
An Expressive Verification Framework for
State/Event Systems

Sagar Chaki, Edmund Clarke, Orna Grumberg,
Joël Ouaknine, Natasha Sharygina,

Tayssir Touili, Helmut Veith

June 2004
CMU-CS-04-145

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research was sponsored by the Semiconductor Research Corporation (SRC) under con-
tract no. 99-TJ-684, the National Science Foundation (NSF) under grants no. CCR-9803774 and
CCR-0121547, the Office of Naval Research (ONR) and the Naval Research Laboratory (NRL)
under contract no. N00014-01-1-0796, the Army Research Office (ARO) under contract no.
DAAD19-01-1-0485, the Austrian Science Fund Project N-Z29 N04, the EU Networks GAMES
and ECRYPT, and was conducted as part of the PACC project at the Software Engineering Insti-
tute (SEI). The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of SRC,
NSF, ONR, NRL, ARO, the U.S. Government or any other entity.

Keywords: Temporal logic, compositional verification, software model checking

Abstract

Specification languages for concurrent software systems need to combine practical al-
gorithmic efficiency with high expressive power and the ability to reason about both
states and events. We address this question by defining a new branching-time tem-
poral logic SE-AΩ which integrates both state-based and action-based properties.
SE-AΩ is universal, i.e., preserved by the simulation relation, and thus amenable to
counterexample-guided abstraction refinement. We provide a model-checking algo-
rithm for this logic, and describe a compositional abstraction-refinement loop which
exploits the natural decomposition of the concurrent system; the abstraction and refine-
ment steps are performed over each component separately, and only the model checking
step requires an explicit composition of the abstracted components. For experimental
evaluation, we have integrated the presented algorithms in the software verification tool
MAGIC, and determined a previously unknown race condition error in a piece of an
industrial robot control software.

5

1 Introduction

The practical effectiveness of model checking is characterized by a trade-off between
the expressive power of the specification formalism and the complexity of the corre-
sponding model checking algorithm. For software verification, this problem is even
more acute, since software is harder to specify, and state explosion is exacerbated by the
concurrent execution of multiple components. The expressive power of temporal logics
such as CTL or LTL is quite limited when it comes to specifying, e.g., the periodicity
of events. The last decade has seen several attempts at extending the expressiveness of
temporal logics [8, 32, 30, 31, 29, 13]. Recently, Clarke et al. [11] have investigated
a family of universal branching logics, called AΩ, which are extensions of ACTL by
sets Ω of ω-regular path operators. A subtle property of AΩ is the monotonicity of
the path operators: the semantics guarantees that the extended path operators cannot be
used to implicitly define negation. While this property comes for free with the stan-
dard temporal path operators, its presence is crucial for obtaining extended universal
branching logics. Such logics are preserved by simulation, and are therefore amenable
to existential abstraction [9, 11].

Another shortcoming of standard temporal logics stems from the fact that for
the verification of concurrent software conducted at the source code level, one
needs to specify both state information (program counter location, memory contents)
and communication among components. For example, the Bluetooth L2CAP spec-
ification [14] asserts that “when an L2CAP ConnectRsp event is received in a
W4 L2CAP CONNECT RSP state, within one time unit, an L2CAP process may send
out an L2CA ConnectInd event, disable the RTX timer, and move to state CON-
FIG.” As this example shows, both states (W4 L2CAP CONNECT RSP and CONFIG)
and events (L2CAP ConnectRsp and L2CA ConnectInd) are required to properly
capture the desired L2CAP behavior.

Generally, in concurrent programs, communication among modules proceeds via
actions (events) which can represent function calls, requests and acknowledgments, etc.
These communications can be data dependent and carry data on its channels. Existing
model checking techniques typically use either state-based or event-based formalisms
to represent finite-state models of programs. In principle, both frameworks are inter-
changeable: an action can be encoded as a change in state variables, and likewise one
can equip a state with different actions to reflect different values of its internal variables.
Neither approach on its own is practical, however, when it comes to the specification of
data-dependent communication claims: considerable domain expertise is then required
to annotate the program and to specify proper specifications in temporal logic.

In this paper, we define the specification logic SE-AΩ which combines the high
expressive power of AΩ with the ability to specify states and events simultaneously.
The hybrid state/event-based semantics of SE-AΩ allows us to represent both software
implementations and specifications directly without program annotations or privileged
insights into program execution. Note that, for example, there is no natural generic ex-
tension of standard operators such as U (until) to a state/event based framework (see,
e.g., [18]); SE-AΩ, however, enables us to employ different variants of CTL opera-
tors for actions and data valuations simultaneously at no additional expense. Notwith-
standing its high expressive power and versatility, SE-AΩ lends itself naturally to an

6

efficient verification strategy which combines counterexample-guided abstraction re-
finement (CEGAR [20, 7]) and compositional reasoning: starting with a coarse initial
abstraction, our CEGAR scheme computes increasingly precise abstractions of the tar-
get system by analyzing spurious counterexamples until either a real counterexample
is obtained or the system is found to be correct. More precisely, given a system M
composed of n concurrent components M1, . . . ,Mn, and a SE-AΩ specification ϕ, the
verification of M |= ϕ proceeds as follows:

1. Abstract. Create an abstraction M̂ such that all behaviors of M̂ are preserved by
M . This is done component-wise without constructing the full state space of M .

