
Model Checking and Theorem Proving:

a Unified Framework

Sergey Berezin

24th January 2002

CMU-CS-02-100

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Thesis Committee:

Edmund Clarke, Chair

Randal Bryant

Todd Mowry

Kenneth McMillan, Cadence Berkeley Labs

Natarajan Shankar, SRI International

Copyright c
�

2002 Sergey Berezin

This research was sponsored by the Semiconductor Research Corporation (SRC) under contract no. 98-DJ-

294 and no. 99-TJ-684, and by the National Science Foundation (NSF) under grant no. CCR-9217549 and

CCR-9803774. The views and conclusions contained in this document are those of the author and should

not be interpreted as representing the official policies, either expressed or implied, of SRC, NSF, the U.S.

government or any other entity.

Keywords: Formal methods, model checking, theorem proving, SyMP, temporal log-

ics, hardware verification, Tomasulo’s algorithm, security protocols, Athena, proof systems,

SML.

Dedicated to my parents and my wife Angela

4

Abstract
The never-ending growth of the complexity of modern hardware and soft-

ware systems requires more and more sophisticated methods of verification.

The state space explosion problem leaves little hope for automatic finite-state

verification techniques like model checking to remain practical, especially when

designs become parameterized. The use of theorem proving techniques is in-

evitable to cope with the new verification challenges. “Pure” theorem proving,

on the other hand, can also be quite tedious and impractical for complex de-

signs. Ideally, one would like to find an efficient combination of model check-

ing and theorem proving, and the quest for such a combination has long been

one of the major challenges in the field of formal verification.

Many new methodologies have been proposed to make the two techniques

work in ensemble. Observing such a wide variety of methodologies, one may

even question the mere possibility of finding a universal technique that would

combine model checking and theorem proving. Instead, it seems more practical

to expand the collection of these problem-specific methodologies.

The development of new methodologies is usually an iterative experimental

process in which researchers implement their ideas in a prototype tool and

run several verification examples in it. The experiments provide the necessary

feedback for refining the methodology and generalizing it to handle wider class

of examples, or give hints on how to tune the technique to specific applications.

Since the methodologies often use both model checking and theorem prov-

ing techniques, implementing new tools becomes the main bottleneck in their

development. In this work, we provide a new unified framework that includes

both model checking and theorem proving, and is designed for fast prototyping

of tools or manual but computer-assisted testing of new verification methodolo-

gies. The tool SyMP (Symbolic Model Prover) implements this framework in a

theorem prover-like environment. Moreover, the tool is in fact a programmer’s

kit for generating new, possibly highly specialized, theorem provers. It pro-

vides a base for the development of new tools for emerging methodologies and

reduces the implementation time. The architecture of the tool and the theory

behind it help organizing the new methodologies in a systematic and extensible

way.

6

Acknowledgments
I almost cannot believe that this long thesis marathon is nearing the end,

and I am greatly indebted to many people who helped me get started, pointed in

the right direction, kept me on track, and supported along the way, and without

whom I would have never made it.

First of all, I would like to thank my advisor, Edmund Clarke, who pro-

vided the invaluable guidance and financial support throughout my entire stay

at Carnegie Mellon. He has taught me innumerable things one needs as a re-

searcher, from writing papers and grant proposals to choosing the right projects

and succeeding in them. I am especially grateful for his persistence in convinc-

ing me to do certain parts of my work, which, as I discovered later, turned out

to be absolutely necessary, and without them my work would be incomplete.

Thanks to all my committee members for taking their time to serve on the

committee, and for the feedback they have provided. Most of all, I appreciate

the detailed discussions with Ken McMillan about SMV, the theory behind it

and practical issues, and many interesting subtleties in the abstraction mecha-

nism and its implementation.

Many thanks to the members of our research group, it has been my great

pleasure to work with so many bright and talented people. Alex Groce has sig-

nificantly contributed to the development of my tool SyMP, and in particular,

wrote the first version of the SyMP-to-SMV converter and all of the infras-

tructure for the Athena proof system, which was crucial to my finishing the

implementation in time. And it is only due to Dawn Song that the Athena

module has become possible, as she came up with and developed the theory

of it, and later we have had extensive discussions about its implementation

details. Daniel Kröning supplied us with interesting real-life hardware exam-

ples (FPU controller, Tomasulo’s algorithm, etc.), has started to implement yet

another extension module for SyMP, contributing to its versatility, and, in ad-

dition, has proof-read my thesis. And thanks to the other group members for a

lot of inspiring and insightful discussions: Somesh Jha, Sérgio Campos, Yuan

Lu, Pankaj Chauhan, Helmut Veith, Dong Wang, Armin Biere, Yunshan Zhu,

and everyone else.

Spending two summers (1997-98) in the formal verification group at SRI

International opened my eyes on many real-life aspects of theorem proving,

and it played a big role in choosing my thesis topic. I would like to thank

8

everyone who worked with me there, and most notably, N. Shankar and Sam

Owre for a lot of help with the PVS theorem prover.

Many thanks to Steve German from IBM for his example of a cache coher-

ence protocol, which has become one of the central examples in my work.

I would also like to thank my former undergraduate advisor Dr. Shilov for

teaching me the basics of formal verification and turning me into a researcher.

He deserves a big part of the credit in many of my achievements in my early

career for his knowledge in the area, readiness to help, and his friendly guid-

ance.

Furthermore, I cannot imagine surviving the tense life of a graduate stu-

dent within gloomy walls of my office without my friendly officemates, Owen

Cheng and Muralidar Taupur, helping me stay upbeat, letting me vent all my

thesis bitterness, and assisting with many small technical problems.

I greatly appreciate the work of CMU CS help desk and SCS in general for

providing a truly unique environment where everything actually works, to the

extent possible and sometimes even quite a bit more. On the same note, thanks

to the CS zephyr community for the invaluable source of collective wisdom.

And finally, most of my gratitude goes to my dear wife, Angela, for her

unsurpassed gift of persuasiveness, great talent of ferreting out information,

and amazing faith in what I always thought as impossible. Without her, I would

have not even come to CMU in the first place. With her help and support, I have

made it through the application process, moved to Pittsburgh, stayed sane and

in working order for all six years, and finally is about to receive my degree from

CMU — something I have never even dreamed of before I met her. I cannot

thank her enough for being patient and caring, enduring all the hardship of

being a graduate student’s wife, and doing everything for me around the house

that I was supposed to do instead of working on my thesis.

Contents

1 Introduction 13

1.1 Verification Problem . 14

1.2 Existing Verification Techniques . 15

1.2.1 Cone of Influence Reduction . 15

1.2.2 Abstraction and Symmetry Reductions 15

1.2.3 Assume-Guarantee Reasoning . 16

1.2.4 Inductive Proofs . 16

1.2.5 “Circular” Compositional Reasoning 17

1.2.6 Symbolic Simulation . 17

1.2.7 Completion Function Approach 17

1.3 Our Contribution . 18

1.3.1 The Framework for Combining Model Checking and Theorem Prov-

ing . 18

1.3.2 The Framework for Specializing Theorem Proving to Different Prob-

lem Domains . 20

2 Background and Related Work 25

2.1 Model Checking . 25

2.1.1 Model: Kripke Structure . 26

2.1.2 Property: Temporal Logic . 27

2.1.3 Algorithm: Iterative Fixpoint Computation 32

2.1.4 Efficient Representations: OBDD and SAT 33

2.1.5 State Reduction Techniques . 35

2.2 Theorem Proving . 36

2.2.1 Higher-Order Logic . 37

2.2.2 Gentzen Proof System . 39

2.2.3 User-Guided and Automated Proof Search 42

9

10 CONTENTS

2.3 Existing Approaches Combining Model Checking and Theorem Proving . . 44

2.3.1 Abstraction and Symmetry . 44

2.3.2 Assume-Guarantee Reasoning . 45

2.3.3 Inductive Proofs . 45

2.3.4 “Circular” Compositional Reasoning 46

2.3.5 Integration of Model Checkers into Theorem Provers 46

2.3.6 Integration of Theorem Proving Techniques into Model Checkers . 47

3 Unified Framework for Combining Model Checking and Theorem Proving 49

3.1 Model Checking vs. Theorem Proving . 50

3.2 Motivating Example . 52

3.3 Combining Model Checking and Theorem Proving 54

3.3.1 New Sequent . 54

3.4 The Logic . 56

3.4.1 Syntax . 56

3.4.2 Semantics . 57

3.5 Proof System for the First-Order Branching Time � -calculus 58

3.5.1 Inference Rules . 58

3.5.2 Cone of Influence . 68

3.5.3 Conservative Abstraction . 70

3.6 Simple Examples . 77

3.6.1 Liveness: an Unbounded Counter 77

3.7 Restriction to Linear Time � -Calculus . 80

3.7.1 Syntax . 80

3.7.2 Semantics . 81

3.7.3 Inference Rules . 82

3.8 Circular Reasoning . 83

3.8.1 Example: Token Ring . 89

4 Implementation: SyMP 93

4.1 The Generic Prover . 95

4.1.1 SyMP as a Theorem Prover Generator 96

4.1.2 Adding a New Proof System . 98

4.2 The Default Proof System . 102

4.2.1 Language Description . 104

4.2.2 The Proof Rules . 120

CONTENTS 11

4.3 The Athena Proof System . 124

4.3.1 Strand Space Representation . 124

4.3.2 Language Description . 129

4.3.3 The Proof Rules and Commands: Running Athena in SyMP 133

5 Experimental Results 137

5.1 IBM Cache Coherence Protocol . 138

5.1.1 An Approach Biased to Theorem Proving: Induction on Time . . . 139

5.1.2 An Approach Biased to Model Checking: Abstraction and Induc-

tion without Inductive Invariant 152

5.1.3 Summary . 155

5.2 Floating Point Unit Controller . 155

5.3 Athena: Experiments in Security Protocol Verification 157

5.3.1 Needham-Schroeder Authentication Protocols 159

5.3.2 Parallel Session Attack on a Simple Protocol 163

5.3.3 Public Key Distribution Protocol (Binding Attack) 163

5.3.4 ISO Symmetric Key Two-Pass Mutual Authentication 164

5.3.5 ISO Symmetric Key Three-Pass Mutual Authentication 164

5.3.6 Andrew Secure RPC Protocol . 164

5.3.7 Otway-Rees Protocol . 165

5.3.8 SSH Public Key Client Authentication Algorithm 166

5.3.9 Bluetooth Authentication Protocol 167

5.3.10 The Overall Experience . 167

5.4 Combining Presburger Arithmetic with a Bit-Vector Theory 168

5.5 Reedpipe/CProver: Verification of Embedded Software 170

6 Conclusion and Future Work 173

6.1 Conclusion . 173

6.2 Future Work . 177

A Soundness of the Default Proof System 179

B Examples of Security Protocols in Athena Input Language 185

12 CONTENTS

Chapter 1

Introduction

As hardware components become more and more complex, the task of formally verifying

them also becomes increasingly difficult. The two major verification approaches, model

checking and theorem proving, have long reached their limitations as general-purpose tech-

niques, and most of the research now is concentrated on efficient specialization of both

approaches to relatively narrow problem domains. There are a host of such special-purpose

techniques developed both in model checking and theorem proving communities that often

allow formal verification to be applicable to amazingly large and complex systems.

The never-ending growth of the complexity of modern hardware and software systems

requires more and more sophisticated methods of verification. The state space explo-

sion problem leaves little hope for automatic finite-state verification techniques like model

checking to remain practical, especially when designs become parameterized. The use

of theorem proving techniques is inevitable to cope with the new verification challenges.

“Pure” theorem proving, on the other hand, can also be quite tedious and impractical for

complex designs. Ideally, one would like to find an efficient combination of model check-

ing and theorem proving, and the quest for such a combination has long been one of the

major challenges in the field of formal verification.

Many new methodologies have been proposed to make the two techniques work in en-

semble. Observing such a wide variety of methodologies, one may even question the mere

possibility of finding a universal technique that would combine model checking and theo-

rem proving. Instead, it seems more practical to expand the collection of these problem-

specific methodologies.

The development of new methodologies is usually an iterative experimental process in

which researchers implement their ideas in a prototype tool and run several verification

examples in it. The experiments provide the necessary feedback for refining the methodol-

13

14 CHAPTER 1. INTRODUCTION

ogy and generalizing it to handle wider class of examples, or give hints on how to tune the

technique to specific applications.

Since the methodologies often use both model checking and theorem proving tech-

niques, implementing new tools becomes the main bottleneck in the their development.

In this work, we provide a new unified framework that includes both model checking and

theorem proving, and is designed for fast tool prototyping or manual but computer-assisted

testing of new verification methodologies. The tool SyMP (Symbolic Model Prover) im-

plements this methodology in a theorem prover-like environment. Moreover, the tool is in

fact a programmer’s kit for generating new, possibly highly specialized, theorem provers. It

provides a basis for the development of new tools which support emerging methodologies,

and reduces the implementation time. The architecture of the tool and the theory behind it

help to organize the new methodologies in a systematic and extensible way.

1.1 Verification Problem

Typically, a formal verification problem is a problem of proving that a design meets certain

specifications. For instance, a design of an arbiter for a shared resource has to satisfy the

mutual exclusion property (no two contenders for the resource have access to it at the same

time), which becomes the specification.

The original design may be written in some programming language like C or a hardware

description language like Verilog. For our purposes, it is not important what concrete

language is used to implement the design. However, we will often assume that the encoding

is done using variables and assignments to these variables.

In order to reason about a design mathematically, we formalize it in terms of a state

machine, or a Kripke structure: � �������	�
������
where � is a set of states, ����� is a set of initial states, and �
������� is a transition

relation. We will also refer to

�
as a model. A state ��� � in the model corresponds to

an assignment of specific values to all of the variables in the design, including the program

counter. A transition from one state to another models the execution of one program step

which updates the program counter and possibly assigns new values to some variables. The

set of initial states � is derived from the variable initialization code of the design.

The property is formalized as a logical formula � , often in some temporal logic like

CTL or LTL. The verification problem is now formally stated as a satisfiability problem of

1.2. EXISTING VERIFICATION TECHNIQUES 15

the formula � in the model

�
: � � � ���

1.2 Existing Verification Techniques

There have been quite a number of different methodologies proposed in the past few

years to help overcome the drawbacks of “pure” model checking and theorem proving.

Some techniques augment model checking with new state reductions, others provide meta-

reasoning to simplify the model before running a model checker on it. In theorem proving,

a very ubiquitous and conceptually simple technique is to add a model checker as a decision

procedure to discharge finite-state subgoals. Many other methodologies help to systematize

the proofs, so they become smaller, more manageable, and even more automatic. Yet a few

methodologies tackle the very problem of combining model checking and theorem proving

techniques at a rather general level.

Below we briefly describe some of the most common verification methodologies. Our

claim is that they can all be expressed in our new framework without any loss of generality,

and more importantly, without much loss of efficiency. The latter is a very important point

— after all, anything in formal verification can in principle be expressed in Higher Order

Logic (HOL), and therefore, done in a pure theorem proving environment. But in practice,

this often comes at a very high cost of losing efficiency. Therefore, keeping the efficiency

and the degree of automation is an important factor in our contribution.

1.2.1 Cone of Influence Reduction

Cone of Influence [BCC97] is a very straightforward but effective state reduction technique.

Before running a model checker on the model, one finds the set of variables that can po-

tentially affect the specification, and removes all the other variables from the model. The

dependency is computed by first taking the variables that directly occur in the specification,

adding to this set those variables that appear on the right hand side of the assignments to the

variables already in the set, and doing this repeatedly until no new variables can be added.

1.2.2 Abstraction and Symmetry Reductions

When the original model has symmetric components (e.g. an array of caches in a shared

memory protocol), it is often possible to reduce the number of these components by re-

ordering them dynamically [CJ95]. This way we can force the components that influence

16 CHAPTER 1. INTRODUCTION

our specification to be always some particular selected components. Since the other com-

ponents will not be important, we can then remove them from the model.

Alternatively, when the model is too large or even infinite, one may use abstraction

to reduce the size of the model [Lon93]. Some constraints are removed from the original

model and replaced by nondeterminism, making the model smaller (it has fewer constraints

on the transitions), but with “more behaviors,” so that the abstract model has more ways of

reaching erroneous states. Therefore, if a safety property is true in the abstract model, then

it must be true in the original model as well. These techniques are discussed a bit further in

Section 2.3.1.

1.2.3 Assume-Guarantee Reasoning

Assume-Guarantee Reasoning [Lon93, Pnu85] is a variant of compositional reasoning

when some properties are proven for each of the component, and then the property of

interest is derived for their parallel composition. The properties of some components are

proven under certain assumptions about other components, and then those components are

proven to guarantee these assumptions.

1.2.4 Inductive Proofs

The reduction techniques mentioned above come mostly from the model checking world.

We now discuss some of the verification techniques from theorem proving.

From the point of view of temporal specifications, there are two types of induction that

can be applied. One is induction on time, and the other is induction on the data structures.

Safety properties in theorem proving are often proven by induction on time. First, one

proves that the property holds in the initial states (the base of the induction), and then,

assuming that the property holds in some arbitrary state, one proves that all the states in

its transition image also satisfy this property (inductive step). Since the original property

is rarely inductive (not strong enough to satisfy the inductive step), it is often necessary

to strengthen the invariant before it can be proven, and this is usually the hardest and the

least automatic step in the verification. Nowadays there are a few tools that help compute

inductive invariants automatically [BLO98, GS96].

While proving properties about complex or infinite data structures, one may need to use

natural or structural induction within the current state of the system.

1.2. EXISTING VERIFICATION TECHNIQUES 17

1.2.5 “Circular” Compositional Reasoning

A combination of assume-guarantee and induction on time yields the so-called “circular”

compositional reasoning [McM98]. In some systems with tightly coupled components,

the dataflow goes back and forth among the components, and to prove the guarantees of

one module, we need to assume some properties about the other, and vice versa. The

classical assume-guarantee rule does not work in this case, since we cannot break the cyclic

dependency. However, we can require that the assumptions about the other components be

considered only up to time � while proving the property at time ����� . The base of this

induction is, as usual, to show that all the guarantees are satisfied at time � ��� , and then

the actual assume-guarantee reasoning proves the inductive step.

1.2.6 Symbolic Simulation

Symbolic simulation [BD94, Gre98] is a method of “running” a hardware device or a soft-

ware program with symbolic inputs (terms) instead of concrete bit values. The result is a

term built from these inputs and functions that the design applies to the inputs when it exe-

cutes. The concrete functions in the design are often replaced with uninterpreted functions,

both for efficiency and generality. Interpretations of the resulting term represent possible

outputs that the device may produce. The properties of interest are then proven directly on

the result term, usually automatically, using decision procedures for uninterpreted functions

with equality like SVC [BDL96].

1.2.7 Completion Function Approach

If the above methods are generally applicable to virtually any type of a model, the method

of completion functions [HSG98] has been developed with the focus on pipelined and

superscalar microprocessors. The idea is to prove the Burch and Dill commutative dia-

gram [BD94] using special user-defined function that computes the state of the micropro-

cessor after flushing it from the current state. When these functions are simpler than the

direct flushing of the machine, the verification can be done much easier. However, the user

has to provide the completion functions manually, and these functions must be proven to

be equivalent to the direct flushing, which is an additional overhead of the method.

18 CHAPTER 1. INTRODUCTION

1.3 Our Contribution

Our contribution to the field of formal verification is two-fold. First, we have developed a

framework for combining model checking and theorem proving in such a way that one does

not dominate the other, and all of the main advantages of both techniques are preserved.

The resulting system, therefore, has the same expressive power as a theorem prover, but at

the same time enjoys the same degree of automation and speed as the state-of-the-art model

checkers for finite-state part of verification. In addition, many powerful transformations can

now be included into the system that were not directly present in any “pure” model checker

or theorem prover, such as induction on time or various types of abstraction.

Second, we have extended the notion of theorem proving from its traditional role in

formal verification to a more abstract one which allows us to specialize it very efficiently

to a wide range of specific problem domains. In particular, the framework for combining

model checking with theorem proving becomes one such specialization. We have also built

a tool called SyMP [Ber01] (stands for Symbolic Model Prover) that supports this exten-

sion of theorem proving and, in effect, is a theorem prover generator, or a programmer’s

kit that simplifies the task of building new theorem provers for various specific problem do-

mains. To date, this tool has been tested on four problem domains: combination of model

checking and theorem proving for hardware verification, security protocol analysis using

the Athena [SBP01] approach, verification of C programs in the Reedpipe/CProver proof

system implemented by Daniel Kröning, and an emerging combination of Presburger arith-

metic with a bit-vector theory based on Verilog operations. Also, the Analytica [CZ92]

theorem prover, originally implemented in Mathematica, will be re-implemented as yet

another proof system in SyMP.

1.3.1 The Framework for Combining Model Checking and Theorem

Proving

A model checking problem is a problem of verifying that a formula � holds in a model

�
:� � � � �

where

�
represents the design and is usually finite, and � is the desired property of this

design expressed in a temporal logic like CTL or LTL. Model checking techniques are

based on the exhaustive state traversal of the model, and are often automatic and very effi-

cient. The efficiency comes from the use of compact data structures like OBDDs [Bry86]

1.3. OUR CONTRIBUTION 19

(Ordered Binary Decision Diagrams) to represent the model, and powerful reduction tech-

niques to prune the search space. However, model checking is largely limited to finite

models and propositional formulas.

A theorem proving problem, on the other hand, is a problem of checking the validity of

a formula � , that is, � must hold in every model. The logic is often much more expressive

than propositional temporal logic, and the properties over infinite domains can be easily

expressed. A theorem proving problem is solved by finding a proof of the formula (which

is then called a theorem) in a proof system.

In order to use theorem proving, we need to translate our verification problem into a the-

orem proving problem. This entails encoding both the design and the (possibly temporal)

specification into the logic of a theorem prover.

Since many theorem provers use higher-order logic (HOL), the expressive power of the

approach is virtually unlimited. In practice, however, the required expertise and the amount

of manual guidance in finding a proof may become prohibitively high.

In our framework, we attempt to strike the balance between the expressiveness of theo-

rem proving and efficiency and automation of model checking. In our opinion, one of the

major bottlenecks in theorem proving, and the reason for success in model checking, is the

representation of the problem. In case of model checking, the problem corresponds very

closely to the verification problem (design becomes the model, property is rewritten as a

formula), while in theorem proving a non-trivial translation is required, which may destroy

crucial information about the design structure. Therefore, taking the efficient representa-

tion ideas from model checking and incorporating them in theorem proving promises to

yield a more powerful hybrid approach, which we call model proving.

To put it simply, our framework is a theorem prover based on a special-purpose proof

system. Since the problem we are solving involves a complex model and a usually rela-

tively simple property, the sequent in this proof system includes the model explicitly, and

otherwise can be thought of as a Gentzen sequent. In its simple version, it can be written

as follows: �
��� ��� � �

where

�
is the model, � is the set of assumptions (first-order CTL, LTL or � -calculus

formulas), and � is the set of conclusions.

The inference rules include all the rules similar to the ones in the classical Gentzen

proof system for the higher-order logic, and contain additional rules that operate on the

model and the modal operators of the logic. For example, model checking as a decision

20 CHAPTER 1. INTRODUCTION

procedure can be introduced as a rule:
��� � � ��� � � � � ���	��
�� ��� ��� �

��� �
where

��� � � ��� is a function that runs a model checking engine and reports whether

�
satisfies � . Since the model is explicitly present in the sequent, there is no need to extract

it from the formulas, as does, for instance, the PVS prover [SOR93]. Also,

�
is stored

in the sequent in a convenient and efficient representation, and in particular, may preserve

structural information that can be exploited to make the proof construction easier and more

automatic. A simple example of such a use would be the cone of influence reduction, which

again is just another rule in our proof system:
� � ����� � � � ��� � � ���

� � ��� ��
��� ��� � ������� �

Here
����� � � �� computes the set of variables in the cone of influence of all formulas in , and then the model is restricted to only those variables.

The advantages of such a system are not only in the fact that model checking and the-

orem proving can be used at the same prompt. The proof rules can now be constructed

specifically for the transformations that one uses most often in hardware verification. Be-

sides the model checking procedure and the cone of influence reduction (which are already

atomic rules at this point), we can add various abstractions, case splitting, circular reason-

ing, and many others as atomic rules. Now, when the user outlines the verification plan

for his example, he can then simply apply the appropriate rules that correspond one-to-one

to the high-level steps in the outline on the paper. This means the verification itself can

be done on a higher level, the proofs get simpler, and more low-level steps are performed

by the tool automatically inside the high-level rules, compared to the traditional theorem

proving.

The proof system that we actually use has many other powerful proof rules, a slightly

more complex sequent, and it operates on full branching time and linear time � -calculus.

The rigorous definition of this proof system is in Chapter 3.

1.3.2 The Framework for Specializing Theorem Proving to Different

Problem Domains

As we have already mentioned, most of the advances in formal methods are done by de-

signing new verification methodologies for specialized problem domains. Often, these new

1.3. OUR CONTRIBUTION 21

methodologies are based on existing, “traditional” approaches and corresponding tools. In

practice, however, the available techniques and their implementations often present intrin-

sic problems that significantly slow down the development of new verification methods.

These problems stem mostly from the artificial standards imposed on researchers in both

model checking and theorem proving by various factors ranging from the stereotypes in the

foundations to implementation artifacts in the tools.

If we take one more look at the previous Section 1.3.1, the reason we can achieve a

combination of model checking and theorem proving is quite simple in its root: we use

a custom sequent and a specialized proof system for our specific problem domain, as op-

posed to using an “all-in-one” proof system of an off-the-shelf general purpose theorem

prover. A natural question arises whether we can apply a similar approach to other problem

domains than hardware verification. While designing the architecture of our tool SyMP, we

conjectured that allowing the tool to work with arbitrary sequents and proof systems would

greatly increase it versatility.

To test this conjecture, we have developed a general purpose prover generator kit that

takes a data structure for the sequent and a proof system as a parameter, and generates an

interactive theorem prover with a user interface (Emacs) and proof management (keeping

track of the proof tree, editing the proof, automated proof search using strategies, etc.).

Our first proof system, of course, was the one described above for combining model

checking and theorem proving, which fits very nicely in the framework. But for testing

our conjecture, we needed at least one more example of some clearly different problem

domain. We picked security protocol verification, since it is about as far from hardware

verification as one can get in formal methods, and, moreover, it has very little to do with

traditional notions of theorem proving and model checking. If this problem domain can be

efficiently implemented in our tool, then most likely many other domains not as alien to

theorem proving have a good chance of finding their place in SyMP too.

Our proof system of choice for security protocols became Athena, a verification method-

ology originally developed by Dawn Song [Son99] based on the strand space model [THG98b,

FHG98, THG99], and later reformulated in our joint work as a specialized proof sys-

tem [SBP01]. Athena implementation in SyMP was developed quite fast (about 2 person-

months total of actual effort), and the result was a very efficient automatic theorem prover

highly specialized to security protocols, and with an option of interactive user guidance

with a convenient interface. The automatic proof search is comparable in speed and effi-

ciency to the original implementation of Athena by Dawn Song up to some constant factor

due to the overhead for the proof management and the interactive user interface. We will

22 CHAPTER 1. INTRODUCTION

talk more about the implementation itself in Section 4.3, and the experimental results ob-

tained using it are in Section 5.3.

We believe that the success of our implementation of Athena strongly supports our

conjecture that theorem provers parameterized by customized proof systems can be much

more versatile and efficient than conventional ones, that is, those based on a fixed and

very expressive logic like HOL. The implementation of two more proof systems, Reed-

pipe/CProver for the verification of C programs and Bitvector that combines bit-vector

theories with Presburger arithmetic, also show a lot of promise. Another proof system

Analytica [CZ92] is also emerging, which was originally a stand-alone theorem prover im-

plemented in Mathematica and specialized in elementary analysis.

The notion of a special-purpose proof system is, of course, not new and has been studied

in the field of Automated Deduction quite extensively, resulting, in particular, in a creation

of Logical Framework [Pfe99b, Pfe99a, PS99, Pfe94]. Logical framework (LF) can be

viewed as a way to specify the sequent and the inference rules of a user-defined proof

system, and letting a tool search for proofs automatically, or build a custom theorem prover

for this proof system.

The difference between our approach and LF is that LF provides the user with a fixed

meta-language for defining the proof system, and usually has limited expressive power (on

purpose) to ease the automated proof search and make use of certain theoretical results

that apply to such a language to increase the efficiency. The fixed and restricted meta-

language is often expressive enough for various forms of the first- or higher-order logic or

similar formalisms, but can be quite restrictive in many other problem domains. In fact, at

least two of our proof systems (model checking + theorem proving and Athena) cannot be

efficiently expressed in LF. In case of Athena, the sequent is essentially a graph of a special

form representing the set of runs of a security protocol, and proof rules are rather complex

transformations on this graph. Since LF is mostly targeted at proof systems where inference

rules contain only relatively simple formula templates, encoding an arbitrary graph, and

especially manipulating it efficiently in LF is a challenging, if at all a feasible, task.

In contrast to LF, we let the proof system developer use the full power of SML (general-

purpose programming language and the implementation language of SyMP) to express his

or her sequents and rules. The result is, perhaps, not as automatic a prover as it can be with

LF, but it is much better customized to the problem domain and has an interactive mode

which is invaluable for designing verification methodologies in the new fields, where the

only available approach is by trial and error. Implementing a proof system in our framework

might be more difficult than in LF, since it is done on a lower level, but the advantages of

1.3. OUR CONTRIBUTION 23

the resulting tool are often worth it, as we have seen from our experience in developing the

four proof systems.

24 CHAPTER 1. INTRODUCTION

Chapter 2

Background and Related Work

Below we briefly describe the theory of model checking, theorem proving, and some well-

known approaches to their combination. The main purpose of this chapter is to introduce

the notation used throughout the document, and make the document more self-contained.

2.1 Model Checking

In general, a model checking problem is a problem of checking whether a given model

satisfies a given property: � � � � �
Normally, the model

�
represents a design, and the property � formalizes its correctness

criteria. Traditionally, model checking has focused mostly on automatic decision proce-

dures for solving its verification problem. Therefore, to guarantee termination, the model

is often restricted to a finite state transition system, and properties are expressed in a propo-

sitional temporal logic like CTL or LTL, for which finite-state model checking is known to

be decidable.

It is important to understand that model checking problem is not limited to finite state

systems or propositional logics. In fact, most of our results in the later chapters will deal

with infinite state or parameterized model checking problems. Having said that, we are now

going to define formally all of the notions mentioned above in the context of traditional

finite state model checking.

25

26 CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.1 Model: Kripke Structure

A Transition System, or a Kripke Structure, is a tuple� � ��� � � � � ��� � ��� � �
where

� � � is a non-empty set of states;

� � � � � � � � � is a transition relation. When a pair of states � � ��� belongs to �
(denoted � ���), we say that � has a transition to � ;

� � � � � � is a set of initial states;

� and � ���
	 � ���� is a labeling function which labels states with atomic proposi-

tions from the set 	 . We postpone the discussion of the labeling function to the next

subsection.

We often omit � � in the model when its definition is clear from the context. For instance,

when atomic propositions are defined using predicates (equalities, arithmetic comparisons,

etc.) on state variables, the labeling function � � is implicitly derived from the semantics

of these predicates.

In the sequel, we will often use the terms model, transition system, and Kripke structure

interchangeably.

Definition 2.1.1. Transition relation � � in a model

�
is called total if for every state

� � � � there is (possibly the same) � � � � such that � � � � . That is, every state in the

model has an outgoing transition.

Later, in the definitions of CTL and LTL we always assume that the transition relation is

total. The semantics for these logics will be undefined for models with non-total transition

relations.

Definition 2.1.2. A path in

�
is a finite or infinite sequence of states � � ��� � ��� � � � � such

that for every ��� � , ��� � �����
� .
We denote individual states of � by their subindices: for instance, ��� is the first state

of the path. A superindexed path � � denotes a suffix of � that starts at ��� . In particular,

� � � � .

2.1. MODEL CHECKING 27

Definition 2.1.3. A state � is called reachable in

�
, if there exists a finite path � in

�
such that ��� � � � , and the last state of � is � . In other words, there exists a path from some

initial state to the state � in

�
.

In practice, transition systems are often described using special input languages that

resemble conventional programming languages (e.g. SMV [McM93]). The values of

program variables �� � � � � � � � � � ��� determine the current state of the system: � ���� � � � � � ��� � . Hence, the set of states � is a Cartesian product of the variables’ ranges,

or types: � ��� � �
	�	�	 ��� � . The set of initial states is defined by assigning initial values to

some of the variables:

init(� �) := � � ,

and the transition relation is represented by the next state assignments of the form

next(� �) := � � (��).
All such assignments are “executed” concurrently, and this way the system transitions to

the next global state.

One of the advantages of such a language is that it is straightforward to generate a

propositional formula
 � �� � ���� representing the transition relation:

 � �� � �� � �
�
�
���
�
� � �� � � � � �� �

The actual transition relation is the set of pairs of states satisfying this formula. The same

holds for the set of initial states.

2.1.2 Property: Temporal Logic

The properties of transition systems are expressed in temporal logics, most often in propo-

sitional CTL or LTL, and sometimes in � -calculus. We first introduce the logics CTL and

LTL, then define branching and linear time versions of � -calculus, and show how CTL and

LTL can be expressed in it. Later, we will use the appropriate version of � -calculus for

theoretical definitions and theorems, and CTL and LTL as a syntactic sugar in the actual

specifications for real systems.

In all of the logics, the atomic formulas are the atomic propositions from 	 . Each state

� in a model

�
has a set of atomic propositions � � � that are true in this state, where � is

28 CHAPTER 2. BACKGROUND AND RELATED WORK

the labeling function of

�
; all the other atomic propositions are false in � . For example, in

an SMV-like language an atomic proposition � ��� will belong to � � � for those states �
where the state variables � and � are assigned the same values.

All logics also have a common set of propositional connectives:

� � � � ��� ��� ��� ��� ��� � � � � ��� �
Here and below � , � � , and �	� are always assumed to be formulas from the appropriate logic.

Below we define only those constructors that are different for different logics, namely, the

temporal and fixpoint operators.

The formulas of all temporal logics are interpreted over sets of states where they are

true. For each logic, we define the semantic function

 	�� � � � ������ ��� �����������
 � ��� ��� � � � �� � � �

that assigns to each formula � the sets of states

 ��� � �! where it is true. This function will

have an additional environment argument � � �"� � � � for � -calculus, which assigns

interpretations to propositional variables. Since CTL and LTL do not have propositional

variables, their semantics does not depend on , and we omit it from the definition. We will

also often omit the model from the subindex when the model is unambiguously understood

from the context.

When we need to say that a formula � holds in a particular state � , instead of writing

� �

 ��� � � we sometimes will use another common notation:� � �
� � � �

Since including the environment in this notation is a bit cumbersome, we use it only for

CTL, LTL, and closed � -calculus formulas (those that do not contain free propositional

variables). A variant of this notation is � � � � �
which means that � holds in all the initial states of

�
. In this case, we say that � holds in

the model

�
.

Linear Time Temporal Logic: LTL.
# � Next time operator$ � “Always true” operator (or “Globally”)% � “Eventually true” operator (or “in the Future”)� �'& ��� “Until” operator� ��(�	� “Release” operator

2.1. MODEL CHECKING 29

The validity of formulas in LTL is originally defined on a path rather than on an indi-

vidual state, and we say that an LTL formula � holds in a state � iff � holds on all paths

� starting from � (denoted as

� � �
� � � , or just �

� � � , when

�
is understood from the

context). We only define the semantics of LTL formulas for models with total transition

relation, so every path is essentially an infinite path. Formally,

 ��� � � ��� �
���
� � ��� � � �

� � �
� � ��� �

The relation

� � �
� � � defines the semantics of LTL:

if � � 	 , then

� � �
� � � iff ��� � � � � �	� � �

� ��� � iff

� � � �
� � �� � �

� � $ � iff

�
��� � �

� � � �
� � �� � �

� � % � iff � ��� � �
� � � �

� � �� � �
� � � �'& �	� iff � ��� � �

� � � �
� � ��� and

�
�
	��� � �

� � ���
� � � �� � �

� � � � (�	� iff � ��� � � �
� � ���

� � �	�
� � � ��� � �

� � � �
� � � � and

�
��	���	 � �

� � ���
� � ���� .

Intuitively,
� means that on a given path � , the formula � must hold in the second

state of this path � � (remember that the first state is �
�); $ � means that � holds everywhere

along the path � , or more formally, on every suffix of � . The “until” operator � ��& �	� means

that there is a point along � where � � holds, and everywhere before that � � must hold. It

is important that �	� must eventually hold, otherwise the entire until operator does not hold.

After the point where ��� holds for the first time, the validity of both subformulas does not

influence the validity of the entire formula. The dual of the “until”, the “release" operator� ��(��� means that �	� must hold along the path until and including the moment when � �
becomes true; in other words, � � releases �	� from having to hold on the rest of the path.

Notice, that unlike in the “until,” � � may not hold anywhere on the path, in which case � �
will have to remain true forever.

Branching Time Temporal Logic: CTL.
� # � , � # � Next time operators� $ � , � $ � “Always true” operators (or “Globally”)� % � , � % � “Eventually true” operators (or “in the Future”)�
 � �'& ����� , �
 � �'& �	� � “Until” operators�
 � ��(�	� � , �
 � � (�	� � “Release” operators

The first letter in the CTL operators denotes a path quantifier, and is understood as for

all paths (A) or there exists a path (E). The second letter is an operator on the path with

30 CHAPTER 2. BACKGROUND AND RELATED WORK

the same meaning as in LTL. The interpretation of CTL formulas is defined directly on the

set of states, but we also use the notion of a path. Similarly to LTL, we only define the

semantics for the models with total transition relation.
if � � 	 , then

� � �
� � � iff � � � � � � � � �

� � � # � iff

�
� � � � � � � � implies

� � � �
� � �� � �

� � � # � iff ��� � � � � � � � and

� � � �
� � �� � �

� � � $ � iff

�
� �
�
��� � � ��� � � implies

� � ���
� � �� � �

� � � $ � iff � � �
�
��� � � ��� � � and

� � ���
� � �� � �

� � � % � iff

�
� � � ��� � � ��� � � implies

� � ���
� � �� � �

� � � % � iff � � � � ��� � � ��� � � and

� � ���
� � �� � �

� � �
 � ��& �	��� iff

�
� � ��� � � implies � � � � �

� � ���
� � ��� and

� � � �
� � � �

� � � �� � �
� � �
 � ��& �	��� iff � � � ��� � � and � ��� � �

� � ���
� � ��� and

� �� � �
� � � �

� � � �� � �
� � �
 � ��(�	� � iff

�
� � ��� � � implies �

���
�

� � ���
� � ���

� � � � � � �
� � � �

� � � � and

� ��	 � �
� � � �

� � �	� � � �
� � �
 � ��(�	� � iff � � � ��� � � and (

���
�

� � � �
� � ����

� � � � � � �
� � � �

� � � � and

� ��	 � �
� � � �

� � �	�
Branching Time � -calculus.

� � , � � Next time operators

� � � � , � � � � Fixpoint operators; � is positive w.r.t. �
The next time operators are exactly the same as the ones in CTL:

� � corresponds

to
� # � , and � � — to � # � . The fixpoint operators define the least and the greatest

fixpoints (� and � respectively) of the predicate transformer induced by � over � . There is

additional syntactic restriction on fixpoints: the formula under the � or � operator must be

positive w.r.t. � , that is, � must appear in the scope of even number of negations in � . We

now define the semantics formally, and then give more intuition about all the notions in this

paragraph. The semantics is defined on any model, so the transition relation does not have

to be total. This time, we use the set notation for the semantics with the extra environment

parameter

 	 � � �! :

if � � 	 , then

 ��� � �! � � � �

for � ��� (prop. variable),

 ��� � �! � � �

 � � � � �! � � �
���
� � � � � � � � implies � � �

 � � � �! �

� � � � � � � �

�

��� � � � � � � � and � � �

 � � � �! �

� � � � � � �! � � ��� �
���

 ��� � �!
 �
	 � � �

� � � � � � �! � � ��� �

� �

 ��� � �!
 �
	 � � �
The predicate transformer �� � � � � � � mapping sets of states to sets of states is

2.1. MODEL CHECKING 31

defined as follows:
� ��� � �

 � � � �!
 � 	 � ���

where

 �
	 � � � � � � � if � � �
 � � otherwise �

A fixpoint of a predicate transformer � is a set of states � such that � � � � � . The

least fixpoint ��� is a fixpoint such that for any other fixpoint � , ��� � � . Similarly,

the greatest fixpoint ��� is a fixpoint such that for any other fixpoint � , ��� � � . If � is

monotone w.r.t. set inclusion, that is, � � � � � � � � �� whenever � � � � � , then by Tarski’s

theorem [Tar55] there exist the least and the greatest fixpoints of � , and they are equal to

the following sets:
��� �	� ��� �

� � � � � � �
��� ��
 ��� �

� � � � � � �
It is not difficult to show that when � is positive in � , the induced predicate transformer is

monotone, therefore, both fixpoints always exist for any well-formed � -calculus formula.

When the transition relation is total, CTL operators can be expressed in branching time

� -calculus as follows:

� $ � � � � � � � � �
� $ � � � � � � � � �� % � � � � � � � � �
� % � � � � � � � � ��
 � ��& �	����� � � � ��� � � � ��� � �

�
 � ��& �	����� � � � ��� � � � ��� � � �
 � ��(�	� ��� � � � ��� � � � � � � �
�
 � ��(�	� ��� � � � ��� � � � � � � �

We leave out the proof of these equalities as they are well-known in the literature. The

consequences of being able to express CTL in the branching time � -calculus are that any

theoretical result obtained for the � -calculus will be automatically valid for CTL. Since

� -calculus is more expressive than CTL and has a simpler syntax, we will use it for most

of our theoretical results, and then use those results for CTL without further explanations.

Furthermore, we exploit the duality of the temporal and fixpoint operators, also widely

32 CHAPTER 2. BACKGROUND AND RELATED WORK

known in the formal verification area:

� � � � � � � � � � � � ��� � �
� � � � � � � � � � � � ��� � �

� � � � � � �
� � � � � � � �

The linear time � -calculus is almost never used in model checking, and we postpone its

definition till Chapter 3, where we also introduce a more expressive version of � -calculus

and show how LTL can be expressed in it.

2.1.3 Algorithm: Iterative Fixpoint Computation

Most approaches to finite-state model checking hinge on the simple but efficient algorithm

for computing fixpoints of predicate transformers, and therefore, are best suited for branch-

ing time temporal logics. As we have seen in the previous section, we only need to compute

the least and the greatest fixpoints to evaluate the corresponding operators in the branching

time � -calculus; the algorithm for evaluating CTL formulas can be derived from those. If

fact, due to the duality between the fixpoints, we only need to provide an algorithm for

computing one of them, and the algorithm for the other one can be derived from that. For

the purpose if this section, we assume that the model

�
is finite; that is, set of states � , and

hence, � and � , are finite sets.

Given a monotone predicate transformer � , we now show how to compute the least

fixpoint ��� for it. The algorithm computes a series of approximations � � � � � � � � � � � �
until � � � � � �
� , and we will show that � � � � � :

� � � �

� � � � � � �
...

...
� � � � � � ��� � �

First of all, let us show that the algorithm terminates. Since
� � � � � , and hence, � � � � � ,

by monotonicity of � we have that � � � � � � � � � , that is, � � � � � . Assuming that
� � � � ���
� holds for some � , using the same argument we can show that � � �
� � � ��� � , and

by induction, � � � � ���
� for any � . In other words, the series of � � ’s is a non-decreasing

sequence of sets. Since the set of all states � is finite, we cannot have an infinite strictly

increasing sequence of � � ’s, and the algorithm will terminate after at most � �
� � � steps.

2.1. MODEL CHECKING 33

Since � � � � � �
� � � � � � , the set � � is a fixpoint of � , and we only need to show that it

is the least fixpoint.

Suppose there exists another fixpoint ��� of � . Since � � � �
, we have � � � ��� .

By monotonicity, � � � � � � � ��� , and since ��� is a fixpoint, we then have � � �
��� .
Repeating this argument enough times (that is, by induction on the length of the sequence),

we have that � � � ��� , and since ��� was an arbitrary fixpoint of � , we have proven that
� � is the least fixpoint.

