
ARA*: Formal Analysis

Maxim Likhachev, Geoff Gordon, Sebastian Thrun

July 2003
CMU-CS-03-148

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

In real world problems, time for deliberation is often limited. Anytime algo-
rithms are beneficial in these conditions as they usually find a first, possibly
highly suboptimal, solution very fast and then continually work on improv-
ing the solution until allocated time expires. While anytime algorithms are
popular, existing anytime search methods are unable to provide a measure
of goodness of their results. In this paper we propose the ARA* algorithm.
ARA* is an anytime heuristic search which tunes its performance bound
based on available search time. It starts by finding a suboptimal solution
quickly using a loose bound, then tightens the bound progressively as time
allows. Given enough time it finds a provably optimal solution. In addition
to the theoretical analysis we demonstrate the practical utility of ARA* with
experiments on a simulated robot kinematic arm and dynamic path planning
problem for an outdoor rover.



Keywords: search, anytime search, anytime heuristic search, weighted
heuristics, anytime planning



1 Introduction

Optimal search is often infeasible for real world problems as we are given a
limited amount of time for deliberation and the best solution given the time
provided should be found [13]. In these conditions anytime algorithms [4, 8,
16] prove to be useful as they usually find a first, possibly highly suboptimal,
solution very fast and then continually work on improving the solution until
allocated time expires. Unfortunately, they can rarely provide bounds on the
sub-optimality of their solutions. In fact, it is hard to do so as the cost of the
optimal solution is often unknown until the optimal solution itself is found.
Providing the sub-optimality bounds, on the other hand, is valuable as it
allows one to judge the quality of the algorithm, to intelligently evaluate the
quality of the past planning episodes and allocate time for future planning
episodes accordingly, and finally to decide whether to continue or preempt
search based on the current sub-optimality.

A* search with inflated heuristics (actual heuristic values are multiplied
by an inflation factor ε > 1) is sub-optimal but proves to be fast for many
domains [2, 10, 15, 5, 1, 3] and also provides a bound on the sub-optimality,
namely, the ε by which the heuristic is inflated [12]. To construct an anytime
algorithm with sub-optimality bounds one could run a succession of these A*
searches with decreasing inflation factors. This naive approach results in a
series of solutions, each one with a sub-optimality factor equal to the corre-
sponding inflation factor. The approach, however, wastes a lot of computa-
tion since each search iteration duplicates most of the efforts of the previous
searches. One could also try to employ incremental heuristic searches (e.g.,
[9, 14]), but the sub-optimality bounds for each search iteration would no
longer be guaranteed, not to mention that they only support admissible (un-
derestimating) heuristics whereas inflated heuristics are usually inadmissible
(overestimating).

To this end we propose the ARA* (Anytime Repairing A*) algorithm,
which is an efficient anytime heuristic search that also runs A* with inflated
heuristics in succession but reuses search efforts from previous executions in
such a way that the sub-optimality bounds are still satisfied. As a result,
a substantial speedup is achieved by not re-computing the state values that
have been correctly computed in the previous iterations.

The only other anytime heuristic search known to us is described in [7].
It also first executes an A* with inflated heuristics and then continues to
improve a solution. The only sub-optimality bound that it can guarantee,

1



however, is the inflation factor of the first search, and thus any consequent
search efforts do not result in the decrease of the sub-optimality bound. The
search efforts of ARA*, in contrast, result in both the continuous decrease
of the sub-optimality bound and a new solution that satisfies the bound.

In this paper we present both theoretical and empirical analysis of ARA*.
For theoretical analysis we present several theorems that prove the sub-
optimality bounds of the paths ARA* produces and the convergence of the
sequence of these paths to an optimal path, and state formally a reason for
the efficiency of ARA*. A full theoretical treatment of ARA* can be found
in the appendix (a short version of this paper with no proofs can be found
in [11].) The empirical analysis of ARA* is done on two different domains.
An evaluation of ARA* on a simulated robot kinematic arm with six degrees
of freedom shows up to 6-fold speedup over the succession of A* searches.
We also demonstrate how ARA* enables us to successfully solve the prob-
lem of efficient path-planning for mobile robots that takes into account the
dynamics of the robot.

2 The ARA* Algorithm

2.1 A* with Weighted Heuristic

Normally, A* takes as input a heuristic h(s) which must be consistent. That
is, h(s) ≤ c(s, s′) + h(s′) for any successor s′ of s if s 6= sgoal and h(s) = 0
if s = sgoal. Here c(s, s′) denotes the cost of an edge from s to s′ and
has to be positive. Consistency, in its turn, guarantees that the heuristic
is admissible: h(s) is never larger than the true cost of reaching the goal
from s. Inflating the heuristic (that is, using ε ∗ h(s) for ε > 1) often results
in much fewer state expansions and consequently faster searches. However,
inflating the heuristic may also violate the admissibility property, and as a
result, a solution is no longer guaranteed to be optimal. The pseudocode of
A* with inflated heuristic is given in Figure 1 for easy comparison with our
algorithm, ARA*, presented later.

