
INTERACTIVE DESIGN OFRIGID-BODY

SIMULATIONS FOR COMPUTERANIMATION

Jovan Popovíc

July 2001
CMU-CS-01-140

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Steven M. Seitz, Chair

Michael Erdmann
Paul Heckbert

Jessica K. Hodgins

Copyright c© 2001 Jovan Popović

This research was sponsored by the National Science Foundation (NSF), the Microsoft Corporation, and the
Siebel Scholars Program.

The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of the NSF, Microsoft, Siebel Systems or the
U.S. government.

Keywords: Computer Animation, Motion Design, Physically Based Animation, Ani-
mation with Constraints, Rigid-Body Simulation

iii

ABSTRACT

Physical simulation has become commonplace in computer animation because it produces
realistic motion automatically. The animator specifies simulation parameters such as the
initial positions and velocities of objects, and the simulator computes the corresponding
physical motion. The resulting motion, however, is difficult to design; even a small adjust-
ment of the simulation parameters can drastically change the subsequent motion.

Two semi-automatic techniques are introduced for designing the physical motion of
few passive rigid bodies: without any self-propelling forces or linkages and with simple
mathematical models of frictionless collision. Interaction is an integral component of the
new approaches. The interactive editing technique allows the animator to design the entire
physical motion by dragging a body, at any point in time, to a desired position. The sketch-
ing technique allows the animator to design the physical motion of bodies by acting out
their motion with hand gestures. Both design tools transform a description of how bodies
should move into a physical motion that matches the description as closely as possible.

iv

v

DEDICATION

To my parents, Branko and Ljiljana, and my brother Zoran

vi

vii

ACKNOWLEDGMENTS

The work described in this dissertation was completed with an abundance of help and

guidance from my advisors, friends, and family. Prof. Tony DeRose guided me through

my first steps in graduate school at the University of Washington. At Microsoft Research,

Dr. Hugues Hoppe helped me with my transition to Carnegie Mellon University. I continue

to be inspired by Hugues’s detailed approach to research. Dr. Andy Witkin was instru-

mental in identifying the motion design problem in computer animation. Some of Andy’s

earlier research with Dr. Will Welch, Dr. Mikako Harada, and Prof. Michael Gleicher

served as the main inspiration for techniques described in this dissertation. I also bene-

fited from Andy’s guidance during the initial development of interactive design tools. Dr.

David Baraff kindly provided the rigid-body simulator. The new techniques are successful

because of the efficiency, speed, and robustness of David’s physical simulator.

Much of this work would not have been completed without support from my advisors,

Prof. Steve Seitz and Prof. Michael Erdmann. I am fortunate to have had the opportunity

to be their student. Their technical contributions permeate this dissertation. I am especially

grateful to them for sensing my frustrations and lifting my spirits with words of encourage-

ment. Prof. Paul Heckbert read my drafts, attended my talks, and followed my research.

His detailed comments and insights improved my research, my writing, and my teaching.

During my last year at Carnegie Mellon, I had an additional benefit of discussing my re-

search with Prof. Jessica Hodgins. Her feedback and support helped me stay on top of my

work.

I would like to thank the members of the Carnegie Mellon graphics lab for research

discussions, debugging, and help with everyday problems. In addition, Sebastian Grassia

contributed with his own robust code for parts of the user interface and exponential map

derivations. Dennis Cosgrove, from Prof. Randy Pausch’s Stage3 lab, created the interface

for sketching with motion sensors. Ivan Sokić and Elly Winner created several figures in

this dissertation. Elly has also edited and revised most of my writing in the last three years.

I will always cherish her companionship and affection.

My family has taken care of me throughout my life. My parents, Branko and Ljiljana,

viii

gave me the freedom to be a kid and a grown-up. I am indebted to them for their uncon-

ditional love and selfless support. My older brother Zoran has been my playing buddy, my

role model, my mentor, and my colleague. He has been my remarkably insightful guide in

both work and life.

ix

TABLE OF CONTENTS

1 INTRODUCTION . 1

2 BACKGROUND . 5
2.1 Rigid-Body Simulation. 5

2.1.1 Simulation Function .. 6
2.1.2 Simulation Parameters and Motion Realism 7
2.1.3 Equations of Motion .. 8
2.1.4 Collisions 9
2.1.5 2-D Particle Example .. 10

2.2 Control of Rigid Body Simulation . .. 12
2.2.1 Boundary-Value Problem 13
2.2.2 Optimal Control Theory 14
2.2.3 Dynamic Programming. 16
2.2.4 Inverse Dynamics 16
2.2.5 Robot Control . 17
2.2.6 Parameter Estimation .. 18

3 MOTION EDITOR .21
3.1 Basic Algorithm. 22
3.2 Jacobian Computation. 24

3.2.1 Jacobian of Free-Flight Functions 26
3.2.2 Jacobian of Collision Functions 27
3.2.3 Example of the Jacobian Computation. 28

3.3 Differential Update . .. 30
3.4 Editing Constraints . .. 32
3.5 Discontinuities . 33

3.5.1 Physical Feasibility . .. 33
3.5.2 Convergence .. 35
3.5.3 Sampling 35
3.5.4 Interaction . .. 36

3.6 Examples 37

4 MOTION SKETCHER .43
4.1 Basic Algorithm. 44
4.2 Parameter Estimation .. 46
4.3 Multiple Shooting 47

4.3.1 General Formulation .. 48
4.3.2 An Illustrative Example 51

x TABLE OF CONTENTS—Continued

4.3.3 Sketch Sample Timing Assignment 52
4.4 Discontinuities . 54

4.4.1 Time-Grid Alignment . 54
4.4.2 Sliding Time Grid . .. 55

4.5 Sketching Interfaces . .. 57
4.5.1 Editing Interface 57
4.5.2 Acting Interface 60

5 CONCLUSION AND FUTURE WORK . 65
5.1 Automated Discrete Search . .. 66
5.2 Collision Models 67
5.3 Sketching Interfaces . .. 68
5.4 Constrained and Active Rigid Bodies .. 69

REFERENCES .71

1

Chapter 1

INTRODUCTION

Animation is a compelling and effective form of expression; it engages viewers and makes

difficult concepts easier to grasp. Creating an animation, however, is a complex process.

Traditional techniques require artistry, skill, and careful attention to detail. Ultimately, an

animator must design each frame of the animation.

Computer animation improves upon traditional techniques by automating parts of the

animation process. For example, keyframing techniques fill-in animation frames from a

sparse set of hand-drawn “key-frames.” The animator need not create each frame explicitly;

instead, she only creates a sufficient subset. Keyframing creates the in-between frames

using mathematical interpolation.

Keyframing accelerates the animation process, but the animator must still skillfully

create key-frames. In contrast, procedural techniques generate animation automatically;

the entire motion is computed by algorithmic methods. Simulation is an appealing pro-

cedural technique that solves physics equations to generate realistic motion. The sim-

ulated motion depends on simulation parameters, which consist of physical coefficients

and other free parameters of physics equations. For example, physical motion of a rigid

body is determined by its mass, inertial properties, external forces and other physical co-

efficients. To create an animation, the animator specifies the simulation parameters and

the simulation computes realistic behaviors such as bouncing balls [Moore 88], breaking

windows [Terzopoulos 88b, O’Brien 99], folding cloth [Terzopoulos 88a, Baraff 98] and

flowing water [Kass 90,Foster 96,Stam 99].

In today’s animation industry, simulation methods are essential for creating visually

rich and detailed computer animations [Robertson 98, Robertson 99, Robertson 01]. The

primary drawback of physical simulation, however, is lack of intuitive control. Although

the animator can tune the simulation parameters, in many instances, adjusting the parame-

ters is an ineffective technique for motion design. For example, simulation parameters such

as initial position and velocity determine the motion of a die as it bounces across the table.

2 INTRODUCTION

Just as the slightest difference in a die toss can affect the outcome, a small adjustment of the

initial position and velocity can drastically change any simulated motion. Altering these

parameters to achieve a desired outcome is tedious, cumbersome, and counterintuitive. An

automatic solution to this parameter estimation problem—given a description of the mo-

tion, compute the simulation parameters that yield the desired motion—is one of the main

challenges in computer animation [Terzopoulos 89].

This dissertation addresses the parameter estimation problem for rigid-body simula-

tions. It describes two novel tools, MOTIONEDITOR and MOTIONSKETCHER, for com-

puting the simulation parameters that yield the desired motion. These methods are not

complete solutions to the general parameter estimation problem for rigid-body motion. In-

stead, they apply to an interesting class of motion-design problems: simulations with a

small number of colliding rigid bodies. The bodies are assumed to be passive, without any

self-propelling forces. The collisions and contacts are resolved with simple mathematical

models of frictionless collision.

Even with simplifying assumptions, the design of rigid-body motion is a tremendously

difficult problem. For example, computing the time-optimal motion of rigid bodies in 3-D

is NP-hard [Canny 87, Canny 88]. Nonlinearity of motion results in a parameter estima-

tion problem with many local solutions. The parameter estimation problem for rigid-body

motion is also not continuous. As a result, efficient optimization techniques have to be

adapted to model discontinuities. Sampling approaches could search around discontinu-

ities, but would not scale to the high-dimensional parameter space.

This dissertation introduces a semi-automatic approach to the parameter estimation of

designing physical rigid-body motion. Instead of solving the design problem automatically,

new methods are introduced to allow the animator to design the motion and, in the process,

incorporate her physical intuition about the solution. The methods permit intuitive and

rapid design of rigid-body motion. The animator directly controls the bodies at any point in

time with assurances that the resulting motion will remain physical. Instead of adjusting the

simulation parameters, the animator can use a mouse-based interface to directly manipulate

the position and velocity of objects at any point in time. The animator can also design an

animation with hand gestures that act out the desired motion of objects. The motion-design

methods compute the simulation parameters and the corresponding physical motion that

3

matches the animator’s design.

FIGURE 1.1. With MOTIONEDITOR, the animator designs the motion by first fixing the
hat’s landing position on the coatrack with a “nail” constraint. While the animator spins
the hat at an earlier time to achieve the desired spin, the constraint maintains the desired
landing location.

MOTIONEDITOR implements an interactive technique for editing physical simulations

of rigid-body motion. Throughout the interaction, MOTIONEDITOR displays the entire

trajectory of all objects in the scene. The animator is free to manipulate theentiremotion

by correcting the state of the object (position, velocity, etc.) at any time. For example,

suppose the animator wants to design a scene in which an actor successfully tosses his hat

onto a nearby coatrack, but instead has an animation of the hat falling to the floor. With

MOTIONEDITOR, the animator first selects the hat at its landing position and simply drags

it onto the coatrack. There are many ways in which the hat can land on the coatrack and the

current motion may not have the desired style. As illustrated in Figure 1.1, the animator

can adjust the style by first fixing the landing position on the coatrack and then spinning

the hat at an earlier time until the hat motion achieves the desired spin.

MOTIONEDITOR expects the simulation to complete before each step of the interaction.

When physical simulation is computationally expensive, interaction is not possible. MO-

TIONSKETCHERis an off-line design tool for motions that cannot be designed interactively.

The animator sketches the rough motion of objects with a mouse or 3-D input device, and

MOTIONSKETCHER automatically refines the sketch conforming it to physical laws. For

instance, an animation of a hat tumbling in the air and landing on the coatrack could be

sketched by simply picking up a real hat with an attached motion sensor and moving it in

4 INTRODUCTION

the desired fashion. Based on this sketch, MOTIONSKETCHER automatically constructs a

similar hat movement but with physically correct timing and motion (Figure 1.2).

FIGURE 1.2. MOTIONSKETCHER converts the animator’s sketch of the desired motion
into a similar animation, but with physically correct timing and motion.

Many motion-design tasks are too complex to be solved with the MOTIONEDITOR

and MOTIONSKETCHER tools. The success of both paradigms relies on the animator’s

intuition about the physical world, yet scenarios with complex dynamics can inhibit any

intuition about the resulting behavior. For example, the animator may be hard pressed to

chart out a physically meaningful sequence of collisions that will leadall billiard balls

into pockets. In general, this billiard problem combines difficulties that this dissertation

does not address: no correct physical intuition, many colliding bodies, frictional collisions

and contacts with slip/slide frictional transitions. Without the physically meaningful guid-

ance, MOTIONEDITOR and MOTIONSKETCHER will not converge to a physically realistic

motion that matches the intended design.

Nevertheless, as the many examples in this dissertation attest, the animator’s intuition

can be a valuable guide for the design task. MOTIONEDITOR and MOTIONSKETCHER

solve difficult problems by employing the animator’s intuition, expressed through interac-

tion, to formulate simpler, more tractable problems. These methods are described in the

remaining chapters. Chapter 2 reviews the simulation framework and control methods for

rigid-body simulation. Chapter 3 and Chapter 4 describe the MOTIONEDITOR and MO-

TIONSKETCHER tools in detail. Chapter 5 concludes and discusses future work.

5

Chapter 2

BACKGROUND

MOTIONEDITOR and MOTIONSKETCHER formulate motion design as a problem of con-

trolling rigid-body simulations. Simulation creates a motion, and the control method en-

sures the motion reflects the animator’s intent. Robotics, mechanical engineering and ap-

plied mathematics are few of many fields that study simulation and control of mechanical

systems extensively. This chapter summarizes related work, and discusses theoretical and

practical underpinnings of simulation and control methods.

2.1 Rigid-Body Simulation

Rigid-body simulation has become commonplace in computer graphics because it produces

highly realistic animations. The animator specifies simulation parameters such as the ob-

jects’ initial positions and velocities, and the simulator automatically generates realistic

motions. The simulation integrates equations of motion, detects collisions, and applies

impulses to prevent interpenetration. Mathematical models for rigid-body motion are de-

scribed extensively in many books on classical dynamics [Arnold 89, Symon 71]. The

details of rigid-body simulation for computer animation are described in a book [Barzel

92] and two dissertations [Baraff 92,Mirtich 96].

Section 2.1.1 gives an overview of the simulation framework and defines the simulation

function that maps simulation parameters into rigid-body motion. Simulation parameters

and their effect on the resulting motion are discussed in Section 2.1.2. The following

sections describe the details of rigid-body simulation: Section 2.1.3 reviews the equations

of motion for rigid bodies, Section 2.1.4 describes the simple collision model that prevents

interpenetration, and Section 2.1.5 illustrates main concepts in this section with a simple

particle example.

6 BACKGROUND

2.1.1 Simulation Function

In the Lagrangian approach, mechanical systems are described in terms of their generalized

coordinates and velocities. A system of one or more rigid bodies is described by agener-

alized statevectorq whose components are the generalized coordinates and velocities of

the bodies in the system. For example, the generalized state of a single rigid body consists

of body’s positionx(t) ∈ R3, orientationr(t) ∈ SO(3), linearv(t) ∈ R3 and angular

ω(t) ∈ R3 velocity:

q(t) =

x(t)
r(t)
v(t)
ω(t)

 .

The rigid-body simulator computes thesimulation functionS, which specifies the state of

the bodies in the world at every point in time:

q(t) = S(t,u). (2.1)

The control vectoru consists of the simulation parameters such as the parameters describ-

ing the initial positions and velocities of simulated bodies. The simulation function maps

the control vectoru into the motionq(t) of rigid bodies. For notational convenience, the

simulation functionStf (u) also denotes a function mapping the control vectoru into the

generalized state at a specific timetf :

Stf (u) = S(tf ,u). (2.2)

In principle, the animator could manipulate the motionq(t) by adjusting the control

vectoru. However, such a form of control would be tedious because the relation between

u andq(t) can be complex and nonintuitive. Instead, the animator should be able to spec-

ify desired body statesq(ti) at specific timesti = t0, . . . , tn, and automatically compute

the control vectoru that produces the desired motion. This problem is difficult for three

reasons. First, the domain of the simulation functionS is high-dimensional: for asingle

3-D body, the components of the generalized stateq are the body’s position, orientation,

linear, and angular velocity (i.e.q ∈ R3 × SO(3) × R3 × R3). Second, the simulation

function is highly nonlinear because the simulation is a solution to nonlinear equations of

§2.1 RIGID-BODY SIMULATION 7

motion (Section 2.1.3) and applied collision impulses (Section 2.1.4). Third, the simula-

tion function is not continuous. Each collision event (e.g., different vertices of an object

colliding with the ground) bifurcates the simulation function.

u

Stf (u)

u′

Stf (uδ)

FIGURE 2.1. Simulation function discontinuity

Figure 2.1 illustrates a discontinuity in the simulation function. Suppose that the control

vector represents the initial velocity of the hat. For some initial velocityu, the hat flies over

the fence. In this case, the hat is behind the fence at some final timetf . For an infinitesimal

adjustment and a new initial velocityu′, the hat may collide with the fence. At the same

final timetf , the hat is now in front of the fence.

