
Profit Maximizing Mechanisms for the

Extended Multicasting Game1

Shuchi Chawla2 David Kitchin3 Uday Rajan4

R. Ravi4 Amitabh Sinha3

July, 2002

CMU-CS-02-164

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We consider the design of multicast networks when both edges and nodes are selfish agents. Our objective is
a budget-balanced, strategy-proof mechanism which selects the set of clients to receive service and constructs
a network to provide the service. It extracts payments from the clients and pays edges to participate in the
network, and aims to maximize profit from the transaction. We introduce the notion of profit guaranteeing
mechanisms, and show the existence of one such mechanism. The mechanism provides guarantees of the
form that in a sufficiently profitable market, it obtains some fraction of the obtainable profit, and if the
market is sufficiently unprofitable, then the mechanism demonstrates that no profitable solution exists. The
mechanism runs in polynomial time. To our knowledge, this is the first study of mechanisms for designing
multicast networks in which edge values are unknown.

1This research was supported by the ALADDIN Center for Applied Algorithms and funded by the National Science Foun-
dation ITR program under Grant No. CCR-0122581.

2Department of Computer Science, Carnegie Mellon University. shuchi@cs.cmu.edu
3Research supported by the ALADDIN Center and its REU Program and funded by the National Science Foundation under

Grant No. CCR-0122581. {dkitchin,asinha}@andrew.cmu.edu
4Graduate School of Industrial Administration, Carnegie Mellon University. {urajan,ravi}@andrew.cmu.edu

Keywords: Game Theory, Mechanism Design, Approximation Algorithms, Multicasting Game

1 Introduction

The design of multicast networks in a game-theoretic setting has received a lot of attention among researchers
recently. Given a network with a distinguished node (root) and clients at other nodes, the problem is to
select a set of users for service and construct a multicast tree connecting these users to the root. Clients are
willing to pay some maximum amount of money for receiving the service and agents owning edges charge a
minimum fee for participating (known as their values). The task is to charge fees from clients and pay agents
owning the edges so as to maximize profit from the transaction. The problem was introduced by Herzog, et
al [9].

From an optimization perspective, given a graph with values associated with nodes (clients) and edges,
this problem reduces to finding a subset of the graph that maximizes the sum of values of selected nodes
minus the sum of values of selected edges (this is the efficiency/surplus of the solution). This problem is
known to be NP-hard [5].

Several variants of the problem have been studied in the approximation algorithms literature. Most
notable is the Prize Collecting Steiner Tree (PCST) problem, which is to find a subset that minimizes the
cost of selected edges plus the values of the nodes that are not selected. For the optimal solution, this is
the same as maximizing efficiency. However, in terms of approximation, the two problems are different. In
particular, the problem of maximizing efficiency is inapproximable in polynomial time (as we show in a later
section), whereas Goemans, et al [8] achieve a 2-approximation for PCST.

From a game theory perspective, the problem becomes harder as we now have to pay (selfish) edges
and charge (selfish) nodes in such a way that they reveal their values truthfully. So far game theorists
have studied a simpler subproblem in which edge costs are known [3, 5, 10, 13]. The objectives for this
subproblem have been two-fold: to recover the cost of constructing the network from the nodes (Budget
Balance), and to output the most efficient solution – where the difference between the total value of selected
nodes and total cost of selected edges is maximized. It is well known that the two objectives cannot be met
simultaneously [13, 4].

For this subproblem, two kinds of mechanisms have been proposed. The first kind output the most
efficient solution (albeit in exponential time or for simple networks such as trees[5, 13]), but are unable to
recover the cost of edges from nodes. The second kind [10] are budget balanced and occasionally make a
profit. However, they give no guarantee on the efficiency loss of the solution.

In this paper, we study the problem from a different perspective. We aim to maximize the profit from
the solution, and we do so when edge costs are unknown (edges are owned by selfish agents). We call this
the Extended Multicasting Game.

The extended multicasting game has a flavor very similar to dual auctions. It is well known that in
dual auctions, no reasonable approximation to efficiency can be achieved without making distributional
assumptions about the input. McAfee [12] and later Tatur [15] have shown that using the assumption that
all bidders derive their values from a common distribution, it is possible to achieve almost a 1− 1/n fraction
of the maximum efficiency by using a simple direct auction that rejects the least efficient trade.

Fiat et al [6] were the first ones to consider the question of profit maximization in the context of multi-
casting games. However, like others they dealt with the case when edge costs are known. Their mechanism
either needs to be provided with the multicast tree, or it needs exponential time to construct the tree. They
propose profit maximizing auctions and suggest that these could be used at every node to maximize profit
in the multicasting game. There has been no further work in this area to our knowledge.

1.1 Our results

Our objective is a truthful polynomial time mechanism which aims to maximize the profit while constructing
a multicast network. To get around the inapproximability of the problem, our mechanism outputs an
approximately profitable solution if the optimal solution is sufficiently profitable. If the optimal (non-trivial)
solution is sufficiently unprofitable, we demonstrate that no profitable solution exists. For other cases, we
output a non-negative profit solution but give no guarantee for the amount of profit obtained. Since profit is
always bounded above by the efficiency of the solution, our mechanism also gives guarantees for the efficiency
of the solution when the optimal solution is sufficiently profitable. It also satisfies other desirable properties
such as CS, IR and NPT (described in the next section). We call such a mechanism a profit guaranteeing

1

mechanism. We make no assumptions on the distribution from which the utilities of the agents are drawn;
however, we use a notion of competitiveness of the input, and justify the need for it. We also show that any
mechanism that seeks to maximize profit must be of the same general form as our mechanism.

