Analytical Design of Evolvable Software for
High-Assurance Computing

Carol L. Hoover

14 February 2001
CMU-CS-01-111

School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Electrical and Computer Engineering.

Thesis Committee:
Daniel P. Siewiorek, Chair
Donald E. Thomas, Jr.
Philip J. Koopman
Rick Kazman, Software Engineering I nstitute
Susan Finger

Copyright 02001 Carol L. Hoover

This research was sponsored by the Defense Advanced Research Projects Agency (DARPA)
and Rome L aboratory, Air Force Material Command, USAF, under agreement number F30602-
96-2-0240 as well as by an Intel fellowship. The views and conclusions contained herein are
those of the author and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of DARPA, Rome Laboratory, the U.S. Govern-
ment, or the Intel Corporation.

Keywords: Evolvable Software, High-Assurance Computing, Software Architecture, Software Design.

Abstract

Software is a ubiquitous feature of today’s world. The goodness of products and services is frequently de-
pendent on the goodness of the related software. Optimal software performs correctly and requires minimal
effort and cost to develop and maintain. The development of optimal software is an admirable goal but is dif-
ficult to achieve. In particular, software maintenance and evolution is costly and error-prone. The significance
of the problem is magnified for high-assurance applications that require the certainty that the software will
behave reliably despite budget constraints and product evolution. Though automated software development
is the ideal solution, design for evolution is the practical solution. For most applications, analysis of the re-
quired behavior (behavioral analysis) and translation into a blueprint for building the software (software de-
sign) are necessary. High-level design involves the organization of the required behavior into building blocks
or components. Design for evolution is the generation of a software architecture that can be changed with
minimal human effort to produce a class of similar applications. Design for evolution makes feasible the cost-
effective development of high-assurance applications.

This dissertation presents a semi-automatable research approach for designing an evolvable software ar-
chitecture. The research approach focuses on the partition of basic elements of a software solution into reus-
able components that localize the effects of change. The input to the partitioning process is a set of software
requirements along with an analysis of the required behavior and planned or feasible evolution of the product
line. The output is a partition of the required behavior into components that reduce the effort associated with
developing a software product line. The dissertation provides an analytical verification of the research ap-
proach through proof and constructive examples. Empirical results validate the effectiveness of the research
approach in comparison to human intuition, experience, or other training. The research approach is novel and
fills a gap in the systematic generation of software architectures that minimize the effort associated with prod-
uct-line evolution. The dissertation describes in detail the degree to which the research approach is automat-
able and specifies, more generally, future research needed to achieve full automation of software architecture
generation.

Acknowledgments

First, | would like to thank my advisor, Dan Siewiorek, for his guidance and support. His wisdom and
thoughtful suggestions inspired me to think more critically and to continually try to improve my research.
Most importantly, his kindness to students helps to make the doctoral process less stressful. Thank you also
to Laura Forsyth and Marian D’Amico who helped with scheduling and communications.

My thesis committee members offered sound advice. Their expertise and research helped me to better un-
derstand how my work fits into a broader scope of engineering design. For their contributions and service as
committee members, | thank Don Thomas, Phil Koopman, Rick Kazman, and Susan Finger.

On a personal note, | sincerely thank my husband Marco for his encouragement and input. He provided
useful feedback about the application of my research to software engineering practice and patiently endured
the geographical distance between us during most of my thesis years.

Lastly, | am grateful to my parents for their part in my education. They have always done what they could

to encourage and support my desire to learn.

Vi

Table of Contents

Abstract
Acknowledgments

1

11
12
1.3
14
15
16

2

21
22
23
2.4
2.5
2.6
2.7
2.8

3

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4
4.1
4.2
4.3
4.4

5

51
5.2
53
54
55
5.6
5.7

6

6.1
6.2
6.3
6.4
6.5

Introduction

Motivation for the Research
Problem Area

Problem Statement

Research Solution

Statement of Hypothesis
Organization of the Dissertation

Background on Softwar e Design and High-Assurance Computing

What is software design?

What is the role of partitioning in the design process?

What are “good” software designs?

Why is software design difficult for humans?

Examples of Software Design Decisions

What are high-assurance computing systems?

Why is software changeability important for high-assurance software systems?
Why is software design for high-assurance software systems complex?

Research in Software and System Architecture Generation and Evaluation
Changeability Via Modularity

Reuse of Design Knowledge Via Styles or Patterns

Evaluation of Candidate Software Architectures

Generation of “Good” Designs Via Search of a Design Space

Reuse of Solutions Through Automatic System Generation

Design and Composition of Software Systems from Reusable Components
Empirical Research in Software Engineering

Softwar e Design M easures

Software Product Quality and Quality Attributes
Measurement of Structural Complexity
Measurement of Software Reuse
Measurement of Software Changeability

Analytical Partition of Components

Rationale for an Analytical Partitioning Process

Determining Basic Design Elements

Approach for Partitioning Data and Operations

Mathematical Foundation for Data and Operations Approach
Approach for Optimal Partition of Control Flow Components

Approach for Heuristically Good Partition of Control Flow Components
Integration with Existing Design Approaches

Validation of the Proposed Software Design Approach

Empirical Research Issue Space

Direct Evaluation Through Assessment of Changeability

Indirect Evaluation Through Assessment of Structural Complexity
Evaluation of Design Effort

Process for Designing an Empirical Test of a Software Design Approach

Vii

©o~NO RN R

11

12
15
16
18
29
30
31

33
34
36
39
40
42
43
45

49
49
50
53
54

59
60
61
62
75
78
86
97

99
99
104
105
106
112

7 Empirical Research Studies and Results

7.1 Experimental Design Factors

7.2 Overview of the Experimental Results and Conclusions

7.3 Experiment 1: Change Impact

7.3.1 Summary Statistics for Change Impact

7.3.2 Analyses of Variance for Change I mpact

7.3.3 Andysis of Covariance for Change Impact

7.4 Experiment 1: Structural Complexity

7.4.1 Summary Statistics for Structural Complexity Measures

7.4.2 Correlation Between Structural Complexity Measures and Change I mpact
7.5 Experiment 1: Design Effort

7.5.1 Summary Statistics for Time

7.5.2 Analysis of Variance for Tota Time

7.5.3 Summary Statistics for Errors Detected by Subjects

7.5.4 Andysis of Variance for Total Number of Errors Detected by Subjects
7.5.5 Summary Statistics for Number of Errors Detected by Experimenter

7.5.6 Anadlysis of Variance for Total Number of Errors Detected by Experimenter

7.6 Experiment 2: Change Impact

7.6.1 Summary Statistics for the Change Impact with New Recoverable Virtua Memory

(RVM) Design
7.6.2 Analysis of Variance for the Change Impact with the New RVM Design

7.6.3 Summary Statistics for the Change Impact with the new Kernel-Venus Interface Design
7.6.4 Analysis of Variance for the Change Impact with the New Kernel-Venus Interface Design

7.7 Experiment 2: Design Effort

7.7.1 Summary Statistics for Time

7.7.2 Analysis of Variance for Total Time

7.7.3 Summary Statistics for Number of Errors Detected by Subjects

7.8 Final Observations and Conclusions about the Experimental Results
7.9 Anecdotal Information

8 Summary

9 Future Resear ch Directionsand Final Remarks

Bibliography

Appendices:

Appendix AGeneric Process for Component-Based Product Development193

Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix |

Appendix J
Appendix K
Appendix L
Appendix M
Appendix N
Appendix O
Appendix P

Statement of Work for the Microwave Oven Software

Change Complexity Values Across Alternative Segquences
Human Subjects Clearance Request

Call for Participation in a Research Study

Consent to Participate in a Research Study

Receipt of Compensation Form

Benchmark Design for the Microwave Oven Software

Data Collection Tables for Design Evaluation

Evaluation of Changeability for the Benchmark Design
Evaluation of Structural Complexity for the Benchmark Design
Redesign Software Practice Exercise: Project Assignment 3
Additional Information for Groups 2 & 3: Project Assignment 3
Redesign of Coda Client Features: Project Assignment 4
Additional Information for Groups 2 & 3: Project Assignment 4
Design Evauation Practice Exercise: Project Assignment 5

viii

117
117
128
128
129
135
136
138
138
140
142
143
144
146
148
150
155
156

158
159
159
160
160
160
167
173
174
176

179

181

183

195
201
207
211
213
215
217
229
231
235
237
239
241
245
249

Appendix Q
Appendix R
Appendix S
Appendix T
Appendix U
Appendix V

Appendix W

Appendix X

Evaluation of New Kernel-V enus Organization: Project Assignment 6
Change Impact for Each Expected or Feasible Change

Analysis of Variance, the F Statistic, and the Correlation Analysis
Experiment 1: Anaysis of Variance (ANOVA) for Change Impact
Experiment 1: Analysis of Covariance (ANOCOQOV) for Change Impact
Correlation Between Structural Complexity Measures and Change
Impact for Each Treatment Group

Experiment 2: Analysis of Variance (ANOVA) for Change Impact
with the New RVM Design

Experiment 2: Analysis of Variance (ANOVA) for Change Impact
with the New Kernel-Venus I nterface

255
263
279
287
297

307

311

319

Figure1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7
Figure 1.8
Figure 2.1

Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure2.13

Figure2.14
Figure 2.15
Figure 2.16
Figure2.17
Figure 2.18
Figure 2.19
Figure 2.20
Figure2.21
Figure4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13

List of Figures

Component-based software application development. 4
Decomposition of a software artifact generation box. 5
Decomposition of software architecture specification. 5
Software architecture generator. 6
Problem of software architecture generation. 7
Thesis problem. 7
General hypothesis about the effectiveness of the research solution. 9
Organization of the dissertation. 10
Transformation from requirements to design via a structured analysis

and design approach. 12
Transformation from requirements to design via an object-oriented approach. 12
Transformation from user-oriented to solution-oriented objects and classes. 13
High-level design alternatives in amotion control system. 14
Object-oriented design principles to define classes that exhibit high cohesion. 17
Object-oriented design principles to define classes that exhibit low coupling. 17
Object-oriented refinement of classes. 18
Object-oriented design process. 19
Mock-up of the user interface to a simple microwave. 20
User interactions with the simple microwave. 20
Transformation from user-oriented to solution-oriented objects and classes. 21
Refinement viainheritance. 22
The four basic functions of the microwave software organized in alayered

architectural style. 23
Refinement via decomposition of the Microwave class. 24
Further decomposition of the Drive_Electronics class. 24
Multiple objects of the same type. 25
Object interactions. 26
Design for reuse and change. 27
Design for functional change. 27
Design for concurrency. 28
Design for distribution. 29

Mathematical expression for Li and Henry's definition of class size [106].

Mathematical expression for Henderson-Sellers’ extended definition of class size [61].

Mathematical expression for Henderson-Sellers’ definition of system size [58].
Mathematical expression for the size of a change impact.

Partitioning to separate logic not affected by the same changes.

Partitioning to locate together logic affected by the same changes.
Mathematical expression for the alternative size of a change impact.
Mathematical expression for the size of a system.

Fundamental goals for the thesis research.

Research question regarding the recast of monolithic software solutions.
Research question regarding localization of change.

Process for partitioning data and operations into reusable components.
Analysis of the Manage-User-Interface functionality.

Resulting operations and data after analysis of the Schedule-Heating functionality.

Resulting operations and data after analysis of the Control-Electronics functionality.

Resulting operations and data after analysis of the Drive-Electronics functionality.
Change sets resulting from the change impact analysis.

Change sets after transitive closure on the intersection relation.

Components resulting from the reuse and change impact analysis.

Mathematical representation of steps 1 and 2.

Mathematical representation of step 3.

Xi

52
52
52
55
56
56
57
58
60
60
61
63
66
67
68
69
73
73
74
75
75

Figure5.14
Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21

Figure 5.22
Figure 5.23
Figure 5.24
Figure 5.25

Figure 5.26

Figure 5.27
Figure 5.28
Figure 5.29
Figure 5.30
Figure 5.31
Figure 5.32
Figure 5.33
Figure 5.34
Figure 5.35
Figure 5.36
Figure 5.37
Figure 5.38
Figure 5.39
Figure 5.40
Figure 5.41
Figure 5.42
Figure 5.43

Figure 5.44

Figure 5.45
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7

Figure 7.8

76
77
77
78
79

Mathematical representation of step 4.
Mathematical representation of step 5.
Mathematical representation of step 6.
Design strategies for simplifying changes to control flow.
Terminology for the research approach to partitioning control flow.
Process for generating optimally “good” control flow components.
Order of tasks in the Control Electronics of the microwave oven.
Required and alternative task sequences for the Control Electronics
of the microwave oven. 81
Change complexity metric to measure the effort to modify control flow components.
Master Control architecture for control flow components.
Trigger architecture for control flow components.
The size of the Master Controller represents the complexity of modifying
this component.
The sum of the sizes of the modified components C1 and C2 represents
the change complexity.
Partitions of the required task sequence.
Walk-throughs for partition <C><D><E><F><G><H><I|>,
Walk-throughs for partition <C><D><E,F><G><H,I>.
Inductive proof for the number of partitions of a sequence.
Definitions of an invariant subsequence and a longest invariant subsequence.
Definitions for analyzing the goodness of the invariant subsequence pattern.
Longest invariant subsequence pattern.
Three basic ways to change a sequence.
Locations for adding a subsequence U to XYZ where Y is an invariant subsequence.
Adding a subsequence U at the beginning of X or at the end of Z.
Adding a subsequence U at the end of X or at the beginning of Z.
Alternative actions when deletion of a subsequence results in an empty component.
Alteration of the invariant subsequence after deletion results in an empty component.
Alternative actions when deletion of a subsequence results in a singleton.
Alteration of the invariant subsequence after deletion results in a singleton.
Reordering that may involve a component containing an invariant subsequence.
Polynomial-time process for determining a “heuristically good” partition
of a control sequence, with application to the microwave oven
Control-Electronics feedback loop.
Heuristically good partition of the Control-Electronics control flow
for the microwave oven.
Hierarchical application of the Master Control architecture.
Research issue space for the design of empirical studies.
Detailed description of the treatment groups.
Direct and indirect evaluation of the effects of the research approach.
Ratios for measuring the evolvability of a software design.
Experimental design factors for the research studies.
Process for designing the research studies.
Types of change impact results.
Types of evaluations for the change impact.
Results of the change impact across all changes at the routine level.
Results of the change impact for individual changes at the routine level.
Results of the change impact across all changes at the component level.
Results of the change impact for individual changes at the component level.
Results of the change impact across all changes at the routine level
with comparative sizing.
Results of the change impact for individual changes at the routine level
with comparative sizing.

80
81

82
82
82

83

83
83
85
85
86
87
88
88
89
89
89
90
91
92
92
92
94

95

96
96
100
101
104
104
113
115
129
130
130
131
132
133

134

135

Xii

Figuresin Appendices:

Figure J.1
Figure S.1
Figure S.2
Figure S.3
Figure S4
Figure S5

Figure S.6

Figure S.7

Figure S.8
Figure S.9
Figure S.10
Figure S.11
Figure S.12

Figure S.13

Figure S.14

Relationship between the sizes of the parts reused with and without modification.
Comparison between the null and alternative hypotheses [83].

Genera mathematical expression for calculating variance [83,97].

Component deviations for testing Hp [83].

Mathematical expression for the grand mean [99].

Mathematical expression for the Treatment Sum of Squares which measures

the variability between the treatment group means. This variability is sometimes
called the explained variability [100].

Mathematical expression for the Error Sum of Squares which measures

the individual variation within a treatment group due to chance

or unexplained error [100].

Mathematical expression for the Total Sum of Squares which measures the variability
that results when all values are treated as a combined sample coming

from a common population [100].

Property of Sum of Squares[100].

Mathematical expression for the Treatments Mean Square [100].

Mathematical expression for the Error Mean Square [100].

Test statistic for analysis of variance [84,101].

Mathematical expressions for calculating the grand mean and harmonic mean
used by the method of unweighted means [85].

Mathematical expression for calculating the treatment sum of squares used

by the method of weighted means [85].

Mathematical expression for the product-moment correlation

or correlation analysis [86,98].

Xiii

231
279
280
280
280

281

281

281
281
282
282
282

285

285

286

Xiv

Table 3.1
Table5.1
Table 5.2
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5
Table 6.6
Table 6.7
Table 6.8
Table 6.9
Table 6.10
Table 6.11
Table7.1
Table 7.2
Table 7.3
Table 7.4
Table 7.5
Table 7.6
Table 7.7
Table 7.8
Table 7.9
Table 7.10
Table 7.11
Table 7.12
Table 7.13
Table 7.14
Table 7.15

Table7.16

Table7.17

Table7.18

Table7.19

Table 7.20

Table 7.21

Table 7.22

Table7.23
Table 7.24

List of Tables

Concerns and issues shared by each related research area with the thesis research.
Change signatures for the expected or feasible changes to the microwave oven software.
Change set of data and operations for each expected or feasible change.

Potential values for the design approach factors.

Independent variable varied across treatment groups.

Experimental |ssues - Potential values for the task factors.

Experimental |ssues - Potential values for factors related to the designer.
Experimental Issues - Potential values for the design tool factors.

Structural complexity measures for the first research study.

Activitiestimed by the subjects in the first research study.

Activities timed by the subjects in the second research study.

Types of errorsidentified by the subjectsin the first research study.

Types of errors identified by the subjects in the second research study.

Types of errors detected by the experimenter for the first research study.

Step onein the design of an empirical study.

Step two in the design of an empirical study.

Step three in the design of an empirical study.

Step four in the design of an empirical study.

Step five in the design of an empirica study.

Step six in the design of an empirical study.

Step seven in the design of an empirical study.

Characteristics of the subjects who participated in the research studies.

Step eight in the design of an empirical study.

Characteristics of the tasks for the research studies.

Step nine in the design of an empirical study.

Change impact at the routine level across all types of changes.

Change impact at the component level across all types of changes.

Change impact at the routine level with comparative sizing across all types of changes.
Correlation between subject characteristics and change impact at the routine,
component, and routine with comparative sizing levels. Use of equal size sample groups
with 18 total subjects.

Correlation between subject characteristics of the Control Group and change impact
at the routine, component, and routine with comparative sizing levels.

Use of equal size samples of 6 each.

Correlation between subject characteristics of the Rationale Group and change impact
at the routine, component, and routine with comparative sizing levels.

Use of equal size samples of 6 each.

Correlation between subject characteristics of the Rationale+M ethod Group

and change impact at the routine, component, and routine with comparative sizing levels.
Use of equal size samples of 6 each.

Structural complexity measures across the routinesin a design and the designs

in agroup.

Structural complexity measures across the components in a design and designs

in agroup.

Structural complexity measures for the system in a design and across the designs

in agroup.

Correlation between structural complexity measures and mean change impact

across all changes and al treatment groups (total of 26 designs).

Summary statistics for time (minutes) spent on design activities for each treatment group.
Experiment 1 ANOVA: Total Time, Unegual Sample Sizes,

Unweighted Means Analysis - Parameters used to calculate the F statistic.

33

70

72
101
101
102
103
103
105
107
107
109
109
112
117
119
119
120
120
120
122
124
124
125
126
130
132
134

137

137

137

138

139

139

139

140
143

144

Table7.25

Table 7.26

Table 7.27

Table 7.28

Table 7.29

Table 7.30

Table7.31

Table 7.32

Table 7.33

Table 7.34

Table 7.35

Table 7.36

Table7.37

Table 7.38

Table 7.39

Table 7.40

Table7.41

Table 7.42

Table7.43

Table 7.44

Table 7.45

Table 7.46

Table 7.47

Table 7.48

Experiment 1 ANOVA: Total Time, Unequal Sample Sizes,

Unwelghted Means Analysis -Calculations for determining the F statistic.
Experiment 1 ANOVA: Total Time, Unegqual Sample Sizes,

Unweighted Means Analysis -Testing the Hg hypothesis.

Experiment 1 ANOVA: Total Time, Unequal Sample Sizes,

Weighted Means Analysis -Parameters used to calculate the F statistic.
Experiment 1 ANOVA: Total Time, Unequal Sample Sizes,

Weighted Means Analysis -Cal culations for determining the F statistic.
Experiment 1 ANOVA: Total Time, Unequal Sample Sizes,

Weighted Means Analysis - Testing the Hg hypothesis.

Summary statistics for number and types of errors detected by each treatment group.

Experiment 1 ANOVA: Total Number of Errors Detected by Subjects,
Unegual Sample Sizes, Unweighted Means Analysis -

Parameters used to calculate the F statistic.

Experiment 1 ANOVA: Total Number of Errors Detected by Subjects,
Unegual Sample Sizes, Unweighted Means Analysis -

Calculations for determining the F statistic.

Experiment 1 ANOVA: Total Number of Errors Detected by Subjects,
Unequal Sample Sizes, Unweighted Means Analysis -Testing the Hy hypothesis.
Experiment 1 ANOVA: Total Number of Errors Detected by Subjects,
Unegual Sample Sizes, Weighted Means Analysis -

Parameters used to calculate the F statistic.

Experiment 1 ANOVA: Total Number of Errors Detected by Subjects,
Unegual Sample Sizes, Weighted Means Analysis -

Calculations for determining the F statistic.

Experiment 1 ANOVA: Total Number of Errors Detected by Subjects,
Unequal Sample Sizes, Weighted Means Analysis - Testing the Hg hypothesis.
Summary statistics for number and types of errors detected by the experimenter.
Experiment 1 ANOVA: Total Number of Errors Detected by Experimenter,
Unequal Sample Sizes, Unweighted Means Analysis -

Parameters used to calculate the F statistic.

Experiment 1 ANOVA: Total Number of Errors Detected by Experimenter,
Unequal Sample Sizes, Unweighted Means Analysis -

Calculations for determining the F statistic.

Experiment 1 ANOVA: Total Number of Errors Detected by Experimenter,

Unequal Sample Sizes, Unweighted Means Analysis - Testing the Hg hypothesis.

Experiment 1 ANOVA: Total Number of Errors Detected by Experimenter,
Unegual Sample Sizes, Weighted Means Analysis -

Parameters used to calculate the F statistic.

Experiment 1 ANOVA: Total Number of Errors Detected by Experimenter,
Unegual Sample Sizes, Weighted Means Analysis -

Calculations for determining the F statistic.

Experiment 1 ANOVA: Total Number of Errors Detected by Experimenter,
Unequal Sample Sizes, Weighted Means Analysis - Testing the Hg hypothesis.
Summary statistics for the size of the impacted sol ution elements

for the new RVM design across all types of expected change.

Summary statistics for the size of the impacted sol ution elements

for the new Kernel-Venus Interface Design across all types of expected change.
Summary statistics for time (minutes) spent on the redesign of RVM

for each treatment group.

Summary statistics for time (minutes) spent on the redesign

of the Kernel-Venus Interface for each treatment group.

Summary statistics for time (minutes) spent on the evaluation

of the new RVM design for each treatment group.

144

145

145

145

145

146

148

149

149

149

149

150

150

155

155

155

155

156

156

158

159

161

162

164

Table7.49

Table 7.50

Table7.51

Table 7.52

Table 7.53

Table7.54

Table 7.55

Table 7.56

Table 7.57

Table 7.58

Table 7.59

Table 7.60

Table 7.61

Table 7.62

Table 7.63

Table7.64

Table 7.65

Table 7.66

Table 7.67

Table 7.68

Table 7.69

Table7.70

Summary statistics for time (minutes) spent on the evaluation

of the new Kernel-Venus design for each treatment group.

Experiment 2, Redesign of RVM ANOVA, Total Time, Unequal Size Samples,
Unweighted Means Analysis - Parameters used to calculate the F statistic.
Experiment 2, Redesign of RVM ANOVA, Total Time, Unequal Size Samples,
Unweighted Means Analysis - Calculations for determining the F statistic.
Experiment 2, Redesign of RVM ANOVA, Total Time, Unequal Size Samples,
Unweighted Means Analysis - Testing the Hg hypothesis.

Experiment 2, Redesign of RVM ANOVA, Total Time, Unequal Size Samples,
Weighted Means Analysis - Parameters used to calculate the F statistic.
Experiment 2, Redesign of RVM ANOVA, Total Time, Unequal Size Samples,
Weighted Means Anaysis - Calculations for determining the F statistic.
Experiment 2, Redesign of RVM ANOVA, Total Time, Unequal Size Samples,
Weighted Means Analysis - Testing the Hg hypothesis.

Experiment 2, Redesign of Kernel-Venus Interface ANOVA, Total Time,
Unegual Size Samples, Unweighted Means Anaysis -

Parameters used to calculate the F statistic.

Experiment 2, Redesign of Kernel-Venus Interface ANOVA, Total Time,
Unegual Size Samples, Unweighted Means Anaysis -

Calculations for determining the F statistic.

Experiment 2, Redesign of Kernel-Venus Interface ANOVA, Total Time,
Unequal Size Samples, Unweighted Means Analysis - Testing the Hg hypothesis.
Experiment 2, Redesign of Kernel-Venus Interface ANOVA, Total Time,
Unegual Size Samples, Weighted Means Analysis -

Parameters used to calculate the F statistic.

Experiment 2, Redesign of Kernel-Venus Interface ANOVA, Total Time,
Unegual Size Samples, Weighted Means Analysis -

Calculations for determining the F statistic.

Experiment 2, Redesign of Kernel-Venus Interface ANOVA, Total Time,
Unequal Size Samples, Weighted Means Analysis - Testing the Hg hypothesis.
Experiment 2, Evaluation of New RVM Design ANOVA, Total Time,

Unegual Size Samples, Unweighted Means Analysis -

Parameters used to calculate the F statistic.

Experiment 2, Evaluation of New RVM Design ANOVA, Total Time,

Unegual Size Samples, Unweighted Means Analysis -

Calculations for determining the F statistic.

Experiment 2, Evaluation of New RVM Design ANOVA, Total Time,

Unequd Size Samples, Unweighted Means Analysis - Testing the Hg hypothesis.
Experiment 2, Evaluation of New RVM Design ANOVA, Total Time,

Unegual Size Samples, Weighted Means Analysis -

Parameters used to cal culate the F statistic.

Experiment 2, Evaluation of New RVM Design ANOVA, Total Time,

Unegual Size Samples, Weighted Means Analysis -

Calculations for determining the F statistic.

Experiment 2, Evaluation of New RVM Design ANOVA, Total Time,

Unequal Size Samples, Weighted Means Analysis - Testing the Hg hypothesis.

Experiment 2, Evaluation of New Kernel-Venus Interface Design ANOVA, Total Time,

Unequal Size Samples, Unweighted Means Analysis -
Parameters used to calculate the F statistic.

Experiment 2, Evaluation of New Kernel-Venus Interface Design ANOVA, Total Time,

Unequal Size Samples, Unweighted Means Analysis -
Calculations for determining the F statistic.

Experiment 2, Evaluation of New Kernel-Venus Interface Design ANOVA, Total Time,

Unequal Size Samples, Unweighted Means Analysis - Testing the Hg hypothesis.

XVii

165

167

167

167

168

168

168

168

169

169

169

169

170

170

170

170

171

171

171

171

172

172

Table7.71

Table 7.72

Table7.73
Table7.74
Table7.75
Table7.76
Table7.77
Table7.78

Table 7.79
Table 7.80

Experiment 2, Evaluation of New Kernel-Venus Interface Design ANOVA, Total Time,

Unequal Size Samples, Weighted Means Analysis -
Parameters used to calculate the F statistic.

Experiment 2, Evaluation of New Kernel-Venus Interface Design ANOVA, Total Time,

Unequal Size Samples, Weighted Means Analysis -
Calculations for determining the F statistic.

Experiment 2, Evaluation of New Kernel-Venus Interface Design ANOVA, Total Time,

Unequal Size Samples, Weighted Means Analysis - Testing the Hg hypothesis.
Summary statistics for the total number of errors detected by the subjects

in the redesign of RVM.

Summary statistics for the total number of errors detected by the subjects

in the redesign of the Kernel-Venus Interface.

Summary statistics for the total number of errors detected by the subjects

in the evaluation of the new RVM design.

Summary statistics for the total number of errors detected by the subjects

in the evaluation of the new Kernel-Venus Interface design.

Structural complexity measures with moderate to strong correlation to change impact.

Attrition in the first experiment.
Attrition in the second experiment.

Tablesin Appendices:

Table B.1
Table B.2
Tablel.1
Tablel.2
Tablel.3
Table .4
Table 1.5
Table J.1
Table J.2
TableK.1
TableK.2
TableK.3
Table P.1
Table R.1
Table R.2
Table R.3
Table R.4
Table R.5
Table R.6
Table R.7
Table R.8
Table R.9
Table R.10
Table R.11
Table R.12
Table R.13
Table R.14
Table R.15
Table R.16
Table R.17
Table R.18
Table R.19
Table R.20

Analysis of the requirements for each basic function of the microwave oven software.

Additional requirements for product evolution.

Change analysis features at the routine level.

Change analysis features at the component level.

Structural complexity features for routines.

Structural complexity features for components.

Structural complexity features for systems.

Evaluation of change impact on routines (methods) of the benchmark design.
Evaluation of change impact on components (classes) of the benchmark design.
Evaluation of structural complexity features at the routine level.

Evaluation of structural complexity features at the component level.
Evaluation of structural complexity features at the system level.

Impact analysis for change type “a.”

Change signatures for the expected or feasible changes to the microwave oven software. 263

Change impact at the routine level for change HBSQ.
Change impact at the routine level for change DFORM.
Change impact at the routine level for change RFORM.
Change impact at the routine level for change CPSRC.
Change impact at the routine level for change FDBL.
Change impact at the routine level for change IMSWT.
Change impact at the routine level for change HLWS.
Change impact at the routine level for change CHD.
Change impact at the routine level for change PSRC.
Change impact at the routine level for change PSNSR.
Change impact at the routine level for change DSNSR.
Change impact at the routine level for change TIMER.
Change impact at the routine level for change ADO.
Change impact at the routine level for change EDA.
Change impact at the component level for change HBSQ.
Change impact at the component level for change DFORM.
Change impact at the component level for change RFORM.
Change impact at the component level for change CPSRC.
Change impact at the component level for change FDBL.

Xviii

172

172

173

173

173

174

174
176
177
177

196
199
229
229
229
229
230
231
233
235
236
236

253

263
264
264
264
265
265
265
266
266
266
267
267
267
268
268
268
269
269
269

Table R.21
Table R.22
Table R.23
Table R.24
Table R.25
Table R.26
Table R.27
Table R.28
Table R.29
Table R.30
Table R.31
Table R.32
Table R.33
Table R.34
Table R.35
Table R.36
Table R.37
Table R.38
Table R.39
Table R.40
Table R.41
Table R.42
Table R.43
Table S.1

Table S.2

Table S.3

Table T.1

Table T.2

TableT.3
Table T.4

Table T.5

Table T.6

Table T.7

TableT.8

TableT.9

Table T.10

TableT.11

Table T.12

TableT.13

Table T.14

Change impact at the component level for change IMSWT.
Change impact at the component level for change HLWS.
Change impact at the component level for change CHD.
Change impact at the component level for change PSRC.
Change impact at the component level for change PSNSR.
Change impact at the component level for change DSNSR.
Change impact at the component level for change TIMER.
Change impact at the component level for change ADO.
Change impact at the component level for change EDA.

Change impact at the routine level with comparative sizing for change HBSQ.
Change impact at the routine level with comparative sizing for change DFORM.
Change impact at the routine level with comparative sizing for change RFORM.
Change impact at the routine level with comparative sizing for change CPSRC.
Change impact at the routine level with comparative sizing for change FDBL.
Change impact at the routine level with comparative sizing for change IMSWT.
Change impact at the routine level with comparative sizing for change HLWS.
Change impact at the routine level with comparative sizing for change CHD.
Change impact at the routine level with comparative sizing for change PSRC.
Change impact at the routine level with comparative sizing for change PSNSR.
Change impact at the routine level with comparative sizing for change DSNSR.
Change impact at the routine level with comparative sizing for change TIMER.
Change impact at the routine level with comparative sizing for change ADO.
Change impact at the routine level with comparative sizing for change EDA.