A connected set of control vectors for which the simulation function is continuous

defines a connected component in the control space. Asmooth componentis defined to be a

connected component of the control space on which the simulation function is continuously

differentiable. For the example in Figure 2.1, control vectorsu and u′ are in different

smooth components of the control space.

2.1.2 Simulation Parameters and Motion Realism

Passive rigid bodies, defined as bodies without any self-propelling forces, cannot regulate

their own motion; the motion is fully determined by simulation parameters. The initial

position and velocity are the only controllable simulation parameters of a passive real-world

object. In a simulated environment, however, the animator may also choose to vary other

parameters, such as gravitational forces, body shapes, masses, or elasticity coefficients.

8 BACKGROUND

The new control parameters add to the available degrees of freedom and can improve the

controllability of motion.

The design requirements are sometimes in disagreement with the laws of physics. In

computer animation for entertainment, small physical inaccuracies are acceptable as long

as the perceived realism is unaffected. Because a viewer does not have complete informa-

tion about the simulation environment, the animator may introduce additional, physically

inaccurate, simulation parameters and increase the degrees of freedom. For example, even

a seemingly flat real-life surface has small surface variations. A simulation that perturbs

surface normals at each collision may still produce realistic motion [Barzel 96]. Physically

inaccurate motions that remain realistic are calledphysically plausible.

The tradeoff between physically plausible and physically accurate motions is not well

understood, but some qualitative results exist [Barzel 96, Chenney 00]. The design tech-

niques developed in this dissertation let the animator decide whether a motion is physically

plausible. If physical accuracy inhibits the design, the animator can add more simulation

parameters. If physical plausibility is compromised, the animator must relax some design

requirements.

2.1.3 Equations of Motion

The motion of rigid bodies in free-flight is described by a set of ordinary second order

differential equations1, which we write in vector form as a coupled first order differential

equation,

d

dt
q(t) = f(t,q(t)), (2.3)

where the generalized forcef(t,q(t)) is derived from Newton’s law. For a single 3-D rigid

body with massm and inertia tensorI(t), the equations of motion are

d

dt

x(t)
r(t)
v(t)
ω(t)

 =

v(t)

1
2
ω(t) ∗ r(t)
m−1fe(t)

I(t)−1
(
τ (t)− ω × I(t)ω

)
 . (2.4)

1Detailed descriptions and derivations can be found in many books on classical dynamics [Arnold 89,
Symon 71].

§2.1 RIGID-BODY SIMULATION 9

In this example, the generalized state consists of the body’s positionx(t) ∈ R3, orienta-

tion r(t) ∈ SO(3), linear velocityv(t) ∈ R3, and angular velocityω(t) ∈ R3 describing

the body’s position, orientation, linear and angular velocity. The generalized force vec-

tor includes the external forcefe(t) ∈ R3 and torqueτ (t) ∈ R3. Note that the second

component of the generalized force, the expressionω(t) ∗ r(t), is shorthand notation for a

regular quaternion product between the quaternion[0,ω(t)] and the orientation quaternion

r(t) = [rs(t), rv(t)]:2

ω(t) ∗ r(t) = [−ω(t) · rv(t), rs(t)ω(t) + ω(t)× rv(t)]

Simulation parameters control the simulated motion. If the external forcefe(t) depends

on a parameter in the control vectoru, we extend the differential equation appropriately:

d

dt
q(t) = f(t,q(t),u). (2.5)

This equation of motion completely describes the system in free flight (i.e. when there are

no collisions): integrating Equation 2.5 yields the motionq(t)

q(t) = q0 +

∫ t

t0

f(t,q(t),u) dt, (2.6)

whereq0 is the generalized state representing the initial state, positions and velocities. The

initial stateq0 and other controllable simulation parameters constitute the control vectoru:

u =

(
q0
...

)
.

2.1.4 Collisions

For computer animation the simple Poisson model of collisions produces acceptable mo-

tions [Moore 88]. This collision model can represent elastic and inelastic impacts by ap-

plying instantaneous impulses to the colliding bodies. The system simulates the motion

during free flight by numerically integrating Equation 2.5. At collision times, impulses are

applied to colliding bodies. Impulses prevent interpenetration between the bodies. In a

frictionless collision between two bodies, the Poisson collision model describes the rela-

tionship between their velocities before and after the collision.
2Unit quaternion parametrization of body orientation is a well-established technique [Murray 94].

10 BACKGROUND

Suppose that a vertex of bodyA collides with a facet of bodyB. At the collision,

the simulator applies the impulsej to instantaneously change the pre-collision generalized

stateq− into the new post-collision generalized stateq+. Recall that the generalized state

encodes the positions and velocities of both bodies. The Poisson collision model expresses

the relationship between the two states through velocities of colliding points:

nB ·
(
vA(q+)− vB(q+)

)
= −ε

(
nB ·

(
vA(q−)− vB(q−)

))
, (2.7)

where the vectorn ∈ R3 is the facet normal at the collision and the scalarε is the elasticity

coefficient. In this expression, the velocity of the colliding vertex is a functionvA(·) of a

generalized state. Similarly, the functionvB(·) expresses the velocity of a facet point that

collides with the vertex. The simulator computes an impulsej to generate statesq+ andq−

that satisfy Poisson Equation 2.7. Any generalized state an instant before the collisionq−

is mapped into the state an instant after the collisionq+:

q+ = q− + j(q−,u). (2.8)

Because the control vectoru comprises simulation parameters such as collision normals

and elasticity coefficients, the impulsej explicitly depends on the control vectoru.

2.1.5 2-D Particle Example

A simple particle example is useful to illustrate the concepts described in this section.

Suppose that a single 2-D particle moves under the action of gravity. The generalized state

q ∈ R4 encodes the particle’s positionx ∈ R2 and velocityv ∈ R2. If g is the acceleration

of gravity, the equations of motion,

d

dt

(
x(t)
v(t)

)
=

 v(t)(
0
−g

) , (2.9)

describe the particle’s path in free flight. The solution to this differential equation yields

the simulation function:

S(t,q0) =

(
x(t)
v(t)

)
=

x(0) + v(0)t+

(
0

−1
2
gt2

)
v(0) +

(
0
−gt

)
 . (2.10)

§2.1 RIGID-BODY SIMULATION 11

If the particle collides with an immovable obstacle, the Poisson collision model applies

an impulse to change the particle’s velocity. For frictionless collisions, the impulse acts in

the direction of the surface normaln at the point of collision. Assuming a perfectly elastic

bounce (ε = 1), the equation,

v+ = v− − 2(n · v−)n, (2.11)

applies an impulse to instantaneously change the particle’s velocityv− before the collision

into its velocityv+ after the collision.

θ0

θf

θ′0

θ′f

h

0
0.5

1
1.5

2
2.5

3
3.5

−1

−0.5

0

0.5
−1

0

1

2

3

4

θ0h

θf

θf

θ′f

FIGURE 2.2. The simulation function for a particle bounce against a smooth obstacle.

Given these analytical expressions for the particle’s motion, we can plot the space of

all possible trajectories for the particle as a function of the initial conditions and the envi-

ronment. For concreteness, suppose the particle collides with a single parabolic obstacle.

The dimensions of the range and the domain of the simulation function can be reduced by

introducing a unit circle in the scene: the particle enters the circle at some angleθ0 with

unit velocity vector directed towards a point on the vertical axish, above or below the tip

of the obstacle. The particle bounces off the obstacle and exits the circle at another angle

θf . The simulation functionSf (·) : R2 → R maps the control vectoru = (θ0, h) into

the particle’s final, exit positionθf . The simulation function is smooth and continuous in a

region of the control space shown in Figure 2.2.

In general, as discussed in Section 2.1.1, the simulation function is not smooth and con-

tinuous everywhere. For example, a particle could be propelled to miss the obstacle. Even

with a single bounce the simulation function becomes discontinuous when the obstacle is

12 BACKGROUND

θ0

θf

h

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

θ0
h

θf

FIGURE 2.3. The simulation function for a particle bounce against non-smooth obstacle.

approximated by polygonal (piecewise linear) meshes. Suppose that the smooth obstacle

in the particle example is replaced by a piecewise linear polygonal curve. As long as the

particle collides with the same edge, the simulation function remains continuous. When the

particle collides with a different edge, however, the surface normal on the obstacle changes

abruptly. Thus, the resulting collision impulse (Equation 2.11) is discontinuous. The abrupt

change carries over to the subsequent particle motion and corresponds to a discontinuity in

the simulation function. In this example the four smooth components, shown in Figure 2.3,

correspond to motions of the particle colliding with each of the four edges.

The general motion of many rigid bodies is much like this simple particle example:

simulating the motion of multiple rigid body is equivalent to simulating a motion of a

single particle in a high dimensional space. To describe the state of a single 3-D rigid body,

the dimensions of the generalized state increases to include the components of orientation,

angular velocity, and to extend the position and linear velocity vectors to 3-D. Two or

more rigid bodies are modeled by adding additional components to the generalized state.

Although the equations of motion are more complicated, a careful implementation can

enable complex multi-object simulations with the same computational techniques and data

structures used to implement single particle simulations.

2.2 Control of Rigid Body Simulation

Simulation computes physical motion automatically, but it is not effective for motion de-

sign. In a computer animation, the motion must also attain specific goals: a hat must land

§2.2 CONTROL OF RIGID BODY SIMULATION 13

on the coatrack and the hat must spin before the landing. To design motion easily, the

animator needs tools that control rigid-body simulation.

2.2.1 Boundary-Value Problem

Rigid-body simulation is usually thought of as an initial-value problem: given the initial

state of rigid-bodiesq0, the simulator computes the motionq(t) such thatq(t0) = q0 at

an initial timet0. If the animation requires a particular state at an initial time then formu-

lating rigid-body simulation as an initial-value problem is sufficient. In general, however,

the simulated motion may also have to achieve specific states at other timest1, . . . , tn. For

example, in the hat animation from Chapter 1, the hat is tossed from the left of the screen

and must land on the coatrack. For these animation problems a boundary-value formulation

is more appropriate. Simulation formulated as a boundary-value problem integrates equa-

tions of motion, applies impulses to compute the motionq(t) and also satisfies animation

constraints: c0

(
t0,q(t)

)
...

cn
(
tn,q(t)

)
 = c

(
t0, . . . , tn,q(t)

)
= 0.

Boundary-value problems are harder to solve than initial-value problems. In contrast to

initial-value problems, for which uniqueness and existence of solutions can be guaranteed

under fairly general conditions, boundary-value problems can have many solutions or none

at all. Intuitively the additional complexity stems from global dependencies in boundary-

value problems; boundary values describe global features, which are defined throughout

the entire motion.

Shooting and collocation are the two most common numerical methods for solving non-

linear boundary-value problems. Shooting solves boundary-value problems by computing

the parametersu of the simulation functionS(t,u) for which the resulting motion satis-

fies the boundary valuesc
(
t0, . . . , tn,q(t)

)
. Collocation computes a piecewise polynomial

that satisfies the boundary values and approximates the simulated motion. A detailed treat-

ment of boundary-value problems and numerical solutions appears in several books [Stoer

80,Ascher 88].

14 BACKGROUND

The existing numerical methods for solving boundary-value problems are not effec-

tive for the design of rigid-body simulations. Most numerical methods assume smooth

and continuous functions. As discussed in Section 2.1.1, these assumptions are not valid

for motion of colliding rigid bodies. Furthermore, boundary-value formulations require

that animation constraints are correctly formulated. The animation constraints have to be

succinct, sufficient, and feasible. Too many constraints would unnecessarily complicate

a boundary-value problem. Too few constraints would not describe the intended motion

uniquely. Infeasible constraints would result in a boundary-value problem with no solution

at all.

2.2.2 Optimal Control Theory

Optimal control theory provides the foundation for maximizing the performance of evolv-

ing dynamic systems. A detailed treatment of optimal control theory appears in several

books [Pontryagin 62,Stengel 94,Bertsekas 95a]. In motion design, the performance crite-

ria would measure how well the motion fits the animator’s intent. For example, the animator

may indicate that a flying hat must spin. Optimal control computes the time-varying con-

troller u(t) that optimizes the cost function,
∫ tf
t0
L
(
t,q(t),u(t)

)
dt, where the motionq(t)

of the dynamic system is controlled by the controlleru(t). In the literature, an optimal

control problem with an integral cost function is called a Lagrange type control problem3

and the integrand is called the Lagrangian.

Classical, or indirect, approaches to problems of the Lagrange type derive the necessary

conditions using the Euler-Lagrange equations, the Minimum Principle, or the Hamilton-

Jacobi-Bellman equation. The Euler-Lagrange and the Minimum Principle conditions con-

vert optimal control problems into boundary-value problems: the initial dynamic state and

their adjoint variables form boundary values at opposite ends of the time interval. The

Hamilton-Jacobi-Bellman equation formulates an optimal control problem as a partial dif-

ferential equation, which is then solved with dynamic programming. Section 2.2.3 dis-

cusses this approach in more detail and provides an overview of dynamic-programming

techniques for efficiently solving optimal control problems.

3Lagrange type problems can also be transformed into Mayer type or Bolza type control problems. The
three forms are equivalent and chosen purely for convenience.

§2.2 CONTROL OF RIGID BODY SIMULATION 15

Direct approaches to problems of the Lagrange type discretize the control functionu(t)

and the integral cost function to formulate a finite dimensional optimization problem. The

optimization can be solved efficiently with one of many techniques for general optimization

[Gill 89,Bertsekas 95b]. In computer graphics, spacetime methods are the best example of

direct solutions to optimal control problems.

Spacetime methods compute the motion of dynamic systems by solving a constrained

optimization problem. The solution to the optimization problem is a motion that meets

the animation goals, which are specified as optimization constraints. For example, the

original spacetime method [Witkin 88] minimized the power usage of a virtual actor (Luxo

lamp) subject to the dynamics and pose constraints. The optimization produces realistic

and natural motion.

Recent spacetime methods propose different optimization objectives and different con-

straint formulations. Similar to the goal of constructing the motion that best matches the

sketch, three recent spacetime methods [Gleicher 97, Gleicher 98, Popović 99] transform

motion-capture data to construct new, distinctly different, motion that preserves the style of

the original. These methods rely on motion-capture data that is both realistic and accurate.

The realism in the data permits the methods to ignore the laws of dynamics and still yield

convincing realistic motions.

Spacetime methods use the finite difference method [Witkin 88] or the collocation tech-

nique [Cohen 92, Liu 94, Gleicher 97, Gleicher 98, Popović 99] to discretize equations of

motion. Both techniques result in enormous optimization problems because they require

optimization constraints that enforce the equations of motion at each discrete time.

Like boundary-value formulations, all spacetime implementations assume smooth and

continuous optimization problems. Although this assumption drastically simplifies opti-

mization problems, it also complicates the design task. The animator must specify the

sequence of collisions and their collision times. For example, the animator must specify

die orientations and the timing of each bounce.

Optimal control computes the controlleru(t) that is active at all times. In contrast, this

dissertation addresses the control of passive rigid bodies with controllers that must act only

at specific, discrete times: at initial time or at each collision. Although optimal control

theory does not address this problem directly, parameter estimation is a similar formulation

16 BACKGROUND

that relies on techniques for solving optimal control problems. Section 2.2.6 describes the

parameter estimation formulation and related work.

2.2.3 Dynamic Programming

As described in the previous section, dynamic-programming formulation of optimal con-

trol solves the Hamilton-Jacobi-Bellman equation to compute the control functionu(t).

For continuous optimal control, the Hamilton-Jacobi-Bellman equation is a partial dif-

ferential equation that is in most cases harder to solve than the Euler-Lagrange formula-

tion. Instead, dynamic programming is best suited for discrete optimal control as done

with reinforcement-learning methods developed in the artificial intelligence community

[Kaelbling 96].

For most practical problems, when dynamic programming is applied to continuous

problems, the state-spaceq(t) and the control spaceu(t) are discretized. This approach

is often practical, but for high-dimensional problems computational requirements can be

overwhelming [Bertsekas 95a]. Because the state of each rigid body is a 12-dimensional

vector, the design problems in this dissertation are high-dimensional. For example, design-

ing an animation of two passive rigid bodies results in a 24-dimensional control space (12

degrees of freedom for initial position and velocity of each rigid body). Although several

approaches improve the scalability of dynamic programming by approximating the cost

function [Bertsekas 96] or by employing variable-resolution grids [Munos 99], existing

dynamic-programming techniques may still not be computationally efficient for designing

rigid-body simulations.

2.2.4 Inverse Dynamics

Inverse dynamics computes the forces that produce the desired motion of a dynamic system.

For example, the differential Equation 2.3 describes the relationship between the state of

the systemq(t) and the forcesf(t). In contrast to forward dynamics, which computes the

state given the forces, inverse dynamics computes the forcesf(t) given the stateq(t).

