
Fractal Prefetching B
+
-Trees:

Optimizing Both Cache and Disk Performance

Shimin Chen Phillip B. Gibbonsy Todd C. Mowry

Gary Valentinz

March 2002

CMU-CS-02-115

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

yInformation Sciences Research Center, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974.

Current aÆliation: Intel Research Pittsburgh, 417 South Craig Street, Pittsburgh, PA 15213.
zIBM Toronto Lab, 8200 Warden Avenue, Markham, Ontario, L6G 1C7, Canada.

Abstract

B+-Trees have been traditionally optimized for I/O performance with disk pages as tree nodes. Recently,

researchers have proposed new types of B+-Trees optimized for CPU cache performance in main memory

environments, where the tree node sizes are one or a few cache lines. Unfortunately, due primarily to this

large discrepancy in optimal node sizes, existing disk-optimized B+-Trees su�er from poor cache performance

while cache-optimized B+-Trees exhibit poor disk performance. In this paper, we propose fractal prefetching

B+-Trees (fpB+-Trees), which embed \cache-optimized" trees within \disk-optimized" trees, in order to

optimize both cache and I/O performance. We design and evaluate two approaches to breaking disk pages

into cache-optimized nodes: disk-�rst and cache-�rst. These approaches are somewhat biased in favor of

maximizing disk and cache performance, respectively, as demonstrated by our results. Both implementations

of fpB+-Trees achieve dramatically better cache performance than disk-optimized B+-Trees: a factor of

1.1{1.8 improvement for search, up to a factor of 4.2 improvement for range scans, and up to a 20-fold

improvement for updates. In addition, fpB+-Trees accelerate I/O performance for range scans by using

jump-pointer arrays to prefetch leaf pages, thereby achieving a speed-up of 2.5{5 on IBM's DB2 Universal

Database.

This research is supported in part by grants from the National Science Foundation, Microsoft, and Intel.

Keywords: Cache performance, I/O performance, prefetching, databases, B+-Tree index

1 Introduction

The B+-Tree is a ubiquitous structure for indexing disk-resident data. It provides basic index operations

such as search, range scan, insertion and deletion, while minimizing the number of disk accesses. To optimize

I/O performance, traditional \disk-optimized" B+-Trees are composed of nodes the size of a disk page|i.e.,

the natural transfer size for reading or writing to disk. Recently, several studies [5, 6, 19] have considered

B+-Tree variants for indexing memory-resident data. These studies present new types of B+-Trees|cache-

sensitive B+-Trees [19], partial-key B+-Trees [5], and prefetching B+-Trees [6]|that optimize for CPU cache

performance by minimizing the impact of cache misses. These \cache-optimized" B+-Trees are composed of

nodes the size of a cache line1|i.e., the natural transfer size for reading or writing to main memory.

Unfortunately, B+-Trees optimized for disk su�er from poor CPU cache performance, and B+-Trees

optimized for cache su�er from poor I/O performance. This is primarily because of the large discrepancy

in node sizes: disk pages are typically 4KB{64KB while cache lines are often 32B{128B, depending on the

system. Thus existing disk-optimized B+-Trees su�er an excessive number of cache misses to search in a

(large) node, wasting time and forcing the eviction of useful data from the cache. Likewise, existing cache-

optimized B+-Trees, in searching from the root to the desired leaf, may fetch a distinct page for each node

on this path. This is a signi�cant performance penalty, for the smaller nodes of cache-optimized B+-Trees

imply much deeper trees than in the disk-optimized cases (e.g., twice as deep). The I/O penalty for range

scans on nonclustered indexes of cache-optimized trees is even worse: a distinct page may be fetched for each

leaf node in the range, increasing the number of disk accesses by the ratio of the node sizes (e.g., a factor of

500).

1.1 Our Approach: Fractal Prefetching B+-Trees

In this paper, we propose and evaluate Fractal Prefetching B+-Trees (fpB+-Trees), which are a new type

of B+-Tree that optimizes both cache and I/O performance. In a nutshell, an fpB+-Tree is a single index

structure that can be viewed at two di�erent granularities: at a coarse granularity, it contains disk-optimized

nodes that are roughly the size of a disk page, and at a �ne granularity, it contains cache-optimized nodes

that are roughly the size of a cache line. We refer to a fpB+-Tree as being \fractal" because of its self-

similar \tree within a tree" structure, as illustrated in Figure 1. The cache-optimized aspect is modeled

after the prefetching B+-Trees that we proposed earlier [6], which were shown to have the best main memory

performance for �xed-size keys. (We note, however, that this general approach can be applied to any cache-

optimized B+-Tree.) In a prefetching B+-Tree, nodes are several cache lines wide (e.g., 8|the exact number

is tuned according to various memory system parameters), and prefetching is used so that the time to fetch

a node is not much longer than the delay for a single cache miss.

We design and evaluate two approaches to implementing fpB+-Trees: (i) disk-�rst and (ii) cache-�rst. In

the disk-�rst approach, we start with a disk-optimized B+-Tree, but then organize the keys and pointers

within each page-sized node as a small tree. This in-page tree is a variant of the prefetching B+-Tree. To

pack more keys and pointers into an in-page tree, we use short in-page o�sets rather than full pointers in all

but the leaf nodes of an in-page tree. We also show the advantages of using di�erent sizes for leaf versus non-

leaf nodes in an in-page tree. In contrast, the cache-�rst approach starts with a cache-optimized prefetching

B+-Tree (ignoring disk page boundaries), and then attempts to group together these smaller nodes into

page-sized nodes to optimize disk performance. Speci�cally, the cache-�rst approach seeks to place a parent

and its children on the same page, and to place adjacent leaf nodes on the same page. Maintaining both

structures as new keys are added and nodes split poses particular challenges. We will show how to process

insertions and deletions eÆciently in both disk-�rst and cache-�rst fpB+-Trees. We select the optimal node

sizes in both approaches to maximize the number of entry slots in a leaf page while analytically achieving

search cache performance within 10% of the best.

Ideally, both the disk-�rst and the cache-�rst approaches would achieve identical data layouts, and hence

equivalent cache and I/O performance. In practice, however, the mismatch that almost always occurs between

the size of a cache-optimized subtree and the size of a disk page (in addition to other implementation details

such as full pointers versus page o�sets) causes the disk-�rst and cache-�rst approaches to be slightly biased

1In the case of prefetching B+-Trees [6], the nodes are several cache lines wide.

1

Figure 1: Self-similar \tree within a tree" structure

in favor of disk and cache performance, respectively. Despite these slight disparities, both implementations

of fpB+-Trees achieve dramatically better cache performance than disk-optimized B+-Trees.

To accelerate range scans, fpB+-Trees employ the jump-pointer array scheme that we proposed earlier [6].

A jump-pointer array contains the leaf node addresses of a tree, which are used in range scans to prefetch

the leaf nodes, thus speeding up the scans. In [6], we showed that this approach signi�cantly improves

cache performance. In this paper, we show it is also bene�cial for I/O, by demonstrating a factor of 2.5{5

improvement in the range scan I/O performance for IBM's DB2 running on a multi-disk platform.

1.2 Related Work

A number of recent studies have demonstrated the importance of optimizing the cache performance of a

DBMS [1, 2, 3]. B+-Trees have been discussed in this regard, including several recent survey papers [11, 16].

This paper, however, is the �rst to propose a B+-Tree index structure that e�ectively optimizes both CPU

cache and disk performance on modern processors, for each of the basic B+-Tree operations: searches, range

scans, insertions, and deletions.

Chilimbi et al. [8] demonstrated that B+-Trees with cache line sized nodes can outperform binary trees

for memory-resident data on modern processors. Likewise, B+-Trees outperform T-trees [14] on today's

processors [18]. Lomet [15] presented techniques for selecting an optimal B+-Tree page size when considering

bu�er cache performance, for disk-resident data. Lomet's recent survey of B+-Tree techniques [16] mentioned

the idea of intra-node micro-indexing: i.e., placing a small array in a few cache lines of the page that indexes

the remaining keys in the page. While it appears that this idea had not been pursued in any detail before,

we compare its performance against fpB+-Trees later in our experimental results. We observe that while

micro-indexing achieves good search performance (often comparable to fpB+-Trees), it su�ers from poor

update performance. As part of future directions, Lomet [16] has independently advocated breaking up

B+-Tree disk pages into cache-friendly units, pointing out the challenges of �nding an organization that

strikes a good balance between search and insertion performance, storage utilization, and simplicity. We

believe that fpB+-Trees achieve this balance. Graefe and Larson [11] presented a survey of techniques for

improving the CPU cache performance of B+-Tree indexes. They discussed a number of techniques, such as

key compression, that are complementary to our study, and could be incorporated into fpB+-Trees. Bender

et al. [4] present a recursive B+-Tree structure that is asymptotically optimal, regardless of the cache line

sizes and disk page sizes, but assuming no prefetching.

1.3 Contributions of This Paper

This paper makes the following contributions. First, we propose and evaluate Fractal Prefetching B+-Trees

(fpB+-Trees) as a novel index structure that optimizes both cache and disk performance simultaneously.

Second, we present detailed analysis of the fundamental tradeo�s between the disk-�rst and the cache-�rst

implementations of fpB+-Trees. While the performance of each of these implementations remains slightly

biased toward its original goal, both versions of fpB+-Trees improve upon the cache performance of disk-

optimized B+-Trees (without signi�cantly degrading I/O performance) as follows: (i) a factor of 1.1{1.8

improvement for search; (ii) up to a factor of 4.2 improvement for range scans; and (iii) up to a 20-fold

improvement for updates. Third, we present the �rst detailed evaluation of micro-indexing [16], and �nd

that its poor update performance makes it less attractive than fpB+-Trees. Finally, we demonstrate that

2

fpB+-Trees can also be used to accelerate I/O performance. In particular, we demonstrate an over twofold

to �vefold improvement for index range scans in an industrial-strength commercial DBMS (IBM's DB2).

The remainder of this paper is organized as follows. Section 2 describes how fpB+-Trees enhance I/O

performance. Then Section 3 describes how they enhance cache performance while preserving I/O perfor-

mance. Section 4 presents experimental results validating the e�ectiveness of fpB+-Trees in optimizing both

cache and disk performance. Section 5 discusses several related problems and ideas. Section 6 presents our

conclusions.