A* maintains two functions from states to real numbers: g(s) is the cost
of the currently found path from the start node to s (it is assumed to be ∞
if no path to s has been found yet), and f(s) = g(s) + ε ∗ h(s) is an estimate
of the total distance from start to goal going through s. A* also maintains a
priority queue, OPEN, of states which it plans to expand. The OPEN queue

2



01 g(sstart) = 0; OPEN = ∅;
02 insert sstart into OPEN with f(sstart) = ε ∗ h(sstart);
03 while(sgoal is not expanded)
04 remove s with the smallest f -value from OPEN ;
05 for each successor s′ of s
06 if s′ was not visited before then
07 f(s′) = g(s′) =∞;
08 if g(s′) > g(s) + c(s, s′)
09 g(s′) = g(s) + c(s, s′);
10 f(s′) = g(s′) + ε ∗ h(s′);
11 insert s′ into OPEN with f(s′);

Figure 1: A* with heuristic weighted by ε ≥ 1

ε = 2.5 ε = 1.5 ε = 1.0 (optimal search)

Figure 2: A* search with weighted heuristic

is sorted by f(s), so that A* always expands next the state which appears to
be on the shortest path from start to goal. A* initializes the OPEN list with
the start state, sstart (line 02). Each time it expands a state s (lines 04-11),
it removes s from OPEN . It then updates the g-values of all of s’s neighbors;
if it decreases g(s′), it inserts s′ into OPEN . A* terminates as soon as the
goal state is expanded.

Clearly, setting ε to 1 makes it a normal operation of A*, and the solution
that it finds is guaranteed to be optimal. For ε > 1 a solution can be sub-
optimal, but the sub-optimality is bounded by a factor of ε: the length of the
found solution is no larger than ε times the length of the optimal solution [12].

The example in Figure 2 shows the operation of A* algorithm with a
heuristic inflated by ε = 2.5, ε = 1.5 and a normal heuristic (ε = 1) on a
simple grid world. In the example we use an eight-connected grid with black
cells being obstacles. S denotes a start state, while G denotes a goal state.
The cost of moving from one cell to its neighbor is one. The heuristic is the
larger of the x and y distances from the cell to the goal. The cells which were
expanded are shown in grey. (A* can stop search as soon as it is about to

3



expand a goal state without actually expanding it. Thus, the goal state is not
shown in grey.) Paths found by searches are shown with the grey polyline.
A* searches with the inflated heuristics expand substantially fewer cells than
A* with the normal heuristic, but their solution is sub-optimal.

2.2 ARA*: Reuse of Search Results

ARA* works by executing A* multiple times, starting with a large ε and
decreasing ε prior to each execution until ε = 1. As a result, after each
search a solution is guaranteed to be within a factor ε of optimal. Running
A* search from scratch every time we decrease ε, however, would be very
expensive. We will now explain how ARA* reuses the results of the previous
searches to save computation. The pseudocode of ARA* is given in Figures 3
and 5. We first explain the ImprovePath function (Figure 3) that recomputes
a path for a given ε. In the next section we explain the Main function of
ARA* (Figure 5) that repetitively calls the ImprovePath function with a
series of decreasing εs.

Let us first introduce a notion of local inconsistency (we borrow this
term from [9]). A state is called locally inconsistent every time its g-value is
decreased (line 09, Figure 1) and until the next time the state is expanded.
That is, suppose that state s is the best predecessor for some state s′: that
is, g(s′) = mins′′∈pred(s′)(g(s′′) + c(s′′, s′)) = g(s) + c(s, s′). Then, if g(s)
decreases we get g(s′) > mins′′∈pred(s′)(g(s′′) + c(s′′, s′)). In other words, the
decrease in g(s) introduces a local inconsistency between the g-value of s
and the g-values of its successors. Whenever s is expanded, on the other
hand, the inconsistency of s is corrected by re-evaluating the g-values of the
successors of s (line 08-09, Figure 1). This in turn makes the successors of s
locally inconsistent. In this way the local inconsistency is propagated to the
children of s via a series of expansions until they no longer rely on s, in which
case none of their g-values are lowered, as a result none of them are inserted
into OPEN list, and therefore the series of expansions that started with s
stops. Given this definition of local inconsistency it is clear that OPEN list
consists of exactly all locally inconsistent states as every time a g-value is
lowered the state is inserted into OPEN , and every time a state is expanded
it is removed from OPEN until the next time its g-value is lowered. Thus,
OPEN list can be viewed as a set of states with which the propagation of
local inconsistency should proceed.

A* with a consistent heuristic is guaranteed not to expand any state

4



more than once. Setting ε > 1, however, may violate consistency, and as
a result A* search may re-expand states multiple times. It turns out that
if we restrict each state to be expanded no more than once, then the sub-
optimality bound of ε of a solution still holds. To implement this restriction
we check any state whose g-value is lowered and insert it into OPEN only if
it has not been previously expanded (line 10, Figure 3). The set of expanded
states is maintained in the CLOSED variable.

procedure fvalue(s)
01 return g(s) + ε ∗ h(s);
procedure ImprovePath()
02 while(fvalue(sgoal) > mins∈OPEN(fvalue(s)))
03 remove s with the smallest fvalue(s) from OPEN ;
04 CLOSED←CLOSED ∪ {s};
05 for each successor s′ of s
06 if s′ was not visited before then
07 g(s′) =∞;
08 if g(s′) > g(s) + c(s, s′)
09 g(s′) = g(s) + c(s, s′);
10 if s′ 6∈ CLOSED
11 insert s′ into OPEN with fvalue(s′);
12 else
13 insert s′ into INCONS ;

Figure 3: ImprovePath function of ARA*

With this restriction we will expand each state at most once, but OPEN
may no longer contain all the locally inconsistent states. In fact, it will only
contain the locally inconsistent states that have not yet been expanded. It is
important, however, to keep track of all the locally inconsistent states as they
will be the starting points for inconsistency propagation in the future search
iterations. We do this by maintaining the set INCONS of all the locally
inconsistent states that are not in OPEN (lines 12-13, Figure 3). Thus, the
union of INCONS and OPEN lists is then again exactly the set of all locally
inconsistent states, and can be used as a starting point for inconsistency
propagation before each new search iteration.