Inverse dynamics is a simple and efficient framework for some control problems [Isaacs

87,Barzel 88]. If the bodies initially violate a desired constraint, then the inverse dynamics

§2.2 CONTROL OF RIGID BODY SIMULATION 17

can compute the forces required to guide the bodies into a configuration that complies with

the constraint [Barzel 88]. For example, a deck of cards can be automatically assembled

into a house of cards because inverse dynamics can compute the forces to assemble the

cards and enforce constraints to prevent them from falling apart.

However, inverse dynamics is not an appropriate solution for designing the motion of

passive rigid bodies. To meet the constraints, inverse dynamics applies forces of arbitrary

direction and strength. As a result each body moves like it has a jet engine. For the motion

of passive rigid bodies this is not the desired behavior.

2.2.5 Robot Control

The robotics community explores the methods for controlling rigid bodies to design the

motion and behavior of a robot. Path planning methods compute collision-free paths to

guide robots around obstacles in real environments. Control algorithms design actuators

that exert forces and produce the robot motion. Many of these methods have been success-

fully applied to the animation of virtual actors.

Path planning methods frequently assume kinematic models of robot motion [Latombe

91]. This assumption is justified when robots can move slowly to reduce the effects of

motion dynamics. Kinodynamic planning addresses the more general path planning prob-

lem with kinematic and dynamic constraints. Because the general kinodynamic problem

is NP-hard [Canny 87, Canny 88], polynomial-time approximation algorithms discretize

the state space to reduce the kinodynamic planning into finding a shortest-path in a di-

rected graph [Donald 93]. In practice, probabilistic techniques can explore the state space

efficiently to find the path between desired start and goal locations [LaValle 99].

Control algorithms construct convincing motions of active rigid body systems, most

notably human and animal locomotion [Raibert 91, Hodgins 95, Grzeszczuk 95]. Active

rigid-body systems can approximate human and animal skeletons which rely on their own

muscles for locomotion. Control algorithms compute the time-varying actuators that pro-

duce the desired motion. Although progress has been made in generating control algorithms

automatically [van de Panne 90,van de Panne 93,Grzeszczuk 95] controlling a general ac-

tive dynamic system to meet arbitrary motion constraints remains an unsolved problem.

18 BACKGROUND

2.2.6 Parameter Estimation

The control methods described in previous sections assume active dynamic systems: sys-

tems with actuating controlsu(t) that can exert forces at any time. In contrast, the motion

of passive bodies is determined instead by a finite number of simulation parametersu. Pa-

rameter estimation is a more natural formulation for designing the motion of passive rigid

bodies.

The general parameter estimation framework identifies unknown parameters that fit a

mathematical model of physical behavior to observed real-world measurements [Stengel

94]. In the context of motion design, parameter estimation computes the simulation param-

etersu that fit the resulting motion,q(t) = S(t,u), to the animator’s desired specification.

The distinction between optimal control and parameter estimation is not clear-cut. For

example, direct methods for optimal control parametrize the actuating controlu(t) with

polynomial basis functions. If the coefficients of the basis functions are also added to

the finite-dimensional control vectoru then solving the parameter estimation problem is

equivalent to solving an optimal control problem. This section makes the distinction to em-

phasize the dimensionality of the problem unknowns: regardless of the solution approach,

parameter estimation solves for a finite-dimensional vector of control parametersu and

optimal control solves for control trajectoriesu(t).

Several search techniques have been applied to the parameter estimation problem for

motion design. A genetic algorithm computed solutions for a simple class of 2-D N-body

problems [Tang 95]. A backwards search from desired ball locations in a 2-D billiards

simulation discovered successful trick shots that, for example, end with balls in the desired

table pockets [Barzel 96]. The Markov chain Monte Carlo method excelled at computing

the motions for rigid-body systems with chaotic behavior such as the motion of bowling

pins after the impact with a bowling ball [Chenney 00]. All of these approaches have long

running times. For example, the Monte Carlo method, the most general of the three meth-

ods, could require several hours of computation. Furthermore, the efficiency of the Monte

Carlo method depends on a proposal mechanism, which generates new control vectorsu for

the simulation [Chenney 00]. If the computed motion is not appropriate or the method fails

to find any motion, the animator must re-adjust the animation constraints or the proposal

§2.2 CONTROL OF RIGID BODY SIMULATION 19

mechanism and start again. In short, these methods do not permit interactive exploration,

which is essential for design when aesthetics is a primary concern.

Parameter estimation problems in chemistry, biology and other sciences are formu-

lated as continuous optimization problems [Bock 83, Bock 80]. In these contexts, dy-

namic processes such as chemical reactions are modeled with nonlinear ordinary differen-

tial equations. The optimization fits the parameters of the model to match the observed

measurements. Frequently, the fitting process assumes independent, normally distributed

measurement errors and optimizes a weighted least-squares function to obtain a maximum-

likelihood estimate. Unlike the sampling and searching techniques, these numerical op-

timization methods compute the derivatives of a dynamic process to solve nonlinear esti-

mation problems robustly and efficiently even in high-dimensional parameter spaces. The

techniques in this dissertation extend this derivative-based estimation approach to the de-

sign of rigid-body simulations.

20

21

Chapter 3

MOTION EDITOR

Interaction is essential for exploring any design space because design goals are often sub-

jective and concerned with aesthetics of the result. An intuitive design tool for rigid-body

simulations should allow the animator to design the motion directly without manipulating

the underlying simulation parameters. Ideally, the animator should immediately see the

results of her adjustments and quickly explore the space of motions that achieve the desired

behavior.

Interactive design techniques have been devised for geometric modeling [Witkin 90],

drawing applications [Gleicher 91], interactive camera control [Gleicher 92], architectural

design [Harada 95], and others. At the core of these approaches is an interactive derivative-

based technique. MOTIONEDITOR, the interactive editing technique described in this chap-

ter, extends this approach to the design of rigid-body simulations. The animator can select

bodies at any time and simply drag them to desired locations. In response, MOTIONED-

ITOR computes the required physical parameters and simulates the resulting motion. Sur-

face characteristics such as normals and elasticity coefficients can also be automatically

adjusted to provide a greater range of feasible motions, if the animator so desires. Because

the entire simulation editing process runs at interactive speeds, the animator can rapidly de-

sign complex physical animations that would be difficult to create with existing rigid body

simulators.

Internally, MOTIONEDITOR represents the entire motion of bodies by the simulation

parameters that control the simulation (i.e., initial positions and velocities, surface nor-

mal variations and other parameters included by the animator). As the animator interac-

tively manipulates the motion, MOTIONEDITOR computes the new physical parameters

that achieve the desired motion update. This is achieved in real time using a fast differen-

tial update procedure in concert with a rigid body simulator. Motion discontinuities pose an

additional challenge (e.g. when a point of collision changes to a different facet on a body’s

polyhedral mesh) because the motion changes abruptly. When this happens, MOTIONED-

22 MOTION EDITOR

ITOR performs a local discrete search in physical parameter space to compute the motion

that most closely complies with the desired adjustments. This sampling approach is in-

spired by the continuous and discrete optimization method for applications in architectural

design [Harada 95].

The organization of this chapter follows the description of this work published earlier

in conference proceedings [Popović 00]. This chapter includes additional details and clari-

fications. Section 3.1 presents the top-level description of the MOTIONEDITOR algorithm.

Section 3.2 derives the equations for computing the derivatives of the motion efficiently.

The details of the differential update during the editing interaction are described in Sec-

tion 3.3. Section 3.4 describes MOTIONEDITOR constraint formulations. Section 3.5 de-

scribes a discrete search approach to resolving discontinuities in the simulation function.

Section 3.6 evaluates the editing approach with several motion-design tasks.

3.1 Basic Algorithm

MOTIONEDITOR adapts a differential approach for manipulating rigid-body simulations.

The animator adjusts the motion by specifying a desired motion modification, which is

expressed as a differential changeδqi in the generalized stateq(ti) at timeti. As shown in

Figure 3.1, MOTIONEDITOR computes the required differential changeδu in the control

vectoru that reshapes the current motion to comply with the differential adjustmentsδqi.

Recalling the notation from Section 2.1, the simulation functionSti maps the control vector

δu

q(ti)

δqi

u

FIGURE 3.1. MOTIONEDITOR computes a differential adjustmentδu in the control vector
u that complies with a desired differential adjustmentδqi in the generalized stateq(ti).

u into the generalized stateq(ti), as described in Equation 2.2. Locally linearizing the

simulation function yields a linear relationship between the desired motion adjustmentδqi

§3.1 BASIC ALGORITHM 23

and the required control vector adjustmentδu:

δqi =
∂Sti(u)

∂u
δu. (3.1)

The Jacobian matrix∂Sti(u)/∂u represents the linear transformation and encodes an edit-

ing constraint. MOTIONEDITOR combines all editing constraints into linear optimization

constraints. As described in Section 3.3, the optimization may compute the differential

control vectorδu with either a conjugate gradient technique or singular value decomposi-

tion.

The differential vectorδu describes the direction in which to change the current control

vectoru to obtain the desired motion changeδqi. The differential update is a small step in

the computed direction,

u′ = u + ε δu, (3.2)

whereε is the length of the step. Because Equation 3.1 is only a linear approximation

of the nonlinear simulation function, the new control vectoru′ will not acquire desired

motion change in a single step. Instead, given the new, updated control vectoru′, a rigid

body simulator computes the new motion, displays the result, and repeats the differential

update. By repeating this interactive method, the animator guides MOTIONEDITOR toward

the desired solution.

Figure 3.2 describes the interactive editing algorithm. MOTIONEDITOR consists of

three parts: (1) a differential-control module, (2) a rigid-body simulator, and (3) a user

interface for motion display and editing. In response to an editing operation from the user

interface, the control module recomputes the simulation parametersu needed to accomplish

the desired motion adjustments. The new simulation parameters are supplied to the rigid-

body simulator, which recomputes the motion and updates the display.

The implementation relies on the general-purpose rigid-body simulator developed by

David Baraff [Baraff 92, Baraff 94]. MOTIONEDITOR interacts with the simulator to pro-

vide the control vectoru for the simulation and to modify the collision impulses with ad-

justed surface normals and elasticity coefficients. The simulator, in turn, computes the new

motion. The user interface displays the new motion and reevaluates editing constraints.

The differential-control module processes the new motion to extract collision events and

24 MOTION EDITOR

/* User Interface*/
animator specifies desired stateqi at timeti
repeat
δqi = qi − q(ti)
/* Differential-Control Module*/
compute the Jacobian matrix∂Sti (u)

∂u

solveδqi =
∂Sti (u)

∂u
δu for δu

u = u + ε δu
/* Rigid-Body Simulator*/
update motionq(t) by computing the simulation functionS(t,u)
redisplayq(t)

until δqi = 0

FIGURE 3.2. The interactive editing algorithm.

to decompose the equations of motion as described in Section 3.2. A change in the con-

trol parameters may introduce another bounce, which the simulator detects as an additional

collision. In response, the differential-control module updates the equations of motion to

include the collision.

The user interface displays the entire simulation by tracing out the trajectories of one

or two points on the moving objects. This display minimizes clutter, yet it provides the

animator with a sense of the cumulative motion that is sufficient for most interaction tasks.

The animator can choose to view the complete motion as a traditional frame sequence at

any time during the interaction.

3.2 Jacobian Computation

MOTIONEDITOR relies on the efficient computation of the Jacobian matrix∂Sti(u)/∂u in

Equation 3.1. Computing the Jacobian matrix with finite differences is expensive because

of the need to perform at least one additional simulation for each simulation parameter. For

example, a forward difference formula,

dSti(u)

du
≈ Sti(u+ h)− Sti(u)

h
,

approximates the derivative of the simulation functionSti(u) with respect to the scalar sim-

ulation parameteru. This formula requires two simulations: one to evaluate the simulation

§3.2 JACOBIAN COMPUTATION 25

for the current simulation parameteru and one to evaluate the simulation for the perturbed

parameteru + h. Similarly, each additional parameter would require one more simulation

to compute its directional derivative. Furthermore, the accuracy of the forward difference

formula is onlyO(h) with the additional caveat that the integration accuracy for computing

the simulation functionSti must beO(h2) to achieve this derivative accuracy [Bock 83]. In

short, finite-difference approach is inefficient and inaccurate for the editing approach.

Instead of numerically approximating the derivatives, MOTIONEDITOR uses a special-

ized automatic differentiation technique [Griewank 91]. The simulation functionS is de-

composed into analytically differentiable functions and the Jacobian is numerically com-

posed from the subcomponents using the chain rule. For example, suppose that a single

collision occurs at timetc and the simulation functionStf (u) describes the body’s state

at some timetf > tc after the collision. The functionStf (u) is the composition of three

sub-functions:1

Stf (u) = Ftf (u, ·) ◦ Ctc(u, ·) ◦ Ftc(u,q0), (3.3)

q(t−c) = Ftc
(
u,q0

)
: pre-collision free-flight function, which maps the initial conditions

q0 and perhaps additional elements of the control vectoru into the body’s state att−c ,

an instant before collision (e.g. , Equation 2.10 for 2-D particles);

q(t+c) = Ctc
(
u,q(t−c)

)
: collision function, which applies the impulse and maps the body’s

state an instant before collision into the body’s state attc, an instant after collision

(e.g. , Equation 2.11 for 2-D particles);

q(tf) = Ftf
(
u,q(t+c)

)
: post-collision free-flight function, which maps the body’s state an

instant after the collision into the body’s state attf .

MOTIONEDITOR computes the Jacobian of the simulation function by computing Ja-

cobians of the sub-functions and evaluating the chain rule:

∂Stf (u)

∂u
=
∂Ftf
∂Ctc

(
∂Ctc
∂Ftc

∂Ftc
∂u

+
∂Ctc
∂u

)
+
∂Ftf
∂u

1The Equation 3.3 is written in this form for notational convenience. Alternatively, this equation is written
asStf (u) = Ftf (u, Ctc(u,Ftc(u,q0))).

26 MOTION EDITOR

This derivation describes the Jacobian computation for a motion with a single collision.

Motions with an arbitrary number of collisions are composed in an analogous manner by

chaining together free-flight and collision functions for each segment. Section 3.2.1 derives

the Jacobian for free-flight functions and Section 3.2.2 derives the Jacobian for collision

functions.

3.2.1 Jacobian of Free-Flight Functions

Although the free-flight motion of the particle in Section 2.1.5 has a closed form and is

analytically differentiable, motion of a rigid body in 3-D does not have an analytic solu-

tion in the general case.2 The simulator must numerically integrate equations of motion

(Equation 2.5) to compute the free-flight motion.

We begin deriving the Jacobian∂Ftc(u,q0)/∂u, by integrating Equation 2.3 which

encapsulates the equations of motion,

Ftc(u,q0) = q0 +

∫ tc(u)

t0

f(t,q,u) dt,

where the generalized forcef(t,q,u) is the right-hand side of the differential Equation 2.5

with initial conditionq0. Differentiating both sides with respect to control vectoru yields

a new integral equation:

∂Ftc(u,q0)

∂u
=

∂

∂u

(
q0 +

∫ tc(u)

t0

f(t,q,u) dt

)
.

Note that the time of collision depends on the control vectoru. We evaluate this integral

equation by applying the Leibnitz rule [Kaplan 84], which interchanges the integration and

differentiation:3

∂Ftc(u,q0)

∂u
= f(tc(u),q,u)

dtc(u)

du
+
∂q0

∂u
+

∫ tc(u)

t0

∂f(t,q,u)

∂u
dt. (3.4)

The termf(tc(u),q,u) is the right-hand side of the equation of motion (Equation 2.5) eval-

uated at the collision time. The simulator computes the value of this term from external
2For the special case of freely rotating 3-D rigid body (no torques), there is an analytic Poinsot’s solution

[Symon 71].
3The conditions for applying the Leibnitz rule require thatf is continuous and has a continuous derivative

∂f/∂u. These conditions are met under reasonable assumptions about external forces.

§3.2 JACOBIAN COMPUTATION 27

forces, torques, and the generalized state of the colliding bodies. The collision time deriva-

tive dtc(u)/du depends on the type of collision; we will derive this term in Section 3.2.2.

The second and third term, the expression∂q0

∂u
+
∫ tc(u)

t0

∂f(t,q,u)
∂u

dt, define an integral expres-

sion, which MOTIONEDITOR computes by numerically integrating the differential equation

over timet ∈ [t0, tc(u)]:

d

dt

∂q

∂u
(t) =

∂f(t,q,u)

∂u
, with initial condition

∂q

∂u
(t0) =

∂q0

∂u
. (3.5)

Note that the integration computes a matrix∂q
∂u

instead of a vector.

The computation of∂Ftf (u,q(t+c))/∂u is similar. Applying the Leibnitz rule yields an

integral equation:

∂Ftf (u,q(t+c))

∂u
= −f(tc(u),q,u)

dtc(u)

du
+
∂q(t+c)

∂u
+

∫ tf

tc(u)

∂f(t,q,u)

∂u
dt, (3.6)

with the right-hand side terms evaluated as before. In this case, the second and third term,

the expression∂q(t+c)
∂u

+
∫ tf
tc(u)

∂f(t,q,u)
∂u

dt, result in the same differential equation with dif-

ferent initial condition:

d

dt

∂q

∂u
(t) =

∂f(t,q,u)

∂u
, with initial condition

∂q

∂u
(tc(u)) =

∂q(t+c)

∂u
.

