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Abstract

The most predominant language processing theories have, for some time, been based largely on structured knowledge
and relatively simple rules. These symbolic models intentionally segregate syntactic information processing from
statistical information as well as semantic, pragmatic, and discourse influences, thereby minimizing the importance
of these potential constraints in learning and processing language. While such models have the advantage of being
relatively simple and explicit, they are inadequate to account for learning and validated ambiguity resolution phenom-
ena. In recent years, interactive constraint-based theories of sentence processing have gained increasing support, as a
growing body of empirical evidence demonstrates early influences of various factors on comprehension performance.
Connectionist networks are one form of model that naturally reflect many properties of constraint-based theories, and
thus provide a form in which those theories may be instantiated.

Unfortunately, most of the connectionist language models implemented until now have involved severe limitations,
restricting the phenomena they could address. Comprehension and production models have, by and large, been limited
to simple sentences with small vocabularies (cf. St. John & McClelland, 1990). Most models that have addressed the
problem of complex, multi-clausal sentence processing have been prediction networks (cf. EIman, 1991; Christiansen
& Chater, 1999a). Although a useful component of a language processing system, prediction does not get at the heart
of language: the interface between syntax and semantics.

The current thesis focuses on the design and testing of the Connectionist Sentence Comprehension and Production
(CSCP) model, a recurrent neural network that has been trained to both comprehend and produce a relatively complex
subset of English. This language includes such features as tense and number, adjectives and adverbs, prepositional
phrases, relative clauses, subordinate clauses, and sentential complements, with a vocabulary of about 300 total words.
It is broad enough that it permits the model to address a wide range of sentence processing phenomena. The exper-
iments reported here involve such issues as the relative comprehensibility of various sentence types, the resolution
of lexical ambiguities, generalization to novel sentences, the comprehension of main verb/reduced relative, senten-
tial complement, subordinate clause, and prepositional phrase attachment ambiguities, agreement attraction and other
production errors, and structural priming.

The model is able to replicate many key aspects of human sentence processing across these domains, including
sensitivity to lexical and structural frequencies, semantic plausibility, inflectional morphology, and locality effects.
A critical feature of the model is its suggestion of a tight coupling between comprehension and production and the
idea that language production is primarily learned through the formulation and testing of covert predictions during
comprehension. I believe this work represents a major advance in the attested ability of connectionist networks to
process natural language and a significant step towards a more complete understanding of the human language faculty.
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Chapter 1

Introduction

Our unique faculty for language is one of the most fascinating and perplexing of human abilities. As researchers
who seek to understand it, we are enticed by the apparent ease with which nearly all people learn and use everyday
language. But when we begin to delve under the surface of the human language system, its true complexity seems
overwhelming. Decades of research in processing language with computers—from attempts to comprehend sentences,
translate between languages, or even just to generate and transcribe speech—have all met with limited success. Our
most powerful software and machines are, by and large, no match for the linguistic abilities of a typical five-year-old.

A complete theory of human language must involve an understanding of the neural mechanisms by which our
minds process language, including the nature of the representations used by the system, how it learns, and what innate
knowledge or structure is required for it to do so. Such knowledge will be critical for advancing the development of
computational linguistics, in helping those with developmental or acquired language deficits, and in simply fulfilling
our scientific and intellectual curiosity.

The study of other cognitive phenomena, including vision and memory, have benefitted greatly from the existence
of other species that share human abilities in these domains. The use of invasive techniques in animal models, including
extensive neural recording, in vitro study of living tissue, radioactive labeling, and induced lesions, have been a primary
means by which our understanding of these domains has grown. However, because language is a uniquely human
ability, we are greatly restricted in our options for directly investigating the neural mechanisms of language. Although
some information can be gained through the study of naturally occurring lesions and via functional imaging, the
primary empirical method we have for investigating language is the controlled elicitation, measurement, and analysis
of human behavior.

But empirical data is of little use unless it can be fit into a broader framework or theory. If they are to tell us anything
about language mechanisms, empirical observations must be tied to specific functions or processes. This is the role
of theories and conceptual models. In addition to explaining the available empirical data, theories, if they are good
ones, should enable us to make predictions about the outcomes of future experiments, provide insights that could lead
to more effective computer language processing, and aid in the development of treatments for language impairments.
Although the importance of articulating theories of language, or other mental processes, is well recognized in the
scientific community, many researchers have avoided actually implementing their theories as explicit, testable models
(Lewis, 2000Db).

1.1 Why implement models?
The strongest excuses for not modeling a theory are that it is time consuming and requires a degree of technical
sophistication. While, depending on the type of model, these may be valid complaints, in most cases they are far

outweighed by the many benefits of implementing explicit models of cognitive phenomena.

e The constraints of implementing a model force theories to be complete, clear and detailed. Researchers may think
it unnecessary to implement their theory because, to them, the theory seems perfectly clear and its predictions
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obvious. But English is not a precise language for describing complex or abstract processes. If a theory is only
described in words, other researchers may interpret the description very differently from the author’s intention, or
may get the correct general idea but misinterpret the details. Unless a theory is explicit, other researchers will be
unable to properly evaluate it or predict its behavior under novel conditions. Unimplemented theories may also rest
on hidden assumptions that are not fully thought out or understood by the authors themselves.

e The demands of implementing a model quickly reveal flaws in the theory. Although a theory may seem well artic-
ulated, casting it in algorithmic and numeric terms can reveal hidden inconsistencies and vagueness. Thus, before
a model is even evaluated, that it can be constructed is a valuable test of a theory, and is likely to inspire needed
extensions or changes. Furthermore, theories of a particular aspect of language processing may lack connection to
theories specific to other aspects of language processing or to the domain as a whole. But when we implement a
model, we are forced to define its bounds and the representations used at its interfaces. This leads the designer to
think critically about how the model fits in with other theories and with language processes at a broader level.

e Some theories must be implemented if they are to be fully understood. The behavior of complex systems cannot
easily be predicted, and all but the most trivial of cognitive models will be too complex for us to simulate in our
minds. If a theory involves two factors that, for a particular input, pull in opposite directions, the net result, and
hence the theory’s prediction, may depend on details that are only made explicit, and can only be understood, when
a model is constructed. Some theories, such as the one on which the current work is based, are heavily dependent
on learning. The outcome of the model depends on the environment to which it is exposed. Unless the learning
process and the environment are very simple, the model must be trained and tested before its properties will be
known.

e Evaluating a model against empirical data can reveal flaws in the model and, by extension, in the theory. This is, of
course, the main benefit that usually comes to mind when we think of modeling. Models can be used to simulate
empirical experiments. When the results match the empirical findings, the theory is strengthened. When the results
do not match, it tells us that either the model is not representative of the theory or that there is a flaw in the theory.
This is the potential falsifiability that some see as a requirement of any valid scientific theory.

e Evaluating a model against empirical data can reveal flaws in the data, leading to improved experimental design.
All experiments are flawed. As scientists, when we design an experiment to test the effects of a particular factor,
we will attempt to control for or rule out all confounding factors. But identifying and controlling for all potential
confounds is simply not possible. Biases can creep in at many levels: in our choice of subjects, task design, item
selection, use of filler items, testing methods, data analysis techniques, and so forth. In general, we do our best
to eliminate any obvious confounds and then assume the results are reliable. But when an experimental study
becomes the critical test for our model and the two happen to disagree, there is a tendency to look very closely at
the details of the empirical work. Often, the problem is not the model but the data. Experimental design flaws,
made evident by critical comparison with a model, can be reduced in better controlled experiments. Even if the
model is ultimately proved wrong, there is still a net benefit to science.

e Implementation aids theory formation by providing further insight into the workings of the model and the impor-
tance of its various aspects. As a designer of models, I find that my models often surprise me. They don’t always
work the way I had intended or, if they do, it is not always for the reason I had expected. This is bound to happen
with any non-trivial model, but is especially likely with models having a substantial learning component. Where
the model’s actual behavior is undesirable, it may mean that further constraints on the model are needed. But when
the model’s actual behavior is correct, it can lead to further understanding and elaboration of possible functional
mechanisms behind the observed phenomena.

e Finally, modeling inspires new theoretical questions and new empirical experiments. The process of implementing
and studying a model may raise questions that would not occur to us otherwise. If we see that the model is
sensitive to a particular factor, we may create a new experimental design to test the sensitivity of humans to that
factor. Sometimes, a single mechanism can account for a range of phenomena that, on the surface, do not appear
to be related, resulting in unification and simplification of theories.

Thus, modeling is not just important for evaluating theories of complex phenomena. It plays a critical role in
rendering theories more complete and explicit, improving our understanding of them, and inspiring new theoretical
developments and new empirical investigations.
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The primary goal of this thesis is to gain a better understanding of a particular pair of domains within language
processing—sentence comprehension and production—through the development and testing of a broad-scale model
of human performance.

1.2 Properties of human language processing

Before discussing the model, let us begin by considering some general characteristics of the human language process-
ing system. The following are what I consider to be important properties of language and the way in which we use
it. Some of these points are obvious, some are controversial, and the aim here is not to defend them with specific
empirical findings. That may come later. The point is simply to lay out some observations on what I see as critical
characteristics of human language. These observations, or positions, serve to guide my thinking about language and
motivate the approach to modeling sentence processing that is adopted in this thesis.

e To begin with, language is structured. It is undeniable that all human languages have clear regularities to their
structure. A language is not simply a collection of idiomatic expressions that convey unique messages, although
those are an important part of many, if not all, languages. Most sentences are composed of elements, such as noun
and verb phrases, that are arranged in regular and predictable patterns of relationships with one another. These
patterns, if codifiable, form the syntax or grammar of the language.

The field of modern linguistics, taking its inspiration largely from the work of Chomsky, has focused primarily on
issues regarding the syntactic regularity of language. In doing so, it revealed many of the important properties of
syntax, within and across languages. But, for a long time, this came at the cost of virtually ignoring many other
aspects of language, including meaning and how it is mapped to structure and surface form, the statistical properties
of language, and our actual, workaday comprehension and production performance.

Language is productive. Familiar words can be combined according to the rules of grammar to produce a vast array
of novel sentences that can be comprehended by other speakers of the same language, to whom the sentences are
equally novel. It is this undeniable fact that was a principal motivation behind Chomsky’s well-known critique of
Skinner’s theory of verbal behavior (Chomsky, 1959).

Semantic and lexical constraints place tight bounds on the productivity of language. Although many of the sen-
tences we encounter on a daily basis are novel, there are rather tight semantic and pragmatic bounds on the way
words can be combined within a syntactic framework to produce reasonable sentences. Example (1a) is a per-
fectly valid English sentence, but when we rearrange its syntactic elements—its nouns, verbs, determiners, and
prepositional phrases in this case—the resulting (1b) is grammatical but nonsense that the man on the street would
probably argue is unacceptable as English.’

(la) The student believes in evolution, but he knows of another theory.
(1b) Another theory believes of the student, but he knows in evolution.

To give another example, one can be a student of religion or reduce the deficit 20%, but cannot be a student of 20%
or reduce the deficit religion. You might argue that these generalizations are invalid not just on semantic grounds
but on syntactic grounds according to a theory in which quantifiers, like 20%, are syntactically distinct from other
noun phrases. But this is largely my point—that there are many limitations to the productivity of natural language.
One who constructs a generative grammar of a language and then actually tries to use it to generate sentences will
probably find that it produces mainly strange and unacceptable utterances. A real generative theory must take much
more into account than basic syntactic classes and how they can be arranged.

Language is pseudo-context-free or pseudo-context-sensitive, but infinite recursion is an idealization ungrounded
in any observable reality. Some like to say that there are an infinite number of possible sentences in a language,
meaning that there are an infinite number of utterances that conform to the rules of the grammars that linguists
design. But if we limit the definition of a sentence, as I choose to do, to those utterances that could possibly convey
a useful and consistent meaning to at least a few fellow speakers of a language, even under optimal conditions, the
claim of an infinite variety of sentences is simply not true. There is a finite bound to the length and complexity of

!One might argue that “believe of” is never grammatical in English. But, it does have valid uses, such as this one in a recently published editorial:
“For we know that no matter what happens, it is the fault of our enemies, for they dare to believe of themselves what we believe of ourselves.”
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sentences that humans can comprehend, and thus a finite bound to the possible sentences we can create, short of
inventing new words. If I were to link all of the sentences in this thesis together with and or some other suitable
conjunction, the result would not be another sentence. It would be an abomination. I’m not arguing that there
aren’t a vast number of possible sentences in English,” just that there aren’t an infinite number.

Many researchers have been attracted to the idea of language as context-free because of the relative ease with
which the basic grammars of most human languages can be described by systems of context-free rewriting rules.
The existence of repeatable embeddings can be easily described in such systems using a symbol whose possible
productions include itself. It is tempting, though not necessarily justified, to make the assumption that it is valid
to do this ad infinitum, and that any sentences produced by an arbitrary number of self embeddings, or any other
productions of the grammar, are also part of the natural language being characterized. Such sentences may be part
of the theoretical language defined by the grammar, but they are not necessarily part of the natural language in
which we are interested. Much of the debate in computational linguistics has been about whether human languages
are really context-free or, perhaps, belong to the superset of context-sensitive languages.

Traditional finite-state grammars, by contrast, have not been thought to be sufficient for characterizing natural
language. This is because it is usual to conceive of and describe such grammars using state transition diagrams.
Center embeddings, beyond the first level, cannot be described conveniently using state transition diagrams. To do
so would require duplicating extensive amounts of structure for each level allowed. This seems so unwieldy that
most researchers have jumped straight to context-freedom and have thus embraced infinite recursion as a property
of natural language. However, there is an alternative, which is to seek out a more powerful means for describing
finite-state grammars than the state transition diagram.

Although all regular languages can be described by a state transition diagram, it is not necessarily the most con-
venient way to do so. One alternative is to use something exactly like a context-free rewriting system, but with a
bound placed on the depth of the production tree or on the number of self-embeddings allowed. The set of lan-
guages producible by a context-free grammar with a finite limit on the depth of self-recursion is equivalent to the
regular languages, describable by finite-state transition diagrams.®> But because this method uses symbol rewriting
rules, it can quite easily describe most basic natural language grammars, but it would not be convenient for de-
scribing the limited context-sensitivity that shows up in, for example, Dutch scrambling. But there is no reason one
can’t invent a new formalism for describing finite-state grammars that permits easy notation of both self-embedding
and scrambling. In this way, we can reap the benefits of more powerful notation, without committing ourselves to
the absurd stance that certain 1-million-word sentences are grammatical, whereas others are not. For this reason,
I think of natural language as pseudo-context-free or pseudo-context-sensitive. It contains some of the hallmarks
of context-free or context-sensitive grammars, but does not permit arbitrary complexity. My perspective here, as
elsewhere, is by no means unique, and arguments for the finiteness of natural language have been around for a long
time (Reich, 1969).

e Syntax is interesting and important; but the goal of language is to convey meanings, and semantics is a domain of
subtle distinctions and gray areas. Although it is possible to develop a reasonably comprehensive theory of syntax
based on discrete categories and rules, semantics is, by nature, much fuzzier. There is an infinite range of variation
to the types of objects, entities, actions, and ideas in the world. When we assign words to these concepts, we
are forced to create categorizations and establish sometimes arbitrary distinctions. But there are often profound
similarities between concepts we refer to by different names, and profound differences between concepts we refer
to by the same name. Semantic knowledge is not easily described or codified. Consider all the wines produced in
the world today. They can be roughly divided into classes on the basis of their ingredients and how they are made.
But each one is different. Each has its own characteristic flavor, texture, aroma, and color. These together, or our
sense of them, make up the concept of that individual wine. Even experts struggle to classify and describe them,
resorting to combinations of metaphorical adjectives like austere, flinty, and supple.

Effective communication often requires not just that words or categories be conveyed, but that the underlying
concepts, or an approximation to them, be communicated. After reading (2a), you may have the image of a dog
that is big and lovable, but somewhat disgusting. But (2b) was intended to convey the image of a little, obnoxious,
hyperactive dog. Although words themselves are vague and often polysemous, skilled comprehension is about

2This thesis contains approximately 10,000 sentences, and I like to think that at least most of them are novel. I'm sure the previous one was, but
I’'m not certain about this one.
3I have found a truly marvelous proof of this theorem which this footnote is too small to contain.
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deriving precise meanings from the way in which they are used together in a sentence or discourse, and skilled
production is about conveying precise meanings by selecting and arranging words in just the right way.

