under the name of “generating extensions”. Generating extensions for
purposes of partial evaluation were also foreseen by [Fut71], and the concept is
later explored and eventually expanded into multi-level generating extensions by
[JSS85, GJ95, GJ97]. Most of this work is done in an untyped setting.

The typed calculus that provided the direct motivation and foundation for our
system is the λ

�

-calculus. It evolved as a type theoretic explanation of staged com-
putation [DP01, WLPD98], and run-time code-generation [LL96, WLP98], and we
described it in Section 3.1.

Related work on metaprogramming

Most of the work on functional metaprogramming today is related to the development
of MetaML [TS97, MTBS99, Tah99, Tah00].

The core fragment of MetaML is based on the λ©-calculus. Formulated by
[Dav96], λ© is the proof-term calculus for discrete temporal logic, and it provides
a notion of open object code where the free variables of the object expressions are
represented by meta variables on a subsequent temporal level. The original moti-
vation of λ© was to develop a type system for binding-time analysis in the setup
of partial evaluation, but it was quickly adopted for metaprogramming through the
development of MetaML.

MetaML builds upon the open code type constructor of λ© and generalizes the
language with several features. The most important one is the addition of a type
refinement for closed code. Values classified by the closed code types are those open
code expressions that do not contain any free meta variables. If an expression is
typed as a closed code, then it may be evaluated at run time.

It might be of interest here to point out a certain similarity between our concept
of supports and the dead-code annotations used in MetaML with references [CMT00,
CMS03]. MetaML cannot naively allow references to open code, in order to avoid
the extrusion of scope of bound variables. At the same time, limiting references
to closed code types is too restrictive, as it rules out some programs that are well-
typed in ML. Scope extrusion has to be allowed, but only if the extruding variables
are never encountered during evaluation. As a solution, MetaML with references
annotates terms with the list of free variables that the term is allowed to contain in
dead-code positions.

In contrast to MetaML, in the ν
�

-calculus, free variables are represented by
names, and they are built into the calculus from the beginning. As a consequence,
only one modal constructor suffices to classify both closed code and code with free
variables, leading to a conceptually simpler type system. Furthermore, we do not
foresee that any significant problems will appear in the extension of ν

�

with refer-
ences.

Taha and Nielsen present another system for combining closed and open code in
[NT03]. The system can explicitly name the object stages of computation through the
notion of environment classifiers. Because the stages are explicitly named, each stage
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can be revisited multiple times and variables declared in previous visits can be reused.
This feature provides the functionality of open code. The environment classifiers are
related to our support variables in the sense that they both are bound by universal
quantifiers and they both abstract over sets. Indeed, our support polymorphism
explicitly abstracts over sets of names, while environment classifiers are used to name
parts of the variable context, and thus implicitly abstract over sets of variables.

Related work on higher-order abstract syntax

Coming from the direction of higher-order abstract syntax, probably the first work
pointing to the importance of a non-parametric binder like our ν-abstraction is
[Mil90]. The connection of higher-order abstract syntax to modal logic has been
recognized by Despeyroux, Pfenning and Schürmann in the system presented in
[DPS97], which was later simplified into a two-level system in Schürmann’s dis-
sertation [Sch00]. The system presented in [Bjø99] is capable of pattern matching
against object-level programs, but is not concerned with their evaluation. There is
also [Hof99] which discusses various presheaf models for higher-order abstract syntax,
then [FPT99] which explores untyped abstract syntax in a categorical setup, and an
extension to arbitrary types [Fio02].

Related work on logic

The representation of syntactic expressions has been investigated in terms of modal
logic of provability for quite some time. The connection between the two arises
from Gödel’s Incompleteness theorems, as for example described by Smorynski in
[Smo85]. Montague’s work [Mon63] is an early reference toward the impossibility of
a formal system that can reason about its own syntax and at the same time reflect
the syntactically obtained results and treat them as true.
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Chapter 4

Modal theory of effects

4.1 Propositional lax logic

4.1.1 Judgments and propositions

Lax logic [FM97] is a logic for reasoning about truth of propositions under certain
constraints. Unlike in modal logic of partial judgments (Section 2), where the par-
tiality conditions are explicitly specified by the support of the judgment and can
be manipulated using the reflection principle, in lax logic the constraints are left
abstract and unspecified.

Following closely Pfenning and Davies [PD01], we start the judgmental formula-
tion of lax logic with the hypothetical judgments, one for the unconstrained truth
and one for lax truth:

A1 true, . . . , An true ` A true

and
A1 true, . . . , An true ` A lax

In the development of lax logic, we use ∆, rather than Γ to vary over sets of true
hypotheses. The reasons for this change of notation will become clear subsequently,
when we present the embedding of propositional lax logic into the propositional
modal logic. With this notational convention in mind, we write our two judgments
as ∆ ` A true and ∆ ` A lax.

Just as usual, the hypothetical truth is internalized using implication, except that
in this case we denote the constructor as⇒, to differentiate the lax implication from
the implication used in modal logic. Thus, we will have the following standard rules
for implication

∆, A true ` B true

∆ ` A⇒ B true

∆ ` A⇒ B true ∆ ` A true

∆ ` B true

On the other hand, A lax is supposed to hold if, intuitively, the proposition A
is true under some, unspecified constraints. The following two statements formally
capture this intuition and can be taken as definitional clauses for A lax.

Definition of lax truth

1. If ∆ ` A true then ∆ ` A lax.
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2. If ∆ ` A lax and ∆, A true ` B lax, then ∆ ` B lax.

The first clause states that if A is true, then A is certainly true under some
constraint (namely, the trivial constraint that is always satisfied). In the second
clause, if A is true under some constraint, then any consequence of the unconditional
truth of A will itself be constrained by the original conditions imposed on A.

Internalizing lax truth into the unconstrained truth judgment proceeds along the
familiar lines. We introduce a new unary connective © on propositions, with the
formation rule

A prop

©A prop

and with the introduction rule that relates the new connective to the lax judgment.

∆ ` A lax

∆ ` ©A true

As customary, here we assume that each proposition A appearing in the judgments
is well-formed.

The elimination rule for © follows the second definitional principle above, but
combines it with the introduction rule for ©.

∆ ` ©A true ∆, A true ` B lax

∆ ` B lax

We also need a rule to realize the first definitional principle and provide a coercion
from true to lax propositions.

∆ ` A true

∆ ` A lax

This axiomatization is locally sound and complete, as witnessed by local reduction
and expansion. The local reduction is justified by the definitional property (2) above,
from the premises ∆ ` A lax and ∆, A true ` B lax.

∆ ` A lax

∆ ` ©A true ∆, A true ` B lax

∆ ` B lax

=⇒R ∆ ` B lax

∆ ` ©A true =⇒E
∆ ` ©A true

∆, A true ` A true

∆, A true ` A lax

∆ ` A lax

∆ ` ©A true

Example 24 The following are some judgments derivable in lax logic.

1. ` A⇒©A true

2. ` ©©A⇒©A true
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3. ` (A⇒ B)⇒©A⇒©B true

Derivation of ` A⇒©A true.

A true ` A true

A true ` A lax

A true ` ©A true

` A⇒©A true

Derivation of ` ©©A⇒©A true.

©©A true ` ©©A true

©A true ` ©A true

A true ` A true

A true ` A lax

©A true ` A lax

©© A true ` A lax

©©A true ` ©A true

` ©©A⇒©A true

Derivation of ` (A⇒ B)⇒©A⇒©B true.

©A true ` ©A true

(A⇒ B) true ` A⇒ B true A true ` A true

(A⇒ B) true,A true ` B true

(A⇒ B) true,A true ` B lax

(A⇒ B) true,©A true ` B lax

(A⇒ B) true,©A true ` ©B true

(A⇒ B) true ` ©A⇒©B true

` (A⇒ B)⇒©A⇒©B true

�

Lax logic and modalities

From the logical standpoint, one can imagine that each possible world of modal logic
represents a certain – abstract – constraint from the lax logic. Then the judgment
A lax expresses that there exists a world (i.e. a constraint) in which A is true. Thus,
the judgment for lax truth is semantically very similar to the judgment for possibility,
because both represent a form of existential quantification.

Indeed, the two judgments share very similar typing rules and substitutions prin-
ciples. In fact, upon inspection of the typing rules, there appears only one distinction:
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the judgment for lax truth has only one context of hypotheses ∆, while the judgment
for modal possibility has two contexts ∆ and Γ, distinguishing between necessary and
true hypotheses. Intuitive reasoning then leads to the following conclusion: if truth
and necessity of modal logic are equated, that will have as a consequence the equating
of lax truth with modal possibility, and respectively, © with 3. Note that conflating
truth and necessity does not conflate these two with possibility. If a proposition A is
possible, then it is true at some accessible world (and hence necessary at that world).
But it need not be true and necessary at the current world.

A precise statement of this observation involves embedding lax logic into modal
logic. In particular, if A true and A nec are equated on the modal side, then the
propositions A and �A become logically equivalent. Henceforth, a lax proof de-
pending on a hypothesis A true, will correspond to a modal proof that depends on
�A true. Similarly, a lax proof depending on A lax, will correspond to a modal proof
that depends on �A poss. Because the judgments for lax truth and for possibility
are not used as hypotheses, the embedding has to manipulate the internalized forms
of the two judgments. Thus a lax proof depending on ©A true should correspond
to a modal proof depending on 3�A true.

More formally, consider the translation (−)+ of lax propositions into modal propo-
sitions, discovered by Pfenning and Davies in [PD01]:

(A⇒ B)+ = �A+ → B+

(©A)+ = 3�A+

P+ = P for atomic P

(·)+ = ·

(∆, A true)+ = ∆+, A+ nec

Then the following lemmas establishes the formal correspondence between the two
logics.

Lemma 35
1. If ∆ ` A true then ∆+; · ` A+ true in modal logic.

2. If ∆ ` A lax then ∆+; · ` �A+ poss.

Proof: By simultaneous induction on the derivations of the first judgments [PD01].
�

For the opposite direction, we need an inverse translation (−)−, mapping modal
propositions into lax propositions.

(A→ B)− = A− ⇒ B−

(�A)− = A−

(3A)− = ©A−

P− = P for atomic P

(∆, A nec)− = ∆−, A− true

(Γ, A true)− = Γ−, A− true
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Notice that (A+)− = A.

Lemma 36
1. If ∆;Γ ` A true in modal logic, then (∆−,Γ−) ` A− true in lax logic.

2. If ∆;Γ ` A poss, then (∆−,Γ−) ` A− lax.

Proof: By simultaneous induction on the given derivation. �

Theorem 37
1. ∆ ` A true in lax logic if and only if ∆+; · ` A+ true in modal logic.

2. ∆ ` A lax if and only if ∆+; · ` A+ poss

Proof: The left-to-right direction is Lemma 35. For the right-to-left direction
of the first statement, if ∆+; · ` A+ true in modal logic, then by Lemma 36,
(∆+)− ` (A+)− true, and therefore ∆ ` A true in lax logic. Similar reasoning
proves the second statement as well. �

From the axiomatic standpoint, the identification of truth and necessity in con-
structive S4 modal logic can be accomplished by addition of the single axiom scheme
(or inference rule)

A→ �A true

Indeed, because constructive S4 already proves �A → A true, adjoining A →
�A true annihilates the logical distinction between A and �A, and correspond-
ingly, between truth and necessity. Notice that if A and �A are equivalent in modal
logic, then instead of the translation (−)+ we could use the translation (−)∗ (defined
below), as A+ and A∗ are equivalent for any A.

(A⇒ B)∗ = A∗ → B∗

(©A)∗ = 3A∗

P ∗ = P for atomic P

(·)∗ = ·

(∆, A true)∗ = (∆∗, A∗ nec)

Moreover, the equivalence between A+ and A∗ leads to the following theorem.

Theorem 38
1. If ∆ ` A true in lax logic, then ∆∗; · ` A∗ true in modal logic with A→ �A.

2. If ∆ ` A lax in lax logic, then ∆∗; · ` A∗ poss in modal logic with A→ �A.

3. If ∆;Γ ` A true in modal logic with A→ �A, then (∆−,Γ−) ` A− true in lax
logic.

4. If ∆;Γ ` A poss in modal logic with A→ �A, then (∆−,Γ−) ` A− lax in lax
logic.
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Proof: The first two statements trivially follow from Lemma 35 by the equiv-
alence of the translations (−)+ and (−)∗. For the third statement, assume that
∆; Γ ` A true in modal logic extended with B → �B. Then by Lemma 36,
(∆−,Γ−) ` A− true in lax logic extended with (B → �B)−. But, (B → �B)− is
equal to B− ⇒ B−, which is already derivable in lax logic. Thus, (∆−,Γ−) ` A− true
in lax logic with no additions. The proof of the fourth statement is similar. �

As a consequence, ∆ ` A true and ∆ ` A lax are derivable in lax logic if
and only if ∆∗; · ` A∗ true and ∆∗; · ` A∗ poss, are derivable in modal logic with
A → �A, respectively. Notice, however, that the translation (−)∗ simply renames
the lax connectives into modal connectives. In other words, the intuitionistic lax
logic is obtained when the constructive modal S4 is extended with the axiom scheme
A → �A. In that case, modal possibility attains the properties of lax truth, and
correspondingly, the operator 3 becomes ©.

The described embedding also explains why lax logic has only one modal con-
structor, corresponding to 3, and lacks a constructor corresponding to �.

4.1.2 Lax λ-calculus

In this section, we decorate the judgments of lax logic with proof terms. The obtained
proof term system, called lax λ-calculus, extends the ordinary λ-calculus with new
syntactic categories to account for the specifics of lax logic. Again, we follow Pfenning
and Davies [PD01] in the presentation. The judgments ∆ ` A true and ∆ ` A lax
are now changed into ∆ ` e : A and ∆ ` f :∼ A, where e and f are proof terms
witnessing the judgments. The syntax of the calculus is summarized below.

Types A,B ::= P | A⇒ B | ©A
Expressions e ::= x | λx:A. e | e1 e2 | val f
Phrases f ::= e | let val x = e in f
Variable contexts ∆ ::= · | ∆, x:A

As can be noticed, the syntactic categories of expressions and phrases are slightly
different from the categories of expressions and phrases used in the modal λ- and ν-
calculi. We retain the same terminology, however, in order emphasize the relationship
between the modal and lax calculi.

As customary in the transition from logic to λ-calculus, the the context ∆ now
contains propositions labeled with variables, so that instead of A true we write x:A.
We present the type system below.

∆, x:A ` x : A

∆, x:A ` e : B

∆ ` λx:A. e : A⇒ B

∆ ` e1 : A⇒ B ∆ ` e2 : A

∆ ` e1 e2 : B
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∆ ` e : A

∆ ` e :∼A

∆ ` f :∼A

∆ ` val f :©A

∆ ` e :©A ∆, x:A ` f :∼B

∆ ` let val x = e in f :∼B

As can be seen, the proof terms constructors and the typing rules for uncon-
strained truth define a fragment of the system that corresponds to the ordinary λ-
calculus. On the other hand, the constructors and the rules for lax truth are similar
to the rules for the possibility fragment of the modal λ-calculus from Section 1.2.

Example 25 The following are well-typed terms in the lax λ-calculus.

1. ` λx. val x : A⇒©A

2. ` λx. val (let val y = x in let val z = y in z) :©©A⇒©A

3. ` λf. λx. val (let val y = x in f y) : (A⇒ B)⇒©A⇒©B

�

We now restate the definitional properties for the lax modalities using the newly
introduced proof terms of the lax λ-calculus.

1. If ∆ ` e : A, then ∆ ` e :∼A.

2. If ∆ ` f1 :∼A and ∆, x:A ` f2 :∼B, then ∆ ` 〈〈f1/x〉〉f2 :∼B.

The definitional property (1) simply expresses that each expression can be coerced
into a phrase. The property (2) is a substitution principle for phrases. It uses a
similar form of phrase substitution 〈〈f ′/x〉〉f as the one defined in the case of modal
possibility (Section 1.2).

〈〈e/x〉〉f = [e/x]f

〈〈let val y = e in f ′/x〉〉f = let val y = e in 〈〈f ′/x〉〉f

The local reductions and expansions of the calculus are

(λx:A. e1) e2 =⇒R [e2/x]e1

e : A⇒ B =⇒E λx:A. e x

let val x = val f1 in f2 =⇒R 〈〈f1/x〉〉f2

e :©A =⇒E val (let val x = e in x)
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4.1.3 Values and computations

In this section we review the main results on a monadic treatment of effects. The idea,
originally proposed by Moggi [Mog89, Mog91] for structuring denotational semantics,
and then adopted by Wadler [Wad92, Wad95, Wad98] for functional programming, is
to use a unary type constructor © (called monad), to distinguish in the type system
between values and effectful computations. We deliberately use the notation ©
from lax logic, to emphasize the connection between the lax λ-calculus and effectful
computations. We will make this connection more explicit subsequently.

For example, if A is a type of values, then©A classifies computations of type A.
The reason for this distinction is that computations do not need to be pure. In the
course of its evaluation, a computation is not limited to only compute a value – in
fact, it is not even required to – it may be evaluated in order to perform an effect.
For example, a computation may update the global store, raise an exception, per-
form I/O, or perhaps diverge. As argued by many works on type-and-effect systems
([GL86, LG88, Mog91, Wad92, Wad95, Wad98, JG91, TJ94, TT97] among others),
and explored in the context of the programming language Haskell [Pey03], it may be
beneficial for the programming practice to make explicit in the type system that a
certain program expression may perform an effect. Such a type system restricts the
class of environments that an expression may interact with and makes the reason-
ing about effectful programs much more modular, and hence simpler. This in turn
facilitates the compile-time discovery of programming errors related to effects, and
enables more aggressive optimizations.

The exact effects that a computation may perform may vary. However, indepen-
dently of the nature of particular effects, there are two generic operations applicable
to any notion of computation:

1. Every value e can be coerced into an effectful computation that trivially returns
that value.

2. Two effectful computations f1 and f2 can be composed as follows: first f1 is
evaluated, and its value (if it exists) is supplied as an input to f2. The result
is a computation “inheriting” the effects of both f1 and f2.

It is no accident that the description of these two generic operations relates so
closely to the definitional principles of lax logic and the lax λ-calculus from the pre-
vious section. In fact, the lax λ-calculus perfectly embodies the described distinction
between values and computations, as witnessed by the following interpretation of its
syntactic categories.

1. An expression e : A describes a pure computations, which evaluates with no
side effects, and therefore produces a value of type A. From the operational
standpoint, an expression e is observationally equivalent to its value.

2. The phrase f :∼ A describes an effectful computation of type A. Two effect-
ful computations can be combined, as described by the phrase substitution
principle from the previous section.

3. An effectful computation f :∼A can be internalized as an expression val f :©A.
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4. An expression e : A (or more precisely, its value), can be coerced into an effectful
computation e :∼A and then internalized into an expression val e :©A.

In the original papers on monadic treatment of effects [Mog89, Mog91], Moggi has
proposed a monadic λ-calculus as a general framework for describing operations on
effectful computations. The monadic λ-calculus is very similar to the lax λ-calculus,
but it does not make a judgmental separation between pure and effectful computa-
tions. Rather, it conflates the notions of expressions and phrases, and contains only
one judgment ∆ ` e : A, with the following typing rules.

∆, x:A ` x : A

∆, x:A ` e : B

∆ ` A⇒ B

∆ ` e1 : A⇒ B ∆ ` e2 : A

∆ ` e1 e2 : B

∆ ` e : A

∆ ` comp e :©A

∆ ` e1 :©A ∆, x:A ` e2 :©B

∆ ` let comp x = e1 in e2 :©B

In fact, Moggi’s formulation of the monadic λ-calculus uses proof terms val and
let val, which we rename here into comp and let comp, to avoid confusion with
the constructors of the lax λ-calculus.

The local reductions and expansions of the monadic λ-calculus are given as fol-
lows.

(λx:A. e1) e2 =⇒R [e2/x]e1

e : A⇒ B =⇒E λx:A. e x

let comp x = comp e1 in e2 =⇒R [e1/x]f2

e :©A =⇒E let comp x = e in comp x

These reductions and expansions, however, are not sufficient to explain all the in-
teractions between effectful expressions. Because of the unusual elimination rule for
©, expressions of monadic type may be introduced using both comp and let comp
forms, but the local reduction for © only accounts for the first possibility. Thus,
the monadic λ-calculus requires an additional equational rule to treat the commuting
conversions between nested let comp expressions.

let comp x = (let comp y = e1 in e2) in e =⇒

let comp y = e1 in (let comp x = e2 in e)

Example 26 In the monadic λ-calculus, the particular notions of effects are usually
specified by a notational definition of the type©A and its corresponding expressions,
in terms of already available language constructs.
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For example, if we want a language capable of raising an exception of type E, we
use disjoint sums to define the exception monad © and its corresponding monadic
term constructors [Mog91, Wad95].

©A = A + E

comp e = inl e

let comp x = e1 in e2 = case e1 of inl x⇒ e2 | inr y ⇒ inr y

There are also additional term constructors used to raise and handle the exception
associated with the monad ©.

raise : E ⇒©A

raise e = inr e

handle : ©A⇒ (E ⇒ A)⇒ A

handle e h = case e of inl v ⇒ v | inr exn⇒ h exn

The constructor raise takes an expression e : E and coerces it into inr e. This way, it
implements exception raising, passing the value of e along. The constructor handle
takes an expression e :©A and a function h representing an exception handler. If e
evaluates to a value v : A, the result of handling is v. If e raises the exception with
a value exn : E, then the result of handling is h exn.

The operational semantics follows the standard operational semantics associated
with disjoint sums. For example, let us assume that ©A = A + E is an exception
monad, and that f : int⇒©int. The following program adds the results of f 1 and
f 2. If the evaluation of any of the two function applications raises an exception, the
overall computed result is zero.

handle (let comp x1 = f 1

comp x2 = f 2

in

comp (x1 + x2)

end) (λexn. 0)

�

Example 27 In this example, we present the monad of side effects. The monad
of side effects defines computations that execute in a state. The computation can
read from the state, and modify it. Let S be a set of possible states. A stateful
computation of type A is a computation that may read from the current state,
before returning a value of type A, and a new state. Hence, stateful computations
are classified by the the monad defined as follows.

©A = S ⇒ (A× S)

comp e = λs:S. 〈e, s〉

let comp x = e1 in e2 = λs:S. let 〈x, s′〉 = (e1 s) in (e2 s′)
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The type ©A = S ⇒ (A × S) expresses the fact that a stateful computation is
a function: it reads from a state before returning a value and a new state. The
constructor comp coerces a value e into a trivial stateful computation that returns
e and the unchanged state. The constructor let comp evaluates e1 in the current
state, before passing the obtained value x and the new state s′ to e2.

The type S and the notion of state associated with this monad may be defined
in many different ways, depending on the wanted side effects. For example, S may
represent memory store in which mutable references may be allocated, read from and
written into [LP95, BHM02]. For simplicity, in this example we assume that the state
consists of a single integer location which can be read and written. Correspondingly,
we set S = int, and adjoin the following specific constructors to the state monad©.

read : ©int

read = λs:int. 〈s, s〉

write : int⇒©unit

write e = λs:int. 〈(), e〉

init : int⇒©A⇒ A

init e1 e2 = fst (e2 e1)

The stateful computation read returns the value of the integer location from the
state s; s remains unchanged. The computation write e changes s so that the value
of e is now stored into it. This computation is not evaluated for its value, so that it
returns the trivial value ():unit. The constructor init initializes the state location
with the value of e1, then executes the stateful computation e2 and returns the
computed value.

As an example of the constructors for stateful computations, consider the program
below. In this program, we assume a function add : int ⇒ ©int which adds its
argument to the value of the state location, while returning the old state value as a
result.

init 1 (let comp x = read

comp y = add (x)

comp dummy = write (y + 1)

in

read

end)

The program first initializes the state with 1, and then increments it by means of the
function add. The value bound to y is 1, which is the old value of the state. Then
y + 1 = 2 is re-written into the state, and it is this value that is finally computed by
the program. �

As established by Pfenning and Davies in [PD01] and Benton, Bierman, de Paiva
in [BBdP98] and Kobayashi [Kob97], both the lax λ-calculus and the monadic λ-
calculus are computationally adequate. However, because the lax λ-calculus does
not require any special treatment for commuting conversions, it has a bit simpler
and more pleasant proof-theoretic properties.
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4.2 Modalities for effectful computation

As summarized and illustrated in the previous section, monads and lax logic can be
used to differentiate in the type system between values and effectful computations.
Having in mind that the monadic and the lax λ-calculi very closely correspond to
modal possibility, a natural question arises: does a dual development to modal pos-
sibility and monads have any computational import to the treatment of effects? In
other words, can we employ modal necessity to capture some invariants of effectful
computations, and if so, which invariants does modal necessity represent?

