

A Programming System for Children
that is Designed for Usability

John F. Pane

CMU-CS-02-127
May 3, 2002

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee:

Brad A. Myers (co-chair)
David Garlan (co-chair)

Albert Corbett
James Morris

Clayton Lewis, University of Colorado

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Also appears as: CMU-HCII-02-101

Copyright © 2002 John F. Pane

This research was sponsored in part by the National Science Foundation under Grant No. IRI-9900452. Any opinions,
findings and conclusions or recommendations expressed in this material are those of the author and do not necessarily
reflect those of the National Science Foundation.

Keywords:

 Natural Programming, HANDS, End-User Programming, Psychology of Pro-

gramming, Empirical Studies of Programmers, Educational Software, Children, User Inter-

face Design, Programming Environments, Programming Language Design, Usability,

Human-Computer Interaction.

Abstract

A programming system is the user interface between the programmer and the computer.

Programming is a notoriously difficult activity, and some of this difficulty can be attributed

to the user interface as opposed to other factors. Historically, the designs of programming

languages and tools have not emphasized usability.

This thesis describes a new process for designing programming systems where HCI knowl-

edge, principles and methods play an important role in all design decisions. The process

began with an exhaustive review of three decades of research and observations about the

difficulties encountered by beginner programmers. This material was catalogued and orga-

nized for this project as well as for the benefit of other future language designers. Where

questions remained unanswered, new studies were designed and conducted, to examine

how beginners naturally think about and express problem solutions. These studies revealed

ways that current popular programming languages fail to support the natural abilities of

beginners.

All of this information was then used to design HANDS, a new programming system for

children. HANDS is an event-based system featuring a concrete model for computation

based on concepts that are familiar to non-programmers. HANDS provides queries and

aggregate operations to match the way non-programmers express problem solutions, and

includes domain-specific features to facilitate the creation of interactive animations and

simulations. In user tests, children using the HANDS system performed significantly better

than children using a version of the system that lacked several of these features. This is evi-

dence that the process described here had a positive impact on the design of HANDS, and

could have a similar impact on other new programming language designs.

The contributions of this thesis include a survey of the knowledge about beginner program-

mers that is organized for programming system designers, empirical evidence about how

non-programmers express problem solutions, the HANDS programming system for chil-

dren, a new model of computation that is concrete and based on familiar concepts, an eval-

uation of the effectiveness of key features of HANDS, and a case study of a new user-

centered design process for creating programming systems.

.

Acknowledgements

I would like to extend my heartfelt appreciation to Brad Myers for his insight and guidance

throughout my Ph.D. work. I am very grateful for the many hours that he spent discussing

and critiquing my work.

I am also very thankful for the feedback and support of my co-advisor, David Garlan, and

the other members of my committee: Jim Morris, Clayton Lewis and Albert Corbett. Albert

was especially generous in the time he spent helping me to design the user studies and ana-

lyze the results.

Many other faculty at CMU and elsewhere gave me valuable feedback and suggestions

along the way. In particular, I would like to thank Bonnie John, Ken Koedinger, Wayne

Gray, Margaret Burnett, Alan Blackwell, and Thomas Green.

I am especially grateful to Bonnie John, Dana Scott and Phil Miller, who were influential

in my decision to become a Ph.D. student, and who helped me gain admission to the pro-

gram.

I would like to thank the undergraduate and master’s students who helped me develop the

ideas in HANDS and who worked on the user studies: Leah Miller, Chotirat “Ann” Ratan-

amahatana, John Chang, Gabe Brisson, Luis Cota, and Ruben Carbonnell. Thanks to Joon-

hwan Lee for creating the graphics in the HANDS system. Thanks to Rob Miller for

contributing his code for multi-level undo in the text editor.

Many thanks to Bernita Myers for acting as liaison to the East Hills Elementary school.

Thanks to Mr. Niklos, the principal, as well as the teachers who allowed us to work in their

classrooms: Carol Beavers and John Meighan. Also, thanks to Laurie Heinreicher at Win-

chester-Thurston school. Thanks to Michael Pane for his assistance in pilot testing the user

study evaluating HANDS, and Melody Mostow for doing this and also starring in the

HANDS video. Thanks to Ryan and Reid Myers, who helped us recruit volunteers for one

of the studies. And, special thanks to Ryan for his insightful comparison of HANDS with

Stagecast. And of course, thanks to all of the participants in my studies.

Thanks to Gary Perlman for working with me to develop and evaluate the search interface

for the HCI Bibliography.

Thanks to many additional friends and fellow students who have helped me in various

ways, especially Neil Heffernan, Chuck Rosenberg, Laurie Hiyakumoto, Herb Derby,

Eugene Ng, Adam Berger, Matt Zekauskas, Maria Ebling, Chris Long, and David Eck-

hardt. A special thanks to Drew Morgan whose friendship and counsel was essential to my

ability to make it through this project.

Especially, I would like to express my gratitude to my family for their support and encour-

agement. Most of all, thanks to my wife Barbara, who has given me her patient loving sup-

port throughout. Without this I may have never made it. I hope the rest of our lives will give

me sufficient opportunity to reciprocate. Finally, thanks to Lorenzo, our next big project

and one of the compelling motivations to finish this one.

A Programming System for Children that is Designed for Usability

vii

Contents

Abstract

iii

Acknowledgements

v

CHAPTER 1

Introduction

1

Historical Context

2

A User Centered Design Process for Programming Systems

3

Motivation

4

Thesis Statement

4

Target Audience and Domain

5

Understanding the Target Audience

5

General Design Principles

5

Observations about Existing Programming Languages

7

Naturalness

9

Studies of Naturalness in Problem Solving

10

Study of Methods to Specify Queries

11

Model of Computation

12

Visual vs. Textual

13

Contents

viii

A Programming System for Children that is Designed for Usability

The HANDS Programming System Design

13

Computational Model

14

Programming Style and Model of Execution

15

Aggregate Operations

15

Queries

15

Domain-Specific Support

16

Evaluation

16

Contributions

17

Overview of Thesis

18

CHAPTER 2

Related Work

19

Usability Issues in Programming Systems for Beginners

19

Systems for Beginners and Children

19

The Logo Family

19

Boxer

20

ToonTalk

20

AgentSheets

21

Stagecast

21

SmallTalk and eToys

23

Alice

24

Rehearsal World

25

Karel the Robot

25

GRAIL

26

HyperTalk

26

AppleScript

26

SK8Script

26

Chart ‘n’ Art

27

cT

27

LabView

27

Forms/3

27

Visual Basic

27

Java and C#

28

MacGnome

28

Programming by Demonstration

29

Hank

29

A Programming System for Children that is Designed for Usability

ix

Contents

CHAPTER 3

The Language and Structure in Problem Solutions Written
by Non-Programmers

31

Comparison to Lance Miller’s Studies

32

Overview of the Studies

33

Study One

34

Participants

34

Materials

35

Procedure

36

Content Analysis

36

Results

37

Overall Structure

40

Keywords

41

Control Structures

42

Computation

44

Discussion

46

Study Two

46

Participants

46

Materials

47

Procedure

48

Content Analysis

48

Results

49

Keywords

49

Control Structures

52

Computation

53

Discussion of Results

58

Programming Style

58

Summary of These Studies

65

CHAPTER 4

Methods for Expressing Queries

67

Overview

67

Prior work on Boolean Queries

70

Design alternatives for Boolean queries

70

Tabular query forms

71

Hypotheses

72

AND vs. nested IF

72

NOT vs. Unless

72

Contents

x

A Programming System for Children that is Designed for Usability

Location of Unless

72

Context-dependent interpretation of AND

73

Verbose AND vs. OR

73

Operator precedence of NOT

73

Parentheses for expression grouping

74

Tabular vs. textual

74

Method

74

Participants

75

Materials

76

Procedure

76

Results

78

Discussion

80

Textual query variations

81

Match forms vs. text

82

Summary

83

Application of Results

84

CHAPTER 5

The HANDS System

87

Motivating Factors in the HANDS Design

87

Representation of the Program

89

Cards for Data Storage

89

Computation is Performed by Handy

94

Programming Style and Model of Execution in HANDS

96

Structure of Event Handlers

97
Event Dispatch 97
The Events 98
Event Patterns 99
Event Cards 101

Data Types 101

Numeric Values and Calculations 102

Language Syntax 103
Natural-Language Style 103
Plurals 103
Control Structure Terminators 104
Statement Terminators 104
Parentheses Are Required to Indicate Precedence Explicitly 104
List Syntax 105

A Programming System for Children that is Designed for Usability xi

Contents

Consistency Between Values on Cards and in Program Code 105
Comments, Indenting, and White Space 105
Choices for Keywords and Special Identifiers 106

Statements 106
Operations on Cards 107
Operations on Card Properties 107
Output Statements 109
Other Statements 109

Expressions 109
Relational Operators 110
Boolean Operators 110
Card Existence Predicate 111
Mathematical Operators 111
Random 111
Expression for Getting Input from User 112

Aggregate Operations 112

Queries 113

Queries and Aggregates in Combination 114

List Operators 114

Loop and Conditional Control Structures 119
Iteration Control Structure 119
Conditional Control Structure 121

Domain-Specific Support 123
Graphical Objects 123
Animation 124
Mouse Click Detection 127
Collision Detection 127
Coordinate System 129

Programming Environment 129
System-wide Menu Commands 129
Event Browser 131
Testing Window 136
Cards Window 137
Handy’s Hand 137

Runtime Errors 138

Implementation Details 141
HANDS Runtime Implementation 141
Format for Saved Files 143

Contents

xii A Programming System for Children that is Designed for Usability

Sample Program 143

Importing Components 145

Summary 146

CHAPTER 6 Evaluation 147

User Study 148
Queries and the Alternative 149
Aggregate Operators and the Alternative 150
Visibility of Data and the Alternative 150

The Study 152
Participants 152
Materials 152
Procedure 153
Results 153
Informal Observations 155
Summary of Study 155

Example Programs 156
Breakout Game 156
Simulation of the Ideal Gas Law 156
Towers of Hanoi 157
Computing Prime Numbers 158

Comparison with Another System 159

Some Weaknesses of HANDS 161

Range of Capabilities 161

Programming Strategies 162

Evaluation of Earlier Design Ideas 163

Some Criticisms of HANDS 165

Summary of Evaluation 167

CHAPTER 7 Future Work 169

Further Evaluation and User Testing 169

Ideas for Extending HANDS 170
Modularity and Encapsulation 170
Multiple Agents 171

A Programming System for Children that is Designed for Usability xiii

Contents

Graphics Primitives 172
Improvements to Collision Detection and Animation 172
Timers 173
Match Forms 173
Widget Library 173
Dealing with Large Numbers of Cards 174
Editing and Debugging Support 174
HANDS as a Complete Package for Teachers and Students 175

Applications of Results to Other Areas 175
Model of Computation 175
Export Features to Other Languages 175
Influence Design Process for Future Languages and Domains 176
Applications of Match Forms 176

CHAPTER 8 Conclusion 177

Contributions 177
Design Process 177
HANDS 178
Tabular Method for Expressing Boolean Queries 178
User Studies 178
Survey of Prior Work 179

Closing Remarks 179

CHAPTER 9 References 181

APPENDIX A Language Syntax Chart 193

APPENDIX B Example Programs 215

Breakout 216

Ideal Gas Law Simulation 222

Towers of Hanoi 228
Extension to Towers of Hanoi 229

Primes Sieve 230

Compass 230

Contents

xiv A Programming System for Children that is Designed for Usability

Boundaries 231

Trap Door 232

APPENDIX C Background Research 233

APPENDIX D Materials from Study 1 321

APPENDIX E Materials from Study 2 341

APPENDIX F Materials from Study 3 381

APPENDIX G Materials from Study 4 415

A Programming System for Children that is Designed for Usability 1

CHAPTER 1 Introduction

Only a very small proportion of users can program their computers. However, most could

benefit in some way from this powerful capability, whether to customize and interconnect

their existing applications or to create new ones. As with writing, “the significance of pro-

gramming derives not only from the carefully crafted works of a few professionals, but also

from the casual jottings of ordinary people” [diSessa 1986, p. 859]. For ordinary people,

understandability, familiarity, ease of performing small tasks, and user interface are more

important features in a programming system than technical objectives such as mathematical

elegance, efficiency, verifiability, or uniformity.

Many of the people who try to learn to program are quickly discouraged because it is very

difficult. In fact, it is even challenging for more experienced people who have received

formal training. Why is programming so difficult? Part of the problem is that it requires

problem solving skills and great precision, but this does not fully explain the difficulty.

Even when a person can envision a viable detailed solution to a programming problem, it

is often very hard to express the solution correctly in the form required by the computer.

This is a user-interface problem that has long been recognized but neglected.

2 A Programming System for Children that is Designed for Usability

Introduction

1.1 Historical Context
In 1971, Gerald Weinberg published The Psychology of Computer Programming, with the

stated goal to trigger a new field that studies computer programming as a human activity

[Weinberg 1971]. At the time, there was little scientific literature about the human aspect

of programming, and most of it appeared in technical reports and other obscure publica-

tions. The field began to grow quickly after Allen Newell addressed the third ACM CHI

Conference on Human Factors in Computing Systems, and later published his comments in

an article with Stuart Card:

Millions for compilers, but hardly a penny for understanding
human programming language use. Now, programming lan-
guages are obviously symmetrical, the computer on one side,
the programmer on the other. In an appropriate science of
computer languages, one would expect that half the effort
would be on the computer side, understanding how to trans-
late the languages into executable form, and half on the
human side, understanding how to design languages that are
easy or productive to use. Yet we do not even have an enu-
meration of all of the psychological functions programming
languages serve for the user. Of course, there is lots of pro-
gramming language design, but it comes from computer sci-
entists. And though technical papers on languages contain
many appeals to ease of use and learning, they patently con-
tain almost no psychological evidence nor any appeal to psy-
chological science. [Newell 1985, p. 212]

Soon two workshop series were started, which have become focal points for research in the

usability of programming languages: the Psychology of Programming Interest Group

(PPIG) explores the cognitive aspects of computer programming; and the Empirical Studies

of Programmers (ESP) group focuses on empirical studies of beginners and experts.

Over the past three decades, many researchers have worked to understand the cognitive

demands of programming and the sources of difficulty in existing programming languages

and tools. In addition to the proceedings of the PPIG and ESP workshop series, relevant

work has appeared in the International Journal of Human-Computer Studies (formerly

International Journal of Man-Machine Studies), the proceedings of the ACM CHI confer-

ence and the IEEE Human-Centric Computing (formerly Visual Languages) conference,

A Programming System for Children that is Designed for Usability 3

Introduction

and the books Studying the Novice Programmer [Soloway 1989b], Psychology of Pro-

gramming [Hoc 1990a], and Software Design: Cognitive Aspects [Détienne 2001].

1.2 A User Centered Design Process for Programming Systems
It is disappointing that the knowledge gathered over the past thirty years has had so little

influence on the designs of new programming systems (in this document, the term pro-

gramming system is used to encompass the programming language as well as the tools for

viewing, editing, debugging and running programs). In order to help remedy this, I have

organized the prior work that studied beginner programmers so that it might be readily

included among the guidelines and strategies that are used by future programming system

designers. Generally, language designers have focused on technical goals for their systems,

such as to build systems that are scalable, efficient, reusable, provably correct, or that have

mathematical elegance. When they face a design decision that is not determined by these

criteria, they usually choose a solution that is similar to existing languages or one that

appeals to their intuition. Usability has rarely been adopted as a formal objective.

I believe that usability should always be included among the criteria that are considered

during the design of programming systems. Depending on the constraints of a particular

project and target audience, usability may be given more or less weight. However, it is

always worth considering for at least those decisions that are not already determined by

other design criteria

In this thesis, I exemplify a new design process for programming systems, where usability

is treated as a first-class objective:

1. Identify the target audience and the domain, that is, the group of people who will be

using the system and the kinds of problems they will be working on.

2. Understand the target audience, both the problems they encounter and the existing rec-

ommendations on how to support their work. This includes an awareness of general

HCI principles as well as prior work in the psychology of programming and empirical

studies. When issues or questions arise that are not answered by the prior work, conduct

new studies to examine them.

3. Design the new system based on this information.

4 A Programming System for Children that is Designed for Usability

Introduction

4. Evaluate the system to measure its success, and understand any new problems that the

users have. If necessary, redesign the system based on this evaluation, and then re-eval-

uate it.

In this design process, all of the prior knowledge about the human aspects of programming

are considered, and the strategy for addressing any unanswered questions is to conduct user

studies to obtain design guidance and to assess prototypes. For my new programming

system for children, I adopted an extreme position by giving usability precedence over

other objectives.

While my focus has been on beginner programmers, I believe this approach also applies to

experts, and that it can have positive impacts on training and productivity as well as the reli-

ability of professional software systems. Improving the programming systems used by

experts will also affect beginners, because although these systems may not be the best

choices for learning to program, they are often chosen because they are widely available

and familiar to mentors. Everyone would benefit if these programming languages and tools

were more usable.

1.3 Motivation
The goal of this thesis is to enable more beginners to learn to program for their personal

purposes, with minimal training. There is no explicit goal to teach any particular computer

science concepts, such as recursion, unless the concept is essential to the users achieving

their goals. There is also no requirement for the new programming language produced by

this work to match existing programming languages. Ideally, the new system will be gen-

eral and powerful enough that many people will achieve their objectives without having to

move to other new languages. Hopefully, the need to learn some of the harder computer

science concepts can be deferred or eliminated. For those who do move on to other lan-

guages or even to become computer scientists, their early success with this first language

should ease their difficulties in learning the harder computer science concepts.

1.4 Thesis Statement
The thesis statement for this work is:

A Programming System for Children that is Designed for Usability 5

Introduction

this user-centered design process, incorporating principles
from human-computer interaction, psychology of program-
ming, and empirical studies, will result in a unique program-
ming system that is easier to learn and use than more
conventional programming systems.

1.5 Target Audience and Domain
The target audience for my new programming system is children in fifth grade (about ten

years old) or older. I chose to build a system for children because they often have an interest

in learning how to program, but can be quickly discouraged when they try. Their goals are

creative and ambitious – they would like to make programs that are similar to the applica-

tions they use, such as games and simulations. These applications are graphically rich and

highly interactive, unlike the first programs they are likely to create in many professional

programming systems, such as to display “hello world” on the screen. My goal is to provide

an easy entry into creating these interactive graphical programs. However, to the extent

possible, I also tried to create a general purpose language that scales well, so that it is not

inherently limited to creating toy programs.

1.6 Understanding the Target Audience
In addition to general design principles that are applicable to all users, there is a wealth of

information available about how beginner programmers work and the problems they

encounter. This section summarizes the prior work and briefly describes the new studies I

conducted to examine additional questions.

1.6.1 General Design Principles

The field of Human Computer Interaction (HCI) has general principles and heuristics that

can be applied to programming system design [Nielsen 1994]:

• simple and natural dialog – user interfaces should be simplified, and should match the

user’s task in as natural a way as possible, such that the mapping between computer

concepts and user concepts becomes straightforward.

• speak the user’s language – the terminology in user interfaces should be based on the

user’s language, instead of using system-oriented terms or attaching non-standard

meanings to familiar words.

6 A Programming System for Children that is Designed for Usability

Introduction

• minimize user memory load – the system should take over the burden of memory from

the user.

• consistency – the same command or action should always have the same effect.

• feedback – the system should continuously inform the user about what it is doing and

how it is interpreting the user’s input.

• clearly marked exits – the system should offer the user an easy way out of as many sit-

uations as possible, including ways to undo.

• shortcuts – the system should make it possible for experienced users to perform fre-

quently used operations quickly.

• good error messages – the system should report errors politely in clear language, avoid

obscure codes, use precise rather than vague or general explanations, and include con-

structive help for solving the problem.

• prevent errors – where possible, the user interface should be structured to avoid error

situations.

• help and documentation – the help system and documentation should provide a quick

way for users to find task-specific information when they are having a problem.

Many of these principles are routinely violated by programming systems – several exam-

ples are presented in Chapter 2.

When designing and evaluating programming systems, it is also useful to consider the more

specific evaluation criteria in the Cognitive Dimensions of Notations framework (Cognitive

Dimensions, for short) [Blackwell 2000, Green 1996]:

• viscosity – the system should not resist change; it should not require many user actions

to accomplish one small goal.

• visibility – the information needed by the programmer at any particular time should be

visible or very easy to access.

• premature commitment – the system should not force the user to go about the job in a

particular order, or make a decision before the needed information is available.

• hidden dependencies – important links between entities should be visible.

A Programming System for Children that is Designed for Usability 7

Introduction

• role expressiveness – the purpose of an entity should be readily apparent.

• error proneness – the notation should protect against slips and errors.

• closeness of mapping – the system’s operations should closely match the way users

think about problem solutions.

• secondary notation – the system should allow the programmer to communicate addi-

tional information with comments, typography, layout, etc.

• progressive evaluation – the system should permit users to test partial programs.

• diffuseness – small goals should not require extraordinarily long solutions or large

amounts of screen space.

• provisionality – the system should allow the user to sketch out uncertain parts of their

solution.

• hard mental operations – none of the system’s operations should require great mental

effort to use.

• consistency – similar notations should mean similar things, and vice versa.

• abstraction management – the system should provide a way to define new facilities or

terms that allow the user to express ideas more clearly or succinctly, but it should not

force users to use this capability right from the start.

These factors are sometimes in conflict, so improving the system along one dimension can

result in reduced performance on another. Tradeoffs are necessary, and in making these

tradeoffs it is useful to consider cognitive models and observations from empirical studies.

1.6.2 Observations about Existing Programming Languages

The principles of simple and natural dialog, speak the user’s language and closeness of

mapping are reinforced by cognitive models that define programming as a process where

the user translates a mental plan into one that is compatible with the computer [Hoc 1990b].

The language should minimize the difficulty of this translation by providing operators that

match those in the plan, including any that may be specific to the topic or domain of the

program. “The closer the programming world is to the problem world, the easier the prob-

lem-solving ought to be.... Conventional textual languages are a long way from that goal”

8 A Programming System for Children that is Designed for Usability

Introduction

[Green 1996, p. 146]. Hix & Hartson describe the general usability guideline to use cogni-

tive directness [Hix 1993, p. 38] to “minimize the mental transformations that a user must

make. Even small cognitive transformations by a user take effort away from the intended

task.” If the language does not provide these high-level operators, programmers have to

assemble lower-level primitives to achieve their goals. This synthesis is one of the greatest

cognitive barriers to programming [Lewis 1987].

Programmers are often required to think about algorithms and data in ways that are very

different than the ways they already think about them in other contexts. For example, a typ-

ical C program to compute the sum of a list of numbers includes three kinds of parentheses

and three kinds of assignment operators in five lines of code:

sum = 0;
for (i=0; i<numItems; i++) {

sum += items[i];
}
return sum;

In contrast, this can be done in a spreadsheet with a single line of code using the sum oper-

ator [Green 1996]. The mismatch between the way a programmer thinks about a solution

and the way it must be expressed in the programming language makes it more difficult not

only for beginners to learn how to program, but also for people to carry out their program-

ming tasks even after they become more experienced. One of the most common bugs

among professional programmers using C and C++ is the accidental use of “=” (assign-

ment) instead of “==” (equality test). This mistake is easy to make and difficult to find, not

only because of typographic similarity, but also because “=” operator does indeed mean

equality in other contexts such as mathematics.

Soloway, Bonar & Erlich [Soloway 1989a] found that the looping control structures pro-

vided by modern languages do not match the natural strategies that most people bring to

the programming task. Furthermore, when novices are stumped they try to transfer their

knowledge of natural language to the programming task. This often results in errors

because the programming language defines these constructs in an incompatible way [Bonar

1989]. For example, then is interpreted as afterwards instead of in these conditions.

A Programming System for Children that is Designed for Usability 9

Introduction

1.6.3 Naturalness

There are two ways to improve closeness of mapping. One is to teach people to think more

like computers; the other is to make the programming system’s operations match how users

think. The latter approach is preferred in this thesis. A primary goal of my programming

system is to support the natural ways that non-programmers think about problem solutions,

instead of making them learn new and often unnatural ways to accomplish their objectives.

In this context, natural means expected or accepted. If people have a viable approach to

solving problems, the ideal programming system would support that solution directly,

without requiring the programmer to learn anything new or perform additional work in

translating their ideas into program code.

By this definition, naturalness is not universal for all humans. People from different back-

grounds and cultures, or from different points in history, are likely to bring different expec-

tations and methods to the programming task. Therefore, a programming system that is

designed to be natural for a particular target audience is unlikely to be universally optimal.

This is why identifying the target audience is an intrinsic part of the design process, and

why the process itself is important. It will have to be applied over and over again, in order

to best support the particular characteristics of the people who will use each new program-

ming system.

Striving for naturalness does not necessarily imply that the programming language should

use natural language. Programming languages that have adopted natural-language-like syn-

taxes, such as Cobol [Sammet 1981] and HyperTalk [Goodman 1987], still have many

usability problems. For example, HyperTalk often violates the principle of consistency

[Thimbleby 1992]. There are also many ambiguities in natural language that are resolved

by humans through shared context and cooperative conversation [Grice 1975].

Novices attempt to enter into a human-like discourse with the computer, but programming

languages systematically violate human conversational maxims because the computer

cannot infer from context or enter into a clarification dialog [Pea 1986]. The use of natural

language may compound this problem by making it more difficult for the user to under-

stand the limits of the computer’s intelligence [Nardi 1993].

10 A Programming System for Children that is Designed for Usability

Introduction

However, these arguments do not imply that the algorithms and data structures should not

be close to the ways people think about the problem. In fact, leveraging users’ natural-lan-

guage-like knowledge in a more formalized syntax can be an effective strategy for design-

ing end-user-programming languages [Bruckman 1999].

There are additional motivations for why a more natural programming language might be

better. A programming language is a type of user interface, and user interfaces in general

are recommended to be natural so they are easier to learn and use, and will result in fewer

errors. Naturalness is closely related to the concept of directness which, as part of direct

manipulation, is a key principle in making user interfaces easier to use. Hutchins, Hollan

& Norman describe directness as the distance between one’s goals and the actions required

by the system to achieve those goals [Hutchins 1986]. Reducing this distance makes sys-

tems more direct, and therefore easier to learn. User interface designers and researchers

have been promoting directness at least since Shneiderman identified the concept [Shnei-

derman 1983], but it has not been a consideration in most programming language designs.

1.6.4 Studies of Naturalness in Problem Solving

This thesis presents two studies examining the language and structure that children and

adults naturally use before they have been exposed to programming (Chapter 3). In these

studies, I gave programming tasks to non-programmers and they solved these problems by

writing and sketching their answers on paper. The tasks covered a broad set of essential pro-

gramming techniques and concepts, such as control structures, storage and manipulation of

data, arithmetic, Boolean logic, searching and sorting, animation, interactions among

objects, etc. In posing the problems, I was careful to minimize the risk that my materials

would influence the answers, so I used pictures and very terse captions.

Some observations from these studies were:

• An event-based or rule-based structure was often used, where actions were taken in

response to events. For example, “when pacman loses all his lives, it’s game over.”

• Aggregate operators (acting on a set of objects all at once) were used much more often

than iterating through the set and acting on the objects individually. For example,

“Move everyone below the 5th place down by one.”

A Programming System for Children that is Designed for Usability 11

Introduction

• Participants did not construct complex data structures and traverse them, but instead

performed content-based queries to obtain the necessary data when needed. For exam-

ple, instead of maintaining a list of monsters and iterating through the list checking the

color of each item, they would say “all of the blue monsters.”

• A natural language style was used for arithmetic expressions. For example, “add 100 to

score.”

• Objects were expected to automatically remember their state (such as motion), and the

participants only mentioned changes in this state. For example, “if pacman hits a wall,

he stops.”

• Operations were more consistent with list data structures, rather than arrays. For exam-

ple, the participants did not create space before inserting a new object into the middle

of a list.

• Participants rarely used Boolean expressions, but when they did they were likely to

make errors. That is, their expressions were not correct if interpreted according to the

rules of Boolean logic in most programming languages.

• Participants often drew pictures to sketch out the layout of the program, but resorted to

text to describe actions and behaviors.

1.6.5 Study of Methods to Specify Queries

Because content-based queries were prevalent in non-programmers’ problem solutions, I

began to explore how this might be supported in a programming language. Queries are usu-

ally specified with Boolean expressions, and the accurate formulation of Boolean expres-

sions has been a notorious problem in programming languages, as well as other areas such

as database query tools [Hildreth 1988, Hoc 1989]. In reviewing prior research I found that

there are few prescriptions for how to solve this problem effectively. For example, prior

work suggests avoiding the use of the Boolean keywords AND, OR, and NOT [Greene

1990, McQuire 1995, Michard 1982], but does not recommend a suitable replacement

query language.

Therefore I conducted a new study to examine the ways untrained children and adults nat-

urally express and interpret queries, and to test a new tabular query form that I designed

12 A Programming System for Children that is Designed for Usability

Introduction

called match forms (shown in Figure 1-1). This study confirmed that relying on the Boolean

keywords, as well as parentheses for grouping, would result in poor usability. Textual alter-

natives that avoided the Boolean keywords were not reliably better. However, the match

forms were successful.

Each match form contains a vertical list of slots. Conjunction is specified by placing terms

into these slots, one term per slot. Negation is performed by prefacing a term with the NOT

operator, and disjunction is specified by placing additional match forms adjacent to the first

one. This design avoids the need to name the AND and OR operators, provides a clear dis-

tinction between conjunction and disjunction, and makes grouping explicit. Match forms

are suitable for incorporation into programming systems. When compared with textual

Boolean expressions, users performed significantly better when they expressed their que-

ries using match forms. When interpreting already-written queries, performance was about

equal using either language. Chapter 4 contains full details about match forms and this

study, as well as an application of this work to the search interface for the online HCI Bib-

liography.

1.6.6 Model of Computation

One of the biggest challenges for new programmers is to gain an accurate understanding of

how computation takes place. Traditionally, programming is described to beginners in

completely unfamiliar terms, often based on the von Neumann model, which has no real-

world counterpart [du Boulay 1989a, du Boulay 1989b]. Beginners must learn, for exam-

ple, that the program follows special rules of control flow for procedure calls and returns.

There are complex rules that govern the lifetimes of variables and their scopes. Variables

Figure 1-1. Match forms expressing the query: (blue and not square) or (circle and not green)

A Programming System for Children that is Designed for Usability 13

Introduction

may not exist at all when the program is not running, and during execution they are usually

invisible, forcing the programmer to use print statements or debuggers to inspect them. This

violates the principle of visibility, and contributes to a general problem of memory over-

load [Anderson 1985, Davies 1993].

Usability could be enhanced by providing a different model of computation that uses con-

crete and familiar terms [Mayer 1989, Smith 1994]. Using a different model of computation

can have broad implications beyond beginners, because the model influences, and perhaps

limits, how experienced programmers think about and describe computation [Stein 1999].

Section 1.7.1 introduces the new model of computation I invented to address this problem.

1.6.7 Visual vs. Textual

In visual languages, graphics replace some or all of the text in specifying programs. Propo-

nents of visual programming languages often argue that reducing or eliminating the text in

programming will improve usability [Smith 1994]. However, much of the underlying ratio-

nale for this expectation is suspect [Blackwell 1996]. User studies have shown mixed

results on the superiority of visual languages over text (e.g. [Green 1992]), and the advan-

tage of visual languages tends to diminish on larger tasks. It is useful to note that one of the

most successful end-user programming systems to date is the spreadsheet, which is mostly

textual [Nardi 1993].

My new programming system supports the hybrid graphical-textual approach used by the

participants in my studies, and relies on the programming environment to alleviate some of

the difficulties of textual languages. For example, during program entry, context-sensitive

menus like those in Microsoft’s Visual Studio can make it easier to know what choices are

available and to help the user to enter the program correctly. This support could be aug-

mented with a drag-and-drop syntax-directed editor, as seen in Squeak’s eToys interface

[Steinmetz 2001] and other systems. The system can also provide visual representations for

textual elements that are difficult, such as the match forms mentioned in Section 1.6.5.

1.7 The HANDS Programming System Design
All of these observations have influenced the design of my new programming system,

which is called HANDS (Human-centered Advances for the Novice Development of Soft-

14 A Programming System for Children that is Designed for Usability

Introduction

ware). HANDS uses an event-based language that features a new concrete model for com-

putation, provides queries and aggregate operators that match the way non-programmers

express problem solutions, has high-visibility of program data, and includes domain-spe-

cific features for the creation of interactive animations and simulations. The HANDS

system is detailed in Chapter 5.

1.7.1 Computational Model

In HANDS, the computation is represented as an agent named Handy, sitting at a table

manipulating a set of cards (see Figure 1-2). All of the data in the system is stored on these

cards, which are global, persistent and visible on the table. Each card has a unique name,

and an unlimited set of name-value pairs, called properties. The program itself is stored in

Handy’s thought bubble. To emphasize the limited intelligence of the system, Handy is por-

trayed as an animal – like a dog that knows a few commands – instead of a person or a robot

that could be interpreted as being very intelligent.

Figure 1-2. The HANDS system portrays the components of a program on a round table. All data is stored
on cards, and the programmer inserts code into Handy’s thought bubble at the upper left corner. When the
play button is pressed, Handy begins responding to events by manipulating cards according to the
instructions in the thought bubble. This is described in more detail in Chapter 5.

A Programming System for Children that is Designed for Usability 15

Introduction

1.7.2 Programming Style and Model of Execution

HANDS is event-based, the programming style that most closely matches the problem

solutions in my studies. A program is a collection of event handlers that are automatically

called by the system when a matching event occurs. Inside an event handler, the program-

mer inserts the code Handy should execute in response to the event.

1.7.3 Aggregate Operations

In my studies, I observed that the participants used aggregate operators, manipulating

whole sets of objects in one statement rather than iterating and acting on them individually.

Many languages force users to perform iteration in situations where aggregate operations

could accomplish the task more easily [Miller 1981]. Requiring users to translate a high-

level aggregate operation into a lower-level iterative process violates the principle of close-

ness of mapping.

HANDS has full support for aggregate operations. All operators can accept lists as well as

singletons as operands, or even one of each. For example,

• 1 + 1 evaluates to 2

• 1 + (1,2,3) evaluates to 2,3,4

• (1,2,3) + 1 evaluates to 2,3,4

• (1,2,3) + (2,3,4) evaluates to 3,5,7

1.7.4 Queries

In my studies, I observed that users do not maintain and traverse data structures. Instead,

they perform queries to assemble lists of objects on demand. For example, they say “all of

the blue monsters.” HANDS provides a query mechanism to support this. The query mech-

anism searches all of the cards for the ones matching the programmer’s criteria.

Queries begin with the word all. If a query contains a single value, it returns all of the cards

that have that value in any property. Figure 1-3 contains cards representing three flowers

and a bee to help illustrate the following queries.

