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Abstract

Combinatorial auctions where agents can bid on bundles of items are desirable be-
cause they allow the agents to express complementarity and substitutability between
the items. However, expressing one’s preferences can require bidding on all bundles.
Selective incremental preference elicitation by the auctioneer was recently proposed
to address this problem [4], but the idea was not evaluated. In this paper we show,
experimentally and theoretically, that automated elicitation provides a drastic benefit.
In all of the elicitation schemes under study, as the number of items for sale increases,
the amount of information elicited is a vanishing fraction of the information collected
in traditional “direct revelation mechanisms” where bidders reveal all their valuation
information. Most of the elicitation schemes also maintain the benefit as the number
of agents increases. We develop more effective elicitation policies for existing query
types. We also present a new query type that takes the incremental nature of elicitation
to a new level by allowing agents to give approximate answers that are refined only on
an as-needed basis. In the process, we present methods for evaluating different types
of elicitation policies.

This material is based upon work supported in part by the National Science Foundation under
CAREER Award IRI-9703122, Grant IIS-9800994, ITR IIS-0081246, and ITR IIS-0121678.

The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of NSF or the
U.S. government.



Keywords: combinatorial auction, preference elicitation



1 Introduction

Combinatorial auctions, where agents can submit bids onbundlesof items, are eco-
nomically efficient mechanisms for sellingk items ton bidders, and are attractive when
the bidders’ valuations on bundles exhibitcomplementarity(a bundle of items is worth
more than the sum of its parts) and/orsubstitutability(a bundle is worth less than the
sum of its parts). Determining the winners in such auctions is a complex optimization
problem that has recently received considerable attention (e.g., [1,6,7,9,13,19,24–26]).

An equally important problem, which has received much less attention, is that of
bidding. There are2k�1 bundles, and each agent may need to bid on all of them to fully
express its preferences. This can be undesirable for any of several reasons: determining
one’s valuation for any given bundle can be computationally intractable [10,11,16,21,
23]; there is a huge number of bundles to evaluate; communicating the bids can incur
prohibitive overhead (e.g., network traffic); and agents may prefer not to reveal all of
their valuation information due to reasons of privacy or long-term competitiveness [20].
Appropriate bidding languages [7,9,13,22,24] can solve the communication overhead
in some cases (when the bidder’s utility function is compressible). However, they still
require the agents to completely determine and transmit their valuation functions and
as such do not solve all the issues. So in practice, when the number of items for sale is
even moderate, the bidders will not bid on all bundles. Instead, they may wastefully bid
on bundles which they will not win, and they may suffer reduced economic efficiency
by failing to bid on bundles they would have won.

Selective incremental preference elicitation by the auctioneer was recently pro-
posed to address these problems [4], but the idea was not evaluated. We implemented
the most promising elicitation schemes from that paper, starting from a rigid search-
based scheme and continuing to a general flexible elicitation framework. We evaluated
the previous schemes, and also developed a host of new elicitation policies. Our experi-
ments show that elicitation reduces revelation drastically, and that this benefit increases
with problem size. We also provide theoretical results on elicitation policies. Finally,
we introduce and evaluate a new query type that takes the incremental nature of elic-
itation to a new level by allowing agents to give approximate answers that are refined
only on an as-needed basis.

2 Auction and elicitation setting

We model the auction as having a single auctioneer selling a setK of items ton bid-
der agents (letk = jKj). Each agenti has avaluation functionvi : 2K 7! R that
determines a finite private valuevi(b) for each bundleb � K. We make the usual
assumption that the agents have free disposal, that is, adding items to an agent’s bundle
never makes the agent worse off because, at worst, the agent can dispose of extra items
for free. Formally,8b � K; b0 � b, vi(b) � vi(b

0). The techniques of the paper could
also be used without free disposal, although more elicitation would be required due to
lessa priori structure.

At the start of the auction, the auctioneer knows the items and the agents, but has no
information about the agents’ value functions over the bundles—except that the agents
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have free disposal. The auction proceeds by having the auctioneer incrementallyelicit
value function information from the agents one query at a time until the auctioneer
has enough information to determine an optimal allocation of items to agents. There-
fore, we also call the auctioneer theelicitor. An allocation is optimal if it maximizes
social welfare

Pn

i=1 vi(bi), wherebi is the bundle that agenti receives in the allo-
cation.1 The goal of the elicitor is to determine an optimal allocation with as little
elicitation as possible. A recent theoretical result shows that even with free disposal, in
the worst case, finding an (even only approximately) optimal allocation requires expo-
nential communication [14]. Therefore, we will judge the techniques successful if they
reduce communication from full revelation by an asymptotic amount.

3 Elicitor’s inference and constraint network

The elicitor, as we designed it, never asks a query whose answer could be inferred from
the answers to previous queries. To support the storing and propagation of information
received from the agents, we have the elicitor store its information in a constraint net-
work.2 Specifically, the elicitor stores a graph for each agent. In each graph, there is
one node for each bundleb. Each node is labeled by an interval[LBi(b);UBi(b)]. The
lower boundLBi(b) is the highest lower bound the elicitor can prove on the truevi(b)
given the answers received to queries so far. Analogously,UBi(b) is the lowest upper
bound. We say a bound istight when it is equal to the true value.