2 Optimizing I/O Performance

Fractal Prefetching B+-Trees combine features of disk-optimized B+-Trees and cache-optimized B+-Trees to

achieve the best of both structures. In this section, we describe how fpB+-Trees improve I/O performance

for modern database servers. In a nutshell, we consider applying to disk-resident data each of the techniques

in [6] for improving the cache performance for memory-resident data. We argue that while the techniques are

not advantageous for search I/O performance, they can signi�cantly improve range scan I/O performance.

Modern database servers are composed of multiple disks per processor. For example, many TPC bench-

mark reports are for SMP servers with 10-30 disks per processor, and hundreds of disks in all. To help

exploit this raw I/O parallelism, commercial database bu�er managers use techniques such as sequential

I/O prefetching and delayed write-back. While sequential I/O prefetching helps accelerate range scans on

clustered indexes, it o�ers little or no bene�t for range scans on non-clustered indexes or for searches. Our

goal is to e�ectively exploit I/O parallelism by explicitly prefetching disk pages even when the access patterns

are not sequential.

In a previous paper [6], we proposed and evaluated prefetching B+-Trees (pB+-Trees) as a technique for

enhancing CPU cache performance for index searches and index range scans on memory-resident data. The

question that we address now is whether those same techniques can be applied to accelerating I/O perfor-

mance for disk-resident data. Since the relationship between main memory and disk for a disk-optimized

tree is somewhat analogous to the relationship between CPU cache and main memory for a cache-optimized

tree, one might reasonably expect the bene�t of a technique to translate in at least some form across these

di�erent granularities [11]. However, because of the signi�cant di�erences between these two granularities

(e.g., disks are larger and slower, main memory is better suited to random access, etc.), we must carefully

examine the actual e�ectiveness of a technique at a di�erent granularity. In Sections 2.1 and 2.2, we consider

the two aspects of pB+-Trees which accelerate searches and range scans, respectively.

2.1 Searches: Prefetching and Node Sizes

To accelerate search performance, our pB+-Tree design [6] increased the size of a B+-Tree node size to be

multiple cache lines wide and prefetched all cache lines within a node before accessing it. In this way, the

multiple cache misses of a single node are serviced in parallel, thereby resulting in an overall miss penalty

that is only slightly larger than that of a single cache miss. The net result is that searches become faster

because nodes are larger and hence trees are shallower.

For disk-resident data, the page-granularity counterpart is to increase the B+-Tree node size to be a

multiple of the disk page size and prefetch all pages of a node when accessing it. By placing the pages that

make up a node on di�erent disks, the multiple page requests can be serviced in parallel. For example,

a 64KB node could be striped across 4 disks with 16KB page size, and read in parallel. As in the cache

scenario, faster searches may result.

However, there are drawbacks to applying this approach to disks. While the I/O latency is likely to

improve for a single search, the I/O throughput may become worse because of the extra seeks for a node.

In an OLTP environment, multiple transactions can overlap their disk accesses, and the I/O throughput is

often dominated by seek times; hence additional seeks may degrade performance. Note that this is not a

problem for CPU cache performance since only the currently executing thread can exploit its cache hierarchy

bandwidth.

In a DSS environment, a server is often dedicated to a single query at a time, and hence latency determines

throughput. Thus multipage-sized nodes spanning multiple disks may improve search performance. However,

3

Tree

parents
Leaf

Figure 2: Internal jump-pointer array

search times may be less important to overall DSS query times, which are often dominated by operations

such as range scans, hash joins, etc. Moreover, \random" searches are often deliberately avoided by the

optimizer. An indexed nested loop join may be performed by �rst sorting the outer relation on the join

key [13, 10]. Thus each key lookup in the inner relation is usually adjacent to the last lookup, leading to an

I/O access pattern that essentially traverses the tree leaf nodes in order (similar to range scans).

For these reasons, we do not advocate using multipage-sized nodes. Hence throughout this paper, our

target node size for optimizing the disk performance of fpB+-Trees will be a single disk page.

2.2 Range Scans: Prefetching via Jump-Pointer Arrays

For range scan performance, our previous paper [6] proposed a jump-pointer array structure that permits

the leaves in the range scan to be e�ectively prefetched. A range scan is performed by searching for the

starting key of the range, then reading consecutive leaf nodes in the tree (following the sibling links between

the leaf nodes) until the end key for the range is encountered. One implementation of the jump-pointer array

is shown in Figure 2: An internal jump-pointer array is obtained by adding sibling pointers to each node

that is a parent of leaves. These leaf parents collectively contain the addresses for all leaf nodes, facilitating

leaf node prefetching. By issuing a prefetch for each leaf node suÆciently far ahead of when the range scan

needs the node, the cache misses for these leaves are overlapped.

The same technique can be applied at page granularity to improve range scan I/O performance, by

overlapping leaf page misses. It is particularly helpful in non-clustered indexes and when leaf pages are not

sequential on disks, a common scenario for frequently updated indexes.2 Note that the original technique [6]

prefetched past the end key. This overshooting is not a major concern at cache granularity; however, it can

incur a large penalty at page granularity both because each page is more expensive to prefetch and because

we must prefetch farther ahead in order to hide the larger disk latencies. To solve this problem, fpB+-Trees

begin by searching for both the start key and the end key, remembering the range end page. Then when

prefetching using the leaf parents, we can avoid overshooting. Also note that because all the prefetched leaf

pages would have also been accessed in a plain range scan, this technique does not decrease throughput.

Our previous paper [6] also described an alternative implementation of the jump-pointer array: An external

jump-pointer array maintains a chunked-linked list data structure external to a B+-Tree, containing leaf

node addresses. For most index structures in this paper, we will use internal jump-pointer arrays for ease

of implementation. But when the index structure does not allow e�ective implementation of internal jump-

pointer arrays, we will choose external jump-pointer arrays to prefetch for range scans. Please see details in

Section 3.3.

The jump-pointer array approach is applicable for improving the I/O performance of standard B+-Trees,

not just fractal ones, and as our experimental results will show, can lead to a �vefold or more speedup for

large range scans.

3 Optimizing Cache Performance

In this section, we describe how fpB+-Trees optimize CPU cache performance without sacri�cing their I/O

performance. Although B+-Trees for disk-resident data have traditionally ignored CPU cache performance

because search and update times were dominated by I/O costs, recent studies have demonstrated the im-

portance of CPU cache performance [1, 2, 3]. Most modern database server machines have suÆcient disk

2For clustered indexes or when leaf pages are sequential on disks, sequential I/O prefetching can be employed instead.

4

index entry

page control info

Key and(page ID/tuple ID)

|0

|20

|40

|60

|80

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e dcache stalls
 other stalls
 busy

Disk-optimized Prefetching
B+tree B+tree

(a) page organization (b) execution time breakdown for search

Figure 3: Disk-optimized B+-Trees.

bandwidth such that they are typically not I/O bound, but their processors are stalled a signi�cant fraction

of the time while servicing CPU data cache misses.

Why traditional B+-Trees su�er poor cache performance In a traditional disk-optimized B+-Trees,

each tree node is a page (typically 4KB{64KB). Figure 3(a) depicts a B+-Tree, assuming �xed length keys.3

A small part of the page contains page control information. The bulk of the page contains a sorted array of

keys, together with either the page ID for its child node (if the node is a nonleaf) or the tuple ID for a tuple

(if the node is a leaf). We will refer to a key and either its page ID or tuple ID as an entry.

During a search, each page on the path to the key is visited, and a binary search is performed on the very

large contiguous array in the page. This binary search is quite costly in terms of cache misses. A simple

example helps to illustrate this point. If the key size, page ID size, and tuple ID size are all 4 bytes, an 8KB

page can hold over 1000 entries. If the cache line size is 64 bytes, then a cache line can only hold 8 entries.

Imagine a certain page has 1023 entries numbered 1 through 1023. To locate a key matching entry 71, a

binary search will perform ten probes, for entries 512, 256, 128, 64, 96, 80, 72, 68, 70, and 71, respectively.

Assuming that the eight entries from 65 to 72 fall within a single cache line, the �rst seven probes are all

likely to su�er cache misses. The �rst six of the seven misses are especially wasteful, since each of them

brings in a 64B cache line but uses only 4B of that line. Only when the binary search �nally gets down to

within a cache line are more data in a cache line used. This lack of spatial locality makes binary search on

a very large array su�er from poor cache performance.

Figure 3(b) compares the performance of disk-optimized B+-Trees with cache-optimized prefetching B+-

Trees [6] for searches. The �gure shows the simulated execution time (normalized to disk-optimized B+-Trees)

for performing 2000 random searches after each tree has been bulkloaded with 10 million keys on a memory

system similar to the Compaq ES40 [9]|details are provided later in Section 4.1. Execution time is broken

down into busy time, data cache stalls, and other stalls. As we see in Figure 3(b), disk-optimized B+-Trees

spend signi�cantly more time stalled on data cache misses than prefetching B+-Trees.4.

In addition to search, updates are also costly. Insertion and deletion both begin with a search, which has

poor cache performance. Another problem is that in order to insert an entry into a sorted array, half of the

page (on average) must be copied to make room for the new entry. To make matters worse, the optimal disk

page size for B+-Trees is increasing with disk technology trends [12, 15], making the above problems even

more serious in the future.

Techniques for improving B+-Tree cache performance One approach that was briey mentioned by

Lomet [16] is micro-indexing, which is illustrated in Figure 4. The idea behind micro-indexing is that the

�rst key of every cache line in the array can be copied into a smaller array, such as keys 1; 9; 17; : : : ; 1017 in

the example above. These 128 keys are searched �rst to �nd the cache line that completes the search (thus

reducing the number of cache misses to �ve in the example). Unfortunately this approach does not address

3The issues and solutions for �xed length keys are also important for variable length keys, which have their own added

complications in trying to obtain good cache performance [5]. Details are in Section 5.
4The extra \busy" time for disk-optimized B+-Trees is due to the instruction overhead associated with bu�er pool manage-

ment; note that this does not translate into extra data cache stall time due to how we conduct our simulations, as discussed

later in Section 4.1

5

page control info

Figure 4: Illustration of micro-indexing

page control info

Figure 5: Disk-�rst fpB+-Tree: a cache-optimized tree inside each page

the data movement problem upon index updates, and therefore it su�ers poor update performance (as we

will see later in Section 4.2).