The only other difference between the ImprovePath function and A* is the
termination condition. Since the ImprovePath function reuses search efforts
from the previous executions sgoal may never become locally inconsistent and,
thus may never be inserted into OPEN . As a result, the termination condition

5



initial search (ε = 2.5) second search (ε = 1.5) third search (ε = 1.0)

Figure 4: ARA* search

of A* becomes invalid. A* search, however, can also stop as soon as f(sgoal)
is equal to the minimal f -value among all the states on OPEN list. This
condition is the condition that we use in the ImprovePath function (line 02,
Figure 3). The new termination condition allows us also to avoid expanding
sgoal as well as possibly some other states with the same f -value. (Note
that ARA* no longer maintains f -values as variables since in between the
calls to the ImprovePath function ε is changed, and it would be prohibitively
expensive to update the f -values of all the states. Instead, fvalue(s) function
is called to compute and return the f -values only for the states in OPEN
and sgoal.)

2.3 ARA*: Iterative Execution of Searches

We now introduce the main function of ARA* (Figure 5) that performs a
series of search iterations. It does initialization and then repetitively calls
the ImprovePath function with a series of decreasing εs. The ImprovePath
function is equivalent to a single call of A* with a heuristic weighted by
ε except that the ImprovePath function restricts each state to at most one
expansion and maintains all the inconsistent states in the union of OPEN and
INCONS lists as we have just described. Before each call to the ImprovePath
function a new OPEN list is constructed by moving into it the contents of
the set INCONS . Since OPEN list has to be sorted by the current f -values
of states it is also re-ordered (lines 08-09, Figure 5).

Thus, after each call to the ImprovePath function we get a solution that is
sub-optimal by at most factor of ε. Within each execution of the ImprovePath
function each state is expanded at most once, and we mainly save computa-
tions by not re-expanding the states which were locally consistent and whose
g-values were already correct before a call to the ImprovePath function (The-
orem 2 states this more precisely). For example, Figure 4 shows a series of

6



01 g(sgoal) =∞; g(sstart) = 0;
02 OPEN = CLOSED = INCONS = ∅;
03 insert sstart into OPEN with fvalue(sstart);
04 ImprovePath();
05 publish current ε-suboptimal solution;
06 while ε > 1
07 decrease ε;
08 Move states from INCONS into OPEN ;
09 Update the priorities for all s ∈ OPEN according to fvalue(s);
10 CLOSED = ∅;
11 ImprovePath();
12 publish current ε-suboptimal solution;

Figure 5: Main function of ARA*

calls to the ImprovePath function. States that are locally inconsistent at the
end of an iteration are shown with an asterisk. While the first call (ε = 2.5)
is identical to the A* call with the same ε (Figure 2), the second call to
the ImprovePath function (ε = 1.5) expands only 1 cell. This is in contrast
to 15 cells expanded by A* search with the same ε. For both searches the
sub-optimality factor decreases from 2.5 to 1.5. Finally, the third call to
the ImprovePath function with ε set to 1 expands only 9 cells. The solution
is now optimal, and the total number of expansion is 23. Only 2 cells are
expanded more than once across all three calls to the ImprovePath function.
Even a single optimal search from scratch expands not much fewer cells: 20
cells (Figure 2, ε = 1).

2.4 Theoretical Properties of the Algorithm

In this section we present some of the theoretical properties of ARA*. For
the proofs of these and other properties of the algorithm please refer to the
appendix. In the theorems we use g∗(s) to denote the cost of an optimal path
from sstart to s. Let us also define a greedy path from sstart to s as a path that
is computed by tracing it backward as follows: start at s, and at any state si

pick a state si−1 = arg mins′∈pred(si)(g(s′) + c(s′, si)) until si−1 = sstart. The
first theorem then says that, for any state s with an f -value smaller than or
equal to the minimum f -value in OPEN , we have computed a greedy path
from sstart to s which is within a factor of ε of optimal. This theorem is
equivalent to the combination of Theorems 9 and 11 in the appendix.

7



Theorem 1 Whenever the ImprovePath function exits, for any state s with
f(s) ≤ min

s′∈OPEN(f(s′)), we have g∗(s) ≤ g(s) ≤ ε ∗ g∗(s), and the cost of
a greedy path from sstart to s is no larger than g(s).

This theorem establishes the correctness of ARA*: each execution of
the ImprovePath function terminates when f(sgoal) is no larger than the
minimum f -value in OPEN , which means we have found a path from start
to goal which is within a factor ε of optimal. Since before each iteration ε
is decreased, ARA* gradually decreases the sub-optimality bound and finds
new solutions to satisfy the bound.

The next theorem formalizes where the computational savings for ARA*
search come from. According to it, unlike A* search with an inflated heuris-
tic each search iteration in ARA* is guaranteed not to expand states more
than once. Moreover, only states whose g-values can be lowered or which are
locally inconsistent are expanded. Thus, if before a call to the ImprovePath
function a g-value of a state has already been correctly computed by some
previous search, then this state is guaranteed not to be expanded unless it is
in the set of locally inconsistent states already and thus needs to update its
neighbors (propagate local inconsistency). The following theorem is equiva-
lent to the combination of Theorems 14 and 16 in the appendix.

Theorem 2 Within each call to ImprovePath() a state is expanded at most
once and only if it was locally inconsistent before the call to ImprovePath()
or its g-value was lowered during the current execution of ImprovePath().

3 Experimental Study

3.1 Robotic Arm

We first evaluate the performance of ARA* on a simulated 6 degree of free-
dom robotic arm (Figure 6). The base of the arm is fixed, and the task is to
move its end-effector into the goal location. The initial configuration of the
arm is the rightmost configuration. The grey rectangles are obstacles that
the arm should go around. An action is defined as a change of a global angle
of any particular joint (i.e., the next joint further along the arm rotates in
the opposite direction to maintain the global angle of the remaining joints.)
We discretitize the workspace into 50 by 50 cells and compute a distance
from each cell to the cell containing the end-effector goal position taking
into account that some cells are occupied by obstacles. This distance is our

8



heuristic. In order for the heuristic not to overestimate true costs, joint an-
gles are discretitized so as to never move the end-effector by more than one
cell in a single action. The resulting state-space is over 3 billion states, and
memory for states is allocated on demand.