Parameters used to ca culate the F statistic.

Calculations for determining the F statistic.

Testing the Hp Hypothesis.

Experiment 1 ANOVA: Routine Level, Equal Size Samples -
Parameters used to calculate the F statistic.

Experiment 1 ANOVA: Routine Level, Equal Size Samples -
Calculations for determining the F statistic.

Experiment 1 ANOVA: Routine Level, Equal Size Samples - Testing the Hg hypothesis.

Experiment 1 ANOVA: Routine Level, Unequal Size Samples,
Unweighted Means Analysis - Parameters used to calculate the F statistic.
Experiment 1 ANOVA: Routine Level, Unequal Size Samples,

Unweighted Means Analysis - Calculations for determining the F statistic.

Experiment 1 ANOVA: Routine Level, Unequal Size Samples,
Unweighted Means Analysis -Testing the Hg hypothesis.

Experiment 1 ANOVA: Routine Level, Unequal Size Samples,
Weighted Means Analysis - Parameters used to calculate the F statistic.
Experiment 1 ANOVA: Routine Level, Unequal Size Samples,
Weighted Means Analysis -Cal culations for determining the F statistic.
Experiment 1 ANOVA: Routine Level, Unequal Size Samples,
Weighted Means Analysis - Testing the Hg hypothesis.

Experiment 1 ANOVA: Component Level, Equal Size Samples -
Parameters used to calculate the F statistic.

Experiment 1 ANOVA: Component Level, Equal Size Samples -
Calculations for determining the F statistic.

Experiment 1 ANOVA: Component Level, Equal Size Samples -
Testing the Hg hypothesis.

Experiment 1 ANOVA: Component Level, Unequal Size Samples,
Unweighted Means Analysis - Parameters used to calculate the F statistic.
Experiment 1 ANOVA: Component Level, Unequal Size Samples,

Unweighted Means Analysis - Calculations for determining the F statistic.

XiX

270
270
270
271
271
271
272
272
272
273
273
273
274
274
274
275
275
275
276
276
276
277
277
283
283
283

287

287
287

288

288

288

289

289

289

290

290

290

291

291

Table T.15 Experiment 1 ANOVA: Component Level, Unequal Size Samples,

Unweighted Means Analysis - Testing the Hg hypothesis. 291
Table T.16 Experiment 1 ANOVA: Component Level, Unequal Size Samples,

Weighted Means Analysis - Parameters used to calculate the F statistic. 292
Table T.17 Experiment 1 ANOVA: Component Level, Unequal Size Samples,

Weighted Means Analysis - Calculations for determining the F statistic. 292
Table T.18 Experiment 1 ANOVA: Component Level, Unequal Size Samples,

Weighted Means Analysis - Testing the Hg hypothesis. 292
Table T.19 Experiment 1 ANOVA: Routine Level with Comparative Sizing, Equal Size Samples -

Parameters used to calculate the F statistic. 293
Table T.20 Experiment 1 ANOVA: Routine Level with Comparative Sizing, Equal Size Samples-

Calculations for determining the F statistic. 293
Table T.21 Experiment 1 ANOVA: Routine Level with Comparative Sizing, Equal Size Samples-

Testing the Hg hypothesis. 293
Table T.22 Experiment 1 ANOVA: Routine Level with Comparative Sizing, Unequal Size Samples,

Unweighted Means Analysis - Parameters used to calculate the F statistic. 294
Table T.23 Experiment 1 ANOVA: Routine Level with Comparative Sizing, Unequal Size Samples,

Unweighted Means Analysis - Calculations for determining the F statistic. 294
Table T.24 Experiment 1 ANOVA: Routine Level with Comparative Sizing, Unequal Size Samples,

Unweighted Means Analysis - Testing the Hg hypothesis. 294
Table T.25 Experiment 1 ANOVA: Routine Level with Comparative Sizing, Unequal Size Samples,

Weighted Means Analysis - Parameters used to calculate the F statistic. 295
Table T.26 Experiment 1 ANOVA: Routine Level with Comparative Sizing, Unequal Size Samples,

Weighted Means Anaysis - Calculations for determining the F statistic. 295
Table T.27 Experiment 1 ANOVA: Routine Level with Comparative Sizing, Unequal Size Samples,

Weighted Means Analysis - Testing the Hg hypothesis. 295
TableU.1 Experiment 1 ANOCOV with Time: Routine Level, Equal Size Samples -

Parameters used to calculate the F statistic. 297
TableU.2 Experiment 1 ANOCOV with Time: Routine Level, Equal Size Samples -

Calculations for determining the F statistic. 297
TableU.3 Experiment 1 ANOCOV with Time: Routine Level, Equa Size Samples -

Testing the Hg hypothesis. 297
TableU.4 Experiment 1 ANOCOV with Time: Component Level, Equal Size Samples -

Parameters used to calculate the F statistic. 298
TableU.5 Experiment 1 ANOCOV with Time: Component Level, Equal Size Samples -

Calculations for determining the F statistic. 298
TableU.6 Experiment 1 ANOCOV with Time: Component Level, Equal Size Samples -

Testing the Hg hypothesis. 298
Table U.7 Experiment 1 ANOCOV with Time: Routine Level with Comparative Sizing,

Equal Size Samples- Parameters used to calculate the F statistic. 299
Table U.8 Experiment 1 ANOCOV with Time: Routine Level with Comparative Sizing,

Equal Size Samples - Calculations for determining the F statistic. 299
TableU.9 Experiment 1 ANOCOV with Time: Routine Level with Comparative Sizing,

Equal Size Samples - Testing the Hy hypothesis. 299
Table U.10 Experiment 1 ANOCOV with Largest Program Written: Routine Level,

Equal Size Samples- Parameters used to calculate the F statistic. 300
Table U.11 Experiment 1 ANOCOV with Largest Program Written: Routine Level,

Equal Size Samples- Calculations for determining the F statistic. 300
Table U.12 Experiment 1 ANOCOV with Largest Program Written: Routine Level,

Equal Size Samples - Testing the Hy hypothesis. 300
Table U.13 Experiment 1 ANOCOV with Largest Program Written: Component Level,

Equal Size Samples- Parameters used to calculate the F statistic. 301
Table U.14 Experiment 1 ANOCOV with Largest Program Written: Component Level,

Equal Size Samples - Calculations for determining the F statistic. 301

Table U.15

Table U.16

Table U.17

Table U.18

Table U.19

Table U.20

Table U.21

Table U.22

Table U.23

Table U.24

Table U.25

Table U.26

Table U.27

TableV.1

TableV.2

TableV.3

TableW.1

Table W.2

Table W.3

Table W.4

Table W.5

Table W.6

Table W.7

Table W.8

Table W.9

Experiment 1 ANOCOV with Largest Program Written: Component Level,
Equal Size Samples Testing the Hy hypothesis.
Experiment 1 ANOCOV with Largest Program Written: Routine Level with

Comparative Sizing, Equal Size Samples - Parameters used to calculate the F statistic.

Experiment 1 ANOCOV with Largest Program Written: Routine Level with

Comparative Sizing, Equa Size Samples - Calculations for determining the F statistic.

Experiment 1 ANOCOV with Largest Program Written: Routine Level with
Comparative Sizing, Equal Size Samples - Testing the Hg hypothesis.

Experiment 1 ANOCOV with Number of Programming Courses: Routine Level,
Equal Size Samples - Parameters used to calculate the F statistic.

Experiment 1 ANOCOV with Number of Programming Courses: Routine Level,
Equal Size Samples - Calculationsfor determining the F statistic.

Experiment 1 ANOCOV with Number of Programming Courses: Routine Level,
Equal Size Samples - Testing the Hy hypothesis.

Experiment 1 ANOCOV with Number of Programming Courses: Component Level,
Equal Size Samples - Parameters used to calculate the F statistic.

Experiment 1 ANOCOV with Number of Programming Courses: Component Level,
Equal Size Samples - Calculations for determining the F statistic.

Experiment 1 ANOCOV with Number of Programming Courses: Component Level,
Equal Size Samples- Testing the Hy hypothesis.

Experiment 1 ANOCOV with Number of Programming Courses: Routine Level with

Comparative Sizing, Equal Size Samples - Parameters used to calculate the F statistic.

Experiment 1 ANOCOV with Number of Programming Courses: Routine Level with

Comparative Sizing, Equa Size Samples - Calculations for determining the F statistic.

Experiment 1 ANOCOV with Number of Programming Courses: Routine Level with
Comparative Sizing, Equal Size Samples - Testing the Hg hypothesis.
Correlation between structural complexity measures and mean change impact
across all changes and within the Control Group (6 designs).

Correlation between structural complexity measures and mean change impact
across al changes and within the Rationale Group (12 designs).

Correlation between structural complexity measures and mean change impact
across all changes and within the Rationa e+Method group (8 designs).
Experiment 2 RVM ANOVA: Impacted Data, Unequal Size Samples,
Unweighted Means Analysis - Parameters used to calculate the F statistic.
Experiment 2 RVM ANOV A: Impacted Data, Unequal Size Samples,
Unweighted Means Analysis - Calculations for determining the F statistic.
Experiment 2 RVM ANOV A: Impacted Data, Unequal Size Samples,
Unweighted Means Analysis - Testing the Hg hypothesis.

Experiment 2 RVM ANOVA: Impacted Data, Unequal Size Samples,
Weighted Means Analysis - Parameters used to calculate the F statistic.
Experiment 2 RVM ANOV A: Impacted Data, Unequal Size Samples,
Weighted Means Anaysis Calculations for determining the F statistic.
Experiment 2 RVM ANOV A: Impacted Data, Unequal Size Samples,
Weighted Means Analysis - Testing the Hg hypothesis.

Experiment 2 RVM ANOV A: Impacted Methods, Unequal Size Samples,
Unweighted Means Analysis - Parameters used to calculate the F statistic.
Experiment 2 RVM ANOV A: Impacted Methods, Unequal Size Samples,
Unweighted Means Analysis - Calculations for determining the F statistic.
Experiment 2 RVM ANOV A: Impacted Methods, Unequal Size Samples,
Unweighted Means Analysis - Testing the Hg hypothesis.

Table W.10 Experiment 2 RVM ANOV A: Impacted Methods, Unequal Size Samples,

Weighted Means Analysis - Parameters used to calculate the F statistic.

Table W.11 Experiment 2 RVM ANOV A: Impacted Methods, Unequal Size Samples,

Weighted Means Analysis - Calculations for determining the F statistic.

301

302

302

302

303

303

303

304

304

304

295

305

305

307

308

309

311

311

311

312

312

312

313

313

313

314

314

Table W.12 Experiment 2 RVM ANOV A: Impacted Methods, Unequal Size Samples,

Weighted Means Analysis - Testing the Hg hypothesis. 314
Table W.13 Experiment 2 RVM ANOV A: Impacted Classes, Unequal Size Samples,

Unweighted Means Analysis - Parameters used to calculate the F statistic. 315
Table W.14 Experiment 2 RVM ANOV A: Impacted Classes, Unequal Size Samples,

Unweighted Means Analysis - Calculations for determining the F statistic. 315
Table W.15 Experiment 2 RVM ANOV A: Impacted Classes, Unequal Size Samples,

Unweighted Means Analysis - Testing the Hg hypothesis. 315
Table W.16 Experiment 2 RVM ANOV A: Impacted Classes, Unequal Size Samples,

Weighted Means Analysis - Parameters used to calculate the F statistic. 316
Table W.17 Experiment 2 RVM ANOV A: Impacted Classes, Unequal Size Samples,

Weighted Means Analysis - Calculations for determining the F statistic. 316
Table W.18 Experiment 2 RVM ANOV A: Impacted Classes, Unequal Size Samples,

Weighted Means Analysis - Testing the Hg hypothesis. 316
Table W.19 Experiment 2 RVM ANOVA: Impacted Files, Unequal Size Samples,

Unweighted Means Analysis - Parameters used to calculate the F statistic. 317
Table W.20 Experiment 2 RVM ANOV A: Impacted Files, Unequal Size Samples,

Unweighted Means Analysis - Cal culations for determining the F statistic. 317
Table W.21 Experiment 2 RVM ANOV A: Impacted Files, Unequal Size Samples,

Unweighted Means Analysis - Testing the Hg hypothesis. 317
Table W.22 Experiment 2 RVM ANOV A: Impacted Files, Unequal Size Samples,

Weighted Means Analysis - Parameters used to calculate the F statistic. 318
Table W.23 Experiment 2 RVM ANOV A: Impacted Files, Unequal Size Samples,

Weighted Means Analysis - Calculations for determining the F statistic. 318
Table W.24 Experiment 2 RVM ANOV A: Impacted Files, Unequal Size Samples,

Weighted Means Analysis - Testing the Hg hypothesis. 318
Table X.1 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Data, Unequal Sized Samples,

Unweighted Means Analysis - Parameters used to calculate the F statistic. 319
Table X.2 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Data, Unequal Sized Samples,

Unweighted Means Analysis - Calculations for determining the F statistic. 319
Table X.3 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Data, Unequal Sized Samples,

Unweighted Means Analysis - Testing the Hg hypothesis. 319
Table X.4 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Data, Unequal Sized Samples,

Weighted Means Analysis - Parameters used to calculate the F statistic. 320
Table X.5 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Data, Unequal Sized Samples,

Weighted Means Anadysis - Calculations for determining the F statistic. 320
Table X.6 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Data, Unequal Sized Samples,

Weighted Means Analysis - Testing the Hg hypothesis. 320
Table X.7 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Methods, Unequal Sized Samples,

Unweighted Means Analysis - Parameters used to calculate the F statistic. 321
Table X.8 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Methods, Unequal Sized Samples,

Unweighted Means Analysis -Calculations for determining the F statistic. 321
Table X.9 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Methods, Unequal Sized Samples,

Unweighted Means Analysis -Testing the Hg hypothesis. 321
Table X.10 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Methods, Unequal Sized Samples,

Weighted Means Analysis - Parameters used to calculate the F statistic. 322
Table X.11 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Methods, Unequal Sized Samples,

Weighted Means Analysis - Calculations for determining the F statistic. 322
Table X.12 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Methods, Unequal Sized Samples,

Weighted Means Analysis - Testing the Hg hypothesis. 322
Table X.13 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Classes, Unequal Sized Samples,

Unweighted Means Analysis - Parameters used to calculate the F statistic. 323
Table X.14 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Classes, Unequal Sized Samples,

Unweighted Means Analysis - Calculations for determining the F statistic. 323

XXii

Table X.15

Table X.16

Table X.17

Table X.18

Table X.19

Table X.20

Table X.21

Table X.22

Table X.23

Table X.24

Experiment 2 Kernel-Venus I nterface ANOVA: Impacted Classes, Unequa Sized Samples,
Unweighted Means Analysis - Testing the Hg hypothesis. 323
Experiment 2 Kernel-Venus Interface ANOVA: Impacted Classes, Unequal Sized Samples,
Weighted Means Analysis - Parameters used to calculate the F statistic. 324
Experiment 2 Kernel-Venus I nterface ANOVA: Impacted Classes, Unequal Sized Samples,
Weighted Means Anadysis - Calculations for determining the F statistic. 324
Experiment 2 Kernel-Venus I nterface ANOVA: Impacted Classes, Unequa Sized Samples,
Weighted Means Analysis - Testing the Hg hypothesis. 324
Experiment 2 Kernel-Venus Interface ANOVA: Impacted Files, Unequal Sized Samples,
Unweighted Means Analysis - Parameters used to calculate the F statistic. 325
Experiment 2 Kernel-Venus Interface ANOVA: Impacted Files, Unequal Sized Samples,
Unweighted Means Analysis -Calculations for determining the F statistic. 325
Experiment 2 Kernel-Venus Interface ANOVA: Impacted Files, Unequal Sized Samples,
Unweighted Means Analysis -Testing the Hg hypothesis. 325
Experiment 2 Kernel-Venus Interface ANOVA: Impacted Files, Unequal Sized Samples,
Weighted Means Analysis -Parameters used to calculate the F statistic. 326
Experiment 2 Kernel-Venus Interface ANOVA: Impacted Files, Unequal Sized Samples,
Weighted Means Analysis -Cal culations for determining the F statistic. 326
Experiment 2 Kernel-Venus Interface ANOVA: Impacted Files, Unequal Sized Samples,
Weighted Means Analysis - Testing the Hg hypothesis. 326

Xxiii

Dedicated to my family.

XXiV

1 Introduction

A fundamental problem of software development is uncertainty. There is no guarantee that the resulting
softwarewill be optimal or the development costs within budget. Optimally, the software performs correctly
and satisfies design objectives, such as maintainability and reusability, as well as economic constraints. Un-
certainty introduced by change is not acceptable for high-assurance computing which requires a high degree
of confidence that the software will perform correctly. The current approach to reducing uncertainty involves
software testing and repair, but extensive error detection and correction is time-consuming and expensive.

Designing software for change can reduce the error, time, cost, and ultimately the uncertainty associated
with maintenance. Popular design approaches such as object-oriented and structured design help to promote
software maintainability and reuse but require the human to determine how to precisely apply them to a par-
ticular problem and solution. Existing design tools assist the designer in documenting a particular design, in
checking interfaces between parts of the solution, and in some cases verifying a formal model of the system
behavior. For some well-understood and functionally stable domains, they may automatically generate code
from requirements. Current design approaches and tools do not for any arbitrary set of requirements system-
atically or automatically determine a functionally appropriate solution or organize this solution into a soft-
ware design that minimizes the complexity of change.

The thesis addresses the general problem of how to consistently design software solutions that are evolv-
ableaswell asreusable. In the context of this dissertation, evolvable meansthat the software can be statically
(off-line) changed with minimal effort and error to satisfy changing requirements. Likewise, reusability isthe
property of being useful in more than one different software solution or application. Software components
that are reusable have the potential to make it easier to develop systemsrelated by common functionality. Re-
usability can enhance evolvability and is therefore a complementary design objective. Evolvability iscritical
for high-assurance computing which requires a high degree of confidence that static changesto software pre-
serve functional correctness.

This chapter provides an overview of the thesis research and contains the following sections.

» Section 1.1 discusses the motivation for the research.
» Section 1.2 is a discussion of the problem area.
» Section 1.3 contains the detailed problem statement.

e Section 1.4 is an overview of the research solution.
e Section 1.5 presents the general hypothesis about the effectiveness of the research solution.
» Section 1.6 overviews the organization of the dissertation.

11 Motivation for the Resear ch

Software is a ubiquitous feature of today’s world. Products and services are as dependent upon software
as upon metals, plastics, electricity, light, and human effort. The difference between “good” and “bad” soft-
ware can make the difference between “good” and “bad” products and services. Incomplete, defective, or sub-
optimal software can result in unreliable, useless, or even dangerous systems [105]. Similarly, the difference
between “good” and “bad” software development practices can determine whether or not the resulting prod-
uct or service meets its economic goals [31]. There is a need to increase the probability that software projects
follow a process that leads to the development of good products or services within economic constraints.

Researchers and practitioners in the areas of computer engineering and science, software engineering,
management of information sciences, and other related disciplines, can identify the characteristics of good
software products and processes. For instance, there are algorithms for optimizing CPU performance and
memory usage as well as theories concerning the organization of data [42,91], and practitioners as well as
researchers have documented lessons learned from project management [31,71]. However, software develop-
ers still find it difficult to consistently apply the best ideas in these fields. Unfortunately, people continue to
develop or use suboptimal algorithms, to develop haphazard information models, and to mismanage projects.
The state of software engineering practice is particularly critical for the development of software deployed in
applications such as air traffic control, avionics, and nuclear power plant control [32,105]. These applications
require software that is highly reliable and safe as well as useful.

There are currently four basic approaches to address the lack of consistency in the application of proven
or at least promising ideas for software development.

1. Education and Training - Software engineering education has a 30-year history in which academe

has struggled to fulfill industry needs via single courses, Master’s curricula, and now undergrad-

uate degree programs [150]. Some programs have incorporated specialization in particular tech-
nology or application domains [64].

2. Process Development and Institutionalization - Organizations formalize their development and
management processes to make the organization work with a common focus and to apply best
practices consistently [70,118].

3. Reuse of Software Artifacts - Instead of repeating the decision-making process for the same ques-

tions, organizations use the results of a previous decision process. The term software artifact refers
to any tangible result of the software development process such as requirements and design spec-
ifications, feasibility studies, project plans, test procedures, source code, etc.

4. Automation - When feasible, tool designers embed the best ideas and practices into tools that
enable their consistent application. For instance, tools to support software architectura analysis
are progressing [79].

Increased automation of software development offersthe best hope for the consistent devel opment of good
software. To make a positive impact on software development, automation must go beyond the recording or
management of design artifactsthat many software engineering tools offer today. In addition to programming
language trandlation, automation should address higher level design: current automation is most prevalent at
thelevel of program compilers. Ideally, these new tools would enable usto precisely specify the requirements
for an application and to automatically generate the software solution. Unfortunately, software designers cur-
rently do not have techniques that enablethem to precisely expressall types of requirements; nor do they have
techniques to automatically (without human intervention) convert all types of requirementsinto software so-
lutions.

Reuse of good software artifacts can implicitly lead to the reuse of best practices and products. A good
software artifact is one that has been shown, validated, or certified to perform a useful function correctly. The
concept of component-based software development originated with idea of building applications from reus-
able pieces of software called components. The ideaisto design standard components whose functionality is
useful across multiplesolutions. A refinement of thisideaisto devel op standard sol utions defined as software
architectures which are useful across applications. The specification of a software architectureincludes a de-
scription of the following structural features of the solution [132].

e Type and number of each component
* Name and interface for each component
* Functionality of each component

» Interactions between the components
A standard software architecture is the high level design for a class of software applications with common
functions and contexts for use: it is a solution to be used across a family of software products composed of

reusable components. The next section further describes the problem area for the thesis research.

12 Problem Area

Figure 1.1 details aprocess for building a software application from new and/or reusable software compo-
nents. The input and output of each process box (a step in the overall development process) is a software ar-
tifact. For instance, the application requirements specification and detailed behavioral models are input
artifactsto the software architecture specification process. The output artifact is naturally the specification of
a software architecture for the application to be built. Appendix A shows a more general version of this pro-
cess for generic component-based product devel opment.

Description of
Application to be Built

Specify application
requirements.

Application Requirements
Specification

Develop detailed
behavioral model.

Application Requirements
Specification and
Detailed Behavioral Model

Specify software
architecture.
Software Architecture
Specification
Select or build
software components.
Software Components
and Integration Directions
Integrate software
components.
Software Application +

Figure 1.1 Component-based software application devel opment.
Each box in Figure 1.1 is decomposabl e to support reuse of the type of artifacts generated by the specific
box. Figure 1.2 shows the decomposition of a generic software artifact generation box. The decomposition

includes process components to determine if an appropriate software artifact already exists in an artifact da-

tabase and to generate an appropriate artifact if one does not exist. The names of the input and output to the
software artifact generation box are in straight text, while the names of artifacts passed between the interior

process components arein italics.

Existing

Knowledge Artifact Artifact
for Arnfapt Software Existing Yes Database
Generation Artifact Software -t

- Selector Artifact?
No —————————————

~ New Artifact
- ~
Appropriate KnOWN Artifact
Software for Artifact Generator
Artifact Generation

Figure1.2 Decomposition of a software artifact generation box.

Figure 1.3 shows the decomposition of the software architecture specification process box to support reuse
of existing software architecture specifications. The ideais simple: determine if an appropriate specification
exists and generate a new oneif needed. Theimplementation of thisideais complex: for any input set of soft-
ware requirements and behavioral model, determine if an appropriate software solution is known and if the
specification for the corresponding software architecture exists in the database. If oneis not found, then gen-
erate an appropriate software architecture and save its specification in the database so that it can be easily

reused in the future.

Aoplication Existing Software
Rpp catio X Architecture Software
equirements Specification Architecture
Spec:flgatlor;, I Specification
Detailed Behavioral -
Model and Software Existing Yes _ Database
Design Objectives Architecture Software T~ New Software
——= " | Specification Architecture Architecture
Selector Specification? No Specification
Software =~ \<
Architecture Application Requirements ~ _
Specification Specification, Detailed Software Architecture
Behavioral Model, and Generator
Design Objectives

Figure 1.3 Decomposition of software architecture specification.

The interior process components involve the following related but separate areas of research which will
be discussed in Chapter 3.

» Specification of software architectures and evaluation of the correctness of software architectural
specifications.

* Generation of software architectures that satisfy input requirements and design objectives.
» Evaluation of candidate software architectures.

* Mapping requirements to existing software architecture specifications and finding appropriate
specifications in a database.

The area of research for the thesis is the generation of a software architecture as indicated by the bold-lined
box that encloses the Software Architecture Generator process component. The research does not address
the mechanism for specifying a software architecture.

As shown in Figure 1.4, the generation of a software architecture includes two major processes:

1. Determination of the solution elements that will satisfy the software requirements and behavioral
model.

2. Partition of the solution elements into components of the architecture that meet the design
objectives.

This dissertation focuses on these two processes for the generation of new architectures. The next section

further refines the problem and presents the problem statement for the research.

Software
Requirements _
Specification ——— Determine
and Detailed Solution Elements.
Behavioral Model Specification

of Solution

Elements
Design Partition Solution

Objectives Elements into Components.

Specification of
¥ Architecture

Figure 1.4 Software architecture generator.

13 Problem Statement
The problem area, as discussed in the previous section, addressed by the thesis is the generation of software

architectures that satisfy not only requirements but also design constraints. The global problem (Figure 1.5)

is the determination of software components that simplify and make more reliable the evolution of a product
family of high-assurance applications. The thesis problem (Figure 1.6) is how to partition basic solution ele-
ments into reusable software components that minimize the effort and error associated with changing the so-
lution. Chapter 4 discusses the target measures for reusability and change complexity that will be used to

evaluate the research solution. The next section of this chapter briefly discusses the research solution.

Global problem:
How to determine the software components needed to build a product line of high-assurance applications.

Subject to the constraints:
+ Applications evolve, so software changes.

+ Modifying software is largely a manual process that is time consuming, expensive, and error
prone.

+ High-assurance computing requires the software to be reliable.

Figure 1.5 Problem of software architecture generation.

Given:
+ A setof solution elements such as the high level data and operations.

+ Knowledge about how the:

+ Problem and solution may need to change.
+ Solution will be reused.

Partition:
Solution elements into components that satisfy design objectives.

Design objectives:
« Minimize change complexity measure.

+ Maximize reuse measure.

Figure 1.6 Thesisproblem.

14 Research Solution

Software design involves the repeated partition of ahigh level solution into components. The partition pro-
cess starts with the identification of basic system and subsystem components (high level components) and
concludes with the identification of modules (low-level components) to be implemented. For this research,
the term partition has two related but different definitions: (1) the process of dividing into parts, and (2) the

process of grouping elementsinto disjoint sets. We specifically apply the first definition to the decomposition

of a software solution and the second definition to the logica grouping of solution elements such as data and
operations.

Some researchers draw a distinction between high level and low level components. In their view, high lev-
el components compose the system architecture and low-level components are design elements [132]. For the
purposes of this dissertation, design encompasses the entire process of translating a problem (software re-
quirements) into a specification for a solution (design specification); and the term architectural specification
is synonymous with design specification. The equivalence is appropriate because for this work the focusis
on the partition of components at various levels (high or low) of abstraction and because the thesis does not
address aspects of a design specification (e.g., directions for implementing components) that may not be in-
cluded in an architectural specification.

The research solution consists of the following processes.

1. Identification of basic data and operational solution elements as determined from operational be-
haviors described in behavior analysis.

2. Decomposition of solution elements based on reuse.

3. Analysis of the relationship between the design objectives such as evolvability and the solution
elements.

4. Composition (grouping) of solution elements based on these relationships.

These processes embody a rationale for thinking about design objectives during the transformation from
requirements to design and include techniques for anaytically partitioning data, operations, and control flow
into components that satisfy the design objectives of evolvability and reusability. Chapter 5 presents the de-
tails of the research approach to the analytical partition of software components. The next section briefly
states the general hypotheses about the research solution that were tested. The specific hypothesesfor thetwo
human subject experiments that were conducted to eval uate the research solution appear in Chapter 7.

15 Statement of Hypothesis

In general, the research goal is to enable human designersto more consistently generate good software ar-
chitectures. Asdiscussed earlier, the overall approach isto make the design process more precise, systematic,
and analytical. The research solution systematically guidesthe human to make decisionsthat can resultin de-
signs that achieve the design objectives of evolvability. It is possible that competent designers can make de-

cisions that result in designs that also achieve the design objectives and that competence may correlate to

experience and training. But as will be discussed later, current design methods do not necessary guide the de-
signer to systematically make decisions that achieve the design objectives.
Therefore, the genera hypothesis concerns the comparison of software designs prepared by designerswho
apply the research solution with software designs prepared by designers who do not apply the research solu-
tion. The phrase “do not use or apply” refers both to designers not trained to use the research approach as well
as to designers trained to use the research approach but who do not apply it for some reason. Figure 1.7 con-

tains the statement of the general hypothesis.

Software designs developed by designers who apply the research solution will be as or more likely to
demonstrate design objectives than those developed by designers who do not use or apply the research
solution.

Figure 1.7 General hypothesis about the effectiveness of the research solution.

Likewise because the research solution is precise and systematic with corresponding mathematical models,
one can hypothesize that this solution is at least semi-automatable.

The next section shows the layout of the dissertation and serves as a navigational guide to the reader.

16 Organization of the Dissertation

The organization of the dissertation, as shown in Figure 1.8, facilitates navigation for a variety of readers.
The bold-lined boxes indicate those chapters that can logically be read separately or in succession. People
who are primarily interested in background on software design and high-assurance computing, research in
software architecture generation or evaluation, software design measures, or the author’s analytical approach
to partitioning software components, can turn directly to any of chapters two through five, respectively.

Those readers solely interested in the validation of a software design approach should at the minimum read
Chapter 6 followed by Chapter 7, Chapter 8, and Chapter 9. Chapter 5 describes the design approach that is
being validated by the empirical experiments discussed in Chapter 6 and Chapter 7 and is therefore helpful
though not necessary for a full understanding of the experimental design. Chapter 9 presents an overview of
the research needed to more fully automate the generation of evolvable and reusable software architectures
as well as suggestions for advancing the reuse of software artifacts via automation of the software develop-
ment process. The dissertation concludes with a list of references related to software design and measurement

as well as supporting appendices.

t

Introduction

Chapter 1

Background on Software Design

and High-Assurance Computing
Chapter 2

Validation of Proposed
Software Design Approach
Chapter 6

Y

t

Research in Software and System
Architecture Generation

'

Empirical Research

and Evaluation
Chapter 3

Software Design

Measures I
Chapter 4 I

4
4

AnaIytrcaI Partition

> Studies and Results
Chapter 7
> Conclusions and Summary
Chapter 8

'

Future Research Directions

of Components I
Chapter 5 I

> and Final Remarks
Chapter 9

'

Figure 1.8 Organization of the dissertation.

10

2 Background on Softwar e Design and High-Assurance Computing

For most applications, software design is anecessary part of developing the solution; and software design
decisions are primarily a human-intensive activity. This chapter characterizes the nature of software design
and illustrates the types of requirements that make high-assurance computing systems a challenge to design.
The organization of this chapter consists of the following sections.

» Section 2.1 details the process of software design.

» Section 2.2 illuminates the role of partitioning in the software design process.

» Section 2.3 defines the concept of a “good” design.