2. Verify. Verify whether M̂ |= ϕ. If so, report success and exit. Otherwise, extract
an abstract counterexample Ĉ that indicates in which way ϕ fails in M̂ .

3. Refine. Check whether Ĉ gives rise to a real counterexample over M . If Ĉ corre-
sponds to a genuine behavior of M then report a failure along with a fragment of
each Mi that illustrates why M 2 ϕ. If Ĉ is spurious, on the other hand, refine M̂
using Ĉ to obtain a more precise abstraction and repeat from step 1. This refinement
step, like the initial abstraction, is performed component-wise.

Of the three steps in this abstract-verify-refine process only the verification stage of
our technique requires the explicit composition of a system. The other stages can be
performed one component at a time. Since verification is performed only on abstrac-
tions (which are usually much smaller than the corresponding concrete systems), our
verification approach is able to significantly reduce the state space explosion problem.
Another key characteristic of our algorithm is that the verification step handles both
states and events directly, i.e., without conversion into either a pure state-based or a
pure event-based framework. The model checking is therefore significantly more ef-
ficient than alternative conversion-based approaches, since it has been observed that
conversion can lead to a quadratic blowup in both time and space even for reachability
properties [2].

Note that the universality of SE-AΩ is crucial for the correctness of our approach,
and that the verification step uses automata theoretic methods to evaluate the ω-regular
path operators.

To the best of our knowledge, this is the first counterexample-guided, compositional
abstraction refinement scheme to perform verification of branching-time specifications.
We have implemented our approach in our C verification tool MAGIC [22] which ex-
tracts state/event finite-state models from C programs automatically via predicate ab-
straction [28, 3]. Our experiments with a piece of robot controller software resulted in
the detection of a complicated race condition error.

The rest of this article is organized as follows. In Section 2 we summarize related
work. This is followed by some preliminary definitions defined in Section 3. In Sec-
tion 4 we present the SE-AΩ logic, followed by model checking, counterexample vali-
dation and abstraction refinement procedures described in Section 5. Finally, we give a
brief overview of the application of our techniques in Section 6.

7

2 Related Work

Extensions of temporal logics to increase the expressiveness of temporal operators have
been proposed by various authors [8, 32, 30, 31, 29, 13]. Wolper [32] and Vardi and
Wolper [31] extended LTL by regular expressions and Büchi automata respectively.
Vardi and Wolper [30] and Thomas [29] have proposed extended branching-time log-
ics, but have not addressed model checking. Clarke et al. [8] describe the logic ECTL
that similarly to our work considers ω-regular automata in the context of branching-time
logic. However, this work does not deal with abstraction refinement or compositional
methods. Clarke et al. [11] define a class AΩ of universal branching logics (cf. Sec-
tion 1) for a systematic study of the complexity and completeness of counterexamples
in model checking. The work of [11], however, does not define a model checking al-
gorithm for AΩ. Our work extends the AΩ logic with the combined state/event expres-
siveness and provides a model checking algorithm for SE-AΩ which also applies to
AΩ.

State/event-based notations have been explored by a number of authors [25, 18, 17,
2]. The novelty of our approach lies in the way in which we efficiently integrate an ex-
pressive state/event formalism with powerful state space reduction techniques, namely
CEGAR and compositional reasoning. In this respect, not only do we substantially ex-
tend the expressiveness of the state/event linear temporal logic SE-LTL presented in [2],
but we also show how to validate branching (tree-like) counterexamples in a composi-
tional manner, based on new results relating simulation and weak simulation relations
for parallel processes (see Theorem 4 in Section 5).

The formalization of a general notion of abstraction first appeared in [12]. The
abstractions used in our approach are conservative. They are guaranteed to preserve
‘undesirable’ properties of the system (e.g., [19, 9]). Conservative abstractions usually
lead to significant reductions in the state space but in general require an iterated ab-
straction refinement mechanism (such as CEGAR) in order to establish specification
satisfaction. CEGAR has been used, among others, in [24] (in non-automated form),
and [1, 26, 21, 15, 6, 10]. In particular, CEGAR-based schemes have been used for the
verification of safety properties [1, 7, 15, 3] as well as liveness [2] properties.

Compositionality and abstraction have been extensively studied in process algebra
(e.g., [16, 23, 27]). Abstraction and compositional reasoning have been combined [4]
within a single CEGAR scheme to verify safety properties of concurrent C programs.

3 Preliminaries

Definition 1 (Labeled Kripke Structure). A labeled Kripke structure (LKS) is a 6-
tuple (S , init ,AP ,L, Σ,T) where (i) S is a finite non-empty set of states, (ii) init ∈ S
is an initial state, (iii) AP is a finite set of atomic state propositions, (iv) L : S → 2AP

is a state-labeling function, (v) Σ is a finite set of actions (alphabet) and (vi) T ⊆
S ×Σ × S is a transition relation.

Given an LKS M = (S , init ,AP ,L, Σ,T), we write S (M), init(M), AP(M),
L(M), Σ(M) and T (M) to mean S , init , AP , L, Σ and T respectively. Given s, s′ ∈

8

S and a ∈ Σ we write s
a−→ s′ to mean (s, a, s′) ∈ T . Also, let Succ(s, a) = {s′ ∈

S | s a−→ s′} and Enabled(s) = {a ∈ Σ | Succ(s, a) 6= ∅}. Finally, a path of M is
an infinite sequence of consecutive transitions s0

a0−→ s1
a1−→ s2

a2−→ Note that we
do not require paths to begin with init .