The rest of this paper is structured as follows. In the following section, we define the problem and
discuss related work, some of which we use in our results. In Section 3, we describe some hardness results.
Motivated by these, we define criteria for evaluating profit maximizing mechanisms in Section 4. We also
discuss some general properties that any profit maximizing mechanism must have. Then in Section 4.2,
we give a profit maximizing mechanism for the case of unknown edge values and known node values. In
Section 4.3, we extend this mechanism to handle the case of unknown node values when there is sufficient
competition among clients at nodes. Finally in Section 4.4, we give a budget balanced mechanism for the
situation where there is not enough competition among clients. We conclude in Section 5.

2 Problem Definition and Related Work

We are given a graph G = (V, E), with a root node r ∈ V (the multicast source). Each node contains a set
of clients, each with a private value (utility) ui for receiving the multicast. The utility of a node is the sum
of utilities of clients at the node. Let U denote the total utility of all clients in the graph. Each edge is also
owned by an agent who has a private value ce for its participation cost.

The multicaster is required to implement a mechanism that takes the following inputs: all clients bid the
maximum amount that they are willing to pay for receiving the service and all edges bid their minimum asks
for participating in the solution. The multicaster then computes a solution that consists of a set of clients
that receive the service, a set of edges that connect these clients to the root node and a vector of fees taken
from the clients (pi) and payments made to the edges (pe). Any residual money is the multicaster’s profit,
which we wish to maximize.

Formally, let T denote a multicast tree; TV and TE respectively denote the set of selected nodes and
edges. Also, define p(TV) =

∑
i∈TV

pi and p(TE) =
∑

e∈TE
pe. In terms of the original utilities of the

agents, we also define u(TV) (abbreviated u(T)) and c(TE) (abbreviated c(T)). The profit of the solution
is π(T) = p(TV) − p(TE). We assume that all agents are rational (selfish) and wish to maximize their own
profit. For a client i and a bid vector b, let pi(b) denote the payment asked from the client. We use indicator
variables 1i∈TV

(1e∈TE
) which are 1 if node i (edge e) is selected for service, and 0 otherwise. The client bids

argmaxbi
{ui1i∈TV

− pi(b)}. Similarly, edge e bids argmaxbe
{pe(b)− ce1e∈TE

}.
A mechanism is strategy-proof (SP) if for all clients i, bi = ui is a dominant strategy irrespective of the

bids of other agents and for all edges, be = ce is a dominant strategy. Formally, for all i and all vectors
b, ui ∈ argmaxbi

{ui1i∈TV
− pi(b)}, and for all edges ce ∈ argmaxbe

{pe(b) − ce1e∈TE
}. We only consider

strategy-proof mechanisms.
The following are some natural constraints which any mechanism must satisfy:

1. No Positive Transfers (NPT): We must not pay clients to participate; i.e., pi ≥ 0 for all clients i.
Similarly, pe ≥ 0 for all edges e.

2. Individual Rationality (IR), also called Voluntary Participation: Every participating agent must have
non-negative net utility. That is, pi ≤ ui∀i ∈ V , and pe ≥ ce∀e ∈ E.

3. Consumer Sovereignty (CS): For every client i, if ui is increased high enough and all else is held
constant, then client i is guaranteed service. There is no notion of CS for edges.

4. Polynomial Time Computability (PC): All computation is done in polynomial time.

There are two other objectives which are crucial, but can be compromised to some extent.

1. Efficiency: The efficiency of a solution T is φ(T) = u(T)− c(T). It follows from IR and NPT that the
profit of a solution is always at most the efficiency of the solution, that is, π(T) ≤ φ(T). Hence if we
generate a solution with non-negative profit, then the efficiency of the solution is also non-negative. A
mechanism is called efficient if it outputs argmaxT φ(T). Let T ∗ denote the most efficient solution.

2

2. Budget Balance (BB): A strong version of BB requires that π(T) = 0. However, in the context of profit
maximization, we relax this to π(T) ≥ 0.

2.1 Related Work

The field of algorithmic mechanism design was brought into focus by Nisan and Ronen [14]. They consider
strategy-proof mechanisms for the shortest path problem (among others). They use the VCG mechanism,
and show that in the worst case, the mechanism overpays the selected edges by an O(n) factor of their
cost. Archer and Tardos [1] extend that result and show that any strategy-proof mechanism in the class of
min-function mechanisms must also overpay by the same factor.

The MST Game. Fortunately, this overpayment is not a problem for the minimum spanning tree prob-
lem. MST is a subproblem of our problem, that assumes that every node must be connected to the root.
Bikhchandani, et al [2] give an elegant strategy-proof mechanism (which we call the VST mechanism) based
on the Vickrey auction [16]. Essentially, if an edge is selected in the MST, its payment is the cost of the
second-cheapest edge across the cut induced by the selected edge. We call this the Vickrey price of the edge
that is selected in the MST. Edges which are not selected are paid nothing. We make use of this result to
induce truthfulness of edges, using the following lemma.

Lemma 1 The VST mechanism is strategy-proof even if only a subtree T ′ ⊆ MST is selected, so long as
the decision process for determining T ′ uses the tree’s Vickrey prices as its edge costs.