Note that the initial conditionq(t+c) of the post-collision free-flight functionFtf is the

output of the collision functionCtc.

3.2.2 Jacobian of Collision Functions

To compute the Jacobian of the collision function∂Ctc(u,q(t−c))/∂u we differentiate the

impulse equation (Equation 2.8):

∂Ctc(u,q(t−c))

∂u
=
∂q(t−c)

∂u
+
∂j(q(t−c),u)

∂u
.

Applying the chain rule on the second term yields

∂Ctc(u,q(t−c))

∂u
=
∂q(t−c)

∂u
+

∂j

∂q(t−c)

∂q(t−c)

∂u
+
∂j

∂u
.

Because the pre-collision free-flight function outputs the state an instant before the colli-

sion,q(t−c) = Ftc. Section 3.2.1 derives the Jacobian∂q(t−c)/∂u from the Jacobian of the

28 MOTION EDITOR

pre-collision free-flight function∂Ftc/∂u. Assuming the impulsej(q(t−c),u) is a smooth

function of the pre-collision stateq(t−c) and the control vectoru, we can evaluate the ap-

propriate derivatives of the impulse function analytically and compute the Jacobian of the

collision function.

As mentioned in Section 3.2.1 the pre-collision stateq(t−c) depends on the derivative of

collision timedtc(u)/du. We derive this term by defining a smooth collision event function

E(t,q(u)), which is zero at the collision timetc(u):

E(t,q(u))
def
=

> 0, bodies do not collide

= 0, bodies collide at timet
def
= tc(u)

< 0, bodies interpenetrate

. (3.7)

For the 2-D particle, for example, the collision event functionE can be defined as the

signed-distance function between the particle and the obstacle. Differentiating Equation 3.7

and solving for the collision time derivative we obtain

dtc(u)

du
= −

(
∂E

∂q

)T
∂q

∂u
∂E

∂t

. (3.8)

Because the event functionE(t,q(u)) is defined to be smooth and analytically differen-

tiable, MOTIONEDITOR evaluates derivatives∂E/∂q and∂E/∂t analytically. We defined

the Jacobian of the pre-collision state∂q/∂u by the second and third term in the inte-

gral expression in Equation 3.4. MOTIONEDITOR computes the value of this Jacobian by

numerically integrating Equation 3.5.

3.2.3 Example of the Jacobian Computation

To illustrate the Jacobian computation procedure, consider an animation of an object in

ballistic flight through a gravitational field. Furthermore, assume that the initial position

and velocity of the bodyq0 are the only controllable simulation parametersu. For this

example, Equation 2.4 describes the free-flight motion. As in Section 3.2.1, we differentiate

§3.2 JACOBIAN COMPUTATION 29

Equation 2.4 to obtain a new differential equation for the Jacobian of free-flight motion:

d

dt

∂x

∂u
(t)

∂r

∂u
(t)

∂v

∂u
(t)

∂ω

∂u
(t)

=

∂v

∂u
(t)

1

2

∂

∂u

(
ω(t) ∗ r(t)

)
∂

∂u

(
m−1fe(t)

)
∂

∂u

(
I(t)−1

(
τ (t)− ω × I(t)ω

))

. (3.9)

Because the object’s initial state is the control vectoru = q0, the initial condition for the

differential equation is the identity matrix:

∂q

∂u
(0) =

1 · · · 0
...

...
...

0 · · · 1

 .

MOTIONEDITOR computes the Jacobian of free-flight motion by numerically integrat-

ing the differential Equation 3.9. At each step of the numeric integration, the derivatives

on the right-hand side are evaluated analytically. In this example, we can first simplify the

right-hand side,

d

dt

∂x

∂u
(t)

∂r

∂u
(t)

∂v

∂u
(t)

∂ω

∂u
(t)

=

∂v

∂u
(t)

1

2

∂

∂u

(
ω(t) ∗ r(t)

)
0

− ∂

∂u

(
I(t)−1

(
ω × I(t)ω

))

,

prior to differentiating the quaternion productω(t) ∗ r(t) and the termI(t)−1[ω × I(t)ω].

The simplification is possible because there is no external torque on the object and because

the gravitational field and the mass of an object do not depend on the control vectoru.

In case of a collision, the computed Jacobian must be corrected with a Leibnitz correc-

tion term (Equations 3.4 and 3.6):

f(tc(u),q,u)
dtc(u)

du
=

v(tc(u))

1

2
ω(tc(u)) ∗ r(tc(u))

m−1fe(tc(u))

I(tc(u))−1
(
τ (tc(u))−

(
ω × I(tc(u))ω

))
 dtc(u)

du
.

30 MOTION EDITOR

MOTIONEDITOR computes the collision-time derivative by defining a collision event func-

tion (Equation 3.8), which for a vertex-face collision becomes

E(t,q(u)) = n(q(u)) ·
(
pA(q(u))− pB(q(u))

)
,

where the position of the vertex is defined bypA and where the planar face is defined by a

pointpB on the plane and its surface normaln.

MOTIONEDITOR completes the Jacobian computation by differentiating the collision

impulse equation. For a frictionless vertex-face collision the simulator applies the impulse

in the direction of the face normal:

j(q−,u) = js(q
−,u) n(q−).

The impulse magnitudejs, derived from the Poisson collision model described in Sec-

tion 2.1.4, depends on the inertial properties, relative velocities, and the two moment arms

rA andrB of colliding bodies:

js(q
−,u) =

−(1 + ε)
(
n · (v−A − v−B)

)
m−1
A + n ·

(
I−1
A (t)

(
rA × n

))
× rA +m−1

B + n ·
(
I−1
B (t)

(
rB × n

))
× rB

.

Although differentiating the collision impulsej is tedious, analytic computation is possible.

3.3 Differential Update

The editing technique is a form of gradient descent: MOTIONEDITOR continuously lin-

earizes the problem and moves in the gradient directionδu. For a large gradient stepsize

ε, the gradient descent method may diverge. Line minimization is the preferred method

for choosing the stepsize in a gradient method, but it requires considerable computation.

In practice, for all problems described Section 3.6, a small fixed stepsize has good con-

vergence properties while also enabling interactive update rates. Although gradient de-

scent converges only to a local optimum [Bertsekas 95b], local convergence is sufficient

and effective for the interactive setting. The animator drags a body towards the intended

position—guiding MOTIONEDITOR out of undesirable local minima—and MOTIONEDI-

TOR quickly reshapes the motion to comply with the change.

§3.3 DIFFERENTIAL UPDATE 31

After computing the Jacobian of the motion, MOTIONEDITOR solves a minimization

problem to compute a differential updateδu for the control vectoru. The equations lin-

earizing the simulation function (Equation 3.1) form the linear constraints for the opti-

mization. MOTIONEDITOR assumes that the resulting problems are under-constrained,

and solves the optimization problem:

min
δu

(
δuTD δu + dT δu

)
(3.10)

subject to

δq1 =

∂St1(u)

∂u
δu

...

δqn =
∂Stn(u)

∂u
δu.

(3.11)

The optimization does not find a feasible updateδu only when the design problem is over-

constrained. In this case, MOTIONEDITOR does not update the control vector and the

interaction halts. The animator must either add additional simulation parameters to increase

the degrees of freedom or reduce the design requirements. When either is not possible the

animator can use MOTIONSKETCHER described in the next chapter.

The quadratic objective function has a dual purpose: it seeks the smallest change from

the current state of the simulation and the smallest deviation from the desired values of

the simulation parameters. The diagonal matrixD describes the relative scale between pa-

rameters in the control vectoru. The animator can describe the desired scaling to specify

how MOTIONEDITOR should change the parameters. For example, the animator may in-

struct MOTIONEDITOR to favor changing the initial position rather than the initial velocity

of a body. The vectord defines desired values for physical parameters. For example, if

MOTIONEDITOR varies the surface normal at a collision the animator can specify the true

geometric normal as the desired value. MOTIONEDITOR will attempt to stay as close as

possible to the true surface normal while satisfying the constraints. Specifically, ifδud

is the desired change in the control vectoru then settingd = −2δud and optimizing

Equation 3.10 minimizes(δu− δud)T (δu− δud). This result follows from expanding the

multiplication,

(δu− δud)T (δu− δud) = δuT δu− 2δuTd δu + δuT δu

= δuT δu + dT δu + δuTd δud,

32 MOTION EDITOR

and recognizing that the last term is a constant which does not affect minimization. Be-

cause the minimization objective is quadratic and all constraints are linear, MOTIONEDI-

TOR uses Lagrange multipliers to reformulate the minimization as a linear system and to

solve for the vectorδu [Gill 89]. M OTIONEDITOR solves the linear system with either

singular value decomposition or conjugate gradients [Golub 96]. The linear system has to

be solved quickly for interactive editing. Singular value decomposition is more robust than

conjugate gradients for design problems described in Section 3.6. These problems result in

optimizations of approximately 30 simulation parameters, and singular value decomposi-

tion is sufficiently fast. However, the computational cost of singular value decomposition

is a cubic function of the number of simulation parameters and this technique would not

scale as well to larger optimization problems. In these cases, conjugate gradients is a faster

technique that can exploit the sparse structure of the Jacobian matrix: the entries in the

Jacobian matrix are zero whenever the motion of a body is not affected by a simulation

parameter. For example, if two rigid bodies do not collide then their motion is not affected

by initial positions and velocities of the other body.

3.4 Editing Constraints

When the animator edits the motion, MOTIONEDITOR maps the constraints into the de-

sired motion changesδqi. MOTIONEDITOR distinguishes three types of constraints: state

constraints, expression constraints, and floating constraints.

State constraints occur when the animator drags the objects to desired locations or “nails

down” objects by fixing their positions or velocities. Suppose that the animator wants an

object to be at positionpd at timeti. MOTIONEDITOR formulates the desired differential

constraint asδqi = pd − p(q(ti)). In this case the nail constraint is enforced at a specific

time instantti.

Expression constraints are generalizations of state constraints. Any differentiable ex-

pression of the generalized stateq can represent a constraint. For example, the animator

can equate the velocities of two bodies with the differential constraintδqi = vA(q(ti)) −
vB(q(ti)).

Both state and expression constraints can be specified without fixing the time of evalua-

tion ti. The animator can express a constraint at a particular event (e.g., the fifth collision in

§3.5 DISCONTINUITIES 33

the simulation). Time of collisiontc(u) is not fixed and thus the time of the constraint can

“float” with the collision. For example, the constraintδqi = −ω
(
q(tc(u)

)T
ω
(
q(tc(u)

)
reduces the angular velocityω when the object collides. Subsequent modification of the

simulation parameters will change the time at which the collision occurs, but MOTIONED-

ITOR will still enforce the floating constraint.

Floating constraints do not require any modifications of the existing MOTIONEDITOR

framework. The differential constraints in Equation 3.11 can still be evaluated because

floating constraints are attached to well-defined collision events: the desired adjustment

δqi is computed at the appropriate collision and the Jacobians∂Sti(u)/∂u of the collision

function are evaluated as described in Section 3.2.2.

3.5 Discontinuities

When the simulation function is continuous, the interactive-editing technique effectively

converges to the desired motion. In general, the simulation function contains discontinuities

that may cause MOTIONEDITOR to diverge. This section describes a method for expanding

the smooth, continuous, components of the simulation function. Described approaches

improve the convergence of the differential approach.

3.5.1 Physical Feasibility

Section 2.1.5 describes a motion of a single particle after colliding and bouncing off the

obstacle. As shown in Figure 2.3, the polygonal approximation of the obstacle restricts the

sections on the unit circle that a particle can reach after the bounce. Note that some val-

ues ofθf are unattainable because the surface normal near the origin is discontinuous: the

particle cannot exit at the section of the circle directly above the origin (θf nearπ/2). This

restriction of feasible results becomes especially evident when the animator over-constrains

MOTIONEDITOR with many desired body configurations. Finer polygonal approximations

reduce the gaps in the piecewise smooth function because in the limit polygonal approxi-

mations converge to the underlying smooth surface. However, an overly fine approximation

would increase the running time of a collision-detection algorithm in a rigid-body simula-

tion, which would in turn reduce the interactivity of the editing algorithm [Baraff 92].

34 MOTION EDITOR

The approach to this problem is twofold. First, additional control parameters can vary

the surface normals on a polygonal mesh and simulate a collision with a smooth obstacle.

If the mesh approximates a smooth surface, the desired normal can be computed from a

smooth local interpolant or, if available, from the true smooth surface. When the control

vectoru includes the parameters that offset true surface normals, normals can be adjusted

dynamically during the design process. Figure 3.3 illustrates that the varying surface nor-

mals extend the range of smooth components to increase the physically feasible regions.

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

θ0
h

θf

0 0.5 1 1.5 2 2.5 3 3.5

−1

−0.5
0

0.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

th0v0

thf

FIGURE 3.3. Simulation functions for a particle bounce against a non-smooth obstacle
(left) is first describe in Section 2.1.5. If the surface normals are included in the control
vectoru, the editing algorithm can vary the normals (right) to increase the size of smooth
components, thus enlarging the physically feasible regions.

Second, MOTIONEDITOR uses curvature-dependent polygonal approximations in sim-

ulations because they keep the facet count low for fast collision detection and simulation,

but also provide accurate approximations to the original surface [Garland 97]. Approxi-

mating smooth surfaces with polygonal meshes is well studied in computer graphics. In

general, surface approximations allocate many facets to areas of high surface curvature and

fewer facets to near-planar surface regions. For these approximating meshes, the colliding

facet is an accurate first-order approximation to the underlying surface, despite the disconti-

nuity in the surface normals. As a result, the differential change computed on one colliding

facet is a first-order approximation to the differential change computed on the underlying

surface. Because the differential update Equation 3.1 is also a linear approximation, the

differential changeδu continues to be a good predictor for the differential update.

§3.5 DISCONTINUITIES 35

3.5.2 Convergence

MOTIONEDITOR converges to the desired motion if there exists a connected path in the

control space from the initial control vector to the desired control vector within a single

smooth component. With discontinuities, such a path may not exist. To address this prob-

lem, a discrete search procedure must be introduced to guide the control vector between the

appropriate components, piecing together a path that crosses discontinuities. Especially in

higher dimensions, this is a daunting task for an interactive system. In general, the search

must take into account physically feasible regions and jump to smooth components in pos-

sibly distant regions of a high-dimensional control space. The most important criterion for

selecting smooth components is that they facilitate convergence to the desired motion. In

addition, unless instructed otherwise, the components should preserve the “style” of the

current motion by matching the current trajectories as closely as possible. For example, if

an animator desires a successful “off-the-backboard” basketball shot, it is undesirable to

jump to a smooth component corresponding to a direct, “nothing-but-net” motion. Lastly,

the discrete search must complete quickly to maintain interactivity. MOTIONEDITOR ad-

dresses these problems with sampling and interaction techniques described in the following

two sections.

3.5.3 Sampling

In the presence of discontinuities, the editing technique becomes more sensitive to the step-

sizeε and the directionδu in the differential update in Equation 3.2. With a large stepsize

ε, the gradient-descent method may diverge. The approximation errors in the differential

vectorδu also adversely affect convergence. MOTIONEDITOR improves convergence with

a sampling procedure that finds the best values for the update stepsizeε and the direction

δu. A successive stepsize-reduction technique finds a reasonable stepsizeε, by reducing

an initial stepsize until the motion matches the optimization constraints in Equation 3.10.

Successive stepsize-reduction does not guarantee convergence, but performs well in prac-

tice [Bertsekas 95b].

Because polygonal meshes for curved surfaces lead to approximation errors in the gra-

dient δu, the differential update, a gradient-descent technique, may fail. Although con-

36 MOTION EDITOR

vergence results for such gradients exist, there are no standard techniques for improving

the convergence [Bertsekas 95b]. Recall from Section 3.5.1 that for discontinuities due

to polygonal approximations, the update vectorδu remains a reasonable gradient direc-

tion. Thus, when the simulation is directed off the boundary of a smooth component,

MOTIONEDITOR samples the control space from the normal distribution centered around

the suggested updateδu. Each such sample may produce a point on a new smooth com-

ponent. The MOTIONEDITOR evaluates the corresponding motions and jumps to the most

promising component. The animator perceives the jump as a minor “pop” in the resulting

motion and typically, following the jump, the continuous manipulation continues. The sam-

pling procedure also causes a momentary lag. While the lag could be reduced with a faster

implementation, the visual pop is unavoidable in situations where the underlying motion

is discontinuous. If sampling does not produce any reasonable smooth component, MO-

TIONEDITOR remains within the current smooth component. The animator is thus blocked

from adjusting the motion in a particular way, but can continue to guide MOTIONEDITOR

in a different manner.