To realize good cache performance for all B+-Tree operations, we look to cache-optimized B+-Trees as

a model and propose to break disk-sized pages into cache-optimized nodes. This is the guiding principle

behind fpB+-Trees. We propose and evaluate two approaches for embedding cache-optimized trees into

disk-optimized B+-Tree pages: disk-�rst and cache-�rst. Section 3.1 describes the disk-�rst approach, while

Section 3.2 describes the cache-�rst approach, both focusing on searches and updates. Then in Section 3.3,

we discuss range scans for both approaches.

3.1 Disk-First fpB+-Trees

Disk-�rst fpB+-Trees start with a disk-optimized B+-Tree, but then organize the keys and pointers in each

page-sized node into a cache-optimized tree, as shown in Figure 5. The large contiguous array in a traditional

disk-optimized B+-Tree page is replaced by a small cache-optimized tree, which we call an in-page tree. Our

in-page trees are modeled after pB+-Trees, because they were shown to have the best cache performance

for memory-resident data with �xed-length keys [6]. The approach, however, can be applied to any cache-

optimized tree.

As in a pB+-Tree, an fpB+-Tree in-page tree has nodes that are aligned on cache line boundaries. Each

in-page node is several cache lines wide. When an in-page node is to be visited as part of a search, all the

cache lines comprising the node are prefetched. That is, the prefetch requests for these lines are issued one

after another without waiting for the earlier ones to complete. Let T1 denote the full latency of a cache miss

and Tnext denote the latency of an additional pipelined cache miss. Then T1 + (w � 1) � Tnext is the cost for

servicing all the cache misses for a node with w cache lines. Because on modern processors, Tnext is much

less than T1, this cost is only modestly larger than the cost for fetching one cache line. On the other hand,

having multiple cache lines per node increases its fan-out, and hence can reduce the height of the in-page

tree, resulting in better overall performance, as detailed in [6].

Disk-�rst fpB+-Trees have two kinds of in-page nodes: leaf nodes and nonleaf nodes. Their roles in the

overall tree (the disk-optimized view) are very di�erent. While in-page nonleaf nodes contain pointers to

other in-page nodes within the same page, in-page leaf nodes contain pointers to pages external to their

in-page tree. Thus, for in-page nonleaf nodes, we pack more entries into each node by using short in-page

o�sets instead of full pointers. Because all in-page nodes are aligned on cache line boundaries, the o�sets

can be implemented as a node's starting cache line number in the page. For example, if the cache line is 64

bytes, then a 2 byte o�set can support page sizes up to 4MB. On the other hand, in-page leaf nodes contain

child page IDs if the page is not a leaf in the overall tree, and tuple IDs if the page is a leaf.

The node size mismatch problem Considering cache performance only, there is an optimal in-page

node size, determined by memory system parameters and key and pointer sizes [6]. Ideally, in-page trees

6

page control info

(a) a two-level tree that overows

page control info

Unused space

page control info

(b) a two-level tree that underows (c) adding a third level to the tree in (b) causes an overow

Figure 6: The node size mismatch problem

page control info page control info

(a) use smaller nodes when overow (b) use larger nodes when underow

Figure 7: Fitting cache-optimized trees in a page

based on this optimal size �t tightly within a page. However, the optimal page size is determined by I/O

parameters and disk and memory prices [12, 15]. Thus there is likely a mismatch between the two sizes, as

depicted in Figure 6. Figure 6(a) shows an overow scenario in which a two-level tree with cache-optimal

node sizes fails to �t within the page. Figure 6(b) shows an underow scenario in which a two-level tree

with cache-optimal node sizes only occupies half a page, but a three-level tree, as depicted in Figure 6(c),

overows the page. Thus, in most cases, we must give up on having trees with cache-optimal node sizes, in

order to �t within the page. (Section 3.2 describes an alternative \cache-�rst" approach that instead gives

up on having the cache-optimized trees �t nicely within page boundaries.)

3.1.1 Determining Optimal In-page Node Sizes

Our goals are to optimize search performance and to maximize page fan-out to preserve good I/O perfor-

mance. To solve the node size mismatch problem, we give up using cache-optimal node sizes in disk-�rst

fpB+-Trees. In addition, we propose to allow di�erent node sizes for di�erent levels of the in-page tree.

As shown in Figure 7, to combat overow, we can reduce the root node (or restrict its fan-out) as in Fig-

ure 7(a). Similarly, to combat underow, we can extend the root node so that it can have more children, as

in Figure 7(b).

But allowing arbitrarily many sizes in the same tree will make index operations too complicated. To keep

operations manageable, noting that we already have to deal with di�erent non-leaf and leaf node structures,

we instead develop an approach that permits an in-page tree to have two node sizes: one for its leaves and

one for its nonleaves. As we shall see, this exibility is suÆcient to achieve our goals.

Optimal node sizes At a high-level, there are three variables that we can adjust to achieve the goals: the

number of levels in the in-page tree (denoted L), the number of cache lines of the nonleaf nodes (denoted w)

and the number of cache lines of the leaf nodes (denoted x). Here we determine the optimal node sizes for

an in-page tree, given the hardware parameters and the page size. Assume we know T1 is the full latency of

7

a cache miss, and Tnext is the latency of an additional pipelined (prefetched) cache miss. Then the cost of

searching through an L level in-page tree is

cost = (L� 1)[T1 + (w � 1)Tnext] + T1 + (x � 1)Tnext

We want to select L, w, and x so as to minimize cost while maximizing page fan-out.

However, these two goals are conicting. Moreover, we observed experimentally that because of �xed

costs such as instruction overhead, small variations in cost resulted in similar search performance. Thus,

we combine the two optimization goals into one goal G: maximize the page fan-out while maintaining the

analytical search cost to be within 10% of the optimal.

Now we simply enumerate all the reasonable combinations of w and x (e.g., 1-32 lines, thus 322 = 1024

combinations). For each combination, we compute the maximum L that utilizes the most space in the page,

which in turn allows cost and fan-out to be computed. Table 2 in Section 4 depicts the optimal node widths

used in our experiments. Note that the optimal decision is made only once when creating an index. So the

cost of enumeration is small.

3.1.2 Operations

Bulkload Bulkloading a tree now has operations at two granularities. At a page granularity, we follow the

common B+-Tree bulkload algorithm with the maximum fan-out computed by our previous computations.

Inside each page, we bulkload an in-page tree using a similar bulkload algorithm. For in-page trees of leaf

pages, we try to distribute entries across all in-page leaf nodes so that insertions are more likely to �nd

empty slots. But for nonleaf pages, we simply pack entries into one in-page leaf node after another. We

maintain a linked list of all in-page leaf nodes of leaf pages in the tree, in order. Note that the depth of an

in-page tree, which depends on the number of entries in the page and the bulkload factor, may be less than

the maximum depth L computed above. For example, sometimes all the entries in a root page �t into a

single node. Then we will build a one-level in-page tree.

Search Two granularities, but straightforward.

Insertion Insertion is also composed of operations at two granularities. If there are empty slots in the

in-page leaf node, we insert the entry into the sorted array for the node, by copying the array entries with

larger key values to make room for the new entry. Otherwise, we need to split the leaf node into two. We

�rst try to allocate new nodes in the page. If there is no space for splitting up the in-page tree, but the total

number of entries in the page is still far fewer than the page maximum fan-out, we reorganize the in-page

tree and insert the entry to avoid expensive page splits. But if the total number of entries is quite close to

the maximum fan-out (fewer than an empty slot per in-page leaf node), we split the page by copying half of

the in-page leaf nodes to a new page and then rebuilding the two in-page trees in their respective pages.

Deletion Deletion is simply a search followed by a lazy deletion of an entry in a leaf node, in which we

copy the array entries with larger key values to keep the array contiguous, but we do not merge leaf nodes

that become half empty.

3.2 Cache-First fpB+-Trees

Cache-�rst fpB+-Trees start with a cache-optimized B+-Tree, ignoring page boundaries, and then try to

intelligently place the cache-optimized nodes into disk pages. This scheme addresses the node size mismatch

problem by giving up putting a whole cache-optimzed tree nicely within every page. The tree node has the

common structure of a cache-optimized B+-Tree node: a leaf node contains an array of keys and tuple IDs,

while a nonleaf node contains an array of keys and pointers. However, the pointers in nonleaf nodes are

di�erent. Since the nodes are to be put into disk pages, a pointer is a combination of a page ID and an o�set

in the page, which allows us to follow the page ID to retrieve a disk page and then visit a node in the page

by its o�set. Nodes are aligned on cache line boundaries, so the in-page o�set is the node's starting cache

line number in the page.

8

Leaf nodes in leaf pages

. . . .

. .
Aggressive Placement

Nonleaf nodes
Overflow pages for

leaf node parents

Figure 8: Cache-�rst fpB+-Tree design

We begin by describing how to place nodes into disk pages in a way that will minimize the structure's

impact on disk I/O performance, before presenting our bulkload, insertion, search, and deletion algorithms.

3.2.1 Node Placement

There are two goals in node placement: (1) group sibling leaf nodes together into the same page so that

range scans incur fewer disk operations, and (2) group a parent node and its children together into the same

page so that searches only need one disk operation for a parent and its child.

To satisfy the �rst goal, we designate certain pages as leaf pages, which contain only leaf nodes. The leaf

nodes in the same leaf page are siblings of one another. This ensures good range scan I/O performance.

Clearly, the second goal cannot be satis�ed for all nodes, because only a limited number of nodes �t within

a page. Moreover, the node size mismatch problem (recall Figure 6) means that placing a parent and its

children in a page almost always results in either an overow or an underow for that page. We can often

transform a large underow into an overow by placing the grandchildren, the great grandchildren, and so

on in the same page, until we incur an overow (see Figures 6(b) and (c)).

There are two approaches for dealing with the overow. First, an overowed child can be placed into

its own page to become the top-level node in that page. We then seek to place its children in the same

page. This aggressive placement helps minimize disk accesses on searches. Second, an overowed child can

be stored in special overow pages. This is the only reasonable solution for overowed leaf parent nodes,

because their children are stored in leaf pages.

Our node placement scheme is summarized in Figure 8. Leaf nodes are stored in leaf-only pages, for

good range scan performance. For nonleaf nodes, we use the aggressive node placement for good search

performance, except for leaf parents, which use overow pages. Moreover, to simplify implementations of

aggressive placement, we never place two disjoint subtrees within the same page (which does not improve

search I/O performance).