Each graph can also have directed edges. A directed edge(a; b) encodes the knowl-
edge that the agent prefers bundlea over bundleb (that is,vi(a) � vi(b)). The elicitor
may know this even without knowingvi(a) or vi(b). An edge(a; b) lets the elicitor
infer thatLBi(a) � LBi(b), which allows it to tighten the lower bound ona and on any
of a’s ancestors in the graph. Similarly, the elicitor can inferUBi(a) � UBi(b), which
allows it to tighten the upper bound onb and its descendants in the graph.

We define the relationa � b (read “a dominatesb”) to be true if we can prove that
vi(a) � vi(b). This is the case either ifLBi(a) � UBi(b), or if there is a directed path
from a to b in the graph. The free disposal assumption allows the elicitor to infer the
following dominance relations before the elicitation begins:8b � K; b0 � b, b � b0.

Because the� relation is transitive, to encode the free disposal constraints, we
only need to add edges from each bundlea to the bundlesb that include all but one
item ina. This allows us to encode all the free disposal information ink2k�1 edges per
agent3 rather than having to include in each graph one edge for each of the1

2
(3k � 1)

dominance relations.4

1Social welfare can only be maximized meaningfully if bidders’ valuations can be compared to each
other. We make the usual assumption that the valuations are measured in money (dollars) and thus can be
directly compared.

2This was included in theaugmented order graphof Conen & Sandholm [4].
3There are

�k
i

�
bundles withi items. A bundle withi items hasi outgoing edges (one for each item we

leave out). Therefore, we have
Pk

i=1 i
�k
i

�
= k2k�1 edges.

4Bundles with i items have 2i�1 children (every combination ofi items). So, there arePk
i=1 2

i�1
�k
i

�
= 1

2
(3k � 1) dominance relations.
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4 Rank lattice based elicitation

The elicitor can make use of non-cardinal rank information. Letbi(ri), 1 � ri � 2k, be
the bundle that agenti has at rankri. In other words,bi(1) is the agent’s most preferred
bundle,bi(2) is its second most preferred bundle, and so on untilbi(2

k), which is the
empty bundle.

For example, consider two agents 1 and 2 bidding on two itemsA andB, and the
following value functions:
v1(AB) = 8, v1(A) = 4, v1(B) = 3, v1(;) = 0
v2(AB) = 9, v2(A) = 1, v2(B) = 6, v2(;) = 0

So, agent 1 ranksAB first, A second,B third, and the empty bundle last. Agent 2
ranksAB first,B second,A third, and the empty bundle last.

The elicitor uses arank vectorr = hr1; r2; : : : ; rni to represent allocatingbi(ri)
to each agenti. Not all rank vectors are feasible: thebi(ri)’s might overlap in items,
which would correspond to giving the same item to multiple agents. For instance in
the example above, rank vectorh1; 2i corresponds to allocatingAB to agent 1 and
B to agent 2, which is infeasible. Similarly, rank vectorh2; 2i allocatesA to agent
1 andB to agent 2, which is a feasible allocation. The value of a rank vectorr is
v(b(r)) =

P
i vi(bi(ri)). Rank vectorh1; 2i in our example has value8 + 6 = 14,

while h2; 2i has value4 + 6 = 10.
The elicitor can put bounds onvi(bi(ri)) using the constraint network as before.

Even without knowingbi(ri) (which bundle it is that agenti valuesrith), it knows that
vi(bi(ri� 1)) � vi(bi(ri)) � vi(bi(ri+1)). Thus an upper bound onvi(bi(ri� 1)) is
an upper bound onvi(bi(ri)), and a lower bound onvi(bi(ri +1)) is a lower bound on
vi(bi(ri)). In our example, knowing onlyb1(1) = AB andv1(AB) = 8, the elicitor
can inferv1(b1(2)) � 8.

The set of all rank vectors defines arank lattice(Figure 1). A key observation in
the lattice is that the descendants of a node have lower (or equal) value to the node.

 

= infeasible[1,1]

[1,2] [2,1]

[2,3]

[3,1]

[3,2]

[2,4]

[3,4] [4,3]

[3,3] [4,2]

[4,4]

[1,4] [4,1]

[2,2][1,3]

Dominated

17

14 13

9 10 12

98

Figure 1: Rank lattice corresponding to the example. The gray nodes are infeasible.
The shaded area is the set of nodes dominated by feasible nodes. The number above
each node is the value of the node. At the outset, the auctioneer knows the structure of
the lattice, but knows neither the shadings nor the values of each node.

Given the rank lattice, we can employ search algorithms to find an optimal alloca-
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tion. In particular, by starting from the root and searching in best-first order (always
expanding the fringe node of highest value), we are guaranteed that the first feasible
node that is reached is optimal.
FINDOPTIMAL ()
1 FRINGE fh1; 1; : : : ; 1ig
2 while FRINGE 6= ;
3 r = FINDBESTNODE(FRINGE)
4 FRINGE FRINGE�frg
5 if r is feasible
6 return r
7 for eachr0 2 children(r)
8 if r0 =2 FRINGE
9 FRINGE FRINGE [ fr0g

Unlike in typical best-first search, algorithmFINDOPTIMAL does not necessarily
know which node of the fringe has highest value and thus should be expanded next.
Determining this often requires more elicitation. We implemented the following algo-
rithm for doing this. It corresponds to an elicitation policy where as long as we cannot
prove which node on the fringe is the best, we pick an arbitrary node and elicit just
enough information to determine its value.
FINDBESTNODE(FRINGE)

