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Abstract

An attack graph is a succinct representation of all paths through a system that end in a state where an intruder
has successfully achieved his goal. Today Red Teams determine the vulnerability of networked systems
by drawing gigantic attack graphs by hand. Constructing attack graphs by hand is tedious, error-prone,
and impractical for large systems. By viewing an attack as a violation of a safety property, we can use
model checking to produce attack graphs automatically: a successful path from the intruder’s viewpoint is a
counterexample produced by the model checker. In this paper we present an algorithm for generating attack
graphs using model checking.

Security analysts use attack graphs for detection, defense, and forensics. In this paper we present a minimiza-
tion technique that allows analysts to decide which minimal set of security measures would guarantee the
safety of the system. We provide a formal characterization of this problem: we prove that it is polynomially
equivalent to the minimum hitting set problem and we present a greedy algorithm with provable bounds. We
also present a reliability technique that allows analysts to perform a simple cost-benefit analysis depending
on the likelihoods of attacks. By interpreting attack graphs as Markov Decision Processes we can use a stan-
dard MDP value iteration algorithm to compute the probabilities of intruder success for each attack the graph.

We illustrate our work in the context of a small example that includes models of a firewall and an intrusion
detection system.
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1 Motivation

As networks of hosts continue to grow, evaluating their vulnerability to attack becomes increasingly more
important to automate. When evaluating the security of a network, it is not enough to consider the presence
or absence of isolated vulnerabilities. A large network builds upon multiple platforms and diverse software
packages and supports several modes of connectivity. Inevitably, such a network will contain security holes
that have escaped notice of even the most diligent system administrator.
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Figure 1: Vulnerability Analysis of a Network

To evaluate the vulnerability of a network of hosts, a security analyst must take intoaccount the effects of
interactions of local vulnerabilities and find global vulnerabilities introduced by interconnections. A typical
process for vulnerability analysis of a network is shown in Figure 1. First, scanning tools determine vulnera-
bilities of individual hosts. Using this local vulnerability information along with other information about the
network, such as connectivity between hosts, the analyst produces anattack graph. Each path in an attack
graph is a series of exploits, which we callatomic attacks, that leads to an undesirable state (e.g., a state
where an intruder has obtained administrative access to a critical host).

1.1 Attack Graphs and Intrusion Detection

Attack graphs can serve as a basis for detection, defense, and forensic analysis. To motivate our study of the
generation and analysis of attack graphs, we discuss the potential applications of attack graphs to these areas
of security.

Detection
System administrators are increasingly deploying intrusion detections systems (IDSs) to detect and combat
attacks on their network. Such systems depend on software sensor modules that first detect suspicious events
and activity and then issue alerts. Setting up the sensors involves a trade-off between sensitivity to intrusions
and the rate of false alarms in the alert stream. When the sensors are set to report all suspicious events, the
sensors frequently issue alerts for benign background events. Frequent false alarms results in administrators
turning off the IDS entirely. On the other hand, decreasing sensor sensitivity reduces their ability to detect
real attacks.

To address this trade-off, many intrusion detection systems employ heuristic algorithms to correlate alerts
from a large pool of heterogeneous sensors. Valdes and Skinner [VS01] describe a probabilistic approach
to alert correlation. Successful correlation of multiple alerts increases the chance that the suspicious activity
indicated by the alerts is in fact malicious.

Attack graphs can enhance both heuristic and probabilistic correlation approaches. Given a graph de-
scribing all likely attacks (i.e., sequences of attacker actions), an IDS can match individual alerts to attack
edges in the graph. Matching successive alerts to individual paths in the attack graphs dramatically increases
the likelihood that the network is under attack. This on-line vigilance allows the IDS to predict attacker goals,
aggregate alarms to reduce the volume of alert information to be analyzed, and reduce the false alarm rates.
Knowledge of attacker goals and likely next steps helps guide defensive response.
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Defense
System administrators can also use attack graphs to analyze potential effectiveness of intrusion detection sys-
tems offline. In this paper we show how to generate attack graphs automatically from models of the network;
our models are expressive enough to reflect the administrator’s choice of security policy for an IDS and his
choice of network configuration. Attack graphs enable an administrator to perform several kinds of analyses
to assess their security needs: marking the paths in the attack graph that an IDS will detect; determining
where to position new IDS components for best coverage; exploring trade-offs between different security
policies and between different software/hardware configurations; and identifying the worst-case scenarios
and prioritizing defense strategryaccordingly.

Forensics
After a break-in, forensic analysis is used to find probable attacker actions and to assess damage. If legal ac-
tion is desired, analysts seek evidence that a sequence of sensor alerts comprises a coherent attack plan, and
is not merely a series of isolated, benign events. This task becomes even harder when the intruders obfuscate
attack steps by slowing down the pace of the attack and varying specific steps. We can construct a convincing
argument as to the malicious intent of intruder actions by matching data extracted from IDS logs to a formal
reference model based on attack graphs [Ste].

Given that attack graphs can be used to perform a variety of analysis, we can use them to answer the
following kinds of questions, of particular interest to system administrators:

Question 1: What successful attacks are undetected by the IDS?

Question 2: If all measures for protecting a network are deployed, does the system become safe?

Question 3: Given a set of measuresM , what is the smallest subset of measuresM 0 whose deployment
makes the system safe?

Answers to these questions, can help a system or network administrator choose the best upgrade strategy.
We address these questions in Section 5.

When we are modeling a system operating in an unpredictable environment, certain transitions in the
model represent the system’s reaction to changes in the environment. We can think of such transitions as
being outside of the system’s control—they occur when triggered by the environment. When no empirical
information is available about the relative likelihood of such environment-driven transitions, we can model
them only as nondeterministic “choices” made by the environment. Moreover, for new vulnerabilities data
for estimating likelihoods might not be available. However, sometimes empirical data make it possible to
assign probabilities to environment-driven transitions. We would like to take advantage of such quantitative
information added appropriately to attack graphs. In this context, a system administrator might be interested
in answering the following question:

Question 4: The deployment of which security measure(s) will increase the likelihood of thwarting an at-
tacker?

The system administrator can use the answer to question 4 to perform a quantitative evaluation of various
security fixes. We address this question in Section 6.2.

1.2 Our Contributions

Constructing attack graphs is a crucial part of performing vulnerability analysis of a network of hosts. Cur-
rently,Red Teamsproduce attack graphs by hand, often drawing gigantic diagrams on floor-to-ceiling white-
boards. Doing this by hand is tedious, error-prone, and impractical for attack graphs larger than a hundred
nodes.

The main contributions of our work, some of which have appeared in an earlier paper [SHJ+02] are:

� We demonstrate how model checking can be applied to generate attack graphs automatically. We show
that the attack graphs produced by our method areexhaustive, i.e., covering all possible attacks, and
succinct, i.e., containing only relevant states and transitions (see Section 3.2).

2



� We provide a formal and detailed explanation of our model. Our We write specifications in terms of
a finite-state model of the network whose state transitions are described using standard pre- and post-
conditions. Each state transition corresponds to a single atomic attack by the intruder. A state in the
model represents the state of the system between atomic attacks. A typical transition from states1
to states2 corresponds to an atomic attack whose preconditions are satisfied ins1 and whose effects
hold in states2. An attackis a sequence of state transitions culminating in the intruder achieving his
goal. The entire attack graph is thus a representation of all the possible ways in which the intruder can
succeed.

� We prove that finding aminimumset of atomic attacks that must be removed to thwart an intruder is
NP -complete. Beyond the proof sketched in our earlier paper [SHJ+02], here we further explore the
complexity of this problem. Section 5.2.1 proves that the problem is polynomially equivalent to the
minimum hitting set problem where the collection of sets is represented as a labeled directed graph.
This reduction provided us with additional insight, enabling us to find a greedy algorithm with provable
bounds, which can be used to answer questions 1, 2, and 3.

� We present an algorithmto compute thereliability—finedas the likelihoodof an intruder not succeeding–
of a networked system. An advantage of our algorithm is that it allowsincomplete information, i.e.,
probabilities of all transitions need not be provided. To our knowledge, previous metrics in the area of
security require complete information. We can use this algorithm an answer question 4 precisely.

We present related work in Section 2. Section 3 describes our model and our algorithm to generate attack
graphs. We give details of an example networked system in Section 4 and use it throughout the paper for
illustrative purposes. In Section 5 we present a minimization analysis to help administrators decide what
measures to deploy to thwart attacks. In Section 6 we present a reliability analysis overprobabilistic attack
graphsbased on the value iteration algorithm defined for Markov Decision Processes; this analysis can help
administrators determine how deployment of one measure can decrease the likelihood of certain attacks.
Finally, we present a brief summary and directions for future work in Section 7.