The algorithm for computing the greatest fixpoint can be either derived from the duality

relation, or obtained from the algorithm above by starting the iteration from the set of all

states � instead of the empty set. The proof of its termination and correctness is exactly the

same as for the least fixpoint.

2.1.4 Efficient Representations: OBDD and SAT

The biggest limitation of finite state model checking has always been the state explosion

problem. If the model

�
is represented explicitly as a transition graph, then the size of the

model is limited to the number of states that can be stored in the computer memory, which

is a few million states with the current technology. This means that one cannot reliably

apply this technique to designs with more than 20-30 binary state variables. To increase

the size of the model, more efficient state representations can be used such as boolean

formulas. Model checking is then done by manipulating these formulas using Ordered

Binary Decision Diagrams (OBDDs, or just BDDs) or SAT solving techniques.

We first show how to represent a finite model

�
using boolean formulas, describe the

representation of boolean formulas by BDDs, and then discuss SAT procedures that work

directly on the boolean formulas.

Boolean Formulas.

First, observe that the iterative algorithm in Section 2.1.3 never refers to individual states

of

�
, but only to sets of states. Any set of states � can be characterized by a predicate

on states: ��� � � � � , where � � �	�	��
���	��
��� � � , so that � � � �
�

��� � � � . If we

enumerate all the states in � in binary and assign the corresponding bit vector representation� � � � � � � � ��� to each of the states in � , we can then represent ��� as a boolean formula that

depends on the boolean variables � � . For example, if we have only 4 states in � , we can

represent them using 2-bit vectors: � � � � , � ��� � , � � � � , and � � � � . A predicate for a set
� ����� � � � � � � � � � is ��� � � � � � ���� � � .

34 CHAPTER 2. BACKGROUND AND RELATED WORK

A transition relation, as any other binary relation, is a set of pairs of states, and there-

fore, can also be written as a predicate on two states: � � � � � � . When boolean vectors are

used for states, � can be characterized by a boolean predicate � � � � � � � � � ��� � � � � � � � � � � �� .
As usual, if there is a transition from � to � � , then � � � � � � � �	��
 � . For instance, a transition

relation for our little 4-state model could be

� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � �
That is, from both states � � � � and � � � � there is a transition to � � � � , and from the other

two states there are transitions to � ��� � and � � � � .
Given the predicates for sets of states � , � � and � � , it is easy to construct predicates for

their complement, union, and intersection: � � , � ��� � � , and ����� � � . A bit harder problem

is to construct a preimage � ���
� �� of a set given by � w.r.t. the transition relation � :

� ���
� �� � � � � � � � � ��� �� � � � � � � � � � � �� ��� � � � � � � � � ��� � � � � � � � � � � �� � � � � � � � � � � � � �� �

The preimage is needed to compute the set of states for the next state operator � � . The

interpretation of
� � can be computed using the duality rule with � . Although this formula is

not directly propositional, it can be transformed into a propositional formula by expanding

the quantifiers as follows: � � � � � � �� � � � �
 �� � � � ��
��� �� .
OBDDs.

In the fixpoint algorithm, we must be able to compare two sets of states for equality; in

other words, we need a way to tell whether two boolean formulas are exactly equivalent

or not. One way to achieve this is to use SAT procedures, and we will talk about it later.

But there is a more efficient way to do this if we use a canonical representation for boolean

formulas: Ordered Binary Decision Diagrams, first discovered by Bryant [Bry86], and then

applied to model checking by McMillan [McM93].

The easiest way to think about a BDD is as a finite automaton 	 over the binary alpha-

bet �	� �
 � ���
��� � � � and the language of this automaton is a set of � -bit strings: � � 	 � � � .
Such a language represents a set of states � , where each state corresponds to its boolean

vector. It is well-known that any finite automaton can be reduced to a unique minimal au-

tomaton, and operations like complement, union and intersection can be performed directly

on finite automata. Since our automata will always be acyclic, and the order of bits will

always be the same, we exploit this fact to make the representation even more compact: if

both transitions from an automaton state � labeled �	��
 � and ��
 � � � lead to exactly the same

new state � � , then � can be removed and all its incoming transitions redirected to � � . Of

2.1. MODEL CHECKING 35

course, we need to be careful to remember that one bit is omitted when transitioning to � � ,
and we associate the automaton states with the boolean variable name � � from the Kripke

structure’s state encoding that must be accepted next. Now, if we transition from � � marked

by � � to � � marked by � � , and ��� � � � , then we skip ��� � � � bits in the input string as

if the automaton has read them and not rejected the string so far. This additional reduction

does not destroy the canonicity property of the minimal automaton.

Such a minimal automaton with the additional reduction is called an Ordered Binary

Decision Diagram. Because of the canonicity property, it is easy to test two BDDs for

equality, and all the necessary set operations can be performed directly on BDDs, including

the preimage computation, which is basically done by a variant of quantifier expansion.

SAT decision procedures.

Although BDDs have been extremely successful in pushing model checking capabilities as

far as to handle small industrial hardware designs, they still suffer from the state explo-

sion problem when the number of state bits becomes larger than a few hundreds. Since

BDDs is a canonical representation of boolean formulas expressive enough to solve the

boolean satisfiability problem (which is NP-complete), the size of BDDs must inevitably

be exponential, assuming P �� NP. In fact, it is provably exponential for some functions, for

instance, the middle bit of the output of an � -bit multiplier.

Unlike BDDs, the direct representation of the model as boolean formulas does not suf-

fer from the space explosion, but is not canonical and requires additional efforts to check

for equivalence of formulas. Modern state-of-the-art SAT solvers like Prover [SS90],

Grasp [SS96], SATO [ZS94], Chaff [MMZ � 01], and many others can handle formulas

with thousands, or even tens of thousands of boolean variables, and for certain classes of

problems greatly outperform BDDs.

2.1.5 State Reduction Techniques

Despite several breakthroughs in the efficient state representation, direct model checking

has not been able to go far beyond several hundreds, or in some cases, thousands bits of state

variables. Clearly, this is still very far from the size of real industrial designs with millions

of gates. To be able to apply model checking to larger designs, state reduction techniques

are used that exploit some features of the model, the properties, or the problem domain

to reduce the state space to a tractable size. Examples include various BDD tricks like

partitioned transition relation, dynamic variable reordering, general techniques like cone

36 CHAPTER 2. BACKGROUND AND RELATED WORK

of influence reduction, symmetry, abstraction, problem-specific techniques, e.g. when the

original design is rewritten in a simpler way, omitting the irrelevant details, but preserving

the important behavior for the property being verified.

2.2 Theorem Proving

Unlike in model checking, theorem proving solves the general validity of a formula, or a

problem of whether a formula � holds in all models:
� � � �

Theorem proving utilizes the proof inference technique in some proof system for solving

this problem. First, the problem itself is transformed into a sequent, a working represen-

tation for the theorem proving problem. The simplest sequent used in natural deduction

is just ��� , corresponding directly to the problem we are solving; but in general it can be

more complex. We say that a sequent holds when it satisfies its intended semantics. For

example, ��� is derivable in natural deduction only if the formula � holds in any model.

A proof system is collection of inference rules of the form:

� � 	�	�	 � �� � ��� � �
where

�
is a conclusion sequent, and � � ’s are premisses sequents. The meaning of an

inference rule is, if all the premisses are derivable, then the conclusion is guaranteed to

hold. This should not be confused with implication, where we assume some formulas and

prove some other formulas true under those assumptions. In the case of the inference rule,

the sequents in premisses must actually hold (that is, be provable), not be assumed to hold.

Some inference rules may have no premisses, in which case their conclusion automati-

cally holds. Such rules are also called axioms, and they are the only means to complete the

proof derivation.

A proof of a sequent is a derivation tree (or a proof tree) whose nodes are sequents,

the root being the sequent to be proven (also called a theorem), and for each sequent in

the tree, all of its children are premisses of some inference rule in which that sequent is a

conclusion. A proof is complete when each sequent in the derivation tree has an associated

inference rule. Note, that the leaves of the tree must have associated axioms, or inference

rules without premisses.

There are two ways of building a derivation tree: bottom-up, and a “direct”, or a top

down method. In the direct method, the derivation tree is built from the axioms down to

2.2. THEOREM PROVING 37

the original theorem. Since it is often hard to tell what axioms and rules need to be used,

this approach is usually used in automated provers. The bottom up method starts with the

theorem as a current subgoal, and then inference rules are applied to the current subgoals,

generating new subgoals (that is, the conclusion of a rule is matched with a current subgoal,

and the corresponding premisses become children of the subgoal in the derivation tree, and

new current subgoals). This approach is more intuitive to the user, and is often preferred

in interactive provers. Below we will only use the bottom up method for building the

derivation trees.

A proof system is sound when the fact that all premisses are valid indeed (semantically)

guarantees that the conclusion holds. Soundness is an essential property of a proof system,

and it is clear that without this property a complete proof cannot guarantee that the “proven”

theorem is actually true. Soundness is often proven for each rule separately, but in some

cases it requires the knowledge of all the other inference rules.

A proof system is called complete when any valid sequent has a proof in the proof sys-

tem. This property is always a global property of the proof system, and is usually impor-

tant only for decidable or semi-decidable logics. When the problem becomes undecidable,

completeness, if can be achieved at all, is often only of academic interest. For some proof

systems, it may be even hard to formulate a meaningful criteria for completeness.

An inference rule is called invertible when all the premisses hold if and only if the

conclusion holds. Invertibility is a useful property to have for automatic proof search.

Since normally premisses are simpler than the conclusion, it often makes sense to apply

all the invertible rules as many times as they can be applied, transforming the original

theorem into a set of simpler subgoals, which all together are equivalent to the original

theorem. In particular, if one of such subgoals is proven false, then the original theorem is

guaranteed to be false. This can be an invaluable feature of the proof system for providing

counterexamples.

2.2.1 Higher-Order Logic

Traditionally, the logic used in theorem proving is the classical (or sometimes intuitionistic)

First- or Higher-Order logic (FOL and HOL respectively). Some other kinds of logics are

also used, but since all of them can be expressed in the higher-order logic, the latter is used

much more often as a general property language.

38 CHAPTER 2. BACKGROUND AND RELATED WORK

Syntax.

� � � � � � � � � � � Atomic formulas: predicates over terms
� � , � ��� ��� , � ��� ��� , � � � �	� , etc. Propositional connectives�

� � � , � � � � Quantifiers over (object or predicate) variables

The terms in atomic formulas are defined as follows:

� � � Constants, object variables

� � � � � � � � � � � � -ary functions applied to terms

Terms are interpreted over some object domain
�

(that is, each term has a value in
�

).

Constants can be considered as 0-ary functions, ones that do not take any arguments.

In the first-order logic, the quantified variables must always be object variables; that

is, in

�
� � � , the variable � can only be used as a term in � . The higher-order logic allows

quantified variables to be used as functions and predicates, and also allows predicates to

have functions and other predicates as arguments.

In order to avoid paradoxes (like � � � � � � � , “there exists a set which does not belong to

itself”), all terms in the higher-order logic are often required to be well-typed. The simplest

type system would be a lattice of sets with the minimum element
�

, and the other types

constructed as Cartesian products and functional types over other types. For instance, a

type of a binary function � � � � � � �� over object terms is � � � � � � �
, and a binary

predicate over this function and another object term has a type � � ���������
	������� . We write
� � � , or � � � , to denote the type of a term � .

Semantics.

The model

� � � � ��� for a first- or higher-order logic formula consists of an interpre-

tation � of all the free symbols (those that are not bound by the quantifiers). The object

variables and constant symbols are interpreted as values from the object domain
�

(or

values of the appropriate types for the HOL), predicate symbols are interpreted as sets of

tuples of the values of their arguments, and function symbols are interpreted as functions

over the interpretations of their arguments. Similarly to the � -calculus in the model check-

ing section 2.1.2, we will use an additional environment for interpreting free variables in

the formulas.

2.2. THEOREM PROVING 39

 � � � �! � � � � �

 � � � �! � � �

 � � � � � � � � � � � � � � � �	� � �

 � � � � �! � � � � �

 � � � � �

� � � � � � � � � � � � � � � �

 � � � � � � � � � �

 � � � � �! � �	� �

 � � � � �! �

 ��� � �! is false

 � ��� �	� � � � �

 � � � � �! is true and

 �	� � � �� is true

 � ��� �	� � � � �

 � � � � �! is true or

 �	� � � � is true

 � � � � � � �! �

 ��� � �!
 � 	 ��� is true for all values of � � � � �

 � � � � � � �! �

 ��� � �!
 � 	 ��� is true for some value � � � � �

We say that a formula � is true (or holds) in a model

�
and the environment , when

 ��� � �! is true. We denote this fact by � � ��� � �

The formula is said to be valid if it holds in every model and every environment, and we

denote it by � � � �
Proving that a formula is valid is the main problem of (traditional) theorem proving. Since

the number of models is infinite, and even each model can be infinite, direct enumeration

like in model checking is completely infeasible in theorem proving. Therefore, we trans-

form the problem of a formula validity into the problem of finding a proof, which is a

complete derivation tree in an appropriate proof system.

2.2.2 Gentzen Proof System

One of the most widely used and the most intuitive proof systems for interactive theorem

proving is the Gentzen proof system. The sequent used in this system consists of two sets

of formulas: assumptions � and conclusions � :

� � � �

The sequent holds when in every model

�
, if all the formulas from � are true, then at least

one formula in � is true. In other words, it is equivalent to the formula � � � � � being

valid.

For the convenience of notation, we write � � � to mean � � � ��� (and similarly for �),

and will not assume any order on formulas in the sequents. The way to read such notation

should be “there is a formula � in the set of assumptions (conclusions).”

40 CHAPTER 2. BACKGROUND AND RELATED WORK

The proof system consists of inference rules that transform formulas on the left and on

the right (that is, in the assumptions and conclusions respectively). As we have already

mentioned above, we will always build a proof tree in the bottom up manner, and say that

a rule applies to a sequent when the sequent matches the conclusion of the rule, which

produces a set of new sequents (subgoals) that must be proven in order to complete the

proof.

The soundness of the proof system can be established rule-by-rule, and we argue (but

not prove formally) about the soundness of some inference rules as we introduce them.

In this proof system, we use only three axioms:

� � 	 � � � 	 � � � � �	��
� � ���
 � � � � � �

The soundness of these axioms is quite easy to establish from the definition of the sequent

validity. The first axiom states that in any model, if 	 holds, then 	 holds. The second and

third axioms assign the meaning to the 0-ary predicates � �
 � and ��
��� � , which are to hold

in any model and to hold in no model respectively.

When � � �
, it is considered to be equivalent to �	� �
 � � , and when � � �

, it is

equivalent to � �
� ����� , and this follows directly from the rules.

The rules for propositional connectives:

� � � � �
� � � � � � ���

� � � ���
� � � � � �

���
� � � � � � � � � ���	�

� � � � � � � �	� � �
� � � � � ��� � �
� ��� ��� ��� � � � �

� � � � � � � ���
� � � � � ��� ��� � �

� � � � � � � � ��� � �
� � � ��� �	� � � � �

� � 	 � � � � � � 	
� � � � � � �

Again, the soundness for all these rules is quite straightforward to argue. The ��� � rule is

admissible in this proof system (that is, if a proof of a sequent � contains ��� � , then there

exists a proof of � without ��� �). Even though it does not make the system more expressive

(or “more complete”), it often makes the proof much shorter.

The rules for the quantifiers may require some explanations:

� � � � �
��	� � �
� � � � � � � �

��

� � � �
 � � � � � �

� � � � � � � �

�
�

� � � � �
 � � � �
� � � � � � � � � �

� � �
��	� � � � �
� � � � � � � � �

�

2.2. THEOREM PROVING 41

Here �
 � � � � means all free instances of � in � are replaced by a term � , and
�

is a new

Skolem constant, a constant that is not present anywhere in the conclusion or below it in

the proof tree, and is originally uninterpreted by the model. We denote the condition that
�

must be a Skolem constant by adding it as a superscript to the rule’s name.

The soundness of the

�

� rule relies on the fact that

�
is a new uninterpreted constant.

Assume that the sequent in the premisses holds; that is, for any model

�
(which now has

to interpret the new constant
�
),� � � � � � � � � � �
 � � � � �

If

�
�
� � � � , then

�

�
� � � � for any

�

which may differ from

�
only in the interpreta-

tion of
�
, but otherwise is the same, since

�
is new and does not occur in � . If

� � � � � ,

then we know that

�
 � � � � � � �
�� � � � for all

�

. But this is equivalent to saying that� � � � � � � � � � �	 , and since

�
was arbitrary, we know that the conclusion sequent also

holds.

The intuition behind the soundness of the � � rule is much simpler. By definition of the

existential quantifier, we want to find a value for � in every model that would make � true.

If we can construct a term � that would provide us with such a value in any model, then we

can insert this term in place of � in � and eliminate the quantifier, and the formula will still

be true in every model. Note, that there are no restrictions on what term one can substitute

for � in this rule (except for the types), and therefore, it is possible to use a term that would

make the sequent in the premisses unprovable, even if the original sequent holds. This

means that this rule is not invertible.

The other two quantifier rules are dual, and their soundness can be formally derived

with the help of the following equalities:�
� � � � � � � � � � � � � � �

�
� � � � �

However, they can also be interpreted in a more intuitive way. The rule

�
� states that if�

� � � is assumed to hold in some model, then � holds in the same model for any value of
� , and in particular, the value provided by the term � . This rule is useful when one needs to

use a concrete instance of a more general assumption. The conclusion sequent in the rule

�

� assumes that in any model we consider there exists a value for � that makes � true. The

rule gives us that value in the form of a Skolem constant
�
, which we can use later.

The proof system is sound, and is also known to be complete as it is. In addition, most

of the rules in the Gentzen system are invertible. The only non-invertible rules are � � � , � � ,

and

�
� . Because of these rules, if they are used in a proof of a theorem, and we arrive at

42 CHAPTER 2. BACKGROUND AND RELATED WORK

a clearly invalid subgoal, we cannot say anything about the original theorem, as we may

have made a bad choice of picking a formula in the ��� � rule, or an improper term in the

quantifier instantiation rules.

Adding interpreted functions and predicates, such as the equality “ � ” and/or the arith-

metic operators, will require additional rules that define the interpretation of these symbols,

and it may make the proof system incomplete, as well as add more non-invertible rules.

2.2.3 User-Guided and Automated Proof Search

The simplest way to build a proof in an interactive prover (from the tool programmer’s

prospective) is to let the user guide the prover. Since we are building the proof from the

main theorem towards axioms (in a bottom-up fashion), the user is supposed to tell the

prover which rule to apply to that sequent. The prover verifies that the conclusion of that

rule indeed matches the current sequent and generates the premisses as new subgoals. This

process iterates until the proof tree is complete.

In this approach, the user does not have to know the proof beforehand, but rather, he or

she constructs the proof as it develops, making decisions based on the subgoals generated

by the prover. If a theorem is proven, the proof is guaranteed to be correct w.r.t. the proof

system (which is assumed to be sound), since the user is not allowed to modify or introduce

the sequents manually.

Although much better than a pencil and paper proof, sometimes this process can still

be quite tedious. Moreover, parts of the proof, or even the entire proof may be long but

conceptually simple, making the user repeat boring sequences of similar steps many times.

In such cases, the proof search can be automated using what we call strategies, or meta-

rules that specify how the inference rules must be applied. An example of a simple strategy

can be the following: given a sequence of inference rules � � � � � � � � � � � � , try to apply �� to

the current subgoal, and if it fails (the conclusion of � � does not match the current sequent),

try � � , etc., until we find ��� that does apply. Then we take the new subgoals and repeat the

process for all of them. Another strategy may implement a simple backtracking: given a list

of inference rules or other strategies, try to apply them one by one to the current subgoal,

and if the rule or strategy does not prove the sequent (but not necessarily fail), then discard

the partial proof subtree rooted at the current subgoal and try applying the next rule or

strategy.

Notice, that the above examples of strategies do not require any knowledge of the in-

ternal structure of the rules or sequents. Thus, in our definition, a strategy is a way of

automatic proof search that does not depend on the structure of rules and sequents, and can

2.2. THEOREM PROVING 43

be used in an arbitrary proof system. The only dependency on the proof system can be in

the names of the inference rules.

Although strategies are a very general and simple way to automate the proof search, for

the same reason of generality they are rather inefficient, and only relatively simple proof

search heuristics can be implemented with strategies.

A more flexible technique is what we call tactics. These should not be confused with

tactics in Isabelle or HOL theorem provers, which are simply a way to implement an in-

teractive backward proof search. Our notion of a tactic is similar to a strategy, only the

decisions can be based on the internal structure of the sequent and the internal state of the

tactic. Since tactics are highly proof-system dependent, they are not as universal as strate-

gies, but can potentially be much more accurate and robust for specific problem domains.

Finally, there are many highly specialized techniques developed by the automated de-

duction community that involve type inference algorithms (such as those in the Logical

Framework [Pfe94, Pfe99b, PS99]), multi-phase proof search with modified sequents, and

other techniques that can achieve amazing results, mostly in the First-Order logic with or

without equality, and sometimes even with arithmetic. Additionally, decision procedures

(model checkers, arithmetic equation solvers, etc.) can be added as atomic proof rules and

delegate the proof of decidable fragments to specialized efficient algorithms from the more

general proof search engines.

In this work, we use only the first three approaches, the interactive user-guided proof

search, strategies, and tactics. There are several reasons we do not go too far into the

automated deduction. First, our framework is designed to be the basis for a research tool

SyMP (see Chapter 4), and proof-system dependent techniques cannot be implemented in

any meaningful way in the common core of the tool. Therefore, we have developed a few

general strategies that can be used in any proof system.

Also, developing automated proof search in a new proof system often requires many

experiments, and the best way to get an intuition behind it is to let the user construct the

proofs interactively on several examples and then figure out some heuristics.

We also introduced the notion of tactics to be able to prototype some proof-system de-

pendent proof search techniques, but in our experience, general strategies have so far been

enough for those proofs that can be automated. The more advanced and specialized tech-

niques can, in principal, be implemented as a part of the proof system itself (for instance,

multi-phase proof search can be done by introducing several types of sequents and different

groups of rules that work only on those sequents), together with tactics. However, this is

already beyond the scope of this work, and we only concentrate on the ability to prototype

44 CHAPTER 2. BACKGROUND AND RELATED WORK

new specialized proof systems and provide the interactive user interface with some degree

of automation.

2.3 Existing Approaches Combining Model Checking and

Theorem Proving

We have described the two mainstream approaches to formal verification, model checking

and theorem proving. Both of these approaches have different strengths and weaknesses,

and there has been much work in trying to combine them to be able to verify larger and

more complex examples faster, more conveniently, and with less required user guidance.

Below we discuss briefly a few most well-known techniques that either combine model

checking and theorem proving in a certain way or borrow the ideas from both.

2.3.1 Abstraction and Symmetry

When the original model has symmetric components (e.g. an array of caches in a shared

memory protocol), it is often possible to reduce the number of these components by re-

ordering them dynamically [CJ95]. This way we can force the components that influence

our specification to be always some particular selected components. Since the other com-

ponents will not be important, we can then remove them from the model.

Alternatively, when the model is too large or even infinite, one may use abstraction

to reduce the size of the model [Lon93]. Some constraints are removed from the original

model and replaced by nondeterminism, making the model smaller (it has fewer constraints

on the transitions), but with “more behaviors,” so that the abstract model has more ways of

reaching erroneous states. Therefore, if a safety property is true in the abstract model, then

it must be true in the original model as well.

The two reduction techniques can be used together [McM98]. If the symmetry results

from the type of a state variable being symmetric (that is, swapping any particular value of

that type with any other value doesn’t change the behavior of the model), then checking a

property for all values over this type is equivalent to checking the property only for a small

number of selected representative values. To remove the rest of the values of this type from

the model, one can use abstraction which replaces the type by those few selected values

and a
�

-value representing all the other values. In addition, the cone of influence reduction

can often reduce the model significantly after abstraction and symmetry has been applied

to the model.

2.3. EXISTING APPROACHES COMBINING MC AND TP 45

Another breed of abstraction is predicate abstraction [SG97] where, given � predicates

over the state variables, a possibly infinite model is replaced by the model with only � state

bits, each bit representing the value of the respective predicate. Predicate abstraction is

a very powerful tool, however, computing the transition relation of the abstracted model

involves checking for validity many formulas involving the predicates. In the case of an

infinite and sufficiently expressive model, the problem may become undecidable and very

computationally intensive, if not requiring manual user guidance.

2.3.2 Assume-Guarantee Reasoning

Assume-Guarantee Reasoning [Pnu85, Lon93] is a variant of compositional reasoning

when some properties are proven for each of the component, and then the property of

interest is derived for their parallel composition. The properties of some components are

proven under certain assumptions about other components, and then those components are

proven to guarantee these assumptions. A typical rule for assume-guarantee reasoning is

like this: � �
 � � � ��� � � � ���
�	��
 �� � ���

�
� � � � � �

Assume-guarantee traditionally has been used mostly in the model checking context,

and therefore, is sometimes considered as part of model checking process. However, it is

very close in spirit to Modus Ponens rule from theorem proving.

2.3.3 Inductive Proofs

The reduction techniques mentioned above come mostly from the model checking world.

We now discuss some of the verification techniques from theorem proving.

From the point of view of temporal specifications, there are two types of induction that

can be applied. One is induction on time, and the other is induction on the data structures.

Safety properties in theorem proving are often proven by induction on time. First, one

proves that the property holds in the initial states (the base of the induction), and then,

assuming that the property holds in some arbitrary state, one proves that all the states in

its transition image also satisfy this property (inductive step). Since the original property

is rarely inductive (not strong enough to satisfy the inductive step), it is often necessary

to strengthen the invariant before it can be proven, and this is usually the hardest and the

least automatic step in the verification. Nowadays there are a few tools that help compute

inductive invariants automatically [BLO98, GS96].

46 CHAPTER 2. BACKGROUND AND RELATED WORK

While proving properties about complex or infinite data structures, one may need to use

natural or structural induction within the current state of the system.

2.3.4 “Circular” Compositional Reasoning

A combination of assume-guarantee and induction on time yields the so-called “circular”

compositional reasoning [MCon81, AL93, AH96, McM98]. In some systems with tightly

coupled components, the dataflow goes back and forth among the components, and to prove

the guarantees of one module, we need to assume some properties about the other, and vice

versa. The classical assume-guarantee rule does not work in this case, since we cannot

break the cyclic dependency. However, we can require that the assumptions � about the

other components be considered only up to time � while proving the property � at time

� � � . This “strong” induction over time can be expressed as an LTL formula:

� � � & � �	��
which says that it is not the case that � � holds at some point, and all the time until that
� holds, which is propositionally equivalent to the inductive statement. The proof of this

formula is then accomplished by model checking, either directly or after some abstraction.

2.3.5 Integration of Model Checkers into Theorem Provers

It is very natural and intuitively straightforward to use model checking techniques for prov-

ing a logical formula describing a finite-state property. In proof-theoretic terms, one can

extend the notion of an axiom to any sequent that can be translated into a finite-state model

checking problem and verified to be true. We will omit the concrete technical details of

what sequents can be considered finite-state, but intuitively, any model checking problem

can be translated into a higher-order logic formula. This formula will represent a finite-state

problem, which potentially could be translated back into the original or equivalent model

checking problem suitable for a model checking tool. It is conceivable that such a formula

may also arise as a subgoal in a proof, in which case one can apply the same transformation

and use a model checker to discharge the subgoal in one step.

This is precisely the approach taken, for example, by the PVS theorem prover [SOR93].

Another prover ACL2 [KM00] uses BDDs to prove formulas over boolean variables. This

is similar to the use of a model checker, and in fact, PVS has a similar set of rules for simpli-

fication of propositional formulas. A Stanford prover called STeP [BBC � 99] has a similar

approach to incorporating a model checker into the main prover, however, since it is based

2.3. EXISTING APPROACHES COMBINING MC AND TP 47

on temporal logic and its input explicitly involves a model (which is later translated into a

set of formulas), it has an easier time deciding the finiteness of a subgoal and extracting the

model.

2.3.6 Integration of Theorem Proving Techniques into Model Check-

ers

Probably the best example of integrating theorem proving capabilities into what has previ-

ously been known as one of the “purest” model checkers is the Cadence version of SMV

written by McMillan [McM98]. Originally, it was a relatively simple but very efficient (and

the first of a kind to use BDDs) symbolic model checker [McM93]. Later, the author has

added such capabilities as data abstraction along with symmetry reductions, circular com-

positional reasoning, induction on time and on data (natural induction, for instance), and

much more. One of the most important differences between SMV and traditional theorem

provers extended by a model checker is that the prover part of SMV has been developed on

top of an existing model checker engine, and with the main purpose to reduce the original

problem to a finite-state one as fast as possible, so that it can then be verified by this engine.

Moreover, many reductions borrowed from theorem proving heavily use the model check-

ing and related techniques, as it simplifies the implementation and increases efficiency.

While amazingly efficient and successful in practice, the tool has one serious drawback:

it does not have any proof search mechanism (apart from automatic abstraction, which

could be considered more a part of a extremely complex axiom rather than a proof step

by itself), not even an interactive one. The user is expected to provide the complete proof

beforehand. Fortunately, thanks to very powerful proof rules, the proofs are usually not as

long and tedious as they could be in unspecialized general-purpose theorem provers.

Another tool that can be considered a model checker beefed up by theorem proving

capabilities is the Mocha [AHM � 98] tool developed at Berkeley. It is an interactive en-

vironment for specification, simulation, and verification of concurrent systems. Most of

the verification work is done by the built-in or external model checker, but to exploit the

hierarchy of the design, Mocha uses assume-guarantee reasoning controlled by a prover

module. Unlike SMV, this tool has an interactive construction of the proof, as well as some

limited automated proof search capabilities. The scope of the prover is limited mostly to

the assume-guarantee reasoning. However, it can potentially be extended to other aspects

of verification process, and such extensibility is an explicit feature of the system.

48 CHAPTER 2. BACKGROUND AND RELATED WORK

Chapter 3

Unified Framework for Combining

Model Checking and Theorem Proving

A very common class of verification problems often faced by the researchers in formal ver-

ification community is the class of parameterized designs, which on top of that include dat-

apaths with large or even infinite sets of possible values. Such designs can also consist of

parallel components composed together synchronously or asynchronously. The parameters

of the design may include the number of parallel components, the width of the datapaths,

scheduling algorithms, and many more.

In the presence of such a complicated design structure, formal verification requires

non-trivial amount of user interaction and ingenuity, and the verification complexity may

quickly become prohibitively large. More automatic techniques like finite-state model

checking cannot be applied directly to these problems, since the search space is usually

infinite or extremely large. Trying to find a proof in a “pure” theorem proving environment

may quickly lose the user in the amount of detail, and the problem may quickly become

unmanageable.

In this chapter, we present a new verification framework that enhances the notion of the-

orem proving with a more adequate problem representation and domain-specific reduction

techniques. We also construct a concrete proof system within our framework specialized to

the verification of hardware designs. This proof system serves as a theoretical basis for a

theorem prover that effectively combines traditional notions of theorem proving and model

checking, creating a balanced synergy of the two techniques and eliminating many of their

performance bottlenecks.

49

50 CHAPTER 3. UNIFIED FRAMEWORK...

Feature Model Checking Theorem Proving

Problem Representation
� � ���

: “native” representation
� ��� ��� �

: HOL

Domain size Finite Infinite

Parameterized designs Finite instances or abstraction

(built externally)

Can be handled directly

Model transformations Easy to do aggressive, domain-

specific transformations

Limited, due to HOL representa-

tion

Finite State Enumeration Extremely efficient upto �
	��
� � Usually limited to 	������	����

Automation Completely automatic Often requires extensive user

guidance

Figure 3.1: ”Classical” features of model checking and theorem proving.

3.1 Model Checking vs. Theorem Proving

In order to construct a suitable verification formalism for our problem domain, we first

examine the existing approaches, identify the desirable features and deficiencies of those,

and then compose a new approach that would fit our purposes best.

Traditionally, there are two main branches in formal verification: model checking and

theorem proving, and one would normally have to choose one or the other. The table on

Figure 3.1 shows the most important “classical” features of model checking and theorem

proving. It is clear from the table that model checking has an adequate, domain-specific

representation of the problem:

� � � � , where

�
is a model, explicitly separated from the

specification � . Both

�
and � have a great freedom of internal representation, from ex-

plicit transition graph to BDDs or similar symbolic representation for the model, and from

state automata to various temporal logics for the specification. Therefore, one has an op-

tion to pick the best suited combination for a specific problem domain. However, classical

model checking techniques focus mainly on automatic verification. This limits most of the

operations to model transformations, and the specification is usually not reduced. For ex-

ample, an efficient and compact BDD representation, cone of influence reduction, various

types of abstractions, and symmetry reduction are all targeted at reducing the size of the

model. The reason for this is quite obvious, as the model is usually very large and complex,

whereas the property could be very simple (e.g., the system does not deadlock). Due to the

complexity of the model, it is almost impossible to expect a decent user guidance in the

verification process, at least at the level of individual state transitions, which encourages

the programmers to make the tools as automatic as possible. Completeness and termination

guarantee of model checking has also been a pride of the field for a long time, as it enables

3.1. MODEL CHECKING VS. THEOREM PROVING 51

the tool to guarantee the correctness w.r.t. a given property, or produce a counterexample

otherwise. Unfortunately, the combination of termination and completeness implies decid-

ability, which limits the scope of application of model checkers to finite models. Efficiency

— another highly desirable feature — also limits the specification language to propositional

temporal logics or small finite automata.

Theorem proving, on the other hand, has a nearly inverse situation. The higher order

logic (HOL) as an input language (both for the model and specification) immediately rules

out decidability, hence, completely automatic decision procedures are impossible from the

start, and more attention is paid to expressiveness. Traditionally, most of the theorem

provers are based on Gentzen sequent:

� ��� � �
where � and � are sets of HOL formulas. The sequent is interpreted as follows: whenever

all of the formulas in � are true, at least one of the formulas in � must be true. One can

think of the sequent as a special representation of a formula

� � � � � �
which must be valid, or generally true. Modern theorem provers provide rich syntax for

expressing (recursive) functions, complex datatypes, and even transition systems in terms

of HOL, along with similarly beefed up proof systems capable of solving systems of non-

linear arithmetic (in)equalities for conditionals in the program, automatic proof search, and

much more. Since complete automation is impossible, it is often considered acceptable to

expect the user to provide a lot of guidance to the system in return for a more general proof

of a parameterized version of the design, or a design with infinite datatypes, or one where

control is heavily data-dependent. Such general formulations of the problem are often far

beyond the scope of any traditional model checkers. However, theorem provers have a hard

time verifying designs with a relatively large and complex control graph. Since everything

has to be translated into the HOL, the structure of the program may be lost, and any sub-

stantial transformation to the model, like the cone of influence reduction, may become very

hard in this representation, unless special care is taken to keep the formulas in a very or-

ganized form. The formulas often become large and cumbersome, which quickly confuses

even very sophisticated proof search engines, and the user is left with little choice but to

guide the system manually through a number of carefully considered and tedious transfor-

mations until the problem is reduced to a size tractable by the available semi-automatic

techniques.

52 CHAPTER 3. UNIFIED FRAMEWORK...

Cache 1

P1

Home Node

Cache 2 Cache N

P2 PN

State: {Invalid,

Exclusive}

Shared,

arraySharedList: 1..N of bool

ExclusiveGranted: bool

Figure 3.2: IBM Cache Coherence Protocol: Architecture

3.2 Motivating Example

To give a better intuition behind the ideas in this chapter, we provide a reference example

of a cache coherence protocol originally developed at IBM for research purposes and given

to us by Steven German. The design consists of � processors working in a shared memory

model. Each processor has a private cache which communicates to the central memory

module called home node through communication channels with queues. The processor +

cache unit is called a client. The number of processors � , the number of cache lines in

each cache � , the number of data bits stored in each line � , the memory address width 	 ,

and the length of the queues � are the parameters to the design. To simplify the matters, we

assume that ��� � , � � 	 � � (abstract away the data and address completely), ��� � ,
and the only parameter left undefined is � . Since each memory address is independent of

the others, abstracting away � , 	 , and � will not lose the generality. The queue length does

reduce the generality, but it is not important for demonstrating our ideas in this work, and

we still have one parameter � left to deal with. The overall architecture of the design is

shown in Figure 3.2. The home node keeps track of which caches have the data and whether

an exclusive copy of the data has been granted to any of the caches, and it is responsible

for ensuring the coherence of the caches. Different types of messages are routed through

different one-directional channels between the home node and the clients. The concrete

details of the protocol are given in Section 5.1. Here we concentrate only on the high-level

3.2. MOTIVATING EXAMPLE 53

view of the verification process and will not need to know the implementation of the actual

protocol.

As for any cache coherence protocol, we want to verify that each processor sees the

memory state consistently with all the other processors; we call this property coherence.

A part of this property is to ensure that only one processor is allowed to write to the same

memory address at a time, which is a mutual exclusion property. We formulate it as follows:

if some cache is in the Exclusive state, then all the other caches must be in the Invalid state.

This example has several features that makes it a good representative in the class of

problems we are going to address. First of all, it is parameterized by the number of parallel

components, and we have to verify it for all the values of the parameter, so the model can

be potentially infinite.

On top of that, this design has an unbounded nondeterminism: when several caches

send requests at the same time, the home node must pick one of them to service next, and

we implement the scheduling algorithm as a nondeterministic choice. Since the number

of caches is not bounded (it is parameterized), the nondeterministic choice can also get

arbitrarily large. In addition, the queues in the communication channels make the design

much harder to verify using traditional model checking techniques due to the BDD size

explosion typical for queue-like data structures.1 Finally, to express the property of mutual

exclusion in the same parameterized manner as the design itself, we have to use at least

the first-order temporal logic. For instance, in the first-order CTL the specification can be

written as follows:

� $ � � � � � � � � � � �� � � � � � � � � � � � ����� � � ��� ��� � � � � � � � � � � � � � � ��� � �
All these issues can be summarized as three main problems that we have to solve:

1. Provide an appropriate formalism for the representation of parameterized potentially

infinite designs with unbounded nondeterminism;

2. Find expressive enough specification language (or the logic) for writing the proper-

ties; and

3. Develop verification methodologies for such designs and specifications.

The easiest part is to find the logic: at least for the given example the first-order CTL is

sufficient. In fact, it turns out to be sufficient (but not necessarily the most convenient)

1In this example, the queue depth is only 1, so the queues do not cause BDDs to blow up, but the general-

ization of this example to longer, or even arbitrary queues would exhibit such behavior, and could be another

interesting example to verify.

54 CHAPTER 3. UNIFIED FRAMEWORK...

in most of other examples we have tried. Later in this chapter we introduce even more

powerful logics like first-order branching time and linear time � -calculus.

One of the important issues in representing parameterized designs is the adequacy of

the representation. That is, we would like to preserve as much information about the model

as we can, so that the verification algorithms can exploit it later. Therefore, a carefully

designed input language adequate for the problem domain is necessary. Our solution to

this problem is the input language of the default proof system in SyMP (see Section 4.2).

The rest of this chapter is devoted mostly to building a formalism that utilizes both

model checking and theorem proving techniques and makes it possible to verify the exam-

ples like the one above.

3.3 Combining Model Checking and Theorem Proving

3.3.1 New Sequent

Ideally, one would like to pick the best features out of both approaches, somehow combine

them together, and most of the drawbacks should cancel out automatically in the resulting

framework. For example, lifting the decidability restriction in model checking and adding

the expressiveness of HOL should solve the problem with expressiveness. At the same

time, clear separation of the model and the specification should, in principle, lead to more

efficient reductions and proof search procedures. The only question is how actually to do

such a combination in a way that neither approach loses too many of its strong points.

Since theorem proving is a more general approach, and we want to maintain its full

generality, let us look at it closer and see what causes it to break on complex examples.

One reason, in our opinion, is the inadequate representation of the problem domain. Since

in formal verification we are interested in verifying a complex model, let us add this model

explicitly to the Gentzen sequent with the following semantics:�
��� ��� � holds iff

� � � � � � � � � (3.1)

The model in this new sequent can be represented in the same way as in a model checker,

in its most suitable representation. In addition, we allow the model

�
to be infinite, since

we are no longer limited by the finite-state requirement of model checking.

Next step is to define a proof system for this new sequent, since the original Gentzen

system is no longer directly applicable. As the first step, however, we can rewrite all the

inference rules in the standard Gentzen proof system to carry the model along without

3.3. COMBINING MODEL CHECKING AND THEOREM PROVING 55

modifying it. Since a proven formula in the Gentzen system is valid in all models, it will

also be valid in the given model

�
, the soundness is trivially preserved. At the same time,

we did not sacrifice any generality of theorem proving, as we preserved the entire proof

system for HOL. Next, notice that if the model is finite and the formula is propositional, we

are ready to apply model checking techniques directly to the sequent and, thus, may prove

the sequent in one step. Similarly, we can easily apply virtually any transformation to the

model that exists in the model checking world; for example, a cone of influence reduction,

an abstraction, etc. These transformations will, in principle, be no harder to do than in any

other model checker, since we have the model and the specification explicitly separated and

represented adequately for the problem domain.

However, the proof system we have built so far suffers from two major drawbacks.

First, the specification language, although it is the full HOL, can only refer to the initial

state of the model

�
, while the most interesting properties are temporal. And second, we

lose the ability to employ the full power of theorem proving on the model itself, leaving it

completely to the model checking transformations. Hence, our sequent and, consequently,

the proof system need to be revised.

Let us define the new version of our sequent as follows:�
��� ��� � � �

where

� � ��� � � � � � � is a model with the set of states � � , transition relation � � �
� � � � � , and the set of initial states � � � � � , and � , � , and � are sets of first-order

� -calculus formulas. � represents the set of invariant constraints, that is, the properties

that must hold in every reachable state of

�
; � is the set of assumptions at the initial state

of

�
; and � is the set of conclusions. A sequent holds iff for any initial state of

�
at least

one of the formulas in � holds under the invariant constraints � and the assumptions in � .

More formally, the sequent �
��� � � � �

holds iff � �
�
� � � � � � � �

and

� �
� � ��� � �	� � ��� � is obtained from

�
by restricting the set of states to only those

that satisfy all formulas in � . That is,

� � � � � �
� � � �

� � � � � ;
� � � � � � � � � � � ;

56 CHAPTER 3. UNIFIED FRAMEWORK...

� � � � � � � � .
This sequent allows us to express temporal properties of the model and, as we will see

later, allows theorem proving techniques to be applied to some parts of the model, effec-

tively tightly combining model checking and theorem proving techniques in one single and

uniform framework.

The new sequent differs from our original sequent (3.1) in two ways: the underlying

logic is temporal (first-order � -calculus vs. HOL) and there is an extra set of invariant

assumptions � . The latter is needed for technical reasons in the rules for eliminating the

fixpoint operators of the logic.

3.4 The Logic

Our logic is the usual modal � -calculus [Koz83] with the addition of universal and existen-

tial quantifiers over object variables.

3.4.1 Syntax

Formally, define terms, predicates, and formulas as follows.

� � � � � � � �
�
�
�
�
�

� � � � � � � � � � �
�

� � � � � � � � � � � �

� � � � � � � � � � �
� ��� � ��� � � � � �

� � � � � � �
� � ��� �	�

� � ��� ���
�
� � � � � � ����

� �
�
� ����

� � �
�

� � � ��

� � � � � � �
�

� � � � � � �
Here � � � � means that � is positive on � , that is, � occurs in � only in the scope of

even number of negations (where left hand side of implication is considered a negation in

this definition). The terms are composed of constants � , logical (or object) variables � , state

variables � , and function applications � � � � � � � � � � � . In our framework all terms are typed,

and the types of terms in the application have to be consistent with the function’s type. In

other words, we assume all our terms to be well-typed, without giving a formal definition

of it for now.

3.4. PROOF SYSTEM FOR ... � -CALCULUS 57

3.4.2 Semantics

The semantics is exactly the same as for the propositional � -calculus, and the quantifiers are

interpreted as infinite conjunction and disjunction. For a Kripke structure

� � �����	�
���� ,2

a formula � is interpreted as a subset of � where it is true. We denote this subset by

 ��� � � ,

where is an environment that assigns interpretation to propositional and object variables.