3.2.2 Determining Optimal Node Width

When creating the index, we determine the optimal node widths for cache performance by applying the same

optimization goal G used in the disk-�rst approach. Assume the node width is w cache lines, each nonleaf

cache line can contain m index entries, the full latency and the pipelined latency of a cache miss are T1 and

Tnext, respectively. Then we compute the search cost as follows (using the similar reasoning to B+-Tree I/O

cost computation in [12]):

cost per binary level =
T1 + Tnext(w � 1)

log2(m � w)

The numerator is the cost of accessing a nonleaf node. The denominator computes the binary level in a

nonleaf node. And their ratio is the search cost per binary level.5

5This cost computation is a little di�erent from that in [6]. We avoid averaging over all possible numbers of entries in the

tree by considering the binary level. This simpli�es the computation.

9

A

(a) before node split

A 2A 1 A 1 A2

(b) split node A into A1 and A2 (c) split the page into two

Figure 9: Nonleaf node splits

We enumerate all the reasonable w (e.g. 1-32). For each w, we compute the cost and the number of

entries in a leaf page. Then we apply the optimal criterion. Table 2 in Section 4 depicts the optimal node

widths used in our experiments.

3.2.3 Algorithms

We now consider each of the index operations.

Bulkload We focus on how to achieve the node placement depicted in Figure 8. Leaf nodes are simply

placed consecutively in leaf pages, and linked together with sibling links, as shown in the �gure. Nonleaf

nodes are placed according to the aggressive placement scheme, as follows.

First, we compute (i) the maximum number of levels of a full subtree that �t within a page, and (ii) the

resulting underow for such a subtree, i.e., how many additional nodes �t within the page. For example,

if each node in the full subtree has 69 children, but a page can hold only 23 nodes, then only one level �ts

completely and the resulting underow is 22 nodes. We create a bitmap with one bit for each child (69 bits

in our example), and set a bit for each child that is to be placed with the parent (22 bits in our example, if

we are bulkloading 100% full). We spread these set bits as evenly as possible within the bitmap.

As we bulkload nodes into a page, we keep track of each node's relative level in the page, denoted its

in-page level. The in-page level is stored in the node header. The top level node in the page has in-page

level 0. To place a nonleaf node, we increment its parent's in-page level. If the resulting level is less than

the maximum number of in-page levels, the nonleaf node is placed in the same page as its parent, as it is

part of the full subtree. If it equals the number, it is placed in the same page if the corresponding bit in the

bitmask is set. If it is not set, the nonleaf node is allocated as the top level node in a new page, unless the

node is a leaf parent node, in which case it is placed into an overow page.

Insertion For insertion, if there are empty slots in the leaf node, the new entry is simply inserted. Other-

wise, the leaf node needs to be split into two. If the leaf page still has spare node space, the new leaf node is

allocated within the same page. Otherwise, we split the leaf page by moving the second half of the leaf nodes

to a new page and updating the corresponding child pointers in their parents. (To do this, we maintain in

every leaf page a back pointer to the parent node of the �rst leaf node in the page, and we connect all leaf

parent nodes through sibling links.) Having performed the page granularity split, we now perform the cache

granularity split, by splitting the leaf node within its page.

After a leaf node split, we need to insert an entry into its parent node. If the parent is full, it must �rst

be split. For leaf parent nodes, the new node may be allocated from overow pages. But if further splits up

the tree are necessary, each new node must be allocated according to our aggressive placement scheme.

Figure 9 helps illustrate the challenges. We need to split node A, a nonleaf node whose children are

nonleaf nodes, into two nodes A1 and A2, but there is no space in A's page for the additional node. As

shown in Figure 9(b), a naive approach is to allocate a new page for A2. However, A2's children are half of

A's children, which are all top level nodes in other pages. Thus either A2 is the only node in the new page,

which is bad for I/O performance and space utilization, or we must move A2's children up into A2's page,

10

. . .

. . . /

Tree

chunked
linked
list

hints
leaf page IDs

.

leaf pages

Figure 10: External jump-pointer array

which necessitates promoting A2's grandchildren to top level nodes on their own pages, and so on. Instead,

to avoid the drawbacks of both these options, we split A's page into two, as shown in Figure 9(c). Since we

deliberately distributed the co-locating nodes using the bitmask in our bulkload algorithm, a page split is

likely to evenly distribute nodes into the two resulting pages.

Finally, for root node splits, we will allocate a new root page and place the newly generated root nodes

into this new page until it is full. In the rare case when the new root page is full and the root node splits

again, we will rebuild the nonleaf part of the tree. This is because the tree must have grown hundreds of

times larger than its orginal size after bulkload and the large number of insertions could make the node

placement in the tree suboptimal.

Search Search is quite straightforward. One detail is worth noting. Each time the search proceeds from a

parent to one of its children, we compare the page ID of the child pointer with that of the parent page. If

the child is in the same page, we can directly access the node in the page without retrieving the page from

the bu�er manager.

Deletion Similar to disk-�rst fpB+-Trees.

3.3 Improving Range Scan Performance

For range scans, we employ jump-pointer array prefetching, as described in Section 2.2, for both I/O and

cache performance. We now highlight some of the details.

In disk-�rst fpB+-Trees, both leaf pages and leaf parent pages have in-page trees. For I/O prefetching, we

build an internal jump-pointer array by adding sibling links between all in-page leaf nodes that are in leaf

parent pages, because collectively these nodes point to all the leaf pages. For cache prefetching, we build

a second internal jump-pointer array by adding sibling links between all in-page leaf parent nodes that are

in leaf pages, because collectively these nodes point to all the leaf nodes of the overall tree (i.e., all in-page

nodes containing tuple IDs). In both jump-pointer arrays, sibling links within a page are implemented as

page o�sets and stored in the nodes, while sibling links across page boundaries are implemented as page IDs

and stored in the page headers.

In cache-�rst fpB+-Trees, leaf pages contain only leaf nodes, while leaf parent pages can be either in the

aggressive placement area or in overow pages. Thus at both the page and cache granularities, sibling links

between leaf parents may frequently cross page boundaries (e.g., a sequence of consecutive leaf parents may

be in distinct overlap pages). Thus the internal jump-pointer array approach is not well suited for cache-�rst

fpB+-Trees. Instead, as shown in Figure 10, we maintain an external jump-pointer array [6] that contains

the page IDs for all the leaf pages, in order to perform I/O prefetching. Similarly, for cache prefetching, we

could maintain in each leaf page header an external jump-pointer array, which contains the addresses of all

nodes within the page. Instead, we observe that our in-page space managment structure indicates which

slots within a page contain nodes, and hence we can use it to prefetch all the leaf nodes in a page before

doing a range scan inside the page.

11

Table 1: Simulation Parameters

Pipeline Parameters

Clock Rate 1 GHz

Issue Width 4 insts/cycle

Functional Units 2 Integer, 2 FP,
2 Memory, 1 Branch

Reorder Bu�er Size 64 insts

Integer Multiply/Divide 12/76 cycles

All Other Integer 1 cycle

FP Divide/Square Root 15/20 cycles

All Other FP 2 cycles

Branch Prediction Scheme gshare [17]

Memory Parameters

Line Size 64 bytes

Primary Data Cache 64 KB, 2-way set-assoc.

Primary Instruction Cache 64 KB, 2-way set-assoc.

Miss Handlers 32 for data, 2 for inst.

Uni�ed Secondary Cache 2 MB, direct-mapped

Primary-to-Secondary 15 cycles (plus any delays
Miss Latency due to contention)

Primary-to-Memory 150 cycles (plus any delays
Miss Latency due to contention)

Main Memory Bandwidth 1 access per 10 cycles

Table 2: Optimal Width Selections (4B keys, T1 = 150, Tnext = 10)

Disk-�rst fpB+-Trees

Page
Size

Nonleaf
Node

Leaf
Node

Page
Fan-out

cost
optimal

4KB 64B 384B 470 1.06

8KB 192B 256B 961 1.00

16KB 192B 512B 1953 1.03

32KB 256B 832B 4017 1.07

Cache-�rst fpB+-Trees

Page
Size

Node
Size

Page
Fan-out

cost
optimal

4KB 576B 497 1.03

8KB 576B 994 1.03

16KB 704B 2001 1.07

32KB 640B 4029 1.05

Micro-indexing

Page
Size

Subarray
Size

Page
Fan-out

cost
optimal

4KB 128B 496 1.06

8KB 192B 1008 1.06

16KB 320B 2032 1.08

32KB 320B 4064 1.05

4 Experimental Results

In this section, we evaluate the cache and I/O performance of fpB+-Trees. We begin by describing the

experimental framework. Then we present our cache performance simulation results and our I/O performance

study.

4.1 Experimental Framework

Methodology for Studying Cache Performance We evaluate the CPU cache performance of fpB+-

Trees through detailed simulations of fully-functional executables running on a state-of-the-art machine. The

simulator models a dynamically-scheduled, superscalar processor similar to the MIPS R10000 [20] running

at a clock rate of 1 GHz. The memory hierarchy is based on the Compaq ES40 [9]. We implemented a bu�er

manager and various index structures (details are below), and ran these on the simulator. The simulator

handles I/O reads and writes by making system calls to the underlying operating system. Only user mode

executions are simulated. Important simulator parameters are shown in Table 1.6

Methodology for Studying I/O Performance We evaluate the I/O performance through experiments

on real machines. To study the I/O performance of searches, we executed random searches, and then counted

the number of I/O accesses (i.e., the number of bu�er pool misses). For searches, the I/O time is dominated

by the number of I/Os, because there is little overlap in accessing the pages in a search. To study the

I/O performance of range scans, we executed random range scans on an SGI Origin 200 workstation with

multiple disks. Furthermore, we evaluate the I/O performance of range scans in a commerical DBMS: we

implemented our jump-pointer array scheme within DB2, and executed range scan queries on DB2. Details

on our Origin and DB2 experiments are provided later in the subsections describing the range scan I/O

performance results.

Implementation Details Our bu�er manager uses the CLOCK algorithm to do page replacement. On

top of this bu�er manager, we implemented four index structures: i) disk-optimized B+-Trees, ii) micro-

indexing, iii) disk-�rst fpB+-Trees, and iv) cache-�rst fpB+-Trees. We wrote bulkload, search, insertion,

6The simulation model and parameters match those in [6].