• all flowers evaluates to orchid, rose, tulip

16 A Programming System for Children that is Designed for Usability

Introduction

• all bees evaluates to bumble

• all snakes evaluates to the empty list

HANDS permits more complex queries to be specified with traditional Boolean expres-

sions, however the intention is to eventually incorporate match forms into the system as an

option for specifying and displaying queries.

Queries and aggregate operations work in tandem to permit the programmer to concisely

express actions that would require iteration in most languages. For example,

• set the nectar of all flowers to 0

1.7.5 Domain-Specific Support

HANDS has domain-specific features that enable programmers to easily create highly-

interactive graphical programs. For example, the system’s suite of events directly supports

this class of programs. The system automatically detects collisions among objects and gen-

erates events to report them to the programmer. It also generates events in response to input

from the user via the keyboard and mouse. It is easy to create graphical objects and text on

the screen, and animation can be accomplished without any programming.

1.8 Evaluation
To examine the effectiveness of three key features of HANDS: queries, aggregate opera-

tions, and data visibility, I conducted a study comparing the system with a limited version

that lacks these features. In the limited version, programmers could achieve the same

results but had to use more traditional programming techniques. Fifth-grade children were

Figure 1-3. When the system evaluates the query all flowers it returns rose, tulip, orchid

A Programming System for Children that is Designed for Usability 17

Introduction

able to learn the HANDS system during a three-hour session, and then use it to solve pro-

gramming problems. Children using the full-featured HANDS system performed signifi-

cantly better than their peers who used the reduced-feature version. This is evidence that

this set of features improves usability over the typical set of features in programming sys-

tems.

In a separate informal study, a high-school student compared hands with Stagecast, a com-

mercial programming environment for children [Earhart 1999]. He implemented a game in

both systems, and concluded that HANDS was easier to use, enabled him to implement

more features, and required fewer lines of code. In addition, several more experienced pro-

grammers have used HANDS to implement a broad variety of programs to explore its range

of capabilities.

Evaluation of the HANDS system is detailed in Chapter 6.

1.9 Contributions
The contributions of this thesis are:

• a case study of a new design process for creating programming systems, where usabil-

ity is a first class objective;

• the HANDS programming system for children, which has a unique set of features due to

its user-centered design, several of which were demonstrated to be more usable than

those found in typical programming systems;

• a new model of computation, or way of thinking about programs, that is concrete and

based on familiar concepts, unlike the traditional Turing machine or von Neumann

machine models;

• a general-purpose programming language that offers database-style access to the pro-

gram’s data, and in which all operators can be applied to singletons and lists;

• match forms, a tabular method for expressing queries that was compared to textual

expressions and shown to improve beginners’ performance;

• a new query interface for the HCI Bibliography (www.hcibib.org), based on match

forms, which reduces user errors in comparison to the old interface;

18 A Programming System for Children that is Designed for Usability

Introduction

• empirical evidence about how non-programmers express problem solutions, which can

be used to help designers generate and select programming system features that provide

a close mapping between those problem solutions and their expression in program

code;

• empirical evidence characterizing the kinds of errors made by inexperienced users of

textual Boolean expressions;

• a user study demonstrating the effectiveness of queries, aggregate operations, and high-

visibility of data, in comparison to the typical features sets of programming systems;

and,

• a broad survey of the prior work on beginner programmers, organized in a form that can

be used by other programming system designers (appears in Appendix C).

1.10 Overview of Thesis
The remainder of this thesis is organized as follows: Chapter 2 describes the prior empirical

work on beginner programmers as well as other programming systems for beginners and

children; Chapter 3 describes the first two studies examining the language and structure in

non-programmers solutions to programming problems; Chapter 4 describes the third study,

examining methods for specifying queries, and provides details about match forms; Chap-

ter 5 details the design of the HANDS system; Chapter 6 describes a fourth study, to eval-

uate features of HANDS, as well as other less formal evaluations; Chapter 7 discusses the

implications of this work and some ideas for future work; and Chapter 8 gives some con-

cluding remarks.

Supplemental materials are contained in appendices. Appendix A contains a formal speci-

fication of the HANDS language syntax; Appendix B contains some example programs

implemented in HANDS; Appendix C contains the full text of my technical report survey-

ing usability issues in programming systems for beginners; Appendix D contains the mate-

rials used in the first study; Appendix E contains the materials used in the second study;

Appendix F contains the materials used in the third study; and Appendix G contains the

materials used in the fourth study.

A Programming System for Children that is Designed for Usability 19

CHAPTER 2 Related Work

This chapter surveys other programming systems for beginners and children.

2.1 Usability Issues in Programming Systems for Beginners
Appendix C contains the full text of my technical report surveying usability issues in the

design of programming systems for beginners, covering the prior work in Empirical Stud-

ies of Programmers and Psychology of Programming [Pane 1996]. Throughout this

thesis, additional relevant related work is cited in context.

2.2 Systems for Beginners and Children
This section briefly summarizes the numerous systems that have been created for beginners

and children.

2.2.1 The Logo Family

Logo [Papert 1980] is a successful and popular language for children. Its textual language

is based on Lisp, with a syntax that was redesigned to be easier to learn and read, yet it does

use unusual punctuation and cryptic names for commands. Logo uses a turtle metaphor for

a drawing pen. There have been many implementations of Logo. StarLogo extends the met-

aphor to parallel processing [Resnick 1994]. Figure 2-1 shows an solution to the Towers of

20 A Programming System for Children that is Designed for Usability

Related Work

Hanoi problem implemented in LogoMation. LEGO/Logo links the popular LEGO con-

struction kit with the Logo programming language [Martin 1993]. Children build machines

out of LEGO pieces, including newer pieces such as gears, motors and sensors, and then

write computer programs to control the machines.

2.2.2 Boxer

Boxer [diSessa 1986] uses a two-dimensional, visible, concrete metaphor where boxes and

their spatial relations represent the computation (Figure 2-2). Variables can be modified by

direct manipulation, and the state and code for graphical objects is packaged with their

graphical representation. Boxer’s textual language is very similar to Logo, with extensions

to broaden its range of capabilities.

2.2.3 ToonTalk

ToonTalk is a children’s programming language based on a video game metaphor [Kahn

1996]. Its cartoon world provides concrete realizations of all of the concepts required in

concurrent constraint programming. For example, birds and nests represent communica-

tion, a robot represents a statement guarded by a condition, a balance scale represents com-

parison tests, a wand can be used to create data, a vacuum cleaner can be used to delete data,

and a bomb represents termination of a process (see Figure 2-3). Programs are constructed

by using video-game controls to train the robots. For example, if a robot drops a number 2

Figure 2-1. A solution to the Towers of Hanoi problem, implemented in LogoMation.

A Programming System for Children that is Designed for Usability 21

Related Work

on top of a number 7, a character named Bammer appears and smashes the numbers with a

sledgehammer, causing the 7 to be replaced with the sum 9. It is a fascinating system, how-

ever its low-level primitives present a challenge for beginners, who may have great diffi-

culty in figuring out how to compose the primitives to accomplish their higher-level goals.

For example, a single robot cannot accomplish the test x+y>100; a team of robots must

be programmed to do this simple test. As another example, a research paper devotes more

than four pages (including illustrations) to explain how a programmer would program

ToonTalk to append two lists [Kahn 1999].

2.2.4 AgentSheets

AgentSheets [Repenning 1995] is the first in a family of rule-based graphical programming

environments based on a spreadsheet metaphor. In these systems, program objects occupy

cells in a grid, and interact with the objects in neighboring cells. These interactions are

specified by graphical rewrite rules, which are before-and-after pictures (see Figure 2-4).

2.2.5 Stagecast

Stagecast (formerly KidSim and Cocoa) extended this metaphor with the capability to use

programming by demonstration to create the graphical rewrite rules (see Figure 2-5) [Joers

Figure 2-2. In Boxer, the computation is represented by boxes and their spatial relations. The language is
based on Logo. This figure originally appeared in [diSessa 1986].

22 A Programming System for Children that is Designed for Usability

Related Work

1999, Smith 1994]. While beginners can quickly create some interesting programs, some

kinds of games and simulations are difficult to implement. For example, the grid makes it

difficult to implement smooth motions in arbitrary directions. Also, graphical rewrite rules

are local – a region of the grid surrounding the object is considered in determining whether

a rewrite rule matches. Therefore, these rules by their nature are not suited to interactions

at a distance. As more objects populate the system, and as the grid region is expanded to

include more cells, there can be a combinatorial explosion in the number of situations that

must be considered. Often, multiple similar rules must be programmed in order to handle

the various situations.

Figure 2-3. ToonTalk has concrete representations for computational concepts. For example, birds and nests
represent communication, a robot represents a statement guarded by a condition, a balance scale represents
comparison tests, a wand can be used to create data, a vacuum cleaner can be used to delete data, and a bomb
represents termination of a process. This figure originally appeared in [Kahn 1999].

A Programming System for Children that is Designed for Usability 23

Related Work

2.2.6 SmallTalk and eToys

SmallTalk is an exploratory object-oriented language that was designed to be accessible to

non-technical people [Ingalls 1981]. A recent portable implementation named Squeak

includes a learning environment interface for children. This system, called eToys, has sup-

Figure 2-4. AgentSheets uses rewrite rules. In this example, the top rule specifies that if the serotonin has a
certain appearance it will change to another appearance; and the bottom rule specifies that if there is a
membrane to the right, the serotonin will move to the right with at 15% probability. This figure originally
appeared in [Repenning 2000].

Figure 2-5. In Stagecast, the rewrite rules can be specified by demonstration, by directly manipulating the
objects. For simple rules, no text is required. In this figure, the programmer is defining a rule that moves a
vehicle forward (to the right) along a track. This figure originally appeared in [Smith 2000].

24 A Programming System for Children that is Designed for Usability

Related Work

port for children to add behaviors to objects, using an interface that features a subset of the

SmallTalk language in a more verbose style, with a tile-based drag-and-drop interface to

assist in constructing correct programs (see Figure 2-6) [Steinmetz 2001].

2.2.7 Alice

Alice [Conway 2000, Conway 1997] is an authoring tool for scripting and prototyping 3D

object behaviors. By writing simple scripts, Alice users can control object appearance and

behavior, and while the scripts are executing, objects respond to user input via mouse and

keyboard. Alice is designed to be simple enough that it can be used by people who don't

necessarily call themselves programmers. A new version of Alice that is currently being

Figure 2-6. The eToys interface in Squeak provides a tile-based drag-and-drop interface for constructing
programs in a verbose version of SmallTalk.

A Programming System for Children that is Designed for Usability 25

Related Work

built has been influenced by this thesis. For example, Alice team has tried to reduce punc-

tuation in their language, and to avoid the Boolean keywords AND and OR.

2.2.8 Rehearsal World

Rehearsal World is a system that uses a theatre metaphor, where the programming process

consists of moving “performers” around on “stages” and teaching them how to interact by

sending “cues” to one another [Finzer 1993].

2.2.9 Karel the Robot

Numerous “mini-languages” have been created over the years for teaching programming in

an environment that is intentionally limited for simplicity [Brusilovsky 1997]. These lan-

guages are used for a short time to allow beginners to learn some programming, before they

move to more complete programming languages. Usually these languages are very similar

to existing languages, so they generally do not break substantial new ground in language

design. For example, Karel the Robot was designed as a simple introduction to the Pascal

language [Pattis 1995].

Figure 2-7. Alice is an authoring tool for scripting and prototyping 3D object behaviors. This figure
originally appeared in [Conway 1997].

26 A Programming System for Children that is Designed for Usability

Related Work

2.2.10 GRAIL

GRAIL stands out among mini-languages because its creators relaxed this constraint, and

adopted usability principles and a pedagogical theory to guide its design [McIver 2001].

GRAIL is an imperative language with an English-like syntax. It has no pointers or refer-

ences, and it has a single numeric type. GRAIL uses non-ascii characters to typographically

represent the symbols that students are used to seeing in other domains (such as ÷), A user

study showed that students made significantly fewer errors when using GRAIL than with

Logo.

2.2.11 HyperTalk

HyperTalk is the scripting language in the HyperCard system [Goodman 1987]. HyperTalk

is a verbose English-like language, with optional extra words to enhance readability. Code

is located inside the user interface object it is associated with. This makes it difficult for a

programmer to find all of the code in a large or unfamiliar program, or to determine why

the code is not working as expected. Even if the programmer knows where to look, the

system requires many steps to make a desired item visible [Green 1990, Green 1996]. Many

inconsistency issues and other usability problems have been reported about HyperTalk

[Thimbleby 1992].

2.2.12 AppleScript

AppleScript is a scripting language built into the Apple Macintosh operating system. It has

a similar English-like flavor to HyperTalk. The system has a programming by demonstra-

tion capability, where the programmer can turn on a record mode and then perform the

actions using the standard user interface of the application, such as menus and buttons.

When the record mode is turned off, an AppleScript script to perform those same actions

appears.

2.2.13 SK8Script

SK8Script is a similar scripting language in Apple’s SK8 authoring tool. SK8Script has a

query-like mechanism for locating objects matching certain criteria, and has the ability to

act on them in aggregate. For example, set the fillColor of every Rectan-

gle whose height > 30 in DrawWindow to Red.

A Programming System for Children that is Designed for Usability 27

Related Work

2.2.14 Chart ‘n’ Art

Chart ‘n’ Art is a programmable tool for creating charts, graphs, and other kinds of graphics

[DiGiano 2001, DiGiano 1996]. The tool is self-disclosing. As the user performs interactive

commands the system volunteers information about how the same commands can be per-

formed programmatically, and also offers a list of possible commands that could be issued

next. This is done in a non-intrusive way, so that the user might learn to accomplish their

tasks more efficiently through programming than they could interactively. Chart ‘n’ Art

uses SK8Script, so it also has aggregate operations.

2.2.15 cT

cT [Sherwood 1988] is a multimedia authoring tool for creating simulations. When the user

interactively defines and manipulates graphical objects, the corresponding cT code is auto-

matically written or revised to reflect the changes. The cT language has few extraneous

brackets, and indenting is used to indicate scope, instead of begin-end blocks or brackets.

2.2.16 LabView

LabView is a visual programming environment for creating interfaces to scientific instru-

ments. A study comparing LabView with a textual language concluded that visual pro-

grams were more difficult to comprehend, even by programmers who were experienced

with the language [Green 1992].

2.2.17 Forms/3

Forms/3 [Hays 1995] is a general purpose, declarative, spreadsheet-based visual program-

ming language (see Figure 2-8). Its goal is to provide computational and expressive power

in a language featuring a simple, concrete programming style with immediate feedback. In

Forms/3 the programmer creates cells by direct manipulation and then defines formulas for

the cells.

2.2.18 Visual Basic

Visual Basic is a popular end-user programming system for non-programmers. It is a tex-

tual event-based language with domain-specific support for forms, dialog boxes and tables,

28 A Programming System for Children that is Designed for Usability

Related Work

which are common in business tasks. The programming language itself is based on the orig-

inal Basic language, which has many well-known usability problems [Pane 1996].

2.2.19 Java and C#

Java and Microsoft’s C# contain many usability refinements over C and C++. These

changes were based on common problems experienced by programmers using the earlier

languages. For example, these languages prohibit assignment in the tests of conditional

structures because this was a common place of errors in C and C++. However the designers

were constrained in how far they could deviate from the predecessors, so programmers

could more easily switch to the new languages.

2.2.20 MacGnome

MacGnome is a family of structure-editor based programming environments for beginner

programmers [Miller 1994]. The structure editor keeps the program syntactically correct,

and offers context-sensitive menus showing all of the legal constructs at any point in the

program.

Figure 2-8. Forms/3 is a visual programming environment based on a spreadsheet paradigm. This example
shows the program for an LED digit. This figure originally appeared in [Wilcox].

A Programming System for Children that is Designed for Usability 29

Related Work

These systems started out enforcing syntactic correctness at all times, which has many ben-

efits for beginners who otherwise might make many syntactic errors and not discover them

until much later. However, this made editing difficult because it was not possible to tem-

porarily go through syntactically-incorrect states while making a change. Later, these sys-

tems added the ability for the user to edit portions of the program textually, and tried to

make the transition between textual and structure editing as smooth as possible. For exam-

ple, to prevent users from naively staying in textual mode and not receiving the benefits of

structure editing, the system automatically returned to structure mode at the end of each

statement (which included a check for correct syntax), but would go back into text mode

again if the user kept typing.

These systems also performed incremental semantic analysis, so that errors such as type

errors or using an undeclared variable could be flagged while the programmer was editing.

They also had integrated support for running and debugging programs. As the program ran,

the executing code was highlighted in the editing window. A graphical portrayal of the call

stack showed all program data and was updated as the program ran. Common data struc-

tures, such as linked lists and binary trees, were automatically recognized and displayed

similar to the way teachers draw them on the blackboard.

2.2.21 Programming by Demonstration

In programming by demonstration (PBD) systems, the user performs actions interactively

to demonstrate the desired behavior and the system generalizes these actions to form a pro-

gram [Myers 1992]. One of the difficulties in PBD systems is this generalization step and

getting the user to provide the right examples to make the correct inferences possible. Often

there is no visible representation of the program itself, but Pursuit [Modugno 1995] pro-

vided a comic-strip metaphor to represent programs. Gamut [McDaniel 1999] was a system

that permitted children to create entire board-game applications by demonstration. This

thesis does not make use of PBD techniques.

2.2.22 Hank

Hank [Mulholland 2000] is a cognitive modelling language for non-programmers. It con-

tains a database with “fact cards,” represented graphically as small spreadsheets, and

30 A Programming System for Children that is Designed for Usability

Related Work

“instruction cards,” represented as flowcharts. The system uses a comic strip storyboard to

represent the model's behavior, and includes a query system for finding information on fact

cards.

A Programming System for Children that is Designed for Usability 31

CHAPTER 3 The Language and Structure in
Problem Solutions Written by Non-
Programmers

In Chapter 1 it is argued that programming systems should provide operations that closely

match the ways people naturally think about achieving their goals. While the prior work

provides general design guidance, and identifies specific areas where people are known to

have difficulty, it offers little prescriptive information about which features should be

included in programming systems. This chapter describes a pair of studies seeking to obtain

this prescriptive guidance, by examining the ways that people solve programming-like

tasks before they have been influenced by an exposure to programming.1 These studies

were designed to provide insight into the concepts people use when thinking about algo-

rithms, the kinds of structures they used to organize their solutions, and the vocabulary they

use to express their answers. The programming system can then be designed to directly sup-

port the natural methods that are observed.

The first study focuses on children because they are the audience for my new programming

language. In addition, children are less likely to be programmers, so their responses should

reveal problem solving techniques that have not been influenced by programming experi-

ence. The exercises in this study are drawn from the domain of computer games and ani-

1. Portions of this chapter were previously reported in [Pane 2001].

32 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

mated stories, because children are often interested in building these kinds of programs.

The second study then examines how the results of the first study generalize to a broader

range of ages that includes adults, and to a different domain that incorporates database

access scenarios that are typical of business programming tasks.

3.1 Comparison to Lance Miller’s Studies
These studies are similar to a series of studies by Lance Miller in the 1970s [Miller 1974,

Miller 1981]. Miller examined natural language procedural instructions generated by non-

programmers and made a rich set of observations about how the participants naturally

expressed their solutions. This resulted in a set of recommended features for computer lan-

guages. For example, Miller suggested that contextual referencing would be a useful alter-

native to the usual methods of locating data objects by using variables and traversing data

structures. In contextual referencing, the programmer identifies data objects by using pro-

nouns, ordinal position, salient or unique features, relative referencing, or collective refer-

encing [Miller 1981, p 213].

Although Miller’s approach provided many insights into the natural tendencies of non-pro-

grammers, there have only been a few studies that have replicated or extended that work.

Biermann, Ballard & Sigmon confirmed that there are many regularities in the way people

express step-by-step natural language procedures, suggesting that these regularities could

be exploited in programming languages [Biermann 1983]. Galotti & Ganong found that

they were able to improve the precision in users’ natural language specifications by ensur-

ing that the users understood the limited intelligence of the recipient of the instructions

[Galotti 1985]. Bonar & Cunningham found that when users translated their natural-lan-

guage specifications into a programming language, they tended to use the natural-language

semantics even when they were incorrect for the programming language [Bonar 1988]. It

is surprising that the findings from these studies have apparently not had any direct impact

on the designs of new programming languages that have been invented since then.

A risk in designing these studies is that the experimenter could bias the participants with

the language used in asking the questions. For example, the experimenter cannot just ask:

“How would you tell the monsters to turn blue when the PacMan eats a power pill?”

because this may lead the participants to simply parrot parts of the question back in their

A Programming System for Children that is Designed for Usability 33

The Language and Structure in Problem Solutions Written by Non-Programmers

answers. This would defeat the prime objective of these studies, to examine users’ unbiased

responses.

The studies reported in this chapter differ from Miller’s studies in several ways:

1. Eliminating possible bias. Miller’s studies used verbose textual problem statements,

increasing the risk that the language used in the participants’ responses was biased by

the materials. In fact, one of the frequently-observed keywords in Miller’s results actu-

ally appeared in the problem statement that was given to the participants. The current

studies take great care to minimize this kind of bias by using terse descriptions along

with graphical depictions of the problem scenarios.

2. Fewer constraints on the form of the solutions. Miller’s studies placed constraints on

the participants’ solutions, such as: they were broken into steps, each a line of text lim-

ited to 80 characters; steps had to be retyped completely in order to edit them; and, a

minimum of five steps was required in a solution. The current studies are much less

constrained, allowing users to write or draw as much or as little text and pictures as they

need to convey their solutions.

3. Broader range of tasks. Miller’s tasks were typical database problems common to the

era of his studies. The current studies investigate a broader range of tasks that incorpo-

rate modern graphical user interfaces and media such as animations.

4. Broader age range of participants. Miller’s participants were all college students. The

current studies investigate a broader age range, including children.

Thus, the current studies may yield more reliable information about the natural expressions

of a wider audience, on a broader range of algorithms and domains.

3.2 Overview of the Studies
In these studies, participants were presented with programming tasks and asked to solve

them on paper using whatever diagrams and text they wanted to use. Before designing the

tasks, a list of essential programming techniques and concepts was enumerated, covering

various kinds of applications. These include: use of variables, assignment of values, initial-

ization, comparison of values, Boolean logic, incrementing and decrementing of counters,

arithmetic, iteration and looping, conditionals and other flow control, searching and sort-

34 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

ing, animation, multiple things happening simultaneously (parallelism), collisions and

interactions among objects, and response to user input.

Because children often express interest in creating games and animated stories, the first

study focused on the skills that are necessary to build such programs. In this study, the

PacMan video game was chosen as a fertile source of interesting problems that require

these skills. Instead of asking the participants to implement an entire PacMan game, various

situations were selected from the game because they touch upon one or more of the above

concepts. This allowed a relatively small set of exercises to broadly cover as many of the

concepts as possible in the limited amount of time available. Many of the skills that were

not covered in the first study were covered in the second, which used a set of spreadsheet-

like tasks involving database manipulation and numeric computation.

To minimize the form of bias described in Section 3.1 on page 32, a collection of pictures

and QuickTime movie clips were developed to depict the various scenarios using very terse

captions. This enabled the experimenter to show the depictions to the participants and ask

general, open-ended questions to prompt their responses. An example from Study One is

shown in Figure 3-1. Copies of the materials are available in Appendix D and Appendix E.

3.3 Study One
The first study examines children’s solutions to a set of tasks that would be necessary to

program a computer game.

3.3.1 Participants

Fourteen fifth graders at a Pittsburgh public elementary school participated in this study.

The participants were equally divided between boys and girls, were racially diverse, and

were either ten or eleven years old. All of the participants were experienced computer users,

but only two of them (both boys) said they had programmed before. All of the analyses in

this article examine only the twelve non-programmers. The participants were recruited by

sending a brief note and consent form to parents. The participants received no reward other

than the opportunity to leave their normal classroom for a half hour, and the opportunity to

play a computer game for a few minutes.

A Programming System for Children that is Designed for Usability 35

The Language and Structure in Problem Solutions Written by Non-Programmers

3.3.2 Materials

A set of nine scenarios from the PacMan game were chosen, and graphical depictions of

these scenarios were developed, containing still images or animations and a minimal

amount of text. The topics of the scenarios were: an overall summary of the game, how the

user controls PacMan’s actions, PacMan’s behavior in the presence and absence of other

objects such as walls, what should happen when PacMan encounters a monster under var-

ious conditions, what happens when PacMan eats a power pill, scorekeeping, the appear-

ance and disappearance of fruit in the game, the completion of one level and the start of the

next, and maintenance of the high score list. Figure 3-1 shows one of the scenario depic-

tions and the rest are in Appendix D. The participants viewed the depictions on a color

laptop computer, and wrote their solutions on blank unlined paper.

Figure 3-1. Depiction of a problem scenario in study one.

36 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

3.3.3 Procedure

After a brief interview to gather background information, participants were shown each

scenario and asked to write down in their own words and pictures how they would tell the

computer to accomplish the scenario. When a response was judged to be incomplete or

unsatisfactory, the experimenter attempted to elicit additional information by asking the

participant to give more detail, by demonstrating an error in the existing answer, or by

asking questions that were carefully worded to avoid influencing the responses. The ses-

sions were audiotaped.

3.3.4 Content Analysis

A rating form was developed to be used by independent raters to analyze each participant’s

responses. Each question on the form addressed some facet of the participant’s problem

solution, such as the way a particular word or phrase was used, or some other characteristic

of the language or strategy that was employed. Many of these questions arose from the

results of a pilot study. In addition, a preliminary review of the participant data revealed

trends in the solutions that seemed important, so the rating form was supplemented with

questions to explore these as well.

Each question was followed by several categories into which the participant’s responses

could be classified. The rater was instructed to look for relevant sentences in the partici-

pant’s solution, and classify each one by placing a tickmark in the appropriate category,

also noting which problem the participant was answering when the sentence was generated.

Each question also had an other category, which the rater marked when the participant’s

utterance did not fall into any of the supplied categories. When they did this, they added a

brief comment. Figure 3-2 shows one of the questions from the rating form for study one,

and the rest can be found in Appendix D.

Five independent raters categorized the participants’ responses. These raters were experi-

enced computer programmers, who were recruited by posting to Carnegie Mellon Univer-

sity’s electronic bulletin boards, and were paid for their assistance. They were given a one-

page instruction sheet describing their task. Each rater filled out a copy of the 17-question

rating form for each of the participants. The raters reported that this was a very tedious pro-

A Programming System for Children that is Designed for Usability 37

The Language and Structure in Problem Solutions Written by Non-Programmers

cess that took each of them 8-10 hours to answer all of the 17 questions for the fourteen

participants.

3.3.5 Results

The participants’ solutions ranged from one to seven pages of handwritten text and draw-

ings. Some excerpts from the solutions are shown in Figure 3-3. The raters were instructed

to use each utterance (statement or sentence) as the unit of text to analyze. Since each rater

independently partitioned the text into these units, the total number of tickmarks differed

across raters, so the results are normalized by looking at the proportion of the tickmarks

credited to each category rather than the raw counts. Although there was variance among

the results from individual raters, their ratings were generally similar. So the results are

reported as averages across all raters and all of the non-programmer participants.

The results for each rating form question are summarized with an overall prevalence score

followed by frequency scores for each category sorted from most frequent to least frequent.

The prevalence score measures the average count of occurrences that each rater classified

for each participant when answering the current question. In study one, this score varies

from 1.0 to 23.2, indicating the relative amount of data that was available to the raters in

3. Please count the number of times the student uses these various methods to express concepts about
multiple objects. (The situation where an operation affects some or all of the objects, or when different
objects are affected differently.)

a) 1___ 2___ 3___ 4___ 5___ 6___ 7___ 8___ 9___
Thinks of them as a set or subsets of entities and operates on those, or specifies them with plurals.
Example: Buy all of the books that are red.

b) 1___ 2___ 3___ 4___ 5___ 6___ 7___ 8___ 9___
Uses iteration (i.e. loop) to operate on them explicitly.
Example: For each book, if it is red, buy it.

c) 1___ 2___ 3___ 4___ 5___ 6___ 7___ 8___ 9___
Other (please specify) ____________________________

Figure 3-2. A question from the rating form for study one. The nine blanks on each line correspond to the
nine tasks that the participants solved.

38 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

Figure 3-3. Excerpts from the participants’ solutions in Study 1.

A Programming System for Children that is Designed for Usability 39

The Language and Structure in Problem Solutions Written by Non-Programmers

answering the question. The frequency scores then show how those occurrences were

apportioned across the various categories, expressed as percentages. The frequencies may

not sum to exactly 100% due to rounding errors. The examples are quoted from the partic-

ipants’ solutions. Table 3-1 summarizes the results that follow, which are sorted into four

general categories: the overall structure of the solutions, the ways that certain keywords are

used, the kinds of control structures that are used, and the methods used to effect various

aspects of computation. These results are presented from most frequent to least, which is

generally not the order that they appeared on the rating form, and frequencies below 5% do

not appear in the summary table.

Programming Style Perspective Modifying State
54% Production rules / events 45% Player or end-user 61% Behaviors built into objects
18% Constraints 34% Programmer 20% Direct modification
16% Other (declarative) 20% Other (third-person) 18% Other
12% Imperative

Pictures
67% Yes

AND OR THEN
67% Boolean conjunction 63% Boolean disjunction 66% Sequencing
29% Sequencing 24% To clarify or restate a prior item 32% “Consequently”, or “in that case”

8% “Otherwise”
5% Other

Operations on Multiple Objects Complex Conditionals Looping Constructs
95% Set / subset specification 37% Set of mutually exclusive rules 73% Implicit

5% Loops or iteration 27% General case, with exceptions 20% Explicit
23% Complex boolean expression 7% Other
14% Other (additional uses of exceptions)

Remembering State Mathematical Operations Insertion into a Data Structure
56% Present tense for past event 59% Natural language style - incomplete 48% Insert first then reposition others
19% “After” 40% Natural language style - complete 26% Insert without making space
11% State variable 17% Make space then insert

6% Discuss future events Motions 8% Other
5% Past tense for past event 97% Expect continuous motion

Sorted Insertion
Tracking Progress Randomness 43% Incorrect method
85% Implicit 47% Precision 28% Correct non-general method
14% Maintain a state variable 20% Uncertainty without using “random” 18% Correct general method

18% Precision with hedging
15% Other

Computation

Keywords

Overall Structure

Control Structures

Table 3-1. Summary of results from the first study. Items with frequencies below 5% do not appear.

40 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

3.3.6 Overall Structure

3.3.6.1 Programming Style

The raters classified each statement or sentence in the solutions into one of the following

categories based on the style of programming that it most closely matches.

Prevalance: 22.7 occurrences per participant.

• 54% - production rules or event-based, beginning with when, if, or after.

Example: When PacMan eats all the dots, he goes to the next level.

• 18% - constraints, where relations are stated which should always hold.

Example: PacMan cannot go through a wall.

• 16% - other (98% of these were classified by the raters as declarative statements).

Example: There are 4 monsters.

• 12% - imperative, where a sequence of commands is specified.

Example: Start with this image. Play this sound. Display “Player One Get Ready.”

3.3.6.2 Perspective

Beginners sometimes confuse their role or perspective while they are developing a pro-

gram. Instead of thinking about the program from the perspective of the programmer, they

might adopt the role of the end-user of the program, or in the case of games and stories, one

of the characters portrayed by the program. The raters classified the participants’ state-

ments according to the perspective or role that they indicated.

Prevalance: 23.2 occurrences per participant

• 45% - player’s or end-user’s perspective.

Example: When I push the left arrow PacMan goes left.

• 34% - programmer’s perspective.

Example: If arrow for Player 1 is “left” move PacMan left.

• 20% - other (99% of these were classified by the raters as third-person perspective).

Example: If he eats a power pill and he eats the ghosts, they will die.

A Programming System for Children that is Designed for Usability 41

The Language and Structure in Problem Solutions Written by Non-Programmers

3.3.6.3 Modifying State

The raters examined places where the participants were making changes to an entity.

Prevalance: 4.6 occurrences per participant.

• 61% - behaviors were built into the entity, in an object-oriented fashion.

Example: Get the big dot and the ghost will turn colors...

• 20% - direct modification of the properties of entities.

Example: After eating a large dot, change the ghosts from original color to blue.

• 18% - other.

3.3.6.4 Pictures

In addition to the above classifications done by the raters, the experimenter examined each

solution to determine whether pictures were drawn as part of the solution.

• 67% - included at least one picture.

• 33% - used text only.

3.3.7 Keywords

3.3.7.1 AND

The raters examined the intended meaning when the participants used the word AND.

Prevalance: 6.3 occurrences per participant.

• 67% - Boolean conjunction.

Example: If PacMan is travelling up and hits a wall, the player should...

• 29% - for sequencing, to mean next or afterward.

Example: PacMan eats a big blinking dot, and then the ghosts turn blue.

• 3% - other

Example: Every level the fruit should stay for less and less seconds.

3.3.7.2 OR

The raters examined the intended meaning when the participants used the word OR.

Prevalance: 1.5 occurrences per participant.

42 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

• 63% - Boolean disjunction.

Example: To make PacMan go up or down, you push the up or down arrow key.

• 24% - clarifying or restating the prior item.

Example: When PacMan hits a ghost or a monster, he loses his life.

• 8% - meaning otherwise.

• 5% - other.

3.3.7.3 THEN

The raters examined the intended meaning when the participants used the word THEN.

Prevalance: 2.2 occurrences per participant.

• 66% - sequencing, to mean next or afterward.

Example: First he eats the fruit, then his score goes up 100 points.

• 32% - meaning consequently, or in that case.

Example: If you eat all the dots then you go to a higher level.

• 1% - to mean besides or also.

• 1% - other.

3.3.8 Control Structures

3.3.8.1 Operations on Multiple Objects

The raters examined those statements that operate on multiple objects, where some or all

of the objects are affected by the operation.

Prevalance: 6.1 occurrences per participant.

• 95% - set and subset specifications.

Example: When PacMan gets all the dots, he goes to the next level.

• 5% - loops or iteration.

Example: #5 moves down to #6, #6 moves to #7, etc. until #10 which is kicked off the

high score list.

A Programming System for Children that is Designed for Usability 43

The Language and Structure in Problem Solutions Written by Non-Programmers

3.3.8.2 Iteration or Looping Constructs

The raters examined those statements that were either implicit or explicit looping con-

structs.

Prevalance: 1.6 occurrences per participant.

• 73% - implicit, where only a terminating condition is specified.

Example: Make PacMan go left until a dead end.

• 20% - explicit, with keywords such as repeat, while, and so on, etc.

• 7% - other.

3.3.8.3 ELSE or Equivalent Clauses

The raters looked for occurrences of ELSE clauses or equivalent constructs in the partici-

pants’ solutions. They simply counted these, without classifying them further.