Proof: An edge which is not in the MST cannot get selected by bidding higher; if it bids lower, it can get
selected only at a Vickrey price lower than its own utility, resulting in a loss. An edge which is in the MST
cannot gain by bidding lower, since it is paid its Vickrey price which is independent of it. By bidding higher,
it may get dropped.

Further, Vickrey payments are determined by edges which are not in the MST; hence, by changing its
bid, an edge in the MST cannot affect the Vickrey payment to any other edge in the MST. 2

Another special case of the extended multicast problem is when edge costs are known and all agents are
at the nodes. Moulin and Shenker [13] study this problem in great detail, reviewing various Efficient and
BB mechanisms including the Marginal Cost (each node is charged the marginal cost of serving it), and
Shapley Value (the cost of each edge is distributed equally to each node downstream of it) mechanisms.
Feigenbaum, et al [5] consider the computational cost of these mechanisms, and show them to be feasible
only on tree networks. Jain and Vazirani [10] give an approximate budget-balanced group strategyproof
mechanism which is polynomial time for any network and also gives a cost-sharing function for the nodes.

Cancellable Auctions. The recent research on cancellable auctions by Fiat, et al [6] is also of note. An
auction is cancellable if the auctioneer has the option of canceling the auction if some pre-specified criterion
(such as minimum revenue) is not met, and this does not affect the strategy of the participants. The notion
of cancellability is helpful in multicast network problems because it allows for pruning of the multicast tree
based on revenue achieved from nodes while still retaining truthfulness. Fiat, et al give a randomized auction
that is cancellable and when run with at least two bidders, is guaranteed to generate at least 1

4 th of the
revenue achievable by any truthful auction. We use the auction devised by them in one of our mechanisms
in Section 4.3.

The Prize collecting Steiner tree problem. The Prize collecting Steiner tree problem (PCST) is closely
related to the problem of finding a maximum efficiency multicast tree. Given (G, c, u, r), the objective of
PCST is to find a tree T which minimizes PC(T) = c(T) + u(T), where u(T) is the sum of utilities of
nodes not in the tree. For any tree T , we have PC(T) = U − φ(T), so that the two problems are equivalent
from an optimization point of view. We use ρ to denote the approximation ratio of some algorithm which
approximates PCST. Goemans and Williamson [8] give a ρ = (2− 1

|V |−1)-approximation, the best known so

far. We refer to their algorithm as GW, and use it in our work; a description of the algorithm as well as
proofs of the following useful lemmas appear in the appendix.

3

Lemma 2 Let T be the solution produced when GW runs on (G, c, u, r). Let G′ be the subgraph of G induced
by TV . Then GW continues to output T when run on (G′, c, u, r).

Lemma 3 Let G′ be obtained from G by increasing the cost of a single edge e from ce to c′e. Then the set
of nodes selected in the GW solution to G′ is a subset of the set of nodes selected in G. Moreover, if e was
not part of the solution in G, then it is not part of the solution in G′ either.

3 Hardness

It is well known that it is impossible to simultaneously achieve Efficiency and BB for a large class of
mechanism design problems [4, 13, 14]. The multicasting problem is more notorious, as it is NP-hard to
determine the most efficient solution, even when u and c are known. In fact it is also NP-hard to compute
whether or not a non-trivial positive efficiency solution exists. This was first proved in [5]. We provide an
alternate proof here, which leads to a stronger hardness of approximation result.

Theorem 4 Given a graph G = (V, E) with a root node r ∈ V , non-negative node utilities ui, and non-
negative edge costs ce, it is NP-complete to determine whether there exists a tree T rooted at r such that
φ(T) > 0. Hence it is also impossible to approximate φ(T) within any factor at all.

Proof: We use a reduction from the decision version of PCST to prove this. The decision version, also
NP-hard, is to determine if there exists a tree T rooted at r with c(T) + u(T) ≤ z (given z < U).

We construct a new graph G′ by taking a copy of G and adding a new node r′. There is only one new
edge, (r, r′) of cost U − z. Define the natural bijection between trees in G rooted at r and trees in G′ rooted
at r′ by T (∈ G) 7→ T ′(∈ G′). It is easy to see the following relation: c(T)+u(T) < z ⇐⇒ u(T ′)−c(T ′) > 0.
Hence a polynomial time algorithm which decides the existence of a solution of positive efficiency implies a
polynomial time algorithm for the decision version of PCST. Since an approximation algorithm for efficiency
would still be able to decide whether or not there exists a tree with positive efficiency, it is also impossible
to approximate efficiency within any factor. 2

The following impossibility result due to Feigenbaum, et al [4] states that we cannot achieve a reasonable
trade-off between Efficiency and BB even if exponential computation is allowed. This result holds even when
edge costs are known and G is a tree. For completeness, we include a proof sketch.

Theorem 5 A strategy-proof mechanism for multicast cost sharing satisfying NPT, IR and CS cannot
achieve both γ-approximate efficiency and κ-approximate budget balance for any constants γ and κ.