Definition 2 (Parallel Composition). Let M1 and M2 be two LKSs such that
AP(M1) ∩ AP(M2) = ∅. Then the parallel composition of M1 and M2, denoted
by M1‖M2, is an LKS obeying the following conditions: (i) S (M1‖M2) = S (M1) ×
S (M2), (ii) init(M1‖M2) = (init(M1), init(M2)), (iii) AP(M1‖M2) = AP(M1) ∪
AP(M2), and (iv)Σ(M1‖M2) = Σ(M1)∪Σ(M2). Moreover, for all s1, s

′
1 ∈ S (M1),

s2, s
′
2 ∈ S (M2), and a ∈ Σ(M1‖M2), the labeling function L(M1‖M2) and the tran-

sition relation T (M1‖M2) are defined as follows:

– L(M1‖M2)((s1, s2)) = L(M1)(s1) ∪ L(M2)(s2).

– If s1
a−→ s′1 and s2

a−→ s′2 then (s1, s2)
a−→ (s′1, s

′
2).

– If s1
a−→ s′1 and a 6∈ Σ(M2) then (s1, s2)

a−→ (s′1, s2).

– If s2
a−→ s′2 and a 6∈ Σ(M1) then (s1, s2)

a−→ (s1, s
′
2).

This notion of parallel composition is derived from CSP [16, 27]; it is commutative
and associative, so that no parentheses are needed when composing more than two
LKSs together.

Definition 3 (Simulation). Let M1 and M2 be LKSs with Σ(M1) = Σ(M2) = Σ,
and AP(M2) = AP(M1). A relation R ⊆ S (M1)× S (M2) is said to be a simulation
relation iff it satisfies the following conditions:

1. If (s1, s2) ∈ R then L(M1)(s1) = L(M2)(s2).

2. For any s1, s
′
1 ∈ S (M1), s2 ∈ S (M2), and a ∈ Σ, if (s1, s2) ∈ R and s1

a−→ s′1
then there exists s′2 ∈ S (M2) such that s2

a−→ s′2 and (s′1, s
′
2) ∈ R.

For two LKSs M1 and M2, if there exists a simulation relation R such that
(init(M1), init(M2)) ∈ R then we say that M1 is simulated by M2 and denote this
by M1 6M2. The following is well-known [23]:

Theorem 1. Let M1, . . . ,Mn, N1, . . . , Nn be LKSs such that Ni 6Mi for 1 ≤ i ≤ n.
Then (N1‖ . . . ‖Nn) 6 (M1‖ . . . ‖Mn).

In our framework, (existential) abstractions are obtained by ‘lumping’ together
states of a concrete LKSs: abstract states are disjoint sets of concrete states; cf. [9].
In the remainder of this paper, we often use the letter M to denote a concrete LKS and
its hatted counterpart M̂ to denote an abstract LKS. Note that an abstraction M̂ of M is
entirely determined by an equivalence relation R ⊆ S (M)× S (M). We only consider
admissible equivalence relations, i.e., we require that for all s, s′ ∈ S (M), whenever
(s, s′) ∈ R then L(M)(s) = L(M)(s′). Given a state s ∈ S (M), we denote its corre-
sponding equivalence class by [s]R (or simply [s] when R is clear from context.)

9

Definition 4 (Abstraction). Let M be an LKS and R be an admissible equivalence
relation on S(M). Then MR is the abstract quotient LKS induced by R such that
(i) S (MR) = {[s] | s ∈ S (M)}, (ii) init(MR) = [init(M)], (iii) AP(MR) =
AP(M), (iv) for all [s] ∈ S (MR), L(MR)([s]) = L(M)(s) (well-defined since R
is admissible), (v) Σ(MR) = Σ(M), and (vi) T (MR) = {([s], a, [s′]) | (s, a, s′) ∈
T (M)}.

For s ∈ S(M) and a ∈ Σ(M), the set of abstract successors of s along a is defined
to be AbsSucc(s, a) = {[s′] ∈MR | (s, a, s′) ∈ T (M)}.

It is easy to see that for any M and R, M 6 MR. Combining this with Theorem 1
we get the following result.

Lemma 1. Let M1, . . . ,Mn be LKSs and R1, . . . , Rn be equivalence relations. Then
(M1‖ . . . ‖Mn) 6 (MR1

1 ‖ . . . ‖MRn
n).

4 The Logic SE-AΩ

Following [11], we define a universal branching-time logic called State-Event Universal
Logic (SE-AΩ). The logic is interpreted over LKSs and can be used to specify proper-
ties involving both data and actions in a natural manner. SE-AΩ is defined in negation
normal form, i.e., negations are only applied to atomic propositions. Unlike ACTL or
ACTL∗, it does not have a fixed set of operators. Rather, any ω-regular language can
serve as a temporal operator. Since the logic is universal, every such operator is pre-
ceded by a universal path quantifier A.

Similarly to usual temporal operators, the new operators are applied to other formu-
las in the logic. Syntactically, this is done by defining an ω-regular language O over a
set of markers that serve as placeholders for the formulas to which O is applied. Since
SE-AΩ is aimed at specifying both actions and data, its operators can be applied to
subsets of actions as well as formulas over atomic propositions.