Prevalance: 0.4 occurrences per participant.

3.3.8.4 Complex Conditionals

The raters examined those statements that specify conditions with multiple options.

Prevalance: 2.3 occurrences per participant.

• 37% - a set of mutually exclusive rules.

Example: When the monster is green he can kill PacMan. When the monster is blue

PacMan can eat the monster.

• 27% - a general condition, subsequently modified with exceptions.

Example: When you encounter a ghost, the ghost should kill you. But if you have a

power pill you can eat them.

• 23% - Boolean expressions.

Example: After eating a blinking dot and eating a blue and blinking ghost, he should

get points.

• 14% - other (95% of these either listed the exception first, or did not list a general case).

Example: If he gets a [power pill] then if you run into them you get points.

44 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

3.3.9 Computation

3.3.9.1 Remembering State

The raters examined the methods used to keep track of state when an action in the past

should affect a subsequent action.

Prevalance: 4.1 occurrences per participant.

• 56% - using present tense when mentioning the past event.

Example: When PacMan eats a special dot he is able to eat the ghosts.

• 19% - using the word after.

Example: After using up the power pill, the ghosts can eat PacMan again.

• 11% - using a state variable to track information about the past event.

Example: When the monster is blue PacMan can eat the monster.

• 6% - mentioning the future event at the time of past event.

Example: When PacMan gets a shiny dot, then if you run into the ghosts, you get points.

• 5% - using the past tense when mentioning the past event.

Example: In about 10 seconds, if PacMan didn't eat it take it off again.

• 4% - other.

3.3.9.2 Tracking Progress

The raters examined the methods used to keep track of progress through a long task.

Prevalance: 2.0 occurrences per participant.

• 85% - all or nothing, where tracking is implicit or done with sets.

Example: When PacMan gets all the dots, he goes to the next level.

• 14% - using counting, where a variable such as a counter tracks the progress.

Example: When PacMan loses 3 lives, it's game over.

• 1% - other.

3.3.9.3 Mathematical Operations

The raters examined the kinds of notations used to specify mathematical operations.

Prevalance: 3.4 occurrences per participant.

A Programming System for Children that is Designed for Usability 45

The Language and Structure in Problem Solutions Written by Non-Programmers

• 59% - natural language style, missing the amount or the variable.

Example: When he eats the pill, he gets more points...

• 40% - natural language style, with no missing information.

Example: When PacMan eats a big dot, add 100 points to the score.

• 0% - programming language style (count = count + 20)

• 0% - mathematical style (count + 20)

3.3.9.4 Motions

The raters examined the participants’ expectations about whether motions of objects should

require explicit incremental updating.

Prevalance: 7.8 occurrences per participant.

• 97% - expect continuous motion, specifying only changes in motion.

Example: PacMan stops when he hits a wall.

• 2% - continually update the positions of moving objects.

• 1% - other.

3.3.9.5 Randomness

The raters examined the methods used by the participants’ in expressing events that were

supposed to happen at uncertain times or with uncertain durations.

Prevalance: 1.4 occurrences per participant.

• 47% - using precision, where no element of uncertainty is expressed.

Example: Put the new fruit in every 30 seconds.

• 20% - using words other than random to express the uncertainty.

Example: The fruit will go away after a while.

• 18% - using precision with hedging to express uncertainty.

Example: After around 3 or 4 more seconds the fruit disappears.

• 15% - other (often the action was tied to another event).

Example: Put a fruit on the screen when PacMan is running out of power.

• 0% - used the word random.

46 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

3.3.9.6 Insertion into a Data Structure

The raters examined the methods used by the participants to insert an element into the

middle of an existing sequence of elements.

Prevalance: 1.0 occurrences per participant.

• 48% - inserting first, repositioning other elements afterwards.

• 26% - no mention of making room for the inserted element.

• 17% - making space by repositioning others, then inserting the element.

• 8% - other.

3.3.9.7 Sorted Insertion

The raters examined the methods used by the participants to determine the correct place to

insert an element into a sorted list.

Prevalance: 1.1 occurrences per participant.

• 43% - using an incorrect method, with missing or incorrect details.

• 28% - a method that is correct for the current data, but not a correct general solution.

• 18% - a correct general method that would work for any data.

• 10% - other

3.3.10 Discussion

Combined discussion of the two studies appears in Section 3.5 on page 58.

3.4 Study Two
To see whether the observations from the first study would generalize to other domains and

other age groups, a second study was conducted. This study used database access scenarios

that are more typical of business programming tasks, and was administered to a group of

adults as well as a group of children similar to the participants in study one.

3.4.1 Participants

Nineteen adults from the Carnegie Mellon University community, ranging in age from 18

to 34, participated in the study (10 men, 9 women). In addition, 22 fifth graders, ages 10 or

A Programming System for Children that is Designed for Usability 47

The Language and Structure in Problem Solutions Written by Non-Programmers

11, participated (13 boys, 9 girls). These fifth graders were recruited from the same Pitts-

burgh public elementary school as study one, but it was a new academic year so none of the

participants from study one were involved in study two. The participants were racially

diverse. Although the children spanned a range of academic abilities, all of the Carnegie

Mellon participants had strong academic backgrounds.

Of the adults, only five had never programmed before (2 men, 3 women). Of the children,

fourteen said they had never programmed before (11 boys, 3 girls). However, there is

reason to believe that some of the children who claimed to be programmers did not accu-

rately answer this question because they did not really seem to know what programming is.

Nonetheless, only those participants who said they never programmed (5 adults, 14 chil-

dren) were included in the analysis that follows.

The adult participants were recruited by word of mouth, and signed the usual human subject

consent forms. The children were recruited by sending a brief note and consent form to par-

ents. The adult participants received no reward for their participation; the children had an

opportunity to leave their normal classroom for a half hour, and were given a snack at the

end of their participation.

3.4.2 Materials

A set of eleven scenarios were created, representing a progression of problems that a pro-

grammer might encounter in the process of creating and manipulating a database of names

and numeric values. These scenarios were chosen to cover some of the essential concepts

of programming that were not addressed in study one, and to further elucidate some of the

results from that study. As in study one, graphical depictions of these scenarios were devel-

oped. In this case they contained before and after pictures of database values in a tabular

layout, with graphical annotations highlighting the differences between the before and after

pictures, along with a minimal amount of text that was carefully chosen to avoid biasing

the participants’ responses. The topics of the scenarios were: entering values into the cor-

rect rows of a table, adding certain values in each row to produce a column of sums, dis-

carding the smallest or largest value from each row when calculating the sum, assigning

nominal values to each row depending on textual attributes or numeric ranges, producing a

numerically sorted summary table with entries for only the rows with the highest sums,

48 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

adding or subtracting a fixed value to every value in a column, deleting rows from the table

or adding rows to it, and zeroing all of the values in a column. Figure 3-4 shows one of the

scenario depictions, and the rest are shown in Appendix E. The depictions were displayed

to the participants on paper, and they wrote their solutions directly on the problem pages.

3.4.3 Procedure

The same procedure was used as in study one, except the sessions were not audiotaped.

3.4.4 Content Analysis

Once again a form was developed, similar to the one used in study one, so that independent

raters could analyze the data (see Appendix E). This rating form had 18 questions. Because

the performance of the five analysts in the first study was satisfactory, there was general

agreement among them, and the task was very tedious, it was decided that three analysts

•

Figure 3-4. Depiction of a problem scenario in study two.

A Programming System for Children that is Designed for Usability 49

The Language and Structure in Problem Solutions Written by Non-Programmers

were sufficient for the second study. The analysts from the first study were permitted to

return for this study because there was no reason to expect their prior participation to have

a material affect on the results. Therefore, three analysts from the prior study analyzed the

participants’ responses in this study.

3.4.5 Results

The participants answers typically consisted of one to five sentences in response to each of

the eleven questions. Once again, there was general agreement among the raters. The per-

formance of adults was generally similar to the performance of children. Therefore, the

results reported below are averages across the raters (n=3) and all of the non-programmer

participants (n=19, 5 adults and 14 children).

As in study one, the results for each question are summarized with an overall prevalence

score followed by frequency scores for each category. The prevalence score measures the

average count of occurrences that each rater classified for each participant when answering

the current question. In study two, this score varies from 0.2 to 11.5, indicating the relative

amount of data that was available to the raters in answering the question. The frequency

scores then show how those occurrences were apportioned across the various categories,

expressed as percentages. The frequencies may not sum to exactly 100% due to rounding

errors. The results are presented from most frequent to least, which is generally not the

same order as they appeared on the rating form. The examples are quoted from the partic-

ipants’ solutions. Table 3-2 summarizes the results that follow, which are sorted into three

general categories: the ways that certain keywords are used, the kinds of control structures

that are used, and the methods used to effect various aspects of computation. In the sum-

mary table, items with frequencies below 5% do not appear.

3.4.6 Keywords

3.4.6.1 AND

The raters examined the intended meaning when the participants used the word AND.

Prevalance: 6.1 occurrences per participant.

• 47% - Boolean conjunction.

50 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

Example: Erase Bill Clinton and Jay Leno.

• 43% - sequencing, meaning next or afterward.

Example: Crossed out the highest score, and added the lower scores.

• 5% - other.

• 4% - to specify a range.

Example: Fine is between 3,000 and 20,000.

Table 3-2. Summary of results from the second study. Items with frequencies below 5% do not appear.

AND OR BUT
47% Boolean conjunction 100% Boolean Disjunction 92% To mean “except”
43% Sequencing 8% Other

5% Other NOT
100% Low precedence THEN

AND as a boolean operator 91% Sequencing
76% Incorrect 7% “Consequently”
24% Correct

Operations on Multiple Objects Complex Conditionals
97% Sets and subsets, including plurals 45% Set of mutually exclusive conditions

36% Dependent clause cannot stand alone
16% Nested conditions

Set Construction Specifying Open Intervals Sorting
46% Plurals 35% “Above” is exclusive 37% “Alphabetical”, etc.
18% “Each” or “every” 22% “Above” is inclusive 36% “From A to Z”, etc.
16% Naming a column of the table 22% Powers of ten 11% Concrete example
14% “All” 15% Other 9% Provide a key to a sort operator

5% Mathematical notation
Set Manipulation Deleting an Element from a Data Structure

45% Set inverse Specifying Closed Intervals 73% No hole expected after deletion
29% Set difference 35% “From ... to” is inclusive 25% Repaired a hole after deletion
22% Disjoint or mutually exclusive sets 19% Powers of ten

5% Other 10% Mathematical notation Inserting an Element into a Data Structure
9% Other 75% Insert without making space

Complete Specification of Ranges 9% "Between" used inconsistently 16% Make space then insert
50% Correct 7% “From ... to” used inconsistently 6% Insert then make space
50% Incorrect 6% "Between" is inclusive

5% Ends of interval specified separately Sorted Insertion
46% Incorrect method

Mathematical Operations 34% Correct non-general method
52% Natural language style - complete 13% Correct general method
40% Other 6% Insert then sort

Computation

Keywords

Control Structures

A Programming System for Children that is Designed for Usability 51

The Language and Structure in Problem Solutions Written by Non-Programmers

3.4.6.2 AND as a Boolean Operator

The raters examined the answers to two questions that were likely to elicit Boolean expres-

sions. If the word AND appeared in a Boolean expression, the raters determined whether it

was used correctly.

Prevalance: 0.6 occurrences per participant.

• 76% - incorrect, interpreting as Boolean conjunction would not give the intended result.

Example: Everybody whose name starts with the letter G and L would be in the black

group.

• 24% - correct, Boolean conjunction is intended meaning.

Example: If AvgScore ≥1000 and <10000, say Fine.

3.4.6.3 OR

The raters examined the places where the participants used the word OR as a Boolean oper-

ator to see if it was used correctly.

Prevalance: 0.6 occurrences per participant.

• 100% - correct.

Example: [Score] in the hundreds or less is poor.

3.4.6.4 NOT

The raters examined the places where the participants used the word NOT as a Boolean

operator to see what operator precedence was intended.

Prevalance: 0.1 occurrences per participant.

• 100% - low precedence: NOT A or B means NOT (A or B).

Example: The Gold group [contains the people] with the first two letters in their last

name that are not Le or Ga.

3.4.6.5 BUT

The raters examined the intended meaning when the participants used the word BUT.

Prevalance: 0.2 occurrences per participant.

• 92% - to mean except.

52 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

Example: Add every element in the row, but the maximum.

• 8% - other.

• 0% - to mean and.

3.4.6.6 THEN

The raters examined the intended meaning when the participants used the word THEN.

Prevalance: 1.3 occurrences per participant.

• 91% - sequencing, to mean next or afterward.

Example: Add up all the scores in each row, then subtract the lowest score in each row.

• 7% - to mean consequently, or in that case.

Example: If their name begins with a G or an L then put them in the Black group.

• 1% - besides or also.

• 1% - other.

3.4.7 Control Structures

3.4.7.1 Operations on Multiple Objects

The raters examined statements that operate on multiple objects, where some or all of the

objects are affected by the operation.

Prevalance: 11.5 occurrences per participant.

• 97% - set or subset specifications, including the use of plurals.

Example: Select the four highest scores of the participants.

• 3% - loop or iteration.

Example: Match the last name and fill the score until there is no more input.

• 1% - other.

3.4.7.2 Complex Conditionals

The raters examined statements specifying conditions with multiple options.

Prevalance: 1.3 occurrences per participant.

• 45% - a set of mutually exclusive conditions.

A Programming System for Children that is Designed for Usability 53

The Language and Structure in Problem Solutions Written by Non-Programmers

Example: If Average Score is less than 1000, performance is poor. If Average Score is

between 1000 and 10000, performance is fine. If Average Score is more than 10000,

performance is extraordinary.

• 36% - a condition with a dependent clause that cannot stand alone.

Example: If the people’s last name start with G or L they are on the black team. If not

they are on the gold team.

• 16% - nested conditions

Example: If average score is in the hundreds it's poor. Less than ten thousand is fine.

• 3% - other.

3.4.8 Computation

3.4.8.1 Set Construction

The raters examined the places where sets are used, to determine how those sets were con-

structed.

Prevalance: 11.0 occurrences per participant.

• 46% - using plurals.

Example: Add the scores of 3 rounds.

• 18% - using the words each or every.

Example: Add the score in every round.

• 16% - naming a column of the table.

Example: Add 10,000 points to Round 1 and Round 3.

• 14% - using the word all.

Example: Subtract [20,000 from] all elements in Round 2...

• 4% - enumerating the members of the set.

• 1% - other.

3.4.8.2 Set Manipulation

The raters examined the ways that subsequent sets are created after an initial related set has

been created.

54 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

Prevalance: 2.7 occurrences per participant.

• 45% - using set inverse, where the leftover items are operated on.

Example: If the last name begins with G or L, they are in the Black group. The rest are

in the Gold group.

• 29% - set difference, where some items are removed from the specified set.

Example: Add all the Rounds up except the highest score to get TOTAL.

• 22% - constructing disjoint or mutually exclusive sets.

Example: Black is for G and L. Gold is for B, C, H, J, and S.

• 5% - other.

3.4.8.3 Complete Specification of Ranges

The raters examined the participants’ statements that specify a range of integers, to see

whether all of the possibilities were covered without holes or overlaps.

Prevalance: 1.3 occurrences per participant.

• 50% - correct.

Example: Scores below 1000 are Poor. Scores from 1000 - 10,000 are Fine. Any scores

above 10,000 are Extraordinary.

• 50% - incorrect.

3.4.8.4 Specifying Open Intervals

The raters examined the participants’ statements specifying open intervals, where all values

beyond a single boundary are specified.

Prevalance: 2.0 occurrences per participant.

• 36% - words such as above, below, greater than or less than were intended to be exclu-

sive.

Example: The performance of the person with the average scores below 1000 is consid-

ered as poor (the participant then used good for 1000).

• 22% - words such as above, below, greater than or less than were intended to be inclu-

sive.

A Programming System for Children that is Designed for Usability 55

The Language and Structure in Problem Solutions Written by Non-Programmers

Example: Poor would be below 999 (the participant then used poor for 999).

• 22% - powers of ten were used to specify the range.

Example: If your score is in the hundred's your performance is poor.

• 15% - other.

• 5% - mathematical notation, with inequality operators such as “>” or “≤”.

Example: if score < 1000, performance = poor.

3.4.8.5 Specifying Closed Intervals

The raters examined the participants’ statements specifying closed intervals, where both

boundaries are specified for a range of values.

Prevalance: 1.2 occurrences per participant.

• 35% - from ... to, the symbol “-”, or similar notations are intended to be inclusive.

Example: The performance of ones whose average scores from 1000 up to 10,000 is

considered as a fine performance (the participant then assigned fine to both 1000 and

10,000).

• 19% - powers of ten were used to specify the range.

Example: If your score is in the thousands, you are fine.

• 10% - mathematical notation, with inequality operators such as “>” or “≤”.

Example: 1000 < x < 9999; performance = fine.

• 9% - other.

• 9% - between is used with an inconsistent meaning at each end of the interval.

Example: If the average score is between 1000 and 10,000, the performance is fine (the

participant then assigned fine to 1000, and extraordinary to 10,000).

• 7% - from ... to, the symbol “-”, or similar notations are used with an inconsistent mean-

ing at each end of the interval.

Example: Scores from 1000 - 10,000 are fine (the participant then assigned fine to 1000,

and extraordinary to 10,000).

• 6% - between is intended to be inclusive.

56 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

Example: Score between 1000 and 10,000 is fine (the participant then assigned fine to

both 1000 and 10,000).

• 5% - specified each end of the interval separately.

• 0% - between is intended to be exclusive.

• 0% - from ... to, the symbol “-”, or similar notations are intended to be exclusive.

3.4.8.6 Mathematical Operations

The raters examined the kinds of notations used by the participants’ in specifying mathe-

matical operations.

Prevalance: 5.4 occurrences per participant.

• 52% - natural language style, with no missing information.

Example: Add 10,000 points to the scores in Round 1 and Round 3.

• 40% - other (which includes natural language style, with missing amount or variable).

Example: Add up the scores of each person but don't add the highest number (missing

variable).

• 4% - mathematical notation.

Example: Column for r2 = x - 20000.

• 4% - programming language notation.

3.4.8.7 Sorting

The raters examined the participants’ solutions to see how sorting operations were

expressed.

Prevalance: 1.3 occurrences per participant.

• 37% - using keywords such as alphabetical or numerical.

Example: Sort the table alphabetically.

• 36% - using expressions like from A to Z or from lowest to highest.

Example: Put the 4 highest scores ... in a different table from highest to smallest.

• 11% - using a concrete example from the current situation.

A Programming System for Children that is Designed for Usability 57

The Language and Structure in Problem Solutions Written by Non-Programmers

Example: Put him in number 6 because his last name comes before Jordan but after

Houston.

• 9% - using a sort key, such as sort according to score.

Example: Insert Elton John in order of the last name.

• 4% - using words like ascending or descending.

Example: Sort “total score” column in descending order.

• 4% - other.

3.4.8.8 Deleting an Element from a Data Structure

The raters examined the methods used to delete an element from the middle of an existing

sequence of elements, to see whether they expected a hole to be left behind.

Prevalance: 1.0 occurrences per participant.

• 73% - no hole was expected after the deletion.

Example: Take out Bill and Jay then put Elton John in.

• 25% - fixed a hole after the deletion.

Example: Delete Row 2 and 8, moving everyone down to any unoccupied Rows.

• 2% - other.

3.4.8.9 Insertion into a Data Structure

The raters examined the methods used to insert an element into the middle of an existing

sequence of elements to see whether they expected that items would have to be arranged to

make space for the new element.

Prevalance: 1.0 occurrences per participant.

• 75% - no mention of making room for the new element.

Example: Put Elton John in the records in alphabetical order.

• 16% - make room for the element before inserting it.

Example: Use the cursor and push it down a little and then type Elton John in the free

space.

• 6% - make room for the element after inserting it.

58 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

• 4% - other.

3.4.8.10 Sorted Insertion

The raters examined the methods used to determine the correct place to insert an element

into a sorted sequence of elements.

Prevalance: 1.0 occurrences per participant.

• 46% - using an incorrect method, with missing or incorrect details.

Example: Insert row between number 5 and 7 and name it Elton John.

• 34% - a method that is correct for the current data, but not a correct general solution.

Example: Put him in number 6 because his last name comes before Jordan but after

Houston.

• 13% - a correct general method that would work for all data.

Example: Insert Elton John into the table in alphabetical order of the last name.

• 6% - insert then sort.

Example: Add Elton John, and then sort the table alphabetically.

• 2% - other.

3.5 Discussion of Results
This section contains a discussion of the combined results from the two studies. In addition

to interpretation of the results, this section includes some recommendations on how the pro-

gramming system might be made more natural.1

3.5.1 Programming Style

The majority of the statements written by the participants were in a production-rule or

event-based style, beginning with words like if or when. However, the raters observed a sig-

nificant number of statements using other styles, such as constraints, other declarative

statements (that were not constraints), and imperative statements.

1. These recommendations are not restricted to the programming language in isolation, but encompass the
entire programming system, which includes the programming environment (editor, debugger, etc.) as well as
the language. In modern programming systems these components all work in tandem, so it is most useful to
consider how the findings of this study might impact the entire system.

A Programming System for Children that is Designed for Usability 59

The Language and Structure in Problem Solutions Written by Non-Programmers

The dominance of rule- or event-based statements suggests that a primarily imperative lan-

guage may not be the most natural choice. One characteristic of imperative languages is

explicit control over program flow. Although imperative languages have if statements, they

are evaluated only when the program flow reaches them. The participants’ solutions seem

to be more reactive, without attention to the global flow of control. When imperative state-

ments were used, it was usually for local flow of control. The declarative style seems to

have been primarily used for setting up the scenario (data, characters, objects, etc.) of the

program. Many of the constraints that were observed in this study were graphical in nature,

such as objects that had certain fixed positions relative to one another, or limitations on

where those objects could go. The event-based style is used by several popular end-user

programming environments such as Visual Basic, Lingo for Macromedia’s Director, and

HyperTalk for HyperCard, although these systems have usability problems of their own

[see, for example, Thimbleby 1992].

This mix of styles suggests that designers might be able to improve usability by not limiting

the language to a single style. Different styles seem to be more natural for different parts of

the programming task.

HANDS supports an event-based style, with imperative statements for local flow of control

(see Section 5.3 on page 96). Data, characters and objects can be created declaratively (see

Section 5.2 on page 89).

3.5.1.1 Operations on Multiple Objects

The results from both studies highlight an important area where today’s popular program-

ming languages differ from the natural expressions used by the participants: the way that

operations are performed on multiple objects. The participants strongly preferred to use set

and subset expressions, or plurals, to specify the operations in aggregate. Miller made sim-

ilar observations in his studies [Miller 1974, Miller 1981].

Although aggregate operations have appeared in some languages, such as Lisp, APL,

SETL, and Perl, most popular languages require iterative operation on the objects, one at a

time. It has been well established in the literature that loops are a hotspot of difficulty and

errors for novice programmers [du Boulay 1989a]. And in many cases, a loop is a more

complicated and contorted way to specify operations that the participants were able to

60 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

express easily and succinctly with aggregate set operations. Languages should support

these aggregate operations, thus eliminating many of the cases where loops would other-

wise be necessary.

Another requirement imposed by loops is the need to use extra variables to count iterations,

flag terminating conditions, or hold the current object being operated upon. This is even

true in “high level” looping constructs such as mapcar in Lisp. The aggregate operations

preferred by the participants reduce the need for these variables, which are another known

area of difficulty for beginners [du Boulay 1989a]. Spreadsheets provide a few aggregate

operators, such as sum, but this feature is not generalized across all of the operators.

However, the participants did use looping constructs in a few cases, and the language

should support these as well. Often, these loops use until to specify a terminating condition,

while other times the terminating condition is implicit in phrases such as and so on or etc.

In deciding the exact loop control structures to provide, the language designer should con-

sider prior empirical studies which found that novices expect the terminating condition to

be checked continuously, and the loop to halt the instant the condition is satisfied, rather

than waiting until all of the subsequent statements inside the loop have been executed one

last time [du Boulay 1989a].

HANDS supports aggregate operations (see Section 5.9 on page 112), and also provides a

high-level iteration construct (see Section 5.13 on page 119).

3.5.1.2 Set Construction and Manipulation

Study two illustrates a variety of ways that the participants construct sets: using plurals, the

keywords each, every or all, or by naming columns in a table. Once they had created a set,

the participants often used operations such as inverse or difference to create related sets.

However, they sometimes preferred to create a separate disjoint set from scratch.

HANDS supports queries for the creation of sets of objects (see Section 5.10 on page 113).

3.5.1.3 Complex Conditionals and NOT

The participants used a number of ways to avoid writing complex Boolean conditionals.

For example, they often wrote a series of mutually exclusive simple rules instead of a more

complex conditional.

A Programming System for Children that is Designed for Usability 61

The Language and Structure in Problem Solutions Written by Non-Programmers

Also, they would sometimes express a general case followed by exceptions, as in:

if A do something unless B

Notice that the equivalent Boolean expression that would be required to accomplish this in

many programming languages involves not only a conjunction, but also the negation of the

exception clause:

if A and not B do something

The try...catch exception mechanisms in C++, Java, Lisp and other languages support this

tendency by putting the general case first and listing the exceptions later, but other control

structures in these languages do not. It might be useful to support the use of unless clauses

throughout the language.

The raters found very few uses of negation. This is consistent with earlier findings that

expressing negative concepts is more difficult than affirmative ones [Wason 1959].

When the participants did use the not operator they gave it low precedence, which is con-

trary to the precedence that it has in most programming languages. Operator precedence

errors were among the high frequency bugs observed by Spohrer & Soloway in novice pro-

grams in a traditional programming language [Spohrer 1986]. However, in a recent study

of a natural language style programming language, Bruckman & Edwards found that oper-

ator precedence errors were very infrequent [Bruckman 1999].

Chapter 4 explores these issues further and details match forms, which avoid many of the

problems with forming expressions with the Boolean operators.

3.5.1.4 Mathematical Operations

In study one, all of the mathematical operations were expressed in a natural language form;

the raters found no mathematical or programming language notations. In study two, they

found a very small amount of mathematical and programming notations among the adults’

solutions. The vast preference for natural language mathematical operations should be sup-

ported by the programming language. However, more concise mathematical notation may

be still necessary for calculations that are more complex than the ones required by the tasks

in these studies.

62 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

Many of the mathematical expressions were missing either the variable on which to oper-

ate, or the amount of the operation. This might be solved by providing slots that make the

missing information more obvious, or by entering into a dialog with the user, with ques-

tions such as how much? or to what?

HANDS provides both natural language and mathematical notations for mathematical

operations (see Section 5.2 on page 89).

3.5.1.5 Specifications of Ranges and Intervals

In study two, the raters found that the participants were only about 50% successful in spec-

ifying ranges without holes or overlaps. Adults were more successful than children, possi-

bly because they had mathematical notations for inequality in their arsenal. The children

never made use of these mathematical notations. Instead they used powers of ten, or natural

language expressions of inequality such as above or greater than. However, the participants

were inconsistent about whether these latter terms were inclusive or exclusive. Adults

achieved 100% accuracy when they used mathematical notations, suggesting that these are

a better choice for audiences that understand them.

HANDS uses mathematical notation since it is more accurate (Section 5.8.1 on page 110).

3.5.1.6 Tracking Progress and Remembering State

The participants often avoided the use of variables to track progress in a task. This is not

surprising because, as mentioned above, variables are an area of difficulty for novice pro-

grammers [du Boulay 1989a]. Instead of variables, the participants preferred to use terms

like all or none to detect when the task is finished. When they needed to use historical infor-

mation to make decisions about present actions (or present information to make decisions

about future actions), the participants usually did not use state variables to record the infor-

mation. Instead they used future and past tenses to refer to the needed information. State

variables are the only way accomplish this in most programming languages. The challenge

for language designers is to find ways to accommodate the more natural preferences.

In HANDS, queries can be used to determine when all objects, or no objects, meet certain

criteria (see Section 5.10 on page 113).

A Programming System for Children that is Designed for Usability 63

The Language and Structure in Problem Solutions Written by Non-Programmers

3.5.1.7 AND, OR and BUT

The raters found that often the word and was used as a sequencing word rather than as a

Boolean operator. Also, in study two, the raters examined the Boolean uses of and, and

found that 75% were used in situations where the or operator would be required to achieve

the desired effect in today’s programming languages, as well as the query languages used

for most database search engines. For example, a subject said, “if you score 90 and above,”

but the score cannot simultaneously be 90 and greater than 90. Because the natural uses of

and have such diverse meanings, and most of them are inconsistent with the Boolean oper-

ator, designers of future language should consider substituting a different name or symbol

for this operator.

Or and but appeared too rarely in these studies to draw firm conclusions without further

research. When or was used, a Boolean interpretation would result in correct results. The

infrequent use of or may be because disjunctive expressions are cognitively more difficult

than conjunctive ones [Bourne 1966].

Chapter 4 explores these issues further.

3.5.1.8 THEN

The raters found that the most popular use of the word then is for sequencing, or specifying

that an action should happen after finishing a prior action. This is inconsistent with its use

in most programming languages, where it means consequently. This confirms an earlier

observation by du Boulay [du Boulay 1989a].

HANDS does not address this problem.

3.5.1.9 Data Structure Operations: Insertion, Deletion, Sorting

When the participants were inserting and deleting data elements, they often did not con-

sider issues about storage space that come up when working with the array data structures

in most popular programming languages. This suggests that a built-in list-like data structure

such as in the Lisp language may be more natural.

The participants seemed to expect sorting to be a basic operator that they could utilize in

their solutions, using expressions like alphabetical or from A to Z. When they were asked

to provide an algorithm for sorting, they were rarely able to do this in a correct general way.

64 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

HANDS provides list data structures, and high-level list operators to accomplish tasks such

as sorting (see Section 5.4 on page 101, and Section 5.12 on page 114).

3.5.1.10 Randomness and Uncertainty

The raters did not find any uses of the word random in study one. Instead, the participants

either expressed things with precision, or used other ways of expressing uncertainty. Some-

times they tied the uncertain event to some other event that would happen at some unknown

time. Perhaps a system could supply the uncertainty that is implicit in phrases like about 3

seconds.

HANDS provides a basic random operator, but no other methods for expressing uncer-

tainty.

3.5.1.11 Object Oriented

Some aspects of object-oriented programming were apparent in the participants’ solutions.

Entities were treated as if they have state and an ability to respond to requests for action.

However, there was no evidence in these studies of other aspects of object-oriented pro-

gramming such as inheritance or polymorphism. Cypher & Smith found in user studies that

inheritance hierarchies cause difficulty for children [Cypher 1995]. Even among profes-

sional programmers, researchers have found that full-fledged object-oriented programming

is not necessarily natural [Détienne 1990, Glass 1995].

In HANDS, objects encapsulate state, but not code (see Section 5.18 on page 143). There

is no inheritance mechanism. However, operators are provided for making copies of exist-

ing objects, so a programmer could use a prototype-instance style for managing objects.

3.5.1.12 Motion and Other Domain Specific Needs

The participants expected objects to move on their own, so their behaviors were similar to

real-world objects. This is in contrast to the incremental way that animation is accom-

plished in many systems. This may not come up on all programming tasks, and thus might

not be considered a language issue. But similar issues can arise in other domains, and the

usability of the programming system can benefit from analysis of the specific needs of the

particular domains in which it will be used [Green 1990]. One way to do this in a general

way is to allow the language to be customized with domain-specific features.

A Programming System for Children that is Designed for Usability 65

The Language and Structure in Problem Solutions Written by Non-Programmers

HANDS provides domain-specific support for interactive graphical programs (see

Section 5.14 on page 123).

3.5.1.13 Pictures

In study one, the experimenter counted how many participants used pictures or diagrams in

their solutions, and found that two-thirds of them did. All of these pictures appeared early

in the solutions, when setup and layout were being defined. Programming systems should

accommodate this form of graphical specification in addition to textual specification.

HANDS permits setup and layout to be done by direct manipulation (see Section 5.2 on

page 89).

3.6 Summary of These Studies
A large part of the programming task is to take a mental plan for solving a problem and

transform it into the particular programming language being used. These studies attempt to

capture these plans before they undergo the transformation into a programming language.

Ideally, the distance between the plans and the programming language should be mini-

mized. However, these studies identify many places where an unnecessarily large gap is

imposed by the features and requirements of today’s programming languages.

Programming is a task of precision, and one reason that the programming languages may

differ from these natural language solutions is that programming languages are more

formal and facilitate the expression of solutions with more precision. Indeed, there is a

large amount of imprecision and underspecification in the participants’ work, and it is

important to find ways to help beginners to make their specifications more complete. In

many cases, however, the structure and algorithms of the natural language solutions are sat-

isfactory, but are in a different style than is allowed in today’s programming languages.

HANDS has been influenced significantly by these studies. For example, it supports an

event-based style of programming as well as aggregate data access and queries for creating

the sets to be operated on. In order for queries to be effective, it is necessary to improve the

accuracy of query specification, but these studies have shown many serious problems with

the Boolean operators and, or and not. Chapter 4 proposes and tests several alternatives to

textual Boolean expressions.

66 A Programming System for Children that is Designed for Usability

The Language and Structure in Problem Solutions Written by Non-Programmers

These studies, along with the results of other human-centered research about programming,

are resources that can be used to guide and evaluate programming language designs. In

addition to HANDS, this approach could result in effective new language designs for other

domains where it would be useful for non-programmers to have the capabilities of pro-

gramming.

A Programming System for Children that is Designed for Usability 67

CHAPTER 4 Methods for Expressing Queries

The studies described in Chapter 3 suggest that programming languages should provide

mechanisms for users to perform queries. This capability would reduce the need for the cre-

ation, maintenance, and traversal of data structures. However, the accurate specification of

queries as Boolean expressions is a notorious problem area in programming languages and

other activities such as web searching, library catalog searching, and other database

retrieval tasks [Hildreth 1988]. This chapter introduces and evaluates a new tabular query

form that I invented to avoid many of the common problems with the Boolean operators,

and also explores the effectiveness of alternative textual methods for specifying queries.1

4.1 Overview
Despite the great difficulty that users have demonstrated with using the operators AND, OR,

and NOT to construct Boolean expressions, no universally better alternatives have been dis-

covered. Therefore most programming languages continue to rely on them, including many

visual and forms-based languages (e.g., [Hays 1995, Pictorius 1996]). Early web search

engines also used these operators, although many have now turned to less expressive query

languages (for example, the plus and minus unary operators for inclusion and exclusion).

1. Portions of this chapter were previously reported in [Pane 2000].

68 A Programming System for Children that is Designed for Usability

Methods for Expressing Queries

Newsweek reported in 1999 that even with these simplifications, most web users are dissat-

isfied with search engines, and less than 6% manage to use these operators in their searches

[Tanaka 1999]. Google has become very successful by returning useful results when users

enter simple keyword searches, without any operators at all.