We start our analysis of this question by making a distinction similar to the one
made in the monadic and the lax λ-calculi in Section 4.1.3. We assume that the non-
modal type A corresponds to values, and that the modal types �A and 3A stand
for some kind of computations of type A. But, what kind of computations exactly
do the two different modalities represent?

Let us first consider modal possibility, because it is related to lax logic and monads
from Section 4.1, and these have been extensively studied in the literature. We recall
the relevant typing rules and the substitution principle, in a version decorated with
the calculus of proof terms (Section 1.1.4).

∆; Γ ` e : A

∆;Γ ` e ÷ A

∆;Γ ` f ÷ A

∆;Γ ` dia f : 3A

∆;Γ ` e : 3A ∆;x:A ` f ÷ B

∆;Γ ` let dia x = e in f ÷ B

Substitution principle for possibility

If ∆; Γ ` f1 ÷ A and ∆;x:A ` f2 ÷ B, then ∆; Γ ` 〈〈f1/x〉〉f2 ÷ B.

In the substitution principle for possibility, the operation of phrase substitution
〈〈f ′/x〉〉f is defined as

〈〈e/x〉〉f = [e/x]f

〈〈let dia y = e in f ′/x〉〉f = let dia y = e in 〈〈f ′/x〉〉f

The important observation about modal possibility is that it enforces a program-
ming style by which the computations (and therefore, the corresponding effects) are
serialized, i.e. totally ordered. Indeed, each phrase witnessing a possibility judgment
is a nested list of let dia clauses. Thus, for any two computations of types 3A and
3B respectively, it is always evident from the program which of the two takes prece-
dence. For example, let e1 : 3A and e2 : 3B be two computations, and consider the
phrase

F = let dia x1 = e1 in (let dia x2 = e2 in f)

It is clear from the form of F that e1 takes precedence over e2, and that any sound
operational semantics for phrases will have to evaluate e1 first, before attempting e2.
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Moreover, the definition of modal possibility prohibits writing phrases in which this
ordering is not immediately evident. In particular, let F1 ÷ A → B and F2 ÷ A be
two phrases defined as follows:

F1 = let dia x1 = e1 in f1 and F2 = let dia x2 = e2 in f2

Then it is impossible to put F1 and F2 together into an application like (F1 F2) where
it is unclear which of two phrases – and which of the two computations e1 and e2 –
comes first. Indeed, F1 F2 is not a well-formed element of the category of phrases,
as defined in Section 1.1.4.

The operation of phrase substitution 〈〈f/x〉〉f ′ combines the substituted phrases
by giving precedence to the effects of f over the effects of f ′. As an illustration, let
F ′ be another phrase with its own computational effects, and consider the phrase
substitution 〈〈F/x〉〉F ′, where F is defined above.

〈〈F/x〉〉F ′ = (let dia x1 = e1 in let dia x2 = e2 in 〈〈f/x〉〉F ′)

Notice that the effectful computations e1 and e2 are the first two computations in
the result of the substitution, and therefore take precedence over the computations
of F ′. As a conclusion, any operational semantics based on the substitution principle
for possibility will respect the serialization specified by the phrase constructors and
appropriately order the computational effects of the program.

It is this property, shared by both monads and modal possibility, that makes them
very appropriate for representing persistent effectful computations where an effect
may change the environment in which the program executes. A change inflicted upon
the environment may influence the subsequent computations. Therefore, in order to
have a well-defined semantics, it is important that the program effects are always
performed in a strictly specified order. A typical example of the persistent kind of
effects is writing into a memory location. And indeed, as it is well-known from many
practical algorithmic and systems applications, writing into memory locations must
typically be serialized, so that the value stored in the location is always well-defined.

Of course, another way to specify the ordering of program effects is to define
it by the operational semantics. This strategy is adopted by many programming
languages, a typical example being Standard ML [MTHM97]. But, a type system –
like that associated with monads or modal possibility – that makes it explicit which
expressions are effectful and which are not, has a certain advantage. It not only
specifies the ordering of effects, but it provides the compiler with the knowledge
of effectful properties of program expressions. This knowledge can be utilized to
perform better optimizations. For example, if an expression is effectful, then it should
be evaluated in the serialized order given by the program. But if an expression is
pure, then its subterms may freely be rearranged, optimized, and evaluated out of
order.

Let us now inspect the possible use of modal necessity for representation of effects.
We recall the relevant typing rules and the substitution principle for necessity, in its
version decorated with proof terms, as presented in Section 1.1.3.
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(∆, u::A); Γ ` u : A

∆; · ` e : A

∆;Γ ` box e : �A

∆;Γ ` e1 : �A (∆, u::A); Γ ` e2 : B

∆;Γ ` let box u = e1 in e2 : B

Substitution principle for necessity

If ∆; Γ ` e1 : A and (∆, u::A); Γ ` e2 : B, then ∆; Γ ` [e1/u]e2 : B.

Unlike modal possibility, notice that modal necessity does not prescribe any par-
ticular ordering among effects. To contrast this with our previous discussion of pos-
sibility, let e1 : �A and e2 : �B be two computations, and consider the expressions
E1 : A→ B and E2 : A, defined as follows:

E1 = let box u1 = e1 in e′1 and E2 = let box u2 = e2 in e′2

Then it is perfectly well-defined to put together E1 and E2 into an application like
(E1 E2) : B. Observe that the language constructs used in this expression do not
specify which of the expressions E1 and E2 – and therefore which of the computations
e1 and e2 – takes precedence over the other. It must be left to the operational
semantics of the language to determine the evaluation order between the two, but
any strategy is sound. Furthermore, unlike the phrase substitution principle, the
substitution principle for necessity relies on ordinary substitution [e1/u]e2 — it freely
propagates and even duplicates effectful computations, without any concern for the
ordering of the effects involved.

As a consequence, if modal necessity is to represent effectful computations, these
could only be computations that do not change the run-time environment of the
program. The computations may depend on the environment, but they should not
change it — they are benign. Examples of benign effects abound: non-termination,
memory reads and control-flow effects like exceptions, to mention but a few.

The simple modal type system in itself, however, is not strong enough to represent
benign effects. In many cases of benign effects, results of benign computations depend
on the evaluation environment. It is of paramount importance, therefore, to prevent
evaluating effectful expressions within environments that cannot deal with the effect
in question. For example, an expression that reads from a memory location X should
only be evaluated when a memory location X is actually allocated and initialized.
An expression raising the exception X should only be evaluated when a handler
for X is active. Thus, it is necessary for soundness purposes that the type of a
benign computation captures the relevant aspects of the environment on which the
computation depends on.

This is where names and supports, as developed in Section 2.2, become important.
Henceforth, rather than using a simple modal type system, we will consider a modal
type system with names and indexed modalities. For example, if a computation of
type A needs to read from the memory location X, or may raise the exception X, we
will ascribe it the type �XA. Names and supports provide yet further possibilities.
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Using indexed necessity types, we can encode in the type system the notion of han-
dling, i.e. restoring the purity of an impure computation by means of some action.
Handling will be related to the principle of reflection from Section 2.1. When the
effect X in a computation of type �XA is handled, we obtain a pure computation of
type �A, and then a value of type A.

A following logical analogy can be made about modal types for effects. A compu-
tation of type A with a benign effect identified by the name X is, in a sense, a partial
computation. In order to produce a value of type A, it needs to be evaluated in an
environment capable of dealing with X. But it can be successfully evaluated in all
such environments — hence we can ascribe it the the bounded universal type �XA.
On the other hand, a persistent computation of type A that changes the aspect of
the run-time environment associated with the name X (for example, writes into the
memory location X), will be ascribed the bounded existential type 3XA. Indeed,
such a computation is a witness that there exists an environment – the one obtained
after changing X – in which a value of type A can be computed.

To summarize, we can use the modal type system with names to distinguish
between following computational categories: (1) values, which are associated with
non-modal types A, (2) computations with benign effects, which are associated with
necessitation types �CA, and (3) computations with persistent effects, which are
associated with possibility types 3CA. In a modal type system with names, we can
also make a characterization of pure computations. A pure computation of type A is
a computation with no effects. In particular, it does not depend on any aspects of
the run-time environment, and can therefore be ascribed a type �A, where the index
support on the modal operator is empty. A pure computation is not necessarily a
value itself, but it may be evaluated to produce a value. This property is logically
characterized by the axiom �A→ A of constructive S4 modal logic.

Just as in the case of the monadic λ-calculus, we will also want to coerce values
into computations. But in the modal system, we can actually express that a compu-
tation obtained by coercing a value is, in fact, pure. An appropriate logical analog
of this coercion is the proposition

A→ �A

As already discussed in Section 4.1, adjoining this proposition to CS4 modal logic
results in two things: (1) modal possibility becomes lax truth, and correspondingly,
3 becomes a strong monad in the sense of Moggi [Mog91], and (2) the logical dis-
tinction between A and �A is annihilated. In lax logic, this resulted in removing
the operator � from considerations. If this axiom is adjoined to modal logic with
names, it again makes the types A and �A logically equivalent. However, this does
not remove the need for the operator � and its associated proof terms. In modal
logic with names, there is a whole family of necessitation operators �C , indexed by
supports C. Identifying A and �A certainly does not collapse this whole indexed
family. The operator � can still make distinctions between propositions. For exam-
ple, one proposition that does not become derivable after equating A and �A is the
implication �XA → A. The computational content of this proposition states that
every computation with a benign effect X evaluates to a value. But this is obvi-
ously false. For example, a computation of type A that may raise the exception X,
certainly need not evaluate to a value. Indeed, it may actually raise the exception.
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Before we proceed with the technical details of a modal type system for effectful
computations, we need to answer the following important question: do benign com-
putations indeed present a separate category and require their own type constructor?
Is it possible to perhaps treat benign computations using monads or modal possibil-
ity, or to simply ignore their effects and consider them pure?

Of course, every benign computation may be considered as trivially persistent,
and represented using the same mechanism of monads or modal possibility. But
that representation would fail to capture the important invariant that benign com-
putations do not change the run-time environment, and therefore do not need to be
serialized. Indeed, why serialize two computations that both read from a memory
location X, when they could easily be evaluated out of order.

On the other hand, perhaps benign computations may be considered pure? After
all, this is exactly how non-termination is often treated in practice. Because diverging
expressions do not change the run-time environment (in fact, they do not even depend
on the environment), non-termination in most cases is not even considered an effect.
Unlike non-termination, however, not all benign effects are independent of the run-
time environment in which they are evaluated. For example, a computation that
reads from the memory location X will produce a different result, depending on
the content of X at the time of evaluation. Such a computation may therefore
be optimized, rearranged, memoized, evaluated out of order, or in parallel with
many other computations reading from X, but only as long as the content of X
is unchanged. In particular, this evaluation cannot be postponed beyond the first
subsequent write into X. This is very different from pure computations which can
be postponed indefinitely, and only evaluated when their result is needed.

As a conclusion then, it is sensible to employ a modal type system to distinguish
between values, pure computations, computations with benign effects, and computa-
tions with persistent effects. We proceed in the following section with a description
of the technical details of such a type system.

4.3 A modal type system for benign effects

The main judgment of the modal type system for benign effects is a variant of the
partial truth judgment for modal logic from Sections 2.1 and 2.2:

Σ;∆ ` e : A [C]

We recall here the relevant syntactic conventions. For example, the typing ascriptions
in the context ∆ are of the form u:A [C], assigning the type A and support C to the
variable u. The name context Σ consists of type assignments X1:A1, . . . , Xn:An,
associating names X1, . . . , Xn with types A1, . . . , An, respectively. All the names
used in the typing judgment are required to be declared and typed in Σ. It is assumed
that all the names X1, . . . , Xn are distinct, and the set {X1, . . . , Xn} is denoted by
dom(Σ). The context Σ is dependently typed, because each type Ai may depend on
names. Thus, each Xi may be used only to the right of its declaration in Σ.

In the modal system for benign effects, names stand for the particular notion of
effects, and this notion may differ from application to application. For example, if we
want to design a type system that tracks location reads in order to prevent reading
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from uninitialized locations, we will use names to declare memory locations. If we
want to design a type system that tracks raising and handling of exceptions, we will
use names to declare individual exceptions.

In the modal system for benign effects, the support C associated with the expres-
sion e lists the effects that may be enacted during the evaluation of e. For example,
if the expression e may read from a location X:A, then the name X will be in the
support of e. If the expression e may raise the exception X:A, then the name X will
be in the support of e. Support C will typically be a finite set of names, but we will
also consider an application in Section 4.8, where C is a finite list of names. What
is important, however, is that supports come equipped with a partial ordering

C v D

whose minimal element is the empty support (be it a set or a list). This is analogous
to the development of partial judgments in Chapter 2. The idea behind the partial
ordering of supports is the following: if the expression e has support C, then all the
effects that may arise during the evaluation of e are listed in C. But then, trivially,
all these effects are listed in D w C, and thus e could be ascribed a support D as well.
Thus, one of the important structural properties of the type system is the support
weakening principle phrased as follows.

Principle (Support weakening for expressions)

If Σ;∆ ` e : A [C] and C v D, then Σ;∆ ` e : A [D].

By declaring which effects may be enacted by the expression e, the support C
also determines in which run-time environments the expression e may be evaluated.
For example, if e may read from the location X, then e must be evaluated in an
environment in which X is initialized. Or, if e may raise an exception X, then e
must be evaluated in an environment with an active handler for X. Thus, our type
system will have a judgment for typing environments, in order to determine when
an environment Θ matches a support C. The general form of the judgment for
environments1 is:

Σ;∆ ` 〈Θ〉 : [C]⇒ [D]

An expression e of support C may only appear in a context of an environment Θ that
is typed as [C]⇒ [D] (for some D). Thus, the typing 〈Θ〉 : [C]⇒ [D] declares that
Θ can appropriately deal with the effects C. We will keep the environment judgment
undefined for a moment, and provide definitions for each particular notion of effect
that we consider in the subsequent sections. Obviously, the environment judgment
corresponds to the support judgment C sat [D] from Section 2.1 and the judgment of
explicit substitutions 〈Θ〉 : [C]⇒ [D] from Section 2.2. The environments are subject
to the similar support weakening principles as explicit substitutions and C sat [D].

Principle (Support weakening for environments)

If Σ;∆ ` 〈Θ〉 : [C]⇒ [D] and D v D′, then Σ;∆ ` 〈Θ〉 : [C]⇒ [D′].

1Although, in specific cases we will deviate slightly from this form in order to provide more
information relevant to the environments.
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The relationship between expressions and environments is established in the type
system via the following rule corresponding to the rule for reflection in Section 2.1.

Σ;∆ ` e : A [C] Σ;∆ ` 〈Θ〉 : [C]⇒ [D]

Σ;∆ ` 〈Θ〉e : A [D]

This rule ensures that an expression e is always evaluated in a context of an en-
vironment Θ that can deal with the effects of e. In this sense, the type system of
benign effects may be seen as a particular version of modal logic of partial truth from
Section 2, in which the process of reflection is defined as evaluation.

There is one notable distinction, however, between benign effects and partial
truth. As the reader may have already noticed, none of the judgments for benign
effects uses the context Γ, which is pervasive in modal logic of partial truth. There is
a reason for this omission. When expressions are treated as effectful computations,
then values naturally must be considered as pure, i.e. effect free. Indeed, values can
never enact any effects, simply because their evaluation is already finished. Because
a pure computation returning a value of type A is itself typed as �A, treating values
like pure computations logically corresponds to extending the modal type system
with the axiom

A→ �A

This move is identical to the way lax logic and the lax λ-calculus are obtained from
modal logic and the modal λ-calculus (Section 4.1.2), where we used the above axiom
to identify truth and necessity. It is only that in the system for benign effects, we start
with a modal logic for partial judgments (Chapter 2), rather than the propositional
modal logic (Chapter 1). But if truth and necessity are identified, then the context
of truth hypotheses Γ is subsumed by the context of necessity hypotheses ∆, as part
of ∆ that declares variables of empty support. Correspondingly, in our notation we
will use x, y and variants to range over variables with empty support, and we write
x:A, instead of x:A [ ], when a variable x with empty support is declared in ∆.

We immediately put this this notational convention to use in our formulation of
the typing rules for function types A→ B.

Σ; (∆, x:A) ` e : B [ ]

Σ;∆ ` λx:A. e : A→ B [C]

Σ;∆ ` e1 : A→ B [C] Σ;∆ ` e2 : A [C]

Σ;∆ ` e1 e2 : B [C]

The typing rules follow the customary formulations for λ-abstraction and application,
but there are several important observations to be made about the support C in these
rules. First of all, notice that the abstraction λx:A. e requires the body e to be typed
with empty support. The motivation for this typing is purely computational. In the
usual formulation of operational semantics for functional programming languages, λ-
abstractions are always considered to be values. Because we want to identify values
and pure computations, we must require that function bodies be pure. The whole
λ-abstraction itself may be ascribed an arbitrary support C, which is a formulation
required by the support weakening principle.

Example 28 Anticipating section 4.6, suppose that our language contains a con-
structor raise, such that raiseX e raises an exception X, passing the value of e along
(assuming that both X and e have the same type). Expressions that may potentially
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raise the exception X, will be ascribed a support X by the type system. That way,
the type system keeps track of the effects that an expression may cause. Assuming
that X is an exception of integer type, the following expression F is not well-typed.

F = λy:int. 1 + raiseX y

The body 1+ raiseX y of F is effectful and has support X. But then F itself cannot
be typed, because of the restriction on the rules for λ-abstraction, as explained above.

Notice that the restriction on the typing of F is necessary. Even if F is a value, and
does not immediately perform an effect, it still cannot be considered pure. Indeed,
F has the potential to perform an effect, once it is applied to an argument. If F is
typed as pure, the type system will not be able to account for the effect of F . This is
not to say that function bodies in our calculus cannot contain effectful terms. They
can, but the effects have to be encapsulated by the constructs for modal necessity.
For example, the term F ′ below is a well-typed counterpart to F .

F ′ = λy:int. box (1 + raiseX y) : int→ �X int

The typing of F ′ will be explained in detail in the forthcoming developments. �

A further observation about the typing rules for functions concerns the seeming
mismatch between the support of the argument e2 in the application rule, and the
support with which the variables are introduced in the context ∆ in the λ-abstraction
rule. Indeed, λ-bound variables are declared in ∆ with empty support, but e2 may
have an arbitrary support C. This mismatch is resolved by requiring that e2 must
always be evaluated under the current environment before its value is passed to e1.
Because the value of e2 is pure (just like any value), it matches the empty support
used to declare bound variables in ∆. As a consequence, the calculi that we design
in this section will inherently be call-by-value. To make our operational semantics
concrete, we will also impose a left-to-right evaluation strategy. Notice however, that
we deal with benign effects, and therefore the evaluations of the function and the
evaluation of function arguments do not interfere with each other. The type system
may in fact be soundly ascribed right-to-left or any other call-by-value evaluation
order.

From the logical standpoint, the described mismatch in supports is justified by the
observation that our type system identifies truth and necessity, in the same ways it
is done in the formulation of lax logic (Section 4.1). Because of this identification, all
of our expressions are actually categorical, and are therefore subject to reflection. We
are free to reflect the argument e2 before substituting into e1. As already discussed, in
the type system for benign effects reflection corresponds to evaluation, so we simply
rely on the operational semantics to specify that e2 should be reflected before we
pass it to e1.

The notion of computation with benign effects is internalized into the calculus
by using the modal type constructor for necessity �. For example, given a type A,
the type �CA will classify the computations of type A, whose evaluation may cause
the benign effects determined by the support C. The appropriate typing rules are
obtained by erasing the context Γ from the standard formulation of the typing rules
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for � (Section 2.2.1).

Σ;∆ ` e : A [C]

Σ;∆ ` box e : �CA [D]

Σ;∆ ` e1 : �CA [D] Σ; (∆, u:A[C]) ` e2 : B [D]

Σ;∆ ` let box u = e1 in e2 : B [D]

We also have the following hypothesis rule

C v D

Σ; (∆, u:A[C]) ` u : A [D]

The term box e : �CA is a value that encapsulates an effectful computation e. As
already explained, when e is evaluated, it may enact the effects whose names are
listed in C. Because box e is a value, and therefore pure, it may be weakened to
an arbitrary support D. From the operational standpoint, boxing an expression e
suspends its evaluation. On the other hand, performing let box u = box e in e′

binds e to u, but does not necessarily evaluate e itself. The expression e will be
evaluated only if u appears in e′ outside of boxed expressions.

It is interesting here to draw a parallel between the operational behavior of modal
constructors with the behavior of λ-abstraction in impure functional languages. Sus-
pending an effectful expression e in an impure functional language is usually achieved
by creating a λ-abstraction λx. e (where x 6∈ fv(e)). For example, in a typical type-
and-effect system [GL86, LG88, JG91, TJ94], a computation is represented as a λ-
abstractions whose type is annotated with a list of effects. The characteristic typing
rules are usually a variation on the following.

Σ; (∆, x:A) ` e : B [C]
(∗)

Σ;∆ ` λx:A. e : A
C
→ B [ ]

Σ;∆ ` e1 : A
C
→ B [D1] Σ;∆ ` e2 : A [D2]

(∗∗)
Σ;∆ ` e1 e2 : B [C,D1, D2]

Does this similarity indicate that modal constructs are perhaps superfluous and may
be removed in favor of functional abstraction?

The answer to the above question is negative, as the import of the modal con-
structors in the language of effects is not solely operational. Their main role is not
to suspend the evaluation of expressions, but to internalize the notion of effectful
computation. For example, note that the rules (*) and (**) are not locally complete,

and therefore are not logically justified. The local expansion of e : A
C
→ B [D] is

given as

e : A
C
→ B [D] =⇒E λx. e x : A

C,D
→ B

and the expression e has a different type and support from its expansion. To contrast
this, local expansion in the calculus of benign effects preserves types and supports,
as can easily be checked from the equation below.

e : �CA [D] =⇒E let box u = e in box u
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In fact, when effectful computations are internalized as a separate semantic cat-
egory which is different from functions, then functions and function types are freed
from the responsibility to track effects. Moreover, in such situations functions are
usually required to be pure. This is not only the case in our calculus of benign
effects, but is also true of the monadic λ-calculus [Mog91, Wad92]. In both cal-
culi, a function body may contain an effect only if the effect is encapsulated by a
computation-forming construct. And in both calculi, the range type of such a func-
tion will be a computation type (monadic type ©A in the monadic calculus, and a
modal type �CA in the calculus of benign effects).

Finally, our type system needs constructs for introduction of fresh effect instances
into the computation. Again, we adopt the approach from the modal calculus of
Section 2.2 with certain modifications.

(Σ, X:A);∆ ` e : B [ ]

Σ;∆ ` νX:A. e : B [C]

Σ;∆ ` e : A 9 B [C]

Σ;∆ ` choose e : B [C]

The term constructor νX:A. e is the introduction form for the new type A 9 B.
It declares a fresh effect instance under the name X and introduces X into the
context of names Σ. Any unused name X 6∈ dom(Σ) would produce the same result,
as justified by the renaming principle below. As a consequence, the form νX:A. e
actually binds the name X, which can therefore be α-renamed into any other unused
name of type A. The elimination form choose e allocates a new effect instance of
an appropriate type, and uses it instead of the name bound by e. The abstraction
νX:A. e is a value in our calculus, just like all the other type introduction forms that
we introduced so far. For the same reason as in the case of λ-abstraction, we require
that the body of ν-abstraction has empty support, in order to preserve the purity of
values.

Principle (Renaming)
If (Σ, X:A,Σ1);∆ ` e : B [C] and Y :A is a fresh name, i.e. Y does not appear

anywhere in this judgments, then

(Σ, Y :A, [Y/X]Σ1); [Y/X]∆ ` [Y/X]e : ([Y/X]B) [[Y/X]C].