12

deletion, and range scan implementations for all the trees (range scans for micro-indexing was not explicitly

implemented because its behavior is similar to that of disk-optimized B+-Trees).

We use 4 byte page IDs, 4 byte tuple IDs, and 2 byte in-page o�sets. We performed experiments with 4

byte keys and 20 byte keys. We will present the 4 byte key experiments �rst and discuss our 20 byte key

experiments in Section 4.4. We partitioned keys and pointers into separate arrays in all tree nodes for better

cache performance [11, 16]. Disk-�rst fpB+-Trees have 2 byte in-page pointers in nonleaf nodes and 4 byte

pointers in leaf nodes, while cache-�rst fpB+-Trees have 6 byte pointers combining page IDs and in-page

o�sets in nonleaf nodes. We performed experiments for page sizes of 4KB, 8KB, 16KB, and 32KB, which

covers the range of page sizes in most of today's database systems. As shown in Table 2, we computed the

optimal node widths for fpB+-Trees using T1 = 150 and Tnext = 10 from Table 1 and when key size is 4

bytes.

In our micro-indexing implementation, a tree page contains a header, a micro-index, a key array, and a

pointer array. The micro-index is formed by dividing the key array into sub-arrays of the same size and

copying their �rst keys. A search in a page �rst looks up the micro-index to decide which sub-array to

go to and then searches that sub-array. For better performance, we require the sub-array size to be a

multiple of the cache line size (if applicable) and align the key array at cache line boundaries. To improve

the performance of micro-indexing, we employ pB+-Tree-like prefetching for micro-indexes, key sub-arrays,

and pointer sub-arrays. Insertion and deletion follow the algorithms of disk-optimized B+-Trees, but then

rebuild the a�ected parts of the micro-index. As shown in Table 2, we computed the optimal sub-array sizes

for micro-indexing based on the same optimal criterion as advocated for fpB+-Trees: maximize page fan-out

while keeping the analytical search cost to within 10% of the optimal.

We try to avoid conict cache misses in the bu�er manager between bu�er control structures and bu�er

pool pages. The control structures are allocated from the bu�er pool itself, and only those bu�er pages that

do not conict with the control structures will be used. In fpB+-Trees, putting top-level in-page nodes at

the same in-page position would cause cache conicts among them. So we instead place them at di�erent

locations determined by a function of the page IDs.

4.2 Cache Performance

4.2.1 Search Performance

Varying the number of entries in leaf pages Figures 11 and 12 show the execution times of 2000

random searches after bulkloading 100K, 300K, 1M, 3M, and 10M keys into the trees (nodes are 100% full

except the root). All caches are cleared before the �rst search, and then the searches are performed one

immediately after another. The four plots in Figure 11 show search performance when the database page sizes

are 4KB, 8KB, 16KB, and 32KB, respectively. The fpB+-Trees and micro-indexing use the corresponding

optimal widths in Table 2. From the �gures, we see that the cache-sensitive schemes, fpB+-Trees and micro-

indexing, all perform signi�cantly better than disk-optimized B+-Trees, achieving speed-ups between 1.09

and 1.77 at all points and between 1.25 and 1.77 when the trees contain at least 1M entries. Moreover,

comparing the three cache-sensitive schemes, we �nd their performance more or less similar. When the page

size is 4KB, the cache-�rst fpB+-Tree is slightly better than the other two. But for the other page sizes,

their performance is very close.

When the page size increases from 4KB to 32KB, the performance of disk-optimized B+-Trees becomes

slightly worse. While larger leaf pages cause more cache misses at the leaf level, this cost is partially

compensated by the savings at the nonleaf levels: trees become shallower and/or root nodes have fewer

entries. At the same time, fpB+-Trees and micro-indexing perform better because larger page sizes leave

more room for optimization. With the two trends, we see larger speed-ups: over 1.41 for 16KB pages, and

over 1.54 for 32KB pages, when trees contain at least 1M entries.

Figure 12 compares the performance of di�erent widths for fpB+-Trees and micro-indexing when the page

size is 16KB. Recall that our optimal criterion is to maximize leaf page fan-out while keeping analytical

search performance within 10% of the best. Figure 12 con�rms that our selected trees indeed achieve search

performance very close to the best among the node choices.

Figure 12(a) shows the performance of disk-�rst fpB+-Trees using nonleaf node sizes from 64B (an L2

cache line) to 512B (8 L2 cache lines). Our selected optimal tree is within 2% of the best execution times.

13

10
5

10
6

10
7

1

1.5

2

2.5

3

of entries in leaf pages

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

Disk−optimized B+tree
Micro−indexing
Disk−first fpB+tree
Cache−first fpB+tree

10
5

10
6

10
7

1

1.5

2

2.5

3

of entries in leaf pages
ex

ec
ut

io
n

tim
e

(M
 c

yc
le

s)

Disk−optimized B+tree
Micro−indexing
Disk−first fpB+tree
Cache−first fpB+tree

10
5

10
6

10
7

1

1.5

2

2.5

3

3.5

of entries in leaf pages

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

Disk−optimized B+tree
Micro−indexing
Disk−first fpB+tree
Cache−first fpB+tree

10
5

10
6

10
7

1

1.5

2

2.5

3

3.5

of entries in leaf pages

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

Disk−optimized B+tree
Micro−indexing
Disk−first fpB+tree
Cache−first fpB+tree

(a) page size = 4KB (b) page size = 8KB (c) page size = 16KB (d) page size = 32KB

Figure 11: 2K searches after bulkloading 100K-10M keys 100% full.

10
5

10
6

10
7

1

1.5

2

2.5

3

3.5

of entries in leaf pages

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

nonleaf= 64B
nonleaf=128B
nonleaf=192B(selected)
nonleaf=256B
nonleaf=320B
nonleaf=384B
nonleaf=448B
nonleaf=512B

10
5

10
6

10
7

1

1.5

2

2.5

3

3.5

of entries in leaf pages

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

128B
256B
512B
704B(selected)
1024B
Best Synthesized

10
5

10
6

10
7

1

1.5

2

2.5

3

3.5

of entries in leaf pages

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

128B
256B
320B (selected)
512B
1024B
Best Synthesized

(a) Disk-�rst fpB+-Tree (b) Cache-�rst fpB+-Tree (c) Micro-indexing

Figure 12: Optimal width selection (16KB page, 4B key)

60 70 80 90 100
1.5

2

2.5

3

3.5

bulkload factor when building the trees

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

Disk−optimized B+tree
Micro−indexing
Disk−first fpB+tree
Cache−first fpB+tree

Figure 13: Search performance varying bulkload factors (16KB page, 3M entries in leaf pages)

For cache-�rst fpB+-Trees we measured the performance for node sizes ranging from 128B to 1024B. In

Figure 12(b), for simplicity, we only show curves for node sizes of 128B, 256B, 512B, 704B, 1024B, and a

best performance curve synthesized by taking the minimums of all curves with the same # of entries in

leaf pages. Our selected optimal tree performs within 5% of the best. Figure 12(c) shows the performance

curves of micro-indexing with di�erent sub-array sizes. As in the comparisons of Figure 12(b), we measured

performance for sub-array sizes from 128B to 1024B, but for simplicity, the �gure only shows curves for �ve

di�erent sizes, and the best synthesized curve. Our selected optimal structure performs within 3% of the

best performance. In the experiments of Section 4.2 and 4.3, we use the optimal sizes given in Table 2.

Varying the bulkload factor In Figure 13, we varied the 3M-entry experiments in Figure 11(c) with

bulkload factors ranging from 60% to 100%. Compared with disk-optimized B+-Trees, fpB+-Trees and

micro-indexing achieve speed-ups between 1.37 and 1.60.

The step-down at 80% for micro-indexing and disk-�rst fpB+-Trees is because they reduce one page level

14

60 70 80 90 100
0

10

20

30

40

50

60

70

80

bulkload factor (16KB page)

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

Disk−optimized B+tree
Micro−indexing
Disk−first fpB+tree
Cache−first fpB+tree

10
5

10
6

10
7

0

10

20

30

40

50

60

70

of entries in leaf pages (16KB page, 100% full)
ex

ec
ut

io
n

tim
e

(M
 c

yc
le

s)

Disk−optimized B+tree
Micro−indexing
Disk−first fpB+tree
Cache−first fpB+tree

10

20

30

40

50

60

70

80

90

(3M entries in leaf pages, 100% full)

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

4KB 8KB 16KB 32KB

Disk−optimized B+tree
Micro−indexing
Disk−first fpB+tree
Cache−first fpB+tree

0

20

40

60

80

100

(3M entries in leaf pages, 70% full)

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

4KB 8KB 16KB 32KB

Disk−optimized B+tree
Micro−indexing
Disk−first fpB+tree
Cache−first fpB+tree

(a) Varying bulkload factors (b) Varying # entries (c) Varying page sizes (d) Varying page sizes
(100% full) (70% full)

Figure 14: Insertion Performance

at 80%. Although the disk-optimized B+-Trees also reduce one level here, the savings are o�set by a larger

cost for searching leaf pages with increased bulkload factors. Cache-�rst fpB+-Trees all have the same

number of node levels in this set of experiments and therefore similar performance.

4.2.2 Insertion Performance

Figure 14 shows the insertion performance in four di�erent settings. The experiments all measured the

execution times for inserting 2000 random keys after bulkloads, while varying the bulkload factor, the

numbers of entries in leaf pages, and the page size. The fpB+-Trees achieve up to a 35-fold speed-up over

disk-optimized B+-Trees, while micro-indexing performs almost as poorly as disk-optimzed B+-Trees.