1 S  FRINGE
2 remove fromS all r dominated by somer0 in S
3 if all r 2 S have the same value
4 return arbitraryr 2 S
5 chooser 2 S whose value we don’t know exactly
6 for each agenti
7 if elicitor does not knowbi(ri)
8 ask agenti what bundle it ranksrith
9 if elicitor does not knowvi(bi(ri)) exactly

10 ask agenti for its valuation on bundlebi(ri)
11 goto2

In some cases,FINDBESTNODE can return a rank vectorr although not all bundles
bi(ri) are known to the elicitor. This can occur, for example, if the known valuations
in the rank vector already sum up to a large enough number. In that case, checking the
feasibility in step 5 ofFINDOPTIMAL requires eliciting the unknown bundlesbi(ri).

5 Experimental setup

While the idea and some algorithms for preference elicitation in combinatorial auctions
have been presented previously [4], they have not been validated. To evaluate the
usefulness of the idea, we conducted a host of experiments. We present the results in
the rest of the paper. Each plot shows how many queries were needed to find an optimal
allocation and prove that it is optimal (that no other allocation is better). In each plot,
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each point represents an average over 10 runs, where each run is on a different problem
instance (different draw of valuations for the agents). Each algorithm was tested on the
same set of problem instances.

Because the evaluation is based on the amount of information asked rather than
real-time, we did not optimize our algorithm implementations for time or space effi-
ciency, but only for elicitation efficiency. Generating all the plots in this paper took
two days of computer time on a 1 GHz Pentium III.

Unfortunately, real data for combinatorial auctions are not publicly available.5

Therefore, as in all of the other academic work on combinatorial auctions so far, we
used randomly generated data. We first considered using existing benchmark distri-
butions. However, the existing problem generators output instances with sparse bids,
that is, each agent bids on a relatively small number of bundles. This is the case for
the CATS suite of economically-motivated random problem instances [12] as well as
for the other prior benchmarks [1,6,7,24]. In such cases, the communication is a non-
issue, which undermines the purpose of elicitation. In addition, the instances generated
by many of the earlier benchmarks do not honor the free disposal constraints (because
for an agent, the value of a bundle can be less than that of a sub-bundle).

In many real settings, each bidder has a nonzero valuation for every bundle. For
example in spectrum auctions, each bidder has positive value for every bundle because
each item is of positive value to every bidder (at least due to renting and reselling
possibilities). In other settings, there may exist worthless items for some bidders. Even
in such cases, under the free disposal assumption, the bidders have positive valuations
for almost all bundles—except bundles that only contain worthless items (because, at
worst, they can throw away the extra items in any bundle for free).

To capture these considerations, we developed a new benchmark problem gener-
ator. In each problem instance we generate, each bidder has a nonzero valuation for
almost every bundle, and all valuations honor free disposal. Specifically, the genera-
tor assigns, for each agent in turn, integer valuations using the following routine. We
impose an arbitrary maximum bid valueMAXBID = 107 in order to avoid integer
arithmetic overflow issues, while at the same time allowing a wide range of values to
be expressed. Valuations generated with this routine exhibit both complementarity and
substitutability.
GENERATEBIDS(k)
1 G new constraint network
2 S  2K (the set of all bundles)
3 impose free disposal constraints onG
4 UB(K) MAXBID
5 while S 6= ;
6 pick b uniformly at random fromS
7 S  S � b
8 pickv(b) uniformly at random from[LB(b);UB(b)]
9 propagateLB(b) = UB(b) = v(b) throughG

5Furthermore, even if the data were available, they would only have some bids, not the full valuation
functions of the agents (because not all agents bid on all bundles).
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6 Experiments on rank lattice based elicitation

The first experiment evaluates the efficiency of rank lattice based elicitation, see Fig-
ure 2. We plot the number of rank queries made (the number of value queries is
never greater because a value query is only ever asked after the corresponding rank
query). For comparison, we plot the total number of value queries we could have
made:n(2k � 1) (that is, for each agent, one query for each of the2k bundles except
the empty bundle). This corresponds to full revelation of each agent’s valuation func-
tion. Because this number grows exponentially in the number of itemsk, we use a
log scale on the vertical axis of the plot that shows performance as a function of the
number of items. The other plot has a linear-scale vertical axis because full revelation
increases linearly in the number of agentsn.
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Figure 2:Rank lattice based elicitation. Left: 2 agents, varying number of items, log
scale. Right: 4 items, varying number of agents, linear scale. All other graphs in the
paper also follow this convention.

Define theelicitation ratio to be the number of queries asked divided by the number
of queries asked in full revelation. Figure 2 Left shows that as the number of items
increases, the elicitation ratio approaches zero, that is, only a vanishingly small fraction
of the possible queries are asked.

Figure 2 Right shows that as the number of agentsn grows, the advantage from
rank lattice based elicitation decreases. This is not as important because even under full
revelation, the number of queries increases only linearly. Nevertheless, this behavior
might be explained by the observation that while the size of the lattice grows expo-
nentially inn, the number of feasible nodes only grows polynomially. Specifically, the
total number of rank vectors is(2k)n = 2nk while the number of feasible rank vectors
is nk (each of thek items can independently go to any of then agents). Therefore, as
n increases, this rank lattice based search procedure encounters an increasing fraction
of infeasible rank vectors before finally finding an optimal allocation.