To summarize, the calculus of benign effects is very similar to the fragment of the
ν-calculus from Section 2 containing the � operator, with several important distinc-
tions. First of all, the calculus of benign effects admits the axiom A → �A, which
is not realized in the ν-calculus. The operational import of this axiom is to coerce
values into pure computations. As a consequence, the context Γ of value variables,
which is characteristic of the judgmental formulations of modal logic and modal cal-
culi, is subsumed by the context ∆ in the calculus of benign effects. Second, bodies
of λ- and ν-abstractions in the calculus of benign effects must have empty support,
while in the ν-calculus this support may be arbitrary. Third, and probably the most
important is that reflection in the ν-calculus is performed eagerly, upon modal sub-
stitution, and is defined on expressions that may contain free modal variables. In
the calculus of benign effects, reflection of the expression e under the environment
Θ is specified by a separate term constructor 〈Θ〉e. It is not tied to modal variables
and modal substitution.
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Before we conclude this section, we summarize the syntax, typing and operational
semantics of the modal calculus for benign effects. Just as in Section 2.1, this will
not be a complete system, but rather only the common core fragment that we extend
in future section with constructs defining particular effects. In each of these cases we
will provide the appropriate proofs of progress and type preservation.

Names X,Y ∈ N
Supports C,D ::= · | C,X
Types A,B ::= P | A→ B | �A | A 9 B | . . .
Expressions e ::= u | λx:A. e | e1 e2 |

box e | let box u = e1 in e2

νX:A. e | choose e | . . .
Variable contexts ∆ ::= · | ∆, u:A[C]
Name contexts Σ ::= · | Σ, X:A

The type system consists of the judgments for formation of contexts, types and
supports, as well as the typing judgment for expressions Σ;∆ ` e : A [C]. We only
present the later, as the formation judgments are identical to the ones considered in
previous sections. In the definition of the typing judgment, it is implicitly assumed
that all parts of the judgment are well-formed.
Definition of Σ;∆ ` e : A [C].

C v D

Σ; (∆, u:A[C]) ` u : A [D]

Σ; (∆, x:A) ` e : B [ ]

Σ; ∆ ` λx:A. e : A → B [C]

Σ; ∆ ` e1 : A → B [C] Σ; ∆ ` e2 : A [C]

Σ; ∆ ` e1 e2 : B [C]

Σ; ∆ ` e : A [D]

Σ; ∆ ` box e :
�

DA [C]

Σ; ∆ ` e1 :
�

DA [C] Σ; (∆, u::A[D]) ` e2 : B [C]

Σ; ∆ ` let box u = e1 in e2 : B [C]

(Σ, X:A);∆ ` e : B [ ]

Σ; ∆ ` νX:A. e : A � B [C]

Σ; ∆ ` e : A � B [C]

Σ; ∆ ` choose e : B [C]

Example 29 If C,C1, C2 and D are well-formed supports, then the following are
derivable typing judgments in the calculus of benign effects.

1. ` λx. box x : A→ �DA

2. ` λx. let box u = x in u : �A→ A [−]

3. ` λx. let box u = x in box u : �C1
A→ �CA, where C1 v C

4. ` λx. let box u = x in box box u : �C1
A→ �D�CA, where C1 v C

5. ` λx. λy. let box u = x in let box v = y in box u v
: �C1

(A→ B)→ �C2
A→ �CB, where C1, C2 v C
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Notice that the judgment (2) requires that the type of the abstraction argument
is �A, where the index on the modal operator is empty. Indeed, the following
generalization of (2) to non-empty supports is not derivable in the calculus of benign
effects, because of the previously discussed restriction that bodies of λ-abstractions
must be pure.

6` λx. let box u = x in u : �C1
A→ A [C]

However, the hypothetical judgment corresponding to this implication is derivable,
as shown below.

x:�C1
A ` let box u = x in u : A [C], where C1 v C

�

Example 30 To abbreviate notation and reduce clutter, we introduce into the calcu-
lus the term constructor unbox e as a syntactic abbreviation for let box u = e in u.
The new term constructor has the following derived typing rule

Σ;∆ ` e : �CA [D] C v D

Σ;∆ ` unbox e : A [D]

We also define let val x = e1 in e2 to stand for unbox ((λx. box e2) e1), rather
than the usual (λx. e2) e1. The additional complication arises because we have to
box e2 and make it pure before we can put it under a λ-abstraction. The derived
typing rule for let val is

Σ;∆ ` e1 : A [C] Σ; (∆, x:A) ` e2 : B [C]

Σ;∆ ` let val x = e1 in e2 : B [C]

Similarly, the term constructor let name X:A in e is an abbreviation for

unbox (choose (νX:A. box e)),

with the typing rule below. It is assumed that X is a fresh name which does not
appear in dom(Σ).

(Σ, X:A);∆ ` e : B [C]

Σ;∆ ` let name X:A in e : B [C]

�

The operational semantics of this core fragment of the modal calculus of benign
effects is defined through the judgment

Σ, e 7−→ Σ′, e′

which relates an expression e with its one-step reduct e′. The expressions e and e′

must not contain any free variables. However, both e and e′ may contain effects,
whose names are declared in Σ and Σ′, respectively. The name context Σ′ is always
an extension of Σ, as the reduction step may introduce new names to stand for new
effect instances.
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The operational semantics is a call-by-value, left-to-right, evaluation context se-
mantics in the style of Wright and Felleisen [WF94]. In order to perform one evalu-
ation step, the expression e is decomposed uniquely as e = E[r], where r is a redex,
and E is an evaluation context, capturing the environment in which r is reduced.
Then it suffices to define primitive reduction relation for redexes (which we denote
by −→), and let the evaluation of expressions (which we denote by 7−→) always first
reduce the redex identified by the unique decomposition.

Values v ::= λx:A. e | box e | νX:A. e | . . .
Redexes r ::= (λx. e) v | let box u = box e in e | choose (νX. e)
Evaluation contexts E ::= [ ] | E e1 | v1 E | let box u = E in e | choose E

Σ, (λx. e) v −→ Σ, [v/x]e Σ, let box u = box e1 in e2 −→ Σ, [e1/u]e2

Y 6∈ dom(Σ)

Σ, choose (νX:A. e) −→ (Σ, Y :A), [Y/X]e

Σ, r −→ Σ′, e′

Σ, E[r] 7−→ Σ′, E[e′]

4.4 Dynamic binding

Syntax and typing

The type system that we develop in this section is intended to model memory allo-
cation, lookup and non-destructive update. The idea is to view names as memory
locations of arbitrary type, and track their dereferencing through the mechanism of
supports. Looking up a name in a given environment will be an effect, and sub-
stituting a name with a term by means of an explicit substitution will handle this
effect. The operational semantics evaluates expressions with empty support, and
hence permits dereferencing of only those names that are captured by some explicit
substitution. Thus, we can only dereference initialized names.

In a sense, this system is a middle way between a calculus with local variables
and let-definitions on one side, and a calculus of state on the other side. Names
are really allocated memory locations, but at the same time, assigning values to
names via explicit substitutions is not a destructive operation. Each name can be
assigned a value an arbitrary number of times (including zero), but the assignment
only have local scope, and dereferencing a name will use the nearest assignment.
Thus, the obtained calculus is really a type-safe version of dynamic binding, much in
the style of LISP and Scheme. We will build on this system in Section 4.5 to obtain
a more general calculus of state with destructive update. The previous work related
to dynamic binding is discussed in at the end of this chapter in Section 4.9.

The syntax of the calculus for dynamic binding extends the core fragment with
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new constructs for name lookup and substitution. The modal constructor � is used
to internalize effectful computations. An expression of type �CA is a computation
that produces a value of type A when executed, but in the course of evaluation
may need to dereference the names listed in the support C. In the case of dynamic
binding, supports are sets of names, and the partial ordering on supports is defined as
the subset ordering on sets. In other words, C v D if and only if C ⊆ D. Obviously,
the empty set is the minimal element of this ordering. The resulting language is very
similar to the ν-calculus from Section 2.2. However, dynamic binding is an example
of a calculus of benign effects, and it inherits the distinctive features of the core
calculus for benign effects (summarized in Section 4.3).

In dynamic binding, the environment in which expressions are evaluated is a store,
consisting of a set of names (i.e., memory locations) each of which is associated with
a value. We represent stores using explicit substitutions. An explicit substitution Θ
is syntactically defined as a set of assignments of expressions to names. A name X
is referenced by simply using it in some term. The construct 〈Θ〉e applies Θ over the
expression e, or alternatively, evaluates e in the store represented by Θ.

Explicit substitutions Θ ::= · | X → e,Θ
Expressions e ::= . . . | X | 〈Θ〉e

Example 31 Let us assume that X and Y are integer names. The code segment
below defines a benign computation u that reads from X and Y to return X 2 + Y 2.
Then X and Y are initialized to 1 and 2, respectively, before u + 2XY is evaluated.

- let box u = box (X2 + Y2)

in

<X->1, Y->2> (u + 2XY)

end;

val it = 9 : int

�

The semantics of explicit substitutions is defined as in Section 2.2.3, subject to
some minor modification. We repeat the definition here in a more compact form,
and point out the differences from the previous sections.

Explicit substitutions are partial functions from names to terms. In other words,
an explicit substitution never assigns an expression to a name more than once, and
there is no ordering between the substitution assignments. Given a substitution Θ,
the domain and range of Θ are the sets

dom(Θ) = {X | X → e ∈ Θ}

and
range(Θ) = {e | X → e ∈ Θ}

The set fn(Θ) of free variables of Θ is defined as the set of free variables of expressions
in range(Θ). The set fn(Θ) of free names of Θ is the set of names in the domain and
range of Θ. We denote the empty substitution simply by 〈 〉.
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Every substitution Θ defines a unique function of substitution application {Θ}
on expressions. Substitution application {Θ}e is capture-avoiding and is defined by
induction of the structure of e as follows.

{Θ} X = Θ(X)
{Θ} u = 〈Θ〉u
{Θ} (〈Θ′〉e) = 〈Θ ◦Θ′〉e
{Θ} (λx:A. e) = λx:A. e x 6∈ fv(Θ)
{Θ} (e1 e2) = {Θ}e1 {Θ}e2

{Θ} (box e) = box e
{Θ} (let box u = e1 in e2) = let box u = {Θ}e1 in {Θ}e2 u 6∈ fv(Θ)
{Θ} (νX:A. e) = νX:A. e X 6∈ fn(Θ)
{Θ} (choose e) = choose {Θ}e

As usual, substitution application does not descend under box. Names appearing
in a internalized computations need not be initialized because an internalized com-
putation is suspended, and hence its names are not dereferenced. However, when
a computation is actually unboxed and executed, this has to be done in a scope
of a substitution that initializes the relevant names, as illustrated in Example 31.
This aspect of explicit substitutions emphasizes and illustrates our observation from
Section 4.3 that modal constructors do not simply serve to suspend computations.
As the above definition shows, the construct box e, in addition to suspending the
evaluation of e, also “protects” the expression e from the surrounding explicit sub-
stitutions.

To outline some further aspects of the above definition, notice that substitution
application over a variable u is explicitly remembered, resulting in a term 〈Θ〉u.
When the variable u is substituted by a certain expression, the names appearing in
this expression will be initialized by Θ. On the other hand, substitution application
does not descend into λ- and ν-abstractions, because the type system guarantees
that abstraction bodies are pure, and therefore name-free.

The operation of substitution application depends upon the operation of substi-
tution composition Θ1 ◦Θ2, which is defined as in Section 2.2.3.

Θ1 ◦Θ2 = {X → {Θ1}([[Θ2]](X)) | X ∈ dom(Θ1) ∪ dom(Θ2)}

The operation is well-founded – computing Θ1 ◦ Θ2 only requires applying Θ1 to
subterms in range(Θ2). On the other hand, substitution application is defined in-
ductively, so the size of terms on which it operates is always decreasing.

The type system for dynamic binding extends the core system for benign effects
with rules that describe the specific aspects of name dereference and substitution. In
particular, the judgment for expressions is extended with the rules

X:A ∈ Σ

Σ;∆ ` X : A [C,X]

Σ;∆ ` e : A [C] Σ;∆ ` 〈Θ〉 : [C]⇒ [D]

Σ;∆ ` 〈Θ〉e : A [D]

144



CHAPTER 4. EFFECTS 4.4. DYNAMIC BINDING

where the judgment Σ;∆ ` 〈Θ〉 : [C] ⇒ [D] types explicit substitutions, and is
axiomatized as follows.

C v D

Σ;∆ ` 〈 〉 : [C]⇒ [D]

Σ;∆ ` e : A [D] Σ;∆ ` 〈Θ〉 : [C \X]⇒ [D] X:A ∈ Σ

Σ;∆ ` 〈X → e,Θ〉 : [C]⇒ [D]

Support of an expression describes which names the expression may dereference. In
line with this semantics, the rule for name dereferencing allows X to be used only
if it is present in the support set C,X. Substitutions initialize the names in the
expression over which they are applied, and so the rule for substitution application
requires that the domain support C of the substitution Θ matches the support of the
argument expression e.

Example 32 Consider the ML-like program below.

let val xref = ref 0

fun f (y) = !xref + y

val z = f 1

in

((x:=1; f 1), z)

end

A similar program can be written in the calculus of dynamic binding as follows.

- let name X : int

in

<X -> 0>

let fun f(y : int) : �Xint = box (X + y)

box u = f 1

val z = u

in

(<X -> 1>u, z)

end

end;

val it = (2, 1) : int * int

The variable u is bound to the computation (X + 1), and thus X must be initialized
before u is used. In this particular example, the first unsuspended reference to u
(and therefore to X as well) is in the scope of the substitution <X -> 0> and the
second one is in the scope of <X -> 1>. �

Operational semantics

The evaluation judgment for dynamic binding extends the core fragment with the
new construct for substitution application. The judgment still has the form

Σ, e 7−→ Σ′, e′
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where Σ and Σ′ are run-time contexts of currently allocated, but not necessarily
initialized, names. And we still only consider evaluation of expressions e which have
empty support.

We adopt a call-by-value strategy for evaluating substitutions; that is, all the
assignments in a substitutions are first reduced to values, before the substitution
itself is applied. To formalize this policy, we define the notion of value substitutions,
and use it to extend the evaluation contexts and redexes of the calculus of benign
effects. The definition of the syntactic categories that are immediately relevant to
the operational semantics of the calculus are summarized below.

Values v ::= λx:A. e | box e | νX:A. e
Value substitutions σ ::= · | X → v, σ
Evaluation contexts E ::= [ ] | E e1 | v1 E | let box u = E in e | choose E |

〈σ,X → E,Θ〉e
Redexes r ::= (λx. e) v | let box u = box e in e |

choose (νX. e) | 〈σ〉e

Σ, (λx. e) v −→ Σ, [v/x]e Σ, let box u = box e1 in e2 −→ Σ, [e1/u]e2

Y 6∈ dom(Σ)

Σ, choose (νX:A. e) −→ (Σ, Y :A), [Y/X]e Σ, 〈σ〉e −→ Σ, {σ}e

Σ, r −→ Σ′, e′

Σ, E[r] 7−→ Σ′, E[e′]

Note that the operational semantics does not evaluate under explicit substitu-
tions, and thus uninitialized names will never be encountered during the evaluation.
Rather, the expression 〈σ〉e is reduced by first employing the meta operation {σ}e
to carry out the substitution σ over e, before the evaluation can proceed.

Structural properties and type soundness

The structural properties and the main substitution principles of the calculus for
dynamic binding follow closely the presentation from Section 2.2.3. This is not sur-
prising, as the calculus of dynamic binding differs very slightly from the � fragment
of the modal ν-calculus. As already argued in the previous sections of this chapter,
the main distinctions between the two calculi involve: (1) the context Γ is omitted
in the calculus of dynamic binding; (2) functional and ν-abstractions are restricted
to bodies with empty support, and (3) explicit substitutions are not restricted to
appear only around modal variables. These distinctions, however, do not seriously
influence the proofs of the main properties.

For example, the explicit substitution principle is a straightforward adaptation
of the corresponding explicit substitution principle from Section 2.2.3.
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Lemma 39 (Explicit substitution principle)
Let Σ;∆ ` 〈Θ〉 : [C]⇒ [D]. Then the following holds

1. if Σ;∆ ` e : A [C], then Σ;∆ ` {Θ}e : A [D]

2. if Σ;∆ ` 〈Θ′〉 : [C1]⇒ [C], then Σ;∆ ` 〈Θ ◦Θ′〉 : [C1]⇒ [D]

Proof:
The proof is by simultaneous induction on the structure of the derivations. The

interesting part is the second induction hypothesis, whose proof utilizes the splitting
of Ψ = Θ ◦Θ′ into two disjoint sets

Ψ′
1 = {X → Θ(X) | X ∈ dom(Θ) \ dom(Θ′)}

Ψ′
2 = {X → {Θ}(Θ′(X)) | X ∈ dom(Θ′)}

The argument proceeds in an identical as in Section 2.2.3. �

The calculus of benign effects (and thus, the calculus of dynamic binding as well),
does not contain a notion of ordinary value variables, so the Value substitution prin-
ciple of the modal ν-calculus (Theorem 11) does not have an equivalent in dynamic
binding. However, the Modal substitution principle (Theorem 13) does, because the
variables in calculus of dynamic binding really correspond to the modal variables of
the modal ν-calculus. Because these are the only variables in dynamic binding, we
emphasize this fact by renaming the principle into Expressions substitution principle.

Lemma 40 (Expression substitution principle)
Let Σ;∆ ` e1 : A [C]. Then the following holds:

1. if Σ; (∆, u:A[C]) ` e2 : B [D], then Σ;∆ ` [e1/u]e2 : B [D]

2. if Σ; (∆, u:A[C]) ` 〈Θ〉 : [D′]⇒ [D], then Σ;∆ ` 〈[e1/u]Θ〉 : [D′]⇒ [D]

Proof: By simultaneous induction on the two derivations. Selected cases are pre-
sented below.

case e2 = box e′, where B = �D′B′.

By derivation, Σ; (∆, u:A[C]) ` e′ : B′ [D′]. By the first induction hypothesis,
Σ;∆ ` [e1/u]e′ : B′ [D′]. Now the result follows by the definition of substitu-
tion, and the typing rule for box.

case e2 = let box u′ = e′ in e′′.

By derivation, Σ; (∆, u:A[C]) ` e′ : �D′B′ [D] and also Σ; (∆, u:A[C], u′:B′[D′]) `
e′′ : B [D]. By induction hypothesis, we have Σ;∆ ` [e1/u]e′ : �D′B′ [D] and
Σ; (∆, u′:B′[D′]) ` [e1/u]e′′ : B [D]. This immediately leads to the result, by
the typing rule for let box.

�

The next lemma allows for exchanging expressions in context, as long as their
types agree. It will be used later in the proofs of Preservation (Lemma 44) and
Progress (Lemma 46).
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Lemma 41 (Replacement)
If Σ; · ` E[e] : A [−], then there exist a type B such that

1. Σ; · ` e : B [−], and

2. if Σ′ extend Σ, and Σ′; · ` e′ : B [−], then Σ′; · ` E[e′] : A [−]

Proof:

By induction on the structure of E. The base case when E = [ ] is obvious.
For a more complicated case, consider E = 〈σ,X → E1,Θ〉e1, where X:B ′ ∈ Σ.
By derivation, Σ; · ` E1[e] : B′ [−], and the first statement of the lemma follows
immediately by the induction hypothesis.

For the second statement of the lemma, consider Σ′ ⊇ Σ and e′ such that Σ′; · `
e′ : B [−]. By induction hypothesis, Σ′; · ` E1[e

′] : B′ [−]. The result now follows by
the typing rules for explicit substitutions.

�

Lemma 42 (Canonical forms)
Let v be a value such that Σ; · ` v : A [C]. Then the following holds:

1. if A = A1 → A2, then v = λx:A1. e and Σ;x:A1 ` e : A1 [ ]

2. if A = �DB, then v = box e and Σ; · ` e : B [D]

3. if A = A1 9 A2, then v = νX:A1. e and (Σ, X:A1); · ` e : A2 [ ]

As a consequence, the support of v is empty, and can be weakened arbitrarily.

Proof: By a straightforward case analysis. �

Primitive reduction in the calculus of dynamic binding preserves types, as the
Subject reduction lemma shows.

Lemma 43 (Subject reduction)
If Σ; · ` e : A [−] and Σ, e −→ Σ′, e′, then Σ′ extends Σ and Σ′; · ` e′ : A [−].

Proof: The cases when e = (λx. e′) v or e = let box u = box e1 in e2 follow by
the expression substitution principle. If e = choose νX. e1 follows by the definition
of primitive reduction, and the typing rules.

The only mildly interesting case is when e = 〈σ〉e1. In this case, by derivation,
Σ; · ` e1 : A [C1], and Σ; · ` 〈σ〉 : [C1] ⇒ [−]. By the explicit substitution principle,
Σ; · ` {σ}e1 : A [−]. But, by definition of the primitive reductions, it is exactly
Σ′ = Σ and e′ = {σ}e1; this concludes the proof. �

Lemma 44 (Preservation)
If Σ; · ` e : A [−] and Σ, e 7−→ Σ′, e′, then Σ′ extends Σ, and Σ′; · ` e′ : A [−].

Proof: By evaluation rules, there exists an evaluation context E such that e = E[r],
Σ, r −→ Σ′, r′ and e′ = E[r′]. By replacement, there exists B such that Σ; ·; · ` r :
B [−].
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By subject reduction, Σ′ extends Σ, and Σ′; · ` r′ : B [−]. By replacement again,
Σ′; · ` E[r′] : A [−]. Since e′ = E[r′], this proves the lemma.

�

Lemma 45 (Unique decomposition)
If e is a closed expression (i.e., e does not contain any free variables, but may contain
free names) then either:

1. e is a value, or

2. e = E[X], for a unique evaluation context E and a name X, or

3. e = E[r] for a unique evaluation context E and a redex r.

Proof: By induction on the structure of e. A representative case is when e is an
application of an explicit substitution. In this case we distinguish three possibilities:

1. e = 〈σ,X → E1[Y ],Θ〉e2. In this case, just pick E = 〈σ,X → E1,Θ〉e2, and
the second statement of the lemma holds.

2. e = 〈σ,X → e1,Θ〉e2, where e1 is not a name in context (this case was consid-
ered above), nor a value. In this case, by induction hypothesis, e1 = E1[r]. We
pick E = 〈σ,X → E1,Θ〉e2, and the third statement of the lemma holds.

3. e = 〈σ〉e2. In this case, pick E = [ ], r = e, and the third statement of the
lemma holds.

�

Finally, we can now show that the calculus of dynamic binding satisfies the the
usual progress properties, i.e., that the evaluation of well typed closed expressions
do not get stuck.

Lemma 46 (Progress)
If Σ; · ` e : A [ ], then either

1. e is a value, or

2. there exists a term e′ and a context Σ′, such that Σ, e 7−→ Σ′, e′.

Proof: Because e has empty support, by unique decomposition, e is either a value,
or there exists unique E and r such that e = E[r]. In case e is not a value, by
replacement lemma, there exists B such that Σ; · ` r : B [−]. By case analysis of the
structure of r, it is clear that there exists Σ′ and e1 such that Σ, r −→ Σ′, e1. By the
rules for evaluation, Σ, E[r] 7−→ Σ′, E[e1], so we simply pick e′ = E[e1]. �

The progress lemma proves that a well typed term can always be reduced, but
does not say anything about the uniqueness of this reduct. And indeed, just as
in the modal ν-calculus, this reduct is not unique, but the only difference between
reducts is due to the different choices of fresh names that may be allocated during
the reduction.
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Lemma 47 (Determinacy)
If Σ, e 7−→n Σ1, e1 and Σ, e 7−→n Σ2, e2, then there exists a permutation of names
π : N → N , fixing the domain of Σ, such that Σ2 = π(Σ1) and e2 = π(e1).

Proof: Analogous to the proof of determinacy for the modal ν-calculus (Theo-
rem 18). �

4.5 State

Syntax and typing

In the calculus of dynamic binding from Section 4.4, names stand for (possibly unini-
tialized) memory locations and explicit substitutions assign values to locations. In
this sense, dereferencing a name corresponds to a read, and substituting for a name
corresponds to an update. But, as the following dynamic binding program illustrates,
explicit substitutions may not perform the update destructively.

let name X : int

in

<X -> 0>

let fun f(y: int) : �Xint = box (X + y)

box u = f 1

in

(<X -> 1>u, u + 1)

end

end

Indeed, the subterm <X -> 1>u cannot possibly destructively update X to 1 before
evaluating u, simply because the old value of X (in this case 0), has to be preserved
for the evaluation of the second element of the pair, u + 1. Explicit substitutions
and dynamic binding alone are too weak. This limitation, however, is only to be
expected. After all, the calculus of dynamic binding is a calculus of benign effects.
The modal operator �C may only classify effectful computations that do not change
the run-time environment in which the program evaluates. Destructively writing into
memory certainly performs exactly such a change.