Proof Sketch: Consider a network in which there are p clients at a node, each with utility u and there is a
single link from the root to the node of cost (p − 1)u + δ with δ > 0. Any γ-approximate efficient solution
must include all the p clients even if one of them lowers its bid to δ + ε < u. Thus for SP, the mechanism
can charge at most δ from each user. The mechanism can make at most pδ from clients and pays at least
(p−1)u+δ to the edge. Thus for appropriate values of u and δ, it fails to be κ-approximate budget balanced.
2

Comment 1 Notice that if we take p = 2 in the above example, then even though the optimal solution is
highly efficient (φ(T) ≈ 1

2U), any budget balanced mechanism satisfying SP and other properties must output
the empty solution and will fail to give any approximation to efficiency.

Theorem 4 suggests that we should try to achieve an approximation for profit at least in the case
when we are guaranteed that a sufficiently profitable solution exists. This motivates our definition of profit
guaranteeing mechanisms in the next section. In order to define the antecedent that a “sufficiently profitable
solution exists”, we need a notion of the maximum revenue that can be raised from the input. In particular,
for every node i, we let ri denote the maximum revenue that any strategy-proof mechanism can raise from
the agents at that node1. Note that this may be much less than the total utility at the node, but is a more
reasonable target to compare with. R denotes the sum of ri over all nodes, and r(T) =

∑
i∈T ri.

1For a discussion of the maximum revenue that can be raised, refer to [6]

4

4 Profit Guaranteeing Mechanisms

Given such strong hardness results, it is not immediately clear how the performance of a mechanism for
designing multicast networks should be measured. We give the following definition for a profit guaranteeing
mechanism that we use as a yardstick in evaluating our mechanisms.

Definition 1 An (α, β)-profit guaranteeing mechanism, where α ∈ [0, 1] and β ≥ 1, satisfies the following
criteria:

1. SP, IR, NPT, CS, and PC.

2. If the optimal efficiency φ(T ∗) = (1− δ)R, where δ < α, it finds a tree with profit at least k(δ)R where
k(δ) ≥ 0 is decreasing in δ.
(k(δ) increases as φ(T ∗) increases).

3. If for every tree T , c(T) ≥ βr(T), it demonstrates that no non-trivial positive surplus tree exists.

4. If neither of the conditions in 2 and 3 above are met, the mechanism returns a solution with non-
negative profit (possibly the trivial solution, with no node served and no edges selected).

From Theorem 4, it is clear that it is impossible to obtain a mechanism that is (α, β)-profit guaranteeing
with either α = 1 or β = 1. From comment 1 we also get that α ≤ 1

2 . The best that can be done is to obtain
as large α and as small β as possible.

We begin with a characterization of a mechanism that aims to maximize profit. Observe that without
making any distributional assumptions, for a mechanism to be strategy-proof, the payments made to edges
and received from clients should be bid-independent [1, 6]. That is, for an edge e, pe should be a function of
be′ 6=e and bi∈V . Similarly, pi should be a function of be∈E and bi′ 6=i.

Now consider the following example: there is a single client i connected by a single edge e to the root.
The client’s utility is u and the edge’s cost is c. If c ≥ u, every mechanism outputs the empty solution.
Consider the case when c < u. In order to induce strategy-proofness, we must charge the client pi = pi(c)
and pay the edge pe = pe(u), where pi and pe are non decreasing functions with pi(c) ≥ c and pe(u) ≤ u.
Also, the mechanism should output an empty solution if pi(c) < pe(u). Since pi and pe are non decreasing,
given a value of c, if we increase the value of u, the profit made by the mechanism decreases or stays the
same. On the other hand, the efficiency of the solution increases. Thus such a mechanism cannot achieve
profit that is a constant fraction of the efficiency of the optimal solution. This justifies our argument that
we cannot compare our mechanism’s performance with the maximum efficiency; instead, we should compare
it with some other measure of the maximum achievable profit.

The next lemma shows that in order to obtain a constant fraction of the achievable profit, a mechanism
should use other edges’ (clients’) values to determine the payment (fee) to an edge (client). Moreover, for
achievable profit to be high, there should be some amount of competition among the clients and edges.

Lemma 6 Let M be a mechanism that is (α, β)-profit guaranteeing for some constants α and β. Let pV

be a function specifying the total fees charged by M from all clients and pE be the function used by it to
determine the total payment for all edges. Then, pV should be a function of the utilities of clients (among
other inputs) and pE should be a function of costs of edges (among other inputs).

Proof: Assume to the contrary that the claim does not hold and (without loss of generality) pV does not
depend on the utilities of clients.

Consider the behavior of M on the following example: There are two clients at the same node and two
edges connecting this node to the root. Let the respective utilities and costs be u1 = u2 = u, and c1 = c2 = c.
Now, let r(u) be the maximum revenue that can be generated at the node by a strategy-proof mechanism.
Notice that r(u) is strictly increasing in u. Observe that a truthful auction can make a profit of r(u) − c
by running a Vickrey auction on edges and generating r(u) from the node. Let u be high enough such that
r(u)− c > (1− α)r(u).

M makes a profit of π(M) = pV (c) − pE(c, u). Since M is (α, β)-profit guaranteeing, this should be at
least k(α)(r(u) − c), where k(·) is the guarantee given by the mechanism.

5

Let us increase u and decrease c simultaneously. If pE is a function of u, it has to be non decreasing in
u, because otherwise as u increases, there exist sufficiently low values of c for which pE < c and edges will
refuse to participate, while r(u) − c > (1− α)r(u), violating the (α, β)-profit guarantee of M .