2 Related Work

Phillips and Swiler [PS98] propose a concept of attack graphs similar to the one we describe. However, they
model only attacks. Since we have a generic state machine model, we can simultaneously model not just
attacks, but also seemingly benign system events (e.g., link failures and user errors) and even system admin-
istrator recovery actions. Therefore, our attack graphs are more general than the one proposed by Phillips and
Swiler. They also built a tool for generating attack graphs [SPEC00]; it constructs the attack graph by for-
ward exploration starting from the initial state. In our work, we use a symbolic model checker (i.e., NuSMV)
that works backward from the goal state to construct the attack graph. A major advantage of the backward
algorithm is that vulnerabilities that are not relevant to the safety property (or the goal of the intruder) are
never explored; this technique can result in significant savings in space. In fact, Swileret al. [SPEC00] refer
to the advantages of the backward search in their paper. Finally, the post-facto analysis suggested by Phillips
and Swiler is also different from the ones we present in this paper. We plan to incorporate their analysis into
our tool suite.

Dacier [Dac94] proposes the concept of privilege graphs, whereeachnode represents a set of privileges
owned by the user and arcs represent vulnerabilities. Privilege graphs are then explored to construct attack
state graphs, which represent different ways in which an intruder can reach a certain goal, such as root access
on a host. Dacier proposes a metric, called themean effort to failureor METF, based on the attack state
graphs. Orlatoet al. [ODK99] describe an experimental evaluation of this framework. At the surface our
notion of attack graphs seems similar to Dacier’s. However, as in the case with Phillips and Swiler, Dacier
takes an “attack-centric” view of the world; again, our attack graphs are more general. From the experiments
conducted by Orlatoet al. it appears that even for small examples the space required to construct attack
state graphs becomes prohibitive. Model checking has made significant advances in representing large state
spaces. Therefore, by basing our algorithm on model checking we leverage off those advances and can
hope to represent large attack graphs. The analytical analysis proposed by Dacier can also be performed on
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attack graphs constructed by our tool. We also plan to conduct an experimental evaluation similar to the one
performed by Orlato et al.

Ritchey and Amman [RA01] also used model checking for vulnerability analysis of networks. They
used the unmodified model checker SMV [SMV]. Therefore, they could only obtain one counter-example
or one attack corresponding to a intruder’s goal. In contrast, we modified the model checker NuSMV to
produce complete attack graphs, which represents all possible attacks. We also described analyses that can
be performed on these attack graphs. These analyses cannot be meaningfully performed on single attacks.

3 Generating Attack Graphs using Model Checking

First, we formally defineattack graphs, the data structure used to represent all possible attacks on our net-
worked system. We restrict our attention to attack graphs representing violations of safety properties1.

Definition 1 Let AP be a set of atomic propositions. Anattack graphor AG is a tupleG = (S; �; S0; Ss; L),
whereS is a set of states,� � S � S is a transition relation,S0 � S is a set of initial states,Ss � S is a set
of success states, andL : S ! 2

AP is a labeling of states with a set of propositions true in that state.

Unless stated otherwise, we assume that the transition relation� is total. We define anexecution fragment
as a finite sequence of statess0s1:::sn such that(si; si+1) 2 � for all 0 � i < n. An execution fragment
with s0 2 S0 is anexecution, and an execution whose final state is inSs is anattack, i.e., the execution
corresponds to a sequence of atomic attacks leading to the intruder’s goal state. Intuitively,Ss denotes all
states where the intruder has achieved his goal, e.g., obtaining root access on a critical host.

Next we turn our attention to algorithms for automatic generation of attack graphs and properties that
we can guarantee of them. Starting with a description of a network modelM and a security propertyp, the
task is to construct an attack graph representing all executions ofM that violatep—these are the successful
attacks. For the kinds of attack graph analyses suggested in Section 1, it is essential that the graphs produced
by the algorithms beexhaustiveandsuccinct. An attack graph is exhaustive with respect to a modelM and
correctness propertyp if it covers all possible attacks inM leading to a violation ofp, and succinct if it only
contains those states and transitions ofM that lead to a state violatingp.

3.1 Reachability Analysis

If we restrict ourselves to safety properties, an attack graph may be constructed by performing a simple state-
space search. Starting with the initial states of the modelM , we use a graph traversal procedure (e.g., depth
first search) to find all reachablesuccessstates where the safety propertyp is violated. The attack graph is
the union of all paths from initial states to success states.

While this algorithm has the advantage of simplicity, it handles only safety properties and may run into
the state explosion problem for non-trivial models. Model checking has dealt with both of these issues with
some success, so we will consider algorithms based on that technology.

3.2 Model Checking Algorithm

Model checking is a technique for checking whether a formal modelM of a system satisfies a given property
p. In our work, we use the model checker NuSMV [NuS], for which the modelM is a finite labeled transition
system andp is a property expressed inComputation Tree Logic(CTL). For now, we consider only safety
properties, which in CTL have the formAGf (i.e., p = AGf , wheref is a formula in propositional logic).
If the modelM satisfies the propertyp, NuSMV reports “true.” IfM does not satisfyp, NuSMV produces a
counter-example. A single counter-example shows an execution that leads to a violation of the property. In
this section, we explain how to construct attack graphs for safety properties using model checking.

1We say more on liveness properties in Section 7.
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Input:
S – set of states
R � S � S – transition relation
S0 � S – set of initial states
L : S ! 2

AP – labeling of states with propositional formulas
p = AG(:unsafe) (a safety property)

Output:
attack graphGp = (Sunsafe ; R

p; S
p
0
; S

p

f ; L)

Algorithm: GenerateAttackGraph(S;R; S0; L; p)

(* Use model checking to find the set of statesSunsafe that
violate the safety propertyAG(:unsafe). *)
Sunsafe = modelCheck(S;R; S0; L; p).

(* Restrict the transition relationR to states in the setSunsafe *)
Rp

= R \ (Sunsafe � Sunsafe).
S
p
0

= S0 \ Sunsafe .
S
p
f = fsjs 2 Sunsafe ^ s j= unsafeg.

return(Sunsafe ; R
p; S

p
0
; S

p

f ; L).

Figure 2: Algorithm for Generating Attack Graphs

Attack graphs depict ways in which the system can reach an unsafe state (or, equivalently, a successful
state for the intruder). We can express the property that an unsafe state cannot be reached as:

AG(:unsafe)

When this property is false, there are unsafe states that are reachable from the initial state. The precise mean-
ing of unsafedepends on the application. For example, in the network security example given in Section 4,
the property given below is used to express that the privilege level of the intruder on the host with index2

should always be less than the root (administrative) privilege.

AG(network.adversary.privilege[2]< network.priv.root)

We briefly describe the algorithm (see Figure 2) for constructing attack graphs for the propertyAG(:unsafe).
The first step is to determine the set of statesSr that are reachable from the initial state. Next, the algorithm
computes the set of reachable statesSunsafe that have a path to an unsafe state. The set of statesSunsafe is
computed using an iterative algorithm derived from a fix-point characterization of theAG operator [CGP00].
Let R be the transition relation of the model, i.e.,(s; s0) 2 R if and only if there is a transition from states
to s0. By restricting the domain and range ofR to Sunsafe we obtain a transition relationRp that represents
the edges of the attack graph. Therefore, the attack graph is(Sunsafe ; R

p; S
p
0
; S

p
f ; L), whereSunsafe andRp

represent the set of nodes and edges of the graph respectively;S
p
0
= S0 \ Sunsafe is the set of initial states;

andSpf = fsjs 2 Sunsafe ^ s j= unsafeg is the set of success states.

In symbolic model checkers, such as NuSMV, the transition relation and sets of states are represented
using BDDs [Bry86], a compact representation for boolean functions. There are efficient BDD algorithms
for all operations used in the algorithm shown in Figure 2.

3.3 Attack Graph Properties

We can show that an attack graphG generated by the algorithm in Figure 2 isexhaustive(Lemma 1(a)) and
succinctwith respect to states and transitions (Lemmas 1(b) and 1(c)).
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Lemma 1 (a) exhaustive. An executione of the input model(S;R; S0; L) violates the propertyp =

AG(:unsafe) if and only if e is an attack in the attack graphG = (Sunsafe ; R
p; S

p
0
; Sps ; L).

(b) succinct-state. A states of the input model(S;R; S0; L) is in the attack graphG if and only if there is
an attack inG that containss.
(c) succinct-transition. A transitiont = (s1; s2) of the input model(S;R; S0; L) is in the attack graphG if
and only if there is an attack inG that includest.

Proof:

(a) exhaustive. ()) Let e = s0t0 : : : tn�1sn be a (finite) execution of the input model such thatsn is an
unsafestate. To prove thate is an attack inG, it is sufficient to show (1)s0 2 S

p
0
, (2) sn 2 Sps , and (3) for all

0 � k � n, sk 2 S andtk 2 Rp.

Sinceunsafeholds atsn and for allk there is a path fromsk to sn in the input model, by definition every
sk alonge1 violatesAG(:unsafe). Therefore, by construction, everysk is in Sunsafe and everytk is inRp.
(1) and (2), and (3) follow immediately.

(() Suppose thate = s0t0 : : : tn�1sn is an attack in the attack graphG. By construction, all states and
transitions ofe are also states and transitions in the input model. Sincee is an attack,s0 2 S

p
0

andsn 2 Sps .
Therefore,s0 2 S0 andsn 2 S. Soe is an execution of the input model, its first state is an initial state of the
model, andp is false in its final state. It follows thate violates the propertyAG(:unsafe).