A very recent theoretical result shows that the algorithm here is as good as any rank
lattice based elicitation algorithm [5]. Specifically, this algorithm is a member of the
EBF (efficient best-first) family of algorithms, and the result proves that no algorithm
based on the rank lattice can guarantee asking fewer queries than anEBF algorithm

6



over all problem instances (unless it sacrifices economic efficiency).

7 General elicitation framework

Given that no rank lattice based algorithm can do better than the one outlined above,
we now move to a more general elicitation framework. As we will show, this allows us
to develop algorithms that ask significantly fewer queries.

The framework allows a richer set of query types (to accommodate for different
settings where answering some types of queries is easier than answering other types);
allows more flexible ordering of the queries at run time; and never considers infeasible
solutions. We could implement rank queries in this framework, but did not do so in
this work, because rank queries are somewhat unrealistic: to answer them would likely
require the bidder to evaluate and sort its entire valuation function.

The general algorithm template is a slightly modified version of that of Conen &
Sandholm [4]:
SOLVE()
1 C  INITIAL CANDIDATES(n; k)
2 while not DONE(C)
3 q  SELECTQUERY(C)
4 ASKQUERY(q)
5 C  PRUNE(C)

Here,C is a set of candidates, where acandidateis a vectorc = hc1; c2; : : : ; cni
of bundles where the bundles contain no items in common. Unlike with rank vectors,
all candidates are feasible. The value of a candidate isv(c) =

P
i vi(ci); UB(c) =P

i UBi(ci) is an upper bound, andLB(c) =
P

i LBi(ci) a lower bound. A candidatec
dominates another candidatec0 if the elicitor can prove that the value ofc is at least as
high as that ofc0.6

INITIAL CANDIDATES generates the set of all candidates, which is the set of allnk

allocations of thek items to then agents (some agents might get no items). In our
experiments, the candidate set is represented explicitly. To scale the implementation to
largek andn would require representing it more intelligently in an implicit way.

PRUNE removes, one candidate at a time, each candidate that is dominated by a
remaining candidate. This may eliminate some optimal allocations, but it will never
eliminate all optimal allocations—one will always remain. If strict domination were to
be used as the criterion, thenSOLVE would findall optimal allocations, at the cost of
requiring more elicitation.

DONE returns true ifC is a set of candidates, each of which is provably optimal.
This is the case either ifC has only one element, or if all candidates inC have known
value (that is,8c 2 C;UB(c) = LB(c)). Because the algorithm has just pruned, it
knows that if all candidates have known value, then they have equal value.

6This is the case ifLB(c) � UB(c0). Even if not, the elicitor can use the edges in the graph. If there is
a subset of the agentsI such that8i 2 I, ci � c0i, and that for the remaining agents,

P
j =2I LBj(cj) �P

j =2I UBj(cj), then this also constitutes a proof thatc has value at least as high asc0.
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SELECTQUERY selects the next query to be asked. This function can be instantiated
in different ways to implement different elicitation policies, as we will show.

ASKQUERY takes a query, asks the corresponding agent for the information, and
appropriately updates the constraint network. The details of updating the network are
discussed in conjunction with each query type below.

7.1 Value queries

The most basic query asks an agenti to revealvi(ci) exactly. We call such queriesvalue
queries. Upon receiving the answer,ASKQUERY setsLBi(ci) = UBi(ci) = vi(ci) and
propagates the new bounds upstream and downstream through the constraint network
as described earlier.

Any policy that asks only value queries relies on there being edges in the constraint
network, for instance due to free disposal. Otherwise, it needs to ask every query: any
value the elicitor has not asked for might be infinite.

7.1.1 Random elicitation policy

The first policy we investigate simply asks random value queries. In the beginning, we
generate the set of alln(2k � 1) value queries. Whenever it is time to ask a query, the
policy chooses a random query from the set, ignoring those it has already asked or for
which the value can already be inferred.

We can actually show that if any policy saves elicitation, then this policy also saves
elicitation:

Proposition 1 Let Q = n(2k � 1) be the total number of queries, and letqmin be
the number of queries asked by an optimal elicitation policy. For any given problem
instance, the expected number of queries that the random elicitation policy asks is at
most qmin

qmin+1
(Q+ 1).

Proof: Assume pessimistically that a query is either required to prove the optimal
allocation or useless. Under this assumption, the analysis reduces to the following
problem. We haver red “necessary” balls andb blue “useless” balls in a bag. We then
randomly draw one ball at a time without replacement. The question is how many balls
we expect to draw before all red balls have been drawn. Lete(r; b) be this number.
The base case ise(0; b) = 0, because there are no red balls to draw. In the general
case, we pick one ball from the bag. With probabilityr=(r + b), it is red, so the
bag now hasr � 1 red balls andb blue balls. Similarly, with probabilityb=(r + b),
it is blue, so the bag now hasr red balls andb � 1 blue balls. Therefore,e(r; b) =
1 + r

r+b
e(r � 1; b) + b

r+b
e(r; b� 1). It is easy to verify thate(r; b) = r

r+1
(b+ r + 1)

solves this recurrence. In the elicitation setting,r = qmin andr + b = Q. The result
follows.