The solution is to serialize the explicit substitutions, so that once a substitution
is attempted, its scope extends to the rest of the program; it is never required to
revert back to some previous substitutions. Thus, there would always be exactly one
substitution “active” at every single moment, and it would play the role of global
store.

As we already mentioned in Section 4.2, the serialization of effectful computations
is exactly the duty of modal possibility. Thus, if we want to use explicit substitu-
tions to model destructive state update, we need to tie explicit substitutions to 3.
Intuitively then, we should obtain a whole family 3C of possibility operators indexed
by support sets, where the type 3CA classifies an explicit substitution for C paired
up with a computation of type A. More concretely, 3CA types programs of type A
that first write destructively into locations C and then compute a value of type A in
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the new state. This would pleasantly contrast the type �CA that we already used
in Section 4.4 to type programs that read from locations C before computing a value
of type A.

The described typing of the calculus for destructive update will obviously be
very similar to simultaneous possibility from Sections 2.1.4 and 2.2. We start the
development by defining the following syntactic categories on top of the syntax of
the calculus of dynamic binding.

Types A ::= . . . | 3CA
Phrases f ::= [Θ, e] | let dia x = e in f | let box u = e in f
Expressions e ::= . . . | dia f

As expected, the grammar of types is extended with the family 3CA, whose term
constructor is dia f , encapsulating a phrase f . Phrases are a new syntactic category
intended to describe computations which change the global store. The basic phrase
constructor is the form [Θ, e] which ties a substitution Θ and a term e together;
this is a computation which first writes into the locations determined by Θ before
evaluating e in the new store. When Θ is the empty substitution, we will simply
write e instead of [·, e]. The changes to the global store are actually enacted by
the elimination form let dia. This form takes an expression e which evaluates to
a phrase, thus carrying a substitution Θ and an expression e1. The substitution Θ
is then promoted into a global store, after which e1 is evaluated and bound to x,
before the evaluation of f is undertaken. The phrase form let box u = e in f takes
a computation internalized by the expression e and binds it to u to be used in the
phrase f .

Example 33 Assuming that X and Y are integer names, the expression

let dia z = dia [<X->1, Y->2>, 2XY]

in

X2 + Y2 + z

end

writes 1 and 2 into the locations X and Y respectively, then binds 4 to the local
variable z, before the evaluation steps to the phrase [<X->1, Y->2>, X2 + Y2 + 4].

�

The type system for state with destructive update consists of two mutually re-
cursive judgments: one for typing expressions, and another one for typing phrases.
The expression judgment extends the system from Section 4.3, and has the form

Σ;∆ ` e : A [C]

establishing that e may possibly read from locations listed in the support set C. The
phrase judgment has the form

Σ;∆ ` f ÷C A [D]

This judgment establishes that the phrase f consists of a substitution of type [C]⇒
[D], and an expression of type A. The expression may dereference the names from
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the support C, because they are initialized by the substitution. We present the type
system below, and comment on the rules.

Definition of Σ;∆ ` f ÷C A [D].

Σ;∆ ` 〈Θ〉 : [C]⇒ [D] Σ;∆ ` e : A [C]

Σ;∆ ` [Θ, e] ÷C A [D]

Σ;∆ ` e : 3C1
A [D] Σ; (∆, x:A) ` f ÷C2

B [C1]

Σ;∆ ` let dia x = e in f ÷C2
B [D]

Σ;∆ ` e : �CA [D] Σ; (∆, u:A[C]) ` f ÷C2
B [D]

Σ;∆ ` let box u = e in f ÷C2
B [D]

Definition of Σ;∆ ` e : A [C].

Σ;∆ ` f ÷D A [C]

Σ;∆ ` dia f : 3DA [C]

The phrase [Θ, e] is a computation that, when executed, changes the global store
according to Θ, and then evaluates e in the changed store. Thus, the typing rule
for [Θ, e] requires that the names used in e are all defined by Θ. In other words,
the support of e must match the domain type of Θ. In this respect, the phrase
constructor [Θ, e] is similar, somewhat curiously, to the constructor for substitution
application 〈Θ〉e, as indeed witnessed by their typing rules (see Section 4.4). The
two constructors, however, have very different operational meanings. The explicit
substitution 〈Θ〉e carries out Θ over the expression e. In the phrase [Θ, e], the sub-
stitution Θ is not applied over e; rather, it is composed with the current global store
to affect a change of the environment. The first construct provides non-destructive
location update, while the second is used when destructive update is required. What
is interesting is that both capabilities harmoniously coexist within the system.

The typing rule for dia is a judgmental coercion from phrases to expressions.
It internalizes a computation with persistent effects, so that it can be used as an
ordinary expression. To justify the typing rule for let dia x = e in f on the grounds
of its intended operational behavior, observe that e : �C1

A [D], and therefore e
internalizes a phrase consisting of substitution Θ : [C1] ⇒ [D] and expression e′ :
A [C1]. The role of let dia is to institute the substitution Θ as a new global store
providing definitions for names in the support C1, then evaluate e′ to a value, bind it
to x and proceed with the evaluation of f . Following this semantics, we can allow f
to be supported by C1, because the new global store in which f is evaluated defines
the names from C1. We are also free to declare x as being of empty support in the
typing of f , because x will always be bound to a value.
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Example 34 We will use some further syntactic abbreviations as well. Recall that
in the calculus of benign effects, we abbreviated:

let val x = e1 in e2 = unbox ((λx. box e2) e1)

let name X:A in e = unbox (choose (νX:A. box e))

We need similar constructs in the syntactic category of phrases; we define them in
terms of let val and let name for expressions.

let val x = e in f = let dia y = (let val x = e in dia f) in y

let name X:A in f = let dia y = (let name X:A in dia f) in y

In contrast to the let box construct for phrases, which is primitive in the calcu-
lus, and must be present in order to ensure the subformula property, let val and
let name do not eliminate any type and hence do not have any proof theoretic
significance. The typing rules for the two are easily derived as

Σ;∆ ` e : A [C] Σ; (∆, x:A) ` f ÷D B [C]

Σ;∆ ` let val x = e in f ÷D B [C]

(Σ, X:A);∆ ` f ÷D B [C]

Σ;∆ ` let name X:A in f ÷D B [C]

�

Example 35 If C and D are well-formed supports, then the following are derivable
judgments in the calculus of state.

1. ` λx. dia (let dia y = x in [·, y]) : 3DA→ 3CA, where C ⊆ D

2. ` λx. dia [·, x] : A→ 3A

3. ` λx. dia (let dia y = x in let dia z = y in [·, z]) : 3C3DA→ 3DA

4. ` λx. λy. let box u = x in dia (let dia z = y in [·, u z])
: �C(A → B) → 3DA → 3DB, where

C ⊆ D

As an illustration, we present the derivation of the judgment (1).

x:3DA ` x : 3DA

C ⊆ D

x:3DA, y:A ` 〈·〉 : [C]⇒ [D]

∅ ⊆ C

x:3DA, y:A ` y : A [C]

x:3DA, y:A ` [·, y] ÷C A [D]

x:3DA ` let dia y = x in [·, y] ÷C A

x:3DA ` dia (let dia y = x in [·, y]) : 3CA

` λx. dia (let dia y = x in [·, y]) : 3DA→ 3CA
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As can be noticed, the function (1) simply η-expands its argument x. It illustrates
that strengthening at the index supports of 3 types is derivable. This is not sur-
prising, as strengthening only involves forgetting some entries from the substitution
associated with the phrase x. The rest of the expressions generalize the characteris-
tic axioms of the constructive S4 modal possibility introduced in Section 1.1.4. For
example, function (2) is a coercion from expressions into phrases with empty substi-
tution; notice that the range type is 3A with empty index support. Coercions from
A to 3CA with non-empty C are not generally available as they require providing
definitions for each name in C. In other words,

6` λx. dia [·, x] : A→ 3CA

However, the following hypothetical judgment is derivable:

x:A ` dia [·, x] : 3CA [D] if C ⊆ D,

as witnessed by the derivation below.

C ⊆ D

x:A ` 〈·〉 : [C]⇒ [D]

∅ ⊆ C

x:A ` x : C

x:A ` [·, x] ÷C A [D]

x:A ` dia [·, x] : 3CA [D]

Function (3) illustrates that it is only the last layer of 3’s that matter; all the
additional ones can be ignored. Function (4) takes x:�C(A→ B) and y:3CA as
arguments. The argument x embodies a computation u:A → B[C] which depends
on names C in order to generate a function of type A → B. The argument y is a
computation that provides a term v:A and definitions for names in C (and possibly
some more, since its index support is D ⊇ C). The definitions from y are then placed
into the global store and used as an environment for evaluating u v. �

Example 36 We can use the new type and term constructors for possibility to
serialize the example given at the beginning of the section.

let name X : int

dia dummy = dia [<X->0>, ()]

fun f(y : int) : �Xint = box (X + y)

box u = f 1

val z = u + 1

let dia w = dia [<X->1>, u]

in

(w, z)

end

end

In the last line of this program, we abbreviated, and instead of [<>, (w, z)], simply
wrote (w, z). The program is well-typed in the judgment of phrases, and has the
type int× int.
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We next informally describe the evaluation of this program, with the goal of
supplying the intuition for the next section, where we present the operational se-
mantics of the calculus. The evaluation starts by allocating an integer name X,
which promptly becomes part of the global store, initialized to 0. Then the function
f is defined. Notice that we assume recursive function definitions, which are easily
added to the language without any technical problems. The evaluation proceeds by
computing f 1, which evaluates to box (X +1), so that u is bound to X +1. Because
global store declares that X → 0, the variable z is bound to 2, which is the value of
u + 1 relative to the current global store. Subsequently, however, the global store is
changed into X → 1, and the variable w is bound to the value of the expression u,
as computed in this new version of the store. As u is bound to X + 1, w is assigned
the value 2. Thus, the final outcome of the evaluation is the pair (2, 2). Observe
that the final result does not depend on the name X; this is enforced by the typing
rules for let name. As a consequence, X can silently be omitted from the store at
the end of the evaluation. �

Operational semantics

In this section we develop a call-by-value left-to-right operational semantics for the
calculus of state with both the modal constructors � and 3. We ignore the phrase
constructors let val and let name as they are only syntactic sugar and do not
influence the properties we explore here.

The first step is to extend the meta operation of substitution application to
account for the new constructs.

{Θ} dia f = dia {Θ}f

{Θ} [Θ′, e] = [Θ ◦Θ′]e
{Θ} let dia x = e in f = let dia x = {Θ}e in f
{Θ} let box u = e in f = let box u = {Θ}e in {Θ}f

Note that the substitution application is carried out only over the branch e, but not
over the body f of a let dia construct. This is justified because f is evaluated under
a substitution determined by e; any influence that Θ might have over f has to be
via e.

The operational semantics is defined by means of two evaluation judgments: one
for expressions and one for phrases. We adopt a particular formulation of these judg-
ments which emphasizes the relationship between the simultaneous modal possibility
and global state. The expression evaluation judgment has the form

Σ, e
σ
7−→ Σ′, e′

and reads: in a context of declared locations Σ and a store σ assigning values to
these locations (and some locations may remain uninitialized), the term e steps into
e′ and possibly introduces new locations Σ′. The evaluation steps cannot change
the store σ, as expressions can only read from the store but not write into it. The
definition is a straightforward extension of the operational semantics of dynamic
binding (Section 4.4).
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The judgment for evaluating phrases prescribes evaluation of stateful constructs.
It has the form

(Σ, σ), f 7−→ (Σ′, σ′), f ′

where f steps into f ′, changing in the process the set of allocated locations from
Σ into Σ′ and the global store from σ into σ′. The evaluation strategy that we
consider will evaluate under the constructor dia only if it is found in a let-branch
of a let dia. This way, the changes to the global store prescribed under dia will
take place only when they are serialized by a let dia. Note that this is not the only
possible evaluation strategy, but it is the one that relates simultaneous possibility to
global state and destructive update. Following this idea, we extend the categories of
values, evaluation contexts and redexes from Section 4.3 as summarized below.

Values v ::= λx:A. e | box e | νX:A. e | dia f
Value substitutions σ ::= · | X → v, σ
Evaluation contexts E ::= [ ] | E e1 | v1 E | let box u = E in e |

choose E | 〈σ,X → E,Θ〉e
Redexes r ::= (λx. e) v | let box u = box e in e |

choose (νX. e) | 〈σ〉e | X
Phrase contexts F ::= [ ] | let dia x = E in f | let dia x = dia F in f |

let dia x = dia [〈σ,X → E,Θ〉, e] in f |
let dia x = dia [·, E] in f |
let box u = E in f

Phrase redexes c ::= let dia x = dia [σ, e] in f |
let dia x = dia [·, v] in f |
let box u = box e in f

The two evaluation judgments require two primitive reduction relations: a primitive
reduction for expressions

σ
−→, and a primitive reduction for phrases −→.

Primitive reduction for expressions.

Σ, (λx. e) v
σ
−→ Σ, [v/x]e Σ, let box u = box e1 in e2

σ
−→ Σ, [e1/u]e2

Σ, choose (νX:A. e)
σ
−→ (Σ, X:A), e Σ, 〈σ′〉e

σ
−→ Σ, {σ′}e

Σ, X
σ
−→ Σ, σ(X)
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Primitive reduction for phrases.

σ′ 6= (·)

(Σ, σ), let dia x = dia [σ′, e] in f −→ (Σ, σ ◦ σ′), let dia x = dia [·, e] in f

(Σ, σ), let dia x = dia [·, v] in f −→ (Σ, σ), [v/x]f

(Σ, σ), let box u = box e in f −→ (Σ, σ), [e/u]f

Evaluation for expressions.

Σ, r
σ
−→ Σ′, e′

Σ, E[r]
σ
7−→ Σ′, E[e′]

Evaluation for phrases.

Σ, r
σ
−→ Σ′, e′

(Σ, σ), F [r] 7−→ (Σ′, σ), F [e′]

(Σ, σ), c −→ (Σ′, σ′), f ′

(Σ, σ), F [c] 7−→ (Σ′, σ′), F [f ′]

All the rules are fairly straightforward, except the one for primitive reduction of
phrases with nonempty substitution. The meaning of this rule is to change the global
store according to the phrase substitution and continue evaluating in the new store.
Thus, the substitution σ′ is moved out of the phrase and composed with σ which is
the current global store. Observe that this rule is required in order to preserve the
soundness of the operational semantics. In the phrase let dia x = dia [σ, e] in f , the
type system assumes that the variable x has empty support. Thus, the expression e
has to be reduced to a value (as values have empty support), before it can be bound
to x.

Structural properties and type soundness

The calculus of state is an extension of the calculus of dynamic binding from Sec-
tion 4.4 with the possibility judgment and the language constructs corresponding to
possibility. It’s structural properties and substitution principles, thus, extend the
properties of the calculus of dynamic binding, and are also straightforward adapta-
tions of the properties of the modal ν-calculus from 2.2.3. We list the main properties
below, and comment on their proofs.

The support weakening lemma is standard, and will be used further in this section
in the proof of the Replacement lemma (Lemma 52).
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Lemma 48 (Support weakening)
1. if Σ;∆ ` e : A [C] and C v D, then Σ;∆ ` e : A [D]

2. if Σ;∆ ` 〈Θ〉 : [C1]⇒ [C] and C v D, then Σ;∆ ` 〈Θ〉 : [C1]⇒ [D]

3. if Σ;∆ ` f ÷C1
A [C] and C v D, then Σ;∆ ` f ÷C1

A [D]

Proof: By a simultaneous induction on the stricture of the three main derivations.
�

The expression substitution principle corresponds to the modal substitution prin-
ciple from Section 2.2.3.

Lemma 49 (Expression substitution principle)
Let Σ;∆ ` e1 : A [C]. Then the following holds:

1. if Σ; (∆, u:A[C]) ` e2 : B [D], then Σ;∆ ` [e1/u]e2 : B [D]

2. if Σ; (∆, u:A[C]) ` 〈Θ〉 : [D′]⇒ [D], then Σ;∆ ` 〈[e1/u]Θ〉 : [D′]⇒ [D]

3. if Σ; (∆, u:A[C]) ` f ÷C1
B [D], then Σ;∆ ` [e1/u]f ÷C1

B [D]

Proof: By simultaneous induction on the structure of the three derivations. We
present the case f = let dia x = e in f ′ in the proof of the third statement. In
this case, by derivation, Σ; (∆, u:A[C]) ` e : 3C′A′ [D], and Σ; (∆, u:A[C], x:A′) `
f ′ ÷C1

B [C ′], for some support C ′ and type A′. By the first first induction hypoth-
esis, Σ;∆ ` [e1/u]e : 3C′A′ [D]. By the third induction hypothesis, Σ; (∆, x:A′) `
[e1/u]f ′ ÷C1

B [C ′]. Now the result follows by the typing rule for let dia. �

The explicit substitution principle is also a straightforward adaptation.

Lemma 50 (Explicit substitution principle)
Let Σ;∆ ` 〈Θ〉 : [C]⇒ [D]. Then the following holds:

1. if Σ;∆ ` e : A [C] then Σ;∆ ` {Θ}e : A [D]

2. if Σ;∆ ` 〈Θ′〉 : [C1]⇒ [C], then Σ;∆ ` 〈Θ ◦Θ′〉 : [C1]⇒ [D]

3. if Σ;∆ ` f ÷C1
A [C], then Σ;∆ ` {Θ}f ÷C1

A [D]

Proof: The proof is by simultaneous induction on the three judgments. It is anal-
ogous to the proof of the explicit substitution principle for the modal ν-calculus
from Section 2.2.3. We present the case when f = [Θ′, e], in the proof of the third
statement.

In this case, by derivation, Σ;∆ ` e : A [C1] and Σ;∆ ` 〈Θ′〉 : [C1] ⇒ [C]. By
the second induction hypothesis, Σ;∆ ` 〈Θ ◦Θ′〉 : [C1] ⇒ [D]. Now, result follows
by typing rule for phrases. �

Lemma 51 (Canonical forms)
Let v be a value such that Σ; ·;` v : A [C]. Then the following holds:

1. if A = A1 → A2, then v = λx:A1. e and Σ;x:A1 ` e : A1 [ ]
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2. if A = �DB, then v = box e and Σ; · ` e : B [D]

3. if A = A1 9 A2, then v = νX:A1. e and (Σ, X:A1); · ` e : A2 [ ]

4. if A = 3DB, then v = dia f and Σ; · ` f ÷D B [C]

As a consequence, the support of v is empty, and can be weakened arbitrarily.

Proof: By a straightforward case analysis. �

The next Replacement lemma allows expressions and phrases to be exchanged
in an expression and phrase contexts respectively. Of course, the replacement ex-
pressions and phrases have to match the type of the expression or the phrase that is
being replaced. Notice that the Replacement lemma in this section, unlike the Re-
placement lemma of the calculus for dynamic binding, considers non-empty supports
in the typing judgments. The reason is that, unlike in dynamic binding, the calculus
of state allows evaluation of expressions and phrases with non-empty support C, as
long as the names from C are initialized by the global store.

Lemma 52 (Replacement)
1. If Σ; · ` E[e] : A [C], then there exists a type B such that

(a) Σ; · ` e : B [C], and

(b) if Σ′ extends Σ, and Σ′; · ` e′ : B [C], then Σ′; · ` E[e′] : A [C]

2. If Σ; · ` F [e] ÷C A [D], then there exists a type B such that

(a) Σ; · ` e : B [D], and

(b) if Σ′ extends Σ and Σ′; · ` e′ : B [D], then Σ′; · ` F [e′] ÷C A [D]

3. If Σ; · ` F [f ] ÷C A [D], then there exists a type B and support C1 such that

(a) Σ; · ` f ÷C1
B [D], and

(b) if Σ′ extends Σ and D1 is a support set such that Σ′; · ` f ′ ÷C1
B [D1],

then Σ′; · ` F [f ′] ÷C A [D1]

Proof: By simultaneous induction on the structure of the contexts E and F . We
present the proofs for induction hypotheses (2) and (3), as the case (1) is similar to
the proof of Replacement for dynamic binding (Lemma 41).

For the induction hypothesis (2), the following cases may appear.

case F = let dia x = E1 in f . By derivation, Σ; · ` E1[e] : 3C1
A1 [D], and

Σ;x:A1 ` f ÷C A [C1]. By first induction hypothesis, there exists B such that
Σ; · ` e : B [D]. Also, if Σ′; · ` e′ : B [D], then Σ′; · ` E1[e

′] : 3C1
A1 [D].

Conclusion now follows by typing rule for let dia.

case F = let dia x = dia F1 in f . By derivation, Σ; · ` F1[e] ÷C1
A1 [D], and

Σ;x:A1 ` f ÷C A [C1]. By second induction hypothesis, there exists B such
that Σ; · ` e : B [D]. Also, if Σ′; · ` e′ : B [D], then Σ′; · ` F1[e

′] ÷C1
A1 [D].

The result again follows by typing for let dia.
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case F = let dia x = dia [〈σ,X → E1,Θ〉, e] in f , where X:B1 ∈ Σ. By derivation,
Σ; · ` E1[e] : B1 [D], and Σ;x:A1 ` f ÷C A [C1]. By first induction hypothesis,
there exists B such that Σ; · ` e : B [D]. Also, if Σ′; · ` e′ : B [D], then
Σ′; · ` E1[e

′] : B1 [D]. Once again, the typing for let dia lead to the required
conclusion.

case F = let dia x = dia [·, E1] in f . By derivation, Σ; · ` E1[e] : A1 [C1], where
C1 ⊆ D, and Σ;x:A1 ` f ÷C A [C1]. By support weakening, Σ; · ` E1[e] :
A1 [D] and Σ;x:A1 ` f ÷C A [D]. By first induction hypothesis, there exists B
such that Σ; · ` e : B [D]. Also, if Σ′; · ` e′ : B [D], then Σ′; · ` E1[e

′] : A1 [D].
Finally, use the typing rule for let dia again to conclude the proof.

For the induction hypothesis (3), the following cases may appear.

case F = [ ]. In this case, obviously, pick B = A, and C1 = C to finish the proof.

case F = let dia x = dia F1 in f1. By derivation, Σ; · ` F1[f ] ÷C′ A′ [D], and
Σ;x:A′ ` f1 ÷C A [C ′]. By third induction hypothesis, there exist B and C1

such that Σ; · ` f ÷C1
B [D]. Also, if Σ′; · ` f ′ ÷C1

B [D1], then Σ′; · `
F1[f

′] ÷C′ A′ [D1]. The result again follows by typing rules for let dia.

�

The Subject reduction lemma establishes that primitive reductions preserve types
and supports. Notice that in the calculus of state, the evaluation is always undertaken
relative to a global store σ : [C] ⇒ [ ], which provides definitions for a certain set
of names C that the evaluated expressions and phrases are allowed to dereference.
Notice that the evaluation of expressions may only depend on the global store σ, but
the evaluation of phrases may change σ into some new σ ′ : [C ′] ⇒ [ ]. Of course, in
the typing of the new global store, C ′ will always be a well-formed support set, as
the lemma below postulates.

Lemma 53 (Subject reduction)
Let Σ; · ` 〈σ〉 : [C]⇒ [ ]. Then the following holds:

1. if Σ; · ` e : A [C] and Σ, e
σ
−→ Σ′, e′, then Σ′ extends Σ and Σ′; · ` e′ : A [C]

2. if Σ; · ` f ÷D A [C] and (Σ, σ), f −→ (Σ′, σ′), f ′, then Σ′ extends Σ and Σ′; · `
〈σ′〉 : [C ′]⇒ [ ] and Σ′; · ` f ′ ÷D A [C ′] for some support set C ′ ⊆ dom(Σ′)

Proof: By case analysis of the possible reductions. We present the selected cases.

case e = 〈σ′〉e1. By derivation, Σ; · ` e1 : A [C ′], and Σ; · ` 〈σ′〉 : [C ′] ⇒ [ ]. By
explicit substitution principle, Σ; · ` {σ ′}e1 : A [ ]. By definition, e′ = {σ}e1,
which finishes the proof.

case e = X, where X:A ∈ Σ. By derivation, X ∈ C, and thus by typing for
substitutions Σ; · ` σ(X) : A [ ]. Furthermore, because σ is a value substitution,
σ(X) is a value, so by canonical forms lemma, its support can be arbitrarily
weakened; in particular Σ; · ` σ(X) : A [C].
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case f = let dia x = dia [σ1, e] in f1. By definition, Σ′ = Σ and σ′ = σ ◦ σ1. By
derivation, Σ; · ` e : B [C ′], and Σ; · ` 〈σ1〉 : [C ′] ⇒ [C], and Σ;x:B ` f1 ÷D

A [C ′]. By explicit substitution principle, Σ; · ` 〈σ ◦ σ1〉 : [C ′] ⇒ [ ]. Result
follows by typing rule for let dia.

case f = let dia x = dia [·, v] in f1. By definition, Σ′ = Σ and σ′ = σ and C1 = C.
By derivation, Σ; · ` v : B [C1] for some C1 v C, and Σ;x:B ` f1 ÷D A [C ′]. By
canonical forms lemma, Σ; · ` v ÷B [ ]. By support weakening, Σ;x:B ` f1 ÷D

A [C]. Finally, by the expression substitution principle, Σ; · ` [v/x]f1 ÷D A [C].