We may omit the subscript

�
when unambiguous.

 � � � � � �

 � ��� ����� � �

 � � � � �

 �	� � �

 � ��� ����� � �

 � � � � �

 �	� � �

 � ��� � �

 � � �

 � � � ����� � �

 � � � � �

 �	� � �

 � ��� � � � �
���
� � � � � � � � ����� � � � � � �

 � � � �

� � � � � � �

�

��� � � � � � � � � � �� � � �

 � � � �

 � � � ��� � � �
���� �

 ��� �
 � 	 � �

 � � � ��� � � �
���� �

 ��� �
 � 	 � �

� � � � � � � � � � � � �

 � � � � �
 �
	 � � � � �

� � � � � � � � � � � � � � �

 ��� � � �
 �
	 � � �

A predicate � � � � � � � � � � � is interpreted as a set of states where it is true:

� � � � � � � � � � � � � ��� �

�

� � ��� �

 � � � �	� � � � � �

 � � � ��� � � � ��� � � �

where

� � � � is a value of the term � in a state � . Thus, we treat an � -ary predicate symbol

as an � -ary function from
 � � 	�	�	 �
 � to �	�	��
 ���	��
��� � � . The constants have a fixed

interpretation

 � � � �� in the model

�
, and the other terms are interpreted as follows:

 � � � � � � �

 � � � � � � � �

 � � � � � � � � � � � � � � � �

 � � � � �

 � � � � � � � � � �

 � � � � � ��

where the interpretation of the function symbol � is

 � � � � , which is a function from
 � �

	�	�	 �
 � to
 in

�
.

2The labeling function �� is omitted here because it is implicitly defined by the interpretation of the

predicates and terms in � .

58 CHAPTER 3. UNIFIED FRAMEWORK...

3.5 Proof System for the First-Order Branching Time � -

calculus

To simplify the notation for our proof system, we will write

� � � � for � � �

 ��� � � 	 ,
where � � is the set of initial states of

�
and “ 	 ” is the empty environment; that is, the

formula � must be closed (without free variables). Note, however, that � may have some

uninterpreted constants (e.g. Skolem constants); then

� � � � means

�
�
� � � for all

�
�

that may differ from

�
in the interpretation of such constants, but otherwise is the same as�

.

Our proof system follows Gentzen style sequent calculus with a sequent, as defined in

Section 3.3, of the following form: �
� � � � � � �

where � , � and � are lists of formulas. Recall that the meaning of the sequent, intuitively,

is that one of the formulas in � is true in all of the initial states that satisfy all formulas

in � , assuming that all of the formulas in � are global invariants of the model (that is, all

formulas in � are true in the entire set of reachable states).

Formally, we want the following theorem to be true:

Theorem 3.5.1. (Soundness) Given a model

�
, if

�
��� � � � � is derivable in the proof

system, then
� �

�
� � � � � � � �

The formal proof of this theorem is in appendix. We do not provide it here mostly

because the soundness of most of the rules is quite straightforward. The less obvious rules

are supplied with an informal description explaining why they should be sound.

3.5.1 Inference Rules

In some rules we introduce new parameters (or Skolem constants), and such rules are

marked by the constants in the superscript. For instance,

�

� is universal quantifier elimi-

nation on the right that introduces a new parameter
�
. The parameter is new means it does

not occur anywhere in the proof below the line.

In the basic proof system described in this section the invariant assumptions � are only

added by the fixpoint rules and the
�
�
���

rule. Later, when we consider concrete examples,

3.5. PROOF SYSTEM FOR ... � -CALCULUS 59

we will be expanding the set of rules to accommodate efficient reductions and shortcuts in

the verification process, and some of those new rules will also modify � . All of the other

rules simply carry � through without modifying it, but may potentially use formulas from
� .

Axioms. The only axioms in our system are the initial sequents:

�
� � � � � � � � ���

� � � � �
��� ��� � � � � � �

� � � � � �
The

� � � � � rule is derivable from
� � � � and weakening, but we also introduce it explicitly.

The rules for model checking. The direct model checking rule collects some formulas

from � , � , and � in one large implication which is then passed to a model checker:

�
��� � � � �

���
provided that

� �
�
� � � � � � � �

Here

� �
� is the model

�
restricted to the set of states that satisfy all the formulas in

� (defined formally in appendix A), and the side condition is a finite-state model checking

problem. In practice, the side condition is checked with any available finite-state model

checking techniques.

Propositional rules. Propositional rules are very similar to the rules for the classical

logic: �
��� � � � � � ��
��� ��� � � � � � ���

�
��� ��� � ��

��� � � � � � � � ����
��� � � � � ��� �

�
��� � � � � ���	��

��� ��� � � ��� ��� �	� � �
�
��� ��� � � � � ��� � ��
��� � � ��� ��� �	� � � � ��

��� ��� � � ��� � � ����
��� � � � � ��� ��� �	� � �

�
� � � � ��� � � �

�
� � � � ���	� � ��

��� � � ��� ��� ��� � � � ��
� � ��� � � � � � ���	��
��� ��� � � ��� � � ��� � �

�
� � ��� � � � ���

�
��� ��� � � � � ��

��� ��� � � � � �	� � � � �
There is only one propositional rule for the invariant:�

��� ��� � � �	� ��� � ��
��� ��� ��� �	� � � � � � �

60 CHAPTER 3. UNIFIED FRAMEWORK...

Weakening and Strengthening rules. It is obviously true that if we proved a property

about a formula for a larger set of initial states, then it holds for a smaller set of states; and

the opposite is true about the assumptions. This essentially means that adding a formula

either to the left or to the right will preserve the validity of the sequent:�
��� ��� � ��

��� � � � � � � � �
�
��� ��� � ��

��� � � � � � � � � �
Notice, that there is no a strengthening rule for the invariants � , since strengthening the

invariant may invalidate reachability formulas like � % � .

If we can prove some property in the entire model, then it is obviously true in the initial

states:
�
� � � ��� � ��
��� � � � � ������� � �

where

�
� � � � � � � � � � � , that is,

�
� is the same as

�
except that the set of initial

states is replaced with � � , which is the set of all states of

�
satisfying all the invariant

assumptions in � .

We also allow to move an invariant of the model into the initial state predicates. This

rule is actually invertible, but we still consider it a variant of a weakening rule:�
� � ��� � � � � � ��
��� � � � � � � � �

In order to be able to use an assumption more than once, we allow copying of the initial

state formulas and invariants:�
� � ��� � � � � � ��
��� � � � � � �

� � � � �
�
� 	 � � � � � � � ��
� 	 � � � � � �

� � � � ��
��� ��� � � � � � ��
��� ��� � � � �

� � � � �

Monotonicity rules. The monotonicity properties are stated for an arbitrary formula
� � � � which is positive on � (and we write a “ � ” in the superscript of � to indicate

that): �
� � �����	�
� � � � � � � � ���� � � ���	�
� �� ��� � � � � � � � � � � � � � � �	�

� ��� �
Where

�
� is the same as

�
except that the set of initial states is the entire � .

3.5. PROOF SYSTEM FOR ... � -CALCULUS 61

Case Splitting Rules. We have two types of case split in our system: finite (the usual cut

rule) and its infinite version. In the cut rule we introduce a new formula and split the cases

on whether it is true or false:�
��� ��� � � � �

�
��� � � � � ����

� � ��� � �
�
�
�

�
��� � � � � � �

�
� � � � � � � � $ ��

� � ��� � �
�
�
� �

In the rule
�
�
���

, the formula
� $ � is an abbreviation for � � � � � � � , and it means that �

holds in every state reachable from the set of initial states.

It is common in verification that we need to consider the cases over the values of a

certain term. Although we can already do it with the existing rules (using finite
�
�
�
, for

example), we introduce a new (redundant) rule to simplify the proofs:�
��� ��� � � �

�
� � � � � � ��

��� ��� � � � �
� �

� � � � �
where � is not a free variable of � or � .

Rules for Modalities. If we have proven something at the current state, we may step back

in time and claim that what we have proven will be true at the next step (provided the initial

states of

�
do not interfere with the assumptions):�

� � � ��� � ��
��� � � � � � �

� � �
�
� � � � � � ��
� � � � � � � � � � � �

where

�
� � � � � �	�
� � � (eliminating the interference of the initial states), and

� � �
� � � � � � � � � � � and � � � � � � � � � � � � � � when � � � � � � � � � � � and � � � � � � � � � � � . These

rules are derivable from the monotonicity rules and some rules for modalities, but it is very

useful to have them explicitly.

We need a few rules that define some properties of
�

and � with respect to propositional

connectives:�
��� � � � � � � � ��� � ����
��� ��� � � � � � � � � �	��

� � �
�
��� ��� � � � ��� � ��� � ��
��� � � � � � � ��� �	� � �

� � ��
��� ��� � � � � � � � � �	��
� � ��� � � � � � � � � �	� � � �

�
��� ��� � � � � � � �	� � ��
��� � � � � � � ��� �	� � � � � �

Dualities between
�

and � , or negation propagation rules:�
��� ��� � � � � ��
��� ��� � � � � � � �

� �
�
� � ��� � � � � ��
��� � � � � � � � � � � �

62 CHAPTER 3. UNIFIED FRAMEWORK...�
��� ��� � � � � ��
� � � � � � � � � � � � �

�
��� � � � � � � ��
��� ��� � � � � � � � � �

And the last few rules that are needed for the completeness w.r.t. modalities:�
� � ��� � � � � � � � � �	��
� � � � � � � � � � � � ���� � � ���

�
��� � � � � � � � ��� � �	��
��� ��� � � � � � � � � ��� � � ����

� � ��� � � � � � � �	� � ��
��� � � � � � � � � �	� � � � � � �

�
��� ��� � � � � � � ��� � ��
��� � � � � � � � � �	� � � � � � �

The last group of rules relies on the following valid formula:

� � � � � �	� � � � � � � �	�� �
Intuitively, for the formula � ��� �	� to hold in some next state it is sufficient to show that � �
holds in some next state (� � �) and �	� holds in all next states (

� ���). The formal proof of

this fact can be easily reconstructed from the definitions of the modalities.

Rules for Quantifiers. Quantifiers are handled exactly the same way as in the classical

Gentzen-style proof system:�
��� ��� � � � � � � �

��� � � � � �
�
� � ��� �

�

�

�
��� ��� � � � � � ��

��� ��� � � � � ��� � � �
�
�

�
��� ��� � � ����� � �

��� � � � � � � � � ��� � � �
�
� � ��� � ��� � � ��

��� ��� � � � � ��� � � � �

�

Rules for induction. In this rule we treat the domain of natural numbers in its standard

interpretation (all the other rules are over uninterpreted domains), and introduce the induc-

tion with the base 0 and step size 1:�
� 	 � � � � ����� �

�
� 	 � � � � � � � � � � � � � � �

��� ��� � � �
�
� � � � ��� �

� ��

� �

This rule can be generalized to any domain
 with a well-founded partial order :�
��� ��� � � � �
 � �� � � � � � � � ����� � �

��� ��� � � �
�
� �
 � ��� � ��� _

� ��

� �

Notice that in the latter rule there is no base case. This is sound because the partial order is well-founded (doesn’t have infinite descending chains), and therefore, the base case is

when
�

doesn’t have a predecessor, in which case

�
� �
 � �� � � ����� will be vacuously

true, and we have to prove ��� � without an inductive hypothesis.

3.5. PROOF SYSTEM FOR ... � -CALCULUS 63

Rules for Fixpoints. The fixpoint rules are divided into two groups. The first group

consists of rules that “unroll” the fixpoints. These basically state that the fixpoint formulas

are fixpoints of themselves:�
� � � � � � ��� � � � � � � � � � �
��� ��� � � � � � � � � � � ��� � �

�
� � � � � � ��� � � � � � � � � � �
��� ��� � � � � � � � � � � ��� � ��

� � � � � � � � � � � � � � � � ��
��� � � � � � � � � � � � � ��� � ��

��� ��� � � � � � � � � � � � � ��
� � � � � � � � � � � � � � ��� � ��

��� � � � � � � � � � � � � � � ��
� � � � � � � � � � � � � � ��� � ��

��� � � � � � � � � � � � � � � ��
��� � � � � � � � � � � � � ��� � �

The other group of rules eliminates fixpoint operators, and these are the only rules in the

basis of our proof system, besides the
�
�
� �

rule, that introduce new formulas into the set of

invariant assumptions � . These rules follow Tarski’s semantics of the fixpoints, where the

greatest fixpoint is the union of all pre-fixpoints, and the least fixpoint is the intersection of

all the post-fixpoints:

� � � ��� � � � � � ��� �

 � � � � �
 �
	 � � � ���

� � � � � � � � �
 ��� �

� �

 ��� � � �
 �
	 � � � �
Showing that a sequent

�
��� � � � � � � � � ��� � or

�
��� ��� � � � � � � ��� � holds is

equivalent to showing that the set of initial states � of

�
restricted by � , � , and � is a

subset of

� � � ��� � � � or

� � � ��� � � � respectively:

� �

� � � ��� � � �

and � �

� � � � � � � � �

Expanding the definition of the fixpoints, we have:�
� �

 ��� � � �
 � 	 � � � � ��� � � � �

64 CHAPTER 3. UNIFIED FRAMEWORK...

for the � -fixpoint, and

� � � � �

 ��� � � �
 �
	 � � � � � �
for the � -fixpoint. Thus, proving that the greatest fixpoint includes all the states from �
requires finding a witness � for the existential quantifier. If we can find a formula � such

that � �

 � � � is such a witness, then checking that � � � is the same as proving a sequent�
��� ��� � � � � �

Similarly, � �

 � � � � �
 � 	 � � is equivalent to proving that � implies � � � in every

state of the model

�
, or formally: �

� ��� � � � ��� � ��
where

�
� � � ��� �
� � is the same as

� � ����� �
���� , only the set of initial states of

�
�

is the entire set of states � .

Putting it all together, we obtain a rule for eliminating � -fixpoint on the right:�
��� � � � � � �

�
� � ����� �
� � � � � � � � � � � �

��� � � � � � � � � � � � � � �

The ‘ � ’ superscript indicates that � � � � must be positive in � .

The rule for � -fixpoint on the right is derived in a similar fashion from its semantical

characterization: �
� �

 ��� � � �
 � 	 � � � � ��� � � � �
This time we have to consider all possible sets of states � to check this formula, and we

capture this by introducing a fresh uninterpreted predicate � (it is appropriate to think of it

as a Skolem constant, only for predicates). Now this formula is equivalent to proving that� �

� � � for every interpretation of � such that � � � � � holds in every state of the model�

. This is where we make use of the invariant assumptions � : the above statement can

now be stated as the following sequent:�
��� ����� � � � � � � � � � �

Hence is the corresponding inference rule:�
��� ��� � � � � � � � � � � ��
��� � � � � � � � � � � � � �

� � �
Finally, the rules for eliminating the fixpoint operators on the left (in �) are dual to their

right-hand side counterparts:

3.5. PROOF SYSTEM FOR ... � -CALCULUS 65

�
� � � � � � � � � � � � � � ��
��� ��� � � � � � � � � � � � ��

�
��� ��� � � � �

�
� � � ���	�
� � � � � � � � � � ��

��� � � � � � � � � � � � � � � �
Even though these rules are based solely on the Tarski’s definitions of the fixpoints, one can

give a practical intuition behind them. For instance, � � corresponds to an induction over

time (or, more precisely, over the number of iterations of �). The formula � is an “inductive

invariant” which is true in the initial states (the base of the induction), and each iteration

of � preserves it. Therefore, ��� � must hold globally on all states “reachable” by iterating� . For a classical safety property
� $�� � � � �

� � � � this is precisely the induction over

time:
�

holds at any initial state, and if there is an inductive invariant � that implies
�

and

itself at the next time step, then
�

is also an invariant of the set of reachable states.

The intuition behind the �
� � rule is not as straightforward. For practical purposes, we

may think of the least fixpoint as a termination formula. The formula ��� � � � is an

“unwinding” of the fixpoint “backward” from the current state back to the initial state, and

if we can reach an initial state this way, then we know our model “terminates.”

This intuition leads to a more practical version of this rule that reduces the proof to a

well-founded induction over natural numbers (arithmetic is included in the actual imple-

mentation, but the relevant rules are not discussed in this Chapter):

� �
�
��� � � � � � � � � � � � � � � � � �
� � � ����� � � � � � � � � � � ���� �
� ��� � ��� � � � � 	 � � � �

�
��	 � � � � � � � � � � � � � � � �

��� � � � � � � � � � � � � �
� �� � � �

where

�
� � �����	�
� � . Here � � � is a � -calculus formula that depends on a numeric

parameter � � � , and � is some non-negative integer constant.

This new rule states that if there is a measure � � � on the reachable set of states that

captures the set of states reachable in � iterations of � from the set of initial states, and the

index of the property of interest � � � is � , then the least fixpoint of � is larger than the

set of initial states � . We will see how this rule is used in a simple example in Figure 1 on

page 77.

Lemma 3.5.2. The rule �
� �� � � is admissible in the proof system described above.

66 CHAPTER 3. UNIFIED FRAMEWORK...

Proof. To show the admissibility of the rule in our system, assume that its premisses (1),

(2) and (3) have valid derivations. Starting from the fixpoint formula:�
��� � � � � � � � � � � �

that we want to prove, we will build a proof of it from bottom up to the axioms. First, the

�
� � rule adds an assumption � � � � � to the invariant � and � to the conclusions � :�

��� ����� � � � � � � � � � �

We then introduce a set of assumptions in � by repeated application of the
�
�
�

rule, result-

ing in a sequent valid by the simple propositional reasoning:�
��� ����� � � � � � � � � � �� � � � � ��� � � � � � ��� � � � � � ��� � � �� ��� � � � � � � � � �

The added assumptions have to be discharged as separate proof subgoals generated by the

applications of the
�
�
�

rule:�
��� � ��� � � � � � � � � � � � � � (3.2)�

� � ��� � � � � � � � � � � � � � � � ��� � � � � (3.3)�
��� � � � � � � � � � � � � � ��� � � � � � ��� � � (3.4)�

� � ��� � � � � � � � � � � � � � � � � � � (3.5)

The subgoal (3.2) is proven by weakening it (rule � �) to remove � on the right and

match the assumption (1) of the �
� �� � � rule.

The next subgoal (3.3) is first “flattened” (rule � �):�
��� � � � � � � � � � � � � � � � � � ��� � � � � ��

then generalized to the set of all states of

�
(rule � ����� �):�

� � � ��� �
� � � � ����� � � � � � � � � � � � � � � � � � � � � �
split into � subgoals (again using

�
�
�

and propositional reasoning):�
� � � ����� � � � � � ��� � � � � � � � � � � � � �
� � � � � � �

for � � � � � � � � � � � � � . The monotonicity rule
� ����� is applied � times to each of the � -th

subgoal, reducing it to:�
� � � ����� � � � � � � � � �� � � � � � � � � � � � � ��

3.5. PROOF SYSTEM FOR ... � -CALCULUS 67

which is then proven by case splitting (rule
�
�
�
) on �

�
� 	 � � � � � � � � � � � � � � � .

The subgoal with this formula on the right is discharged by the assumption (3) of the �
� �' � �

rule (after weakening). In the other subgoal:�
� � � ��� � � � � � � � � � � �� �

�
�
	 � � � � � � � � � � � � � � � � � � � � � � � � � � �

the quantifier is instantiated with with � , and the sequent is proven by simple propositional

reasoning.

The subgoal (3.4):�
��� ����� � � � � � � � � � � ��� � � � � � ��� � �

is reduced to �
� � � ����� � � � � � � � � � � � � � � �

by � � and � applications of the
� ����� rule, and then is discharged by the assumption (2).

Finally, the subgoal (3.5):�
��� ����� � � � � � � � � � � ��� � � � �

is, again, first “flattened” by � � :�
��� ����� � � � � � � ��� � � � � � � � � �

and then the
�
�
�

rule is applied to it � times introducing a series of assumptions

� � � � � � �� � � � � � � �� � � � � � � � � � �

into � , in this order, last one (�) proving the sequent by the
� � � � rule. The corresponding

subgoals that validate these assumptions (the second premisses of the
�
�
�

rule) are�
��� ����� � � � � � � ��� � � �� � � � ��� ���
� � � � � ��� � � �

for � � � � � � � � � � � � � . Here the � on the right hand side is already removed (rule � �).

Applying the
� ����� rule � times yields�

��� ����� � � � � � � ��� � � � � � �
which is then proven by � �

(moving the invariant assumption ��� � � � into �) and

propositional reasoning.

This completes the admissibility proof of �
� �� � � .

It is also easy to generalize this rule to an arbitrary well-founded induction over other

domains, like ordinals or recursive datatypes, if we use ��� _
� ��

� instead of

� �'

� in the

proof of admissibility.

68 CHAPTER 3. UNIFIED FRAMEWORK...

Other Inference Rules. The rules above comprise the basis of the proof system. In prac-

tice, there is often a need for more powerful and specialized rules, and we will introduce

some of them below and in the later chapters when we talk about concrete examples.

3.5.2 Cone of Influence

When the set of states in a model

�
is defined by means of state variables, and the transi-

tion relation is defined by assignments to those variables (e.g. as explained in Section 2.1.1),

then it is often possible to determine which variables can have a potential influence of a

given specification, and which cannot. The unimportant variables can, therefore, be re-

moved from the model without changing the validity of the specification. We call such a

reduction and the corresponding inference rule the Cone of Influence:�
� ��� � � � ��
��� � � � �

����� �
where

�
� is the resulting reduced model.This reduction is very important in practical veri-

fication, and we explain it below more formally.

Let the model

�
be defined as �����	�
���� such that:

� � �
 � �
	�	�	 �
 � , where each
 � is the domain of a state variable � � and there are

� state variables in

�
; in other words, every state is a tuple � � � � � � � � � � of values

assigned to the corresponding state variables.

� Transition relation �
� � � � is defined as a set

��� � � � � � � � � ��� �� � � � � � � � � � � ��
�

� � � � � � � � � ��� � � � � � � � � � � �� � �
where the predicate � is � � �� � ���� � � ����
� 	 � � ���� � �� , and each formula 	 � corre-

sponds to an assignment to the next state variable � � . That is, � � will get some

value � � in the next state which satisfies 	 � � � � � �� in the current state. If an as-

signment is deterministic (� �� � � � � � �� , where � � is a function), then 	 � is simply

an equality � �� � � � � �� . However, we allow 	 to be an arbitrary formula such that�
�� � � � � 	 � ��� �� ; that is, there is always a next state value � for � � , no matter what the

values of the other variables are. Hence, an assignment can be nondeterministic.

In addition, we assume that, in general, not all current state (i.e. unprimed) vari-

ables appear in 	 � ; we denote the set of unprimed variables that do appear in 	 � by����� � 	 � .

3.5. PROOF SYSTEM FOR ... � -CALCULUS 69

� � � �� is any satisfiable predicate on the state variables.

Define a model

� � �
(the model

�
restricted to the set of variables

�
) to be� ��� � ��� ��� � � ��� ��� ��� �

where

� � � � ������� � �
 � (a projection of � on the subspace defined by
�

)

� � ���
is a projection of � on �

� � � � ��� , and

� � � � is a projection of � on �
� �

.

The Cone of Influence of a state variable � � is the smallest set of variables
� � that satisfies

the following conditions:

� ��� � � 	 � � � � (all the variables that � � immediately depends on are included in its

cone of influence);

� If � � �
� � , then

����� � 	 � � � � (that is,
� � is transitively closed under the variable

dependency).

Finally, the Cone of Influence w.r.t. a formula is defined as follows. Let � be a CTL

formula, and
� � be the set of state variables that appear in this formula. Then

����� � � �
� � � �
��� � ���� �

This definition extends to a set of formulas as follows:

����� � �

� ���

��� � � � �

From the definition of Cone of Influence for a single variable � , it is obvious that the

variables outside of
����� � �� cannot have any effect on the value of � , and therefore, the

behavior of the model

�
w.r.t. � will be exactly the same as that of

� �
	��
� �
�
� . In fact,� � 	��

� �
�
� is bisimilar to

�
w.r.t. � ,3 as defined below. The generalization of this fact to

multiple variables is straightforward.

3More precisely, w.r.t. an equivalence relation that equates the states of the two models where the

values of the variable � are the same.

70 CHAPTER 3. UNIFIED FRAMEWORK...

Definition 3.5.3. Given two models, or Kripke structures,

�
� � ��� � � � � � � � and

�
� �

��� � � � � ��� �� , a binary relation � � � � � � � is called a bisimulation relation w.r.t. another

(given) relation � � � � � � � if the following conditions hold:

� � � � , that is, if � � �� � � �� holds, then necessarily � � �� � � �� holds;

� For any �� ��� � � � � such that �� � � � � , and for any � � � � � such that � � �� � � � ,
there exists � � � � � such that � � � � ��� and � � � � � � �� ;

� For any � � ����� � � � such that � � � � � � , and for any �� � � � such that � � �� � � � ,
there exists � � � � � such that �� � � � � and � � � � � � �� .

Two models

�
� and

�
� are called bisimilar (denoted

�
���

�
�) if there exists a bisimu-

lation relation � such that:

� For any �� � � � there exists � � � ��� such that � � ��� � � � , and

� For and � � � � � there exists �� � � � such that � � �� � � �� .
The definition of bisimulation was first introduced by Park in [Par81]. Then Hennessy

and Milner [HM85] defined a modal logic which is the same as the propositional fragment

of our � -calculus, only without the fixpoints, and showed that two models

�
� and

�
� are

bisimilar if and only if they satisfy exactly the same set of Hennessy-Milner logic formulas.

The same result carries over to our version of the first-order modal � -calculus, and

therefore, we can say that a formula � holds in all the initial states of

�
if and only if it

holds in all the initial states of

� � 	��
� � � � .

The definition of the cone of influence can also be extended to models with more com-

plex assignments, or with other types of assignments (e.g. combinational assignments).

3.5.3 Conservative Abstraction

If all the formulas in a sequent are “universal,” that is, only

�
quantifiers and

�
modality

is used in positive subformulas, and their duals in negative ones, then we can apply a

conservative abstraction to the model:�
� � � ��� � ��
��� ��� � �

���
�
�

where

�
� � ��� � � � � ��� � is an abstraction of

� � �����	�
���� . We do not specify the exact

details of how this abstraction is computed, and leave it to the actual implementation of the

proof system. The only restriction is that application of abstraction must be sound.

3.5. PROOF SYSTEM FOR ... � -CALCULUS 71

One of the most common types of abstractions is existential abstraction, where the

resulting model is a simulation of the original model. That is:� � �
� �

where the relation

�
is defined as follows.

Let � be the set of all atomic subformulas in � , � , and � , and � � � � ��� be a labeling

function that maps each state to the set of labels (atomic formulas) that hold in that state.

Define � � � � � � to be a relation between the states from the concrete and the abstract

models such that � � � � � � iff � � � � � � � � .
Definition 3.5.4. A binary relation � � � � � � is called a simulation relation w.r.t. � if

the following conditions hold:

� � � � , that is, if � � � � � � holds, then necessarily � � � � � � holds;

� For any � � � � � such that � � � , and for any � � � � � such that � � � � � � , there exists
� � � � � such that � � � � � � and � � � � � � ;

We say that

�
is simulated by

�
� (denote this by

� ���
�) if there exists a simulation

relation � � � � � � w.r.t. � such that:

� For any � � � there exists � � � � � such that � � � � � � .
Intuitively, the abstract model can mimic (or simulate) any behavior that the original

model

�
can exhibit. Therefore, if we are only interested in the “universal” properties

of

�
, that is, those properties that require every execution trace of

�
satisfy some other

“universal” property, it is sufficient to verify that the abstraction

�
� of

�
satisfies this

property, since we will prove it for all traces in

�
� , and therefore, all the traces of

�
(which are also traces of

�
�) will satisfy it.

It is rare in practice that both concrete and abstract models are given in advance, and the

problem is only to check that the abstract model indeed simulates the concrete one. Most

often, only the concrete model is provided, and the abstract model needs to be built. We

use the so-called abstraction function approach to build a correct by construction abstract

model. Intuitively, given a concrete model, one only needs to come up with a relatively

simple abstraction function which defines the abstract model. If this abstraction function

satisfies certain properties, then the resulting abstract model will indeed be a simulation of

the original concrete one.

72 CHAPTER 3. UNIFIED FRAMEWORK...

Definition 3.5.5. A function � � � � � � is called an abstraction function of

� � �����	�
���� , if � � � � � � � holds for any state � � � , where � is as in Definition 3.5.4.

An abstraction function � defines an abstract model

�
� ����� � � � � � � � as follows:

� � � � � ��� ; that is, the set of abstract states is the range of � ;

� � � � ��� � � � �� � � � �
�

for all � and � � such that � � � � � ; and

� � � � � � � �
�

� � � � .
It is fairly straightforward to check that

� ���
� . Notice, that the transition relation � �

can be an arbitrary superset of the relation defined by the abstraction function, and the same

is true for the set of initial states � � .
Since we are interested in using abstraction for practical examples, and both the model

and the properties in those examples are often defined in terms of state variables, it is

convenient to be able to express the abstraction function � in terms of state variables as

well.

Assume that the original model

� � � ��� �
��� is defined as in Section 3.5.2, namely:

� � �
 � � 	�	�	 �
 � , where
 � is the domain of the � -th state variable � � (and there

are � state variables total);

� �
� � � � is a transition relation defined with possibly nondeterministic next state

assignments to each state variable:

� ����� �� � �� �
� �
�
���
�

	 � � � �� � ��� � �

� � � � is a non-empty initial state predicate defined as a logical formula (without

temporal operators) over the state variables.

Suppose, for simplicity, that the current formulas in � , � , and � (or specifications) contain

only equalities of the form � � � and � � � �"� , where � ’s are state variables, and � is

a constant. This restriction is by no means necessary, and is only here for illustration

purposes.

One of the simple and intuitive ways to define an abstraction function � is to eliminate

some state variables, or replace all of their instances in

�
with completely nondetermin-

istic choices and remove them from the state. This reduction is often called existential

3.5. PROOF SYSTEM FOR ... � -CALCULUS 73

abstraction, and we say that the removed variables are abstracted. Again, for simplicity,

assume that only one variable � � is abstracted. The abstract model

�
� , therefore, has the

set of states � � �
 � � 	�	�	��
 � (so, it is just like � , only
 � is omitted). If the abstracted

variable � � does not occur in the specifications, then the following function � � � � � � is

obviously an abstraction function:

� � � � ���"� � � � � ��� � � ���"� � � � � ��� � �
The reason for this is that the labeling (that is, the validity of the atomic formulas) in any

state � does not depend on � � ; thus, � � � � � � � � � for any � . Moreover, the abstract

model

�
� induced by such � can be obtained from the original

�
with simple syntactic

transformations. Namely, each assignment formula 	 � ��� �� � �� for � � � is rewritten as

� � � � 	 � � � �� � ��� , and then simplified. For example, if � � only occurs in 	 � � � �� � ��� as � � �
(where is some expression), then define the new assignment 	 �� of the abstract model as

follows:

	 �� � � �� � ����� � � � � 	 � � � �� � ����� 	 � ��� �� � ��
 �	��
� � � � � � � 	 � � � �� � ��
 ��
��� � � � � � � �

That is, the entire equality � � � can be replaced by either �	��
� or ��
 � � � , nondeterminis-

tically. In general, one can use abstract interpretation of interpreted functions to generate

such nondeterministic choices, but it is out of the scope of this brief illustration.

The problem with the above construction of � is that it is often desirable to abstract

variables occurring in the specification, and doing so can make � violate the property of

being an abstraction function. The reason for this is quite simple: an atomic formula � � �
cannot be definitely evaluated in any abstract state; it can be true or false nondeterminis-

tically, and therefore, the entire specification containing it may become nondeterministic,

therefore, the function � may not preserve the labeling.

Fortunately, there is a simple way to correct this problem: for any atomic formula

containing � � , introduce a new Boolean state variable � with no constraints on the next

state transition (i.e, it is completely nondeterministic), and replace this atomic formula by

� . The abstract state space, therefore, may contain more state variables that the concrete

one, but the ranges of the additional variables will be finite and small, whereas the range of

the abstracted variables may be very large or even infinite.

Again, for simplicity, assume that only one such new Boolean variable � was introduced

for an atomic formula � � � . The “corrected” abstraction function � � � � � � � � � � � � �
is then defined as follows:

� � ��� � ��� � � � � � ��� � � �
�� � � � � ��� ��� �	��
 � � � ��� ��
��� � � ��� � � � � � ��� � �

74 CHAPTER 3. UNIFIED FRAMEWORK...

The first component of � � � ��� defines the value of the new Boolean variable in the abstract

state. The transition relation of

�
� is defined the same way as for the original � using the

syntactic transformation to the assignments, and the new Boolean state variable � is left

completely unconstrained. Namely, the abstract assignment 	 �� for each � -th variable in the

abstract model is defined as follows:

	 �� � � �� � ����� 	 � � � �� � ��
 � � � � � � �

It is not hard to check that such an abstract model

�
� is indeed induced by the function

� � . The fact that � � is an abstraction function for

�
follows from the construction of � � and

the fact that we label an abstract state where � is true by � � � , and therefore, � � preserves

the labeling for all states.

This abstraction procedure can be generalized to handle more complex atomic formulas

and finer abstraction of variables. Consider, for example, a formula of the form:�
� � � � � � � � � � ���� �

that we want to check on the model

�
:�

� 	 � 	 �
�
� � ��� � � � � ��� �� � � �

After eliminating the quantifier (rule

�
�) and “flattening” the sequent we obtain�

� 	 � � � � �
� � � ���� � ��

where
�

is a new Skolem constant. Suppose that the validity of � depends only of the fact

that � � � �
, but the concrete value of

�
does not matter. If the domain
 � of the variable

� � is the only very large or infinite variable domain in

�
, and the rest of the model is small

enough, then the proof of this sequent can be easily finished by model checking (the
���

rule) if we can find a suitable abstraction for � � . However, the simple existential abstraction

of � � is too coarse in this case, since we need to retain some information about � � , namely

that � � � �
. Introducing a new Boolean variable � for � � � �

may not solve the problem,

since if � contains another equality, say, ��� � �
, its relationship to the new variable � will

be lost in the abstraction and we will no longer be able to infer that � � � � � .
A solution to this is to abstract the domain
 � . For simplicity we assume that the

domains of comparable variables are always equal. That is, if it makes sense to write
� � � � � , then the corresponding domains must be the same:
 � �
 � . In practice, this

restriction corresponds to the requirement that all the expressions and formulas are well-

typed, which is quite reasonable in real design languages.

3.5. PROOF SYSTEM FOR ... � -CALCULUS 75

If � � is the only variable that can be compared with � � in

�
and � , then the abstract

model

�
� is constructed from

�
by replacing
 � and
 � in the state space � by the set

 � ��� � � � � : � � � � � � � � � � � � � � �
 � 	�	�	 �
 � �
and supplying the abstract interpretation of the equality operator ‘ � ’ on the new abstract

domain
 � as follows:

� � � � � �
��� ��
�	��
 � � if ���� � � � �� �
��
��� � � if � ���� � � � �� � � � ���� � � � �� �
�	��
 � ��� ��
 � � � nondeterministically � if � �� � � � �� � �

where �� is the “true” equality in its standard interpretation. Intuitively, the special symbol
�

represents all the elements from the original
 � that are different from
�
, and therefore,

when we compare two
�

values with each other in the abstract model, the exact outcome

cannot be determined.

The actual abstraction function � is again constructed as a syntactic transformation on

the model

�
mapping all the constants from
 � and
 � into
 � and rewriting all the

equalities w.r.t. the above abstract interpretation. For instance, a possible implementation

of � would replace an expression � � � � � anywhere in

�
by

� � � � � � � � � � � ��� � � � �
 �
� � � � � � � � � � � � � � � � � � � � � � �"� � � ��� � � �
� ���

� � � � �

where � is a new unconstrained Boolean state variable. Notice that the constant
�

in the

abstract model is now an interpreted constant, hence, the connection with the original pos-

sibly infinite domain
 � is completely eliminated.

This abstraction preserves more information about state variables’ equalities, and there-

fore, has a higher chance of preserving more involved properties like the one we have men-

tioned above. The possibly infinite domains
 � and
 � in the resulting abstract model are

replaced with small finite domains, and if the rest of the model is sufficiently small, then it

can be verified using model checking techniques.

However, this abstraction is not directly applicable when the formula has more than one

uninterpreted (Skolem) constant from the same domain. To illustrate the problem, suppose

that we have two uninterpreted constants
�
� and

� � in our model

�
and the formula � .

According to the semantics of the sequent, such a model would satisfy � if it satisfies �
for all possible interpretations of

�
� and

� � . Assume again, for simplicity, that both

�

76 CHAPTER 3. UNIFIED FRAMEWORK...

and � only depend on whether
�
� � � � or not. Then there are two important classes of

interpretations that matter: the one where
�
� � � � , and the one where

�
� �� � � . Hence, we

have to consider two abstractions, the one that maps the domain
 of
�
� and

� � to � � � � �
and interprets both

�
� and

� � with the same interpreted constant
�
, and the other abstraction

mapping
 to � � � � � � � � � , where
�
� and

� � are now distinct interpreted constants.

In general, for � uninterpreted constants from the same domain,
�
� � � � � � � � , we have

to consider all possible equivalence classes over the set � � � � � � � � � � � , and generate the

corresponding number of different abstractions. This leads to a new specialized inference

rule: ���
� � �

�
� � �

�
� � �

�
� 	�	�	

���
� � �

�
� � �

�
� � �

�
��

��� � � � � �
�
�
�
� � � ��� ��� � � �

In this rule, we collect all the Skolem constants used in the original sequent, both in the

model and in the formulas, and construct all different sets of assumptions �
� about the

relationships among these Skolem constants (� is the number of different �
� ’s). These as-

sumptions, in the simplest case, are equalities or dis-equalities between each pair of Skolem

constants. This rule is precise (or invertible) when Skolem constants are only compared for

equality among each other or used as array indices. This condition could be easily weak-

ened to allow Skolem constants be compared with some concrete constants (e.g., if a term� � � appears in a formula), and even used in some predicates other than the equality, but

this is beyond the scope if this example. For our purposes it is sufficient to view the set

of assumptions � � as an equality relation over Skolem constants defined by its equivalence

classes: � � ��� � �� � � � � � � �� � � . For each equivalence relation � � we modify the model appro-

priately (i.e. merge all the array state variables � � � � and � � � �� such that
�
� and

� � are in the

same equivalence class of � �) and evaluate all the predicates of the form
�
� � � � to either�	��
 � or ��
��� � , depending on whether

�
� and

� � are in the same equivalence class or not.

After this transformations for each ��� , we obtain new sequents in which different Skolem

constants are guaranteed to have only different interpretations, and can be replaced with

abstract constants (so that further rules would not confuse them with unreduced Skolem

constants). Thus, abstract constants are essentially Skolem constants, except that different

abstract constants are guaranteed to have different interpretations, and ��� � � � iff ��� and � �
are one and the same constant.

3.6. SIMPLE EXAMPLES 77

3.6 Simple Examples

For a better intuition behind the inference rules and the way they are supposed to be used,

we provide a simple example and its complete proof.

3.6.1 Liveness: an Unbounded Counter

We have seen how we can use the proof system to prove a simple safety property, which

essentially boils down to an induction over time. For a liveness property, we need to show

that something good will eventually happen in finite number of steps, and therefore, we

expect to have a proof resembling a proof of termination. One way of proving termination

is to find a well-founded measure on a program state that strictly decreases over time and

is bounded from below. We shall see how this idea is realized in our proof system from the

next simple example.

Consider the program (in SyMP) in Algorithm 1.

Algorithm 1 Unbounded counter.
MODULE Counter =

begin

StateVar c: int

init(c) := 0;

next(c) := c+1;

THEOREM progress = self

� � �
� � � � � � � % � � �

end

First, let us restate the progress theorem in the � -calculus:
Theorem 3.6.1. � � � ��� �
��� � � � � �

�
� � � � � � � � � � � �

We prove this theorem by using a measure � � � � � 	 � 	 � in the rule �
� �� � � . The

rule makes it possible to convert the general liveness problem into 3 simple propositional

formulas in Presburger arithmetic. To perform this conversion and complete the proofs of

Presburger formulas, we introduce two new inference rules. The first one uses the infor-

mation from the model to instantiate state variables and eliminate some of the
�

and �
modalities:

�
��� ��� � � � ��
� � � � � � ���

�
�
�
_ � � �

�
�

78 CHAPTER 3. UNIFIED FRAMEWORK...

Intuitively, all the state variables that occur in the formulas and are not under the scope of

any fixpoint operator or a modality are replaced with their initialization expressions from

the model. Likewise, the variables that are in the scope of just one modality and have a

deterministic next assignment in the model are replaced by the right hand side expression

of their next assignment. Effectively, a part of the model is substituted into the formulas

from � and � yielding � � and � � respectively.

More formally, the following transformations are applied to every formula � � � � �

and every state variable � that occurs in � :

� If the initial value of � (the right hand side expression ����� � of its init assignment) is

deterministic, then every occurrence of � in � that is not under the scope of a fixpoint

operator or a modality is replaced by ����� � .
� Let � be a formula without modalities and fixpoints such that

� � or � � is a subfor-

mula of � and it is not under the scope of any other modality or a fixpoint. If the

next state of every state variable � that occur in � is defined by the next-assignment

with a deterministic right hand side expression � , then any occurrence of � in � is

replaced by � . After all the state variables are replaced in a particular occurrence of
� in � , the corresponding

�
or � modality is removed.

� The rest of the formula � remains unchanged.

Applying these transformations to all formulas in � and � generates the new � � and � �
respectively in the premiss of the ���

�
�
�
_ � � �

�
rule. This rule is not derivable in the original

proof system because the notion of a model is left open to concrete implementations, and

therefore, there is no general enough way to transfer this kind of information from the

model to the formulas. In this example, a concrete way of defining the model as a set

of assignments is used, and therefore, the ���
�
�
�
_ � � �

�
rule can now be formulated for this

particular type of model representation.

The second rule implements a decision procedure for quantifier-free Presburger arith-

metic: �
��� � � � � � � � � � �

�

� � � � ����� � � �
where � � � � � � � is a generally valid quantifier-free formula in Presburger arithmetic.

The state variables and any uninterpreted symbols of the integer type (Skolem constants,

uninterpreted module parameters, etc.) are considered variables for the purpose of the

decision procedure.

3.6. SIMPLE EXAMPLES 79

Proof.

1.

�
� 	 � 	 �

�
� � � � � � � � � � � � � � � (

�

� , � � , 2)

Eliminate the quantifier (introducing a new Skolem constant
�
) and “flatten” the se-

quent.

2.

�
� 	 � � � � � � � � � � � � � � (�

� �� � � , 3, 4, 5)

Apply the inductive rule for eliminating � -fixpoint; this generates 3 subgoals.

3.

�
��� � � � � � � 	 � 	 �

(� �
�
�
�
_ � � �

�
,
� � � �), where � ����� � � � � � � � � � .

Instantiate the initial value of the state variable � (which is � � �) and discharge this

simple formula with the
� � � � rule.

4.

�
� ��� � � 	 � 	 �

� � � � � � � (� � ,
�

� � � � ���������)
The sequent contains a generally valid system of Presburger formulas, “flatten” and

discharge it.

5.

�
� ��� ��� �
� � � � � 	 � �

�
� 	 � � � � 	 � 	 � � � � � � � � � � � � 	 � 	 �

(

���
� , 6)

The inductive step: first, eliminate the quantifier; this introduced a new Skolem con-

stant � .

6.

�
� ��� ��� �
� � � � � 	 � � 	 � 	 � � � � � � � � � � � � 	 � 	 � (���

�
�
�
_ � � �

� � ,

7)

Then instantiate the next-state values of � into the formula (the initial assignments

are removed from

�
� and are not instantiated).

7.

�
� � ����� �
� � � � � 	 � � 	 � 	 � � � � � � � � � � � 	 � � � 	 � (

�

� � � � ��� ��� �)
Finally, discharge the resulting valid Presburger formula.