The upper bound given in the above proposition only guarantees relatively minor
savings in elicitation (especially becauseqmin increases when the number of agents
and items increases). This could be due to either the bound being loose, or due to
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this elicitation policy being poor, or both. The experiment in Figure 3 shows that this
elicitation policy is poor—even in the average case. The policy asks almost all of the
queries.
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Figure 3:Random elicitation policy.

7.1.2 Random allocatable bundle elicitation policy

Essentially, the random elicitation policy asks many queries which, as it turns out, are
not useful. We will now present a useful restriction on the set of queries from which
the elicitation policy should choose. The key observation is that the elicitor might
already know that a bundle is not going to be allocated to a particular bidder—even
before the elicitor knows the bidder’s valuation for the bundle. This can occur if the
elicitor knows that it cannot obtain enough value from the other bidders for the items
not in that bundle. On the other hand, if the elicitor cannot (yet) determine this, then
the bundle-agent pair is called anallocatable.

Definition 1 A bundle-agent pair(b; i) is allocatableif there exists a remaining candi-
date allocationc 2 C such thatci = b. In some places, the reference to the agent is
obvious from the context, so we sometimes talk about allocatable bundlesb rather than
(b; i).

Now we can refine our random elicitation policy to ask queries on allocatable(b; i)
only (and queries that have already been asked or whose answer can be inferred are
again never asked).

This restriction is intuitively appealing, and we can characterize cases where it
cannot hurt. We define the notationhx; yi to mean that revealing the value of a non-
allocatable pair(b; i) would raise the lower bound onx allocatable super-bundles of
b (that is, there arex allocatable pairs(b0; i) such thatb0 � b), and lower the upper
bound ony allocatable sub-bundles ofb. To affect a lower bound,vi(b) must be strictly
greater than the currently-proven lower bound on any of thex super-bundles. Similarly,
vi(b) must be strictly less than the currently-proven upper bound on they sub-bundles.

Given this notation, we can examine the cases where eliciting a non-allocatable
(b; i) is no more useful than eliciting some allocatable(b0; i). Because the elicitor does
not knowvi(b), it cannot know what case actually applies.
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Proposition 2 No matter what value queries the elicitor has asked so far, querying a
non-allocatable(b; i) in casehx; yi withx+y < 2 cannot help the unrestricted random
elicitation policy ask fewer queries than the restricted random elicitation policy.

Proof: We analyze each case separately.
Caseh0; 0i: In this case,b has no allocatable sub- or super-bundles, so obtaining

values for those bundles cannot be useful. So, ifb itself is not allocatable, eliciting a
value forb cannot be useful. (Here, “useful” means that it helps prove that an allocation
is optimal or it helps prove that an allocation is not optimal.)

Casesh0; 1i and h1; 0i: The two cases are symmetric; we assumeh0; 1i here. Let
the single allocatable sub-bundle ofb be calledb0. By eliciting vi(b), the upper bound
onvi(b0) will be tightened. However, elicitingvi(b0)would reveal an upper bound onb0

that is at least as tight. So eliciting the allocatable bundleb0 would have been no worse.
In fact, it might have been strictly better: with the same number of queries, eliciting
vi(b

0) also reveals a lower bound onb0 and any super-bundle ofb0 (in particular, any
allocatable super-bundle).

While the idea of restricting the queries to allocatable bundles is intuitively appeal-
ing and can never hurt in the cases above, there are cases where this restriction forces
the elicitor to ask a larger number of queries:

Proposition 3 Querying a non-allocatable(b; i) in casehx; yi with x + y � 2 may
help the unrestricted random elicitation policy ask fewer queries than the restricted
random elicitation policy.

Proof: Assume there are two bidders. Further assume that given the information
elicited previously, there are only three allocations that could be optimal (jCj = 3).
One allocation involves giving bidder 1 the items in bundleb0, and the other items
to bidder 2, and bidder 2 places a value of 50 on those items. Similarly, the sec-
ond allocation gives bidder 1 the items in bundleb00, and the other items to bidder 2,
who again places a value of 50 on those items. Bundleb0 is neither a super-bundle
nor a sub-bundle ofb00. Given the information elicited so far, the elicitor knows
UBi(b

0) = UBi(b
00) = 100. A third allocation gives bidder 2 all the items, and bidder

2 places a value of 100 on this outcome; bidder 1 gets no items. Finally, assume the
true value agent 1 has on bundleb is 40 (v1(b) = 40), and thatb is not allocatable for
agent 1. This means that(b; 1) is in caseh0; 2i.

v1(b
0) = [0; 100] v2(K � b0) = 50 sum: [0; 150]

v1(b
00) = [0; 100] v2(K � b00) = 50 sum: [0; 150]

v1(;) = 0 v2(K) = 100 sum:100

Table 1: Example of caseh0; xi where revealing a non-allocatable bundleb is better
than revealing any allocatable bundle. By elicitingv1(b) = 40, the elicitor learns
that the first two candidate allocations have a value of at most 90, and can therefore
eliminate them.
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In this situation, by eliciting justv1(b), the elicitor would prove that the third al-
location (giving bidder 2 all the items) is optimal. Restricted to revealing allocatable
bundlesb0 andb00 but notb, the elicitor will instead need to use two queries instead of
just one.

Proposition 3 does not mean that all caseshx; yi with x+ y � 2 are bad. Indeed, it
could be that eliciting the non-allocatable(b; i) gives insufficiently tight bounds on the
allocatable bundles it affects, and therefore the allocatable bundles need to be elicited
anyway. An open problem is whether, in the case of an oracle that chose the best bundle
to elicit every time, the bad cases would ever happen.