The problems with Boolean queries are exemplified in the studies described in Chapter 3.

For example, it was very common for participants to use the word AND where the word OR

is the correct Boolean operator. Instead of saying something like “count the cars with

license plates from Georgia or Louisiana” they would say “count the cars with license

plates from Georgia and Louisiana.” The latter version refers to an empty set of license

plates when interpreted according to Boolean logic, but in English it is usually interpreted

to mean the union of the two states’ license plates. This ambiguity in how to interpret the

word that means “and” also appears in many other natural languages.

These studies also found that the words OR and NOT rarely appeared, suggesting that Bool-

ean expressions are not natural. The participants often used other words and sentence struc-

tures to specify their queries accurately. For example, rather than saying “if I get up late

and I’m not very hungry I skip breakfast,” they might say “if I get up late I skip breakfast

unless I’m very hungry.” This latter construction avoids both the AND and NOT operators.

This chapter describes a study that examines several of these alternative formulations to see

whether they are more usable than traditional Boolean expressions. In addition, because

prior research suggests that non-textual query languages may be more effective than textual

syntaxes [Young 1993], the study compared these textual alternatives against a proposed

new query language that uses tabular forms, which could be integrated into a primarily tex-

tual programming language.

The study used a grid of nine colored shapes, where a subset of the shapes could be marked

(see Figure 4-1). The participants were given two kinds of problems: code generation prob-

lems, where some shapes were already marked and they had to formulate a query to select

them; and code interpretation problems, where they were shown a query and had to mark

the shapes selected by the query. They solved all of these problems twice, once using purely

A Programming System for Children that is Designed for Usability 69

Methods for Expressing Queries

textual queries, and once using the proposed tabular forms. Additional examples appear in

Figure 4-3, and the full materials from this study can be found in Appendix F.

The results suggest that a tabular language for specifying Boolean expressions can improve

the usability of a programming or query language. On code generation tasks, the partici-

pants performed significantly better using the tabular form, while on code interpretation

tasks they performed about equally in the textual and tabular conditions. The study also

uncovered systematic patterns in the ways participants interpreted Boolean expressions,

which contradict the typical rules of evaluation used by programming languages. These

observations help to explain some of the underlying reasons why Boolean expressions are

so difficult for people to use accurately, and suggest that refining the vocabulary and rules

of evaluation might improve the learnability and usability of textual query languages. A

general awareness of these contradictions can help designers of future query systems

adhere to the HCI principle to speak the user’s language [Nielsen 1994].

Figure 4-1. Sample problem from the study. In this problem, the participant is asked to write a textual query
to select the objects that are marked. The color of each object is red, green or blue on the computer screen.

70 A Programming System for Children that is Designed for Usability

Methods for Expressing Queries

4.2 Prior work on Boolean Queries
Many researchers have noted that Boolean query languages using the AND, OR, and NOT

operators are not very effective in programming languages or database retrieval (e.g. [Hil-

dreth 1988, Hoc 1989]). Several researchers have noted that the common usage of these

operators in natural language causes errors in queries, such as the substitution of AND for

OR [Greene 1990, Michard 1982]. It has also been noted that the intended scope of the NOT

operator is ambiguous in natural language [McQuire 1995].

The difficulties of Boolean expressions are intensified when several operators must be

combined to form the query [Essens 1992]. Parentheses improved performance in that

study, but other studies have shown that beginners have difficulty with parentheses, espe-

cially if they are nested [Greene 1990, Michard 1982].

Replacing the Boolean query language with a different subset of natural language, using

other words for the operators, is still likely to be inadequate [Kohl 1987]. Many systems

that permit unrestricted natural language queries have been shown to be effective for infor-

mation retrieval tasks (e.g. [Turtle 1994]).

These problems have led researchers to develop graphical interfaces for queries. For exam-

ple, truth tables and Venn diagrams have been shown to be effective for specifying simple

queries [Jones 1998, Michard 1982, Thomas 1975]. Another system used tiles in a two-

dimensional grid, where one dimension represented union and the other represented inter-

section, although these implicit semantics were found to be confusing [Anick 1990]. A

system that used the graphical metaphor of water flowing through filters was found to be

superior to Boolean expressions [Young 1993], however the screen space required for this

tool might limit its effectiveness in a larger context such as a programming language.

4.3 Design alternatives for Boolean queries
My earlier studies (Chapter 3) analyzed the natural language solutions that non-program-

mers provided to solve programming problems, and identified some common trends in the

ways that Boolean queries were expressed. The vocabulary and syntax of these solutions

were unconstrained, so they provide insight into how people prefer to express their

answers. I speculated that a programming language that closely matches these natural pref-

A Programming System for Children that is Designed for Usability 71

Methods for Expressing Queries

erences would be more usable than one that requires users to translate their natural solu-

tions into a less natural form. With this in mind, I proposed several alternate ways to

express textual queries and compared them in this study. In addition, I also proposed a tab-

ular format for queries.

4.3.1 Tabular query forms

Although some graphical query methods had been shown to be more effective than Boolean

expressions, many of them were limited to expressing very simple queries. I wanted a solu-

tion that is fully expressive. Also, many of the graphical systems would not integrate well

into a programming language, where the entire computer screen cannot be devoted to this

one subtask of the programming process. I required a format that is compact and readable

in the context of a larger program. With these points in mind, I designed a tabular form that

is fully expressive and compatible with the programming language I was developing.

Since the HANDS programming language represents data on cards containing attribute-

value pairs, I designed the query form to also use a card metaphor. For the purposes of this

study, I simplified the forms by leaving out the attribute names, and limiting the number of

terms to three. I called these match forms (see Figure 4-2). Criteria are placed into the slots,

one term per slot. All of the terms on a single form implicitly form a conjunction. Negation

is specified by prefacing a term with the NOT operator. Disjunction is specified by includ-

ing an additional match form adjacent to the first one.

This two-dimensional layout is similar to the grid of tiles described by Anick et al. [Anick

1990] – one dimension implements intersection and the other implements union. However,

match forms provide cues to help users remember which operator uses each dimension,

Figure 4-2. Match forms expressing the query: (blue and not square) or (circle and not green)

72 A Programming System for Children that is Designed for Usability

Methods for Expressing Queries

such as the text in the form heading and the visual grouping. In addition, the scope of the

NOT operator is made explicit by confining it to a single term. This proposed query lan-

guage can express arbitrarily complex queries, although some queries have to be formu-

lated in a less concise way than pure Boolean expressions would allow.

4.4 Hypotheses
The study tests nine hypotheses. The first seven hypotheses examine various textual alter-

natives to traditional Boolean expressions, and the last two hypotheses examine the tabular

design alternative.

4.4.1 AND vs. nested IF

Hypothesis 1: Users will interpret nested IF statements more accurately than a Boolean

expression using AND.

In the prior studies, people frequently nested an IF statement inside another IF statement.

Instead of saying, “if a and b then ... ,” they would say, “if a then if b then” The use of

nested IFs may be easier to use and understand because it avoids using the confusing AND

operator for conjunction, and keeps the Boolean expression simpler.

4.4.2 NOT vs. Unless

Hypothesis 2: Users will interpret an Unless clause more accurately than a Boolean

expression that uses AND and NOT.

In the prior studies, people often wrote a simple conditional statement and then stated an

exception at the end. For example, they would write, “if a then ... unless b” This is an alter-

native to “if a and not b then” In addition to avoiding the AND operator, the Unless

clause permits the user to express a negated term without using the NOT operator.

4.4.3 Location of Unless

Hypothesis 3: Users will interpret an Unless clause more accurately when it appears at

the very end of the statement.

Although in English it may be natural to say “if a then ... unless b,” in programming lan-

guages those ellipsis (...) may be filled with a large block of code. If the Unless clause will

A Programming System for Children that is Designed for Usability 73

Methods for Expressing Queries

appear at the very end of the IF statement, it will be far removed from the part of the query

that is specified in the IF clause. Because this violates the principle of locality [Cordy

1992], it may reduce usability. While the principle of locality could not be tested directly

with my simple stimuli, I wanted to investigate whether the Unless clause is sensitive to its

placement within the query, so I also tested queries of the form “unless b, if a then ...”

4.4.4 Context-dependent interpretation of AND

Hypothesis 4: Users will interpret AND as Boolean conjunction in some contexts but not

in other contexts.

People often use AND in places where the correct Boolean operator is OR. This may be

because interpretation of AND in the English language depends on its context. In some

cases it is interpreted to be a further restriction on a query (Boolean conjunction or set inter-

section), while in other cases it is interpreted to expand the query (Boolean disjunction or

set union). For example, these two statements are usually interpreted differently: “pick up

the boxes that are blue and green” vs. “pick up the boxes that are blue and the boxes that

are green.” I attempted to demonstrate this context-sensitive interpretation of the AND

operator.

4.4.5 Verbose AND vs. OR

Hypothesis 5: Users will interpret a verbose AND expression as Boolean disjunction more

accurately than an OR expression.

If Hypothesis 4 is confirmed, it would be useful to characterize the contexts in which AND

is interpreted as a Boolean disjunction instead of conjunction. If certain constructions con-

sistently lead to disjunctive interpretations, perhaps they can reliably replace the rarely-

used OR operator. I hypothesized that a more verbose expression that restates part of the

query is more likely to induce a disjunctive interpretation (see the example in

Section 4.4.4).

4.4.6 Operator precedence of NOT

Hypothesis 6: Users will interpret the NOT operator with lower precedence than the other

Boolean operators.

74 A Programming System for Children that is Designed for Usability

Methods for Expressing Queries

People often interpret the NOT operator with lower precedence than the other Boolean

operators. This is opposite to the rules of interpretation in most programming languages,

where NOT has higher precedence than the other Boolean operators. That is, in “not a and

b,” programming languages associate the NOT tightly with the “a”, while I expect people

to first interpret the expression “a and b” and then apply the NOT operator to the result.

4.4.7 Parentheses for expression grouping

Hypothesis 7: Users will misinterpret parenthesized expressions.

Regardless of the precedences chosen for the Boolean operators, a mechanism is required

for the user to clarify or override them. Programming languages typically use parentheses

to explicitly group sub-expressions, but research has shown that beginners have difficulty

with parentheses.

4.4.8 Tabular vs. textual

Hypothesis 8: Users will interpret queries that use match forms more accurately than

equivalent textual queries.

Hypothesis 9: Users will generate more accurate queries using match forms than they gen-

erate using text.

I investigated the relative usability of match forms compared with text on both interpreta-

tion and generation of queries. I expected match forms to be effective because they elimi-

nate many of the problems with text that are discussed above. By avoiding the words AND

and OR, any confusion with the meaning of these words in English is avoided. Also, the

precedence or grouping of the operators becomes less ambiguous.

4.5 Method
Before beginning the study, participants filled out a questionnaire that collected basic

demographic information. Then they answered a set of problems that were divided into four

sections. In two of the sections, the writing sections, the participants generated queries to

match a result that I supplied. In the other two sections, the reading sections, participants

interpreted queries that I supplied. I label the two writing sections WT (writing text) and WF

(writing forms), and the two reading sections RT (reading text) and RF (reading forms).

A Programming System for Children that is Designed for Usability 75

Methods for Expressing Queries

There were five WT questions and five identical WF questions. Comparing the performance

across these two conditions is the basis for testing hypothesis 9. By random assignment,

half of the participants answered the WT questions first, and the other half answered the

WF questions first, to control for any effect of presentation order. All of the writing ques-

tions were presented before any of the reading questions, so that the queries that were dis-

played in the reading sections would not bias their responses in the writing sections.

There were eleven RT questions, forming the basis for testing hypotheses 1-7. The first five

hypotheses can be evaluated by comparing relative student accuracy across a pair of ques-

tions. Hypotheses 6 and 7 can be evaluated by examining which of two interpretations the

participants used in answering a single question. To control for any effect of presentation

order, participants were randomly assigned to a path through the questions. The paths were

constructed so that, for every pair of questions I intended to compare, the number of times

that either question appeared first was balanced.

The eleven RF questions were constructed by translating the RT questions into the tabular

language. So, each participant answered the same question twice, once with text and again

with match forms. Comparing the performance in these two conditions is the basis for test-

ing hypothesis 8. By random assignment, half the participants solved the RF questions first,

and the other half solved the RT questions first, to control for any effect of presentation

order.

There were a total of 32 questions in the four reading and writing sections. After this, par-

ticipants answered a survey of seven preference questions. Each of these showed a query

result along with two or more queries that would correctly generate the result. The partici-

pants were asked to select the one they liked the best.

4.5.1 Participants

In addition to examining these hypotheses with children who are the target audience of my

programming language, I were interested in how the results would generalize to other ages.

So, I recruited both children and adults to participate in the study.

Of the 33 volunteers who participated, 17 adults were recruited by sending a message to an

email list for fans of a musician, and they participated by accessing the study over the web.

76 A Programming System for Children that is Designed for Usability

Methods for Expressing Queries

The rest of the participants were recruited by two of my advisor’s children, who invited

their friends to come to CMU for one hour in exchange for $5 and ice cream. These partic-

ipants gathered in a classroom full of computers, and accessed the study over the web. 13

of these participants were children and three were adults (parents of children who partici-

pated).

Overall, 13 children (ages 10-14), and 20 adults (ages 18-46) participated. 14 were male

and 19 were female. All but two were native speakers of English. 7 participants reported

that they had written computer programs (4 adults, 3 children). 27 reported that they had

some experience with web search engines, and 18 had used advanced searching features

(such as AND, OR, NOT, +, -, etc.). Two adults were experienced with the SQL database

query language.

4.5.2 Materials

The 32 problems were presented in a web browser, one problem per web page. Each of the

problem groups was preceded by an instruction page explaining how the query language or

query forms work and introducing the format of the exercises. The WT and WF instruction

pages were constructed to be as similar to each other as possible, as were the RT and RF

pages. The web server managed the random assignment of participants to a path through

the problems, the presentation of the problems in the order determined by that path, and the

collection of the data anonymously. Figure 4-3 contains an example problem from each of

the four problem groups.

4.5.3 Procedure

Participants began on the demographic questionnaire page and proceeded at their own pace

through the materials. They were instructed to be as accurate as possible and were told that

there was no time limit. When they submitted an answer, the server recorded it and pre-

sented them with the next page in the sequence. The server performed some basic syntactic

checks (for example, it made sure the user provided a Boolean operator on the WT tasks,

and that they did not put multiple criteria into a single slot in the WF tasks). If this check

failed, an error message asked the participant to go back and fix the answer. Any time par-

A Programming System for Children that is Designed for Usability 77

Methods for Expressing Queries

ticipants returned to a previous page to revise an answer, I recorded all of the answers but

only used the final one for the results presented here.

Each participant’s answer was scored as correct or incorrect according to the following pol-

icy. Spelling errors were tolerated, as were additional words such as an, a, or the. Plural

and singular forms of all words were accepted. Consistent use of an incorrect color name

that did not actually appear in the study (e.g. orange for red) was tolerated. But, any incor-

rect replacement of one color or shape with another one that did appear in the study (e.g.

blue for green) was marked as incorrect. Except where otherwise noted, textual answers

were interpreted the way a programming language would interpret them. Invented short-

hand notations were marked as incorrect. Redundant or overly complex answers were

Figure 4-3. Example problems from each of the four problem groups (WF, WT, RF, and RT) before the
answers are filled in. The color of each object is red, green or blue on the computer screen.

WF WT

RF RT

78 A Programming System for Children that is Designed for Usability

Methods for Expressing Queries

scored as correct if they resulted in the correct selection. Finally, on the problems where I

gave special instructions, answers that did not follow the instructions were marked as incor-

rect even if they resulted in a correct selection (e.g. one of the questions in WF and WT

asked the users include the word NOT in their answers).

Because I simplified the match forms for this study, some of the problems became more

complex when they were translated from RT to RF. For example, the lack of a way to negate

a whole match form causes the expression “not (a and b)” to be translated into the tabular

equivalent of “(not a) or (not b).” These question pairs were discarded from the comparison

of RT to RF in testing hypothesis 8.

4.6 Results
No significant differences were detected between children and adults, between males and

females, or between programmers and non-programmers, so the results are aggregated

across all of the participants. The numbers shown are percentages.

In evaluating hypotheses 1-5, I performed within subject comparisons on pairs of questions

from the RT problem group. Statistical significance in these comparisons was evaluated

with a non-parametric sign test. To test hypotheses 6 and 7, I examined which of two inter-

pretations participants used in answering a single question. Statistical significance in these

comparisons was evaluated with a binomial test. In evaluating hypotheses 8 and 9, I com-

pared pairs of questions between RT & RF and between WT & WF, respectively. These

comparisons were within subject, and statistical significance was evaluated with a non-

parametric sign test. In all of the statistical tests, p<.05 was used as the threshold for signif-

icance.

Hypothesis 1 is not confirmed.
Users will interpret nested IF statements more accurately than a Boolean expression using AND. % correct
Nested IF
select the objects that match red, if the objects match triangle

94

AND
select the objects that match blue and circle

85

not significant

A Programming System for Children that is Designed for Usability 79

Methods for Expressing Queries

Hypothesis 2 is not confirmed.
Users will interpret an Unless clause more accurately than a Boolean expression that uses AND and
NOT. % correct
Unless
select the objects that match blue, unless the objects match square

97

AND NOT
select the objects that match square and not red

94

not significant

Hypothesis 3 is confirmed.
Users will interpret an Unless clause more accurately when it appears at the very end of the statement.

% correct
Unless at end
select the objects that match blue, unless the objects match square

97

Unless earlier
unless the objects match green, select the objects that match circle

76

p<.05

Hypothesis 4 is confirmed.
Users will interpret AND as Boolean conjunction in some contexts but not in other contexts.

% con-
junction

select the objects that match blue and circle 85
select the objects that match blue and the objects that match circle
(55% of the participants interpreted this as Boolean disjunction)

36

p<.0001

Hypothesis 5 is disconfirmed.
Users will interpret a verbose AND expression as Boolean disjunction more accurately than an OR
expression.

% dis-
junction

select the objects that match blue and the objects that match circle 55
select the objects that match square or green 82

p<.05

Hypothesis 6 is disconfirmed for NOT with AND.
Users will interpret the NOT operator with lower precedence than the other Boolean operators.
select the objects that match not red and square %
precedence of NOT is higher than AND
interpreted as: (not red) and square

64

precedence of NOT is lower than AND
interpreted as: not (red and square)

9

p<.001

Hypothesis 6 is confirmed for NOT with OR.
Users will interpret the NOT operator with lower precedence than the other Boolean operators.
select the objects that match not triangle or green %
precedence of NOT is higher than OR
interpreted as: (not triangle) or green

9

precedence of NOT is lower than OR
interpreted as: not (triangle or green)

67

p<.001

80 A Programming System for Children that is Designed for Usability

Methods for Expressing Queries

As mentioned above, three of the RF problems were not well-matched to the corresponding

RT problems, so these pairs were discarded in analyzing hypothesis 8. This left eight pairs

of reading problems to test hypothesis 8. All five pairs of writing problems were used to

test hypothesis 9.

The following table breaks down the individual problems in WF vs. WT, showing the per-

cent correct. The problems are labeled with my canonical text solutions.

4.7 Discussion
Although the results help to explain some of the reasons why Boolean queries using AND,

OR, and NOT are so difficult, the textual alternatives that I proposed did not improve per-

Hypothesis 7 is confirmed.
Users will misinterpret parenthesized expressions.
select the objects that match (not circle) or blue %
ignore parentheses, NOT has low precedence
interpreted as: not (circle or blue)

39

observe parentheses
interpreted as: (not circle) or blue

12

p<.05

Hypothesis 8 is not confirmed.
Users will interpret queries that use match forms more accurately than equivalent textual queries. % correct
Match Forms (RF) 71
Text (RT) 74

not significant

Hypothesis 9 is confirmed.
Users will generate more accurate queries using match forms than they generate using text. % correct
Match Forms (WF) 94
Text (WT) 85

p<.0001

red and
triangle

square and
not red

(blue and circle) or
(red and triangle)

circle or
blue

square and
not reda

a. The word NOT was required in the solution to this problem

Match Forms (WF) 94 73 91 42 33
Text (WT) 94 64 12 18 21

n.s. n.s. p<.0001 p<.01 n.s.

A Programming System for Children that is Designed for Usability 81

Methods for Expressing Queries

formance. On the other hand, the proposed tabular query forms did improve performance

on writing tasks, while performing about the same on reading tasks.

4.7.1 Textual query variations

Hypothesis 1 was not confirmed. The participants performed about the same using nested

IF statements as they did using a Boolean expression with the AND operator. On the pref-

erences survey, the majority of the participants preferred the Boolean expression.

Hypothesis 2 was not confirmed. The participants performed about the same using an

Unless clause as they did using a Boolean expression with the AND and NOT operators. On

the preferences survey, the majority of the participants preferred the Boolean expression.

Hypothesis 3 was confirmed. The participants performed significantly better with the

Unless clause at the end than they did with the Unless clause earlier in the statement. How-

ever, given the result of Hypothesis 2, the importance of this result is questionable. Also,

the very simple problems used in this study did not provide a good way to test the situation

where I speculated that the Unless would violate the principle of locality. On the prefer-

ences survey, most of the participants preferred the Unless at the end.

Hypothesis 4 was confirmed. Two slightly different queries using AND resulted in signifi-

cantly different interpretations. 85% of the participants interpreted the AND in “select the

objects that match blue and circle” as a conjunction operator. But only 36% of them inter-

preted it that way in “select the objects that match blue and the objects that match circle.”

Instead, 55% of them interpreted the AND in the second statement as a disjunction operator.

This result helps to explain the frequently observed error where users incorrectly use AND

instead of OR.

Hypothesis 5 was disconfirmed. Despite the fact that the majority of the participants inter-

preted AND as a disjunction operator in “select the objects that match blue and circle,” they

are significantly more accurate in interpreting disjunction if the OR operator is used. On the

preferences survey, the majority of the participants preferred OR over a verbose AND state-

ment to express disjunction.

In the surprising results of hypothesis 6, I measured reliable effects in opposite directions

depending on context. The hypothesis was disconfirmed when comparing the precedence

82 A Programming System for Children that is Designed for Usability

Methods for Expressing Queries

of NOT with AND. 64% of the participants treated NOT with higher precedence than AND,

matching the common usage in programming languages. However, the hypothesis was con-

firmed when comparing the precedence of NOT with OR. In this case, 67% of the partici-

pants treated NOT with lower precedence than OR. Since consistency is an important

human-computer interaction principle [Nielsen 1994], this reversal in the natural interpre-

tation of precedence suggests that it is unwise to rely on implicit precedence rules.

Hypothesis 7 was confirmed. Users ignored parentheses significantly more often than they

observed them. The query was, “select the objects that match (not circle) or blue.” The

results on hypothesis 6 suggest that without the parentheses, most participants would have

applied the NOT operator to the expression “circle or blue.” The parentheses were not able

to override this tendency.

4.7.2 Match forms vs. text

Hypothesis 8 was not confirmed. On reading tasks, the participants performed about as well

with match forms as they did with text. However, hypothesis 9 was confirmed. On writing

tasks, the participants performed significantly better with the match forms than they did

with text. This disparity, where a positive effect is stronger on generation tasks than inter-

pretation tasks, has also been observed in other systems (e.g. [Modugno 1996]). On the

preferences survey, which was a reading task, the participants’ choices were about equally

divided between text and match forms.

Match forms were not superior for code interpretation, but they did not have a detrimental

impact on that task. Thus the overall effect of using match forms should be positive due to

the strong gains on generation tasks, despite the lack of an effect on interpretation tasks.

The breakdown of individual questions in the query generation task shows that the partici-

pants performed about the same in the two conditions when the queries were simpler, but

as the queries became more complex, the differences in favor of the match forms increased.

While the trend in favor of match forms was present in all cases, only the queries that

involved disjunction revealed significant differences between match forms and text. As

expected, the most common error on these problems was the substitution of AND where OR

was required.

A Programming System for Children that is Designed for Usability 83

Methods for Expressing Queries

The three problems that were excluded from the reading comparison were among the more

complex queries. Since the advantage of query forms is stronger on more complex queries,

excluding this data may have reduced any positive effect of match forms on the reading

task. Thus it would be less likely for the study to be able to confirm hypothesis 8. Further

research into this question is warranted.

The strong effect of match forms came with very little training. It is unlikely that the par-

ticipants had used an equivalent tabular query language before, and they only viewed a

brief instruction page with a few examples before beginning to solve the problems. While

the instructions for the textual problems were similarly brief, the participants brought

knowledge from a lifetime using the words AND, OR, and NOT in English. This may have

interfered with the programming language interpretation, or made them less careful in read-

ing the instructions.

4.8 Summary
Based on the results of this study, I can make the following recommendations to designers

of programming languages, scripting tools, and search engines that incorporate query

mechanisms:

• Do not use the word AND.

• Do not rely on parentheses for grouping.

• Do not rely on implicit operator precedence rules.

• Consider using match forms or similar tabular query forms instead of pure text.

The success of match forms can be attributed to several factors: AND and OR are avoided;

the scope of NOT is unambiguous; parentheses are not needed for grouping; and cues help

to disambiguate conjunction and disjunction.

This study of what is natural for untrained users provides an empirical basis for choosing

among design alternatives in query tools for beginners. The strategy employed here can be

also used by developers to assist in the design of other kinds of tools for programmers.

84 A Programming System for Children that is Designed for Usability

Methods for Expressing Queries

4.9 Application of Results
The HCI Bibliography (www.hcibib.org) is a web database of HCI related resources, main-

tained by Gary Perlman. This site uses the glimpse tool (glimpse.cs.arizona.edu) for its

search engine. Glimpse has an unusual query syntax that was causing many errors and com-

plaints from users. For example, the glimpse syntax for the query (Pane or Myers) and

Boolean is {pane,myers};{boolean}. I proposed to use match forms for queries on this site,

and created a prototype. When the user submitted a query using this match form interface,

JavaScript translated the query into the glimpse syntax and sent it to the server.

Mr. Perlman liked the idea, but felt that conjunctive normal form was more useful for

searching bibliographic databases. We worked together to create a conjunctive normal

derivative of match forms that preserves their important features. The result is shown in

Figure 4-4, and is installed on the HCI Bibliography website.

Note that the descriptive text along the left edge of the form includes the word and. We felt

this use was acceptable because it is part of the longer phrase, and it ALSO, which rein-

forces the conjunctive interpretation of the word and.

Mr. Perlman recently analyzed user performance on the new tabular search interface in

comparison to the older glimpse-syntax interface, and concluded that users make fewer

Figure 4-4. The new tabular search interface for the HCI Bibliography (www.hcibib.org).

A Programming System for Children that is Designed for Usability 85

Methods for Expressing Queries

errors when using the new tabular interface. He has also received favorable comments

about the new interface, such as, “What a great search interface! I like how easy it is to

figure out how to search using ‘and’ or ‘or.’” Our conclusion is that this new search inter-

face is a success.

86 A Programming System for Children that is Designed for Usability

Methods for Expressing Queries

A Programming System for Children that is Designed for Usability 87

CHAPTER 5 The HANDS System

This chapter describes the details of the HANDS system design. It begins with a review of

the high-level motivating factors for the design, and then describes the computational

model that is portrayed in HANDS, followed by details of the syntax and features of the

HANDS language and environment. A full syntax chart for the language appears in

Appendix A.

5.1 Motivating Factors in the HANDS Design
The various components of the system were designed in response to the observations in my

studies as well as prior work:

• Beginners have difficulty learning and understanding the highly-detailed, abstract and

unfamiliar concepts that are introduced to explain how most programming languages

work. HANDS provides a simple concrete model based on the familiar idea of a charac-

ter sitting at a table, manipulating cards.

• Beginners have trouble remembering the names and types of variables, understanding

their lifetimes and scope, and correctly managing their creation, initialization, destruc-

tion and size, all of which are governed by abstract rules in most programming lan-

guages. In HANDS, all data is stored on cards, which are familiar, concrete, persistent,

88 A Programming System for Children that is Designed for Usability

The HANDS System

and visible. Cards can expand to accommodate any size of data, storage is always ini-

tialized, and types are enforced only when necessary, such as when performing arith-

metic.

• Most programming languages require the programmer to plan ahead to create, main-

tain, and traverse data structures that will give them access to the program’s data.

Beginners do not anticipate the need for these structures, and instead prefer to access

their data through content-based retrieval as needed. HANDS directly supports queries

for content-based data retrieval.

• Most programming languages require the programmer to use iteration when performing

operations on a group of objects. However, the details of iteration are difficult for

beginners to implement correctly, and furthermore, beginners prefer to operate on

groups of objects in aggregate instead of using iteration. HANDS uniformly permits all

operations that can be performed on single objects to also be performed on lists of

objects, including the lists returned by queries.

• Despite a widespread expectation that visual languages should be easier to use than tex-

tual languages, the prior work finds many situations where the opposite is true (see

Section 1.6.7 on page 13). In my studies, pictures were often used to describe setup

information, but then text was used to describe dynamic behaviors. HANDS supports

this hybrid approach, by permitting objects to created and set up by direct manipulation

but requiring most behaviors to be specified with a textual language. This design

assumes that the environment will provide syntax coloring and other assistance with

syntax. These features are commonly available in programming environments, but re-

implementing them in HANDS was beyond the scope of this thesis.

• Programming language syntax is often unnatural, laden with unusual punctuation, and

in conflict with expectations people bring from their knowledge in other domains such

as mathematics. The HANDS language minimizes punctuation and has a more natural

syntax that is modeled after the language used by non-programmers in my studies.

• The prior research offers few recommendations about which programming paradigm

might be most effective for beginners (imperative, declarative, functional, event-based,

object-oriented, etc.). In my studies of the natural ways beginners expressed problem

A Programming System for Children that is Designed for Usability 89

The HANDS System

solutions, an event-based paradigm was observed most often, and program entities were

often treated with some object oriented features. HANDS therefore uses an event-based

paradigm. Cards are the primary data structure, and they have some object-like proper-

ties: they are global, named, encapsulated, persistent, and have some autonomous

behaviors.

• The prior work recommends that programming systems should provide high-level sup-

port for the kinds of programs people will build, so they do not have to assemble more

primitive features to accomplish their goals. In my interviews with children, they said

they wanted to create interactive graphical programs like the games and simulations

they use every day. HANDS provides domain-specific support for this kind of program.

5.2 Representation of the Program
The HANDS system introduces a new model of computation that is concrete, uses concepts

that are familiar to children, and provides high visibility of program data. In HANDS, an

agent named Handy sits at a table, manipulating information on cards (see Figure 5-1).

5.2.1 Cards for Data Storage

All of the data in the system is stored on cards, which are global, persistent and visible on

the table. Each card must have a unique name, which is not case sensitive. The name must

be an identifier, which is generally a word without spaces. The exact definition of an iden-

tifier is included in Appendix A. When a new card is created, it is given a unique name by

the system unless the programmer specifies a name. The names of cards can be changed at

any time, and an error dialog comes up immediately if the programmer attempts to use a

name that is already in use.

5.2.1.1 Properties

The front of each card has a list of properties, which are name-value pairs (Figure 5-2).

Names of properties must be identifiers, are not case sensitive, and must be unique within

each card. See Section 5.4 on page 101 for information about what types of information can

be stored into the value of a property. Several properties are always present: the card-

name property holds the card’s name, and the x and y properties contain the card’s position

coordinates. The card’s name is also shown in the title bar at the top of the card. The pro-

90 A Programming System for Children that is Designed for Usability

The HANDS System

grammer can add more properties as needed, so cards are similar to records (or structs) in

other languages. When a new property is created, and the programmer does not specify a

name, the system automatically generates a unique name. An error dialog comes up imme-

diately if the programmer attempts to use a property name that already exists on the card.

5.2.1.2 Direct Manipulation of Cards and Properties

In addition to the usual ways that data can be manipulated by the code of a running pro-

gram, cards and their properties can be managed by direct manipulation, even before or

after the program has run. New cards can be drawn from the pile of new cards in the top

Figure 5-1. The HANDS system portrays the components of a program on a round table. All data is stored
on cards, which can be drawn from the pile at the top right and dragged into position. At the lower left, two
cards are shown face-down on the table. One has a generic card back and the other has been given a picture
by the programmer. In the center of the table is a board, where the cards are displayed in a special way where
only the contents of the back are displayed. Each picture, string, and number on the board is a card. At the
right, one of the cards has been flipped face-up, where its properties can be viewed and edited. The
programmer inserts code into Handy’s thought bubble, by clicking on Handy’s picture in the upper left
corner. When the play button is pressed, Handy begins responding to events by manipulating cards according
to the instructions in the thought bubble. The stop button halts the program, and the reset button will restore
all cards to their state at the time the play button was last pressed. For reference, a compass is embossed on
the table at the lower right.

A Programming System for Children that is Designed for Usability 91

The HANDS System

right corner of Figure 5-1, and existing cards can be cloned by choosing “Duplicate Card”

from a popup menu on the card (see the right side of Figure 5-2). The clone is identical to

the original, except a unique name is generated from the original name. The popup menu

also allows cards to be deleted. Cards can be moved around on the screen to set their posi-

tion (x and y properties). Property names and values can be edited by typing directly into

the slots on the card. New properties can be added by inserting entries into the blank row

that is always present at the bottom of each card. If only a value is inserted, the system gen-

erates a unique name for the property. If only a property name is specified, the property is

initialized to the value empty. If the programmer edits the x or y properties, the card is

automatically moved to the new position.

When a card’s properties are showing, it is considered to be face-up. The other side of the

card is called its back, which can contain a picture or other information. A face-up card can

be flipped face-down to show its back by clicking the close box at the top right corner.

When face-down, clicking the close box, or anywhere on the back of the card, flips it face-

up again.

Figure 5-2. In HANDS, all data is stored on cards. The fronts of cards have an unlimited set or properties, or
name-value pairs. The cardname, x, and y properties are always present. Additional properties can be
added by the running program, or by making an entry into the blank slot that is always available at the
bottom. A popup menu on the card enables the programmer to duplicate or delete the card.

92 A Programming System for Children that is Designed for Usability

The HANDS System

5.2.1.3 The back Property

The back property controls what is displayed on the back of the card when it is face-down.

If there is no back property on a card, a picture of a generic card back is displayed (shown

at left in Figure 5-3). If the value of the back property is the name of a file containing an

image, the image is displayed on the back of the card (shown at center in Figure 5-3). The

program automatically searches for an image file with the specified name in the same direc-

tory as the HANDS program, and if not found, it then searches in the “Graphics” subdirec-

tory. Paths relative to these directories may also be used, as well as full pathnames. It would

be a straightforward extension to allow the programmer to select an image file using a file

browser. If the specified file is located, and it contains a JPEG or GIF graphic, the image is

automatically loaded, the card is resized to the match the size of the image, and the image

is displayed on the back of the card. When an image is shown on the card back (either the

generic card back image or another image), the name of the card is superimposed on the

image. If the back property contains any other value that cannot be resolved into the name

of an image file, the value is displayed as a string on the back of the card. Quotes are

removed if they delimit the string, and the card’s size is adjusted to match the size of the

string (shown at right in Figure 5-3). All cards are automatically flipped so the back shows

when the program starts running.