�

The Preservation lemma extends the result of Subject reduction, which was valid
only on primitive reductions, to the evaluation relation.

Lemma 54 (Preservation)
Let Σ; ·;` 〈σ〉 : [C]⇒ [ ]. Then the following holds:

1. if Σ; · ` e : A [C] and Σ, e
σ
7−→ Σ′, e′, then Σ′ extends Σ and Σ′; · ` e′ : A [C]

2. if Σ; · ` f ÷D A [C] and (Σ, σ), f 7−→ (Σ′, σ′), f ′, then Σ′ extends Σ and Σ′; · `
〈σ′〉 : [C ′]⇒ [ ] and Σ′; · ` f ′ ÷D A [C ′] for some support set C ′ ⊆ dom(Σ′)

Proof: The proof of statement (1), proceeds as follows. By evaluation rules, there
exists an evaluation context E such that e = E[r], Σ, r

σ
−→ Σ′, r′ and e′ = E[r′].

By the replacement lemma, there exists B such that Σ; · ` r : B [C]. By subject
reduction, Σ′ extends Σ, and Σ′; · ` r′ : B [C]. By replacement again, Σ′; · ` E[r′] :
A [C]. Since e′ = E[r′] this proves statement (1).

To prove the statement (2), observe that by the evaluation rules, it is either
f = F [r] for some closure context F and term redex r, or f = F [c] for some closure
redex c.

If f = F [r], then Σ, r
σ
−→ Σ′, e′ and f ′ = F [e′], and σ′ = σ and C1 = C. By the

replacement lemma, there exists B such that Σ; · ` r : B [C]. By subject reduction,
Σ′ extends Σ, and Σ′; · ` e′ : B [C]. By replacement lemma, Σ′; · ` F [e′] : A [C].

On the other hand, if f = F [c], then (Σ, σ), c −→ (Σ′, σ′), c′ and f ′ = F [c′]. By
replacement lemma, there exists B and D1 such that Σ; · ` c ÷D1

B [C]. By subject
reduction, Σ′ extends Σ, and Σ′; · ` 〈σ′〉 : [C ′] ⇒ [ ], and Σ′; · ` c′ ÷D1

B [C ′]. By
replacement lemma again, Σ′; · ` F [c′] ÷D A [C ′]. �

Lemma 55 (Progress for −→)
Let σ be an arbitrary value substitution. Then the following holds:

1. if Σ; · ` r : A [C], then there exists a term e′ and a context Σ′, such that
Σ, r

σ
−→ Σ′, e′.

2. if Σ; · ` c ÷D A [C], then there exist a phrase f ′, a value substitution σ′ and a
context Σ′, such that (Σ, σ), c −→ (Σ′, σ′), f ′.
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Proof: By case analysis over possible redexes. For example, in the statement (1),
when r = X, for some name X, we can pick Σ′ = Σ and e = σ(X). The other cases
of statement (1), as well as the statement (2) are also easy to establish. �

Lemma 56 (Unique decomposition)
1. If e is a closed expression (i.e., e does not contain any free variables, but it may

contain free names), then either:

(a) e is a value, or

(b) e = E[r] for a unique evaluation context E and a redex r.

2. If f is a closed phrase, then either:

(a) f = [Θ, e] for some substitution Θ and expression e, or

(b) f = F [r] for a unique phrase context F and term redex r, or

(c) f = F [c] for a unique phrase context F and phrase redex c.

Proof: Straightforward, by induction on the structure of e and f . �

As customary by now, we proceed to prove that in the calculus of state, well-
typed closed expressions and phrases do not get stuck, and that reductions from one
and the same expression or a phrase differ only in the choice of new names. These
claims are formalized by the Progress and Determinacy lemmas below.

Lemma 57 (Progress)
Let Σ; · ` 〈σ〉 : [C]⇒ [ ]. Then the following holds:

1. if Σ; · ` e : A [C], then either

(a) e is a value, or

(b) there exists a term e′ and a context Σ′, such that Σ, e
σ
7−→ Σ′, e′.

2. if Σ; · ` f ÷D A [C], then either

(a) f = [Θ, e] for some substitution Θ and an expression e, or

(b) there exists a phrase f ′, a context Σ′, and a value substitution σ′, such
that (Σ, σ), f 7−→ (Σ′, σ′), f ′

Proof: The proof of statement (1) proceeds as follows. By unique decomposition
lemma, e is either a value, or there exists unique E and r such that e = E[r]. If
e is not a value, by replacement lemma, there exists B such that Σ; · ` r : B [C].
By progress for −→, there exists Σ′ and e1 such that Σ, r

σ
−→ Σ′, e1. By evaluation

rules, Σ, E[r]
σ
7−→ Σ′, E[e1]. Now, we can pick e′ = E[e1], to finish the proof.

To prove statement (2), notice that, by the unique decomposition lemma, f is
either equal to [Θ, e], or there exists unique F and r such that f = F [r], or there
exists unique F and c such that f = F [c]. In the second case, by replacement lemma,
there exists B such that Σ; · ` r : B [C]. By progress for −→, there exists Σ′ and e1

such that Σ, r
σ
−→ Σ′, e1. Then we can pick f ′ = F [e1]. In the third case, by replace-

ment lemma, there exists a type B and support C1 such that Σ; · ` c ÷C1
B [C]. By
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progress for −→, there exists a phrase f1, a context Σ′ and a substitution σ′, such
that (Σ, σ), c 7−→ (Σ′, σ′), f1. In this case, we can pick f ′ = F [f1]. �

Lemma 58 (Determinacy)
1. If e, e1, e2 are terms such that Σ, e

σ
−→

n
Σ1, e1 and Σ, e

σ
−→

n
Σ2, e2, then there

exists a permutation of names π : N → N , fixing the domain of Σ, such that
Σ2 = π(Σ1) and e2 = π(e1).

2. If f , f1, f2 are phrases such that (Σ, σ), f 7−→n (Σ1, σ1), f1 and (Σ, σ), f 7−→n

(Σ2, σ2), f2, then there exists a permutation of names π : N → N , fixing the
domain of Σ, such that Σ2 = π(Σ1) and σ2 = π(σ1), and f2 = π(f1).

Proof: The proof of the first statement is analogous to the proof of determinacy for
dynamic binding, so we omit it here. The second lemma statement is trivial, because
there are no primitive phrase constructors that introduce fresh names. �

4.6 Exceptions

Syntax and typing

Raising an exception is a control-flow effect – it causes the execution of the program
to make a jump and continue from another point. Along the jump, the exception
passes a value, to be used by the program at the destination point of the jump.
Exactly where and how the execution of the program resumes, is determined by the
exception handler. The handler takes as argument the value that is passed by the
exception, and then proceeds with execution. Thus, a computation that may raise
an exception is, in a sense, partial. It must be executed in an environment in which
a handler for the exception is specified, or else it may not produce a result. Notice,
however, that exceptions are benign effects. Unlike writing into memory, raising an
exception does not cause a permanent change in the environment.

In this section we develop a calculus of exceptions, based on the core fragment
of the calculus for benign effects from Section 4.3. The idea is to assign a name to
each exception, which could then be propagated and tracked by the type system. To
be able to raise and handle exceptions, we need further constructs specific only to
exceptions, so we extend the syntax of our language as follows.

Exception handlers Θ ::= · | Xz → e,Θ
Expressions e ::= . . . | raiseX e | e handle 〈Θ〉

Informally, the role of raiseX e is to evaluate e and then raise the exception X,
passing the value of e along. On the other hand, e handle 〈Θ〉 evaluates e (which
may raise exceptions), so that any exception possibly raised by e is handled by the
exception handler Θ.

An exception handler is defined as a finite set of exception patterns. A pattern
Xz → e associates the exception X with the expression e; the variable z is bound in
the pattern. Whenever X is raised with some value v, it will be handled by evaluating
the expression [v/z]e. Given a handler Θ, its domain dom(Θ) is defined as the set

dom(Θ) = {X ∈ N | Xz → e ∈ Θ}
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Every exception X ∈ dom(Θ) must be associated with a unique pattern of Θ.

An exception handler Θ defines a unique map [[Θ]] : N → Values → Expressions
as follows.

[[Θ]](X)(v) =

{
[v/z]e if Xz → e ∈ Θ
raiseX v otherwise

We will frequently identify the handler Θ with the function [[Θ]], and write Θ(X)(v)
instead of [[Θ]](X)(v). According to the above definition, if X is an exception such
that X 6∈ dom(Θ), then Θ simply propagates X further.

Example 37 Assuming X and Y are integer names, the following are well-formed
expressions.

1. (1− raiseX raiseY 10) handle 〈Xx→ x + 2, Y y → y + 3〉

2. (1− raiseX 0) handle 〈Xx→ (2− raiseY x)〉 handle 〈Y y → y〉

3. (1− raiseX 0) handle 〈Y y → (2− raiseX y)〉 handle 〈Xx→ x + 1〉

The expressions evaluate to 13, 0 and 1, respectively. Expression (1) raises the
exception Y , passing 10 along. This is handled by the pattern Y y → y + 3, to
produce 13. Expression (2) raises X with value 0, but while handling X it raises Y
with value 0, which is finally handled by the outside handler 〈Y y → y〉, to produce
0. Expression (3) raises X with 0, which is propagated by the inside handler, and
then handled by the outside handler 〈Xx→ x + 1〉, to return 1. �

The type system of the calculus of exceptions consists of two judgments: one for
typing expressions, and another one for typing exception handlers. The judgment
for expressions has the form

Σ;∆ ` e : A [C]

and it simply extends the judgment from the core fragment presented in Section 4.3
with the new rules for raise and handle. The specific characteristic of the calculus
is that the support C represents sets, collecting the exceptions that e is allowed to
raise. Thus, C v D is defined as C ⊆ D when C and D are viewed as sets (i.e., when
the ordering and repetition of elements in these supports are ignored). By support
weakening, e need not raise all the exceptions from its support C, but if an exception
can be raised, then it must be in C. The judgment for exception handlers has the
form

Σ;∆ ` 〈Θ〉 : [C]
A
⇒ [D]

and the handler Θ will be given the type [C]
A
⇒ [D] if: (1) Θ can handle exceptions

from the support set C arising in a term of type A, and (2) during the handling, Θ
is allowed to itself raise exceptions only from the support set D. The typing rules of
both judgments are presented below, and we briefly comment on them.
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Definition of Σ;∆ ` e : A [C].

Σ;∆ ` e : A [C] X ∈ C X:A ∈ Σ

Σ;∆ ` raiseX e : B [C]

Σ;∆ ` e : A [C] Σ;∆ ` 〈Θ〉 : [C]
A
⇒ [D]

Σ;∆ ` e handle 〈Θ〉 : A [D]

Definition of Σ;∆ ` 〈Θ〉 : [C]
A
⇒ [D].

C v D

Σ;∆ ` 〈 〉 : [C]
A
⇒ [D]

Σ; (∆, z:A) ` e : B [D] Σ;∆ ` 〈Θ〉 : [C \X]
B
⇒ [D] X:A ∈ Σ

Σ;∆ ` 〈Xz → e,Θ〉 : [C]
B
⇒ [D]

An exception X can be raised only if it is accounted for in the support. Thus
the rule for raise requires X ∈ C. The term raiseX e changes the flow of control,
by passing e to the nearest handler. Because of that, the context in which this term
is encountered does not matter; we can type raiseX e by any arbitrary type B. In
the rule for handle, the type and the support of the expression e must match the
type and the domain support of the handler Θ. The empty exception handler 〈 〉
only propagates whichever exceptions it encounters. If it is supplied an expression
of support C it will produce an expression of the same support. To maintain the
support weakening property, we allow the range support D of an empty handler to be
a superset of C. Notice that the empty support handler may be assigned an arbitrary
type A. The rule for nonempty exception handlers simply inductively checks each
of the exception patterns in the handler. The type of each pattern variable z must
match the type of the corresponding exception; this is the type of the value that the
exception will be raised with. The handling terms e must all have the same type B,
which would also be the type assigned to the handler itself.

Example 38 The function tail below computes a tail of the argument integer
list, raising an exception EMPTY:unit if the argument list is empty. The function
length uses tail to compute the length of a list. Note that the range type of tail
is � EMPTYintlist. This is required because the body of tail raises an exception,
and, as explained in Section 4.3, all the effects in function bodies must be boxed.
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- let name EMPTY: unit

fun tail (xs : intlist) : � EMPTYintlist =

(case xs

of nil => box (raise EMPTY ())

| x::xs => box xs)

fun length (xs : intlist) : int =

(1 + length (unbox (tail xs)))

handle <EMPTY z -> 0>

in

length [1,2,3,4]

end;

val it = 4;

�

Before we proceed to describe the operational semantics of the exception calculus,
let us outline some of its properties and how they relate to other treatments of
exceptions in functional languages.

First of all, exceptions in our calculus are second class. They are not values
and cannot be bound to variables. Correspondingly, exceptions must be explicitly
raised; raising a variable exception is not possible. Aside from this fact, when local
exceptions are concerned (i.e., exceptions which do not originate from a function
call, but are raised and handled in the body of the one and the same function), our
calculus very much resembles Standard ML [MTHM97]. In particular, exceptions
can be raised, and then handled, without forcing any changes to the type of the
function. It is only when we want the function to propagate an exception so that
it is handled by the caller, that we need to specifically mark the range type of that
function with a �-type.

It is also instructive to compare our calculus with the monadic formulation of
exceptions from Section 4.1.3. To that end, we recall Example 26, where the exception
monad © provides for a unique exception of type E. The definition of the monad
© and its related term constructors is given as follows.

©A = A + E

comp e = inl e

let comp x = e1 in e2 = case e1 of inl x⇒ e2 | inr y ⇒ inr y

raise : E ⇒©A

raise e = inr e

handle : ©A⇒ (E ⇒ B)⇒ B

handle e h = case e of inl v ⇒ v | inr exn⇒ h exn

In this definition, the operational semantics given to all the constructs relies on the
standard operational semantics associated with disjoint sums. For example, is we
assume that f : int⇒©int, then the following program adds the results of f 1 and
f 2. If the evaluation of any of the two function applications raises an exception, the
overall computed result is zero.
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handle (let comp x1 = f 1

comp x2 = f 2

in

comp (x1 + x2)

end) (λexn. 0)

In our calculus of exceptions, the equivalent of the above program may be written
in several ways, depending on the evaluation order that the programmer may wish
to specify. For example, let us assume that X:E is an exception name, and that
f : int → �X int. Then the operational behavior of the previous monadic program
is exhibited by the following program in the calculus of exceptions.

(let val x1 = unbox (f 1)

val x2 = unbox (f 2)

in

x1 + x2

end) handle <X exn -> 0>

However, because exceptions are benign effects, the computations internalized
by f 1 and f 2 are independent of each other. There is no need to first evaluate
and unbox f 1 and then evaluate and unbox f 2. For example, we could write the
following program that computes the same results.

let box u1 = f 1

box u2 = f 2

in

(u1 + u2) handle <X exn -> 0>

end

The first two let box branches of this program evaluate the expressions f 1 and
f 2 in that order to obtain boxed computations box e1 and box e2, but they do
not evaluate e1 and e2. The computations e1 and e2 are substituted for u1 and u2,
and only then is the execution of (e1 + e2) attempted, in the order specified by the
operational semantics of addition. Following a similar idea, an even more compact
way to compute the sum of f 1 and f 2 is given simply as

(unbox (f 1) + unbox (f 2)) handle <X exn -> 0>

As a conclusion, the calculus of exceptions – and more generally, the calculus
of benign effects based on modal necessity – allows programs that are uncommitted
about the evaluation order of its effects. The evaluation order is eventually deter-
mined by the operational semantics, but it is not necessary to make this order explicit
in the program. This is the major difference between the treatment of benign effects
and persistent effects. It is also the major difference between the modal operator �

on one hand, and the monad © and the modal operator 3 on the other hand.
Note that this distinction may potentially have consequences for the efficiency of

exceptional programs. In the monadic case, an expression e :©A either evaluates to
a value, or raises an exception. The outcome of the evaluation of e has to be tagged
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(with inl or inr) in order to distinguish between the two cases, and this tag has to be
checked at run time whenever e is used. In the modal case, the effectful computation
boxed in the expression e : �XA will only be evaluated within the scope of some
handler for X. This evaluation can only produce a value, and cannot result with an
unhandled exception. In the modal case, there cannot exists a raised exceptions that
is not handled, so there is no need for tagging and tag checking.

Operational semantics

The operational semantics of the exception calculus is a simple extension of the
semantics of the core fragment. The evaluation judgment has the same form

Σ, e 7−→ Σ′, e′

We only need to extend the syntactic categories of evaluation contexts and redexes,
and define primitive reductions for the new redexes. First, we define new evaluation
contexts.

Evaluation contexts E ::= . . . | raiseX E | E handle 〈Θ〉

We have already explained that each exception handler can handle all exceptions. It is
only that some exceptions are handled in a specified way, while others are handled by
simple propagation. This will simplify the operational semantics somewhat, because
in order to find the handler capable of handling a particular raise we only need to
find the nearest, or inner-most handler enclosing this raise. For that purpose, we
define a special subclass of evaluation contexts, called pure evaluation contexts.

Definition 59 (Pure evaluation contexts)
An evaluation context E is pure if it does not contain any exception-handling con-
structs acting on the hole of the context. In other words, the syntactic category of
pure evaluation contexts is defined as

Pure contexts P ::= [ ] | P e1 | v1 P | let box u = P in e |
choose P | raiseX P

The idea of this definition is to identify, within each evaluation context E, the han-
dling construct (if any) that is closest to the hole of E, as stated by the following
lemma.

Lemma 60 (Evaluation context decomposition)
If E is an evaluation context, then either:

1. E is a pure context, or

2. there exist unique evaluation context E ′ and pure context P ′ such that

E = E′[P ′ handle 〈Θ〉].

Proof: By induction on the structure of E. We present selected cases.

case E = raiseX E1. By induction hypothesis, E1 is either pure, in which case pick
E is pure as well, or E1 = E′

1[P
′ handle Θ] in which case pick E ′ = raiseX E′

1.
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case E = E1 handle Θ. By induction hypothesis, E1 is either pure, in which case
pick E′ = [] and P ′ = E1, or E1 = E′

2[P
′
2 handle Θ2], in which case pick

E′ = E′
2 handle Θ and P ′ = P ′

2.

�

This definition and lemma provide us with enough notions to define the new
redexes and the primitive reductions on them.

Redexes r ::= . . . | v handle 〈Θ〉 | P [raiseX v] handle 〈Θ〉

Σ, v handle 〈Θ〉 −→ Σ, v Σ, P [raiseX v] handle 〈Θ〉 −→ Σ,Θ(X)(v)

The first reduction exploits the fact that values are exception free, and therefore
simply fall through any handler. The second reduction chooses the closest handler
for any particular raise. It also requires that only values be passed along with the
exceptions; the operational semantics demands that before an exception is raised, its
argument must be evaluated. If it so happens that the evaluation of the argument
raises another exception, this later one will take precedence and actually be raised.
This is already illustrated in the first term from Example 37, where it is the exception
Y which is raised and eventually handled.

Structural properties and type soundness

Before proceeding to prove the basic properties of the calculus of exceptions, we first
summarize its basic syntactic constructs.

Expressions e ::= u | λx:A. e | e1 e2 | box e | let box u = e1 in e2 |
νX:A. e | choose e | raiseX e | e handle 〈Θ〉

Exception handlers Θ ::= · | Xz → e,Θ
Values v ::= λx:A. e | box e | νX:A. e
Evaluation contexts E ::= [ ] | E e1 | v1 E | let box u = E in e | choose E |

raiseX E | E handle 〈Θ〉
Pure contexts P ::= [ ] | P e1 | v1 P | let box u = P in e | choose P |

raiseX P
Redexes r ::= (λx. e) v | let box u = box e in e |

choose (νX. e) | v handle 〈Θ〉 |
P [raiseX v] handle 〈Θ〉

The Expression substitution principle for the exception calculus is similar to the
Expression substitution principle from the calculus of dynamic binding and state,
except that it now includes a statement about exception handlers, rather than a
statement about explicit substitutions.

Lemma 61 (Expression substitution principle)
If Σ;∆ ` e1 : A [C], then the following holds:

1. if Σ; (∆, u:A[C]) ` e2 : B [D], then Σ;∆ ` [e1/u]e2 : B [D]
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2. if Σ; (∆, u:A[C]) ` 〈Θ〉 : [D′]
B
⇒ [D], then Σ;∆ ` 〈[e1/u]Θ〉 : [D′]

B
⇒ [D]

Proof: By simultaneous induction on the structure of e and Θ. We just present the
cases that are specific to exceptions.

case e2 = raiseX e′, where X:B ′ ∈ Σ, and X ∈ D. By derivation, Σ; (∆, u:A[C]) `
e′ : B′ [D]. By induction hypothesis, Σ;∆ ` [e1/u]e′ : B′ [D]. The result follows
by the typing for raise.

case e2 = e′ handle Θ. By derivation, we have Σ; (∆, u:A[C]) ` e′ : B [D′], and

Σ; (∆, u:A[C]) ` 〈Θ〉 : [D′]
B
⇒ [D]. By first induction hypothesis, Σ;∆ `

[e1/u]e′ : B [D′]. By second induction hypothesis, Σ;∆ ` 〈[e1/u]Θ〉 : [D′]
B
⇒

[D]. The case is now proved, by using the typing rules for handle.

case Θ = (·). Obvious.

case Θ = (Xz → e,Θ′), where X:B ′ ∈ Σ. By derivation, Σ; (∆, u:A[C], z:B ′) `

e : B [D], and Σ; (∆, u:A[C]) ` 〈Θ′〉 : [D′ \X]
B
⇒ [D]. By the first induction

hypothesis, Σ; (∆, z:B ′) ` [e1/u]e : B [D]. By the second induction hypothesis,

Σ;∆ ` 〈[e1/u]Θ′〉 : [D′ \X ]
B
⇒ [D]. The result follows by the typing rule for

composite handlers.

�

The replacement lemma now has to account for both pure and impure contexts.
Because pure contexts do not allow a handler acting on the hole of the context,
placing an expression within a pure context preserves the expression’s support. That
is not necessarily the case with ordinary evaluation contexts.

Lemma 62 (Replacement)
1. If Σ; · ` P [e] : A [C], then there exist a type B such that

(a) Σ; · ` e : B [C], and

(b) if Σ′ extends Σ, and Σ′; · ` e′ : B [C], then Σ′; · ` P [e′] : A [C]

2. If Σ; · ` E[e] : A [C], then there exist a type B and a support D such that

(a) Σ; · ` e : B [D], and

(b) if Σ′ extends Σ and Σ′; · ` e′ : B [D], then Σ′; · ` E[e′] : A [C]

Proof: The first statement is proved by induction on the structure of the pure
context P . For an example, consider the case when P = raiseX P1, for X:B′ ∈ Σ,
and X ∈ C. In this case, by derivation, Σ; · ` P1[e] : B′ [C]. By induction hypothesis,
there exist B such that Σ; · ` e : B [C]. Again by induction hypothesis, for every e ′

such that Σ′; · ` e′ : B [C], we have Σ′; · ` P1[e
′] : B′ [C]. Now the conclusion follows

by the typing rule for raise.
To prove the second statement, by Evaluation context decomposition lemma

(Lemma 60, we need only consider two cases.

case E = P . This case follows from the already proved replacement for pure con-
texts.
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case E = E1[P handle Θ]. In this case, by induction hypothesis, there exist B ′ and
D′ such that Σ; · ` P [e] handle Θ : B ′ [D′]. By typing, Σ; · ` P [e] : B ′ [D′′],

and Σ; · ` 〈Θ〉 : [D′′]
B′

⇒ [D′]. By replacement for pure contexts, there exists B
such that Σ; · ` e : B [D′′]. Also, for every e′ such that Σ′; · ` e′ : B [D], we
have Σ′; · ` P [e′] : B′ [D′′]. The result now follows by typing for handle.