The case-by-case analysis of Propositions 2 and 3 indicates that restricting the elic-
itation policy to choosing only allocatable bundles will often help, but may sometimes
also cause harm. However, the harm is limited, as we now show.

Proposition 4 Any bad casehx; yi with x + y � 2 causes the random query policy
that restricts itself to allocatable queries to ask at most twice as many queries (in
expectation) as the unrestricted random policy. This bound is tight.

Proof: Assume that to prove an optimal allocation, it is necessary either to reveal the
single non-allocatable bundle, orall of the x + y allocatable bundles. If fewer than
all x + y bundles are needed, or if there is more than one subset of thex + y that is
sufficient, this only reduces the advantage of being allowed to ask the bad-case query.

In the restricted policy, which cannot ask the bad-case query, the elicitor will ask
x + y queries. In the unrestricted policy, the elicitor’s task corresponds to removing
balls one at a time from a bag that has 1 red ball andb = x + y blue balls until either
the red ball has been removed, or all the blue balls have been removed. Lete(b) be
the number of balls we expect to pick until we are done. We pick a red ball with
probability1=(b + 1) and are done immediately. Otherwise, we pick a blue ball with
probabilityb=(b + 1). Therefore,e(b) = 1

b+1
+ b

b+1
(1 + e(b � 1)). If only one blue

ball is left, whether we pick the red ball or the blue ball, we are done, soe(1) = 1. It
can be verified thate(b) = b(3+b)

2(1+b)
solves the recurrence relation. Therefore, the ratio

of queries asked in the restricted policy to queries asked in the unrestricted policy is
(x+ y)=e(x+ y) � 2.

Summarizing, restricting value elicitation to allocatable bundles either helps, does
not hurt, or at worst only causes the elicitor to ask (in expectation) twice as many
queries. We ran experiments (Figure 4) to determine whether the restriction helps in
practice. The results are clear: atk = 10, the elicitation ratio is17%. That is, the
random elicitation policy restricted to eliciting only allocatable(b; i) avoids the vast
majority of the elicitation needed in full revelation or in the unrestricted random elici-
tation policy. Most importantly, as the number of items increases, the elicitation ratio
continues to decrease (unlike with the random elicitation policy without the restriction).
Also, unlike with rank lattice based elicitation, as the number of agents increases, the
elicitation ratio stays constant or may even decrease.
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Figure 4:Random allocatable-only elicitation policy.

This policy is simpler than the value-query policy previously proposed by Conen
& Sandholm [4]. That policy counted the number of remaining candidates in which
a given bundleb is allocated to agenti, and elicited the value of the(b; i) pair with
the highest count. We ran the same experiment with that policy. Interestingly, that
policy does far less well: depending on the tie-breaking scheme, it asked exactly all the
queries (when breaking ties in favor of the smaller bundle, arbitrarily choosing among
equal-size bundles), or it converged to about half the queries (when breaking ties in
favor of the larger bundle). A randomized tie-breaking scheme did slightly worse than
breaking ties in favor of larger bundles.

7.1.3 The grand bundle is (almost) always revealed

Intuitively it is appealing to elicit from every agent the value for the grand bundle
because that sets an upper bound on all bundle-agent pairs (via the free disposal as-
sumption). In this section we analyze whether this indeed is a good idea.

Proposition 5 In order to determine the optimal allocation, any elicitation policy must
prove an upper bound onvi(K) for everyi to whichK is not allocated.

Proof: The lower bound on the optimal allocation is finite (say,L) because we require
each bundle to have non-negative and finite value for every bidder. Therefore, unless
the auctioneer provides an upper bound onvi(K), the possibility is open that allocating
K to i is worth more thanL. Because allocatingK to i possibly has value greater
than implementing the allocation that is, in fact, optimal, the elicitation policy cannot
terminate.

In particular, using value queries only (and with no extra structure beyond free
disposal), the only way the auctioneer can establish an upper bound onvi(K) is by
eliciting the value.

Theorem 1 Assume there are at least 2 bidders. There is a policy (possibly requiring
an oracle for choosing the queries) using value queries that asksvi(K) for everyi and
that asks the fewest possible questions.
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Proof: If the optimal allocation involves allocating items to at least two bidders, then
we are not allocating the full bundle to any agent, so by the proposition above, the
auctioneer must elicitvi(K) for everyi.

Otherwise, the optimal allocation involves allocating all items to a single agenti.
For all j 6= i, the proposition applies and therefore the auctioneer must elicitvj(K).
What is left to prove is that the auctioneer is at least as well off also elicitingvi(K).

If all other bidders have zero value on all sub-bundles (that is, the full bundle has
positive value to them, but anything less has zero value), then the auctioneer need only
place a lower bound onvi(K) that is higher than any other bidder’s, which it can do by
eliciting vi(K).

If any other bidderj has nonzero value on some bundleK�b, the auctioneer needs
to prove thatvj(K�b)+vi(b) � vi(K). In other words, the auctioneer needs to provide
a lower bound onvi(K) that is sufficiently greater than the upper bound onvi(b). Using
value queries and assuming free disposal, the auctioneer can prove an upper bound on
vi(b) by eliciting b or any super-bundleb0. Similarly, it can prove a lower bound onK
by elicitingK or any sub-bundle. However, it cannot prove sufficiently tight bounds to
separate the optimal allocation (ofK to i) from the suboptimal one by eliciting a single
bundle: by eliciting a single bundle, it would proveUBi(b) = LBi(K). Given that it
must elicit two bundles, it may as well elicitvi(K) to provide the lower bound on that
value.