The proof proceeds by first eliminating the universal quantifier and the top-level impli-

cation, introducing a new Skolem constant
�

for the quantified variable � (step 1). Then the

inductive form of the � -elimination rule is applied (step 2), yielding three new subgoals.

The base case (step 3) is proven by instantiating the initial value of c from the model,

which simplifies the formula in � to � 	 �
, and it is taken care of by the

� � � � rule. The

“termination” condition (step 4) is proven by the direct application of Presburger decision

procedure after separating the irrelevant
�

� component. And, finally, the inductive step 6

is discharged by replacing the value of c in the scope of the
�

operator by the expression

80 CHAPTER 3. UNIFIED FRAMEWORK...

from its next assignment, which deterministically depends on c at the current time. This

effectively eliminates the
�

modality. Since the initial state assignments are pruned from

the model at this point, the instances of the variable c outside of the
�

operator are left as

they are. The formula then becomes a propositional Presburger formula (step 7) which is

proven by the corresponding decision procedure.

3.7 Restriction to Linear Time � -Calculus

In the previous sections we have described a proof system for the traditional branching

time � -calculus. The proof system closely follows Kozen’s proof system [Koz83] which

has been proven complete by Walukiewicz [Wal95]. This suggests that our proof system

might also be complete in the sense that it can prove any formula which is valid in any

model (assuming we do not have any interpreted symbols like equality or arithmetic op-

erators). Since � -calculus is more expressive than CTL*, theoretically what we have is

already sufficient for any properties that arise in most of the verification needs. However,

in practice this generality may come at too high a price. Consider, for example, a sequent�
� 	 � � $ � � � � $ ��� �

and we know that � � � ��� holds globally in the model. Moreover, this implication can

be easily model checked after a simple abstraction. Unfortunately, we cannot apply the
���

� rule directly to this sequent since � contains a formula
� $ � � , and therefore, the

sequent is not “universal.” In the current system we have to eliminate the fixpoints, find the

appropriate invariants, and, maybe, do some tedious theorem proving before we reduce the

problem to proving � � � �	� .
However, if our model is “linear”, that is, consists of one single path, then existential

path quantifiers can be safely converted into universal ones and we can apply the
���

� rule

to the original formula. This suggests that a linear time variant of the first order � -calculus

is more appropriate in such cases.

3.7.1 Syntax

The syntax of the first order linear time � -calculus is exactly the same as the branching time

one, except that we have only one modality � instead of two (
�

and �). To summarize, the

full syntax is the following.

3.7. RESTRICTION TO LINEAR TIME � -CALCULUS 81

� ����� � � � �
�
�
�
�
�

� � � � � � � � � � �
�

� �� � � � � � � � � � �

� � � � � � � � � � �
� ����� �'��� � � � �

� �� � � � � �
� � � � �	�

� � ��� �	�
�
� � � � � � �	��

� ����
� � �

�

� � � ��

� � � � � � �
�

� � � � � � �

3.7.2 Semantics

Linear time formulas are interpreted by the set of paths � in the model

�
. We denote by

 ��� ��� � the set of paths that satisfy the formula � . Here is an environment that, as before,

assigns an interpretation to propositional and object variables in � , with the only difference

that propositional variables are assigned sets of paths rather than sets of states. For a path

� � ��� � � � � � we write � � to denote the suffix of � starting at � -th state: ��� � ��� ��� �
� � � � , and

� � � stands for the � -th state of the path: � � � � � � . The set of all suffixes of a path � is

� �
� � � :

���
� � � � � � �

�

� � � � �
Formally, we define the semantics of a linear-time � -calculus formula � as follows:

 ��� � � � �

�
�
��� ����� � � �

 � � � � � �

where

 ��� � � � is the set of all suffixes of � that satisfy � . It is defined in exactly the same

way as in Section 3.4.2 except for predicates, the modality, and the fixpoints. As before, we

often omit the subscript

�
when the model is unambiguous. A predicate � is interpreted

by the set of paths that start in the states where this predicate is true:

� � � � � � � � � � � � � � ��� �

�

� � � �

� � � � � � � � � � � � � � �

82 CHAPTER 3. UNIFIED FRAMEWORK...

The semantics for the other connectives is as follows:

 � � � � � � �

 � � � ����� � � �

 � � � � � �

 ��� � � �

 � � � ����� � � �

 � � � � � �

 ��� � � �

 � ��� � � �

 � � � �

 � � � ����� � � �

 � � � � � �

 ��� � � �

� ��� � � � � � �

�

� ���
� �

 � � � � �

 � � � ��� � � � �
���� �

 ��� � �
 � 	 � �

 � � � ��� � � � �
���� �

 ��� � �
 � 	 � �

� � � ��� � � � � � � � � �

� �
� � �

�

 � � � � � �
 � 	 � � � � �

� � � ��� � � � � � � � � �

� �
� � �

� � �

 ��� � � � �
 �
	 � � � �
The entailment

� � �
� ��� � stands for “ � � � � � � implies � �

 ��� � � � 	 ”, where � � is the set

of initial states of

�
, and

� � ��� � means

� � �
� ��� � holds for all � in

�
.

3.7.3 Inference Rules

The sequent for the proof system changes its meaning accordingly:� � � � � � � �
means that for any path � of

�
starting from one of the states in � , if

� � �
�
� � � �

for any � (that is, any suffix of � satisfies all the formulas in �), and

� � �
� � � � , then� � �

� � � � .

Notice, that the semantics

 ��� � � essentially restricts our model

�
to a fixed path � ,

and within this path � it corresponds one-to-one to the original branching time semantics.

Thus, we can think of the new sequent

� � � � � � � � as a family of instances of the

original sequent

� �

� � � ��� � � for all � starting from a state in � . Given this observation,

it is clear that most of the inference rules in the new proof system are exactly the same as

in the original one. We only have to specialize the rules for modalities to the new modality

� . If a model has only one single path, the
�

and � modalities become the same, and we

simply rewrite all the rules with this fact in mind.� � � � � � � � � � � ��� � �	�� � � � � � � � � � � � ��� �	�� � � �
� � � � � � � � ��� � �	� � � �� � � � � � � � � ��� �	� � � � � � �

� � � � � � � � � � � ��� � �	�� � � � � � � � � � � � ��� �	�� � � �
� � � � � � � � ��� � �	� � � �� � � � � � � � � ��� �	� � � � � � �

3.8. CIRCULAR REASONING 83� � � � � � � � � � �� � � � � � � � � � � � � � �
� � � � � � � � � � �� � � � � � � � � � � � � � �

The rules for the relationship between modalities are irrelevant in the linear time logic

(there is only one modality here), and we skip those.

Although the
���

rule does not change its form, the formula that we run a model

checker on is a linear time formula, and we have to do linear time model checking. And

finally, the rule for abstraction
���

� loses its restrictions (since the linear time logic is pre-

served by the conservative abstraction without any restrictions, unlike in the branching time

case) and can be applied to any sequent at any point in the proof. This gain is the entire

purpose of the restriction to the linear time logic, and we will see in the next example how

it simplifies the verification. Intuitively, since the abstraction can be applied earlier, we can

use model checking engine earlier, thus making easier the theorem proving part. This, of

course, comes with a price: linear time model checking is a substantially harder problem

than branching time one.

3.8 Circular Reasoning

In hardware verification it is often the case that some components depend on others and

vice versa. For instance, the data on the write-back bus in Tomasulo’s OOO algorithm

depends on the data stored in reservation stations, and reservation stations in turn fetch

their data from the bus. Therefore, in order to prove the correctness of the data on the

bus we need to assume it is correct in reservation stations and vice versa. One way of

breaking this circularity is by induction over time. We assume the correctness of data in

the reservation stations at time � � � and prove the bus correct at time � . Then assume it

is correct at time � � � and prove the correctness of reservation stations at time � . In more

complex situations we may have to assume the correctness of certain parts at time � and still

maintain soundness if the “cyclic” dependencies are always broken by at least one cycle of

time delay.

More formally, this criterion can be formulated as follows. Let
� � � � ��� be a

directed graph, where vertices
�

are formulas, and there is an edge � � � � ���	� between two

formulas � � ���	� � �
if � � is used as an assumption to prove � � . Additionally, we mark

the edge � � � � � ��� as having a time delay if � � is assumed at or before time � � � when

proving � at time � . A proof by “circular” reasoning is sound if any cycle in
�

contains an

edge marked by the time delay.

For instance, if the bus in our model propagates values instantaneously, then we have

84 CHAPTER 3. UNIFIED FRAMEWORK...

to assume the correctness of the bus up to time � in proving the correctness of reservation

stations at time � . This is still sound, since the bus depends on reservation stations only up

to time � � � .
In our proof system both right rules for the fixpoints � � and �

� �� � � have a subgoal of

the form ��� � � � � . If the invariant � has the form � � � � ��� � � (here 	 is a finite set of

indices), then we can prove � subgoals (indexed by
�
) of the form��

�
�
������ � �'�
	 ��� �
� � � � �� ������ � � �� � � � � �

�
������ � � �

such that 	
� � � 	 and 	 �

� � 	 , and for any � 	 � 	 � :

1. for any � 	 � 	 � � there is some � �
such that 	

� � � 	 �� ;

2. 	 �
�
� 	 � � � �

for any � 	 � 	 � � ; and

3. 	 � � � 	 .

The idea behind this is to prove that some parts of the invariant (indexed by 	 � �) can be

proven true at iteration � , assuming that some other parts of that invariant hold at iteration

� � � (those indexed by 	 ��) and also assuming some other parts at � (indexed by 	 � �).
There may be several groups of properties to be assumed at iteration � , and the number of

these groups is �
�

for each
�
-th subgoal. To avoid cyclic dependences, we have to make

sure that we do not assume any component at � that we also want to prove in the same

subgoal (condition 2). In addition, every assumed subgoal at � must be proven by an earlier

subgoal (condition 1). There are no any restrictions on the components assumed at time

� � � (indexed by 	 �
�
), since these assumptions are part of the inductive hypothesis provided

by the induction scheme. And finally, the last condition 3 ensures that we derive the entire

invariant at iteration � .
Note, that “iteration” � does not necessarily mean “time” � , and the induction is not

necessarily the standard natural induction over time.

This transformation can also be thought of as an application of a bounded induction on
	 with a measure

�
with a well-founded order. The base of this induction is

� � � where� � � � �
������ � � has to be derived solely from � � ������ � � . Since � � � � is monotonic in � ,

the property � � � �
�
��� � � � � � � � �

�
��� � � � (3.6)

3.8. CIRCULAR REASONING 85

holds if 	 � � 	 � , and we can use any formulas � � � � �
��� � � � � for � �

or their corollaries

from (3.6) as induction hypotheses in proving � � � � �
��� �� � � . Moreover, if we can show

that � � � � � � � � � � � � � � � � � � � for any � � 	 , then we can always have �
� � � , and

the condition 1 can be weakened to

1 � . 	 �
� � � ��� � 	 �� .

Later we refer to the assumptions indexed by 	 �� as assumptions with time delay, and to

those indexed by 	 � � as zero delay assumptions. A proof rule for this type of circular

reasoning is�
� � � � � � � ������ � �'� � 	 �� �
� � � � � � ������ � � � � � � � � ������ � � ��	 � 	 ��

��� ��� � � � ��� � � � � ��� � � � � ��� � � � � � �
and conditions 1, 2, and 3 hold. When 	 is finite, this rule is trivially derivable from the

rest of the system by applying
�
�
�

many times. When 	 is infinite, the conjunction turns

into the universal quantifier, and the rule becomes�
��� � � � � � � � � �

� � � � � � � � � ��� 	�� � � � � � � � � �
��� 	 �

� � � �
��� ��� � � � � 	 � � � � � ��� � �

�
� � 	 � � �

� � � � �

for some well-founded partial order on 	 , and this rule can be derived from ��� _
� �'

� .

In this case the partial order encodes the dependencies among � � ’s and, since it is a partial

order, ensures that there are no cyclic zero delay dependencies.

“Strong” induction on time. For certain frequently used fixpoints like
$ � one can de-

rive an even stronger rule that utilizes a strong induction over time. Observe that the fol-

lowing equality holds: $ � � � � (� �
which is quite easy to derive from the fixpoint characterizations of the two LTL operators

in the linear time � -calculus: $ � � � � � � � � �
� (�� � � � ��� � � � � � � �

Substituting � � and � for � and � respectively in the last equation, we get

� � (� � � � � � � � � � � � � �
which after propositional simplification yields

� � � � � � � �

86 CHAPTER 3. UNIFIED FRAMEWORK...

precisely the fixpoint for
$ � .

The formula � � �'(��� can be intuitively interpreted as the (strong) induction on time

where � � is the inductive hypothesis and ��� is the conclusion of the induction step. This is

because the semantics of the (operator dictates that ��� must hold up until and including

the moment � � becomes false. In other words, if � � holds all the time up until � � � (that

is, � � � has not become true yet), then ��� must hold up to time � . We stress this further by

introducing a new notation, a “temporal implication” operator:

Definition 3.8.1. Define a temporal implication operator as follows:

� � � ��� ��� � � � �'(��� �
or, equivalently, in the � -calculus:

� � � ��� ��� � � � � ��� � � � � � � � �
Intuitively, � � � ��� �	� means that if � � holds up to time � � � , then ��� holds at time � .

Examine now the properties of this new operator. The following lemma states that it

allows for weakening and is transitive, just like the normal implication.

Lemma 3.8.2. The 	�� ��� 	 operator satisfies the following properties:

1. If � � � ��� ��� in some state � of the model

�
and � � � � � is an invariant (that is,$ � � � � � � holds in the model

�
), then � � � ��� �	� holds in the same state � ; and

2. If � � � ��� �	� and �	� � ��� � hold in some state � of

�
, then � � � ��� � holds in the

same state � .
Proof. Property 1. We prove this by constructing a derivation in our proof system of the

following sequent: �
��� ��� � � � � � � � � � � ��� �	� � � ��� � � ��� ��� �

1.

�
� � ��� � � � � � � � � � � ��� �	� � � � � � � ��� ��� (expand defs, � �� ,)

Expand the definitions of the � ��� operator into the fixpoints and eliminate them on

the left.

2.

�
� � ��� � � � � � � � � � � � � � � � � � � � � � �	� � � � � � �

� (� � , 3, 4),

where � � � � � ��� � � � � � � � .
Eliminate the fixpoint on the right; make the “inductive invariant” � of the � � rule

be � . This generates two subgoals: the “base” (3) and the “induction step” (4).

3.8. CIRCULAR REASONING 87

3.

�
��� ��� � � � � � � � � � � � � � � � � � � � (

� � � �)
The “base” of the “induction” is trivially true by the

� � � � rule.

4.

�
� ��� � � � � � � � � � � � � � � � � ��� � � � � � � � (�

�
, � � , expand � � , � � , 5)

where

�
� � � ��� �
� � , the same as

�
, only the set of initial states is now the entire

set of states � .

In this step we copy the invariant assumptions � � � � � and � � � � � � into �

and propositionally simplify the sequent. Since � is present in the assumptions by

itself, we can derive the conclusion of the second implication � � � � , which becomes

another assumption in � . We then expand the definition of � � � � and “flatten” its

top-level conjunction.

5.

�
��� � � � � � � � � �	� � � � � � � � �	� � � � � � � � (� � , � � , � � ,

� � � �)
The resulting sequent is proven by propositional reasoning: ��� is present on the left,

therefore is discharged from the right hand side; the now top-level implication on the

right is “flattened,” and � � becomes an assumption (the � � rule); from � � and the

other implications in the assumptions � � is derived, which concludes the proof of

claim 1.

Property 2. We prove this claim similarly by constructing a derivation of the following

sequent in our proof system:�
��� ��� � � � � ��� ��� � �	� � ��� � � � � � � � ��� � �

1.

�
��� ��� � � � � ��� �	� ����� � ��� � � � ��� � � ��� � (Expand the � ��� operators, 2)

2.

�
��� ��� � � � � � � � � �� � � � � � � � � � � � � � � � � (� �� , �

�� , 3),

where � � � � � �	� � � � � � � � , � � � � � �
 � � �	� � �

� , and � � � � �
 � � � � �

�
� .

Eliminating the fixpoints on the left, introducing new Skolem constants for predicates

� and � (notice that the super-index in the rule names � �� and �
�� is a parameter, it is

not part of the rule name per se).

3.

�
��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � (� � , 4, 5)

Now eliminate the fixpoint on the right, taking the formula � ��� as an inductive

invariant � in the � � rule. This generates two subgoals: the “base” (4) and the

“inductive step” (5).

88 CHAPTER 3. UNIFIED FRAMEWORK...

4.

�
� � � � � � � � � �� � � � � � � � � � � � � � � � � � � (� � ,

� � � �)
The “base” of the induction is trivially discharged by propositional reasoning and the� � � � rule.

5.

�
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � (�

�
, 6),

where

�
� �������	�
� � .

We now copy the two implications from � to � (the � �
rule) and propositionally

simplify the sequent. Namely, since we have � and � as assumptions in � , the two

implications simplify to just � � � � and � � � � respectively.

6.

�
� � � � � � � � � � � � � � � � � � � � � � � � (expand � � ’s and “flatten” with � � , 7)

Here � � � � � � � � � � � �� � � � � � � . In this step we expand the definitions of ��� ’s
and eliminate the top-level conjunctions on the left.

7.

�
� � � � � � � � � �	� � � � �	� � � � � � � � � � � � � � � � � � � � � (propositional

simplification rules: � � , � � , � � , and
� � � � , 8)

Propositionally simplify the sequent; this involves both bringing the conclusions of

the implications � � and � � on the left directly into the set of assumptions. Addition-

ally, � on the right is discharged and eliminated, since it is also present on the left.

This brings the implication on the right to the top level, and it is “flattened” with the� � rule.

8.

�
� � � � � � � � � �	� � � � � � � � � � � � � � � � � � (� � � , 9)

Lift the conjunction from inside the
�

operator.

9.

�
� � � � � � � � � �	� � � � � � � � � � � � � � � � � � (� � ,

� � � �)
The resulting sequent is proven by simple propositional reasoning.

This completes the proof of the lemma.

Lemma 3.8.2 is important since it effectively allows the decomposition of the property$ � into smaller components in exactly the same way as in the
� � � � rule. Additionally, the

claim 1 in this lemma provides a way to mix the temporal implication with the logical one,

thus giving a way to assume some properties at the current time � while proving � at the

same time � .
The rule for the “strong induction” over time can be formulated in a similarly general

way as the rule
� � � � , and in such a form it will correspond directly to the induction prin-

ciple introduced in [McM98]. Note, that the formula � in
$ � may contain other temporal

3.8. CIRCULAR REASONING 89

operators and fixpoints. In particular, the liveness property of the form
$ % � can be proven

using the strong induction rule.

These rules may look too complex for the use in any automated theorem prover due

to the huge amount of nondeterminism. However, there is a good heuristic for picking

assumptions discovered by Ken McMillan [McM98]. In practice, each conjunct � � usually

has a form � �� � � � or ��� � � � , where ��� is a state variable and � � is a term, and � � means the

value of � in the next state.4If the term � � depends on other state variables � � for � � � � 	 ,

then we take corresponding � � as our assumptions. If � � � � �� � � � , then we simply make
	 �� � � and do not create any zero delay assumptions. In the case when � � � ��� � � � we

try to split � into 	 �� for � � , and if we cannot cover � completely, the rest of the indices

go into 	 �� . This heuristic seems to work pretty well in practice. A similar algorithm is

implemented in the Cadence version of SMV described in [McM98].

3.8.1 Example: Token Ring

Algorithm 2 Token ring.
module tokenRing[N: nat] =

begin

stateVar t: 0..N-1 � bool

init(t) :=
�
x. if x=0 then true else false endif

next(t) :=
�
x. if x=0 then t(N-1)

else t(x-1) endif

theorem live = self |= A(G � i: F t(i))

end

Consider a simple token ring program (Algorithm 2) taken from [McM99]. The original

property (or theorem in the code) is stated in LTL:

$ � � � % � � � �
As before, we rewrite the property in the � -calculus using the translation from Section 2.1.2

on page 31 obtaiting the following theorem.

Theorem 3.8.3.

� � � �
�
� � �
�
� � � � � �

� � � � �
4 ������� can be encoded in our logic as 	�
�� ��
������ ���
�� .

90 CHAPTER 3. UNIFIED FRAMEWORK...

Since the specification was in the first order LTL, we have to use linear time � -calculus

and the corresponding proof system for it.

Proof. Since the elements in the array � depend on each other cyclically, we will use our

inference rules for cyclic reasoning.

1.

�
� � � ���	�
� � � �

�
� � � � � � � �

� � � � � � � � � (
���

after abstraction � � � � �
� � � �)

2.

�
� � � � � � � � � � � � � � (

���
after abstraction � � � � � � � � �)

3.

�
� � � � � �

�
� � � � � �

� � � �� � � � � � � � � � ���
�

(� � ,

�
� , 1)

4.

�
� � � � � �

�
� � � � � �

� � � �� � � � � � � �
� � � � � (� � ,

�
� , 2)

5.

�
� � � � � �

�
� � � � � �

� � � �� � � � � � � �
�

(
�
�
�
, 3, 4)

where � � � � �
�
� 	 � � �

�
� � � � � �

�
6.

�
� � � � � �

�
� � � � � �

� � � � �
�
� � �
�
� � � � � �

� (

� � � � �

, 5)

7.

�
� � � � � �

�
� � � � � �

� � � � � � �
�
� � � � � �

�
(
� � � �)

8.

� � �
�
� � � � � �

� � � �
�
� � � � � � � �

�
(
�����

,
���

after abstraction � � � � � � � � �)
9.

� � 	 � � �
�
� � � � � �

�
(
�����

,
���

after abstraction � � � � �)
10.

� � 	 � �
�
� � �
�
� � � � � �

�
(
� ��

� , 8, 9)

11.

�
� � � ���	�
� � � � � � �

�
� � � � � �

� � � � � � �
�
� � � � � �

� � � �
�
� � �
�
� � � � � �

� (� � ,

6, 7)

12.

� � 	 � � � � � �
�
� � �
�
� � � � � �

� � � � (� � , 10, 11)

Even though the structure of the proof may seem similar on surface to the one in [McM99],

there is an important distinction from our proof. McMillan uses a strong induction on time

(assuming the property at all times up to � � � , prove that it also holds at �), and our proof

is by the standard induction which assumes the property at time � � � to prove it at time

� . In particular, due to this distinction, the
� � � �

rule in step 5 is not necessary, since we

can use �
�
� � � � � �

�
as a hypothesis to prove � � �

�
� � � � � � � � � � � � � �

� , and this

3.8. CIRCULAR REASONING 91

hypothesis is already present in the sequent after application of � � , so the proof gets even

shorter. In fact, this is what our heuristic tells us to do in the first place.

In step 2 we do not put value 0 in the abstraction, since it only occurs in the last equality

� � � , and this equality can be treated not as a formula but as a statement that � � � is well-

defined. In fact, this is the only purpose of splitting the case on � � � . That is, � � �
on the right is equivalent to � � � on the left in our example, and if we have � � � in our

abstraction (which must be � �), then this property is enforced by the abstraction. Thus,

� � � will always be false in the abstracted model, and we can safely remove it from the

sequent without losing the completeness. In general, however, we might not always be able

to carry out this reasoning, and therefore, we’ll have to split the cases on whether � � � � �
and generate two abstractions: � ��� � � � � � � � � and � � � � � � � .

92 CHAPTER 3. UNIFIED FRAMEWORK...

Chapter 4

Implementation: SyMP

SyMP stands for “Symbolic Model Prover” and is a general purpose prover generator for

generating special purpose theorem provers in various application domains. The core of

the tool is a generic prover which is connected to several proof system modules. Each

such module defines an input specification language, a proof system, and a rule application

mechanism, and the generic prover provides all the proof management and an interactive

user interface.

We will discuss only two proof systems in SyMP: the default proof system, and Athena.

The default proof system implements a general framework for combining model checking

and theorem proving and has a hardware-oriented specification language that resembles

SML. The main purpose of the language is to provide a convenient environment for fast

and clean prototyping of new (mostly hardware) verification methodologies based on model

checking with some elements of theorem proving. It can also be used as an intermediate

representation in translations between other specification languages.

The Athena proof system is specialized to verification of security protocols, and is based

on the Athena technique developed by Dawn Song [SBP01].

Historically, the default proof system gave the name to the tool. The name “Model

Prover” is a term we use for a tool that extends theorem proving techniques with the ability

to represent and reason about specialized problem domains in their most natural representa-

tion. In particular, formal verification normally states its problems as general model check-

ing problems; thus, model proving, in particular, provides a systematic way of combining

model checking and theorem proving procedures in a single framework. Mathematically,

the verification problem remains the same as in model checking: given a model, prove that

it satisfies a given property. However, the term “model checking” usually assumes that such

a proof is done automatically (checking tends to mean checking algorithmically). Despite

93

94 CHAPTER 4. IMPLEMENTATION: SYMP

several breakthroughs in the past decade, the average size of a model that can be automati-

cally verified is still hardly larger than � � � � � states, which, though larger than the number of

protons in the Universe, still does not go far beyond 300 bits of state variables. This figure is

absurdly small compared to the size of a typical modern microprocessor consisting of tens

or even hundreds of millions of transistors implementing hundreds of thousands of latches.

For those designs the use of elaborate abstractions, and thus, some theorem proving, is

inevitable. This, of course, makes the verification task not as automatic, and therefore,

cannot be called just “model checking.” It is also not a traditional general-purpose theorem

proving, since we prove the properties relative to a specific model, and not in general, and

heavily use domain-specific techniques. We will refer to this approach as “model proving.”

The default proof system of SyMP is designed to support most of the existing model

proving techniques. It has a clean and, hopefully, unambiguous1 input language also called

SyMP. It is open for many extensions, so that many new verification methodologies can

be implemented in it relatively easily. SyMP is best viewed as a front-end to other lower-

level techniques, such as explicit state model checking, BDDs, SAT and other decision

procedures. The back-end APIs are well-defined and often customizable. In short, it is

designed to be “researcher-friendly” in as many ways as possible.

The default SyMP language is largely based on ML. There are several reasons for this

choice. First, a functional strongly typed language is best suited for theorem proving;

and ML has been widely accepted as a convenient implementation language for theorem

provers. Since we have to use elements of theorem proving, it is an important consideration.

ML does not make the model checking part more difficult, on the contrary, many constructs

can be expressed in ML much more elegantly than, say, in SMV. Higher-order functions

with pattern matching alone can dramatically reduce the size of the program, and at the

same time increase its readability. SyMP is type-safe, thus, there will be no “run-time”

errors due to type mismatches which are annoying and often difficult to debug. In addition,

a very popular version of data value abstraction requires the model to be well-typed, and

thus, a good type system is a bare necessity for the language. From the implementation

point of view, ML is a small yet very expressive language with clean semantics, which

makes it easier to implement compared to the HDL languages used in industry, like Verilog

or VHDL.2 Also, guaranteed type correctness allows a more efficient binary encoding of

a model into BDDs, which surely helps to increase the efficiency of verification. And the

1Unambiguous from the user point of view; that is, the anticipated semantics from the way the program

looks must match the reality as closely as possible. The formal semantics must, of course, be well defined.
2This, of course, raises an issue of translation from HDLs to SyMP, however, it should be possible to

develop an automatic translator for that purpose.

4.1. THE GENERIC PROVER 95

Specification

Language

Proof System

Interactive user Interface

Proof

Manager

Figure 4.1: The architecture of a typical theorem prover.

last, but not the least reason is that we like ML.

The tool does not have a built-in model checker. Instead, it uses existing external model

checkers. In particular, it supports SMV [McM93] as a back-end. It is also fairly easy to

add support for other model checkers, but SMV proved to be sufficient in most cases.

4.1 The Generic Prover

As we have already mentioned, SyMP is a prover generator. That is, it is a tool that takes an

implementation of some basic parts of a proof system and provides a full-fledged interactive

theorem prover for that system.

Before we go into the details, let us take a look at a typical architecture of an interactive

theorem prover outlined in Figure 4.1. The ultimate task of any theorem prover is to provide

a computer-aided support for constructing valid proofs of the user supplied theorems in a

particular proof system. These theorems must be somehow communicated to the prover,

and this is done through a specification language. After the input is processed and converted

into some internal representation, the prover must be able to transform it according to the

proof system it was designed for. The proof system module provides the collection of sound

transformations available to the prover.

96 CHAPTER 4. IMPLEMENTATION: SYMP

Theoretically, this is already sufficient to start proving theorems by just applying trans-

formations to the statements (or formulas) from the input language until we reach an axiom.

However, it is also desirable to remember the sequence of steps we have taken so far, and

at the end save it to a file. This sequence of steps constitutes a proof, or a derivation, and is

the final result of the theorem prover that we are looking for.

Additionally, the construction of a proof is often a trial-and-error process, and keeping

track of the current partial proof helps to step back and redo certain parts of it as the proof is

being constructed. Moreover, the theorem itself may evolve with time, as it is often the case

in formal verification. Hence, proof editing and maintenance is another important feature

of a practically useful theorem prover. This functionality is provided by the proof manager

module, which maintains the current proof tree and takes care of editing and saving the

proof, as well as checking it for completeness and dependencies on other theorems and

definitions.

Finally, the last important component is the interactive user interface, the communica-

tion channel that allows the user to operate all the features of the theorem prover conve-

niently.

4.1.1 SyMP as a Theorem Prover Generator

In Chapter 3 we have introduced our new proof system for combining model checking and

theorem proving . One of the most important reasons this proof system is successful in effi-

ciently combining the two approaches and simplifying correctness proofs of our examples

compared to the theorem provers based on classical logics is the narrow specialization of

the proof system itself to the problem domain. In our case, the problem domain is parame-

terized hardware designs and their temporal properties.

Obtaining efficiency through specialization is, in fact, quite a universal approach. In

particular, it is natural to expect that other problem domains in formal verification can be

dealt with more efficiently if one would design a specialized proof system for them. Indeed,

many different specialized proof systems have been developed for solving various verifi-

cation and theorem proving problems [Koz83, PS99, BBC � 99, AJS98, CZ93, ASW94].

Some of them have been implemented as stand-alone theorem provers or automated solvers,

others were embedded into existing tools, but many still remain only theoretical achieve-

ments on paper.

Although we have seen many new proof systems appear over the past decade, one of

the reasons we do not see the same proliferation of new specialized theorem provers is the

implementation complexity. This is especially true for the interactive theorem provers. Of

4.1. THE GENERIC PROVER 97

Specification

Language − 1

Proof System − 1

Specification

SyMP

Proof

Manager

Interactive user Interface

Language − 2

Proof System − 2

Figure 4.2: The architecture of the SyMP prover with multiple proof systems.

course, one can argue that if a completely new proof system needs to be implemented, and

embedding it into another existing prover is too inefficient or even practically impossible,

then there is little choice but to start a new theorem prover from scratch.

This is not exactly true. A proof as an abstract concept is independent from a proof

system, and it is only the proof system itself that is different in those specializations. The

interactive user interface is also a completely separate entity which is even out of the scope

of the proof theory and only exists in the implementation. Therefore, it is possible to make

the proof manager and the user interface modules in Figure 4.1 independent from the proof

system.

This is precisely the idea behind the architecture of our tool SyMP shown on Figure 4.2.

The proof manager and the user interface completely independent from any concrete proof

system comprise the core of the tool. Proof systems are attached to this core through a

well-defined interface (Figure 4.4)

Each proof system module implements a parser and a typechecker for its input speci-

fication language, the sequent and inference rule types, and the rule application function

(see Figures 4.3 and 4.4), and the prover provides the rest: the proof tree (actually, the proof

98 CHAPTER 4. IMPLEMENTATION: SYMP

DAG) maintenance and editing, the user interface, and automatic or semi-automatic tactics

and proof search engines. The tool can have unlimited number of different proof systems

at the same time, however, only one proof system can be active at a time. Even though

proof systems reside in one and the same tool, the user is allowed to use only one proof

system of his or her choice for each verification example. For instance, it is not possible

to use Athena proof rules to discharge some subgoals in a proof based on the default proof

system. The reason for this is soundness: while each proof system can be (and should be!)

sound by itself, its combination with other proof systems may become unsound.

The interactive user interface is another module with a well-defined API, and any num-

ber of actual interfaces may co-exist. Only one such module can be active at a time due

to existing implementation limitations at the time of writing. However, unlike with proof

systems, nothing should prevent the user from working in several different environments

at the same time on the same proof. Examples of interactive user interfaces are the emacs-

based interface and the Java graphical user interface, both are implemented in SyMP, and

the latter is contributed by users other than the main developer.

This architecture implies the following from the user point of view. Different proof

systems have the same set of user interfaces, the same set of proof management commands,

and even the same syntax of the proof rules. The only difference will be the proof rules

themselves including the sequent, and the input specification language.

4.1.2 Adding a New Proof System

Suppose some Joe Hacker has created a new proof system for a particular problem domain

he is working on. The proof rules are neatly written on a piece of paper, together with

a thorough proof of soundness, and Joe even has an idea of an automatic proof strategy

which should be able to prove many interesting examples automatically. But he is not

completely sure if the strategy or even the proof system itself is actually practical on large

real examples, and ideally, an implementation with an interactive proof construction would

be really helpful to understand all of its strengths and weaknesses. After some research on

the available tools he decided that building a SyMP module for his proof system is probably

the fastest way to have a working implementation with most of the features he needs. The

first question Joe asks us at this point is:

What do I need to do to transfer my proof system from paper to SyMP?

Just as Figure 4.2 suggests, there are two major steps involved: implementing the cus-

tomized input language and the proof system itself.

4.1. THE GENERIC PROVER 99

type ParseTree (* “raw” parse tree *)

type ProgramObject (* typechecked program *)

(* Read stream of characters and

construct a parse tree *)

val Parse: InputStream -> ParseTree

(* type check the parse tree *)

val typeCheckProgram: ParseTree -> ProgramObject

Figure 4.3: Input language interface of SyMP: the most important components.

Implementing the input language. Since in an actual implementation of a theorem

prover the formulas and sequents must be somehow entered and displayed, and the format

is highly dependent on the particular problem domain and the proof system itself, designing

an input language is an integral part of the implementation.

SyMP provides an abstract interface specification that the input language module has to

implement, and the most important components are outlined in Figure 4.3. Basically, this

module has to be able to read a stream of characters (from a file or from the user’s input),

parse it, and check that the resulting program or expression is well-formed (type checking).

At the end the result of ProgramObject type is the final well-formed object that can

be readily interpreted by the custom proof system. For instance, it can be a HOL theorem

statement for the Gentzen style proof system; or in the case of the proof system described in

Chapter 3, it is a well-typed transition system together with specifications in the first-order

� -calculus.

Implementing the proof system. Just as the proof system on a piece of paper is simply

a list of rules, the proof system module implements a collection of inference rules together

with the appropriate abstract types for representing sequents and rules. It also provides a

function that applies a rule to a sequent and returns the list of new sequents that become

the new subgoals in the bottom-up proof construction. These basic components are shown

in Figure 4.4.

In this module one only needs to implement the very core of the new proof system, the

actual transformations that have to be performed in each rule, without having to worry about

how and in which order the rules should be applied in a proof. Moreover, since each rule

100 CHAPTER 4. IMPLEMENTATION: SYMP

type Sequent (* Abstract Sequent type *)

type InferenceRule (* Abstract type for infer-

ence rule *)

datatype Result = (* Result of rule application *)

(* Success: return new subgoals *)

Success of Sequent list

(* Rule doesn’t apply *)

| Failure

(* Function that applies a rule to a sequent *)

val apply: Sequent * InferenceRule -> Result

(* The list of all the rules in the system *)

val allRules: InferenceRule list

Figure 4.4: The main part of the interface a proof system module has to implement to

connect to the SyMP proof manager.

is a separate value, or object (even though SML, the implementation language of SyMP, is

not object-oriented), each rule can be implemented independently of each other. Thus, the

implementation has a very high modularity, and further enhancements to the proof system

with new rules will not require any changes to the already implemented rules.

Once all the rules are implemented and exported (added to the value of allRules),

there is only one step remaining to integrate the new proof system into SyMP: adding

the directory path with the proof system’s sources into the central configuration file and

recompiling.

Configuring the user interface for the new proof system. In order to interact with the

newly created prover in a convenient way, the front-end of the interactive user interface

must be configured to recognize the new input language and inform SyMP which proof

system to use. The concrete details on how to do this depend on the particular front-end

used. For instance, with the emacs front-end one has to define a new major mode for the

input language from the provided templates in emacs-lisp. Other front-ends, especially

GUI, may have a simpler graphical configuration utilities for adding a new proof system.

4.1. THE GENERIC PROVER 101

Automated proof search support. Some proof systems are specifically designed to be

used with automated proof search, others can be automated to a large extent to spare the

user from low-level details of the proof and require only a high-level strategy, and almost

none of specialized proof systems are inherently manual with no hope of automation at all.

Automated proof search support is provided in SyMP on two levels: in the proof man-

ager (strategies) and in the proof system (tactics). The difference between the two is rather

subtle from the theoretical standpoint, and the only real difference is how the proof search

is specified, and where the code for it resides.

Strategies are general-purpose “meta” rules that are implemented in the central core of

SyMP and effectively comprise a small programming language to express which concrete

inference rules should be tried, in which order, and how failures in rule applications should

be handled. For example, the following strategy

(try (repeat skolem) flatten split)

instructs the prover to try the three steps in that particular sequence until one of them

succeeds, at which point the strategy stops, and the proof is updated with the step that has

been applied. Notice, that the first step is another nested strategy which will repeat the rule

skolem as many times as it is applicable to the current sequent, and succeeds if the rule

has succeeded at least once.

The advantage of strategies is in their simplicity, generality and flexibility. The strategy

mechanism can be readily used with any proof system in SyMP to automate the proof

search. The “programs” written with strategies are usually very high-level, and therefore,

very simple and clean. Additionally, since strategies are written at the interactive user

prompt, it is easy to experiment with them while constructing the proof. The last point,

however, may become a disadvantage if the strategy becomes rather complicated; not only

it can become too inefficient, but also typing it every time may be very inconvenient. In

this case, what one really wants is a tactic.

Tactics are implemented and supplied together with the proof system, and therefore,

can only be used with that proof system and not with any other. It is implemented similarly

to a proof rule, and therefore, has a full access to the internal structure of the sequent. This

is an important feature, since a tactic can make its choice of the next inference rule based

on some properties of the sequent, while strategies can only have a feedback in the form

of success of failure of the inference rules. And finally, a tactic can be as complicated as

necessary without any burden on the end user, since it is exported by its name, the same

way as an inference rule. Of course, this reduces the flexibility of changing it on the fly

and trying different variants in the middle of the proof construction, and this is a part of the

102 CHAPTER 4. IMPLEMENTATION: SYMP

trade-off between strategies and tactics.

Implementation complexity. At this point our Joe Hacker may frown and say, “So, ba-

sically, I have to implement a new language, all the datatypes and transformations needed

for my inference rules, and probably tons of other stuff that is required by the interfaces.

But would it really be significantly faster and easier than just implementing a new theorem

prover from scratch?”

The answer here is a definite “Yes.” This is especially true if the new proof system

is quite simple and the rules by themselves are easy to implement. The extra overhead of

implementing the required interfaces is quite minimal, and the resulting interactive theorem

prover is well worth the efforts. In our experience, after having implemented the input

language and the code for the rules, satisfying the interfaces and compiling it into SyMP

normally takes no more than a few hours.

Even for more involved proof systems like Athena, or as sophisticated as the one from

Chapter 3, the savings in implementation time and complexity are still quite significant.

The reason is that implementing an interactive user interface and a feature-rich proof man-

agement module is a complicated and error-prone task. Even though the amount of code

for the SyMP core is not that great (about 10,000 lines of SML), its complexity and the

required level of reliability are rather demanding, which makes it a very valuable shared

component to have.

4.2 The Default Proof System3

A SyMP program typically consists of several, possibly nested, module declarations and

properties declared as theorems. Each module has two types of parameters: static and

dynamic. The static parameters allow the user to write a generic description for a whole

class of similar devices as one module. Specifying concrete static parameters creates a

particular instance of that module. A module can have local theorems in it, and if such a

theorem can be proven in general (for any value of the static parameters), then it will also be

true for any particular instance of the module. The static parameters can only be instantiated

with constant values that can be determined at compile time, or with static parameters of the

outer modules. The dynamic parameters are used to connect modules with communication

3Some of the ideas in the SyMP language are taken from the PVS and SAL projects at SRI International.

The idea of the proof system itself was mostly inspired by the work of Ken McMillan on his Cadence version

of SMV.

4.2. THE DEFAULT PROOF SYSTEM 103

channels. A channel is simply an expression possibly involving state variables (and, thus,

does not have to be computed at compile-time) associated with a formal dynamic parameter

of the module. As the name suggests, dynamic parameters can change during an execution,

but the module instance does not change with them. What changes are the input values for

the same module instance. It is important to make a clear distinction between static and

dynamic parameters.

Modules can be composed either synchronously or asynchronously, and such a compo-

sition creates another module. The composition is always written explicitly. In fact, almost

every operation and all the dependences among objects in the language are explicit. One

of the very few exceptions is the implicit dependency of the state variables on all the static

parameters. Read more about it in Subsection 4.2.1.

Expressions in the language closely resemble ML, however, with a few changes. The

user can define his own types, constants, and (possibly recursive) functions. Nondetermin-

istic choices are allowed as first class expressions. This means that an arbitrary expression,

not only constants, can serve as a nondeterministic choice; and any nondeterministic ex-

pression can later be used the same way as any other expression.

SyMP has a parallel assignment semantics. Assignments to the state variables are all

“executed” in parallel, and can be grouped together under different control structures like

if, case, or let. The semantics of the assignments is basically the same as that of SMV.

Unlike in SMV, however, if a variable is not assigned, then its value remains the same in

the next step. If you want a variable to change nondeterministically, then an expression

anyvalue has to be assigned to it. If an error occurs during a computation, a special

value undefined is returned. The value undefined can also be assigned explicitly;

this way one can define, for example, partial functions.

It is important to note that the undefined value is a special value present in all types,

and not a nondeterministic choice of an arbitrary value (like anyvalue). For instance, in

Java it would correspond to the null value. The reason for having this special value is to

be able to convert partial functions into total by making them return the undefined value

whenever the argument is outside of its range. As an example, division is not defined for 0

in the second argument, and therefore, x/0 evaluates to undefined. The alternative is to

use predicate subtyping, as is done in PVS [SOR93]; there the division operation has type� � � � � � � � � �
, and x/0 would not be type-correct. However, typechecking then

becomes an undecidable problem.

Theorems in SyMP are always self-contained, and currently can be of the form

� � � �
(

�
is a model of �), where

�
is a module (which define a model, or Kripke structure), and

104 CHAPTER 4. IMPLEMENTATION: SYMP

� is a first-order CTL formula. A formula can only depend on state variables defined in

the module

�
on the LHS of

� � . The proof is not included in the main text of the program

and stored separately. A proof can be created automatically or interactively, and the system

checks that every rule is applied correctly.

Another important concept is that almost any object in the language has its “literal”

definition that can be used interchangeably with the object’s name. For instance, a par-

allel composition of several modules can be declared as another module, and if the same

expression for the composition is used elsewhere, it will refer to exactly the same object

as the previous named version of it. In particular, two identical instantiations of a module

denote exactly the same module (and not the two copies of it!). In order to make distinct

copies of a module one needs to change some static parameters in the instantiations. There

is more discussion on this design decision later, and in particular, about modules and state

variables, since this is the most delicate (and, perhaps, a bit obscure) part.

4.2.1 Language Description

In general, the syntax of the language very closely resembles Standard ML with a few cos-

metic changes. Therefore, we assume that the reader is already familiar with the Standard

ML and will often describe SyMP language features by comparison with SML. Not all of

the ML is supported, and there are many additions to the ML core that make SyMP a spec-

ification language. However, a few fundamental features remain unchanged. The language

of expressions is functional with higher-order functions and pattern matching, and strongly

typed and type safe with polymorphic type inference similar to ML.