(2a) The dog slobbered all over its favorite stuffed bear.
(2b) The dog yipped at my feet but I resisted the temptation to give it a kick.

e Lexical ambiguities abound in natural language, but are rarely even noticeable. Aside from subtle distinctions
among similar word senses, many words in English have multiple, unrelated or distantly related senses and can
also play more than one syntactic role. A simple word like fast, for example, can serve as a noun, verb, or
adjective, as illustrated in (3). Of the 1,000 most common verb forms in the Wall Street Journal and Brown corpora
of the Penn Treebank (Marcus, Santorini, & Marcinkiewicz, 1993), 22% can also serve as nouns. And of the top
1,000 noun forms, 29% can serve as verbs. In addition to this, the majority of nouns and verbs have more than
one distinct sense. The verb fo crash might refer to a physical collision, a plummeting of the stock market, junkies
coming off a high, the emission of thunder, or arriving at a party without an invitation. For the most part, we are
able to use context to resolve sense ambiguities and we may not even be aware that a single word plays a variety of
unrelated or remotely related roles. Consider, for example, (4), borrowed from Johnson-Laird (1983), which is not
too difficult to understand even though every content word is ambiguous. One can even construct sentences, such
as (5), that are globally ambiguous, although it is not obvious to us on first reading. The usual first interpretation
for this sentence is that an old man is boating, but it could also mean that old people are typically found manning
boats.

(3) The activists vowed to hold fast to their plan to fast for 90 days, but the allure of the fast food drive-
through was overwhelming so their fast was soon at an end.

(4) The plane banked just before landing, but then the pilot lost control. The strip on the field runs for only
the barest of yards and the plane just twisted out of the turn before shooting into the ground.

(5) The old man boats.

e Syntactic ambiguities also abound in natural language, but most go completely unnoticed as well. Temporary
syntactic ambiguities are quite common in everyday speech, but we rarely detect their presence except in the few
cases in which we are garden-pathed by an unusually deceptive sentence. Sentences (6a)—(6b), for example, are
all perfectly comprehensible. And if we were to hear just one, we would probably not realize that “If I find you”
is temporarily ambiguous and you could serve as the subject of a sentential complement, the indirect object in a
ditransitive, or as the direct object in a simple transitive.

(6a) IfI find you cheated me, you’ll be sorry.
(6b) IfI find you the answer, will you stop asking for help?
(6¢) IfI find you, then you’re it.

Our ability to resolve most short-term ambiguities of this sort suggests that we are capable of temporarily maintain-
ing several possible interpretations of a sentence (Pearlmutter & Mendelsohn, 1999; Gibson & Pearlmutter, 2000).
The fact that we are sometimes garden-pathed, especially when one reading seems particularly likely, suggests that
we are capable of only limited parallelism of this sort. Because the strength of an interpretation often seems to
depend on its likelihood given the constraints provided by frequency and other factors, which will be discussed
shortly, I think of our ability to represent multiple parses as graded parallelism. Only a limited number of interpre-
tations are maintained and each has a strength associated with it. Very unlikely interpretations may be discarded
and, if a surviving interpretation turns out to be correct, the ease of committing to that interpretation will depend
on its strength relative to those of the other interpretations.

e The meaning of a sentence is not just the sum of its parts. It is often pointed out that one cannot simply add up the
meanings of the words in a sentence to form the meaning of the whole. But neither is the meaning of a sentence
always the straightforward composition of its parts. The meanings of words and phrases are frequently determined
by their context, both intra- and extra-sentential. An English dictionary cannot be combined with a textbook of
English grammar to produce a reasonable comprehension system. A system built in this way would probably fail
to appreciate that, in (7a), the baby is settled down for an all-too-brief nap, while in (7b), canis mortuus est.

(7a) We finally put the baby to sleep.
(7b) We finally put the dog to sleep.
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e Comprehension is sensitive to many factors, including lexical and structural frequency biases, semantic and prag-
matic influences, and context (MacDonald, Pearlmutter, & Seidenberg, 1994a). As we’ll see plenty of evidence for
in Chapter 3, a variety of factors can have an early and important effect on the sentence comprehension mechanism.
These effects can impact the speed or ease of processing, as well as the ultimate interpretation. It is a combination
of these factors which, under most circumstances, make lexical and syntactic ambiguities relatively easy to resolve.

e Syntactic interpretation is often dependent on semantics. Proper parsing of a sentence may be dependent on and
guided by its semantic content. In (8a) and (8b), taken from Taraban and McClelland (1988), the final prepositional
phrase clearly serves as an instrument of the action in the one case, but the possession of the cop in the other.
Similarly, most readers will conclude that the dog found the slippers in (9a), but the slippers were just next to the
dog in (9b). In this case, the distinction, which would probably be viewed as syntactic under most theories, is not
due to a particular noun/verb pairing, as before, but to the differing properties of the specific dog instances.

(8a) The spy saw the cop with binoculars.

(8b) The spy saw the cop with a revolver.

(9a) The slippers were found by the nosy dog.
(9b) The slippers were found by the sleeping dog.

e The meaning of a word, phrase, or sentence can depend on the context in which it is placed. A simple example of
this, playing off two of the senses of the adjective nice, is given in (10a) and (10b). In the first case, nice means
kind or well-tempered, while in the second it means high-quality or well-performing.

(10a) My horse likes to buck, but you’ve got a nice horse.
(10b) My horse is old and slow, but you’ve got a nice horse.

e Meaning can be carried by prosody, or the tone of voice. In everyday conversation, a substantial amount of
information is conveyed not just by the words that are uttered, but by how they are uttered. Depending on how I
delivered it to you, sentence (11) could take on a variety of meanings. If I placed stress on how, this is not really a
question, but an indication of the fact that I cannot believe the thesis was as long, or short, as you just said it was.
If I stress long, it is a question that seeks to elicit the length of the thesis, as opposed to some other information
about it. If I stress was, it suggests that the length of the thesis has changed and I want to know its original length.
If I stress thesis, it suggests you have told me the length of something else, but I prefer to know the length of the
thesis. This is an example of contrastive stress, but other prosodic markers can also influence sentence meaning. If
(12) is spoken with no pause, it seems to clearly mean that I saw you while you were walking in the park. But if a
pause is placed after you, it can be taken to mean that [ saw you while I was walking in the park.

(11) How long was the thesis?
(12) I saw you walking in the park.

e We are tolerant of syntactic or semantic anomalies. Our sentence comprehension mechanism does not break down
when it encounters a syntactic violation or other mistake. We are generally able to get past these problems and still
divine the speaker’s true intention. This is illustrated to some extent by one of my favorite G. W. Bushisms, (13).
Although this sentence contains an agreement error and some horribly mixed metaphors, it still seems possible to
divine the President’s intended message.

(13) Families is where our nation finds hope, where wings take dream.

e Over time, languages tend to become regularized. When languages collide, inconsistent pidgins, over a generation,
become consistent creoles (Bickerton, 1984). At a slower pace, regularizations tend to occur in the inflections and
spellings of words within a language. This is especially true of low-frequency words. Only common irregular-
ities tend to survive (Hare & Elman, 1995). Does this mean that we process language according to rules? Not
necessarily. Only that we have an easier time dealing with regularities than we do with exceptions.

e We are not taught to parse. Parsing sentences into syntactic structures is not something most language users are
shown how to do. In fact, it isn’t even clear that we do parse, in the sense of constructing an explicit and complete
representation of the structure of a sentence in the course of comprehending it. The only language tasks that we
really know humans are able to perform are those we can directly observe, including comprehension, production,
repetition, and so forth. That mapping from an acoustic signal to a message occurs via deep structure, or some
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other hierarchical syntactic representation, is merely a convenient assumption—a pervasive and often useful one,
but an assumption none the less. In advancing our understanding of the human language processing system, we
may do well to question this assumption.

e We are great users of language, but we are terrible linguists. Nearly all of us reach fluency in at least one language
with very little direct instruction. And yet, abstract linguistic constructs and the principles that govern them do
not come naturally to us. Most language users who have yet to take a course in grammar probably realize that
there are such things as words and that most of them fall into the distinct classes of nouns, verbs and adjectives.
But they probably couldn’t articulate the fact that there are elements of their language such as those we refer to
as prepositional phrases, relative clauses, mass nouns, modal verbs, reflexive verbs, gerunds, unaccusatives, or the
subjunctive, unless you were to ask very leading questions. Until it occurred to me quite recently, I could not have
told you that there are a small number of count nouns, like church, school, prison, and, in England, hospital, that
can be used in the singular without a determiner. How is it that we are able to use these things on a daily basis,
yet most of us don’t realize they exist and even professional linguists struggle for years to discover the principles
underlying their use.

If we really do possess “knowledge” of these principles, it is certainly hidden deep inside of us. Is it reasonable to
think that such knowledge could be encoded in our minds in the form of explicit rules and yet be totally inaccessible
to our consciousness? Or, perhaps, do those principles not exist in the form of rules, but merely in the form of
procedures and processes, like the neural pathways that have made me a better skier through practice, without
blessing me with the ability to accurately describe those skills or pass them on to others. It is true that my skiing
faculty exhibits consistent, rule-like behavior. When one ski slips, weight is transferred to the other leg. When I
want to initiate a turn, my body does a consistent sequence of operations, like tilting my feet, leaning and twisting
in a certain way. But the rules that govern this are implicit in the operations of my reflexes and higher-level motor
control pathways. To characterize such a system as one based upon the knowledge of rules seems absurd.

e A substantial portion of the human brain is involved in language processing. Few would question that using
language is one of the most complex and important things that we do. If 5% of the cortex were involved in
sentence processing, that would mean there are roughly one billion neurons working on the problem.

e We can easily learn hundreds of thousands of words and phrases. It has been estimated that the average college
graduate knows around 60,000 words (Pinker, 1994; Crystal, 1997). But if one were to include all of the senses we
attribute to these words, as well as idiomatic expressions with their own unique meanings, and the proper names
with which we are familiar, the number of mappings we know and use between linguistic signs and their meanings
would certainly be in the hundreds of thousands. The brain is obviously quite well designed for learning and
accessing such mappings.

e In contrast to the apparent ease with which we acquire vast lexica, we are embarrassingly bad when it comes to
syntax. Sure we can comprehend most of the sentences encountered on a daily basis with little difficulty (that is
apparent to us, anyway). But this is by design. By and large, sentences are not produced by a reasonable speaker
or writer if she can’t understand them herself or doesn’t expect others to understand them. But as soon as we go
somewhat beyond the limit of the syntactic complexity that we normally encounter, our comprehension abilities
rapidly break down. To those who don’t study such sentences for a living, example (14), which contains two center-
embedded object-relative clauses, stops making sense around the second verb. Sentences of this type are easier to
understand when strong semantic constraints are placed on the possible roles that each constituent can play (Stolz,
1967). But when we are forced to let syntax be our guide, multiply embedded structures are very confusing.

(14) The dog the cat the mouse bit chased ran away.

Various researchers have articulated slightly different rules to predict the limit of our ability to handle difficult
syntax. Several of these equate complexity with the maximum number of incomplete syntactic dependencies at
any point in the sentence (Yngve, 1960; Miller & Chomsky, 1963; Bever, 1970; Kimball, 1973; Gibson, 1991).
Based on empirical observations, our limit seems to be about three. Lewis (1993, 1996) suggests a variant of this,
which is that complexity is proportional to the maximal number of incomplete dependencies of the same kind. In
this case, the limit is closer to two.

So here, in a nutshell, is one of the most perplexing things about human language processing. We have a huge num-
ber of neurons involved in language, which enable us to learn hundreds of thousands of mappings between linguistic
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surface forms and their meanings. And yet, we cannot handle more than two or three center-embeddings. This tells
me that the architecture of our language processing system must be one that is specialized for acquiring associative
mappings, but one with only a modest capability for dealing with complex, combinatorial structure.

1.3 Properties of symbolic models

The most predominant and the most explicit models of sentence processing have, until recently, been based on sym-
bolic architectures. Symbolic systems are marked by the use of explicit rules that operate on abstract variables or
symbols.* The symbol rewriting grammars in which context-free languages are specified are inherently symbolic, as
are most computer programming methods. The principal attraction of symbolic notation for language processing is
the ease with which it can be used to represent abstract syntactic constructs and their relationships. For example, one
can simply specify that noun phrases are represented by the symbol NP and verb phrases by the symbol VP and a
sentence, S, can be composed of an NP followed by a VP. Knowledge of such constructs, and the rules for operating
on them, can be built directly into a symbolic model.

One of the main reasons for favoring symbolic language processing models is that syntax can be easily represented
and manipulated in such a system. But they have other important advantages. In particular, symbolic models are
frequently quite simple and explicit. They are relatively transparent in their operation and tend to provide a high
degree of explanatory clarity. We can easily examine not just the overt behavior of such models, but their internal
states and representations as well. This enables us to design them with the goal of achieving a certain behavior on
a known task, or predict their behavior on a novel task. Because of their reliance on abstract symbols or variables,
generalization can be quite robust in symbolic models. If a rule or property applies to one noun phrase, it could just as
easily apply to all of them. This is important in accounting for the productivity of language.

Because they are so well suited to manipulating syntactic structure, symbolic models of sentence processing have
mainly been applied to the task of parsing, which only by supposition is necessary for natural language processing. To
address comprehension and production, on the other hand, we must have a way to describe sentence representations
at the semantic level as well. Accounting for semantics is where symbolic models begin to run into trouble. I have
asserted that semantics is a domain of subtle distinctions and gray areas. Semantic concepts are not so easily classified
and cannot easily be represented or manipulated using abstract variables. Attempts have been made to approximate
semantic spaces using discrete classifications, but close approximations require a great deal of complexity, which
threatens to reduce clarity, predictability, and the possibility of generalizing.

Accounting for the empirically attested graded effects of multiple constraints in online sentence processing is
also difficult in a rule-based model. Rules are generally phrased in terms of discrete pre-conditions and discrete
constraints or outcomes. They are not easily extended to such weak or partial information as is provided by structural
and lexical frequencies, prosody, semantics, pragmatics, and context, and doing so certainly cuts down on clarity
and predictability. Yet, these seem to be the factors that enable us to resolve most lexical and structural ambiguities
in natural sentences with little apparent difficulty. Strong garden-path effects are usually only achieved when these
factors are aligned against the correct interpretation. Because most symbolic models do not rely on such non-syntactic
sources of information, they do not provide very comprehensive accounts of human behavior in interpreting ambiguous
sentences.

Although symbolic models are relatively easy to design, it is difficult to incorporate learning into them. If provided
with a good teacher, such a model can quite easily learn rules. The teacher states or provides clear evidence of the
rule which the model then incorporates into its processes and can potentially use to generalize to novel situations.
Unfortunately, the world does not provide us with good teachers of language. As I stated earlier, parsing is not
normally taught, and some have argued that neither are comprehension and production. Children receive little explicit
feedback when they make a mistake and, when they do get feedback, are generally not very receptive to it (Pinker,
1984; Morgan, Bonamo, & Travis, 1995). Because symbolic models typically rely on clear feedback to support
learning, the apparent lack of it has led many theorists to believe that much of our knowledge of language could not
have been learned and must, therefore, be innate (Berwick, 1985; Morgan & Travis, 1989; Marcus, 1993).

4As I discuss the properties of symbolic models, there is always the risk of stating an overgeneralization that is not applicable to all models in
this class. I accept that there are always exceptions, including the possibility of hybrid symbolic and connectionist systems; however, the following
observations reflect what I see as characteristics of prototypical symbolic models.
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An alternative possibility is that negative evidence is available in another form—in the frequency distribution of
words, structures, and sentences in the language. Although we are not usually told explicitly that a particular structure
is not part of the language, if we wait long enough and observe that it is never used by others and that alternative
structures appear in its place, a reasonable learner might eventually conclude that the structure is not in the language.
But to reach such a conclusion rationally, we must have a guarantee that observed usage frequencies in a language will
be representative of future frequencies. Because this seems to be a valid assumption for natural language, statistical
information can provide a form of implicit negative evidence that, in theory, can drive learning (Horning, 1969;
Angluin, 1988).

But learning based on sensitivity to statistics creates a whole new set of problems for the designer of a model.
Specifically, it raises the question of which statistics should be measured. If the model doesn’t keep track of statistical
information in some form, it cannot use that information. One could simply memorize every sentence one had ever
heard and then extract the appropriate frequencies once they are needed. But this would be computationally intractable
and not a very plausible model of the human language system. Should we just remember the frequency of words and
identifiable structures? How about the frequencies of particular words in particular structures? Or the frequencies of
pairs of words playing particular roles in the structure? What about the frequency of the structure in various contexts?
Which contexts should be considered? One who wishes to incorporate sensitivity to statistical information into a
symbolic model must decide how to answer all such questions. Bounds must be placed on exactly what information
from the environment the model should keep track of. There are no easy answers to these questions and no specific
bounds have, to my knowledge, been empirically justified. For this reason, frequency sensitivity and learning have
not been a feature of most symbolic sentence processing models, and the idea that most of our knowledge of language
is not learned but innate has become a predominant view. I have discussed these issues of language learnability,
innateness, and implicit negative evidence at length in earlier works (Rohde & Plaut, 1999, in press), and will not say
much more about them here.