Formally, let Mark = {m1,m2, . . . } be a denumerable set of markers and let m =
{m1, . . . ,mn} be a finite subset of Mark . Let O be an ω-regular language over the
alphabet 2m. The corresponding n-ary temporal operator will be denoted by O. Let AP
be a set of atomic propositions and Σ be a set of actions. Then the syntax of SE-AΩ is
defined inductively as follows.

– If p ∈ AP then p and ¬p are formulas.
– If ϕ1 and ϕ2 are formulas then so are ϕ1 ∨ ϕ2 and ϕ1 ∧ ϕ2.
– Let O be an n-ary temporal operator and for 1 ≤ i ≤ n, ϕi be either a formula or

a subset of Σ. Then AO(ϕ1, . . . , ϕn) is a formula.

The semantics of SE-AΩ is defined over LKSs. More precisely, given an SE-AΩ
formula ϕ, an LKS M , and s ∈ S (M) we write M, s |= ϕ to mean that s satisfies ϕ,
defined inductively as follows:

– For p ∈ AP , M, s |= p iff p ∈ L(s) and M, s |= ¬p iff p 6∈ L(s).
– M, s |= ϕ1 ∨ ϕ2 iff M, s |= ϕ1 or M, s |= ϕ2.
– M, s |= ϕ1 ∧ ϕ2 iff M, s |= ϕ1 and M, s |= ϕ2.

10

– M, s |= AO(ϕ1, . . . , ϕn) iff for every path π starting from s, we have M,π |=
O(ϕ1, . . . , ϕn) [as defined below].

Let π = s0
a0−→ s1

a1−→ s2 . . . be a path of M and πi be its suffix starting from
si. We first define when π satisfies an argument ϕk of the operator O. M,π |= ϕk iff
either ϕk ⊆ Σ and a0 ∈ ϕk, or ϕk is a formula and M, s0 |= ϕk.

Let O(ϕ1, . . . , ϕn) be as above, and O be the ω-regular language corresponding
to O. Recall that the alphabet of O is 2m where m = {m1, . . . ,mn}. Then M,π |=
O(ϕ1, . . . , ϕk) iff there is a word o = o1o2 · · · ∈ O such that for all i ≥ 0 and for all
mk ∈ oi, M,πi |= ϕk.

Lastly, we write M |= ϕ to mean M, init(M) |= ϕ.
As an example, letO = {m1,m2}∗{m1,m3}{m4}{}ω be an ω-regular expression.

Then O(ϕ, {a}, {b}, ψ) represents an ‘until’ operator that captures paths in which ϕUψ
holds along a sequence of a actions ending with the action b. This example demonstrates
that in addition to formulas ϕk that should hold, the logic SE-AΩ allows us to restrict
the actions that can be performed, by using ϕk ⊆ Σ.

An important property of the logic SE-AΩ is that it is preserved by the simulation
relation. This is formalized by the following lemma.

Lemma 2. Given two LKSs M1 and M2 and an SE-AΩ formula ϕ, if M2 |= ϕ and
M1 6M2, then M1 |= ϕ.

5 Compositional CEGAR Verification for SE-AΩ

Let M1, . . . ,Mn be LKSs and let ϕ be an SE-AΩ formula. In seeking to determine
whetherM = M1‖ . . . ‖Mn |= ϕ, we wish to avoid constructing the full LKSM , since
the size of its state space increases exponentially with the number of its components. We
therefore first compute a (typically much smaller) abstraction M̂i of each component
Mi, and only then check whether M̂ = M̂1‖ . . . ‖M̂n |= ϕ. If this holds, we conclude
that M |= ϕ as well. Otherwise, we extract from M̂ a counterexample Ĉ violating ϕ,
and check whether this counterexample is valid, i.e., whether it corresponds to a real
execution of M . In the affirmative, we conclude that M 6|= ϕ. Otherwise, we use this
spurious counterexample to refine our abstractions, and repeat the process until either
a real counterexample is found or the property is shown to hold. The main strength of
our approach is the fact that the abstraction, counterexample-validation, and refinement
steps are all carried out one component at a time, so that it is never necessary to construct
the full state space of the concrete system M .

5.1 Model Checking

Let M̂ be an LKS1, s ∈ S (M̂), and ϕ be an SE-AΩ formula. We give a model-checking
algorithm to determine whether M̂, s |= ϕ. We proceed by structural induction on ϕ,

1 In the interests of consistency and clarity, we present our approach in both this section and the
next in terms of the abstract LKS M̂ , although it naturally applies to concrete systems as well.

11

starting with the case in which ϕ is of the form AO(ϕ1, . . . , ϕn). Let O be the ω-
regular language overm = {m1, . . . ,mn} corresponding to O. The algorithm consists
of the following steps: (i) compute from M̂ and s the ‘smallest’ ω-regular language Os
over the alphabet 2m such that M̂, s |= AOs(ϕ1, . . . , ϕn), and (ii) check whether Os
is ‘subsumed’ by O.

Intuitively, the idea is to interpret each path π in M̂ as a sequence of maximal
subsets of formulas (among ϕ1, . . . , ϕn) that hold along π. We then check whether
replacing each ϕj with the corresponding marker mj results in a sequence belonging to
O.

In order to do so we build an automaton Bs obtained from M̂ by replacing every
action a, in transitions of the form (q, a, q′), with the subset of markers corresponding
to the formulas that hold for the transition. More precisely, if ϕj is an SE-AΩ formula,
we include the corresponding markermj provided that M̂, q |= ϕj , and if ϕj ⊆ Σ(M̂),
we include mj if a ∈ ϕj .