Figure 14(a) compares insertion performance of trees from 60% to 100% full containing 3M keys. Com-

pared to disk-optimized B+-Trees, the fpB+-Trees achieve 14 to 20-fold speed-ups between 60% and 90%,

while for 100% full trees, they are over 1.9 times better. Interestingly, the curves have extremely di�erent

shapes: those of disk-optimized B+-Trees and micro-indexing increase from 60% to 90% but drop at the

100% point, while the curves of fpB+-Trees stay at at �rst but jump dramatically at the 100% point. These

e�ects can be explained by the combination of two factors: data movement and page splits. When trees are

60% to 90% full, insertions usually �nd empty slots and the major operation after searching where the key

belongs is to move the key and pointer arrays in order to insert the new entry. In disk-optimized B+-Trees,

this data movement is by far the dominant cost. As the occupied portions of the arrays grow from 60%

to 90%, this cost increases, resulting in larger insertion times. Micro-indexing keeps the same large array

structure untouched and therefore su�ers from the same e�ect. However, in fpB+-Trees, we reduced the

data movement cost by using smaller cache-optimized nodes, resulting in 14 to 20-fold speed-ups. Data

movement has become much less costly than search, leading to the at curves up through 90% full. When

the trees are 100% full, insertions cause frequent page splits. In fpB+-Trees, the cost of a page split is far

more than the previous data movement cost, resulting in the large jump seen in the curves. In B+-Trees and

micro-indexing, however, the page split cost is comparable to copying half of a page, which is the average

data movement cost for inserting into an almost full page. But later insertions may hit half empty pages

(just split) and hence incur less data movement, resulting in faster insertion times at the 100% point.

Figure 14(b) shows insertion performance on full trees of di�erent sizes. Compared to disk-optimized B+-

Trees, fpB+-Trees achieve speed-ups from 6.26 to 1.42 when the number of entries in leaf pages is increased

from 100K to 10M. This decrease in speed-up is caused by the increasing number of page splits (from

48 to 1631 leaf page splits for disk-optimized B+-Trees, and similar trends for other indexes). As argued

above, increased page splits have a much greater performance impact on fpB+-Trees than on disk-optimized

B+-Trees and micro-indexing, leading to the speed-up decrease.

Figures 14(c) and (d) compare the insertion performance varying page sizes when trees are 100% and 70%

full. As the page size grows, the execution times of disk-optimized B+-Trees and micro-indexing explode

because of the combined e�ects of larger data movement and larger page split costs. In fpB+-Trees, though

page split costs also increase, search and data movement costs only change slightly, because with larger page

sizes comes the advantages of larger optimal node widths. Therefore the curves of fpB+-Trees increase in

15

60 70 80 90 100
0

5

10

15

20

25

30

bulkload factor (16KB page)

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

Disk−optimized B+tree
Micro−indexing
Disk−first fpB+tree
Cache−first fpB+tree

10
5

10
6

10
7

0

5

10

15

20

25

30

of entries in leaf pages (16KB page, 100% full)

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

Disk−optimized B+tree
Micro−indexing
Disk−first fpB+tree
Cache−first fpB+tree

0

10

20

30

40

50

(3M entries in leaf pages, 100% full)

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

4KB 8KB 16KB 32KB

Disk−optimized B+tree
Micro−indexing
Disk−first fpB+tree
Cache−first fpB+tree

(a) Varying bulkload factors (b) Varying # of entries (100% full) (c) Varying page sizes (100% full)

Figure 15: Deletion Performance

60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

bulkload factor (16KB page)

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

Disk−optimized B+tree
Disk−first fpB+tree
Cache−first fpB+tree

Figure 16: Range Scan Performance (16KB page, scanning 1M keys)

Figure 14(c) but are almost at in (d). Altogether in Figure 14(c) and (d), fpB+-Trees achieve 1.15{2.90

and 4.67{35.6 fold speed-ups over disk-optimized B+-Trees, respectively.

Comparing the two fpB+-Trees, we see they have similar insertion performance. Sometimes cache-�rst

fpB+-Trees perform worse than disk-�rst fpB+-Trees. This is primarily because of the more complicated

node/page split operations in cache-�rst fpB+-Trees, as discussed in Section 3.2.

4.2.3 Deletion Performance

Deletions are implemented as lazy deletions in all the indexes. A search is followed by a data movement

operation to remove the deleted entry, but we do not merge underowed pages or nodes. Figure 15 evaluates

deletion performance (for 2000 random deletions) in three settings: (a) varying the bulkload factor when the

page size is 16KB, (b) varying the number of entries bulkloaded, and (c) varying the page sizes when the

trees are 100% full. The dominant cost in disk-optimized B+-Trees and micro-indexing is the data movement

cost, which increases as the bulkload factor increases and the page size grows. However, the search and data

movement costs of fpB+-Trees only change slightly. So the fpB+-Trees achieve 3.2{20.4 fold speed-ups over

disk-optimized B+-Trees.

4.2.4 Range Scan Performance

Figure 16 compares the range scan cache performance of fpB+-Trees and disk-optimized B+-Trees. The

trees are bulkloaded with 3M keys varying bulkload factors from 60% to 100%. We generate 100 random

start keys, for each computing an end key such that the range spans precisely 1M tuple IDs, and then

perform these 100 range scans one after another. Compared to the disk-optimized B+-Trees, the disk-�rst

and cache-�rst fpB+-Trees achieve speed-ups 3.5-4.2 and 3.0-3.5, respectively7.

7Our paper [7] reported up to a factor 2.3 speedup for the 100% experiments. We found a performance bug after looking

into the statistics collected by the simulator. We did not issue cache prefetch instructions for leaf node header �elds, which are

visited by the range scan to obtain the number of index entries in the nodes. After �xing the bug, we see larger speedups.

16

10
5

10
6

10
7

1

1.5

2

2.5

3

3.5

of entries in leaf pages (16KB page)

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

Disk−optimized B+tree
Disk−first fpB+tree
Cache−first fpB+tree

10
5

10
6

10
7

0

10

20

30

40

50

60

of entries in leaf pages (16KB page)

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

Disk−optimized B+tree
Disk−first fpB+tree
Cache−first fpB+tree

10
5

10
6

10
7

0

5

10

15

20

of entries in leaf pages (16KB page)

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

Disk−optimized B+tree
Disk−first fpB+tree
Cache−first fpB+tree

(a) Search (Varying # of entries) (c) Insertion (Varying # of entries) (e) Deletion (Varying # of entries)

1

1.5

2

2.5

3

3.5

(3M entries in leaf pages)

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

4KB 8KB 16KB 32KB

Disk−optimized B+tree
Disk−first fpB+tree
Cache−first fpB+tree

0

20

40

60

80

100

(3M entries in leaf pages)

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

4KB 8KB 16KB 32KB

Disk−optimized B+tree
Disk−first fpB+tree
Cache−first fpB+tree

0

5

10

15

20

25

30

(3M entries in leaf pages)

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

4KB 8KB 16KB 32KB

Disk−optimized B+tree
Disk−first fpB+tree
Cache−first fpB+tree

(b) Search (Varying page sizes) (d) Insertion (Varying page sizes) (f) Deletion (Varying page sizes)

0

200

400

600

800

1000

1200

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

Disk−optimized
 B+tree

Disk−first
 fpB+tree

Cache−first
 fpB+tree

(g) Range Scan (16KB page, scanning 1M keys)

Figure 17: Mature Tree Cache Performance

In disk-optimized B+-Trees, a range scan sequentially visits the large tuple ID array when visiting a leaf

page. In contrast, range scans in fpB+-Trees have to deal with node structures within leaf pages, potentially

leading to worse cache performance. But using prefetching for range scans, we can still achieve up to 4-fold

speedups despite the added complexity.

When the bulkload factor increases from 60% to 100%, the execution times of range scan in disk-optimized

B+-Trees are almost the same. This is because the number of memory accesses does not change signi�cantly:

more tuple IDs are read in every leaf page, but fewer leaf pages are visited. However, the execution times in

fpB+-Trees decrease with the increase of bulkload factor. In our implementation, for simplicity, we always

prefetch the whole array of tuple IDs in each leaf node no matter how full it is. So when the bulkload factor

increases, fewer leaf nodes are visited and therefore there is less prefetching overhead. This may be improved

by maintaining statistics and dynamically determining how many lines in a leaf node to prefetch for each

range scan operation.

4.2.5 Mature Tree Cache Performance

We also performed a set of experiments with mature trees, created by bulkloading 10% of index entries and

then inserting the remaining 90%. As shown in Figure 17, we �nd similar performance gains to our previous

experiments. Search is improved by a factor of 1.1-1.6, insertion by a factor of 4-30, deletion by a factor of

2.6-13, and range scan by 1.63 and 1.95 (for disk-�rst and cache-�rst fpB+-Trees respectively).

17

|0

|20

|40

|60

|80

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e dcache stalls
 other stalls
 busy

Disk-optimized Prefetching Disk-first Cache-first
B+tree B+tree fpB+tree fpB+tree

|0

|20

|40

|60

|80

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e dcache stalls
 other stalls
 busy

Disk-optimized Disk-first Cache-first
B+tree fpB+tree fpB+tree

(a) Search (16KB page, 2K random searches) (b) Range Scan (16KB page, range contains 1M keys)

Figure 18: Normalized Execution Time Breakdowns

4.2.6 Execution Time Breakdowns

We �nish the discussion of cache performance in this subsection with the execution time breakdowns of two

representative experiments: one for index search and one for index range scan. Figure 18(a) corresponds to

the experiments shown earlier in Figure 11(c) with 10M entries bulk-loaded, and Figure 18(b) corresponds

to the experiments shown earlier in Figure 16 when bulkload factor is 100%.

Each bar in Figure 18 represents execution time normalized to a disk-optimized B+-Tree, and is broken

down into the following three categories that explain what happened during all potential graduation slots.8

The bottom section (busy) is the number of slots where instructions actually graduate. The other two

sections are the number of slots where there is no graduating instruction, broken down into data cache stalls

and other stalls. Speci�cally, the top section (dcache stalls) is the number of such slots that are immediately

caused by the oldest instruction su�ering a data cache miss, and the middle section (other stalls) is all other

slots where instructions do not graduate.

As shown in Figure 18, our fpB+-Trees signi�cantly reduce the amount of exposed miss latency (i.e. the

dcache stalls component). In the index search experiments, fpB+-Trees eliminate more than 60% of the

data cache stall time. And in the index range scan experiments, more than 85% of the data cache stalls

have been eliminated. Interestingly the busy times and the other stalls of fpB+-Trees increase slightly.

This can be explained by the fact that fpB+-Trees build more structures inside a disk page. So more

instructions are needed for index operations, increasing the number of graduated instructions (busy times).