In summary, symbolic models are useful for their high degree of explanatory clarity, but they are not well suited
to account for many aspects of human language processing that seem to come naturally and effortlessly to us. These
include representing a large space of overlapping and graded semantic concepts, making use of multiple sources of
weak constraints to help resolve syntactic ambiguities, and, I will speculate, learning from implicit negative evidence
provided by statistical information in the environment. In contrast, symbolic models are very well suited to represent-
ing abstract syntactic constructs, such as arbitrarily nested relative clauses. But syntactic complexity is the one aspect
of language with which we have the most apparent difficulty. Thus, our human strengths seem to be the weaknesses
of symbolic models, and their strength to be our greatest weakness.

When researchers do develop symbolic models of human comprehension performance, arbitrary limits must be
placed on the models to prevent them from being too good at handling nested structures. Limits such as a maximum
of three incomplete syntactic dependencies are necessary to capture the empirical data but have little or no theoretical
justification. One could argue that they reflect something like working memory limitations. But one should then ask
why such limitations on memory would exist. If the human language processing faculty is essentially symbolic in
its architecture, shouldn’t it be possible to raise these limits by just committing some more resources—some more of
the billions of available neurons—to working memory? Certainly there is a selective advantage to increased working
memory. If memory is a commodity that can be easily expanded, as in most symbolic architectures, why has evolution
settled for such a small bound on our working memory capacity for language and for other cognitive tasks?

I propose that this is not an oversight of evolution, but that our language systems are, in fact, highly optimized. Our
limitations on working memory and syntactic processing are not arbitrary. They represent the best that evolution could
do with the available architecture. This is an architecture that can make use of weak statistical evidence and graded
constraints, and one that can store vast numbers of lexical/semantic associations, but for which working memory does
not come easily. It is an architecture that is inherently non-symbolic.

1.4 Properties of connectionist models

Currently, the principal alternative to symbolic models of cognition are connectionist networks. Connectionist net-
works all share the property that they process information through the interaction of simple computational units which
are, at an abstract level, somewhat analogous to neurons. These units experience varying activation states and are
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connected with one another through weighted links over which activation flows. Units are typically arranged in layers,
with all units in one layer sending connections to all units in the next layer. If the weight on a link is positive, the
sending unit will tend to excite, or increase the activation of, the recipient. If the weight is negative, the sender will
inhibit the recipient. This effect becomes stronger with an increase in either the activation of the sending unit or the
magnitude of the link weight. The activation state of a unit is based on the net effect of the excitation and inhibition
produced by its incoming links.

Localist neural networks have some similarities to symbolic models, in that the activation of each individual unit
stands for some articulable property of the world. For example, the activation of unit 37 might represent the chance it
is going to rain today. But in distributed connectionist models, each unit does not necessarily have a clear significance
and information is represented by the pattern of activation over a collection of units. Information processing occurs
as activation flows through the network, and is determined by the response properties of the units, their connectivity
pattern, and the weights of the connections. Information need not flow in just one direction through a network.
Recurrent networks are those in which the connections form cycles allowing information to flow around and around in
the network and for new information to be integrated with old information. This enables recurrent networks to address
tasks that involve processing of sequential information, such as language comprehension and production.

The link weights on distributed networks are rarely set by hand. The proper weightings to solve a given task
are learned through exposure to a series of training items that specify both the inputs to the network and its correct
outputs. In a digit recognition task, the inputs might be images of the digits, encoded as unit activations, and the
output might be an encoding of the numerical value of the digit. In a sentence comprehension task using a recurrent
network, the input might be a sequence of words and the output a representation of the meaning of the sentence. A
number of learning methods are possible in connectionist models, but the most commonly used are variants of the
backpropagation algorithm (Rumelhart, Durbin, Golden, & Chauvin, 1995; Rumelhart, Hinton, & Williams, 1986), in
which error is assessed based on the mismatch between the actual outputs of the network and its desired outputs and
link weights are updated so as to try to reduce this error in the future.

In addition to the fact that they are inspired by actual networks of neurons in the brain, connectionist networks
have a variety of properties that make this a promising architecture in which to model the human language faculty. To
begin with, distributed representations are well-suited for capturing the gradedness of semantics. One can think of a
pattern of activations over a set of units as a point in a high dimensional semantic space representing a meaning or
concept. Although the dimensions themselves are discrete in a representational space such as this, the positions of the
concepts along the dimensions, which relate to unit activations, need not be. Complex similarity relationships among
concepts can be encoded based on the proximity of their representations along the different dimensions. Although
such representations can be hard for us to picture or work with, distributed connectionist networks are quite good
at using representations of this form. One of the earliest and best studied uses of connectionist networks is as an
associative memory that can store and retrieve large numbers of arbitrary associations (Hinton & Anderson, 1981;
Kohonen, 1984). This is exactly what is required for learning and using the arbitrary mappings between word forms
and the concepts they refer to in natural language.

Another advantage of using connectionist networks for language processing is that, because the units base their
activations on information from all of their incoming connections, the units, and hence the network as a whole, are
naturally able to rely on multiple sources of weak constraints as they process information. Integrating information
from many sources is just what the units do. Therefore, as long as information from context, prosody, and semantic
and pragmatic plausibility is available, the model should be capable of learning to use this information to guide its
sentence processing.

One complaint often leveled against connectionist networks is that they are only able to form stimulus-response as-
sociations. Therefore, they should have been discarded as a serious account of human language processing along with
behaviorism. While this may be true of the simplest one-layer networks,”’ it is not true of multi-layer backpropagation
networks composed of units with non-linear response properties, which is usually what is meant by connectionist
networks these days. Multi-layer networks, during training, have the ability to develop higher-level internal represen-
tations that represent abstract properties of the environment to which the network is exposed.

For example, Elman (1990) trained a multi-layer, recurrent network to predict words in simple sentences. In the
input and output to the network, the words were all encoded with localist representations, with one bit for each word.

SWhen we refer to a one-layer network, we usually mean one layer of links, which actually means two layers of units.
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Thus, the model was given no explicit information about word class or meaning. But after it had been trained, the
hidden layer, or internal, representations developed by the model were quite interesting. In a clustering analysis, the
representations for verbs were well separated from those for nouns. Within the nouns, the animates were distinct from
the inanimates and the human animates distinct from the animals. Thus, just based on the statistics of the environment,
the model seemed to have developed a working sense of such abstractions as word class, animacy, and humanness.

Their ability to develop higher-level representations or abstractions is what enables connectionist networks to ex-
hibit non-trivial generalization. If there is a high degree of similarity in the internal representations of the verbs, for
instance, weight updates that affect one verb are likely to affect other verbs in a similar way because their repre-
sentations engage some of the same pathways. When the model learns something new about one or more verbs, that
knowledge is likely to transfer, or generalize, to the rest of the verbs. Thus, generalization is possible in a connectionist
network, but it operates in a somewhat different fashion than it would in a symbolic model, where it typically results
from shared category membership specified by the designer of the model, rather than from shared representational
properties that may be the result of learning. The ability to develop abstract representations is also one of the principal
factors that sets modern connectionist networks apart from the earlier program of associationist behaviorism, which
assumed that only observable stimuli, responses, and reinforcements play a causal role in behavior and learning.

The fact that connectionist networks are sensitive to the statistics of their environment is another critical property
for language processing. As discussed earlier, not only is sensitivity to frequency apparent in the language processing
behavior of human subjects, it is potentially able to get us past the learnability problem that results from the scarcity
of explicit negative evidence in the learner’s environment. In fact, a complaint I have heard several times about
connectionist networks is that they are “merely sensitive to frequency.” Let’s consider what it could possibly mean to
be merely sensitive to frequency.

As discussed in the previous section, there are many levels on which a model could use frequency. At the most
trivial level, it could try to memorize all sentences it had been exposed to. This would require vast resources, but
would be of little use unless those same exact sentences were encountered repeatedly. Any reasonable use of statistical
information in language processing requires generalization. If we are to track the frequencies of words, we must be able
to recognize the equivalence of words in different sentence contexts spoken by different speakers. If we are to track
the frequencies of word classes or syntactic structures, we must have higher-order representations of those categories.
Assuming that these are available, the question becomes exactly which frequencies to keep track of. Will we record
the overall frequency of sentential complements? The frequency of sentential complements given a particular verb
form? Given just the verb root, abstracting over tense? Or perhaps the frequencies should be based on the individual
sense of the verb? Should we also take into account the subject of the verb? After all, we might say that a person or a
dog heard Sally. But it would be strange for a dog to hear that Sally is pregnant. Thus, the frequency of a verb using
different argument structures may depend on properties of its subject.

Being sensitive to statistics in the environment seemingly requires that we are able to formulate abstractions and
make countless choices about exactly which frequencies to pay attention to. There is certainly nothing mere about it.
To my knowledge, this problem has not been seriously addressed in any symbolic models. One solution has been to
claim that frequency is not interesting and can thus be ignored, leading to the learnability problem. Another solution
is to try to specify in advance exactly which frequencies the model will be sensitive to, leading to a dilemma. If we
keep track of frequencies that are irrelevant to the task at hand, we will be wasting resources and we may be distracted
by inconsequential distinctions and thus less able to generalize effectively. But if we fail to keep track of a useful
measure, we will never be able to take advantage of it to better understand the environment or perform the task. This
will be an insurmountable barrier to our learning ability.

What we need is a system that can adaptively find the most useful levels of analysis to solve a given task. This is
done in a limited way in some decision trees, which are a common symbolic machine learning tool. Large trees are
constructed during training, which are then pared down, based on statistical measures, to simpler ones. This is akin to
paying attention to many different frequencies early on and then discarding the ones that do not seem useful. However,
decision trees are quite limited in the abstractions they can form and thus the types of statistics they can be sensitive
to.

In my experience, connectionist networks seem to be quite good at finding the appropriate level of analysis for
a given problem. Early in training, the network can learn only about obvious properties of the environment. For
example, Elman’s network might have begun by learning that there is a distinction between nouns and verbs because
certain words occur at the beginning of the sentence and others occur next. Then the model would be able to progress
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to more detailed properties, such as the fact that certain nouns cluster together in the types of verbs that follow them,
and that there is a difference between animate and inanimate nouns. Later, the model may build on this knowledge
when it discovers that animate nouns can use the verb move transitively or intransitively, but inanimate nouns can only
use it intransitively. The model is under constant pressure to perform the task, word prediction, as well as it possibly
can. If the model begins to pick up on a useful statistical fact about the environment, that fact will be reinforced and
the model will pay more attention to it and refine it in the future. It is likely that the model will also begin to pick up
on other distinctions that are not useful. Since incorrect or irrelevant information will not be reinforced, the model,
under pressure to perform the best it can with its limited resources, will eventually devote those resources to tackling
other problems.

The processes of deriving higher-order representations and learning from frequency information work hand-in-
hand in connectionist networks. Higher-order representations develop from statistical similarity of function among
lower-order representations, and the statistics that can be monitored and used by the model depend on the available
representations. Connectionist models will fail to learn only when they are unable to build the appropriate representa-
tional scaffolding to discover the necessary statistical regularity in the environment.5

This leads to the next issue, which is whether connectionist networks are able to deal with embedded structure
and other syntactic complexities in natural language, or whether that will be beyond their scope. A decade ago,
many believed that representing embedded structure would be among the capabilities that recurrent networks would
be unable to develop. However, a number of studies have since shown that networks can handle sentences involving
limited embedded structure or cross-dependencies (Elman, 1991; Giles, Horne, & Lin, 1995; Rohde & Plaut, 1999;
Christiansen & Chater, 1999b).

An interesting fact about recurrent neural networks is that working memory is not simply a commodity for them. A
recurrent network that is trained from a random initial state must first learn that it has a memory, meaning an ability to
make use of information from a previous state, and then it must learn how to use that memory. Working memories, to
the network, are just representations of information. If the information is to be retained for long periods of time, it must
be reinforced and re-represented. One cannot simply add memory to a working network to improve its performance as
we can with a computer. Thus, although networks can make use of working memory to solve sequential tasks, memory
of this form does not come cheaply.

In summary, connectionist networks seem to possess a number of properties that recommend theirs as a viable
architecture for modeling human language. Distributed representations are quite natural for expressing the gradedness
of semantic space; and, like humans, networks are well suited for memorizing large collections of associations, such
as those between words and meanings. Connectionist networks are also able to integrate multiple sources of weak
constraints in solving a problem, to develop higher-order representations that support generalization, and to learn from
statistical information extracted from the environment—which all appear to be critical features of the human language
system. While it is true that networks have a limited ability to develop working memories and hence to process deeply
embedded structure, it seems that humans share these limitations. Thus, the apparent strengths and weaknesses of the
human language system align much better with those of connectionist models than they do with those of symbolic
models. This is why I believe that our attempt to understand human language at a mechanistic level will be most
successful if we adopt a connectionist perspective.

Despite the tremendous promise of connectionist networks as models of human language processing, the reality
has been rather humbling. As I will discuss in Chapter 2, all or most connectionist language models to this point have
been very limited in their coverage. There has been quite a bit of study of prediction networks, based on the work of
Elman (1990, 1991), alluded to earlier. These networks have demonstrated an ability to represent complex sentence
structure. But prediction is, at best, a small part of language processing and does not get at the mapping between
surface forms and messages which lies at its heart. There have been several connectionist models of comprehension
and production, but these were, essentially, limited to working with simple sentences. The problem of representing
the meanings of complex, multiclausal sentences is a difficult one which precludes the easy extension of these models.
Furthermore, I am aware of no connectionist models of sentence processing that address the relationship between
comprehension and production.

SThis is, at least, my understanding of learning in connectionist networks, and I think other connectionists would agree with this analysis.
However, many of these claims have not been clearly verified experimentally.
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1.5 The CSCP model

The project reported in this thesis synthesizes and extends much of this earlier connectionist modeling work into a
broad account of human language processing, realized in the Connectionist Sentence Comprehension and Production
(CSCP) model. This model has been trained to comprehend and produce sentences in an artificial language, described
in Chapter 5, which is a relatively complex subset of English. The language includes a significantly larger vocabulary
than was used in previous connectionist models, as well as important features such as relative clauses, prepositional
phrases, sentential complements, determiners, adjectives and adverbs, multiple verb tenses, passive voice, ditransitives,
subordinate and coordinate clauses, and lexical ambiguity.

The CSCP model, which is explained in detail in Chapter 6, addresses the problem of how the meanings of complex
sentences can be represented in an extendable manner and yet used effectively for comprehension and production. It
learns to comprehend sentences that arrive as sequences of phonologically encoded word forms and exhibits successful
comprehension by its ability to answer questions about the content of the derived message. The model also learns
to produce sentences given a desired message and provides an account of the relationship between comprehension
and production, suggesting that these are highly integrated systems. A major claim inherent in the model’s design
is that learning language production is primarily based on the formulation and testing of covert predictions during
comprehension.

One of the primary goals of this thesis is to demonstrate that connectionist networks are capable of comprehending
and producing complex sentences in a language with a moderately large vocabulary. As shown in Chapters 7-12,
the model is indeed able to perform quite well on many types of complex sentences. It also seems to have no more
difficulty in comprehending novel sentences than it does sentences on which it had been trained, thus exhibiting one
important form of generalization. Furthermore, the model appears to be quite capable of handling lexical ambiguity,
both across sense and across word class. While general findings such as these are interesting, if any model is to be
taken seriously as an account of human language processing, it must be able to replicate human behavior in specific
experimental conditions. Therefore, the model was tested in replications of psycholinguistic experiments across a
range of domains, including:

e The relative difficulty of comprehending a variety of sentence types.

e Comprehension of ambiguous high versus low adverb attachments.

e The effects of reduction, past-participle ambiguity, and subject plausibility on the main verb/reduced relative am-
biguity.

e The effects of reduction, verb-bias, object plausibility, and ambiguous NP length on the sentential complement
ambiguity.

e The effects of verb transitivity and object plausibility on the subordinate clause, or NP/0, ambiguity.

e Grammaticality judgments on a range of variations of the NP/0 ambiguity.

e The effectiveness of semantic recovery on the NP/0 ambiguity.

e Comprehensibility of single relative clause sentences as a function of clause location and extraction type.

e The effects of prime type and target delay on structural priming.

e Agreement attraction errors in production.

One may well ask what is the usefulness in attempting a model with such broad coverage if there are likely to
remain areas in which it falls short. A more usual approach to modeling cognitive phenomena is to focus on a specific
domain and try to closely match all available experimental results in that domain. While, ultimately, it should indeed
be our goal to explain all available data, there are several potential pitfalls in starting with too narrow a focus. The
worst of these is the possibility of overfitting the phenomena. It is useful to think of a model, abstractly, as a collection
of mechanisms. The amount of data we have in cognitive psychology is limited, but the space of possible mechanisms
is tremendous. If a model is designed with the goal that it perform in a certain way on a small number of tasks, it is
tempting to simply build into the model the most obvious mechanism for solving each task. A model designed in this
way, whose mechanisms must be changed to account for each new piece of data, is unlikely to generalize well to any
new tasks and is unlikely to provide the proper account of the tasks for which it was designed.