�

Lemma 63 (Canonical forms)
Let v be a value such that Σ; ·; · ` v : A [C]. Then the following holds:

1. if A = A1 → A2, then v = λx:A1. e and Σ;x:A1 ` e : A1 [ ]

2. if A = �DB, then v = box e and Σ; · ` e : B [D]

3. if A = A1 9 A2, then v = νX:A1. e and (Σ, X:A1); · ` e : A2 [ ]

As a consequence, the support of v is empty, and can be weakened arbitrarily.

Proof: By case analysis on the structure of values. �

The next step of the development is the Subject reduction lemma. Notice that
the subject reduction for exceptions differs from the subject reduction of dynamic
binding. The semantics of dynamic binding only reduces expressions of empty sup-
port, while with exceptions we need to reduce under an exception handler. This is
reflected in the subject reduction lemma, where we now allow arbitrary supports C.

Lemma 64 (Subject reduction)
If Σ; · ` e : A [C] and Σ, e −→ Σ′, e′, then Σ′ extends Σ and Σ′; · ` e′ : A [C].

Proof: By simple case analysis over possible redexes. We consider two cases in
detail.

case e = v handle Θ. By derivation, Σ; · ` v : A [C ′], and Σ; · ` 〈Θ〉 : [C ′]
A
⇒ [C].

By canonical forms lemma, the support of v can be arbitrary, and in particular
Σ; · ` v : A [C].

case e = P [raiseX v] handle Θ, where X:B ′ ∈ Σ. By derivation, Σ; · ` P [raiseX v] :

A [C ′], and Σ; · ` 〈Θ〉 : [C ′]
A
⇒ [C]. By replacement lemma, there exists a

type B such that Σ; · ` raiseX v : B [C ′]. By typing rules, there must be
X ∈ C ′, and Σ; · ` v : B ′ [C ′]. By canonical forms lemma, support of a value
is empty, i.e., Σ; · ` v : B ′ [−]. Now, by the well-typing of the handler Θ,
Σ; · ` Θ(X)(v) : A [C]. Since Σ, e −→ Σ,Θ(X)(v), this finishes the proof.

�

The Preservation lemma now generalizes Subject reduction to the evaluation
judgment. For purposes of generality, we follow the statement of the Subject reduc-
tion, and allow arbitrary supports C in the statement of Preservation.
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Lemma 65 (Preservation)
If Σ; · ` e : A [C] and Σ, e 7−→ Σ′, e′, then Σ′ extends Σ, and Σ′; · ` e′ : A [C].

Proof: By evaluation rules, there exists an evaluation context E such that e = E[r],
Σ, r −→ Σ′, r′ and e′ = E[r′]. By replacement lemma, there exist B and D such that
Σ; ·; · ` r : B [D]. By subject reduction, Σ′ extends Σ, and Σ′; ·; · ` r′ : B [D]. By
replacement lemma, Σ′; · ` E[r′] : A [C]. Since e′ = E[r′], this proves the lemma.
Notice how the proof appeals in an essential way to the subject reduction lemma
with non-empty supports. �

The following lemma shows that a closed well typed redex can always be reduced.
Again, as in the case of Subject reduction and Preservation, we consider redexes with
a general (not necessarily empty) support C. This will be used in an essential way
in the proof of the Progress lemma below (Lemma 68).

Lemma 66 (Progress for −→)
If Σ; · ` r : A [C], then there exists a term e′ and a context Σ′, such that Σ, r −→
Σ′, e′.

Proof: By straightforward case analysis. We only present two cases.

case r = v handle Θ. By reduction rules, Σ, v handle Θ −→ Σ, v. Pick Σ′ = Σ
and e′ = v.

case r = P [raiseX v] handle Θ, where X:B ∈ Σ. By derivation, Σ; · ` P [raiseX v] :

A [C ′], and Σ; · ` 〈Θ〉 : [C ′]
A
⇒ [C]. By replacement lemma, there exists B ′ such

that Σ; · ` raiseX v : B′ [C ′]. By typing rules, it must be X ∈ C ′, and thus
Θ(X)(v) is well-defined. Now pick Σ′ = Σ and e′ = Θ(X)(v).

�

The unique decomposition lemma is standard.

Lemma 67 (Unique decomposition)
For every expression e, either:

1. e is a value, or

2. e = P [raiseX v], for a unique pure context P , or

3. e = E[r] for a unique evaluation context E and a redex r.

Proof: By induction on the structure of the expression e. �

Finally, we can establish the Progress and Determinacy lemmas below.

Lemma 68 (Progress)
If Σ; · ` e : A [ ], then either

1. e is a value, or

2. there exists a term e′ and a context Σ′, such that Σ, e 7−→ Σ′, e′.
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Proof: Because e has empty support, by unique decomposition lemma, e is ei-
ther a value, or there exists unique E and r such that e = E[r]. If e is not a
value, by replacement lemma, there exists B and C such that Σ; · ` r : B [C]. By
progress for −→, there exists Σ′ and e1 such that Σ, r −→ Σ′, e1. By evaluation rules,
Σ, E[r] 7−→ Σ′, E[e1]. Now, we can pick e′ = E[e1], to complete the proof. �

Lemma 69 (Determinacy)
If Σ, e 7−→n Σ1, e1 and Σ, e 7−→n Σ2, e2, then there exists a permutation of names
π : N → N , fixing the domain of Σ, such that Σ2 = π(Σ1) and e2 = π(e1).

Proof: The most important case is when n = 1, the rest follows by induction on n,
using the property that if Σ, e 7−→n Σ′, e′, then π(Σ), π(e) 7−→n π(Σ′), π(e′). In case
n = 1, we analyse the possible reduction cases.

1. If r = (λx. e) v, or r = let box u = box e1 in e2, or r = v handle Θ, or
r = P [raiseX v] handle Θ, the reducts are unique, i.e. e′1 = e′2, and thus
e1 = e2, so the identity permutation satisfies the conditions.

2. If r = choose νX:A. e, then it must be e′1 = [X1/X]e, e′2 = [X2/X]e, and Σ1 =
(Σ, X1:A), Σ2 = (Σ, X2:A), where X1 and X2 are fresh names. Obviously, the
involution (X1 X2) which swaps these two names has the required properties.

�

4.7 Catch and throw

Syntax and typing

The catch-and-throw calculus is a simplification of the calculus of exceptions. We
consider it here in its own right in order to illustrate a different notion of handling.
It will also provide some intuition for the calculus of composable continuation in
Section 4.8. In the catch-and-throw calculus, names are associated with labels to
which the program can jump. Informally, catch establishes a destination point for
a jump and assigns a name to it, and throw jumps to the established point.

Expressions e ::= . . . | throwX e | catchX e

The throw and catch can be viewed as restrictions of raise and handle; catch
handles a throw by immediately returning the value associated with the throw.

Because the notion of handling in the catch-and-throw calculus is so simple when
compared to exceptions, we only need the typing judgment for expressions Σ;∆ ` e :

A [C]. It is not necessary to define the judgment for handlers Σ;∆ ` 〈Θ〉 : [C]
A
⇒ [D].

The meaning of Σ;∆ ` e : A [C] is that e has type A and may throw to destination
points whose names are listed in the support C. The supports are sets, just like in
the calculus of exceptions. The typing rules of the calculus are presented below.
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Definition of Σ;∆ ` e : A [C].

Σ;∆ ` e : A [C] X ∈ C X:A ∈ Σ

Σ;∆ ` throwX e : B [C]

Σ;∆ ` e : A [C,X] X:A ∈ Σ

Σ;∆ ` catchX e : A [C]

A throw to a destination point is allowed only if the destination point is present in
the support set. A catch establishes a destination point by placing it in the support
against which the argument expression is checked.

Example 39 The following terms (adapted from [Kam00a]) are well-typed in our
catch-and-throw calculus.

choose (νX:int.
(λf:int->�Xint.

let box u = f 0

in

catchX (1 + u)

end) (λy:int. box (throwX y)))

choose (νX:int.
(λf:int->�Xint.

let box u = f 0

in

1 + catchX u

end) (λy:int. box (throwX y)))

The first term evaluates to 0, because the addition with 1 is skipped over by a throw.
In the second term, the catch is pushed further inside, to preserve this addition, and
so the term evaluates to 1. �

Example 40 The program segment below defines a recursive function for multiply-
ing elements of an integer list. If an element is found to be equal to 0, then the whole
product will be 0, so rather than uselessly performing the remaining computation,
we terminate by an explicit throw outside of the recursive function.

- let name EXIT : int

fun mult (xs : intlist) : �EXITint =

case xs

of nil => box 1

| x::xs =>

if x = 0 then box (throw EXIT 0)

else

let box u = mult xs in box(x * u)

in

catchEXIT (unbox(mult[3, 2, 1, 0]) * unbox(mult[1, 2, 3]))

end;

val it = 0 : int

�
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Operational semantics

The evaluation judgment of the catch-and-throw calculus is again a straightforward
extension of the evaluation judgment Σ, e 7−→ Σ′, e′ of the core fragment from Sec-
tion 4.3. We first need to define the new redexes, corresponding to the new catch
and throw constructs, and extend the syntactic category of evaluation contexts of
the core calculus of benign effects from Section 4.3.

Redexes r ::= (λx. e) v | let box u = box e in e |
choose (νX. e) | catchX v | catchX E[throwX v]

Evaluation contexts E ::= [ ] | E e1 | v1 E | let box u = E in e | choose E |
throwX E | catchX E

In the redex catchX E[throwX v] it is assumed that the context E is X-pure, i.e., E
does not contain a catchX construct acting on the hole of E, although E is allowed
to catch names other than X. The relation of primitive reductions from Section 4.3
is extended with the following new cases.

Σ, catchX v −→ Σ, v

Σ, (catchX E[throwX v]) −→ Σ, v, E is X-pure

Similar to the exception calculus, values simply fall through the catch, and every
throw is caught by the closes surrounding catch with the appropriate name. The
operational semantics of catch-and-throw requires that only values be passed along
a throw. Thus, of possibly nested throws, only the last one will actually be subject
to catching.

Structural properties and type soundness

We start the exploration of the basic structural properties of the catch and throw cal-
culus by considering the appropriate expression substitution principle. The principle
is standard, and analogous to the expression substitution principles already proved
for the calculi of dynamic binding and exceptions.

Lemma 70 (Expression substitution principle)
If Σ;∆ ` e1 : A [C] and Σ; (∆, u:A[C]) ` e2 : B [D], then Σ;∆ ` [e1/u]e2 : B [D].

Proof: By induction on the derivation of e2.

case e2 = throwX e′, where X:B ′ ∈ Σ, and X ∈ D. By derivation, Σ; (∆, u:A[C]) `
e′ : B′ [D]. By induction hypothesis, Σ;∆ ` [e1/u]e′ : B′ [D]. The conclusion
now follows by the typing rule for throw.

case e2 = catchX e′, where X:B ∈ Σ. By derivation, Σ; (∆, u:A[C]) ` e′ : B [D,X].
By induction hypothesis, Σ;∆ ` [e1/u]e′ : B [D,X]. The last step of the proof
now applies the typing rule for catch.

�

The replacement lemma needs to take into account that catch expressions may be
acting on the hole of the context E, thus changing the support of enclosed expression.
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Lemma 71 (Replacement)
If Σ; · ` E[e] : A [C], then there exist a type B and a support D such that

1. Σ; · ` e : B [D], and

2. if Σ′ extends Σ and Σ′; · ` e′ : B [D], then Σ′; · ` E[e′] : A [C]

Proof: By induction on the structure of E.

case E = throwX E1, where X:B ′ ∈ Σ, and X ∈ C. By derivation, Σ; · ` E1[e] :
B′ [C]. By induction hypothesis, there exist B and D such that Σ; · ` e : B [D].
Again by induction hypothesis, for every e′ such that Σ′; · ` e′ : B [D], we have
Σ′; · ` E1[e

′] : B′ [C]. Now the conclusion follows by the typing rules.

case E = catchX E1, and X:A ∈ Σ. By derivation, Σ; · ` E1[e] : A [C,X]. By
induction hypothesis, there exist B and D such that Σ; · ` e : B [D]. Again
by induction hypothesis, for every e′ such that Σ′; · ` e′ : B [D], we have
Σ′; · ` E1[e

′] : A [C,X]. Conclude the proof by using the typing rule for catch.

�

Lemma 72 (Canonical forms)
Let v be a value such that Σ; · ` v : A [C]. Then the following holds:

1. if A = A1 → A2, then v = λx:A1. e and Σ;x:A1 ` e : A1 [ ]

2. if A = �DB, then v = box e and Σ; · ` e : B [D]

3. if A = A1 9 A2, then v = νX:A1. e and (Σ, X:A1); · ` e : A2 [ ]

As a consequence, the support of v is empty and can be weakened arbitrarily.

Proof: By a straightforward analysis of the structure of values. �

Similar to the calculus of exceptions, the catch and throw calculus considers for
evaluation expressions that may appear within the scope of a number of catch con-
structs. Since catch shrinks the support set of an expression, the subject reduction
lemma for catch and throw has to consider primitive reductions over expressions with
arbitrary, non-empty, support C.

Lemma 73 (Subject reduction)
If Σ; · ` e : A [C] and Σ, e −→ Σ′, e′, then Σ′ extends Σ and Σ′; · ` e′ : A [C].

Proof: By case analysis over possible redexes. We present below some representa-
tive cases.

case e = catchX v, where X:A ∈ Σ. By derivation, Σ; · ` v : A [C,X]. By
canonical forms lemma, the support of v can be arbitrary, and in particular
Σ; · ` v : A [C].
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case e = catchX E[throwX v], where X:A ∈ Σ. By derivation, Σ; · ` E[throwX v] :
A [C,X]. By replacement lemma, there exist B and D such that Σ; · ` throwX v :
B [D]. By typing rules, there must be X ∈ D, and Σ; · ` v : A [D]. By canonical
forms lemma, support of a value can be arbitrary; in particular, Σ; · ` v : A [C].
Since Σ, e −→ Σ, v, this finishes the proof.

�

The Preservation lemma follows the same patter as Subject reduction, and con-
siders expressions with arbitrary support C.

Lemma 74 (Preservation)
If Σ; · ` e : A [C] and Σ, e 7−→ Σ′, e′, then Σ′ extends Σ, and Σ′; · ` e′ : A [C].

Proof: By evaluation rules, there exists an evaluation context E such that e = E[r],
Σ, r −→ Σ′, r′ and e′ = E[r′]. By replacement lemma, there exist B and D such that
Σ; ·; · ` r : B [D]. By subject reduction, Σ′ extends Σ, and Σ′; ·; · ` r′ : B [D]. By
replacement lemma, Σ′; · ` E[r′] : A [C]. Since e′ = E[r′] this proves the lemma. �

Lemma 75 (Progress for −→)
If Σ; · ` r : A [C], then there exists a term e′ and a context Σ′, such that Σ, r −→
Σ′, e′.

Proof: By case analysis on the structure of redexes.

case r = catchX v, where X:A ∈ Σ. By reduction rules, Σ, catchX v −→ Σ, v.
Then we can pick, Σ′ = Σ and e′ = v.

case r = catchX E[throwX v], where X:A ∈ Σ. By derivation, we have Σ; · `
E[throwX ke1] : A [C,X]. By replacement lemma, there exist B and D such
that Σ; · ` throwX v : B [D]. By typing rules, it must be B = A and X ∈ D
and Σ; · ` v : A [D]. By canonical forms lemma, v has empty support, and can
be arbitrary weakened; in particular Σ; · ` v : A [C]. We can thus pick Σ′ = Σ
and e′ = v.

�

The Unique decomposition lemma takes the usual form, as do the Progress and
Determinacy lemmas.

Lemma 76 (Unique decomposition)
For every closed expression e, either:

1. e is a value, or

2. e = E[throwX v], for a unique context E which does not catch X, or

3. e = E[r] for a unique evaluation context E and a redex r.

Proof: Straightforward, by induction on the structure of e. �
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Lemma 77 (Progress)
If Σ; · ` e : A [ ], then either

1. e is a value, or

2. there exists a term e′ and a context Σ′, such that Σ, e 7−→ Σ′, e′.

Proof: Because e has empty support, by unique decomposition lemma, e is ei-
ther a value, or there exists unique E and r such that e = E[r]. If e is not a
value, by replacement lemma, there exists B and C such that Σ; · ` r : B [C]. By
progress for −→, there exists Σ′ and e1 such that Σ, r −→ Σ′, e1. By evaluation rules,
Σ, E[r] 7−→ Σ′, E[e1]. We can pick e′ = E[e1], to complete the proof. �

Lemma 78 (Determinacy)
If Σ, e 7−→n Σ1, e1 and Σ, e 7−→n Σ2, e2, then there exists a permutation of names
π : N → N , fixing the domain of Σ, such that Σ2 = π(Σ1) and e2 = π(e1).

Proof: Analogous to the proofs of Determinacy in the previously considered calculi.
�

4.8 Composable continuations

Syntax and typing

Similar to the catch-and-throw calculus, composable continuations use names to label
destination points to which a program can jump. A destination point for a jump is
established with the construct mark which also assigns a name to it; thus, it is
similar to catch from the previous section. The jump itself is performed by recall,
which corresponds to throw from the catch-and-throw calculus. The exact syntax
of the calculus is defined as follows.

Expressions e ::= . . . | recallX k. e |markX e

The differences from the catch-and-throw calculus, however, arise from the following
property, which is characteristic for continuation calculi: unlike throw, when the
construct recallX k. e is evaluated, it captures into the variable k the part of the
surrounding environment between this recall and corresponding mark which pre-
cedes it; k may then be used to compute the value of e that is passed along with
the jump. It is important that the evaluation of e is undertaken in the changed
environment from which the part captured in k has been removed. More specifically,
e itself will not be able to recall to mark points which were defined in the captured
and removed part.

The explained operational intuition is formalized by the following definitions of
evaluation contexts, redexes and primitive reductions. Because each recall is handled
by the nearest mark, we need to identify within each evaluation context E that
mark (if any) that is closest to the hole of E. Thus, we define a specific subclass
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of evaluation contexts that are pure, in the sense that they do not contain a mark
acting on their hole.

Evaluation contexts E ::= . . . |markX E
Pure contexts P ::= [ ] | P e1 | v1 P | let box u = P in e | choose P
Redexes r ::= . . . |markX v |markX P [recallX k. e]

Σ,markX v −→ Σ, v

Σ, (markX P [recallX k. e]) −→ Σ, [K/k]e,

where K = λx. let box u = x in box P [u]

Example 41 In order to illustrate the calculus of composable continuations, we
present he following well typed expressions (adapted from [DF89, Wad94]). Notice
that each recall to a name appears in the scope of a corresponding mark. This kind
of programming discipline is enforced by the type system, and will be explained in
the forthcoming development.

e1 = 1 + markX (10 + recallX f:�Xint->�Xint.

let box u = f (f (box 100))

in

markX u

end)

e2 = 1 + markX (10 + recallX f. 100)

e3 = 1 + markX (10 + recallX f.

let box u1 = f (box 100)

box u2 = f (box 1000)

in

markX (u1 + u2)

end)

The expressions evaluate to 121, 101 and 1121, respectively. In each of these ex-
amples, the continuation variable f : �X int → �X int is bound to the expression
λx. let box v = x in box (10 + v). It captures and internalizes the evaluation en-
vironment (10 +−), which is enclosed between mark and recall. Notice that upon
capturing of the environment into f , the delimiting mark is removed from the reduct,
as prescribed by the primitive reductions. In order for this semantics to be sound,
the type system must require that additional markX constructs be introduced into
the expressions. We draw the attention to the the above example expressions e1

and e3, where the use of variables u, u1 and u2 are prefixed by a seemingly spurious
markX . In general, however, this use of a mark around variables is not spurious. If
some of the variables is substituted by a recalling expression, then the recall must
have a corresponding mark. Thus, we need to provide one, in order to ensure the
progress of the evaluation.

As an illustration of the operational semantics, we show in full the evaluation of
e1.
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1 + markX (10 + recallX f.

let box u = f (f (box 100))

in

markX u

end)

7−→ 1 + (let box u = f (f (box 100))

in

markX u

end), where f = λx. let box v = x in box (10 + v)

7−→ 1 + (let box u = f (box (10 + 100))

in

markX u

end)

7−→ 1 + (let box u = box (10 + (10 + 100))

in

markX u

end)

7−→ 1 + markX (10 + (10 + 100))

7−→ 1 + markX (10 + 110)

7−→ 1 + markX 120

7−→ 1 + 120

7−→ 121

�

It is the expression bound to k that is actually referred to as a composable con-
tinuation (and other names in use are: partial continuation, delimited continuation
and subcontinuation). The ordinary calculus of continuations [Lan65, SW74, Rey72,
SF90b, Fil89, Gri90, DHM91, FFKD86, Thi97] can be viewed as a calculus of compos-
able continuations in which all the jumps have a unique destination point, predefined
to be at the beginning of the program. In both calculi, continuations are functions
whose range type is equal to the type of the destination point. But, in the special
case of ordinary continuations, this type is necessarily ⊥, and that is why ordinary
continuations cannot be composed in any non-trivial way.

The typing judgment of the calculus for composable continuations is again

Σ;∆ ` e : A [C].

It establishes that the expression e has type A and may recall the destination points
whose names are listed in the support C. The support C is an ordered set of names,
and e is allowed to recall to a name only it it is at the top of the support C. Thus, if
recalls to a name deeper down in the support C are required, this must be done by
first successively recalling to all the preceding names.

In order to avoid the possible confusion later, we emphasize here that the calculus
of composable continuation, obviously, deals with two different orderings: (1) the
ordering between supports, and (2) the ordering between the names of one and the
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same support. The reason for imposing the second ordering will become clear once
we discuss the the typing rules of the calculus.

The typing rules for composable continuations are presented below.

Definition of Σ;∆ ` e : A [C].

Σ; (∆, k:�C,XB → �C,XA) ` e : A [C] X:A ∈ Σ

Σ;∆ ` recallX k. e : B [C,X]

Σ;∆ ` e : A [C,X] C v D X:A ∈ Σ

Σ;∆ `markX e : A [D]

In the case of composable continuations, it is a recall to a name that is the notion
of effect, and mark-ing a name as a destination point is the notion of handling.
Therefore, the type system should enable a recall to X only if X appears at the
support C, placed there by a corresponding mark. The situation, however, is a
bit more involved. As already mentioned, recallX k. e evaluates e in a changed
environment from which the part enclosed between markX and recallX has been
removed. Correspondingly, e has to be checked against a support from which X has
been removed.

The above argument explains why the ordering of names in the support of a term
is important. Capture of a continuation removes marks from the environment, so the
type system must ensure that these are removed in the order in which they actually
appear. For example, the type system will allow a recall to a certain name only
if that name is at the end of the support. This is illustrated in the typing rule for
recallX k. e, where we demand that X is the rightmost name in the support (C,X).
If a recall is required to a name which is deeper to the left in C, it can still be done by
performing a sequence of nested recalls in a last-in-first-out manner to all the names
in between. In this sense, the supports of the calculus of composable continuations
may be seen as stacks, where the top of the stack is at the rightmost end of the
support.

There are yet further important aspects of the typing rule for recall that need to
be explained. The expression e computes the value to be passed along with the jump,
so it must have the same type as the destination point X. Because the jump changes
the flow of control, the immediate environment of the recall does not matter; we can
type recall by an arbitrary type B. The domain and the range of the continuation
k must match the source and the destination points of the jump, which in this rule
have types B and A, respectively. The recall appears in the context of a support
(C,X) and that is why the domain type of k is �C,XB. The range type of k is
�C,XA, meaning that the environment captured in k will not include the delimiting
markX .

The typing rule for mark is much simpler. The construct markX e establishes
a destination point X and allows the expression e to recall to X by placing X in
the support. If e is a value, it immediately falls through to the destination point X,
and thus e and X must have same types. We further allow an arbitrary weakening
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of supports in the conclusion of this rule, in order to satisfy the support weakening
principle.