Furthermore, more instructions lead to more resource and other contentions, which are reected in the other

stalls. However, these increases are overshadowed by the savings in data cache stalls. Overall, the disk-�rst

and cache-�rst fpB+-Trees speed up index search by a factor of 1.50 and 1.57, respectively. They speed up

index range scan by a factor of 4.2 and 3.5, respectively. These results demonstrate that the fpB+-Trees

speedups indeed come from a signi�cant reduction in the exposed miss latency.

4.3 I/O Performance and Space Overhead

Space Overhead Figure 19 shows the space overhead9 of the fpB+-Trees compared to disk-optimized

B+-Trees for a range of page sizes, depicting two (extremal) scenarios: (a) immediately after bulkloading

the trees 100% full, and (b) after inserting 9M keys into trees bulkloaded with 1M keys. We see that in each

of these scenarios, disk-�rst fpB+-Trees incur less than a 9% overhead. In cache-�rst fpB+-Trees, the space

overhead is less than 5% under scenario (a), even better than disk-�rst fpB+-Trees. This is because the leaf

pages in cache-�rst fpB+-Trees only contain in-page leaf nodes, while disk-�rst fpB+-Trees build in-page

trees (containing nonleaf and leaf nodes) in leaf pages. However, for the mature tree scenarios, the space

overheads of the cache-�rst fpB+-Tree can grow to 36%, because of the diÆculties in maintaining e�ective

placement of nodes within pages over many insertions.

8The number of graduation slots is the issue width (4 in our simulated architecture) multiplied by the number of cycles. We

focus on graduation slots rather than issue slots to avoid counting speculative operations that are squashed.

9Space Overhead =
of pages in the index

of pages in a disk-optimized B+-Tree
� 1

18

0

10

20

30

40

50

page size
sp

ac
e

ov
er

he
ad

 (
pe

rc
en

ta
ge

)
4KB 8KB 16KB 32KB

Disk−first fpB+tree
Cache−first fpB+tree

0

10

20

30

40

50

page size

sp
ac

e
ov

er
he

ad
 (

pe
rc

en
ta

ge
)

4KB 8KB 16KB 32KB

Disk−first fpB+tree
Cache−first fpB+tree

(a) After bulkloading trees 100% full (b) Mature trees

Figure 19: Space Overhead

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

page size

of

 I/
O

 r
ea

ds
 (

x
10

00
)

4KB 8KB 16KB 32KB

Disk−optimized B+tree
Disk−first fpB+tree
Cache−first fpB+tree

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

page size

of

 I/
O

 r
ea

ds
 (

x
10

00
)

4KB 8KB 16KB 32KB

Disk−optimized B+tree
Disk−first fpB+tree
Cache−first fpB+tree

(a) search after bulkload (b) search in mature trees

Figure 20: I/O Search performance

Figure 19 also shows that as the page size grows, the space overhead of disk-�rst fpB+-Trees decreases

because larger pages allow more freedom when optimizing in-page node widths.

4.3.1 Search Performance

Figure 20 shows the search I/O performance of fpB+-Trees. The �gure reports the number of I/O page

reads that miss the bu�er pool when searching 2000 random keys in trees containing 10M keys. The bu�er

pool was cleared before every experiment. We see that for all page sizes, disk-�rst fpB+-Trees perform close

to that of disk-optimized B+-Trees, accessing less than 3% more pages. However, cache-�rst fpB+-Trees

may access up to 25% more pages. After looking into the experiments, we determined that the extra cost

is incurred mainly when accessing leaf parent nodes in overow pages. For example in the 4KB case in

Figure 20(a), the fan-out of a nonleaf node is 57 and a page can contain part of a two-level tree. But only

6 out of the 57 children can reside on the same page as a node itself. Therefore even if all the parents of

the leaf parent nodes are top-level nodes, 51 out of every 57 leaf parent nodes will still be placed in overow

pages, leading to many more page reads than disk-optimized B+-Trees. However, as page sizes grow, this

problem may be alleviated, as can be seen for the 32KB points.

4.3.2 Range Scan Performance on Real Hardware

Unlike our search experiments, which counted the number of I/O accesses, our range scan I/O performance

experiments measure running times on real hardware. Figure 21 shows the I/O performance of fpB+-Trees

vs. B+-Trees for range scans, on an SGI Origin workstation running Irix 6.5 with four 180MHz MIPS R10000

processors, 128MB RAM, and 12 SCSI disks. Each disk is a Seagate Cheetah 4LP with a maximum transfer

rate of 40 Mbytes/sec and a track-to-track seek type of 18 msec (typical). We imitate raw disk partitions by

allocating a large �le on each disk and managing the mapping from page IDs to �le o�sets ourselves. The �le

system uses 16KB disk blocks, so accordingly, we set the tree page size to be 16KB. Our bu�er manager has a

19

10
2

10
4

10
6

10
1

10
2

10
3

10
4

10
5

of entries in the scanned range

ex
ec

ut
io

n
tim

e
(m

s)

B+trees
fpB+trees

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

of disks used

ex
ec

ut
io

n
tim

e
(s

)

B+trees
fpB+trees

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

of disks used

sp
ee

d
up

(a) Execution time vs. range size (b) time vs. # of disks (c) speed-up vs. # of disks

Figure 21: Range Scan I/O Performance

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

of I/O processes

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

no prefetch
with prefetch
in memory

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

SMP degree (# of parallel processes)
no

rm
al

iz
ed

 e
xe

cu
tio

n
tim

e

no prefetch
with prefetch
in memory

(a) varying # of prefetchers (SMP degree = 9) (b) varying SMP degree (# of prefetchers = 8)

Figure 22: Impact of range scan prefetching on the performance of DB2

dedicated thread for each of the disks, which performs I/O operations on behalf of the operation requesters.

For these experiments, we bulkloaded the trees 100% full with 90 million keys and then inserted 10

million keys to make the trees mature. We performed various range scan operations on the mature trees.

Each reported data point is the average of 10 trials.

Figure 21(a) shows the execution time in milliseconds for range scans using 10 disks, where the starting

keys are selected at random and the size of the range varies from 102 to 107 entries. Note that a 16KB leaf

page can hold more than 2000 entries, or more than 1400 entries when the tree is 70% full, which is typically

the case. Thus for small ranges (102 and 103), the execution times for the two trees are indistinguishable.

For larger ranges (104 and up), multiple pages are needed, and jump-pointer array prefetching provides a

signi�cant improvement over the B+-Tree. Even for the 104 case, which scans only a few pages, the fpB+-

Tree is 1.9 times faster than the B+-Tree. Better still, for large scans of 106{107 entries, the fpB+-Tree is

6.2-6.9 times faster than the B+-Tree.

From the small range results in Figure 21(a), we see that our technique for avoiding overshooting is quite

e�ective. When ranges are small, there is almost no additional I/O overhead for searching end keys, since

end keys often reside in the same leaf pages as begin keys. Even when they are in di�erent leaf pages, the

end leaf page, which has been fetched into the bu�er pool by the search, will likely still be in the bu�er pool

when needed for the scan.

Figure 21(b) shows the execution time in seconds for large range scans (107 entries), varying the number

of disks. Figure 21(c) shows the corresponding speed-ups. We see the trend of decreasing execution time

(and hence increasing speed-up) with increasing numbers of disks. When we increase the number of disks

from 1 to 10, we see an almost linear increase in speed-up from 1 to 6.9.

20

Table 3: Optimal Width Selections (20B keys, T1 = 150, Tnext = 10)

Disk-�rst fpB+-Trees

Page
Size

Nonleaf
Node

Leaf
Node

Page
Fan-out

cost
optimal

4KB 128B 640B 156 1.08

8KB 256B 704B 319 1.05

16KB 512B 704B 638 1.02

32KB 576B 1280B 1325 1.06

Cache-�rst fpB+-Trees

Page
Size

Node
Size

Page
Fan-out

cost
optimal

4KB 448B 162 1.00

8KB 896B 333 1.07

16KB 704B 667 1.03

32KB 704B 1334 1.03

Micro-indexing

Page
Size

Subarray
Size

Page
Fan-out

cost
optimal

4KB 320B 160 1.00

8KB 704B 332 1.10

16KB 896B 668 1.06

32KB 1088B 1344 1.08

10
5

10
6

10
7

1.5

2

2.5

3

3.5

4

4.5

5

5.5

of entries in leaf pages

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

Disk−optimized B+tree
Micro−indexing
Disk−first fpB+tree
Cache−first fpB+tree

10
5

10
6

10
7

1.5

2

2.5

3

3.5

4

4.5

5

5.5

of entries in leaf pages

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

Disk−optimized B+tree
Micro−indexing
Disk−first fpB+tree
Cache−first fpB+tree

10
5

10
6

10
7

1.5

2

2.5

3

3.5

4

4.5

5

5.5

of entries in leaf pages
ex

ec
ut

io
n

tim
e

(M
 c

yc
le

s)

Disk−optimized B+tree
Micro−indexing
Disk−first fpB+tree
Cache−first fpB+tree

10
5

10
6

10
7

1.5

2

2.5

3

3.5

4

4.5

5

5.5

of entries in leaf pages

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

Disk−optimized B+tree
Micro−indexing
Disk−first fpB+tree
Cache−first fpB+tree

(a) page size = 4KB (b) page size = 8KB (c) page size = 16KB (d) page size = 32KB

Figure 23: 2K searches after bulkloading 100K-10M 20B-keys 100% full.

4.3.3 Range Scan Performance on a Commercial DBMS

To evaluate the impact of range scan prefetching on a commerical DBMS, we implemented our jump-pointer

array scheme within IBM's DB2 Universal Database10. Because DB2's index structures support reverse

scans and SMP scan parallelism, we added links in both directions, and at all levels of the tree. These links

are adjusted at every non-leaf page split and page merge.

We performed experiments on an IBM 7015-R30 machine (from the RS/6000 line) with 8 processors, 80

SSA disks, and 2GB of memory, running the AIX operating system. We populated a 12.8 GB table across

80 raw partitions (i.e., 160 MB per partition) using 10 concurrent processes to insert a total of roughly 50

million rows of random data of the form (int,int,char(20),int,char(512)). An index was created using

the three integer columns; its initial size was less than 1 GB, but it grows through page splits. We used

the query SELECT COUNT(*) FROM DATA, which is answered using the index. Figure 22 shows the results of

these experiments.