14 CHAPTER 1. INTRODUCTION

Overcoming the constraints of modeling data from widely ranging areas is what will ultimately enable us to make
progress in developing models of language processing or other cognitive phenomena. It is doubtful that a simple model
will perform well on a range of tasks unless it is truly on the right track. The most obvious or easily implemented
mechanism for explaining a particular behavior may not be the correct one. But a mechanism that can explain data
from many different experiments is much more likely to be close to the truth. Consider a situation in which mechanism
X is an obvious solution to problem A, but also provides a non-obvious, albeit correct, solution to problems B and C.
If we have tried to explain domain B by focusing solely on it, we may never discover the correct mechanism. Building
models that account for a broad range of phenomena, rather than those in a focused domain, is much more challenging,
but if you can pull it off the rewards are far greater.

Because the CSCP model is still in the early stages of development and because its scope is quite broad, when
evaluating the model I am primarily interested in its ability to account for qualitative patterns of human behavior. It is
important to keep in mind that the model’s parameters were not adjusted to achieve a particular pattern of performance
on any one experiment. The details of most of the experiments conducted on the model were not even planned at
the time it was designed. The final version of the model was trained once—a two-month ordeal—and then tested
extensively, without further training. The model was designed primarily with the goal of achieving the best possible
overall performance with the given computational resources, and the statistical properties of the language on which it
was trained were based as closely as possible on those of English.

Although it is certainly not perfect, and I will try to let the results speak for themselves, I think it is fair to say
that the CSCP model was able to replicate many key aspects of human behavior in the areas on which it was tested.
The model is able to generalize from its training, to resolve temporary ambiguities, and to be appropriately sensitive
to lexical and structural frequencies, semantic plausibility, and locality effects. The majority of cases in which the
model does not perform as expected seem to be traceable to artificial computational limitations placed on it and to the
poor design of some of its interfaces, rather than to fundamental flaws of its connectionist architecture. I believe this
work represents a major advance in the attested ability of connectionist networks to process natural language and a
significant step toward a more complete understanding of the human language faculty.

1.6 Chapter overview

Chapter 2 contains a review of earlier connectionist models of language processing, including models of parsing,
prediction, comprehension, and production. Chapter 3 is a review of the psycholinguistic literature, covering empirical
results on some of the major topics of investigation in the field, including the comprehension of sentences with relative
clauses and structural ambiguities as well as sentence production. Many, but not all, of the findings reviewed here are
addressed by the model in later chapters. Because the CSCP model is so sensitive to the statistics of its environment,
the language on which it is trained must be statistically representative of English if the model is to provide a valid
account of the performance of English speakers. Therefore, designing this language, which is known as Penglish,
begins with a detailed analysis of the statistics of English, which is reported in Chapter 4.

Chapter 5 describes the actual Penglish language itself, including its syntax, how its semantics are represented, and
the phonological encodings of its words. Finally, in Chapter 6, we get to a description of the CSCP model. This covers
the model’s structure, the way in which it encodes and decodes sentence meanings, how it performs comprehension
and production, and how it is trained and tested. This chapter also describes how reading times and grammaticality
measures are extracted from the model, and discusses some of the rationale behind its design and the recognized
limitations that have been imposed on it.

The next six chapters contain analyses of the model’s performance. Chapter 7 involves general experiments on the
model’s comprehension ability, covering such issues as the difficulty of various sentence types, generalization, lexical
ambiguity, properties of the model’s reading time measure, and individual differences between networks. Chapters 8,
9, and 10 focus on the main verb/reduced relative (MVRR) ambiguity, the sentential complement (NP/S) ambiguity,
and the subordinate clause (NP/0) ambiguity, respectively. Each summarizes the relevant empirical results and then
reports analogous experiments conducted on the model. Chapter 11 considers the model’s ability to process sentences
with various types of relative clauses. Chapter 12 is devoted to production and reports general results, contains a
detailed analysis of production errors on several sentence types, and includes experiments on agreement attraction
errors and structural priming.
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Finally, Chapter 13 is a summary and discussion of the model’s performance, properties, and relationship to other
theories of human language processing. There are four appendices, the first three of which describe software tools that I
have developed in the course of my graduate studies to make this project possible. Appendix A is an introduction to the
LENS neural network simulator, which is of general usefulness to connectionist modelers, but which was customized
to implement the CSCP model. Appendix B describes a program called the Simple Language Generator (SLG), which
was used to produce and recognize the Penglish language. It generalizes stochastic context-free grammars to allow the
integration of semantic constraints. The third tool, described in Appendix C, is TGREP2, which is a reimplementation
and extension of the TGREP program for analyzing syntactically parsed corpora. Finally, Appendix D contains some
more detailed specifications of the Penglish language.
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Chapter 2

An Overview of Connectionist Sentence
Processing

The CSCP model introduced in this thesis builds on a wealth of earlier research into connectionist approaches to
sentence processing. In order to place the current work in its appropriate context, this chapter reviews the most
significant, or at least well known, connectionist sentence processing models to date. There have been a number of
similar compilations in the past (Diederich, 1989; Sharkey & Reilly, 1992; Hahn & Adriaens, 1994; Wermter, Riloff, &
Scheler, 1996; Christiansen & Chater, 1999a; Steedman, 1999), but we will focus on models that address the semantic
and syntactic issues involved in handling multi-word utterances and will ignore most of the important applications of
connectionist networks to other phenomena such as word reading, lexical decision, and past tense formation.

The models discussed here reflect a general progression from localist implementations of symbolic systems to
systems of interacting localist units to distributed representations and multi-layer learning rules and finally to recurrent
networks capable of learning. Although the early localist models are discussed, most of the later localist or hybrid
symbolic/connectionist systems have been excluded since they typically differ from symbolic systems only in the
implementational details. If the reader is interested, a number of hybrid systems are reviewed in Wermter et al. (1996).

Most sentence processing models are designed to address one of four major language tasks: parsing, comprehen-
sion, word prediction, or production. The models are grouped by the primary task for which they were designed, rather
than in chronological order.

2.1 Parsing

Parsing, or producing a syntactic, structural description of a sentence from its surface form, is the one sentence pro-
cessing task that has received the most attention from the symbolic community. Indeed, given that the traditional
approach to language has minimized attention to semantics, parsing is one of the few behaviors left that, ostensibly,
may not rely on semantics.! Thus, it should not be surprising that many of the connectionist parsing systems found in
the literature are essentially symbolic models implemented transparently in connectionist hardware.

Learning has not played a major role in most of these parsing models for two main reasons. First, most connec-
tionist parsing models have been localist. This architecture lends itself to hand-designed weight structures but not
to the easy design of effective learning environments. But more critically, teaching a model to produce an explicit
parse of a sentence requires, for most systems, training data labeled with correct parsing information. Few believe that
such information is actually available to the child, so models which rely on it are of questionable relevance to human
learning.

I would argue that this issue points to a fundamental problem with the view that parsing in and of itself is a core

IThe extent to which there exists an independent syntactic parsing module has been a matter of considerable debate, but there now seems to be
widespread skepticism over the presence of even a first-stage parser that is purely syntactic (McClelland, St. John, & Taraban, 1989; Seidenberg &
MacDonald, 1999).
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component of human language processing. We have clear evidence that humans are able to comprehend and produce
language. However, that humans actually engage in explicit parsing during comprehension is an assumption that could
reasonably be questioned. There seems to be little direct evidence that we construct a representation of a syntactic
parse tree while comprehending. Thus, although parsing may be useful in computational linguistics, if one is really
interested in understanding the human sentence processing mechanism, parsing may not be the appropriate level at
which to focus. Perhaps for these reasons, the early interest in connectionist parsing mechanisms seems to have waned
in recent years.

2.1.1 Localist parsing models

The first significant proposal for a connectionist model of parsing, Small, Cottrell, and Shastri (1982), does not
actually fit the pattern of a transparently symbolic approach. Following McClelland and Rumelhart (1981), this model
stresses the importance of interaction between syntactic information and semantics, or general memory skills. This
interactive activation approach contrasts with more standard parsing theories that stress compartmentalism and serial
processing (Frazier, 1979; Fodor, 1983). The Small et al. model, implemented in later work (Cottrell, 1985b), is
not actually a full parser but is designed for word-sense disambiguation, which is arguably an important sub-task of
parsing and comprehension. The model uses localist units to represent lexical items, individual word senses, and case
roles. These units excite or inhibit one another through a set of hand-designed connections. Because of this, the model
is not easily expandable to larger vocabularies or complex linguistic structures.

Cottrell (1985a) extended the earlier work with the addition of a full-fledged syntactic parsing network. The
network can be generated automatically given a grammar, but still requires some weight-tweaking. Concepts are
associated with case roles by means of localist binder units. There is a unit for each concept/role pair and these units
mutually inhibit one another. Units in the syntactic portion of the network represent the non-terminal symbols of the
context-free grammar, and their interconnections reflect the possible productions in the grammar.

The model is interesting in that it is able to process sentences presented in a temporal sequence and makes use of
interacting top-down and bottom-up information. However, it has a number of limitations. As is a common problem
with other models that make use of case-roles, the model does not appear capable of handling sentences with multiple
verbs. It can also handle only fixed-length sentences and requires constituent recognizers with duplicated and possibly
non-connectionist control structures. Finally, some might complain that the model is not guaranteed to settle into a
single, coherent interpretation of any sentence.

Several other connectionist parsing models appeared at about the same time. Except where noted, they are localist,
non-learning models. Because they also use a fixed-size network and a static input representation, rather than tempo-
rally coded inputs, these networks are able to process sentences only up to a finite length and often rely on redundant
structure, as in the Cottrell (1985a) model. The main problem with redundant structure is its lack of parsimony. For
example, a typical parsing system involving redundant structure might have a separate NP-recognizer for every con-
text in which a noun-phrase might occur, rather than a single recognizer that operates in all contexts. Along with an
inefficient use of resources, this creates a problem for learning. Does each of these recognizers undergo learning only
when it is used, resulting in a lack of experience for those that are used rarely, or are they all tied together in some
way? Either answer seems to introduce a variety of logistical problems.

Waltz and Pollack (1985) presented an interactive activation model which differs from other work in that it does
not consist of a single network. Rather, the network is generated based on the grammar and the sentence. This
network is able to represent only the possible parses of the given sentence. A settling phase allows the network to
settle into a particular interpretation. The model has a number of drawbacks, most significant of which is that it is not
grammar-general but uses a program to produce a specific network for each sentence. The networks also do not process
words over time but use a static input representation and thus are not able to produce partial, online interpretations of
sentences. Although the implemented model was purely localist, Waltz and Pollack proposed that concepts should not
be represented by single nodes but by distributed patterns of “microfeatures,” a suggestion that would be adopted in
later connectionist modeling.

Fanty (1985, 1994) took a rather different approach. Aiming to produce a network that is deterministic, fast,
and guaranteed to work, Fanty devised a way to implement the CYK dynamic-programming, context-free parsing
algorithm (Younger, 1967) in a localist network. The network is able to handle sentences up to a fixed length. It
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essentially contains a unit for every non-terminal paired with each sub-sequence of the input. The network operates
in two passes: a bottom-up phase and a top-down phase. In the bottom-up phase, units for increasingly longer sub-
sequences become active if their non-terminal could have produced the words in that sub-sequence. In the top-down
phase, units that do not fit within a coherent parse are silenced. In the end, only units that participate in a legal parse
remain active. Thus, the model does not require an extended period of relaxation. This model is interesting because it
suggests that language may be parsable by a non-recursive procedure.

However, many natural language sentences have multiple possible syntactic parses, and Fanty’s basic model is not
able to select the appropriate one. Fanty considered one way to bias the model toward selecting shallower parses,
but did not attempt to integrate the critical semantic information as in other models. The other major limitations of
this model are that it can handle only fixed length sentences and that it relies on redundant structure. Although the
model is not able to learn entire grammars, Fanty discussed how small errors in the model could be corrected through
learning. Rager (1992) described a localist model based on Fanty’s but designed to handle “extragrammatical,” or
slightly incorrect, sentences.

Selman and Hirst (1985, 1994) presented a model that differs from other early connectionist parsers in that it
uses a variation on the Boltzmann machine (Fahlman, Hinton, & Sejnowski, 1983) with non-deterministic units and a
simulated annealing scheme to allow the network to settle gradually into a stable configuration. The rules of a context-
free grammar are implemented in the network by means of syntactic binder units that inhibit one another and excite
other units representing symbols that participate together in a production. The use of simulated annealing, while very
slow, allows the network to settle into the correct parse with high probability. However, as in other localist models,
this model requires sentences to be bounded in length and uses redundant structure. Due to the proliferation of binder
units, the size of the network may grow intractably with more complex grammars. Furthermore, although the authors
suggested it as a next step, this model does not incorporate semantic information and it is not clear how it would deal
with syntactic ambiguity.

Charniak and Santos (1987) described another localist parsing model that differs from the others in its use of a
sliding input window. This allows the network theoretically to handle sentences of unbounded length but hinders the
ability of the model to process long-distance dependencies, such as those surrounding center-embeddings. Although
the model was successfully implemented for a very simple grammar, it is not clear that its parsing heuristics would be
sufficient to handle more complex grammars. The model also uses parts of speech rather than lexical inputs and was
thus clearly unable to incorporate semantics or resolve syntactic ambiguities.

Howells (1988) described an interactive activation parser known as VITAL. As in Waltz and Pollack (1985),
Howells’ networks were generated during parsing. However, it appears that the model could have been implemented
as a single network. Given that the connection weights and unit thresholds in the model were carefully balanced, it
is unclear how well it could be scaled to handle more complex languages. One interesting aspect of the model is that
it makes use of the frequency with which productions in the grammar appear in sentences it has experienced. Thus,
parsing can be biased toward more common interpretations and allows for a limited degree of learning. However, the
model does not incorporate semantic information.

The model of Nakagawa and Mori (1988) also involves constructing the network on-the-fly. But a network is
not built for the entire sentence prior to parsing, it is generated sequentially, essentially implementing a left-corner
parser. Sigma-pi units—those with multiplicative rather than additive inputs—are used to enforce ordering constraints
on grammatical structures. Although the model can theoretically parse unbounded sentences, the copying mechanism
used to construct the parse tree is not physiologically reasonable. The model also does not incorporate learning or
semantic constraints.

The commonalities evident in these early connectionist parsing models lead to some generalizations about the
limitations of the localist approach. With localist units, where each unit represents an explicit state and only a small
subset of units can be active at one time, the representational capacity of the network is proportional to its size. This
leads inevitably to the problem that a fixed-size network can only handle inputs of bounded length or complexity. Like
the limitations of symbolic models and unlike those of networks that use compositional distributed representations,
this results in hard limits on the processing ability of localist networks. Localist and symbolic models generally do not
exhibit a gradual degradation of performance with more difficult inputs, and modeling of performance data generally
requires ad hoc limitations.

Learning is difficult in localist networks largely because of the problem of designing supervised training environ-
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ments. This is compounded by the fact that large localist networks tend to require redundant structure, and effective
learning mechanisms ought to generalize what is learned across duplicated sub-networks. It seems difficult or im-
possible to accomplish this in a reasonable manner. Finally, hand-wired networks do not allow easy incorporation
of semantic information, even though this incorporation is necessary for parsing structurally ambiguous sentences,
as aptly demonstrated in McClelland et al. (1989). Aside from the ability to incorporate multiple sources of weak
constraints, localist networks provide few advantages over symbolic models.

2.1.2 Hybrid and distributed parsing models

While the last decade has seen quite a few hybrid connectionist/symbolist parsing models, only a few will be mentioned
here. The CDP model of Kwasny and Faisal (1990) is a modification of the PARSIFAL deterministic parser (Marcus,
1980). Several of the components of this rule-based parser were removed and replaced with a connectionist network.
This network was trained to suggest actions to be taken by the symbolic components of the model based on the contents
of the symbol stack and the constituent inputs. The model was reportedly able to process ungrammatical and lexically
ambiguous sentences in an appropriate way. However, it is not clear what effect the network component really had
on the model. The primary reliance on a symbolic parsing mechanism is something most connectionist researchers
would hope to avoid. The authors did recognize the need for more fully connectionist parsers and discussed some of
the hurdles involved.