The partial ordering on the family of supports is the trivial partial ordering with
the empty set as the smallest element: C v D holds iff C = (·) or C = D as
sequences. The first definitional clause of the ordering allows weakening of C = (·)
to an arbitrary support. Such a weakening signifies that expressions that do not
recall to any names (i.e., expressions that are pure) may be placed in a scope of
an arbitrary context of marks, because the marks will essentially be ignored. The
second definitional clause of the partial order prevents the weakening of non-empty
supports into a properly larger support 2.

Example 42 The program below is a particularly convoluted way of reversing
a list, adapted from [DF89]. The program can be explained in terms of staged
computation as follows: it recurses over the argument list l and generates as an
output a boxed expression consisting of a sequence of nested marks and recalls. The
generated expression essentially builds the reverse of each prefix of l, until the whole
list l is reversed.

fun reverse (l : intlist) : intlist =

let name X : intlist

fun rev’ (l : intlist) : �Xintlist =

case l

of nil => box nil

| (x::xs) =>

let val y = rev’ xs

in

box (recallX c:�Xintlist -> �Xintlist.

markX x :: unbox (c y))

end

box v = rev’ l

in

markX v

end

To better understand reverse, it is instructive to view a particular evaluation of
the helper function rev’. For example, rev’ [2, 1, 0] generates the following
specialized code:

box (recallX c3.

markX 2 :: unbox c3 (box recallX c2.

markX 1 :: unbox c2 (box recallX c1.

markX 0 :: unbox c1 (box nil))))

When prepended by a markX , unboxed and evaluated, this code uses the contin-
uations ci to accumulate the reversed prefix of the list. For example, the vari-
able c3 is bound to λx. let box u = x in box u corresponding to the initial

2We have decided on this ordering for reasons of simplicity. A more natural definition may have
been: C v D if C is a suffix of D. However, this ordering would complicate the support weakening
principle. The support C occurs in negative positions in the typing rule for recall, making it
problematic to prove support weakening by a simple inductive argument.
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empty prefix; c2 is bound to λx. let box u = x in box (2 :: u); c1 is bound to
λx. let box u = x in box (1 :: 2 :: u), until finally the reversed list [0,1,2] is
produced. �

There is actually a bit of a leeway in defining the static and dynamic semantics for
composable continuations, which has to do with whether the continuation captured
by recall should include the delimiting mark and/or remove it from the environment.
The primitive reduction that we have used in our formulation is

Σ, (markX P [recallX k. e]) −→ Σ, [K/k]e,

where K = λx. let box u = x in box P [u]

As can be seen, this reduction removes mark both from the captured continuation
K, and from the evaluation context of the reduced term. But either of the following
rules is a possible choice, and we discuss them informally below.

Σ, (markX P [recallX k. e]) −→ Σ, [K/k]e, (4.1)

where K = λx. let box u = x in box (markX P [u])

Σ, (markX P [recallX k. e]) −→ Σ,markX [K/k]e, (4.2)

where K = λx. let box u = x in box P [u]

Σ, (markX P [recallX k. e]) −→ Σ,markX [K/k]e, (4.3)

where K = λx. let box u = x in box (markX P [u])

The rule (4.1) captures markX into K, but removes it from the evaluation envi-
ronment of e. The typing rule matching this operational semantics is

Σ; (∆, k:�C,XB → �CA) ` e : A [C] X:A ∈ Σ

Σ;∆ ` recallX k. e : B [C,X]

Because the mark X is removed from the environment, it becomes impossible for e to
recall to X. This is why X does not appear in the support of the premise of this typing
rule. Because the mark X is captured into the continuation, the result of applying
the continuation does not require a mark for X in its evaluation environment, and
so X is also dropped from the range type of k.

The rule (4.2) omits the mark from the continuation K, but leaves it in the
evaluation environment of e. The corresponding typing rule leaves X in the support
of the premise and in the range type of k.

Σ; (∆, k:�C,XB → �C,XA) ` e : A [C,X] X:A ∈ Σ

Σ;∆ ` recallX k. e : B [C,X]
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Because the mark is left in the evaluation environment, it becomes impossible to
jump in sequence to names that are further down in the support stack. In this
setting, it becomes necessary to consider semantics that allow jumps arbitrarily deep
into the support stack. This is very related to the behavior of Felleisen’s F operator
[Fel88]. If we label by D the top of the support stack, up to but not including the
target mark, then a recall which would jump over the names in D will be typed as
follows.

Σ; (∆, k:�C,X,DB → �C,XA) ` e : A [C,X] X:A ∈ Σ X 6∈ D

Σ;∆ ` recallX k. e : B [C,X,D]

Indeed, because the names from D are captured into the continuation, they must be
removed from the range type of k. Support D is also removed from the evaluation
environment, and hence must be omitted from the support of the premise.

The rule (4.3) leaves the mark into both the continuation K and the evaluation
environment of e, and the typing rule for it is thus

Σ; (∆, k:�C,XB → �CA) ` e : A [C,X] X:A ∈ Σ

Σ;∆ ` recallX k. e : B [C,X]

This choice of semantics corresponds to Danvy and Filinski’s shift operator [DF89,
DF90].

Our choice of operational semantics for composable continuations is similar to
the one for the set/cupto operators of Gunter, Rémy and Riecke [GRR95]. We
have decided on this choice of operational semantics for composable continuations
because all the other choices can be encoded within it. Obviously, if the mark is
discarded during reduction, it can always be placed back; if it is retained, it can
never be eliminated. We do not know if the other operational semantics can match
this expressiveness.

Example 43 Composable continuations have been used to conveniently express
“nondeterministic computation”; that is, computation which can return many results
[DF89, DF90]. The following example is a program for finding all the partitions of
a natural number n, i.e. all the lists of natural numbers that add up to n. The
main function partition is very effectively phrased in terms of a primitive function
choice. The idea is to use choice to non-deterministically pick a number between 1
and n, and not worry about backtracking and exploring other options. Backtracking
is automatically handled by choice.

fun partition n =

if n = 0 then box (nil)

else

box (let val i = unbox (choice n)

box l = partition (n - i)

in

(i::l)

end)
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The important point is that choice itself can be implemented using composable
continuations. The way choice is implemented will determine the ordering in which
partition considers the candidate lists for partitioning n.

The process of generating partitions for n may be seen as a traversal of a tree with
labeled nodes and edges – a partition tree. Paths in the partition tree emanating
from a node labeled by n represent the partitions of n. An inductive definition of
the partition tree for n is given as follows:

(i) if n = 0, then the tree consists of a single node labeled 0.

(ii) if n > 0, then the root of the tree is labeled with n, and edges labeled with
n, n−1, . . . , 1 connect the root to partition trees for 0, 1, . . . , n−1, respectively.

An example partition tree for n = 4 is presented below.

4

0 1

0

2

0 1

0

3

0 1

0

2

0 1

0

1234

123121

1211

1

Of course, just as with any tree, various traversal strategies may be employed to
generate the partitions for n. For example, a depth-first strategy may employ a stack
k to store the nodes that remain to be traversed. After putting the root node on the
stack, the depth-first strategy repeats the following algorithm: remove the top node
t from k, and expand it, i.e. determine all the children of t (if any), and put them
onto the top of k; if k is empty, then exit.

On the other hand, a breadth-first strategy may employ a queue k to store the
nodes that remain to be traversed. After putting the root node on the queue, the
breadth-first strategy repeats the following: remove the top node t from k, and
expand it, i.e. determine all the children of t (if any), and put them at the bottom of
k; if k is empty, then exit.
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In our implementation of the partition algorithm, the partition tree for n is
never explicitly built, but is implicitly described by the execution of the partition

function. For example, we present below a version of choice which facilitates a
depth-first traversal of the tree. In this implementation, we assume that a name X
of unit type has already been declared and allocated.

(* choice : int -> �Xint *)

fun choice n =

box (recallX t : �Xint -> �Xunit.

let fun loop (s : int) : unit =

if s = 0 then ()

else

let box u = t (box s)

in

(markX u);

loop (s - 1)

end

in

loop (n)

end)

The program works by viewing the current global program continuation as an im-
plicit stack k of nodes to be expanded in order. Each node has its own composable
continuation, all of which compose to create k. The function choice simply captures
into t the composable continuation for the first node in the sequence. The captured
node is removed, and t is applied to generate all of its children – one child for each
possible value of the variable s. The children nodes are added in place of the parent
node at the top of the global program continuation k. Because the new nodes are
added to the beginning, they will be the the first to expand in the subsequent exe-
cution. As a consequence, this implementation of choice uses a depth-first traversal
strategy.

With this version of choice, partition has the type int -> �Xintlist. To
compute the partitions for 4, we run markX print (unbox partition 4). The
result consists of the lists [4], [3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2], [1, 1,
1, 1]. Because depth-first traversal is employed, the lists are sorted in lexicographic
order.

In our calculus, it is also possible to implement choice so that it facilitates
breadth-first strategy. When generating the children of some node, we only need
to attach them at the end, rather than at the beginning of the queue k that the
global continuation represents. One possible breadth-first implementation of choice
is given below.

186



CHAPTER 4. EFFECTS 4.8. CONTINUATIONS

(* choice : int -> �Y,Xint *)

fun choice n =

box (recallX t : �Y,Xint -> �Y,Xunit.

recallY k : �Y unit -> �Y unit.

markY

let fun loop (s : int) : �Y unit =

if s = 0 then box ()

else

let box u = t (box s)

box u’ = loop (s - 1)

in

box (markX u; u’)

end

box v = k (box markX ())

box v’ = loop n

in

v; v’

end)

How does this function work? First, we must assume that the queue is marked by a
new name Y of unit type, so that it can be captured into a continuation itself. The
function choice captures the topmost node into t, and then captures the rest of the
queue into k. It is important that the continuation k will not contain the delimiting
markY . Then choice expands the topmost node t, adds the obtained children nodes
to the bottom of k, and puts markY back, so that its scope includes the children
nodes. Again, it is crucial for this application that the captured continuations omit
the target mark (unlike, for example, in the calculi from [DF89, DF90]), as this mark
will get in the way of adding new nodes at the bottom of k.

With this implementation of choice, the appropriate type for partition is
int->�Y,Xintlist. To compute the partitions for 4, we run

markY markX print (unbox partition 4)

to obtain the lists [4], [3, 1], [2, 2], [1, 3], [2, 1, 1], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1].
Because we used breadth-first traversal strategy, we first explored all the partitions
of size 1, then all the partitions of size 2, etc. Thus, the lists will be sorted first by
size, rather than lexicographically, as was the case with depth-first traversal.

�
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Structural properties and type soundness

The table below presents the summary of the syntactic categories that we rely on in
this section.

Expressions e ::= u | λx:A. e | e1 e2 | box e | let box u = e1 in e2 |
νX:A. e | choose e | recallX k. e |markX e

Values v ::= λx:A. e | box e | νX:A. e
Evaluation contexts E ::= [ ] | E e1 | v1 E | let box u = E in e | choose E |

markX E
Pure contexts P ::= [ ] | P e1 | v1 P | let box u = P in e | choose P
Redexes r ::= (λx. e) v | let box u = box e in e |

choose (νX. e) |markX v |
markX P [recallX k. e]

The first property of interest establishes that in each evaluation context E we can
identify the closes mark acting on the hole of E.

Lemma 79 (Evaluation context decomposition)
If E is an evaluation context, then either:

1. E is a pure context, or

2. there exist unique evaluation context E ′ and pure context P ′ such that E =
E′[markX P ′]

Proof: Straightforward, by induction on the structure of E. �

Next we proceed with the basic substitution principle of the calculus, whose state-
ment is identical to the corresponding principles established in several previously
considered calculi.

Lemma 80 (Expression substitution principle)
If Σ;∆ ` e1 : A [C] and Σ; (∆, u:A[C]) ` e2 : B [D], then Σ;∆ ` [e1/u]e2 : B [D].

Proof: By induction on the structure of e2. We present the characteristic cases
below.

case e2 = recallX k. e′, where X:B ′ ∈ Σ, and D = (D′, X).

By derivation, Σ; (∆, u:A[C], k:�D′,XB → �D′,XB′) ` e′ : B′ [D′]. By induc-
tion hypothesis, Σ; (∆, k:�D′,XB → �D′,XB′) ` [e1/u]e′ : B′ [D′]. Now the
result follows by the typing rules for recall.

case e2 = markX e′, where X:B ∈ Σ. By derivation, Σ; (∆, u:A[C]) ` e′ : B [D′, X],
where D′ v D. By induction hypothesis, Σ;∆ ` [e1/u]e′ : B [D′, X]. The result
now follows by the typing rules for mark.

�

Just as was the case with exceptions, the Replacement lemma for composable con-
tinuation needs to distinguish between pure and ordinary contexts. Because pure
contexts do not allow a mark acting on the hole of the context, placing an expression
within a pure context preserves the expression’s support.
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Lemma 81 (Replacement)
1. If Σ; · ` P [e] : A [C], then there exists a type B such that

(a) Σ; · ` e : B [C], and

(b) if Σ′ extends Σ and Σ′; · ` e′ : B [C], then Σ′; · ` P [e′] : A [C]

2. if Σ; · ` E[e] : A [C], then there exist a type B and a support D such that

(a) Σ; · ` e : B [D], and

(b) if Σ′ extend Σ and Σ′; · ` e′ : B [D], then Σ′; · ` E[e′] : A [C]

Proof: By induction on the structure of P and E. The first part of the lemma
is straightforward. To establish the second part, by the decomposition lemma for
evaluation contexts, it is enough to consider the following two cases.

case E is pure. In this case, the result follows from the already established replace-
ment property for pure contexts.

case E = E1[markX P ], where X:B ′ ∈ Σ. By second induction hypothesis, there
exists B1 and D1 such that Σ; · ` markX P [e] : B1 [D1]. By typing, it must
be B1 = B′ and Σ; · ` P [e] : B1 [D′, X], where D′ v D1. By the first induction
hypothesis, there exist B such that Σ; · ` e : B [D ′, X]. Pick D = (D′, X) for
the part (a). Also by the first induction hypothesis, if Σ′; · ` e′ : B [D′, X]
then Σ′; · ` P [e′] : B1 [D′, X]. By typing, Σ′; · ` markX P [e′] : B1 [D1]. By
induction hypothesis, Σ′; · ` E1[markX P [e′]] : A [C].

�

Lemma 82 (Canonical forms)
Let v be a value such that Σ; · ` v : A [C]. Then the following holds:

1. if A = A1 → A2, then v = λx:A1. e and Σ;x:A1 ` e : A1 [ ]

2. if A = �DB, then v = box e and Σ; · ` e : B [D]

3. if A = A1 9 A2, then v = νX:A1. e and (Σ, X:A1); · ` e : A2 [ ]

As a consequence, the support of v can be weakened arbitrarily.

Proof: By simple case analysis. �

Similar to the previous calculi, in the case of composable continuations, we allow
evaluation within a context of one or more marks. Thus, the lemmas on Subject
reduction, Preservation and Progress for −→, all have to consider arbitrary non-
empty supports C.

Lemma 83 (Subject reduction)
If Σ; · ` e : A [C] and Σ, e −→ Σ′, e′, then Σ′ extends Σ and Σ′; · ` e′ : A [C].

Proof: By case analysis of possible reductions. The two characteristic cases are
presented below.
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case e = markX v, where X:A ∈ Σ. By derivation, Σ; · ` v : A [C ′, X], where
C ′ v C. By canonical forms lemma, the support of v can be arbitrary, and in
particular Σ; · ` v : A [C].

case e = markX P [recallX k. e′], where X:A ∈ Σ.

1. By derivation, Σ; · ` P [recallX k. e′] : A [C ′, X], where C ′ v C.

2. By replacement lemma for pure contexts, there exists B such that Σ; · `
recallX k. e′ : B [C ′, X].

3. Also by replacement lemma, Σ;u:B[C ′, X] ` P [u] : A [C ′, X].

4. Thus Σ; · ` λx. let box u = x in box P [u] : (�C′,XB → �C′,XA) [ ].

5. From the typing (2), Σ; k:(�C′,XB → �C′,XA) ` e′ : A [C ′].

6. From (4) and (5), if we set K = λx. let box u = x in box P [u], by sub-
stitution principle, we get Σ; · ` [K/k]e′ : A [C ′].

7. By support weakening, Σ; · ` [K/k]e′ : A [C], because C ′ v C.

8. Since it is exactly Σ, e −→ Σ, [K/k]e′, this proves the case.

�

Lemma 84 (Preservation)
If Σ; · ` e : A [C] and Σ, e 7−→ Σ′, e′, then Σ′ extends Σ, and Σ′; · ` e′ : A [C].

Proof: By evaluation rules, there exists an evaluation context E such that e = E[r],
Σ, r −→ Σ′, r′ and e′ = E[r′]. By replacement lemma, there exist B and D such that
Σ; · ` r : B [D]. By subject reduction lemma, Σ′ extends Σ, and Σ′; · ` r′ : B [D]. By
replacement again, Σ′; · ` E[r′] : A [C]. Since e′ = E[r′] this proves the lemma. �

Lemma 85 (Progress for −→)
If Σ; · ` r : A [C], then there exists a term e′ and a context Σ′, such that Σ, r −→
Σ′, e′.

Proof: By case analysis over the possible redexes r. The interesting cases are
presented below.

case e = markX v, where X:A ∈ Σ. By reduction rules, Σ,markX v −→ Σ, v. We
can pick Σ′ = Σ and e′ = v to prove the statement of the lemma.

case e = markX (P [recallX k. e1]), where X:A ∈ Σ. By derivation, Σ; · `
P [recallX k. e1] : A [C ′, X], where C ′ v C. By replacement lemma, there
exists B such that Σ; · ` recallX k. e1 : B [C ′, X]. By reduction rules,
Σ,markX (P [recallX k. e1]) −→ Σ, [K/k]e1, where K abbreviates the ex-
pression λx. let box u = x in box P [u]. Pick Σ′ = Σ and e′ = [K/k]e1.

�

Finally, the unique decomposition lemma takes the usual form, as do the Progress
and Determinacy lemmas.
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Lemma 86 (Unique decomposition)
For every closed expression e, either:

1. e is a value, or

2. e = P [recallX k. e′], for a unique pure context P , or

3. e = E[r] for a unique evaluation context E and a redex r.

Proof: By straightforward case analysis. �

Lemma 87 (Progress)
If Σ; · ` e : A [ ], then either

1. e is a value, or

2. there exists a term e′ and a context Σ′, such that Σ, e 7−→ Σ′, e′.

Proof: The proof is identical to the one presented in the previous calculi, so we
omit it here. �

Lemma 88 (Determinacy)
If Σ, e 7−→n Σ1, e1 and Σ, e 7−→n Σ2, e2, then there exists a permutation of names
π : N → N , fixing the domain of Σ, such that Σ2 = π(Σ1) and e2 = π(e1).

Proof: The proof is identical to the ones presented in the previous calculi. �

4.9 Notes

Related work on type-and-effect systems

Integrating effects into typed functional calculi has quite a long history, and this
section is bound to be very incomplete. Numerous systems have been proposed,
treating various effects and with various levels of precision and verbosity of typing.
As a representative example of these type-and-effect systems, we simply list the works
of Gifford, Lucassen, Jouvelot, Talpin and Tofte [GL86, LG88, JG89, JG91, TJ92,
TJ94, TT97]. The approach usually taken by type-and-effect systems is to extend

the language with a type of effectful functions A
C
→ B. Here, C is a set of effects

that the evaluation of the function body may cause.
Coming from the side of logic and type theory, type-and-effect systems are directly

related to monads. A monad© is a type constructor which is used to differentiate be-
tween values and effectful computations. In monadic calculi, the type©A is ascribed
to expressions which may evaluate to a value of type A, but may cause some effect
in the course of evaluation. Monads were invented for use in denotational semantics
by Moggi [Mog89, Mog91], and were later adopted for functional programming by
Wadler [Wad92, Wad95].

The connection between monads and effect systems is described by Wadler in

[Wad98]. Briefly, the effectful function type A
C
→ B in the type-and-effect systems
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corresponds to the monadic type A → ©CB. One advantage of monads over type-
and-effect systems is that monads encapsulate effects, so that effects can be added
to the language in a modular way, without changing the already existing language
constructs. This is opposite to the type-and-effect systems, which require that the

function types A→ B be extended into effectful function types A
C
→ B.

The modal effect calculi described in this dissertation also encapsulate effects and
add them to the language in a modular way, without changing the underlying function
types. However, the modal framework allows more than one type operator for effects,
and thus allows more precise distinctions between different effectful computations.

Related work on dynamic binding

Dynamic binding has been introduced in the early versions of LISP, and eventually
became a standard, albeit controversial and often criticized feature.

Moreau in [Mor97] develops an untyped calculus for dynamic binding with λ-
abstraction, application and a dynamic-let construct (which approximately corre-
sponds to our explicit substitutions). There are no additional constructs for encap-
sulation of computations with dynamic variables. The semantics of the language
is given by means of an dynamic-environment passing translation into an ordinary
λ-calculus. The language differentiates between ordinary variables and dynamic vari-
ables. The later are replaced by the dynamic-environment passing translation into
lookups in the current dynamic environment. The paper proceeds to analyze the
interaction of dynamic binding with futures for the purpose of parallel evaluation,
and with first-class continuations for the purpose of encoding exceptions.

A typed calculus for dynamic binding, called λN , is presented by Dami in [Dam96,
Dam98]. The λN -calculus is related to our system in that both use names, but in
a slightly different way. The dynamic variables of λN are introduced as ordinary
λ-bound variables, but are then indexed by names to distinguish the various values
that can be assigned to them. The type system does not have a notion of support,
so it cannot prevent reading from uninitialized dynamic variables.

The calculus of Lewis et al. [LSML00] extends Haskell with dynamic binding. It
relies on implicit parameters which are essentially dynamically-scoped variables, or
names in our calculus. The type system relies on the mechanism of type schemes to
tracks the use of implicit parameters. Type schemes describe the typing of let-bound
variables in Hindley-Milner-style type systems. Here, type schemes are extended to
account for implicit parameters as well. It is interesting that the calculus does not
internalize the notion of implicitly parametrized computation in terms of a modality
or a monad. Thus, dynamic binding in Haskell is treated rather differently from the
other notions of effect. The absence of such an internalized notion of computation and
its corresponding type leads to restrictions in the type system in order to prevent the
inadvertent capture of implicit parameters that may occur in a higher-order setting.
In particular, implicitly parametrized functions are not first-class, and hence cannot
be passed to other functions.

The λκε-calculus of Sato et al. [SSK02], allows a simultaneous abstraction over
a set of variables. For example, the expression κ{C}. e abstracts the variables listed
in C from the expression e : A. The type of κ{C}. e is AC , similar to our type �CA.
There are many distinctions, however, between λκε and our calculus of dynamic
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binding, arising mostly because λκε is not based on modal logic. For example, the
context in λκε associates variables with types, but not with supports. This leads
to a somewhat complicated formulation, where each variable must be assigned an
integer level, and the typing rules and the operation of substitution must perform
arithmetic over levels. The λε-calculus of Sato et al. [SSB01] is a precursor to λκε.
The λε-calculus provides explicit substitution of terms for variables, but not dynamic
binding, as a variable may be used only if it is defined by an explicit substitution.

Mason [Mas99] extends the untyped λ-calculus with a primitive notion of context,
and the related operations for declaring and filling context holes. Holes are similar to
our modal variables, in the sense that each hole is decorated with its corresponding
substitution, but abstraction over holes is not considered. Holes may be filled using
strong or weak substitution, which approximately correspond to our modal substitu-
tion. Strong substitution propagates down to the holes and composes with the holes’
substitutions. Weak substitution propagates down to the holes, but does not change
the domains of the holes’ substitutions. In our calculus of dynamic binding (and also
in the modal ν-calculus), there is no need to split the concept of modal substitution
into weak and strong, because the propagation of substitutions is controlled by the
modal term constructor (recall that substitution does not descend under a box).

Hashimoto and Ohori [HO01] present a typed calculus of contexts. The calculus
does not internalize the notion of a computation in context, but provides a type of
functions from contexts to values. Similarly to our modal ν-calculus, Hashimoto and
Ohori distinguish between ordinary variables and hole variables (corresponding to
our modal variables). The context ∆ of hole variables associates each hole variable
u with its type A and an interface C (roughly corresponding to our support), but
also with an explicit substitution Θ which specifies the bindings of the hole. The
explicit substitutions in this calculus only rename variables with other variables.
Storing the variable u and its substitution into the variable context, complicates the
system significantly and reduces its expressiveness. For example, the typing rules for
constructs that bind ordinary variables must non-trivially manipulate the context ∆,
to account for the new bindings. Each hole variable u can be attached to only one
explicit substitution, because u is assigned a substitution upon its definition, rather
than upon its use. In fact, the calculus imposes even more severe restrictions. For
example, the context ∆ of hole variables is linear, i.e., each hole variable u can only
be used once, and ordinary variables can be referenced only with an empty context
∆.