In Figure 6, the leftmost figure shows the planned trajectory of the robot
arm after the initial search of ARA* with ε = 3.0. The time to plan this tra-
jectory is about 0.04 secs. (By comparison, a search for an optimal trajectory
is infeasible as it runs out of memory very quickly.) The plot in the middle
shows that for a succession of A* searches it takes more than 4.5 times longer
to reach ε = 1.1 than for ARA*. In both cases ε is initially 3.0 and decreases
in steps of 0.02 (2% sub-optimality). In the experiment for the middle plot
all the actions have the same cost. In the experiment for the rightmost plot
actions have non-uniform costs: changing a joint angle closer to the base is
more expensive than changing a higher joint angle. As a result of the non-
uniform costs our heuristic becomes less informative, and so search is much
more expensive. In this experiment we decreased ε from 10 to 4.5 for ARA*
(the succession of A* searches could only achieve ε = 4.65). For ARA* it
takes about 15 mins and 6 million state expansions to reach ε = 4.65, while
for the succession of A* searches it takes about 1.66 hours and over 40 mil-
lion state expansions to reach the same ε (over 6-fold speedup by ARA*).
Put another way, after 10 minutes ARA* reaches a bound of 4.95 while A*
achieves only 5.45. While Figure 6 shows execution time, the comparison
of state expanded (not shown) is almost identical. Finally, to evaluate the
expense of the anytime property of ARA* we ran ARA* and an optimal A*
search on an environment slightly simpler than the one in Figure 6 (for the
optimal search to be feasible). Optimal A* search required about 5.8 mins
(2,202,666 state expanded) to find an optimal solution, while ARA* required
about 6.0 mins (2,207,178 state expanded) to decrease ε from 3.0 to 1.0 in
steps of 0.2 and also guarantee the solution optimality (3% overhead).

3.2 Outdoor Robot Navigation

For us the motivation for this work was efficient path-planning for mobile
robots in large outdoor environments, where optimal trajectories involve fast
motion and sweeping turns at speed and as a result, it is particularly impor-
tant to take advantage of the robot’s momentum and find dynamic rather
than static plans. We use a 4D state space: xy position, orientation, and ve-
locity. High dimensionality combined with large environments results in very

9



arm trajectory for ε = 3.0 uniform costs non-uniform costs

Figure 6: robot arm experiment (the trajectory shown is downsampled by 6)

large state-spaces for the planner and makes it computationally infeasible for
the robot to move and plan optimally every time it discovers new obstacles
or modelling errors. To solve this problem we built a two-level planner: a 4D
planner that uses ARA*, and a fast 2D (x, y) planner that uses A* search
and whose results serve as the heuristics for the 4D planner. 1

In Figure 7 we show the robot we used for navigation and a 3D laser
scan [6] constructed by the robot of the environment we tested our system
in. The scan is converted into a map of the environment (upper right figure).
In black are shown what are believed to be obstacles by the robot. The size
of the environment is 91.2 by 94.4 meters, and the map is discretitized into
cells of 0.4 by 0.4 meters. Thus, the 2D state-space consists of 53808 states.
The 4D state space has over 20 million states. The robot initial state is the
upper circle, while its goal is the lower circle. To ensure safe operation we
created a buffer zone with high costs around each obstacle. The squares in
the upper-right corners of the figures show a magnified fragment of the map
with grayscale proportional to cost. The 2D plan (upper right figure) makes
sharp 45 degree turns when going around the obstacles, requiring the robot
to come to complete stops. The optimal 4D plan results in a wider turn, and
the velocity of the robot remains high throughout the whole trajectory. In
the first plan computed by ARA* starting at ε = 2.5 (lower middle figure)

1To interleave search with the execution of the best plan so far we perform 4D search
backward. That is, the start of the search, sstart, is the actual goal state of the robot,
while the goal of the search, sgoal, is the current state of the robot. Thus, sstart does not
change as the robot moves and the search tree remains valid in between search iterations.
Since heuristics estimate the distances to sgoal (the robot position) we have to recompute
them during the reorder operation (line 09, Figure 5).

10



robot with laser scanner 3D Map optimal 2D search

optimal 4D search with A* 4D search with ARA* 4D search with ARA*
after 25 secs after 0.6 secs (ε = 2.5) after 25 secs (ε = 1.0)

Figure 7: outdoor robot navigation experiment (cross shows the position of
the robot)

the trajectory is much better than the 2D plan, but somewhat worse than
the optimal 4D plan.

The time required for the optimal 4D planner was 11.196 secs, whereas
the time for the 4D planner that runs ARA* to generate the shown plan was
556 msecs. As a result, the robot that runs ARA* can start executing a plan
much earlier. Thus, the robot running optimal 4D planner is still near the
beginning of its path to the goal after 25 seconds from the time it receives
a goal location (the position of the robot is shown by cross). In contrast,
in the same amount of time the robot running ARA* has advanced much
further (lower right figure), and its plan by now has converged to optimal (ε
was decreased to 1) and thus is no different from the one computed by the
optimal 4D planner.