As we see in Figure 22, our results on an industrial-strength DBMS are surprisingly good (2.5-5.0 speed-

ups). The top curves in both �gures are for the plain range scan implementation without jump-pointer array

prefetching. The bottom curves show the situation when the leaf pages to be scanned are already in memory;

this provides a limit to the possible performance improvements. Figure 22(a) shows that the performance

of jump-pointer array prefetching increases with the number of I/O prefetchers, until the maximum perfor-

mance is nearly reached. Figure 22(b) shows that increasing the degree of parallelism increases the query

performance, which again tracks the maximum performance curve.

4.4 Experimental Results with 20B keys

To study the performance of fpB+-Trees with larger key sizes, we performed a set of experiments with 20-byte

keys in this section. Table 3 shows the optimal width selections for fpB+-Trees and micro-indexing when

key size is 20 bytes. As shown in Figure 23, Figure 24, and Figure 25, we �nd similar cache performance

10Notices, Trademarks, Service Marks and Disclaimers: The information contained in this publication does not include any

product warranties, and any statements provided in this document should not be interpreted as such. The following terms are

trademarks or registered trademarks of the IBM Corporation in the United States and/or other countries: IBM, DB2, DB2

Universal Database. Other company, product or service names may be the trademarks or service marks of others.

21

60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

bulkload factor (16KB page)

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

Disk−optimized B+tree
Micro−indexing
Disk−first fpB+tree
Cache−first fpB+tree

60 70 80 90 100
0

5

10

15

20

25

30

bulkload factor (16KB page)

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

Disk−optimized B+tree
Micro−indexing
Disk−first fpB+tree
Cache−first fpB+tree

(a) 2K insertions varying bulkload factors (b) 2K deletions varying bulkload factors

Figure 24: Update performance when key size is 20B

0

200

400

600

800

1000

1200

ex
ec

ut
io

n
tim

e
(M

 c
yc

le
s)

Disk−optimized
 B+tree

Disk−first
 fpB+tree

Cache−first
 fpB+tree

Figure 25: Range Scan Performance (16KB page, scanning 1M keys, key size is 20B)

gains to our previous experiments. All three cache-sensitive index schemes perform signi�cantly better in

search than disk-optimized B+-Trees. However, micro-indexing does not solve the data movement problem

and therefore still has poor insertion and deletion performance. With fpB+-Trees, search is improved by a

factor of 1.39-1.96, insertion by a factor of 1.4-17, deletion by a factor of 5-8, and range scan by a factor of

3.0 and 2.7 for disk-�rst and cache-�rst fpB+-Trees, respectively.

Comparing Figure 23 to Figure 11 in Section 4.2.1, we see a large increase in the execution times of disk-

optimized B+-Trees. With larger keys, the tree pages have smaller fan-outs and the trees become deeper.

Key comparison costs increase. In addition, a cache line contains fewer keys. So the savings due to spatial

locality at the end of a binary search decreases. In fpB+-Trees, we use prefetching to bring in all cache

lines of a cache-optimized node in parallel. This ability to use nodes much larger than a cache line enables

fpB+-Trees to e�ectively improve cache performance not only for small key sizes but also for large key sizes.

Compared to disk optimized B+-Trees, the performance deterioration due to larger key sizes of fpB+-Trees

is also less dramatic, thus leading to even larger speedups in search performance with 20 byte keys.

Comparing the update performance with previous �gures, we see that the execution times of disk-

optimized B+-Trees almost stay the same. This is because larger key sizes do not change the data movement

costs and page split cost.

5 Discussion

We have focused on improving performance for B+-Trees with �xed length keys. Although B+-Trees with

variable length keys have di�erent page structures, we can still break disk-optimized pages into cache-

optimized nodes and employ fpB+-Trees to improve cache and disk performance.

As shown in Figure 26(a), a common way to deal with variable length entities in database systems is to

use slotted pages. A page (tree node) contains a header at the beginning, space to allocate index entries in

the middle, and an array of slots pointing to the index entries in the key order in the end. The indirection

provided by the slot array allows index entries to be allocated in any order. This partially solves the data

22

Key and Page ID/Tuple ID

page control info

Rest of the key
Page ID/Tuple ID

Prefix
Key

Prefix
Key

page control info

(a) Using slotted page (b) Extracting key pre�xes into an o�set array

Figure 26: B+-Tree page structures for variable length keys

Figure 27: fpB+-Trees for variable length keys

movement problem in the continuous array structure: index entries do not need to be moved for insertion

and deletion, instead we have to move the slot array. However, there will not be any spatial locality across

index entries for search now (not even the limited spatial locality as in the continuous array case when

a binary search narrows down to within a cache line). So search performance will get even worse. The

structure shown in Figure 26(b) has been suggested to have better cache performance in [11, 16]. The main

idea is to extract �xed length pre�xes of the variable length keys to form a pre�x array along with byte

o�sets pointing to the rest of index entries, which includes the rest of the keys and page IDs or tuple IDs. If

the pre�xes distinguish keys well, key comparison will mostly use the pre�xes without accessing the rest of

the keys. And we essentially get back to the continous array structure. Better performance results from the

savings in key comparison and the spatial locality of the key pre�x array.

fpB+-Trees can be employed to improve performance of B+-Trees with variable length keys. Since prefetch-

ing allows cache optimized nodes to be much larger than a cache line, we will be able to put large variable

length index entries in cache optimized nodes and then embed cache optimized nodes into disk-optimized

B+-Trees in either disk-�rst or cache-�rst way, as shown conceptually in Figure 27. The actual fan-out of a

node varies due to the variable sizes of its index entries. Alternatively, we can replace the key pre�x array

in the structure of Figure 26(b) with an in-page cache-optimized tree to further improve search and update

performance. It will be interesting to implement both schemes and compare their performance.

For I/O range scan prefetching, we build jump pointer arrays. An alternative approach traverses the

nonleaf pages of a tree, retrieving leaf page IDs for prefetching. The path from root page to the current leaf

parent page can be recorded temporarily and with the help of the child pointers in nonleaf pages, one can

sweep the path across the tree from the beginning to the end of the range. Although this approach saves the

e�ort of building additional data structures, it becomes complicated when there are more than three levels

in trees. Furthermore, traversal of the nonleaf part may frequently across page boundaries for cache-�rst

fpB+-Trees.

6 Conclusions

Previous studies on improving index performance have focused either on optimizing the cache performance

of memory-resident databases, or else optimizing the I/O performance of disk-resident databases. What

has been lacking prior to this study is an index structure that achieves good performance for both of these

23

important levels of the memory hierarchy. Our experimental results in this paper demonstrate that Fractal

Prefetching B+-Trees are such a solution. They achieve large gains in cache performance compared with disk-

optimized B+-Trees for searches, range scans, and updates on modern systems. Moreover, they provide up

to a �vefold improvement in the I/O performance of range scans on a commercial DBMS (DB2). Comparing

the two fpB+-Tree approaches, we recommend in general the disk-�rst approach, for its minimal I/O impact.

But if there is suÆcient memory to hold most of the index pages, we recommend the cache-�rst approach, for

its slightly better cache performance. By e�ectively addressing the complete memory hierarchy, fpB+-Trees

are a practical solution for improving DBMS performance.

References

[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis. Weaving Relations for Cache Performance.

In Proceedings of the 27th VLDB, pages 169{180, Sept. 2001.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSs on a Modern Processor: Where Does

Time Go? In Proceedings of the 25th VLDB, pages 266{277, Sept. 1999.

[3] L. A. Barroso, K. Gharachorloo, and E. D. Bugnion. Memory System Characterization of Commercial

Workloads. In Proceedings of the 25th ISCA, pages 3{14, June 1998.

[4] M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cache-Oblivious B-Trees. In Proceedings of the

41st IEEE FOCS, pages 399{409, Nov. 2000.

[5] P. Bohannon, P. McIlroy, and R. Rastogi. Improving Main-Memory Index Performance with Partial

Key Information. In Proceedings of the 2001 SIGMOD Conference, May 2001.

[6] S. Chen, P. B. Gibbons, and T. C. Mowry. Improving Index Performance through Prefetching. In

Proceedings of the SIGMOD 2001 Conference, pages 235{246, May 2001.

[7] S. Chen, P. B. Gibbons, T. C. Mowry, and G. Valentin. Fractal Prefetching B+-Trees: Optimizing Both

Cache and Disk Performance. In Proceedings of the SIGMOD 2002 Conference(to appear), June 2002.

[8] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-Conscious Structure Layout. In Proceedings of

PLDI '99, pages 1{12, May 1999.

[9] Z. Cvetanovic and R. E. Kessler. Performance Analysis of the Alpha 21264-Based Compaq ES40 System.

In Proceedings of the 27th ISCA, pages 192{202, June 2000.

[10] G. Graefe. The Value of Merge-Join and Hash-Join in SQL Server. In Proceedings of the 25th VLDB,

pages 250{253, Sept. 1999.

[11] G. Graefe and P. Larson. B-tree Indexes and CPU Caches. In Proceedings of the 17th ICDE Conference,

pages 349{358, April 2001.

[12] J. Gray and G. Graefe. The Five-Minute Rule Ten Years Later. ACM SIGMOD Record, 26(4):63{68,

Dec. 1997.

[13] IBM Corp. IBM DB2 Universal Database Administration Guide Version 7. 2000.

[14] T. J. Lehman and M. J. Carey. A Study of Index Structures for Main Memory Database Management

Systems. In Proceedings of the 12th VLDB, pages 294{303, Aug. 1986.

[15] D. Lomet. B-tree Page Size when Caching is Considered. ACM SIGMOD Record, 27(3):28{32, Sep.

1998.

[16] D. Lomet. The Evolution of E�ective B-tree: Page Organization and Techniques: A Personal Account.

ACM SIGMOD Record, 30(3):64{69, Sep. 2001.

24

[17] S. McFarling. Combining Branch Predictors. Technical Report WRL Technical Note TN-36, Digital

Equipment Corporation, June 1993.

[18] J. Rao and K. A. Ross. Cache Conscious Indexing for Decision-Support in Main Memory. In Proceedings

of the 25th VLDB, pages 78{89, Sept. 1999.

[19] J. Rao and K. A. Ross. Making B+-Trees Cache Conscious in Main Memory. In Proceedings of the

SIGMOD 2000 Conference, pages 475{486, May 2000.

[20] K. C. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE Micro, 16(2):28{40, April 1996.

25