(b) succinct-state.()) By construction of the algorithm in Figure 2, all states generated for the attack
graph are reachable from an initial state, and all of them violateAG(:unsafe). Therefore, for any such state
s in the input model, there is a pathe1 from an initial state tos, and there is a pathe2 from s to anunsafe
state.

The concatenation ofe1 and e2 is an executione of the input model that violatesAG(:unsafe). By
lemma 1a,e is an attack inG. Sincee containss, the proof is complete.

(() If there is an attack inG that containss, then triviallys is inG.

(c) succinct-transition. ()) By lemma 1b, there is an attacke1 = q0t0 : : : s1 : : : tm�1qm that contains
states1 and an attacke2 = r0u0 : : : s2 : : :un�1rn that contains states2. So the following attack includes
both statess1 ands2 and the transitiont: e = q0t0 : : : s1ts2 : : :un�1rn.

(() If there is an attack inG that containst, then triviallyt is inG.

4 A Simple Intrusion Detection Example

Consider the example network shown in Figure 3. There are two target hosts,ip1 and ip2, and a firewall
separating them from the rest of the Internet. As shown, each host is running two of three possible services
(ftp, sshd, a database). An intrusion detection system (IDS) monitors the network traffic between the target
hosts and the outside world. There are four possible atomic attacks, identified numerically as follows: (0)
sshd buffer overflow, (1) ftp .rhosts, (2) remote login, and (3) local buffer overflow. If an atomic attack is
detectable, the intrusion detection system will trigger an alarm; if an attack isstealthy, the IDS misses it.
The ftp .rhosts attack needs to find the target host with two vulnerabilities: a writable home directory and
an executable command shell assigned to the ftp user name. The local buffer overflow exploits a vulnerable
version of the xterm executable.

In this section, we construct a finite state model of the example network so that each state transition
corresponds to a single atomic attack by the intruder. A state in the model represents the state of the system
between atomic attacks. A typical transition from states1 to states2 corresponds to an atomic attack whose
preconditions are satisfied ins1 and whose effects hold in states2.

The intruder launches his attack starting from a single computer,ipa, which lies outside the firewall. His
eventual goal is to disrupt the functioning of the database. For which, the intruder needs root access on the
database hostip2.
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4.1 States of the Finite State Machine Model

The Network

We model the network as a set of facts, each represented as a relational predicate. The state of the network
specifies services, host vulnerabilities, connectivity, and a remote login trust relationship between hosts.
There are six boolean variables foreach host, specifying whether any of the three modeled services are
running and whether any vulnerabilities are present on that host.

variable meaning
sshh ssh service is running on hosth
ftph ftp service is running on hosth
datah database is running on hosth
wdirh ftp home directory is writable on hosth
fshellh ftp user has executable shell on hosth

xtermh xterm executable is vulnerable to overflow on hosth

Connectivity is expressed as a ternary relationR � Host � Host � Port, whereR(h1; h2; p) means that
hosth2 is reachable from hosth1 on portp. The constantssp andfp will refer to the specific ports for the
ssh and ftp services, respectively. Slightly abusing notation (by overloadingR), we writeR(h1; h2) when
there is a network route fromh1 to h2. We model trust as a binary relationRshTrust� Host � Host , where
RshTrust(h1; h2) indicates that a user may log in from hosth2 to hosth1 without authentication (i.e., hosth1
“trusts” hosth2).

The Intruder

The functionplvlA: Hosts! fnone, user, rootg gives the level of privilege that intruderA has on each host.
There is a total order on the privilege levels:none< user< root.

Several state variables specify which attack the intruder will attempt next:

variable meaning
attack attack type
source source host
target target host
strain stealthy/detectable attack
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Intrusion Detection System

Atomic attacks are classified as being eitherdetectableor stealthywith respect to the IDS. If an attack is
detectable, it will trigger an alarm when executed on a host or network segment monitored by the IDS; if an
attack isstealthy, the IDS does not detect it.

We specify the IDS with a functionids: Host� Host� Attack! fd; s; bg, whereids(h1; h2; a) = d if
attacka is detectable when executed with source hosth1 and target hosth2; ids(h1; h2; a) = s if attacka is
stealthy when executed with source hosth1 and target hosth2; and ids(h1; h2; a) = b if attack a hasboth
detectable and stealthy strains, and success in detecting the attack depends on which strain is used. When
h1 andh2 refer to the same host,ids(h1; h2; a) specifies the intrusion detection system component (if any)
located on that host. Whenh1 andh2 refer to different hosts,ids(h1; h2; a) specifies the intrusion detection
system component (if any) monitoring the network path betweenh1 andh2. In addition, a global boolean
variable specifies whether the IDS alarm has been triggered by any previously executed atomic attack.

4.2 Initial States

Initially, there is no trust between any of the hosts; the trust relationTr is empty. The connectivity relationR
is shown in the following table. An entry in the table corresponds to a pair of hosts(h1; h2). Each entry is a
triple of boolean values. The first value is ‘y’ ifh1 andh2 are connected by a physical link, the second value
is ‘y’ if h1 can connect toh2 on the ftp port, and the third value is ‘y’ ifh1 can connect toh2 on the sshd port.

R ipa ip1 ip2

ipa y,n,n y,y,y y,y,n
ip1 y,n,n y,y,y y,y,n
ip2 y,n,n y,y,y y,y,n

We use the connectivity relation to reflect the firewall rule sets as well as the existence of physical links.
For the table above, the firewall is open and does not place any restrictions on the flow of network traffic.

Initially, the intruder hasroot privileges on his own machineipa and no privileges on the other hosts.

The paths between(ipa; ip1) and between(ipa; ip2) are monitored by the single network-based IDS. The
path between(ip1; ip2) is not monitored. There are no other host-based intrusion detection components. The
IDS detects the remote login attack and the detectable strains of the sshd buffer overflow attack.

4.3 Transitions

Our model has nondeterministic state transitions. If the current state of the network satisfies theprecondi-
tions of more than one atomic attack rule, the intruder nondeterministically “chooses” one of those attacks.
The state then changes according to theeffectsclause of the chosen attack rule. The intruder repeats this
process until his goal is achieved.

We model four atomic attacks. Throughout the description,S is used to designate the source host andT

the target host. Recall thatR(S; T; p) denotes that hostT is reachable from hostS on portp.

Sshd Buffer Overflow

This remote-to-root attack immediately gives a remote user a root shell on the target machine.

8



attack sshd-buffer-overflowis
intruder preconditions

plvlA(S) � user User-level privileges on hostS
plvlA(T ) < root No root-level privileges on hostT

network preconditions
sshT Host T is running sshd
R(S; T; sp) HostT is reachable fromS on portsp

intruder effects
plvlA(T ) = root Root-level privileges on hostT

network effects
:sshT Host T is not running sshd

end

Ftp .rhosts

Using an ftp vulnerability, the intruder creates an .rhosts file in the ftp home directory, creating a remote login
trust relationship between his machine and the target machine.

attack ftp-rhostsis
intruder preconditions

plvlA(S) � user User-level privileges on hostS
network preconditions

ftpT Host T is running ftp
R(S; T; fp) HostT is reachable fromS on portfp
wdirT Ftp directory writable on hostT
fshellT Ftp user has been assigned a valid shell on hostT

9X::RshTrust(X;T ) No rsh trust for some hostX andT
intruder effects

none
network effects
8X:RshTrust(X;T ) Rsh trust between all hosts andT

end

Remote Login

Using an existing remote login trust relationship between two machines, the intruder logs in from one machine
to another, getting a user shell without supplying a password. This operation is usually a legitimate action
performed by regular users, but from the intruder’s viewpoint, it is an atomic attack.

attack rsh-loginis
intruder preconditions

plvlA(S) = user User-level privileges on hostS
plvlA(T ) = none No privileges on hostT

network preconditions
RshTrust(S; T ) Rsh trust betweenS andT
R(S; T ) HostT is reachable fromS

intruder effects

9



plvlA(T ) = user User-level privileges on hostT
network effects

none
end

Local Buffer Overflow

If the intruder has acquired a user shell on the target machine, the next step is to exploit a buffer overflow
vulnerability on asetuid root file to gain root access.

attack local-setuid-buffer-overflowis
intruder preconditions

plvlA(T ) = user User-level privileges on hostT
network preconditions

xtermT There is a vulnerable xterm executable
intruder effects

plvlA(T ) = root Root-level privileges on hostT
network effects

none
end

It is easy to see that each atomic attack strictly increases either the intruder’s privilege level on the target
host or remote login trust between hosts. This means thatthe attack graph has no cycles.