11



4 Conclusions

We have presented the first anytime heuristic search that works by continu-
ally decreasing a sub-optimality bound on its solution and finding new solu-
tions that satisfy the bound on the way. It executes a series of searches with
decreasing sub-optimality bound, where each search tries to reuse as much
as possible of the results from the previous searches. The experiments show
that ARA* is much more efficient than the best previous anytime search with
provable performance bounds, namely a series of A* searches with decreasing
εs, and can successfully be used for large robotic planning problems.

12



A ARA*: The Proofs

A.1 Pseudocode of ARA*

The pseudocode in Figure 8 is slightly different from the one presented in
the main text. In particular, every state s now maintains an additional
variable, v(s), which is initially set to ∞, and then is reset to the g-value of
s every time s expanded. This modification simplifies the proofs and makes
the interpretation of local inconsistency clearer: a state s is called locally
inconsistent iff v(s) 6= g(s). Otherwise, the v-values are not used in the
algorithm, and therefore it should be clear that the pseudocode in Figure 8
is algorithmically identical to the pseudocode of ARA* as presented in the
main text of the paper.

Henceforth, all line numbers in the text of the proofs will refer to the
pseudocode in Figure 8.

A.2 Notations

Some of the definitions given in this section are just repetitions of the ones
in the main body of the paper, but we still present them here for an easier
reference. A state s is called locally inconsistent iff v(s) 6= g(s). Heuristics
need to be consistent. That is, h(s) ≤ c(s, s′) + h(s′) for any successor s′ of
s if s 6= sgoal and h(s) = 0 if s = sgoal. For any pair of states s, s′ ∈ succ(s)
the cost between the two needs to be positive: c(s, s′) > 0. c∗(s, s′) denotes
the cost of a shortest path from s to s′. g∗(s) denotes the cost of a shortest
path from sstart to s. We restrict that 1 ≤ ε <∞.

Let us define gε(s) = mins′∈pred(s)(v(s′) + ε ∗ c(s′, s)) if s 6= sstart and
gε(s) = 0 otherwise (for ε = 1 it can be shown that gε(s) is always equal to
g(s).) A state s is called ε locally inconsistent iff v(s) > gε(s). f(s) is defined
to be always equal to g(s) + ε ∗ h(s). Let us also define a greedy path from
sstart to s as a path that is computed by tracing it backward as follows: start
at s, and at any state si pick a state si−1 = arg mins′∈pred(si)(g(s′) + c(s′, si))
until si−1 = sstart.

Finally, any state s with undefined values (not visited) is assumed to
have v(s) = g(s) = ∞. We also assume that mins∈OPEN(fvalue(s)) = ∞ if
OPEN = ∅.
.

13



procedure fvalue(s)
01 return g(s) + ε ∗ h(s);
procedure ImprovePath()
02 while(fvalue(sgoal) > mins∈OPEN(fvalue(s)))
03 remove s with the smallest fvalue(s) from OPEN ;
04 v(s) = g(s); CLOSED←CLOSED ∪ {s};
05 for each successor s′ of s
06 if s′ was not visited before then
07 v(s′) = g(s′) =∞;
08 if g(s′) > g(s) + c(s, s′)
09 g(s′) = g(s) + c(s, s′);
10 if s′ 6∈ CLOSED
11 insert s′ into OPEN with fvalue(s′);
12 else
13 insert s′ into INCONS ;
procedure Main()
14 g(sgoal) = v(sgoal) =∞; v(sstart) =∞;
15 g(sstart) = 0; OPEN = CLOSED = INCONS = ∅;
16 insert sstart into OPEN with fvalue(sstart);
17 ImprovePath();
18 publish current ε-suboptimal solution;
19 while ε > 1
20 decrease ε;
21 Move states from INCONS into OPEN ;
22 Update the priorities for all s ∈ OPEN according to fvalue(s);
23 CLOSED = ∅;
24 ImprovePath();
25 publish current ε-suboptimal solution;

Figure 8: ARA*

A.3 Proofs

First, in the section A.3.1 we prove several lemmas and theorems about some
of the more obvious properties of the main search loop (the body of the Im-
provePath function). In the following section A.3.2 we prove several theorems
that constitute the main idea behind ARA*. Finally, in the section A.3.3 we
show how these theorems lead to the correctness of ARA*.

14



A.3.1 Properties of the main search loop

Most of the theorems in this section simply state the correctness of the pro-
gram state variables such as heuristic values, g-values and OPEN , INCONS
and CLOSED sets. The theorems also show that g(s) is always an upper
bound on the cost of a greedy path from sstart to s, and can never become
smaller than the cost of a least-cost path from sstart to s, g∗(s).

Lemma 3 For any pair of states s and s′, ε ∗ h(s) ≤ ε ∗ c∗(s, s′) + ε ∗ h(s′).

Proof: According to [12] the consistency property is equivalent to the
restriction that h(s) ≤ c∗(s, s′)+h(s′) for any pair of states s, s′ and h(sgoal) =
0. The theorem then follows by multiplying the inequality with ε.

Lemma 4 At any point of time for any state s, v(s) ≥ g(s).

Proof: The theorem clearly holds before the ImprovePath function is
called for the first time since at that point all the v-values are infinite. Af-
terwards, g-values can only decrease (line 09). For any state s, on the other
hand, v(s) only changes on line 04 when it is set to g(s). Thus, it is always
true that v(s) ≥ g(s).

Theorem 5 At line 02, g(sstart) = 0 and for ∀s 6= sstart, g(s) = mins′∈pred(s)(v(s′)+
c(s′, s)).

Proof: The theorem holds after the initialization, when g(sstart) = 0
while the rest of g-values are infinite, and all the v-values are infinite. The
only place where g- and v-values are changed afterwards is on lines 04 and
09. If v(s) is changed in line 04, then it is decreased according to Lemma 4.
Thus, it may only decrease the g-values of its successors. The test on line 08
checks this and updates the g-values if necessary. Since all costs are positive
and never change, g(sstart) can never be changed: it will never pass the test
on line 08, and thus is always 0.