The argument in the paragraph above generalizes to settings where there are many
biddersj who have nonzero value for several bundlesK � b. The auctioneer must
prove a sufficiently tight lower bound onK, and sufficiently tight upper bounds on each
of the bundle-agent pairs(b; i). Since not all the elicitations that support sufficiently
tight upper bounds onb’s can also support a sufficiently tight lower bound onK, the
auctioneer must elicit at least one other bundle to support that lower bound. There
may be more than one choice for this; however, one possible choice is simply to elicit
vi(K).

If n = 1, the statement does not hold because without revealing anything, we
already know by free disposal that giving the bidder all ofK is an optimal allocation.

7.2 Order queries

In some applications, agents might not know the values of bundles, and might need to
expend a lot of effort to determine them [11, 21], but might easily be able to see that
one bundle is preferable over another. In such settings, it would be sensible for the
elicitor to askorder queries, that is, ask an agenti to order two given bundlesci and
c0i (to say which of the two it prefers). The agent will answerci � c0i or c0i � ci or
both.ASKQUERY will then create new edges in the constraint network to represent these
new dominates relations. By asking only order queries, the elicitor cannot compare the
valuations of one agent against those of another, so it cannot determine a social welfare
maximizing allocation. However, order queries can be helpful when interleaved with
other types of queries.
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7.3 Using value and order queries

We developed an elicitation policy that uses both value and order queries. It mixes
them in a straightforward way, simply alternating between the two, starting with an
order query. Whenever an order query is to be asked, the elicitor picks an arbitrary pair
(c; c0) of remaining candidates that cannot be compared due to lack of information,
chooses an agenti whose ranking ofci andc0i is unknown, and asks that agent to order
bundlesci andc0i. (This is the policy for choosing order queries that was proposed by
Conen & Sandholm [4].) Whenever a value query is to be asked, the query is chosen
using the policy described in the value query section above.

To evaluate the mixed policy, we need a way of comparing the cost of an order
query to the cost of a value query. The plots in this section correspond to a cost model
where an order query costs 10% of the cost of a value query.

Figure 5 shows that the amount of elicitation grows linearly with the number of
agents. Also, as the number of items increases, the cost of the queries is a vanishing
fraction of the cost of full elicitation.
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Figure 5:Elicitation using value and order queries.

The policy saves elicitation cost compared to the policy that only uses value queries.
For example, at 2 agents and 10 items, its elicitation cost averages 324 while the elicita-
tion cost of the value-only policy averages 361. As the relative cost of an order query is
decreases, the benefit of interleaving value queries with order queries increases. Also,
if order queries are inexpensive, the policy should probably ask more than one order
query per value query.

While this mixed policy appears to provide only a modest benefit over using value
queries only, its advantage is that it does not depend as critically on free disposal.
Without free disposal, the policy that uses value queries only would have to elicit all
values. The order queries in the mixed policy, on the other hand, can create useful
edges in the constraint network which the elicitor can use to prune candidates.

7.4 Bound-approximation queries

In many settings, the bidders can roughly estimate valuations easily, but the more accu-
rate the estimate, the more costly it is to determine. In this sense, the bidders determine
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their valuations using anytime algorithms [10,11]. For this reason, we introduce a new
query type: abound-approximation query. In such a query, the elicitor asks an agent
i to tighten the agent’s upper boundUBi(b) (or lower boundLBi(b)) on the value of
a given bundleb. This query type leads to more incremental elicitation in that queries
are not answered with exact information, and the information is refined incrementally
on an as-needed basis.

The elicitor can provide a hintt to the agent as to how much additional time the
agent should devote to tightening the bound in the query. Smaller values of the hint
t make elicitation more incremental, but cause additional communication overhead
and computation by the elicitor. Therefore, the hint can be tailored to the setting,
depending on the relative costs of communication, bundle evaluation by the bidders,
and computation by the elicitor. The hint could also be adjusted at run-time, but in the
experiments below, we use a fixed hintt = 0:2.

To evaluate this elicitation method, we need a model on how the agents’ computa-
tion refines the bounds. We designed the details of our elicitation policy motivated by
the following specific scenario, although the elicitation policy can be used generally.
Let each agent have two anytime algorithms which it can run to discover its value of
any given bundle: one gives a lower bound, the other gives an upper bound. Spending
timed, 0 � d � 1 will yield a lower boundvi(b)

p
d or an upper bound(2�

p
d)vi(b).

This means that there are diminishing returns to computation, as is the case with most
anytime algorithms.7 Finally, we assume that the algorithms can be restarted from the
best solution found so far with no penalty: having spentd time tightening a bound,
we can get the bound we would have gotten spendingd0 > d by only spending an
additional timed0 � d.

The model of agents’ computation cost here opens the possibility to cheat in the
evaluation of the elicitor. As the model is stated, the elicitor could ask an agent to spend
t time each on the upper and lower bound. Based on the answers, the elicitor would
know the exact value (it would be in the middle between the lower and upper bound).
To check that our results do not inadvertently depend on such specifics of the agents’
computation model, we ran experiments using an asymmetric cost function (linear for
lower bounds, square root for upper bounds). This did not appreciably change the
results.