3.5.4 Interaction

To guarantee convergence, MOTIONEDITOR would have to search through the entire con-

trol space. MOTIONEDITOR does not address this general problem—the high dimension

of the control space makes the search especially difficult. Instead, MOTIONEDITOR relies

on the animator to guide MOTIONEDITOR to a motion that satisfies given constraints. For

example, a body that initially flies over a wall may have to bounce off the wall and fly in

the opposite direction to accomplish the desired constraint. The editing technique will not

make these transformations automatically. For a large class of motion design tasks, this

behavior is desirable and sufficient. The interaction allows the animator to quickly exper-

iment and guide MOTIONEDITOR toward the desired collision sequence. For example, to

transform the motion of a basketball during a successful free throw, the animator may want

to bounce the ball off the backboard before it goes through the hoop. In this case, the ani-

mator first guides the ball into a backboard collision, and then guides it through the hoop.

Note that the single constraint specifying a successful shot does not uniquely determine

the desired collision configurations: the ball may bounce off the backboard, off the floor

§3.6 EXAMPLES 37

or even off the scoreboard. An automatic system would have to choose the desired motion

(or keep track of a possibly exponential number of motions) according to some objective

criteria. Instead, MOTIONEDITOR provides the animator with interactive, direct control

over the motion and allows her to guide MOTIONEDITOR to the appropriate solution.

3.6 Examples

Creating each example in this section required between two and fifteen minutes of interac-

tion. Example figures show the animation before interaction, at an intermediate point, and

after the desired motion is obtained. The motion is illustrated with trajectories that track

one or more points on the body.

FIGURE 3.4. The animator drags the hat onto the coatrack to enforce the landing at the
end of the animation. Once the hat lands safely, the animator creates a tumbling motion by
spinning the hat at the starting time.

The first example, shown in Figure 3.4, recreates the example from Chapter 1. The

hat misses the coatrack and lands on the ground. The animator selects the hat and sim-

ply drags it to the rack to enforce the successful landing. The dragging action enforces a

6-dimensional constraint that specifies the animator’s adjustments to the hat’s position and

orientation. In response, MOTIONEDITOR computes the appropriate 6-dimensional control

vector consisting of the hat’s initial linear and angular velocity. Once the hat lands on the

coatrack, the animator adds a 6-dimensional nail constraint that enforces the landing by

fixing the hat’s position and orientation at the end of the animation. The final adjustments

spin the hat at the starting time, forcing it to tumble prior to the safe landing. The spin ad-

justments introduce an additional 3-dimensional constraint that specifies adjustments to the

38 MOTION EDITOR

orientation of the hat. MOTIONEDITOR computes the appropriate 12-dimensional control

vector, which describes the initial state (position, orientation, linear velocity, and angular

velocity) of the hat that satisfies both the nail and the spin constraint.

FIGURE 3.5. In less then two minutes, the animator creates an animation of two eggs
colliding in mid-air and landing in the buckets.

The objective of the second example, as shown in Figure 3.5, is to have two 2-D eggs

collide in the air and land successfully in two buckets on the ground. Creating this motion

by simply adjusting initial positions and velocities of the objects would be difficult due

to the complexity of the motion and the constraint that the buckets themselves cannot be

moved. In contrast, the desired animation is easily created from scratch with MOTIONED-

ITOR. First, the starting positions of the eggs are fixed, and the velocities and orientations

are assigned arbitrarily. By selecting an egg on its flight path, the animator interactively

drags the first egg’s trajectory towards the second egg until the two objects collide in the

air. During this interaction, the constraint is a 3-dimensional vector consisting of the po-

sition and orientation adjustments. The 3-dimensional control vector consists of the egg’s

initial linear and angular velocity. Running at roughly 20 frames per second, MOTIONED-

ITOR computes the required changes in the initial orientation and velocity of both eggs to

achieve the desired motion updates. Once one egg is in the bucket, the animator applies a

nail constraint to fix its ending state and drags the second egg into the other bucket. In this

case, the two constraints are two 3-dimensional vectors both describing the adjustments in

position and orientation. The 6-dimensional control vector consists of the initial linear and

angular velocities of both eggs.

In the third example, shown in Figure 3.6, the animator’s goal is to drop a plank onto

two supports to form a table. The problem is made more difficult by requiring the plank to

§3.6 EXAMPLES 39

FIGURE 3.6. A table top lands on its legs after a mid-air collision with a pyramid.

collide with a pyramid, prior to landing centered on the supports. This example requires

MOTIONEDITOR to solve for the initial plank position, orientation, and velocity (both lin-

ear and angular) in order to achieve the desired configuration after the collision. As in the

previous example, the animator directly manipulates the plank’s position and orientation

while MOTIONEDITOR interactively computes the corresponding simulation parameters.

This editing occurs in two steps. First, the animator selects the plank after its collision with

the pyramid, and positions it above the supports. Second, the animator aligns the plank’s

orientation so that it lands squarely on the supports. In both instances, the constraint is a

6-dimensional vector describing adjustments to the position and orientation of the plank.

The 24-dimensional control vector describes the initial generalized state of both bodies.

FIGURE 3.7. The animator adjusts an animation of a tumbling mug to prevent it from
tipping over. The floating constraints adjust the mug’s orientation and reduce its angular
velocity.

The fourth example, shown in Figure 3.7, demonstrates the use of floating constraints

and additional control parameters. Suppose the animator wishes to keep a falling mug from

tipping over without changing its initial position, orientation, or velocity. This is accom-

40 MOTION EDITOR

plished by adding new control parameters that control the surface normals and elasticity

coefficients at each collision. To keep the mug from tipping over, the animator first cor-

rects the orientation, with a 3-dimensional orientation constraint, so that the mug is upright

at the fourth bounce. MOTIONEDITOR accommodates the change by adjusting the sur-

face normals, through a 12-dimensional control vector, at the four prior bounces. Note that

these adjustments alter the time at which the fourth bounce occurs, requiring a floating time

constraint (Section 3.4). Because of the angular velocity, however, the mug still tips over.

The animator prevents the tipping by specifying a 3-dimensional velocity constraint that re-

duces the angular velocity after the fourth bounce to keep the mug upright after the bounce.

The adjustments to surface normals and elasticity coefficients, through a 16-dimensional

control vector, are perceived as changes in the floor texture but their effect on the motion

allows the animator to create the desired animation.

FIGURE 3.8. Scissors bounce and flip before landing on the hook.

In the fifth example, shown in Figure 3.8, an animator constructs a complex motion of

the scissors bouncing off the floor, flipping in the air, and landing on the hook. First, the

animator enforces the bounce by dragging the scissors towards the floor. Second, spinning

the scissors after the bounce produces a somersault motion. Final tweaks ensure that the

scissors land on the hook. The progressive interaction is typical of a MOTIONEDITOR

session. A complex animation is a result of successive edits to an initially simple animation.

In all edits, the 6-dimensional constraints adjust the position and orientation of the scissors

and the computed 12-dimensional control vector specifies the initial generalized state of

the scissors.

The last example, shown in Figure 3.9, illustrates the benefits of additional simulation

parameters for controlling motion of chaotic systems. In this animation the die must land

§3.6 EXAMPLES 41

FIGURE 3.9. The outcome of a die toss changes as the animator adjusts the orientation at
an earlier bounce.

on the stand with the desired outcome. The animator first drags the die on top of the stand,

but the die lands with the wrong side up. The animator could tilt the die forward to obtain

the desired outcome but the chaotic system is extremely sensitive to initial position and ve-

locity of the die. Instead, the animator instructs MOTIONEDITOR to adjust surface normals,

through a 9-dimensional control vector, at each of the three collisions. The outcome of a

die toss is changed as the animator adjusts the orientation at an earlier bounce. Adjusting

the surface normals improves the conditioning of the problem, and the animator proceeds

to tilt the die with a floating 3-dimensional orientation constraint.

42

43

Chapter 4

MOTION SKETCHER

MOTIONEDITOR, the interactive editing technique described in the previous chapter, is an

effective and intuitive tool for an important class of motion-design problems. The interac-

tion is critical for this editing approach, without interaction the animator could not edit the

motion as easily and effectively. Because the interactive performance hinges on the speed

of physical simulation, this editing approach is ineffective when the motion of rigid bod-

ies cannot be simulated interactively. Furthermore, despite many advantages, interactive

editing may be tedious and time consuming for design of highly improbable motions. For

example, designing the motion of scissors described in Section 3.6 required fifteen minutes

of interaction because the animator has to guide the editor continuously until it converges

to the intended motion.

MOTIONEDITOR, an offline design tool described in this chapter, takes a different ap-

proach: the animator designs the motion before any physical motion is computed. Off-line,

MOTIONSKETCHER computes a physical rigid-body motion that closely matches the ani-

mator’s design: a sketch of the desired motion. With this approach, the design process is not

impeded even when simulating the physical motion is computationally slow. Furthermore,

the animator can specify detailed and physically meaningful sketch, without carefully guid-

ing the tool until its convergence to the desired motion.

MOTIONSKETCHER consists of a sketching interface and a parameter solver. The in-

terface allows the animator to sketch the motion and to specify constraints that enforce key

aspects of the motion. The parameter solver computes the simulation parameters, by solv-

ing a parameter estimation problem that yields the physical motion that closely matches the

sketch.

The sketching approach introduces three new challenges. First, the motion implied by a

sketch may be physically infeasible. Even for physically feasible goals, findinganymotion

that achieves the goals is a challenge. Second, motion sketches are imprecise. Except for

the parts of a sketch that specify explicit constraints, sketches convey the intent but do not

44 MOTION SKETCHER

define precise behavior. Consequently, motion sketches may differ dramatically from the

desired physical motion. Third, a sketch may have an incorrect, or non-physical, timing.

For example, the motion may be sketched in slow motion and MOTIONSKETCHER must

determine the correct timing using physical laws, such as the motion of rigid bodies in a

gravitational field.

MOTIONSKETCHER employs a generalized multiple-shooting technique to solve the

parameter estimation problem in its discrete form. In contrast to traditional formulations,

which require that the animator specifies the timing of constraints, MOTIONSKETCHER

computes both the motion and the timing that matches the sketched motion as closely as

possible. Multiple shooting is designed to work effectively in a mixed, continuous and dis-

crete, optimization domain. MOTIONSKETCHER aligns the discretization time grid with

rigid-body collisions, which greatly simplifies the search in the discrete domain. The align-

ment, however, need not enforce the timing of collisions. The use of this sliding time grid

allows the optimization procedure to adjust the timing of collisions while fitting the anima-

tor’s sketch. In practice, this optimization procedure converges rapidly and effectively.

Section 4.1 presents the top-level description of the MOTIONSKETCHER algorithm.

Section 4.2 formulates motion sketching as a parameter estimation problem. Section 4.3 in-

troduces multiple shooting and reformulates the parameter estimation problem. Section 4.4

describes techniques for resolving discontinuities in the simulation function. Section 4.5

presents the two sketching interfaces and examples of animations constructed with the in-

terfaces.

4.1 Basic Algorithm

MOTIONSKETCHER creates a rigid-body motion by solving a parameter estimation prob-

lem. The animator designs the motion of a rigid body by sketching its desired 3-D trajec-

tories with either the acting interface or the editing interface. With the acting interface, the

animator moves real objects with attached motion sensors to sketch a motion. With the

editing interface, the animator creates the sketch by interactively manipulating rigid-body

simulations. The resulting trajectories specify the desired motion of animated objects. For

example, Figure 4.1 illustrates the sketching process with the acting interface. The anima-

tor moves the pencil to act out an animation of a pencil bouncing, twirling in the air, and

§4.1 BASIC ALGORITHM 45

landing in a mug.

The animator need not move the pencil in a physically correct manner; both the trajec-

tories and the timing could be physically implausible. For example, the animator may move

the pencil in slow motion. To allow for precise control over the animation, any part of the

sketch may be designated as a hard kinematic constraint. For instance, the animator may

choose to require that the pencil lands at a precise location, or that it collide with another

object at a specific point in time.

FIGURE 4.1. The animator moves an instrumented pencil to act out the desired behavior.
A sampled representation of the sketched motion (middle figure) is transformed into a
physical motion that closely matches the sketch.

Prior to solving the parameter estimation problem, MOTIONSKETCHER transforms the

sketch into a canonical form that serves as the initial approximation for the subsequent

optimization procedure. In this step, the animator annotates the sequence of collisions in the

sketch. The collision sequence partitions the rigid-body motion into free-flight segments.

MOTIONSKETCHER computes the initial approximation by fitting a motion to each free-

flight segment independently.

In the last step, MOTIONSKETCHERsolves a parameter estimation problem to compute

the simulation parameters. A generalized multiple-shooting method fits the motion within

each free-flight segment while ensuring the correct behavior at each collision. The result

is physically correct motion that closely adheres to the sketch. If desired, strict adherence

to physical laws may be relaxed at specified points in the animation. For instance, the ani-

mator may choose to allow small changes in energy at collisions or visually imperceptible

discontinuities in position or orientation, yielding physically plausible motions that better

fit the sketch.

46 MOTION SKETCHER

4.2 Parameter Estimation

The goal of parameter estimation is to compute the control vectoru for which the resulting

motionq(t) matches the sketch. A sketch of the motion is represented by sketch samples

s1, . . . , sn. Each sketch samplesi specifies desired values for an arbitrary function of the

generalized statepi(q). For example, if a sketch sample specifies the desired orientation

of a body at timeti then the functionpi
(
q(ti)

)
projects the body’s orientation components

from the generalized stateq(ti). The control vectoru typically includes initial positions

and velocities of rigid bodies, but can also include collision elasticity and collision normals.

The parameter estimation formulation is general and MOTIONSKETCHER could be gener-

alized to optimize additional simulation parameters such as masses, moments of inertia,

and the acceleration of gravity.

Any metric could be used to measure how well the motionq(t) matches the sketch sam-

pless1, . . . , sn. The least-squares metric is a reasonable choice because it is a maximum-

likelihood estimator1 with nice numerical properties [Stengel 94]. The least-squares metric

evaluates the motion, but it does not enforce required sketch goals. For example, an anima-

tor may sketch the motion of a successful basketball free-throw, but the best least-squares

motion may result in a miss. MOTIONSKETCHER addresses this problem by allowing

sketch samples that constrain the required motion goals. The animator could enforce a

successful free-throw by constraining the basketball’s center-of-mass to fall through the

rim.

The aim of parameter estimation is to compute the motionq(t) and parametersu that

minimize the least-squares distance to sketch samples, subject to complying with sketch

constraints:

min
q(t),u

n∑
i=1

‖pi
(
q(ti),u

)
− si‖2 (4.1)

subject to b ≤ cs
(
u,q(t1), . . . ,q(tn)

)
≤ b,

where the constant lowerb and upperb bounds permit both equality and inequality sketch

constraints. The formulation attempts to preserve the style and goal of a sketch. The

1Least-squares fitting is a maximum likelihood estimator if the sketch samples are independently dis-
tributed according to a normal (Gaussian) distribution of constant standard deviation.

§4.3 MULTIPLE SHOOTING 47

least-squares objective function expresses the intended style (i.e., the motion shape) of the

sketch, and the sketch constraints enforce specific goals of the sketch. Solving the parame-

ter estimation problem yields a physical motion that meets the motion goals and preserves

the motion style as much as possible. The formulation in Equation 4.1 is a variational form

because the entire motion pathq(t) is optimized. The next section describes a shooting

technique for solving parameter estimation problems of this form.

4.3 Multiple Shooting

Shooting techniques solve a variational problem, such as the parameter estimation problem

defined in Equation 4.1, by parameterizing the entire motion with a finite set of parameters.

For example, a single-shooting method, illustrated in Figure 4.2, would parametrize the

entire motionq(t) with the generalized stateq0 at the initial time because the entire motion

can be computed by numerically integrating equations of motion from the initial condition

q0. MOTIONEDITOR is one example of this approach.

FIGURE 4.2. Single shooting parameter-
izes the entire motion with the state at the
initial time. In this illustration, the motion
of a particle is parameterized by its initial
velocity (arrow).

FIGURE 4.3. Multiple shooting subdivides
the integration interval before parameteriz-
ing the motion. In this illustration, the mo-
tion of a particle within each segment is
parameterized by its initial velocity at the
beginning of each free-flight segment (ar-
rows).

Although single shooting is intuitive and easy to implement it has two well-known

drawbacks: long integration interval and implicit motion representation [Ascher 88]. The

long integration interval results in numerical methods with poor stability. Although nu-

48 MOTION SKETCHER

merical instability can be compensated for with good initial approximations, the implicit

motion representation prevents the animator from easily describing good initial approxi-

mations. For example, an animator cannot directly specify the number of bounces a die

takes as it bounces across the table. Instead, the animator must deduce the initial stateq0

that results in the motion with the correct number of bounces.