Stevenson’s more recent parsing model (Stevenson, 1994; Stevenson & Merlo, 1997) is largely symbolic, but
relies on activation-based competition mechanisms, as in localist network models, to resolve structural ambiguities.
The model contains a set of subtree templates representing X structures. These structures contain attachment points
at which they can be connected together to form complete parse trees. The trees are constructed from left to right.
In cases where multiple attachment sites are possible, an activation-based competition ensues, which is influenced
by factors such as recency, frequency, and context. Limited reanalysis is possible, but any attachments that are not
on the right-most fringe of the tree cannot be revised. There is also a competition among the possible X structures
that can project from a word, but this competition was not actually implemented in the simulated parser and it is
therefore not able to handle lexical ambiguity. This model is also insensitive to purely lexical effects that do not
involve argument structure differences. Because the details of the competition and structure projection aspects of this
model are so complex, and because of the limits to reanalysis, it seems likely that the model will fail to parse many
complex sentences that are routine for humans and that it will be insensitive to many factors that influence human
comprehension.

Most grammar-based parsers suffer from an inability to handle sentences that fall outside of the given grammar.
This can be a serious problem given the prevalence of pauses, false-starts, corrections, and word-substitutions in
spoken language. Wermter and Weber (1994, 1997) and Weber and Wermter (1996) were interested in designing
a system that was robust in the face of such problems. Their SCREEN model is a complex, highly modular, hybrid
connectionist/symbolic system. While some of the modules are implemented in a symbolic manner, most are networks
trained to perform a particular operation. Rather than producing full parse trees, the SCREEN model generates a flat
syntactic and semantic parse. That is, the model labels the constituents by their syntactic class (e.g. noun or verb), their
more abstract syntactic level (e.g. noun group or verb group), and some of their semantic properties including a few
thematic roles (e.g. agent, action, or animate). The model was trained and tested on spontaneous spoken utterances
and appears to work quite well. While the overall modular structure of the network is a symbolic design, the use
of trainable, distributed networks allows for a certain level of generalization and fault tolerance. However, a serious
limitation of the model, for many applications, is that the flat parse lacks much of the information necessary to construct
a full parse tree. For example, the model does not appear to be capable of representing multiple interpretations of a
prepositional phrase attachment ambiguity.

The Jain and Waibel (1990) model is essentially a localist, slot-based network, but it does incorporate learning
and distributed representations at the word level. It consists of a series of layers which essentially represent words,
phrases, clauses, and inter-clausal relationships. These layers are trained independently with specified targets and
therefore involve only limited learned, distributed representations. The model is interesting in its ability to process
inputs over time, producing expectations of sentence structure and dynamically revising hypotheses. However, it only
has a fixed number of phrase and clause blocks and uses weight sharing to generalize learning across phrase blocks.
This appears to cause a difficult tradeoff between proper generalization and over-generalization. It is not clear how
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well this model could make use of semantic information in resolving ambiguities.

Although several earlier connectionist models that were not purely parsers are described in Section 2.5, the XERIC
model of Berg (1992) was one of the first distributed models that learns to parse. XERIC combines a simple-recurrent
network (Elman, 1990) with a RAAM (Pollack, 1990) and is able to take words over time and produce a representation
that can be decomposed into a parse tree whose structure is based on X-bar theory. This model has the advantage over
localist methods that it can process unbounded sentences with only gradual degradation in performance. Although
it was trained on a fairly simple grammar, the model is able to parse sentences with rather deep structure. Although
semantic information was not included in the original work, such information could theoretically be introduced into
this model by using a micro-featural encoding for words at the input. Despite its successes, XERIC might not be
considered an adequate cognitive model because its hierarchical training procedure, like that for the RAAM, requires
considerable memory and symbolic control. More crucial however, as with the Jain and Waibel (1990) model, is that
the parsing information used to train the network is not available to the child.

Henderson (1994a, 1994b, 1996) described a localist, non-learning connectionist parser based on temporal syn-
chrony variable binding (TSVB) and inspired by symbolic parsing theories. The main idea behind TSVB is that
variable bindings, such as the bindings of constituents to thematic roles, can be represented by synchronous firing of
constituent and role representations. The use of temporal synchrony, rather than something like binding units, reduces
the need for duplicate structure and permits greater generalization. Henderson argued that the overall architecture is
biologically well-motivated. The model, which is based on structure unification grammar (Henderson, 1990), does
not itself construct an entire parse tree. Rather, it produces tree fragments with sufficient information that they could
be combined into a complete tree. Because it is a deterministic parser, never backtracking on its commitments, and
because it is unable to represent disjunctions of interpretations, it is likely that this model would have great difficulty
with ambiguous sentences and suffer from an overly strong garden-path effect. The main drawback of the model
is that it is primarily a connectionist implementation of a symbolic algorithm and lacks many of the advantages of
connectionist networks, including the ability to learn and make use of multiple weak constraints.

Henderson and Lane (1998) and Lane and Henderson (1998) described an extension of the TSVB approach,
known as a simple synchrony network, that can learn to parse sentences. The network takes the part of speech tags
for the sentence constituents as input and is trained to produce the parse tree fragment of any constituent seen so far
when that constituent is queried. Although the network never produces a full parse tree, the tree fragments could be
assembled into one. The network was able to learn to parse a corpus of written English to a reasonable degree of
proficiency. However, this success is bounded by the limits of relying on parts of speech rather than actual words. This
model might gain some advantage from using words rather than tags as input, but it would then encounter problems
of lexical ambiguity. Nevertheless, the model is rather interesting, and could potentially have reasonable practical
applications. It is worth noting that TSVB seems to be identical in practice to the query mechanisms used in St. John
and McClelland (1988, 1990, 1992) and in the CSCP model presented here.

Finally, Harm, Thornton, and MacDonald (2000) were interested in how semantic and statistical regularities
affect the parsing process. To begin to address this, they focused on the parsing of phrases such as “the desert trains”
which are ambiguous as either a noun phrase, as in (15a), or as an NP followed by a verb, as in (15b). Harm et al.
trained a fully recurrent network (Pearlmutter, 1989) to process potentially ambiguous three-word phrases. As each
word was presented, the network mapped from a distributed representation of the word’s form to a distributed rep-
resentation of its meaning. Also present in the output was an indication of whether the phrase was an NP or an NP
followed by a verb. The network was assessed on the speed and accuracy with which it settled into the correct rep-
resentation under various conditions. Although this model is quite limited, in that it is designed to handle only short
phrases, it succeeded in demonstrating the desired sensitivity to a variety of factors, including structural constraints,
pragmatic constraints, and lexical frequency and semantic biases.

(15a) The desert trains were late reaching the station.

(15b) The desert trains the soldiers to be tough.
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2.2 Comprehension

Although parsing models have sometimes been labeled comprehension models, I use the latter term to refer to systems
that aim to derive a meaning for an utterance that goes beyond its syntactic structure. There are, in fact, relatively
few comprehension models in the literature. This may be due largely to the difficulty of representing and processing
semantic information. Concept and phrase meanings involve subtle aspects that cannot easily be captured in a symbolic
or localist system and do not interact in a cleanly combinatorial fashion. Furthermore, systems able to manipulate such
information do not lend themselves to top-down design and are better constructed with learning methods. Therefore,
comprehension has largely been the domain of distributed, connectionist models.

2.2.1 Comprehension of simple sentences

Hinton (1981) discussed one way in which semantic information and associations could be stored and recalled using
distributed representations, and he pointed out some of the advantages this has over traditional localist semantic net-
works and over static distributed representations. A principal advantage is that associations formed between items may
automatically generalize to semantically similar items. This work appears to have influenced, directly or indirectly,
many subsequent connectionist models of semantics.

One such effort is the well-known model of McClelland and Kawamoto (1986). While it does not derive fully
structured representations of sentence meaning, this model produces thematic case role assignments, which are thought
to be an important element of comprehension. Assigning case roles typically involves labeling the nouns in a sentence
with their primary relationship to the verb heading their clause. Typical thematic roles are agents, patients, instruments,
and experiencers. A key observation is that proper assignment of case roles does not simply depend on word order
but also involves considerations of word meaning, inflectional morphology, and context. McClelland and Kawamoto
hoped their model would be able to select the appropriate readings of ambiguous words, fill in missing arguments in
incomplete sentences, and generalize its knowledge to handle novel words given their semantic properties.

The model uses stochastic units and a single layer of weights that is trained using the perceptron convergence rule.
The inputs to the model consist of the semantic features of up to four main constituents of the sentence—three nouns
and a verb—which are then recoded using four larger sets of units that represent conjunctions of pairs of elements
from the original arrays. The model is then trained to produce the semantic representations for the fillers of up to
four thematic roles: agent, patient, instrument, and modifier. The model is able to satisfy many of the authors’ goals,
including resolving lexical and structural ambiguities, handling shades of meaning, and generalizing to novel words.

However, as they acknowledged, this was just a first step because it greatly simplified the problem of sentence
comprehension. The use of static input representations does not allow the network to process words over time and
results in a hard limit on the complexity of sentences that can be handled. In particular, this model would be unable
to represent multi-clause sentences without considerable changes. The elimination of function words and the use of
a fixed set of output slots limit the number of thematic roles that could be recognized by the model. McClelland and
Kawamoto suggested a number of ways in which these and other problems could be remedied and this was further
fleshed out, though not implemented, in McClelland and St. John (1987) and McClelland (1989).

Perhaps the best known model of sentence comprehension is the later work of St. John and McClelland (1988,
1990, 1992) and McClelland, St. John, and Taraban (1989). These papers described a model that shares many of the
goals of the McClelland and Kawamoto (1986) work but extends the framework to produce a changing interpretation
as each constituent is received and to allow the learning of distributed hidden representations of phrase and sentence
meaning. The input half of the model is a simple-recurrent network (Elman, 1990) that learns to use a sequence of
phrase components to compile a single message representation, known as the sentence gestalt, in the form of a trainable
hidden layer. The phrase components are either a simple noun phrase, prepositional phrase, or verb. The output half of
the model was trained to answer questions about the sentence in the form of a probe. When probed with a constituent,
the network must respond with the thematic role played by that constituent. When probed with a role, the network
produces the constituent that fills that role. During training, the error that derives from the answers to these probes is
backpropagated through the network to influence the formation of the sentence gestalt.

The St. John and McClelland model successfully exhibited its desired behaviors, including the ability to. ..

o make use of both syntactic and semantic clues to sentence meaning.
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e revise its interpretations online and produce expectations in the absence of complete information.
¢ infer missing constituents, for example, that eating soup is probably done with a spoon.

e infer properties of vague constituents, such as “person,” based on context.

¢ handle both active and passive sentences.

e use variable verb syntactic frames.

e generalize its abilities to novel sentences.

A major limitation of the model is that it is not able to process multi-clause sentences, which are of considerable
interest in the study of language. Other limitations include the representational inadequacy of a small number of fixed
thematic roles and the lack of extra-sentential context. Nevertheless, the St. John and McClelland model remains a
key inspiration for the work discussed in this paper.

One hindrance to the development of sentence comprehension models has been the difficulty of specifying ade-
quate meaning representations of concepts and sentences. One solution adopted by Allen (1988), St. John (1992a)
and Noelle and Cottrell (1995) is to avoid specifying meanings by focusing on language learning in the service of
a task. By grounding language in this way, the model can be trained to respond to linguistic inputs by performing
an appropriate action. Allen (1988) described a model which takes as input a coded microworld and sequential ques-
tions about that world. The simple-recurrent network was trained to answer questions with either yes/no or single
constituent responses. In similar work, St. John (1992a) trained a simple-recurrent network to take a description of
a scene and a sentence identifying a particular block in the scene, such as “the big blue block that is on the right of
the left page,” and output the block to which the sentence refers. The model is able to handle fairly complex inputs
including relative clauses and prepositional phrases and can even handle human-produced sentences moderately well,
but is otherwise severely limited in its scope.

Noelle and Cottrell (1995) were interested in the ability to perform a task immediately after receiving some in-
structions on how to perform it, which they refer to as “learning by being told.” The framework of their model was
inspired by the sentence gestalt network of St. John and McClelland (1990). The plan component of the network
receives instructions over time and produces a plan that guides the performance of the domain task portion of the
network. In this way, the sentence gestalt model might be viewed as one in which the input sentence instructs the
model how to act appropriately in the domain of answering queries about that sentence. Although Noelle and Cottrell
did not phrase the instructions to their model in natural language, that would be a simple extension. The suggestion
that much of language is learned in the service of various tasks is a reasonable one. However, it seems unlikely that all
of language is learned through direct, action-based feedback in this way.

Miikkulainen and Dyer (1989a) trained a backpropagation network on the same sentences used in the McClelland
and Kawamoto (1986) study. The network learned to map from a static representation of the words in the sentence
to a representation of the case role assignments. The principal difference between this and the earlier study is that
McClelland and Kawamoto hand-designed feature-based distributed representations for words while the Miikkulainen
and Dyer network learned the word representations using the FGREP-method. In the FGREP-method, word represen-
tations are initially randomized. Error is propagated all the way back to the input units, and the word representations
are updated as if they were weights on links feeding the input group. The revised representations are then used as
training targets on subsequent sentences. This method seems to be an effective one in practice for learning represen-
tations when they must appear at both the input and output of a network. However, it is not clear what prevents the
representations from degenerating into, for example, all zeros, nor how it could be implemented without a symbolic
controller. The task performed by the system is simpler due to the fact that words maintain the same representations in
the input and output. There is no distinction between phonological and semantic representations, and the meaning of a
sentence is treated quite literally as the concatenation of its parts. The method was later extended to a simple-recurrent
network which accepts the same sentences encoded sequentially (Miikkulainen & Dyer, 1990).

2.2.2 Comprehension of complex sentences and stories

Miikkulainen and Dyer (1989b, 1990, 1991) further extended their model to the comprehension and production of
script-based stories from a limited set of domains. The stories consisted of a series of simple sentences describing
activities such as eating in a restaurant or shopping. The system involves four modular networks which all share the
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same word representations due to the FGREP mechanism. One network maps a sequence of words into a slot-filler
representation of the case roles of the sentence. The next module maps a sequence of sentence representations to a
slot-filler story representation. Two other modules are trained on the inverse mappings. The networks are able to com-
prehend and reproduce the stories and can fill in missing details from partial stories. However, the true generalization
abilities of the system are questionable given that the stories are drawn from a very restricted set of possibilities. While
the use of modules improves the ability of the network to solve this task, the method relies on encoding sentences and
stories with visible, slot-based representations. This does not extend easily to the more complex and subtle aspects of
natural language.

Miikkulainen (1990b) applied the modular architecture to comprehending and producing sentences with relative
clauses. The network is similar to that used to process stories. The sentences were composed of noun-verb or noun-
verb-noun clauses, separated by commas. The first module maps from a sequence of words drawn from a single
clause, or part of a clause if it contains an embedding, to a slot-based representation of the meaning. A second
network maps from a sequence of clause frames to a static representation of all the frames in the sentence. Two
other networks perform the inverse mappings. The system was trained on a set of 388 sentences with up to 3 clauses
utilizing just 3 different verbs and 4 nouns and was able to reproduce the sentences quite well. The use of a slot-filler
representation for sentence meaning places a hard constraint on the complexity of sentences that could be represented
by this system. Another limitation is that it relies on markers to distinguish clause boundaries, thus preventing it from
handling reduced-relative constructions, which lack relative pronouns. Nevertheless, aside from the current work, this
appears to be the only connectionist comprehension model able to process complex sentences.

Two other connectionist comprehension models, Miikkulainen (1990a) and St. John (1992b), also address the
problem of comprehending stories with multiple sentences. Both use sequences of propositions encoded in thematic
role frames, rather than actual sentences, as input. For example, (agent=personl, predicate=drove, pa-
tient=vehicle, destination=airport). The Miikkulainen model uses self-organizing feature maps to
form an unsupervised classification of stories based on the type of event being described. The St. John model, known
as the story gestalt, is quite similar in design to the earlier sentence gestalt models (St. John & McClelland, 1990).
However, it was trained to answer queries about entire stories rather than individual sentences. The main issues ad-
dressed by that model are the representation of multiple propositions, resolution of pronouns, revision of on-going
interpretations and inferences, and generalization, under the hypothesis that graded constraint satisfaction plays a
primary role in these processes. The model was quite successful except for weakness in its generalization abilities.

2.3 Word prediction

Some of the most successful connectionist models of sentence processing are those that perform word prediction.
That is, at any point in the sentence, the model should be able to produce the probability that each word might
occur next. Word prediction is a surprisingly useful ability. It can be the foundation for a language model which
predicts the likelihood that a particular utterance will occur in the language. This is a principal component of most
speech recognition systems since it is quite helpful in resolving ambiguous inputs. The ability to predict accurately
is sufficient to generate the language, and it thus indicates knowledge of the grammar underlying the language. As
a result, prediction networks are sometimes labeled parsers. However, that term is reserved here for a model that
produces an explicit representation of the syntactic structure of the sentence.