Figure 5-3. The backs of cards are controlled by the back property. If this property is absent, a generic card
back is shown (left). If the name of an image file is placed into the back property, the image is displayed on
the back of the card (center). In either of these cases, the card name is superimposed on the back. If a string
or number is placed into the back property, it is displayed on the card back (right), and the card name is not
superimposed.

A Programming System for Children that is Designed for Usability 93

The HANDS System

5.2.1.4 The Game Board

When creating a program for other people to use, usually some of the program’s data is vis-

ible to the end-user (such as characters in a game), while other data is invisible (such as

intermediate calculations, or characters that are not supposed to be visible at a certain time).

In traditional programming systems, all data is invisible unless it is explicitly printed or

drawn onto the screen. In a system like HANDS, where all data has a visible representation,

another mechanism is needed to separate these two kinds of data. In Rehearsal World

[Gould 1984], which uses a stage metaphor, the hidden data is placed in the wings. The

game board addresses this issue in HANDS, and also provides a way for programmers to

display information that does not look like a card (such as characters, scenes, text and num-

bers).

The white area in the center of the screen in Figure 5-1 is the game board. The game board

represents the part of the program that would be visible to an end user of a program devel-

oped in HANDS. When cards are face-down on the board, only the back is displayed, with-

out a containing window or the name of the card. The container seems to magically

disappear and appear as the programmer drags a card on and off the board. Unlike face-

down cards, cards that are face-up on the board look and behave the same as if they were

off the board. Since there is no containing window once a card has been dropped face-down

onto the board, it can be flipped only by clicking within the bounding rectangle of its back.

Also, HANDS does not currently implement a way to begin dragging a card that is face-

down on the board, so it must first be flipped over to gain access to its window title bar.

Figure 5-4 shows how the three cards in Figure 5-3 are displayed when they are on the

board. A feature that is not yet implemented would allow the programmer to create an end-

user version of the program, where only the game board is displayed, and any cards that are

off the board would be invisible.

These features make it relatively easy for the programmer to display graphics, animations

and text on the screen. For example, no code is necessary to create the classic program that

displays “hello, world” on the screen. Any time a running program changes contents of the

back property, the back of the card is immediately updated. A program can cycle a series

of images into the back property to animate the appearance of an object.

94 A Programming System for Children that is Designed for Usability

The HANDS System

Objects are drawn onto the board in alphabetical order by cardname, so cards that fall later

in the alphabet are drawn on top of any overlapping cards that fall earlier in the alphabet.

While this gives the programmer some control over the layering of objects, it is at the

expense of flexibility in naming cards. HANDS could be easily extended to allow the pro-

grammer to specify a drawing order independently of the card’s name. For example, cards

could be displayed in the order created, with explicit commands to move them in front of

or behind other cards.

5.2.1.5 Models for the Cards in HANDS

Although the backs of cards have a generic design that looks like the backs of playing cards,

children are often familiar with other kinds of cards that have a strong resemblance to the

the cards in HANDS. For example, baseball cards have large quantities of information on

them, like the lists of properties in HANDS. Also, popular games such as Magic the Gath-

ering (www.magicthegathering.com) use cards with rich graphics and a set of properties

defining the characteristics of game entities.

5.2.2 Computation is Performed by Handy

Beginners often expect the computer to be very intelligent and to be able to make infer-

ences, so they are often lax in describing important details. Galotti & Ganong [Galotti

Figure 5-4. When cards are on the board, only the back is displayed, without a containing window and
without the card’s name. This makes it very easy to display text and graphics on the screen.

A Programming System for Children that is Designed for Usability 95

The HANDS System

1985] found that they were able to improve the precision in procedural specifications by

ensuring that users understood the limited intelligence of the recipient of the instructions.

To emphasize the limited intelligence of HANDS, Handy is portrayed as an animal– like a

dog that knows a few commands – instead of a person or a robot that could be interpreted

as being very intelligent.

Below the game board are play, stop, and reset buttons. When the play button is pressed,

the program begins to run. The image of Handy (at the top left corner of Figure 5-1), which

is a static picture when the program is not running, begins to animate. The animation shows

Handy picking up and putting down miniature cards, and the squiggly lines in his “thought

bubble” wiggle around to indicate that he is thinking. This animation helps to confirm that

the program is indeed running, even if no other visible action is taking place on the screen.

5.2.2.1 Handy Watches for Events and Executes the Code in His Thought Bubble

The program itself is stored in Handy’s “thought bubble,” which can be accessed from a

menu, or by clicking on Handy. The thought bubble provides a central location for all of

the program code, unlike some other beginner systems such as Hypercard [Goodman

1987], where the code is scattered around and it may be difficult for the programmer to

determine where the code is that is causing something to happen or preventing it from hap-

pening.

When the program is running, Handy watches for events, and if his thought bubble contains

a corresponding event handler he responds by executing the code in the event handler.

There is more information about events and event handlers in Section 5.3 on page 96, and

the browser for viewing event handlers is described in Section 5.15.2 on page 131. Handy

is also responsible for some domain-specific functions that do not require any program-

ming, such as animating cards that have speed and direction slots (see Section 5.14 on

page 123).

5.2.2.2 Stop and Reset

The stop button halts the program. Any changes to the cards are preserved if play is hit

again. In this sense, stop is more like the pause button on a CD player. If the programmer

would like to restore all of the cards to their state at the last time the play button was

96 A Programming System for Children that is Designed for Usability

The HANDS System

pressed, the reset button can be used. The reset button also halts the program if it isn’t

already halted. The reset feature is accomplished by saving all of the cards to a checkpoint

file when play is pressed, and reading them back in when reset is pressed, after first dis-

playing a confirmation dialog.

An earlier version of HANDS saved and restored the program code as well as the cards, but

this had an undesirable effect that was uncovered in early testing. During program devel-

opment and debugging, a typical sequence of operations was to run the program, stop it,

make changes to the code, and then hit reset right before running the program again. When

used in this way, the reset operation was discarding the changes the programmer had made

to the code. For this reason, the reset operation was modified to only restore the cards.

5.2.2.3 Handy’s Hand

Handy can be directed to pick up cards off the table and put them into his hand. When he

picks up a card, it disappears from the table, but all of the card’s properties remain

unchanged, including its position properties. Therefore, a card that is picked up from a cer-

tain location on the table will be put down at that same location on the table, unless the pro-

gram changes its location properties in the interim. Picking up and putting down cards is

analogous to the visibility property of objects in other systems. A menu command switches

the system to a view that shows only the cards in Handy’s hand, at their appropriate places

on the table. Section 7.2.2 on page 171 describes a multiple-agent extension to the HANDS

system where an agent’s hand could also represent private data that is not visible to other

agents, and the passing of cards could be used for private communication between agents.

5.3 Programming Style and Model of Execution in HANDS
HANDS is event-based, to match the style of programming that I observed in my studies.

A program is a collection of event handlers that are automatically called by the system

when a matching event occurs. Inside an event handler, the programmer inserts one or more

imperative statements to execute in response to the event. After these statements have exe-

cuted, control returns to the system, where the next event is dispatched.

A Programming System for Children that is Designed for Usability 97

The HANDS System

5.3.1 Structure of Event Handlers

All event handlers have this structure:

when <event>
<statements>

end when

The keywords when and if both appeared frequently at the start of code fragments in my

studies. One reason when was selected for the event handler keyword is because it is more

suggestive of one-time evaluation at or near the occurrence of an event, whereas if might

engender a continuous-evaluation interpretation. Also, I felt it was better to have a keyword

that was distinct from the conditional statement, which uses the if keyword. I also consid-

ered using at the time as the keyword for event handlers, but this was rejected, mainly

because it suggests more precise timing than an event-oriented system provides, where the

execution of the event handler may actually be delayed by the processing of other events

already in the queue. Furthermore, it was too verbose.

5.3.2 Event Dispatch

The system automatically maintains the event queue. All of the supported events are listed

below in Section 5.3.3. When the system observes one of these events taking place, it

inserts a record of the event into the queue. Meanwhile, an event dispatcher continuously

removes the first event in the queue, calls all of the appropriate event handlers (there may

be zero, one, or more than one), and then discards the event and moves on to the next one.

When the event queue is empty, the dispatcher synthesizes an idle event and calls the appro-

priate handler if it exists.

When there is more than one event handler matching a particular event, they are all exe-

cuted, one at a time in the order they appear in the event browser, which is alphabetical.

There could be many handlers for a particular event. For example, seven event handlers

would be called if the bee Bumbles collided into the flower Rose, and there were han-

dlers for each of: Bumbles collides, Bumbles collides into any flower,

Bumbles collides into Rose, any bee collides, any bee collides

into any flower, any bee collides into Rose and anything happens.

98 A Programming System for Children that is Designed for Usability

The HANDS System

Ideally, HANDS would give the programmer better control over which order the event han-

dlers are called in.

The event dispatcher periodically allows the user interface and animation engine to run, by

releasing control to them between event dispatches. This ensures that no event handler can

create a deadlock, for example, by repeatedly inserting a new event that will cause the same

handler to be called again. Even if the code were written this way, objects on the screen

would continue to be animated, screen updates would occur, the user interface would

respond to the user, and other kinds of events would be inserted into the queue between the

ones by the offending code, such as collisions, objects changing, and the user clicking on

objects or typing on the keyboard.

5.3.3 The Events

The following events are defined:

• program starts

This event is always the first event that is dispatched when the program begins to run.

• program stops

This event is always the last event that is dispatched when the program stops. This event

has priority over any other events in the queue, which are discarded when the program

stops.

• <identifier> appears

A card named <identifier> is created.

• <identifier> disappears

A card named <identifier> is destroyed. A runtime error will occur if the event handler

for this event attempts to access the card named <identifier>, unless it was replaced in

the interim.

• <identifier> changes

A card named <identifier> has any of its properties set. If there is already a change

event for this card in the event queue, another one is not inserted. Otherwise it would be

too easy for events to be inserted into the queue faster than they could be removed. For

A Programming System for Children that is Designed for Usability 99

The HANDS System

example, without this protection, the problem would occur if the event handler for

Card-1 changes assigned to more than one property of Card-1.

• <identifier> collides

A card named <identifier> collides into any object (see Section 5.14.4 on page 127).

• <identifier> collides into <identifier2>

A card named <identifier> collides into another card named <identifier2>.

• <identifier> is clicked

A card named <identifier> is clicked on by the mouse. The object must be on the board,

and the mouse click must be within the bounding box of the object. At this time, only

the mouse-down event using the left mouse button is supported. Support for the right

mouse button, and “still down,” “mouse moved,” and “mouse released” events should

be added in the future.

• <key> is typed

The keystroke <key> is typed on the keyboard.

• nothing happens

The system is idle; there are no events in the event queue. It is possible that this event is

never dispatched if the event queue always has at least one event in it.

• anything happens

Any event except nothing happens will cause an handler for this event to be dis-

patched. The only time this handler is not called is when the system is completely idle.

5.3.4 Event Patterns

The programmer can use patterns of the form any <identifier> <event> or any

key is typed. This enables cards to be treated as groups by giving them a common

string in a property such as kind or group:

• any <identifier> appears

A card with <identifier> in one of its properties is created.

• any <identifier> disappears

A card with <identifier> in one of its properties is destroyed.

100 A Programming System for Children that is Designed for Usability

The HANDS System

• any <identifier> changes

A card with <identifier> in one of its properties has any of its properties set.

• any <identifier> collides

A card with <identifier> in one of its properties collides into any object.

• any <identifier> collides into any <identifier2>

A card with <identifier> in one of its properties collides into another card with

<identifier2> in one of its properties. This pairwise collision event can also be

specified with one each of <identifier> and any <identifier>, in either

order.

• any <identifier> is clicked

A card with <identifier> in one of its properties is clicked by the mouse.

• any <key> is typed

Any keystroke is typed on the keyboard.

5.3.4.1 Temporary Variables for Event Patterns

Within these event handlers that use any patterns, the system automatically creates a tem-

porary variable for the duration of the event, binding the <identifier> or <key> to

the specific object that was involved in the event. For example, consider the card Bumbles

from Figure 5-1 and repeated in Figure 5-5. If there is an event handler for any bee

collides, it would be called when Bumbles collides into any object, because one of

the properties of Bumbles contains the string bee. During the execution of the event han-

dler, the identifier bee is bound to Bumbles.

In the case of the collision event handler where there are two identifiers to bind, for exam-

ple, any bee collides into any flower, both bee and flower are bound to

the appropriate objects. For example, if Bumbles collides into the flower Rose, the iden-

tifier bee is bound to Bumbles, and the identifier flower is bound to Rose. If both

identifiers are the same, the prefixes first- and second- are attached to the identifiers.

For example, in the event handler any bee collides into any bee, the two cards

in the collision are bound to first-bee and second-bee.

A Programming System for Children that is Designed for Usability 101

The HANDS System

5.3.5 Event Cards

Like data, each event is represented by a card, with a unique cardname, an x, y position,

a type (always eventcard), a group indicating the type of event (e.g. collision),

and a value property that contains information specific to the event. When a single object

is involved in the event, its name is in the value property. When two objects are involved

in a collision, both are listed in the value property. When the event is a keystroke, the key

that was typed is listed in the value property.

During the execution of the event handler, the temporary variable event is bound to the

current event card, so that its properties can be accessed. However, for efficiency reasons,

events do not appear on the table while the program is running, unless there is a runtime

error (see Section 5.16 on page 138). A future extension to HANDS could offer a “slow”

debugging mode where the current event as well as the event queue are displayed continu-

ously on the table.

5.4 Data Types
Values in HANDS can have the following types:

Figure 5-5. If there is an event handler for any bee collides, it would be called if the card Bumbles
collides into any object. During the execution of event handler, the identifier bee is bound to Bumbles.

102 A Programming System for Children that is Designed for Usability

The HANDS System

• an identifier, such as the name of a card, which is not case-sensitive;

• a string literal delimited by quotes;

• an integer or floating point number, which can be used interchangeably;

• a Boolean literal, either yes or no;

• a list of zero or more data elements that do not necessarily have to be all of the same

type. The empty list is represented by empty.

The vocabulary for literal constants, yes, no and empty, was selected for simplicity and

familiarity, instead of choosing terms or symbols that are less familiar to non-programmers,

such as true, false or null.

The system does not enforce types until necessary. All data values are treated as strings

until they are used in an operation that requires a different type, such as arithmetic. This

includes identifiers, so many single-token strings do not have to be quoted in HANDS.

Identifiers must begin with a letter and cannot have spaces, but they can contain hyphens,

underscores, periods, and slashes. The last two of these are accepted so that many file

names and paths can be stored into card slots without quoting.

However, this flexibility is not universal, because strings that are not legal identifiers, such

as multiple-word strings or keywords of the language, must be quoted. The strategy for

addressing this issue in HANDS is to provide good error messages, both interactively and

from the parser. For example, the interactive message for when a user tries to insert multi-

ple values into a card slot without separating them with commas is, “A property cannot

have the value one two three, unless it is quoted or there are commas separating the

items.”

Lists have properties like traditional lists, such as being unbounded and permitting insertion

without making space, and properties like arrays, such as index-based access. The syntax

of lists is described in Section 5.6.6 on page 105.

5.5 Numeric Values and Calculations
In HANDS there is no operational distinction between integer and floating-point numbers.

All numeric calculations are conducted using double-precision, and the full-precision result

A Programming System for Children that is Designed for Usability 103

The HANDS System

is maintained. However, floating point numbers that end in “.0” have this suffix removed

so that the result is converted into an integer for display. This ensures that the results of

addition, subtraction, and multiplication on integers are not converted into floating point

numbers as a side effect of the double-precision math.

5.6 Language Syntax
The syntax of HANDS was designed to match the common ways that participants

expressed operations in my studies, in order to observe the principles of simple and natural

dialog, speak the user’s language, and closeness of mapping.

5.6.1 Natural-Language Style

The syntax for accessing properties on cards uses a natural-language style instead of the

dot’s, arrows, and brackets used in many other languages. The programmer can refer to the

nectar property of a card named flower with either of these syntaxes: nectar of

flower or flower’s nectar. These choices are provided so the programmer can

select whichever is more readable in context. However, the “’s” syntax is not adapted for

any special cases such as plurals (see Section 5.6.2 on page 103). Another example is the

natural-language style that is provided for arithmetic: add 100 to the game’s score,

in addition to the usual more mathematical style: set the game’s score to 100 +

game’s score.

The language is uniformly case-insensitive. Overall, the language has a verbose conversa-

tional style, similar to HyperTalk [Goodman 1987], AppleScript, and Macromedia’s Lingo

[Gross 1999]. To improve readability, the system allows the words the or is to be placed

anywhere in the code – they are ignored. For example, set the nectar of the bee

to 0 is the same as set nectar of bee to 0. The word a is not ignored however,

because this word is often used by programmers to name variables.

5.6.2 Plurals

The HANDS language does not attempt to correctly handle special cases with plurals.

Instead it uses simple fixed rules for creating possessives to access properties (see

Section 5.2.1.1 on page 89) and the plurals used in queries (see Section 5.10 on page 113).

104 A Programming System for Children that is Designed for Usability

The HANDS System

For example, if there were several cards with ox in one of their slots, the query to find them

would be all oxs, not all oxen. While the system could have been designed to auto-

matically handle plurals, it would require fairly sophisticated processing, and would likely

be imperfect [Conway 1998, McIver 2001]. Furthermore, it is unlikely that the children

using HANDS would know all of the correct rules for pluralization.

5.6.3 Control Structure Terminators

Many languages use a common symbol (such as “}” or “end”) to terminate many different

kinds of control structures. When several structures are nested, it can be difficult to figure

out which terminator belongs to which structure. If the terminator is optional, additional

ambiguities can result. For example, Pascal and HyperTalk have the dangling-else prob-

lem, where the system may attach an else clause to a different if statement than the user

intended. For these reasons, all structures in HANDS that allow statements to be nested

require a matching terminator that incorporates the name of the structure. For example, the

when statement is terminated with end when. To reduce the amount of typing required,

the system automatically inserts some of the terminators.

5.6.4 Statement Terminators

Where possible, HANDS avoids requiring punctuation or other symbols if their only pur-

pose was to make it easier to parse. These syntactic elements are a distraction from the

semantically-important parts of the program, and are a common source of errors. For exam-

ple, no semicolon is required to terminate or separate statements. Because each statement

in HANDS begins with a keyword, and the last statement in any context must be followed

by the keyword end, the system is able to parse the code without help from statement ter-

minators.

5.6.5 Parentheses Are Required to Indicate Precedence Explicitly

In my studies, I observed that beginners have many problems with implicit precedence

rules, so HANDS requires parentheses when expressions are nested. The studies also deter-

mined that parentheses were confusing, but I could not figure out a good alternative to their

use. To reduce confusion, the language uses only one kind of parentheses: “(” and “)”.

A Programming System for Children that is Designed for Usability 105

The HANDS System

5.6.6 List Syntax

In early implementations of HANDS, the syntax required special symbols at the beginning

and the end of lists. I experimented with list(1 2 3) and list 1 2 3;, but was

unsatisfied with the extra required symbols for opening and terminating the lists. After

much experimentation and re-organization of the parser, I was able to achieve a more real-

istic syntax for lists, where commas are used to separate list items but no opening and clos-

ing delimiters are required: 1, 2, 3. Lists can be nested by using parentheses. For

example, (1, 2, (9, 8, 7), 4, 5). The empty list is represented by the keyword

empty, instead of using symbols such as () or null. Another alternative might have been

to use the absence of anything to indicate an empty list, but this would introduce parsing

difficulties.

There is no distinction between single-item lists and singletons. This feature is extremely

convenient, for example, when working with query results where the number of items in

the result may be unpredictable (queries are described in Section 5.10 on page 113). How-

ever, it does mean nested lists containing one item lose their nested structure. For example,

the list 1, (((3))), 5 becomes 1, 3, 5 as soon as it is evaluated by HANDS.

Although HANDS does not support subranges, it would be a natural extension. This would

allow longer lists such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 to be abbreviated as:

1..10.

5.6.7 Consistency Between Values on Cards and in Program Code

In HANDS, the syntax for entering and displaying values on cards is identical to the syntax

used in program code. This is in contrast to LISP, for example, where values must be

quoted in program code. This consistency eliminates the need for people to learn two dif-

ferent formats, and enables values to be copied and pasted from one place to the other. Also,

data of any type can be displayed on the board in a readable format, simply by storing it

into the back slot of a card.

5.6.8 Comments, Indenting, and White Space

The HANDS language is not sensitive to white space or indenting. Two kinds of comments

are provided, like those found in Java and C: one line comments beginning with //, and

106 A Programming System for Children that is Designed for Usability

The HANDS System

multi-line comments delimited by /* and */. It is assumed that the program editor would

provide syntax coloring, to flag situations where the programmer accidently comments out

more code than intended.

5.6.9 Choices for Keywords and Special Identifiers

The names of special words in the language were chosen to be easy to type in and spell cor-

rectly. For example, where several systems use the word appearance, HANDS uses the

word back. Similarly, speed was chosen over velocity. However, conciseness is not

taken to an extreme as it is in some languages, where the programmer is forced to memorize

the meanings of many short abbreviations. For example, in StarLogo [Resnick 1994] the

cg command clears all of the graphical patches, but the mnemonically-similar but much

more dangerous command ca clears all of the graphical patches and also destroys all of the

turtle objects. All of the HANDS keywords are full names. Menus are available to help

users enter them correctly (see Section 5.15.2.2 on page 132).

HyperTalk [Goodman 1987] binds the temporary variable it to the result of the most

recent computation. There are several places in the HANDS language where the system

automatically generates temporary variables for referring to a computed value (see

Section 5.3.4.1 on page 100 and Section 5.13.1.1 on page 119). I considered using the

name it for these variables and in some other situations where the programmer might want

a shorthand notation for accessing a recently computed value. However, when I wrote some

sample code using this feature, I found that the ambiguity of what it actually referred to

was very confusing. I would write the code with a particular binding in mind, but when I

read the code later I would use a different binding. For this reason, the idea was rejected.

Instead, the default binding is the name of the property value searched for (see

Section 5.3.4 on page 99) or else the user can assign a name (Section 5.13.1 on page 119).

5.7 Statements
This section summarizes the operators in the HANDS language. This is followed by a dis-

cussion of expressions in Section 5.8 on page 109. Error messages are discussed in

Section 5.16 on page 138.

A Programming System for Children that is Designed for Usability 107

The HANDS System

5.7.1 Operations on Cards

The programmer can instruct Handy to pick up and put down cards, or flip them over:

• pickup <identifier>

The card named <identifier> is picked up into Handy’s hand, making it invisible.

• putdown <identifier>

The card named <identifier> is put down onto the table from Handy’s hand, mak-

ing it visible.

• flip <identifier>

The card named <identifier> is flipped over to show the back or front. This is

mainly used for interactive debugging, to locate a card. There is no way for program

code to determine which side of the card is showing at any given time.

Cards can be created, duplicated, and destroyed:

• make new card <identifier>

A new card is created with the name <identifier>.

• make duplicate of <identifier>

A new card is created by cloning all of the properties of the card named <identi-

fier>, except it is given a unique name that is generated from the original card’s name

(for example, a duplicate of the card rose is named rose-copyN, where N is an inte-

ger that makes the card name unique).

• putdown <identifier> onto discard pile

The card named <identifier> is destroyed.

A runtime error is generated if the program attempts to operate on a card that does not exist,

or to create a card with a name that is already in use.

5.7.2 Operations on Card Properties

The programmer can instruct Handy to manipulate properties of cards:

• set <property> to <expression>

The expression is evaluated, and the resulting value is stored into the specified card

108 A Programming System for Children that is Designed for Usability

The HANDS System

property. If the card does not already have the named property, it is created. Set is a

less confusing alternative to using = for assignment.

• add <expression> to <property>

• subtract <expression> from <property>

The expression is evaluated and then added to or subtracted from the value in the speci-

fied card property, and the result is stored into the property. If the card does not already

have the named property, or if the expression and the property are not both numeric val-

ues, an error occurs.

• multiply <property> by <expression>

• divide <property> by <expression>

The expression is evaluated, and it is multiplied or divided by the value in the specified

card property, and the result is stored into the property. Errors are handled the same way

they are for add and subtract.

• append <expression> to <property>

The expression is evaluated and then appended onto the end of the list in the specified

card property, and the result is stored into the property. If the card does not already have

the named property, an error occurs.

5.7.2.1 Specifying a Property

A <property> is specified with a card name and a property name, using one of these two

formats:

• <propertyname> of <cardname>

• <cardname>’s <property>

It is also possible to determine a cardname indirectly, as in this example:

• nectar of (buzzy’s favoriteFlower)

Refers to the nectar property of a card whose name is stored in the favoriteFlower

property on the card named buzzy.

The evaluation of the property dereference operators (of and ‘s) has higher precedence

than any other operator.

A Programming System for Children that is Designed for Usability 109

The HANDS System

5.7.3 Output Statements

In addition to the ability to display messages on the screen, by placing information into the

back properties of cards, HANDS also provides two output statements:

• tell <expression>

The expression is evaluated, any quotes are removed, and if it is a list, the list items are

concatenated with a blank space between each item and without the commas. The

resulting string is displayed in a modal dialog box Figure 5-6. Execution pauses while

the dialog box is up, and the user is offered two choices: to continue running the pro-

gram or to stop the program. The stop option is necessary because after the user dis-

misses the dialog box, the system could execute another tell statement so quickly that

the user have no time to access the stop button or any of the other controls in the user

interface. An expression for getting input from the user is described in Section 5.8.6 on

page 112.

• beep

When this statement is executed, the computer beeps.

5.7.4 Other Statements

The two remaining statements, the with and if control structures, are discussed in

Section 5.13 on page 119.

5.8 Expressions
Anytime an expression with more than one operator appears, it must be parenthesized to

indicate the order of evaluation. In addition to the expressions listed here, the list operators

Figure 5-6. A dialog box similar to this will come up when the statement tell "Congratulations,
your score is:", score's back is executed. Execution pauses while the dialog box is showing.
If the Ok button is pressed, execution continues; if the Stop button is pressed, the program is halted.

110 A Programming System for Children that is Designed for Usability

The HANDS System

described in Section 5.12 on page 114 are also accepted anywhere expressions are

accepted.

5.8.1 Relational Operators

The following binary relational operators work on all types. If both operands are numeric,

a numeric comparison is performed; if both operands are Boolean, a Boolean comparison

is performed, where yes is greater than no; otherwise the operands are treated as strings

and are compared lexicographically. These operators each have both mathematical and nat-

ural-language variants, separated by vertical bars (|) in the lists below:

• = | equals | equal

• > | greater than

• >= | greater than or equal

• <= | less than or equal

• < | less than

• <> | not equal

The word is can be used in these expressions because it is ignored, and the word to can

optionally be appended to these operators. Here are some examples:

• x = 0

• x equals zero

• x is equal to 0

The use of the = symbol for the equality predicate matches the way equality is written in

other situations such as mathematics, in contrast to the == in C and Java.

5.8.2 Boolean Operators

The Boolean operators require Boolean operands:

• and

• or

• not

A Programming System for Children that is Designed for Usability 111

The HANDS System

The first two are binary infix operators, and the latter is a unary prefix operator. Note, we

do not expect these to be used except by experienced programmers.

5.8.3 Card Existence Predicate

The programmer can check whether a card exists anywhere in the program, or at a partic-

ular location:

• <cardname> exists

Returns true if the card exists anywhere in the system.

• <cardname> exists in hand

Returns true if the card exists, and is in Handy’s hand.

• <cardname> exists on table

Returns true if the card exists, and is on the table.

5.8.4 Mathematical Operators

The following infix binary math operators work only on numbers, except where noted:

• + | plus

This operator will perform string concatenation on its operands if either or both of them

are not numbers.

• - | minus

• * | times

• / | divided by

• % | modulo

5.8.5 Random

The random function returns an integer between the specified lower bound and upper

bound, inclusive. The bounds must be integers. The words from and to are optional:

• random [from] <lowerbound> [to] <upperbound>

112 A Programming System for Children that is Designed for Usability

The HANDS System

5.8.6 Expression for Getting Input from User

The programmer can use ask to bring up a dialog box requesting an expression from the

user, analogous to the tell statement described in Section 5.7.3 on page 109. As with

tell, execution pauses while the dialog box is up, and the user is offered two choices: to

continue running the program or to stop the program. The string argument is displayed as

a prompt in the dialog box (see Figure 5-7). The user’s input is treated as a string, and is

quoted unless it is a legal value without quotes (such as a number).

• ask <string>

5.9 Aggregate Operations
In my studies, I observed that the participants used aggregate operators, manipulating

whole sets of objects in one statement rather than iterating and acting on them individually.

Most languages require the programmer to use iteration, forcing them to use control struc-

tures that are very difficult for beginners (see Chapter 2), and violating the principle of

closeness of mapping.

HANDS has full support for aggregate operations. Every operation in HANDS accepts lists

as well as singletons for its operand(s), using exactly the same syntax. Binary operators

even accept one list and one singleton as operands. The user does not have to correctly

anticipate the number of items in the data being operated on.

Here are several examples using the + operator:

• 1 + 1 evaluates to 2

• 1 + (1,2,3) evaluates to 2,3,4

• (1,2,3) + 1 evaluates to 2,3,4

Figure 5-7. If the code set winner's back to ask "Please enter your name." is
executed, this dialog box comes up. If the user types a value and presses the Ok button, the value is stored
into winner's back. If the user presses the Cancel button, the program is halted.

A Programming System for Children that is Designed for Usability 113

The HANDS System

• (1,2,3) + (2,3,4) evaluates to 3,5,7

If the operands are lists of unequal length, the items in the shorter list are cycled through.

• (1,10) + (4,5,6,7,8) evaluates to 5,15,7,17,9

Additional list operators are discussed in Section 5.12 on page 114.

5.10 Queries
In my studies, I observed that users do not maintain and traverse data structures. Instead

they perform queries to assemble lists of objects on demand. For example, they say “all of

the blue monsters.” HANDS provides a query mechanism to support this. The query mech-

anism searches all of the cards for the ones matching the programmer’s criteria.

Queries begin with the word all. If a query contains a single value, it returns all of the

cards that have that value in any property. If the value is a word ending in s, it will also

match cards that have the value without the trailing s. Although this simplistic rule does

not cover all of the special cases for plurals in English, it seems to work well in practice

(see Section 5.6.2 on page 103).

Queries return a list of cards satisfying the query, in alphabetical order by cardname.

Figure 5-8 contains cards representing three flowers and a bee to help illustrate the follow-

ing queries.

• all cards evaluates to bumble, orchid, rose, tulip

Cards is a special keyword that matches every card.

Figure 5-8. When the system evaluates the query all flowers it returns orchid, rose, tulip.

114 A Programming System for Children that is Designed for Usability

The HANDS System

• all flowers evaluates to orchid, rose, tulip

Flowers is not a keyword, so HANDS searches all of the cards in the system, and

returns a list of all cards that have the words flower or flowers in any slot.

• all bees evaluates to bumble

Note that there is no difference between a singleton and a list with one item.

• all snakes evaluates to empty

Empty is the value representing the empty list in HANDS

• all (flower and (nectar < 100)) evaluates to orchid

Chapter 4 describes Match Forms, a more effective method for specifying more com-

plex queries like this example. If Match Forms are incorporated into a future version of

HANDS, the programmer would have the option to enter this query as it is shown

above, or using Match Forms, with the same results.

5.11 Queries and Aggregates in Combination
Queries and aggregate operations work in tandem to permit the programmer to concisely

express actions that would require many lines of code in most other languages. For exam-

ple,

• set the nectar of all flowers to 0

This statement is evaluated as follows:

1. the query all flowers returns a list of all of the cards containing flower or

flowers.

2. nectar of is applied to this list, resulting in a list of properties (see Section 5.7.2.1

on page 108).

3. the set statement sets each property to zero in the list of properties.

5.12 List Operators
The system provides a basic set of list operators. Like all operators in HANDS, these oper-

ators also accept empty lists and singletons where they accept lists. These operators are

A Programming System for Children that is Designed for Usability 115

The HANDS System

non-destructive – they do not modify their operands. If the result of an operation is a list, a

new copy is returned. The names of these operators were selected to indicate this fact.

The following list reduction operators accept a list and return a single value (unless there

are nested lists). The words inside the brackets ([in | of]) are optional:

• Sum [in | of] <list>

Returns the sum of the items in the list if all items in the list are numeric; otherwise

generates a runtime error.

• AllYes [in | of] <list>

Returns yes if all items in the list are yes. Returns yes if the argument is empty.

• AllNo [in | of] <list>

Returns yes if all items in the list are no. Returns yes if the argument is empty.

• FirstItem [in | of] <list>

Returns the first item in the list. If the argument is a singleton, it is returned; if the argu-

ment is empty, empty is returned.

• LastItem [in | of] <list>

Returns the last item in the list. If the argument is a singleton, it is returned; if the argu-

ment is empty, empty is returned.

• NumberOfItems [in | of] <list>

Returns the number of items in the list. If the argument is a singleton, 1 is returned; if

the argument is empty, 0 is returned.

• ConcatenateItems [in | of] <list>

Treats all elements in the list as strings, and concatenates them into a single string.

Commas are not included in the result, and no extra spaces are inserted between the

items.

• AnyItemIs <expression>[in | of] <list>

Returns yes if any item in the list is equal to the <expression>.

116 A Programming System for Children that is Designed for Usability

The HANDS System

• ItemAtPosition <index> [in | of] <list>

Returns the item at position <index> in the list. If the index is out of range, empty is

returned.

The following list reduction operators accept a list and return a single value unless there is

a tie, in which case a list of the tied items is returned. The programmer does not have to

check the number of items returned, because all subsequent operations will accept lists as

well as singletons. If the programmer wants a single result, the FirstItem operator can

be used to extract the first result (and the ShuffledCopy operator can be used to ran-

domize which item is extracted by FirstItem). Once again, if the list contains nested

lists, the value returned may be a list:

• GreatestItem [in | of] <list>

Returns the item(s) in the list that is(are) numerically greatest if all items in the list are

numeric; otherwise treats all elements as strings and returns the item(s) in the list that

is(are) lexicographically greatest.

• LeastItem [in | of] <list>

Returns the item(s) in the list that is(are) numerically smallest if all items in the list are

numeric; otherwise treats all elements as strings and returns the item(s) in the list that

is(are) lexicographically smallest.