To make this more rigorous, we first recall the notion of Büchi automata:

Definition 5 (Büchi Automaton). A Büchi automaton is a 5-tuple B =
(S , I , Σ,T ,Acc) where (i) S is a finite non-empty set of states, (ii) I ⊆ S is a set
of initial states, (iii) Σ is a finite alphabet, (iv) T ⊆ S ×Σ× S is a transition relation,
and (v) Acc ⊆ S is a set of accepting states.

A path of B is an infinite sequence π = q0
a0−→ q1

a1−→ . . . such that q0 ∈ I , and
for every i, (qi, ai, qi+1) ∈ T . π is accepting if it visits the set Acc infinitely often.

The language Os is represented by a Büchi automaton Bs, which is derived from
M̂ as follows: Bs = (Ss, Is, Σs,Ts,Accs), where (i) Ss = S (M̂), (ii) Is = {s},
(iii) Σs = 2m, (iv) Accs = S (M̂), and (v) Ts is the set of transitions such that for
each (q, a, q′) ∈ T (M̂), Ts includes a transition (q,m′, q′) such that m′ ⊂ m and the
following condition holds: for 0 ≤ j ≤ n, mj ∈ m′ iff either ϕj ⊆ Σ(M̂) and a ∈ ϕj
or ϕj is a formula and M̂, q |= ϕj .

Note that in order to construct Bs we need to know whether M̂, q |= ϕi for every
q ∈ S (M̂) and every i ∈ {1, . . . , n}. This is achieved by invoking the model checking
algorithm recursively.

In the second step, we must check whether Os is subsumed by O. Observe first
that it is not enough to simply check whether Os ⊆ O. That is because O and Os
are defined over the alphabet 2m, and SE-AΩ is ‘monotonic’ (cf. [11]). In order to
define monotonicity of SE-AΩ we consider two ω-regular languages O and O′ over
m that satisfy: for every w = w1w2 · · · ∈ O there exists w′ = w′1w

′
2 · · · ∈ O′ such

that for every i ≥ 1, wi ⊆ w′i. Then for every model M̂ , if M |= AO′(ϕ1, . . . , ϕk)
then M |= AO(ϕ1, . . . , ϕk). For example, let m = {m1,m2,m3}, and suppose
that O = {m2}ω and that Os = {m1,m2}ω . Then M̂, s |= AOs(ϕ1, ϕ2, ϕ3) and,
thanks to monotonicity, M̂, s |= AO(ϕ1, ϕ2, ϕ3) as well, even though Os 6⊆ O. To
overcome this problem, we check whetherOs ⊆ ↑O, where ↑O = ({m2}+{m1,m2}+
{m2,m3} + {m1,m2,m3})ω . The language ↑O is called the monotonic closure of O
and, intuitively, is obtained by replacing in O every occurrence of a set of markers
m′ ⊆ m by the sum of all the sets of markers m′′ such that m′ ⊆ m′′ ⊆ m. Formally:

12

Definition 6 (Monotonic Closure). Let B = (SB , IB , 2
m,TB ,AccB) be a Büchi

automaton accepting some ω-regular language O. The monotonic closure of
O is the ω-regular language ↑O accepted by the Büchi automaton ↑B =
(S↑B , I↑B , 2m,T↑B ,Acc↑B) constructed from B as follows: S↑B = SB , I↑B = IB ,
Acc↑B = AccB , and T↑B = {(q,m′′, q′) | ∃m′ ⊆ m′′ � (q,m′, q′) ∈ TB}.

The correctness of our two-step procedure is encapsulated by the following:

Theorem 2. M̂, s |= AO(ϕ1, . . . , ϕn) iff Os ⊆ ↑O.

The other cases (in which ϕ is not an ω-regular operator) are straightforward. To
summarize, M̂, s |= ϕ iff:

– p ∈ L(s) if ϕ = p and p 6∈ L(s) if ϕ = ¬p, where p ∈ AP .
– M̂, s |= ϕ1 and M̂, s |= ϕ2 if ϕ = ϕ1 ∧ ϕ2.
– M̂, s |= ϕ1 or M̂, s |= ϕ2 if ϕ = ϕ1 ∨ ϕ2.
– Os ⊆ ↑O if ϕ = AO(ϕ1, . . . , ϕn), where Os and ↑O are defined as above.

5.2 Counterexample Generation

Let M̂ be an LKS, s ∈ S (M̂), and ϕ be an SE-AΩ formula. Suppose that M̂, s 6|= ϕ.
In this section, we show how to compute a counterexample to ϕ, i.e., a fragment of M̂
beginning at state s that violates ϕ. As for the model-checking algorithm of SE-AΩ,
we give a recursive procedure:

– If ϕ = ϕ1 ∨ ϕ2, then compute counterexamples Ĉ1 and Ĉ2 to ϕ1 and ϕ2 re-
spectively, and glue Ĉ1 and Ĉ2 at their initial states. Indeed, M̂, s 6|= ϕ1 ∨ ϕ2 iff
M̂, s 6|= ϕ1 and M̂, s 6|= ϕ2.

– If ϕ = ϕ1 ∧ ϕ2, then compute a counterexample either to ϕ1 or to ϕ2. Indeed,
M̂, s 6|= ϕ1 ∧ ϕ2 iff M̂, s 6|= ϕ1 or M̂, s 6|= ϕ2.