2.3.1 Elman (1990, 1991, 1993) and the issue of starting small

The best known connectionist prediction models are those of Elman (1990, 1991, 1993), who pioneered the use of
simple-recurrent networks (SRNs), also called Elman networks.? Elman (1990) applied an SRN to letter prediction in
a concatenated sequence of words, demonstrating that the network could potentially learn to detect word boundaries
by identifying locations of high entropy, where the prediction is difficult. This work suggests that prediction might be
a primary mechanism used by infants to learn word segmentation. Elman then extended the model to word prediction

2 A simple-recurrent network (SRN) is much like a standard feedforward network that operates in discrete time steps. However, one or more
layers can receive projections which receive input from the activation of a layer at the previous time step. In the traditional Elman network, the
hidden layer receives one of these delayed projections from itself.
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in a language of simple sentences. Representations of words that developed at the network’s hidden layer could be
clustered to produce a reasonable classification of words syntactically and semantically. This indicates that much of
the basic knowledge required for parsing and comprehension could be extracted by a prediction mechanism from the
child’s input.

Elman (1991) further extended the model to process sentences that potentially involve multiple embedded clauses.
The main goal of this work was to demonstrate that networks are capable of learning to represent complex, hierarchical
structure. This is clearly a critical question if one is concerned with their ability to process natural language. As Elman
put it, “The important result of the. .. work is to suggest that the sensitivity to context which is characteristic of many
connectionist models, and which is built-in to the architecture of [SRNs], does not preclude the ability to capture
generalizations which are at a high level of abstraction” (p. 220). A second major outcome of the work was the finding
that the networks were only able to learn corpora of mostly complex sentences if they first began training on simple
sentences before gradually advancing to a higher proportion of complex ones.

This was developed further in Elman (1993), where it was shown that the networks could also learn well if their
memory spans were initially hindered and then gradually allowed to improve. This finding was thought to be particu-
larly important as it accorded with Newport’s “less-is-more” hypothesis: that a child’s limited cognitive abilities may
actually be a critical factor in enabling her to, ultimately, learn a first or second language to a greater degree of fluency
than can an adult (Newport, 1990; Goldowsky & Newport, 1993).

These results appeared to have important implications for human language learning. They suggested that simple-
recurrent networks, and by extension perhaps recurrent networks and the human brain, can learn to process sentences
only if they are exposed to inputs of gradually increasing complexity. Elman argued that this progression could come
about in two different ways. Either the environment itself could change or the learner could change. By starting with
faulty or limited memory, it was argued, the learner naturally filters out complex inputs early on. As its memory im-
proves, more complex inputs are experienced intact; and the result is, in a sense, much like the environment gradually
introducing more complexity.

However, in work that was a precursor to the current project, Rohde and Plaut (1997, 1999) re-examined these
findings and discovered that manipulating the training environment or memory span of the networks does not always
facilitate learning and can, in fact, be harmful. These studies used a similar network to Elman’s but a range of languages
that differed in their statistical, but not syntactic, properties. The primary finding was that using initially simplified
inputs was, in most cases, a significant hindrance to the networks. This was particularly true as the languages were
made more natural through the introduction of semantic constraints.

Memory impairments of the sort used by Elman, on the other hand, seem to have little effect on the learning of
the network. Our explanation for this was based on the fact that recurrent networks naturally begin with poor memory
which they must gradually learn to use as they are exposed to the environment. The network therefore tends to learn
simple relationships first because it does not yet have the representational capacity to handle more complex ones. Thus,
Elman’s staged memory impairments tend to have little effect because they simply mirror the natural development of
memory. Memory is poor initially so frequent interferences cause few problems. As memory improves, interference
occurs less often, so it continues to have little practical effect.

Those interested in the development of language should avoid thinking of short-term or working memory as an
innate capacity. Our experience with neural network models suggests that working memory does not rely on a pre-
formed memory module, as in a computer. It is the result of information sustained and transformed by the activation
of neurons. The interaction of those neurons is not completely determined in advance but gradually develops through
experience. Memory is not an innate capability but a learned skill.

To state that memory develops gradually in the language learner might seem to be an endorsement of Newport’s
less-is-more hypothesis, but there is an important distinction. There is little evidence that memory limitations in and
of themselves can be beneficial to learning a complex skill like language. As argued in Rohde and Plaut (in press),
“We believe that the cognitive limitations of children are only advantageous for language acquisition to the extent that
they are symptomatic of a system that is unorganized and inexperienced but possesses great flexibility and potential
for future adaptation, growth and specialization.”

One final caveat on this topic pertains to the issue of starting with simplified sentences. Although we found this
manipulation to be a hindrance to the prediction network, Rohde and Plaut (1999) made the point that simplified
input may prove more beneficial for the task of comprehension. Beyond simply learning the grammar, comprehension
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requires the learner to associate meanings with surface forms in the language. “This process is certainly facilitated by
exposing the child to simple utterances with simple, well-defined meanings” (p. 98). Although starting with simple
inputs may be helpful in learning comprehension, we expect there to be a tradeoff and would predict that an extended
period of exposure to simplified language will result in developmental impairments.

2.3.2 Other prediction models

Having digressed somewhat, we return to the review of sentence prediction models. The remaining connectionist pre-
diction models are all based more or less directly on Elman (1991). Weckerly and Elman (1992) focused specifically
on the issue of the difficulty of right-branching versus center-embedded sentences. They found that, in accordance with
behavioral data, the SRN showed a preference for sentences involving double right-branching, subject-extracted rela-
tive clauses, as in (16a), over those with double center-embedded, object-extracted clauses, as in (16b). Furthermore,
the network was able to make use of semantic constraints to facilitate word prediction in center-embedded sentences.

(16a) Tinman hears tiger that sees witch that tames lion.

(16b) Witch that tiger that tinman hears sees tames lion.

While this is an interesting finding, it is important to note that this does not necessarily imply a general preference
for right-branching over center-embedded sentences for simple-recurrent networks. The sentences used in training
and testing the network, as well as those in similar empirical studies, confound the location of the relative clauses
with the extraction type of the relative clauses. The center-embedded sentences also happened to be object-extracted
while the right-branching ones were subject-extracted. Object-extracted relative clauses are particularly hard because
of the non-canonical word orderings they create, such as the three consecutive verbs in (16b). Thus, the model may be
demonstrating a preference for subject-extraction, rather than for right-branching.

Finally, we might question whether a comprehension network would show the same preferences as a prediction
network. The predictor has the advantage that it can forget information once that information becomes irrelevant.
This is the principal explanation for why such a model prefers right-branching subject-relatives, since most of the
information about the sentence can be discarded as it proceeds. On the other hand, a comprehender must remember all
important semantic information at least until the end of the sentence. This may tend to weaken or possibly reverse any
preference for right-branching sentences. These and other issues pertaining to relative clauses are discussed further in
Section 3.2 and Chapter 11.

Chater and Conkey (1992) compared Elman’s SRN training procedure to a more complicated variant, backprop-
agation through time (Rumelhart et al., 1986), which extends the propagation of error derivatives back to the beginning
of the sentence. Not surprisingly, they found that backpropagation through time, which is slower and considerably less
“biologically plausible” produces better results. Backpropagation through time is used in the CSCP model to similarly
aid learning.

Christiansen (1994) tested the ability of SRNs to learn simple languages exhibiting three types of recursion:
counting recursion®, center-embeddings, and cross-dependencies, which exceed the power of a context-free grammar.
However, any results are questionable since these experiments resulted in rather poor learning, with networks not
even performing as well as statistical bigram models and sometimes worse than unigrams. It would be worth re-
examining the methods used to train those networks. In a second experiment, Christiansen extended the language used
by Elman (1991) to include prepositional phrases, left recursive genitives, conjunction of noun phrases, and sentential
complements. One version of the grammar could produce center-embedded sentences and a second version cross-
dependencies. In general, the networks performed rather well on these languages and exhibited behaviors that largely
reflect human comprehension performance on similar sentences. Christiansen and Chater (1999b) extended these
results and provided more detailed comparisons with human performance.

Finally, Tabor, Juliano, and Tanenhaus (1997) performed a number of experiments comparing human and net-
work reading times on sentences involving structural ambiguities. Although the network used in these studies was
just a simple-recurrent prediction network, reading times were elicited using a novel “dynamical system” analysis.
Essentially, the hidden representations that appear in the network at various stages in processing sentences are plotted

3Counting recursion involves sentences composed of a sequence of symbols of one type followed by an equivalent number of symbols of a
second type without any further agreement constraints.
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in a high-dimensional space. These points are treated as masses that exhibit a gravitational force. To determine the
reading time of the network on a particular word, the network’s hidden representation for that word is plotted in the
high-dimensional space and then allowed to gravitate among the attractors until a stable state is reached. The settling
time is taken as a proxy for reading time. Although this test-mass process settling was intended to be a proxy for a
true dynamical system that actually settles into a stable state, no experiments were performed to demonstrate that this
is a reasonable simplification of such a model.

2.4 Production

Sentence production has received far less attention than parsing or comprehension in the symbolist community. This
may be largely due to the emphasis on parsing in that tradition. If viewed simply as the inverse of parsing, or deriving
a sequence of words from a higher-order representation of sentence structure, production is a simple process and can
potentially be accomplished in a symbolic framework through the application of a few deterministic rules. However,
true production is a mapping from an intended meaning to a sequence of words or sounds, which is a very hard
problem. Production involves such diverse problems as choosing words to convey the appropriate message, selecting
the correct morphemes to obey syntactic and agreement constraints, and modeling the listener’s knowledge to allow the
speaker to avoid redundancy, provide an appropriate level of information, and produce syntactic forms and prosodic
cues that emphasize important parts of the utterance and avoid ambiguity.

Producing the appropriate phrasing depends on sensitivity to nuances of meaning that are difficult to capture in a
symbolic system (Ward, 1991). Thus, some researchers have begun turning to connectionist approaches to modeling
production. However, most connectionist language production models have so far been restricted to the word level,
dealing with lexical access and phoneme production, rather than sentence-level phenomena (Dell, 1986; O’Seaghdha,
Dell, Peterson, & Juliano, 1992; Harley, 1993; Dell, Juliano, & Govindjee, 1993). This section considers the most
notable sentence production networks.

Kalita and Shastri (1987, 1994) focused on the problem of producing the words in a sentence given the thematic
role fillers and indications of the desired voice and tense. Their model, which is a rather complex localist network,
is able to produce simple SVO sentences in active or passive voice and in several tenses. In order to ensure that
constituents are produced in the proper order, the model uses sequencer units to inhibit nodes once they have performed
their duty. A special mechanism is included to allow the noun-phrase production component to be reused. Because
of the complexity of hand-designing a localist network of this type and of representing thematic roles in multi-clause
sentences, it is unlikely that this model could easily be extended to more complex sentences, particularly those with
recursively nested structures. The model does not seem to exhibit any properties that transcend those of symbolic
systems.

Gasser (1988) (see also Gasser & Dyer, 1988) described a significantly more ambitious localist model that pro-
duces sentences using elaborate event schemas. The model, known as the Connectionist Lexical Memory, is based on
interactive-activation principles. Bindings to syntactic roles are encoded with synchronized firing, as in temporal syn-
chrony variable binding (Henderson, 1994a). Sequencing is accomplished using start and end nodes for each phrase
structure, which are somewhat similar to the sequencer units in Kalita and Shastri’s model. Gasser’s model is designed
to account for a wide range of phenomena, including priming effects, speech errors, robustness given incomplete input
or linguistic knowledge, flexibility in sequencing, and transfer of knowledge to a second language. The model is also
able to parse sentences using the same sequencing mechanism as for generation but may not be able to handle lexical
ambiguities or garden paths. However, the model was only applied to simple clauses and noun phrases and does not
produce recursive structures involving long-distance dependencies. Again, it is not clear whether such a localist model
could be scaled up to handle more complex sentences.

The third major localist production model was by Ward (1991). This was intended to be “more connectionist”
than the previous attempts, relying on a truly interactive settling process and avoiding the need for binder units. Ward
described previous models as essentially serial in their processing. His model, like Gasser’s, was designed to handle
both Japanese and English. One major limitation of the model, which may apply to the others as well, is that the
network structures used to represent the intended meaning of the utterance are built on a sentence-by-sentence basis.
Although the model is apparently able to produce a broader range of sentences than the previous attempts, it is still
unable to handle agreement, anaphor, and relative clauses. Ward acknowledged that a primary drawback of the model
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is the difficulty of extending it in all but the most trivial ways, and he recognized the need for a learning mechanism.

The inability to learn or to handle complex structure appears to be inherent in localist production models, which
should not be surprising since these systems tend to be rather transparent implementations of classical finite-state
machines. However, while not truly context-free, natural language is certainly pseudo-context-free or even pseudo-
context-sensitive in that it allows a limited amount of recursion. For a simple, localist finite-state machine to capture
such recursion, it would require replicated structure, which would presumably be a serious hindrance to generalization.
We therefore turn to models that make use of distributed representations with the hope of overcoming these problems.

Kukich (1987) was interested in the ability of a network to learn to produce stock market reports given the day’s
activity. He doubted the ability of a single network to learn the entire task and thus trained one network to associate
units of meaning, or sememes, with morphemes and another network to re-order morphemes. Sememes were repre-
sented as a series of slot fillers encoding such information as the type of trading activity and the direction and duration
of any change. The output of the first network was an unordered set of word stems and suffixes, which could be pro-
duced accurately 75% of the time. The morpheme-ordering network did not actually produce morphemes sequentially
but used a slot-based encoding of order. The results of these simulations left considerable room for improvement but
were encouraging given the early state of connectionism.

We have already discussed the comprehension and production models of Miikkulainen (1990b) and Miikkulainen
and Dyer (1991). These were trained to produce either sequences of sentences based on a slot-filler representation of
a story or multi-clause sentences based on a slot-filler representation of its clauses. So far this work has been restricted
to fairly simple domains. The nature of the representations used appears to limit the ability of the system to be scaled
up to more natural languages.

Finally, Dell, Chang, and Griffin (1999) were specifically interested in the phenomenon of structural priming,
which leads speakers to preferentially produce sentences of a particular form, such as passive rather than active voice,
if they have recently heard or produced sentences of similar form. Dell et al. hypothesized that the mechanism that
results in structural priming is the same procedure used to learn production. Their model takes a representation of
the sentence’s propositional content and produces the words in the sentence sequentially. While it was intended to
be an SRN, the recurrent portion of the model was not actually implemented, but was approximated by a symbolic
procedure. Propositional content was encoded using a slot-based representation consisting of localist representations
of the agent, patient, recipient, location, and action. Therefore, the model was able to produce only simple sentences
with a limited range of prepositional phrases.

Based on whether the agent or patient received greater emphasis, the model was trained to produce either active or
passive sentences. It was also able to convey recipients using a prepositional phrase or a dative. The model learned
to produce sentences with 94% of the words correct. Based on an average sentence length of 4.8 words, we might
estimate that this translates to about 74% of sentences being produced correctly. The model was able to match human
structural priming data quite well. The main limitations of this model were that it was applied only to simple sentences,
did not produce sentences as accurately as one might hope, and did not learn distributed context representations. The
model presented in the current paper has similarities to that used by Dell et al. but amends some of its limitations.

2.5 Other language processing models

A few additional connectionist investigations of language that do not fit clearly into one of the above categories are
worth mentioning.

Hanson and Kegl (1987) trained an auto-encoder network, known as PARSNIP, to compress sentences drawn
from the Brown corpus (Francis & Kucera, 1979). Words were replaced by one of 467 syntactic categories, each
encoded using 9 bits. Only sentences with fewer than 15 words were selected, eliminating most relative clauses. The
input and output representations for the network comprised 15 slots, holding the syntactic categories of all of the
words in the sentence at once. PARSNIP was trained using backpropagation to map from the input to the identical
output through a smaller layer of 45 units. When trained on 10,000 sentences, the network was able to reproduce
about 85% of the word categories correctly. The network performed at about the same level on novel sentences,
indicating robust generalization. PARSNIP was reportedly able to fill in missing sentence constituents and correct
bad constituents, and did so in a way that did not follow first-order statistics. It could handle single embeddings,
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despite their not having been trained, but not double embeddings or some sentences that violate English word order
constraints. Although Hanson and Kegl acknowledged that auto-association is not a reasonable model for language
acquisition, the importance of this work, as of the prediction models, was its demonstration that distributed networks
can learn to be sensitive to higher-order structure merely through exposure to surface forms and can generalize that
knowledge in productive ways.

Allen (1987) performed a number of small studies of language using backpropagation networks. In one exper-
iment, a network was presented sentences containing pronouns referring to nouns appearing earlier in the sentence
and was trained to identify the location of the original noun. Although it is not clear how well the network could
actually perform the task, it was able to make use of semantic properties and gender in resolving some references. A
second experiment involved training a network to translate from English to Spanish surface forms. The sentences dealt
with a single topic, were limited to 11 words in length, and were presented to the network statically. A multi-layer
feed-forward network was able to translate the sentences on a novel transfer set with an average of just 1.3 incorrect
words. Although these early experiments were relatively simple, they were indicative of the ability of networks to
learn complex language-related tasks.