The following list operators accept lists and generally return lists:

• AllButFirstItem [in | of] <list>

Returns all but the first item in the list. If the argument is a singleton or empty, empty

is returned.

• AllButLastItem [in | of] <list>

Returns all but the last item in the list. If the argument is a singleton or empty, empty

is returned.

• Round [in | of] <list>

If all items in the list are numeric, a new list is returned where all of the items are

rounded; otherwise generates a runtime error.

A Programming System for Children that is Designed for Usability 117

The HANDS System

• SortedCopy [in | of] <list>

If all items in the list are numeric, a new list is returned where the items are sorted

numerically from least to greatest; otherwise treats all elements as strings and returns a

new list is returned where the items are sorted lexicographically from least to greatest.

• ShuffledCopy [in | of] <list>

A new list is returned where the items are randomly shuffled.

• ReversedCopy [in | of] <list>

A new list is returned where the items are in the reverse order of their appearance in the

original list.

• ConnectedCopy <first list> [to] <second list>

A single new list is returned where the items of the second list are concatenated to the

end of the first list.

The following operators accept a property name and a list of cards, and expect each card in

the list to have the named property. The property is inspected on each card to determine an

ordering of the cards. Numeric ordering is used if the all of the property values are numeric,

otherwise the property values are treated as strings and the order is lexicographical. Once

again, if there is a tie, all of the tied items are returned. The ordering is then applied to the

list of cards as follows:

• CardWithGreatest <propertyname> [in | of] <cardlist>

Returns the card(s) in the list that has(have) the greatest value in the named property,

according to the ordering.

• CardWithLeast <propertyname> [in | of] <cardlist>

Returns the card(s) in the list that has(have) the least value in the named property,

according to the ordering.

• CardsSortedBy <propertyname> [in | of] <cardlist>

Returns a new list of cards that is sorted according to the ordering.

Here are some examples of the list operators, referring again to Figure 5-8:

118 A Programming System for Children that is Designed for Usability

The HANDS System

• FirstItem of all the flowers evaluates to orchid

all the flowers returns a list of the cards containing flower or flowers, and

then FirstItem returns the first item in that list.

• AllButFirstItem of all the flowers evaluates to rose, tulip

all the flowers returns a list of the cards containing flower or flowers, and

then AllButFirstItem returns all but the first item in that list.

• GreatestItem in the nectar of all the flowers evaluates to 150

all the flowers returns a list of the cards containing flower or flowers,

nectar of returns a list of the nectar properties of those cards, and then Greates-

tItem returns the greatest item in that list.

• CardWithGreatest nectar of all the flowers evaluates to orchid

all the flowers returns a list of the cards containing flower or flowers,

nectar of returns a list of the nectar properties of those cards, which CardWith-

Greatest then uses to select the card(s) holding the greatest nectar value(s), which

is(are) returned. The difference between GreatestItem and CardWithGreatest is that the

former returns the greatest nectar value while the latter returns the name of the card

holding the greatest nectar value.

• SortedCopy of the nectar of all the flowers evaluates to

75,100,150

• Sum the nectar of all the flowers evaluates to 325

It is interesting to compare the last example (Sum) with how it might look in a typical pro-

gramming language:

int sum = 0;
for (i=0; i<cards.length(); i++) {

if (cards[i].containsValue("flower")) {
sum += cards[i].nectar;

}
}
return sum;

This solution requires the programmer to create and maintain a data structure allowing

access to all of the flower objects, plus two temporary variables, three kinds of parentheses

A Programming System for Children that is Designed for Usability 119

The HANDS System

or brackets, two kinds of punctuation, and the complexities of iteration, function calls, and

array indexing.

5.13 Loop and Conditional Control Structures
This section describes the iteration and conditional control structures in HANDS. There is

only one of each, but they are flexible enough to cover a variety of control structures in

other languages. Each of these structures can accept multiple statements inside each clause,

without the need for a begin-end block or other grouping mechanism (see Section 5.6.3

on page 104 and Section 5.6.4 on page 104).

5.13.1 Iteration Control Structure

The aggregate and list operators, described in Section 5.9 on page 112 and Section 5.12 on

page 114, greatly reduce the need for iteration in HANDS. However, one high-level loop

control structure is available, if needed.

with <list>
<statements>

end with

The statements inside the with statement are evaluated once for each item in the list. If the

list is empty, the statements are not executed at all.

5.13.1.1 Automatic Temporary Variable for Iteration

On each iteration, the read-only variable item is bound to successive items from the list.

I considered heuristically naming the this temporary variable, based on the <list>

expression, similar to the way temporary names are formed in event patterns (see

Section 5.3.4 on page 99). For example, if the <list> expression is a query such as all

flowers, the temporary variable could be named flower. However, the <list>

expression is much less restricted than the event patterns – it could be a more complex

query, a literal list, an expression, or a property that contains a list. It was impossible to

come up with a heuristic naming scheme that would provide useful and predictable names

in all of these cases, so the generic name item was chosen.

120 A Programming System for Children that is Designed for Usability

The HANDS System

As an example, the following with statement will put up three dialog boxes, with the mes-

sages “1”, “2”, and “3”, beeping right before each dialog box comes up:

with 1,2,3
beep
tell item

end with

If loops are nested, the inner binding will mask an outer binding to the same identifier, so

the default identifier item cannot be used for both the outer and inner loops, if both need

to be accessible inside the inner loop. In this case, the calling each variant must be used

for at least one of the two with statements (see Section 5.13.1.2).

5.13.1.2 Programmer-Specified Temporary Variable for Iteration

The programmer can bind the list items to a different temporary variable name:

with <list> calling each <identifier>
<statements>

end with

On each iteration, the read-only variable <identifier> is bound to successive items

from the list. The words calling each were selected to emphasize that the items in the

list are individually assigned to the variable. The alternative calling it was also consid-

ered, but it was rejected because programmers might have naturally interpreted this clause

to mean that the variable is an alias for the entire list – where the whole list is assigned to

the variable at once – rather than holding the individual items of the list one at a time.

To illustrate this variant, this example will also put up three dialog boxes, with the mes-

sages “1”, “2”, and “3”, beeping right before each dialog box comes up:

with 1,2,3 calling each i
beep
tell i

end with

A Programming System for Children that is Designed for Usability 121

The HANDS System

The following example illustrates the use of nested lists. Here nine dialog boxes will come

up, with the messages “1 a”, “1 b”, “1 c”, 2 a”, “2 b”, “2 c”, 3 a”, “3 b”, and “3 c”, with a

beep right before each dialog comes up:

with 1,2,3 calling each i
with a,b,c calling each j

beep
tell i,j

end with
end with

The with statement can be used to create temporary bindings, even if iteration is not

needed. This example, binds highScore to game’s score:

with game’s score calling each highScore
tell “you have the new high score:”, highScore

end with

5.13.1.3 Iteration vs. Aggregates

In many situations, aggregates can be used instead of iteration (see Section 5.9 on

page 112). However, sometimes iteration is necessary. Consider this example, which sets

the nectar properties of the orchid, rose, and tulip cards in Figure 5-8 to separate random

values between 50 and 100:

with all the flowers
set nectar of the item to random from 50 to 100

end with

This achieves a different effect than if an aggregate operation had been used. In this aggre-

gate assignment, random is evaluated only once and all of the flowers would receive the

same random value:

set nectar of all flowers to random from 50 to 100

5.13.2 Conditional Control Structure

A general if statement is available in HANDS which incorporates the functionality of if

statements as well as the case and cond statements in other languages. These three con-

122 A Programming System for Children that is Designed for Usability

The HANDS System

trol structures were unified for consistency. There is no good reason that they should be dis-

tinguished as three different structures with unique names and syntaxes. The keyword

otherwise was chosen in order to have a uniform keyword that emphasizes that the

clause is executed only if all of the prior conditions do not execute.

When there are multiple conditions, only the first one to evaluate to yes is executed. The

otherwise clause is optional, and is executed only if none of the previous conditions

were executed.

The variants of the if statement are:

• A variant that looks like an if-then-else statement:

if <boolean expression> then
<statements>

otherwise
<statements>

end if

• A variant that looks like a cond statement:

if
<boolean expression> then <statements>
<boolean expression> then <statements>
otherwise <statements>

end if

• A variant that looks like a case statement:

if <expression> <relational operator> …
<expression> then <statements>
<expression> then <statements>
otherwise <statements>

end if

The ellipsis in the last variant is necessary to help the parser distinguish it from the other

variants. Even with this assistance, the parser has difficulty providing useful error messages

when there is a syntax error in this control structure. This is a good example of a trade-off

between flexibility and good error messages. It is easier for the system to provide good

error messages when the language has a more rigid syntax.

A Programming System for Children that is Designed for Usability 123

The HANDS System

Otherwise was selected instead of else or default, because it makes sense in all of

the control structure’s variants, helps to convey the idea that it is only evaluated if all of the

prior conditions were not evaluated, and is more natural than the others – in natural lan-

guage, people would usually say, “or else”, and would probably never simply say “default”.

Here are some examples using the if control structure:

if flower’s nectar > 0 then
subtract 1 from the flower’s nectar
add 1 to the bee’s nectar

end if

if the temperature of the simulation is greater than 10 then
subtract 10 from the temperature of the simulation

otherwise
beep

end if

if
taxform’s amount > 0 then tell “please remit payment“
taxform’s amount < 0 then tell “refund will be sent”
otherwise tell “we’re even”

end if

if player’s score > …
10000 then tell “your score is excellent!”
1000 then tell “your score is very good!”
100 then tell “your score is fair!”
otherwise tell “you need more practice!”

end if

5.14 Domain-Specific Support
HANDS has domain-specific features that enable programmers to easily create highly-

interactive graphical programs. The system’s suite of events directly supports this class of

programs. The system automatically animates objects, generating events to report colli-

sions among objects as well as input from the user via the keyboard and mouse.

5.14.1 Graphical Objects

It is easy to create graphical objects and text on the screen, as described above in

Section 5.2 on page 89. All cards have x and y positions which specify where the top left

124 A Programming System for Children that is Designed for Usability

The HANDS System

corner off the object is located. See Section 5.14.5 on page 129 for information about the

coordinate system. A back property can be created to specify the appearance of the object.

The system automatically determines the extent, or bounding box, of the object for use by

the mouse detection and collision detection algorithms. This information is not accessible

to the programmer, although it would often be useful for the programmer to have access to

this information. For example, to programmatically position an object just to the left of a

wall, it is necessary to know where the right edge of the object is. Making this information

accessible through additional properties would be a straightforward extension to HANDS.

5.14.2 Animation

Any card that contains integer or floating point numbers in the properties named speed

and direction is automatically animated by the system without any programming.

Speed is a relative value indicating how many pixels the object should be moved during

each time step, and can be a positive or negative. Numbers in the range of about +/- 5 are

most useful, because larger numbers cause the object to move too far in each time step,

which can make the motion appear jerky and could interfere with collision detection (see

Section 5.14.4 on page 127). Direction is an angle specified in degrees (0 to 360, but

larger and negative values wrap correctly), adopting the convention from math that zero

points to the right and the angle increases in a counter-clockwise direction. Since some

users may not be familiar with this convention, an image of a compass is shown on the table

in HANDS for the user to refer to when working with directions (see Figure 5-1).

5.14.2.1 Method Used by Animation Engine

Each time the animation engine runs, it processes every card that has legal speed and direc-

tion values. The new position for the card is calculated as follows:

newX = oldX + (speed * cosine(direction))
newY = oldY + (speed * sin(direction))

This calculation uses double-precision, and the new floating point position is stored into the

x and y properties of the card. These floating point values are rounded to determine the new

pixel location for the object. For small speeds, the animation engine may have to run mul-

tiple times before the object moves enough to change its pixel location on the screen.

A Programming System for Children that is Designed for Usability 125

The HANDS System

This sub-pixel method for computing and storing the object’s position gives the program-

mer fine-grained control over the directions of objects, and their relative speeds. This

makes it possible to create some kinds of programs such as molecular simulations that are

not directly supported in systems that do not have sub-pixel positioning. For example,

Stagecast [Joers 1999] uses a grid for positioning objects, and graphical rewrite rules for

deciding whether to move an object and to where to move it. Even if the grid is one-pixel

in size, it offers only eight adjacent cells for the graphical rewrite rules to move an object

into, producing horizontal, vertical and diagonal motions. To implement motions along

other angles would require the programmer to supplement the graphical rewrite rules with

manual calculation and storage of sub-pixel locations, using formulas similar to the ones

built into HANDS.

As long as speed is no greater than 1, the object is guaranteed to move at most one pixel

during each run of the animation engine. Faster speeds have an impact on collision detec-

tion (see Section 5.14.4 on page 127).

5.14.2.2 Examples of Using Animation

For example, consider the card in Figure 5-9. This card has a speed of 1 and a direction of

270, so when the program is running it would move down slowly. If the speed was changed

126 A Programming System for Children that is Designed for Usability

The HANDS System

to 5, it would move faster. It would move up if its speed was changed to -5, or its direction

was changed to 90.

This combination of features permits the programmer to implement sophisticated behaviors

with only a few lines of code. For example, the following event handlers make the card

shown in Figure 5-9 respond to the U, D, L, and R keys to go up, down, left, and right,

respectively:

when U is typed
set Buzzy’s direction to 90

end when

when D is typed
set Buzzy’s direction to 270

end when

when L is typed
set Buzzy’s direction to 180

end when

when R is typed
set Buzzy’s direction to 0

end when

Figure 5-9. This card has a speed of 1 and a direction of 270, so it would move down slowly when the
program is running. Changing the speed to 5 would make it go down faster, and changing the direction to 90
would make it go up.

A Programming System for Children that is Designed for Usability 127

The HANDS System

Another example is, after giving the bees in Figure 5-1 initial speeds and directions, the

programmer can use this event handler to make them fly around like bees:

when any bee changes
add random from -5 to 5 to the bee’s direction

end when

Each time the system moves one of the bees, an event is generated indicating that the card

has changed. This event handler responds to that change by making a small random change

to the bee’s direction in the range of -5 to 5 degrees. Note that this change causes another

changes event to be inserted into the event queue for this bee card. When this new event

is eventually removed from the queue, this event handler will run again, once again making

a small change to the bee’s direction.

5.14.3 Mouse Click Detection

When the mouse is clicked on the board, mouse click events are generated for each object

that is located under the click location. This is determined by checking whether the click is

within the bounding box of the image or string that is displayed on the card’s back. For

images that are not rectangular and oriented parallel to the x and y axes, clicks near the

image but not appearing to touch it may actually be within the bounding box and will there-

fore generate a clicked event for that object. We hope to fix this in the future.

5.14.4 Collision Detection

The collision detector is responsible for generating events when two objects collide into

one another. Once a collision has been reported between a pair objects, no further collisions

are reported until they have moved apart.

5.14.4.1 Method Used by Collision Detector

The collision detector is run each time an object’s position is changed. This can happen if

the x or y properties are modified by an event handler, if a card is dragged around while

the program is running, or when Handy uses the speed and direction values to move

the object. Only the new position of the object is used in the collision detection calculation.

For each object, the system maintains a collision list holding other objects that are currently

in a collided state with this object. If the collision detector determines that there is a colli-

128 A Programming System for Children that is Designed for Usability

The HANDS System

sion with an object that is not on this collision list, the collision is reported and the other

object is added to the collision list. If the collision detector determines that there is a colli-

sion with an object that is already on the collision list, the collision is not reported. If the

collision detector determines that an object on the collision list is no longer colliding with

this object, the other object is removed from the collision list.

Collisions are detected and reported in a pairwise fashion. The objects that have collided

are both listed in the value property of the collision event. If three objects collide at once,

three separate collisions are reported, one for each pair of objects. This works correctly in

the case of a ball striking two walls at a corner, but further investigation is required to deter-

mine if this works correctly in more complex multi-object collisions such as with billiard

balls.

5.14.4.2 Limitations of the Collision Detector

Collision detection uses bounding boxes, and is subject to the same issue as mouse clicks,

where the bounding box may include area that appears to be outside the image. A better

collision detection algorithm would use the actual shape of the object to determine when it

collides, but that work was outside the scope of this thesis.

When the speed of an object is no more than one pixel at a time, the collision is detected

when the objects are butted against one another according to their bounding boxes. A prob-

lem arises when an object has a large value in its speed slot. As described in

Section 5.14.2.1 on page 124, the animation engine may move the object by multiple pixels

in a single step. If the object jumps completely past another object in one step, no collision

is detected or reported. Even if the collision is detected, the objects may move enough in

one step to penetrate one another, preventing the programmer’s collision handler from exe-

cuting exactly when the objects make contact. Also, in the current system it is difficult for

the programmer to determine the direction of the collision or which surfaces of the object

collided.

A better method would be for the animation engine and collision detection algorithm to

work more closely, calculating a path for the object instead of simply calculating a new

position. The collision detector could check for collisions along the entire path, and the

algorithm could provide additional information such as the actual point of impact. Other

A Programming System for Children that is Designed for Usability 129

The HANDS System

researchers have already addressed these problems (e.g. [Baraff 1989]), but improving the

collision detection algorithm was beyond the scope of this thesis.

5.14.5 Coordinate System

In HANDS, the origin of the coordinate system is the top left corner of the screen. X values

increase as you move to the right, and y values increase as you move down. I considered

tying the coordinate system to the lower left corner of the board, to better match the coor-

dinate system children learn in math class. However, issues arose about what to do when

the board is moved or resized: should the cards move with the board or should this cause

the coordinates of every card to change? Also, the possibility of negative coordinates

seemed to be an unnecessary complexity. In the end, I decided to leave the coordinate

system the way it is in virtually all other computer systems, but to do internal transforma-

tions to make the angles (directions) work the same as they do in math class: zero degrees

to the right, and increasing in a counter-clockwise direction.

5.15 Programming Environment
The HANDS programming environment includes some basic support for building, running,

testing, and debugging programs.

5.15.1 System-wide Menu Commands

The following menu commands are always available in the HANDS menu:

• New

Creates a new blank program, by removing all cards and event handlers from the sys-

tem. If there are unsaved changes, the user is first given an opportunity to save them.

• Open...

Displays a file browser dialog box, allowing the user to select a program file to be

loaded into the system. Before loading the program, all existing cards and event han-

dlers are removed. If there are unsaved changes, the user is first given an opportunity to

save them.

• Import...

Displays a file browser dialog box, allowing the user to select a program file to be

130 A Programming System for Children that is Designed for Usability

The HANDS System

imported into the existing program. All existing cards and event handlers are kept,

unless they are duplicated in the imported file. If the imported program has a card with

the same name as an existing card, the user is given a choice of replacing the old card,

having the system rename the new card to have a unique name, or ignoring the new

card. If an imported event handler handles the same event as an existing event handler,

the user is given a choice of replacing the old event handler, having the system automat-

ically merge the code of the two event handlers, or ignoring the new event handler. The

system merges event handlers by producing an event handler that first lists all of the

statements from the original event handler, followed by a few blank lines, and then all

of the statements from the imported event handler.

• Save

Saves the entire program, including all cards and event handlers, to its file. If the pro-

gram has not yet been associated with a file, this command acts like the “Save As...”

command.

• Save As...

Displays a file browser dialog box, allowing the user to specify a file name and loca-

tion. The program, including all cards and event handlers, is saved to this file.

• Revert

After confirmation from the user, restores the program to its state at the last time it was

saved. If the program has never been saved, this command will revert the program back

to a blank program.

• Quit

Quits HANDS. If there are unsaved changes, the user is first given an opportunity to

save them.

The following menu commands are always available in the Programming menu:

• Open Handy’s Thought Bubble

Brings up the Event Browser (Figure 5-10 on page 131).

• Open Testing Window

Brings up the Testing Window (Figure 5-13 on page 136).

A Programming System for Children that is Designed for Usability 131

The HANDS System

• Show Card List

Brings up the Cards window (Figure 5-14 on page 138).

• Show Handy’s Hand

Hides the table and all objects on the table – including the board, card pile, and the

cards that are on the table – and shows Handy’s hand (Figure 5-15 on page 139).

• Animate Handy

This menu item toggles whether Handy’s animation is shown when the program is run-

ning (see Section 5.2.2 on page 94). This setting defaults to on, but the programmer can

turn it off if the animation is distracting.

5.15.2 Event Browser

Figure 5-10 shows the inside of Handy’s “thought bubble”, which is the browser for event

handlers. The left pane of the event browser lists all of the complete and syntactically-cor-

rect event handlers in green. Any event handlers with parsing errors are listed in red, and

are ignored when the program is run. The code for the selected event handler is shown in

the top right pane, and any error is shown in the bottom right pane.

Figure 5-10. HANDS is an event-based system. The left pane lists seven complete (syntactically correct)
event handlers, and one that is marked in red because it is not finished (unfinished-2). The upper right
pane shows the code for when any bee collides into any flower. The lower right pane would report any error
messages for this event handler.

132 A Programming System for Children that is Designed for Usability

The HANDS System

5.15.2.1 Editing Code in the Event Browser

The top right pane of the Event Browser supports freeform text editing, with commands for

cut, copy, paste, and multi-level undo and redo. It also allows the programmer to enter pro-

gram text by selecting items from context-sensitive menus, which saves typing and offers

assistance with the language syntax (see Section 5.15.2.2 on page 132). This hybrid

approach offers many of the benefits of structure editors (e.g. MacGnome [Miller 1994]),

but it is less restrictive. For example, unlike most structure editors, the system allows the

programmer to spend large portions of an editing session with syntactically-incorrect code

while working towards a solution.

5.15.2.2 Context-Sensitive Menus

The Build menu is context-sensitive, listing the syntactically legal choices at the insertion

point (see Figure 5-11). When one of these menu items is selected, the system inserts the

text into the program at the insertion point, ensuring that it is surrounded by spaces to keep

it separated from adjacent code.

These menus are constructed on the fly when the user clicks on the menu bar, by submitting

all of the program text up to the insertion point, but nothing past the insertion point, to the

parser. Since this will be an incomplete event handler, the parser will generate an error mes-

sage. A list of legal choices is extracted from this error message. A small lookup table is

used to make some basic transformations to this data, such as coalescing multiple-word

sequences into a single menu choice (for example, after selecting “anything” from the con-

text-sensitive menu, the next menu would always have a single choice: “happens”; so the

lookup table changes the first menu to: “anything happens”). The choice “identifier” is

replaced with a submenu containing all of the cards and properties in the system. Sets of

related items such as the list operators are also grouped into submenus. The main menu is

sorted alphabetically to help the programmer find the desired choice.The disadvantage of

using the parser to generate this menu is that it does not work if there is a syntax error in

the text before the insertion point. The JavaCC parser stops at the earlier error and does not

continue parsing. In this case, an explanatory message is placed into the menu instead of a

list of possible choices. However, any errors after the insertion point do not affect the sys-

tem’s ability to generate this menu.

A Programming System for Children that is Designed for Usability 133

The HANDS System

Figure 5-11. HANDS has context-sensitive menus to assist in constructing correct programs. When a menu
item is selected, the text is entered into the program.

134 A Programming System for Children that is Designed for Usability

The HANDS System

5.15.2.3 Parsing Code that has been Edited

The program can be edited whether or not it is running. Edits have no effect on the program

until the parser is invoked. This happens when the programmer presses the Check button

(see Section 5.15.2.4 on page 134), selects a different event handler in the left pane, or

closes the thought bubble window. If the event handler parses correctly, the name of the

event in the pane at the left is updated with text describing the event name, and the pane at

the bottom right shows the message “ok”.

If there is a parsing error, the name of the event handler is not changed in the left pane,

except that it is made red if it was green. The lower right pane shows the error message from

the parser. In the upper right pane, the insertion point is moved to the location in the code

where the error occurred. The JavaCC-generated parser only reports the first error; subse-

quent errors are reported only after the first one has been eliminated. Several example error

messages are shown in Figure 5-12. The system does some manipulation of the error mes-

sages received from the JavaCC parser. For example, the introductory text “There is a prob-

lem” is prepended to the error message, quotes are stripped from around each item in the

list of expected tokens, and instead of reporting an “end of file error” the message says “I

expected more text after this.” More work could be done to improve these messages. For

example, the message that lists expected tokens could be modified so that “<INTEGER_

LITERAL>” and “<FLOATING_ POINT_ LITERAL>” are replaced with “a number”.

5.15.2.4 Command Buttons in Event Browser

The “New” button at the top of the event browser creates a new event handler in the list on

the left, with a name like “unfinished-2”. The name is shown in red because the new event

handler is not complete. It starts with this skeleton of an event handler:

when

end when

The “Delete” button can be used to remove a selected event handler from the program. The

system first prompts the user for confirmation.

The “Check” button can be pressed by the programmer at any time. This invokes the parser

on the event handler as described in Section 5.15.2.3 on page 134.

A Programming System for Children that is Designed for Usability 135

The HANDS System

Figure 5-12. This figure shows several examples of the error messages that are displayed when there is a
parsing error.

136 A Programming System for Children that is Designed for Usability

The HANDS System

5.15.3 Testing Window

When developing a program, it is useful to be able to test code without having to put the

code into an event handler, run the program, and wait for the event to occur. The system

provides a Testing Window for this purpose. The Testing Window can be brought up by

selecting “Open Testing Window” command from the Programming menu, or by clicking

the “Go to Testing Window” button in the Event Browser. The Testing Window is shown

in Figure 5-13. Any statement or expression can be entered into the top right pane of this

window. When the “Test It Now” button is pressed, the code is parsed, and if there are no

parsing errors, then it is evaluated. The lower right pane of this window reports the result

of the evaluation if the code was an expression, or the message “ok” if the code was a state-

ment. If there are errors, the lower right pane shows the error message, similar to the Event

Browser.

The Testing Window keeps a full history of the code that is evaluated and the evaluation

results. The left pane shows this history in a numbered list containing the code that was

evaluated. When one of the items in this history list is selected, the right two panes are

restored to their state right after that item was evaluated – the code in the top pane and the

result of the prior evaluation in the lower pane. The programmer can then execute the code

again, with or without editing it, by pressing the “Test It Now” button. In either case, a new

Figure 5-13. The testing window allows statements and expressions to be evaluated immediately. The code
is entered in the upper right pane, and the result is shown in the lower right pane. The left pane contains a
history of the code that has been tested.

A Programming System for Children that is Designed for Usability 137

The HANDS System

entry is made at the end of the history list and the result window is updated with the new

result of evaluating the code.

After each press of the “Test It Now” button, as well as any time an item is selected from

the history list, the full text in the upper right pane is selected. This is for the convenience

of the programmer, who may want to copy it for pasting into an event handler, or to type

over it with new code. The “Clear” button can also be used to clear the contents of the top

right pane.

The same menus are provided as in the Event Browser, including menus for cut, copy and

paste, multi-level undo and redo, and the context-sensitive Build menus. The “Go to

Thought Bubble” and “Go to Testing Window” buttons can be used to quickly move back

and forth between the Event Browser and the Testing Window.

5.15.4 Cards Window

The Cards window, shown in Figure 5-14, lists all of the cards in the program. It can be

accessed by selecting the “Show Card List” command in the Programming menu. Clicking

on one of the cards in this list flips it face-up. This is useful if a card is difficult to locate,

is behind another card, or is too small to click on accurately. Using this window to flip cards

has no effect on the visibility of a card, which is controlled by whether it is in Handy’s hand

(Section 5.15.5) or on the table.

5.15.5 Handy’s Hand

When Handy picks up cards from the table, they become invisible. The menu command

“Show Handy’s Hand” allows the programmer to look at the cards in Handy’s hand

(Figure 5-15). In this view, the table, board, new card pile, and all the cards that are not in

Handy’s hand are invisible. Handy’s picture is changed to highlight his hand. The cards in

his hand are shown at the screen positions where they would be if they were put back down

without moving them first. The card list window can be used to flip these cards, in the same

way it is used in the normal view. The system automatically returns to the normal view

when the user selects any menu item (including toggling the “Show Handy’s Hand” menu

item) or clicks on Handy’s picture.

138 A Programming System for Children that is Designed for Usability

The HANDS System

5.16 Runtime Errors
When there is a runtime error during program execution, the event card that caused the error

is displayed face-up on the table, and the error is reported in a dialog box. If the error was

generated from the test window, there is no event card. If the error relates to any other card,

it is also flipped face-up.

The error messages in HANDS are tuned to be as specific and helpful as possible. For

example, in user testing with children, I observed that the most common error was a mis-

spelling or other typographical mistake. This often causes failure to find a card or property

that is identified in the code, so the messages for this kind of error were customized to sug-

gest a possible spelling problem. An example is shown in Figure 5-16. In this case, the pro-

grammer misspelled the word “nectar”, so the program attempted to access a property that

did not exist.

Figure 5-14. The Cards window (at left) lists all of the cards in the program. When the user clicks one of the
card names in this list, the card is flipped face-up.

A Programming System for Children that is Designed for Usability 139

The HANDS System

The error dialog box offers two choices, to stop the program or to keep going. If the user

chooses to keep going, the erroneous expression evaluates to the string ERROR. The

ERROR value is propagated to subsequent calculations that depend on the value, similar to

the error values in spreadsheets.

Figure 5-15. When the programmer display’s Handy’s hand, only the cards that are in his hand are shown, in
the positions they would be in on the table. The table, board, new card pile, and all other cards are invisible
in this view. Handy’s picture is changed to highlight his hand.

Figure 5-16. An example runtime error. Related cards are automatically flipped face-up. If the user chooses
to keep going, the erroneous expression returns the string ERROR. The ERROR value is propagated to
subsequent calculations that depend on the value, similar to error values in spreadsheets.

140 A Programming System for Children that is Designed for Usability

The HANDS System

Figure 5-17 contains additional examples of error messages for:

1. Referring to a nonexistent card.

2. Division by zero.

3. Attempting to store a string into the x property, which must be numeric. The x, y and

cardname properties are the only properties that have restrictions on what can be stored

in them.

4. Attempting to perform subtraction on a non-numeric value.

5. Attempting to use the Boolean operators on non-Boolean values.

Figure 5-17. Examples of error messages for 1) referring to a nonexistent card, 2) division by zero, 3)
attempting to store a string into the x property, which must be numeric, 4) attempting to perform subtraction
on a non-numeric value, and 5) attempting to use the Boolean operators on non-Boolean values.

A Programming System for Children that is Designed for Usability 141

The HANDS System

5.17 Implementation Details
HANDS is implemented in Java, using the JFC/Swing classes to implement the user-inter-

face. All of the user interface elements are widgets from the Swing toolkit. The main

HANDS application uses a JDesktopFrame, and all of the other windows are JInternal-

Frames. The system makes heavy use of the Java2 collections classes, which I back-ported

into the pre-Java2 (Java 1.1) runtime that is available under Macintosh OS 9.

The parser was generated from a grammar description using JavaCC/JJTree [Webgain

2001]. One of the advantages of JavaCC is that it produces top-down recursive descent

parsers, which can be used to begin parsing at any non-terminal. It has flexible lookahead

capabilities that permit most of the grammar to efficiently parsed as LL(1), but at complex

points the grammar I could specify greater lookahead amounts to resolve ambiguities. The

lookahead can be specified syntactically, rather than specifying a fixed number of tokens.

JJTree produces a parse tree, which is walked by the interpreter.

Simpler programs written in HANDS execute at barely adequate speeds on the five-year-

old computers I used for development and testing. In the user study described in Chapter 6,

speed was not an issue for the participants. However, programs with large numbers of

objects or very complex computations run too slowly, and garbage collection or thread

scheduling cause pauses in animations. I believe this slowness problem is not intrinsic to

the model of computation or the event based paradigm, and could be addressed by looking

for ways to improve efficiency (such as by compiling, reducing the burden on the garbage

collector, caching numeric values to reduce conversions back and forth to strings, etc.).

The system is comprised of about 44 non-anonymous classes, about 80% of them hand-

written and the rest generated by JavaCC, and it is about 20,000 lines of code, about 50%

hand-written code and 50% generated by JavaCC.

5.17.1 HANDS Runtime Implementation

Currently, all of the HANDS runtime processing occurs in a Swing Timer thread, which is

set to be called as frequently as possible. The event handler runs until the event queue is

emptied or it has dispatched 20 events, then the animation engine runs for one time step,

and then control is released by the Timer thread. The Swing user interface code takes over

142 A Programming System for Children that is Designed for Usability

The HANDS System

and performs screen updates and any other processing it needs to do, and another cycle is

begun as soon as Swing gives control to the Timer thread again.

This strategy means that animation speeds are dependent on processor speed, the number

of events generated by the program, and on the complexity of the code inside the event han-

dlers. It is not possible to always just wait until the event queue is empty because some pro-

grams may always generate new events (card changed events) in the course of processing

events.

The choice of 20 events dispatched per cycle was determined by experimenting with vari-

ous values and selecting one that balances the tradeoff between good animation perfor-

mance and the ability of the event processor to keep the event queue reasonably empty and

to respond quickly to events. However, this choice is dependent on the particular HANDS

program that is running. It works well for smaller programs, but is not optimal for programs

with a very large number of animated objects. For example, each object that is moved by

the animator generates a card changed event, so, without even considering other events

such as collisions, if there are more than 20 moving objects it will not be possible for the

event processor to dispatch all of the events in the queue before the animator runs again.

One optimization that would partially relieve this problem would be to insert card changed

events into the event queue only if there is an event handler actually watching for them.

If the animator runs before the event processor has been able to empty the event queue, a

problem with collision detection arises. For example, suppose the program is written to stop

an object or change its direction when it has a collision. If the collision event is not pro-

cessed during the 20 events that are processed in a cycle, the animation engine will run

again, moving the object further before the program has had an opportunity to respond.

I experimented with running the animation engine in a separate thread from the event pro-

cessing code, so that it would run on a more regular schedule, even if the event processing

code was bogged down by very complex event handlers and a full event queue. This actu-

ally compounded the problem mentioned above regarding collision detection, because this

removed the guarantee that 20 pending events would be handled before the next time the

animation engine was run.

A Programming System for Children that is Designed for Usability 143

The HANDS System

These problems arise due to a lack of computational resources. Using a faster processor or

compiling HANDS code instead of interpreting it, would relieve this problem. With faster

execution, the animation engine would run on a regular schedule and the event processor

would have enough computational power to keep the event queue nearly empty.

5.17.2 Format for Saved Files

HANDS programs are saved as ordinary text files. These files are not intended to be edited

by HANDS users, but programmers could use external text editors to edit these files, for

example, to select parts of a program to copy into another file. In these files, cards are listed

on a single line, beginning with the card name, followed by a space-separate list of prop-

erty:value pairs, and ending with a semicolon. Event handler code is stored exactly the way

it is seen in the Event Browser. In order for the parser to be able to read in syntactically

incorrect event handlers, they stored inside special comment symbols($) which are used

exclusively for this purpose.