All identifiers are case-sensitive; however, the keywords are not. For example, a vari-

able X is syntactically different from a variable x, but statevar, stateVar, and STAT-

EVAR are all one and the same keyword.4

Comments

SyMP supports both ADA-, or SMV-style, and ML-style comments. A comment of the first

type starts with ‘--’ (double dash) and extends to the end of the line. The ML comment

starts with ‘(*’ and ends with a matching ‘*)’. The ML-type comments can be nested up

to three levels. For instance, the following paragraph is a legal comment in SyMP:

-- I like SMV comments.
4This feature is taken after the PVS language. It allows the user to capitalize the keywords as he likes, and

at the same time unambiguously reuse the same identifier following some capitalization convention.

4.2. THE DEFAULT PROOF SYSTEM 105

(* I also like ML comments.

(* And make them recursive as well.

(* But only 3 levels deep *) *) *)

Including External Files

Some parts of the SyMP specification can be kept in separate files and later included in the

main file with the ‘include’ operator:

include(“file.symp”)

This command simply inserts the contents of the specified file, pretty much like #include

does in C. An included file can also have include statements in it; the only requirement

is that such an inclusion chain is acyclic.

Types

The built-in types are bool, nat, and int. Notice, that nat and int are infinite

types. Finite subranges have the form [<num_expr>..<num_expr>], for example,

[-5..8]. The unary minus can be either a dash (the same as the binary one) or a tilde like

in ML. So, ~5..8 is also allowed. Subranges are subtypes of int, and if both bounds are

non-negative, also subtypes of nat. The type nat is a subtype of int. There are no user

defined subtyping. Enumerated types, unlike in ML, do not have to be named. The syntax

of an enumerated type is

<id> [of <type_expr>] { | <id> [of <type_expr>] }

E.g. a plain enumerated type can be

Orange | Apple | IBM

A more involved example of a type that introduces a “no value” value to the above type:

NONE | SOME of (Orange | Apple | IBM)

Here we need to parenthesize the parameter type in order to disambiguate the bars. Without

parentheses, the ‘of’ would take the precedence over the bar, and the type would have

106 CHAPTER 4. IMPLEMENTATION: SYMP

four elements (NONE, SOME, Apple, and IBM), and SOME will have a parameter of type

Orange, which most probably doesn’t exist in the program.

More complex types can be constructed out the basic types and datatypes. A record

type has the form

‘{’ <id list>: <type_expr> { , <id list>: <type_expr> } ‘}’

<id list> ::= <id> { , <id> }

For instance,

{ n,m: int, mine,yours: MyType,

other: (one | two | three) }

is a record type with five fields.

Tuples have a “product” type of the form

<type_expr> { * <type_expr> },

and finally, function types are constructed by

<type_expr> -> <type_expr>.

The arrow is right-associative, and one can write

int -> bool -> int * bool

which is a type of a fully curried function that computes a tuple; it is equivalent to

int -> (bool -> (int * bool))

The functional type has another form:

array <type_expr> of <type_expr>

For instance, the last example can also be written as

int -> array bool of (int * bool)

These two forms define exactly the same type; thus, arrays in SyMP are simply functions.

User named types are declared with

4.2. THE DEFAULT PROOF SYSTEM 107

type <name> = <type_expr>
-- ‘;’ is optional when end of declaration is unambiguous

type MyType = [-5..5];

datatype ’a list = Cons of ’a * (’a list) | Nil

The keywords type and datatype both define an arbitrary named type; however, datatype

defines a recursive type, so the name of the type being defined can be used inside the type’s

definition. Unlike in ML, datatype is not restricted to enumerated types only, and vice

versa, enumerated types (although non-recursive) can be defined with type keyword. In

the type clause the type’s name refers to previous definition of that name, thus, no recur-

sion is allowed. Named types may also have parameters, exactly as in ML.

After this declaration the name becomes an abbreviation for the type. However, one

can still use the original type expression to denote exactly the same type.

Expressions.

Expressions are very similar to ones in ML, and we describe them only briefly. There are,

however, a few syntactic changes to some of them that we have to mention.

Scalar Expressions. Scalar expressions are those of types bool, int and nat. Literals

are true and false for the boolean type, and numerals for int and nat. Boolean

operators are connectives not, and (or &), or, implies, (also -> and =>), and iff (or

<->). There are no ML-like connectives orelse and andalso. In addition, SyMP has

quantifiers with the obvious semantics:

forall <var list>: <expr>

exists <var list>: <expr>

<var list> ::= <bound vars> { , <bound vars> }

<bound vars> ::= <id> | (<id list> : <type_expr>)

An example of a quantifier expression is:

forall i,j,(p,q: one | two | three), (b: bool):

F(i+j,b or p = q)

Values of any types, including functions, can be compared with each other with =, !=

and <> operators (the last two are “not equal”, and are semantically identical). Arithmetic

operators are +, -, *, / (divide), div, and mod. Numerical expressions can be compared

with <, >, <= and >=.

108 CHAPTER 4. IMPLEMENTATION: SYMP

Datatypes. The values of datatypes are constructed the same way as in ML.

Anyvalue and undefined. Anyvalue stands for the completely nondeterministic

choice for the type of its current context. It is an abbreviation for a corresponding nondeter-

ministic expression that simply lists all possible values. However, it can also be used with

infinite types, for which no such expression can be constructed otherwise. Undefined is

a special value that every type has, and it indicates a run-time error, for instance, a divi-

sion by 0. This value can also be assigned explicitly; this allows the user to define partial

functions.

Tuples, Records and Patterns. The value constructors for these types are the same as in

ML. We only give a short example involving all of them:

let val (first,_) = pair

val { n = n, ... } = a_record

in (first,n,first=n+3) end

Besides the pattern matching, a record field can be extracted, with a ‘.’ (dot) operator. For

instance, the second local declaration in the above example can be done with

val n = a_record.n

Nondeterministic choice. A list of expressions separated by a vertical bar ‘|’ means a

nondeterministic choice among the values of these expressions. This is a new construct that

does not exist in ML. A value of such an expression is a value of one of the expressions

chosen nondeterministically.

A nondeterministic expression is a first-class object, that is, it can be used anywhere as

any other expression where a nondeterministic choice makes sense (e.g. in computing the

values of state variables), and these choices can be nested arbitrarily. The semantics of a

nondeterministic choice is a set of values. Any scalar operation like a function application

computes the image of the set. A tuple or a record of nondeterministic expressions is a

Cartesian product of the corresponding sets. A function that has a nondeterministic defi-

nition becomes a relation. Such functions, however, cannot be used to compute any static

values.

4.2. THE DEFAULT PROOF SYSTEM 109

Functions. The � -form of a function definition is the same as in ML:

fn <pattern> => <expr> { | <pattern> => <expr> }

If the match is non-exhaustive, the function becomes partial, and will return undefined

for the unmatched values.

val and fun declarations. The declarations val and fun have the usual ML syntax:

<val decl> ::= val <pattern> = <expr>

<fun decl> ::= fun <id> <pattern list> = <expr>

{| <id> <pattern list> = <expr> }

<pattern list> ::= <pattern> { <pattern> }

As with � -forms, all matches must be exhaustive, otherwise an undefined value may be

generated. These constructs define named constants. A function declared with fun can be

recursive. However, mutually recursive functions are not as easy to write because there is

no and operator as in ML. It is probably a bug in the design, but we decided to use and as

a boolean operator instead.

Note that when using a polymorphic typing for a parameter in a declaration, such as:

fun f (x : ’a) = ... (z : ’a) ...

this only ensures that x and z share the same type, rather than (as in Standard ML) forcing

x to be a polymorphic type.

if, case, let, and with clauses. The first two constructs are slightly different from

their ML counterparts. Their formal syntax is:

<if expr> ::= if <expr> then <expr>

{ elsif <expr> then <expr> }

else <expr> endif

<case expr> ::= case <expr> of

<pattern> => <expr>

{ | <pattern> => <expr> }

endcase

<let expr> ::= let <local decl> { <local decl> }

in <expr> end

<local decl> ::= <val decl> | <fun decl>

110 CHAPTER 4. IMPLEMENTATION: SYMP

Notice the closing keyword at the end of each clause. This change is not fundamentally

necessary, but it makes the language more structured, and unifies these clauses with the

imperative ones for the assignment part, where such delimiters are necessary for grouping

the assignments. As in functions, if not all the cases are covered in pattern matching, the

appropriate values become undefined.

The with operator is an extension to ML that is particularly useful. Its syntax is

<expr> with ’[’ <id> := <expr> { , <id> := <expr> } ’]’

The expression must be of a record type, and the identifiers are the names of the fields. The

value of the whole expression is the same record value with the mentioned fields updated

with the values of the corresponding expressions.

Modules.

Modules are the most important part of SyMP, and their structure is among the key fea-

tures in achieving a natural composition of many modern verification techniques within

one framework.

Module Declaration. A module declaration has the form

module <id> [’[’<static parms>’]’] [<pattern>]

= <module expr>

<module expr> ::= <begin-end clause>

| <module instance>

| <parallel composition>

The header of the module declaration starts with the keyword module followed by the

module’s name, followed by optional static and dynamic parameters. The static parameters

are enclosed in square brackets to be distinguished from the dynamic ones. Either or both

kinds of parameters can be omitted. The static parameters is a comma-separated list of

individual formal parameter declarations. Each parameter can be a type or a constant. Type

parameters are introduced with the type keyword:

<static type> ::= type <id>

A constant parameter is simply a (possibly typed) identifier:

4.2. THE DEFAULT PROOF SYSTEM 111

<static const> ::= <id> | <id> : <type_expr>

If a static constant parameter is untyped, its type will be inferred from the context, as in any

other declaration. The type expression for a constant may include types declared earlier in

the list of parameters. Constants can also be grouped together if they have the same type.

Dynamic parameters are essentially a single pattern. Most often one only needs a sim-

ple form of a tuple pattern: a comma-separated list of identifiers. As an example consider

the following module header taken from a preliminary implementation of the reference file

in Tomasulo’s algorithm:

module reffile[i: nat, -- index for multiple copies

type Regs,

type Inst,

type T,

type Tag,

reg_init: array Regs of T]

(op: Inst, src1,src2,dest: Regs) = ...

Notice, that a constant parameter reg_init uses Regs and T in its declaration, which

are type parameters declared earlier. The dynamic parameters can also refer to static pa-

rameters; however, dynamic parameters cannot refer to each other. For example, a static

parameter of type nat can be used to declare a subrange both in the rest of the static block,

and in the dynamic one. But a dynamic parameter of the same type cannot be used to define

a subrange.

Static parameters are used as constant objects known at compile time; when static pa-

rameters of a module are instantiated, a new syntactic copy of the module is generated with

concrete values instead of their names. Since it is a syntactic substitution, we can allow

static parameters to be as rich as they are, and depend on each other in a non-trivial way.

Dynamic parameters, on the other hand, serve the purpose of connecting different modules

with each other through data channels, and thus, cannot be computed at compile time. Dif-

ferent instantiations of dynamic parameters do not create different module instances; they

are merely different inputs to the same module.

Parameterized modules are often used to “encapsulate” theorems about certain parts of

a system that can be proven in general for arbitrary values of their parameters. An instantia-

tion of such a module creates particular instances of its theorems that will automatically be

true, if proven in general. This provides a way of abstracting irrelevant parts of a component

by putting them into the parameters, proving correctness of the simplified version, and then

112 CHAPTER 4. IMPLEMENTATION: SYMP

instantiate (or “refine”) it to the original, presumably, much more complex configuration,

which, thus, will also be correct.

Module Instances. A module instance is the module’s name with actual static (in square

brackets) and dynamic parameters. For example, the module reffile declared above can

be instantiated as

reffile[3,[0..15],(Plus | Minus),

[-65536..65535],TagType, Init]

(Instructions)

Here Instructions is a variable of type

(Plus | Minus) * [0..15] * [0..15] * [0..15]

which is a tuple type. This creates a module object implementing a concrete reference

file with index 3 (whatever it is), with 16 registers, two operations (Plus and Minus),

16-bit signed data values, previously defined type of tags and the initial value vector. The

module’s dynamic input is connected to the variable Instructions. Notice, that all the

dynamic parameters can be instantiated with one single variable; this is because a module

can have only one dynamic parameter, but, perhaps, of a complex type. In our case this is a

tuple, but in general it can be anything else. All of the parameters specified in the module’s

declaration are required.

Parallel Composition. There are two types of parallel composition in the current version:

synchronous and asynchronous. Synchronous composition of two modules is given by the

infix double bar expression:

<module expr> || <module expr>

Asynchronous composition is similar, but uses a single bar:

<module expr> | <module expr>

Both operators are left-associative and have the same priority. Thus, the following expres-

sion

A || B || C | D || E

4.2. THE DEFAULT PROOF SYSTEM 113

is the same as

(((A || B) || C) | D) || E

Modules can also be composed using sync and async keywords:

sync <var list> : <module expr>

async <var list> : <module expr>

For instance,

sync(i: [1..20]): boo[i]

will compose synchronously 20 copies of a module boo. The variable i is a bound variable

within the scope of sync, and is considered as a constant known at compile time, so that it

can be used to instantiate static parameters. One can bind several variables with one such

“quantifier”, and use any module expression, including nested sync and async.

async(i: [0..9]),(j: nat):

moo[i] | sync(k: one | two | three): m2[j,k]

It is possible to declare a composition of an infinite number of modules.

Only fully defined and fully instantiated modules can be composed together. It is not

legal to refer to an outer module from a submodule in a composition, unless the outer

module is also one of the modules the composition. The current module, however, can

refer to itself if it is defined using begin-end clause, and the composition is done inside

this clause. In this case, the module is referred to with the keyword self, and can be

thought of as an instantiation of itself with the module’s formal parameters:

module M[type T](i: T) =

begin

...

module subM = self || boo[5]

end

114 CHAPTER 4. IMPLEMENTATION: SYMP

Begin-End Clause. A begin-end clause is a sequence of declarations between match-

ing begin and end keywords. All kinds of declarations are allowed between begin

and end, including module declarations, plus declarations and assignments to the state

variables. State variables are the only objects that can change dynamically with time, and

they are the only means to introduce execution in the model; everything else is computed

statically at compile time. A declaration of a state variable is of the form

StateVar <id> { , <id> } [: <type_expr>]

There are three types of basic assignments: “normal” (or immediate, or invariant), initial,

and next. Every state variable has to have either a normal assignment, or an initial and the

next assignment. A variable can only be assigned once in the program. The last rule has

a broad sense; for instance, a variable can syntactically have two “next” assignments, but

only if they are located in mutually exclusive execution branches, like one in the “then”,

and the other in the “else” part of an “if” statement. The syntax of these three assignments

is the following:

<var_expr> := <expr>

init(<var_expr>) := <expr>

next(<var_expr>) := <expr>

A <var_expr> is an expression that refers to a single state variable or its component.

We will come back to its more precise definition later. An <expr> is an arbitrary ex-

pression, possibly involving state variables. Only state variables of the current module can

be assigned; all the other visible state variables can only appear on the RHS of any as-

signment, including state variables of locally defined modules. Also, the next keyword

cannot appear on the RHS. This is different, for example, from the CMU version of SMV 5

model checker [McM93]. If a state variable has neither normal nor next assignment, then

the assignment

next(the_var) := the_var

is assumed by default, and thus, an initial assignment is required.

A vector of values of all the state variables constitute a state of the module. The state

of a module does not include the states of its submodules; in order for it to be the case, the

5Originally, in SMV this was probably an inadvertent feature (read a bug) which turned out to be very

convenient for formal method hackers who know what they are doing, but dangerous for soundness otherwise.

This feature was later made available in a sound form in the Cadence version of SMV.

4.2. THE DEFAULT PROOF SYSTEM 115

next(state) :=

let val tmp =

if state = shared then (shared | invalid)

else state endif

in ...

case gbus.trans of

...

invalidate => if gbus.cancel then tmp else ...

| _ => tmp

endcase

end

Figure 4.5: An example of the let clause from the Futurebus+ specification [IEE94].

current module has to be composed with its submodules, and then this parallel composi-

tion will include in its state the states of its components. An execution of a module is an

infinite sequence of states, such that the first state is an initial state, as defined by the “init”

and “normal” assignments, and each subsequent state is related to the previous one by the

module’s transition relation defined by the “normal” and “next” assignments. This is very

similar to the semantics of SMV.

As it was already mentioned above, SyMP has a parallel assignment semantics. That

is, an execution of a module is performed in cycles, and each clock cycle all the variables

are updated simultaneously. Normal assignments will always keep the value of the as-

signed variable equal to the RHS of the assignment; in this sense, normal assignments are

invariants of the transition relation. One can also think of this assignment to take effect

immediately, without a time delay. The effect of the “next” assignment is delayed for one

clock cycle. That is, the next state in the execution sequence must have the value of that

variable equal to the expression on the RHS evaluated in the current state.

Where Are the “DEFINE” Macros6? There aren’t any. Instead, one can use a let

clause to give a name to a repeatedly used expression, as shown in Figure 4.5. Also, a

similar imperative let can be used, if the shared expression is used to assign several state

variables:

let <local decl> { <local decl> }

in <asst list>

6This is a highly cherished feature of SMV to be able to define shared subexpressions.

116 CHAPTER 4. IMPLEMENTATION: SYMP

end

<asst list> ::= <asst> { [;] <asst> }

Notice, that here the end keyword is necessary to indicate the scope of the imperative let.

It is also possible to declare a new variable and assign it a repeatedly used value with

a “normal” assignment. If the variable deterministically depends on other variables, SyMP

may replace it internally by a macro, effectively eliminating it from the module’s state.

It is important to note that a nondeterministic normal assignment is different semanti-

cally from the local named expression. When an expression is given a name in let, the

name stands for the expression syntactically, and is effectively a macro. This means that in

different instances it may make different nondeterministic choices. For example,

let val x = one | two | three

in x = x end

does not have to be true, because it is equivalent to

(one | two | three) = (one | two | three),

which evaluates to (true | false) — a boolean nondeterministic choice.

Functions defined with nondeterministic expressions are treated similarly. A function

application must be equivalent to its � -reduced form, thus, if a function is defined as

fun ff(x,y: nat) = (x | y)

then ff(3,4) = ff(3,4) is the same as (3 | 4) = (3 | 4), and this, again,

does not have to be true.

On the contrary, a state variable must always be equal to itself. Therefore, if one needs

the same nondeterministic choice to be used in different places, one has to use a state

variable for that. For instance, the first example may become

statevar x: one | two | three

x := anyvalue

... x = x -- is always true now!

4.2. THE DEFAULT PROOF SYSTEM 117

let val tmp =

if state = shared then (shared | invalid)

else state endif

in ...

case gbus.trans of

...

invalidate =>

if gbus.cancel then next(state) := tmp else ...

| _ => next(state) := tmp

endcase

end

Figure 4.6: The same example from the Futurebus+ specification as in Figure 4.5, but with

the imperative let.

let, if, case, choose and nop. In general, assignments can be enclosed into let,

if, and case statements that have the same syntax as their expression counterparts. The

difference, however, is that they are now imperative control structures that return no value,

and can only have a sequence of assignments in place of the result expression. For instance,

Figure 4.6 shows the same example as in Figure 4.5, but with imperative constructs. If a

certain branch should not contain any assignments, then it must contain a keyword nop.

Although nondeterminism can be encoded directly into expressions, it is sometimes

useful to have another type of it: guarded nondeterminism. The choose structure is used

for that, and its syntax is the following:

choose [<bound vars> :]

<expr> => <asst list>

{ | <expr> => <asst list> }

endchoose

It has the semantics of guarded commands. The <bound vars> are optional nonde-

terministic parameters, and the expressions are boolean guards which are all evaluated

in parallel. The statement picks nondeterministically some values for the parameters that

make at least one guard true, then one of the branches with a true guard is chosen nonde-

terministically for execution. If all of the guards are false for any values of the parameters,

then nop is executed. Note, that unlike in case and if statements, all of the branches are

symmetric and can be reordered without changing the meaning of the program. In particu-

lar, if there is a true guard at the end, it may still be executed even if there are true guards

118 CHAPTER 4. IMPLEMENTATION: SYMP

before it.

Theorems. Theorems are introduced by one of the keywords: theorem, lemma, propo-

sition, corollary, conjecture, specification, or spec, all of which are

treated the same. The syntax is

theorem <module expr> |= <frm>

A theorem states the validity of a first-order CTL formula (however, the syntax allows

first-order � -calculus with CTL operators) in a particular module.

A CTL formula is a boolean expression with the usual CTL operators:

<frm> ::= <expr> | ex <frm> | ax <frm>

| eg <frm> | ag <frm>

| ef <frm> | af <frm>

| sometimes ’[’ <frm> until <frm> ’]’

| always ’[’ <frm> until <frm> ’]’

| sometimes ’[’ <frm> releases <frm> ’]’

| always ’[’ <frm> releases <frm> ’]’

| mu <bound var> : <frm>

| nu <bound var> : <frm>

Fairness constraints are not included in the language yet.

Every theorem must be closed, that is, the entire cone of influence of a CTL formula

must be included in the module on the LHS. Likewise, any module instance in a module

expression can only depend on the state variables of those modules that are composed with

it.

Visibility Rules: the export clause. The visibility rules in SyMP resemble those of

ML, or Pascal. Any object declared before on the same level or higher in the hierarchy is

visible, except for the state variables. By default, all the state variables are visible to the

higher-level modules.

A locally defined object can be referred to outside of the module using the dot notation:

MyModule[i].x

A module can also be “opened” entirely, making all of its objects visible at the current

level:

4.2. THE DEFAULT PROOF SYSTEM 119

open MyModule[i]

This declaration makes all the visible identifiers of the module MyModule[i] appear as

if they were declared at the current level. In other words, an identifier x will be treated

the same as MyModule[i].x. The open directive may shadow some identifiers at the

current level declared before.

A Few Notes on the Semantics.

The SyMP language has a general rule that if two objects are syntactically equivalent, they

must be one and the same object semantically. For example, two instances of a module

with the same set of static parameters refer to one and the same module instance. Thus, in

the code

if MyModule[5].x = 5 then b := MyModule[5].x else ...

b will always be assigned 5 when the condition is true. This rule extends to the named

objects as well; for example, the code above is equivalent to

module tmp = MyModule[5]

if MyModule[5].x = 5 then b := tmp.x else ...

And it is also the same as the following:

module tmp[i: nat] =

begin ...

module M = MyModule[5]

export M

end

if tmp[5].M.x = 5 then b := tmp[8].M.x else ...

In the last example the module M remains the same because it does not depend on the static

parameter i of tmp; at the same time tmp[5] and tmp[8] are two distinct instances of

the module tmp, they just happened to share the same submodule. In general, whether two

objects are the same or not is judged by going to the core definitions of them and checking

whether they are identical or not.

The only “exception” to this rule are state variables; they are assumed to depend on all

of the static parameters of the module they belong to. Thus, if MyModule is defined as

120 CHAPTER 4. IMPLEMENTATION: SYMP

module MyModule[i: nat] =

begin

stateVar x: int

...

end

then MyModule[5].x and MyModule[20].x are two distinct state variables living in

two different instances of MyModule. In other words, state variables cannot be shared

across the modules or module instances.

If one needs to have several copies of exactly the same module, one has to introduce

a dummy parameter to index the instances. Although no object inside the module may

explicitly depend on it, the state variables will depend on it implicitly, and thus, will be

distinct in different instances.

4.2.2 The Proof Rules

The default proof system is based on the proof system described in Chapter 3, but the rules

often take very different forms that makes them more practical or more powerful. This

proof system uses the same sequent as in Chapter 3:�
� � � � � � �

where

� � � ��� �
���� is the model, or a Kripke structure given by its set of states � ,

transition relation �
� � � � , and the set of initial states � ; and � , � , and � are sets

of first-order � -calculus or CTL formulas. Formulas in � are invariant constraints on the

model, that is, the set of states in the model is restricted to only those satisfying all the

formulas in � . Such a constrained model is denoted

� �
� . Formulas � are assumptions that

are assumed to hold in the initial state, and at least one formula in � must hold in each of

the initial states. In other words, a sequent

�
� � � � � � holds iff� �

�
� � � � � � � �

We also refer to � and � as left hand side (LHS) of the sequent, and to � as right hand side

(RHS).

Below are some examples of the rules implemented in the default proof system.

init Checks if the left hand side of the sequent has any formulas in common with the

right hand side, or if there are false or true formulas on the LHS or RHS respec-

tively, and completes the proof for the sequent. It corresponds to the
� � � � and

� � � � �

4.2. THE DEFAULT PROOF SYSTEM 121

rules, whichever applies to the sequent:

�
� � � � ��� � � ���

� � � � �
� � ��� � � � � � �

� � � � � �
This rule is applied automatically after any new sequent is generated, and the user

normally does not have to use it at all. It is only necessary in the extreme case when a

theorem contains the only statement true, which is a pretty useless theorem anyway.

cone Perform the cone of influence reduction on the model:�
� � � ��� � ��
� � � � � �

�����
�

This rule is run internally by the modelcheck rule.

modelcheck If the model in the current sequent is finite and small enough, run an exter-

nal model checker on it:

�
��� � � � �

���
provided that

�
�
�
�
� � � � � � � �

where

�
� is the result of applying the

�����
rule. So, in effect, this is a compound

rule derived from two rules
���

and
��� �

.

flatten “Flatten” the sequent; that is, apply conjunction on the left, disjunction and

implication on the right, and negation rules as much as possible. It is based on the

propositional rules from the original proof system that have only one premiss; that

is: � � , � �
, � � , � � , � � , and ��� . It is called “flatten” because all the formulas

in the sequent are split into the smallest possible propositional subformulas without

generating more subgoals or increasing the total size of the sequent. The resulting

sequent, therefore, becomes easier to work with, as more “interesting” operators (like

quantifiers) appear on the top level. These propositional rules are invertible, and since

the number of subgoals remains the same, the final subgoal can only become simpler

to prove.

split Split conjunction on the right, and disjunction and implication on the left into several

subgoals. This rule is a combination of � � , � � , and � � , and together with flatten,

these two rules cover all the propositional proof rules from the original proof system.

copy Copies the specified formula, so it will appear twice in the sequent. This may be

necessary if one wants to use the same formula more than once in different ways. It

implements the original rules
� � � � � ,

� � � � � , and
� � � � � .

122 CHAPTER 4. IMPLEMENTATION: SYMP

delete Deletes the specified list of formulas from the sequent (original rules � � and
� �). This rule helps to keep the proof cleaner, if the deleted formulas are not needed

to prove the sequent. Also, if an automatic proof search is used, it may find the proof

faster, since it does not have to bother with the irrelevant formulas.

useinvar Copy an invariant formula from � to the set of initial state assumptions � (origi-

nal rule � �
).

replace Treats a formula on the LHS of the form 	 � � as a rewrite rule and substitutes

� for 	 everywhere in the sequent where it is sound to do. This rule does not have

a counterpart in the original proof system, since it relies on the interpreted equality

symbol, which is not present there. It is a very useful extension, since the input

language includes the equality operator.

case Split cases on the validity of a given formula. This is the most basic form of the cut

rule.

forallcase An infinite version of case: “splits cases” on all the values of a given term by

rewriting a formula 	 as

�
� � � � � � 	 . It is exactly the implementation of the

original

� �
� � � � rule: �

� � ��� � � �
�
� � � � � � ��

� � � � � � ���
� �

� � � � �
split_label Split cases on all the possible choices in the given labeled assignment. This

rule is sound only for formulas that refer to states at most one clock cycle in the

future. It is an extension to the original proof system, and exploits the semantics of

the imperative structures in the input language. For instance, if a model contains an

assignment of the form:

choose

� � => A � ;
...

| � � => A � ;
endchoose

then an instance of this rule can be written as follows:�
� � � ��� � � � � � 	�	�	

�
� ��� � � � � � � �

�
� �
� � � � � � � � � � � � � � � � � � ��

� � � � � � � ��� � � � � � ��� �

4.2. THE DEFAULT PROOF SYSTEM 123

where the only temporal operator in all of the formulas is
� #

, no nesting of
� #

is allowed, and each

�
� is obtained from

�
by replacing the entire choose assign-

ment with 	 � , except for the last

�
� �
� , where the choose assignment is replaced

by nop. Intuitively, given the restrictions on the formulas, we are only interested in

the current and the next states (one transition). The choose assignment prescribes

that there are � � � ways the model can transition to the next state, depending on

which guards are true, or if any of them is true at all. The rule exploits this construct

to simplify the model and generate several simpler subgoals.

skolem Eliminates a universal quantifier on the RHS or an existential quantifier on the

LHS by instantiating bound variables with new Skolem constants. It implements the

original

�

� and �

� rules:�
� � ��� � � � � � � �

��� ��� � � �
�
� � � � �

�

�

�
��� ��� � ��� � � ��

��� ��� � � � � ��� � � � �

� �

inst Eliminates an existential quantifier on the RHS or a universal quantifier on the LHS

by instantiating bound variables with the given terms. Implements the original � �
and

�
� rules: �

��� ��� � � � ��� � �
��� ��� � � � � � � � � � � �

�
� � ��� � ��� � � ��

��� ��� � � � � ��� � � �
�
� �

induct_ag Applies induction over time to an
� $

-formula on the RHS. This is a derived

rule from � � , where the fixpoint formula � � � ��� � is replaced with the more con-

crete form � � ��� � � � , which is equivalent to
� $

� . Instantiating this formula into

� � gives: �
� � � � � � � �

�
� � ����� � � � � � � ����� � ��

� � � � � � � � � ����� � � � � �

and the second subgoal can be split into two by the � � rule:�
� ��� � � ���

�
� � � � � � � ��

� ��� � � ����� � � � � �

yielding the new derived rule in its final form, this time all subgoals written directly

in CTL: �
��� � � � � � �

�
� � � � � ���

�
� � � � � � � ��

��� ��� � � � � $ �
� ��'��� � _ � � �

124 CHAPTER 4. IMPLEMENTATION: SYMP

The new formula � is an inductive invariant provided by the user. Note, that this is a

“natural” induction on time, when � is assumed to hold at time � � � , and is proven

to hold at time � .

induct_ag_ar Applies “strong” induction over time to an
� $

-formula on the RHS. This

rule can be derived from the original fixpoint and propositional rules based on the

� -calculus characterization of the
� $

and the release CTL operators:�
� � � � � � � �
 � � (� ��
��� ��� � � � � $ � � ��'��� � _ � � _ ��� �

The new formula
�
 � � (��� is semantically identical to

� $ � , and it may seem that

no gain is obtained by rewriting one to the other as it is. However, this rewriting

separates the inductive hypothesis (the first � � component of
� () and the goal of

the induction � , so they can be worked on separately. See Section 5.1.2 for practical

applications of this rule.

lift_forall_ax Pulls a universal quantifier out of the scope of
� #

operator; that is:�
��� ��� � � �

�
� � � # ��

��� ��� � � � � #
�
� � � � � �

�
_

�
_
� #

�

abstract_split Applies abstraction to a sequent with Skolem constants to transform it to a

finite-state problem before it can be model checked. This rule is quite complex, and

we postpone its discussion until we consider the example of the IBM cache coherence

protocol in Chapter 5, Section 5.1.

4.3 The Athena Proof System

4.3.1 Strand Space Representation

The Athena proof system is designed for the verification of security protocols, and is based

on the original work by Dawn Song [SBP01]. It uses Strand Spaces [THG98b, FHG98,

THG99] as the basis for the protocol representation, which are defined only rather infor-

mally in this document, and the reader is referred to [SBP01] for exact details.

Messages.

Security protocols are based on message passing among the participants, or principals.

In this formalism, messages are terms built from atomic messages using concatenation

4.3. THE ATHENA PROOF SYSTEM 125

(� � � � � � � � �) and encryption (� � ���) operators (decryption is considered a particular form

of the encryption operator). Messages can be of several types: key (symmetric, public, or

private key) is a message that is used to encrypt or decrypt other messages, nonce is a

random message meant to be freshly generated in every protocol run to prevent replay

attacks, name identifies principals, and finally, message is a supertype of all of the above,

including concatenated and encrypted messages of different types.

Strands, Roles, and Strand Spaces.

Each protocol in this framework is a set of parameterized roles, and each role is a sequence

of actions. Currently, there are only send and receive actions for passing messages among

participants. An instance of a role with concrete parameters defines a strand, or a partic-

ular run of a particular principal in the protocol. As an example, consider the Needham-

Schroeder public key authentication protocol [NS78] consisting of three messages:

	 � � � � �
� � 	 �����

� � 	 � � �
� � � � �����

	 � � � � � � ��� � �
The notation used here is a traditional way of writing security protocols: the first line states

that a message � �
� � 	 ��� � (that is, a nonce generated by 	 and the name of the principal

	 encrypted with the principal � ’s public key) is sent by 	 to � . The nonce �
�

in this

case is a challenge to � , and 	 wants to verify that � can decrypt the message and extract

the challenge, thereby proving its identity. In the second message, � packs the extracted

�
�

together with its own challenge � � , encrypts it with 	 ’s public key, and sends it to 	 .

Finally, 	 responds to the � ’s challenge, at which point both participants believe that their

respective partner is indeed the one he claims to be, which is the goal of authentication.

Additionally, they believe to share a common secret, �
�

and � � , since these are fresh

nonces that were never sent out in clear (i.e. unencrypted).

In strand space model, this protocol can be represented as two roles, � � � � � � ��� � and

� � �	� � � � , defining 	 and � respectively, parameterized by all the atomic messages that

appear in the protocol. Actions for receiving a message are labeled by question mark, and

sending is labeled with exclamation point:

126 CHAPTER 4. IMPLEMENTATION: SYMP

� � �	� � � �

 	 � � � �

� � � � � � �
� � � � ��� �

 	 � � � �

� � � � �
� ��� � �

� � 	 ��� � � ��� � �
� � 	 ��� ����
���

� ��� � �
� � � � ����� � ��� � �

� � � � ��������
���

� ��� � � � ��� � � ��� � � � ��� �
When instantiated with concrete messages, roles generate strands. Concrete protocol

runs are only constructed with strands, that is, fully instantiated roles. Both roles and

strands can be considered as graphs with actions being the nodes, and the connected arrows

being the edges.

Under a normal run of the protocol, the Initiator’s action 1 which sends the first message

will be followed by the Responder’s action 1 receiving that message, and so on. Connecting

the corresponding sending and receiving nodes in the strands with another type of edges

(singe arrow “ � ”, representing the causal dependency) results in a graph over the strands’

nodes with two types of edges, which is called a strand space. The requirement on each

causal dependency edge is that the adjacent nodes must have the same message (no message

corruption in the transmission).

The Intruder Model.

The intruder in this model is not a single special entity possessing the network, as it is often

done in other security models, but rather a gang of collaborating principals, each of which

can do only one malicious thing at a time (snoop a message and resend it several times or

simply drop it, decrypt a message and pass it on to someone else, etc.), but all together they

are as powerful as any standard intruder can be. Each of the intruders, being just a principal,

is also represented by a role. There are 7 intruder roles used in [SBP01]7; we list them below

with only a brief explanation. For conciseness, each role is represented as a sequence of

actions in angle brackets; additionally, compound actions of the form � � � �
 �	� � � and
� � � �
 �	� � �� are added, meaning that both � � and � � must be received or sent, but the

order of these atomic actions is unimportant.

�
�

� � ��
 � �� , where message � belongs to the initial knowledge of the intruder;

� �

 � � ��
 � �� : receiving and dropping the message (useful for checking secrecy: if

� receives a supposedly secret � , there is a problem with the protocol);

7Actually, there are 8, but two of them, � and � , are essentially the same: one sends an intruder’s key,

and the other — any other message originally known to the intruder.

4.3. THE ATHENA PROOF SYSTEM 127

� �

 � �	�
 � � � � � �
 �	� � � : “tee” role, resend a message twice (duplicate);

� �
 � � � � � �	�
 � � � �
 �	� � ���� � � � � � � �� � : concatenates two messages;

� �

 � � � � ��� �
 � � � � � � ���� � � � �
 �	� � �� � : split the concatenation, it is the dual of�
;

� �
 � � � �	��
 � � �
 �	� � �� � � � � � � : encrypts a message;

�

 � � � � �
 � � � � �
 �	��� � � � � � �� : decrypts a message (dual of �); here

� � � is a

decryption key for messages encrypted with

�
(for instance, the corresponding private

key, if a message is encrypted with a public key).

Bundles.

We say that a strand space represents a complete protocol run when all the receiving nodes

are connected with corresponding sending nodes in the strand space, and for any node, all

the nodes preceding it in its strand are also present in the strand space (that is, a strand

space may include partial strands, but it must be backward-closed under the � relation). If

a strand space satisfies these conditions, it is called a bundle.

Specifications: the Logic and Example Properties.

Properties are expressed in a propositional logic that specifies which strands must or must

not appear in any protocol execution. More specifically, the only atomic formulas are of the

form � � � , where � is a (possibly partial) strand, and
�

is a bundle, and each specification

is given by �
�
� � �

where � is a propositional formula over the atomic formulas in which the bundle symbol

must be
�

. The meaning of a specification is that in any bundle (i.e. any complete protocol

execution) there must always be certain combination of strands as specified by � .

For instance, a one-way authentication property of the Needham-Schroeder protocol

can be expressed as follows:�
�
� � � �	� � � �

 	 � � � �
� � � � � � � � � �
� � � � ��� �

 	 � � � �
� � � � � � � �

That is, if an entire � � �	� � � � strand appears in a complete protocol run, then the complete� �
� � � � ��� � strand must also be in the same protocol run. This indeed expresses authentica-

tion, because the � � � � � � � has successfully completed the protocol run and believes it

128 CHAPTER 4. IMPLEMENTATION: SYMP

is indeed talking to the corresponding instance of the � � � � � � ��� � (notice that the parameters

are the same). Otherwise, if this property does not hold, the � � �	� � � � must have been

fooled by the intruder. Note, that the roles of the participants must be fully instantiated by

some message constants in the formula, so they become strands.

Although the formula under the scope of

�
�

is an arbitrary propositional formula, it is

sufficient to consider only formulas of the form

�
�
� � � � �

, where and
�

are sets

of atomic formulas.

Proof System: Semi-Bundle, Sequent, and Proof Rules.

The idea behind the proof system is the following. Given a specification

�
�
� � � � �

,

consider all bundles that contain strands mentioned in and check that they all contain at

least one strand mentioned in
�

. Let us denote the corresponding sets of strands by � and
� . Since there may be (and usually are) infinitely many such bundles, a compact repre-

sentation for sets of bundles is used, called semi-bundle. We omit the formal definition of

semi-bundle, but intuitively it is similar to a strand space, where all the nodes are backward-

closed under the � relation, and instead of the causal relation � another relation is used,

which is roughly a transitive closure of � � � with all intermediate nodes dropped from

the graph. It corresponds to finding the node which sends a message for the first time. Such

a semi-bundle represents all bundles consistent with it in the message flow.

The verification process starts with a semi-bundle consisting of only the strands from
� , and each step tries to complete the semi-bundle by finding a receiving node that is not

connected to any sender (an unbound goal) and bind it to all possible sending nodes, one

at a time, possibly adding new strands, thus, creating several refined versions of the semi-

bundle. At each step we check whether the current semi-bundle has a strand from � , and

if it does, the current subgoal is proven, since any bundle represented by the current semi-

bundle has to contain that strand, and therefore, satisfies the original specification. When

all goals are bound but no strand from � is present, the property has been violated and

a counterexample is constructed (a complete bundle violating the specification, which is

essentially an attack on the protocol).

The above procedure is formalized as a proof system. Since we only need the current

semi-bundle
�

and the set of strands � , the sequent has the following form:8� � � �

8Strictly speaking, the sequent contains the semi-bundle together with some additional information, but it

is not essential in this informal description. See [SBP01] for details.

4.3. THE ATHENA PROOF SYSTEM 129

The two main inference rules implement, respectively, the successful termination condition:� � � � � ��� if
� � � �� �

and the refinement step: � � � � � � �
� � � �� � � � ��� � � �

where � � � � � � � � � � � ��� � � � � , and � � � � � generates all possible semi-bundles that bind a

goal � originally unbound in
�
. The definition of � is rather complex and is omitted in this

description. Intuitively, it finds all the nodes that may send the message received in � , and

generates new semi-bundle for each of them with the appropriate binding, possibly adding

new strands. If none of the two rules applies, the subgoal is unprovable and represents an

attack on the protocol.

To connect the original form of the specification

�
�
� � with this “working” representa-

tion, another initial sequent is introduced:

� �
�
�
� �

where � is the protocol, with an additional rule:� � � � � � �
�
� � �

� �
�
�
� � � � � � �

which translates the formula into a set of “working” subgoals as we outlined earlier.

In the actual implementation there are many optimizations which help prune large or

even non-terminating proof subtrees. Some of these optimizations are expressed through

pruning theorems, which check whether the set of bundles represented by the current semi-

bundle is empty (and, therefore, the subgoal is vacuously true). A few such pruning theo-

rems are mentioned in [SBP01], and they are implemented in SyMP and mentioned below.

4.3.2 Language Description

The input language is designed to specify multiple independent security protocols in the

spirit of strand space representation. The capitalization of the keywords is unimportant

(that is, begin is the same as Begin or BEGIN), but it is important for all the other

names and identifiers (so, Alice is not the same as alice). A protocol declaration is of

the form

protocol <id> ::=

begin <definition> { [;] <definition> } end

130 CHAPTER 4. IMPLEMENTATION: SYMP

The list of definitions declares internal roles, predicates, and theorems for the protocol.

<definition> ::= <role> | <predicate> | <theorem>

A role has a name, a list of formal parameters, and a body consisting of the list of actions.

Each action may have an optional label, and actions are separated by an optional semicolon

to prevent potential ambiguity. There are only two built-in actions send and receive

that send and receive messages to and from the environment. The intended recipient or a

sender is not specified when sending/receiving a message, since under the assumption that

the intruder has a complete control over the network, this information is not of any use.

<role> ::= role <id> ’[’ <params> ’]’ =

begin <action> {[;] <action>} end

<action> ::= [<id> :] send <message>

| [<id> :] receive <message>

<role_params> ::= <role_param_block> {; <role_param_block> }

<role_param_block> ::= <id> {, <id>} : <typeSpec>

<typeSpec> ::= new <type> | fresh <type> | unique <type>

| Self | FreshNonce

<type> ::= Message | Principal | Nonce | <type> { * <type> }

| Encrypted ‘[’ <type> ‘]’ | Key

| PrivKey | PubKey | SymKey

The keywords new and fresh are exact synonyms, and they specify that the value of the

corresponding parameters will be freshly generated by each strand (or instance) of this role,

and their values initially are not accessible to any other strand. The keywords self and

freshNonce are synonymous to new principal and new nonce respectively. The

freshness rule for the parameters of type self (or new principal) is slightly different

from all the other types. These parameters define the identities of each strand. A strand may

have several identities at once. The identities themselves are always public knowledge, but

the private keys and shared symmetric keys are initially accessible only to those strands that

own the corresponding identities. Unlike the other types of “fresh” parameters, the same

“seft” parameter can be used by different roles, with some special technical restrictions on

the penetrator strands. This corresponds to one principal playing different roles at the same

time.

The keyword unique specifies that the role checks this parameter for uniqueness in

all of its runs. That is, if the same role is played by the principal with exactly the same

identities (Self parameters), then the value of all unique parameters must be different

in all such strands. The unique parameters are not necessarily generated by the role itself,

4.3. THE ATHENA PROOF SYSTEM 131

and in fact, they are often generated by others, and the role only checks if it has already seen

the value before. This mechanism helps to rule out some replay attacks on the protocols.

In the strand space model, messages are not sent to any participant in particular, but

instead are “posted” to the common network for everyone to see. It is expected that the

intended recipients will find their messages themselves. At the same time this allows the

intruder to tamper with the messages as it wishes, and the goal of the verification is to show

that the intruder still cannot break the protocol w.r.t. the properties stated as theorems.

All the objects in the language are explicitly typed, and the types have a well-defined

subtyping hierarchy. The most general type is Message, which is a direct supertype of

Principal, Nonce, Key, Encrypted[�] (the type of an encrypted message of type
�), and a tuple type � ��� 	�	�	 � � � (the type of the concatenation of � messages of the respective

types).

Principal and Nonce types do not have any subtypes.

Key has 3 immediate subtypes: PrivKey, PubKey, and SymKey for private, public,

and symmetric key types respectively.