From our finite model we can now automatically construct attack graphs that demonstrate how the intruder
can violate various security properties. Suppose we want to generate all attacks that demonstrate how the
intruder can gain root privilege on hostip2 and remain undetected by the IDS. The following CTL formula
expresses the safety property thatthe intruder on hostip2 always has privilege level below rootor is detected:

AG(network.adversary.privilege[2]< network.priv.rootj network :detected)

Figure 4 shows the attack graph produced by our tool for this property. Each node is labeled by an attack
id number, which corresponds to the atomic attackto be attempted next; a flag S/D indicates whether the
attack is stealthy or detectable by the intrusion detection system; and the numbers of the source and target
hosts (ipa corresponds to host number 0).

Any path in the graph from the root node to a leaf node shows a sequence of atomic attacks that the
intruder can employ to achieve his goal while remaining undetected. For instance, the path highlighted by
dashed-boxed nodes consists of the following sequence of four atomic attacks: overflow sshd buffer on host
1, overwrite .rhosts file on host 2 to establish rsh trust between hosts 1 and 2, log in using rsh from host 1 to
host 2, and finally, overflow a local buffer on host 2 to obtain root privileges.

We have also expanded the example described above by adding two additional hosts, four additional
atomic attacks, several new vulnerabilities, and flexible firewall configurations. For this larger example the
attack graph has5948 nodes and68364 edges.

5 Minimization Analysis

Once we have an attack graph generated for a specific network with respect to a given safety property, we
can utilize it for further analysis. A system administrator has available to him a set ofmeasures, such as
deploying additional intrusion detection tools, adding firewalls, upgrading software, deleting useraccounts,
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Figure 4: Attack Graph

Figure 5: Attack Graph Analysis
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changing access rights, etc. Each measurecoversone or more atomic attacks, in the sense that it renders an
atomic attack ineffective for the intruder.

Minimization analysis helps analysts make decisions about what measures to deploy depending on what
set of atomic attacks they thwart. It helps us answer questions such as1, 2, and3 posed in Section 1.1. Let
us look at each question in turn since they suggest different solution approaches.

5.1 Minimal Subsets of Atomic Attacks to Thwart

Suppose we want to find a minimal set,A, of atomic attacks that must be prevented to guarantee the adver-
sary cannot achieve his goal. A system analyst can use this information in deciding to choose one measure
m1, which eliminates this minimal set of attacks over another measure,m2, perhaps cheaper thanm1, but
ineffective with respect toA.

A naive solution is as follows:

1. Make only a subset of the atomic attacks available to the intruder.

2. Run the model checking algorithm to determine if the adversary can succeed.

3. Do Steps 1 and 2 for all possible non-empty subsets of atomic attacks.

Clearly this solution is exponential in the number of atomic attacks. For our example, however, the
number is small, and we can easily determine this minimal set. As a by-product of determining this set, we
can easily answer the first question posed in Section 1.

Question 1: What successful attacks are undetected by the IDS?

Answer: To answer this question, we modify the model slightly. For simplicity, we nondeterministically
decide which subset to consider initially, before any attack begins; once the choice is made, the subset of
available atomic attacks remains constant during any given attack. We ran the model checker on the modified
model with the invariant property that says the intruder never obtains root privilege on hostip2:

AG(network.adversary.privilege[2]< network.priv.root)

The post-processor marked the states where the intruder has been detected by the IDS. The result is shown
in Figure 5. The white rectangles indicate states where the attacker had not yet been detected by the intrusion
detection system. The black rectangles are states where the intrusion detection system has sounded an alarm.
Thus, white leaf nodes are desirable for the attacker because his objective is achieved without detection.
Black leaf nodes are less desirable—the attacker achieves his objective, but the alarm goes off.

The resolution of which atomic attacks are available to the intruder happens in the circular nodes near the
root of the graph. The first transition out of the root (initial) state picks the subset of attacks that the intruder
will use. Each child of the root node is itself the root of a disjoint subgraph where the subset of atomic
attacks chosen for that child is used. Note that the number of such subgraphs descending from the root node
corresponds to the number of subsets of atomic attacks with which the intruder can be successful—the model
checker determines that for any other possible subset, there is no possible successful sequence of atomic
attacks.

The root of the graph in Figure 5 has two subgraphs, corresponding to the two subsets of atomic attacks
that will allow the intruder to succeed. In the left subgraph the sshd buffer overflow attack is not available
to the intruder; it can be readily seen that the intruder can still succeed, but cannot do so while remaining
undetected by the IDS. In the right subgraph, all attacks are available. Thus, the entire attack graph implies
that all atomic attacks other than the sshd attack are indispensable: the intruder cannot succeed without them.
That is, for no other subset of atomic attacks can the intruder succeed in achieving his goal. The analyst can
use this information to guide decisions on which network defenses can be profitably upgraded.

The white cluster in the middle of the figure is isomorphic to the attack graph presented in Figure 4; it
shows attacks in which the intruder can achieve his objective without detection (i.e., all paths by which the
intruder reaches a white leaf in the graph).
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5.2 Minimizing the Set of Measures to Deploy

Assume that we have produced an attack graph corresponding to the following safety property:

AG(:unsafe)

LetA be the set of atomic attacks, andG = (S;E; s0; ss; L) be the attack graph, whereS is the set of states,
E � S � S is the set of edges,s0 2 S is the initial state,ss 2 S is the success state for the intruder, and
L : E ! A [ f�g is a labeling function whereL(e) = a if an edgee = (s ! s0) corresponds to an atomic
attacka, otherwiseL(e) = �. Edges labeled with� represent system transitions that do not correspond
to an atomic attack. Moreover, as demonstrated below additional� edges can be also introduced by our
construction. Without loss of generality we can assume that there is a single initial and success state. For
example, consider an attack graph with multiple initial statess1

0
; � � � ; s

j
0

and success statess1s; � � � ; s
u
s . We

can add a new initial states0 and a new success statess with �-labeled edges(s0; sm0 ) (1 � m � j) and
(ss; s

t
s) (1 � t � u).

Suppose we are also given a finite set of measuresM = fm1; � � � ;mkg and a functioncovers :M ! 2
A.

An atomic attacka 2 covers(mi) if adopting measuremi removes the atomic attacka.

We are now ready to address the question of what measures a system administrator should deploy to
ensure the system is safe. Again, there is a naive solution, that is, to try all possible subsets of measures
M 0 � M and determine which of those make the system safe. We discuss this approach in the context of
question 2:

Question 2: If all measures for protecting a network are deployed, does the system become safe?

Answer: A network administrator wants to find out whether adopting measures from a setM 0 � M will
make the network safe. This question can be answered in linear time using the attack graphG. First, we define
covers(M 0

) as
S
m2M 0 covers(m). Next, we remove all edgese fromG such thatL(e) 2 covers(M 0

). The
network is safe iff the success statess is not reachable from the initial states0. This simple reachability
question can be answered in time that is linear in the size of the graph.

As the set of measures grows (and as the set of atomic attacks grows), we really would like to have the
system administrator choose the smallest subset of measures that would guarantee the networked system is
safe. We address this decision in the context of question 3:

Question 3: Given a set of measuresM , what is the smallest subset of measuresM 0 whose deployment
makes the system safe?

Answer: A network administrator wishes to find a subsetM 0 � M of smallest size, such that adopting the
measures in the setM 0 will make the network safe. Unfortunately, this problem isNP -complete, but we
develop good approximation algorithms. We proceed in two steps:

Step 1: Finding a small set of atomic attacks.
In this step, we find a set of atomic attacks whose removal makes the network safe. As described in the
previous section, checking every possible subset of attacks is exponential in the number of attacks. In
an earlier conference paper [SHJ+02], we show that finding theminimumset of atomic attacks which
must be removed to thwart an intruder is in factNP-complete. We repeat part of the proof below (see
Lemma 2). We also demonstrated how aminimalset can be found in polynomial-time.2 In this paper,
we further explore the complexity of this problem. Section 5.2.1 proves that the problem of finding
a minimum set of attacks is polynomially equivalent to the minimum hitting set problem, where the
collection of sets is represented as labeled directed graph. This reduction provided us with additional
insight. This additional insight enabled us to find a greedy algorithm with provable bounds.

2In the conference paper we showed the reduction to theminimum coverproblem [GJ79, Page 222]; here we show it to theminimum
hitting setproblem.
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Step 2: Finding a small set of measures.
Assume that we find a set of atomic attacksA0 whose removal makes the network safe, or equivalently
thwarts the intruder. Recall thatM = fm1; � � � ;mkg is the set of measures andcovers : M ! 2

A

is a function, wherecovers(mi) represents the set of atomic attacks that are removed by adopting the
measuremi. With each attacka in the setA0, we associate a set of measuresM (a) which isfmi j a 2

covers(mi)g. The set of attacksA0 defines a collectionCA0 of subsets ofM . We wish to find the
smallest subsetM 0 � M such that for alla 2 A0 there exists anmi 2 M 0 such thata 2 covers(mi),
or equivalentlyM 0 \M (a) 6= ;. This is known as the minimum hitting set problem, which isNP -
complete, but good approximation algorithms exist to solve this problem (see Section 5.2.2)

5.2.1 The Minimum Critical Attack Sets
and the Minimum Hitting Set Problem

This section addresses the first step in the answer to question 3. Assume that we are given an attack graph
G = (S;E; s0; ss; L), whereS is the set of states,E � S � S is the set of edges,s0 2 S is the initial state,
ss 2 S is the success state for the intruder, andL : E !A[ f�g is a labeling function.