Now keeping c constant, we increase u. Notice that π(M) decreases or stays constant, while r(u) − c
increases. Thus at some point, π(M) < k(α)(r(u) − c). This contradicts the fact that M is (α, β)-profit
guaranteeing.

2

The above lemma suggests that a profit guaranteeing mechanism should have the following form: It
should run profit maximizing auctions among clients and among edges separately, and then combine these
using some algorithm to determine the final solution. This is a basic outline of our profit guaranteeing
mechanism.

Some details still need to be taken care of. We should determine the set of clients/edges in the final
solution after we have run the auctions so that we know the amount of payment to be made to edges
and obtained from nodes. However, for this mechanism to remain strategy-proof, these auctions should be
cancellable (as defined in Section 2.1). Further, in order to achieve good revenue from the auctions, we need
our input to be competitive.

4.1 Competitive Inputs

The preceding discussion motivates the need for competition among the agents. As observed in previous
studies [1, 6, 7], one cannot hope to achieve a good approximation to profit in a highly uncompetitive market.
In the case of auctions, if a market has a single high value agent, no strategy-proof mechanism can extract
a reasonable fraction of his utility. On the other hand, the best fixed price mechanism that has knowledge
of bidders’ values, would simply ask the highest bidder for all his value.

Similarly in the case of multicast mechanisms, if there is a cut containing only one edge, there is no way
of inducing truthtelling for that edge without paying huge sums of money to it. This is similar to a monopoly
situation. Hence we restrict our attention to competitive markets, where there are sufficiently many players
so that they can play against each other and the mechanism benefits from the advantages of a free-market
system. We use the following two definitions of competition among edges and nodes.

Definition 2 Consider a graph G = (V, E) with edge costs c. For a cut [S1 : S2], let cS1,S2
denote the

cheapest edge across the cut. G is ε-competitive if there is a constant ε such that for every set V ′ ⊆ V , across
every cut [S : V ′ \ S], there are at least two edges of cost no more than (1 + ε)cS,V ′\S.

Definition 3 Consider a graph G = (V, E). G is node competitive if there are at least two clients at every
node.

A graph is called ε-competitive if it is both ε-edge competitive and node competitive.

4.2 Known Node Utilities

In this section we design and analyze a profit guaranteeing mechanism for designing multicast networks when
node utilities are known but the edges are selfish agents. We assume that the graph is ε-edge competitive.
Notice that when node utilities are known, we do not have to bother about truthfulness at nodes, and so
we can charge them their true values. Thus we have r = u at every node. In this section, we use r and u
interchangeably.

Before describing the mechanism, we first consider the simple case where the set of nodes being served
has been determined and we are to only select edges and assign payments to them. Clearly, when the set of
nodes to be served is known, the most efficient solution is to pick the minimum Steiner tree on these nodes.
Since computing the minimum Steiner tree is NP-hard, we adopt the simpler solution of picking the MST
which is a 2-approximation to the cost of the Steiner tree. We assign Vickrey payments to edges as described
in Section 2.1. Also, ε-competitiveness of the input guarantees that these payments will never be more than
(1 + ε) times the cost of the MST, which is 2(1 + ε) times the cost of the most efficient solution.

We will use the above as a subroutine in the main algorithm. Our mechanism is as follows.

6

Mechanism M1

1. Ask edges to reveal their bids.

2. Use GW to approximately solve PCST using the revealed edge and node utilities. Let V ′ be the set of
nodes selected for service, and define G′ = (V ′, E′) to be the subgraph of G induced by V ′.

3. Construct a minimum spanning tree T1 on G′. The edges in T1 are paid their Vickrey prices. Prune
the solution from bottom up to improve its efficiency based on Vickrey prices on edges2.:

(a) For each node i, let e(i) denote its parent edge in the MST and ch(i) its children nodes.

(b) Compute the surplus of each node as follows. The surplus of a leaf node is π(i) = pi − pe(i). For
an internal node, the surplus is pi − pe(i) +

∑
j∈ch(i):π(j)>0 π(j).

(c) Identify all nodes with negative surplus. Delete the subtrees rooted at these nodes. Call this
pruned solution T .

4. If the GW solution T1 is non trivial, return the solution T .

5. If T1 is trivial, rescale all the node utilities to u′i = 2ui and rerun GW. If the algorithm again returns
the trivial solution, output “Fail, no positive solution exists”.

Lemma 7 The pruning subroutine does not decrease profit; that is, π(T) ≥ π(T1).

Proof: The pruning step only deletes subtrees with negative surplus. 2

Lemma 8 Mechanism M1 is strategy-proof.

Proof: An edge which is in T has no incentive to change its bid, because its payment is independent of its
bid. Moreover, raising its bid may cause it to be dropped from the solution (Lemma 3).

Now consider an edge that is not in the final solution. If the edge decreases its bid, it might get selected
in the GW solution. If the Vickrey payment is less than the original price, then it makes a loss. Now consider
the case that the Vickrey payment is more than its price. Since the edge was not in the GW solution with
its original cost, this suggests that the nodes that it is connecting are not able to pay for its cost. In that
case, the pruning step with Vickrey payments will remove this edge. On the other hand, if the edge increases
its bid, it will still not be selected (Lemma 3), and will continue to receive zero payment. Finally, Lemma
1 shows that the pruning step does not induce dishonesty in edges, since we are only pruning edges of the
MST T1. 2

Lemma 9 If φ(T ∗) = (1− 1
γ)U , where γ > 2(1 + ε)ρ, then the mechanism finds a budget balanced multicast

tree with efficiency at least (1− ρ
γ)U and profit at least (1− 2(1+ε)ρ

γ)U .