Multiple shooting, illustrated in Figure 4.3, is a numerically stable and robust tech-

nique for solving the parameter estimation problem described in Section 4.2. By integrat-

ing equations of motion within a series of shorter integration intervals, multiple shooting

eliminates the main drawback to single shooting. Furthermore, multiple shooting exposes

the generalized state of the body at more than just the initial time allowing the animator to

provide better initial approximations. Section 4.3.1 describes multiple shooting in a gen-

eral setting, rewriting parameter estimation in discrete form. Section 4.3.2 illustrates the

multiple-shooting technique with a concrete example.

4.3.1 General Formulation

Shooting techniques for the parameter estimation problem compute the motionq(t) of a

rigid body system by evaluating the simulation functionS(t,u) [Bock 83, Bock 80]. The

simulation functionS(t,u), defined in Section 2.1, integrates equations of motion to map

the simulation parametersu into the rigid-body motionq(t). Multiple shooting subdivides

the interval of integration[t0, tn] to compute the motion on each subinterval separately. A

time grid,

t0 = tG0 < tG1 < · · · < tGm = tn,

splits the interval of integration intom subintervals. The subdivision can be arbitrary. Fine-

grained subdivision improves stability but increases the size of the optimization problem.

After subdivision, the motionq(t) is defined bym functions:

q(t)
def
=

S(t,u,q0) if t ∈ [tG0 , t

G
1),

...

S(t,u,qm−1) if t ∈ [tGm−1, t
G
m].

Each function is a solution of an initial value problem, completely determined by simula-

tion parametersu and initial statesqi = q(tGi). Conceptually, given the control vectoru

§4.3 MULTIPLE SHOOTING 49

andm initial statesq0, . . . ,qm−1, the rigid-body simulator computes the simulation func-

tion, which specifies the state of the bodies in the world at every point in time:

q(t) = S(t,u,q0, . . . ,qm−1), t ∈ [t0, tn].

In general, the motionq(t) so computed is not continuous. The sequencetG1 , . . . , t
G
m−1

marks the times between the segments, where the neighboring motions may not match

up. Continuity constraintscc are added to enforce continuity between motion segments,

ensuring that the motionq(t) is continuous in both position and velocity:2

cc(u,q0, . . . ,qm−1)
def
=

 q1 − StG1 (u,q0)
...

qm−1 − StGm−1
(u,qm−2)

 = 0

In this formulation, the simulation parametersu and initial statesq0, . . . ,qm−1 are the

unknowns. The parameter estimation procedure computes their values to satisfy the sketch

constraintscs and to enforce the continuity constraintscc:

min
u,q0,... ,qm−1

∑n
i=1

∥∥∥pi(Sti(u,q0, . . . ,qm−1)
)
− si

∥∥∥2

(4.2)

subject to

{
b ≤cs

(
u,q(t1), . . . ,q(tn)

)
≤ b

cc(u,q0, . . . ,qm−1) = 0.

Provided the simulation functionS(t,u,q0, . . . ,qm−1) is continuous with respect to the

control vectoru and the initial statesq0, . . . ,qm−1, the multiple-shooting formulation

yields a constrained nonlinear optimization problem on a continuous domain which can

be solved by a variety of efficient optimization methods [Gill 89].

MOTIONSKETCHER uses SNOPT optimization software [Gill 97], a sparse optimiza-

tion solver based on sequential quadratic programming (SQP). SQP methods solve con-

strained nonlinear optimization problems by generating a sequence of iterates that converge

to a solution point satisfying the Karush-Kuhn-Tucker conditions of optimality. Each iter-

ate is the result of a quadratic programming subproblem, which is derived from the original

nonlinear optimization.

2Velocity is not continuous for colliding bodies. In this case, the states must still match up through the
impulse Equation 2.8.

50 MOTION SKETCHER

For highly nonlinear optimization problems, a good initial approximation of the solu-

tion is a key requirement for convergence. SQP methods find solutions that are locally

optimal, but with good initial approximations a locally optimal solution is often a global

optimum. One of the primary benefits of multiple shooting is that prior knowledge about

the desired solution, incorporated in the sketch, can be used to construct a good initial ap-

proximation. Section 4.5 describes the specifics of constructing an initial approximation

from sketching interfaces.

SQP methods rely on accurate derivatives of the least-squares objective function and

the constraints with respect to the optimization unknowns: control vectoru, and initial

conditionsq0, . . . ,qm−1. MOTIONSKETCHER uses a specialized automatic differentia-

tion technique to compute these Jacobian matrices. The Jacobian matrices are numerically

composed, using the chain rule, from analytically differentiable functions that comprise the

simulation function. Section 3.2 describes this derivation in detail.

SNOPT and other sparse optimization solvers can exploit the structure in the Jacobian

matrices to improve optimization speed and to scale to large optimization problems. In

the parameter estimation problem, the Jacobian matrices of both the sketchcs and the

continuity constraintscc are sparse. The Jacobian matrices have a sparse structure because

initial states do not affect any constraint values outside the corresponding shooting segment.

For example, the Jacobian matrix of the continuity constraintscc with respect to initial

conditionsq0, . . . ,qm−1 is a banded matrix:

∂cc
∂qp

=

−
∂StG1
∂q0

1 0 0 · · · 0

0 −
∂StG2
∂q1

1 0 · · · 0

...
...

...

0 · · · 0 0 −
∂StGm−1

∂qm−2

1

, whereqp

def
=

q0

q1
...

qm−1

 ,

and matrix1 is an identity matrix. Section 4.4 describes a modified estimation technique

for discontinuous optimization space. The new technique will result in denser, but still

sparse, Jacobian matrices.

§4.3 MULTIPLE SHOOTING 51

4.3.2 An Illustrative Example

Suppose the animator sketches an animation of a pencil bouncing, twirling in the air, and

landing in a mug. Figure 4.1 illustrates the sketching process and the resulting sketch. In

this example, the sketched trajectories indicate the positionxs(t) and orientationrs(t) of

the pencil. MOTIONSKETCHER discretizes the continuous sketch trajectories with sketch

samplessi ∈ R3 × SO(3):

si
def
=

(
xs(ti)
rs(ti)

)
, i ∈ [1, n].

Although in general the sketch samples do not contain the timing informationti, this section

assumes that the timing is provided. Section 4.3.3 describes the general setting, when the

timing information is not available.

For each sketch sample, the projection functionspi(q(ti)) extract the position and ori-

entation of the pencil from the generalized state:

pi

(
x(ti)
r(ti)
v(ti)
ω(ti)

) def
=

(
x(ti)
r(ti)

)
, i ∈ [1, n].

Sketched trajectories indicate the preferred path for the pencil. The animator will also

introduce an explicit motion goal to ensure that the pencil lands in the mug. Noting that the

last sketch samplesn locates the pencil inside the mug, one simple method would construct

an equality sketch constraintcs that matches the final position and orientation of the pencil

pn
(
q(tn)

)
with the last sketch sample:

cs = pn
(
q(tn)

)
− sn = 0. (4.3)

In this example, the pencil bounces once. The time of this collisiontG1 is a natural seg-

mentation point for multiple shooting. The time grid splits the motion into two segments:

the pre-collision and the post-collision free-flight segment. As discussed in Section 4.3.1,

the motion is computed within two shooting segments independently:

q(t)
def
=

{
S(t,u,q0) if t ∈ [tG0 , t

G
1],

S(t,u,q1) if t ∈ [tG1 , t
G
2].

52 MOTION SKETCHER

The initial statesq0 andq1 denote the generalized state of the pencil at the beginning of

each interval. Parameter estimation computes the values of the initial states and the control

vectoru that minimize the least-squares metric subject to satisfying the sketch constraint

cs.

The continuity constraintcc ensures that the initial stateq1 matches the ending of the

previous shooting segment:

cc(u,q0,q1)
def
= q1 − StG1 (u,q0) = 0.

Because the generalized state describes the position and velocity of each body, this con-

straint enforces the continuity in both. If the initial stateq1 occurs an instant after the

bounce then the simulation functionStG1 (u,q0) evaluates the pre-collision free-flight mo-

tion and applies the impulse through the collision function to compute the appropriate post-

collision state.

Putting it all together, MOTIONSKETCHER formulates the parameter estimation prob-

lem as a constrained minimization:

min
u,q0,q1

∑n
i=1

∥∥∥pi(Sti(u,q0,q1)
)
− si

∥∥∥2

(4.4)

subject to

{
0 ≤pn

(
Stn(u,q1)

)
− sn ≤ 0

q1 − StG1 (u,q0) = 0.
(4.5)

The optimization computes the control vectoru which consists of simulation parame-

ters such as surface normals and elasticity coefficients at the bounce, and the two 12-

dimensional initial conditionsq0,q1.

4.3.3 Sketch Sample Timing Assignment

Although an animator typically knows what motion trajectories should look like, she need

not know precisely when any motion event should occur. In such a case, sketch samples

s1, . . . , sn encode the desired body trajectories, and MOTIONSKETCHER computes the

timing informationti from sketched trajectories alone.

The iterative algorithm, shown in Figure 4.4, alternates two steps: the assignment step

and the optimization step. First, the assignment step estimates the timingti by pairing each

§4.3 MULTIPLE SHOOTING 53

compute initial approximationq(t)
repeat

/* Assignment Step*/
for i = 1 to n do
ti = arg minti

∥∥pi(q(ti)
)
− si

∥∥2
such thatt1 < · · · < ti

end for
/* Optimization Step*/
solve parameter estimation problem in Equation 4.2

until timing ti changes little from previous iteration

FIGURE 4.4. The iterative algorithm assigns the timing information to each sketch sample
before solving the parameter estimation problem.

sketch samplesi with a closest stateq(ti). Second, given the sample timingti, the opti-

mization step solves the parameter estimation problem described in Section 4.3.1. MO-

TIONSKETCHER alternates the assignment and the optimization steps until convergence.

As described in Section 4.3.1, the optimization uses an iterative SQP procedure. For ef-

ficiency, MOTIONSKETCHER ends the optimization step after only a few iterations before

repeating the assignment step to re-estimate the timing. After several repetitions the timing

estimates stabilize in all of our examples, varying little with each repetition, and MO-

TIONSKETCHER completes the optimization until convergence.

A good initial timing estimate is critical for the success of the iterative algorithm. Both

the parameter estimation described in Section 4.2 and the timing assignment are nonlinear

and nonconvex optimizations with many local solutions. For convergence of both problems,

the initial approximation must be sufficiently close to the desired solution. In this case,

the initial approximation must yield an approximate timing estimate that can be locally

optimized with the iterative procedure. Section 4.5 describes the specifics of constructing

an initial motion from sketching interfaces.

The iterative assignment-optimization algorithm is similar in spirit to the iterative-

closest-point (ICP) method for registering 3-D shapes from multiple views [Besl 92]. Reg-

istration aligns the shapes, initially expressed in multiple coordinate systems, to express

the data in a single, object coordinate system. For registration, ICP alternates pairing the

points in overlapping shape regions, and optimizing the coordinate transformations for the

54 MOTION SKETCHER

current point-pairing.

4.4 Discontinuities

With collisions, parameter estimation is a challenging optimization problem on a mixed,

continuous and discrete domain. Section 4.3 described multiple shooting for the continu-

ous optimization domain. This section describes a modified algorithm that converges in a

continuous and discrete domain.

Section 4.4.1 describes a time-grid alignment that simplifies the discrete search by

aligning rigid-body collisions with time-grid pointstG. In the standard multiple-shooting

approach, the time-grid is fixed throughout optimization. After alignment with collisions

the standard approach would also require fixed collision timing. Instead, MOTIONS-

KETCHER generalizes the standard multiple-shooting approach with a sliding time grid.

Section 4.4.2 describes an approach that allows MOTIONSKETCHER to optimize the colli-

sion timing by adjusting the time grid.

4.4.1 Time-Grid Alignment

When the time grid is aligned with collisions, each shooting interval corresponds to a free-

flight motion. Impacts are instantaneous events that occur between shooting intervals. Each

initial stateqi specifies the generalized state of the system an instant after the impact; thus,

the free-flight motion during each interval is continuous with respect to its initial state.

The grid alignment allows the animator to specify directly desired collisions, positions,

orientations, and velocities of bodies. For example, initial statesq0, . . . ,qm−1 directly

encode intended collisions as each initial state, except forq0, maps to a collision. Each set

of initial states identifies a smooth component in the simulation function. A simple discrete

search could search through smooth components by selecting the number of initial states

and sampling their values. For example, a motion with a single collision consists of two

initial states: initial vectorq0 at timet0 and a stateq1 at the time of collision. Sampling

the initial stateq0 andq1 and solving the appropriate parameter estimation problem would

enumerate the smooth components of the simulation function that correspond to all motions

with a single collision.

§4.4 DISCONTINUITIES 55

FIGURE 4.5. An unaligned time grid subdi-
vides the motion arbitrarily. The motion in
the second interval may not be continuous
with respect to its initial state; the collision
type may change at impact.

FIGURE 4.6. An aligned time grid subdi-
vides the motion into free-flight segments.
Subdivisions begin and end with each col-
lision. The motion during each interval is
continuous with respect to its initial state.

4.4.2 Sliding Time Grid

In the standard multiple-shooting approach, the time gridtG0 , . . . , t
G
m remains fixed through-

out the optimization. Because MOTIONSKETCHER aligns the time grid with collisions,

this approach restricts the optimization by enforcing predetermined collision times. In-

stead, MOTIONSKETCHER generalizes the standard multiple shooting to allow a sliding

time grid:

0 = tG0 < tG1 (q0) < · · · < tGm−1(qm−2) < tGm = T. (4.6)

The interior grid pointstG1 (q0), . . . , tGm−1(qm−2) are functions of the generalized state at

the time of the previous collision. For rigid bodies with smooth shapes, the functions are

smooth, enabling efficient optimization with parameter estimation. In the general case the

functions are only piecewise smooth, nevertheless the parameter solver converges because

in practice discontinuities are not close to an optimum [Gill 89]. MOTIONSKETCHER uses

a two-step optimization process.

The first optimization step discovers the correct smooth component—a region of the

control space in which the simulation function is continuously differentiable—by identify-

ing the types of collision in the sketch. As outlined in Section 4.4.1, a smooth component is

identified by initial statesq0, . . . ,qm−1. The first step computes the parameters that yield

the motion closest to the sketch. As a result, MOTIONSKETCHER discovers the smooth

56 MOTION SKETCHER

FIGURE 4.7. The first optimization step
uses a fixed time grid to fit a physical mo-
tion within each segment to sketch samples
(illustrated with dots). The aim of this step
is to identify collision types.

FIGURE 4.8. The second optimization step
uses a sliding time grid to fit sketch samples
(illustrated with dots), to eliminate inter-
penetration, to adjust collision times, and to
enforce physical behavior at each collision.

component that best corresponds to the sketched motion.

The first step uses a fixed time grid to solve the relaxed parameter estimation problem

in Equation 4.2 without the continuity constraintscc:

min
u,q0,... ,qm−1

∑n
i=1

∥∥∥pi(Sti(u,q0, . . . ,qm−1)
)
− si

∥∥∥2

subject to b ≤ cs
(
u,q(t1), . . . ,q(tn)

)
≤ b.

Collisions are ignored during the optimization, allowing inter-penetration between the bod-

ies. The result is locally physically correct motion that within each segment obeys the

equations of motion (Figure 4.7). Most important, the computed initial statesq0, . . . ,qm−1

identify the desired smooth component of the simulation function.

The second optimization step uses the sliding time grid to solve the full parameter esti-

mation problem in Equation 4.2. The resulting motion eliminates inter-penetration, adjusts

collision times, and fits the sketch while complying with the motion model (Figure 4.8). In

contrast to the fixed time grid, the sliding time grid introduces two technical issues. First,

as the optimization adjusts interior grid times, some sketch samplessi will shift between

shooting segments. These discrete events introduce small discontinuities into the least-

squares objective function and sketch constraintscs. In practice, these discontinuities are

removed by ignoring the samples near each collision. Because the sketches are sampled

densely ignoring few samples does not disregard main aspects of the sketch. Second, the

§4.5 SKETCHING INTERFACES 57

sliding time grid may violate the total ordering in Equation 4.6. This violation is a strong in-

dication that, for the given collision sequence and collision types, the motion model cannot

express a sketched motion. For example, a physical motion model cannot express physi-

cally infeasible motion. Possible solutions are to relax the equations that model the physics

or to propose different collision configurations, either automatically in a heuristic search or

interactively by the animator.

4.5 Sketching Interfaces

Sketching interfaces are animator tools for rapid design of rigid-body animations. The

sketch procedure is intuitive, allowing the animator to express the key aspects of the de-

sired motion and to encode her intuition for constructing the solution. A sketch interface

encapsulates both the user interface, which abstracts the details of the parameter solver, and

the optimization engine, which transforms the sketch into a canonical form. The canonical

form serves as the initial approximation for the parameter estimation problem. Construct-

ing the initial approximation is the key component of the interfaces because parameter

estimation is a difficult nonlinear and nonconvex optimization problem with many locally

optimal solutions.