Given a states 2 S, a set of attacksC is critical with respect tos if and only if the intruder cannot reach
his goal froms when the attacks inC are removed from his arsenal. Equivalently,C is critical with respect
to s if and only if every path froms to the success statess has at least one edge labeled with an attacka 2 C.

A critical set corresponding to a states is minimum(denotedM (s)) if there is no critical setM 0
(s) such

thatjM 0
(s)j < jM (s)j. In general, there can be multiple minimum sets corresponding to a states. Of course,

all minimum critical sets must be of the same size.

A critical set of an attack graphG = (S;E; s0; ss; L) is defined as a critical set corresponding to the
initial states0. Therefore, theMinimum Critical Set of Attacks (MCSA) problemis the problem of finding a
minimum critical set of attacksM (s0). The decision version of the problem is defined as follows: given an
attack graphG = (S;E; s0; ss; L) and a positive integerK, is there a critical set of attacksA � A such that
jAj � K?

Lemma 2 Assume that we are given an attack graphG = (S;E; s0; L) and an integerk. The MCSA problem
of determining whether there is a critical setC(s0) such thatjC(s0)j � k is NP-complete.

Proof: First, we prove that the problem is inNP. Guess a setC � A with size� k. We need to check that
C is a critical set of attacks. This can be accomplished in polynomial time using the reachability algorithm
described before (see answer to question 2). Therefore, the problem is inNP.

Next, we prove that the problem isNP-hard. The reduction is from theminimum hitting setproblem,
details as given in the remainder of this section.

Assume that we are given an attack graphG = (S;E; s0; ss; L). A path� is sequence of statesq1; � � � ; qn,
such thatqi 2 S and(qi; qi+1) 2 E. A complete pathstarts from the initial states0 and ends in the success
statess. The label of a path� = q1; � � � ; qn (abusing notation, we will denote it also asL(�)) is a subset of a
set of attacksA

n�1[
i=1

fL(qi; qi+1)g n f�g :

L(�) represents the set of atomic attacks used on the path�. A set of attacksA � A is calledrealizablein
the attack graphG iff there exists a complete path� in G such thatL(�) = A. In other words, an intruder
can use the set of attacksA to start from the initial state and reach the success state. The set of all realizable
sets in an attack graphG is denoted byRel(G). The following lemma is easy to prove and follows straight
from the definitions.

Lemma 3 Assume that we are give an attack graphG = (S;E; s0; ss; L). A set of attacksA is critical iff

8A0 2 Rel (G):A0 \A 6= ; :

In other words, all realizable sets have a non-empty intersection with a critical setA.
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Definition 2 Hitting Set [GJ79, Problem SP8]
Instance:CollectionC of subsets of a finite setS, positive integerK � jSj.
Question:Is there a subsetS0 � S with jS0j � K such thatS0 contains at least one element from each subset
in C?

Lemma 3 proves that the problem of finding whether the attack graphG has a critical set of size� K is
thehitting set problem withC = Rel(G), S = A, andK.

Next suppose we have an instance(C; S;K) of the hitting set problem. We will construct an attack graph
G0

= (S0; E0; s0
0
; s0s; L

0
), whereL0 : E0 ! S [ f�g, i.e., the set of attacks used in the attack graphG0 is

S. Moreover, the set of realizable setsRel(G0
) of the graphG0 is the collectionC. A critical set of size

� K of the attack graphG0 is a hitting set for the collectionC. Next, we describe the construction ofG0.
Let C = fC1; � � � ; Cmg be the collection of sets andS = fs1; � � � ; sng be the set. We makem copies
S1; � � � ; Sm of the setS. The set of elements inSi will be denoted byfsi

1
; � � � ; sing. The set of statesS0 in

the attack graphG0 is
fs00; s

0
sg [ S

1 [ � � � [ Sm :

The initial state iss00 and the final state iss0s. The set of edgesE0 and the labeling functionL0 are defined as
follows:

� There is an edge froms00 to every state in the setfs11; s
2
1; � � � ; s

m
1 g, and label of the edge(s00; s

1
i ) is s1

if s1 2 Ci, otherwise it is�.

� For all 1 � i � m and1 � j � n � 1, there is an edge(sij ; s
i
j+1), and the label of edge(sij ; s

i
j+1) is

sj+1 if sj+1 2 Ci, otherwise it is�.

� There is an edge from every state in the setfs1n; s
2

n; � � � ; s
m
n g to the states0s, and labels of all these

edges is�.

The sizes of the setsS0 andE0 in the attack graphG0 aremn + 2 and2m + mn respectively. It is easy to
see thatRel(G0

) is equal toC, andS0 � S is a critical set of the attack graphG0 iff S0 is a hitting set for
the collectionC. Since the size ofG0 is polynomial in the size of the instance of the hitting set problem and
the hitting set problem isNP -complete, the MCSA problem isNP -hard. Lemma 2 proves that MCSA is in
NP . Therefore, MCSA isNP -complete. The next example illustrates our construction.

Note: The discussion above also proves that the problem of finding a minimum set of measures whose
adoption will make the network safe is alsoNP -complete. One can simply take the set of measuresM to be
the set of attacksA.

Example 1 We give a short example to illustrate the reduction. Consider a setS = fs1; s2; s3g. Suppose
that the collectionC consists of the following subsets:

C1 = fs1; s2g

C2 = fs2; s3g

C3 = fs2g

The attack graphG0 corresponding to this problem is shown in Figure 6. The set of attacks isfs1; s2; s3g.
The set of realizable setsRel(G0

) is exactly the collectionC. The set of attacksfs1; s2g is critical because
every path froms0

0
to the success states0s uses at least one edge with the label in the setfs1; s2g. Moreover,

fs1; s2g is a hitting set for the collectionC = fC1; C2; C3g.

The above discussion proves that the problem of finding critical sets in attack graph ispolynomially
equivalentto finding hitting sets for a collection, with one caveat–the collection of setsC is represented as an
attack graph.An attack graph can be an exponentially succinct representation of a collection of sets.Figure 7
shows an attack graph of linear size whose set of realizable sets is the power set offs1; � � � ; sng. Therefore,
the minimum critical set problem is polynomially equivalent to the hitting set problem where the collection
of setsC is represented as a labeled directed graph.
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5.2.2 A Greedy Algorithm

Next, we describe a greedy algorithmGREEDY-HITTING-SETfor the minimum hitting set problem. Let
(C; S;K) be an instance of the hitting set problem. LetS0 andC 0 be initially the empty set. The greedy
algorithm executes the following step untilC 0

= C.

� Pick an elements out of the setS nS0 that covers the maximum number of sets in the collectionC nC 0.
An elements is said to cover a setS1 � S iff s 2 S1.

� Let s be the element picked in the previous step andC(s) be the collection of sets inC covered bys.
UpdateS0 andC 0 as follows:

S0  S0 [ fsg

C0  C0 [C(s)

LetHd be thed-th harmonic number
Pd

i=1
1

i
. LetC(s) be the number of sets in the collectionC that are

covered by the elements.

Lemma 4 GREEDY-HITTING-SETis a polynomial-time�(n)-approximation algorithm, where�(n) = H(maxs2SfjC(s)jg).

The proof of the lemma follows from the equivalence between the minimum hitting set and the minimum
cover problem [ADP80] and the proof of the approximation factor�(n) for the greedy algorithm for the
minimum cover problem [CLR85]. Using the equivalence between the problems of finding a minimum
critical set and a minimum hitting set, we can construct a greedy procedure (calledGREEDY-CRITICAL-SET)
for finding a critical set for the attack graph. Assume that we are given an attack graphG = (S;E; s0; ss; L),
whereS is the set of states,E � S � S is the set of edges,s0 2 S is the initial state,ss 2 S is the success
state for the intruder, andL : E !A[f�g is a labeling function. Moreover, assume that we can compute in
polynomial time the function�G : A ! @, where�G(a) is the number of realizable sets in the attack graph
G that contain the attacka. Formally,�G(a) is equal to

jfA0ja 2 A0 andA0 2 Rel(G)gj :

Initially, let A0 be the empty set andG0
= G. The greedy algorithmGREEDY-CRITICAL-SETexecutes the

following step untilG0 is empty.

� Pick and elementa from the setA nA0 that maximizes�G0 (a).

� Let a be the element picked in the previous step. UpdateA0 andG0 as follows:

A0  A0 [ fag

Remove all edges labeled witha fromG0

Lemma 5 GREEDY-CRITICAL-SETis a polynomial-time�(n)-approximation algorithm, where�(n) =

H(maxa2Af�G(a)g).