A more recent reference on dynamic binding is the work by Bierman et al.
[BHS+02], which applies dynamic binding to marshaling and dynamic software up-
date. The paper introduces a λd-calculus with so-called destruct-time semantics,
where the idea is to postpone instantiation of a bound variable as long as possible
i.e., until the variable’s value is required (essentially because it must be taken apart
by the computation). The values of the λd-calculus comprise the customary values
of the λ-calculus, but also bound variables, and let definitions.

Related work on exceptions

A treatment of exceptions in Haskell is considered by Peyton Jones et al. in [PRH+99].
It is interesting that this paper does not use the exception monad in order to extend
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the underlying language, but rather implements imprecise exceptions. With impre-
cise exceptions, the program is not guaranteed to always report the same exception
that would be encountered by a straightforward sequential execution. In this calcu-
lus, an exceptional expression evaluates to an exceptional value, which has a whole
set of possible exceptions associated with it. The associated exceptions are the ones
that the expression may have potentially raised. Informally, this associated exception
set compares to our notion of support.

At run time, of course, it is not a whole set of exceptions that an evaluation of an
expression returns. What is returned is the first expression out of this set, that got
raised. It is important, however, that the returned exception may change in different
compilations and runs, because the optimizations performed at different compilations
may result with different order of evaluation. Obviously, the semantics of the calculus
cannot depend on optimizations, so it assumes that the returned exception is chosen
non-deterministically out of the possible set.

Another exception calculi is presented by de Groote in [dG95]. It is a call-by-
value calculus which uses separate binding mechanisms to introduce exceptions into
the computation. However, because of the lack of modal or monadic types, it has
to specifically require that values of the language are effect-free, in which case it
implements the Standard ML exception mechanism. This paper also discusses the
logical content of exceptions, and relationship with classical logic. The exception
mechanism of Java relates to our calculus as well, as Java methods must be labeled
by the exceptions they can raise [GJS97]. The catch and throw calculus is a spe-
cific simplifications of exceptions, and we refer to the following theoretical works on
catch and throw [Nak92, Kam00a, KS02]. These calculi also lack the type construc-
tor for exceptional computations, and thus have to restrict the way exceptions are
introduced, propagated and handled.

Related work on composable continuations

Composable continuations were probably first considered by Felleisen in [Fel88], in an
untyped setting and with recalling (or shifting) to only the nearest mark (or reset, or
prompt). A generalization to a whole family of control operators for recalling, each of
which is indexed by a numeral proscribing how many closest marks should be jumped
over, appeared in [SF90a]. Also in untyped setting, Hieb, Dybvig and Anderson in
[HDA94] introduce labels instead of numerals to describe the destination points for
a hierarchy of recalls.

In a typed setting, Danvy and Filinski in [DF89] develop a calculus for compos-
able continuations with a single recall operator. The marks are not labeled. In the
Appendix C, they also briefly discuss the idea which we have employed here: upon
capturing, remove the marks from the environment, so that jumps can be made to
the marks further down in the context stack. Danvy and Filinski further relate com-
posable continuations to the CPS transformation in [DF90, DF92]. These papers also
contain extensive commentary on the related work regarding composable continua-
tions. Gunther, Rémi and Riecke in [GRR95] develop a calculus whose operational
semantics is very similar to the one used for the calculus of composable continuation
in this dissertation. In particular, this calculus removes the delimiting mark upon
capture, from both the environment and the reduct. Most recently, Kameyama in
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[Kam00a, Kam00b] works with labels instead of numerals to provide a hierarchy of
recall operators. The mentioned typed calculi lack a type constructor for effectful
computations, so they must impose restrictions on expressiveness and type safety in
order to avoid the extrusion of effect scope.

Logical content of composable continuations is studied by Murthy in [Mur92].
This paper develops a type system for composable continuation with a hierarchy of
recall operators, which is based on monads indexed by sets of types, but has to restrict
the marks to only implication-free types in order to preserve soundness. Wadler in
[Wad94] further analyses the above type systems for composable continuations with
a single recall operator, and with a hierarchy of recall operators, and presents them
in terms of indexed monads. All these calculi are characterized by the serialization
of effects inherent in the monadic programming.

Monadic reflection and reification

One of the main features of the monadic calculi is the programming style in which
the program itself must specify a total ordering on the computational effects. But
sometimes, most notably in the case of benign effects, effectful computations may be
independent and therefore may be evaluated out of order.

This problem with excessive serialization of monadic programs has been addressed
previously by Filinski, using monadic reflection and reification [Fil94, Fil96, Fil99].
Reflection and reification are translations between an effectful source language and a
monadic λ-calculus. The effectful source language provides the syntax for program-
ming (which avoids the burden of excessive serialization), while the monadic calculus
defines the semantics for the program. The modal approach to effects addresses the
same problem of excessive serialization, but it does so directly, using only natural
deduction, and without any translations.

A further difference between monadic and modal calculi was discussed in Sec-
tion 4.6 regarding the calculus of exceptions. Monadic formulation of exceptions re-
quires tagging and run-time tag checking of monadic values. Furthermore, reflection
and reification do not help avoid these operations; as concluded in [Fil94], reflection
and reification still incur the operational penalties of tag checking. In contrast, tag-
ging is not required in the modal calculus for exceptions. Rather, the operational
semantics of the modal calculus of exceptions corresponds closely to the customary
way in which exceptions are handled in practical languages: by unwinding the stack
until an appropriate handler is reached.

Kripke semantics for lax logic

As described in Section 4.1, the identification of truth and necessity in CS4 leads to
the formulation of lax logic, in the sense that the modal operator 3 translates into
the lax operator ©. This identification is achieved by extending the CS4 logic with
the axiom A→ �A.

In the Kripke semantics of CS4, truth and necessity are identified if the Kripke
model satisfies the following monotonicity property:

for every world w and proposition A, if w |= A and w → w ′ then w′ |= A.
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Indeed, in this class of models, if A is true at the current world, then A is true at all
accessible worlds, and is therefore necessary. Then, as established by Alechina et al.
in [AMdPR01], a Kripke model for propositional lax logic consists of a Kripke model
for CS4 that satisfies the above monotonicity property.

Logical meaning of dynamic binding and exceptions

In this note we describe a possible logical interpretation for the calculi of dynamic
binding and exceptions (Sections 4.4 and 4.6). The main idea is to involve two
levels of interpretation. The judgment from the calculi of dynamic binding and
for exceptions form the object level. The meta level, or the meta logic, defines the
reasoning about the derivability in the calculi from the object level. The modal
operators may be seen as internalizing properties of the meta logic for reasoning
about categorical derivations from the object level. This note will necessarily be very
informal, and making the presented intuition precise is left for future work.

The propositions from the object level should be contrasted to meta propositions,
which belong to the meta logic. For example, the atomic propositions of this meta
logic are of the form A where A is a proposition from the object level. At the
meta level, the truth of a proposition A may be derived by more expressive means
than those allowed for derivations at the object level. For each object connective
on propositions, the meta logic ought to contain a corresponding connective, and
appropriately relate the two. For example, in the meta logic we have

A ⊃ B

whenever we may derive A→ B.
Names X1:A1, . . . , Xn:An in the calculus of dynamic binding, may be treated as

labels for the meta propositions A1, . . . , An. Then, we require that

�X1,... ,XnA true

if and only if the conclusion A may be derived in the meta logic from the hypotheses
X1, . . . , Xn. In the calculus of dynamic binding, the reflection principle is realized
by means of explicit substitutions, and it simply allows that metalogical derivations
be translated into the object logic.

The meta logic for dynamic binding rather closely follows the object calculus, in
the sense that the meta logic only contains connectives that correspond to the object
level connectives. But this need not be the case. For example, the meta logic for
exceptions should contain a propositional operator ¬ for negation, while negation is
not an operator on the object level.

Exceptions X1:A1, . . . , Xn:An may be considered as labels for the meta logical
propositions ¬(A1), . . . , ¬(An). Then we require that

�X1,... ,XnA true

if and only if the conclusion A may be derived in the meta logic from the hypotheses
X1, . . . , Xn.

For example, let us assume that A can be proved in the meta logic, and let the
name X:A be a label for the proposition ¬(A). Then we can use X to reason by
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contradiction and prove B, where B is an arbitrary object proposition. In other
words, given A (and thus also A), we can derive �XB true. This reasoning directly
corresponds to the following derivation in the calculus of exceptions:

if ` e : A then ` box (raiseX e) : �XB.

However, we cannot directly conclude B true at the object level, because the
above derivation uses reasoning by contradiction, which is available at the meta level,
but not at the object level. In order to derive B true, we need to use the reflection
principle to show that the reasoning by contradiction can somehow be avoided. In
the calculus of exceptions, the reflection principle corresponds to exception handling,
and it allows that metalogical derivations be coerced into object logic. Let us assume
that we are given the object proposition �XB true and the metalogical proposition
A ⊃ B. Because �XB true corresponds to ¬(A) ⊃ B, we can employ the law of
excluded middle and derive B. This reasoning directly corresponds to the following
derivation in the calculus of exceptions.

if ` e : �XB and ` 〈Θ〉 : [X]
B
⇒ [ ], then ` (unbox e) handle Θ : B.

From the standpoint of Kripke semantics, it seems plausible that the indexed
modalities may be introduced by the following redefinition of the |= relation.

1. w |= �CA iff for all w′ w w and u′ ← w′, u′ |= C implies u′ |= A.

2. w |= 3CA iff for all w′ w w there exists u′ ← w′ such that u′ |= C and u′ |= A

In this definition, C is the set of names C = {X1, . . . , Xn}, where the name Xi

has the type Ai. In the case of dynamic binding, we set w |= C if and only w |= A1,
. . . , w |= An. On the other hand, in the case of exceptions we set w |= C if and only
if w 6|= A1, . . . , w 6|= An.

Recursively dependent names and future work on dynamic binding and
state

It is a well known property of functional languages, that in the presence of state and
higher-order functions, recursion becomes admissible. For example, we can define a
recursive function fact:int->int for computing factorials, without explicitly using
the constructs for recursion. Below is an example in ML-like notation.

let val fact : int -> int =

let val F = ref (λx. x) (* a dummy value *)

val g = λx. if x = 0 then 1

else x * (!F)(x - 1)

in

(F := g); g

end

The admissibility of recursion is a slightly disconcerting property of stateful com-
putations, because it shows that state destroys the connection with logic, which is
otherwise enjoyed by the pure λ-calculus.

We may attempt to translate the above program into the calculus of dynamic
binding from Sections 4.4, by declaring F as a name of type int -> int. This
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translation, however, will not result in a well-typed program. Indeed, the function g

must be typed as int -> �Fint, because g references F in its body. But then, it is
not possible to assign g to F because of a type mismatch. The type of F cannot simply
be int -> int, but rather must be int -> �Fint. When the type of F depends on
F itself, as it is the case here, we say that F is a recursively dependent name. With an
explicit construct for recursively dependent names, the recursive factorial function
can be defined in the calculus of dynamic binding.

let val fact : int -> int =

let recname F : int -> �Fint (* no need for a dummy value *)

val g = λx. if x = 0 then box 1

else box (x * unbox (F (x - 1)))

in

λn. <F -> g> unbox (g n)

end

Incidentally, the fact that recursion does not seem possible unless enabled by a
separate language construct, is a compelling reason to conjecture that the modal
calculi for dynamic binding and state from Sections 4.4 and 4.5 are actually strongly
normalizing. This conjecture is left for future work.

Many other features, in addition to recursively dependent names, need to be
considered if the modal calculus is to be extended into a full-fledged language with
state. It seems important, for example, to consider first-class names (as suggested in
Section 2.3), support polymorphism (Section 3.3), explicit substitutions of variable
names, etc. The design space is rather large, and each of these extensions may be
interesting in its own right. We also note here the similarity between recursively
dependent names and recursively dependent signatures from [CHP99].

Related work on the comonadic formulation of effects

In category theory, the operator � of CS4 modal logic is usually modeled by a
comonad. That comonads may represent intensional computations have previously
been noticed by Brookes and Geva [BG92], and that comonads may represent effects
has been suggested by Kieburtz [Kie99].

It is interesting that Brookes and Geva consider a particular family of comonads,
called computational comonads. The comonad � is computational, if in addition
to the standard comonadic laws it admits a natural transformation γ : A → �A
(with certain commuting conditions, that we omit here). As evident from its type,
γ corresponds to the extension of the modal CS4 calculus with the axiom A→ �A,
and thus provides a way to coerce values into computations.

Kieburtz in [Kie99] proposes comonads for those effectful computations that may
depend on the run-time environment, but do not change it. It is interesting that
the comonads in [Kie99] are not computational in the sense defined by Brookes and
Geva, and do not readily admit the coercion of values into computations.

Neither of the cited papers on comonads make the connection with handling of
effects and with modal logic.
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Modal types for diverging computations

Consider a purely functional language with a fixpoint construct, defined by the fol-
lowing typing rule and operational semantics.

∆, x:A ` e : A

∆ ` fix x:A. e : A

fix x:A. e 7−→ [fix x:A. e/x]e

Expressions in this language either evaluate to a value, or never terminate. Such
expressions are partial, because they may diverge. A typical example is the expression
fix x:A. x, which reduces to itself. Notice however, that the evaluation of a non-
terminating expression does not perform any changes to the run-time environment.
Depending on the operational semantics of the language, divergence may prevent
some expressions from being evaluated, but it does not influence the outcome of
those evaluations that do take place. Divergence is a benign effect.

In fact, divergence is such a simple effect, that non-terminating computations do
not even depend on the run-time environment; if the computation does not terminate
in one environment, it will not terminate in any other environment either. This is in
fact one of the reasons that divergence is frequently not even considered an effect.

However, if we do want to treat diverging computations as effectful, the benign
nature of divergence suggests that we should use the type system for benign effects
(Section 4.3). How? The idea comes from the operational semantics. Observe that
the reduction of fix x. e substitutes the variable x by fix x. e. The fact that x
is substituted by an effectful computation, should be made explicit in the variable
context.

With that in mind, we introduce a name N to serve as a marker for non-
termination. If an expression is possibly diverging, its support will contain the name
N . In fact, because we assumed that our language is pure except for divergence, our
supports will either be empty, or contain the single name N . Given the name N , we
may now redefine the typing rule for fix, as follows.

∆, x:A [N ] ` e : A [C]

∆ ` fix x:A. e : A [C]

Notice that the support set C of the expression fix x. e may equal the singleton
{N}, but may also be empty, depending on how x is used in e. Of course, if fix x. e
has empty support, than by the support weakening principle, it may be considered
as having support {N} as well. As a consequence, the operational semantics that
substitutes x : A [N ] by fix x. e obeys the prescribed supports, and will be type safe.

It is interesting that non-termination does not admit any obvious notions of
handling, by which we could remove the name N from the support of a possibly non-
terminating computation, and therefore restore the purity of such a computation. In
fact, it may be appropriate to view non-termination as an effect that is handled by
some entity outside of the language (e.g. the operating system). Of course, then we
should allow that expressions with non-empty support be evaluated. This contrasts
Chapter 4, where we only evaluate expressions with empty support.

To illustrate the above ideas, we present the code for a factorial function which
uses fix-points and is therefore conservatively labeled as non-terminating.
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- fix fact : int -> �Nint.

λn:int. if n = 0 then box 1

else box (n * unbox (fact (n - 1)));

val fact = [fn] : int -> �Nint

- unbox (fact 2) + unbox (fact 3);

val it = 8 : int

Notice that the fix-point expression may not be typed simply as int -> int, but
must be given a more complicated type int -> �Nint. Indeed, the recursive ref-
erence to fact in the λ-abstraction must be boxed. Otherwise, the body of the
λ-abstraction would have had non-empty support, which is not allowed by the type
system for benign effects (Section 4.3). In this example, the function fact has empty
support, but the result 8 is obtained with support N . We may suppress this infor-
mation, however, because expressions with both empty and non-empty supports are
admitted for evaluation.
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Chapter 5

Conclusions

This dissertation considers a version of modal logic and the corresponding λ-calculus,
as a foundation for functional languages in which the type system can represent se-
lected properties of the program’s execution environment. Type systems with this
property are interesting because in programming practice it is almost always the case
that programs are not pure, but must interact with their execution environment in
some way. A language with a modal type system may facilitate an early detection of
programming errors resulting from the program/environment interaction. Further-
more, because the types restrict the kinds of environments that may be encountered
during the evaluation, the compiler may exploit this knowledge to perform more
aggressive program transformations and optimizations.

The modal logic considered for this purpose is a constructive version of S4, with
indexed families of modal operators. The indexes on the modal operators capture
the property of the execution environments that is important for the application of
interest.

In the particular examples considered in the dissertation, programs interact with:

Memory. This instantiation of the modal calculus gives rise to languages for
non-destructive state update (i.e. dynamic binding), and destructive state update.
The modal type �CA classifies computations that read from memory, but do not
change it, and the modal type 3CA classifies computations that may also write into
memory.

This separation of computations into two categories naturally corresponds to the
two different kinds of quantification. The operator � of modal logic is a universal
quantifier over possible environments. A computation that realizes the type �CA
can be executed in any state of memory that satisfies the specification C. As a result
it produces a value of type A. This is exactly the behavior of a computation that
only reads.

Dually, a computation realizing the type 3CA is a witness that there exists a
state satisfying the specification C, in which a value of type A can be computed.
Such a computation must exhibit how the state should be changed, and how a value
can be computed in the changed state. Because the operation of writing into memory
witnesses the change of state, the modal type 3CA classifies writing computations.

Control-flow stack. This instantiation of the modal calculus gives raise to lan-
guages for exceptions, catch and throw, and composable continuations. The impor-
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tant observation regarding control effects is that they do not change the execution
environment of the program. A jump in the control-flow may influence whether a
certain program subterm is evaluated or not, but it does not influence the values of
the evaluated subterms. This is different from, for example, writing into memory,
where a change of the content of some specific memory location may influence the
subsequent program execution.

As a consequence, control effects should be encapsulated using the universal quan-
tifier �, rather than the existential quantifier 3. In this approach, the computations
with control effects need not be serialized, as is the case in the currently most widely
adopted logical treatment of control effects based on monads.

Contexts (i.e. program expressions with a hole). In this instance, the notion of
interaction is variable capture of expressions that are substituted into the hole of
the context. Depending on whether the contexts are treated as syntactic entities or
as compiled code, the obtained calculi are suitable for intensional manipulation of
abstract syntax or for run-time code generation.

A lot more remains to be investigated. The framework of modal logic is very
general, and it may potentially capture and represent many more ways in which
programs interact with their environments. In terms of practicality of programming,
the future work needs to address the expressiveness and usability of modal calculi.
We outline below some targets for future investigations.

Decorated types

There are many applications which require that the program types be decorated with
some additional information describing the execution environment. Examples include
distributed computation, security and information flow, resource bounds, ownership,
etc. The currently existing languages for these kinds of applications typically do not
attempt to encapsulate the environment-dependent computations, which in turn may
lead to interference of language features. Perhaps a restructuring based on modal
logic, and encapsulations using �, 3 or some other modal operator, may improve
the modularity of design.

For example, the type �XA may stand for: (a) expressions executable on all
networked computers that provide the resource X, or are owned by the authority X;
(b) computations encrypted by the key X; (c) computations that may read from the
database of objects with the security level X (or lower). Dually, the type 3XA may
stand for: (a) expressions executable on some networked computers with resource X;
(b) a key X and a computation encrypted by X; (c) computations that may write
into the database of objects with the security level X (or higher).

Other effects and effect combinations

There are many other notions of benign effects which may benefit from a modal
type system, the main example being I/O. Several decisions must be made, however,
before I/O is cast into the modal framework. For example, should printing on the
screen be seen as a computation that changes the execution environment? In other
words, should printing computations be serialized or not? Information display is a
channel of communication, which may change the user’s perception of the world, and
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prompt certain reactions. In such cases, the order in which information is displayed
is obviously important. But sometimes this ordering does not matter, or at least
does not have to be linear. Such a behavior is frequently encountered in parallel and
distributed applications, where the order in which the display is acquired by various
processes is not determined prior to program execution.

Thus, both approaches to the serialization of program output seem to make sense.
If the serialization is desired, it can be achieved by means of the modal operator 3.
Otherwise, program output can be tracked by means of �, in a way similar to the
tracking of non-termination explained in Section 4.9. Indeed, a computation of type
A that prints on the screen may be seen as a conditional: it produces a value if access
to the screen is provided. Thus, we may type such a computation as �SA, where S
is a new name denoting that access to the screen is required.

Program input may also offer possibilities for a modal treatment. It may be
advantageous to view the operation of reading from the file system as a computation
that does not change the execution environment, and thus does not need to be
serialized. This is not quite straightforward, as reading from a file advances the file
pointer, and hence does change the environment. Thus, perhaps a starting point in
the modal treatment of input is to reformulate the set of file operations to separate
the reading of the current character in the file, from the advancement of the file
pointer.

Obviously, it is desirable to be able to combine all these different notions of effects.
In fact, the problem of combination of effects in the monadic setting have already
been encountered, and several solutions exist in the literature [KW92, GL02]. In
the modal setting, the question may be posed a bit differently: how can we combine
different modal logics? This is much more general than combining monads, as we
do not need to restrict ourselves to particular variants of constructive S4. Indeed,
we may be interested in adding exceptions to a metaprogramming language, or to a
language for distributed computation or for security and information flow. Having
said that, when the Kripke structure of the logic is fixed, combining different effectful
computations may amount to combining the supports of their respective modal types.
This in turn corresponds to manipulating the independent pieces of the possible world
that the program environment represents.

Type and support polymorphism and inference

Type polymorphism and inference are necessary ingredients of every practical lan-
guage. In the setting of the modal ν-calculus and related effect calculi, the additional
challenges are support polymorphism and support inference. Of course, combination
of effects with polymorphism and the type inference in this combined setting have
been studied before [LG88, TJ92, BT01, LP00, GSSS02], and the existing approaches
should generalize to the modal calculus. In fact, it may also be possible that the en-
capsulation of effects, and the underlying foundation in modal logic, may simplify
the process of type and support inference. For example, the current implementa-
tion of the modal calculi of effects employs the standard algorithm for bi-directional
type checking [PT98], thus eliminating the need for all type and support annotations
except at the introduction language forms.

Obviously, the extent to which the full type and support inference is possible
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will depend on the expressiveness of the language. Should we consider recursively
dependent names from Section 4.9 (which add to the language a flavor of recur-
sive types), or not? Should we consider Hindley-Milner or Girard-Reynolds style of
polymorphism in types and support? As is well known, in the presence of type poly-
morphism in Girard-Reynolds style, type checking and type inference are undecidable
[Wel99]. Similarly, it is plausible that the modal calculus with Girard-Reynolds style
support polymorphism from Section 3.3 will have undecidable inference, but that the
inference is possible in the Hindley-Milner variant.

First-class names

As already described in Section 2.3, names considered in this dissertation are second-
class, in the sense that they cannot be passed as function arguments. An important
direction for future work is to promote names to first class, and correspondingly
extend the described modal calculi.

First-class names will require a type constructor N : Type→ Type, so that func-
tions that take name arguments, or return name results may be typed. The explicit
substitutions in the modal ν-calculus, and the exception handlers in the modal cal-
culus of exceptions will have to allow assignment of expression (resp. handlers) to
variable names.

Of course, first-class names can be generated by arbitrary recursive functions, so
it becomes impossible to fully and statically track name generation and propagation.
Thus, name generation should be viewed as an effect that changes the state of the
world, and should thus be tracked by the 3 modality – unlike in the present calculi,
where the effects of name generation are localized by means of supports. The use of 3

modality for name generation will lead to a semantics similar to that of the dynamic
allocation monad, recently used in another work on names by Shinwell, Pitts and
Gabbay [SPG03].

In addition, support polymorphism, as discussed in the previous section will
become very important. With first-class names, expression supports will become
unknown statically, so we will have to universally and existentially abstract over
them.

Modal type theory

Modal types offer a rich structure capable of capturing computational concepts from
very diverse application domains in a rather uniform way. The uniformity makes it
plausible that common formal methods for representing, reasoning about and veri-
fying modal programs could be identified and developed. A dependent modal type
theory [NPP03] is a likely framework for such an investigation.
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