This section describes two of many possible interfaces and evaluates each interface with

several motion-design problems. Section 4.5.1 describes the editing interface, which relies

on MOTIONEDITOR to design each free-flight segment of the sketch. Section 4.5.2 de-

scribes the acting interface, which captures animator’s hand gestures as performed sketches

of the desired motion.

4.5.1 Editing Interface

The editing interface generalizes the MOTIONEDITOR approach to editing rigid body sim-

ulations. With MOTIONEDITOR, the animator designs theentire motion by dragging a

body, at any point in time, to a desired location. MOTIONEDITOR computes the required

simulation parameters and simulates the corresponding motion. In contrast, the editing

interface divides rigid-body motion into independent segments: the animator designs the

motion of each free-flight segment independent of the prior segments. The animator adds

58 MOTION SKETCHER

and removes free-flight segments as desired. As described in Section 4.3, the segmentation

improves the stability of the method because the simulation need only integrate over small

integration intervals and need not compute the gradients of motion through collisions. As

a result, the editing interface allows the animator to sketch complex motions quickly and

robustly.

With the editing interface, sketched trajectories may contain gaps—discontinuities in

position, orientation, or velocities—between each free-flight segment. In contrast to MO-

TIONEDITOR, the interface modifies only the simulation parameters affecting the single

free-flight segment. For example, if the animator adjusts the free-flight trajectories during

the second segment, the segment between the first and second collision, then the inter-

face computes new values for initial stateq1 only. Initial statesq0,q2, . . . ,qm−1 are not

adjusted as they are either before or after the current free-flight segment. The parameter

estimation procedure removes these gaps by enforcing the continuity constraints.

FIGURE 4.9. Snapshot of the editing interface. The animator designs the sketch by editing
each free-flight segment independently.

Sketches designed with the editing interface consist of a set of free-flight segments.

Each segment corresponds to an initial stateqi. As the animator constructs the sketch by

editing a free-flight segment, the interface adjust the initial states appropriately. In effect,

§4.5 SKETCHING INTERFACES 59

the interface provides the animator with direct intuitive control of the initial approximation.

For the editing interface, the construction of the initial approximation from the sketch

is straightforward. When the animator adds a segment, the interface creates the appropriate

initial state; when the segment is removed, the interface deletes the initial state. Once the

sketch is complete, the resulting initial states describe the initial approximation.

The die example illustrates an over-constrained motion-design problem, which MO-

TIONEDITOR alone cannot solve. The die must spell out a word, bounce in line with proper

spacing, and have the correct orientation at each impact (Figure 4.10). With the editing in-

terface, the animator sketches the motion in pieces, each free-flight segment is sketched

independently. The resulting sketch describes the desired trajectories and encodes the se-

quence of spelled letters.

The sketch has gaps at each collision because continuity between free-flight segments is

not enforced during sketch design. Figure 4.10 shows the gaps in position and orientation.

Gaps in velocities are also present but are not illustrated in the figure. The parameter

estimation procedure adjusts the initial position and velocity of the die, as well as surface

normals at impacts to reduce the gaps as much as possible. As a result, MOTIONSKETCHER

computes a physically plausible motion that achieves the desired goals, with imperceptible

gaps in position and orientation, and small gaps in linear and angular velocities at collisions.

no. of constraints no. of sim. parametersoptimization time (MIPS R10000)

36 30 182.45 seconds

FIGURE 4.10. In theleft figure, sketched trajectories of the center of mass (blue curve)
and the die corner (yellow curve) are discontinuous. This illustrates gaps in position and
orientation at each collision. Gaps in velocities also exist but are not explicitly illustrated.
In the middle figure, the same trajectories after parameter estimation are continuous. The
parameter solver removes the gaps in position and orientation. Gaps in velocities are also
reduced. The right figure displays the final motion.

60 MOTION SKETCHER

4.5.2 Acting Interface

With the acting interface, the animator performs the motion by holding and moving instru-

mented real-world objects. The resulting sensor data encodes motion trajectories for each

object. The trajectories are imprecise but sufficient to convey the essence of the motion.

The timing may be arbitrary: slower or faster than real-time. The parameter estimation

procedure transforms the sketch into a physical motion with physically correct timing.

The acting interface converts sketched trajectories into an initial approximation of the

animation. The initial approximation is defined by initial stateq0, . . . ,qm−1 at the begin-

ning of each free-flight segment. The acting interface recovers the initial states from the

sketch by solving a sequence of simplified parameter estimation problems.

The optimization transforms each free-flight segment independently. The animator

identifies free-flight segments by recording the indicesl1, . . . , lm−1 of sketch samples near

each collision. Because collisions denote the end and the beginning of a free-flight seg-

ment, the interface representsm free-flight segments withm+ 1 indices:

1 = l0 < l1 < . . . < lm−1 < lm = n.

Recalling that there aren sketch samples. Indicesl1, . . . , lm−1 mark sketch samples for all

sketch collisions. For example, samples{sl1 , . . . , sl2 − 1} discretize sketch trajectories of

the second free-flight segment, between the first and second collision.

A new optimization procedure simultaneously computes the timing of each sketch

sample within a free-flight segment, and the center-of-mass trajectories for all bodies.

The center-of-mass trajectories within each free-flight segment are computed as functions

pq(t,qi) of the appropriate initial state. The interface optimizes the least-squares fit to

sketch samples within each free-flight segment:

min
qi, tli ,... ,tli+1−1

li+1−1∑
j=li

‖pq(tj,qi)− ps(sj)‖2

subject to 0 ≤ tj < tj+1, ∀j ∈ [li, li+1 − 1],

whereps is the projection operator that extracts the center-of-mass coordinates from a

sketch sample. The optimization constraint ensures that the total order of sketch samples

§4.5 SKETCHING INTERFACES 61

is preserved: the succeeding sample must be at a later time than its predecessor.3 Note that

the functionpq(t,qi) is considerably simpler than the simulation functionS(t,qi). If the

gravitational force is aligned with a second coordinate axis, the center-of-mass trajectory

of a single 3-D rigid body in free flight is described by a quadratic function and two linear

functions:

pq(t,qi)
def
= x(qi) + v(qi)t+

 0
−1

2
gt2

0

 ,

where the projection functionsx(·) andv(·) extract the position and the linear velocity of

the center of mass.

After m optimizations, one for each free-flight segment, the interface computesm ini-

tial statesq0, . . . ,qm−1. Although these initial states define an initial approximation, the

approximation can be improved by matching the orientation of samples in the sketch. The

first of two optimization steps described in Section 4.4.2 performs this task by solving a

relaxed parameter-estimation problem:

min
u,q0,... ,qm−1

∑n
i=1

∥∥∥pi(Sti(u,q0, . . . ,qm−1)
)
− si

∥∥∥2

subject to b ≤ cs
(
u,q(t1), . . . ,q(tn)

)
≤ b.

In the first example of motion design, the animator performs an animation of a pencil

bouncing off a table and landing in a mug. This performance sketches the desired motion,

by roughly describing desired trajectories. The animator also adds an explicit position

constraint enforcing the pencil landing within the mug. The constraints are specified with

the MOTIONSKETCHER user interface.

The annotated sketch sample near the collision with the table defines the two free-flight

segments. The interface constructs the initial approximation, and the parameter estimation

procedure refines the approximation to produce a physical motion that matches the sketch.

Figure 4.11 shows two physical animations with subtle variations in style. In the first

animation, the pencil tumbles in the air after colliding, tip-first, with the table. In the

3The implementation reformulates the problem slightly to solve for inter-sample durationsdi instead of
explicit timestj . With this reformulationtj =

∑j
i di, and the linear constraints0 ≤ tj < tj+1 are simplified

with constant bound constraints0 < di.

62 MOTION SKETCHER

no. of constraints no. of sim. parametersavg. optimization time (MIPS R10000)

6 12 102.12 seconds

FIGURE 4.11. MOTIONSKETCHER converts a performed sketch (left and middle) into a
physical motion (right). The two animations capture the subtle variations of performed
sketches.

second, the pencil bounces with the eraser side and lands in the mug after only a half-

tumble.

The second motion-design problem involves a sketch with two objects, a hat and a

box that collide in mid-air. After the collision, the box should land inside the hat. Rather

than use real-world objects, the animator employs a head-mounted display and a virtual

world to view the motion of objects during the sketching performance. The motion itself is

specified by gesturing with hand-held motion sensors. The animator enforces two position

constraints: an inequality position constraint that enforces the mid-air collision and an

equality position constraint that forces the box to land within the hat.

The parameter solver computes initial positions and velocities of both objects. In ad-

dition, the solver adjusts the surface normal at the impact and the elasticity of the objects.

Figure 4.12 shows the resulting motion. In this example, the motion is physically plausible

but not physically correct, due to the apparent infeasibility of the two constraints—in order

for the box to land in the hat, the collision must cancel the opposite linear momentum of the

§4.5 SKETCHING INTERFACES 63

no. of constraints no. of sim. parametersoptimization time (MIPS R10000)

15 29 300.35 seconds

FIGURE 4.12. Anillustration of the physically plausible motion derived from a sketched
motion. The computed center-of-mass trajectories for the hat and the box are shown in gray
lines. The sketch samples are indicated with red dots.

two bodies. This is not possible without adjusting the angular momentum of the two bodies,

which would, in turn, require violating the orientations specified in the sketch. Instead, the

solver minimizes physical violations at the impact to construct a plausible motion. Note

that the mid-air collision in the solution has been automatically raised to a higher point

than was specified in the sketch. Raising the collision point has the effect of decreasing the

velocities of the two objects when they collide, making it easier to satisfy the constraints.

64

65

Chapter 5

CONCLUSION AND FUTURE WORK

Using the semi-automatic techniques described in this dissertation, an animator can rapidly

design complicated physical animations that would be difficult to create with keyframing

techniques or rigid-body simulators. MOTIONEDITOR implements an interactive editing

paradigm; instead of changing the simulation parameters, the animator can directly adjust

positions and velocities of simulated bodies. MOTIONSKETCHER implements an off-line

sketching paradigm; the animator sketches the motion and MOTIONSKETCHER generates

the physical motion that best matches the sketch.

Without help from an animator, these motion-design tools are not effective. Neither

MOTIONEDITOR nor MOTIONSKETCHER will converge to the desired motion unless the

animator identifies the appropriate smooth component1 through interaction or sketching.

Discontinuities in the simulation function are the key obstacles to unguided convergence.

Both tools would be improved with an automatic technique that searches for the appropriate

smooth component. Section 5.1 discusses possible approaches.

Once a smooth component is identified, the design tools converge efficiently because

both techniques rely on derivative information: the Jacobians of motion and constraints.

The techniques compute the Jacobians analytically for all expressions except integral ex-

pressions, which require numeric integration. Analytic differentiation is more efficient and

accurate than a finite difference method, but it prevents the current tools from designing

motions with complicated collision and contact behavior: multiple-point frictional colli-

sion, sliding and static contact. The implemented design tools assume that mathematical

models of physical behaviors are analytically differentiable. For some contacts and colli-

sions, however, differentiable models may not exist. Section 5.2 discusses techniques for

removing this limitation.

MOTIONSKETCHER is a general framework independent of the sketching interface.

This dissertation explores two possible sketching interfaces: the acting and editing inter-

1Smooth components are defined and discussed in Section 2.1.1.

66 CONCLUSION AND FUTURE WORK

faces. Section 5.3 discusses other intuitive interfaces that could make animation a more

accessible form of expression for non-professional animators.

All examples demonstrate motion design for passive and unconstrained rigid bodies.

The motion of more complicated objects with joints and hinges, or constrained rigid bod-

ies, cannot be designed with existing implementations. Although the described techniques

should generalize to constrained rigid bodies and bodies with self-propelling forces, it is

not clear whether the resulting implementations will remain practical. Section 5.4 discusses

these issues in more detail.

5.1 Automated Discrete Search

MOTIONEDITOR cannot compute the desired motion without interaction. In the editing

approach, the animator guides MOTIONEDITOR towards the motion. As described in Sec-

tion 3.5.4, this guidance is critical for convergence in the continuous and discrete control

space. When a simulation-function discontinuity forces MOTIONEDITOR away from the

desired motion, the animator must correct the problem. In the hat example, shown in Fig-

ure 3.4, MOTIONEDITOR can enforce the landing constraint because the hat remains in

free-flight throughout the adjustments. In contrast, if the animator wanted to introduce a

bounce, as in the scissors example shown in Figure 3.8, MOTIONEDITOR could not main-

tain both the hooking constraint and the transition from free-flight to bouncing motion.

Instead, the animator must introduce a bounce before hooking the scissors.

Similarly, without a good initial approximation, the MOTIONSKETCHER parameter es-

timation will not converge to a physically plausible motion. In the sketching approach,

the animator creates a sketch that serves as the initial approximation to the desired mo-

tion. Although the sketch need not describe the desired motion precisely, it must yield a

good initial approximation of the desired motion. In particular, the sketch must identify the

correct collision sequence for the desired motion.

An automatic discrete search may alleviate these problems. Continuous optimization

converges effectively once the appropriate smooth component is identified. A smooth com-

ponent corresponds to a specific type of motion: free flight, one bounce, two bounce, and

other motions. Note that two single-bounce motions correspond to the same smooth com-

ponent only if the collision occurs between identical bodies and identical polygonal primi-

§5.2 COLLISION MODELS 67

tives (i.e., between the same vertex and the same face). Finding the correct smooth compo-

nent requires searching through the discrete space to find the colliding primitives, colliding

bodies, and the number of collisions. Changing the number of collisions, colliding bodies,

or colliding primitives changes the smooth component.

A search could enumerate all the smooth components in the discrete space. Sec-

tion 4.4.1 describes how this enumeration can be accomplished within the MOTIONS-

KETCHER framework. Because the discrete space grows exponentially with the number

of bounces, the simple approach would not scale for many practical problems. Interaction

could help prune the search space. For example, the animator could specify the number of

bounces or identify the colliding bodies.

A heuristic sampling approach could be more effective for many practical problems.

For example, a randomized search based on the Markov chain Monte Carlo method is

effective for designing animations with complex interactions and many colliding bod-

ies [Chenney 00]. Monte Carlo methods randomly sample the parameter space. The se-

quence of samples asymptotically converges to the simulation parameters that yield the

desired animation. For quick convergence, the Monte Carlo approach requires a hand-

crafted proposal mechanism that generates a new sample in the sequence. For example, in

the ideal case a proposal mechanism would only generate samples that yield the desired

animations.

In current Monte Carlo methods, the animator designs a proposal mechanism that sam-

ples the simulation parameter space [Chenney 00]. A better approach would allow the

animator to design a proposal mechanism that samples the state space directly. The ani-

mator can identify the desired motion in the state space by describing the desired states of

the rigid bodies at any point in time or by identifying desired collision configuration. For

example, in the state space the animator could directly express her intent to create a motion

with only three bounces. Describing this intent by setting the simulation parameters would

be difficult.

5.2 Collision Models

The techniques described in this dissertation rely on the assumption that the mathematical

models of collision are analytically differentiable. This assumption does not always hold

68 CONCLUSION AND FUTURE WORK

for the rigid-body simulator employed by MOTIONEDITOR and MOTIONSKETCHER. Dur-

ing a resting (i.e. sustained) contact or for multiple-point collisions the applied impulses are

solutions to linear complementarity problems [Baraff 94]. In general, linear complemen-

tarity problems do not have closed-form, analytically differentiable solutions. As a result,

the current implementations of MOTIONEDITOR and MOTIONSKETCHER cannot design

motions with complex collision behaviors.

The Jacobian of an arbitrary collision model could be computed with a finite difference

approximation. As described in Section 3.2, the finite-difference technique is inaccurate

and inefficient for evaluating the integral expressions defining the Jacobian of free-flight

motion. The collision models of instantaneous impact, however, do not require numeric

integration, and the finite difference technique may yield sufficiently accurate derivatives

of the collision model.

Alternative collision models may permit analytic differentiation. Simple and efficient

models may result in better design tools because they could be easier to control. Developing

such models is challenging, however, because the models must remain physically meaning-

ful. Most research in simulation of physical processes develops sophisticated mathemat-

ical models that emphasize greater physical accuracy. If the primary concern is physical

accuracy then controllable collision models may not exist. Statistical analysis of physi-

cal processes, derived either from current state-of-the-art simulation methods or real-world

observations, may lead to simpler mathematical models that are physically plausible in-

stead of physically accurate. Ideally, a simulation framework should balance the physical

accuracy of a simulation method with its simplicity and efficiency.

5.3 Sketching Interfaces

Sketching interfaces are an appealing paradigm for specifying a desired motion. MO-

TIONSKETCHER supports the editing and acting interface but other interfaces are possible.