Next, we explore conditions when the function�G can be computed in polynomial time. Assume that
the attack graphG is a DAG. An argument for this was given in Section 4.3. Moreover, assume that each
atomic attack isused only onceon a path from the initial states0 to the success statess. This is not a
unreasonable assumption because the attack graph edges are labeled with instantiations of attack templates
shown in Section 4.3, e.g., a local-setuid-buffer-overflow attacks on two different hosts are distinct in the
attack graph. Such attack graphs are calleduse-onceDAGs. The following lemma is easy to prove.

Lemma 6 For an attack graph that is a use-once DAG, the function�G can be computed in time that is linear
in size of the attack graph.
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6 Reliability Analysis of Attack Graphs

Suppose a system administrator would like to know which measures would increase or decrease the likelihood
of thwarting an attack? If we have probabilities available to us, we can annotate attack graphs to help system
administrators answer such questions.

In our work, we do not require that all transitions be given probabilities; in general, our annotated attack
graphs can have a mix of probabilistic and nondeterministic state transitions. We pursue the implications of
this general kind of attack graph in this section.

In general, we also do not require probabilities to be numeric; they can be symbolic, e.g., “high,”
“medium,” or “low,” and even partially ordered. In an earlier paper [JW01], we discuss an analysis that
uses symbolic probabilities; in this paper, however, we restrict ourselves to numeric values.

6.1 Probabilistic Attack Graphs

Suppose that the graph has a states with only two outgoing transitions. In a regular attack graph, the choice
of which transition to take when the system is in states is nondeterministic. However, we may have some
empirical data that enables us to estimate that whenever the system is in states, on average it will take one of
the transitions four times out of ten and the other transition six remaining times. We can place probabilities
0:4 and0:6 on the corresponding edges in the attack graph. Intuitively, the probability of the transitions! s0

represents the likelihood that the atomic attack corresponding to the transition will succeed. We call a state
with known probabilities for outgoing transitionsprobabilistic. When we have assigned all known proba-
bilities in this way, we are left with an attack graph that has some probabilistic and some nondeterministic
states in it. We call such mixed attack graphsprobabilistic attack graphs. We use probabilistic attack graphs
to evaluate the reliability of a network. Note that probabilities of all the transitions might not be available
because of lack of data, e.g., a new type of atomic attack.

Since the attack graph includes only those states and transitions that can lead to success states, it excludes
some transitions that exist in the complete modelM . These excluded transitions can have non-zero proba-
bility, so that the sum of probabilities of transitions from a probabilistic state will be less than1. To address
this problem, we must model the rest ofM in some way. We add a “catch-all”escapestatese to the attack
graph. A probabilistic states in the attack graph will have a transition tose if and only if in M there is a
transition froms to some statenot in the attack graph. The probability of going froms to se will be 1 minus
the sum of the probabilities of going to other states. There are no transitions out ofse except a self-loop
(which preserves the totality of the transition relation� ).

In an attack graph containing the escape statese attacks are allowed to terminate inse. We will call them
escape attacks, or attacks that were pre-empted by the intruder before he reached his goal.

6.1.1 Definition of PAGs

Definition 3 A probabilistic attack graphor PAG is a tupleG = (Sn; Sq ; se; S; �; �; S0; Ss; L), whereSn is
a set of nondeterministic states,Sq is a set of probabilistic states,se 2 S n is a nondeterministic escape state
(se 62 Ss), S = Sn [ Sq is the set of all states,� � S � S is a transition relation,� : Sq ! S ! < are
transition probabilities,S0 � S is a set of initial states,Ss � S is a set of success states, andL : S ! 2

AP

is a labeling of states with a set of propositions true in that state.

A probabilisticattack graph distinguishes between nondeterministicstates (setSn) and probabilisticstates
(setSq). Moreover, the sets of nondeterministic and probabilistic states are disjoint (S n \ Sq = ;). The
function� specifies probabilities of transitions from probabilistic states, so that for all transitionss1 !

s2 2 � such thats1 2 Sq , we haveP (s1 ! s2) = �(s1)(s2) > 0. Thus,�(s) can be viewed as a
probability distribution on next states. Intuitively, when the system is in a nondeterministic statesn, we
have no information about the relative probabilities of the possible next transitions. When the system is in a
probabilistic statesq , it will choose the next stateaccording to probability distribution�(sq).
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6.1.2 Complete Probability Case

Suppose every transition in the attack graph is assigned a probability, i.e., there are no nondeterministicstates.
Let G = (S; �; S0; Ss; L) be the attack graph andP a function that assigns probabilities to transitions. The
probabilities can be loosely interpreted as the probability of the atomic attack corresponding to the transition
succeeding. We are interested in finding the reliability of the attack graph, i.e., the probability that the
intruder will not succeed. We can viewG as a Markov chain withS as its state space andP (s1 ! s2) as
its transition probability. LetU : S ! <+ be the steady state probability of the Markov chain (see [Dur95]
for definitions and technical conditions). In this case, the reliability of the attack graphG is given by the
following expression:

1�
X
s2Ss

U (s)

In other words, the reliability is the probability that in the “long run” the Markov chain will not be in a state
in the setSs.

In general, however, we do not have probabilities assigned to all transitions; thus in Section 6.2 we show
how to perform similar reliability analysis on probabilistic attack graphs in the presence of nondeterministic
states. The justification of our approach relies on converting a probabilistic attack graph (PAG) into an
alternating probabilistic attack graph (APAG) and then interpreting the result as a Markov Decision Process;
we give this construction and interpretation in Section 6.3; we give the proof of correctness of the MDP value
iteration algorithm applied to PAGs in Section 6.4. Sections 6.3 and 6.4 can be skipped upon a first reading.

6.2 Reliability Analysis of PAGs

Assume that we are given a PAGG = (Sn; Sq; se; S; �; �; S0; Ss; L). Intuitively, we are interested in finding
out the probability that the intruder will reach a success state starting from one of the initial states. As shown
above, in the absence of nondeterministic states we can compute this metric by using the steady state prob-
abilities of the Markov chain. In the presence of nondeterministic states the intruder will choose transitions
in order to maximize his probability of succeeding. For example, if an intruder reaches anondeterministic
states with transitions tos1; � � � ; sk, he will choose to transition to statesi (1 � i � n) which will maximize
his probability of reaching a success state. This idea can be “formalized” using concepts from the theory of
Markov Decision Processes [Alt99, Put94].

6.2.1 Value Iteration for PAGs

Given a states, the set of successors ofs is denoted bysucc(s). Formally,succ(s) is equal tofs0j(s; s0) 2 �g.
First, we define avalue functionV : S ! <+. For alls 2 Ss, V (s) = 1:0. For all statess 2 S nSs the value
function is iterated according to the following equations until convergence.

V (s) =

�
maxs02succ(s) V (s0) if s 2 Sn n SsP

s02succ(s)P (s! s0)V (s0) if s 2 Sq n Ss

Let V ? be the value function after convergence. Intuitively,
P

s2S0
V ?

(s) is the probability for the
intruder to reach a success state if he “breaks” thenondeterminism to maximize the probability of succeeding.
Therefore, the worst case reliability of the network is1 �

P
s2S0

V ?
(s). This algorithm is known asvalue

iteration. The justification of the value iteration algorithm as applied to PAGs is presented in Section 6.4.

6.2.2 Example Revisited

We implemented the value iteration algorithm in our attack graph post-processor and ran it on a slightly
modified version of the intrusion detection example from Section 4. In the modified example, each attack
has both detectable and stealthy variants. The intruder chooses which atomic attack to try next, and he has
a certain probability of picking a stealthy or a detectable variant. We assigned imaginary probabilities of
picking a stealthy attack variant as follows: 0.2 for sshd buffer overflow, 0.5 for ftp .rhosts, 0.05 for the
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remote login, and 0.8 for local buffer overflow. The intruder’s goal is to obtain root access on hostip2 while
remaining undetected. Accordingly, the states where this goal has been achieved were assigned benefit value
1:0.

In this setup, the computed probability of intruder success is 0.2, and his best strategy is to attempt sshd
buffer overflow on hostip1, and then conduct the rest of the attack from that host. The only possibility of
detection is the sshd buffer overflow attack itself, since the IDS does not see the activity between hostsip1
andip2.

Given this context, a system administrator can answer the following question:

Question 4: The deployment of which security measure(s) will increase the likelihood of thwarting an at-
tacker?

Answer: Installing an additional IDS component to monitor the network traffic between hostsip1 andip2
reduces the probability of the intruder remaining undetected to 0.025; installing a host-based IDS on hostip2
reduces the probability to 0.16. Other things being equal, this is an indication that the former remedy is more
effective.

6.3 Alternating Probabilistic Attack Graphs and Markov Decision Processes

In this section we show that probabilisticattack graphs can be reduced to Markov Decision Processes (without
the reward function). We then demonstrate how we can assign a reward function to attack graphs such that
standard MDP algorithms can be used to compute reliability metric of the network being modeled.

Definition 4 [Alt99, Put94]A Markov Decision Process is a tuple(X; A;P; c) where

� X is a finite state space. Generic notation for MDP states will bex; y; z.