Proof: Suppose T ∗ is a tree such that φ(T ∗) = (1 − 1
γ)U . Then the value of the PCST objective for this

tree is PC(T ∗) = 1
γ U . Hence GW finds a tree T1 such that PC(T1) ≤

ρ
γ U . So we have φ(T1) ≥ (1− ρ

γ)U .

Using Lemma 7, the efficiency of the solution is u(T)− c(T) = φ(T) ≥ φ(T1) ≥ (1− ρ
γ)U .

Next, using the fact that a spanning tree is a 2-approximation for a Steiner tree and the Vickrey price of
each edge is no more than (1 + ε) times the edge cost, we find that we pay p(TE) ≤ 2(1 + ε)c(T). Moreover,

we are extracting u(T) payments from the edges, so p(TV) = u(T). Hence we have π(T) ≥ (1 − 2(1+ε)ρ
γ)U .

This is non-negative, since γ > 2(1 + ε)ρ. 2

Lemma 10 If M1 outputs “Fail”, then there us no non-trivial tree T with c(T) < u(T).

Proof: Say T is a tree with c(T) < u(T). Then, 2c(T) < u′(T). Consider the behavior of GW on the
rescaled utilities on the graph G[TV]. Now, the solution containing the entire tree on this new problem has
(PC) cost c(T). Since GW is a 2-approximation, it will produce a solution of (PC) cost at most 2c(T) (using
Lemma 2). Thus it cannot output the trivial solution that has (PC) cost at least 2c(T). 2

2This subroutine is similar to the pruning subroutines of Feigenbaum, et al [3] and Johnson, et al [11].

7

Lemma 11 If for every tree T in the graph we have c(T) > 4u(T), then M1 outputs “Fail”.

Proof: Assume that GW on original utilities returns a non-trivial tree T . Then, if GW is run on the graph
restricted to TV , it still returns the entire tree (Lemma 2). However, this contradicts the 2-approximation
of GW, since c(T) > 2u(T). Now on the rescaled utilities, we still have c(T) > 4u(T) > 2u′(T). Thus by
the same argument as before, GW returns the trivial solution. 2

Lemma 12 If M1 returns a non-trivial solution, the solution is budget balanced and has non-negative effi-
ciency.

Proof: Step 3 of Mechanism M1 guarantees that the tree returned is budget balanced, that is, π(T) ≥ 0.
Since φ(T) ≥ π(T), we find that the tree returned has non-negative efficiency φ(T). 2

It is easy to check from the definition of M1 that NPT, IR, CS and PC are satisfied. We therefore have
the following theorem.

Theorem 13 Mechanism M1 is a (1
2(1+ε)ρ , 4)-profit guaranteeing mechanism.

4.3 Unknown Node Utilities with Competition at Nodes

To adapt M1 to the case where there are selfish users at nodes with unknown utilities, we need the input
graph to be ε-competitive. Moreover, we no longer have ri = ui.

Mechanism M2 for this case adds a new step, (say 1(a)), where we run a cancellable auction at each
node. If ri is the maximum achievable revenue at each node, we know that the SCS auction of Fiat, et al [6]
recovers at least r′i = ri/4 at each node. We now treat r′i as known node utilities, and continue with Step 2
onwards of M1. If the mechanism reaches Step 5, it uses ri instead of r′i.

There are two differences between this mechanism and M1. Firstly, in this case we compare the profit
achieved with the maximum achievable profit, which in turn is defined in terms of maximum achievable
revenue at each node. Secondly, M2 satisfies only a weaker notion of CS. That is, each node is guaranteed
that some of its clients will get service if the maximum achievable revenue at that node is sufficiently high.
There is no guarantee of CS in terms of single clients, due to the results in [6].

Lemma 14 If r(T ∗) − c(T ∗) = (1 − 1
γ)R, where γ > 8(1 + ε)ρ, M2 finds a budget balanced multicast tree

with efficiency at least 1
4 (1− ρ

γ)R and profit at least 1
4 (1− 2(1+ε)ρ

γ)R.

The proof of the above lemma is similar to the proof of Lemma 9, and uses the fact that r′i ≥ ri/4 for all
i. Lemmas 7, 8, 10, 11 and 12 continue to hold. We therefore have the following theorem.

Theorem 15 M2 is a (1
8(1+ε)ρ , 4)-profit guaranteeing mechanism when both edges and nodes are players and

the input graph is ε-competitive.

4.4 Unknown Node Utilities Without Competition

Finally, we consider the case where node utilities are not known, and there is no competition at nodes, i.e.
some nodes have only one user. For nodes with multiple users, we use the simple trick of creating a new
node for each client and attaching this to its original node using a zero length edge. Thus the mechanism
assumes that there is a single user at every node.

We cannot use a strategy-proof mechanism and still maximize profit, since in the absence of competition,
nodes have no incentive to add to our profit. However, it is possible to give a strategy-proof mechanism which
always has non-negative profit (and thus non-negative efficiency), although it is no longer profit-guaranteeing.
Mechanism M3 is defined as follows.