Subtypes of Encrypted[� �] can only be other types of the form Encrypted[� �],

where � � is a subtype of � � .
Tuple type � � � ��� 	�	�	 � � � can only have tuple subtypes of the same length, and its

components must be subtypes of the respective components of � .

When parameters are instantiated, the type of each formal parameter must be a super-

type of the actual parameter.

Messages in the send and receive actions are formed from atomic messages by

concatenation and encryption operators. Also, keys are extracted from principals that own

them with PK (public key), PVK (private key) and SymKey (shared symmetric key) op-

erators. An inverse of a key can be constructed using INV k operator. The inverse of a

symmetric key is the key itself, and for a private/public keys their inverse is the opposite

key in the pair.

<message> ::= <id> | (<message> { , <message> })

| ’{’ <message> ’}’ <message> | INV <message>

| PK <message> | PVK <message>

| SymKey(<message>, <message>)

The atomic messages are formal parameters (there are no static or user-defined constants).

Concatenation is a tuple of messages, and encryption � � � � takes a message to encrypt and

a key

�
of some Key (sub)type. A decryption operation is simply an encryption with the

132 CHAPTER 4. IMPLEMENTATION: SYMP

inverse key for private/public key ciphers. But more often, decryption is done implicitly by

pattern matching on messages in the receive action. For example, if a role has an action

receive {N, A} (PK B)

and B is the owner of the role (parameter of type Self), then the message can be implicitly

decrypted by using N and A in the later actions of the role.

Properties of the protocols are specified with predicates and theorems:

<predicate> ::= predicate <id> ’[’ <params> ’]’ = <formula>

<theorem> ::= theorem <id> ’[’ <params> ’]’ = <formula>

<params> ::= <param_block> {; <param_block> }

<param_block> ::= <id> {, <id>} : <type>

Predicates and theorems have exactly the same syntax except for the initial keyword. Their

purposes, however, are different. Predicates assign names to formulas to be used later in

other predicates and theorems, and serve as convenient macro definitions. Theorems define

formulas that must always be true for the given protocol, and this is what the proof system

will try to prove. Although allowed by the input language, it probably does not make much

sense to use a theorem name as a macro for its formula in other predicates and theorems,

since once proven, it will always be true. We leave this option in the language for the future

extensions when we will be able to use previously proven theorems in the proofs of the

other theorems.

Notice, that the parameters to predicates and theorems are of the same form as to the

roles, except that we do not allow to specify freshness.

A <formula> is a propositional logic formula over the atomic propositions. An

atomic proposition is a set of (possibly partial) strands from one of the roles in the protocol

or the intruder’s roles. A strand can be either an instance of a role (then it is a complete

strand), or a substrand defined with the help of the labels on the actions:

<formula> ::= <atomic_formula> | not <formula>

| <formula> <op> <formula>

<op> ::= and | ‘&’ | or | implies | ’->’ | iff | ’<->’

<atomic_formula> ::= <strand> | ’{’ <strand> {, <strand>} ’}’

<strand> ::= <role_inst> | <role_inst> ’.’ <id>

| <role_inst> ’.’ <id> ’-’ <id>

<role_inst> ::= <id> ’[’ <message> {, <message>} ’]’

For instance, {Sender[A,B], Receiver[A,B].start-finish} is a set of two

strands; the first is a complete strand instantiated from the role Sender, and the second

4.3. THE ATHENA PROOF SYSTEM 133

is a partial strand consisting of actions of the Receiver’s instance starting from the ac-

tion labeled start and ending with the action labeled finish, inclusive. For concrete

examples, see Figure 4.7 and the Appendix B.

The formula is interpreted over complete (possibly infinite) executions of the protocol.

An execution in this case is a (possibly infinite) set of strands with send and receive

actions connected with causal relation to form the strand space (see Section 4.3.1 for the

discussion of these terms). An execution is complete (or, it forms a bundle) if every re-

ceive action is connected to some send action in the strand space, and every strand

contains its initial action, as defined by the corresponding role. An atomic proposition is

true in a complete execution (bundle) if its strand appears in the bundle, possibly as a sub-

strand of another strand. The entire formula is true iff it is true in every possible complete

execution of the protocol. A predicate or theorem is true in the protocol, if its formula

is true for all possible values of its parameters. For more formal definitions please refer

to [SBP01].

4.3.3 The Proof Rules and Commands: Running Athena in SyMP

The Athena module has 3 the most important proof rules:

init processes the theorem in the initial sequent and generates the “working” sequents
� �

� from it;

final completes the proof of the sequent if the current state
�

has all the nodes of at least

one strand in � ; and

split picks and binds a goal in all possible ways. It takes an optional parameter to specify

the goal manually.

The pruning theorem related to the encryption depth is hard-coded into the split rule.

The other pruning theorems are related to the availability of keys and are implemented as

two rules:

prune_keys: If the protocol never sends keys of certain types, and there is a goal request-

ing such a key, then the state is contradictory, and the proof of this sequent is com-

pleted immediately.

prune_signed: If the protocol never sends messages signed with principal’s private keys,

and there is a goal requesting a signed message, then this goal is unsatisfiable, and

the rule proves the current sequent.

134 CHAPTER 4. IMPLEMENTATION: SYMP

protocol NSPL =

begin

role Init [NA: FreshNonce; NB: Nonce; A: Self; B: Princi-

pal] =

begin

start: send {(NA, A)} (PK B) receive {(NA, NB, B)} (PK A)

finish: send {NB} (PK B)

end

role Resp [NA: Nonce; NB: FreshNonce; A : Princi-

pal; B : Self] =

begin

start: receive {(NA, A)} (PK B)

respond: send {(NA, NB, B)} (PK A)

finish: receive {NB} (PK B)

end

predicate responded[NA, NB: Nonce; A, B: Principal] =

Resp[NA,NB,A,B]

predicate initiated[NA, NB: Nonce; A, B: Principal] =

Init[NA,NB,A,B].finish

theorem agreement[NA, NB: Nonce; A, B: Principal] =

(initiated[NA,NB,A,B] -> Resp[NA,NB,A,B].respond) and

(responded[NA,NB,A,B] -> initiated[NA, NB, A, B])

end

Figure 4.7: Needham-Schröder authentication protocol with the Lowe’s fix in Athena lan-

guage.

4.3. THE ATHENA PROOF SYSTEM 135

Proof System-Specific Commands

Some information about the sequent is not printed by default. You can view that informa-

tion using the proof system commands:

explain prints the protocol run in a supposedly human-readable format; that is, one line

per message, each message of the form

	 � � � � � � � � � � � � � � � � ��� �
along with the list of participants and interm constraints, if there are any. The reason

there may be multiple recipients is because the intruder may duplicate the message

and forward it to anyone he wants. The true reason, however, is that each line is really

all bindings from the same term to all its goals. This command is mighty handy, and

you may find yourself not using any other commands at all.

bindings prints the list of goal bindings and the current interm constraints on the terms.

In Athena, a goal � can be bound by a term � that has more components than the goal

needs. If such a term � is a variable of a Message type, the exact components of

� are unknown, and the only information we have is that � is an interm of � . This

information is recorded in the state and is used in later goal bindings.

print_debug prints the complete information about the current sequent: the goal bindings,

the interm constraints, the nodes with all the information stored in them (strand ID,

role ID, all the parameters, and the corresponding action), and some other informa-

tion about the protocol used by the pruning theorems.

Automatic Proof Search

The SyMP prover has a general purpose strategies that can be used in Athena to search

for proofs automatically (see the general prover manual). The suggested way of using

strategies is by letting Athena execute all the available rules in a particular order, namely,

the final rule and the rules for pruning theorems (to cut the proof as early as possible),

then the split rule, and, finally, the init rule. The reason the init rule is the last

is because it will never be applicable after the initial sequent is transformed into a “state”

sequent, so you don’t want to try it every time just to see it fail. But the other rules will

not apply to the initial sequent, and if you run the strategy from the very first sequent,

the prover will eventually try the init rule. This will happen only at the beginning and,

136 CHAPTER 4. IMPLEMENTATION: SYMP

possibly, when Athena stumbles upon a counterexample, that is, at most twice in the entire

proof, so the overhead of trying so many rules before init is negligible.

To summarize, the super-duper Athena strategy is:

(repeat (try final prune_keys prune_signed split init)),

where try is a strategy for trying each rule in the list until one applies, and the repeat

strategy applies the rule or strategy in its argument repeatedly as long as it applies, gener-

ating the proof subtree in the depth-first manner.

Chapter 5

Experimental Results

Formal verification is in many ways an experimental science, and this work is not an ex-

ception. Having a sound underlying theory and even a rather general implementation of it

in the SyMP tool is still not sufficient to demonstrate its practical applicability.

This chapter describes our experience with applying our methodology to several con-

crete verification examples in two problem domains: hardware and security protocols. The

main purpose of the examples is to illustrate the versatility of our new methodology, that

is, its applicability to a wide variety of problem domains.

Even though we expreriment with only two problem domains, the experiments are still

quite conclusive. First of all, the two domains are extremely different from each other,

and yet our methodology is equally applicable to both of them. This suggests that it is also

likely to work well for many other not so vastly different problem domains. In addition, one

of the specializations, the default proof system, is a very general framework by itself. It is

possible to consider much more narrow specializations based on it, which may significantly

boost the expected practical performance.

The default proof system, which is a specialization of theorem proving to model check-

ing, is illustrated most thoroughly by the verification of a simplified version of the IBM

Cache Coherence protocol (Section 5.1). It is verified in two ways, demostrating that the

default proof system is expressive enough to handle both theorem proving-oriented reason-

ing, and also the reasoning very specific to model checking. This alone is a good indication

that such a proof system is a practical integration of model checking and theorem proving.

A few more examples of larger sizes are provided to explore the scalability of the approach.

The second proof system, Athena, is highly specialized to reason about security proto-

cols. The suite of examples in Section 5.3 demonstrates the practical performance of our

methodology on this very different problem domain. Again, there are no extremely com-

137

138 CHAPTER 5. EXPERIMENTAL RESULTS

plicated cases (and in fact, it is very difficult to find a protocol on the appropriate level of

abstraction that Athena would not tackle with ease), and the main goal of these experiments

was to get an idea about the practical performance of the methodology in this problem do-

main.

The degree of automation in Athena is much higher that that of the default proof system,

and one reason for that is a higher degree of specialization. This supports our conjecture

that the more specialized the verification tool is, the more automated the verification process

can be made for comparable complexity of the examples.

5.1 IBM Cache Coherence Protocol

As a very simplified version of the protocol, we consider the following configuration. The

entire system consists of � identical nodes (or clients) representing processor units, each

with its own cache, and each cache having only one single cache line. In addition, there is a

special home node which keeps track of the location of the data and ensures coherence. We

assume that each node has a direct connection with the home node, and the communication

is done through virtual channels. Each node has 3 virtual channels connecting it to the

home node, each of which has a one-element queue buffer (the actual protocol allows larger

queues).

Each cache line can be in one of the 3 states: Invalid, Shared, and Exclusive. ’In-

valid’ state means the cache line is empty, ‘Shared’ means it has a valid read-only copy,

and ‘Exclusive’ means it has the only copy of the data in the entire system, and it is a

read-write copy. We will completely ignore the data stored in the cache line and con-

centrate only on the cache’s state. The property we want to verify is a mutual exclusion

property. It is an invariant that, whenever some cache is in the ‘Exclusive’ state, all the

other caches must be in the ‘Invalid’ state. The home node keeps the list of nodes that

currently have a shared or exclusive copy of the data (SharerList), the node ID of the node

it is currently servicing (CurrentNode), the command it is about to send or receive on the

bus (CurrentCommand), and a boolean flag indicating whether anyone has an exclusive

copy (ExclusiveGranted). Whenever a node wants to obtain a copy of the data, it sends a

request to the home node through its channel � indicating whether it wants a shared or ex-

clusive copy. The home node then picks one of the clients among the requesters and starts

servicing it. If the client requests a shared copy, the home node checks that there is no

exclusive copy issued and sends the shared response to the client. If there is a node with the

exclusive copy, then the home node first sends an invalidate request to that client through

5.1. IBM CACHE COHERENCE PROTOCOL 139

channel � _ � , which prompts the client to write back the data and switch to the ‘Invalid’ state.

The home node then waits for the acknowledgement of this write-back on channel , and af-

ter that sends the response back to the requesting client on channel � _ � . Similarly, if a client

requests an exclusive copy, the home node checks if anybody else is holding the data and

sends the invalidate request to all of them. This time both shared and exclusive states are

important. After all clients send their confirmations of invalidation, the home node issues a

response to the original client allowing it to get an exclusive copy. Initially we assume that

all caches are in the ‘Invalid’ state, and the state of the home node is initialized accordingly.

The protocol is asynchronous, meaning that all transactions are serialized and per-

formed one-by-one. In this example, the transition relation is defined using a guarded

nondeterministic choice assignment of the form:

choose (cl: Client):

<guard1> => asst1

| <guard2> => asst2

...

endchoose

The choose operator first picks nondeterministically a value of the parameter cl which

ranges over all clients (or caches) that makes at least one guard true; then it nondeter-

ministically picks one true guard and executes the corresponding assignment. Each such

assignment in the example corresponds to an atomic transaction of the protocol; for exam-

ple, a cache places a message in its channel, or reads a message and changes its state. If

none of the guards can be made true for any value of cl, then a special nop assignment is

executed which keeps the state of the relevant variables unchanged.

For this example, we provide two versions of its proof: one is typical for traditional

theorem proving, and the other one heavily uses ideas from model checking.

5.1.1 An Approach Biased to Theorem Proving: Induction on Time

The mutual exclusion property that we want to prove is a safety property, or an invariant,

the one that must hold in every reachable state of the system. One way to prove it is by

induction on time. The base of the induction ensures that it holds in all the initial states.

The induction step consists of proving the property at time � � � under the assumption that

it holds at time � . Note that in order for the induction to go through, the property itself

must be inductive, that is, it must be strong enough to capture all necessary assumptions

for the time � , but not too strong to hold at � � � under these assumptions. Since not every

140 CHAPTER 5. EXPERIMENTAL RESULTS

invariant is inductive, in order to prove an invariant � we may have to strengthen it to obtain

another invariant � which (a) is inductive, and (b) implies our original invariant � in every

reachable state of the model. To formalize this induction principle in our proof system, we

introduce a proof rule induct_AG:�
��� � � � � � �

�
� � � ��� �
� � � � � � � 	 � �

�
� � � � � � � # �� � ����� �
� �� � � ��� � � � � $ � ���������	�

_
�� �

Here

�
� is the same model as

�
except that the set of initial states is now the entire

set � , so the last two premisses require that the property hold in all the states satisfying
� , the assumed set of invariants of

�
. Recall, that we only need to prove � true in all

states reachable from � in the original model

�
, not in all the states � . The set � may

have some important properties that all the reachable states satisfy, and without which the

induction might not go through. Since � and � are only relevant to the initial states of the

current model, when the set of initial states changes, � and � must be removed to preserve

soundness, as is done in the last two premisses. However, � does not have to be removed,

since it is not bound to the initial states, and this is why we need it as a separate field in our

sequent. Later we will show how formulas can be added to � and used.

Back to our example, we formulate our cache mutual exclusion property as the follow-

ing first-order CTL formula:

Theorem 5.1.1.

� $ � � � $ � � � � � � � � � � �� � � � � � � � � � � � ����� � � � � � � � � � � � � � � � � � � � � ��� � �
This corresponds to a sequent: �

� 	 � 	 � � $ � �
Let us for the beginning choose ��� � in the hope that the property is already inductive

and try to verify it starting with the induct_AG rule. After we apply the rule, we end up

with 3 new subgoals to prove. The second subgoal:�
� � � ��� �
� � � � � 	 � �

is trivially true, since the only conclusion is the same as the assumption. It is easy to see

that the first subgoal �
� 	 � 	 � � (5.1)

5.1. IBM CACHE COHERENCE PROTOCOL 141

is also true simply because all the caches are initially in the ‘Invalid’ state. To prove this

formally, we first eliminate the universal quantifier with the Skolemization rule:�
��� ��� � � � 	 � � �

��� ��� � � �
�
� � 	 � �

��

� �

Here
�

is a new Skolem constant that does not appear anywhere below in the proof. The

soundness of the rule is guaranteed by the fact that this new constant is new and uninter-

preted, so if we prove the formula 	 � � above the line for all the interpretations of
�
, this

implies that

�
� � 	 � � also holds by definition of the

�
-quantifier.

After applying the

�

� rule twice to (5.1) to generate two Skolem constants for � � and

� � , we obtain�
� 	 � 	 � � � � �� � �� � � � � � � � � � � ��� � � ��� ��� � � � � � � � � � �� � � � � ��� � � (5.2)

Next, we need a set of propositional rules to eliminate the implication and conjunction:�
��� ��� � 	 � � � ��
� � � � � � � 	 � �

� �
�
��� ��� � 	 � � � ��
��� ��� � 	 � � � � � �

which yield �
� 	 � � � �� � � � � � � � � � � � � ��� � � � � � � � � � � � � � � � �� � � � � ��� � �

Notice, that the two assumptions are not really needed in this case, so we use a weakening

rule to remove them; this will help the cone of influence rule to reduce the model to a

smaller one:�
� � � � � ��

��� � � � 	 � �
� �

� � �
� � ��� � � � � ����� � � � � � � � � �

��� ��� � �
�����

�

Here � � ����� � � � is a function that computes the set of variables
�

which may influ-

ence any of the specifications in the set , and

� � �
is a slice of the model

�
that has only

variables from
�

, and all the other variables are removed. In our case, the only relevant

variable is � � � � � � � � , which does not depend on any other variables in the initial state, and

therefore, the set
�

in the ‘
�����

’ rule consists of only this variable. So, our new subgoal

becomes � �
���

�
� ��� �

 � ��� � 	 � 	 � � � � � � � � � � � � � ��� � � (5.3)

Note, that the traditional cone of influence reduction would not reduce

�
just to one vari-

able, since � � � � � � � � depends on many other variables in the next state assignment. How-

ever, our formula is a propositional one, and therefore, the next state assignment will never

be used, so we ignore it in the computation of
�

.

142 CHAPTER 5. EXPERIMENTAL RESULTS

Finally, since the subgoal (5.3) has a finite model and only propositional specifications,

we can apply model checking rule to it directly, which easily proves the sequent:� �� � � � � � � � �
� � � � ��� � � � � ���	��
��

� � � � � �
��� �

where
� � �� � � � � � � �

� � ��� is a function that runs a model checker on the model

�
restricted to the global invariant � , and returns � �
 � if the property � holds in the model.

This completes the proof of the first two subgoals of the induct_AG rule. Now we

tackle the most difficult third subgoal representing the induction step:�
� 	 � � � � # � � (5.4)

The proof of (5.4) requires looking at the transition relation of the model

�
. Recall, that

the transition relation of

�
is represented by the choose statement, a nondeterministic

choice among guarded assignments. Our formula refers only to the current and the next

state (and not any further that that), and we have to prove the formula � on the right for

every next state (because it is under the
� #

operator). Since the only way to get to the next

state is to execute one of the branches of choose, we have to consider all possible cases

present in the statement. A new rule corresponding to such a case split is the following:�
� � � � � � � � � � � � 	�	�	

�
� � � � � � � � � � � ��

��� �
� � ��� � � � � � � ����
� � � � � � ��

� � ��� � � � � � � � �

 �

where

�
contains an assignment

choose � :
� � � � => asst � � �
...

| � � � � => asst � � �
endchoose

and

�
� is the same as

�
except that the entire choose statement has been replaced with

asst � � � ; similarly,

�
��� � has choose replaced with the nop assignment;

�
is a new

Skolem constant, similar to the one in the

�

� rule, which represents the nondeterministic

choice of the value of � made by the choose statement. Since an assignment � can only be

chosen if its guard is true, the guard is added to the list of assumptions � in each case. And

in the last case, when no guard can be made true, the corresponding formula is also added

to the assumptions.

5.1. IBM CACHE COHERENCE PROTOCOL 143

Observe, that the rules ������� and � � � � � �

aggressively exploit the particular represen-

tation of the model specific to our proof system (and the problem domain), and the fact

that the model is cleanly separated from the specification. These rules would be extremely

hard and cumbersome to implement efficiently in traditional theorem proving; and the fully

general version of � � � � � �

presented here is impossible to incorporate into the finite-state

framework of classical model checking.

In our example, there are 10 branches in the choose statement, therefore, 11 cases

are generated by the rule � � � � � � � . Some of the assignments do not modify any of the

caches, and therefore, their proofs should consist of a cone of influence reduction and

model checking. However, the sequent (5.4) still refers to all of the caches, and since the

number of caches is an uninterpreted parameter, the resulting model will not be directly

suitable for model checking even after the cone of influence reduction. So, first we have

to eliminate the quantifiers in � on both side of (5.4). The

�
-quantifier on the right hand

side is in the scope of the
� #

operator, and the rule

�

� is not directly applicable to it.

However,
� #

and

�
commute, and we can pull the quantifier to the top level:�

��� ��� � � �
�
� � � # 	 � � �

��� ��� � � � � #
�
� � 	 � �

� � # � �

After applying this rule to
� # � in any of the remaining subgoals, we can then eliminate

the quantifier by the

�

� rule. In fact, since this has to be done in every subgoal, we can

backtrack in our proof and apply

� � # � and

�

� before the � � � � � �

rule. This leaves us

with 11 subgoals of the form�
� � 	 � � � � � ��� � � # � � � � �� � �� � � � � � � � � � ����� � � � � � � � � � � � � � � � � � � � � �"� � �

The universal quantifier in � on the left can be eliminated (or instantiated) with the

�
� rule:�

��� ��� � 	 � � � ��
� � � � � � � � 	 � � � �

�
� �

where � is an arbitrary term. Notice, that the quantifiers are treated differently on the left

hand side, since formulas in � are assumptions that we use to prove formulas in � . An

assumption of the form

�
� � 	 � � means that for any value of � , 	 � � is assumed to be true;

therefore, in particular, it is true for any term � that we might need this assumption for.

For those subgoals corresponding to the cases of choose that do not modify the states

of the caches it is natural to instantiate � � and � � in � on the left with
�
� and

� � respectively.

The guard ��� in any of these subgoals is irrelevant, and we can safely remove it from

the sequent with the
� � rule. After that, the � ��� � rule finds that the only state variables

144 CHAPTER 5. EXPERIMENTAL RESULTS

relevant to the formulas in the sequent are � � � � � � � � and � � � � � � � � . However, even though

the model seems to be finite, direct model checking is still not applicable, since we do not

have an interpretation for
�
� and

� � . In fact, we do not even know exactly how many state

variables we have, since when
�
� � � � , the model has only one state variable � � � � � � � �

(which is the same as � � � � � � � ��), and two variables otherwise. This is due to the fact

that
�
� and

� � are Skolem constants, and we have to prove the sequent for all possible

their interpretations. However, no matter how we interpret them, the only property we can

deduce about them is whether they are equal or not, since
�
� �� � � is the only predicate that

references them. Also, this is the only fact that is needed to determine the aliasing of the

state variables. So, our proof has to split the cases on whether
�
� � � � or not:�

��� ��� � 	 � �
�
��� ��� � � � 	�

��� ��� � � ��� � �
The � � � rule is a general rule for splitting cases on whether an arbitrary formula 	 is true

or not, and since for any interpretation either 	 or � 	 must hold, proving the sequent for

both cases is sufficient for the original sequent without any mention of 	 to hold.

Although, theoretically, the ��� � rule is exactly what we need at this step, to be able to

use the additional hypothesis
�
� � � � or its negation we would have to introduce more

rules. Instead, we introduce a more specialized but more powerful rule that does all the

required transformations in one shot:���
� � �

�
� � �

�
� � �

�
� 	�	�	

���
� � �

�
� � �

�
� � �

�
��

��� � � � � �
�
�
�
� � � ��� ��� � � �

In this rule, we collect all the Skolem constants used in the original sequent, both in the

model and in the formulas, and construct all different sets of assumptions �
� about the

relationships among these Skolem constants (� is the number of different �
� ’s). These as-

sumptions, in the simplest case, are equalities or disequalities between each pair of Skolem

constants. This rule is precise (or invertible) when Skolem constants are only compared

for equality among each other or used as array indices. This condition could be easily

weakened to allow Skolem constants be compared with some concrete constants (e.g., if a

term
� � � appears in a formula), and even used in some predicates other than the equality,

but this is beyond the scope if this example. For our purposes it is sufficient to view the

set of assumptions � � as an equality relation over Skolem constants defined by its equiva-

lence classes: � � � � � �� � � � � �	� �� � � . For each equivalence relation ��� we modify the model

appropriately (merge all the state variables � � � � and � � � �� such that
�
� and

� � are in the

same equivalence class of � �) and evaluate all the predicates of the form
�
� � � � to either�	��
 � or ��
��� � , depending on whether

�
� and

� � are in the same equivalence class or not.

5.1. IBM CACHE COHERENCE PROTOCOL 145

After this transformations for each � � , we obtain new sequents in which different Skolem

constants are guaranteed to have only different interpretations, and can be replaced with

abstract constants (so that further rules would not confuse them with unreduced Skolem

constants). Thus, abstract constants are essentially Skolem constants, except that different

abstract constants are guaranteed to have different interpretations, and � � � � � iff ��� and � �
are one and the same constant.

In our example, for those subgoals (cases of the choose statement) that do not modify

any � � � � � variables, after deleting the guard from the assumption we end up with only 2

Skolem constants in the sequent:
�
� and

� � . There are two possible equivalence relations:

one where
�
� � � � , and the other where

�
� �� � � . Thus, for each such sequent we obtain

2 new subgoals with 1 and 2 state variables respectively (� � � � � � � � and � � � � � � � ��), and

these sequents can be easily discharged by model checking (the
���

rule).

Some other sequents do modify � � � � � variables and may need to use the guard as an

assumption; in this case the Skolem constant
�

that comes from the application of the rule

� � � � � �

has to be counted in the �
�
�
�
��� � � � ��� � � rule, yielding 5 new subgoals, each of which

are again ready to be model checked. There are, however, two subgoals for which the model

checker will produce a counterexample: these are the cases when a cache line receives a

shared and exclusive copy of the data respectively. Since our invariant � allows one of the

caches to be exclusive at any time, and does not say which one it must be as long as all

the others are invalid, making another cache shared or exclusive violates the invariant. This

indicates that � is either not an invariant, or is not an inductive invariant. Recall, that we are

trying to prove the original
� $

-property by induction on time, and any induction requires

an inductive invariant to go through. Since we still hope that � is actually an invariant (and

the designers keep assuring us), let us assume that � is just not strong enough and try to

strengthen it. Since we have introduced the invariant in the very first rule
� $ � , we have

to kill the entire proof and redo it from scratch starting from the
� $ � rule, only this time

giving it a better invariant than � .

If we look at the counterexamples, we see that the home node grants a cache shared or

exclusive privileges only if it believes that no other cache is in the exclusive state, which

is determined by the state of its SharerList and ExclusiveGranted state variables. There-

fore, we also need to prove that these two state variables are always in sync with the actual

states of the caches; so we add another conjunct to the invariant � , obtaining a new, stronger,

invariant:

� �
�
� � � � � � � � � � � ��� ��� � � ��� � � ��� ��� ��� � ��� �
	�� � �� �

�
�
� � � � � � � � � � � � � � ��� �� � � � ��� � � ��� � � � ��� ��	 � 	�� ��� � � � �

146 CHAPTER 5. EXPERIMENTAL RESULTS

Although this formulation is already good enough, for the sake of the proof’s simplicity we

rewrite this invariant slightly to have all the quantifiers on the top level:

� �
�
� � � � � � � � � �� � � � � � � � � � � � � ��� � � � � � � � � � � � � � � � � � � � � ��� �

� � � � � � � � � � ����� � � � � � � � � � � ��� ��� � ��� �
	 � � �� �
� � � � � � � � � � � � � � �"� � � ��� � � � � � � � � � ��� ��	 � 	�� ��� � � � � �

For brevity, we denote the three subformulas by 	 � , 	 � , and 	 � respectively:

� �
�
� � � � � � 	 ��� � � � � �� � 	 � � � � � 	 � � � � �

Let us now quickly go over the proof once again and see if we can complete it this time.

As before, we apply the induct_AG rule to the original formula
� $ � , but this time using

our new invariant � instead of � . We obtain 3 new subgoals:�
� 	 � 	 � � (5.5)�
� � � � 	 � � (5.6)�

� � 	 � � � � # � � (5.7)

The first subgoal (5.5) can be split into 3 subcases by the � � rule:�
��� � � � � � 	 �

�
��� ��� � � � 	 ��

� � � � � � � 	 ��� 	 � � � �

and then each of the cases is proven by

�

� , ������� , and

���
rules (Skolemization, cone

of influence, and model checking), since all the caches are initially invalid. The second

subgoal (5.6) is proven by Skolemizing the RHS (

�

�) and instantiating the LHS with the

new Skolem constants (

�
�), and then “flattening” the result with the � � rule, which yields

two identical formulas in � and � and completes its prove. Again, the most interesting part

is the induction step (5.7). As before, we first apply all the invertible rules to the sequent

(the “precise” rules, such that the sequent holds iff all the premisses of the rule hold), which

are the

� � # � rule (swapping
� #

and

�
) and Skolemization

�

� , yielding�

� � 	 � � � � # � 	 ��� � � � � �� � 	 � � � � � 	 � � � � �
Applying the � � � � � �

rule to split on the nondeterministic choice in the model

�
�

again gives us similar 11 subgoals which we deal with by instantiating the quantifiers in
� on the left, possibly removing the guard, applying the abstractSplit rule and model

checking. This time the two problematic cases, where the � � � � � variables are modified,

5.1. IBM CACHE COHERENCE PROTOCOL 147

go through. However, since the property we want to prove became stronger, some other

cases that we proved earlier fail this time. In particular, in the case when an element of the

SharerList is reset because the home node receives an invalidate acknowledgement from

the corresponding cache line, we did not keep track of whether the cache indeed switched

to the ‘Invalid’ state. Therefore, assuming that the cache “cheated” leads to violation of the
	 � part of the invariant. The counterexample prompts us for another strengthening of the

invariant, and we have to do another iteration of the proof.

Such an iterative process of strengthening the invariant should eventually yield an in-

ductive invariant that allows us to prove the property. Even in our relatively small example,

after spending several hours adding new conjuncts to the invariant and redoing the proof we

still could not find an explicit inductive invariant. Larger examples may need significantly

more complex invariants, and doing the proof over and over again could be tedious (even in

our example it was not easy), and figuring out how to strengthen the invariant when we get

a counterexample may require significant manual effort and expertise in the design of

�
.

On the other hand, since we want to verify a parameterized design by induction on time,

there is little hope that we can get by without constructing an inductive invariant one way

or the other.

Let us now step back and think about the designer’s intentions in this protocol. First,

we notice that the home node enforces the mutual exclusion property by keeping track of

the caches’ states in its own variables SharerList and ExclusiveGranted. The real state of

the cache must be consistent with the home node’s perception, although it may be delayed

in time because of the communication latency. This view of the protocol prompts for a

different verification strategy, where we first prove that the home node indeed enforces

mutual exclusion of its local view of the caches, and then show that the local view has

enough relevance with the actual state of the caches to prove our main property.

Let us define a function � ��� ��� � � � � � � that computes the state of a cache � as perceived

by the home node:

homeCache ���	� = if sharerList ���	� then

if exclusiveGranted then Exclusive

else Shared endif

else Invalid endif

and formulate the home mutual exclusion property as a lemma:

Lemma 5.1.2.

� $ � � � � � � � � � � �� � � � � ��� ��� � � � � � � � � ��� ��� � � ��� � � � ��� �
� � � � � � � �� � � � � ��� � �

148 CHAPTER 5. EXPERIMENTAL RESULTS

This invariant turns out to be inductive, and moreover, it only depends on the state of

the home node; the states of the communication channels and caches are irrelevant. We

can exploit this fact by abstracting away the communication channels from the model (that

is, making all the channel variables completely nondeterministic), after which the cone of

influence will remove the caches from the model, since they become disconnected from the

home node and cannot influence its behavior.

Formally, we prove this lemma by induction on time, as before. The induct_AG rule

will produce three subgoals: �
� 	 � 	 � ��� ��

� � �����	�
� � � ��� � 	 � ��� � and�
� � 	 � ��� � � # ��� �

The second subgoal is trivially true (the inductive invariant implies the invariant we want

to prove, which is the same in this case). The first subgoal is proven by Skolemizing (

�

�

rule), flattenning (� � and � � rules), deleting the formulas on the LHS (
� � rule). The

cone of influence reduction on the resulting sequent:�
� 	 � 	 � � ��� � � � � � � � � � � � � � �"� � �

leaves only two boolean variables in the model:
� � ��	 � 	�� � � � � � �� and

� � ��� ��� � ��� �
	 � ��� � , and

then the
���

rule completes the proof of this subgoal.

Finally, in the most interesting third subgoal, the universal quantifier on the right is

pulled out of the
� #

operator (rule

� � # �), and quantifiers are eliminated by

�

� and�

� (the quantified variables on the LHS are instantiated with the corresponding Skolem

constants from the RHS). At this point, we could simply apply the �
�
�
�
��� � � � ��� � � rule, which

would produce two finite-state subgoals ready to be model checked. However, to increase

the efficiency of model checker, we will also abstract away the caches and communication

channels, as we mentioned above. A corresponding rule is the following:�
� ��� ��� � ��
� � ��� � � �

�
�
�
� � � � � �"� �

where

�
� � � � � � � � � � � is the same as

� � � ��� �
���� , except that some state variables

are removed and replaced by nondeterministic choices everywhere in

�
. The formulas

in the sequent are restricted to ACTL in � and ECTL in � and � . In our case, we use

this rule to abstract all caches and communication channels from the system. This leaves

at most 3 boolean state variables in the cone of influence of the resulting model after all

5.1. IBM CACHE COHERENCE PROTOCOL 149

the abstractions:
� � ��	 � 	�� � � � � � � , � � ��	 � 	 � ��� � � � � , and

� � ��� ��� � ��� �
	 � � �� � , which can be easily

model checked.

Next, we need to connect the
� ��� � � � � � � values to the real caches. Observe that the

home node can only see the states of the caches through the communication channels, and

will maintain the cache’s state in its local variables according to the cache’s state together

with the state of its channels. In other words, it seems natural to view the cache together

with its communication channels as a single abstract cache. We define another function

�
�
�
�
� � � � � � that maps a cache with channels to a cache state by a table:

channel3 channel2_4 cache exclusiveGranted absCache

InvalidateAck
�

Invalid false Shared

InvalidateAck
�

Invalid true Exclusive
� �

state – state
�

Invalidate Shared false Shared
�

Invalidate Exclusive true Exclusive
�

grantShared �� Exclusive – Shared
�

grantExclusive Invalid – Exclusive

Otherwise Error

Notice that we also use �
�
�
�
� � � � to rule out some configurations that should not be

possible to achieve by mapping them to an “Error” state. For instance, the protocol should

never send an “Invalidate” message to a cache that is already invalid, and the cache should

be in the “Invalid” state when it sends an “InvalidateAck.”

Our next lemma states that the home node indeed maintains its state consistent with the

current state of �
�
�
�
� � � � :

Lemma 5.1.3. � $
�
�
�
�
� � � � � � ��� � � � � � � �

Notice, that we stated this lemma as an equality between functions; this is equivalent to

stating the equivalence for each individual cache:

� $ � � � � � � � � � � � � � � � ��� � � � � � � � � �
Before we start proving this lemma, it is worth making sure that it will be helpful in the

proof of our main mutual exclusion property, and this is the next step we want to check.

First, from Lemmas 5.1.2 and 5.1.3 we can conclude that the �
�
�
�
� � � � also enjoys the

mutual exclusion property:

150 CHAPTER 5. EXPERIMENTAL RESULTS

Lemma 5.1.4.

� $ � � � � � � � � � �� � � � �
�
�
�
� � � � � � � � � � ��� � � ��� � � �

�
�
�
� � � � � � � � � � � ��� � �

To prove this formally in our proof system, we need a rule that can use a lemma stated

earlier:
�
��� ��� � � � ��
��� ��� � �

� � � � � �
where there is a lemma

�
� 	 � 	 � � stated before the current lemma in the specification

for the same model

�
. An alternative is to use the � � � rule to introduce the lemma from

within the proof. Next, we have to replace
� ��� � � � � � � with �

�
�
�
� � � � on the right. A rule

that takes an equality from the assumptions and substitutes its RHS expression for its LHS

in the rest of the sequent is a reasonably general form of a proof rule that we can use here:�
 	 � � � ���
 	 � � � � 	 � � � �
 	 � � � � �
 	 � � ��
��� � 	 � � � � � � � � �'��� ��� �

Notice, that the equiality has to be in the invariant part of the sequent. If it were in � ,

then it would only be assumed to hold in the initial states, and we would not be able to

replace it soundly inside the
� $

operator. Next, we need a way to move an assumption

from � (where the lemma is originally placed) to � , which can be achieved with the
�
�
� �

rule:
�
��� ��� � � � �

�
� � � � � � � � $ ��

��� ��� � �
�
�
� � �

where the second premiss is proven by the ‘
� � � � � ’ rule. Let us introduce a more conve-

nient rule for the frequent special case of lemmas in the form of
� $ � :�

��� � � � � � ��
��� ��� � �

� � � � ����� �
where a lemma of the form

�
� 	 � 	 � � $ � is present in the specification before the

current one with the same model

�
. To summarize, applying the rules

� � � � ����� (for

both Lemmas 5.1.2 and 5.1.3) and � � ��� � � � proves Lemma 5.1.4. Another invariant that we

need is that abstract cache never reaches the “Error” state:

Lemma 5.1.5. � $ � � � � � � � � � � � � � �� � ��� ��� �
This lemma can be proven by using Lemma 5.1.2, replacing �

�
�
�
� � � � with

� ��� � � � � � � ,
and checking that

� ��� � � � � � � function can never yield “Error.” The last step can be done,

e.g. by expanding the definition of
� ��� � � � � � � , lifting the if-expressions over the disequal-

ity and evaluating the resulting expression.

5.1. IBM CACHE COHERENCE PROTOCOL 151

It is easy to see now that Lemmas 5.1.4 and 5.1.5 together imply our main mutual

exclusion property (Theorem 5.1.1), since � � � � � � � � ��� � � ��� ��� � implies �
�
�
�
� � � � � � �

��� � � � � � � � , and �
�
�
�
� � � � � � � � � � �"� � implies � � � � � � � � � � � ��� � under the assumption

that �
�
�
�
� � � � � � �� � ��� ��� .

So, the only missing part of the proof of Theorem 5.1.1 is Lemma 5.1.3. However,

trying to prove Lemma 5.1.3 directly quickly shows that this property is not inductive, and

we need to strengthen the invariant. To cut the story short, the final inductive invariant that

eventually allowed us to prove Lemma 5.1.3 is the following:�
� �
� ��� � � � � � � � � � �

�
�
�
� � � � � � � ��� � � � � � ��� � � � � � � � � � � � ��� �

where ��� � � � � � ��� � � and � � � � � � � � ��� are predicates over an additional monitor state vari-

able ‘ � � � � � ’, which keeps track of what phase of the protocol the home node is in. Specif-

ically, � � � � � ranges over � � � � � � ��� � � � � �"� � �� � � � � � � � � � ���� � � � � . The
� � � � � �"� phase means

the home node is not servicing any of the clients, and is ready to accept new requests. The� � � ��� � � � � � � phase is when the chosen client is requesting an exclusive copy of the data,

but someone else is holding the data, and the home node is in the process of invalidating

those cache lines. Finally, the
� � � � ���� � � � phase is when the request is being granted to

the client.

The predicate � � � � � �� � �'� � � defines which rules can be enabled in each phase of the

protocol, that is, which actions the system can perform in a given phase. If the home node

can accept new requests, then it must be in the
� � � � � ��� phase. If any action relevant to

invalidating a cache is enabled, then the phase must be
� � � �"� � �� � � � � . If the home node can

grant shared or exclusive privileges to some client, then the phase is
� � � � ���� � � � .

The � � � � � � � � ��� predicate adds additional invariants to each of the phase. In the
� � � � � ���

phase, no pending grant or invalidate messages should remain in the channel queues, and

home node must not be servicing any requests. In the
� � � ��� � � � � � � phase, the set of clients

to be invalidated must be a subset of clients holding the data, and each to-be-invalidated

client must satisfy the following: it should be either in a non-invalid state and the
� � � �"� � �� � �

message should not have been sent to it yet, or there is a message pending to it that grants

it read or write privileges. Additionally, the home node must be servicing some request

(not being idle), and if it is a � ��� � � ��� � request, then some client must have been granted

the exclusive copy before. The
� � � � ���� � � � phase requires that the list of to-be-invalidated

clients be a subset of those holding the data (even though no invalidation is already neces-

sary), no client is receiving the
� � � ��� � � � � message, no client is responding with the inval-

idate acknowledgment, and if the serviced request is � ��� ��� ��� � � ��� � , then no client should

hold the data. On top of that, the home node must be servicing some request (not being

152 CHAPTER 5. EXPERIMENTAL RESULTS

idle), and if the request is � ��� � � ��� � , then no one should have been granted the exclusive

copy before.

5.1.2 An Approach Biased to Model Checking: Abstraction and In-

duction without Inductive Invariant

It should be pretty clear by now that the complexity of the inductive invariant itself, not to

mention the proof using it, is the primary bottleneck in the verification by direct induction

on time. Another way to attack the verification problem of a parameterized system is

to try an aggressive abstraction at the very beginning with the hope to obtain a detailed

enough but finite abstraction and simply model check the resulting model. The inductive

invariant in this case is implicitly (and automatically) constructed by the model checker and

is completely hidden from the user. The complexity in this case is shifted to figuring out

the right abstraction.

In the previous section we have introduced a rule �
�
�
�
� � � ��� �'� � � , which provides an

easy way to build abstract models. This rule basically assumes that only the constants�
� � � � � � � � explicitly mentioned in the specification are important in the proof. It collects

all the state variables that have common types with these constants and abstracts the types

of those variables to � � � � � � � � � � � � � , where
�

stands for all the values other than the

constants. For instance, if we want to leave only � � � � � � � � and � � � � � � � � in the model, the

potentially infinite type of the cache index ‘Client’ can be abstracted to just 3 values:� � � � � � � � � . This immediately makes the types finite, and the model may become small

enough for a model checker to handle. A version of this technique based on symmetry

reduction has first been introduced by Ken McMillan [McM98].

Instead of trying to prove Theorem 5.1.1 by induction on time, let us try to apply the

abstraction and model check the property directly. First, we lift the universal quantifier

from inside the scope of
� $

using the rule:�
��� ��� �

�
� � � $ ��

��� ��� � � $
�
� � �

�
� � � � ��� �

After Skolemization (rule

�

�) and abstraction of the Client type (�

�
�
�
��� � � � ��� � � rule),

we obtain two finite abstract models in which this type is � � � � � � � � � and � � � � � , for the

cases when the Skolem constants
�
� and

� � are different and the same respectively.

Model checking the property in the first model, however, yields a (spurious) coun-

terexample: since we abstract away all the caches indexed by
�

, they are allowed to send

any messages at any time nondeterministically. In particular, one such cache sends an

5.1. IBM CACHE COHERENCE PROTOCOL 153

� � � ��� � � � � � � � while the home node is waiting for it, but before the cache that actually

holds the data has a chance even to receive the
� � � ��� � � � � request (which stays in its chan-

nel queue). The home node then happily grants an exclusive copy to another cache, thus

violating the mutual exclusion property.

This counterexample suggests that we should keep track of whether the “other” caches

have an exclusive copy or not, and therefore, whether they can send such a bogus message.

One solution (suggested to us by Ken McMillan) is to introduce an additional lemma that

does exactly that:

Lemma 5.1.6.

� $ � � ��� � ��� � � ��� ��� � �

� � � � � � � � � � ��� � � � � � � � ��� � � � � � � � � � � � � ��� � �
Here � is the state variable that indicates which of the asyncronous components is mak-

ing progress at the current step, and � � ��� � is another monitor state variable that keeps track

of which cache holds the exclusive copy of the data. Adding the lemma as a restriction on

the abstracted model is sufficient to prove Theorem 5.1.1 by direct model checking, and all

that is left is to prove Lemma 5.1.6.