The acting interface described in Section 4.5.2 requires motion sensors that detect their

positions and orientations in 3-D. The animator holds the motion sensors or attaches them

to real-world objects. By moving the motion sensors, the animator acts out the desired

motion. A camera-based interface could make the acting process less intrusive and even

more natural. For example, the animator might simply record her hand gestures with a

§5.4 CONSTRAINED AND ACTIVE RIGID BODIES 69

video camera. For this interface, a tracking procedure must extract the hand motion from

the video. If this extraction can be done robustly then parameter-estimation techniques

might be able to resolve the ambiguities of fitting a 3-D physical motion to the 2-D recorded

gestures.

A drawing interface could allow the animator to sketch the desired body trajectories. A

paper and pencil drawing might be sufficient to describe a simple motion. Multiple sketches

from different viewpoints may be necessary to describe a more complicated motion; redun-

dant sketches can resolve the ambiguities of a single 2-D sketch.

5.4 Constrained and Active Rigid Bodies

The equations of motion of rigid bodies constrained by links and joints can be derived

by two different methods: a method of reduced coordinates and a method of maximal

coordinates. The reduced-coordinate method, also known as the generalized-coordinate

method, describes the state of the constrained rigid bodies with the minimal number of

coordinates. This reduced set of coordinates has the same number of parameters as the

constrained system has degrees of freedom. The maximal-coordinate method, also known

as the Lagrange-multiplier method, does not reduce the number of coordinates to match

the number of degrees of freedom. Instead, the Lagrange-multiplier method enforces the

constraints explicitly. The benefits and drawbacks of the reduced-coordinate method and

the maximal-coordinate method are documented [Baraff 96].

MOTIONEDITOR and MOTIONSKETCHER use the generalized-coordinate method to

describe and design the motion of rigid bodies, as described in Section 2.1.3. Because the

generalized state expresses only configurations that satisfy the constraints, joint and link

constraints are enforced automatically. The physical simulator employed by MOTIONED-

ITOR and MOTIONSKETCHER, however, uses the Lagrange-multiplier method to compute

the motion of constrained rigid bodies. Because the simulator enforces the constraints

numerically, numerical drift may cause small constraint violations during the simulation.

Although constraint violations are unnoticeable in an animation, they reduce the accu-

racy of the Jacobian computation described in Section 3.2, preventing MOTIONEDITOR

and MOTIONSKETCHER from converging. As a result, the current implementations of

70 CONCLUSION AND FUTURE WORK

MOTIONEDITOR and MOTIONSKETCHER cannot design the motion of rigid bodies con-

strained by joints or linkages.

The maximal-coordinate method for simulation could still be used. The drift incurred

by this method can be prevented with sophisticated techniques for solving differential-

algebraic equations [von Schwerin 99]. Alternatively, the simulator could use a reduced-

coordinate method to compute the motion of constrained rigid bodies. In this case, new

implementations of MOTIONEDITOR and MOTIONSKETCHER must efficiently compute

the Jacobians of more complicated equations of motion. Further work is required to deter-

mine which of these two approaches is more practical.

71

REFERENCES

Vladimir Igorevich Arnold. Mathematical Methods of Classical Mechanics. Springer-
Verlag, New York, second edition, 1989.(pp. 5, 8)

Uri M. Ascher, Robert M. M. Mattheij, and Robert D. Rusell.Numerical Solution of
Boundary Value Problems for Ordinary Differential Equations. Prentice-Hall, Englewood
Cliffs, New Jersey, 1988.(pp. 13, 47)

David Baraff.Dynamic Simulation of Non-Penetrating Rigid Bodies. PhD thesis, Cornell
University, March 1992.(pp. 5, 23, 33)

David Baraff. Fast Contact Force Computation for Nonpenetrating Rigid Bodies. In
Computer Graphics (Proceedings of SIGGRAPH 94), Annual Conference Series, pages
23–34. ACM SIGGRAPH, July 1994.(pp. 23, 68)

David Baraff. Linear-time dynamics using Lagrange multipliers. In Computer Graph-
ics (Proceedings of SIGGRAPH 96, Annual Conference Series, pages 137–146. ACM
SIGGRAPH, August 1996.(p. 69)

David Baraff and Andrew Witkin.Large Steps in Cloth Simulation. In Computer Graph-
ics (Proceedings of SIGGRAPH 98), Annual Conference Series, pages 43–54. ACM SIG-
GRAPH, July 1998.(p. 1)

Ronen Barzel and Alan H. Barr.A Modeling System Based On Dynamic Constraints. In
Computer Graphics (Proceedings of SIGGRAPH 88), Annual Conference Series, pages
179–188. ACM SIGGRAPH, August 1988.(pp. 16, 17)

Ronen Barzel. Physically-Based Modeling for Computer Graphics: A Structured Ap-
proach. Academic Press, San Diego, CA, 1992.(p. 5)

Ronen Barzel, John F. Hughes, and Daniel N. Wood.Plausible Motion Simulation for
Computer Graphics Animation. In Computer Animation and Simulation ’96, Proceedings
of the Eurographics Workshop, pages 184–197, Poitiers, France, September 1996.(pp. 8,
18)

Dimitri P. Bertsekas.Dynamic Programming and Optimal Control, volume I. Athena
Scientific, Belmont, Massachusetts, 1995.(pp. 14, 16)

Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, Mas-
sachusetts, 1995.(pp. 15, 30, 35, 36)

Dimitri P. Bertsekas and John N. Tsitsiklis.Neuro-Dynamic Programming. Athena Sci-
entific, Belmont, Massachusetts, 1996.(p. 16)

72

Paul J. Besl and Neil D. McKay.A Method for Registration of 3D Shapes. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 14(2):239–256, 1992.(p. 53)

Hans Georg Bock.Numerical Treatment of Inverse Problems in Chemical Reaction Ki-
netics. In K. H. Ebert, P. Deuflhard, and W. Jäger, editors,Modelling of Chemical Re-
action Systems (Proceedings of an International Workshop, Heidelberg), pages 102–125.
Springer-Verlag, September 1980.(pp. 19, 48)

Hans Georg Bock.Recent Advances in Parameter Identification Techniques for Ordinary
Differential Equations. In P. Deuflhard and E. Hairer, editors,Numerical Treatment of
Inverse Problems in Differential and Integral Equations (Proceedings of an International
Workshop, Heidelberg), pages 95–121. Birkḧauser, Boston, 1983.(pp. 19, 25, 48)

John Canny and John Reif.New Lower Bound Techniques for Robot Motion Planning
Problems. In 28th Annual Symposium on the Foundations of Computer Science, pages
49–60, Los Angeles, California, October 1987. IEEE.(pp. 2, 17)

John Canny, Bruce Donald, John Reif, and Patrick Xavier.On the Complexity of Kinody-
namic Planning. In 29th Annual Symposium on the Foundations of Computer Science,
pages 305–316, White Plains, New York, October 1988. IEEE.(pp. 2, 17)

Stephen Chenney and D. A. Forsyth.Sampling Plausible Solutions to Multi-body Con-
straint Problems. In Computer Graphics (Proceedings of SIGGRAPH 2000), Annual
Conference Series, pages 219–228. ACM SIGGRAPH, July 2000.(pp. 8, 18, 67)

Michael F. Cohen.Interactive Spacetime Control for Animation. In Computer Graph-
ics (Proceedings of SIGGRAPH 92), Annual Conference Series, pages 293–302. ACM
SIGGRAPH, July 1992.(p. 15)

Bruce Donald, Patrick Xavier, John Canny, and John Reif.Kinodynamic Motion Planning.
Journal of the ACM, 40(5):1048–1066, November 1993.(p. 17)

Nick Foster and Dimitri Metaxas.Realistic Animation of Liquids. Graphical Models and
Image Processing, 5(58):471–483, 1996.(p. 1)

Michael Garland and Paul S. Heckbert.Surface Simplification Using Quadric Error Met-
rics. In Computer Graphics (Proceedings of SIGGRAPH 97), Annual Conference Series,
pages 209–216. ACM SIGGRAPH, August 1997.(p. 34)

Philip E Gill, Walter Murray, and Margaret H. Wright.Practical Optimization. Academic
Press, London, 1989.(pp. 15, 32, 49, 55)

Philip E. Gill, Walter Murray, and Michael A. Saunders.User’s Guide for SNOPT 5.3: A
Fortran Package for Large-Scale Nonlinear Programming. Technical Report NA 97–5,
University of California, San Diego, 1997.(p. 49)

73

Michael Gleicher and Andrew Witkin.Differential Manipulation. In Graphics Interface,
pages 61–67, June 1991.(p. 21)

Michael Gleicher and Andrew Witkin.Through-the-Lens Camera Control. In Computer
Graphics (Proceedings of SIGGRAPH 92), Annual Conference Series, pages 331–340.
ACM SIGGRAPH, July 1992.(p. 21)

Michael Gleicher.Motion Editing with Spacetime Constraints. In 1997 Symposium on
Interactive 3D Graphics, pages 139–148, April 1997.(p. 15)

Michael Gleicher.Retargetting Motion to New Characters. In Computer Graphics (Pro-
ceedings of SIGGRAPH 98), Annual Conference Series, pages 33–42. ACM SIGGRAPH,
August 1998.(p. 15)

Gene H. Golub and Charles F. Van Loan.Matrix Computations. Johns Hopkins University
Press, Baltimore, Maryland, third edition, 1996.(p. 32)

Andreas Griewank and George Corliss, editors.Automatic Differentiation of Algorithms.
SIAM, Philadelphia, 1991.(p. 25)

Radek Grzeszczuk and Demetri Terzopoulos.Automated Learning of Muscle-Actuated
Locomotion Through Control Abstraction. In Computer Graphics (Proceedings of SIG-
GRAPH 95), Annual Conference Series, pages 63–70. ACM SIGGRAPH, August 1995.
(p. 17)

Mikako Harada, Andrew Witkin, and David Baraff.Interactive Physically-Based Ma-
nipulation of Discrete/Continuous Models. In Computer Graphics (Proceedings of SIG-
GRAPH 95), Annual Conference Series, pages 199–208. ACM SIGGRAPH, August
1995. (pp. 21, 22)

Jessica K. Hodgins, Wayne L. Wooten, David C. Brogan, and James F. O’Brien.Animat-
ing Human Athletics. In Computer Graphics (Proceedings of SIGGRAPH 95), Annual
Conference Series, pages 71–78. ACM SIGGRAPH, August 1995.(p. 17)

Paul M. Isaacs and Michael F. Cohen.Controlling Dynamic Simulation with Kinematic
Constraints, Behavior Functions and Iinverse Dynamics. In Computer Graphics (Proceed-
ings of SIGGRAPH 87), Annual Conference Series, pages 215–224. ACM SIGGRAPH,
July 1987.(p. 16)

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore.Reinforcement Learn-
ing: A Survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.(p. 16)

Wilfred Kaplan. Advanced Calculus. Addison-Wesley Publishing Company, Reading,
Massachusetts, 1984.(p. 26)

74

Michael Kass and Gavin Miller.Rapid, Stable Fluid Dynamics for Computer Graphics. In
Computer Graphics (Proceedings of SIGGRAPH 90), Annual Conference Series, pages
49–57. ACM SIGGRAPH, August 1990.(p. 1)

Jean-Claude Latombe.Robot Motion Planning. Kluwer Academic Publishers, Boston,
Massachusetts, 1991.(p. 17)

Steven M. LaValle and James J. Kuffner.Randomized Kinodynamic Planning. In Pro-
ceedings 1999 IEEE International Conference on Robotics and Automation, 1999.(p. 17)

Zicheng Liu, Steven J. Gortler, and Michael F. Cohen.Hierarchical Spacetime Control. In
Computer Graphics (Proceedings of SIGGRAPH 94), Annual Conference Series, pages
35–42. ACM SIGGRAPH, July 1994.(p. 15)

Brian Mirtich. Impulse-based Dynamic Simulation of Rigid Body Systems. PhD thesis,
University of California, Berkeley, December 1996.(p. 5)

Matthew Moore and Jane Wilhelms.Collision Detection and Response for Computer
Animation. In Computer Graphics (Proceedings of SIGGRAPH 88), Annual Conference
Series, pages 289–298. ACM SIGGRAPH, August 1988.(pp. 1, 9)

Rémi Munos and Andrew W. Moore.Varible resolution discretization for high-accuracy
solutions of optimal control problems. In International Joint Conference onf Artificial
Intelligence, 1999.(p. 16)

Richard M. Murray, Zexiang Li, and S. Shankar Sastry.A Mathematical Introduction to
Robotic Manipulation. CRC Press, Boca Raton, 1994.(p. 9)

James F. O’Brien and Jessica K. Hodgins.Graphical Modeling and Animation of Brittle
Fracture. In Computer Graphics (Proceedings of SIGGRAPH 99), Annual Conference
Series, pages 111–120. ACM SIGGRAPH, August 1999.(p. 1)

L. S. Pontryagin, V. G. Boltyansky, R. V. Gamkrelidze, and E. F. Mischenko.Mathemati-
cal Theory of Opimal Processes. Interscience Publishers, New York, 1962.(p. 14)

Jovan Popovíc, Steven M. Seitz, Michael Erdmann, Zoran Popović, and Andrew Witkin.
Interactive Manipulation of Rigid Body Simulations. In Computer Graphics (Proceedings
of SIGGRAPH 2000), Annual Conference Series, pages 209–218. ACM SIGGRAPH,
July 2000.(p. 22)

Zoran Popovíc and Andrew Witkin.Physically Based Motion Transformation. In Com-
puter Graphics (Proceedings of SIGGRAPH 99), Annual Conference Series, pages 11–20.
ACM SIGGRAPH, August 1999.(p. 15)

75

Marc H. Raibert and Jessica K. Hodgins.Animation of Dynamic Legged Locomotion. In
Computer Graphics (Proceedings of SIGGRAPH 91), Annual Conference Series, pages
349–358. ACM SIGGRAPH, July 1991.(p. 17)

Barbara Robertson.Medieval Magic. Computer Graphics World, April 2001.(p. 1)

Barbara Robertson.Meet Geri: The New Face of Animation. Computer Graphics World,
February 1998.(p. 1)

Barbara Robertson.Antz-piration. Computer Graphics World, October 1999.(p. 1)

Jos Stam.Stable Fluids. In Computer Graphics (Proceedings of SIGGRAPH 99), Annual
Conference Series, pages 121–128. ACM SIGGRAPH, August 1999.(p. 1)

Robert F. Stengel.Optimal Control and Estimation. Dover Books on Advanced Mathe-
matics, New York, 1994.(pp. 14, 18, 46)

Josef Stoer and Roland Bulirsch.Introduction to Numerical Analysis. Springer Verlag,
New York, second edition, 1980.(p. 13)

Keith R. Symon.Mechanics, Third Edition. Addison-Wesley Publishing Company, Read-
ing, Massachussetts, 1971.(pp. 5, 8, 26)

Diane Tang, J. Thomas Ngo, and Joe Marks.N-Body Spacetime Constraints. Journal of
Visualization and Computer Animation, 6:143–154, 1995.(p. 18)

Demetri Terzopoulos and Kurt Fleischer.Deformable Models. Visual Computer,
4(6):306–331, 1988.(p. 1)

Demetri Terzopoulos and Kurt Fleischer.Modeling Inelastic Deformation: Viscoelastic-
ity, Plasticity, Fracture. In Computer Graphics (Proceedings of SIGGRAPH 88, Annual
Conference Series, pages 269–278. ACM SIGGRAPH, August 1988.(p. 1)

Demetri Terzopoulos, John Platt, Alan Barr, David Zeltzer, Andrew Witkin, and Jim
Blinn. Physically-Based Modeling: Past, Present, and Future. Computer Graphics, 23(5),
December 1989.(p. 2)

Michiel van de Panne, Eugene Fiume, and Zvonko Vranesic.Reusable Motion Synthesis
using State-Space Controllers. In Computer Graphics (Proceedings of SIGGRAPH 90),
Annual Conference Series, pages 225–234. ACM SIGGRAPH, August 1990.(p. 17)

Michiel van de Panne and Eugene Fiume.Sensor-Actuator Networks. In Computer Graph-
ics (Proceedings of SIGGRAPH 93), Annual Conference Series, pages 335–342. ACM
SIGGRAPH, August 1993.(p. 17)

76 CONCLUSION AND FUTURE WORK

Reinhold von Schwerin.MultiBody System Simulation: Numerical Methods, Algorithms,
and Software, volume 7 of Lecture Notes in Computation Science and Engineering.
Springer-Verlag, 1999.(p. 70)

Andrew Witkin and Michael Kass.Spacetime Constraints. In Computer Graphics (Pro-
ceedings of SIGGRAPH 88), Annual Conference Series, pages 159–168. ACM SIG-
GRAPH, August 1988.(p. 15)

Andrew Witkin, Michael Gleicher, and William Welch.Interactive Dynamics. In Pro-
ceedings of the 1990 symposium on Interactive 3D graphics, pages 11–21, March 1990.
(p. 21)