1. Obtain bids ce from the edges, and ui from the clients.

2. Eliminate all nodes which have utility zero.

3. Build an MST on the remaining nodes, and let the price of each edge be its Vickrey price.

8

4. Use the Shapley Value mechanism (SV)3 of [13] to divide cost of edges among nodes. (Prune the tree
if required by the SV mechanism).

Lemma 16 Mechanism M3 is strategy-proof for nodes and edges.

Proof: M3 is strategy-proof for nodes because SV is strategy-proof. For the edges, strategy-proofness
follows from Lemma 1. 2

Theorem 17 Mechanism M3 has non-negative profit and efficiency.

Proof: This is by definition, since the SV cost allocation function guarantees that we prune the tree until
we have non-negative profit. 2

Even though the above mechanism is not a profit guaranteeing mechanism for any α > 0, it satisfies
Conditions 1 and 4 of Definition 1, using the above lemmas. Furthermore, if the mechanism outputs the
trivial solution, we can run GW on the entire graph and then again with rescaled node utilities (as in M1)
and if both the runs return the trivial solution, we output “No positive solution”. (Notice that we are again
using ri = ui.) It follows from Lemmas 10 and 11 that this satisfies Condition 3 with β = 4. As for Condition
2, an example in the appendix shows that even if there is a highly profitable input, M3 could end up with a
zero profit solution; though the condition is trivially satisfied with α = 0.

Theorem 18 Mechanism M3 is a (0, 4)-profit guaranteeing mechanism.

4.5 Running Time and Network Complexity

GW runs in O(n2 log n) time, where n = |V |. The pruning procedures require O(n2) time, so the running
time of the mechanisms are O(n2 log n). Assuming that all mechanisms are run at the root, we need
O(|E| + |V |) messages to obtain the bids. Moreover, our mechanisms have been defined such that the only
other communication is when the root tells the agents the final outcome.

5 Conclusions

The hardness results make it clear that in the absence of any distributional assumptions, it is impossible to
obtain any approximation to profit in arbitrary graphs for the problem of designing multicast networks when
both edges and nodes are agents. In this paper, we give mechanisms that approximate profit and efficiency
when there exists a highly efficient solution. We define the concept of profit guaranteeing mechanisms, which
is one reasonable way of measuring the performance of such mechanisms, where even deciding whether
there exists a non-trivial efficient solution is NP-hard. Improving the parameters of our profit guaranteeing
mechanisms remain open. It would also be interesting to see if such mechanisms exist for other hard problems.

Acknowledgements

We wish to thank Avrim Blum and Christine Parlour for several useful discussions.

References

[1] A. Archer and E. Tardos. Frugal path mechanisms. In Proc. 13th ACM-SIAM Symposium on Discrete Algorithms,
991-999, 2002.

[2] S. Bikhchandani, S. de Vries, J. Schummer and R. Vohra. Linear programming and Vickrey auctions. Manuscript,
2001.

[3] J. Feigenbaum, A. Krishnamurthy, R. Sami and S. Shenker. Approximation and collusion in multicast cost sharing.
In Proc. 3rd ACM Conference on Electronic Commerce, 2001.

3Any cost division mechanism can be used here; two are described in the appendix.

9

[4] J. Feigenbaum, A. Krishnamurthy, R. Sami and S. Shenker. Hardness results for multicast cost sharing.
Manuscript, 2002.

[5] J. Feigenbaum, C. Papadimitriou and S. Shenker. Sharing the cost of multicast transmissions. Journal of Computer

and System Sciences, 63:21-41, 2001.

[6] A. Fiat, A. Goldberg, J. Hartline and A. Karlin. Competitive generalized auctions. In Proc. 34th ACM Symposium

on Theory of Computing, 72-81, 2002.

[7] A. Goldberg, J. Hartline and A. Wright. Competitive Auctions and Digital Goods. In Proc. 12th Symposium on

Discrete Algorithms, 735-744, 2001.

[8] M. Goemans and D. Williamson. A general approximation technique for constrained forest problems. SIAM

Journal of Computing, 24(2):296-317, 1995.

[9] S. Herzog, S. Shenker and D. Estrin. Sharing the cost of multicast trees: An axiomatic analysis. Transactions on

Networking, 5(6):847-860, 1997.

[10] K. Jain and V. Vazirani. Applications of approximation algorithms to cooperative games. In Proc. 33rd ACM

Symposium on Theory of Computing, 364-372, 2001.

[11] D.S. Johnson, M. Minkoff and S. Phillips. The prize collecting Steiner tree problem: Theory and practice. In
Proc. 11th Symposium on Discrete Algorithms, 760-769, 2000.

[12] R. P. McAfee. A dominant strategy double auction. Journal of Economic Theory, 56:434-450, 1992.

[13] H. Moulin and S. Shenker. Strategyproof sharing of submodular costs: budget balance vs efficiency. Economic

Theory, 18:511-533, 2001.

[14] N. Nisan and A. Ronen. Algorithmic mechanism design. In Proc. 31st ACM Symposium on Theory of Computing,
129-140, 1999.

[15] T. Tatur. Asymptotically optimal market mechanisms. Working Paper, Northwestern University, 2001.

[16] W. Vickrey. Counterspeculation, auctions and competitive sealed tenders. Journal of Finance, 16:8-37, 1961.