5.18 Sample Program

This section describes the entire code for the program shown in Figure 5-18, where bees fly

around collecting nectar from flowers. The large bee named Buzzy can be controlled by

Figure 5-18. In this example program, bees fly around collecting nectar from flowers.

144 A Programming System for Children that is Designed for Usability

The HANDS System

typing keys indicating which direction it should fly. Appendix B has additional examples

of programs that have been build in HANDS.

• The cards for all of the bees:

Bumbles x:530 y:60 kind:bee back:bumbleb.gif nectar:5 speed:1 direction:261;
Bumbles2 x:465 y:35 kind:bee back:bumbleb.gif nectar:5 speed:1 direction:241;
Buzzy x:610 y:194 kind:bee back:bee.gif nectar:3 speed:3 direction:464;
Buzzy2 x:677 y:102 kind:bee back:bumbleb.gif nectar:6 speed:1 direction:267;
Fuzzy x:450 y:120 kind:bee back:bumbleb.gif nectar:3 speed:1 direction:279;
Fuzzy2 x:580 y:290 kind:bee back:bumbleb.gif nectar:7 speed:1 direction:296;
Honey x:280 y:230 kind:bee back:bumbleb.gif nectar:7 speed:1 direction:297;
Honey2 x:490 y:260 kind:bee back:bumbleb.gif nectar:1 speed:1 direction:253;
Killer x:650 y:90 kind:bee back:bumbleb.gif nectar:0 speed:1 direction:264;
Killer2 x:205 y:108 kind:bee back:bumbleb.gif nectar:0 speed:1 direction:265;
Stripes x:300 y:150 kind:bee back:bumbleb.gif nectar:8 speed:1 direction:273;
Stripes2 x:403 y:202 kind:bee back:bumbleb.gif nectar:3 speed:1 direction:292;

• The cards for all of the flowers:

Lily x:318 y:329 kind:flower back:lily.gif nectar:94;
Lily2 x:675 y:308 kind:flower back:lily2.gif nectar:96;
Rose x:205 y:319 kind:flower back:rose.gif nectar:98;
Rose2 x:465 y:328 kind:flower back:rose2.gif nectar:94;
Sunflower x:555 y:330 kind:flower back:sunflower.gif nectar:92;

• The card for the grass:

grass x:198 y:431 back:grass.gif kind:hwall;

• The on-screen text:

beeTotal x:406 y:60 back:"???";
beeTotalSign x:200 y:60 back:"All the bees have collected:";
bestBee x:406 y:20 back:"???";
bestBeeSign x:200 y:20 back:"The bee with the most nectar is:";
mostNectar x:406 y:40 back:"???";
mostNectarSign x:200 y:40 back:"He has this much nectar:";

A Programming System for Children that is Designed for Usability 145

The HANDS System

• These event handlers allow the user to type keys to make Buzzy, the large bee, move

down, left, right and up:

when D is typed
set buzzy's direction to 270

end when
when L is typed

set buzzy's direction to 180
end when
when R is typed

set buzzy's direction to 0
end when
when U is typed

set buzzy's direction to 90
end when

• This event handler transfers one unit of nectar from a flower to a bee that flies into it:

when any bee collides into any flower
subtract 1 from the flower's nectar
add 1 to the bee's nectar
beep

end when

• This event handler updates the on-screen text when necessary:

when any flower changes
set bestBee's back to cardwithgreatest nectar of all bees
set mostNectar's back to nectar of (bestbee's back)
set beeTotal's back to sum nectar of all bees

end when

• This event handler initializes each bee to fly in a random direction

when program starts
with all bees calling each b

set direction of b to random 0 to 359
end with

end when

5.19 Importing Components
HANDS programs can be extended by importing one or more existing programs. The

system integrates the new program by adding the cards to the table and adding the event

handlers to the thought bubble. If a handler exists for a particular event in both programs,

the system offers to merge the code automatically. This makes it very convenient to build

and use a library of small autonomous objects, each as a small program with one card and

the code to control its behavior.

146 A Programming System for Children that is Designed for Usability

The HANDS System

For example, the bees in Figure 5-18 do not stop at the edges of the board. However,

HANDS comes with a program called “Boundaries” that can be imported into any other

program. This contains invisible cards that are positioned along the edges of the board, and

code that responds to collisions by changing the direction of the colliding object to turn it

around. If this program is imported into the program in Figure 5-18, the bees would bounce

when they reach the edge of the board. A similar program can be imported to create an

invisible “trap-door” that causes objects to be teleported to a different location on the board.

A compass card contains a list of directions, like north, south, east, west, up, down, left,

right, etc. Importing this compass program would allow the programmer to use symbolic

directions instead of numeric directions in their code, such as compass’s north.

Chapter 7 describes additional ideas I have about modularity and encapsulation of program

components.

5.20 Summary
The unique set of features in HANDS is a direct result of the human-centered design pro-

cess I used. The implementation demonstrates the feasibility of the HANDS model for rep-

resenting computation. Chapter 6 presents a user study as well as less formal evaluations

of HANDS.

A Programming System for Children that is Designed for Usability 147

CHAPTER 6 Evaluation

There are several ways that HANDS can be evaluated. One way would be to conduct a user

study comparing the overall HANDS system with other programming systems for children

such as Logo [Papert 1980] or Stagecast [Smith 1994]. This kind of study would assess the

entire system, but if HANDS was found to be statistically better or worse than the other sys-

tems, the study would not yield information about which features contributed to these dif-

ferences and in what proportion. It is also possible that some of the features enhance the

usability of HANDS and others detract from usability, but these effects would cancel each

other out in the study results. This kind of study also requires great care to perform rigor-

ously, because there are so many differences between HANDS and the other environments

that could confound the results.

On the other hand, an endless number of studies could be done to examine the effectiveness

of individual features of HANDS. In these studies, one would try to isolate the features and

test them without confounds. If particular features are shown to be statistically better than

the features they replace, it would suggest that the features would be useful in other pro-

gramming systems. However these results would not tell us how the individual features

work together to enhance or hinder performance, or whether the system as a whole is more

effective than other systems.

148 A Programming System for Children that is Designed for Usability

Evaluation

In the context of this thesis, I decided to conduct a study that falls somewhere in the middle.

I chose to examine three key features of HANDS that are not found in most popular pro-

gramming systems: queries, aggregate operations, and the high visibility of program data.

In a sense the study skims off some the most likely parts of HANDS to have an impact, and

tests them in a rigorous way.

I designed the study to isolate these key features and compare them with realistic alterna-

tive methods like the ones required in most programming systems, while controlling all

other aspects of the programming experience. This evaluation can only answer questions

about the collective impact of the three features, and not their individual contributions. It

also says nothing definitive about the overall effectiveness of the HANDS system relative

to other systems. However, if these key features are shown to improve performance in this

study, it would suggest that they may also be effective collectively in other future and cur-

rent programming systems. The results of this study can also help us to form hypotheses

about both the individual contributions of features and the overall effectiveness of HANDS,

to guide further evaluation in the future.

This chapter describes the user study of three key features of HANDS, and concludes with

some additional, less formal, evaluations.

6.1 User Study
The study examines the effectiveness of three features of HANDS: queries, aggregate

operations, and data visibility. For this study, a comparison system was constructed by

taking the HANDS source code and disabling these features. All other aspects of the system

were identical between the two conditions. The comparison system is still fully capable,

because HANDS contains alternative features that can be used to solve any programming

problem. These alternative features are realistic, because they are the features that must be

used in most other programming systems. In essence, these alternatives are: to create and

maintain data structures, to use iteration to operate on groups of objects one at a time, and

to use debuggers or inspectors to view program data.

A Programming System for Children that is Designed for Usability 149

Evaluation

6.1.1 Queries and the Alternative

The HANDS query feature allows the programmer to assemble lists of objects on demand,

by asking for all the objects with data matching certain criteria. For example, in Figure 6-

1 the query all flowers searches for all of the cards that contain the string “flower” or

“flowers” in any slot and returns a list of their names (e.g., Lily, Lily2, Rose,

Rose2, Sunflower). HANDS supports more complex queries, but only this simple

keyword form of query was used in this study.

Most programming systems do not have a query feature. In those systems, the programmer

must create and maintain data structures that provide access to the desired information.

This is also necessary in the limited version of HANDS. For example, the programmer

could create a card that holds a list of all of the flowers, as shown in Figure 6-2. This list

has to be updated each time a flower is added or removed from the program.

Figure 6-1. In HANDS, programmers can use content-based queries to create lists of cards.

Figure 6-2. Other programming systems require the programmer to create and maintain data structures to
keep track of the program’s data. This garden card has lists of all of the flowers and bees in the system. When
one of these objects is added or deleted, the list must be updated.

150 A Programming System for Children that is Designed for Usability

Evaluation

6.1.2 Aggregate Operators and the Alternative

In HANDS, all operations can be performed on a whole list of objects, including query

results, with a single command. For example, the code in Figure 6-3 will set the nectar

properties of all of the flowers to zero, no matter how many flowers there are. Continuing

with the above example in Figure 6-1, the Lily, Lily2, Rose, Rose2, and Sunflower cards

would all have their nectar properties set to zero.

Most other programming systems do not support aggregate operations. In those systems,

the programmer must iterate over the list of objects, operating on them one at a time. This

is also the case in the limited version of HANDS, where the example shown in Figure 6-3

can be accomplished by the code shown in Figure 6-4.

6.1.3 Visibility of Data and the Alternative

All data in HANDS is stored on cards, in name-value pairs called properties (Figure 6-5).

Cards are always visible, even when the program is not running. They can be created and

edited by direct manipulation as well as by actions taken by the program itself. The prop-

erties of multiple cards can be viewed simultaneously.

Traditional programming systems often do not provide these features for data. Variables

might exist only temporarily while certain parts of the program are running. Data may not

be visible to the programmer unless a debugging tool is used. In some systems, objects can

only be created by executing code, and they do not exist when the program is not running.

set the nectar of all flowers to 0

Figure 6-3. In HANDS, all operations can applied to lists of objects.

with garden’s flowerList calling each the flower
set the nectar of the flower to 0

end with

Figure 6-4. Without aggregate operations, iteration must be used to operate on groups of objects one at a
time.

A Programming System for Children that is Designed for Usability 151

Evaluation

The limited version of HANDS has only minor restrictions compared with these other sys-

tems. In the limited version, cards are only visible if they represent on-screen objects,

although all cards can be inspected, one at a time, using the Cards window (Figure 6-6).

This mechanism that is similar to the property inspector in Visual Basic.

Figure 6-5. In HANDS, all data is stored on cards, which are visible and persistent. The properties of
multiple cards can be viewed at the same time.

Figure 6-6. Many programming systems do not have visible representations of all data, and require the use
of a debugger or inspector to view data.

152 A Programming System for Children that is Designed for Usability

Evaluation

6.2 The Study

6.2.1 Participants

Volunteers were recruited from the fifth-grade class at a public elementary school in Pitts-

burgh. The students in this school are diverse in race, socio-economic status, and academic

achievement. The 23 volunteers ranged in age from 9 to 11 years. There were 12 girls and

11 boys. All were native speakers of English, and none had computer programming expe-

rience. The participants came to the Carnegie Mellon campus on one of two Saturday morn-

ings for a three-hour session, and were paid $20 for their participation. On one Saturday,

12 participants used the full-featured HANDS system (Full), and on the other Saturday 11

participants used the limited system (Limited).

6.2.2 Materials

Appendix G contains copies of all of the materials used in this study. This includes the tuto-

rials and tasks described below, along with solutions to the tasks for each of the two con-

ditions.

In the Full condition, a 13-page tutorial was used to teach the participants the basics of the

HANDS system. The tutorial began with an empty program, and the participants built a

program with several flowers and a bee that flies around collecting nectar from them. The

bee is controlled by keyboard commands, and the program displays some basic statistics

about which flower has the least nectar and the amount of nectar the flowers have.

The tutorial for the Limited condition was derived from the full-featured tutorial. Those

portions utilizing a feature that was missing in the limited system were replaced with mate-

rial teaching the easiest way to use the system’s remaining features to achieve the same

result. This modification increased the size of the tutorial by one page, to 14 pages.

After completion of the tutorial, participants were given a two-page set of five tasks, plus

an optional bonus problem. Each of these tasks was selected because its solution would

make use of at least one of the features that are missing in the Limited system. All partici-

pants started the tasks by loading a partially implemented program. This program was sim-

ilar to the one they had been working on, but it had more bees and some pre-defined cards

to help solve the tasks. Once again, these materials were constructed to be as similar as pos-

A Programming System for Children that is Designed for Usability 153

Evaluation

sible in the two conditions, differing only where necessary due to the limitations of the

reduced-feature version of HANDS.

6.2.3 Procedure

The participants worked individually, at their own pace. When they finished the tutorial,

they immediately started on the tasks. They were permitted to continue referring to the tuto-

rial while solving the tasks, and the task descriptions had references to relevant pages of the

tutorial. Participants could stop working before the three-hour session was over if they fin-

ished the tasks, or if they wanted to quit for any other reason. At the end of the session, the

participants filled out a brief questionnaire, providing information about their prior com-

puter experience and indicating how much they enjoyed the activity.

During the sessions, the experimenters answered the participants questions and helped with

any problems that the participants encountered, unless the assistance would reveal part of

a task solution. In such a case, the experimenters simply referred the participants to material

in the tutorial that might be helpful.

6.2.4 Results

Overall, the children enjoyed the activity. The average rating for enjoyment was 4.3 on a

scale of 1 to 5. The threshold I used for testing significance was p<.05. There was a mar-

ginally significant difference in enjoyment between the two groups, although the trend was

in favor of the Full condition (4.5 to 4.0). In the Full condition, the children tended to rate

the level of difficulty to be lower than in the Limited condition (2.8 to 3.5), but this differ-

ence was also only marginally significant.

There was no significant difference in performance between boys and girls. All of the chil-

dren were able to accomplish some programming by following the explicit instructions in

the tutorial, and most of them completed the tutorial: in the Full condition, 75% (9 of 12)

of the participants completed the tutorial and began to work on the tasks; and this ratio was

82% (9 of 11) in the Limited condition. This difference is not significant, and the remainder

of this analysis examines only the participants who achieved this level of success.

On average, the participants in the Full condition spent 121 minutes working on the tuto-

rial, while the participants in the Limited condition spent 139 minutes. This difference is

154 A Programming System for Children that is Designed for Usability

Evaluation

not significant, but it does mean the participants in the Full condition had more time avail-

able to complete the tasks. Indeed, on average the participants in the Full condition spent

more time on the tasks, 36 minutes compared to 30 minutes in the Limited condition. How-

ever this difference is also not significant. These times spent working on the tutorials plus

tasks do not add up to the full 180 minute session (3 hours) because the participants took

breaks or stopped working early.

In the Full condition, seven participants solved at least one problem correctly, while in the

Limited condition only one participant achieved this. This difference in the number of stu-

dents completing at least one task is significant (p<.05).

Participants received one point for each task problem they completed correctly. No partial

credit was given. With the bonus problem, the maximum score was 6. Of the nine partici-

pants in the Full condition, the scores ranged from 0 to 6, with an average of 2.1. Cumula-

tively, the participants in the Full condition received 19 points. Of the nine participants in

the Limited condition, the scores ranged from 0 to 1, with an average of 0.1. Cumulatively,

the participants in the Limited condition received only 1 point. This difference in the

number of points scored is significant (p<.05). These results are summarized in Table 6-1.

One question that arises is whether the extra time that the Limited participants spent work-

ing on the tutorial, and the corresponding decrease in the amount of time spent working on

the tasks, can account for the difference in performance. This is unlikely. The participants

in the Full condition were, on average, able to solve 2.1 tasks in 36 minutes, which is a rate

of about 17 minutes per solution. The participants using the Limited system had an average

of 30 minutes to work on the tasks, so if they were indeed capable of achieving the same

problem solving rate as the other participants, they should have had adequate time to solve

at least one problem per person on average. They did not come close to achieving this.

Table 6-1. Summary of results from this study. Participants using the Full system performed significantly
better on the tasks than participants in the Limited condition.

Full Limited

Total number of participants 12 11

Participants completing the tutorial 9 9

Participants solving at least one task correctly (p<.05) 7 1

Cumulative number of tasks solved (p<.05) 19 1

A Programming System for Children that is Designed for Usability 155

Evaluation

6.2.5 Informal Observations

The experimenters took notes about any interesting things they observed the participants

doing. Sometimes the participants asked for help with their problems, and sometimes they

were able to figure out the solution without help, and the experimenter simply observed

over their shoulders. Two of the most common observations are listed here.

• The participants made many spelling errors. After seeing a lot of spelling problems dur-

ing pilot testing for this study, the error messages for when the system attempts to

access non-existent cards or properties were changed to explicitly suggest the possibil-

ity of spelling problem (for example, see Figure 5-16). However, there are situations

where the system cannot determine that there is an error. For example, if the property

name is misspelled when using the set command, the system automatically creates a

new property instead of reporting an error. While this behavior is often convenient,

more spelling errors would be detected if this were an error and an explicit command

was required to create a new property.

• The participants assumed the system’s capabilities and vocabulary is much larger than

it is. After successfully learning several statements in the HANDS language, the partic-

ipants often tried typing in their own natural language commands that are not part of the

language. This occurred even though the tutorial was careful to point out that Handy is

not very intelligent and has limited vocabulary. This problem is to be expected when the

syntax of the language is verbose and like natural language. It is interesting to note that

several participants in the Limited condition were observed typing commands that use

query and aggregate features, even though those features were not available and were

not mentioned in the tutorial. For example, one participant spontaneously typed, “set all

bee’s speed to 0,” which would have actually worked correctly in the Full system.

6.2.6 Summary of Study

The superior performance of participants in the Full condition can be attributed to the pres-

ence of queries, aggregate operations, and data visibility in the system they used. This sug-

gests that these features could improve the usability of programming systems in general.

However, the study does not tease apart the contributions of the individual features. How-

ever, it is my conjecture that the largest portion of the impact came from the combined

156 A Programming System for Children that is Designed for Usability

Evaluation

power of queries and aggregates, and that the visibility differences made little contribution

to the difference in performance.

This study also does not provide any evidence whether the HANDS system as a whole is

better than other programming systems. However, in a three hour session, children who had

never before programmed were able use a tutorial to learn how to program in HANDS, and

then go on to solve additional programming problems. This, in itself, is a success.

6.3 Example Programs
In order to assess the suitability of HANDS for building larger programs, an undergraduate

computer science student working on a one-semester independent study project, used

HANDS to build a game and a simulation. In addition, I implemented programs to solve

the Towers of Hanoi problem, and to compute prime numbers. These programs are sum-

marized here, and more details are available in Appendix B.

6.3.1 Breakout Game

The game is a version of the game Breakout, where there are rows of bricks at the top of

the screen and a user-controlled paddle at the bottom (Figure 6-7). A ball bounces around

the screen and eliminates bricks when it hits them. The object of the game is to remove all

of the bricks without allowing the ball to fall below the paddle. A two-level version of this

game was implemented with 12 rules containing 178 lines of program code, and 62 cards.

53 of the cards represent bricks. Each additional level added to the game would require

about 25 more cards and 15 more lines of code.

6.3.2 Simulation of the Ideal Gas Law

The second program is a simulation of the ideal gas law, which specifies the relationships

among pressure, volume, and temperature according to the formula: PV=nRT (Figure 6-8).

This program displays a chamber with small molecules bouncing around inside. The user

can manipulate the pressure, volume, or temperature of this chamber, and observe its effect

on the other variables as well as seeing changes in the speeds of the molecules. This simu-

lation was implemented with 18 rules containing 180 lines of code, and 36 cards. 12 of the

A Programming System for Children that is Designed for Usability 157

Evaluation

rules and 12 of the cards implemented checkboxes and scrollbars for controlling the simu-

lation, which would probably be supplied in a toolkit in other systems.

6.3.3 Towers of Hanoi

The Towers of Hanoi solution shown in Figure 6-9 was implemented using 6 rules contain-

ing 53 lines of code, and 10 cards. One of these cards is off-screen, where the goals and

subgoals are stored as the problem is solved. This program is a general solution that works

for any number of rings. Adding an additional ring to the pictured three-ring solution can

be done by importing a program file that has two cards and no code (see Section 5.19 on

page 145). One of the cards represents the fourth ring, and the other card replaces the goal

card with an updated goal card indicating the presence of the fourth ring. I was pleased how

easy this was to implement in HANDS, especially since I had never solved this problem

without using recursion, and HANDS does not support recursion. For comparison, a recur-

Figure 6-7. A version of the game Breakout, implemented in HANDS.

158 A Programming System for Children that is Designed for Usability

Evaluation

sive solution to this problem in Logo required 117 lines of code (see Figure 2-1 on

page 20).

6.3.4 Computing Prime Numbers

The program shown at the top of Figure 6-10 uses a sieve technique to compute prime num-

bers. It has only one rule with 8 lines of code, and 6 cards. This program takes about 5 sec-

Figure 6-8. Simulation of the ideal gas law, as implemented in HANDS.

Figure 6-9. A solution to the Towers of Hanoi problem, as implemented in HANDS.

A Programming System for Children that is Designed for Usability 159

Evaluation

onds to compute the first 100 primes on a 400 MHz Powerbook G3. I wrote this program

to show that HANDS is useful for general computation, not just for games and animations.

6.4 Comparison with Another System
A high school student with some programming experience compared HANDS with Stage-

cast [Smith 1994] in an informal evaluation for his science project. He implemented

PacMan in both systems, and concluded that HANDS was easier to learn and use, required

fewer lines of code, and enabled him to implement more features than Stagecast. Because

Stagecast is not a textual language, he used this heuristic to count lines of code within each

rule: each rule was counted as one line of code, and each then clause, each and if

clause, and each appearance check was counted as one additional line of code. His

implementation of PacMan in HANDS is shown in Figure 6-11, and his statistics are shown

in Table 6-2.

Table 6-2. Statistics from the comparison of HANDS with Stagecast.

HANDS Stagecast

Minutes learning system with tutorial 40 60

Hours spent implementing Pacmana 15 9

Types of objects 9 6

Number of event handlers 15 64

Number of “lines” of code 183 253

Figure 6-10. The top of this figure shows the screen of a program that computes prime numbers using a
sieve technique, as implemented in HANDS. The bottom of this figure shows the primes that have been
computed so far, which are stored in the list property of the card prime.

160 A Programming System for Children that is Designed for Usability

Evaluation

He commented that some of the advantages of HANDS were: “simple syntax, logical

method of programming, information about the game can easily be displayed on screen, can

move cards wherever you want, cards can easily be picked up or put down, and HANDS is

more flexible.” His list of disadvantages of HANDS were: “not very good collision algo-

rithm, doesn’t come with drawing editor, and it is tedious to copy and arrange cards.”

That last point arises because face-down cards on the board cannot be dragged without flip-

ping them face-up first. But while the cards are face-up, the image in their back property is

not shown. This makes it very inconvenient to precisely position these objects. The cards

must flipped face-up, moved off the board, and flipped face-down. Now the face-down card

can be dragged back onto the board, so that the picture on the back can be viewed while it

a. The student implemented Pacman first in HANDS, and while he was doing this he learned
strategies and algorithms for implementing various features that he then reused when he
implemented Pacman in Stagecast. Therefore, the time difference can be discounted by this
learning effect.

Figure 6-11. A high school student created this implementation of PacMan as part of his science project,
where he compared HANDS to Stagecast.

A Programming System for Children that is Designed for Usability 161

Evaluation

is positioned. This problem can be eliminated by implementing the capability to drag cards

that are face-down on the board.

6.5 Some Weaknesses of HANDS
The game and simulation programs are much larger than most of the other examples, and

they exposed some weakness of the HANDS system:

• These programs would have been easier to implement if the collision detection mecha-

nism was more advanced. For example, when objects collide, the collision event does

not include any additional information beyond the names of the objects involved. The

system could report the actual point of contact, to assist the programmer in determining

how to react to the collision. Other issues with the collision detection mechanism are

discussed in Section 5.14.4.1 on page 127.

• The mechanism for accurate timing mechanism would be very useful, both for control-

ling the speed of the game and for taking measurements such as collision rates in the

simulation. Ideas for extending the HANDS metaphor with a timer mechanism are dis-

cussed in Chapter 7.

• For programmers at this skill level and programs of this size, the abstraction capabili-

ties described Chapter 7 would be quite useful for organizing and modularizing the

code.

• Execution performance is often sluggish, and often the animations are not very smooth,

perhaps due to garbage collection or thread scheduling. These performance issues are

discussed in Section 5.17 on page 141.

Nonetheless, it was reasonably easy to implement these programs, and they demonstrate

the wide range of programs that can be built in HANDS.

6.6 Range of Capabilities
In HANDS, it is very easy to make interactive graphical programs such as games and sim-

ulations. The difficulties that arise with larger programs are discussed above and are

addressed in Chapter 7. It was also quite easy to make small programs of the type that are

used in computer science courses (computing prime numbers, Towers of Hanoi, etc.). In the

162 A Programming System for Children that is Designed for Usability

Evaluation

case of the primes program, aggregates make the program simpler than it is in many other

languages. The primes program ran with surprising speed, however for very intense

numeric calculations, the performance of HANDS will likely have to be improved, for

example by compiling instead of interpreting programs. HANDS, as it is today, is not really

suitable for creating business programs such as word processors, spreadsheets, web brows-

ers, or anything that requires a lot of user interface widgets. This class of programs is out-

side the original domain that HANDS targets, but this limitation can be addressed by adding

domain specific features such as user-interface widgets (buttons, scrollbars, menus, etc.),

text objects, better support for mouse manipulations (drag and drop, double-clicks, etc.),

keyboard commands, and so forth. Assuming these kind of extensions can be made for any

particular domain, there are no known classes of programs that would be impossible to

build in HANDS.

6.7 Programming Strategies
There are several strategies a programmer can use to improve the aesthetics and efficiency

of HANDS programs.

• Graphics files used in the back property should have tight bounding boxes, because

collision detection and mouse-click detection use this bounding box.

• Graphics files used in the back property that have lots of white space should use the

GIF transparency feature. This prevents the invisible parts of an object from blocking

objects that are behind.

• Cards can be renamed to take advantage of the alphabetic layering feature. Cards with

names later in the alphabet are drawn over cards with names earlier in the alphabet.

• If objects have lower speeds, they move more smoothly, and are less likely to penetrate

or jump over objects they are colliding with. The optimal speed value for balancing

smooth motion and collision accuracy with speed of motion is 1.

• Computation should not be done in the anything happens event handler if it can

be avoided. This event handler is called when every event is dispatched, and in many

cases this would cause the code to be executed more frequently than necessary.

A Programming System for Children that is Designed for Usability 163

Evaluation

• If the exact same calculations are being repeated in several event handlers, try putting

the calculations in a single event handler that is triggered by a particular card changing.

If none of the cards in the system fit this description, an off-board card can be used for

this purpose. In the various places where recalculation must take place, the trigger card

can be changed by setting any of its properties.

• Small invisible objects are very useful for making visible objects do something, such as

change direction, when they reach a particular location. The invisible object can be

positioned at the location, and the behavior can be programmed into the event handler

for the collision between the two objects.

6.8 Evaluation of Earlier Design Ideas
The HANDS design evolved from earlier preliminary designs that included various fea-

tures that I eventually decided to change, due to problems discovered in early pilot testing.

One was to use allow multiple agents to be present around the table, working in cooperation

or competition to complete tasks (Figure 6-12). In this design, the table is a shared data

space, accessible to all agents, but cards in one agent’s hand would not be visible to the

other agents, providing data privacy. It also enables the programmer to modularize the code

by grouping related event handlers into separate agents. In addition, imported code could

be kept separate from existing code by automatically installing it into a new agent, instead

of merging it into Handy’s thought bubble. The multi-agent extension is implemented in

the underlying HANDS system. In this implementation, the agents always execute in a

fixed order, although it may be desirable to give the programmer better control over this.

The multi-agent feature was thought to be too confusing for beginners so it was not exposed

in the user-interface.

In even earlier designs, I proposed a card game metaphor, where the agents were players

in a card game. In addition to data cards, the system would also have rule cards holding

program code, which could be on the table or in a player’s hand (see Figure 6-13). A player

would execute code on the rule cards in his hand. An agent could disable rules by putting

them face-down on the table in a pile in front of the agent, and re-enable the rules by pick-

ing them back up. When an event occurs, execution order might be determined by the

ordering of players around the table, which could vary over time. All of the players might

164 A Programming System for Children that is Designed for Usability

Evaluation

have an opportunity to respond to an event unless one of the players removes it from the

table, rendering it invisible to the other players. Within a particular player, execution order

could be determined by the ordering of the rules in the player’s hand. Shuffling could be

used to put non-deterministic orderings on the execution of rule cards. Rule cards might

even be given to other players, as a mechanism for assigning work to other processes or

threads.

The purpose of this metaphor was to enable beginners to figure out how the system works

by relating it to a card game. However, as I developed this metaphor many problems arose,

including inconsistencies with real card games and complexities that do not exist in real

card games. For example, there were many different roles that might be confused by begin-

ners: the programmer, the end user, the players, the characters in the program, etc. In real

card games the players usually abide by a uniform set of rules, not by their own personal

sets of rules. There were also issues about what would happen when rule cards were handed

Figure 6-12. The underlying HANDS system can support multiple agents working in cooperation or
competition, but this feature was removed from the user interface because it was too complicated for
beginners. Sketch by Joonhwan Lee.

A Programming System for Children that is Designed for Usability 165

Evaluation

from one agent to another or placed face-up on the table, and whether it would be too dif-

ficult to find all of the code if it was scattered throughout the system. Resolving these issues

would have resulted in increased complexity that outweighed the benefits of the card game

metaphor, so it was discarded in favor of the much simpler model now used in HANDS,

where all of the code is in the agent’s head.

6.9 Some Criticisms of HANDS
Some computer science researchers and educators are troubled because the HANDS system

is so different than other programming systems. They are concerned that children learning

HANDS are not learning essential computer science concepts and techniques they will

need in the future. There are two parts to my reply to this criticism.

First, my objective in designing this system was to enable a broad range of children to

express their ideas and to explore the grand possibilities of computer programming. This is

something that most children are eager to try, and it is very important that their early expe-

riences are fulfilling ones. Unfortunately, the programming systems used by most profes-

sional programmers and computer science students are very difficult to learn and use, and

are inappropriate for the “casual jottings of ordinary people [diSessa 1986, p. 859].” When

children try to use these tools, the vast majority will become frustrated, and may be perma-

nently turned off programming. If, on the other hand, the early experiences are positive

ones, and children can accomplish their objectives, there is a good chance their eyes will

be opened to the possibilities and some of them may be more likely to pursue more formal

Figure 6-13. In early designs of HANDS, I experimented with the idea of storing code on rule cards. Sketch
by John Chang.

166 A Programming System for Children that is Designed for Usability

Evaluation

computer science knowledge. Children using HANDS will learn some of the difficult skills

that are fundamentally important in programming, rather than struggling with difficulties

that are caused by the limitations of current languages. For example, they will learn how to

precisely specify tasks, which is a universal requirement in computer programming. I also

expect that, just like computer scientists, children will find it easier to learn subsequent pro-

gramming languages after they have already successfully learned one.

Second, this research has produced some useful ideas that may impact how computer sci-

ence is taught and what topics are considered essential. Perhaps by the time some of the

children using HANDS start to learn computer science there will not be so many differ-

ences between HANDS and the systems they learn. For example, other researchers are also

questioning whether the computational metaphors established by Turing and von Neumann

are the correct ways for modern computer scientists to think about computation [Stein

1999]. In addition, perhaps more mainstream computer languages will begin to support

queries and aggregate operations, which seem universally useful if they can be imple-

mented efficiently. As computer science evolves, the set of concepts that are considered to

be essential will surely change. Having children struggle to learn C++ or Java today may

not prepare them for future careers in computer science any more than learning assembly

language or Fortran helped students of previous decades.

Another criticism of HANDS is that there is no evidence that its model of computation will

scale to large problems or other domains such as creating programs for office tasks. This is

a valid point. While I have listed some promising ideas in Chapter 7 for expanding the

range, the ideas remain untested. No showstopper problems have been encountered so far,

and it will be worthwhile to explore this issue in future work.

Finally, many people point out that the natural-language-like syntax of HANDS is prob-

lematic. Indeed, I observed children making errors and incorrect assumptions about the lan-

guage because it is not obvious what the limitations are (see Section 6.2.5 on page 155).

The authors of MOOSE Crossing studied this issue, and concluded that this kind of error is

easy for beginners to recover from [Bruckman 1999]. It is important to remember that

beginners will have great difficulty with the syntax of any programming language. Pro-

gramming editors can guide people on the syntax and limits of the language, and certainly

A Programming System for Children that is Designed for Usability 167

Evaluation

the HANDS environment could be enhanced in this way. I subscribe fully to the principle

to speak the user’s language and for the young non-programmers who will use HANDS,

natural language is the only fully developed language they know. They are learning math-

ematical notations, but many programming language notations aren’t even consistent with

mathematics (e.g. a = a + 1). As people learn to use more concise formal notations, I believe

it is good to support these notations in programming languages, but it is not necessary for

beginners to learn a new formal notation in order to write their first programs. Furthermore,

reading code is an essential component of programming and debugging, and so improving

the readability of programs is bound to improve usability.

6.10 Summary of Evaluation
The formal evaluation of HANDS showed that three key features had a significant impact

on the ability of fifth-grade non-programmers to learn to program and accomplish tasks in

a 3-hour session. Less formal evaluation by an older student with some programming expe-

rience concluded that HANDS is easier to learn and use, requires fewer lines of code, and

enables implementation of more features than a commercial programming environment for

children. In addition, expert programmers have implemented a wide variety of programs in

HANDS, demonstrating its breadth. The criticisms and weaknesses that were identified do

not point to flaws in the design and architecture of HANDS, but rather mainly derive from

the limited time available for implementing HANDS to date. They can all be addressed by

making the code run faster, improving the user interface, and improving and extending the

domain specific support for collisions, timing, and animation.

168 A Programming System for Children that is Designed for Usability

Evaluation

A Programming System for Children that is Designed for Usability 169

CHAPTER 7 Future Work

This chapter discusses some of the ways this thesis work could be extended. They are cat-

egorized into three sections: further evaluation work, direct extensions to HANDS, and

applications of the research results to other areas.

7.1 Further Evaluation and User Testing
The formal evaluation of HANDS discussed in Chapter 6 does not provide conclusive evi-

dence about how the HANDS programming system stands against the alternative program-

ming systems children might use for learning to program and building their first programs.

Such a study could use an approach similar to the one described in Chapter 6, but instead

of using a version of HANDS for the comparison system, one or more of the existing pro-

gramming systems for children, such as Stagecast, Logo, or Boxer, would be selected. Par-

ticipants would work with one system or the other, first learning it and then solving

programming tasks. Much care would have to be taken in selecting tasks and preparing the

materials, to eliminate bias and minimize confounding factors.