» Section 2.4 explains why the consistent generation of good designs is difficult for humans.

e Section 2.5 illustrates the types of decisions made by a designer using an object-oriented design
approach.

» Section 2.6 describes the characteristics of a high-assurance computing system.
» Section 2.7 explains why software changeability is important for high-assurance systems.
» Section 2.8 further discusses why the design of these types of systems is complex.

21 What issoftware design?

Design is the transformation of requirements analysis to a description of how system should be built. The
content of this description depends upon the type of design approach. With a structured design approach such
as those defined by Ward and Mellor [153] or Yourdon and Constantine [160], the description includes a def-
inition of the modules and tasks in which the modules will execute as well as a mapping of the tasks to pro-
cessors. With an object-oriented approach such as those defined by Booch [27] or Rumbaugh [126], the
description includes solution-oriented class and object diagrams. Module and class definitions are the physi-
cal representations of the basic components for the structured or object-oriented types of design, respectively.

A design specification describes in detail how the software will perform the functions outlined in the re-
quirements and behavioral specifications as well as how the software should be constructed. More specifical-
ly, it details the following features of the software solution.

» Architecture of the software system

» Execution platform and operating environment (if not already specified in the requirements
specification)

» Integration and packaging of the software components or system

« Other implementation requirements such as the use of existing software components, language(s),
and compiler(s)

The design is the official specification for verifying the correctness of a software implementation. The next

11

section explains the role of partitioning in determining basic components of the software solution.
22 What istheroleof partitioning in the design process?

Partitioning (decomposition and grouping) is an important part of the design process. Figure 2.1 and Fig-
ure 2.2 show amacro-level view of the transformation from reguirements to design for structured and object-
oriented types of design. With both types of design, the designer must determine the appropriate level of de-
composition as well as the grouping of solution elements to best satisfy design objectives. The terms decom-
position, alocation, and grouping in these figures indicate the extensive and iterative role of partitioning in
the transformation from requirements to design. The object-oriented design process consists of several micro

steps, each of which might be performed repeatedly in an iterative development process.

Essential Models: Context Diagram

Software Data and Control Flow Diagrams Definition of Modules, Tasks,
Requirements Entity-Relationship Diagrams and Processor Assignments

- >’
Essential modeling of the data transformations and Modeling of modules and tasks. Involves allocation
operations. Involves recursive decomposition of the of data and operations to modules, modules to
transformations. tasks, and tasks to processors.

Figure2.1 Transformation from requirements to design via a structured analysis and design approach.

Macro Process Steps

Design Model (Solution-Oriented
Software Behavioral Model (Domain-Oriented Class and Object Diagrams as well
Requirements Class and Object Diagrams) as Logical and Physical Groupings)

-
Development of a model of the systems - — 7 - Creation of an architecture for the implementation ;
desired behavior (analysis). _ — — of the system (design). |
- Micro Process Steps (Design) »‘
Identification ~ of additional Semantic definition of classes Identification of relationships among classes
classes and objects (discovery and objects. and objects. Involves partitioning of classes
and decomposition). and objects into logical and physical groups.
Figure 2.2 Transformation from requirements to design via an object-oriented approach.

12

The identification of user-oriented objects (classes) and solution-oriented objects (classes) involves ab-
straction aswell as partitioning. Figure 2.3 show the transformation from a user-oriented to a solution-orient-
ed view of a generic control system. In the solution space, objects (classes) communicate with the external
sensor and actuator objects shown in the user view. The designer may decide to decompose the user-oriented
sensor, actuator, and control objectsinto generic super-objects and into more specialized objects which hide
the details of the specific sensors, actuators, and controllers. The designer may also decide to logically group
the sensor, actuator, and controller objects that will collaborate in the real system as shown by the hatched
boxes in Figure 2.3. For an in-depth report on an analysis using the Booch method of the air traffic control
domain, another type of high-assurance application, the reader should see [159]. This report outlines the re-
sults of a research project which focused on “Data Modeling for Advanced Flight Plan Processing Systems”
and which was performed jointly by the Computer Information Systems group at the Technical University of

Berlin and the EUROCONTROL Experimental Center.

SuperActuator

SuperControl

Generic Control System

| |
| |
| |
User-Oriented View | @ |
| |
| |
| |

Solution-Oriented View

This symbol refers to an inheritance relationship between the base classes (e.g. Supersensor) and the derived
classes (e.g. Sensory through Sensor,,) that define the objects shown in the right diagram.

ron . o . . . - . . .
| 1 Thissymbolindicates a logical grouping of objects which interact with each other (the corresponding classes contain
L 1 Mmethod calls to the other classes).

Figure 2.3 Transformation from user-oriented to solution-oriented objects and classes.

Throughout the design process, the designer must repeatedly partition the design space and decide between

alternative designs. As shown in Figure 2.4, Part (a), a designer may alternatively decompose a communica-

13

tion component into subcomponents defined by performance characteristics or by functional use. A partition
according to performance may simplify the mapping to execution-time tasks, whereas a partition according
to functionality may best localize logic that differs for each type of device.

Figure 2.4, Part (b), demonstrates three alternative levels of decomposition. A motion control system con-
sists of three basic types of control: (1) program control (background of dots) to download, store, decode, and
execute user programs that direct the motion of a particular device; (2) motion control (background of slanted
lines) to plan the path and perform the low-level servo-control of the motor that controls the movement of the
target equipment; and (3) system control (plain background) to handle system functions such as monitoring
the proper operation of the system (watchdogs), start-up/shutdown, and task management. The designer must
determine the appropriate level of decomposition into subsystem components. The designer then maps these
components into modules to be implemented and possibly into packages of modules for compilation. Com-
ponents such as these may also represent building blocks to be reused across similar applications [120]. The

next section discusses software qualities that determine whether or not a design is good.

Communication

Alternative Alternative,
Fast 1/0 PLC
Slow I/0 Portable Input Device

Remote Computer

(a) Partition with respect to performance characteristics versus functional use.

Control

Alternative; Alternativey Alternative,,

Program Control Program Storage Program Storage Start up/Shut down

Program Execution Decoding Watchdogs

System Control

Execution Task Creation

Task Scheduling

Start up/Shut down

Task Synchronization

Watchdogs Task Communication

Task Management

(b) Functional partition with varying levels of decomposition.

Figure 2.4 High-level design aternativesin amotion control system.

14

23 What are “good” software designs?

As was stated in Chapter 1, “good” software designs result in software that correctly performs the required
behavior while satisfying design objectives. The designer’s goal is to generate designs that result in software
with maximum quality and minimum cost of implementation and maintenance. There has long been a debate
about what software quality means with general definitions such as fithess for purpose and more specific def-
initions in terms ofjuality attributes such as reliability, maintainability, and usability.

This research targets the software qualitieshahgeability andreusability, both of which contribute to
evolvability. Software evolution involves changes in software structure and meaning over time to satisfy
changes in application requirements. The problem is that the process of changing software often involves ex-
tensive impact of change (non-localized change) and substantial manual effort. The process can be costly and
error-prone [26]. “Reduce the impact of change” means that a software solution can be modified in a reliable,
timely, and cost-efficient manner. Software reuse is broadly defined as the use of engineering knowledge or
artifacts from existing systems to build new ones. The importance of this technology increases as designers
develop reusable artifacts that provably improve software quality as well as reduce development costs and
time-to-market. The goal is to design reusable software components that reduce the impact of making changes
to software solutions by localizing change.

It may seem easy to design software components that localize change. There are numerous language fea-
tures and design strategies for localizing the detailed logic related to ways in which the software is expected
to evolve. Some common design strategies to facilitate change are those listed below.

» Hide the details of how something works and what data is manipulated inside of components such
as modules or classes.

» Design standard component interfaces whose parameters and types do not change.
» Use generic data types or user-defined types whose actual types are resolved by the compiler.

Likewise, the design of reusable software artifacts is a popular development objective that is easy to un-
derstand. For instance, the conceppraiduct-line software architectures embodies the reuse of software ar-
tifacts across similar types of applications. The designer partitions the solution into components that are

useful for a class of applications.

15

Current technol ogies attempt to simplify the creation of reusable software components. For instance, a de-
signer following an object-oriented design approach can define base classes whose generic method logic and
datais reused viainheritance across the derived classes. Alternatively, the base class may contain the decla-
ration of prototypes for methods which are defined in the derived classes. This enables the reuse of logic in
objectsthat activate the methods even though the implementation of the methods may vary (e.g., to allow for
differing levels of performance).

In practice, the determination of reusable components that localize change is not automatic, is dependent
on human judgement, and is therefore difficult to achieve. The next section will make more clear why the
myriad software design decisions make the process difficult for humans.

24 Why issoftwaredesign difficult for humans?

For most applications, there is no automated way to generate a design that satisfies requirements and de-
sign obj ectives; so the designer must imagine agood software sol ution and produce the directionsfor building
it. This creative processincludes both decomposition and synthesis. Separation into parts (decomposition) en-
ablesthe separation of concerns among parts of the software solution. Separation of concerns alows the soft-
ware designer to focus on fewer detailsat one time and helpsthe designer to avoi d coupling between unrelated
solution elements. Decomposition of the solution into parts supports the specification of software components
that can be implemented concurrently by different programmers. The process of decomposition requires the
human to determine the constituent the parts and to decide when the separation into parts should stop.

Synthesis isthe composition of partsinto awhole. As discussed in Section 2.2, partitioning or grouping of
solution elements into components is a type of software synthesis. In the generation of new software archi-
tectures, the designer must group solution elementsinto components that will result in software with qualities
such as reusability and maintainability. Following a component-based software devel opment process such as
theone outlined in Section 1.2, the designer composes the specifications of both existing and new components
to generate a design. With a process based on reuse, the designer critically selects existing components that
perform the desired functions with the desired level of performance. The designer must aso decide if thein-
terfaces to these components are compatible. The decomposition and synthesis of software designs require

human creativity and judgement.

16

The ability to make decisions that will result in software with the desired qualities is a primary skill of a
good software designer. Skills which help the designer to make good decisions are those listed below.

» Abstraction (hiding information that is irrelevant from a particular view)

* Analysis (studying the software behavioral model to identify the primary behaviors; determining
the constituent parts of a software solution)

« Attention to detalil

e Complexity management
The difficulty lies in consistently making good design decisions without the aid of systematic, precise, and
proven steps for generating good designs: software design is still primarily an “art” rather than an “engineer-
ing discipline.” Current software has too many surprises due to immature or poorly integrated software
domain sciences, construction principles, and engineering processes [17]. Another problem is the difficulty
of determining whether or not a particular design can (if implemented correctly) result in software with the
desired qualities, a research topic that will be discussed in Section 3.3.

Guidelines rather than automated design assistants are the designer’s tools. For instance, suppose the de-
signer is following an object-oriented design approach. The designer must determine the following elements
of the software architecture, which are a refinement of the generic architectural decisions listed in Section 1.1.

« Types and number of objects (components)
» Interactions between objects via method calls (component interactions)
» Names of classes, names and types of methods and parameters (component names and interfaces)
» Description of logic for methods (component behavior)
Figure 2.5 and Figure 2.6 present guidelines for determining classes (definitions for software objects) that
demonstrate high cohesion and low coupling concepts. Though applied intuitively by expert designers, these
guidelines do not show the designer when and how to precisely apply them.
Principles:
+ Classes should relate to something in the real world.
+ Classes should have a well defined purpose.
+ Classes should have distinct purposes.
+ Objects of the same class should behave identically.
Reason: Clarity of definition promotes ease of understanding and thereby simplifies development

and maintenance.

Figure 2.5 Object-oriented design principles to define classes that exhibit high cohesion.

17

Principles:

+ Classes should contain objects of as few classes as possible.

+ Classes should call methods of as few classes as possible.
Reason: Classes with minimum knowledge of each other and therefore low coupling reduce the
complexity of development and maintenance.

Figure 2.6 Object-oriented design principles to define classes that exhibit low coupling.

The next section demonstrates the types of decisions made by designers following an object-oriented de-
sign approach. The process for defining and refining classes presented in Section 2.5 makes the “when” and
“how” of designing classes more precise; but the process still requires the designer to determine the elements
of the design space (solution elements and feasible organizations of them) and to select a good or optimal
design in this space. The primary theme in this dissertation is that making the choice of solution elements and
their organization more precise, objective, and systematic would more consistently result in good designs.
Likewise, the type of precision and objective criteria for determining good designs would enable semi-auto-
mation of the design process. The examples in the dissertation follow an object-oriented approach because
this style of architecture is widely used today in industrial as well as research software development. The
theme and ideas presented in this dissertation apply to design in general.
25 Examples of Software Design Decisions
Refinement, the iterative restructuring of classes to achieve design objectives such as high cohesion and
low coupling, is an essential part of an object-oriented design process. Figure 2.7 lists ways to reorganize
classes to obtain different groupings. One type of refinement involves the technique of inheritance in which
derived classes inherit the properties of one or more base classes. The actions to take (how to restructure class-
es) are clear, and the type of results to be achieved from these refinement steps are apparent. But the decision
of when and how to precisely apply them is not obvious and requires human judgement.
Types of refinement:

+ Change a class into an object or vice versa.

+ Assign methods to classes differently.

« Combine or split classes or methods.

+ Rename classes or methods.

+ Make classes into base classes and create derived classes, or remove base classes and make

derived classes as new potential base classes.

Figure 2.7 Object-oriented refinement of classes.

18

For instance, the designer must answer questions such as those which follow to refine the classes in a way
that satisfies the design objectives.

» The refinement of which classes will help to achieve the design objectives and why?
* Which type of refinement should be applied to which classes and why?

« Does the application of some types of refinement help achieve some design objectives while
hindering the achievement of others?

The steps shown in Figure 2.8 represent a typical process for transforming a set of requirements and be-
havioral specifications into an object-oriented design. Steps 3 and 5 specifically direct the designer to refine

the classes as discussed in Figure 2.7. The goal is to achieve high cohesion and low coupling.

1. Identify nouns and verbs in the requirements and behavioral specifications that describe the real world en-
tities as well as the functions to be performed or the actions to be taken by the software.

2. Make the nouns into classes or objects and the verbs into methods.
3. Think about the object-oriented principles related to cohesion and refine the classes.

4. Think of scenarios by which collections of the classes can accomplish the functions outlined in the
specification. Identify the sequence of method calls and selection of classes that contain or use objects
instantiated from other classes.

5. Think about the object-oriented principles related to coupling and refine the classes.

6. Repeat steps 3-6 until done.

Figure 2.8 Object-oriented design process.

The problem is that the directives “think about”, “think of”, and “refine” based upon established principles
do not tell the designer precisely what to think and how to act appropriately on any thoughts. Likewise, how
does the designer decide when the refinement process is done, a primary decision required for step 6? By de-
fault, the stopping condition is when no additional improvements via refinement are apparent. Obviously, the
process outlined in Figure 2.8 is neither precise nor guaranteed to generate an optimal design.

The design of software to control a simple microwave serves as the example to illustrate concepts about
design for parts of this dissertation. This is a convenient example because the function of a simple microwave
is generally well understood. Likewise, the scope of the problem is appropriate not only for discussion in a
dissertation but also for the design of an experiment to test the effectiveness of the experimental design ap-

proach presented in Chapter 5. Figure 2.9 shows the mock-up of the user interface to the example microwave.

19

There are six function buttons (start, stop, defrost, power, reheat, and timer), adisplay consisting of five char-

acters, and ten keysto input the digits O through 9.

(LI]

Start - Stop 5 Character Display

Defrost Power
@ O 0] 1] 2| 314
Reheat Timer 51 6 71 8] 9

Figure2.9 Mock-up of the user interface to a simple microwave.

NI

Microwave

Heat the food in the microwave.
Defrost the food in the microwave.
Reheat the food in the microwave.
Start, stop the heating operation.
Input a power level.

Input a duration.

Input @ number of servings.

Input a weight or weight per serving.

@
\

IYYYYYY

Figure2.10 User interactions with the simple microwave.

Viathe buttons, keys, and display described above, the user interacts with the microwave as shown in Fig-
ure 2.10. There are three basic types of heating operations.

1. Straight Heating: The user inputs a power level and a heating time or duration.

2. Defrosting: The user presses the DEFROST button and inputs aweight. The microwave software
determines a power level and a duration to defrost the food of a specified weight.

3. Reheating: The user pressesthe REHEAT button and inputs a number of servings as well as the
weight for each serving. The microwave software determines a power level and a duration to
reheat the specified servings of a particular weight.

The user presses the start or stop buttons to start or stop any of the three heating operations. The digit keys
enable the user to specify the power level, duration, number of servings, weight, or weight per serving. The
display promptsthe user for the value to be input and provides the user with status information such as error
messages if an improper value is entered. For instance, the available levels of power for the microwave may

be specified as one through nine. The entry of a value less than one or greater than nine for the power level

would result in an error message on the display.

20

In addition to the user interaction with the microwave, the software designer needsto know about the hard-
ware devicesthat control the microwave. Microwave ovens consist of a container in which food can be heated
by penetrating it with microwave radiation. In this example, the radiation comes from four identical power
sources. There are two primary controls for the oven: (1) atimer, which limits the duration of the radiation;
and (2) a power sensor, which checks the level of radiation actually generated. Since radiation is harmful to
people, adoor sensor monitors whether the oven door is closed. If it is not closed, the microwave oven must
shut off the radiation immediately. In essence, the software for controlling this microwave must direct the

following devices: four identical power sources, a power sensor, a door sensor, and a timer.

Door Button Display Microwave
variable data (?)
get_status || get_button || put_display methods (?)
Power_ Weight_ Power_Level Weight_Pgr_Serving Wejght
Level Per_Senving o level weight weight
read_level read_weight read_weight
set_level set_weight set_weight
Heat_Type check_level check_weight check_weight
Duration Heat_Type No_of_Servings
User-oriented View interval type servings
read_interval read_type read_servings
set_interval set_type set_servings
check_interval check_type check_servings
Solution-oriented View

Figure2.11 Transformation from user-oriented to solution-oriented objects and classes.

The first step performed by the designer using an object-oriented process as outlined in Figure 2.8 isto
identify thenouns and verbs in the requirements and behavioral specifications that represent “real-world” en-
tities. From the diagrams of the microwave in Figure 2.9 and of the user interaction with the microwave in
Figure 2.10, the designer could identify the user-oriented entities as shown in the left diagram of Figure 2.11.
In this case the designer chose to create the abstraction “button” to represent each button or key that can be
pressed. The designer could have chosen to represent each button or key as a separate object. The reason for
this choice may be that the designer learned from the requirements specification that the interface to the actual
keyboard is a call to a software routine called GET_KEYBOARD which is supplied by the hardware manu-

facturer. Likewise, the designer chose to create one object called Heat_Type to represent the type of heating

operation that could be input by the users.

21

The second step in the object-oriented design process is to convert the nouns (user objects) to classes and
the verbs to methods as shown in the solution-oriented diagram of Figure 2.11. Here again the designer may
or may not think extensively about the required behaviors. The designer could have created only an “input”
method for each type of value to be input by the microwave. Instead, the designer understood that the value
must not only be input or read but must also be checked for correctness before being set to control the micro-
wave. At this point in the design process, the designer had not thought extensively about how the software
should actually perform a heating operation; therefore, the details of inputting and performing a heating op-
eration are hidden in the Microwave class. The data and methods for this class are not defined completely.

Steps 3-6 involve refining the classes to provide sufficient detail so that the solution can be implemented.
While doing this, the designer should try to create classes with high cohesion (high degree of relatedness be-
tween the purpose of the data and methods) and with low coupling (minimal interaction between classes). The
creation of base and derived classes generally occurs during the refinement process. For instance, the
Power_Level, Weight, Duration, Heat_Type, and No_of_Servings are derived classes that could inherit the
properties of a base Super_Value class as shown in Figure 2.12. The burden is on the designer to identify this

abstraction and to determine if it will help to improve the design.

Super_Value
value
read_value
set_value
check_value*
convert_to_string*

o

convert_to_ticks

Power_Level Weight Duration Heat_Type No_of_Servings
value value value value value
check_value check_value check_value check_value check_value
convert_to_string convert_to_string convert_to_string convert_to_string convert_to_string

The derived Power_Level, Weight, Duration, Heat_Type, and No_of_Servings classes inherit the attributes of the base class,
Super_Value. *With the implementation language C++, the check_value and convert_to_string methods could be virtual functions
that are defined in the classes derived from the abstract class Super_Value.

Figure2.12 Refinement via inheritance.

22

Some classes are better composed of two or more classes for ease of understanding and implementation.
For example, the Microwave class currently encapsulates most of the methods needed to coordinate and per-
form aheating operation. In this example, the requirements and behavioral specifications explainthat the soft-
ware should perform the following four basic functions, each of which will build upon each other.

» Driving the electronics: This part of the software communicates directly with the hardware. It
gives instructions to the hardware and obtains status in return. From a high level viewpoint, the
drivers use electronic connections between the processing unit that runs the software and the rest
of the hardware.

» Controlling the eectronics: This part of the software puts together the instructions to the
hardware that the drivers then pass on to the hardware.

» Scheduling of heating operation: This part of the software translates the button pushes of the
users into instructions that match the hardware’s capabilities.

* Managing the user interface: This part of the software directly receives user input through the
keyboard and posts output messages on the displays.

Directions such as these may guide the designer to select a layered software architecture in which each layer

(defined as a class) communicates only with the layers (classes) above and below [133] as shown in Figure

2.13.

Managing the user interface.)

Scheduling the heating operation. :)

Controlling the electronics.

Driving the electronics. :)

Figure 2.13 The four basic functions of the microwave software organized in a layered architectural style.

The problem is that the requirements and behavioral specifications may not organize the description of the
functionality in a way that guides the designer towards a known style of architecture; and the designer must
still decide if the design should encapsulate each function as a separate layer(s) or class(es). The designer for
our example chose to combine the functions of managing the user interface and of scheduling the heating op-
eration into one class called the User_Interface class. The resulting decomposition of the Microwave class

yielded the User_Interface, Control_Electronics, and Drive_Electronics classes shown in Figure 2.14.

23

Microwave

User_Interface

Drive_Electronics

Control_Electronics

Door door; Button button;
Display display;
PowerLevel power;
Weight weight, wps;
Duration duration;

HeatType heat; -'»

User_Interface
Control_Electronics
Drive_Electronics

'

Button button;
Display display;
PowerLevel power;
Weight weight, wps;
Duration duration;
HeatType heat;
NoOfServings servings;

straight_heating
defrosting
reheating
start
stop

initiate_power_source
read_power_source_status
increase_power
decrease_power
shut_off_power
initiate_power_sensor
read_power_sensor_status
read_power_sensor_level
initiate_door
read_door_status
set_timer
start_timer
check_timer

Door door

heat_request (Power |
Level power, Duration
duration)

Figure 2.14 Refinement via decomposition of the Microwave class.

Another possible refinement would be the decomposition of the Drive Electronics class into separate
classes for the hardware devices that it directs as shown in Figure 2.15. If this decomposition is made, then
the designer must decide if the Control_Electronics class should communicate directly with the new device
classes or should funnel heating directions through a Drive_Electronics class. Another question is whether or
not an abstract device class or an abstract class for each type of device would be useful. In our example, the
designer may choose not to create separate device classes because the lowest-level logic for controlling the
devicesis provided by the manufacturer of the devices. The interface to any of the manufacturer device driv-

ersisthrough a standard routine called CALL_HARDWARE.

Power_Sensor_Device

Drive_Electronics

initiate_power_source
read_power_source_status
increase_power
decrease_power
shut_off_power
initiate_power_sensor
read_power_sensor_status

read_power_sensor_level Door_Device Timer_Device
initiate_door
read_door_status initiate_door set_timer
set_timer read_door_status start_timer
start__timer check_timer
check_timer

Power_Source_Device

initiate_power_source
read_power_source_status
increase_power
decrease_power
shut_off_power

initiate_power_sensor
read_power_sensor_status
read_power_sensor_level

Figure2.15 Further decomposition of the Drive_Electronics class.

24

Object instantiation enables the creation of multiple objects of the sametype. Classes encapsulate data and
methods that are appropriate for the particular type of object. For example, the Weight class includes the
weight variable and the methods read weight, set_weight, check_weight, and convert_to_string. Here there
is no assumption of an abstract class Super_Vaue. The defrost operation requires a total weight to be input,
whereas the reheat operation uses a weight per serving. The designer could represent these two values by a
Total_Weight object and a Weight_Per_Serving object, both of which are instances of a Weight class as

shown in Figure 2.16.

Weight

Total Weight
weight e

read_weight Weight_Per_
set_weight Serving
check_weight
convert_to_string

Figure2.16 Multiple objects of the same type.

Steps four and five in the object-oriented design process involve the development of scenarios in which
the defined objectsinteract to perform the required functions aswell asthe refinement of classesto de-couple
objects (classes) which should or should not communicate. The designer must deci de which objects will com-
municate (which classes will include calls to methods defined in other classes). In the microwave example
diagrammed in Figure 2.17, the Control _Electronics object may communicate with the User_Interface object
as well as the device objects. Discussed previously, a refinement would be to create a Drive_Electronics ob-
ject that hides the interface to device drivers from the higher-level control of a heat operation that is encap-

sulated in the Control_Electronics object

25

initiate_door
read_door_status

User_Interface
Object

heat_request

initiate_power_sensor
read_power_sensor_status
read_power_sensor_level

Power_Sensor

Control_Electronics -
ey Object

Object

set_timer
start timer initiate_power_source

check_timer read_power_source_status
- increase_power
decrease_power
shut_off_power

Power_Source
Object

Figure2.17 Obiject interactions.

When partitioning a software solution into components, the designer should consider design objectives
such as those that follow.

* Product-line evolution (change via modification of existing similar solutions)
» Reuse of generic components (even across unrelated software solutions)

* Flexible performance (adaptability via alternative performance levels, concurrency, or
distribution)

The extent to which the maintainer must examine and modify different parts of the software depends upon
the type of change and the organization of the software. Therefore, the designer would like to localize the
parts of a software system affected by a change because it is easier to modify software when the related
changes are close together. The maintainer is less likely to introduce errors into unrelated parts of the system
if the unrelated part is logically or physically separate from the part affected by the change.

Designing for change can be done by creating generic base classes which define the types of methods and
data whose implementations occur in the derived classes. For instance, a generic Power_Source_Device, as
shown in Figure 2.18, enables manufacturers to create device drivers for different power sources that have
the same interface and basic functions. Software that interfaces with a power source device need not change

even though the power source device and its driver may change.

26

Power_Source_Device

initiate_power_source*
read_power_source_status*
increase_power*
decrease_power*
shut_off_Power*

A\

Power_Source_Device;

Power_Source_Device,

Power_Source_Device,,

initiate_power_source*
read_power_source_status*
increase_power*
decrease_power*
shut_off_Power*

initiate_power_source*
read_power_source_status*
increase_power*
decrease_power*
shut_off_Power*

initiate_power_source*
read_power_source_status*
increase_power*
decrease_power*
shut_off_Power*

The calls to the generic methods are reused across different types of power source devices. The power source device drivers
(defined in the derived classes) may be easily exchanged for migration to different processors. *virtual functions in C++

Figure 2.18 Design for reuse and change.

User_Interface;

Button button;
Display display;
PowerLevel power;
Weight weight, wps;
Duration duration;
HeatType heat;
NoOfServings servings;

straight_heating
defrosting
reheating
start
stop

Figure 2.19 Design for functional change.

User_lInterface,

Button button;
Display display;
PowerLevel power;
Weight weight, wps;
Duration duration;
HeatType heat;
NoOfServings servings;

straight_heating
defrosting
reheating
programmed_heating
start
stop

User_lInterface,,

Button button;
Display display;
PowerLevel power;
Weight weight, wps;
Duration duration;
HeatType heat;
NoOfServings servings;

straight_heating
defrosting
reheating
popcorn
bacon
potatoes
frozen_foods
vegetables
start
stop

Likewise, the designer may want to create a design that can be easily changed to include new heating op-
erations. The User_Interface class encapsulates the logic to convert a key sequence for a particular heating
operation to a power level and duration. New microwaves would contain different versions of the

User_Interface class, asdisplayed in Figure 2.19, and would reuse the original Control_Electronicsclass. De-

27

signing for product evolution requires the designer to think ahead of the ways in which the product would
change over time and to |ocalize those parts that would need to change or which would not change.

The designer can partition the solution into components, such as those listed below, that can be used to
build solutions with flexible and reliable run-time performance.

» Parameterized components that each perform a particular function with differing levels of
performance.

» Separate components that perform similar functions, each with a different level of performance.

« Components that encapsulate logic that can execute concurrently and be distributed across
multiple processes and processors.

In future microwaves, the designer may want to allow the user to program the microwave for the next heat
operation while the current heat operation is in progress. This use scenario would require the User_Interface
and Control_Electronics to execute concurrently as shown in Figure 2.20. Likewise, the user may prefer a
single interface that can control multiple ovens. Figure 2.21 shows a distributed design to achieve this behav-
ior. It might be convenient to program from a remote interface a set of ovens to concurrently cook different

courses of a meal at predetermined times.

Execution Platform

Process 2

Power_
Source
Control_

Electronics

Power_
Sensor

Process 1

User_
Interface

Figure2.20 Design for concurrency.

28

Processor, Processory

Control_Electronics User_lInterface

Processorg Processor,,

Control_Electronics Control_Electronics

Figure2.21 Design for distribution.

As has been demonstrated in this section, design guidelines help the designer to determine how to partition
the solution into components (classes in object-oriented design). But they are not precise steps; nor are they
measures for determining the goodness of adesign. Ultimately, most architectural decisions are based on the
judgement of the designer. These decisions are critical to the design of correct and reliable software systems
that can be easily maintained and adapted for new uses. The next section describes the nature of high-assur-
ance systems for which design qudity is essential.

2.6 What arehigh-assurance computing systems?

High-assurance computing means that there is a high level of confidence that the following statements

about a system are true:

1. The system specifications are complete, consistent, and relevant.

2. Theimplemented system conforms to the system specifications.
The term system includes not only the system hardware and software but also the human interaction with the
physical system, especially in the context of security. A quality of service (QoS) model for high assurance
computing designed to satisfy these two aspects of high assurance encapsulates the attributes of timeliness,
precision, and accuracy. To achieve a practical engineering and metric-oriented approach to system develop-
ment, all inputs/output of a system are defined by these three attributes. For an input/output to be completely

specified or measured, there must be avalue aswell as arange of permissible values for each attribute [102].

29

Along with a high degree of conformanceto valid system specificationsis the need for availability and the
lack of tolerance for error. A high-assurance system must perform reliably and be highly available, fault tol-
erant, and secure. Castaneda adds that high-assurance systems for the U.S. Navy must also be operationally
suitable. When operated and maintained by the expected number of properly experienced fleet personnel, an
operationally suitable system isreliable, maintainable, operationally available, logistically supportable when
deployed, compatible, interoperable, and safe. Safety means that the system will do what it is supposed to do
and NOT do what it is not supposed to do: in other words, the weapon will fire when properly commanded
to do so and will not fire otherwise [36].

Example applications which require high-assurance computing systems are command and control for mil-
itary defense systems, nuclear power plant management, air traffic control, aircraft control, on-line invest-
ment reports and transactions, and patient monitoring. As users increasingly rely on computing systems to
live healthy, happy, and productive lives, many other applications will increasingly require high-assurance
computing. High-assurance computing may become the expected mode of operation and maintenance for
most if not al computer systems.