� A is a finite set of actions.A(x) � A denotes the actions that are available at statex. SetK =

(x; a) : x 2 X; a 2 A(x) is the set of state-action pairs. A generic notation for an action will bea.

� P : X �A �X are the transition probabilities; thus,P(xay) (also written asPxay) is the probability
of moving from statex to y if actiona is chosen.

� r : K ! < is an immediate reward. Cost may be equivalently viewed as a negative reward. We will
freely use the term cost to mean negative reward, and vice versa.

An execution fragment(also known as history in the traditional MDP literature) of an MDP is a sequence
x0a1x1 : : : anxn of alternating states and actions such that the sequence begins and ends with a state, and
for all 0 < k � n, ak 2 A(xk�1) and 0 < P(xk�1; ak; xk) � 1. Given an execution fragmente =

x0a1x1 : : : anxn, the probability of the execution fragment (denoted byP (e)) is given by the following
expression:

nY
k=1

P (xk�1; ak; xk)

It is possible to convert a probabilistic attack graph into an MDP such that the behaviors of the PAG and
the MDP are identical. To explain the conversion procedure, we define a restricted kind of probabilistic attack
graph.

Definition 5 An alternating probabilistic attack graphor APAGis a tupleG = (Sn; Sq; se; S; �n; �q; �; S0;

Ss; L), whereSn is a set of nondeterministic states,Sq is a set of probabilistic states,se 2 Sn is a nonde-
terministic escape state,S = Sn [ Sq is the set of all states,�n � S n � Sq is a set of nondeterministic
transitions,�q � Sq � Sn is a set of probabilistic transitions,� : Sq ! Sn ! < are transition probabilities,
S0 � S is a set of initial states,Ss � S is a set of success states, andL : S ! 2

AP is a labeling of states
with a set of propositions true in that state.
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Figure 8: Converting PAG to APAG

An alternating probabilistic attack graph (APAG)does not have any transitions between two nondeterministic
or between two probabilistic states. In other words, a nondeterministic state has transitions to probabilistic
states only, and vice versa. An execution of an APAG will always have strictly alternating nondeterministic
and probabilistic states.

Next we describe an algorithm that converts a PAGGp = (Sn; Sq; se; S; �; �; S 0; Ss; L) into an APAG
GA
p = (SAn ; S

A
q ; se; S; �

A
n ; �

A
q ; �

A; S0; Ss; L
A
) that has equivalent behaviors. The algorithm works by adding

hiddenstates and transitions to the graph such that every execution becomes strictly alternating, yet does not
change itsobservable(non-hidden) components.

We start withSAn = Sn, SAq = Sq , �An := ;, �Aq := ;, �A := 0:0, andLA = L. Next,

1. Whenever� has a transition from probabilistic states1 to nondeterministic states2, we add the transi-
tion to�Ap and its probability to�A.

2. Whenever� has a transition from nondeterministic states1 to probabilistic states2, we add the transi-
tion to�An .

3. Whenever� has a transition between two nondeterministic statess1 ands2, we add a hidden proba-
bilistic statesh to SAq , an observable transitions1 ! sh to �An , and a hidden transitionsh ! s2 to �Ap ,
assigning the latter probability1:0 in �A (Figure 8a). We also setLA(sh) = L(s1).

4. Whenever� has a transition between two probabilistic statess1 ands2, we add a hidden nondeter-
ministic statesh to SAn , a hidden transitionsh ! s2 to �An , and an observable transitions1 ! sh to
�Ap , assigning the latter the original probabilityp of going froms1 to s2 (Figure 8(b)). We also set
LA(sh) = L(s1).

LetGp be a PAG andGA
p be the corresponding APAG. An execution fragmente = s0s1 � � �sn inGA

p is called
proper if the start and end states (s0 andsn) are observable states. Lete be a proper execution fragment of
GA
p . We defineeobs by removing hidden states and hidden transitions frome, i.e., restricting the execution

to observable states and transition. Consider an execution fragmente = s0s1 � � �sn. Let SP (e) be the set of
probabilistic states in the setfs0; � � � ; sn�1g. Define the probability of an execution fragmente (denoted by
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Figure 9: Converting an APAG to a MDP

P (e)) as Y
si2SP (e)

P (si ! si+1) :

In other words, the probability of an execution fragment is the product the probabilities of the probabilistic
transitions in it. The following lemma follows straight from the construction.

Lemma 7 Let Gp be a PAG andGA
p be the corresponding APAG. Lete be a proper execution fragment of

GA
p . The following three statements are true:

1. eobs is an execution fragment ofGp.

2. P (e) = P (eobs), where the first probability is interpreted inGA
p and the second probability is inter-

preted inGp.

3. For all execution fragmentse1 of Gp there exists proper execution fragmente in GA
p such thate = eobs1 .

Lemma 7 clearly shows that there is a one-to-one correspondence (given byobs) between proper execution
fragments of a APAG and corresponding execution fragments of a PAG. Moreover, this correspondence
preserves probabilities. We have shown that APAGs have the same expressive power as PAGs, so hereafter
we consider them interchangeable.

An APAGG = (Sn; Sq ; se; S; �n; �q; �; S0; Ss; L), has a direct interpretationas an MDPMG = (X; A;P; c),
whereX = Sn, A = �n. That is, each action in the MDP represents a transition from a nondeterministic to
a probabilistic state. Further, letx; y 2 X anda 2 A(x), so thata represents a transition fromx to some
probabilistic statesq in the APAG. Then we haveP(x; a; y) = �(sq)(y).

It is preferable to have all APAG success states represented explicitly as MDP states, so that we can reason
about attacks in the MDP context. For this reason, we add a hidden nondeterministic state (and a transition
thereto) to every probabilistic success state in the APAG. We omit proofs of equivalence of an APAG before
and after this modification.

Figure 9(a) shows an example APAG, with the corresponding MDP shown in Figure 9(b). The nonde-
terministic transitions from the root node in the APAG are represented by the MDP actionsa, b, andc. The
leftmost leaf in the APAG is a probabilisticsuccess state; in the MDP it is represented by the appended hidden
nondeterministic state.
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It should be noted thatSq and�p have no explicit counterparts in the MDP. They form the entries in the
table of probabilitiesP. APAG componentsS0; Ss; L play no role in the construction of the MDP; they do,
however, play a role in our interpretation of results obtained through MDP algorithms. Finally, we can choose
the reward functionr depending on the questions we are trying to answer.

Let e = sn
0
s
p
1
sn
1
� � �sn�1

1
spns

n
n be an execution fragment of the APAGG, wheresnk and spk represent

nondeterministic and probabilistic states respectively. Letmdp(e) = emdp
= sn

0
tn
1
sn
1
: : : snn, wheretni is the

action that corresponds to the transitionsni�1 ! s
p
i . Notice that inmdp(e) probabilistic states do not occur.

The proof of the following lemma follows straight from the construction.

Lemma 8 Let G be a APAG andMG be the corresponding MDP. Lete be an execution fragment ofG and
mdp(e) be the corresponding execution fragment in the MDPMG. The following statements are true.

1. mdp(e) is an execution fragment of the MDPMG.

2. P (e) = P (mdp(e)), whereP (e) andP (mdp(e)) are interpreted inG andMG respectively.

3. For all execution fragmentsem in the MDPMG, there exists an execution fragmente in G such that
mdp(e) = em.

6.4 Correctness of the Value Iteration Algorithm for Attack Graphs

Let G = (Sn; Sq; se; S; �; �; S0; Ss; L) be a PAG, andGA
= (SAn ; S

A
q ; se; S

A; �An ; �
A
q ; �

A; S0; Ss; L
A
) be

the corresponding APAG. Recall that the APAGGA is obtained from the PAGG by adding hidden states
whenever there is a transition between two nondeterministic or probabilistic states (see Section 6.3). An
APAG G = (Sn; Sq ; se; S; �n; �p; �; S0; Ss; L) has a direct interpretation as an MDPMG = (X; A;P; r),
whereX = Sn, A = �n. That is, each action in the MDP represents a transition from a nondeterministic to
a probabilistic state. Further, letx; y 2 X anda 2 A(x), so thata represents a transition fromx to some
probabilistic statesq in the APAG. Then we haveP(x; a; y) = �(sq)(y). We first demonstrate that thevalue
iteration algorithm(or VI for short) on the APAGGA is simply a transformed version of the value iteration
algorithm on the corresponding MDPMG with an appropriate reward functionr. After that, we prove that
the value iteration algorithm on the PAG and the corresponding APAG converge to the same value. The
advantage of this approach is that all the technical results in the context of value iteration in MDPs can be
directly applied to value iteration in PAGs [Put94, Chapter 9].

6.4.1 Correspondence Between Value Iteration in MDPs and APAGs

Consider a MDPM = (X; A;P; r). A value functionis positive real valued functionV : X ! <+. The
value iteration algorithm uses the following equation to update the functionV :

V (x) = max
a2A(x)

[r(x; a) +
X
y2X

P(x; a; y)V (y)]

Technical conditions that guarantee the convergence of the value iteration algorithm can be found in [Put94,
Chapter 9].