Using arbitrarily picked bound-approximationqueries as the elicitation policy would
work, but the more sophisticated elicitation policy that we developed chooses the query
that maximizes the expected benefit. This is the amount by which we expect the upper
and lower bounds on bundle-agent pairs to be tightened when we propagate the new
bound that the queried agent will return (only counting bundle-agent pairs that are in-
cluded in the set of remaining candidates). To compute the expected benefit, the elicitor
assumes thatvi(b) is drawn uniformly at random in[LBi(b);UBi(b)]. To estimate the
expected change in bounds, the elicitor samples 10 equally spaced valuesv̂i(b) in that
interval. For each value, the elicitor computes (using the cost model described in the
previous paragraph) what boundz it would receive if the agent spent additional time
t working on that bound and the true value werev̂i(b). Finally, the elicitor observes

7The square root is arbitrary, but captures the case of diminishing returns to additional computation.
Running experiments withd in place of

p
d did not significantly change the results.
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by how much the values in the constraint network would change if the elicitor were to
propagatez through the network (only bundle-agent pairs that are included in the set
of remaining candidates are counted).8

We evaluated bound-approximation queries using the elicitation policy and agents’
computation model described above. Figure 6 shows that as the number of items in-
creases, only a vanishingly small fraction of the overall computation cost is actually
incurred because the optimal allocation is determined while querying only very approx-
imate valuations on most bundle-agent pairs. The method also maintains its benefit as
the number of agents increases.
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Figure 6: Elicitation using bound-approximation queries. Because it costs1 to get a
tight upper or lower bound, it costs2 to make both bounds be tight. Thus the worst-case
line in these plots is2n(2k � 1).

7.4.1 Using bound-approximation and order queries

As in the policy that mixed value and order queries, we can alternate between bound-
approximation queries and order queries. Figure 7 presents the results when bound-
approximation queries are charged as in the previous section, and order queries are
charged1

10
. As the number of agents increases, only a vanishingly small fraction of the

cost of full revelation ends up being paid. The method also maintains its benefit as the
number of agents grows. The policy saves elicitation cost compared to the policy that
only uses value queries. For example, at 2 agents and 8 items, its elicitation cost av-
erages 172 while the elicitation cost of the policy that only uses bound-approximation
queries averages 230. Furthermore, as the relative cost of order queries is lowered, the
mixed method becomes increasingly superior to using bound-approximation queries
alone.

8A minor detail comes in estimating the worth of reducing an upper bound from1. We dodge this
question by initially asking each agent for an upper bound on the grand bundle—which is almost always
required as shown in Proposition 5. By free disposal, that is also an upper bound on all other bundles.
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Figure 7: Elicitation using bound-approximation and order queries. The results are
truncated tok = 9 because a run atk = 10 took longer than 2 days.

8 Conclusions and future research

In all of the elicitation schemes in this paper (except the unrestricted random one), as
the number of items for sale increases, the amount of information elicited is a vanish-
ing fraction of the information collected in traditional “direct revelation mechanisms”
where bidders reveal all their valuation information. Each of the elicitation schemes
(except the rank lattice based one) also maintains its benefit as the number of agents
increases.

While the straightforward policies we analyzed work well, some policies that at-
tempt to be more intelligent actually perform poorly (for example, the value query
policy described by Conen & Sandholm [4], and some other policies we tried). These
poorly-performing policies have in common that they use a heuristic that maximizes
the number of candidates that would be affected by the query. In contrast, the bound-
approximation query policy that we introduced benefits from the heuristic of maximiz-
ing thechangein bounds. Future work includes designing additional useful heuristics
for selecting queries.

We showed theoretically that if it is possible to save revelation using an elicitation
policy, the simple unrestricted random elicitation policy saves revelation. We also pre-
sented theoretical and experimental results that suggest that restricting value elicitation
to allocatable bundles is beneficial—which was assumed by Conen & Sandholm [4]
but is by no means obvious. For the other elicitation policies, our results were experi-
mental. Future work includes studying their performance theoretically as well.

By using theClarke taxmechanism [3, 8, 27, 28] to determine the payments that
the bidders have to pay, we can ensure that in a Bayes-Nash equilibrium, each agent
is motivated to answer the queries truthfully, and is not less happy after the auction
than before it [4] (under the usual assumption that the agents have quasilinear prefer-
ences). These payments can be computed by determining an optimal allocationn+ 1
times: once overall, and once for each agent removed in turn. Even under the highly
pessimistic assumption that answers to queries in one of these problems do not help
on the other problems, determining the payments entails only ann-fold increase in the
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number of queries. Given that our results show that we have a significantly better than
n-fold benefit as the number of items grows, this would not change the fact that only a
vanishingly small fraction of queries is asked.

Our bound-approximation queries take the incremental nature of elicitation to a
new level. The agents are only asked for rough bounds on valuations first, and more
refined approximations are elicited only on an as-needed basis. A related approach
would be to propose a bound, and ask whether the agent’s valuation is above or below
the bound. This suggest a relationship between preference elicitation and ascending
combinatorial auctions where the auction proceeds in rounds, and in each round the
bidders react to price feedback by revealing demand (e.g., [2,15,17,18,29]).
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