2.7 Why is softwar e changeability important for high-assurance softwar e systems?

The ad hoc way in which software engineers develop and maintain high-assurance software systemsis of -
ten difficult, time-consuming, and costly [114]. As early as 1973, Boehm commented that organizations
should concentrate more on reducing software life cycle costs rather than on reducing software devel opment
costs. He noted that the cost of maintaining Air Force avionics software was approximately 50 times higher
than the cost of its devel opment ($4000 per instruction for maintenance versus $75 per instruction for devel-
opment in 1973 dollars). The high cost of software maintenanceis till a problem; and to make mattersworse,
the maintenance process is frequently error-prone [26]. The delay of the first NASA Space Shuttle orbital
flight dueto asoftware problem exemplified the difficulty of changing software. In hisdiscussion of the Shut-
tleincident, Garman emphasized akey idea: though softwareisreadily changed, it isviachangethat software
is the easiest part of a system to compromise [52].

Software reuse is a technol ogy intended to improve software quality aswell asto reduce the cost of devel-

opment and time-to-market [48]. Some researchers argue that reuse does not guarantee the safety of a soft-

30

ware solution. For instance, Leveson states that safety is not just a property of the software itself but also a

property of the software design and environment in which it is used [105]. It appears to be an open question

as to whether or not it is easier to construct a safe software system totally from scratch or from parts of a “safe”
existing software solution. Software reuse alone may not solve the costly problem of maintaining high-assur-
ance software systems.

Design for changeability has its roots in the principle of modularity, a concept described by the currently
popular term “component-based development.” The basic idea is to group the required data and logic for a
solution into modules or components that can be easily reused as is, modified, or replaced. The question is
how to decide which solution elements should be put together into the same modules. The objective is a
grouping which simplifies and reduces the error associated with maintaining the target software system. The
research approach described in Chapter 5 strives to achieve this objective.

28 Why issoftwaredesign for high-assurance softwar e systems complex?

Two primary factors make the design of high-assurance software systems a complex process. One factor
encompasses the specification and verification of designs that satisfy the types of stringent expectations for
high-assurance system discussed in Section 2.6. The software designer must carefully specify the organiza-
tion and content of a software system that will behave precisely and accurately as specified in the software
requirements. The designer must also determine a way to establish a high degree of confidence that the design
specifies a software system that can satisfy the requirements. In particular designing high-assurance systems
that satisfy stringent timing constraints is difficult [33].

The other factor which contributes generally to design complexity is the “integration factor.” Integration
involves the connection of separate components, hardware and software, to create a system of interacting
parts. The connections may be physical or logical. The difficulty lies in the fact that connections in combina-
tion with components must together satisfy the stringent expectations for the target high-assurance system.
Some interconnects as well as components may have differing levels of criticalness, a feature which com-
pounds the difficulty of verifying the system. A panel of researchers from industry and academe identified
the following types of inconsistencies that can arise in the integration of high-assurance systems [58].

» Dependability requirements

31

(e.g., The maximum allowable frequencies for certain types of failures defined as a product
requirement may differ from the allowabl e frequencies specified as a Capability Maturity Model
or CMM process requirement for a component [118]).

* Exception handling

(e.g., The actions of an operating system or scheduler may override specific exception handling
provided within a software component.)

» Assumptions about “safe states”

(e.g., A system-level requirement such as “maintain prior value” may not propagate into a
component-level requirement such as “maintain prior valve position.”)

» Verification practices

(e.g., Verifying an entire system may be difficult due to variances in testing practices at the
component level.)

Assuming that real-time software systems are more likely to be predictable and dependable if they are sim-
ple [56], there is a need for engineering techniques that reduce the software complexity of high-assurance sys-
tems.

The next chapter discusses more specifically research in software architecture generation and evaluation

that relates to the research problem.

32

3 Research in Software and System Ar chitecture Generation and Evaluation
The motivation for this thesis is the search for an analytical way to generate a software architecture that
localizes change. The input would be arequirements analysis, known design constraints, and potential chang-
es to the problem or solution. The output would be a specification of software components that would either
be selected for reuse from a database of existing components or built from scratch. The ideal solution would
be a way to automatically apply Parnas’ guidelines for modularizing complex software systems [116].
Though fully automatic generation of a software architecture that can be easily changed to satisfy product
evolution is an ongoing goal, research in several areas sets the foundation for its accomplishment. This chap-
ter will briefly overview key work in the following areas which have the potential for advancing the fields of
software architecture generation and evaluation as well as validation of software design approaches.

Modularization to achieve software design objectives such as modifiability (Section 3.1)
Reuse of software design knowledge via styles or patterns (Section 3.2)

Evaluation of candidate software architectures (Section 3.3)

Generation of good designs via search of a design space (Section 3.4)

Reuse of solutions through automatic system generation (Section 3.5)

Design and composition of software systems from reusable components (Section 3.6)

N o o M w N PR

Empirical research in software engineering (Section 3.7)
Table 3.1 explains the concerns and issues that each area listed above shares with the thesis research.

Table3.1 Concerns and issues shared by each related research area with the thesis research.

Related Research Area Concern or Issue Shared by the Related Research Area and the Thesis Research

Modularization to Achieve Design
Objectives Shares principles of decomposition and information hiding to achieve evolvability.

Reuse of Software Design Knowledge | Discovery and reuse of design knowledge (e.g. the research approach demonstrates a

via Styles or Patterns heuristically good and reusable approach to partitioning control flow).

Evaluation of Candidate Software Seeks the evaluation of a design with respect to quality attributes that can be mea-
Architectures sured.

Generation of Good Designs via Uses techniques for representing solution elements of a software design space and for
Search of a Design Space finding a good design based on the relationship between those elements.

Reuse of Solutions through Automatic
System Generation Shares goal of automation.

Design and Composition of Software
Systems from Reusable Components | Shares goal of reusable design and code components.

33

Related Research Area Concern or Issue Shared by the Related Research Area and the Thesis Research

Empirical Research in Software Engi- | Shares goal of validating software design approaches with respect to their use by soft-
neering ware developers.

Note 3.1 The reader should note that in some of the related research areas, the author draws
analogies to the design of hardware systems. This is to indicate cases in which ideas
researched in hardware design were later explored in software design.
31 Changeability Via Modularity
Changeability or modifiability depends primarily on a software system’s modularization and is a reflection
of the system’s encapsulation strategies. The selection or generation of a particular architecture partitions

changes into the following three categories:

1. Local changes accomplished by modifying a single component.

2. Non-local changesaccomplished by modifying multiple components while leaving the underlying
architecture intact.

3. Architectural changes which affect the ways in which components interact with each other and
which most likely require changes throughout the system.

Ideally, most changes are local. Reasoning about change demands an assessment of the relationships, depen-
dencies, performance, and behavior of the software components composing the system. Change assessment
is the job of the software architect [18]. Parnas and others advocated the use of information hiding via mod-
ularization to facilitate ease of change in two well-known papers [116,117].

A seminal study of software modularity was the A-7 Project, conducted by the U.S. Navy to test the effec-
tiveness of “new” design strategies in the development of a software system with demanding requirements
such as timing and memory constraints. The idea for the A-7 Project was to publish a complete engineering
model with documentation, design, code, methodology, and principles [30]. The target system requirements
were those for the avionics software embedded in the A-7E Corsair Il, an attack aircraft used by the U.S. Navy
throughout the 1960s, 1970s and 1980s. The result of the project was the development of a standard reusable
design oreference architecture as well as alomain model describing the expected behavior and anticipated
changes for the A-7E. Two primary lessons from the project are those which follow [19].

1. Information hiding is a viable and prudent design discipline.

2. Careful engineering of different structures of an architecture significantly helps to achieve target

34

software qualities such as changeability.

The process of determining the modular structure of a software system was primarily an art until research-
ers and expert practitioners developed more precise guidelines for modularization to achieve specific design
objectives. At first, researchers focused on the partition of agorithms to achieve reusable and easily replace-
able modules. Some researchers studied ways to decompose mathematical software solutions into software
components. For instance, Westerberg's work reflects the common approach of intuitively decomposing al-
gorithms to functional modules. Westerberg’'s modules were used in various permutations to solve systems
of linear equations [158].

Similarly, research in recasting large-effect algorithms into small-effect or partial algorithms inspired sys-
tematic decomposition for reuse. The idea is that software modules that encapsulate whole algorithms are
more likely to require internal modification in order to be reused. On the other hand, components that contain
parts of an algorithm can be alternated to achieve variations in the algorithm’s logic or implementation fea-
tures [155]. Note 3.2 explains what this rationale means for the decomposition of larger-scale software solu-
tions.

Note 3.2 At the system and subsystem levels, software solutions implemented as large-effect
components are not likely to be as reusable as those implemented as small-effect com-
ponents. The resulting research question is how to recast a monolithic software solution
into parts whose implementations will facilitate changes to the software solution via re-
placeable and reusable components.

Today, object-oriented design and programming are popular methods for creating reusable modules (class
definitions) that facilitate ease of change. VanHilst and Notkin applied the language features of C++ to struc-
ture class definitions in a way that localizes design decisions and changes to the software solution [151]. The
current problem is that object-oriented techniques currently guide but do not automate the transformation of
requirements to design. Analysis objects do not necessarily map to design objects, and the designer must de-
termine which and how much logic should be encapsulated by each class definition. The resulting decisions

may or may not optimize design constraints.

35

A related thread of research concerns the restructuring of software. For the purposes of maintenance, soft-
ware restructuring is the modification of software to make the software:

1. Easier to understand and to change.

2. Lesssusceptible to error when future changes are made.

Software restructuring may also improve the software performance. Restructuring at the module level
affects the architecture of the system and is done to preserve or maintain software value. External software
value is the cost savings the software provides to the user community; while internal software value is the
cost savings due to reduced maintenance costs, increased potential for reuse in other applications, and
extended lifetime of use. Software developers can perform software restructuring throughout the develop-
ment process to iteratively improve the quality of the software [11]. For a collection of earlier papers con-
cerning software restructuring the author refers the reader to [10], and for more recent but related work in
software maintenance and re-engineering to [72] and [74].

The research approach proposed in this dissertation more precisely and systematically guidesthe designer
in the process of partitioning logic into modules than the approaches discussed above which are based on in-
tuition and guidelines provided by researchers and experienced designers. The research approach directs the
decomposition of a software solution into small-effect data and operations that are perceived or known to be
reusable. More importantly, the approach provides the designer with an analytical way to recombine the
small-effect data and operations into software components that localize the expected changes to the software
solution. The goal isa systematic and semi-automatable way to design reusable software componentsthat lo-
calize change to as few software components as possible. The larger goal is the development of an engineer-
ing approach to software architecting through the application of science and mathematics.

3.2 Reuseof Design Knowledge Via Styles or Patterns

This section begins with a few notes about the field of system architecture and the psychology of system
thinking. Thisfield hasitsrootsin the broader field of systemsarchitecture. A systemisin general acollection
of different things related in such away as to produce a result greater than what its parts, separately, could

produce. An architecture isthe underlying structure of something, whether of buildings, communication net-

36

works, computers, or software (all of which are systems) [121]. As Rechtin discussed the architectural es-
sence of a system is therefore twofold:

1. All systems have subsystems, and all systems are parts of larger systems: the systemsworld isin-
herently unbounded.

2. The value added by a system must come from the relationships between the parts, not from the
parts alone.

In thinking about a system architecture, the software designer is likely to use previously acquired knowl-
edge about other systems which have similar requirements or constraints. The variety and complexity of the
problem (software requirements aswell as operating and design constraints) may also require the designer to
creatively use problem solving techniques from various fields in science, engineering, and mathematics. The
“reuse of knowledge about solutions” to solve other problems with similar features is common to the human
experience. Likewise, the process by which a designer’s brain searches and explores its database of knowl-
edge to find a suitable structure for a system depends not only on the knowledge base but also on the inter-
connects between the information. These interconnects may be dependent on the designer’s experiences with
other software systems. The author suggests that system architecting is an art when it is dependent on the way
a particular designer solves problems or thinks. For additional information on ways to think about system
structure, the author refers the reader to [9,22,63,122,124,125,156].

Alexander was one of the first modern architects to systematically observe commonalities between the ar-
chitectures of physical structures such as buildings. His observations included notes about properties or at-
tributes along which physical architectures could be compared and classified. Such properties enable the
development of a framework for defining patterns of architecture, where each pattern is the definition of a
generic structure with certain basic physical properties and uses [3,4,5]. For instance, an inverted cone is the
shape associated with a tepee; whereas a cylinder with a dome-shaped top is associated with an igloo. Notes
about the “tepee” and “igloo” patterns would include a description of when, where, how, and arghthe
tectural styleis most effective for the design of a home.

Early on, the computer design community formulated and applied the concepts of abstraction and styles
for the design of digital systems. Bell and Newell defined the different levels of design for digital systems

from the most abstract level consisting of a black box description of the high-level hardware components in

37

the system (processors, memories, switches, etc.) to the electronics level, the lowest level that a digital de-
signer usually considers[24].
In histhesiswork, Thomas defined a digital design style as an abstraction which represents agroup (class)
of module sets, where each set in the group is more or less the same. A module set is a collection of digital
devices, at the register-transfer level, that provide the necessary arithmetic, logic, and memory functions to
implement ageneral digital system. Differences between the modul e setsin one style with respect to the mod-
ule setsin another style are due to the different rules for implementing a digital design using the module set
and the features inherent in the underlying hardware. Thomas presented an algorithm to automatically select
the proper style for a particular hardware design [148].
Likewise, the research and development of styles or patterns of software architecture seek to codify the
knowledge of the expert software designer. Novice designers would use a handbook of styles or patterns to
guide them in the selection of atype of design that has been used successfully to solve a similar problem (an
example isthe use of stylesto teach software engineers about software architecture [135]). Historically, the
concept of style applied more generally to the types of components and component interactions at the system
and sub-system levels [133], while a pattern defined the interaction of lower-level design components [50].
Thelevel of abstraction for defining patterns has broadened so that some researchers now distinguish between
software design patterns and software architectural patterns [35]. The distinction depends on one’s definition
of software design and software architecture. Note 3.3 expresses the author’s view of software design and
software architecture for the purposes of this dissertation.
Note 3.3 Inthe context of this dissertation, the author views design to encompass all of the steps
taken to transform requirements into a description of how to build a software system. In
her view, design encompasses the specification of a software architecture for the soft-
ware solution. For the purposes of partitioning data and logic into components, the au-
thor uses the term software design and software architecture synonymously with the un-
derstanding that designs can be viewed at multiple levels of abstraction.
The description of a style or pattern includes a definition of the problem, the forces which guide or con-
strain the solution to the problem, and the solution. The solution or software design consists of components
and their interactions. Some researchers are developing languages for describing software architectural styles

and patterns. For instance, the ROOM approach defines a model and language for documenting architectural

patterns for real-time systems [128]. Shaw and Garlan explored and documented the necessary characteristics

38

of high level languages for describing software architecture[131]. Two representative architectural definition
languages for formally describing a software architecture are WRIGHT [7,6] and Rapide [107]. UniCon, an
architectural description language, provides a selection of abstractions for the connectors that mediate inter-
actions among components [130,134].

Reuse of design knowledge defined as styles or patterns depends upon the expert software designer or re-
searcher to discover, investigate, and codify good designs. Criteriafor determining the goodness of a partic-
ular design provide the foundations for evaluating a software architecture, a research area to be discussed in
the next section.

3.3 Evaluation of Candidate Software Architectures

An engineering or scientific approach to the selection of a good software structure depends on precise cri-
teria for evaluating a candidate architecture and a systematic method for applying the criteria. Earlier work
focused on the comparison of alternative system structures with respect to properties such as system compl ex-
ity and performance. An example was an approach devel oped by Stankovic to iteratively restructure the con-
tents of the software modules in a system to achieve the desired levels of structural complexity and run-time

behavior [143]. The approach included:

» Vertical migration, a partially automatable process of moving functions to lower levels in the

software and firmware hierarchy to improve performance by reducing CPU overhead.

* Analysis of the structural complexity of the resulting system via measurement of the coupling and

cohesiveness of the software modules in the system.

» lterative restructuring of the functions and modules to achieve desirable performance and
structural complexity levels. The result was sometimes a trade-off between structural complexity

and performance.

Developed more recently, SAAM (Software Architecture Analysis Method) is a technique for manually

evaluating a candidate software architecture with respect to quality attributes such as maintainability, securi-

ty, performance, and reliability. The evaluator defines the target quality attributes within the context of sce-

narios that describe how the system would behave under given conditions. The evaluator measures an

architectural description with respect to an agreed upon set of scenarios that describe how the system will be

used. In effect, the candidate architecture is given a qualitative rating based on its perceived ability to support

each scenario. Candidate architectures are then compared to each other with respect to how they “perform”

for similar scenarios [20].

39

ATAM (Architecture Tradeoff Analysis Method) is a scenario-based method like SAAM to analyze soft-
ware architectures. Unlike SAAM, ATAM focuses on multiple quality attributes (currently modifiability,
availability, security, and performance). The purpose of ATAM isto locate and analyze trade-offs early dur-
ing the development of a software architecture. The method guides the user in the formulation of questions
during the requirements and design stages that will help to detect and resolve potential risks within a target
architecture for a complex software system [80]. Experiencesin applying ATAM are reported in [81], and a
discussion of tool support for architecture analysis and design appearsin [79].

Evaluation of software architecture and reuse of software design knowledge (styles and patterns) comple-
ment each other: an attribute-based architectural style or ABAS defines aclass of designs along target quality
attributesthat enable eval uation of the appropriateness of the design for aparticular use [90]. The author notes
that formal specification of the attributes along with the architectural description of the style may enable the
automatic selection and evaluation of candidate styles from a software style database.

Architectural evaluation and design reuse both require the designer to discover or generate candidate soft-
ware architectures for evaluation or codification. The discovery process, though useful over time, may not be
expedient for a particular project. As discussed in Chapter 2, the generation of a software design is primarily
amanual and difficult process. A systematic method for determining the design space of requisite solution
elements and criteria for partitioning them into components would simplify the generation of candidate de-
signs. The next section discusses the generation of good designs via the construction and search/analysis of
a design space.

34 Generation of “Good” Designs Via Search of a Design Space

A design space identifies key architectural choices, classifies the available alternatives, and provides a
framework for the selection/generation of an appropriate software architecture. The design space may de-
scribe architectural properties relevant to a particular class of systems, e.g. user interface systems, and is, in
general, useful asashared vocabulary for describing and understanding systems. Each dimension of adesign
space describes variation in one system characteristic or design choice. Vaues along adimension correspond
to aternative requirements or design choices. A specific system design corresponds to a point in the design

space that isidentified by the dimensional values that correspond to its characteristics and structure [94].

40

A design space is the composition of a functional design space and a structural design space. Some di-
mensions reflect requirements or evaluation criteria (function and/or performance), and others reflect struc-
ture (or other available design choices). A design dimension may consist of discrete values rather than a
continuous scale, and the dimensions may not be independent. Correlations between the dimensions motivate
the definition of design rulesthat describe appropriate and inappropriate combinations of design choices. In
an experiment to validate the effectiveness of adesign space and associated rulesfor determining appropriate
designsfor six user interface systems, Lane found that the experimental designs determined by applying the
design space rules were moderately to substantially representative of aready existing designs for these sys-
tems. With respect to most system characteristics, the design space and rules adequately reflected the design
choices and constraints considered by designers of the six test systems [93,95].

Inarelated project, graduate students in software engineering formulated a process to apply Quality Func-
tion Deployment (QFD) to the analysis of design spaces. QFD is a quality assurance technique that helps
trandlate customer needsinto technical requirements needed at each stage of product development. While the
design space organizes the choices available for a particular design into a hierarchy of dimensions and alter-
natives, the QFD process represents and weights (quantifies) a particular set of these choices, one from each
dimension of the design space. By explicitly including all alternatives of each dimension in the QFD frame-
work, each alternative can be analyzed for its ability to meet the needs of the customer and for its correlation
to alternativesin other dimensions [12,13].

Automatic generation of agood design from adesign space requires the following formulation of asearch
problem and solution environment.

» Definition of a finite design space
» Determination of rules for identifying viable and non-viable choices in the design space

» Definition of a cost function for comparing the goodness of different points (alternative designs)
in the design space

» Development of an algorithm for traversing the design space in search of good designs

* Representation of the design space, rules, and search algorithm in a programmable form
Definition of the finite design space is difficult for an arbitrary set of software requirements, hence current
work in design spaces has focused on the specific concerns for classes of applications, such as user interface

systems as described in Lane’s work. Likewise, the design rules inherent in the design spaces help the

41

designer to make high level decisions about basic structural and performance properties of the solution; but
they do not guide the designer in finding the best partition of the required data and logic into components.

Though the goal of automatic synthesis of a good software architecture is similar, the research described
in this dissertation takes a more generic approach to defining the design space. The research approach guides
the designer in defining a design space of basic solution elements that map directly to the required behavior
for the software system. The designer then refines these elements based on their potentia for reuse in other
software systems with similar requirements. Theresult is a set of solution el ements/sub-elementsthat arethen
partitioned to localize change. Similarly the hardware-software codesign community partitions basic func-
tional unitsfor implementation in hardware or software and for allocation to different processors[1]. But un-
like the codesign approach, the research approach does not start with a set of predefined functional units.
Instead, we transform a high level definition of a software solution (corresponding to behavior described in
the requirements) to design components that can be mapped to i mplementation modules. An interesting result
of the analytical approach isthe discovery of design heuristics or generic patterns for localizing change in the
solution elements. More about thiswill be said later.
35 Reuseof Solutions Through Automatic System Generation

For those types of applicationsin which the design space iswell defined and directly mappable to a solu-
tion, automatic generation of the system implementation is feasible. In general, automatic system generation
requires the specification of parameters over which the solution space may vary. Another requirement is a
“compiler-like” algorithm for interpreting the values of the parameters and generating the system implemen-
tation. One way to do this for software is to determine a suitable software architecture for a class of related
applications and to embed or codify the knowledge about how to generate a solution with the particular ar-
chitecture into a program or tool. The next paragraphs provide some examples of tools for automatically gen-
erating hardware and software solutions.

MICON is a collection of tools for the rapid prototyping of small computer systems. M1, the synthesis tool,
uses components in a library to build a design that satisfies high level specifications. The input to M1 are func-
tional requirements (e.g. processor name and speed, amount of memory, number of serial ports) and con-

straints (e.g. maximum board area, power dissipation). The output from M1 is a complete list of parts and a

42

net list indicating the necessary interconnections between the parts. Researchers used M 1 to generate designs
based on four microprocessor families. An automated knowledge acquisition tool aided the collection of
knowledge for the specifications of the designs [25,55].

MOOSE (Model-based Object-Oriented Software generation Environment) is a framework for software
development based on formal models and code generation principles. Within MOOSE, a model consisting of
a set of component models describes the required behavior for the application. Code generators create code
components from the models. Reuse within MOOSE occurs at the modeling level through the creation of new
application models from base models which describe common characteristics of the application domain.
MOOSE supports component reuse via the code generators as well as from libraries of code components[8].

GenV ocagenerators synthesize software systems by composing components from reuse libraries. GenVo-
ca components export and import standardized interfaces and are therefore interchangeabl e and interoperable
with other components. The generators include application-independent algorithms for validating composi-
tions of GenV oca components. The interfaces and bodies of GenV oca components are generic descriptions
that enlarge upon instantiation. Asaresult, GenV oca generators enable software systems with customized in-
terfaces to be composed from components with standardized interfaces [21].

The next section discussesin more detail research in the design and composition of software systemsfrom
reusable components.

3.6 Design and Composition of Software Systems from Reusable Components

In addition to the codification and reuse of design knowledge, researchers and practitioners have studied
the design and composition of software systems from reusable components. There are many areas of interest
inthefield of reusable software components and component-based development. Current areas with ongoing
research include those listed below.

» Specification of software components and interconnections [7,130,138,139]

» Software component composition and architectural concerns [14,38,51,111,112,147,149]
* Commercial Off-The-Shelf (COTS) software robustness testing [92,15]

» Design of software components for use in product-line development [141]

» Design of reconfigurable or upgradable software components [145,129]

43

Some of the research areas listed above are composed of subareas based on the class of applications to
which the research applies. For a more comprehensive review of research involving software reuse in the
1990’s and earlier, the author refers the reader to [113], [73], [75], and [77]. The reader might refer to [140]
and [28] for extensive lists of web links to software architecture information and resources.

Though ease of change over time is a common goal, there is an important distinction between design for
reconfigurability/upgradability and design for maintenance/product evolution. The difference between the
two approaches lies in the definition of time. Design for reconfigurability/upgradability usually involves on-
line change in the context of the dynamic behavior of the system. Within the run-time environment of the sys-
tem, a component is defined by its execution state and space (e.g. state behavior within a process space) as
well as its logical composition. Design for maintenance typically concerns the static or off-line organization
of the components in a system. The designer may design reconfigurable components using tunable parame-
ters, or the designer may define interchangeable components with similar functional behavior but differing
levels of performance [137]. Though both design choices require the designer to consider the static organiza-
tion of the software, the focus is on the execution behavior of the components.

Two research groups at Carnegie Mellon University have studied the design of reconfigurable and evolv-
able, real-time software components. Chimera components (objects) are reusable software packages that en-
able the rapid deployment of application processes activated by a real-time kernel [144,145]. The Simplex
Architecture is a design approach for building software modules, called cells, that can be safely interchanged
during run-time to enable the dynamic upgrade of system control [129,49,142].

The Chimera software infrastructure prescribes a standard format for building reusable software objects.
The port-based objects automatically map to executable processes. The format includes operations for initial-
izing, executing, and deactivating the dynamic objects as well as for error handling and inter-object commu-
nications [145]. The Chimera infrastructure includes a real-time kernel designed to ensure a performance-
efficient and reliable real-time operating environment for robotics and factory applications [146].

In contrast to both Chimera and Simplex, the focus of this dissertation is on the static organization of soft-
ware and its impact on the software engineer’s ability to easily change the software design and resulting im-

plementation. Unlike the Chimera and Simplex emphasis on the rapid deployment of application modules by

area-time kernel, the research approach does not address low-level design mechanisms such as verification
of module interfaces and of process state to support dynamic reconfiguration/replacement of processes run-
ning in real-time. The research approach applies to any application domain in which high level solution ele-
ments such as basic data and operations can be determined from a given set of requirements.
3.7 Empirical Research in Software Engineering

Partici pants of aworkshop sponsored by the National Science Foundation (NSF) define empirical research
as an analysis based on the observation of actual practice for the purpose of discovering the unknown or test-
ing a hypothesis. Impediments to empirical research in software engineering often involve differencesin at-
titudes and motivation between software developers and researchers as well as between industry and
academe. Cultural differencesaswell as practical considerations such as the following explain why empirical
research in software engineering is seldom done.

» Experimental work is generally complex and expensive to perform.
» Experimental work requires collaboration with practitioners.

» The difference in time scales between research and development inhibits collaboration between
researchers and developers.

* Reward structures for development and research personnel are not congruent.

» Students are often not available long enough to make a meaningful contribution to empirical
research.

* Many problems to be solved involve human factors such as management and may therefore not
be as attractive to researchers.

NSF workshop reports provide guidelines and suggestions for increasing the collaboration between

researchers and practitioners and between industry and academe [29]. They also advocate increased funding

for validation of research concepts as well as meaningful empirical investigation [17].

Despite the difficulties listed above, there have been empirical studies that have successfully analyzed the

effects of particular software practices. These tend to be of three types:

1.
2.
3.

Industrial or government case studies that facilitate the collection of data about software practices.
Collaborative efforts between industry and academe to test research ideas.

Smaller, controlled experiments that are conducted by academic researchers with the help of
student subjects.

In the area of software reusability, there have been several case studies documenting the effects of reuse

programs or activities instituted by industrial and governmental organizations interested in improving the

45

quality of their software products and processes. As might be expected, organizations willing to invest time

in such programs frequently do so because of the need for quality in high-assurance systemsthat they devel op.

Leach overviews reuse activities at organizations such as NASA, AT&T, Battelle’s Pacific Northwest Labo-
ratory, and Hewlett-Packard. Particularly relevant is his case study of a software reuse program put in place
for the Control Center Systems Branch of NASA in Greenbelt, Maryland. This center is responsible for the
ground systems that control the initial interface between a spacecraft and ground-based computer control cen-
ters. One main feature of the program was the development of a generic core of software that is common to
multiple missions as well as a general description of the control center software with a differentiation between
generic and mission-specific software. The study also outlines the metrics and methodology used for measur-
ing the quality of the resulting software as well as the extent of software reuse and the cost savings associated
with reuse [103].

Collaborative, empirical studies between industry and academe are less common. Two such collaborations
are the A-7E Project discussed earlier [30] and a study by Khoshgoftaar and Allen. The latter study involved
the use of structural metrics and hysteresis information to predict faults that may occur when the target system
is developed and maintained by human subjects. They tested their method with software embedded in a com-
plex, telecommunications system developed by industry. This study was important because it helped to sub-
stantiate the assumed relationship between structural features of modules and their resulting quality and
because it demonstrated the effectiveness and practicality of a theoretical predictive model [87].

Empirical studies by Hudak, et al., and by Maxion and Olszewski belong to the third category. In the
Hudak study, the researchers developed an experimental procedure for testing the effects of different tech-
niques for developing fault-tolerant software. The participants, graduate engineering students, developed
fault-tolerant software based on the requirements specification for the Launch Interceptor Program. The sub-
jects in each of four groups applied one of the following software development techmigpeesion pro-
gramming, recovery block, concurrent error-detection, and algorithm-based fault tolerance [69].

In their paper, Maxion and Olszewski describe controlled experiments for testing the hypothesis that ro-
bustness for exception failures can be improved through the use of various coverage-enhancing techniques

such as N-version programming, group collaboration, and dependability cases. Dependability cases, derived

46

from safety cases, comprise anew methodol ogy based on structured taxonomies and memory aids for hel ping
software designers think about and improve exception handling coverage. They showed that all three methods
showed improvements over control conditionsin increasing robustness to exception failures and that depend-
ability cases proved the most efficient in terms of balancing cost and effectiveness [108].

The next chapter presents background in the measurement of software design quality.

47

48

4 Software Design Measures

As stated repeatedly in previous chapters, the purpose of the thesisisthe development of a method for par-
titioning data, operations, and control flow into software componentsthat simplify product evolution. Chapter
5 detailsthe steps of the method, verifiesthat the method doeswhat it isintended to do, and explains the math-
ematical foundationsfor semi-automation of the method. Chapter 6 discusses the process by which the meth-
od was validated to determine its usefulness to software designers. In preparation for these discussions,
Chapter 4 briefly reviews concepts about software product quality and techniques for measuring software
quality with respect to quality attributes such as maintainability, structural complexity, and reusability. In par-
ticular, the chapter outlines ways of measuring software design quality and previews those to be used in val-
idating the research method.

Chapter 4 isdivided into the following sections.

» Section 4.1 briefly discusses software product quality and quality attributes.
» Section 4.2 outlines relevant ways to measure structural complexity.

» Section 4.3 overviews the measurement of software reuse.

» Section 4.4 discusses the measurement of changeability.

» Section 4.5 previews the evaluation measures used in validating the research method.
41 Software Product Quality and Quality Attributes
As mentioned in 2.3, software engineers frequently define software quality with speaifty attributes
such as reliability, maintainability, and usability. The target quality attribute for the thesgitainability
or evolvability, with changeability andreusability as its manifestations. Quality attributes are measurable
when associated with observable properties of the software product and the environment in which it is used.
Fenton distinguished betweamnternal andexternal product attributes, properties of the software that af-
fect the quality of the software. Internal attributes, such as size, control structure, and modularity, are depen-
dent only on the product itself. In contrast, external attributes depend upon other entities in addition to the
product itself. For instance, reliability depends not only upon the software code but also upon the machine
environment and the user. External attributes are defined with respect to the perception of the user and are

synonymous with particular views of quality or with quality attributes [46].