Theorem 6 At line 02, OPEN and INCONS are disjoint. Their union con-
tains all and only locally inconsistent states. Of these states, INCONS con-
tains exactly the ones which are also in CLOSED.

15



Proof: The first time line 02 is executed OPEN = {sstart} which is
indeed locally inconsistent as g(sstart) = 0 6=∞ = v(sstart). Also, INCONS =
CLOSED = ∅, and all states besides sstart are locally consistent as they all
have infinite v- and g-values.

During the following execution whenever we decrease g(s) (line 09), and
as a result make s locally inconsistent (Lemma 4), we insert it into either
OPEN or INCONS depending on whether it is in CLOSED ; whenever we
remove s from OPEN (line 03) we set v(s) = g(s) (line 04) making the state
locally consistent; whenever we move s from INCONS to OPEN (line 21),
we remove s from CLOSED (line 23). We never add s to CLOSED while it
is still in OPEN , and we never modify v(s) or g(s) elsewhere.

Corollary 7 Before each call to the ImprovePath function OPEN contains
all and only inconsistent states.

Proof: Before each call to the ImprovePath function CLOSED = INCONS =
∅. Thus, from Theorem 6 it follows that OPEN contains all and only locally
inconsistent states.

Theorem 8 Suppose s is selected for expansion on line 03. Then the next
time line 02 is executed v(s) = g(s), where g(s) before and after the expansion
of s is the same.

Proof: Suppose s is selected for expansion. Then on line 04 v(s) = g(s),
and it is the only place where a v-value changes. We, thus, only need to
show that g(s) does not change. It could only change if s ∈ succ(s) and
g(s) > v(s) + c(s, s). The second test, however, implies that c(s, s) < 0 since
we have just set v(s) = g(s). This contradicts to our restriction that costs
are positive.

Theorem 9 At line 02, for any state s, the cost of a greedy path from sstart

to s is no larger than g(s), and v(s) ≥ g(s) ≥ g∗(s).

Proof: v(s) ≥ g(s) holds according to Lemma 4. We thus only need to
show that the cost of a greedy path from sstart to s is no larger than g(s),
and g(s) ≥ g∗(s). The statement follows if g(s) = ∞. We thus assume a
finite g-value.

16



Consider a greedy path from sstart to s: s0 = sstart, s1, ..., sk = s. Then
from the definition of such path for any i > 0, g(si) = v(si−1) + c(si−1, si) ≥
g(si−1) + c(si−1, si) from Theorem 5 and Lemma 4. For i = 0, g(si) =
g(sstart) = 0. Thus, g(s) = g(sk) ≥ g(sk−1) + c(sk−1, sk) ≥ g(sk−2) +
c(sk−2, sk−1) + c(sk−1, sk) ≥ ... ≥ ∑

j=1..k c(sj−1, sj). That is, g(s) is at least
as large as the cost of the greedy path from sstart to s. Since the cost can
not be smaller than the cost of a least-cost path we also have g(s) ≥ g∗(s).

A.3.2 Main theorems

We now prove two theorems which constitute our main results about ARA*.
These theorems guarantee that ARA* is ε sub-optimal: when it finishes its
processing for a given ε, it has identified a set of states for which its cost
estimates g(s) are no more than a factor of ε greater than the optimal costs
g∗(s). In section A.3.3 we will then prove corollaries which show that given
such cost estimates the greedy paths that ARA* finds to these states are
sub-optimal by at most ε.

If we set our initial ε to 1, the ImprovePath function in ARA* is es-
sentially equivalent to the A* algorithm. The only difference is that ARA*
assumes that our heuristic is consistent, while A* is defined for any admissi-
ble heuristic.2 For intuition, here is a very brief summary of how our proofs
below would apply to A*: we would start by showing that the OPEN list
always contains all locally inconsistent states. (These states are arranged in
a priority queue ordered by their f values.) We say a state s is ahead of
the OPEN list if f(s) ≤ f(u) for all u ∈ OPEN. We then prove by induc-
tion that states which are ahead of OPEN have already been assigned their
correct optimal path length. The induction works because, when we expand
the state at the head of the OPEN queue, its optimal path depends only on
states which are already ahead of the OPEN list.

The proofs for ARA* are somewhat more complicated than for A* because
the heuristic is inflated and therefore may be inadmissible, and the OPEN
list may also not contain all locally inconsistent states. (Some of these states
may be in INCONS because they have already been expanded.) Therefore,
we will examine the set Q instead:

Q = {u | v(u) > gε(u) ∧ v(u) > ε ∗ g∗(u)} (1)

2It is actually possible to use ARA* with an inconsistent heuristic, but doing so is
beyond the scope of this report.

17



This set contains all ε locally inconsistent states except those whose g-values
are already within a factor of ε of their true costs.

The set Q takes the place of the OPEN list in the next theorem. In
particular, Theorem 10 says that all states which are ahead of Q have their
g-values within a factor of ε of optimal. Theorem 11 builds on this result by
showing that OPEN is always a superset of Q, and therefore the states which
are ahead of OPEN are also ahead of Q. (Theorem 10 is actually stronger
than required for the proof of Theorem 11, but we prove the strong version
because it might be useful for optimizations in the future.)

Theorem 10 At line 02, let Q be defined according to the definition 1. Then
for any state s with (f(s) ≤ f(u) ∀u ∈ Q), it holds that g(s) ≤ ε ∗ g∗(s).

Proof: We prove by contradiction. Suppose there exists an s such that
f(s) ≤ f(u) ∀u ∈ Q, but g(s) > ε∗ g∗(s). The latter implies that g∗(s) <∞.
We also assume that s 6= sstart since otherwise g(s) = 0 = ε ∗ g∗(s) from
Theorem 5.