A Appendix

A.1 The GW Algorithm for PCST and Proofs

Consider the following integer programming formulation of PCST. For a subset of nodes R, let zR be 1 if
that subset is not spanned by the selected tree. Then the following IP (PCIP) describes PCST:

min
∑

e∈E

cexe +
∑

R⊂V :r/∈R

zRu(R)

x(δ(S)) +
∑

R⊇S

zR ≥ 1 ∀S ⊂ V : r /∈ S

∑

R⊂V :r/∈R

zR ≤ 1

The dual of the linear relaxation of PCIP is PCD:

max
∑

S:r/∈S

yS

∑

S:e∈δ(S)

yS ≤ ce ∀e ∈ E

∑

S⊆R

yS ≤ u(R) ∀R ⊂ V : r /∈ R

10

GW is a primal-dual algorithm, which begins by setting all dual variables yS to zero. Sets S which are
inclusion wise minimal and such that their corresponding primal constraints are violated are called valid
sets. GW raises the dual values of valid sets simultaneously while maintaining dual feasibility. If an edge
constraint in the dual becomes tight, the corresponding edge has its primal value set to 1, and is selected in
the solution. Duals are raised only until the total utility inside the sets can pay for them. Sets that exhaust
all the utility inside them (and are thus unable to grow their duals) are called dead. When no dual variable
can be raised any further, the algorithm stops and goes into a second stage. At the end of the first stage,
there are some nodes connected to the root by a tree. Other nodes belong to sets that died before reaching
the root.

In the second stage (the pruning stage), all nodes that are not connected to the root are discarded. Nodes
belonging to sets that did not die before reaching the root are retained and connected to the root. Other
nodes that belong to dead sets, but were still connected to the root at the end of the first step are retained
if they are on the path from the root to some other alive set. The retained nodes and tree on them form the
final solution. Goemans et al [8] prove that the total utility of all nodes in the final solution is at least 1

2 the

cost of the tree connecting them. This gives a 2-approximation to the problem of minimizing c(T) + u(T).
For a detailed description of the algorithm and its analysis, the reader is referred to [8].

Proof of Lemma 2: The statement simply follows from the observation that the behavior of GW in terms
of the dual variables which are affected by T is unaffected by the rest of the graph. Hence if we restrict our
attention to G′, the behavior of GW is unchanged, and it returns T . 2

Proof of Lemma 3: Suppose edge e has its cost increased by a small amount, from ce to c′e. If the edge
was not tight in G, then clearly it will not be tight in G′ either. If it was tight in G, then it may or may not
be tight in G′. However, from the description of the algorithm, it follows that the set of nodes selected in
G′ cannot include a node which wasn’t selected in G. These two observations complete the proof. 2

A.2 Mechanism M3 is not profit guaranteeing

The following example shows that even in the presence of a solution with extremely high surplus, Mechanism
M3 may return the trivial solution. The graph consists of n + 2 nodes (one being the root), arranged in a
cycle. One of the neighbors of the root is a special node with utility k. This is connected to the root with
an edge of cost 2. All other nodes have utility δ, and all other edges have cost 1. Let δ be small enough so
that nδ << k. Hence U ≈ k. Moreover, k is such that k + nδ < n.

The mechanism will first pick the MST, which is all the edges of cost 1. The MST costs n. Any kind of
cost allocation will prune out all the nodes, and return the trivial solution. However, the solution consisting
of just the special node and the edge of cost 2 has efficiency k − 2 ≈ U .

It can also be shown that “filtering” nodes with very low utility does not help, by a simple modification
of the above example.

A.3 Pruning Rules and Cost Division Methods

Suppose we are given a rooted tree T , with edge costs ce and node utilities ui. We want to select a subtree T ′

of T and allocate costs p(i) to the nodes, such that p(i) ≤ ui for all nodes i and
∑

i∈T ′ p(i) = c(T ′), that is,
the cost of the subtree is recovered from the nodes. Such a cost allocation function is called budget-balanced.
Given any cost allocation function p, the following is a pruning subroutine which computes T ′:

1. Set T ′ = T .

2. Mark all nodes “alive”.

3. For all alive nodes i, compute p(i).

4. While there exists a node with p(i) > ui:

(a) Mark all nodes with p(i) > ui to be “dead”.

(b) For every edge, if all nodes downstream of it are dead, delete the edge from T ′.

(c) Recompute p(i) for all alive nodes i to distribute the costs of the edges in T ′ to the alive nodes.

11

5. Return T ′, and the set of alive nodes.

The Shapley Value cost allocation function [5, 13] is as follows. For any edge e, let ae denote the number
of alive nodes downstream of it. For any node i, let E(i) be the set of edges in the path from the node to
the root. Then we define p(i) =

∑
e∈E(i) ce/ae. In other words, the cost of every edge is distributed equally

among the alive nodes downstream of it.
Another budget-balanced cost allocation function is the Jain-Vazirani function (JV), derived from the

Primal-Dual algorithm for computing a minimum spanning tree. Essentially, each alive node maintains a
counter, and all counters are initially at zero. All counters go up at the same rate, and initially, each counter
“loads” the edge immediately upstream of the node. When the sum of counter values loading an edge equals
the cost of the edge, we say the edge is “tight”, and all counters loading the edge are moved up to load
the edge immediately upstream of it, with their values reset to zero. For each node, this goes on until the
counter finishes loading the edge adjacent to the root. At this point, the node i is charged p(i) which is
defined to be the sum of the values reached by all its counters on the path between the node and the root.
For a detailed discussion of the JV function, the reader is referred to their paper [10].

12