49

Often, external quality attributes aretoo high level to be measured directly. In this case, designers measure
lower-level attributes called quality criteria that are related to the higher-level concept. For example, the cri-
teria of consistency, accuracy, error-tolerance, and simplicity compose the reliability quality in McCall’s
model of quality attributes [110]. The importance of internal attributes is the extent to which their measures
indicate or predict the external quality of the software. There is an assumption in software engineering that
good internal structure implies good external quality. In software engineering, theotaphaxity embodies
the totality of all internal attributes. One quality criterion relevant to the thesiuigtur al complexity, be-
cause of the commonly shared assumption that it is related to maintainability. The thesis does not address the
broad issue of cognitive complexity associated with organization of a software system.

The author refers the reader to [44,78,104] for additional information about software quality and its mea-
surement.

4.2 Measurement of Structural Complexity

Because of the difficulty of measuring design quality, evaluators of software design methods frequently
measure the structural complexity of the resulting software to determine the effectiveness of a particular
method [46]. As Shepperd notes in an earlier study, design measures encounter problems with the lack of suf-
ficiently formal notation for documenting designs and with validation. Ideally, automatic extraction of design
measurements from the artifacts should be possible; but the lack of formal design languages makes it impos-
sible for a machine to translate and evaluate a design. Therefore, a common approach is to infer design or
structural properties from the resultant code; but this precludes the evaluation of complexity during the design
phase when alterations of structure are most easily made [136].

Another general problem is the validation of software measures. Pfleeger, et al., defines a measure as a
mapping from the real, empirical world to a mathematical world in which one can more easily understand an
entity’s attributes and relationship to other entities. The problem is that validation is necessary to determine
if a particular measure is really measuring what it claims to measure: the measure is valid if it captures in the
mathematical world the behavior perceived in the empirical world. Frameworks for validating software mea-
sures based on measurement theory and statistical rules are relatively new [119]. The thesis uses or builds

upon accepted design measures.

50

Henderson-Sellers developed a taxonomy of widely accepted structural complexity measures. In the
Henderson-Sellers model, measures of internal attributes contribute in whole to the measurement of the struc-
tural complexity of a software product. | ntermodule and intramodul e measures compose the measurement of
structural complexity [59]. Many of the example intermodule and intramodul e measures presented in the fol -
lowing paragraphs relate to object-oriented systems. Since the subjects for the research experiments were
learning or applying an object-oriented programming language in the classes from which they were recruited,
the experimenter chose eval uation measures applicable to object-oriented software systems. Likewise, the ex-
perimenter adapted the research method to partition the required logic into modular structures used in object-
oriented software development.

Intermodule measures involve the coupling or interaction between modules. Examples of intermodule
measures for object-oriented systems are those which follow.

» For each class of a software system:

» Total number of activations of methods which are defined in classes other ltlyamethods
defined withinc (coupling between classes at the method level)

* The number of classes (other tt@rwhich contain a method activated by a method contained
in ¢ (coupling between classes at the class level)

* For each methorh of a clas<:

« Total number of activations of methods which are defined (ooupling between methods
within a class)

* Total number of activations of methods which are not defined(toupling between
methods of different classes)

Traditional intramodule measures involve features such as size (e.g. lines of code, Halstead’s software sci-
ence [57], and function point counting [2]) and control flow (e.g. McCabe’s cyclomatic complexity [109]).
Examples of related size measures for object-oriented systems are those which follow [60].

* Method size (including the mean and the standard deviation across all methods)

* Number of methods per class (including the mean and the standard deviation across all classes)

* Number of data stores per class (including the mean and the standard deviation across all classes)
» Class size (including the mean and the standard deviation across all classes)

» Total number of classes in the system

Class size is dependent not only upon the number and size of the methods encapsulated by a class but also
upon the number of attributes or “data stores” in a class. In contrast to variables defined within methods, class
attributes are variables defined within a class but outside of the methods declared in the same class. Li and

Henry define class siZg- as shown in Figure 4.1.

51

class size = Sc = NOA +NOM
where NOA is the number of attributes per class and NOM is the number of methods per class.

Figure4.1 Mathematical expression for Li and Henry’s definition of class size [106].

Henderson-Sellers present an extension of class size that includes programming language-dependent
welghts W, and W), (mean values) for the sizes of attributes and methods, respectively [61]. This extended
definition of classsize, s, isshownin Figure 4.2. Therelated size of asystem Sfor N classes, each of size s,

isas shownin Figure 4.3.

class size = s; = (AW, + MWM)i

where A is the number of attributes or data stores defined in class i, M is the number of methods defined in class i, and
W, and W), are mean values for the size of the attributes and methods, respectively.

Figure 4.2 Mathematical expression for Henderson-Sellers’ extended definition of class size [61].

N N
systemsize = S = z S = z (AW, + MWM)i
i=1 i=1

where N is the number classes in the system, s;is the size of class i, A is the number of attributes or data stores defined
in class i, M is the number of methods defined in class i, and W, and Wy, are mean values for the size of the attributes
and methods, respectively.

Figure 4.3 Mathematical expression for Henderson-Sellers’ definition of system size [58].

Severa researchers have organized suites of metrics for measuring structural features of object-oriented
(O0) systems. Six product design measures proposed by Chidamber and Kemerer focus on size, coupling,
and cohesion [37]. Basili, et al., conducted an experiment to empirically validate the OO metric suite pro-
posed by Chidamber and Kemerer with regard to the ability of each measure to predict fault-prone classes.
Except for the number of children of aclass (NOC), they found a positive correlation between all of the mea-
sures and the probability of fault detection [16]. Readers should refer to [62] for a comprehensive review of
OO metric suites. Typically these suites include metrics that can be evaluated at design time as well asthose

which are most easily extracted from code (e.g. the number of methods per class versus the size of a method).

52

Many suites also distinguish between product and process metrics (e.g. the number of classes in the system
versus the number of classes reused when modifying a system). In Section 4.5, we present an extension that
makes the weighting of attribute and method sizes less dependent on programming language features and
more dependent on functional features that can be expressed in pseudo-code at design time.

The author refers the reader to [115] for the application of software metrics and to [127] for astudy in the
validation of metrics.

4.3 Measurement of Software Reuse

Asstated in Section 2.4, software reuse involves the use of one or more software artifacts in multiple soft-
ware solutions. In earlier work leading to the development of the research approach, the focus was on the de-
velopment of reusable software components that are executable or compilable modules carefully designed to
beuseful inseveral programs, including unanticipated ones[65]. Asit became more apparent that partitioning
logic to achieve evolvable software solutions is primarily a software design activity, the focus centered on
architectural or design components [66,67,68]. Similarly, many software devel opers think the reuse of soft-
ware code embodiesthe whole of software reuse. The research community investigating the usage of software
patterns and styles have shown that the potential for reducing effort and error by reusing existing software
designs is substantial (discussed in Section 3.1). Hence, there is certainly a need for ways to measure a de-
sign’s potential for reuse.

Measures of reuse tend to be “after the fact.” In other words, a software artifact’s reusability is a measure
of the degree to which it is actually reused across multiple software solutions. Typically such measurements
involve the reuse of software components implemented as code, but it is feasible to measure the reuse of de-
sign components. For instance, components such as class and method definitions are apparent at both the de-
sign and code levels. During the process of creating a new software design, the designer can classify the
components into the following three categories.

* Reused without modification
* Reused with modification

¢ New

The reader can refer to [59] for a list of reuse measures relevant to object-oriented systems.

53

To determine a design’s potential for reuse “before the fact” requires the designer to think either about the
future evolution of the product or about feasible related applications. The key is to pose potential new require-
ments and to determine how much of the current design could be reused to create a new design to satisfy these
requirements. Without actually designing new components, the designer can determine which components
from the current design can be reused with or without modification in the new design and which components
are not reusable.

Sizing design components is useful in estimating the following measures:

» Proportion of an existing design which is reusable.
» Proportion of a new design constructed from reused components.

One way to estimate the size of a design component is to relate it to a representative component of code. The
estimator then applies a technique for sizing code such as counting lines of code or counting according to
some other specific guidelines. Example guidelines for estimating the size of program elements and files
appear in Appendix P.

Another way to estimate a design component’s size is to develop a method for sizing components and data
stores specified in a design. To compensate for differing levels of detail in the pseudo-code provided by dif-
ferent designers, the estimator can create a benchmark design and map the logic in target designs to the bench-
mark logic which has been sized. This is the approach used by the experimenter in evaluating the designs
created by the subjects in the first experiment of the research studies. Discussion of the research studies ap-
pears in Chapter 6 and Chapter 7.

44 Measurement of Software Changeability

Measuring ease of change or changeability requires a rationale for relating observable properties of the
software artifact to be changed with the human effort required to chahgeatity of change (a type of co-
hesion with respect to change) asizk of change are observable properties that directly relate to the effort
required to change software. Clearly, a software maintainer can more easily modify a system whose pieces
of logic or data to be changed are located closely together, such as in the same component. With this rationale,
one might argue that a monolithic system is the most easily changed. On the other hand, the maintainer can

more easily understand and modify smaller components and is less likely to introduce error when working on

54

asmaller part of a software system. The logical approach isto locate those parts that are expected to change

together in the same component and separate from those parts not related with respect to the anticipated

change. If the component becomes “too big,” the designer can create a hierarchical decomposition of the com-
ponent into subcomponents located closely to one another through the hierarchical organization.

Software developers use size as an estimator for development or maintenance effort and for potential error
in maintenance. One way to measure the size of change impact is to sum the sizes of the components that must
be modified to satisfy the change. The developer can use the size of change impact to estimate the requisite
maintenance effort. The size of change impact is then the sum of the size of each component involved in im-
plementing the change. The overall goal is to reduce the size of the change impact. The mathematical expres-

sion for the size of change impact is shown in Figure 4.4.

N
size of change impact = SC = z Si
i=1

where S, is the size of the impact of change ¢, N is the number components which must be modified to implement ¢, and
S; is the size of each component to be modified.

Figure4.4 Mathematical expression for the size of a change impact.

The partitions in Figure 4.5 show that separating the logic not affected by the same changes helps to reduce
the size of the change impact. Suppose that lad; andC are affected by a required changend that logic
D, E, andF arenot affected by change With the first partition, the size of the change impact is the size of
component, which is the sum of the sizes of all the logic pieces. The second partition separates the logic of
D, E, andF from the impact of changeby puttingD, E, andF in a separate component. So with the second
partition, the size of the change impact is less than that for the first partition because the size of component

C,, which contains only the affected logic, is smaller.

55

Given: Logic A, B, and C are affected by change x. Logic D, E, and F are not affected by x.

Partition 1: Partition 2:
G G)
A B,C,D,EF A B C D,EF
Size of change impact = size(C,). Size of change impact = size(C,).
= size(A)+size(B)+size(C)+ = size(A)+size(B)+size(C).
size(D)+size(E)+size(F).

Figure 4.5 Partitioning to separate logic not affected by the same changes.

In addition to separating logic that is unrelated with respect to change, |ocating together logic affected by
the same changes helps to reduce the effort of finding the relevant parts of the software. The previously pre-
sented estimate for the size of change impact, summing the sizes of the affected components, does not reflect
any effort needed to find individual components related to a particular change. Therefore, as shown by the
two partitions in Figure 4.6, the size of the change impact does not necessarily increase with an increase in

the number of affected components.

Given: Logic A, B, C, D, E, and F are affected by change x.
Partition 1: Partition 2:
Cy C, G Cy Cq

AB @ E,F A B,CD,EF

Size of change impact = size(Cy)+size(C,)+size(Cy)+size(C,4) Size of change impact = size(Cy).
= size(A)+size(B)+size(C)+ size(A)+size(B)+size(C)+
size(D)+size(E)+size(F). size(D)+size(E)+size(F).

Figure 4.6 Partitioning to locate together logic affected by the same changes.

To account for any effort needed to find components affected by a change as well as the difficulty of co-
ordinating modifications across components, one can add aterm wN to the mathematical expression for the
size of change impact. N is the number of components that must be modified, and w is a factor to weight the
difficulty of modifying multiple componentsthat are related to the same change. With this aternative expres-

sion for the size of change impact shown in Figure 4.7, putting logic affected by the same change into the

56

same component will help to reduce the change impact value. The term localizing change includes both sep-

arating logic not affected by the same changes and locating together logic affected by the same changes.

N
alternative size of change = wN + z Si
i=1
where N is the number components that must be modified to implement a change c, w is a factor to weight the difficulty
of modifying multiple components related to the same change, and S; is the size of each component to be modified.

Figure 4.7 Mathematical expression for the alternative size of a change impact.

One can also measure the size of the change with respect to the size of the whole system as a proportion.
If the value of this proportion is large, then either the system is poorly partitioned with respect to the antici-
pated change or the impact of the change is large. A change with alarge impact may justify the creation of
new components and the replacement rather than the modification of components.

The reader has probably noticed that there is a relationship between reusability and changeability. A sys-
tem with highly reusable components (especially those that do not require modification to implement similar
applications) is a system with alow impact or size of change. In other words, there is an indirect correlation
between the degree of reusability and the impact of change, a concept which is discussed in more detail in
Section 6.2.

45 Evaluation MeasuresUsed in Validating the Resear ch M ethod

V alidating the effectiveness of the research approach requires the comparison of software designs created
by designers who apply the research approach with software designs created by designers who do not use or
apply the research approach. The validation includes a measurement of evolvability aswell as an assessment
of structural complexity. Measurement of evolvability involves dual measures:

1. A measure of theimpact of changing the designs with respect to target changes in requirements.

2. A measure of the degree of reusability with respect to target changes in requirements.
The author refers the reader to Chapter 6 for an extension discussion of the validation process and the rele-
vant evaluation measures.

This section ends with a few notes about how some of the design measures discussed earlier are applied

specifically in the validation of the research approach. The measurement of method and class size applied in

57

this dissertation is an extension of the Henderson-Sellers size measures presented in Section 4.2. The exper-

imenter assigned a separate weight to each attribute and method contained within a classinstead of using av-

erage weights. Since the eval uation pertains to software designs rather than code, the concept of weight refers

to an estimated size of thefunctionality to beimplemented by an attribute or amethod. The experimenter gen-

erated a representative or standard design that included the basic data and operations identified by applying

the research approach. The experimenter then estimated the relative size of each solution element using de-

tailed pseudo-code. For each attribute or method specified in adesign produced by a subject, the experimenter

either estimated its size directly from the designer’s pseudo-code or compared it to a corresponding solution
element in the standard design if there was insufficient pseudo-code to estimate its size. Using individual size
estimates for attributes and methods, the size of a sy&temtainingN classes is therefore represented by

the mathematical expression shown in Figure 4.8.

A- M-

system size = S Z Zw + Z |k

|—1g—1 k=1

g
g
g
g

where N is the number of classes in the system; A;, M; are the numbers of attributes and methods for class i,
respectively; and w; , wi, are the estimated sizes or weights of attribute j and method k for class i, respectively.

Figure 4.8 Mathematical expression for the size of a system.

Control flow in object-oriented systems is typically a measure of the number of decision points within a
method, e.g. an application of McCabe’s complexity méfts;) to the flow graplts; of each method V(G;)
is a code-level metric and therefore difficult to measure in the specification of a software design. Therefore,
the experimenter used a pseudo-implementation of the standard design discussed previously to estimate the
number of decision points per basic solution element. If the pseudo-code in a design produced by one of the
subjects lacked sufficient detail to determine the number of decision points, then the experimenter compared
it to the corresponding solution element in the standard design and estimated the number of decision points

for the element.

58

5 Analytical Partition of Components

Asdiscussed in Chapter 1 and Chapter 2, a primary architectural decision involves determining the com-
ponents of the system. A logical component is an encapsulation or abstraction of part of the solution and has
arepresentative name, meaning, and interface. A physical component is theimplementation of alogical com-
ponent with an observable container such asadirectory or filein afile system. Programming constructs such
as procedures, functions, modules, and classes also serve as physical encapsulations of logic. Hierarchica
composition of components enables the designer to focus on different levels of abstraction from system and
subsystem behavior to the low level details of a particular algorithm.

Determining the components of an architecture consists of the following four sub-problems.

1. How to determine solution elements to satisfy the required behaviors.

2. How and why to partition (decompose) higher-level solution elements into lower-level solution
elements.

3. How to partition (group) the solution elements into logical components that perform the required
behaviors,

4. How to encapsulate the logical components into physical components.
The partitioning techniques discussed in this chapter primarily address the first through the third subprob-
lems, though examples are given for subproblem four. The god is a systematic process for partitioning the
solution into components that will not only perform the correct behavior but will aso simplify the process of
modifying the solution to satisfy changing requirements.

This chapter is organized into the following sections.

» Section 5.1 motivates this chapter with a discussion of the rationale for an analytical partitioning

process.
» Section 5.2 addresses the first sub-problem of how to determine basic design elements.

e Section 5.3 presents a systematic process for partitioning data and operations into components.

» Section 5.4 presents the mathematical foundation for the partitioning process presented in Section
5.3 and demonstrates how this foundation enables the semi-automation of the process.

» Section 5.5 describes an optimal process for partitioning control flow into components.

» Section 5.6 outlines and proves a heuristic for determining a good, though not necessarily optimal,
control flow partition in polynomial time.

» Section 5.7 demonstrates how the design techniques presented in this chapter can be integrated
with other existing design approaches and discusses the merit of integration.

59

51 Rationalefor an Analytical Partitioning Process
Because of the safety implications and the high cost of maintaining systems with stringent reliability re-
quirements, two fundamental goalsfor this research are those shown in Figure 5.1.

1. The improved understanding of software metamorphosis (the nature of changes to software).

2. The development of systematic techniques for designing software solutions that can be reliably and easily
changed.

Figure5.1 Fundamental goalsfor the thesis research.
The terminology “reduce the impact of change” means that a software solution can be modified in a reliable,
timely, and cost-efficient manner. Ease of change is crucial not only during the development of new applica-
tions but also during the evolution of a product line of applications. During the development of a new appli-
cation, software engineers would like to be able to experiment with alternative software solutions to achieve
the desired performance or reliability. Sometimes, developers can achieve these goals via tunable software
parameters. Other times, they need to tune the solution by replacing poor performing parts of the system
[137]. Reusable software components that can be used alternatively to accommodate changing requirements
help to reduce the impact of change.

Two fundamental rationales direct the partitioning approach, presented in this chapter, for determining re-
usable software components (from here on referred to simply asstaech approach). One rationale orig-
inates from the idea of recasting large-effect algorithms into smaller-effect or partial algorithms [155].

A more general interpretation of this rationale is that software solutions implemented as large-effect com-
ponents may not be as reusable as those implemented as smaller-effect components. The reader should note
that decomposition of a software solution into parts is an essential part of determining an architecture for a
software system. This applies not only to the low level details of algorithms but also to the high level structure
of the system and subsystem. Figure 5.2 states the relevant research question.

One research question is how to recast a monolithic software solution into parts whose implementations will
facilitate changes to the software solution via replaceable and reusable components.

Figure5.2 Research question regarding the recast of monolithic software solutions.
The other rationale behind the research approach is the idea that those parts of a software solution that are

affected by the same expected changes should be located in the same software component. Depending upon

60

thetype of change and the organization of the software, the software engineer may need to examine and mod-
ify multiple parts of the software system. Minimizing the number of affected components helps to simplify
the process of finding the relevant parts of the software. Likewise, locating parts that change together in the
same components helps to reduce the opportunity for introducing errors into the parts that are not related to
the change. The relevant research question appearsin Figure 5.3.
A second research question is how to design software components that localize change.
Figure 5.3 Research question regarding localization of change.
The term analytic has the following three definitions that relate to the research approach [154].

1. Separating into elemental parts or basic principles.
2. Reasoning from a perception of the parts and interrelations of a subject.

3. Following necessarily asin alogica proposition.
The research approach helps the designer to determine the basic design elements of the software solution
and to partition these elements based on their relationships with respect to change. A mathematical represen-
tation for the relationship between the basic elements enables a systematic partition into components and
semi-automation of the research approach. The next section discusses the types of design elements that are
the focus of thisresearch.
52 Determining Basic Design Elements

The designer starts with a specification of the required behavior that the software solution should perform
along with a detailed description of the conditions and constraints for the behavior. The designer first identi-
fiesthe basic behavioral elementsin the requirements analysis. With a structured design approach, the behav-
ior includes any of the following basic elements.

» Data stores and processes that transform the data (represented by data flow diagrams).
» Control flow between the data processing elements (represented by control flow diagrams).

« Events and conditions that change the context for appropriate behavior (represented by state

transition diagrams).

As discussed in Chapter 2, with object-oriented design the nouns and verbs in the requirements specification

become object entities with associated data and actions. Eventually the control flow between objects

becomes apparent via scenarios of interaction. Regardless of the design approach, software solutions include

basic data, operations (many of which transform data), and the flow of control between the operations.

61

Data, operations, and control flow are basic solution elements that become encapsulated in components
that define the architecture of the software solution. The human designer may start by mapping the data, op-
erations, and control flow, described in the behaviora analysis, directly to representative solution elements.
The designer may choose different names for these sol utions elements, but there should be areverse mapping
from solution elements back to the basic behaviora elements. Ways in which the designer maps behavioral
elementsto solution elements may vary as listed below.

* Prior knowledge (mapping based on a known solution to a similar problem).
» Brute force (direct mapping of behavioral elements to solution elements).

» Brainstorming (exploration of different mappings with the expectation of finding a suitable
mapping based on some design criteria).

If the designer knows of a software solution that applies to a particular problem (in this case solution ele-
ments for which there seems to be a mapping from the behavioral elements), then he/she may be likely to
use this solution without exploring alternatives.

Known solutions may not, of course, be the best solutions. Therefore, it is important to help the designer
brainstorm about alternative solutions or to have a machine automatically do the brainstorming for the human.
The research approach guides the human designer to first identify the basic data, operations, and control flow
elements that are observable from the behavioral analysis. The next step in the design process is to refine the
basic solution elements through decomposition and rearrangement or grouping. The objective is the creation
of a design space in terms of basic solution elements and the determination of a good partition of these ele-
ments into components based on design constraints. As a first step toward this objective, the research ap-
proach focuses on the relationship between solution elements with respect to software evolution. The research
approach directs the designer in the partition of the solution elements into components that will maximize
their reuse and minimize the complexity of changing the solution to satisfy new requirements.

53 Approach for Partitioning Data and Operations

Basic elements of a software solution include data and operations. Following a structured approach, the
designer identifies the primary data elements (denoted as data stores) and processes that transform the data.
With an object-oriented approach, the designer identifies objects, some or all of which encapsulate key data

for the software solution. Encapsulating data and operations, or information hiding, supports the localization

62

of solution elementsthat change together. The problem is that the designer is solely responsiblefor determin-
ing the composition of the basic system components or objects. Prevalently used design methods do not guar-
antee that the designer will consider the appropriate level of reuse or group together those elements which
change together.

The research approach has two primary features:

1. A manua but guided reuse and change anaytic process.
2. A mathematical model and automatable algorithm for localizing solution features that change
together.

Figure 5.4 enumerates the six basic process steps of the partitioning process. The following text illustrates

the application of the processto the specification of components for the microwave oven software.

1. Identify the basic data and operational features of the software solution.

Recursively decompose the large-effect operations and identify additional data elements.
Enumerate the expected or feasible changes to the software solution.

Determine the change set of data and operations for each expected or feasible change.

Combine and organize into components the overlapping change sets.

o g B w D

Add other necessary components and organize remaining data.

Figure 5.4 Process for partitioning data and operations into reusable components.

Step 1: Identify the basic data and operations.
The first step is to identify the basic data and operations in the requirements or behaviora analysis. The
reader should refer to the statement of work for the microwave oven software in Table B.1 of Appendix B.
The four basic functions to be performed by the microwave software are:

1. Manage the user interface.

2. Schedule a heating operation.
3. Contral the electronics.
4,

Drive the electronics.
The statement of work describes the data used by the microwave oven software in the sections which discuss
the basic functions. By understanding these functions, the designer can determine the data that is used by the
microwave oven software. Therefore, the initial set of data and operations consists only of the four functions

listed above.

63

Step 2: Recursively decompose the lar ge-effect operationsand identify additional data elements.

The second step involves the decomposition of the large-effect operations into smaller-effect operations.
The process repeats recursively until further decomposition results in operations which are not reusable or
which do not help to make the solution easier to understand and design. In this example, the designer can refer
directly to the statement of work to determine the sub-operations of the four basic operations defined in the
first step. Depending onthelevel of detail in the requirements analysis, the designer may need to identify sub-
operations through analysis.

The question iswhether or not the basic operations should be decomposed for the purposes of partitioning.
Decomposition allows the sub-operations to be reused separately and to potentially be located in separate
components. The designer can think of each operation or sub-operation as a “block of logic” to be used in the
construction of multiple software solutions. Reusable means that the designer can use the operation in a sim-
ilar application or in a different application that would require a similar type of operation. Reuse without mod-
ification is most desirable, but reuse with minimal modification can also be useful. The designer can also
consider whether or not the decomposition yields one or more sub-operations for which alternative imple-
mentations are needed (e.g., to enable multiple versions of a software solution, each with a different level of
quality of service or performance). Ease of replacing individual sub-operations enables the other parts of the
solution to be reused without modification. Design for reuse and ease of change are integrally related.

The sub-operations of the Manage-User-Interface operation are:

» Get input from the keyboard.

» Put text onto the display (e.g., text to describe buttons which have been pushed, error messages,
and status messages).

e Stop an active heat operation if the STOP button is pushed.
» Check the sequence of keyboard inputs for each of the following heating types.

» straight heat
o defrost
* reheat
* Schedule a heat operation.

From a design point of view, decomposition of the Manage-User-Interface operation is useful if one or
more of the sub-operations is reusable as a separate operation. The reusability of some sub-operations, such

as the keyboard input and display output, is more obvious than for others. The statement of work instructs the

64

designer to use the predefined methods called GET_KEYBOARD and PUT_DISPLAY whose implementa-
tion will reside in a system.h file. Each heating type has its own expected sequence of button pushes and re-
lated types of keyboard input. The button sequence for a specific heating type may vary for different
microwave ovens, while for other heating types it may be the same. Therefore, the creation of a separate sub-
operation for each heating type would simplify the reuse, ateration, and addition of button sequences for dif-
ferent microwave ovens.

On the other hand, the logic to stop or to schedule a heat operation involves the preparation of a call to
another part of the software and is therefore not reusabl e outside the context of the user interface. The Man-
age-User-Interface operation yields reusable sub-operations to handle the button sequences for the different
heat types aswell asthe predefined methods to handle keyboard input and display output. The Manage-User-
Interface operation is itself useful for activating the sub-operations and for “gluing together” parameters nec-
essary to request a heat operation from the Schedule-Heating-Operation part of the software. It is not only
reusable but also replaceable for the evolution of more sophisticated user interfaces.

The above analysis goes beyond that used in a previous study [65]. Previously, the decomposition of an
operationT into a set of sub-operations would occur if and only if all of the sub-operatidrarefreusable.
Now, the decomposition df occurs if and only if at least one sub-operati@reusable. Another change is
the addition ofT to the set of reusable operations if at least one sub-opetatidnis not reusable or if is
reusable as an activator of its sub-operations. The result is the inclusion of larger-effect operations with def-
inite potential for reuse along with the smaller-effect operations in the resulting set of operations.

In addition to the primary operations for managing the user interface, the designer also needs to consider
the data input by the user (e.g., power level, duration, and weight).

» Should the data be decomposed to enable parts of it to be reused or modified separately?
* What are the necessary operations on the data to satisfy the required behavior?

* Should these operations be decomposed?

» Are there any data needed that is not apparent in the behavior analysis?

The data to manage the user interface is not complex: from a programming point of view, it is representable
by scalar data structures. Likewise, the reading and writing operations on the data are built into the program-

ming language and are therefore not significantly reusable from a design point of view. Likewise, range

65

checks on the data can be done with a few programming statements; and the use of constants enable the
allowable limits of the data to be easily changed through compilation. It does not appear to be necessary to
design special operations on the data identified in the statement of work.

The statement of work also directs that the microwave oven should report status and error messages and
should cancel al user programming if any error, stop, or door open condition occurs. The analysis above ad-
dressed the stop operation. Reporting error and status messages involves output to the PUT_DISPLAY oper-
ation discussed previously. While interpreting the sequence of button pushes for a particular heating
operation, the software must cancel any input data and prevent further user programming of the microwave
oven in the event of error or the door being opened. This logic has no clear usefulness outside this context.
There appear to be no additional sub-operationsthat should be separated from the logic previoudly discussed.
On the other hand, dataitemswill be needed for the door status as well as for error and status messages. The
implementation of these data are programming language specific and do not require specia operations to

manage them. The results of analyzing the Manage-User-Interface functionality appears in Figure 5.5.

Operations Data
manage_user_interface power level heating type
straight_heat duration door/door status
defrost weight error message
reheat number of servings status message
GET_KEYBOARD weight per serving
PUT_DISPLAY

Figure5.5 Analysis of the Manage-User-Interface functionality.

The analysis of the Schedule-Heating-Operation functionality is donein the same way with decomposition
based on design for reusability and ease of modification. The purpose of this part of the software is to deter-
mine apower level and duration needed for a heat operation and to pass this information to the software that
controlsthe electronics. What must be done depends on the type of heat request. Straight heating involvesthe
conversion of the user-input duration expressed in minutesto seconds. A separate conversion operation would
simplify change to the correl ation between user and machine duration units. The statement of work also spec-
ifies that formulas (special operations) called DEFROST and REHEAT will handle the conversion between
weight or servings and weight per serving to a power level and duration. No additional steps are needed for

a stop operation.

66

The question is whether a separate Schedule-Heating operation is needed to encapsulate the logic to acti-
vatethe conversion sub-operations discussed in the previous paragraph. All of the sub-operations are reusable
or candidates for change. The Schedule-Heating operation has no other function, and the sub-operation for
each heat type in the Manage-User-Interface part of the software could activate the appropriate conversion
directly. There appears to be no use for a separate Schedule-Heating operation. The data used by the conver-
sion sub-operations comes directly from the heat type sub-operations. Other necessary dataitems are a dura-
tion in machine units as well as error and status codes returned from the Control Electronics. The operations

and data resulting from the two previous analyses appear in Figure 5.6.

Operations Data
From Previous Analysis New From Previous Analysis New
manage_user_interface DEFROST power level duration2 (ticks)
straight_heat REHEAT durationl (minutes/seconds) error code (from Control Elec.)
defrost convert_to_ticks weight status code (from Control Elec.)
reheat number of servings
GET_KEYBOARD weight per serving
PUT_DISPLAY heating type

door/door status
error message
status message

Figure 5.6 Resulting operations and data after analysis of the Schedule-Heating functionality.

The Control-Electronics part of the software directs the hardware to perform aheat or stop operation, mon-
itors the progress of a heat operation via a feedback loop, and returns error and status codes. The two basic
sub-operations are the heat and stop functions. According to the statement of work, these functions “know”
how the hardware devices should be coordinated to accomplish the required functionality but are not aware
of the hardware interface details. Therefore, the heat and stop sub-operations consist primarily of requests to
the Drive Electronics to perform specific functions such as increasing or decreasing by one notch the power
on a particular power source. These requests are not reusable outside the context of a heat sub-operation.