– If ϕ = AO(ϕ1, . . . , ϕn), proceed as follows. Since M̂, s 6|= ϕ, there exists a

pattern in Os that is not in ↑O. Let π = s0
m0−→ s1

m1−→ . . . (where s0 = s) be
an accepting path of Bs such that the ω-word m0m1 . . . does not belong to ↑O.

Recall that by the definition of the automaton Bs, each transition si
mi−→ s′i in TBs

corresponds to a transition si
ai−→ s′i in T (M̂). Let therefore s0

a0−→ s1
a1−→ . . . be

the corresponding path of π in M̂ . This path then clearly violates O(ϕ1, . . . , ϕn).
To compute a counterexample to ϕ, it suffices to take this path and to glue to each
state si counterexamples to all formulas ϕj such that M̂, si 6|= ϕj . (Note that, while
the path is infinite, it comprises of only finitely many distinct states.)

Owing to the direct manner in which a counterexample Ĉ is extracted from an LKS
M̂ , there is a canonical mapping ρ : S (Ĉ) → S (M̂) which satisfies the following
conditions: (i) ρ(init(Ĉ)) = init(M̂), (ii) for all q ∈ S (Ĉ), L(Ĉ)(q) = L(M̂)(ρ(q)),
and (iii) if (q, a, q′) ∈ T (Ĉ), then (ρ(q), a, ρ(q′)) ∈ T (M̂). We shall make use of ρ
later on in the refinement step.

13

Example 1. Figure 1 (a) shows an LKS M with AP(M) = {p, q}, Σ(M) = {a, b},
and initial state S1. (b) shows the abstract quotient LKSMR induced by the equivalence
relation R having equivalence classes {S1, S2} and {S3, S4}. Let ϕ be the formula (in
CTL∗-like notation) AG({a} ⇒ A(p ∨ Xp ∨ XXp)). ϕ asserts that on all paths,
whenever the action a occurs from a state s, then the atomic proposition p either holds
at s or, along any path starting at s, in one of the next two states. It is not hard to see
that MR 6|= ϕ, and indeed (c) shows a counterexample Ĉ illustrating this. The dotted
arrows from Ĉ to MR represent the canonical mapping ρ.

{a,b}

b

a

b

M

{p}
[S3,S4]

[S2]
{q}

[S1]
{q}

R’

S1

S2

S4

a

a

b

b

b

{q}

{q}

{p}
S3

{p}

M

a
b

b

b

b

bb

{a,b}

{a,b}

b

{p} {p}
[S3,S4]

{q}

{q}

{q}

{q}

{q}

ρ

ρ

ρ

ρ
MR C

[S1,S2]

ρ

(a) (b) (c) (d)

Fig. 1. (a) concrete LKS M ; (b) Abstract LKS MR; (c) counterexample Ĉ; (d) refined abstract
LKS MR′ .

Observe, however, that the counterexample is in fact spurious. Indeed, the abstract
LKS MR′ pictured in (d) is a refinement of MR induced by the equivalence relation R′

having equivalence classes {S1}, {S2}, and {S3, S4}. Since MR′ |= ϕ, we conclude
that M |= ϕ as well.

5.3 Counterexample Validation

Suppose that M̂, s 6|= ϕ for some SE-AΩ formula ϕ, and let Ĉ be a counterexample
to ϕ. Recall that M̂ is an abstraction of a concrete LKS M . We say that Ĉ is a valid
counterexample iff Ĉ 6M . Indeed, from Lemma 2 we get:

Theorem 3. Let ϕ be an SE-AΩ formula. If Ĉ 6M and Ĉ 6|= ϕ, then M 6|= ϕ.

Intuitively, this holds because SE-AΩ formulas describe properties that are quantified
over all possible paths of the structure.

This result suggests a way to formally check whether a counterexample Ĉ is valid
for a concrete systemM or not. However, as mentioned earlier, whenM is a concurrent
C program built of components M1, . . . ,Mn, we are faced with the problem that even

14

if each component Mi has a finite state space, constructing the state space of M might
be prohibitive in practice due to exponential blowup. To overcome this problem, we
propose to check if the concrete system M simulates the counterexample Ĉ in a com-
positional way by checking whether for every i ∈ {1, . . . , n},Mi weakly simulates the
ith projection of Ĉ.

Definition 7 (ith Projection). Let M = M1‖ . . . ‖Mn be a parallel composition of
LKSs, and let Ĉ be a further LKS. For any i ∈ {1, . . . , n}, Ĉ�i is the LKS defined by:
(i) S (Ĉ �i) = S (Ĉ), (ii) init(Ĉ �i) = init(Ĉ), (iii) AP(Ĉ �i) = AP(Mi), (iv) for
any s ∈ S(Ĉ�i), L(Ĉ�i)(s) = L(Ĉ)(s) ∩ L(Mi), (v) Σ(Ĉ�i) = Σ(Mi) ∪ {τ}2, and
(vi) T (Ĉ�i) is defined as follows:

– If (s, a, s′) ∈ T (Ĉ) and a ∈ Σ(Mi) then (s, a, s′) ∈ T (Ĉ�i).
– If (s, a, s′) ∈ T (Ĉ) and a 6∈ Σ(Mi) then (s, τ, s′) ∈ T (Ĉ�i).

The introduction of τ actions also naturally leads to a weak version of simulation,
which we define next specialized to the case in which only the system being simulated
is capable of performing τ ’s.