Consider a least-cost path from sstart to s, π(s0 = sstart, ..., sk = s).
The cost of this path is g∗(s). Such path must exist since g∗(s) < ∞.
Our assumption that g(s) > ε ∗ g∗(s) means that there exists at least one
si ∈ π(s0, ..., sk−1) whose v(si) > ε ∗ g∗(si). Otherwise,

g(s) = g(sk) = min
s′∈pred(s)

(v(s′) + c(s′, sk)) ≤

v(sk−1) + c(sk−1, sk) ≤
ε ∗ g∗(sk−1) + c(sk−1, sk) ≤

ε ∗ (g∗(sk−1) + c(sk−1, sk)) = ε ∗ g∗(sk) = ε ∗ g∗(s)

Let us now consider si ∈ π(s0, ..., sk−1) with the smallest index i ≥ 0
(that is, the closest to sstart) such that v(si) > ε ∗ g∗(si). We will now show
that si ∈ Q. If i = 0 then gε(si) = gε(sstart) = 0 according to the definition
of the gε-values. Thus: v(si) > ε ∗ g∗(si) = 0 = gε(si), and si ∈ Q. If i > 0
then

v(si) > ε ∗ g∗(si) =

ε ∗ (g∗(si−1) + c(si−1, si)) ≥
v(si−1) + ε ∗ c(si−1, si)

18



since we picked si to be the closest state to sstart with v(si) > ε ∗ g∗(si).
Thus,

v(si) > v(si−1) + ε ∗ c(si−1, si) ≥
min

s′∈pred(si)
(v(s′) + ε ∗ c(s′, si)) = gε(si)

As such, it must again be the case that si ∈ Q.
We will now also show that g(si) ≤ ε ∗ g∗(si). It is clearly so when i = 0

according to Theorem 5. For i > 0,

g(si) = min
s′∈pred(si)

(v(s′) + c(s′, si)) ≤

v(si−1) + c(si−1, si) ≤
ε ∗ g∗(si−1) + c(si−1, si) ≤

ε ∗ g∗(si)

We will now show that f(s) > f(si), and finally arrive at a contradiction.
According to our assumption

g(s) > ε ∗ g∗(s) =

ε ∗ (c∗(s0, si) + c∗(si, sk)) =

ε ∗ g∗(si) + ε ∗ c∗(si, sk) ≥
g(si) + ε ∗ c∗(si, s)

Adding ε ∗ h(s) on both sides and using Lemma 3:

f(s) = g(s) + ε ∗ h(s) >

g(si) + ε ∗ c∗(si, s) + ε ∗ h(s) ≥
g(si) + ε ∗ h(si) = f(si)

The inequality f(s) > f(si) implies, however, that si /∈ Q since f(s) ≤ f(u)
∀u ∈ Q. But this contradicts what we have proved earlier.

Theorem 11 At line 02, for any state s with (f(s) ≤ f(u) ∀u ∈ OPEN), it
holds that g(s) ≤ ε ∗ g∗(s).

Proof: Let Q be defined according to the definition 1. Now consider
any state s with v(s) > gε(s). It is then also true that v(s) > g(s) since

19



gε(s) = mins′∈pred(s)(v(s′) + ε ∗ c(s′, s)) ≥ mins′∈pred(s)(v(s′) + c(s′, s)) = g(s)
for any state s 6= sstart and gε(sstart) = g(sstart) = 0. Thus, s is also locally
inconsistent. Hence, for any state u ∈ Q it holds that u is locally inconsistent.

According to Corollary 7 every time the ImprovePath function is called
OPEN contains all locally inconsistent states. Therefore Q ⊆ OPEN, be-
cause as we have just shown any state u ∈ Q is also locally inconsistent.
Thus, if any state s has f(s) ≤ f(u) ∀u ∈ OPEN , it is also true that
f(s) ≤ f(u) ∀u ∈ Q, and g(s) ≤ ε ∗ g∗(s) from Theorem 10. Thus, within
each call to the ImprovePath function, the first time line 02 is executed the
theorem holds.

Also, because before each call to ImprovePath(), CLOSED = ∅, the fol-
lowing statement, denoted by (*), holds every time line 02 is executed for
the first time within each call to the ImprovePath function: for any state
s ∈ CLOSED v(s) ≤ ε ∗ g∗(s).

We will now show by induction that the theorem continues to hold for
the consecutive executions of the line 02 within each call to the ImprovePath
function. Suppose the theorem and the statement (*) held during all the
previous executions of line 02, and they still hold when a state s is selected
for expansion on line 03. We need to show that the theorem holds the next
time line 02 is executed.

We first prove that the statement (*) still holds during the next execution
of line 02. Since the v-value of only s is being changed and only s is being
added to CLOSED, we only need to show that v(s) ≤ ε ∗ g∗(s) during the
next execution of line 02 (that is, after the expansion of s). Since when
s is selected for expansion on line 03 f(s) = min

u∈OPEN(f(u)), we have
f(s) ≤ f(u) ∀u ∈ OPEN. According to the assumptions of our induction
then g(s) ≤ ε∗g∗(s). From Theorem 8 it then also follows that the next time
line 02 is executed v(s) ≤ ε ∗ g∗(s), and hence the statement (*) still holds.