On the other hand, the Control Electronics does include logic, such as stopping the power on all power
sources, to make requests across multiple hardware devices. In addition, the requirement to stop the power
on all power sources appears three times in the statement of work. This block of logic, from here on called
stop_all_power_sources, is reusable within the current solution. Sub-operations for increasing or decreasing

power on all power sources relate to the way in which power is controlled (currently 3 notches for each ad-

67

justment). Initiating the power source status on all power sources is aso a reusable block of logic. Lastly,
reading the status of all electronics may also need to be replaced or modified if the type of hardware devices
is different for future microwave ovens. Encapsulation of thislogicin a separate sub-operation would simpli-
fy replacement or modification

The designer needsto determineif the heat and stop sub-operations are reusable blocks of logic or are can-
didates for replacement or modification. The heat sub-operation contains an ordered sequence of task activa-
tions (some to activate the Drive Electronics directly and others to activate intermediate logic to handle
multiple devices). The feedback loop is a reusable sequence but is also a candidate for replacement or modi-
fication to satisfy changing requirements. The reader should see Section 5.5 and Section 5.6 for an approach
to designing control flow components, such as the heat sub-operation, for change. The stop sub-operation ac-

tivates the stop_all_power_sources sub-operation and is therefore not a reusable block of logic.

Operations Data
From Previous Analysis New From Previous Analysis New
manage_user_interface control_electronics power level (user interface) desired power level (to Control Elec.)
straight_heat heat_operation durationl (minutes/seconds) duration (to Control Elec.)
defrost stop_all_power_sources weight actual power level (from Driver Elec.)
reheat increase_all_power_sources number of servings power source status (sources 1-4)
GET_KEYBOARD decrease_all_power_sources weight per serving power sensor status (from Dr. Elec.)
PUT_DISPLAY initiate_status_all_power_sources heating type door status (from Drive Elec.)
convert_to_ticks read_all_devices_status door/door status (user interface) door sensor status (from Drive Elec.)
DEFROST error message time (from Drive Elec.)
REHEAT status message timer status (from Drive Elec.)

duration2 (ticks) error code (from Drive Elec.)

error code (from Control Elec.) status code (from Drive Elec.)
status code (from Control Elec.) error code (to user interface)
status code (to user interface)
heat request (from user interface)
power sources (4)
power sensor
door sensor
timer

Figure 5.7 Resulting operations and data after analysis of the Control-Electronics functionality.

To conclude the analysis of the Control Electronics, the designer must consider the usefulness of a
control_electronics operation and the data used by the Control Electronics software. The control_electronics
operation contains a reusable heat sub-operation and logic to activate the stop_all_power_sources sub-oper-
ation when the user requests a stop operation. The control_el ectronics operation hides the details of the sub-

operations used to perform a heat or stop operation. For testing purposes, it is helpful to have an intermediate

68

component that can analyze detailed status and error codes returned by the software closer to the hardware.

The control_electronics operation converts the detailed status and error codes returned by the heat and

stop_all_power_sources into the more generic codes required for the manage _user_interface software. The

Control Electronics dataitems include status and error codes as well as the status of and a representation for

each hardware device being monitored. The list of operations and data after the analysis of the Control Elec-

tronics appearsin Figure 5.7.

Operations
Previous
manage_user_interface
straight_heat

New
increase_power
decrease_power

defrost shut_off_power_source
reheat initiate_power_source_status
GET_KEYBOARD read_power_source_status
PUT_DISPLAY initiate_power_sensor_read
convert_to_ticks read_power_sensor_level
DEFROST read_power_sensor_status
REHEAT initiate_door_status

control_electronics
heat_operation
stop_all_power_sources
increase_all_power_sources
decrease_all_power_sources
initiate_status_all_power_sources
read_all_devices_status

read_door_status
read_door_sensor_status
set_timer
check_timer_status

Data
Previous
power level (user interface)
durationl (minutes/seconds)
weight
number of servings

New
power level (from power sensor)
power source status (from pwr. src.)
power sensor status (from pwr. sen.)
door sensor status (from door sen.)
weight per serving door status (from door sensor)
heating type time (from timer)

door/door stat. (user interface) timer status (from timer)

error message

status message

duration2 (ticks)

error code (from Control Elec.)

status code (from Control Elec.)

desired power level (to Control Elec.)

duration (to Control Electronics)

current power level (from Driver Elec.)

power source status (sources 1-4)

power sensor status

door status (from Drive Electronics)

door sensor status (from Drive Elec.)

time (from Drive Electronics)

timer status (from Drive Electronics)

error code (from Drive Electronics)

status code (from Drive Electronics

error code (to user interface)

status code (to user interface)

heat request (from user interface)

power sources (4)

power sensor

door sensor

timer

Figure 5.8 Resulting operations and data after analysis of the Drive-Electronics functionality.

The Drive Electronics reformats Control-Electronics requests to match the hardware-specific interfaces.

I solating each of these requests in a separate sub-operation simplifies changes to the hardware interface. The

statement of work specifiesthat the hardware interface includes a configurable CALL_ HARDWARE meth-

od. Thelist of operations and data after the analysis of the Drive Electronics appearsin Figure 5.8. The reader

69

may note that some of the data appear to be duplicates of the same information (e.g., error/status codes from
the Control Electronics and error/status codes to the user interface). Such datamay store the same values dur-
ing run-time; but from a design point of view, they represent information being processed or passed by dif-
ferent parts of the software.

The next section discusses types of changes that are feasible or likely to be made to the solution.

Step 3: Enumerate the expected or feasible changesto the software solution.

To determine the expected or feasible changes to the software solution, the designer can start with an anal -
ysis of the requirements. A domain analyst can help to identify ways in which the requirements may change
over time. In Table B.2 of Appendix B, the statement of work for the microwave oven contains an analysis
of the way in which the microwave oven product is expected to evolve. Table 5.1 presents an abbreviated
version of the expected evolution of the microwave oven. Associated with each changeisa change signature.

The reader may note that the items 10-12 in Table 5.1 are an expansion of the ninth item in Table B.2. It
isimportant that similar changes be grouped together only if they are expected to happen together. If thereis
apossibility that one of agroup of similar changes may occur separately, then that change should appear sep-
arately in the list. If the members of a group of similar changes may occur separately but are also likely to
occur together, the designer should list them separately but mark them with an identifier as shown by the su-
perscript RCGL1 after items 9-12 in Table 5.1. RCG1 is an abbreviation for the term related change group
number 1. Item 2 in Table B.2 yields two changes shown as changes 2 and 3 in Table 5.1.

Table 5.1 Change signatures for the expected or feasible changes to the microwave oven software.

Expected*or Feasible Evolution of the Microwave Qven Software Change Signature
denotes changes suggested by the designer

POWER-TIMER as well as TIMER-POWER button sequences to program straight heating. HBSQ

Different defrost formula. DFORM

Different reheat formula. RFORM

More sophisticated control of power sources than up or down three notches. CPSRC

Different feedback loops to allow for electronics which respond faster. FDBL

Error and status messages, as well as weight measures, for the international market. IMSWT

More powerful microwaves with higher limits for weight, servings, and weight per serving. HLWS

Different configurations of hardware devices. CHD

70

Expected*or Feasible Evolution of the Microwave Qven Software Change Signature
denotes changes suggested by the designer

Different type of power source with new parameters for the CALL_HARDWARE interface.RCC1 PSRC

Different type of power sensor with new parameters for the CALL_HARDWARE interface.RCC1 PSNSR

Different type of door sensor with new parameters for the CALL_HARDWARE interface.R¢C1 DSNSR

Different type of timer with new parameters for the CALL_HARDWARE interface RCC! TIMER

Addition of programmed operations to heat specific foods such as bacon, popcorn, or vegetables.* APO

Event-driven approach to controlling the hardware.* EDA

The designer can suggest changes to requirementsthat are feasible though not listed in the anticipated evo-
lution of the product. For instance, the designer may foresee the addition of other heating types or the replace-
ment of one or more of the straight heating, defrost, or reheat types. Likewise, the designer may have ideas
about how the solution could change to improve its performance. For instance, the designer may envision an
event-driven approach to controlling the hardware rather than polling within a feedback loop. The items
marked with an asterisk in Table 5.1 are those added by the designer.

The next step is to determine the impact that evolution of the microwave software would have on the so-
lution elements that have already been identified.

Step 4: Determinethe change set of data and operationsfor each expected or feasible change.

The objective is to determine the solution elements that would need to be replaced or modified to accom-
plish each of the expected or feasible evolution items. The designer must consider whether or not a solution
element can beimplemented in away that would significantly limit the necessary changes. For instance, user-
defined types enable the actua type of a data element to be changed in a data definition file and permeated
throughout the solution via compilation. In this analysis, the designer is primarily looking for changes that
cannot be isolated in data definition files.

Table 5.2 contains the results of the analysis of change impact on the data and operations for the micro-
wave oven. In the microwave example, the definition of data typesin separate files can eliminate the need to
change the operations that use the data of these types. For instance, isolation of the number of each type of
devicein auser-defined datatype localizes changes to the number of a particular device. Therefore, changing

the number of power sources (change CHD) does not affect the stop_all_power_sources,

71

increase_all_power_sources, decrease all_power_sources, and initiate status all_power_sources opera-

tions.
Table 5.2 Change set of data and operations for each expected or feasible change.
_Change Data That Would Be Impacted .
Signature of by the Change Operations That Would Be Impacted
Expected or 1 . . o by the Change
Feasible (*Programming techniques can limit impact
Change of change to data definition files.)
HBSQ straight_heat
DFORM DEFROST
RFORM REHEAT
CPSRC increase_all_power_sources, decrease_all_power_sources
FDBL heat_operation
DEFROST, REHEAT
IMSWT error message, status message1 (e.q., different formulas for English versus metric weights)
constants for the limits on the weight, number of
HLWS servings, and weight per serving® no change impact
CHD heat_operation, read_all_devices_status
PSRC initiate_power_source_status, read_power_source_status,
increase_power, decrease_power, shut_off_power_source
initiate_power_sensor_read, read_power_sensor_level,
PSNSR read_power_sensor_status
DSNSR initiate_door_statugad_door_statugad_door_sensor_status
TIMER convert_to_ticks, set_timer, check_timer_status
APO heat type1 manage_user_interface
no change impact (new heat_operation with the same inter-
EDA face)

The next step is to locate the date and operations into components that |ocalize the expected or feasible

impact of change.

Step 5: Combine and organize into components the overlapping change sets.

One way to localize change to the microwave software is to create a component for each expected or fea-

sible change and to put into the component the data and operations that would be impacted by the change.

Figure 5.9 showsthe change sets resulting from the change impact analysis for the microwave oven software.

72

Each set represents apotential component. The reader should note that the change sets do not contain the data

whose change impact can be localized in data definition files.

DFORM
DEFROST

RFORM
REHEAT

HBSQ
straight_heat

manage_user_interface

PSRC
initiate_power_source_status,
read_power_source_status,
increase_power, decrease_power
shut_off_power_source

initiate_power_sensor_read,
read_power_sensor_level,
read_power_sensor_status

IMSWT
DEFROST,
REHEAT

FDBL
heat_operation

DSNSR
initiate_door_status,
read_door_status,
read_door_sensor_status

increase_all_power_sources,
decrease_all_power_sources

CHD
heat_operation,
read_all_devices_status

TIMER
convert_to_ticks,
set_timer,
check_timer_status

———» direct (intersection) relationship
- — - transitive relationship

Figure5.9 Change sets resulting from the change impact analysis.

The problem is that some of the change sets contain the same operations. In Figure 5.9, the change sets
with solid arrows connecting them have non-empty intersections. Change setswith broken arrows connecting
them arerelated through transitive closure on the intersection relation. Merging the change sets eliminatesthe
possibility of duplicate operations. Figure 5.10 displays the change sets after the application of the transitive

closure on the intersection relation.

HBSQ IMSWT, DFORM, RFOR

DEFROST,
REHEAT

straight_heat

manage_user_interface

initiate_power_source_status,
read_power_source_status,
increase_power,
decrease_power,
shut_off_power_source

CPSRC
increase_all_power_sources,
decrease_all_power_sources

initiate_power_sensor_read,
read_power_sensor_level,
read_power_sensor_status

CHD, FDBL
heat_operation,
read_all_devices_status

TIMER
convert_to_ticks,
set_timer,
check_timer_status

DSNSR
initiate_door_status,
read_door_status,
read_door_sensor_status

—— = direct (intersection) relationship
- — - transitive relationship

Figure5.10 Change sets after transitive closure on the intersection relation.

73

Step 6: Add other necessary components and organize remaining data.

After identifying the components from the change impact analysis, the designer will need to add compo-
nents for the operations not affected by the changes and to put the remaining data into existing or new com-
ponents. In the microwave oven software example, the operations not included in any of the change sets are
the defrost and reheat operations. The designer should put these into separate components since they are not
related with respect to reuse and change. Likewise, the designer can locate the remaining data with the oper-
ations that use it. The software engineer may choose to implement the data items as local variables or as pa-
rameters which are part of interfaces between operations.

Figure 5.11 shows the organization of the data and operations for the microwave software into compo-
nents. The components could represent class definitions when an object-oriented approach is being used. Al-
ternatively, the components could represent files that contain the definitions of procedures or functions. The
implementor can a so locate the software device drivers, RCG1 members, in alarger component such asafile

(C++ version) or directory (java version) to facilitate easy replacement of all of the hardware devices.

APO r——-——-"""=- B
heating type, door status, le/ll;:/tv Tnluerance),\F_ hc/)lfl_zlefr(\?iEng, | PSRC (RCG1) |
error message, status message, weight_per_serving, | power source status |
power level, duration power level. duration, | initiate_power_source_status, |
error/status Fodes error/status codes | read_‘power_source_status, |
manage_user_interface DEFROST, InCrease_power,
REHEAT | decrease_power, |
HBSQ | shut_off_power_source |
power level, durationl, duration2 CPSRC
error/status codes power sources, error/status code | PSNSR (RCG1) |
straight_heat increase_all_power_sources, ||| power level, power sensor status | |
decrease_all_power_sources | initiate_power_sensor_read, |
No Impact by Change read_power_sensor_level, |
weight, error/status codes CHD, FDBL | read_power_sensor_status
defrost desired & actual power levels, | !
5y Ch duration, | DSNSR (RCG1) |
anmzicgf >s/ ef;viigg,e power sources & statuses (1-4), | |_door Trgi::tse d;sgrsz't‘:tzr:tatus |
weight _per_ senving, power sensor & power sensor | read door Stalus ' |
error/status codes status, doorldoor status, | read_door_sensor_status |
reheat door sensor, door sensor status, - = =
time, timer, timer status, | TER RCGI |
No Impact by Change error/status codes | e timér statu)s |
heat_operation ! .
power sources, error/status codes 4 all dovi at | convert_to_ticks, |
stop_all_power_sources read_all_devices_status | set._timer, |
No Impact by Change | check_timer_status |
No Impact by Change heat_request, power level,
power sources, error/status codes duration, error/status codes L - — - — — — -
initiate_status_all_power_sources control_electronics

Figure5.11 Components resulting from the reuse and change impact analysis.

74

54 Mathematical Foundation for Data and Operations Approach

The goal isto automate the partitioning process as much as possible. Automation requires a precise way
to represent each step in the partitioning process. This section shows those steps of the process which have a
mathematical representation that motivates a semi-automatabl e partitioning algorithm. The representation for
each step of the process appearswith application to the microwave oven software. The text notesthe decisions
that must be made by the designer.
I dentifying the basic data and operations and decomposing the large-effect operations are primarily manual
processes. As shown in Figure 5.12, we can store the results of these processes in sets D, O, and DO. Like-
wise, we can program a computer to remember the solution elements (data and operations) associated with
particular problem elements (requirements statements) as well as the decompositions of these operations.
There is currently no automatable process for determining appropriate solution elements for an arbitrary set

of software requirements.

D = {de« Dataltem} = {powerLevel durationl, weight, numberOfServings, weightPerServing, ..}
O = {0+ Operator} = { manageUerlInterface, straightHeat, defrost, reheat, ...}
DO =D0OO

Step 1: Identify basic data and operations.
Step 2: Recursively decompose large-effect operations and identify additional data elements.

Figure5.12 Mathematical representation of steps 1 and 2.

As with steps 1 and 2, enumerating the expected or feasible changes currently requires human analysis.
With respect to automation, we can program a computer to remember the changes associated with particular
requirements or solutions. More “intelligent” machines in the future may be able to process a set of require-
ments and suggest ways in which the requirements might evolve. As shown in Figure 5.13, we can store the

enumerated changes in a €gfior use in later steps of the change analysis process.

C = {ce+ Change} = {HBSQ, DFORM, RFORM, CPSRC, ...}

Step 3: Enumerate the expected or feasible changes to the software solution and create a set of
changes (represented here by their change signatures).

Figure5.13 Mathematical representation of step 3.

75

Step 4 involves the semi-automatabl e process of determining the change set of data and operations asso-
ciated with each change. One way to help automate this process is to define a change impact relation Cl that
associates each change with aset of dataor operations which areimpacted by the change. Determining wheth-
er or not achange ¢ impacts a particular data or operation do (theimpact function) requires human judgement.
We can currently program a computer to remember the impact that changes have on specific data and opera-
tions, but future programs may be able to determine the impact of a change in requirements on a software
design. If a design is expressible in a well-defined design language, then possibly “compiler-like” programs
could locate those parts of a design that are related to a requirements change. Currently, the designer must
input the data and operations associated with each clkargésets of duples representable as a table). Then
as shown in Figure 5.14, the computer can create@eft change sets (one set of impacted data and oper-

ations for each changee C).

Cl = {(c,do)+ CxDOJc - impact(do)}
CS = {csODO|(k C|(cs = Cl(c)) O(O(do O cs), H{(c, do) O CI)))}

= {{straightHeat}, { DEFROST}, { REHEAT}, { DEFROST, REHEAT}, ...}

Step 4: Identify the change sets.

For each anticipated change c, create a change set cs of data and operations that are impacted by c.
CS is the set of all change sets.

Figure5.14 Mathematical representation of step 4.

Step 5 is fully automatable. As shown in Figure 5.15,Qlerlap relation identifies change sets which
have non-empty intersections. TA#inity relation identifies change sets which are related througbvére
lap relation (non-empty intersection) or which are related through transitive closure on interstactien.
Component puts together into a single set those change sets which are related throAfmityerelation
(non-empty intersections or relation through transitive closure on intersection). The result is a set of equiva-
lence classes in which each equivalence class contains the union of the change sets related tAffnigy the
relation. Each one of these equivalence classes (set of data and operations) becomes a software component
that will be implemented (packaged) according to the type of programming language and design style being

used.

76

Overlap = {(cs,;, cs,)* CSx CS|(cs,l ncs,# 0)}
Affinity =
{(cs;, csy) » CSx CS|(((csl, cs,) O Overlap) O((csy* C9);((csy, cs3) O Affinity O (csg, cs,) O Affinity)))}
SameComponent = {sc 0 CS|(0(cs,, cs, O CS);((cs; Osc) O(cs, O sc) = (csy, €s,) O Affinity))}
= {{straightHeat}, { DEFROST, REHEAT}, { manageUserInterface}, ...}

Step 5: Combine and organize into components the overlapping change sets.

Figure5.15 Mathematical representation of step 5.

The last step of adding necessary components and organizing the remaining datais semi-automatable. As
shown in Figure 5.16, NewComponent defines a set of sets where each set contains precisely one operation
which isamember of O and is not associated with any change c € C. This part of the processis automatable.
The last part of the processis to organize the remaining data into the components which contain operations
that use the data. The human designer must determine the operations that use each data element d € D (the

uses function) that is not currently in a component.

NewComponent
= {nc00|do,, 0,00, (0, 0ncO o,0nc)O(o,Onc o, Onc)d0 b ONc -~ -+ C,(c -~ impact(o))d

ExpandedComponent

= {ec O DO|sc+ SameComponent, sc O ec) O(Chc+ NewComponent, nc O ec)
{O(d* D,d0O0ecd [+ C,(c » impact(d)))) O(b* O,(oc Jec o - uses(d)))}

= {{powerLevel, durationl, duration2, error StatusCode, straightHeat}, {weight, ..., REHEAT}, ...}
Step 6: Add necessary components and organize remaining data.

Figure5.16 Mathematical representation of step 6.

Once the designer inputs the operations used by each remaining data item (representable as atable), appli-
cation of ExpandedComponent places each remaining dataitem into the component that contains one or more
operations that use it. As defined, ExpandedComponent does not support global data. If more than one com-
ponent contains operationsthat use a particular dataitem, then each component will contain a copy of thedata
item. Thisisnot likely to happen if the designer iscareful to list separately each datathat is used by adifferent
part of the software aswas done with the error and status codes communi cated from one part of the microwave

oven software to another. The reader may suggest a definition of ExpandedComponent to support global data.

77

In summary, the research approach is a semi-automatable process that hel ps the designer to identify, de-
compose, and partition data and operations into reusable components that localize the impact of changing re-
quirements on the software solution. With the research approach, the following design decisions require
human analysis and judgement.

« What data and operations (basic solution elements) are appropriate for a specific set of
requirements?

» How can the large-effect operations be decomposed into smaller-effect operations, and should
they?

* What are the expected or feasible changes to requirements or the software solution, and should
they be decomposed?

* Which data and operations would need to be modified or replaced to implement a specific change?
* Which operations use which data?

The research approach provides the designer with precise guidelines for answering these questions. Most
importantly, the answers to these questions enable the automatable partition of solution elements that local-
ize change.

The next section discusses the research approach to organizing the flow of control between solution ele-
ments in a way that simplifies changes to control flow.
55 Approach for Optimal Partition of Control Flow Components

The software designer’s goal is to organize the flow of control between the required tasks in a way that
simplifies the process of changing the control flow. The consideration of alternative orders of task execution
during the requirements analysis phase can help the software engineer to design for change. There are at least

two basic design strategies for simplifying changes to control flow as listed in Figure 5.17.

1. Isolating the knowledge of the order in which tasks should be activated from the implementation of the tasks.

2. Organizing tasks in a way that localizes changes in the order of their execution.

Figure5.17 Design strategies for simplifying changes to control flow.

The first strategy is to decouple the part of a software solution which may change (in this case the ordering
of task activations) from the part not involved in the change (the tasks themselves). The object-oriented de-
sign community has codified a design pattern calliediator that is an application of this strategy. The ob-

jective of this pattern is to simplify changes to the interactions between a group of objects. This is done by

78

isolating the application-specific interactions between Colleague objects within Mediator objects which act
as coordinators [50].

In general, changes to control flow are more easily done when the activations of the required tasks are lo-
cated in components that are separate from the components containing the implementations of the task. This
can be done by embedding the high level flow of control in control components that activate task components.
The problem is how to organize thetask activationsinto control flow components so that the resulting control
components can be easily modified to satisfy feasible changes to requirements. This section discusses two
processes for partitioning task activations into control flow components: (1) an optimal but complex parti-
tioning process, and (2) a heuristic for obtaining a good, though not optimal, partition of task activations.
Lastly, the section will discuss how these processes also apply to the second strategy of organizing the tasks
(without separating the task activations from the tasks) in away that localizes changes in the order of their
execution.

Figure 5.18 defines the concepts used to explain the research approach to partitioning control flow.

+ Asequence S of tasks, S = <t;, ty,..., t,>, refers to the execution order of a set of tasks T,
T={ty, tp ..., tn} where n is the cardinality of the set. An empty sequence S, denoted S = <>,
is a sequence for which T = (0.

+ The length of a sequence S, denoted |S|, is the number of task activations in the sequence.

+ Given two sequences X = <Xy, Xg,..., Xp> and Y = <yq, y,,..., y>, X|Y (read “X concatenated
with Y") is a sequence S such that S = <Xy, Xp,..., Xn, Y1, Y21+, Ym™>-

+ Asequence X =<Xq, X,..., Xy> IS @ Subsequence of S =<ty, t,,..., t,> if there exists a mapping
from X to S such that x; = ti, Xp = tiyq,..., Xm = tiym-g @Nd X £ S.

+ Readers should note that the above definition of a subsequence differs from a definition in which
asequence Z =<zy, 2,,..., Z> is a subsequence of sequence X = <xy, Xy,..., Xn,> if there exists
a strictly increasing sequence <iy, ip,..., i> of indices of X such that for all j = 1, 2,..., k, X;; = z;.
With this definition, X = <a,c,e> would be a subsequence of Y = <a,b,c,d,e> [41]. With the
definition that applies to the research approach, <a,b,c> is a subsequence of Y; while <a,c,e>
is not.

+ Given a sequence S = <ty, ty,..., t;>and T ={ty, b, ..., t}, a singleton subsequence of S
activates precisely one task t;, where tje T.

+ A partition P of a sequence S is an ordered set of subsequences, {X;, X,,..., Xy} where n is
the cardinality of the set, such that S = X; | X5 |...| X,. Given that S = <a,b,c>, the minimal
partition of S is {<a,b,c>}. The maximal partition of S is {<a>,,<c>}. For simplicity, let the
ordered set of subsequences without the set notation represent a partition. From here on, the
representation for the minimal partition of S = <a,b,c> is <a,b,c>; and the representation for the
maximal partition of S is <a><c>. The set of all feasible partitions of S is {<a><c>,
<a><h,c>, <a,b><c>, <a,b,c>}.

« Aloop L of a sequence S, denoted Loop(S), is a repeating sequence such that L = <> or
L =S| Loop(S).

Figure5.18 Terminology for the research approach to partitioning control flow.

79

Partitions generated using the research approach should preserve the required order of task activationsin
the control components. It is therefore not meaningful to group a required order of task activations <a,b,c>
into control components containing <a,c> and . Therefore for the purposes of the research approach,
<a,c> is not a partition of <a,b,c>; and <a,c> is not a subsequence of <a,b,c>.

The step-wise process outlined in Figure 5.19 enables the designer to generate the control flow compo-
nents that will optimally reduce the complexity of evolving the required control flow.

1. Develop a metric for determining the difficulty and “error-proneness” of modifying the control components
to make a required change in control flow.

2. Determine the way in which the control components would have to be modified and relate this process to
the metric. In other words, determine how the modification steps relate to the counting that must be done
for the metric.

3. Express the required control flow as a sequence and generate all partitions of this sequence.

4. For each partition and for each alternative order to the required control flow, “walk-through” the necessary
modifications to change the required sequence and apply the metric. Save these values in a table that
stores the change complexity value for each partition with respect to every alternative sequence.

5. For each partition, sum the change complexity values to derive the total across all alternative sequences.
The partition with the minimum total is the best design choice for the required control flow and proposed
alternative sequences.

Figure5.19 Process for generating optimally “good” control flow components.

The following text and diagrams demonstrate the process with an example from the embedded microwave
oven software discussed in Chapter 2.

The requirements statement for the microwave oven specifies a simplistic agorithm for controlling the
electronics. The required sequence of application-level tasks within the loop are <B,C,D,E,F,G,H,|> where
each letter corresponds, as shown in Figure 5.20, to the activation of a specific task for controlling the elec-
tronics. Loop(<B,C,D,E,F,G,H,I>) represents the loop of tasks in the order specified by the sequence
<B,C,D,E,F,G,H,I>. The full sequence is then <A> | Loop(S) or <A> | Loop(<B,C,D,E,F,GH,I>). The re-
quirements statement also specifies that microwave ovens whose el ectronics respond faster would allow for
different feedback loops. The required as well as the alternative sequences of tasks which are feasible appear
in Figure 5.21. Note that changes from the original sequence only involve tasks within the loop. Therefore

thefocusisinitially on the loop sequence <B,C,D,E,F,G,H,I>. A discussion of how to incorporate the design

80

of task A and the loop logic as well as how to handle modifications that move tasks into or out of aloop ap-

pears later.

A - Set the timer to the desired duration.

Loop

IO T MmMmoO @

Endloop

- Initiate the door status.

- Initiate the power source status.

- Initiate the power sensor read.

- Read the power sensor to check the actual power achieved.

If the power is under the desired level, increase the power by 3 notches on all sources.

- If the power is over the desired level, decrease the power by 3 notches on all sources.
- Check the timer. If it has expired, then stop all of the power sources and return a status

code.
Read the status of all of the electronics. If any have malfunctioned or if the door is open,
stop all of the power sources.

Figure5.20 Order of tasksin the Control Electronics of the microwave oven.

Original or required sequence of tasks:
<B,C,D,E,F,GH,I>

Alternative task sequences:
<B,C,D,E,F,G,I,H>
<B,C,D,lE,F,G,H>

Figure5.21 Required and alternative task sequences for the Control Electronics of the microwave oven.

Given arequired sequence of tasks and alternative sequences of these tasks, one can apply the optimal pro-

cess described below to design the control logic. The first step is to develop a change complexity metric to

measure the human effort needed to change the control flow components.

Step 1: Develop the change complexity metric.

The proposed metric is based upon the following rationale. The human performsthe modificationsto soft-

ware to satisfy changing requirements. L ocalized changeinvolvesfewer componentsand lesseffort than non-

localized change. Small, simple components are easier to understand and modify correctly than are large,

complex components. A basic way to determine the effect of achangeisto sum the size of each control flow

component which must be modified or, in this case, to count the number of task activations contained in the

modified control flow components. The resulting change complexity metric is shown in Figure 5.22. The

reader should see Chapter 4 for adiscussion of factors which affect the complexity of modifying software and

81

of the metrics which represent these factors. Component size, or software size, in general isamajor contrib-

utor to the complexity of maintaining software.

Given x is a component to be modified, let | x | be the size of x. Let X be the set of all x.

Change complexity metric =Y | ;|-
Xj €X

Figure5.22 Change complexity metric to measure the effort to modify control flow components.

Step 2: Determinethe process for modifying control componentsand relateit to the change complex-
ity metric.

There are two basic types of designs for activating the control components which execute the task activa-
tions. In the first type, a master controller component activates the other control components in the proper
order; whereas in the second type, the control components trigger each other. Suppose the required sequence
within the loop shown in Figure 5.21 is partitioned into the subsequences <B,C,D> and <E,F,G,H,I>. With
the Master Control architecture, shownin Figure 5.23, the Master Controller activates the control components

C, and C,. Component C, activatesthetasks B, C, and D; and component C, activatestasksE, F, G, H, and I.

Master Controller C, C,
‘ B,C,D ‘ ‘E,F,G,H,I

Figure5.23 Master Control architecture for control flow components.

With the trigger architecture, diagrammed in Figure 5.24, component C; activates the tasks B, C, and D,

before activating component C,. Component C, activatestasks E, F, G, H, and |.

C C,

1
B,C,D '_>f E,F, G, H,I

Figure5.24 Trigger architecture for control flow components.

The Master Control architecture isolates the knowledge of the order of the control components from these
components. For instance with the Master Control architecture, component C, has no “awareness” that com-
ponentC, follows it in the execution sequence. With the trigger architecture, comp8penaware of com-
ponentC, because it must activa@®. Reversing the order &; andC, requires a reorder of th& andC,

activations in the Master Controller. The complexity of this change is the size of the master controller com-

82

ponent which must be modified. The Master Controller contains two task activations for C4, and C,. Figure

5.25 shows the change complexity.

change complexity = size(Master Controller) = 2 task activations

Figure5.25 Thesize of the Master Controller represents the complexity of modifying this component.

Making the same change with the trigger architecture requires changing C, to not activate C, and C, to
activate C,. Alternatively, all of the task activationsin C, could be moved to C; and all of thosein C; to C,.
The latter process involves the same components and therefore yields the same change complexity. The

change complexity is the sum of the sizes of components C; and C, as shown in Figure 5.26.

change complexity = size(C) + size(C,) = 3 + 5 = 8 task activations

Figure5.26 The sum of the sizes of the modified components C; and C, represents the change compl exity.

In this case, the Master Control architectureis easier to change than the trigger architecture.

From here on, the examples apply the Master Control type of control flow architecture. In practice, the
designer can compare the change complexities for designs which apply different control flow architectures
for isolating task activations from the implementation of tasks. The next steps serve to find the partition of
the required task activation sequence which minimizes the complexity of changing to alternative sequences.
Step 3: Expresstherequired control flow asa sequence and gener ate all partitions of this sequence.

The required loop sequenceis<B,C,D,E,F,G,H,I>. A process for enumerating all of the partitions appears
in Figure 5.27. The interested reader can generate the partitions not shown in Figure 5.27. The complete list

of partitions appearsin Appendix C.