Finally, Chalmers (1990) demonstrated that connectionist networks, while able to construct compositional repre-
sentations through mechanisms such as the RAAM (Pollack, 1988, 1990), can also operate directly on those represen-
tations in a holistic fashion without first decomposing them. Chalmers first trained a RAAM to encode simple active
and passive sentences and then trained a second network to transform the structural encodings of an active sentence to
that for the corresponding passive sentence. The transformation network was found to generalize quite well to novel
sentences. This simple experiment demonstrated that networks can perform structure-sensitive operations in a man-
ner that is not simply an implementation of symbolic processes. Furthermore, transformational operations performed
on learned hidden representations can often result in better generalization than transformations performed on surface
representations.

In summary, other than prediction networks which avoid the issue of meaning entirely, no connectionist sentence
processing models have exhibited all of the main properties necessary to provide a plausible account of natural lan-
guage acquisition. These include the ability to learn a grammar, to process a sentence sequentially, to represent com-
plex, multi-clause sentences, and to be naturally extendable to languages outside of the domain originally addressed
by the designer.



30

CHAPTER 2. AN OVERVIEW OF CONNECTIONIST SENTENCE PROCESSING



Chapter 3

Empirical Studies of Sentence Processing

In order to evaluate the connectionist sentence comprehension and production (CSCP) model, it is necessary to com-
pare its pattern of behavior with that of humans under similar conditions. The goal of the model is to model behavior
not just on a particular type of sentence, but across a broad range of domains. The purpose of this chapter is to review
many of the relevant psycholinguistic studies and to clarify the most interesting and most reliable results. Findings
tend to vary greatly across experiments. Phenomena for which the findings are inconsistent or for which the experi-
ments were poorly controlled will not provide a firm basis for evaluating the model. Therefore, the emphasis here is
less on the actual numerical results than on the qualitative patterns of data. In some cases, new experiments have been
suggested that might help address open issues.

3.1 Introduction

By and large, experiments were not included in this review if they were not easily addressable given the current
constraints on the CSCP model. The most useful experiments are those that pertain specifically to comprehension or
production at the level of individual sentences. An exception to this is that a number of studies were included that
focus on the effects of context in resolving ambiguities. These are considered separately in Section 3.7.

Another criterion for inclusion is that the experiment deal with a common or important structure in the language.
There are two reasons for this. Philosophically, it seems best to address a general model, such as the present one,
toward the big issues first, before tackling more minor or rare phenomena. More practically, common features of the
language are easier to handle in an appropriate way given our current resources. Because connectionist models are
potentially quite sensitive to the statistics of their environment, it is important that factors relevant to the experiments
of interest are carefully controlled for in the model’s training language. If the structures being studied are too rare, it
will be difficult to obtain accurate statistics and the limited exposure of the model to those structures may adversely
affect the results. Such phenomena will be difficult to address appropriately until we have larger and more varied
natural language corpora so that the relevant environmental input to the learner can be understood.

Prosodic information, including phrasing, intonation, and stress, undoubtedly plays another important role in aid-
ing comprehension. Although one would expect a connectionist architecture to naturally take advantage of prosody,
this too will not be available to the current model and its effects will not considered here in sufficient length or detail.

However, all this is not to say that the model will only be applied to simple constructions or simple effects. On the
contrary, the phenomena to be addressed by the model involve some of the most complex and interesting aspects of
language, including nested relative clauses, passives, main verb/reduced relative ambiguities, sentential complements,
prepositional phrase attachment, subordinate clauses, structural priming, and the influence of semantics and pragmatics
on syntactic processing.

Although most psycholinguistic data is collected in the service of advancing one theory over another, the aim of
this chapter is to summarize the data with minimal interpretation. At this point, only scant attention will be paid to
how well the data fits particular models or theories.
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3.1.1 Testing methods

Evaluating the performance of the model involves comparing its behavior with that of humans faced with a similar
task. This necessarily brings up the issue of how performance is to be measured in both humans and in the model.
During comprehension, we are generally concerned with the overall ability to comprehend the sentence and the points
where this breaks down. Sentence comprehensibility has been tested in a number of different ways, and there may
well be just as many interpretations of the term comprehensibility. This section briefly describes the most common
methods of assessing comprehensibility, most of which will be referred to in later discussions.

To begin with, I adopt the principle that the comprehensibility of a sentence is the degree to which it conveys the
intended information when heard or read in its natural context. As far as the network is concerned, comprehension is
most directly evaluated by its answering simple questions about the component propositions of the sentence. There-
fore, the use of similar questions is the preferred method for testing human subjects’ offline performance, and this
method has indeed been used in a few studies. However, most such studies tend to use true/false questions, while the
model’s performance can be best diagnosed using fill-in-the-blank or multiple-choice questions.

A similar, though perhaps more taxing, measure requires the subjects (Ss) to paraphrase sentences, which might
involve translating center-embedded constructions to right-branching ones or to their constituent clauses. The prob-
lems of this method are that it is not a very natural activity for most Ss, the task tends to be underspecified, and it may
be inconsistently performed. It is likely that the sequential production demands of paraphrasing place a significant
memory burden on the subject beyond the demands of just comprehending and retaining the sentence.

A less direct measure of offline comprehensibility is delayed repetition, where it must be assumed that sentences
are easier to remember and reproduce when they are comprehensible. In this case, sentences are generally equated for
number of words used, which limits the range of phenomena that can be studied under full control.

The method used frequently by Gibson (Gibson & Thomas, 1995, 1997; Gibson, 1998) and others involves direct
comprehensibility ratings. That is, Ss do not demonstrate their ability to comprehend the sentence but simply try
to report how difficult it was to understand. This is convenient from a practical standpoint because large groups
of Ss can be run simultaneously and analysis is easy, but it has a number of potential problems. Ss may not be
using the complexity scale consistently, although rescaling of ratings on a subject-by-subject basis may be possible.
More importantly, they may not be accurately reporting comprehensibility, as defined by the ability to understand the
information conveyed by the sentence. It is likely that other factors enter into comprehensibility ratings including the
apparent syntactic complexity of the sentence, the frequency of its syntactic structures, and its semantic plausibility.

There is a danger in equating apparent and real comprehensibility. It has frequently been argued that repeatedly
right-branching sentences such as (17) do not cause comprehension difficulties and thus appear to be comprehensible.
However, although there is no point at which the sentence gives the impression of ungrammaticality, actually com-
prehending the sentence, that is, understanding and remembering the information in it, is not easy. As Blaubergs and
Braine (1974) found, after hearing a sentence of that form, Ss answered questions such as “Who chased the lawyer?”
incorrectly nearly half of the time. So the main problem of elicited comprehensibility ratings is that the values reported
by Ss may systematically differ from less subjective measures of comprehension.

(17) The horse bit the cow that chased the lawyer that frightened the rabbit that examined the evidence that
stunned the jury.

In other studies, Ss have been asked to provide grammaticality ratings. These will differ from a comprehensibility
ratings to the extent that Ss understand the difference between grammaticality, as traditionally defined in linguistics,
and comprehensibility. In practice, the responses of naive Ss actually do look somewhat like comprehensibility ratings
and suffer from the same problem of measuring apparent rather than actual comprehensibility.

A more indirect measure of comprehension difficulty, but one that has seen extensive use, is reading time. The
primary advantage of reading time, and the reason it is so favored by many researchers, is that it is believed to provide
a window into the online processes of comprehension. The time that a subject takes to read a word or phrase is
presumed to reflect the difficulty of incorporating it into an iteratively constructed representation of sentence structure
or meaning.

Unfortunately, reading time is not the best task on which to evaluate the CSCP model. The network is intended to
be a model of comprehension and production of spoken language, in which the listener has little control over the rate of
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presentation. It is thought that our reading and writing abilities are built on top of the more basic verbal communication
system. Ideally, we would use data from verbal tasks in assessing the model. However, due to the lack of good online
measures of auditory comprehension, the majority of interesting data comes from reading. Section 6.5 discusses this
problem further and presents a method for extracting reading times from the current model, as well as discussing a
novel theory of sentence comprehensibility and its relation to reading time.

Reading time experiments are typically either self-paced or involve eye-tracking devices. Self-paced reading can
proceed a single word at a time, two words at a time, or a phrase at a time. Displays can either be cumulative, in which
words remain visible once they appear, or use a moving window over obscured text. In the latter case, as each new
word or phrase appears, the previous one is hidden from view to prevent re-reading.

Although self-paced reading does often produce similar results, the consensus among most researchers seems
to be that eye-tracking studies are preferable. Eye tracking provides a more natural reading experience, resulting
in considerably faster reading times. It also allows subjects to use the peripheral information normally available to
readers, and there is less worry that the choice of segmentation of the display into either words, word pairs, or phrases
may affect the results. When using an eye-tracker, subjects are free to move their eyes as they wish and will frequently
jump back to review earlier parts of the sentence. This makes analysis more difficult. Experimenters typically analyze
first-pass reading times separately from overall reading times. Because the CSCP model is forced to process sentences
in a single pass, the first-pass reading times may serve as a better basis than total reading times for evaluating the
model.

Word length is well known to have an effect on reading time. Because researchers are mainly interested in reading
time as a proxy for online comprehension difficulty, any effect of word length is of less interest. Therefore, it is
customary to convert raw reading times into residual reading times. This is done by deriving a linear regression for
each subject to predict reading time as a function of word length. The predicted time is then subtracted from the raw
reading time for each word to produce a residual time.

In addition to reading time, some even more indirect measures of comprehension have been used, including re-
sponse time in initial-phoneme monitoring and lexical decision. While these methods have been validated to the extent
that they give similar results to direct measures on tasks involving major comprehension differences, it is not clear that
they reliably reflect comprehension difficulty across a wide range of tasks.

3.2 Relative clauses

The one structure in language that seems to have received the most attention from psycholinguists is the relative
clause (RC). Although relative clauses have been studied for several decades now, the main findings on them remain
poorly understood, and there are still many open questions regarding human comprehension of them. Nevertheless,
there seems to be sufficient data available in the literature to allow processing of relative clauses to be a main area of
evaluation for the network model.

A principal goal of some of the early studies of the 1960’s and 1970’s was to test the Miller and Isard hypothesis
(Miller & Isard, 1964), that self—embeddings,1 in particular, ought to cause problems for a finite device due to their
recursiveness. This led to a continuing interest in the complexity of relative clause constructions, as it is easy to embed
one RC within another.

Another early proposal was the derivational theory of complexity (Fodor & Garrett, 1967), suggesting that sentence
complexity should be related to the number of transformations in the mapping from deep to surface structure. As
evidence mounted in opposition to these theories, more detailed metrics of sentence complexity were devised including
Kimball’s principle of two sentences (Kimball, 1973), Gibson’s thematic-role-based theory (Gibson, 1991), syntactic
prediction locality theory (Gibson, 1997), and dependency locality theory (Gibson, 2000), and Lewis’s NL-Soar model
which hypothesizes that only two or three syntactic relations of the same type can be represented in memory (Lewis,
1993).

One feature shared by nearly all symbolic models of sentence processing is an insensitivity to semantic and prag-
matic constraints. Although most researchers do acknowledge that semantic information can facilitate human compre-

LA self-embedding is any structure contained within another structure of similar type. A common example is an object-extracted relative clause
contained within another object-extracted relative clause.
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Sentence Types
center-embedding
right-branching
object-relative
subject-relative
OS  subject-rel. in an object-rel.
02  object-rel. in an object-rel.
O™  n nested object-relatives
! reduced
" reduced and untensed
Presentation Methods

visual (written)
auditory (spoken)
speeded word-by-word
self-paced word-by-word
Evaluation Methods
question answering
paraphrasing

repetition

complexity judgment
phoneme monitoring
lexical decision
grammaticality decision

wOo3JTO

H» > L

Qrza®RTO

Table 3.1: Codes used in describing sentences and experimental procedures.

hension, such graded constraints are not allowed for explicitly in their models. This is for a variety of reasons. Graded
constraints cannot easily be incorporated into many symbolic architectures. Even if the architecture permits seman-
tic constraints, they are hard to quantify and control and they complicate models, reducing the ease of formulating
predictions.

As a possible result of this, many experiments on relative clauses have been designed to eliminate semantic infor-
mation. Typically, sentences are used in which every noun is a plausible subject or object of every verb, increasing the
chance of confusion. As a result, sentence structures that may be comprehensible in practice, where both context and
semantic constraints within the sentence are strong, might appear incomprehensible under experimental conditions.
Furthermore, there are few tests of the actual effect of semantics and pragmatics on the variety of sentence types. This
is particularly lamentable because the CSCP model is expected to be quite sensitive to such factors.

This section will review the major empirical findings on relative clauses. The studies discussed here are summa-
rized in Table 3.2, which should serve as a quick reference in comparing studies. Table 3.1 explains the codes used to
classify the experiments. The individual studies are discussed and further summarized in Sections 3.2.1 through 3.2.5.

3.2.1 Single relative clauses

Sentences with a single relative clause have not received quite as much attention as multiply-embedded sentences
because, by and large, people are quite good at comprehending them and thus all models that treat comprehension as
a matter of success or failure would predict success. However, these relatively simple sentences will be an important
point of evaluation for the CSCP model as they are common in everyday discourse. As comprehension models become
more sophisticated, they should be able to explain the relatively small on- and offline differences in the comprehension
of single-relative-clause sentences.

In addition to whether the relative clauses are reduced or are marked? by a relative pronoun, two main factors are at

2t is common practice in linguistics, or perhaps just in psycholinguistics, to use the term marked to mean ungrammatical or otherwise unusual.
I will, however, be using marked to mean that which has a marking, in opposition to reduced. Some have referred to this as unambiguous versus
ambiguous. But there are sometimes several ways in which ambiguities can be made unambiguous, not all of which involve marking, so I will avoid
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Sentence Study
Type B66 S67 M68 FG67 HC70 H73 BB74 BK74 HEB76 LB77 HO81 F83 KJ91 GT97 G*ip
CS SR AQ AMP VQ TL T TQ
(el0) VG SR AQ AQ AMP AP VQ TL T TQ
RS VG SR AQ AQ AMP TQ
RO SR AQ AMP TQ
cs” AMP
co’ AMP
RS AMP
RO’ AMP
Cs? VG
CSO
COSs vC
cos” vC
CcOo? VP VG AVP AMP AQ AP vC
(ole 1 AVP AMP
co? AVP VG AQ AP
co* VG AQ AP
Cco? VG AQ
RS2 VG AQ
RS3-5 VG AQ
ROS vC
RO? VC

Table 3.2: Sentence types used and experiments performed in some of the studies discussed here. Not all studies are
shown in this chart. G¥*ip refers to Gibson et al. (in press).

work in sentences with a single relative clause: whether the clause is center embedded (modifying the matrix subject)
or right branching (modifying the matrix object), and whether the clause is subject- or object-extracted (also called
subject- or object-focused).> For convenience, subject-extracted RCs will be referred to here as subject-relatives and
object-extracted RCs will be referred to as object-relatives. Sentences (18a) and (18b) both have center-embedded
RCs while (18c) and (18d) have right-branching RCs. (18a) and (18c) have subject-relatives while (18b) and (18d)
have object-relatives.

(18a) CS: The dog that bit the cat chased the bird.
(18b) CO: The dog that the cat bit chased the bird.
(18c) RS: The dog bit the cat that chased the bird.
(18d) RO: The dog bit the cat that the bird chased.

Several of the early studies that purported to show that center-embedded sentences are harder than right-branching
sentences actually confounded this difference with the clause-type distinction, comparing CO sentences to RS sen-
tences. This has led to some confusion about these sentence types and a lingering belief that center-embedded sen-
tences, in general, are more difficult than right-branching sentences.

One such study was Blaubergs and Braine (1974). Blaubergs and Braine compared singly and multiply-embedded
CO™ and RS™ sentences, with the number of embeddings, n, ranging from 1 to 5. The sentences were semantically
neutral (each noun could reasonably be the subject or object of each verb), and matched pairs of CO® and RS were
formed. Sentences were presented auditorily and Ss answered a single fill-in-the-blank question following each sen-
tence. Prior to testing, Ss were trained on the question answering task with sentences of increasing order of complexity.
Although there was a main advantage for RS™ sentences over CO™ sentences, which will be discussed in the next sec-
tion, Ss performed nearly perfectly on CO and RS sentences and there was even a slight but non-significant advantage

using such terms to distinguish marked from reduced conditions.

3Center-embedded RCs are more appropriately termed subject-modifying while, right-branching ones are more appropriately termed object-
modifying. However, distinguishing between subject-modifying and subject-extracted or object-modifying and object-extracted can get very con-
fusing, so those terms are avoided here.
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for CO sentences.