Let GA be a APAG andMG be the corresponding MDP. Recall that we assumed that all success states in
GA are nondeterministic states so that they are explicitly represented in the MDPMG. Before we proceed, we
need to slightly modify the MDPMG. We add a new statesnew and actionanew to the MDPMG. The only
action allowed fromsnew is anew (A(snew) = fanewg) andP (snew; anew; snew) = 1:0 (so by definition
P (snew; anew; s) = 0:0 if s 6= snew). Moreover, we add the actionanew to the action set corresponding to the
success statesSf and for alls 2 Sf we haveP (s; anew; snew) = 1:0 (so by definitionP (s; anew; s

0
) = 0:0

if s0 6= snew). We have the following reward functionr

r(s; a) =

�
1.0 if s 2 Ss anda = anew
0.0 otherwise
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In other words, an intruder only gets a reward if the newly added actionanew is taken from one of the success
states. Intuitively, this amounts to the intruder reaching its goal. Assume that we initially start with a value
function that assigns0:0 to every state. It is easy to see that the value function assigns0:0 to the newly added
statesnew and1:0 to a state in the setSf . For states that are not in the setfsnewg [ Ss the value functionV
changes according to the following equation:

V (x) = max
a2A(x)

X
y2X

P (x; a; y)V (y)

= max
sq2succ(x)

X
y2X

P (sq ! y)V (y)

The second equation follows from the construction of the MDPMG from the APAGGA. Recall that actions
in the MDP correspond to the transitions from nondeterministic to probabilistic states. Next we extend the
value functionV to probabilistic statesSq by definingV (s) (for all s 2 Sq) as

X
y2X

P (s! y)V (y) :

Notice that in an APAG only successors of a probabilistic states are nondeterministic state, soV (y) is well
defined. Using this definition the value iteration algorithm can be re-written as:

V (s) =

�
maxs02succ(s) V (s0) if s 2 Sn n SsP

s02succ(s)P (s! s0)V (s0) if s 2 Sq n Ss

The value iteration (VI) equation given above was obtained by transforming the VI equation for the corre-
sponding MDP. Moreover, the equation we obtain is exactly the VI equation for an APAG that was provided
earlier (see Section 6.2).

6.4.2 Correspondence Between Value Iteration in MDPs and PAGs

Let G = (Sn; Sq; se; S; �; �; S0; Ss; L) be a PAG, andGA
= (SAn ; S

A
q ; se; S

A; �An ; �
A
q ; �

A; S0; Ss; L
A
) be

the corresponding APAG. Recall thatGA is obtained fromG by adding hidden states whenever there is a
transition between two nondeterministic or probabilistic states (see Figure 8). Suppose there is a transition
between two nondeterministic statess1 ands2 in G. In GA, we add a new probabilistic statesh and add
transitionss1 ! sh andsh ! s2, where the probability of the transitionsh ! s2 is 1:0. Consider thei-th
iteration of the VI algorithm inG. In this case, the valueV (s2) in the(i � 1)-the iteration is used to update
the value of the states1. Now consider the value iteration algorithm inGA. The valueV (sh) of the hidden
statesh in the(i � 1)-th iteration is used to update the value ofV (s1) in thei-th iteration. It is easy to see
thatV (sh) in the(i� 1)-th iteration isV (s2) in the(i� 2)-th iteration. Therefore, hidden statesadd a delay
of 1 in the value iteration algorithm. The case for transition between two probabilistic states is analogous.

Consider a PAGG = (Sn; Sq ; se; S; �; �; S0; Ss; L). The equation for the value iteration algorithm
without delay is:

V i
(s) =

8<
:

1:0 if s 2 Ss
maxs02succ(s) V

i�1
(s0) if s 2 Sn n SsP

s02succ(s) P (s! s0)V i�1
(s0) if s 2 Sq n Ss

We have added the iteration indexi to the VI algorithm so that we can refer to it in the proof. The value
iteration algorithm with the delay is:

V i
1
(s) =

8<
:

1:0 if s 2 Ss
maxfmaxs02succ(s)\Sn V

i�2
1

(s0);maxs02succ(s)\Sq V
i�1
1

(s0)g if s 2 Sn n SsP
s02succ(s)\Sq

P (s! s0)V i�2
1

(s0) +
P

s02succ(s)\Sn
P (s! s0)V i�1

1
(s0) if s 2 Sq n Ss

Initially, both sequences start with the value functionsV 0 andV 0
1 that assign1:0 to states inSf and0:0 to all

other states. Notice that in the value iteration algorithm forV i
1 there is delay of1 added (the(i� 2)-th value
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occurs on the right-hand side) corresponding to the transitions between two non-deterministic or probabilistic
states. It is easy to see that the sequences of value functionsV 0; V 1; � � � andV 0

1
; V 1

1
; � � � are monotonic, i.e.,

for all s 2 S, V i
(s) � V i�1

(s) andV i
1
(s) � V i�1

1
(s). For i � 2, the following inequality also holds for all

s 2 S andi � 2:
V i

(s) � V i
1
(s) � V i�2

(s)

The equation given above directly follows from the monotonicity property and the equations that define value
iteration.

SupposeV converges toV? pointwise, i.e., for alls 2 S, V (s) ! V?(s). Next we prove that for all
s 2 S, if V i

(s) ! V?(s), thenV i
1
(s) ! V?(s). This proves thatV1 also converges toV?. By definition of

convergence, for all� > 0, there exists a positive integerN (�) such that for alli > N (�) we have

jV?(s) � V i
(s)j < � :

Assume that we are given a� > 0. It is easy to see that the limitV?(s) � V i
(s) for all i (this follows from

the fact thatV i
(s) is a monotonic sequence). Therefore, we have the following inequality

jV?(s) � V i
1 (s)j � jV?(s) � V i�2

(s)j :

The equation given above follows from the inequalityV i
1
(s) � V i�2

(s) for all s. SinceV i
(s) ! V?(s),

there exists anN (�) such that ifi > N (�), then

jV?(s) � V i
(s)j < � :

By the argument given abovejV?(s) � V i
1
(s)j < � for i > N (�) + 2. This proves thatV i

1
(s) ! V?(s).

Conversely assume thatV1 converges toV 0
? . Using the inequality given below it is easy to prove thatV i

(s)!

V 0
?(s).

jV 0
?(s) � V i

(s)j < jV 0
?(s) � V i

1 (s)j

Therefore, we prove that the value iteration algorithm with and without delay converge to the same value.
The VI algorithm with delay is essentially the VI algorithm on the APAGGA, which was derived from the VI
algorithm on the corresponding MDP. Therefore, the correctness of the VI algorithm on the PAGG follows.

7 Summary of Contributions and Future Work

Our foremost contribution is the automatic generation of attack graphs. Our key insight is that an attack is
equivalent to a counterexample produced by off-the-shelf model checkers; the attack/counterexample is a
witness to a violation of a safety property. By a small, but critical enhancement to an existing model checker,
i.e., NuSMV, we can easily produce attack graphs automatically; moreover, these graphs are succinct and
exhaustive. A by-product of this part of our work is showing, by example, what level of abstraction is
appropriate for modeling attacks. We use simple state machine specifications to model not just intruder
behavior (by a set of atomic attacks), but also normal system behavior, system administrator recovery actions,
and connectivity (communication) between subsystems.

Our second most important contribution is support for a range of formal analyses of attack graphs. Se-
curity analysts use attack graphs informally for attack detection, defense, and forensics. In this paper, we
explain how they can now use our minimization analysis technique on attack graphs to more precisely an-
swer questions like “Which security measure should I deploy in order to thwart this set of attacks?” and
“Which set of security measures should I deploy to guarantee the safety of my system?” To do reliability
analysis, we annotate attack graphs with probabilities and then interpret them as Markov Decision Processes
(MDP). Then, by using MDP algorithms such as value iteration, security analysts can more precisely answer
questions like “Will deploying this intrusion detection system increase or decrease the likelihood of thwarting
this type of attack?”

On the theoretical front, we have so far restricted our work to only safety (invariant) properties. To exploit
the full power of model checking, we need a method of generating attack graphs for more general classes
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of properties. For example, the following liveness property states that a user will always be able to access a
server whenever he wants to.

AG(server :user :request ! AF(server :user :acesss))

This property would not be true if the server can be disabled using a denial-of-service attack. Another such
liveness property is that a legitimate user’s transaction will finish despite intruder interference. We plan to
explore generation of attack graphs for universally quantified fragments of Computational Tree Logic and
Linear Temporal Logic.

On the practical front, we plan to conduct larger case studies to illustrate the usefulness of automatically
generating attack graphs. To make our tool suite more usable by security experts and system administrators,
we see the value of building a library of specifications of atomic attacks. Our hope is that increasing this
arsenal of specifications outpaces the growth in the arsenal of known attacks; we can potentially discover
new, unexpected attacks, and hence identify new network vulnerabilities. Finally, we also intend to build a
tool that merges our work on attack graphs with existing intrusion detection technologies. The tool is intended
help security analysts evaluate and enhance the security of a network.
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