We now prove that after s is expanded the theorem itself also holds. We
prove it by showing that Q continues to be a subset of OPEN the next
time line 02 is executed. According to Theorem 6 OPEN set contains all
locally inconsistent states that are not in CLOSED . Since, as we have just
proved, the statement (*) holds the next time line 02 is executed, all states
s in CLOSED set have v(s) ≤ ε ∗ g∗(s). Thus, any state s that is locally
inconsistent and has v(s) > ε ∗ g∗(s) is guaranteed to be in OPEN . Now
consider any state u ∈ Q. As we have shown earlier any state u is locally
inconsistent, and v(u) > ε ∗ g∗(u) according to the definition of Q. Thus,
u ∈ OPEN. This shows that Q ⊆ OPEN. Consequently, if any state s has

20



f(s) ≤ f(u) ∀u ∈ OPEN, it is also true that f(s) ≤ f(u) ∀u ∈ Q, and
g(s) ≤ ε∗g∗(s) from Theorem 10. This proves that the theorem holds during
the next execution of line 02, and proves the whole theorem by induction.

A.3.3 Correctness of ARA*

The corollaries in the this section show how the theorems in previous section
lead quite trivially to the correctness of ARA*.

Corollary 12 Each time the ImprovePath function exits the following holds
for any state s with f(s) ≤ mins′∈OPEN(f(s′)): the cost of a greedy path from
sstart to s is no larger than ε ∗ g∗(s).

Proof: According to Theorem 11 the condition f(s) ≤ min
s′∈OPEN(f(s′))

implies that g(s) ≤ ε ∗ g∗(s). The proof then follows by direct application of
Theorem 9.

Corollary 13 Each time the ImprovePath function exits the following holds:
the cost of a greedy path from sstart to sgoal is no larger than ε ∗ g∗(sgoal).

Proof: According to the termination condition of the ImprovePath func-
tion, upon its exit f(sgoal) ≤ min

s′∈OPEN(f(s′)). The proof then follows
from Corollary 12.

A.3.4 Efficiency of ARA*

Several theorems in this section provide some theoretical guarantees about
the efficiency of ARA*.

Theorem 14 Within each call to ImprovePath() no state is expanded more
than once.

Proof: Suppose a state s is selected for expansion for the first time within
a particular execution of the ImprovePath function. Then, it is removed from
OPEN set on line 03 and inserted into CLOSED set on line 04. It can then
never be inserted into OPEN set again unless the ImprovePath function exits
since any state that is about to be inserted into OPEN set is checked against

21



CLOSED set membership on line 10. Because only the states from OPEN
set are selected for expansion, s can therefore never be expanded second time
within the same execution of the ImprovePath function.

Theorem 15 Within each call to ImprovePath() a state s is expanded only
if v(s) can be lowered during its expansion.

Proof: Only the states from OPEN can be selected for expansion. Any
such state is locally inconsistent according to Theorem 6. Moreover, for any
such state s it holds that v(s) > g(s) from Lemma 4. From Theorem 8 it
then follows that v(s) is set to g(s) during the expansion of v and thus is
lowered.

Theorem 16 Within each call to ImprovePath() a state s is expanded only
if it was already locally inconsistent before the call to ImprovePath() or its
g-value was lowered during the current execution of ImprovePath().

Proof: According to Theorem 6 any state s that is selected for expansion
on line 03 is locally inconsistent. If a state s was already locally inconsistent
before the call to ImprovePath() then the theorem is immediately satisfied.
If a state s was not locally inconsistent before the call to the ImprovePath
function, then its g- and v- values were equal. Since v(s) can only be changed
during the expansion of s, it must have been the case that g(s) was changed,
and the only way for it to change is to decrease on line 09. Thus, the g-value
of s was lowered during the current execution of ImprovePath().

References

[1] A. Bagchi and P. K. Srimani. Weighted heuristic search in networks.
Journal of Algorithms, 6:550–576, 1985.

[2] B. Bonet and H. Geffner. Planning as heuristic search. Artificial Intel-
ligence, 129(1-2):5–33, 2001.

[3] P. P. Chakrabarti, S. Ghosh, and S. C. DeSarkar. Admissibility of AO*
when heuristics overestimate. Artificial Intelligence, 34:97–113, 1988.

22



[4] T. L. Dean and M. Boddy. An analysis of time-dependent planning.
In Proc. of the National Conference on Artificial Intelligence (AAAI),
1988.

[5] S. Edelkamp. Planning with pattern databases. In Proc. of the European
Conference on Planning (ECP), 2001.

[6] D. Haehnel. Personal communication, 2003.

[7] E. Hansen, S. Zilberstein, and V. Danilchenko. Anytime heuristic search:
First results. Tech. Rep. CMPSCI 97-50, University of Massachusetts,
1997.

[8] E. J. Horvitz. Problem-solving design: Reasoning about computational
value, trade-offs, and reasources. In Proc. of the Second Annual NASA
Research Forum, 1987.

[9] S. Koenig and M. Likhachev. Incremental A*. In Advances in Neu-
ral Information Processing Systems (NIPS) 14. Cambridge, MA: MIT
Press, 2002.

[10] R. E. Korf. Linear-space best-first search. Artificial Intelligence, 62:41–
78, 1993.

[11] M. Likhachev, G. Gordon, and S. Thrun. ARA*: Anytime A* with
provable bounds on sub-optimality. in submission, 2003.

[12] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, 1984.

[13] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Englewood Cliffs, NJ: Prentice-Hall, 1995.

[14] A. Stentz. The focussed D* algorithm for real-time replanning. In Proc.
of the International Joint Conference on Artificial Intelligence (IJCAI),
1995.

[15] R. Zhou and E. A. Hansen. Multiple sequence alignment using A*.
In Proc. of the National Conference on Artificial Intelligence (AAAI),
2002. Student abstract.

23



[16] S. Zilberstein and S. Russell. Approximate reasoning using anytime algo-
rithms. In Imprecise and Approximate Computation. Kluwer Academic
Publishers, 1995.

24