In Marks (1968), Ss were asked to rate the grammaticality of sentences composed of from 1 to 5 center-embedded
or right-branching clauses. It is presumed that center-embedded clauses were all object-relative and right-branching
clauses were all subject-relative and that sentences were presented visually. Unfortunately, this study sheds little light
on singly embedded sentences, as they were almost always judged to be perfectly grammatical. It would appear that
grammaticality rating and question answering following training are not sufficiently sensitive to detect differences in
single RC sentences. However, in these two experiments, single RC sentences were presented along with a majority
of much more difficult items. Under such conditions it is likely that subjects will raise their standards for ungrammat-
icality and read sentences more slowly and carefully, resulting in better than normal comprehension performance. As
a result, differences between single RC sentences may not appear, as they may under other conditions.

Holmes (1973) tested Ss on sentence recall following rapid word-by-word visual presentation. Because earlier
studies had shown effects of semantic plausibility on recall, it was believed that comprehension plays a role in this
task and that recall success may reflect comprehensibility. Several sentence types were studied, but the ones of interest
to us are the center-embedded sentences, half CO and half CS, and right-branching sentences, half RO and half RS.
Although they were not equated for meaning, all sentences had 10 words, and attempts were made to equate sentence
types for overall naturalness and plausibility. Holmes found that CO/CS sentences (mean 8.46 words recalled) were
significantly easier than RO/RS sentences (7.42 words recalled).

Although the two types of sentences were independently judged to be very similar in semantic plausibility, center-
embedded sentences were judged to be slightly more natural, 3.25 versus 3.14 on a 0-4 scale. This could be considered
either a confounding or an explanatory factor. Although this study appears to provide strong evidence that, averaged
over embedding type, single center-embedded sentences are easier than single right-branching sentences, recall after
rapid serial visual presentation must be a regarded as a rather indirect measure of comprehensibility.

Baird and Koslick (1974) used auditory presentation and fill-in-the-blank questions to study comprehension of
CS, RS, CO, and RO sentences. All nouns referred to humans and semantic constraints were reduced by using only
noun/verb pairs known to be non-associates. Sentences were presented twice before testing. Averaged across question
types, error rates for the four sentence types were CS:17.5%, RS:23.8%, C0:43.8%, RO:40.0%. It is interesting that
error rates were so high across the board. Overall, subject relatives were much easier than object-relatives. However,
center-embeddings were not significantly easier than right-branchings, and there was a hint of an interaction between
location and clause types, with the CS being the easiest and the CO being the hardest. Because there were relatively
few items in this experiment, the statistical power was not strong. The results for this experiment are summarized in
Figure 3.1.

Hudgins and Cullinan (1978) studied single relative clauses using a sentence elicited imitation task. Ss listened
to a recorded sentence and then tried to repeat it verbatim. Based on error rate, this study found a significant advantage
for subject-relatives over object-relatives, both for short sentences and for longer sentences involving adverbials and
other filler material. There was also a consistent advantage for center-embedded over right-branching clauses, but this
was not a significant difference in all cases. The authors also tested reduced relatives which had only a small effect
that was inconsistent between response latency and error rate.

A more complete study of single relative clauses is that of Hakes, Evans, and Brannon (1976), in which Ss
listened to sentences and performed phoneme monitoring. This involves responding to a particular phoneme if it occurs
at the start of a word. The target words, when they appeared, were always located in the embedding. After hearing
the sentence, subjects were asked to paraphrase it. In the first experiment, test sentences were either CO or RO. These
occurred in matched pairs, in which the component clauses were the same but were rearranged to produce different
structures and meanings. The sentences were all complex in ways other than the relative clause, including other main
and subordinate clause types. Relative clauses were also either reduced or marked, but the reduced sentences will be
considered in Section 3.2.3.

The results indicate a marginally significant advantage for center-embedding. Paraphrasing accuracy, as measured
by percentage of clauses accurately represented, was 45.1% for CO and 40.9% for RO. This was also reflected in
the phoneme monitoring speed which was 2.00 for CO versus 1.93 for RO, where a higher number indicates a faster
response. The second experiment was similar to the first except that subject-relatives were used and embedded verbs
were in the past progressive tense ([who were] running) to permit reduction. Again the unreduced case revealed
a significant advantage for center-embedding with a paraphrasing accuracy of 67.9% for CS versus 62.5% for RS.
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Figure 3.1: Relative clause paraphrasing and comprehension results from three studies.

The phoneme monitoring results, however, were not significant. Although the authors did not perform a statistical
test because the experiments were conducted separately, it is clear from the large change in paraphrasing scores that
subject-relatives were significantly easier than object-relatives. The results for this experiment are also summarized in
Figure 3.1.

Holmes and O’Regan (1981) used an eye-tracker to study the reading of French sentences. After each sentence
was read, it was removed and subjects answered a yes/no question. Sentences were in either CS or CO form. The error
rate for questions concerning the main clause was 8.3% for CS and 12.5% for CO. Error rates for questions about the
relative clause were higher, being 13.2% and 22.9%, respectively. This indicates that subject-relatives are easier than
object-relatives in French as well as English.

Ford (1983) used word-by-word lexical decision as a measure of reading difficulty. Once again, CO and CS
sentences were compared. These were arranged in pairs matched for the words used in the relative clauses. As a
result, the relative clauses in the two conditions were roughly opposite in meaning, as in Hakes et al. (1976). Lexical
decision reaction times were significantly longer for object-relative sentences only on the relative clause verb, the main
clause verb, and the main object determiner. This once again confirms that single object-relatives are more difficult
than single subject-relatives.

King and Just (1991) performed a self-paced reading study in which Ss had to remember the last word in each of
a series of three sentences. The CO and CS sentences under investigation appeared as the second or third in the series.
Reading times were significantly longer during the relative clause in the object-relative sentences.

Finally, Gibson, Desmet, Watson, Grodner, and Ko (in press) conducted two self-paced reading experiments on
singly-embedded RCs. In the first, CS, RS, CO, and RO sentences were tested using self-paced reading and true/false
question answering. In one set of conditions, the sentences were in the usual form, while in another set of conditions
the sentences were embedded within a sentential complement. The latter, embedded, condition will be ignored here
for now. Gibson et al. found two main effects: center-embedded RCs were faster to read and easier to comprehend
than right-branching ones and subject-relatives were easier to read and comprehend than object-relatives, although
these effects were significant only in reading times. The comprehension results are shown in Figure 3.1.

A second experiment investigated the difference between restrictive and non-restrictive RCs. Restrictive RCs
serve to identify the specific reference of the modified noun phrase, while non-restrictive RCs simply provide addi-
tional information about the noun phrase. Interestingly, they found that CO clauses were read significantly faster than
RO clauses only when they were restrictive. However, this finding was not supported by complementary question-
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answering data. Subjects were a bit better, though not significantly so, in answering questions about CO sentences,
with little effect of clause type.

Summary

Based on the evidence considered here, it seems clear that center-embedded object-relatives are more difficult than
subject-relatives, as consistently shown in Baird and Koslick (1974), Hakes et al. (1976), Holmes and O’Regan (1981),
Ford (1983), King and Just (1991), and Gibson et al. (in press), although not always significantly so. Likewise, Baird
and Koslick (1974), Hakes et al. (1976), and Gibson et al. (in press) found that right-branching object-relatives are
more difficult than right-branching subject-relatives.

The more controversial comparison is that between center-embedded and right-branching structures. Holmes
(1973) found that, when subject- and object-relatives were mixed, center-embedded sentences were easier than right-
branching ones. Baird and Koslick (1974) looked at the four types of sentences in isolation and found no significant
effect of relative clause position, which may largely be attributable to small sample sizes. Hakes et al. (1976), on
the other hand, did seem to find that CS sentences were easier than RS, and CO were easier than RO, although that
exact statistical test was not performed. Gibson et al. (in press) found an overall advantage for center-embedded over
right-branching structures in both reading times and question answering. While the clause position effect may not be
as strong as the clause type effect, it seems to be a reliable result.

One might wonder, however, whether there is a detectable difference in the ease of processing center object-
relatives and right subject-relatives. The grammaticality decision test of Marks (1968) and the practiced question
answering of Blaubergs and Braine (1974) were not able to detect a difference. Gibson et al. (in press) found non-
significant preferences for CO over RS in both reading times and question answering. However, Baird and Koslick
(1974) and Hakes et al. (1976) found what are certainly significant advantages for RS over CO. It seems that the CO/RS
comparison involves an object-relative disadvantage counteracted by a center-embedding advantage. Which effect is
stronger may depend on the specific items or methods used.

3.2.2 Nested relative clauses

Although some interesting effects may be observed with singly-embedded sentences, psycholinguists have historically
paid more attention to multiply embedded sentences which lie at the fringe of comprehensibility. However, as we
will see, studies of multiple embeddings often confound the center/right difference with the subject/object-relative
difference. In a way, this is unavoidable as it is not possible to construct truly nested relative clauses unless all but the
bottom-most are object-relative, unless ditransitives or prepositional phrases are used. However, we must be careful
what generalizations are drawn from such studies. Unfortunately, the space of possible multi-clause sentences is quite
broad and thus difficult to control, and our understanding of the comprehensibility of deeply-nested sentences remains
woefully incomplete.

One of the earliest and best-known studies is that of Miller and Isard (1964), who asked Ss to try to memorize
and repeat verbally presented sentences. All sentences were 22 words long and contained four relative clauses, which
comprised some mixture of center object-relatives and right subject-relatives. Ss heard and attempted to repeat each
sentence five times and were evaluated on the number of words recalled in the proper order. Although statistical
tests were not reported, it appears that performance generally declined with more center-embeddings. However, this
did not occur in a smooth fashion. Sentences with O and 1 embedding were indistinguishable, as were those with 3
and 4 embeddings, with 2-embedding sentences falling somewhere in the middle. Nevertheless, on the basis of this
experiment we cannot conclude much about the center versus right distinction as it is likely that these results are driven
by the subject/object-relative difference.

Blumenthal (1966) questioned whether subjects even view multiply-embedded sentences as grammatical or whether
they view them as distortions of a simpler and/or more common sentence type. In his experiment, Ss were shown CO?
sentences and asked to reformulate them as semantically equivalent RS3s. They were given unlimited exposure to the
sentences but apparently no practice or feedback. All nouns referred to people and semantic constraints were rather
weak. In only 26% of the sentences did Ss appear to understand the embedded structure and in only 15% of the cases
were the verbs and nouns matched correctly. In the other cases, Ss reportedly either perceived a single clause with
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a compound noun and verb or a series of clauses all modifying the matrix subject. It is clear that CO® sentences are
fairly unnatural and might even be thought ungrammatical, but this experiment seems to have been unfairly weighted
against the Ss. Had subjects been given better instruction or feedback and had the sentences included some semantic
constraints, the results may have been different.

In Marks (1968), mentioned in the previous section, Ss were asked to judge the grammaticality of sentences of
the form CO'—5 or RS!—3. Although single relative clauses were judged to be perfectly grammatical, more interesting
effects can be seen with deeper embeddings. Extended right-branching sentences were considered somewhat ungram-
matical, but in a way that did not correlate with the number of clauses. Extended center-embeddings were judged to be
increasingly less grammatical, although one S was thrown out because he (correctly?) judged all of the self-embedded
sentences to be perfectly grammatical. It does not seem that this experiment has much bearing on the issue of com-
prehensibility as it is simply not clear what Ss are doing when asked to judge grammaticality, especially when all
sentences were grammatical. The fact that Ss rated right-branching sentences to be ungrammatical, and inconsistently
s0, indicates that they were probably not clear on the task.

Schlesinger (1968) compared reading rates of Hebrew sentences containing either nested or sequential parenthet-
ical clauses. An example sentence (in English) with degree of nesting 3 is:

(19) The defendant’s solicitor demanded, since he knew that the court would not, in view of the attempts revealed
subsequently under cross-examination to mislead the police officers in the first stages of the inquiry, accept
the defendant’s statement, that the fact that his client was the head of a large family should be taken into
account in giving the verdict.

Sentences with lower degrees of nesting used the same phrases but rearranged them. To encourage comprehension,
some sentences included contradictory information and Ss were asked to identify the ones that did not make sense.
Interestingly, reading rate was the same for sentences with degree of nesting O, 1, or 2 and only a bit worse at degree
3. Accuracy in the contradiction monitoring task was not affected by nesting depth.

In a second experiment reported in Schlesinger (1968), Ss read Hebrew sentences, then decided whether each one
was grammatical, and then answered 12 true/false questions about it. Sentences were composed of either 4 or 5 clauses,
which were arranged to produce a maximum depth of embedding between 0 and 3 for the shorter sentences or 0 and
4 for the longer ones. Reading was clause-by-clause and non-cumulative, to prevent looking back at previous parts.
Ungrammatical sentences were included as foils. All legal sentences were judged, on average, to be grammatical.
The degree of perceived ungrammaticality increased significantly, although not consistently, with depth. Although
more explicit guidelines were given in this experiment than in Marks (1968) regarding grammaticality decisions, some
subjects did, contrary to instructions, report basing their judgments on semantic considerations in addition to syntactic
ones.

Response errors to the true/false questions were quite low, and were under 21% for all sentence types. Interestingly,
errors did not increase significantly with depth. The results of these two experiments indicate that embedding does not
necessarily make sentences more difficult and “is a much less powerful variable than is commonly supposed.” (p. 119)
However, it should be acknowledged that these sentences were in Hebrew and contained a variety of clause types in
addition to relative clauses. Thus, these experiments are not directly comparable to others reviewed here.

We also return to the previously mentioned study of Blaubergs and Braine (1974), in which Ss heard semantically
neutral CO™ and RS™ sentences and answered a single fill-in-the-blank question following each sentence. Prior to
testing, Ss were trained on the question answering task with sentences of increasing complexity. During training, they
were asked an exhaustive list of questions and did not move on to the next-harder level of sentences until they made
no more than one mistake in two consecutive sentences. On test, performance decreased for both sentence types with
increased level of complexity. There was an overall advantage for RS™ over CO™, but it was only significant with 3, 4,
or 5 relative clauses. Interestingly, the decline for right-branching sentences was gradual, but there was a large gap in
performance between CO? and CO? and then no further decline with more center-embeddings.

Larkin and Burns (1977) had Ss listen to CO'—* sentences and report the constituent clauses. During training, they
were given one example sentence at each level. Sentences were either semantically neutral or semantically supported,
although semantic support appears to have been weak. The results, in terms of the number of pairs correctly reported
are: CO:1.69, CO2:1.25, €02:1.09, CO%:1.04. Surprisingly, Ss were far from perfect on sentences with just one or
two embeddings, producing about 15% errors. Larkin and Burns suggested that, in normal discourse, people must
rely on such additional cues as context and stress patterns. Semantically supported sentences were a bit easier than
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Figure 3.2: Results of the Gibson & Thomas (1997) complexity rating study.

unsupported ones, but only significantly so for CO2. Similar experiments were also performed using nested sequences
of nouns paired with verbs, letters paired with digits, and digits paired with digits. Results for nouns paired with verbs
were not significantly different from those for sentences, although there were no semantic effects for the non-sentence
case. The letters and digits conditions proved easier than the others.

Gibson and Thomas (1995) report a study in which Ss read sentences and judged, on a 1 to 5 scale, how hard
each sentence was to understand on the first reading. Although much of the experiment dealt with sentential subjects
and complements, I will focus here only on the sentences with relative clauses, which took the forms CO2, COS,
and RO2. Sentences were arranged in matched sets. Corresponding CO? and RO? sentences had approximately the
same meaning, but to accomplish this the matrix clause of the RO? sentences was put in the passive voice, a possibly
confounding factor. The meaning of the COS differed from that of the CO? in that the inner-most clause was reversed.
In order to make the three verbs in each sentence more distinguishable, at least one was given an auxiliary verb, such
as “had”, “might”, or “will.” The second verb was also modified by an adverbial phrase. Unacceptability ratings for
the CO? and RO? sentences did not differ significantly, although the mean for RO? was lower. The preference for COS
over CO? approached significance.

Gibson and Thomas (1997) attempted to remove the confound of voice in the previous experiment by counter-
balancing equal numbers of active and passive sentences and also added the missing ROS condition and a COS”
condition in which the inner-most relative clause was reduced and untensed (a gerund), such as “neglecting” as opposed
to “who was neglecting”. The results of this experiment are shown in Figure 3.2. There was again no significant effect
of extraction position, but there was a significant advantage for OS sentences over O2. Interestingly, there was also a
significant advantage for the gerund, COS”, over the non-reduced COS, a subject we will return to in the next section.

Summary

The experiments in this section can be roughly divided into four groups. Blumenthal (1966) and Larkin and Burns
(1977) studied CO™ sentences. Blum