The study in Chapter 6 measures the collective impact of queries, aggregate operations, and

the high visibility of program data. It would be useful to determine the individual contribu-

tions of these features, and whether there are dependencies that make a particular feature

170 A Programming System for Children that is Designed for Usability

Future Work

more useful in the presence of another feature. Similarly, it would be useful to look at other

important features of the HANDS system, to assess their contributions to usability. For

example, the computational model portrayed by HANDS, with cards on a table and the

agent Handy manipulating them, could be tested by comparing it with a system that uses a

more traditional model of computation. This could be done by again producing a modified

version of HANDS that presents a more traditional model of computation, while keeping

other factors such as the language fixed. The verbose style of the language could be tested

by creating a version of HANDS with a more terse language that has identical structure and

semantics. It would be harder to modify HANDS for testing the event-based paradigm,

because so much of the system is dependent on its event-based structure.

Finally, HANDS surely could be improved by observational user testing, which would

uncover common problems that people have with the system. These observations could

then be used to improve the HANDS design.

7.2 Ideas for Extending HANDS
There are many things that can be done to improve and extend the HANDS system. Some

of these are engineering improvements, such as improving the collision detection algo-

rithm, while others are research ideas. Many extensions were discussed in prior chapters,

but a few more are presented here.

7.2.1 Modularity and Encapsulation

One problem with the event-oriented approach in HANDS is that it is impossible to factor

code into a function or subroutine that can be called during the course of an event handler.

I have worked on a design for extending the HANDS model of computation with a special

kind of card that represents procedural abstraction. Parameters could be passed to the

abstraction by setting properties on this card. A special property, perhaps named result,

would represent the result of executing the abstraction. When the result property is read

by an event handler, the processing of the event handler would be suspended while the sub-

routine is run. The subroutine would perform its calculations, and store the result into the

result property. When the subroutine finished, control would return to the suspended

A Programming System for Children that is Designed for Usability 171

Future Work

event handler, and it would receive the result as a consequence of having read the result

property.

The subroutine would be programmed as an event handler responding to a new kind of

event: <identifier> is run.

For example, consider how a dice-rolling subroutine might be created. A card dice might

have a sides property, indicating the number of faces of the dice. A caller could set this

property to 6, for example, then attempt to read the dice’s result. This would sus-

pend the caller and call the event handler for when dice is run. This event handler

could animate the dice by inserting a series of pictures into the back property, and use the

random function to produce a random number between 1 and the value in dice’s

sides, storing the result into dice’s result. When the dice event handler finishes,

control would return to the caller, and the value read from the dice’s result would

be the same value that was set by the subroutine.

Unfortunately, this mechanism would not support recursion unless the subroutine has a pri-

vate copy of the dice card’s properties that cannot be corrupted by other invocations of the

same subroutine. Further work is required to address this problem in a way that is easy to

understand and within the card model. One idea is to have the subroutine run on a com-

pletely separate table with a copy of the one card that represents the subroutine and its

parameters. Additional private cards could be present on this other table, but none of the

other cards from the original table (global data) would be accessible to the subroutine. This

would open the possibility of having multiple event handlers involved in the subroutine’s

computation, and raises the possibility of multithreading, with its attendant issues of inter-

process communication, synchronization, deadlock, and starvation. Work would also have

to be done to provide a simple concrete representation for these subprograms that allows

the programmer to collect together the needed cards and event handlers. This would be an

interesting and fertile area to explore.

7.2.2 Multiple Agents

My original idea for the HANDS model of computation had multiple agents sitting at the

table (see Section 6.8 on page 163). In fact, this capability is built-in to the underlying

172 A Programming System for Children that is Designed for Usability

Future Work

HANDS system but is not exposed in the user interface because it was believed to be too

confusing for children. However, having multiple agents would enable many interesting

ideas to be explored in HANDS.

The cards in the hands of the agents would represent private data which is not accessible to

other agents. These agents could be used to modularize the code, so that related event han-

dlers and data could be kept separate from unrelated ones. When new capabilities are

imported into a program (see Section 5.19 on page 145), they could be automatically stored

into a new agent to help keep the program organized. Agents could be used to represent

thread or processes running on local or remote processors, and cards could be used for pri-

vate communication between these processes. The table itself would be the global data

store, like in blackboard architectures in AI [Carver 1994] and tuple spaces in Linda [Car-

riero 1989]. Agents could be turned on and off to enable and disable program features or to

implement modes.

One issue to examine is the current policy that all cards must have a unique name through-

out the whole system. Private cards in the hand of one agent would be invisible to other

agents, so it may be possible to relax this constraint so that all cards must unique names

only from each agent’s point of view. That is, two agents could hold private cards with the

same name. An agent could act as a namespace, but the system would have to have a con-

sistent way to handle cards that are put down onto the table (which makes them globally

visible) or passed to other agents.

7.2.3 Graphics Primitives

HANDS only supports import of graphical pictures, and should be extended so that the pro-

grammer can draw graphics (such as lines, circles, etc.) onto the screen. One idea, to stay

within the card model, is to allow the programmer to create a blank card of a certain size

and position, and then draw the graphics primitives into the back slot of this card.

7.2.4 Improvements to Collision Detection and Animation

Engineering improvements to the HANDS runtime engine could solve many of the prob-

lems described in Section 5.17.1 on page 141. For example, the collision detection and ani-

mation mechanism could work more closely together to use the actual object boundaries

A Programming System for Children that is Designed for Usability 173

Future Work

instead of bounding boxes; handle multi-object collisions in a more sophisticated manner

than the current multiple pairwise collisions; to enable programmers to handle collisions

without penetration; and to determine the exact points of collisions. A further improvement

would be to extend the animation and collision engines to handle 3-dimensional graphics.

7.2.5 Timers

Timers are an important missing feature in the current HANDS system. I have some pre-

liminary ideas of how to use cards to provide timing mechanisms. Like the speed and direc-

tion properties which are monitored by the animation mechanism, other properties of cards

could be monitored by a timing mechanism. For example, the timer might recognize a card

with a countdown property, decrement the value of this property every second (or milli-

second), and generate a <identifier> expired event when the countdown prop-

erty reached zero. Similarly, an expires property might cause a card to be automatically

deleted when the value reaches zero.

7.2.6 Match Forms

Match forms (Chapter 4) are designed to be incorporated into the HANDS system.

Although match forms can express arbitrarily complex queries in disjunctive normal form,

this is sometimes less concise than unrestricted Boolean expressions would allow. This

could be relieved somewhat by allowing an entire form to be negated (“objects that do not

match ...”). The match forms in HANDS would also have property names alongside the val-

ues, like cards do, so the programmer can easily restrict the match of a value to a specific

property.

7.2.7 Widget Library

A large fraction of the code in the simulation sample program written in HANDS (Figure 6-

8 on page 158) was dedicated to managing widgets. A future version of HANDS could pro-

vide a library of widgets, such as scroll bars, buttons, text panes, etc. The interfaces to these

widgets would be through card properties, but their behaviors could be automatic, reducing

the amount of code that a programmer would have to write to make these widgets work.

174 A Programming System for Children that is Designed for Usability

Future Work

7.2.8 Dealing with Large Numbers of Cards

The visibility of cards is an advantage for smaller programs, but can become a problem in

programs with a very large number of cards. The HANDS model needs a way to collect

groups of related cards, such as piles, decks, or paperclips. In HANDS, there is already a

new card pile and discard pile (accessible from code but not visible in the user interface).

Other piles could be used to provide special features, like the shuffle feature in GAMUT

[McDaniel 1999], which is used to randomly select one card to be visible at the top of the

pile. Piles might be displayed in various ways, such as all stacked up where only the top

card is showing, or spread out like in solitaire card games. Card piles might be used to rep-

resent all of the cards in a subroutine (Section 7.2.1 on page 170) or all of an agent’s cards

(Section 7.2.2 on page 171). Piles of cards might be used to group graphical objects, so that

they move around together on the screen and can be manipulated as if they were a single

object. Open issues are whether these collections should have names, and whether the exist-

ing features of HANDS, such as lists, will allow these groups to be manipulated without

adding a new collection data type.

7.2.9 Editing and Debugging Support

Much work can be done to support editing and debugging programs. Some examples are:

• the system could support a drag-and-drop syntax-directed editor, as seen in Squeak’s

eToys interface [Steinmetz 2001] and other systems.

• the system could include a spelling checker that watches for possible spelling errors, of

language syntax as well as identifiers. For example, if there is a nectar property on a

card, and the programmer writes code to set the necter property, the system might

ask the user if he/she really intends to create a new property so similar to the existing

nectar property. This relates to the old do what I mean (DWIM) mechanism of Inter-

lisp [Teitelman 1981], but modern spell checking technologies and user interfaces can

be used to make it more successful than DWIM was.

• a file dialog could come up so that the programmer doesn’t have to enter the image file-

name into the back property. If the entry in the back property looks like a file name (i.e.,

it ends in “.gif” or “.jpg”) but the file is not found or doesn’t contain an image, the

A Programming System for Children that is Designed for Usability 175

Future Work

system might explain the problem to the user instead of simply displaying the filename

as a string on the back of the card.

7.2.10 HANDS as a Complete Package for Teachers and Students

In addition to adding many of the features listed above, and improving the general robust-

ness of the system, there would be more work involved in turning HANDS into a “com-

plete” package that could be used by many students and teachers. The HANDS system

would have to be supplemented with complete tutorials and study materials, and a curricu-

lum for use in schools. A big library of pictures and sample code should be provided,

including libraries for creating a full suite of programs, so that HANDS will be a fertile

environment for long-term study. In order to extend the kinds of problems students could

work on beyond games and simulations, additional libraries and domain-specific features

could be added for creating business programs and for hooking into the user-interface com-

ponents that are available in the Swing toolkit or the OS-native windowing systems such

as Windows or Macintosh.

7.3 Applications of Results to Other Areas
There are several ways that this research could impact other areas of computer science.

7.3.1 Model of Computation

The HANDS model of computation is a new way of describing and thinking about pro-

grams. It would be very interesting to push this computational model, to see if it is a gen-

erally useful way to represent large programs and whether it offers any benefits over

existing models of computation used by experienced programmers. Several extensions to

the model are proposed above in Section 7.2 on page 170, and surely more will become

necessary as the model is tested.

7.3.2 Export Features to Other Languages

The query and aggregate operations in HANDS, and the way they work in combination, are

powerful and useful to beginners. I believe they would also be very useful for other types

of end-user programming tasks, such as multimedia and web authoring, as well as for expe-

rienced programmers. It would be interesting to explore how these features, especially que-

176 A Programming System for Children that is Designed for Usability

Future Work

ries, might be efficiently implemented in professional programming languages, and how

their availability might affect programmers’ productivity and bug rates. If these features are

shown to be successful in a professional programming setting, it is more likely that the

designers of future programming languages will incorporate them.

7.3.3 Influence Design Process for Future Languages and Domains

The process used in designing the HANDS system, and the knowledge gathered along the

way is now available for the designers of future programming languages. As mentioned in

Chapter 1, the design of the system is dependent on the target group of people who will be

using the system, including their cultural background and their place in history. The process

can and should be applied over and over to building systems for various audiences over

time. Hopefully, this will eventually cause all new programming languages to become

more usable.

7.3.4 Applications of Match Forms

In Chapter 4, Match Forms were shown to be better than textual query languages in a study

of non-programmers. Already, this research has influenced the interface for the search

engine at the HCI Bibliography (www.hcibib.org), and early analysis shows it to have

improved usability (Section 4.9 on page 84). Match Forms could be deployed in many

places on the web and in other online databases, to improve the usability of search engines.

A Programming System for Children that is Designed for Usability 177

CHAPTER 8 Conclusion

This thesis is a case study of a new, human-centered approach to the design of program-

ming languages. It tracks the design and evaluation of a new programming system for chil-

dren, describing how HCI techniques and evidence from the literature, as well as new

studies investigating unaddressed questions, impacted the design and selection of features

for the system.

8.1 Contributions
This section summarizes the contributions of this thesis.

8.1.1 Design Process

This thesis describes and exemplifies a new design process for programming systems,

where first a target audience and domain are identified, and then the target audience is stud-

ied to examine the ways they solve problems and the problems they encounter when trying

to program. This information is used to design the new system, and the system is then eval-

uated for usability. Any problems uncovered are fed back into redesign.

Specifically, this thesis targets ten year old children creating interactive games and simula-

tions. In addition to studying the literature about children and beginner programmers, I per-

178 A Programming System for Children that is Designed for Usability

Conclusion

formed three new studies to gain a better understanding of this group. I then designed a new

system, refined the design based on early testing, and then evaluated the system in a user

study.

8.1.2 HANDS

This thesis resulted in a new programming system for children, called HANDS, with a

unique set of features due to its user-centered design. In addition to the HANDS program-

ming system as a standalone artifact, HANDS embodies features that may be broadly

useful in other languages.

HANDS incorporates a new model of computation, or way of thinking about programs, that

is concrete and based on familiar concepts, unlike the traditional Turing machine or von

Neumann machine models. In HANDS, all data is stored on cards, which are visible on a

table. An agent named Handy manipulates the cards in response to events.

HANDS also incorporates a general-purpose programming language that offers database-

style access to the program’s data, and in which all operators can be uniformly applied to

singletons and lists. Three of the features in HANDS, queries, aggregate operations, and

the high visibility of data, were demonstrated to be more usable than the features found in

typical programming systems.

8.1.3 Tabular Method for Expressing Boolean Queries

This thesis describes Match Forms, a new tabular method I invented for expressing Bool-

ean queries. Match Forms were compared to textual expressions and shown to improve

beginners’ performance.

The match form research was applied to creating a new search interface for the HCI Bibli-

ography (www.hcibib.org), and preliminary analysis comparing it with the old search inter-

face shows that it has reduced users’ error rates.

8.1.4 User Studies

Several empirical user studies were conducted as part of this thesis. Two studies examined

how non-programmers express problem solutions, and provided empirical data that be used

to help designers generate and select programming system features that provide a close

A Programming System for Children that is Designed for Usability 179

Conclusion

mapping between those problem solutions and their expression in program code. An addi-

tional study provided empirical evidence characterizing the kinds of errors made by inex-

perienced users of textual Boolean expressions.

A user study of HANDS demonstrated the effectiveness of queries, aggregate operations,

and high-visibility of data, in comparison to the typical features sets of programming sys-

tems. This study also provides evidence that children who had never programmed before

were able to learn to program in a three hour session with HANDS.

8.1.5 Survey of Prior Work

The thesis also includes a broad survey of the prior work on beginner programmers, orga-

nized in a form that can be used by other programming system designers. This survey

appears in Appendix C.

8.2 Closing Remarks
This thesis set out to demonstrate that programming systems can be made significantly

more usable by applying a human-centered design process. This goal has been achieved.

The thesis statement set forth in the Chapter 1 has been validated: “this user-centered

design process, incorporating principles from human-computer interaction, psychology of

programming, and empirical studies, will result in a unique programming system that is

easier to learn and use than more conventional programming systems.” The combined con-

tributions of the HANDS system, the facts discovered about non-programmers, and the

design process described in this thesis promise to have a broad impact on improving the

usability of computer programming in the future.

180 A Programming System for Children that is Designed for Usability

Conclusion

A Programming System for Children that is Designed for Usability 181

CHAPTER 9 References

Anderson, J.R. and Jeffries, R. (1985). “Novice LISP Errors: Undetected Losses of Infor-
mation from Working Memory.” Human-Computer Interaction 1: 107-131.

Anick, P.G., Brennan, J.D., Flynn, R.A., Hanssen, D.R., Alvey, B. and Robbins, J.M.
(1990). A Direct Manipulation Interface for Boolean Information Retrieval via Nat-
ural Language Query. Proceedings of the Thirteenth Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. Brus-
sels, Belgium: 135-150.

Baraff, D. (1989). “Analytical Methods for Dynamic Simulation of Non-Penetrating Rigid
Bodies.” Computer Graphics 23(3): 223-232.

Biermann, A.W., Ballard, B.W. and Sigmon, A.H. (1983). “An Experimental Study of Nat-
ural Language Programming.” International Journal of Man-Machine Studies 18(1):
71-87.

Blackwell, A.F. (1996). Metacognitive Theories of Visual Programming: What Do We
Think We Are Doing? Proceedings of the VL'96 IEEE Symposium on Visual Lan-
guages. Boulder, CO, IEEE Computer Society Press: 240-246.

Blackwell, A.F. and Green, T.R.G. (2000). A Cognitive Dimensions Questionnaire Opti-
mised for Users. Proceedings of the 12th Annual Meeting of the Psychology of Pro-

182 A Programming System for Children that is Designed for Usability

References

grammers Interest Group. A. F. Blackwell and E. Bilotta. Corigliano Calabro, Italy,
Edizioni Memoria: 137-154.

Bonar, J. and Soloway, E. (1989). Preprogramming Knowledge: A Major Source of Mis-
conceptions in Novice Programmers. Studying the Novice Programmer. E. Soloway
and J. C. Spohrer. Hillsdale, NJ, Lawrence Erlbaum Associates: 325-353.

Bonar, J.G. and Cunningham, R. (1988). Bridge: Tutoring the Programming Process.
Intelligent Tutoring Systems: Lessons Learned. J. Psotka, L. D. Massey and S. A.
Mutter. Hillsdale, NJ, Lawrence Erlbaum Associates: 409-434.

Bourne, L.E. (1966). Human Conceptual Behavior. Boston, Allyn & Bacon.

Bruckman, A. and Edwards, E. (1999). Should We Leverage Natural-Language Knowl-
edge? An Analysis of User Errors in a Natural-Language-Style Programming Lan-
guage. Proceedings of the 1999 Conference on Human Factors in Computing
Systems. Pittsburgh, PA, ACM Press: 207-214.

Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A. and Miller, P. (1997).
“Mini-languages: A Way to Learn Programming Principles.” Education and Infor-
mation Technologies 2(1): 65-83.

Carriero, N. and Gelernter, D. (1989). “Linda in Context.” Communications of the ACM
32(4): 444-458.

Carver, N. and Lesser, V. (1994). “The Evolution of Blackboard Control Architectures.”
Expert Systems with Applications 7(1): 1-30.

Conway, D.M. (1998). An Algorithmic Approach to English Pluralization. Proceedings of
the Second Annual Perl Conference. C. Salzenberg. San Jose, CA, O'Reilly.

Conway, M., Audia, S., Burnette, T., Cosgrove, D., Christiansen, K., Deline, R., Durbin,
J., Gossweiler, R., Koga, S., Long, C., Mallory, B., Miale, S., Monkaitis, K., Patten,
J., Pierce, J., Shochet, J., Staack, D., Stearns, B., Stoakley, R., Sturgill, C., Viega, J.,
White, J., Williams, G. and Pausch, R. (2000). Alice: Lessons Learned from Build-
ing a 3D System for Novices. Proceedings of CHI2000 Conference on Human Fac-
tors in Computing Systems. T. Turner and G. Szwillis. The Hague, Netherlands,
ACM Press: 486-493.

Conway, M.J. (1997). Alice: Easy-to-Learn 3D Scripting for Novices. Ph.D. Thesis. Uni-
versity of Virginia. School of Engineering and Applied Science, 242 pages.

A Programming System for Children that is Designed for Usability 183

References

Cordy, J.R. (1992). Hints on the Design of User Interface Language Features – Lessons
from the Design of Turing. Languages for Developing User Interfaces. B. A. Myers.
Boston, Jones and Bartlett: 329-340.

Cypher, A. and Smith, D.C. (1995). KidSim: End User Programming of Simulations. Pro-
ceedings of CHI'95 Conference on Human Factors in Computing Systems. Denver,
ACM: 27-34.

Davies, S.P. (1993). Externalising Information During Coding Activities: Effects of
Expertise, Environment and Task. Empirical Studies of Programmers: Fifth Work-
shop. C. R. Cook, J. C. Scholtz and J. C. Spohrer. Palo Alto, CA, Ablex Publishing
Corporation: 42-61.

Détienne, F. (1990). Difficulties in Designing with an Object-Oriented Programming Lan-
guage: An Empirical Study. Proceedings of INTERACT '90 Conference on Com-
puter-Human Factors. Cambridge, England: 971-976.

Détienne, F. (2001). Software Design: Cognitive Aspects. London, Springer.

DiGiano, C., Kahn, K., Cypher, A. and Smith, D.C. (2001). “Integrating Learning Sup-
ports into the Design of Visual Programming Systems.” Journal of Visual Languages
& Computing 12(5): 501-524.

DiGiano, C.J. (1996). Self-Disclosing Design Tools: An Incremental Approach Toward
End-User Programming. Boulder, CO, University of Colorado: Department of Com-
puter Science Technical Report CU-CS-822-96, 154 pages.

diSessa, A.A. and Abelson, H. (1986). “Boxer: A Reconstructible Computational
Medium.” Communications of the ACM 29(9): 859-868.

du Boulay, B. (1989a). Some Difficulties of Learning to Program. Studying the Novice
Programmer. E. Soloway and J. C. Spohrer. Hillsdale, NJ, Lawrence Erlbaum Asso-
ciates: 283-299.

du Boulay, B., O'Shea, T. and Monk, J. (1989b). The Black Box Inside the Glass Box: Pre-
senting Computing Concepts to Novices. Studying the Novice Programmer. E. Solo-
way and J. C. Spohrer. Hillsdale, NJ, Lawrence Erlbaum Associates: 431-446.

Earhart, C., Ed. (1999). Stagecast Creator Teacher's Guide. Palo Alto, CA, Stagecast Soft-
ware, http://www.stagecast.com.

184 A Programming System for Children that is Designed for Usability

References

Essens, P.J.M.D., McCann, C.A. and Hartevelt, M.A. (1992). An Experimental Study of
the Interpretation of Logical Operators in Database Querying. Cognitive Ergonom-
ics: Contributions from Experimental Psychology. G. C. v. d. Veer, S. Bagnara and
G. A. M. Kempen. Amsterdam, North-Holland, Elsevier Science Publishers: 201-
225.

Finzer, W.F. and Gould, L. (1993). Rehearsal World: Programming by Rehearsal. Watch
What I Do: Programming by Demonstration. A. Cypher, MIT Press.

Galotti, K.M. and Ganong, W.F., III (1985). “What Non-Programmers Know About Pro-
gramming: Natural Language Procedure Specification.” International Journal of
Man-Machine Studies 22: 1-10.

Glass, R.L. (1995). “OO Claims – Naturalness, Seamlessness Seem Doubtful.” Software
Practitioner 5(2).

Goodman, D. (1987). The Complete HyperCard Handbook. New York, Bantam Books.

Gould, L. and Finzer, W. (1984). “Programming by Rehearsal.” BYTE Magazine 9(6).

Green, T.R.G. (1990). The Nature of Programming. Psychology of Programming. J.-M.
Hoc, T. R. G. Green, R. Samurçay and D. J. Gilmore. London, Academic Press: 21-
44.

Green, T.R.G. and Petre, M. (1992). When Visual Programs are Harder to Read than Tex-
tual Programs. Human-Computer Interaction: Tasks and Organisation, Proceedings
of ECCE-6 (6th European Conference on Cognitive Ergonomics). G. C. van der
Veer, M. J. Tauber, S. Bagnarola and M. Antavolits. Rome, CUD.

Green, T.R.G. and Petre, M. (1996). “Usability Analysis of Visual Programming Environ-
ments: A 'Cognitive Dimensions' Framework.” Journal of Visual Languages and
Computing 7(2): 131-174.

Greene, S.L., Devlin, S.J., Cannata, P.E. and Gomez, L.M. (1990). “No IFs, ANDs, or
ORs: A Study of Database Querying.” International Journal of Man-Machine Stud-
ies 32(3): 303-326.

Grice, H.P. (1975). Logic and Conversation. Syntax and Semantics III: Speech Acts. P.
Cole and J. Morgan. New York, Academic Press.

A Programming System for Children that is Designed for Usability 185

References

Gross, P. (1999). Director 7 and Lingo Authorized, Peachpit Press.

Hays, J.G. and Burnett, M.M. (1995). A Guided Tour of Forms/3, Oregon State Univer-
sity: Dept. of Computer Science Technical Report 95-60-6.

Hildreth, C. (1988). Intelligent Interfaces and Retrieval methods for Subject Search in
Bibliographic Retrieval Systems. Research, Education, Analysis & Design. Spring-
field, IL.

Hix, D. and Hartson, H.R. (1993). Developing User Interfaces: Ensuring Usability
Through Product and Process. New York, New York, John Wiley & Sons, Inc.

Hoc, J.-M. (1989). Do We Really Have Conditional Statements in Our Brains? Studying
the Novice Programmer. E. Soloway and J. C. Spohrer. Hillsdale, NJ, Lawrence
Erlbaum Associates: 179-90.

Hoc, J.-M., Green, T.R.G., Samurçay, R. and Gilmore, D.J., Eds. (1990a). Psychology of
Programming. Computers and People Series. London, Academic Press.

Hoc, J.-M. and Nguyen-Xuan, A. (1990b). Language Semantics, Mental Models and
Analogy. Psychology of Programming. J.-M. Hoc, T. R. G. Green, R. Samurçay and
D. J. Gilmore. London, Academic Press: 139-156.

Hutchins, E.L., Hollan, J.D. and Norman, D.A. (1986). Direct Manipulation Interfaces.
Hillsdale, NJ, Lawrence Erlbaum Associates.

Ingalls, D.H.H. (1981). Design Principles Behind Smalltalk. BYTE Magazine, August
1981.

Joers, J. (1999). Stagecast Creator Creator's Guide. Palo Alto, CA, Stagecast Software,
http://www.stagecast.com/.

Jones, S. (1998). Graphical Query Specification and Dynamic Result Previews for a Digi-
tal Library. Proceedings of the ACM Symposium on User Interface Software and
Technology: 143-151.

Kahn, K. (1996). “ToonTalk: An Animated Programming Environment for Children.”
Journal of Visual Languages and Computing 7(2): 197-217.

186 A Programming System for Children that is Designed for Usability

References

Kahn, K. (1999). From Prolog and Zelda to ToonTalk. Proceedings of the 1999 Interna-
tional Conference on Logic Programming. D. De Schreye, MIT Press.

Kohl, A. and Rupietta, W. (1987). The Natural Language Metaphor: An Approach to Avoid
Misleading Expectations. Proceedings of IFIP INTERACT'87: Human-Computer
Interaction: 555-560.

Lewis, C. and Olson, G.M. (1987). Can Principles of Cognition Lower the Barriers to Pro-
gramming? Empirical Studies of Programmers: Second Workshop. G. M. Olson, S.
Sheppard and E. Soloway. Norwood, NJ, Ablex: 248-263.

Martin, F.G. and Resnick, M. (1993). LEGO/Logo and Electronic Bricks: Creating a Sci-
enceland for Children. Advanced Educational Technologies for Mathematics and
Science. D. L. Ferguson. Berlin, Springer-Verlag.

Mayer, R.E. (1989). The Psychology of How Novices Learn Computer Programming.
Studying the Novice Programmer. E. Soloway and J. C. Spohrer. Hillsdale, NJ,
Lawrence Erlbaum Associates: 129-159.

McDaniel, R. (1999). Building Whole Applications Using Only Programming-by-Demon-
stration. Ph.D. Thesis. Carnegie Mellon University. Computer Science Department.
Pittsburgh, PA, 271 pages.

McIver, L.K. (2001). Syntactic and Semantic Issues in Introductory Programming Educa-
tion. Ph.D. Thesis. Monash University. School of Computer Science and Software
Engineering. Australia, 200 pages.

McQuire, A. and Eastman, C.M. (1995). Ambiguity of Negation in Natural Language
Queries. Proceedings of the Eighteenth Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval: 373.

Michard, A. (1982). “Graphical Presentation of Boolean Expressions in a Database Query
Language: Design Notes and an Ergonomic Evaluation.” Behaviour and Information
Technology 1(3): 279-288.

Miller, L.A. (1974). “Programming by Non-Programmers.” International Journal of Man-
Machine Studies 6(2): 237-260.

Miller, L.A. (1981). “Natural Language Programming: Styles, Strategies, and Contrasts.”
IBM Systems Journal 20(2): 184-215.

A Programming System for Children that is Designed for Usability 187

References

Miller, P., Pane, J., Meter, G. and Vorthmann, S. (1994). “Evolution of Novice Program-
ming Environments: The Structure Editors of Carnegie Mellon University.” Interac-
tive Learning Environments 4(2): 140-158.

Modugno, F. (1995). Extending End-User Programming in a Visual Shell with Program-
ming by Demonstration and Graphical Language Techniques. Ph.D. Thesis. Carn-
egie Mellon University. Computer Science Department. Pittsburgh, PA, 334 pages.

Modugno, F., Corbett, A.T. and Myers, B.A. (1996). Evaluating Program Representation
in a Visual Shell. Empirical Studies of Programmers: Sixth Workshop. W. D. Gray
and D. A. Boehm-Davis. Norwood, NJ, Ablex Publishing Corporation: 131-146.

Mulholland, P. and Watt, S.N.K. (2000). “Learning by Building: A Visual Modelling Lan-
guage for Psychology Students.” Journal of Visual Languages and Computing 11(5):
481-504.

Myers, B.A. (1992). “Demonstrational Interfaces: A Step Beyond Direct Manipulation.”
IEEE Computer 25(8): 61-73.

Nardi, B.A. (1993). A Small Matter of Programming: Perspectives on End User Comput-
ing. Cambridge, MA, The MIT Press.

Newell, A. and Card, S.K. (1985). “The Prospects for Psychological Science in Human-
Computer Interaction.” Human-Computer Interaction 1(3): 209-242.

Nielsen, J. (1994). Heuristic Evaluation. Usability Inspection Methods. J. Nielsen and R.
L. Mack. New York, John Wiley & Sons: 25-62.

Pane, J.F. and Myers, B.A. (1996). Usability Issues in the Design of Novice Programming
Systems. Pittsburgh, PA, Carnegie Mellon University: School of Computer Science
Technical Report CMU-CS-96-132, 85 pages.

Pane, J.F. and Myers, B.A. (2000). Tabular and Textual Methods for Selecting Objects
from a Group. Proceedings of VL 2000: IEEE International Symposium on Visual
Languages. Seattle, WA, IEEE Computer Society: 157-164.

Pane, J.F., Ratanamahatana, C.A. and Myers, B.A. (2001). “Studying the Language and
Structure in Non-Programmers’ Solutions to Programming Problems.” International
Journal of Human-Computer Studies 54(2): 237-264.

188 A Programming System for Children that is Designed for Usability

References

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York,
Basic Books.

Pattis, R.E., Roberts, J. and Stehlik, M. (1995). Karel the Robot: A Gentle Introduction to
the Art of Programming. New York, John Wiley & Sons.

Pea, R. (1986). “Language-Independent Conceptual “Bugs” in Novice Programming.”
Journal of Educational Computing Research 2(1).

Pictorius (1996). Prograph CPX User Guide. Halifax, Nova Scotia, Pictorius Incorporated,
http://www.pictorius.com/prograph.html.

Repenning, A. (2000). AgentSheets®: an Interactive Simulation Environment with End-
User Programmable Agents. Interaction 2000, Tokyo, Japan.

Repenning, A. and Sumner, T. (1995). “Agentsheets: A Medium for Creating Domain-Ori-
ented Visual Languages.” Computer 28: 17-25.

Resnick, M. (1994). Turtles, Termites, and Traffic Jams: Explorations in Massively Paral-
lel Microworlds. Boston, The MIT Press.

Sammet, J.E. (1981). The Early History of COBOL. History of Programming Languages.
R. Wexelblat. New York, Academic Press.

Sherwood, B.A. (1988). The cT Language. Champaigne, IL, Stipes Publishing Company.

Shneiderman, B. (1983). “Direct Manipulation: A Step Beyond Programming Languages.”
IEEE Computer 16(8): 57-69.

Smith, D.C. (2000). “Building Personal Tools by Programming.” Communications of the
ACM 43(8): 92-95.

Smith, D.C., Cypher, A. and Spohrer, J. (1994). “KidSim: Programming Agents Without a
Programming Language.” Communications of the ACM 37(7): 54-67.

Soloway, E., Bonar, J. and Ehrlich, K. (1989a). Cognitive Strategies and Looping Con-
structs: An Empirical Study. Studying the Novice Programmer. E. Soloway and J. C.
Spohrer. Hillsdale, NJ, Lawrence Erlbaum Associates: 191-207.

A Programming System for Children that is Designed for Usability 189

References

Soloway, E. and Spohrer, J.C., Eds. (1989b). Studying the Novice Programmer. Hillsdale,
NJ, Lawrence Erlbaum Associates.

Spohrer, J.G. and Soloway, E. (1986). Analyzing the High Frequency Bugs in Novice Pro-
grams. Empirical Studies of Programmers. E. Soloway and S. Iyengar. Washington,
DC, Ablex Publishing Corporation: 230-251.

Stein, L.A. (1999). “Challenging the Computational Metaphor: Implications for How We
Think.” Cybernetics and Systems 30(6): 473-507.

Steinmetz, J. (2001). Computers and Squeak as Environments for Learning. Squeak: Open
Personal Computing and Multimedia. M. Guzdial and K. Rose, Prentice Hall: 453-
482.

Tanaka, J. (1999). The Perfect Search. Newsweek. 134: 71, September 27 1999.

Teitelman, W. and Masinter, L. (1981). “The Interlisp Programming Environment.” Com-
puter 14(4): 25-34.

Thimbleby, H., Cockburn, A. and Jones, S. (1992). HyperCard: An Object-Oriented Dis-
appointment. Building Interactive Systems: Architectures and Tools. P. Gray and R.
Took. New York, Springer-Verlag: 35-55.

Thomas, J. and Gould, J. (1975). A Psychological Study of Query by Example. National
Computer Conference. Anaheim, CA, AFIPS. 44: 439-445.

Turtle, H. (1994). Natural Language vs. Boolean Query Evaluation: A Comparison of
Retrieval Performance. Proceedings of the Seventeenth Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval: 212-
220.

Wason, P.C. (1959). “The Processing of Positive and Negative Information.” Quarterly
Journal of Experimental Psychology 11.

Webgain (2001). JavaCC - The Java Parser Generator, http://www.webgain.com/products/
metamata/java_doc.html.

Weinberg, G.M. (1971). The Psychology of Computer Programming. New York, Van Nos-
trand Reinhold Company.

190 A Programming System for Children that is Designed for Usability

References

Wilcox, E. and Burnett, M. Programming a Single Digit LED in Forms/3 http://
www.cs.orst.edu/~burnett/Forms3/LED.html.

Young, D. and Shneiderman, B. (1993). “A Graphical Filter/Flow Representation of Bool-
ean Queries: A Prototype Implementation and Evaluation.” Journal of American
Society for Information Science 44(6): 327-339.