It is important to stress once again that Lemma 5.1.6 was not magically pulled out of

a hat, but rather was derived directly from the counterexample to the main Theorem 5.1.1.

Understanding the reasons for the counterexample involves some human insight. In our

case, the reason is that a cache that clearly does not own an exclusive copy of the data

nevertheless sends the
� � � ��� � � � � � � � message, which breaks the protocol. Therefore, to

prevent this from happenning, we introduce a lemma stating that only the current owner is

allowed to send this message. A new state variable is added to keep track of the currect

owner. Since this variable only “monitors” the behavior of the original system and does

not interfere with it in any way, this change to the model does not affect the validity of the

original specification.

In more involved examples, this approach of “patching holes” in the initial abstraction

with additional lemmas may have to be repeated several times and may go several levels

deep (lemmas may need additional lemmas for their proofs), since a spurious counterex-

amples may be generated for other yet undiscovered reasons. Luckily, in this example we

only have one such “hole,” and Lemma 5.1.6 successfully “patches” it and allows the proof

of Theorem 5.1.1 to go through.

The first obvious attempt at proving the lemma is to try the same “abstract and model

check” approach, except that we do not have any Skolem constants to base our abstraction

on. However, we have two state variables mentioned in the lemma that have potentially

154 CHAPTER 5. EXPERIMENTAL RESULTS

infinite types: � and � � � � � . We then use the equality

� � � � ��� � � � � �
where � is an arbitrary term, to rewrite the lemma in the following way:

� $ � � � � � � � � � � �
��� � � ��� � � � �

� � ��� � ��� � � ��� ��� � �

� � � � � � � � � ��� � � � � � � � � ��� � � � � � � �� � � � � ��� � �
This now becomes familiar, and we swap

�
and

� $
, abstract the type of � and � � ��� � to� � � � � � � � � and � � � � � (remember, that we have to generate two cases here), and run the

model checker on the two abstract models. But this time the abstract model does not satisfy

the property, and we are again left with a counterexample, similarly to our experience with

the main theorem.

Of course, one solution could be just the same: find another lemma that helps us elim-

inate the counterexample, and which we, hopefully, can prove. This chain of lemmas,

however, may go on too far, and we may eventually end up with an invariant similar to the

one in the previous section.

Another solution is to fall back to the induction on time and hope that it will be easier

for this (seemingly) simpler lemma. The hope here is quite thin though, since even in a

“pure” theorem proving environment it is not too hard to derive the main mutual exclusion

property form this lemma, and most likely, all the complexity of the proof will be shifted

into the proof of this lemma.

Fortunately, there is a middle-ground solution, also first used by McMillan [McM98],

however, with a different argumentation. Our version of this solution is the following

sequence of transformations:

� $ � � �
 � � (� �
� �
 � � (

�
� ��� � � � � �

�
�
� � �
 � � (�� � � � � ���

where
�
 � (� � is the release operator, the dual of until. That is,

� �
�� (� � � �
 � � & � � � �

We omit the formal proof of each step of the transformation for brevity, but it is not very

difficult to reconstruct. The key observation here is that the final property after Skolem-

ization and abstraction is weaker than the property after similar transformations directly on

5.2. FLOATING POINT UNIT CONTROLLER 155

the
� $

formula, and this turns out to be sufficient to prove the lemma by direct model

checking. The term � in our case is the state variable � in Lemma 5.1.6.

Another way to see this transformation is as a generalized induction on time : assuming

that the property holds up to time � � � (as opposed to at time � � �), prove that in the

set of reachable states of the abstract model the property holds at time � . The meaning of

the formula
�
 � � (� � is exactly that: for each path, either � holds at all times along the

path, or there is a point where � � becomes true, and � must hold up to (and including)

that state. Of course, if � � becomes true, then � cannot be true in that same state, and

the formula will be violated. However, it allows us to express the assumption that � holds

all the time up to � � � , and in order for the formula to hold, it must also be true at time

� . Lifting the universal quantifier from the right-hand side to the top level corresponds to

proving � at time � case by case (for each value of the term �), but under the assumption

that the entire � holds at � � � . This is why it is a weaker property (i.e. more likely to hold)

than

�
� � � $ � � � � � �	 , since the latter can be considered as a generalized induction

that assumes � � � � � up to time � � � , and not the full � .

5.1.3 Summary

Despite the clear difference in the complexity of the proof, we will not suggest that one

method is clearly better than the other based on just this example. Instead, we would like to

emphasize that both approaches can be realized within our unified framework without any

loss of generality or any significant loss of efficiency, compared to the specialized tools like

PVS or Cadence SMV in which this example has also been verified. This suggests that our

framework is indeed a balanced and general enough combination of model checking and

theorem proving. In addition, it is quite possible that other more complex examples may

require extensive use of both model checking and theorem proving techniques, in which

case neither PVS nor SMV may have enough expressive power or efficiency, but our tool

will still be able to handle such examples.

5.2 Floating Point Unit Controller

A research group at Saarland University has designed a complete microprocessor in PVS

language, formally verified it all the way to the gate level, and implemented on a Xilinx

FPGA. This is a superscalar microprocessor with out-of-order instruction scheduling and

an instruction set typical to any general purpose microprocessor. In particular, it supports

156 CHAPTER 5. EXPERIMENTAL RESULTS

����

�������
�

�������
�

�������
�

out 	

op
 , �

div lookup
special cases

unpack

rd2

rd1

sel fd

md2

md1

Figure 5.1: Floating Point Unit Controller

floating point arithmetic with single and double precision, and is fully IEEE compliant.

The multiplication and division operations are performed in a designated functional unit

whose design and verification are described in [BI01]. The unit is pipelined with a shared

multiplication circuit used in both multiplication and division operations, and the nature of

this specific pipeline allows the unit to complete instructions out of order.

The pipeline is driven by the controller whose architecture is shown in Figure 5.1. When

an instruction is loaded into the unit, its operands are unpacked and checked for special

cases (division or multiplication by 0, INF, or NaN), and then passed to the actual process-

ing stages, except for the special cases where the result is computed and returned directly

by the unpacker. The processing stages consist of two-staged multiplier (md1 and md2), se-

lector of the resulting significand (select fd), and two rounding stages (rd1 and rd2), which

also normalize the result to conform to the IEEE standard.

The multiplier stages are used both for the multiplication and for computing the next

approximation in the iterative division algorithm. Since the multiplier is pipelined, when

a division instruction is dispatched into the unit before a multiplication, the multiplication

will leave the unit after passing through the pipeline once, but the division will be fed back

to the pipeline for another 2 or 3 iterations, depending on the precision of the operands. The

result is, the multiplication instruction will leave the unit before the division, even though

5.3. ATHENA: EXPERIMENTS IN SECURITY PROTOCOL VERIFICATION 157

it has arrived later.

The verification task is to prove that the underlying algorithm produces an accurate and

IEEE compliant result, and that the controller drives the pipeline in such a way that parallel

instructions do not interact and are not being lost or duplicated.

In this experiment we have only verified the latter property, that is, the correctness of

the pipeline control signals. The data correctness and, in particular, IEEE compliance have

not been verified in our tool SyMP.

The entire floating point unit operates within an out-of-order module of the micropro-

cessor driven by the Tomasulo’s scheduler. To avoid hazards related to false data depen-

dences (write after read and write after write), the values to be written back to the register

file are copied into the reorder buffer and tagged with a unique tag. When the floating point

unit loads several instructions simultaneously, even if they complete out of order, it will

still be possible to identify the result by the tag.

One of the most important properties of the controller is to ensure that it does not lose

or duplicate the tags, provided that no duplicate instructions were loaded into the unit.

We have taken the model from the original SMV description (the authors have verified

it both in SMV and PVS), translated it into SyMP, parameterized it by the tag width, and

verified the general parameterized model. The SyMP proof corresponds very closely to the

proof in SMV, where the arbitrary tag width is modeled with uninterpreted types.

The verification itself was very straighforward, the entire proof of the most complex

property (preservation of tags) consists of only 8 simple steps that run within a couple of

seconds through the first 7 rules (the state reduction techniques producing a finite model),

and the only computationally demanding step is the run of the model checker (CMU version

of SMV), which takes about 30 minutes on a 200MHz Pentium processor using 122MB of

RAM. Most of the running time is spent on dynamic variable reordering without which

SMV runs out of memory. Since the generated SMV model is not very efficient in the

current version of SyMP, we expect that the run time can be significantly reduced by using

better optimizations in the translation phase of the modelcheck inference rule.

5.3 Athena: Experiments in Security Protocol Verification

The purpose of building and experimenting with the Athena proof system in the context

of this thesis is to demonstrate that SyMP is a versatile prover generator and can handle

problem domains that are as far from hardware verification as security protocols. Also, it

has been an instructive experience on how SyMP helps in designing new proof systems,

158 CHAPTER 5. EXPERIMENTAL RESULTS

understanding the specific subtleties of the problem domain, and developing new heuristics

and methodologies for (automatic or manual) proof search, extensions to the specification

language, etc.

The original verification algorithm Athena was created by Dawn Song [SBP01, Son99],

who based her work on the strand space model by Thayer Fábrega, Herzog and Guttman

[THG99]. A big part of the implementation of the Athena module in SyMP was done by

Alex Groce, who designed most of the input language, the typechecker, and the infras-

tructure for the inference rules. Our contribution is in completing the implementation of

the inference rules, extending the language and the typechecker with more features, and

performing the experiments.

We have verified several well-known protocols taken from the survey by Clark and

Jacob [CJ97]. Most of the protocols can be verified or refuted completely automatically,

and some of them required manual guidance, but we have not found a protocol where no

automatic proof search was possible at all.

Our complexity measure of the verification will be the number of steps it took the prover

to find a flaw or prove the protocol secure, and the number of states generated during the

proof search. A proof step is just an application of a proof rule. A state is a synonym for

sequent in this context, and the reason we call them states is to follow the terminology in

the original Athena paper [SBP01], where a state is a compact representation of a (possibly

infinite) family of protocol runs. If a protocol is proven correct, then a rule must have been

applied to each state (or sequent), and the two numbers will be identical. But in case of a

proof failure, the sequent that cannot be reduced represents an attack on the protocol, and

other sequents in yet unexplored branches of the proof need not be proven or disproven, so

the number of states can be larger than the number of the proof steps.

Each proof step generally takes no more that a tenth of a second to apply, and in an

automatic mode, a 50-step proof can be found in a matter of a few seconds. The memory

required to store each state is negligible for small proofs and only matters when several

thousand states are generated; in such cases 128MB of our workstation was getting a bit

tight. Fortunately, we have never encountered such proofs after implementing a simple

heuristic for goal binding in the split rule. The largest proof we have found has 551 states,

which is still well within the capacity of the machine.

The complete source code for all of the examples of this section is given in Appendix B.

5.3. ATHENA: EXPERIMENTS IN SECURITY PROTOCOL VERIFICATION 159

5.3.1 Needham-Schroeder Authentication Protocols

Public Key Protocol.

In our first experiment, we used the public key authentication protocol by Needham and

Schroeder [NS78] which in its simplest version consists of three messages:

	 � � � � �
� � 	 �����

� � 	 � � �
� � � � ��� �

	 � � � � � � ��� � �
We use the standard notation for describing security protocols as above. Each line rep-

resents a message sent from one participant to another; 	 � � �
�

means 	 sends

a message

�
to � . Messages encrypted with (public or symmetric) keys are written as� � ��� .

The goal of this protocol is to authenticate the principals 	 and � to each other. That

is, by the end of a successful protocol run, 	 believes she is talking to someone possessing

� ’s private key (and therefore, it must indeed be � , assuming private keys never get com-

promised), and � believes he is indeed talking to 	 . In addition, the two principals share a

common secret, the two nonces �
�

and � � , from which they may derive a new symmetric

session key for later communication.

Our model assumes that the encryption is “perfect,” or unbreakable, which formally can

be defined as � � � ��� � ���
�
� ��� � iff

�
� �

�
� and � � � � � �

Nonces (random numbers used “once”) generated by principals are denoted by the letter �
subscripted with the principal’s name (e.g. �

�
is a nonce generated by).

This protocol has a famous flaw first discovered by Gavin Lowe [Low95]1 and requires

two parallel sessions of the protocol:

	 � � � � �
� � 	 �����

� � 	 � � � � �
� � 	 ��� �

� � � � 	 � � �
� � � � ������ � 	 � � �
� � � � �����

	 � � � � � � ��� �� � 	 � � � � � � ��� � �
Here

�
represents an attacker, and

� � 	 is the same attacker masquerading as 	 . We

assume that the attacker has a complete control over the network and can intercept, drop,

1The attack was found only 17 years after the protocol has been published!

160 CHAPTER 5. EXPERIMENTAL RESULTS

duplicate, and rearrange messages as he wishes, but he cannot randomly guess any secret

data and cannot decrypt encrypted messages without knowing the decryption key.

The attacker uses the fact that the second message from the protocol does not bear any

information of who generated it and for what purpose, and 	 happily accepts this message

thinking that
�

has honestly generated a new nonce � � . In reality, 	 is being used an an

oracle to decrypt the nonce � � , so that the attacker can return it back to � , thus convincing

him that he is talking to 	 , even though he is actually talking to
�

, and 	 might have never

heard of � before.

Athena finds this attack completely automatically in 36 steps, generating 44 states. The

entire proof search in a “cold run” (that is, without any explicit or implicit help from the

user) takes less than 3 seconds.

Gavin Lowe proposes a fix by including the responder’s identity into the second mes-

sage [Low95], so this attack now becomes impossible:

	 � � � � �
� � 	 ��� �

� � 	 � � �
� � � � � � �����

	 � � � � � � ����� �
Athena proves that this protocol is indeed secure completely automatically in 27 steps.

Symmetric Key Protocol.

This version of the protocol is published in the same work by Needham and Schroeder

[NS78], and is also found to be flawed, as described by Clark and Jacob [CJ97]. The proto-

col relies on the trusted server � for generating a fresh session key �

 �

that must be securely

distributed to the participants 	 and � . The shared keys �
�
� and � � � between the server

and the corresponding principals are assumed to be known to the respective participants

and not compromised. After receiving the session key, the participants authenticate to each

other and are ready to communicate securely using that key, which constitutes the main

purpose of the protocol:

	 � � � 	 � � � �
�

� � 	 � � �
� � � � �
 � ��� �
 � � 	 ��� ��� ����� �

	 � � � � �
 � � 	 ��� ���
� � 	 � � � � �������
	 � � � � � � � � ������� �

The flaw described in [CJ97] requires a compromised session key from an old run of the

protocol, and an old message 3 recorded by the intruder. This simple replay attack results in

5.3. ATHENA: EXPERIMENTS IN SECURITY PROTOCOL VERIFICATION 161

� having to accept an old compromised key and believing that he is talking to 	 , whereas

he would be talking to the intruder. To find this attack in Athena, we had to augment the

role of the principal � by an extra message at the end of the protocol:

� � � � �

 � �

that is, to compromise the key after the session is supposedly completed by all of the prin-

cipals. The automatic proof search did not terminate, and we had to guide the prover for

the first few steps before running the automated strategy that finally produced the attack

after total of 68 steps, generating 164 states.

Besides the freshness attack, this protocol also suffers from a more serious flaw found

by our Athena automatically (7 steps/31 states for one version, and 14 steps/48 states for

the other). This attack comes in two flavors, neither of which requires any key to be com-

promised. The only assumptions we make is that the server � may also act as one of the

participants (like 	 and �). To make it clearer who is playing which role, we adopt the

following notation. The name of a role will be the long name of a participant (e.g. Alice is

the role of 	 , etc.). The name of a participant by itself means that this participant plays its

default role (for instance, � � 	 �
�

mean � acting as a Server sends

�
to 	 acting as

Alice). When a participant plays some other role, we include this role in parentheses next

to the principal’s name (e.g. � � 	 � � � is � playing the role of Alice). Similarly, as we have

already done so earlier,
�

will denote the intruder acting as such, and
� � 	 or

� � � � 	 � � �
is the intruder pretending to be the corresponding principal acting in a specified role.

The simpler version of the attack goes as follows:

	 � � � 	 � � � �
�

� � 	 � � �
� � � � �
 � ��� �
 � � 	 ����� � ��� � �

	 � � � � � � �
 � � 	 ��� � �
� � 	 � � � � � � � � �
 � � 	 ��� � �
� � � � � � 	 � � � � � �������
	 � � � � � � � � � � �������� � 	 � � � � � � � � � � � � ������� �

The attacker uses the fact that the encryption is symmetric, and for a message encrypted

with a symmetric key � � � it is not possible to tell who of the two principals (� or �)

has created the message for whom. This allows the attacker to intercept and forward the

message addressed to � back to � as if generated by � acting as a server (who might also

be a a legitimate backup authority) forwarded by 	 . The principal � then interprets this

message as if 	 wants to talk to him and replies according to the protocol’s role “Bob.” As

162 CHAPTER 5. EXPERIMENTAL RESULTS

it can be seen, both 	 and � successfully complete their protocol sessions, and therefore,� believes he is talking to 	 (and he actually does, but he also thinks that the session key is

unique for his session, which is not), and 	 believes she is talking to � , whereas � never

even appears in the protocol at all, and might well be long dead.

Another version of this attack assumes that 	 can act as another server and is not re-

quired to be alive, and the omnipresent intruder
�

manages to confuse everyone else around

again.

� � � � 	 � � � � � � 	 ��� � � � � ��� � � � �� � � � 	 � � � 	 � � � � �� � � � � � 	 � � � � � � � �
 � ��� �
 � � 	 ��� � � ����� �
� � � � 	 ��� � � � � � � 	 � � � � � � � � � � �
 � ��� �
 � � 	 ��� � � ����� �
��� � � 	 � � � � � � � �
 � � 	 ��� � �
��� � � � � 	 � � � � ���������� � � � � � � 	 � � � � � � � ���������� � � 	 � � � � � � � � � � � ���
 � �

Here � wants to play the Alice’s role and talk to � . He decides to use 	 as a server (perhaps,

� wouldn’t trust � in generating the key by himself), but
�

intercepts the message, tempers

with it (since it is sent in clear) and resends it back to � as if from 	 who also wants to talk

to � . The server � , being a faithful guy, generates a new session key and forms the required

message (3), which the clever intruder returns right back to � but as if the reply from the

second server 	 . Since � does not know he can decrypt the last part of the message and

detect the fraud (he thinks it is encrypted with the key he does not have), he simply forwards

it to � , unsuspecting. � now discovers that 	 wants to talk to him, generates a fresh nonce,

and sends it to 	 as a challenge. His message is intercepted by the intruder and redirected

to � , who retrieves the nonce and returns it back to � . This time the intruder does not even

have to do anything, � has completed his evil mission for him in confusing � that he is

talking to 	 , while, as we all know, 	 is long dead, and he is really talking to � . Although� is not as badly confused as � , he is also deceived into believing that � knows who he’s

talking to.

These two attacks were found by our implementation of Athena completely automati-

cally, and to our complete surprise. We were not aware of these attacks before the exper-

iment, and, to the best of our knowledge, they have not appeared in the literature. Dawn

Song has found similar attacks with her implementation of Athena, but she has not pub-

lished them yet, so these attacks can in fact be new, yet unknown attacks on the protocol.

5.3. ATHENA: EXPERIMENTS IN SECURITY PROTOCOL VERIFICATION 163

5.3.2 Parallel Session Attack on a Simple Protocol

A simple intentionally flawed one-way authentication protocol from [CJ97]:

	 � � � � �
� ����� �

� � 	 � � �
�
� � ����� �

was found to be flawed by Athena in 4 steps, generating 7 states. The attacker forwards the

first message back to 	 who now plays Bob’s role and responds with the message that she

expects herself in the first session. The intruder, of course, is happy to forward the second

message back to 	 , leaving her doubly confused:

	 � � � � � � �
� ����� �

� � � � 	 � � � � 	 � � � � � � �
� ����� �

	 � � � � � � � � � 	 � � � � � �
�
� � ����� �� � � � 	 � � �

�
� � ����� � �

5.3.3 Public Key Distribution Protocol (Binding Attack)

Another (most likely unintentionally) flawed protocol is supposed to distribute public keys

signed by the certification authority � :

	 � � � 	 � � � �
�

� � 	 � ����� ��� 	 � �
� � � � � ��� �� �

Unlike in other protocols, there are no secret messages send here, but the authority signs

the message it sends to 	 , so if she trusts � , then she can be sure that � � is indeed the

public key of � , since only � could have generated a signature. However, Athena shows

that there is a way to fool 	 in accepting a wrong public key in just 5 steps (generating

15 states). The attacker exploits the fact that the second message does not mention whose

public key is being sent. So, he tempers with the first message replacing � with
�

(his own

name), and then lets the server reply to 	 with the wrong information, namely, his own

public key. Now he can read everything that 	 will send to � , while � would not be able

to read 	 ’s messages.

	 � � � � � 	 � � � �
�

� � 	 � � � 	 � � � �
�

� � 	 � ����� ��� 	 � �
� � � � � � � �� �

The fixed version of this protocol (due to Hwang and Chen [HC95]) adds the � ’s iden-

tity to the last message inside the signature, and Athena proves it correct in just 4 steps.

164 CHAPTER 5. EXPERIMENTAL RESULTS

5.3.4 ISO Symmetric Key Two-Pass Mutual Authentication

	 � � � � �
� � � �������

� � 	 � � � � � 	 ������� �
This protocol is taken from [CJ97] and simplified — the application-specific text fields

are removed, since they are unessential to its security properties, but give Athena hard time.

It suffers from so many flaws, which Athena finds immediately in a handful of steps, that

it does not even deserve a thorough analysis, in our opinion. To mention a few, the nonces

are never used and there is no way to check their freshness, so it’s susceptible to all kinds

of replay attacks. Also, if the text fields are added to the messages (in cleartext or under

the encryption), then some other attacks may be possible without even requiring one of

the participants. If timestamps are used instead of nonces, the replay attack might only be

valid for a short period of time, and since Athena does not support timestamps, we cannot

verify this version of the protocol. The paper [CJ97] does not mention anything about the

integrity of this protocol.

5.3.5 ISO Symmetric Key Three-Pass Mutual Authentication

� � 	 � � �
	 � � � � �

� � � � � � ����� �
� � 	 � � � � � �

� ��� � � �
This is another ISO protocol with some application-specific text fields removed. As it is,

the protocol is proven secure by Athena in just 12 steps. This is a bit surprising, as the last

message does not bear any identifications apart from the nonces, but no replay or an oracle

attack was found. The protocol might, however, become insecure when the optional text

fields are added, depending on their contents. The paper [CJ97] has no comments on its

correctness.

5.3.6 Andrew Secure RPC Protocol

	 � � � 	 ��� �
� ����� �

� � 	 � � �
�
� � � � � ����� �

	 � � � � � � � � ����� �
� � 	 � � � �
 � � � �� ����� � �

5.3. ATHENA: EXPERIMENTS IN SECURITY PROTOCOL VERIFICATION 165

The protocol looks good up until the last message, which does not have anything to guar-

antee its freshness. Therefore, the intruder can simply replay the last message at a later

date and forces 	 to accept an old (and invalid for this session) key. Athena finds this flaw

automatically in 47 steps and 58 states, taking total under 12 seconds. The reason for a

mild “state explosion” in this example is that we need to simulate two consecutive runs of

the protocol, one successful, and one with the last message replaced by the intruder. This

is exactly the attack described by Clark and Jacob [CJ97].

5.3.7 Otway-Rees Protocol

� � 	 � � �
� � 	 � � ��� �

� � � � 	 � � ����� �� � � � � �
� � 	 � � ��� �

� � � � 	 � � ����� � ��� � � �
� � 	 � � ��� � ���� � � � �

� ��� �
� � �
 � ����� � ��� � � � �
 � ��� ���

� � � � 	 �
� ��� �

� � �
 � ����� � �
Here

�
is another nonce generated by 	 , and is a run identifier. Clark and Jacob [CJ97]

give a type flaw for this protocol, when a triple �
� � 	 � � can be confused for a new

session key �

 �

. Since our implementation of Athena works only on well-typed messages,

this flaw would be difficult to find (if possible at all). However, we were able to find some

other interesting facts about this protocol not mentioned in the survey.

One thing that Athena immediately finds about this protocol (in 7 steps) is that there is

no way to check what messages actually were relayed through � in steps (2) and (3), since

the intruder may reroute the message parts intended for � and 	 and send any garbage

through � . To distract Athena from this minor nuisance, we rewrote the protocol in such a

way that the parts in question are sent directly to the recipients, and � does not even have

to know they exist.

The next thing that Athena discovers is that the session key �

 �

is sent to 	 at the end

of the protocol, and � never verifies that 	 has received it. This is not exactly a flaw, but

at least a good fact to know. To prevent this “attack” we included some complete run of the

participant 	 with the same

�
in the protocol, which Athena proves to be the same 	 and

forces it to receive the key.

This, however, was not the end of the story. If the server does not check that the session

identifier

�
is always new, then the following replay/integrity attack becomes possible.

The intruder records the parts of messages (1) and (2) that are intended for the server� , and before the server has a chance to reply, he replays those parts again. The server,

therefore, generates two copies of message (3) with different session keys �

 �

and � �
 � .

166 CHAPTER 5. EXPERIMENTAL RESULTS

But since the parts intended for 	 and � are not bound to each other, the attacker takes 	 ’s

message from one session and � ’s message from the other session, puts them together as

if the server’s reply, and drops the other parts. The result is, 	 and � have different session

keys and cannot communicate with each other. This can be considered a version of a DoS

attack, and Athena finds it automatically in 16 steps, generating 65 states. This attack was

found by Thayer, Herzog and Guttman [THG98a] in 1998.

Requiring the server to check for uniqueness of

�
(and disregarding the type attacks)

makes the protocol secure, as proven by Athena with a substantial manual guidance in 551

steps, which took us an hour or two to complete. The proof contains a lot of repeated

patterns, and we believe that with better proof search heuristics it can also be automated,

even if at the expense of a longer proof.

5.3.8 SSH Public Key Client Authentication Algorithm

This is a real authentication protocol used in SSH version 2 [YKS � 98a, YKS � 98b] that

provides one-way authentication of the client to the server. It is supposed to be run over

the encrypted transport layer protocol [YKS � 98c] that provides secrecy and integrity of

messages. We model the transport layer by passing messages encrypted with a shared

symmetric key (which is what it actually does). The protocol consists of one single message

sent by the client to the server:

� � � � �
� � � � � ��� _ � � � � ��� � � � � ��� � � � � � � � _ � � � � ��� � � � � � ��� �� ��� � � �

Here � � � � � ��� _ � is another shared secret between the client and the server provided (to-

gether with the shared key) by the transport layer, and � � � is the rest of the message that

identifies the type of request, the authentication method, etc. All parts of � � � are well-

typed and can be clearly distinguished from any other part of the message. The authentica-

tion is provided by signing the entire message contents (without the signature itself), which

proves to the server that the client possesses his private key.

Due to the technical restrictions on the input language, we defined the session id to be

the same as the shared key ��� � , which after all must also be a shared secret and unique for

each session.

There were no surprises with this protocol, and Athena proved it correct in 29 steps.

5.3. ATHENA: EXPERIMENTS IN SECURITY PROTOCOL VERIFICATION 167

5.3.9 Bluetooth Authentication Protocol

This authentication protocol can be used within a Bluetooth network of wireless devices

[Blu01], and its goal is to provide a secure authentication mechanism for remote devices

when they are about to access some priveleged resources. The algorithm relies on the

security of the underlying key exchange algorithms, which, as in the case of SSH, Athena

is not designed to handle, and therefore, they have to be assumed secure. Below we assume

that the required symmetric link key is shared by the two principals, Master and Slave,

and the key is not yet compromised. The goal of the protocol is for the Slavie to prove

its identity to the Master (one way authentication). If the authentication is required in

both directions, this protocol is played second time in the opposite direction. The protocol

consists of two messages: � � � � � �
� � �

� � ��� � � ��� � �
Here � � � is the shared link key, and � � is a nonce generated by the Master as a challenge

to the Slave. As it is, the protocol is proven secure by Athena in just 5 steps.

5.3.10 The Overall Experience

The experiments above took us about a week to complete. The reason it took this long is

because the tool was developed and refined as we were doing the experiments. This was,

in fact, the main purpose of the exercise, and more important than the actual verification of

the protocols. We have found that using the interactive user interface of SyMP, the built-

in proof management, and the debugging support made the development of Athena very

efficient and convenient.

One of the most helpful features turned out to be the interactive nature of the prover.

During the development stage, when the automatic proof search failed to find a known at-

tack and (erroneously) proved the property, we could guide the prover manually towards the

known attack and see where it fails to find it, thus locating a soundness bug. The opposite

case has also happened several times when the proof failed with an invalid counterexample

(unprovable subgoal). Such an ability to play with the proof dynamically as it is being

constructed has helped us immensely in finding many errors and subtleties not only in the

implementation itself, but even in our understanding of the underlying theory. For exam-

ple, it was not immediately obvious that the strand’s identities (Self parameters) must be

constrained such that the intruder cannot share identities with the regular principals, even

those in � (the conclusion part of the sequent). However, no more constraints should be

168 CHAPTER 5. EXPERIMENTAL RESULTS

placed on the identities. In particular, it is unsound to require that different roles must have

different identities, since the same principal might want to play different roles, and this

ability may be required to mount an attack on the protocol.

Symmetric key protocols that generate fresh session keys suggested that roles should

be able to generate fresh values other than nonces. This resulted in a very useful exten-

sion to the input language. A soundness bug was then found which resulted from the fact

that shared symmetric key operator SymKey(A,B)was not commutative. After it has

been made commutative, a few more protocols exhibited attacks that before were proven

“secure.” One such protocol is the symmetric key Needham-Schroeder protocol (see Sec-

tion 5.3.1).

Another extension to the input language was suggested by the Otway-Rees protocol

(Section 5.3.7) after we have found the flaw that relies on the server not checking the

uniqueness of the session identifiers. We have added unique parameters to the roles that

must be checked for uniqueness but do not have to be freshly generated by the role. This

allowed us to specify that the server must not accept the same session identifier twice, and

the protocol was proven to be secure. Of course, the area of security protocol verification

has known cases when a protocol proven to be secure was indeed flawed, so we would

not claim that Athena does not have any other subtle soundness errors. However, all the

known flaws (apart from the type flaws that it is not designed to catch) were found in all

the protocols we have experimented so far, and therefore, we believe that it is most likely

sound.

The entire process of debugging and refining the Athena module in SyMP (not counting

the implementation before the tests) took us about two person-weeks.

5.4 Combining Presburger Arithmetic with a Bit-Vector

Theory

Practically all hardware designs contain operations on bit-vectors, including concatenation,

sub-vector extraction, and boolean element-wise operations. Often these bit-vectors are

then treated as integers, and arithmetic operations are performed on these same data. While

there are plethoras of theories and decision procedures both for bit-vectors [Möl98] and

for Presburger arithmetic [BC96, Opp78, Pug91, WB00] — a decidable subset of integer

arithmetic often considered in formal verification, — there was no systematic combination

of those that would allow more automatic verification of hardware designs with arithmetic.

While investigating the state of the art in both bit-vector and Presburger arithmetic de-

5.4. COMBINING PRESBURGER WITH BIT-VECTOR... 169

cision procedures, we have found that there are many different approaches that, as it often

happens, perform well in some cases and poorly in others, and an efficient and robust

decision procedure could potentially be obtained by combining many existing techniques

and picking one that performs the best for a given problem. Specifically, conjunctions of

quantifier-free Presburger formulas can be solved most efficiently by Integer Linear Pro-

gramming techniques based on the simplex method. Even if the formula is not a single

conjunction, it can be converted to the Disjunctive Normal Form (DNF) and each disjunct

solved separately. When DNF can be constructed, the Omega-test [Pug91] can be applied

as an alternative. The DNF construction, however, may lead to exponential explosion of

the formula size, and in some cases direct automata-based techniques can be more efficient,

since they do not require any rewriting of a propositional formula. Such techniques have

become reasonably efficient due to the use of Binary Decision Diagrams [Bry86] (BDDs)

and similar structures, but are still significantly slower than simplex-based methods in gen-

eral. As an alternative, the DNF for the formula may be constructed incrementally, and if

the formula is satisfiable, there is a chance that a satisfying assignment will be found for

one of the first few disjuncts.

When a formula contains quantifiers, simplex-based methods are no longer applicable.

Automata-based techniques are available to handle quantifiers, but their complexity is not

even known to be elementary in the worst case, and in practice is rather high. A feasible

alternative is to translate such a formula syntactically to a quantifier-free formula using the

triple-exponential algorithm by Oppen [Opp78]. The resulting formula often contains a lot

of redundancies and must be heavily simplified. This, in turn, requires the development of

many mostly ad hoc rewrite rules that require testing and tuning on practical examples.

Additionally, when a problem involves both bit-vector and arithmetic operations, only

some extended automata-based techniques can be applied directly. Therefore, it is desirable

to avoid the high complexity of these techniques by rewriting the problem in an equivalent

form that makes the automata-based techniques more robust, or may even allow complete

separation of the domains, so that more efficient specialized decision procedures can be

used.

Since the problem in general contains so many parameters, and it is not immediately

clear what heuristics are the best in practice, a prototype tool was needed to evaluate dif-

ferent approaches. The prototype must be relatively easy to implement, easy to reprogram

with different strategies for choosing particular decision procedures or rewrite rules, and

easy to add new external decision procedures and rewrite rules.

It turns out that our SyMP framework can be used to accomplish all of these goals. The

170 CHAPTER 5. EXPERIMENTAL RESULTS

external decision procedures and rewrite rules are implemented as inference rules, similar

to the model checking-related rules in the default proof system. The strategies can be

implemented on two levels: as general strategies provided by the SyMP proof manager, and

as proof system’s tactics. The former are extremely flexible, as the user writes the strategy

at the interactive prover prompt. He can observe its performance, modify the stratergy,

and try the new version immediately if the original one fails. However, the strategies are

mostly limited to trying different rules until one applies, repeating the same sub-strategy,

and running simple tests on the sequent for picking the next step. Tactics, on the other hand,

are implemented in the proof system itself and have direct access to the sequent structure.

Therefore, they can be much more intelligent and efficient in finding a proof than strategies.

However, they are not as flexible as strategies, since they require recompilation of the proof

system code for any serious modification.

Adding new decision procedures and rewrite rules is as simple (or as hard) as adding

new inference rules to the proof system, and SyMP is designed to make this process as

simple and modular as possible. On top of all, SyMP prover API encourages a well-typed

input language, and we have chosen a simple but quite expressive First-Order language that

includes Presburger arithmetic and Verilog bit-vector operations in a Verilog-like syntax.

At the moment of this writing, the high-level design of the proof system is complete,

but the actual implementation is still under development. Building the basic infrastructure

for this new proof system (the parser and typechecker for the input language, sequent and

inference rule representations and required API to the SyMP proof manager) took us less

than a week. Implementation of propositional and simple quantifier manipulation rules was

nearly trivial and took another day or two just because of the number of rules and contin-

ued adjustments and debugging of the typechecker. The rules interfacing to the external

decision procedures are being implemented at the time of this writing, and are expected to

be the most demanding part of the process taking, possibly, two or three more weeks. This

includes the implementation of our theory combining bit-vectors with Presburger arith-

metic. Once this basic infrastructure is in place, we can begin our experiments, and further

development will be example-guided.

5.5 Reedpipe/CProver: Verification of Embedded Software

This proof system has at least two important features that distinguish it from all the other

proof systems described above. First, it is designed and implemented almost exclusively by

Daniel Kröning, independently of the main SyMP developer. Second, the core of the proof

5.5. REEDPIPE/CPROVER: VERIFICATION OF EMBEDDED SOFTWARE 171

system called CProver is implemented in C++, and only a small inteface layer (called

Reedpipe) is in SML/NJ, the main implementation language of SyMP. This demonstrates

that SyMP can indeed be used by others as a programmer’s kit to build new theorem provers,

and that it is not limited to any particular programming language.

The proof system itself is based on Hoare triples, and the logic includes constructs

found in programming languages like C, so that the translation of the input language to

logical formulas is rather straightforward. Besides the specialized inference rules targeted

to the problem domain (which is very much in the SyMP spirit), the proof system is also

based on the language-independent internal representation, and the actual input language

and the printed syntax of the sequent can be dynamically changed by the user even while

proving a theorem at the prover prompt. At the time of this writing it supported ANSI-C,

PVS, and VHDL.

This system was inspired by Kröning’s experience in verification of the VAMP mi-

croprocessor in PVS [Krö01, Krö99]. Althought quite successful overall, the verification

process was at times overly complicated when it did not have to be. For example, some

large finite-state subproblems that could be relatively easily proven with model checking

were hard to prove in PVS. Certain types of abstraction techniques were mathematically

elegant and simple, but when encoded in higher-order logic of PVS may become cumber-

some and tedious to deal with. But most importantly, PVS lacked some efficient decision

procedures that could help greatly in the verification of such kind of examples.

CProver is designed to be rich with various powerful decision procedures (bit-vectors,

Presburger arithmetic, SAT solvers, simplex, model checking and other BDD-based pro-

cedures, etc.). It has several industry-standard input languages and a versatile internal

representation adequate for embedded software and some hardware languages.

To date, the proof system is still under development, and significant examples are still

to be tried, but this prover module already looks very promissing from the smaller examples

that have been verified.

172 CHAPTER 5. EXPERIMENTAL RESULTS

Chapter 6

Conclusion and Future Work

6.1 Conclusion

We have presented our work which consists of two most important contributions. First, we

have shown that model checking can be efficiently combined with theorem proving in a

way that sacrifices neither efficiency of the former, nor the expressiveness of the latter. We

call this combination model proving. One of the important lessons that we learned is that

such a fusion must be specific to the problem domain, and not too general, otherwise the

efficiency is very hard to preserve. To address this issue, we have developed a framework

for generalizing theorem proving (as it is usually accepted in the formal verification com-

munity) to arbitrary but narrow enough problem domains. This framework, along with its

implementation in our tool SyMP, comprises our second major contribution in this work.

Although there has been much work in combining model checking and theorem prov-

ing in formal verification, we have not seen any results providing a general enough theory

unifying both techniques without loss of expressiveness and efficiency. The latter is a very

important aspect, since, theoretically, anything can be expressed in the Higher-Order Logic,

but very often in practice working with such an encoding is virtually impossible. For in-

stance, the simplest and most widely used method of adding model checking to theorem

proving framework is to add a model checker as an external decision procedure in a special

inference rule. The model is extracted from the sequent with the help of some heuristics

or by matching certain formula templates for which the translation is easy. Many HOL-

based theorem provers use this approach: PVS, ACL2, HOL, etc. This approach suffers

from two drawbacks: first, the original structure of the model is lost, and often cannot be

recovered and used to simplify the verification. Second, very often model checking is used

only as a direct decision procedure for finite-state models to prove the current subgoal, and

173

174 CHAPTER 6. CONCLUSION AND FUTURE WORK

a plethora of reduction techniques developed in model checking is simply omitted in the

hope that they can be done with the existing theorem proving techniques.

Another theorem prover, STeP, uses a similar idea in spirit, but more sophisticated in

detail. Since STeP uses first-order LTL as a logic, the original model can be encoded in this

logic and later extracted rather precisely in the model checking inference rule. Besides,

other transformations that are usually attributed to model checking can be done efficiently

(e.g. abstraction). However, STeP is highly specialized to software verification, its proof

system is tightly integrated into the core of the tool, and therefore, it is not as general and

flexible as our framework.

On the model checking side, the situation is almost reversed, but with the same overall

effect. Whenever theorem proving techniques are added to a model checker, they usually

stand separately, and often can only be activated at a “preprocessing” stage before the main

model checking run. In addition, the theorem proving add-ons almost always consist of

a fixed set of rules applied completely automatically, and therefore, not as adaptive to the

problem domain or a particular problem as an interactive one.

One of the most often used reductions in model checking that may require some theo-

rem proving capabilities is abstraction. In fact, it is used in the model checking context so

often that it has become a standard practice and an integral part of the model checking pro-

cess. Many tools apply abstraction to reduce the model to a manageable size and then run a

model checking engine directly on the abstracted model. The theorem proving component

here is to derive that if a property holds in the abstracted model, then it must hold in the

original model. As it is, this “inference rule” is implemented only implicitly by checking

the applicability conditions and abstracting the model. A few model checkers implement

more theorem proving rules: assume-guarantee reasoning (Mocha), induction, case split,

and use of lemmas (SMV), and so on. However, all these tools still have the set of rules

hard-wired into the structure of the implementation. This makes them very specialized to a

particular problem domain where they can be extremely efficient, but they perform poorly

outside of it.

In our framework, the inference rules are always defined explicitly, and the user has

a control in the amount of automation while applying these rules. In particular, if the

automated verification goes terribly wrong, there is an option to guide it manually. Also,

an explicit notion of an inference rule provides better modularity, and new reductions and

transformations can be added easily and systematically.

Another practical advantage of using this framework is the appropriate level of abstrac-

tion of the user interface with the tool. When the proof system is designed specifically for

6.1. CONCLUSION 175

the problem domain, the actual proofs in the tool correspond very closely to their mathemat-

ical description. For example, the proofs for the IBM cache coherence protocol described in

Section 5.1 correspond almost exactly, both in the level of abstraction and in the sequence

of steps, to the proofs in the default proof system of our tool SyMP. Given the original

model description, one can easily repeat the proofs in SyMP while reading their description

with little extra work. Moreover, the proof of the coherence property can be done using

just theorem proving techniques or using more model checking-oriented methodology. We

have essentially repeated PVS proofs step by step in SyMP without any difficulties, and

then proved the same property by agressive use of abstraction and model checking closely

following the SMV proof discovered by Ken McMillan.

Our second contribution is closely related to the ways the research is carried out in for-

mal verification. This research area is very experimental, and new methodologies must be

implemented and tested on real examples. Whenever a researcher comes up with a new

methodology, he or she always faces a design decision of how to implement it. Develop-

ment of formal verification tools is often an arduous process, and one of the big reasons for

developing very general tools is an attempt to capture as many aspects of formal verifica-

tion as possible in one single implementation. The experiments then can be carried out in

such a tool as soon as one provides an encoding of his or her verification problem in the

supported specification language. The other extreme that is often taken is to develop a new

highly specialized tool for each problem domain or even each methodology, which results

in a very efficient but not as flexible implementation.

Our experience with several tools both from model checking and theorem proving indi-

cates that only sufficiently specialized ones can be very efficient in practice, and very gen-

eral solutions quite often fail to exploit the shortcuts and powerful reductions particular to

certain classes of examples, because what works great in one problem domain may be mak-

ing things worse or even be unsound in another. But instead of writing yet another highly

specialized tool or using a very general one, we decided to choose the middle-ground. We

have designed and implemented our tool SyMP as a general framework for creating special-

ized verification modules. Therefore, although the tool itself is very general, we solve the

problem of efficiency by adding modules specialized to different problem domains. That

is, unlike in the other tools, there can be many different specializations in SyMP at the same

time, which makes our framework and the tool versatile.

Despite the differences in techniques and representation, there are still quite a bit of

common features in the process of formal verification that can be used in virtually any

problem domain, and the most important ones are the proof management mechanism and

176 CHAPTER 6. CONCLUSION AND FUTURE WORK

the interactive component of the user interface. This is not surprising, since whatever we

are proving, we would like our proofs to be complete; and almost any proof can be for-

malized in a suitable proof system. Therefore, a tool that serves as a basis for specialized

proof systems and provides this common functionality can significantly reduce the imple-

mentation time of new verification methodologies, and this comprises one of our major

contributions in this thesis. To date, we have not yet seen a tool or a library providing

similar functionality.

The idea of a generic tool for implementing custom proof systems is not new, however.

Logical Framework has been developed in the area of Automated Deduction, and is one

of our most closely matching competitors. However, most of the implementations of the

logical framework require that a custom proof system be expressed in a fixed input language

of the tool, and although it often provides powerful automated proof search for each new

proof system, it is again only efficient for the problem domains that can be adequately

expressed in the provided language. In particular, none of the proof systems implemented

so far in SyMP can be efficiently encoded into the Logical Framework.