Definition 8 (Weak Simulation). Let Ĉ and M be LKSs such that Σ(Ĉ) = Σ(M) ∪
{τ} and AP (Ĉ) = AP (M). A relation R ⊆ S (Ĉ) × S (M) is said to be a weak
simulation relation iff R satisfies the following conditions:

1. If (s1, s2) ∈ R then L(Ĉ)(s1) = L(M)(s2).
2. For any s1, s

′
1 ∈ S (Ĉ), s2 ∈ S (M), and a ∈ Σ(Ĉ) \ {τ}, if (s1, s2) ∈ R and

s1
a−→ s′1 then there exists s′2 ∈ S (M) such that s2

a−→ s′2 and (s′1, s
′
2) ∈ R.

3. For any s1, s
′
1 ∈ S (Ĉ) and s2 ∈ S (M), if (s1, s2) ∈ R and s1

τ−→ s′1 then
(s′1, s2) ∈ R.

For two LKSs Ĉ and M , if there exists a weak simulation relation R such that
(init(Ĉ), init(M)) ∈ R then we say that Ĉ is weakly simulated by M and denote this
by Ĉ 4M .

The following key result forms the basis of our compositional approach to coun-
terexample validation.

Theorem 4 (Compositionality). LetM1, . . . ,Mn be LKSs and let Ĉ be a further LKS.
Then Ĉ 6 (M1‖ . . . ‖Mn) iff Ĉ�i 4Mi for 1 ≤ i ≤ n.

Proof. (Sketch.) Consider the case n = 2; the general case is handled in a similar
manner. Suppose first that Ĉ 6 M1‖M2. Let R ⊆ S(Ĉ) × S(M1‖M2) be a cor-
responding simulation relation. Define R1 = {(s, s1) | ∃s2 �

(
s, (s1, s2)

)
∈ R}, and

R2 = {(s, s2) | ∃s1 �
(
s, (s1, s2)

)
∈ R}. It is readily verified thatR1 (resp.R2) is a weak

simulation relation between Ĉ�1 andM1 (resp. Ĉ�2 andM2). Therefore Ĉ�1 �M1 and
Ĉ�2 �M2.

2 We assume that τ is a fresh action not otherwise present in the alphabet of LKSs.

15

In the other direction, let R1 and R2 be two weak simulation relations witnessing
Ĉ�1 � M1 and Ĉ�2 � M2 respectively. Let R = {

(
s, (s1, s2)

)
| (s, s1) ∈ R1 ∧

(s, s2) ∈ R2}. It is easy to check thatR is a simulation relation between Ĉ andM1‖M2,
as required. ut

Putting everything together, we get:

Corollary 1. LetM1, . . . ,Mn be LKSs, ϕ an SE-AΩ formula, and Ĉ an abstract coun-
terexample to M1‖ . . . ‖Mn |= ϕ. Then Ĉ is a valid counterexample iff Ĉ�i 4 Mi for
every i ∈ {1, . . . , n}.

Checking whether Ĉ�i 4 Mi is done in a standard manner by a fixpoint computa-
tion of the maximal weak simulation relation between Ĉ�i and Mi.

5.4 Abstraction Refinement

We now describe our counterexample-guided refinement procedure. Suppose that Ĉ 66
M ; then the counterexample Ĉ is spurious, and we need to refine our abstraction M̂ =

M̂1‖ . . . ‖M̂n. We achieve this by examining each of the abstractions M̂i individually:
for i ∈ {1, . . . , n}, we refine M̂i if Ĉ�i 64Mi. To this end, fix j an index in {1, . . . , n}
such that Ĉ�j 64 Mj . Recall that M̂j is a quotient LKS of the form M

Rj
j , where Rj is

an equivalence relation on S(Mj). Our refinement step consists in producing a strictly
finer equivalence relation than Rj .

Recall the canonical mapping ρ : S (Ĉ) → S (M̂) defined in Section 5.2, and let
ρj : S (Ĉ)→ S (M̂j) be its corresponding jth projection. We can show that:

Lemma 3. Suppose that for any s ∈ S (Ĉ), any a ∈ Enabled(s), and any s1, s2 ∈
ρj(s), we have that AbsSucc(s1, a) = AbsSucc(s2, a). Then Ĉ�j 4Mj .

Since, by assumption, Ĉ�j 64 Mj , it follows from Lemma 3 that there exist a
state s ∈ S (Ĉ), an action a ∈ Enabled(s), and two states s1, s2 ∈ ρj(s) such that
AbsSucc(s1, a) 6= AbsSucc(s2, a). Let R′j be a new equivalence relation derived from
Rj by sub-partitioning the equivalence class ρj(s) as follows: q, q′ belong to the same
sub-partition iff AbsSucc(q, a) = AbsSucc(q′, a). R′j is clearly a proper refinement
of Rj (i.e. the number of R′j will be strictly greater than that of Rj), and is moreover
admissible since Rj was admissible. It should be noted that the refined abstract LKS

M
R′j
j is however not guaranteed to refute the (projected) counterexample Ĉ�j . For ex-

ample, Figure 1 shows the abstract LKS MR and its refinement MR′ which, in this
case, refutes the spurious counterexample Ĉ.

Since the refinement procedure always yields a proper refinement and since each
LKS is finite, the CEGAR-based SE-AΩ verification algorithm always terminates. In
particular, spurious counterexamples are always eventually refuted.