<C><D><E><F><G><H><I>
<C><D><E><F><G><H,I>
<C><D><E><F><G,H><|>
<C><D><E><F><GH,I>
<C><D><E><F,G><H><|>
<C><D><E><F,G><H,I>

ook wN e

126. <B,C,D,E,F,G><H,I>
127. <B,C,D,E,F,G,H><I>
128. <B,C,D,E,F,GH,I>

Figure5.27 Partitions of the required task sequence.

83

Step 4: For each partition with respect to each alternative sequence, do the following sub-steps.

« Determine the modifications needed to derive the alternative sequence from the original sequence.
* Apply the metric to determine the complexity of the modifications.
» Store the change complexity values in a table.

Some partitions, such aB=<C><D><E><F><G><H><|>, involve singleton subsequences. Placing the
task activation from a singleton subsequence directly in the Master Controller eliminates the redundancy of
“activating a control flow component which activates precisely one task.” This approach does not affect the
overall change complexity: the size of the Master Controller increases by one for each activation of a single
task and by one for each activation of a control flow component that activates a single task. Therefore, the
Master Control architecture for the partitioB><C><D><E><F><G><H><I> consists of one master con-
trol component which contains all of the task activations. The Master Control architecture for the partition
<B,C,D,E,F,G,H,I> locates the activations of all of the tasks in a single control flow component. In this case,
the Master Controller would contain only the activation of the resulting control flow component. The extra
level of indirection yields no benefit. A better design strategy is to place all of the task activations in the Mas-
ter Controller. For both of the partitions discussed above, any change to the required control sequence in-
volves the Master Controller and therefore has a change complexity which is the size of the Master Controller.

To determine the change complexity for each partition and for each change, the designer must walk-
through the modifications to the architecture for a particular partition and sum the size of the components
which are modified. There are two alternative sequences considered for this example. Modifications to the
required sequence are not cumulative: to obtain each alternative sequence, the designer starts with the control
flow components of a particular partition and modifies them to obtain the desired alternative sequence. Figure
5.28 and Figure 5.29 provide example walk-throughs for two different partitions and both alternative se-
guences. Columns 2 and 3 of the table in Appendix C list the change complexity values for modifying the
control flow components resulting from a particular partition to change the required sequence

<B,C,D,E,F,G,H,I> to alternative sequenceB€,D,E,F,G,I,H> or <B,C,D,l,E,F,G,H>, respectively.

84

Changing <B,C,D,E,F,G,H,I> to <B,C,D,EF,G,I,H >: requires changing only the Master Controller. Change Complexity

Master Controller Master Controller
‘ B,C,D,E,FG,H,I ‘ —> | B,C,D,E,FG,IH | size(Master Controller) = 8

Changing <B,C,D,EF,G,H,I> to <B,C,D,|,E,F,G,H >: requires changing only the Master Controller.

Master Controller Master Controller
‘ B.C.D,E F G HI ‘ — ‘ B.C,D,IE,F G H ‘ size(Master Controller) = 8

Total Change Complexity Across All Alternative Sequences: = 16.

Figure 5.28 Walk-throughs for partition <C><D><E><F><G><H><I>.

Changing <B,C, D,Cy,G,Co><E,F><H,I> to <B,C,D,C;,G,C,><E,F><I,H>: requires changing only C,. Change Complexity

Master Controller Cy C, Master Controller Cy Cy
[8.CD.C.GC, | [EF| [HI] —[BCDCi6C | [EF] [LH size(C;) =2
Changing <B,C, D,Cy,G,Co><E,F><H,I> to <B,C, D,I,C1,G,H><E,F>: requires changing the Master Controller and C,.

Master Controller Cy C, Master Controller Cy
| BCD.CLGC, | ‘ E,F‘ [H1] — [B.C,D1,C, G H | [EF] size(Master Contiller) + size(C) = 8

Total Change Complexity Across All Alternative Sequences: = 10.
Figure5.29 Walk-throughs for partition <C><D><E,F><G><H,|>.

The next step isto sum, for each partition, columns 2 and 3 of the tabl e that contains the change compl exity
values across the alternative sequences.

Step 5: For each partition, sum the valuesto derive the total across all alternative sequences.

The interested reader may complete the change complexity table, which is shown in Appendix C, for all
128 feasible partitions and sum columns 2 and 3 for each row to determine the partitions with the lowest com-
plexity value. The partitions ending with <EFG><H,I> (namely, <C><D><E,F,G><H,I>,
<C,D><E,F,G><H,|>, <B,C><D><E,F,G><H,I>, and <B,C,D><E,F,G><H,|>) have a minimal tota
complexity value of 7. These partitions isolate the parts of the original sequence <B,C,D,E,F,GH,I> which
change. In this case, the subsequences <E,F,GH,|I> and <H,|> contain the parts which change (<E,F,GH,I>
to <I,E,F,GH> and <H,I> to <I,H>. Partitioning <E,F,GH,|> into <E,F,G> and <H,I> lowers the total com-
plexity across both changes because it aso isolates the part which does not change, the invariant <E,F,G>.
This pattern (invariant sequence of tasks) motivates a heuristic, discussed in the next section, for reducing the

complexity of obtaining a good partition of the required control flow sequence.

85

5.6 Approach for Heuristically Good Partition of Control Flow Components

The previous section discussed a process for determining the partition of the required sequence of task ac-
tivations that optimally minimizes the effort needed to generate alternative sequences. The problem is that
this is a complex process. Walking through the component modifications to determine the complexity of
changing the required sequence to an aternative sequence is atedious and manual processthat is required for
each partition across al of the alternative sequences. The number of partitions of a sequence Sincreases ex-
ponentially with the length of S the cardinality of the set of all partitionsis 2"l wherenisthe length of S.
For small values of n, this can be done manually; but asn increases, the time required to find the optimal par-
tition is costly. The computational complexity of the process is (O(2"). For the interested reader, the proof

for the number of partitions of a sequence appearsin Figure 5.30.

Hypothesis: The number of partitions for a sequence of length n is 2L,

Proof:
Let X; = <x;>and X, = <x,X,> be the base sequences.

* The length of X is 1, and the length of X, is 2. X, has exactly one partition, <x;>. The number
of partitions of X is 1 = 20 =2 forn = 1.

* X, has exactly two feasible partitions, <x;><x,>and <x;,X,>. Therefore the number of partitions
of Xpis 2 =22V = 2" forn =2,

Let us assume that the number of partitions for a sequence X; of length j is 2,
Now we must show that the inductive hypothesis is true for sequences of length j+1.

Let us form a sequence X;;; by concatenating the sequence X, with sequence X;, X; | X;. The
length of X;, is the length of X, plus the length of X; or j+1.

There are strictly two ways to form partitions of X, .
+ One way is to group x, by itself. The number of possible ways to group the other elements
of Xj+1, namely those contributed by X;, would be the number of partitions of X; or 2L,
* The other way is to group x; with the first element of X;. Likewise, the number of partitions
containing x that are grouped with the first element of X; is the number of partitions of X; or
a1,
So the total number of partitions of Xjy1 is 24 =0l = 2" for n =+,
Hence, the inductive hypothesis holds for sequences of length j+1.
Figure5.30 Inductive proof for the number of partitions of a sequence.
One could apply a combinatorial optimization algorithm such as a genetic or simulated annealing algo-

rithm [53,88]. The change complexity metric would provide the rationale for an objective function. The pri-

mary issue would be how to automate the process of “walking-through” the change to a control flow sequence

86

in order to determine the change complexity value. Constraining the design objectives eliminates the need to
generate all of the partitions. What is needed is a polynomial-time heuristic for determining a good, though
not necessarily optimal, partition of the control flow into components. This section describes a partitioning
pattern that tends to minimize the overall change complexity. The remainder of this section proves the “good-
ness’ of this pattern for most potential changes to control flow and notes the exceptional cases. Lastly, the
section outlines a polynomial process for determining control components that exhibit this pattern.
Locating each longest invariant subsequences, sudd,@d: in the microwave oven example, in a sin-
gle component by itself helps to reduce the overall change complexity. Figure 5.31 presents the formal defi-

nitions for the termgvariant subsequence andlongest invariant subsequence.

Let:
+ S ={sj} = the set of plausible sequences of task activations, where s; = <t;,..., tj,>
and t; # t; for every j # k.
+ T={t}is the set of application-level tasks.
fv=<ty,....ty>with 1 <m < n, then Invariant(v) O's;, Dj: tj =ty,..., tjem.1) =ty

LI, the set of longest invariant subsequences, = {I}: Invariant(l) T ~ (Ol: Invariant(l,) O
l, = Subsequence(ly)).

In the microwave oven example, <B,C> and <E,F> are invariant subsequences; whereas

<B,C,D> and <E,F,G> are longest invariant subsequences. <B,C,D,E,F,G> is not an

invariant subsequence because in future versions of the microwave oven software, task

| may occur between tasks D and E.

Figure 5.31 Definitions of an invariant subsequence and alongest invariant subsequence.
From a locality point of view, placing each longest invariant subsequence into a single component by itself

intuitively makes sense: those subsequences which may change are separate from those subsequences which
are not likely to change. Components that contain invariant subsequences would not need to be involved in

future changes to the control flow. Verification of this logic requires answers to the following questions.

1. Are there cases when the placement of a longest invariant subsequence in a single component does
not reduce the change complexity metric (does not simplify change)?

2. Are there cases when altering a component that contains a longest invariant subsequence helps to
reduce the change complexity metric (simplifies change)?

3. How likely are the exceptional cases to occur?

Validating the ease of using the invariant subsequence pattern requires answers to the following questions.

87

1. How does one locate a longest invariant subsequence automatically?
2. How can the location of longest invariant subsequences be combined with the optimal partitioning
approach?
The answer to thefirst two questionsisan analytical proof that placing each longest invariant subsequence
into a single control flow component usually, but not aways, reduces the change complexity metric.
Proof of the Longest Invariant Subsequences Heuristic:

Let the statementsin Figure 5.32 hold.

« S=<X, Y, Z>is asequence of task activations with subsequences X, Y, and Z.

* Yisalongest invariant subsequence in S and has a length greater than or equal to 2. Y = <yy,..., v, Y|
>2.

+ P(X)is a partition of a subsequence X.
+ MC represents the master controller component.

« [X] represents a component containing a subsequence X, and [P(X)] represents the components containing
a partition of X.

+ If Xiis empty, then [P(X)] consists of no components.
« C([X]), the change complexity for a component containing a subsequence X, be:

+ 0, if the component need not be changed.
« |[X]| = |X|, the size of the component containing X which equals the length of X, if the component must be

changed. C(I[MC]) = [MC|.
« C(P(X)]) = 3 C([x]) where x; O P(X).
Figure5.32 Definitions for analyzing the goodness of the invariant subseguence pattern.
The genera form for partitioning asequence XYZ that contains alongest invariant subsequence Y is shown

in Figure 5.33. From here on, the term invariant subsequence pattern refersto this partition.

The general form for partitioning a sequence XYZ with a longest invariant subsequence Y into
components is:

PO Y] [P(2))

If either X or Z is empty, then [P(X)] or [P(Z)] contains no components, respectively.
MCp(xyz) contains a call to [Y] as well as to each component in [P(X)] and [P(Z)].

Figure 5.33 Longest invariant subseguence pattern.
Since X and Z are not invariant, there must be one or more waysin which they are likely to change. There

are three ways to change a sequence, as listed in Figure 5.34.

88

1. Add a new subsequence to the sequence.
2. Delete a subsequence from the sequence.

3. Reorder the tasks in the sequence.
Figure5.34 Three basic ways to change a sequence.

We will analyze each type of change to a variant sequence and outline the exceptional cases. Exceptional
cases are those in which the change compl exity is not minimized by the longest invariant subsequence pattern.
Adding a New Subsequence to a Sequence:

Suppose we wish to add the subsequence U to XYZ. There are three general locations for U as listed in
Figure 5.35.

1. In between two tasks from X or between two tasks from Z.
2. Atthe beginning of X or at the end of Z.
3. Atthe end of X or at the beginning of Z.

Figure5.35 Locations for adding a subsequence U to XYZ where Y is an invariant subsequence.

For the first location, component(s) from strictly [P(X)] or from strictly [P(Z)] must be involved in the
change. The addition of tasksfrom Y to the [P(X)] or [P(Z)] components would increase the change compl ex-
ity value. Therefore, locating Y in a single component by itself helps to reduce the change complexity.

For the second location, there are several waysto add U to the beginning of X or to the end of Z as discussed
in Figure 5.36.

+ If U is not a singleton, select one of the following options to position U appropriately and to minimize the
change complexity metric.

+ Create a new component [U], and add a call to it in the MC before the calls to the component(s) of [P(X)]
or after the calls to the component(s) of [P(Z)].

+ Add U to the beginning of the first [P(X)] component or to the end of the last [P(Z)] component.

« If Uis a singleton, select one of the following options to position U appropriately and to minimize the change
complexity metric.

+ Add U to the MC.
+ Add U to the beginning of the first [P(X)] component or to the end of the last [P(Z)] component.

Figure5.36 Adding a subsequence U at the beginning of X or at the end of Z.
As with the first location, component(s) from strictly [P(X)] or from strictly [P(Z)] or the MC must be
involved in the change. The addition of tasks from Y to the [P(X)] or [P(Z)] components could increase the
change complexity value. Therefore, locating Y in a single component by itself helps to reduce the change

complexity.

89

For the third location, there are several waysto add U to the end of X or to the beginning of Z as described
in Figure 5.37.

+ If U is not a singleton, select one of the following options to position U appropriately and to minimize the
change complexity metric.

« Create a new component, [U], and add a call to it in the MC.
+ Add U to the end of the last [P(X)] component or to the beginning of the first [P(Z)] component.
+ Add U to the beginning or end of [Y].

« If Uis a singleton, select one of the following options to position U appropriately and to minimize the change
complexity metric.

+ Add U to the MC.
+ Add U to the end of the last [P(X)] component or to the beginning of the first [P(Z)] component.
+ Add U to the beginning or end of [Y].

Figure5.37 Adding a subsequence U at the end of X or at the beginning of Z.

Sometimes, C[Y] is less than the complexity of other appropriate components for locating U such as [U],
a component in [P(X)], a component in [P(2)], or [MC]. For example, suppose the sequence
<a,b,c,d,ef,g,h,ij,k> contains alongest invariant subsequence <e,f,g>. Following the longest invariant pat-
tern, the general partition of <ab,cdef,gh,ijk> is [P(<abc,d>)] [<efg>] [P(<h,ijk>)].
MCp(<ab,c,def,ghi,jk>) contains cals to the components of [P(<a,b,c,d>)] and [P(<h,i,j,k>)] as well as to
[<ef,g>]. Adding the subsegquence <o,p> between the tasks d and e can be done in three ways.

1. Create acomponent [<o,p>] and add acall to it in MC after the call(s) to the [P(<a,b,c,d>)] com-

ponents. C([MC]) = 3, depending on the number of components in [P(<a,b,c,d>)] and
[P(<h,i,j,k>)].

2. Add <o,p> to the end of the last component in [P(<a,b,c,d>)].
2 < C(last component in [P(<a,b,c,d>)]) < 4.

3. Add <o,p> to the beginning of [<ef,g>]. C[<ef,g>] = 3.

The worst cases occur when [P(<a,b,c,d>)] is [<ab,c,d>] and when [P(<h,i,j,k>)] is [<h,i>] [<],k>],
[<h,i,j>] with k in the MC, or [<i,j,k>] with hinthe MC. In aworst case, the complexity of changing the in-
variant component is less than changing either [P(<a,b,c,d>)] or MC: C[<ef,g>] = 3 < 4 = [<ab,c,d>] =
C(MC)).

When a new subsequence U should be located immediately before or after an invariant subseguenceY,
adding U to the component that contains Y may result in a lower change complexity value. This depends on

the composition of X, Y, Z aswell as on the P(X) and P(Z) which minimize the complexity acrossall feasible

90

changes to control flow. For al other placements of a new subsegquence U, involving theinvariant Y will in-
crease rather than reduce the change complexity.68
Deleting a Subsequence from a Sequence:

A subsequenceto be deleted must exist in one or more components of [P(X)] or [P(Z)]. The removal of the
subsequence does not involve [Y]. The problem is that the deletion may result in an empty component or in a
singleton. Let us consider each situation separately. When the entire subsequence of a component in [P(X)]
or [P(2)] isremoved, the MC will contain acall to an empty component. There are several actions that can be
taken as explained in Figure 5.38.

1. Leave the MC as it was before the removal of the subsequence and let it call an empty component (at the
expense of the overhead for a call). The change complexity is zero.
2. Remove the call from the MC. The change complexity is C([MC]).

3. Move two tasks from an adjacent component to the empty component. This can be done if a component
adjacent to the empty component has four or more tasks in it. The change complexity is C([component from
which two tasks are taken]) + C([component from which the subsequence is removed)]).

4. Repartition the tasks in the components closest to the empty component so that two tasks from a component
adjacent to the empty component are available. The change complexity is C([repartitioned components]) +
C([component from which the subsequence is removed]). This action includes action 3.

Figure 5.38 Alternative actions when deletion of a subsequence results in an empty component.

The intuitively simple approach is action two. But if the MC islarge, the change complexity value of MC
may be more than the change complexity value(s) of the component(s) needed to move tasks into the empty
component (associated with actions 3 or 4). Use of the component [Y], which contains the invariant subse-
guence, may reduce the change complexity value. As before, this depends on the composition of X, Y, Z as
well as on the P(X) and P(Z) which minimize the complexity across all feasible changesto control flow. Fig-
ure 5.39 illustrates an exceptional case when deletion of a subsequence results in an empty component and
altering the invariant subsequence reduces the change complexity value.

Suppose that we start with a sequence <a,b,c,d,e,f,g,h,i,j,k,,m,n,0,p> that contains an invariant
subsequence <h,i,j,k>. The general partition P(<a,b,c,d,e f,g,h,ij,k,l,m,n,0,p>) is [P(<a,b,c,d.e,f,g>)]
[<h,ijk>] [P(<,m,n,0,p>)]. MCp(<ap c,d,e.f.gh,ijkilmn,0,p>) CONtains calls to the components of
[P(<a,b,c,d,e,f,g>)] and [P(<l,m,n,0,p>)] as well as to [<h,i,j,k>].

Now suppose that we want to delete subsequence <f,g>. If P(<a,b,c,d,e,f,g>) is [<a,b,c,d,e>] [<f,g>],

then deletion of <f,g> will result in an empty component. Suppose further that [P(<I,m,n,0,p>)]
contains two components.

91

The complexity of removing the call to [<f,g>] from MC is C([MC]) = 5. The complexity to move tasks
d and e from [<a,b,c,d,e>] to the empty component is C[<a,b,c,d,e>] = 5. The complexity to move
tasks h and i from the invariant component [<h,i,j,k>] to the empty component is C[<h,i,j,k>] = 4. In
this example, altering the invariant subsequence reduces the change complexity value.

Figure 5.39 Alteration of the invariant subsegquence after deletion resultsin an empty component.
Deletion of a subsequence may result in asingleton. As explained in Figure 5.39, there are several actions
that can be taken.

1. Leave the singleton in the original component. The change complexity is zero.

2. Put the singleton into the MC in place of the call to the component that had contained it. The change
complexity is C([MC]).

3. Move a task from an adjacent component into the component that contains the singleton. This can be done
if a component adjacent to the empty component has three or more tasks in it. The change complexity is
C([component from which the task is taken]) + C([component from which the subsequence is removed)).

4. Repartition the tasks in the components closest to the empty component, so that a task from a component
adjacent to the empty component is available for the empty component. The change complexity is
C([repartitioned components]) + C([component from which the subsequence is removed]). This action
includes action three.

Figure 5.40 Alternative actions when deletion of a subsequence resultsin a singleton.

Again, theintuitively simple approach is action two. But if the MC is large, the change complexity value
of MC may be more than the change complexity value(s) of the component(s) needed to move a task into the
component that contains the singleton (associated with actions 3 or 4). Use of the component [Y], which con-
tains the invariant subseguence, may reduce the change complexity value. As before, this depends on the
composition of X, Y, Z aswell as on the partition which minimizes the complexity across all feasible changes
to the control flow. Figure 5.41 illustrates an exceptional case when deletion of a subsequence resultsin a
singleton component and altering the invariant subsequence reduces the change complexity value.

Suppose that we start with a sequence <a,b,c,d,e,f,g,h,i,j,k,l,m,n,0,p> as described in Figure 5.39.
Now suppose that we want to delete subsequence <f>. If P(<a,b,c,d,e f,g>) is [<a,b,c,d,e>] [<f,g>],
then deletion of <f> will result in a singleton component [<g>]. Suppose further that [P(<l,m,n,0,p>)]
contains two components.

The complexity of replacing the call to [<f,g>] with g in MC is C([MC]) = 5. The complexity to move
task e from [<a,b,c,d,e>] to the singleton component is C[<a,b,c,d,e>] = 5. The complexity to move
task h from the invariant component [<h,i,j,k>] to the singleton component is C[<h,i,j,k>] = 4. In this

example, altering the invariant subsequence reduces the change complexity value.

Figure5.41 Alteration of the invariant subsequence after deletion resultsin a singleton.

92

Reordering the Tasksin a Sequence:

Reordering the tasks in a sequence is a combination of deleting and adding subsequences: a subsequence
is removed from one part of the original sequence and added to another part. The previous discussions about
deleting and adding subsequences apply. The difference isthat one must consider the adding actions that will
be feasible after each possible deletion action. Theideais to minimize the total change complexity, the sum
of the deletion and addition complexities. Figure 5.42 is an example of a reordering that resultsin an empty
component after the deletion action.

Suppose that we start with a sequence <a,b,c,d,e,f,g,h,i,j,k,,m,n,0,p> that contains an invariant
subsequence <h,i,j,k>. The general partition is [P(<a,b,c,d,e,f,g>)] [<h,i,j,k>] [P(<],m,n,0,p>)].

Change 1: Suppose we want to be able to easily reorder the original sequence to produce a new
sequence <c,d,e,f,g,h,i,j,k,a,b,l,m,n,0,p>. A good partition for this change would be
[P(<a,b,c,d.e,f,g>)] as [<a,b>] [<c,d.e,f,g>] and [P(<l,m,n,0,p>)] as [<l,m,n,0,p>].
MCP(<a,b,c,d,e,f,g,h,i,j,k,I,m,n,o,p>) would call [<a,b>], [<c,d,e,f,g>], [<h,i,j,k>], and [<I,m,n,o,p>].
Reordering would involve “deleting” the call to [<a,b>] in MC from its position before the call to
[<c,d,e,f,g>] and “adding” it back to the MC in the position directly after the call to [<h,i,j,k>]. C[MC]
would be 4.

Change 2: Suppose we also want to be able to easily reorder the original sequence to produce a new
sequence <a,b,0,p,c,d,e,f,g,h,ij,k,l,m,n>. A good partition for this change would be
[P(<a,b,c,d,e,f,g>)] as [<a,b>] [<c,d,e,f,g>] and [P(<l,m,n,0,p>)] as [<],m,n>] [<0,p>].
MCh(cab.c.defghijkimnop>) Would call [<a,b>], [<c.de.fg>], [<hijk>], [<lm.n>], and [<0,p>].
Reordering would involve “deleting” the call to [<o,p>] in MC from its position after the call to [<],m,n>]
and “adding” it back to the MC in the position directly after the call to [<a,b>]. C[MC] would be 5.

Change 3: Lastly, suppose we also want to be able to easily reorder the original sequence to produce
anew sequence <a,b,c,d,e,f,g,n,h,ij,k,l,m,0,p>. A good partition for this change would be
[P(<a,b,c,d,e,f,g>)] as [<a,b,c,d,e,f,g>] and [P(<l,m,n,0,p>)] as [<l,m>] [<0,p>] with n in MC.
MCpi<ab,c,de.fghijklmnop>) Would call [<a,b,c,de,f,g>], [<h,ijk>], [<l,m>], n, and [<o,p>].
Reordering would involve “deleting” n in MC from its position after the call to [<I,m>] and “adding” it
back to the MC in the position directly before the call to [<h,ij,k>]. C[MC] would be 5.

Total complexity across changes: Let us consider each “good” partition from above across all three
changes.
Partition 1 - [<a,b>] [<c,d,e,f,g>] [<h,i,j,k>] [<],m,n,0,p>]:
Change 1 - Complexity is 4 as discussed above.
Change 2 - Delete <o,p> from [<l,m,n,0,p>] and add it at the end of [<a,b>]. Complexity is 7.
Change 3 - Delete n from [<|,m,n,0,p>] and add it at the beginning of [<h,ij,k>]. Complexity is 9.
The total complexity across all three changes is 20.
Partition 2 - [<a,b>] [<c,d,e,f,g>] [<h,i,j,k>] [<],m,n>] [<0,p>]:
Change 1 - Delete call to [<a,b>] in MC. Add it directly after the call to [<h,i,j,k>]. Complexity is 5.
Change 2 - Complexity is 5 as discussed above.
Change 3 - Delete n from [<l,m,n>]. Add it at the beginning of [<h,i,},k>]. Complexity is 7.
The total complexity across all three changes is 17.
Partition 3 - [<a,b,c,d,e,f,g>] [<h,i,j,k>] [<|,m>] [n in MC] [<0,p>]:
Change 1 - Delete <a,b> from [<a,b,c,d,e,f,g>] and add it at the beginning of [<],m>].
Complexity is 8.

93

Change 2 - Delete <o,p> from [<0,p>]. Add it between b and c in [<a,b,c,d,e,f,g>]. Remove call
to [<o,p>] in MC. Complexity is 14.
Change 3 - Complexity is 5 as discussed above.
The total complexity across all three changes is 27.
Partition 2 has the lowest complexity across all three likely changes. For change 3, this partition will
involve the component [<h,i,j,k>] that contains an invariant subsequence in order to lower the change
complexity.
Figure 5.42 Reordering that may involve a component containing an invariant subsequence.

Involvement of a component that contains alongest invariant subsequence may reduce the change com-
plexity for reorders that result in empty or singleton components or in additions immediately before or after
the invariant subsequence. For all other cases, involving a component that contains alongest invariant subse-
guence tends to increase the change complexity. The invariant subsequence pattern is a heuristically good
way to partition control flow among components.

Processfor Applying the Heuristic:

To efficiently apply the heuristic, the software designer needs a polynomial-time agorithm for locating
the longest invariant subsequences across all expected or potential permutations of the original control flow
sequence. The designer also needs aprocess for partitioning the remaining variant subsequences. Figure 5.43
contains a polynomial -time algorithm for locating the longest invariant subsequences, where mis the number
of alternative sequences and n is the length of the required sequence. The computational complexity of the
algorithm is O(m* n).

Asdisplayed in Figure 5.43, a bitmap represents the immediately preceding relationship between the task
activations across the alternative control sequences. A onein the j-th bit position means that the j-th task ac-
tivation in the required control flow sequence immediately precedes the (j+1)-th task activation in the re-
quired sequence across all projected permutations. The reader should note that the n-th task has no successor;
hence, the bitmap contains a zero in the n-th bit.

Thelogic of the algorithm isto scan each alternative control flow sequence (the list of potential sequences
from the requirements analysis) and to locate each task activation which is not followed by the same activa-
tion that succeeds it in the required sequence. When such a case is found, the bit for that task activation is set

to zero in the bitmap. After dl alternative sequences are scanned, the bitmap contains the information needed

to locate the longest invariant sequences.

94

The algorithm then scans the bitmap by starting from the first bit (which corresponds to the first task acti-
vation in the required sequence) and moving across the bitmap to the last bit (which corresponds to the last
task activation in the required sequence). As it scans, the algorithm records task activation subsequences as-
sociated with strings of 1's and 0’s in the bitmap. Strings of 1's (plus the next immediate 0-bit) represent long-
est invariant subsequences. Strings of 0’s (not including the 0 ending a string of 1's) represent longest variant

subsequences.

Algorithmic Step Complexity
1. Initialize bitmap to [1|2]2]2|1|1|1|0] for the required sequence <B,C,D,E,F,G,H,I>.0(n)

2. Scanthe m alternative control sequences to find task activations that do not precede the same task activation
that they precede in the required sequence. O(m*n)

For each of m alternative sequences
For each of n task activations in an alternative sequence
Does the task precede a different task from that which it precedes in the required task?
If yes, set its position in the bitmap to zero.
Endfor
Endfor

I* The bitmap is altered as follows while scanning the alternative sequence <B,C,D,E,F,G,|,H>.

Evaluate B. Do not alter bitmap because task B still precedes task C.

Evaluate C. Do not alter bitmap because task C still precedes task D.

Evaluate D. Do not alter bitmap because task D still precedes task E.

Evaluate E. Do not alter bitmap because task E still precedes task F.

Evaluate . Do not alter bitmap because task F still precedes task G.

Evaluate G. Alter bitmap to [1|1|1|1|1]0|1]|0] because task G does not precede task H.

Evaluate . Keep bitmap [1|1]1]1|1|0|1|0] because, although task I is not at the end
of the alternative sequence, its bit is already zero.

Evaluate H. Alter bitmap to [1|2|1|1|1]0|0]0] because task H does not precede task I.

The bitmap after analyzing <B,C,D,E,F,G,H,I> is [1]|1]1|1]1|0[0|0].
Analyze <B,C,D,l,E,F,G,H> starting with [1|1]1]2]2|0]0]0], the current contents of the bitmap. The bitmap
after analyzing <B,C,D,|,E,F,G,H> is [1]1]0]1|2|0|0|0] */

3. Scan the bitmap to locate the invariant and variant subsequences. O(n)

The ones-strings, each of which ends with a zero, represent the longest invariant subsequences of <B,C,D>
and <E,F,G>. The zero-string which represents a variant subsequence is <H,I>.

4. Determine the "heuristically good” partition of the original or required control flow sequence. O(n)

+ Place each longest invariant subsequence in a separate control flow component.

+ Place each subsequence which precedes or follows a longest invariant subsequence into a separate
component.

+ The resulting “heuristically good" partition is <B,C,D><E,F,G><H,|>.

5. Add a master controller component to activate singleton tasks (resulting from subsequences each of which
contains only one task activation) and the control flow components from step 4.

Figure5.43 Polynomial-time process for determining a “heuristically good” partition of a control sequence,
with application to the microwave oven Control-Electronics feedback loop.

95

The next step isto place each longest invariant subsequence in a separate component. The optimal method
can be used to partition the remaining task activations. For simplicity, the designer can place each non-sin-
gleton variant subsequence in its own component. As discussed earlier, the master controller component con-
tains singleton task activations as well as the loop logic. The result of using this heuristic to partition the
Control-Electronics control flow for the microwave oven is shown in Figure 5.44. To view another applica-
tion of this process, the reader should see [66,67]. The partitioning process described in Figure 5.43 is fully
automatable. The input to the program are the required and alternative task sequences. The output isalist of
the resulting components and the task or control flow component activations to be contained in each compo-

nent.

Master Controller C; C, Cs
cCC; | | b | [ERG | [HI

Figure5.44 Heuristically good partition of the Control-Electronics control flow for the microwave oven.

The reader may recall the microwave oven Control-Electronics logic presented in Figure 5.20. The logic
included a task A to initiaize the timer as well as the loop logic to repeatedly execute the sequence
<B,C,D,E,F,G,H,I>. Toisolate the knowledge of how the feedback |oop sequence may vary, the designer can
hierarchically apply the concept of the Master Control architecture as shown in Figure 5.45. The first level
master controller component, MC,, activates task A and the loop logic. The loop logic repeatedly activates
the second level master controller component, MC,, which activates components C,, C,, and Cz, in the proper
order before returning control to the loop logic in MC4. The component C, activates the tasks B, C, and D,
before returning control to MC,. Likewise, components C, and Cz activate their own task subsequences be-
forereturning control to MC,. MC, does not know about the execution order of C,, C,, and C3; and MC,, has

no knowledge of task A or the loop logic.