Customized proof systems in SyMP can be used not only for theorem proving-based

methodologies, but also as a way to house several existing tools under one roof. This

can be done at different levels: within the same proof system, and across different proof

systems. For instance, SyMP already uses the CMU version of SMV as a decision pro-

cedure in the default proof system, and at the same time another proof system is being

developed that consists entirely of an interface to an external prover written in C++. This

type of combination provides the common user interface to different applications for dif-

ferent problem domains, but it does not allow these tools to communicate with each other.

Another possibility is to use external tools as decision procedures or processing filters in

different inference rules of the same proof system. This forces the output of the tools to

be translated into the common sequent representation (which is only fixed for a particular

proof system, and can be different in the others), and passed to another tool.

Similar idea has been proposed at SRI several years ago as a SAL project. One of

the central goals was to develop a universal language that can be used as an intermediate

representation in virtually any problem domain. External tools would be communicating

among each other through this language, and adding a new tool would only require writing

translators to and from SAL for that tool. As in any other general approach, the bottleneck

of SAL is the intermediate language itself. In our opinion, it is impossible to come up with a

universal representation that would work efficiently for every problem domain. Therefore,

SAL will most likely be successful only for some problems that it can express elegantly and

6.2. FUTURE WORK 177

adequately.

In SyMP, we deliberately did not commit ourserves to any particular specification lan-

guage or intermediate representation. This, of course, adds some work for the developers

of new proof systems, but then each proof system can have its own common representation

most suitable to the problem domain, and at that point the situation is similar to the original

idea of SAL: each new external tool only needs a small translator to and from the common

sequent representation, but this time the sequent is optimized to the problem domain, and

overall, we hope that SyMP can bridge more tools and more efficiently than SAL and similar

projects.

6.2 Future Work

There is still a lot of work to be done in this project, most of it is related to the development

of our tool SyMP. First of all, the default proof system is far from being complete. The idea

of this proof system is to provide a very general framework that includes model checking

and theorem proving together. Ideally, we would like to see most of the existing theorem

proving rules and model checking reduction techniques implemented in it.

The reason we want to be very general in this case is to be able to provide a quick

prototyping environment for new verification methodologies. In research, at the time of

trying out a new idea, the efficiency usually is not a big issue, and researchers often prefer

a quick feedback, even at the expense of tedious manual guidance and not very natural

encoding of the problem. This is what the default proof system should provide: a research-

oriented prototyping environment for methodologies that require both model checking and

theorem proving techniques. One would be able to use virtually any existing reduction

technique and the full deductive power of a theorem prover to run through several examples,

and then decide which reductions were crutial to their methodology, and what was the

bottleneck. Later, when the new methodology is thoroughly tested, another specialized

proof system can be developed that carries out the verification process much faster and

more automatically for that specific class of problems.

Adding new proof systems to our tool is another dimension of its growth. SyMP has

already proven to be a very convenient basis for the two proof systems developed in it (the

default one and Athena), and there are three more projects going on at the time of writing

that will add a reimplementation of Analytica, a new prover module Reedpipe/CProver

specialized in embedded software written in C, and a prototype of a decision procedure for

a combination of Presburger arithmetic and a Verilog-like bitvector theory.

178 CHAPTER 6. CONCLUSION AND FUTURE WORK

In the future, more modules will be added to cover other specific areas of formal verifi-

cation. For instance, there are some thoughts about adding a module for software verifica-

tion. It is quite possible that in a few years SyMP will become a powerful tool capable of

efficiently solving many formal verification problems in a wide range of problem domains.

Appendix A

Soundness of the Default Proof System

In this section, we argue about the soundness of the proof system for combining model

checking and theorem proving described in Chapter 3. Formally, we need to proof the

soundness theorem stated in that Chapter:

Theorem. (3.5.1, Soundness) Given a model

�
, if

�
� � ��� � � is derivable in the proof

system, then
� �

�
� � � � � � � �

However, to make the argument more precise, we define a restriction operator on a

model

�
more rigorously.

Definition A.1. Model

� � � ��� �
��� restricted to a formula � is the model

� �
� �

� � � �	� � ��� � is derived from

�
as follows:

� � � � � �

 ��� �
� � � � � � � �
� � � � � � � � � � � .

We also write

� �
� for a set of formulas � to mean

� �
� � .

Proof. (of Theorem 3.5.1) By induction over the derivation of

�
��� � � � � . The inductive

step involves proving soundness of each inference rule in the proof system, and for each

rule of the form
��� 	�	�	 � ��

179

180 APPENDIX A. SOUNDNESS OF THE DEFAULT PROOF SYSTEM

we have to show that if Theorem 3.5.1 holds for each of the premisses � � , then it must hold

for the conclusion
�

. In other words, if

�
�
�
� � � � � � � � � � � , for all � � � � � � � , then�

�

�
� �

� � � �
� � � � .

� The soundness of the
� � � � and

� � � � � rules is obvious.

� The soundness of the
���

rule (application of the model checking decision proce-

dure) is also straightforward, since this rule checks whether the sequent holds exactly

as specified in Theorem 3.5.1.

� All the propositional rules (� � , ��� , � � , � � , etc., including the
�
�
�

rule) are straight-

forward, since the soundness is stated by constructing a single formula using propo-

sitional connectives, and simple recombination of subformulas does not change the

final formula in the soundness statement.

� The
�
�
� �

rule is a bit more complicated, but still pretty obvious. The second premiss

(

�
��� � � � � � � $ �) proves that � is an invariant of

�
, and therefore, it does not

make the model stronger to add � to the set of invariants � .

� Weakening and Strengthening rules (� � and � �) follow from the observation that if
� is true in a model, then � � � is also true for any � . This observation applies

directly to � � . For � � , rewriting the top-level implication in the soundness formula

as a disjunction gives � � � � � � � , and � � � � � � � � � � � � � � � , which again

reduces to the above observation.

Other types of weakening rules: � �
holds simply because � is enforced by � to hold

everywhere in the model. Therefore, it also holds in every initial state, and adding it

to � does not change the assumption part of the implication in the soundness formula,

semantically. The rule � ����� � is sound because from the premisses we know that the

sequent holds for a larger set of initial states; therefore, it also holds for any subset

of the initial states taken as a new set of the initial states of

�
.

� The soundness of the monotonicity rule
� ��� � follows from the definition of mono-

tonicity for temporal logic formulas: if

 � � � � �

 ��� � � , then

 � � � � � � � �

 � � � �	� � � .
Notice, that the

� ����� rule requires � and � to contain exactly one formula both

in the premisses and the conclusion, and the premiss is proven for all the reachable

states of

�
. Therefore, for any reachable state � � � � we know that � � � �	� ,

which implies

 � � � � �

 ��� � � , and hence, the conclusion also holds.

181

� The rule

� �
� � � � is sound because � is simply replaced by a semantically equivalent

formula

�
� � � � � � � .

� We skip the proof of soundness for the rules for modalities, since they essentially re-

place formulas with semantically equivalent ones based on well-known equivalences.

� Rules for quantifiers divide into two groups: “universal” (

�

� , �

�) and “existential”

(� � ,

�
�). We only prove the soundness of

�

� and � � rules, the other two rules are

dual and the argument is exactly the same.

The existential rule � � relies on the tautology ��� � � � � � � � � . If

� � � � � ��� �
for some term � , where � � � � � � � , then, due to the tautology, we also have� � � � � � � � ��� � .
To prove soundness of the universal rule

�

� , recall that the semantics of a sequent

with uninterpreted symbols (like
�
) is the following:�

��� � � � � � � � � iff for all � �

 �
� �
���
������ ��� � � � � ����� � ��

where is the environment which assigns interpretation to free variables in formulas.

That is, the sequent must hold for all the models that differ from

�
only in the inter-

pretation of
�

(so,
�

is no longer an uninterpreted symbol in those models). Writing

the soundness statement for the premiss explicitly, thus, gives us the following:

for all � �

 �
� �
���
������ � � � � � � � ��

where � � � � � � � . This, in turn, is equivalent to:

for all � �

 � � �

 � � � �!
�� 	 ��� �

 � � � � � �!
 � 	 ��� �

Since
�

does not occur anywhere but in � , the meta-quantifier can be pushed down to��� � : � �

 � � � �! � � ���� �
�

 � � � � � �!
�� 	 ��� ��

which, according to the semantics, is exactly the same as

� �

 � � � �! � �

 � � � � � � � � � ��
and hence we have �

��� ��� � � �
�
� � ��� � �

182 APPENDIX A. SOUNDNESS OF THE DEFAULT PROOF SYSTEM

� The induction rules
� �'

� and ��� _

� ��

� are derived from the propositional and quan-

tifier rules and the equivalences valid in the natural arithmetics:�
� � ��� � �� � � � �

�
� � � � � � ��� � � � � and�

� � � � � ��
�
� �
� �� � � � � � � � � � ��

where � , � , and � range over a well-founded domain w.r.t. the order “ ” in the second

equivalence.

� The rules for unfolding fixpoints (��� � � , ��� � � , etc.) are sound because they replace

fixpoint formulas with semantically equivalent ones.

� The rules for eliminating fixpoints, similarly to the quantifier rules, group into two

categories: “invariant” rules (� � and � �) and “termination” rules (�
� � and � ��). Again,

we prove soundness of only one rule from each category, namely � � and �
� � . Both

categories rely on Tarski’s definitions of the fixpoints:

� � � � � � � � � ��
 � � � � �

 � � � � � �
 �
	 � � � � �'

� � � � � � � � � � � � � �

 � � � � � �
 �
	 � � � � � �
The conclusion of the rule � � requires the following to hold:

� � �

� � � � � � � � � �

where � � ��� �

 � � � � � � � � � , and � is the set of initial states of

�
. According to

the Tarski’s definition of the greatest fixpoint, it is sufficient to find some � such that� � � � and � �

 � � � � � �
 �
	 � � . Taking � �

 � � � , where � is the formula from

the premisses of � � , we can show that � satisfies these two conditions. Applying

induction hypothesis to the first premiss immediately gives us � � ��� . The second

premiss similarly yields the second condition, since the implication ��� � � � � is

proven for all the reachable states of

�
w.r.t. � .

The conclusion of the rule �
� � requires the following to hold:

� � �

� � � � � � � � � �

According to the Tarski’s definition of the least fixpoint, we have to show that � � � �
for every � such that

 � � � � � �
 � 	 � � � � (the post-fixpoint condition). Since

this statement involves an implicit universal quantifier over � , we can eliminate it

183

the same way we did in the regular quantifier rules, namely, introduce a new un-

interpreted propositional constant � , and show that � � �

� � � holds for any � that

satisfies the post-fixpoint condition, which can be expressed as

 � � � � � � � � . Since

this condition must be universally true in the model

�
, we require it to be an invariant

of

�
. Putting it all together, we obtain the following sufficient condition:

� � �

� � � ��� ��� �����
	����	 �

which is exactly the semantics of the premiss of the �
� � rule.

� The Cone of Influence rule (
�����

) replaces the model with a semantically equivalent

one, so the rule is trivially sound.

� The soundness of the abstraction rule (
���

�) follows from the fact that existential

abstraction preserves
�

- � -calculus formulas (those that only contain
�

modalities

under even number of negations, and � modalities under odd number of negations).

This is similar to the preservation of ACTL [Lon93].

The soundness of the proof system for the linear time variant of the � -calculus can be

proven similarly. The only difference will be in the rules for modalities and the abstraction

rule. All the other rules are independent of the type of modalities used, and those parts of

the proof of Theorem 3.5.1 can be reused.

184 APPENDIX A. SOUNDNESS OF THE DEFAULT PROOF SYSTEM

Appendix B

Examples of Security Protocols in

Athena Input Language

Most of the following protocols are taken from "A Survey of Authentication Protocol Lit-

erature: Version 1.0" by John Clark and Jeremy Jacob [CJ97].

Original Needham-Schröder public key authentication protocol. Athena automati-

cally finds the Lowe’s attack.

protocol NSOld =

begin

role Init [NA: Fresh Nonce; NB: Nonce;

A: Self; B: Principal] =

begin

start: send {(NA, A)} (PK B)

receive {(NA, NB)} (PK A)

finish: send {NB} (PK B)

end

role Resp [NA: Nonce; NB: Fresh Nonce;

A : Principal; B : Self] =

begin

start: receive {(NA, A)} (PK B)

respond: send {(NA, NB)} (PK A)

finish: receive {NB} (PK B)

end

185

186APPENDIX B. EXAMPLES OF SECURITY PROTOCOLS IN ATHENA INPUT LANGUAGE

predicate responded[NA: Nonce; NB: Nonce; A, B: Princi-

pal] =

Resp[NA,NB,A,B]

predicate initiated[NA: Nonce; NB: Nonce; A, B: Princi-

pal] =

Init[NA,NB,A,B].finish

theorem agreement[NA, NB: Nonce; A, B: Principal] =

(initiated[NA,NB,A,B] -> Resp[NA,NB,A,B].respond)

and (responded[NA,NB,A,B] -> initiated[NA, NB, A, B])

end -- NSOld

Neehdam-Schröder public key authentication protocol with the Lowe’s fix. Athena

proves this protocol secure automatically.

protocol NSA =

begin

role Init [NA: Fresh Nonce; NB: Nonce;

A: Self; B: Principal] =

begin

start: send {(NA, A)} (PK B)

receive {(NA, NB, B)} (PK A)

finish: send {NB} (PK B)

end

role Resp [NA: Nonce; NB: Fresh Nonce;

A : Principal; B : Self] =

begin

start: receive {(NA, A)} (PK B)

respond: send {(NA, NB, B)} (PK A)

finish: receive {NB} (PK B)

end

predicate responded[NA: Nonce; NB: Nonce; A, B: Princi-

pal] =

Resp[NA,NB,A,B]

predicate initiated[NA: Nonce; NB: Nonce; A, B: Princi-

pal] =

187

Init[NA,NB,A,B].finish

theorem agreement[NA, NB: Nonce; A, B: Principal] =

(initiated[NA,NB,A,B] -> Resp[NA,NB,A,B].respond)

and (responded[NA,NB,A,B] -> initiated[NA, NB, A, B])

end -- NSA

Symmetric key Needham-Schröder protocol. To our surprise, Athena automatically

finds two new attacks previously not covered in the literature.

protocol NSPsymm =

begin

-- Initiator

role Alice[A: Self; B, S: Principal; Kab: SymKey;

Bmsg: Message;

Na: FreshNonce; Nb: Nonce] =

begin

send (A,B,Na)

receive { (Na, B, Kab, Bmsg) } SymKey(A, S)

send Bmsg

receive { Nb } Kab

-- We cannot construct Nb-1, so we do

-- another well-known operation on Nb.

-- This should be equivalent.

send { (Nb, Nb) } Kab

end

-- responder

role Bob[A: Principal; B: Self; S: Principal;

Kab: SymKey; Nb: FreshNonce] =

begin

receive { (Kab, A) } SymKey(B, S)

responded: send { Nb } Kab

finish: receive { (Nb, Nb) } Kab

-- Disclose a key from the completed session

-- This was supposed to help mount a known attack,

-- but wasn’t used as new attacks were found

send Kab

end

role Server[A, B: Princi-

pal; S: Self; Kab: fresh SymKey; Na: Nonce] =

188APPENDIX B. EXAMPLES OF SECURITY PROTOCOLS IN ATHENA INPUT LANGUAGE

begin

receive (A, B, Na)

send {(Na, B, Kab, { (Kab, A) } SymKey(B, S))} SymKey(A, S)

end

-- We need the server in the assumption to make sure

-- Bob knows who the server is.

--

Otherwise the intruder can play the server’s role for Bob

-- and you know what happens...

theorem BobSeesAlice[A, B, S: Principal; Na, Nb: Nonce;

Kab, Kab’: SymKey] =

(Bob[A,B,S,Kab,Nb].finish and Server[A, B, S, Kab’, Na]

-> Alice[A,B,S,Kab, {(Kab, A) } SymKey(B, S), Na,Nb])

theorem AliceSeesBob[A, B, S: Princi-

pal; Na, Na’, Nb: Nonce;

Kab, Kab’: SymKey; M: Message] =

(Alice[A,B,S,Kab, M, Na,Nb] and Server[A,B,S,Kab’,Na’]

-> Bob[A,B,S,Kab,Nb].responded)

-- The freshness of the key cannot be guaranteed.

-- This theorem states that no two runs of Bob

-- (exactly the same principal, or other principals playing

-- the same role) can have the same session key,

-- which fails with a counterexample.

theorem BobFresh[A, B, B2, S: Principal;

Na, Na2, Na’, Nb, Nb2: Nonce;

Kab, Kab2, Kab’: SymKey; M, M2: Mes-

sage] =

(Alice[A,B,S,Kab, M, Na,Nb] and Server[A,B,S,Kab’,Na’]

and Bob[A,B,S,Kab,Nb]

-> not Bob[A,B2,S,Kab,Nb2].finish)

end

A simple intentionally flawed protocol on page 26 of [CJ97].

protocol Parallel =

begin

189

role Alice[A: Self; B: Principal; Na: fresh nonce] =

begin

send {Na} SymKey(A,B)

-- We cannot form Na+1, but we can (Na,Na),

-- which must be equivalent.

receive {(Na, Na)} SymKey(A,B)

end

role Bob[A: Principal; B: Self; Na: nonce] =

begin

receive {Na} SymKey(A,B)

send {(Na, Na)} SymKey(A,B)

end

theorem correct[A,B: Principal; Na: nonce] =

Alice[A,B,Na] -- and not Alice[A,A,Na]

-> Bob[A,B,Na]

end

Next two protocols are from the page 33 of Clark & Jacob [CJ97] (sec. 4.5: Binding

Attacks).

protocol CA =

begin

role Client[C: Self; S, AS: Princi-

pal; Nc: fresh nonce; Ks: PubKey] =

begin

send (C, S, Nc)

receive (AS, { (AS, C, Nc, Ks) } PVK AS)

end

role Authority[C, S: Principal; AS: Self; Nc: nonce] =

begin

receive (C, S, Nc)

send (AS, { (AS, C, Nc, PK S) } PVK AS)

end

-- If C completes the protocol, the key it gets is (PK S).

theorem correctKey[C, S, AS: Princi-

pal; Nc, Nc’: nonce; Ks: PubKey] =

Client[C, S, AS, Nc, Ks] and Authority[C, S, AS, Nc]

190APPENDIX B. EXAMPLES OF SECURITY PROTOCOLS IN ATHENA INPUT LANGUAGE

-> Client[C, S, AS, Nc, PK S]

end

protocol CAfixed =

begin

role Client[C: Self; S, AS: Principal;

Nc: fresh nonce; Ks: PubKey] =

begin

send (C, S, Nc)

receive (AS, { (AS, C, Nc, S, Ks) } PVK AS)

end

role Authority[C, S: Principal; AS: Self; Nc: nonce] =

begin

receive (C, S, Nc)

send (AS, { (AS, C, Nc, S, PK S) } PVK AS)

end

-- If C completes the protocol, the key it gets is (PK S).

theorem correctKey[C, S, AS: Principal;

Nc, Nc’: nonce; Ks: PubKey] =

Client[C, S, AS, Nc, Ks] and Authority[C, S, AS, Nc]

-> Client[C, S, AS, Nc, PK S]

end

Authentication protocol from the ISO 613 standard.

protocol ISO_613 =

begin

-- role Alice[A: Self; B: Principal;

-- Na: fresh nonce; Nb: nonce;

-- T1, T2: new message; T3, T4: Message] =

-- begin

-- send (T2, { (Na, B, T1) } SymKey(A, B))

-- receive (T4, { (Nb, A, T3) } SymKey(A, B))

-- end

-- role Bob[A: Principal; B: Self;

-- Na: nonce; Nb: fresh nonce;

-- T1, T2: message; T3, T4: new Message] =

-- begin

191

-- receive (T2, { (Na, B, T1) } SymKey(A, B))

-- send (T4, { (Nb, A, T3) } SymKey(A, B))

-- end

-- Text fields confuse Athena:

-- "what if Alice sends Bob’s response in T2?".

-- They are irrelevant to the protocol anyways,

-- so we remove them.

role Alice[A: Self; B: Principal; Na: fresh nonce; Nb: nonce;

T1, T3: Message] =

begin

started: send { (Na, B, T1) } SymKey(A, B)

receive { (Nb, A, T3) } SymKey(A, B)

end

role Bob[A: Principal; B: Self; Na: nonce; Nb: fresh nonce;

T1, T3: Message] =

begin

receive { (Na, B, T1) } SymKey(A, B)

send { (Nb, A, T3) } SymKey(A, B)

end

-- If each party is not talking to him/herself,

-- then there must be the other corresponding party

-- in the protocol.

theorem correct[A, B: principal; Na, Nb: nonce;

T1, T3: Message] =

(Alice[A, B, Na, Nb, T1, T3]

and not Alice[A, A, Na, Nb, T1, T3]

-> Bob[A, B, Na, Nb, T1, T3])

and (Bob[A, B, Na, Nb, T1, T3] and not Bob[B, B, Na, Nb, T1, T3]

-> Alice[A, B, Na, Nb, T1, T3].started)

end

Authentication protocol from the ISO 614 standard. Again, we eliminate the clear-

text messages. In fact, here they are bad even under the encryption, since Athena cannot

bound the encryption depth, and the most crucial pruning theorem doesn’t apply.

protocol ISO_614 =

begin

192APPENDIX B. EXAMPLES OF SECURITY PROTOCOLS IN ATHENA INPUT LANGUAGE

role Alice[A: Self; B: Princi-

pal; Ra: fresh nonce; Rb: nonce] =

begin

receive Rb

responded: send {(Ra, Rb, B)} SymKey(A,B)

receive {(Rb, Ra)} SymKey(A,B)

end

role Bob[A: Princi-

pal; B: Self; Ra: nonce; Rb: fresh nonce] =

begin

send Rb

receive {(Ra, Rb, B)} SymKey(A,B)

send {(Rb, Ra)} SymKey(A,B)

end

theorem correct[A,B: Principal; Ra, Rb: nonce] =

(Alice[A,B,Ra,Rb] -> Bob[A,B,Ra,Rb])

and (Bob[A,B,Ra,Rb] -> Alice[A,B,Ra,Rb].responded)

end

-- Instead of N+1 for a nonce N we construct (N,N).

-- It should be equivalent.

Andrew secure RPC protocol.

protocol AndrewRPC_616 =

begin

role Alice[A: Self; B: Principal; Na: fresh nonce;

Nb, Nb’: nonce; Kab’: SymKey] =

begin

send (A, {Na} SymKey(A,B))

receive { ((Na, Na), Nb) } SymKey(A,B)

responded: send { (Nb, Nb) } SymKey(A,B)

receive { (Kab’, Nb’) } SymKey(A,B)

end

role Bob[A: Principal; B: Self; Na: nonce;

Nb, Nb’: fresh nonce; Kab’: fresh SymKey] =

begin

receive (A, {Na} SymKey(A,B))

send { ((Na, Na), Nb) } SymKey(A,B)

193

receive { (Nb, Nb) } SymKey(A,B)

send { (Kab’, Nb’) } SymKey(A,B)

end

theorem correct[A,B: Principal; Na, Nb, Nb’: nonce;

Kab’: symkey] =

(Alice[A,B,Na,Nb,Nb’,Kab’] -> Bob[A,B,Na,Nb,Nb’,Kab’])

end

Otway-Rees protocol. Bob is supposed to forward the message from the server to Alice.

But since he has no idea what he’s resending, the intruder may funnel anything through him

without any problem, and redirect the right part of message to Alice by some other route.

So, we assume the server sends it to Alice directly, Bob never even receives it. Similarly

the message from Alice to the server doesn’t have to go through Bob.

Next point: when one party finishes, there is no guarantee that the other party actually

received the session key, and we cannot prove anything useful. Therefore, we assume that

we also have some strand of the other party which is complete and must have been from

the same protocol run. This will force the strand to receive the key.

protocol OtwayRees_633 =

begin

role Alice[A: Self; B, S: Princi-

pal; M: fresh nonce; Na: fresh nonce; Kab: SymKey] =

begin

started: send (M, A, B, {(Na, M, A, B)} SymKey(A, S))

receive (M, {(Na, Kab)} SymKey(A, S))

end

role Bob[A, S: Princi-

pal; B: Self; M: nonce; Nb: fresh nonce;

Kab: SymKey] =

begin

receive (M, A, B)

send (M, A, B, {(Nb, M, A, B)} SymKey(B, S))

receive (M, {(Nb, Kab)} SymKey(B, S))

send M

-- The other part of the message is left

-- as an exercise to the intruder

end

194APPENDIX B. EXAMPLES OF SECURITY PROTOCOLS IN ATHENA INPUT LANGUAGE

-- The attack exists when Server doesn’t check for

-- uniqueness of M. If we require uniqueness, and

-- assume that message types are inforced,

-- then Athena proves the protocol secure.

role Server[A, B: Principal; S: Self; M: unique nonce;

Na, Nb: nonce; Kab: fresh symkey] =

begin

receive (M, A, B, {(Na, M, A, B)} SymKey(A, S),

{(Nb, M, A, B)} SymKey(B, S))

send (M, {(Na, Kab)} SymKey(A,S),

{(Nb, Kab)} SymKey(B,S))

end

-- Although it is not necessary to find an attack,

-- it’s more illustrative to require

-- that Alice or Bob are not trying to talk to themselves.

theorem correct[A,B,S: principal;

M, M’, Na, Nb, Na’, Nb’: nonce;

Kab, Kab’, Kab”: symkey] =

Server[A,B,S,M’,Na’,Nb’,Kab’] ->

(Alice[A,B,S,M,Na,Kab]

and not Alice[A,A,S,M,Na,Kab]

and Bob[A,S,B,M,Nb’, Kab”]

-> Bob[A,S,B,M,Nb’, Kab])

and (Bob[A,S,B,M,Nb, Kab]

and not Bob[B,S,B,M,Nb, Kab]

and Alice[A,B,S,M,Na’,Kab”]

-> Alice[A,B,S,M,Na’,Kab])

end

The public key authentication method used by SSH This protocol is taken almost as

it is from [YKS � 98a], but some parts abstracted.

�
consists of some service information

(message type identifier, service name, string "publickey" to identify the type of authentica-

tion, boolean � �
 � , and public key algorithm name), and can be clearly distinguished from

any other message (i.e. it is well-typed), so we give it some atomic type not used in the

protocol, namely ‘Nonce’.

protocol SSHpkauth =

195

begin

role Client[C: self; S: Principal; M: nonce] =

begin

send {(symkey(C,S), C, PK C, M,

{(symkey(C,S), C, PK C, M)} PVK C)} symkey(C,S)

end

role Server[C: principal; S: self; M: nonce] =

begin

receive {(symkey(C,S), C, PK C, M,

{(symkey(C,S), C, PK C, M)} PVK C)} symkey(C,S)

end

theorem correct[C,S: principal; M: nonce] =

Server[C,S,M] -> Client[C,S,M]

end

Bluetooth Authentication protocol from the original specification [Blu01].

protocol BluetoothAuth =

begin

-- One-way authentication

role Master[A: Self; B: principal; Na: fresh nonce] =

begin

-- First, generate new link key one direction

start: send Na

receive {(B, Na)} SymKey(A,B)

end

role Slave[A: principal; B: self ; Na: nonce] =

begin

receive Na

send {(B, Na)} SymKey(A,B)

end

-- One-way authentication is secure. Proven in 5 steps.

theorem correct[A,B: principal; Na: nonce] =

Master[A,B,Na] -> Slave[A,B,Na]

-- Two-way authentication is implemented as two runs

-- of one-way authentication.

end

Index

abstraction, 15, 36, 44

abstraction function, 72

conservative abstraction, 70

existential abstraction, 71

predicate abstraction, 45

Analytica, 18, 22

assume-guarantee reasoning, 16, 45

Athena, 18, 21, 22, 157

BDD, see OBDD

bit-vector, 22, 168, 171

Burch and Dill commutative diagram, 17

cache coherence

IBM cache coherence protocol, 52

canonical representation, 34

circular reasoning, 83

completion function, 17

compositional reasoning, 16, 45

circular compositional reasoning, 17,

46

cone of influence, 15, 20, 36, 68

CProver, 170

fixpoint

greatest fixpoint, 31

iterative computation, 32

least fixpoint, 31

Greek symbols, 19, 54, 55, 59, 82

higher-order logic, 37

induction, 16, 45

generalized induction on time, 155

induction on time, 16, 45, 139

strong induction on time, 85

inductive invariant, 16, 45

inductive proof, 16

natural induction, 16, 46

structural induction, 16, 46

inference rules

assume-guarantee, 45

combining MC and TP, 58
���

� , 70

�
�
�
�
� � � ��� ��� � � , 76� �
� � � � , 61

� � � , � � � , � � � , � � � , � � � , � � � , 82� � � � ,
� � � � �

, 85�����

, 68� � � � � ,
� � � � � ,

� � � � � , 60�
�
�
,
�
�
� �

, 61

�
� � , 64

� � , 64

��� � � , ��� � � , ��� � � , ��� � � , ��� � � , ��� � � ,
63

� �� , � � , 64� ��

� , ��� _

� �'

� , 62� � � � � � � � � � , 59

� � � , � � � , 61

�'� � � , �'� � � , �'� � � , �'� � � , 62
� � � , � � � , � � � , � � � , 61

196

INDEX 197

� � � ,
� � � , �'� � , �'� � , 61

model check, 59� ����� , 60

�
� �� � � , 65

� � , ��� , � � , � � , � � , � � , � � , � � ,

59

� �
, 59�

� ,

�
� , � � , �

� , 62

strong induction on time, 85
� � , � � , 60

� ��� � � , 60
� �

, 60

Gentzen proof system

axioms, 40
� � � ��� � � � � � � � � � � � � � � � � , 40�

� �
�
� � � � � �

� , 40

modus ponens, 45

Integer Linear Programming (ILP), 169

Kripke structure, 14, 26, 57

labeling function, 26

logical framework, 22

Mathematica, 18, 22

model, 14

model checking, 13, 18, 25, 50, 171

model checking problem, 25

model prover, model proving, 19, 93, 94,

173

monotone

monotone predicate transformer, 31

mutual exclusion, 138

NP-completeness, 35

OBDD, 18, 33, 34

Omega-test, 169

partitioned transition relation, 35

path, 26

Pittsburgh, 8

predicate transformer, 30

preimage, 34

Presburger arithmetic, 22, 168, 171

proof search, 42

backtracking, 42

strategy, 42

tactic, 43

proof system, 19

combining MC and TP, 58

complete proof system, 37

Gentzen proof system, 39

Gentzen sequent, 19, 51

sequent for combining MC and TP,

54, 55

sound proof system, 37

prover generator, 21

reachable states, 27

Reedpipe, 18, 22, 170

SAT, 33, 35, 171

simplex, 169, 171

simulation, 71

Skolem constant, 41

state machine, 14

state space explosion problem, 13, 33

strand space model, 21

super-duper, 136

symbolic simulation, 17

symmetry, 36

symmetry reduction, 15

SyMP, 14, 18

temporal logic, 27

198 INDEX

CTL, 27, 29

CTL operators in � -calculus, 31

first-order temporal logic, 53

linear time � -calculus, 80

LTL, 27, 28

� -calculus, 30

� -calculus, 27, 56, 58

theorem (proof-theoretic notion), 19

theorem proving, 13, 18, 36, 50

axiom, 36

derivation tree, 36

inference rule, 36

invertible inference rule, 37

proof inference, 36

proof tree, see derivation tree

sequent, 36

transition relation, 14

transition system, 26

transition relation, 26

uninterpreted function, 17

valid formula, 39

validity (of a formula), 19

variable reordering (in BDDs), 35

verification problem, 14

zephyr, 8

Bibliography

[AH96] R. Alur and T. A. Henzinger. Reactive modules. In the proceedings of the 11th

annual IEEE Symposium on Logic in Computer Science (LICS ’96), 1996.

[AHM � 98] R. Alur, T.A. Henzinger, F.Y.C. Mang, S. Qadeer, S.K. Rajamani, and

S. Tasiran. MOCHA: modularity in model checking. In Hu and Vardi [HV98],

pages 521–525.

[AJS98] Mark Aagaard, Robert B. Jones, and Carl-Johan H. Seger. Combining theorem

proving and trajectory evaluation in an industrial environment. In Design

Automation Conference, pages 538–541, 1998.

[AL93] M. Abadi and L. Lamport. Composing specifications. ACM Transactions on

Programming Languages and Systems, 15(1):73–132, January 1993.

[ASW94] Andersen, Stirling, and Winskel. A compositional proof system for the modal

� -calculus. In LICS: IEEE Symposium on Logic in Computer Science, 1994.

[BBC � 99] N. Bjørner, A. Browne, M. Colon, B. Finkbeiner, Z. Manna, H. Sipma, and

T. Uribe. Verifying temporal properties of reactive systems: A STeP tutorial.

Formal Methods in System Design, 1999.

[BC96] Alexandre Boudet and Hubert Comon. Diophantine equations, Presburger

arithmetic and finite automata. In H. Kirchner, editor, Colloquium on Trees

in Algebra and Programming, volume 1059 of Lecture Notes in Computer

Science, pages 30–43. Springer Verlag, 1996.

[BCC97] Sergey Berezin, Sergio Campos, and Edmund M. Clarke. Compositional rea-

soning in model checking. In COMPOS’97, volume 1536 of LNCS. Springer-

Verlag, September 1997.

199

200 BIBLIOGRAPHY

[BD94] J. R. Burch and D. L. Dill. Automatic verification of pipelined microprocessor

control. In D. L. Dill, editor, Computer Aided Verification (CAV’94), volume

818 of LNCS. Springer-Verlag, 1994.

[BDL96] Clark Barrett, David Dill, and Jeremy Levitt. Validity checking for combi-

nations of theories with equality. In Mandayam Srivas and Albert Camilleri,

editors, Formal Methods In Computer-Aided Design, volume 1166 of Lec-

ture Notes in Computer Science, pages 187–201. Springer-Verlag, November

1996. Palo Alto, California, November 6–8.

[Ber01] Sergey Berezin. The SyMP tool. http:// www.cs.cmu.edu

/~modelcheck/ symp.html, 2001.

[BI01] Christoph Berg and Christian Jacobi II. Formal verification of the VAMP

floating point unit. In Conference on Correct Hardware Design and Verifica-

tion Methods, pages 325–339, 2001.

[BLO98] Saddek Bensalem, Yassine Lakhnech, and Sam Owre. Invest: A tool for

the verification of invariants. In Alan J. Hu and Moshe Y. Vardi, editors,

Computer-Aided Verification (CAV’98), number 1427 in Lecture Notes in

Computer Science, pages 505–510, Vancouver, Canada, June 1998. Springer-

Verlag.

[Blu01] Specification of the Bluetooth System, version 1.1. Bluetooth SIG Inc., Febru-

ary 2001.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Transactions on Computers, 35(8):677–691, 1986.

[CJ95] E. M. Clarke and S. Jha. Symmetry and induction in model checking. In J. Van

Leeuwen, editor, Computer science today: recent trends and developments,

number 1000 in Lecture Notes in Computer Science. Springer-Verlag, 1995.

[CJ97] J. Clark and J. Jacob. A survey of authentication protocol literature: Version

1.0, November 1997.

[CZ92] Edmund Clarke and Xudong Zhao. Analytica — A theorem prover for mathe-

matica. In Automated Deduction-CADE-II, pages 761–763, 11th International

Conference on Automated Deduction, Saratoga Springs, New York, June 15-

18 1992.

BIBLIOGRAPHY 201

[CZ93] Edmund Clarke and Xudong Zhao. Analytica: A theorem prover for Mathe-

matica. The Mathematica Journal, 1993.

[FHG98] F. Javier Thayer Fabrega, Jonathan C. Herzog, and Joshua D. Guttman. Hon-

est ideals on strand spaces. In In Proceedings of 1998 Computer Security

Foundations Workshop, June 1998.

[Gre98] David Greve. Symbolic simulation of the JEM1 microprocessor. In Ganesh

Gopalakrishnan and Phillip Windley, editors, Formal Methods in Computer-

Aided Design (FMCAD ’98), volume 1522 of Lecture Notes in Computer Sci-

ence, pages 321–333, Palo Alto, CA, November 1998. Springer-Verlag.

[GS96] Susanne Graf and Hassen Saïdi. Verifying invariants using theorem proving.

In Rajeev Alur and Thomas A. Henzinger, editors, Computer-Aided Verifi-

cation, CAV ’96, volume 1102 of Lecture Notes in Computer Science, pages

196–207, New Brunswick, NJ, July/August 1996. Springer-Verlag.

[HC95] Tzonelih Hwang and Yung-Hsiang Chen. On the security of SPLICE/AS:

The authentication system in WIDE Internet. Information Processing Letters,

53:97–101, 1995.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concur-

rency. Journal of the Association for Computing Machinery, 32(1):137–161,

mar 1985.

[HSG98] R. Hosabettu, M. Srivas, and G. Gopalakrishnan. Decomposing the proof of

correctness of pipelined microprocessors. In Hu and Vardi [HV98], pages

122–134.

[HV98] Alan J. Hu and Moshe Y. Vardi, editors. Computer Aided Verification

(CAV’98), volume 1427 of LNCS. Springer-Verlag, June 1998.

[IEE94] IEEE Computer Society. IEEE Standard for Futurebus+—Logical Protocol

Specification, 1994. IEEE Standard 896.1, 1994 Edition.

[KM00] Matt Kaufmann and J. Strother Moore. ACL2 (documentation, ver-

sion 2.5). http://www.cs.utexas.edu /users /moore

/publications /acl2-book.ps.gz, 2000.

202 BIBLIOGRAPHY

[Koz83] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer

Science, 27:333–354, December 1983.

[Krö99] Daniel Kröning. Design and evaluation of a RISC processor with a Toma-

sulo scheduler. Master’s thesis, University of Saarland, Computer Science

Department, Germany, 1999.

[Krö01] Daniel Kröning. Pipelined Microprocessors. PhD thesis, University of Saar-

land, Computer Science Department, Germany, 2001.

[Lon93] D. E. Long. Model Checking, Abstraction, and Compositional Verification.

PhD thesis, Carnegie Mellon University, 1993.

[Low95] Gavin Lowe. An Attack on the Needham-Schroeder Public Key Authentica-

tion Protocol. Information Processing Letters, 56(3):131–136, 1995.

[McM93] K. L. McMillan. Symbolic Model Checking: An Approach to the State Explo-

sion Problem. Kluwer Academic Publishers, 1993.

[McM98] K. L. McMillan. Verification of an implementation of Tomasulo’s algorithm

by compositional model checking. In Hu and Vardi [HV98].

[McM99] K. L. McMillan. Circular compositional reasoning about liveness. Techni-

cal report, Cadence Berkeley Labs, Cadence Design Systems, 1999.

[MCon81] J. Misra, K. Chandy, and o networks. Proofs of networks of processes. IEEE

Transactions on Software Engineering, SE-7(4):417–426, 1981.

[MMZ � 01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and

Sharad Malik. Chaff: Engineering an efficient SAT solver. In Design Automa-

tion Conference, pages 530–535, 2001.

[Möl98] M. Oliver Möller. Solving bit-vector equations - a decision proce-

dure for hardware verification, 1998. Diploma Thesis, available at

http://www.informatik.uni-ulm.de/ki/Bitvector/.

[NS78] R. Needham and M. Schroeder. Using encryption for authentication in large

networks of computers. Communications of the ACM, 21(12):993–999, 1978.

[Opp78] Derek C. Oppen. A � � ���
�

upper bound on the complexity of Presburger arith-

metic. Computer and System Sciences, 16(3):323–332, June 1978.

BIBLIOGRAPHY 203

[Par81] D. Park. Concurrency and automata on infinite sequences. In P. Deussen,

editor, 5th GI-Conference on Theorical Computer Science, volume 104 of

LNCS, pages 561–572. Springer Verlag, mar 1981.

[Pfe94] Frank Pfenning. Logical frameworks. http:// www.cs.cmu.edu/

~fp/ lfs.html on the World-Wide Web, October 1994.

[Pfe99a] Frank Pfenning. Logical and meta-logical frameworks. In G. Nadathur, editor,

Proceedings of the International Conference on Principles and Practice of

Declarative Programming (PPDP’99), page 206, Paris, France, September

1999. Springer-Verlag LNCS. Abstract of invited talk.

[Pfe99b] Frank Pfenning. Logical frameworks. In Alan Robinson and Andrei

Voronkov, editors, Handbook of Automated Reasoning. Elsevier Science Pub-

lishers, 1999. In preparation.

[Pnu85] A. Pnueli. In transition from global to modular temporal reasoning about

programs. In K.R. Apt, editor, Logics and Models of Concurrent Systems,

sub-series F: Computer and System Science, pages 123–144. Springer-Verlag,

1985.

[PS99] Frank Pfenning and Carsten Schürmann. System description: Twelf — a

meta-logical framework for deductive systems. In H. Ganzinger, editor,

Proceedings of the 16th International Conference on Automated Deduction

(CADE-16), pages 202–206, Trento, Italy, July 1999. Springer-Verlag LNAI

1632.

[Pug91] William Pugh. The Omega test: a fast and practical integer programming

algorithm for dependence analysis. In Supercomputing, pages 4–13, 1991.

[SBP01] Dawn Song, Sergey Berezin, and Adrian Perrig. Athena: a novel approach to

efficient automatic security protocol analysis. Journal of Computer Security,

9:47–74, 2001.

[SG97] Hassen Saïdi and Susanne Graf. Construction of abstract state graphs with

PVS. In Orna Grumberg, editor, Computer-Aided Verification, CAV ’97, vol-

ume 1254 of Lecture Notes in Computer Science, pages 72–83, Haifa, Israel,

June 1997. Springer-Verlag.

204 BIBLIOGRAPHY

[Son99] Dawn Song. Athena: An automatic checker for security protocol analysis. In

Proceedings of the 12th Computer Science Foundation Workshop, 1999.

[SOR93] N. Shankar, S. Owre, and J. M. Rushby. PVS Tutorial. Computer Science

Laboratory, SRI International, Menlo Park, CA, 1993. Also appears in Tuto-

rial Notes, Formal Methods Europe’93: Industrial-Strength Formal Methods,

pages 357–406, Odense, Denmark, April 1993.

[SS90] G. Stalmarck and M. Saflund. Modelling and verifying systems and software

in propositional logic. In Proceedings of SAFECOMP’90. IFAC, Pergamon

Press, 1990.

[SS96] J. P. M. Silva and K. A. Sakallah. GRASP – A new search algorithm for

satisfiability. In Proceedings of the ACM/IEEE International Conference on

Computer-Aided Design, pages 220–227, 11 1996.

[Tar55] A. Tarski. A lattice-theoretic fixpoint theorem and its applications. Pacific

Journal of Mathematics, 5:285–309, 1955.

[THG98a] Thayer, Herzog, and Guttman. Honest ideals on strand spaces. In PCSFW:

Proceedings of The 11th Computer Security Foundations Workshop. IEEE

Computer Society Press, 1998.

[THG98b] F.Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces:

Why is a security protocol correct? In Proceedings of 1998 IEEE Symposium

on Security and Privacy, 1998.

[THG99] F. Javier Thayer Fábrega, Jonathan C. Herzog, and Joshua D. Guttman. Strand

spaces: proving security protocols correct. Journal of Computer Security,

7:191 (40 pages), January 1999.

[Wal95] Igor Walukiewicz. Completeness of Kozen’s axiomatisation of the proposi-

tional � -calculus. LICS’95, pages 14–24, 1995.

[WB00] Pierre Wolper and Bernard Boigelot. On the construction of automata from

linear arithmetic constraints. In Proc. 6th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems, volume 1785

of Lecture Notes in Computer Science, pages 1–19, Berlin, March 2000.

Springer-Verlag.

BIBLIOGRAPHY 205

[YKS � 98a] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen. SSH authenti-

cation protocol. Internet Draft at http://www.ssh.com, August 1998.

[YKS � 98b] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen. SSH protocol

architecture. Internet Draft at http://www.ssh.com, August 1998.

[YKS � 98c] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen. SSH transport

layer protocol. Internet Draft at http://www.ssh.com, August 1998.

[ZS94] H. Zhang and M. Stickel. Implementing Davis-Putnam’s method. Technical

report, The University of Iowa, 1994.