16

6 Applications and Future Work

We implemented our compositional approach for verification of branching-time logics
in the MAGIC tool, developed at Carnegie Mellon [5, 22]. MAGIC extracts finite LKS
models from C programs. We applied the SE-AΩ model checking compositional loop
for verification of a set of benchmarks whose abstract models were automatically ex-
tracted by MAGIC. We verified code provided by our industrial partner, one of the
market leading robot manufacturers worldwide. We analyzed the IPC (InterProcess
Communication) protocol used to mediate communication in a multi-threaded robot
controller software. We model checked the synchronous communication portion of the
IPC protocol which was implemented in terms of messages passed between queues
owned by different threads. We specified a set of more than 20 SE-AΩ properties most
of which were expressed using both states and events. That was required to make proper
assertions on the communication actions carrying data.

We found a bug in the provided version of the IPC code and reported it to our
industrial partner. The bug was a race condition in which a writer mistakenly blocks
while trying to write to a queue that is not full. That bug violated the property that no
communications timeout when they could be safely delivered. It had been undetected
despite seven years of industrial use of the IPC, including a substantial testing phase.

We are currently examining other case studies. For future work, we would also
like to carry out a systematic evaluation of the expressiveness of the SE-AΩ logic in
comparison to other universal logics, estimating the complexity of our algorithms and
improving the methods presented in this paper.

References

[1] T. Ball and S. K. Rajamani. Automatically validating temporal safety properties of inter-
faces. In Proc. of SPIN. LNCS 2057, 2001.

[2] S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. State/event-based software
model checking. In Proc. of IFM. LNCS, 2004. To appear.

[3] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of software
components in C. In Proc. of ICSE. IEEE Computer Society, 2003.

[4] S. Chaki, J. Ouaknine, K. Yorav, and E. Clarke. Automated compositional abstraction
refinement for concurrent C programs: A two-level approach. In Proc. of SoftMC. ENTCS
89(3), 2003.

[5] Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, and Helmut Veith. Modular veri-
fication of software components in C. In Proc. of ICSE. IEEE Computer Society, 2003.

[6] P. Chauhan, E. M. Clarke, J. H. Kukula, S. Sapra, H. Veith, and D. Wang. Automated ab-
straction refinement for model checking large state spaces using SAT based conflict analy-
sis. In Proc. of FMCAD, 2002.

[7] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement. In Proc. of CAV. LNCS 1855, 2000.

[8] E. M. Clarke, O. Grumberg, and R. P. Kurshan. A synthesis of two approaches for verifying
finite state concurrent systems. Logic Computat., 2(5):606–618, 1992.

[9] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. Proc. of
TOPLAS, 1994.

[10] E. M. Clarke, A. Gupta, J. H. Kukula, and O. Strichman. SAT based abstraction-refinement
using ILP and machine learning techniques. In Proc. of CAV, 2002.

17

[11] Edmund M Clarke, Somesh Jha, Yuan Lu, and Helmut Veith. Tree-like counterexamples in
model checking. In Proc. of LICS. IEEE Computer Society, 2002.

[12] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analy-
sis of programs by construction or approximation of fixpoints. In Proc. of the SIGPLAN
Conference on Programming Languages, 1977.

[13] M. Dam. CTL∗ and ECTL∗ as fragments of the modal µ-calculus. Theoretical Computer
Science, 126:77–96, 1994.

[14] J. Haartsen, Bluetooth Baseband Specification, version 1.0.
http://www.bluetooth.com.

[15] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Proc. of POPL,
2002.

[16] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[17] M. Huth, R. Jagadeesan, and D. Schimidt. Modal transition systems: A foundation for

three-valued program analysis. In LNCS, volume 2028, page 155. Springer, 2001.
[18] E. Kindler and T. Vesper. ESTL: A temporal logic for events and states. Lecture Notes in

Computer Science, 1420:365–383, 1998.
[19] R. P. Kurshan. Analysis of discrete event coordination. In Proc. REX Workshop 89, volume

430. Springer LNCS, 1989.
[20] R. P. Kurshan. Computer-aided verification of coordinating processes: the automata-

theoretic approach. Princeton University Press, 1994.
[21] Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre. Incremental verification by abstrac-

tion. In Proc. of TACAS. LNCS 2031, 2001.
[22] MAGIC website. http://www.cs.cmu.edu/∼chaki/magic.
[23] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[24] G. Naumovich, L. A. Clarke, L. J. Osterweil, and M. B. Dwyer. Verification of concurrent

software with FLAVERS. In Proc. of ICSE. ACM Press, 1997.
[25] R. De Nicola and F. Vaandrager. Three logics for branching bisimulation. Journal of the

ACM (JACM), 42(2):458–487, 1995.
[26] C. S. Păsăreanu, M. B. Dwyer, and W. Visser. Finding feasible counter-examples when

model checking abstracted Java programs. In Proc. of TACAS, 2001.
[27] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
[28] S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS. In Proc. of CAV,

volume 1254. Springer LNCS, 1997.
[29] W. Thomas. Computation tree logic and regular ω-languages. In Proc. of Linear Time,

Branching Time and Partial Order in Logics and Models for Concurrency. LNCS 354,
1989.

[30] M.Y. Vardi and P. Wolper. Yet another process logic. In Proc. of FOCS, 1983.
[31] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Com-

putation, 115(1):1–37, 1994.
[32] P. Wolper. Temporal logic can be more expressive. Information and Control, 56:72–99,

1983.