Level 1 Master Controller, MC; Level 2 Master Controller, MC, C, C, Cs
A, Loop(MC,) C1,CoCa \ | BCD H EFG H H, |

Figure5.45 Hierarchical application of the Master Control architecture.

96

Section 5.5 initialy discussed two different design strategies for simplifying changesto control flow. One
way is to isolate the knowledge of the order in which tasks should be activated from the implementation of
the tasks. Section 5.5 presented an optimal but complex process for partitioning a control flow sequence into
control flow components that |ocalize changesin the execution order of the tasks. Section 5.6 showed a poly-
nomial-time process for achieving a heuristically good partition of task activationsinto control flow compo-
nents. The examplesin these sections applied the Master Control type of control flow architecture.

The other strategy for simplifying changes to control flow is to organize tasks (not just their activations)
in away that localizes changesin the order of their execution. With thisapproach, the implementation of each
task activates the next task in the sequence. The designer can apply the optimal process to partition the tasks
(not just the task activations) in away that minimizes the complexity of changing the order in which they are
executed. The sequence <B,C,D,E,F,G,H,I> represents the required order of executing the tasks, but the com-
ponents of a partition contain the implementation of each task in the related subsequence. For instance, the
implementation of the partition <B,C,D><E,F,G><H,|> consists of the following three components.

1. A component which contains the implementations of tasks B, C, and D.
2. A component which contains the implementations of tasks E, F, and G.

3. A component which contains the implementations of tasksH and I.
The change complexity is the size of the implementation components which must be modified to obtain an
alternative control flow sequence. The reader should see Chapter 4 for a discussion of metrics to measure the
size of a component.

The next section demonstrates how the research approach can be integrated with existing design approach-
es.
5.7 Integration with Existing Design Approaches

The research approach is about partitioning (decomposition and grouping) basic solution elementsinto re-
usable components. All non-monoalithic software solutions consist of components that encapsul ate data, op-
erations, and control flow. The interactions between componentsinvolve the exchange of data or the flow of
control. Therefore, the research approach is applicable to any design method that involves the determination

of components. As mentioned earlier, the containers for components may be language-oriented structures

97

such as class or module definitions as well as physically-oriented structures such as files, directories, disks,
€etc.

Partitioning is appropriate at any level of abstraction from the creation of system and subsystem compo-
nents to the definition of low-level modules. Likewise, large-scale data and operations may be compositions
of smaller-scale dataelements and procedures that are reusabl e sol ution el ements and that are partitioned into
subcomponents within the context of a larger component. In other words, partitioning may involve abstrac-
tion through decomposition and hierarchical composition.

Lastly, the author would like the reader to note that the use of object-oriented components for the micro-
wave oven software examplesreflectsthe target programming environment for theempirical validation of the
research approach. As stated before, the resear ch approach appliesto any design method that involves
the determination of components.

The next chapter describes the process used to design the empirical studies for validating the research ap-

proach described in this chapter.

98

6 Validation of the Proposed Softwar e Design Approach

Adoption of anew design approach requiresverification and validation. Verification shows that the design
method does what it isintended to do, and validation demonstrates that the method is useful. Chapter 5 dem-
onstrated via construction and logical argument that the research approach partitions into separate compo-
nents basic elements of a software solution that are impacted by the same changes. The author demonstrated
the application of the method to the generation of a software architecture for amicrowave oven. The next step
isto validate whether or not the method hel ps other designersto determine an evolvable software architecture.
Validation requires empirical research involving human subjects.

This chapter describes the process used to design the empirical studies for validating the research ap-
proach. The process integrates empirical techniques traditionally used in the fields of psychology and sociol-
ogy along with issues and measures relevant to software engineering. From here on, the dissertation refersto
the empirical studies used to validate the research approach as the research studies. The research studies con-
sisted of two experiments. This chapter outlines the relevant research issues for the design of the research
studies and explains why the ones designated for this thesis were chosen.

The organization of this chapter is as listed bel ow.

» Section 6.1 describes the research issue space for the design of the research studies.

» Section 6.2 discusses the direct evaluation of the research approach through the assessment of

changeability.

» Section 6.3 discusses the indirect evaluation of the research approach through the assessment of

structural complexity.
e Section 6.4 explains the evaluation of design effort conducted as part of the research studies.

» Section 6.5 outlines a generic process for designing an empirical test of a software design

approach.

For a comprehensive discussion of issues in the evaluation of software engineering methods and tools, the

reader should see [89].

6.1 Empirical Research | ssue Space

Testing the effectiveness of a software design method is a challenging task. The challenge is two-fold: de-

termining the effect of the method on the resulting software artifacts or products as well as on the software

development process. Software design, as well as implementation and maintenance, requires substantial man-

ual effort. An effective design method enables the designer to create a blueprint for a software system that

99

will achieve functional correctness and will be easy for the maintainer to change with minimal error. Testing

the impact of a software design method on the resulting software product features and development process

(dependent variables) requires an experiment involving human subjects who will perform arepresentative de-

sign task.

Figure 6.1 outlines the factorsthat characterize the research issue space for the design of the research stud-

ies. The three primary areas that characterize this space are:

» Design approach used by the software designers.

* Measures used to determine the effectiveness of the design approach.

* Experimental issues.

Empirical Research Issue Space

Experimental Issues Metrics
Task Characteristics Product
Task Scope Across Task Completion Changeability Structural
Complexity Life Cycle Size Time Complexity
Designer(s) Process
Education/ Experience Natural ~ Team Size Completion Errors Detected
Training Capabilities Time During Review
Design Tools
Compatibility Cost Performance Platform UsaLiIity

with Other Tools

Software
Design Approach

Design
Rationale

Design
Method

Figure 6.1 Research issue space for the design of empirical studies.

The primary independent variable to be tested istftsvar e design approach (or research approach).

This approach has two major facets: (1) a rationale for thinking about change and reuse, and (2) a method for

applying the design rationale to determine the basic components in a software system. The approach is appli-

cable to various design approaches, such as structured or object-oriented design. For object-oriented styles of

design, the output is a partition of data and operations into files, classes, methods, and method calls. The basic

components are class definitions and files. The goal of the research studies is to determine the effectiveness

100

of both the rational e and the method parts of the design approach. Therationaleis a prerequisite for the meth-

od.
Table 6.1 Potentia values for the design approach factors.
Design Rationale Design Method
Designer’s Own Rationale Designer’s Own Design Method
Proposed Rationale Proposed Design Method (Partitioning)
Table 6.2 Independent variable varied across treatment groups.
Group 1 Group 2 Group 3 .
(Control) (Experimental) (Experimental) (not applicable)
Design Rationale | Base Design Rationale | Proposed Rationale | Proposed Rationale Base Design Rationale
. Proposed Design
Design Method Base Design Method Base Design Method | Proposed Design Method | Method

Asshown in Table 6.1, there are two values for each of the two aspects of a software design approach to
be tested. The values for the research approach are the “Proposed Rationale” and the “Proposed Design Meth-
od.” There are 2x2 or 4 potential combinations of these values as shown in Table 6.2. The combination of
“Designer’s Own Rationale” and “Proposed Design Method” is not relevant for the research studies because
application of the proposed design method (part of the research approach) requires use of the proposed ratio-
nale. The other three combinations define the three values for the independent variable being tested, one for
each of the three treatment groups, as enumerated in Figure 6.2.

1. The basic lecture on the use of abstraction, decomposition, and inheritance to determine the classes for an
object-oriented design. The control group (CG) in the research studies received this type of treatment.

2. The basic lecture plus a discussion of the meaning and importance of designing for change and reuse (e.g.
the development of a family of software products), henceforth called the basic+rationale lecture. The first
treatment group designated the rationale group (RG) in the research studies received this type of treatment.

3. The basictrationale lecture plus instruction in using the experimental design method for determining
evolvable software architectures composed of reusable components, henceforth called the
basic+rationaletmethod lecture. The second treatment group designated the rationale+method group
(RMG) in the research studies received this type of treatment.

Figure 6.2 Detailed description of the treatment groups.

101

In addition to the software design approach, other important independent variables that can affect the types
of designs produced by software designers follow.

» Design task
» Designer’s knowledge and skill
* Tools used by the designer

In order to test the effects of the research approach independently, the experimental design must control vari-
ance in the above factors across the treatment groups. Control involves eliminating the effect of an indepen-
dent variable or equalizing its effect across all subjects. Unless mentioned otherwise, the research studies
apply the latter type of control.

The task complexity, scope across the life cycle, task size, and completion time characterize the task to be
performed by the subjects in the research studies. Table 6.3 lists feasible values for each factor. One factor is
the task complexity. New tasks (those not done before) may be more difficult for the designer. Likewise, the
use of components which execute concurrently or which are distributed across multiple processors can in-
crease the complexity of a design. Most importantly, the relationships between the components in a software
architecture impact the design complexity. Another factor is the scope of the task. Depending on the design
approach to be tested, the designer may need to analyze the behavior of the system before designing the soft-
ware, a situation in which the experimental task would include behavioral analysis as well as design. With
sufficient time, the experimenter may want to test the impact of the resulting designs on implementation and
maintenance. Representative task sizes and completion times appear in the table.

Table 6.3 Experimental Issues - Potential values for the task factors.

Task Complexity Scope Across Life Cycle Task Size Completion Time
Behavioral Analysis Class Assignment

Novelty (Including Analysis of Existing System) 1-10 Components (Hours)

Design Homework Assignment

Concurrency (Including Redesign of Existing System) | 11-50 Components (Days)
Project Assignment

Distribution Implementation, Integration, & Test 51-100 Components (Weeks)

Functional Interrelationships Maintenance and Product Evolution 100+ Components

A designer’s education/training, experience, and natural capabilities also affect the quality of the designs

that he/she creates. Values for each of these factors appear in Table 6.4. A survey of each subject’s education/

102

training, experience, and college major occurred before the start of each research study. Assessing the natural
capabilities of individual software designers requires expertise in psychological testing that goes beyond the
scope of the research studies. Based on the results of the pre-experiment surveys, the research studies used
blocking and randomi zation to control theindividual differences between subjects. The other factor to be con-
sidered is the team size. For the research studies, each subject completed the assigned task independently (a
team size of one).

Table 6.4 Experimental |ssues - Potential values for factors related to the designer.

Education/Training Experience Natural Capabilities Team Size
Programming Courses Programming in the Small Abstraction 1-2
Software Engineering Courses Programming in the Large Organization 3-10
Software Architecture Courses Across Life Cycle Attention to Detail 10+
Training in Design Method Different Types of Components Different Application Domains
Domain Specific Courses Different Projects in Application Domain

Asshownin Table 6.5, there are multiple factors that determine the impact that software design tools have
on a designer’s work. Factors such as compatibility with other tools, performance, platform availability and
variance across platforms, as well as usability directly affect the ways in which a designer uses a design tool.
Cost is a factor in selecting a design tool and in determining the number of licenses for host machines, the
amount of design tool training, and the frequency of upgrades. Design tool quality and availability along with
sufficient training in the use of a tool can affect the designer’s ability to produce good designs. The research
studies eliminated the impact of software design tools by having the subjects not use them.

Table 6.5 Experimental Issues - Potential values for the design tool factors.

Compatibility .
With Other Tools Cost Performance Platform(s) Usability
Integration of Artifacts | Initial Purchase Error Proneness Availability on Preferred Platform Ease of Use
Variance in Functionality and
Performance Across Different
Integration of Methods Licensing Design Method Support Platforms Understandability
Portability of Artifacts
Training Response Time Produced on Different Platforms Help Facility
Upgrades

103

The research studies focused on the measurement of changeability via comparisons of product metrics
whose values were assessed for the designs completed by the subjects. As shown in Figure 6.1, the product
metrics include both changeability as well as structural complexity metrics. The research studies eval uated
the impact of the research approach on the design of evolvable software via direct and indirect evauation as
described in Figure 6.3. The next two subsections discuss these evaluations in detail.

A direct evaluation, through assessing changeability. The objective was to observe any effects that
the research approach might have on ease of change.

An indirect evaluation, through assessing structural complexity. The objective was to determine any

correlation between software complexity and software evolvability. This was done by comparing the

variance in the degree to which the resulting designs enhance ease of change along with variance in

the complexity of these designs.

Figure 6.3 Direct and indirect evaluation of the effects of the research approach.
Additionally, the research studies collected process information about the design effort itself, through mea-
surement of the design time and the types/numbers of errors detected during design review.
6.2 Direct Evaluation Through Assessment of Changeability
Direct assessment of changesability is a new technique introduced by the research studies. The ideaisto

determine the difficulty of changing the designs resulting from the research studies. Previous approaches to
changeability assessment were primarily based on the assessment of maintenance effort after the software had
been implemented. With the new process, the evaluator identifies the parts of a design which must be modi-
fied as well as the parts which can be used without modification to satisfy new requirements (those specified
during requirements or behavioral analysis as the expected or feasible evolution of the required software be-
havior). The evaluator uses a standard method for “sizing” these parts. The evaluator for the research studies
used the method discussed in Section 4.5.

Two resulting ratios measure the evolvability of a software design as denoted in Figure 6.4.

Design’s change impact: a ratio of the size of the design parts that require modification and the size
of the entire design.

Design’s degree of reusability: a ratio of the size of the design parts which can be reused without
modification and the size of the entire design.

Figure 6.4 Ratios for measuring the evolvability of a software design.

The goal isfor adesign to have alow change impact and a high degree of reusability.

104

Inthe case of the research studies, the sum of these two ratios for each designis 100%. Thisisatheoretical
estimate. In practice, some of the partsto modified may actually be replaced by entirely new pieces of design.
Since the exact size of anew design pieceis not known before its creation, the experimenter chose to use the
size of the related old design piece as an estimate. This approach differs from more typical assessments of
software reusability which distinguish components reused without modification, components reused with
modification, and new components. The reason for the difference is that typical assessments are generally
made after the software isimplemented, used, and maintained.

Another feature of this new approach to evaluating software designs is the opportunity for granular as-
sessment. The definition of “part” to be modified and “part” to be reused without modification can be at what-
ever level of abstraction is useful to the experimenter. For both of the research studies, the experimenter
assessed changeability at the levels of routine (methods) and components (classes). The second research study
also included assessment of changeability at the big component (filesiee reader can note later, good-
ness at one level of granularity does not necessarily guarantee goodness at another level.
6.3 Indirect Evaluation Through Assessment of Structural Complexity

The experimenter was interested in assessing correlation between the structural complexity of the designs
produced by the subjects and the evolvability of these designs. A strong correlation between a particular struc-
tural complexity measure and the changeability measure may identiyolability predictor. An evolv-
ability predictor is a structural feature of a design which is measurable and correlated to the changeability of
the design. A poor value for an evolvability predictor may signal the need for redesign.

The first research study included the collection of structural complexity data at the routine, component,
and system levels as shown in Table 6.6. The definitions for the detailed structural complexity measures ap-
pear in Section 4.5.

Table 6.6 Structural complexity measures for the first research study.

Structural Type of Structural

Complexity Level | Complexity Measure Detailed Type of Structural Complexity Measure

Number of routine attributes for a particular routine

Routine) -
Size (number of parameters + number of local variables)

105

Structural Type of Structural . .
Complexity Level | Complexity Measure Detailed Type of Structural Complexity Measure
Size of a particular routine
“ (number of routine attributes + size of routine logic as measured using the
Size method described in Section 4.5)
« Coupling Number of calls to other routines contained within a particular routine
“ Control Flow V(G) of a particular routine
Number of component level attributes for a particular component
Component (e.g. number of variables defined within a class but external to the methods
Size which are defined as part of the class)
" Number of routines contained within a particular component
Size (e.g. number of methods defined as part of a class)
Size of a particular component
“ [(number of component variables) + (sum of the sizes of the routines contained
Size within the component)]
Fan-in for a particular component
“ (number of other components which activate a routine which is part of the com-
Coupling ponent)
« Fan-out for a particular component
Coupling (number of other components whose routines are activated by the component)
“ Coupling Number of calls to external routines from a routine defined within the component
“ Control Flow V(G) of a particular component
System Size Number of components in the entire software system
Size of the entire software system
“ [(sum of the size of each component in the system) + (sum of the size of any
files which contain data type or data definitions that are external to the compo-
Size nents)|
“ Control Flow V(G) for the entire software system

Since the second research study involved the redesign of parts of an existing software system, the origina
design fixed many of the structural complexity features. Therefore, the experimenter did not assess structural
complexity for this study.

6.4 Evaluation of Design Effort

The research studies evaluated the effects of the research approach on the design process itself by having

the subjects measure and record time and error data. Table 6.7 lists the types of activities that were timed by

the subjects in the first research study. Table 6.8 shows the activities that were timed by the subjects in the

106

second research study. The reader should recall that RG and RM G are abbreviations for the Rationale Group
and Rationale+Method Group, respectively.

Table 6.7 Activitiestimed by the subjects in the first research study.

Activity Type Detailed Activity for Each Activity Type Trga:g[l”e)nt
Requirements Analysis | Functional requirements -- Read and understand the software requirements. all groups
« Functional changes -- Read and understand functional and data changes. RG and RMG
« Control flow changes -- Read and understand control flow changes. RG and RMG
Design Data and operations -- Identify the basic data and operations. RMG

“ Reuse analysis -- Analyze operations for reusability and decompose as needed. | RMG

“ Data dependencies -- Identify data change dependencies. RMG
“ Other dependencies -- Identify other change dependencies. RMG
“ Change sets -- Formulate change sets. RMG
“ Components -- Determine the objects (classes), method, and data. all groups
“ Component interfaces -- Specify the parameters for the methods. all groups

“ Component behavior -- Specify via pseudo-code the basic logic as well as the
flow of control within and between objects. all groups

“ Reuse analysis-- Analyze components for reusability and modify the design as
needed. RG

“ Change analysis-- Analyze the design for changeability and alter the design as
needed. RG

Components -- Verify that the components support all of the requirements cor-

Design Review rectly all groups

“ Interfaces -- Verify that the component interfaces are complete, correct, and con-
sistent. all groups

Component Behavior -- Verify that the logic and flow of control within and
“ between components is correct and complete. Remember that the software sys-
tem must have a beginning and a graceful way to end. all groups

Table 6.8 Activitiestimed by the subjects in the second research study.

. Treatment
Project Assignment Detailed Activity for Each Project Assignment éarlou:
Redesign of the Recoverable ‘ . . -
Virtual Memory (RVM) Facility Review the Coda Client requirements specification. all groups

107

Treatment

Project Assignment Detailed Activity for Each Project Assignment Group

“ Think about the current design of the Coda client RVM facility. *

“ Determine a new design for the RVM facility. *

“ Document the new design for the RVM facility. *

“ Document the rationale for the new design of the RVM facility. *

“ Review deliverables. !

Redesign of the Kernel-Venus
Interface Review the Coda Client requirements specification.

“ Think about the current design of the Kernel-Venus Interface. *

“ Determine a new design for the Kernel-Venus Interface. *

“ Document the new design for the Kernel-Venus Interface. *

“ Document the rationale for the new design of the Kernel-Venus Interface. *

“ Review deliverables. !

Evaluation of the New RVM
Design Evaluate the spatial performance of the RVM design. !

“ Evaluate the temporal performance of the RVM design. *

“ Evaluate the impact of change on the RVM design. *

“ Review deliverables. !

Evaluation of the New Kernel-
Venus Interface Design Read and think about assignment. !

“ Evaluate the Kernel-Venus interface (Deliverable 1: Questions 1-4). *

« Evaluate the Kernel-Venus interface (Deliverable 1: Question 5). “

« Evaluate the Kernel-Venus organization for ease of change. “

“ Review deliverables. !

The subjects received instructions to count the errors that they detected when reviewing their designs or
design evaluations. In general, errors were of type omission (missing specification of solution element or €l-
ement required for the task) or of type commission (incorrect specification of solution element or element

required for the task). All of the treatment groups for each study were to check for the same types of errors.

108

For the first research study, the types of errors to be identified were those shown in Table 6.9. Those to be
detected in the second research study are shown in Table 6.10.

Table 6.9 Types of errorsidentified by the subjects in the first research study.

Type of Errors Detailed Types of Errors

Omission Classes -- Missing object definitions (classes)

“ Methods -- Missing method definitions

“ Data -- Missing data definitions

“ Interfaces -- Missing parameters in the method interfaces

« Control Flow -- Missing method calls

Classes -- Class definitions that are not needed or incorrectly named. Include inconsistencies between the
definition of an object and the declaration of variables to be instances of the objects.

“ Methods -- Incorrect method definitions or declarations

“ Data -- Incorrectly defined data (e.g. wrong data type) in a class or method definition

“ Interfaces -- Incorrectly specified parameters

“ Control Flow -- Method calls which are out of order or not needed

Table6.10 Typesof errorsidentified by the subjects in the second research study.

Project Assignment Type of Detailed Types of Errors
Errors
Redesign of the RVM Facility
& Redesign of the Kernel- Omission
Venus Interface Missing deliverable in the deliverables packet

“ “ Missing class definition in the design

“ “ Missing method or function definition in the design

“ “ Missing data structure or user-defined type in the design

« “ Missing method call

“ “ Missing English description

“ “ Other

Commission | Incorrect deliverable in the deliverables packet

“ “ Incorrect class in a deliverable

109

Project Assignment

Type of

Detailed Types of Errors

Errors
« “ Incorrect method or function in a deliverable
“ “ Incorrect data structure or user-defined type in a deliverable
“ “ Incorrect method call
“ “ Incorrect English description
“ “ Other
Evaluation of t_he New RVM Omission o _ _ _
Design Missing deliverable in the deliverables packet
“ “ Missing calculation in the spatial performance evaluation
“ « Missing calculation in the temporal performance evaluation
“ “ Missing indication of class that would be affected by a change
“ “ Missing indication of method or function that would be affected by a change
“ “ Missing indication of file that would be affected by a change
“ “ Other
« Commission | Incorrect deliverable in the deliverables packet
“ « Incorrect calculation in the spatial performance evaluation
“ « Incorrect calculation in the temporal performance evaluation
“ “ Incorrect indication of class that would be affected by a change
« “ Incorrect estimation of size of class
“ “ Incorrect indication of method or function that would be affected by a change
“ “ Incorrect estimation of size of method or function
“ “ Incorrect indication of file that would be affected by a change
“ « Incorrect estimation of size of file
“ “ Other
Evaluation of New Kernel- Omission

Venus Interface

Missing deliverable in the deliverables packet

Missing data structure in Deliverable 1: Questions 1-4
(For more information, see Task A in Appendix Q.)

Missing explanation in Deliverable 1: Questions 1-4
(For more information, see Task A in Appendix Q.)

110

Project Assignment

Type of
Errors

Detailed Types of Errors

Missing indication of program element that would be affected by a change

Missing indication of class that would be affected by a change

Missing indication of method or function that would be affected by a change

Missing indication of file that would be affected by a change

Other

Commission

Incorrect deliverable in the deliverables packet

Incorrect data structure listed in Deliverable 1: Questions 1-4
(For more information, see Task A in Appendix Q.)

Incorrect explanation in Deliverable 1: Questions 1-4
(For more information, see Task A in Appendix Q.)

Incorrect indication of program element that would be affected by a change

Incorrect estimation of size of program element

Incorrect indication of class that would be affected by a change

Incorrect estimation of size of class

Incorrect indication of method or function that would be affected by a change

Incorrect estimation of size of method or function

Incorrect indication of file that would be affected by a change

Incorrect estimation of size of file

Other

For the first research study, the experimenter evaluated the designs produced by the subjects with respect

to error. The experimenter conducted her own extensive evauation of error after observing that the subjects

reported very few errors. The experimenter limited her detailed evaluation to the software designs produced

in the first study. These designs, having been constructed from “scratch”, exhibited more architectural variety

and demonstrated a wider variety of error types. Table 6.11 shows the types of errors that the experimenter

identified in the designs produced by the subjects in the first research study.

111

Table6.11 Types of errors detected by the experimenter for the first research study.

Type of Errors Detailed Types of Errors

Omission Missing component and routine names

“ Missing component variables

« Missing required operations

“ Missing parameters in routine interface

“ Missing parameters in routine call

« Missing local variables

“ Missing routine calls

“ Missing status/error checks

« Missing status/error codes

Commission Incorrect component and routine names

« Incorrect component variables

« Incorrect required operations

“ Incorrect parameters in routine interface

“ Incorrect parameters in routine call

« Incorrect local variables

“ Incorrect routine calls

“ Incorrect status/error checks

“ Incorrect status/error codes

For additional information about measuring the software development process, the reader may refer to
[47,54].
6.5 Processfor Designing an Empirical Test of a Software Design Approach

A systematic and step-wise process can simplify the design of an empirical study to test a software design
approach. The process should guide the researcher in the identification of the experimenta design features
and decisions to be made about these factors. The experimental design features considered for the research

studies are those shown in Figure 6.5.

112

+ Purpose of the experiment: Hypotheses about the software design approach.

+ Independent variables: Factors which can affect the dependent variables.

+ Dependent variables: Software process or product variables whose measurement will indicate the goodness
of the software design approach.

+ Condition variables: Independent variables whose effects are to be determined.

+ Nuisance variables: Independent variables whose effects are to be controlled.

+ Subjects: Software designers who perform the assigned tasks after receiving instruction about software
design (a treatment).

+ Tasks: A prescribed software development task that focuses on software design.

+ Statistical procedures for verifying the experimental results.

Figure 6.5 Experimental design factors for the research studies.

Figure 6.6 outlines the process that was used to design the research studies. This process is generic and

applicable to the design of other empirical studies for validating a software design approach. Chapter 7 dis-

cusses the application of this process for the research studies.

1. Identify the observable features and measurable impacts of the research approach.

a. What software qualities indicate goodness with respect to the purpose of the research approach?
b.

c.
d.
e.

What software artifacts (products) are the output of the research approach?
What measurable features of these artifacts indicate their goodness?
What software process features are measurable and interesting?

What is the desirable impact that the research approach should have on the product and process
features?

2. Determine and specify the product and process factors to be measured (dependent variables).

a.

b.

Which measurable features explored in step one will help to answer the questions that the
researcher has about the research approach?

For ideas, see the Metrics sub-tree of the Empirical Design Space in Figure 6.1.

What artifacts need to be produced or process data collected to determine values for the target
measures?

3. ldentify the observable factors which could affect the dependent variables (independent variables).

a.

What aspects of the research approach are to be evaluated?
For ideas, see the Research Approach sub-tree of the Empirical Design Space in Figure 6.1.

Do the dependent variables identified in Step 2 adequately evaluate the impact of the research
approach?

What characteristics of the software designer could affect the dependent variables?
For ideas, see the Designer sub-tree of the Empirical Design Space in Figure 6.1.

What characteristics of the software designer's work environment could affect the dependent
variables?

For ideas, see the Design Tool sub-tree of the Empirical Design Space in Figure 6.1.

113

4. Classify the independent variables as condition or nuisance variables.
a. Those variables whose effect is to be evaluated are condition variables.
b. Those variables whose effect is to be controlled are nuisance variables.
5. Analyze the condition variables and specify the treatment groups.
a. Which combinations of values for the condition variables make sense?

b. How many treatment groups are needed so that each group receives a unique treatment as
represented by one of the feasible combinations of values for the condition variables.

6. Analyze the nuisance variables and specify a way to control the potential effects of each nuisance variable.
a. Can the potential effects of a specific nuisance variable be eliminated completely?
b. How could the effects of the nuisance variables be equalized across the treatment groups?
(1) Would random assignment of the subjects to treatment groups equalize these effects?

(2) Do some characteristics of the subjects occur in blocks (in other words, there is a finite and
manageable number of categories for a characteristic)?

(3) Is it feasible and practical to first assign the subjects to blocks and then randomly assign an
equal number of subjects from each block to each of the treatment groups?

(4) Could each subject receive all of the different treatments in a random order without the
interference of learning (within-subjects design)?

(5) Which assignment of subjects to treatments best eliminates the effects of the nuisance variables
(e.g. random assignment of subjects, random assignment of subjects with blocking, or a within-
subjects design)?

(6) Can the nuisance variables be held constant for all subjects?

(7) Does it matter if the subjects interact with subjects within their treatment groups or with subjects
in other treatment groups? If so, how can the experimenter control any potential for interaction?

7. Identify the group of subjects.

a. What is the general population of subjects to which the hypotheses about the research approach
are applicable?

b. Isit possible to find a sample of subjects who represent the target population?

c. Arethere ethical, legal, and institutional procedures that must be followed to conduct an experiment
using human subjects?

(1) Are there permissions that must be received from the institution in which the experiment is to be
conducted?

(2) How might one recruit volunteers from a potential group of subjects?
(3) How should the subjects formally consent to participate in a research study?

(4) If the subjects receive compensation for their participation, how might one record the receipt of
this compensation?

8. Specify the detailed task to be performed by the subjects.

a. What resources do the subjects need to perform the task? For instance, use of the research
approach to create a software design requires a specification of software requirements and an

114

analysis of the expected or feasible software evolution.
b. Where will the subjects perform the task?
c. What are the complexity, scope, and size of the task?
d. What is the estimated time to complete the task?

e. If awithin-subjects design is used, can the same task be performed for each treatment? If not, how
will different tasks be equalized with respect to factors such as difficulty?

9. Determine the statistics needed to verify the experimental results and check that the experimental design will
generate the necessary data.

Figure 6.6 Processfor designing the research studies.

115

116

7 Empirical Research Studies and Results

The goal for the two research studies was to determine if the subjects who were trained in the use of the
research approach were able and more likely to produce better designs than those who were not trained in this
approach. The measure of goodness, change impact, was the same for each study. Though controlled, the
characteristics of the subjects and the task were purposely different for each study. The objective was to test
hypotheses stated in Chapter 1 regarding the research approach.

This chapter outlines for each research study the experimental design factors, summary statistics, analyses
of variance, hypothesistests, and other statistical calculations. This chapter includes the sections below.

» Section 7.1 outlines the experimental design factors for the research studies.

» Section 7.2 overviews the most important experimental results and conclusions.

» Section 7.3 presents the change impact results for the first experiment.

» Section 7.4 discusses the structural complexity results for the first experiment.

» Section 7.5 shows the design effort results for the first experiment.

e Section 7.6 presents the change impact results for the second experiment.

» Section 7.7 discusses design effort results for the second experiment.

» Section 7.8 presents final observations and conclusions about the empirical studies.
» Section 7.9 concludes with anecdotal information about the research studies.

7.1 Experimental Design Factors

This section steps through the process described in Chapter 6. It outlines the experimental design factors
for the research studies. The factors are the same for both experiments except when specifically noted.
Step 1: Identify the observable features and measur able impacts of the resear ch approach.

Table 7.1 explains the empirical design decision that addresses each process question in step one.

Table7.1 Step one in the design of an empirical study.

Process Question Empirical Design Decision

What software qualities indi- | Target software qualities:
cate goodness with respect + Evolvability
to the purpose of the

research approach? + Structural complexity features which may be evolvability predictors

Specification of a software architecture; namely:
+ Components
What software artifacts

(products) are the output of) . .
the research approach? * Interactions between the components via the interfaces to the components

+ Behavior of the components

117

Process Question

Empirical Design Decision

What measurable features
of these artifacts indicate
their goodness?

As described in Figure 6.4 of Section 6.2:
+ Change impact

+ Degree of reusability ratios for measuring the evolvability of a software design

Table 6.6 in Section 6.3 lists the structural complexity metrics used for measuring size, coupling,
and control flow at the levels of routine, component, and system. The experimenter assessed the
structural complexity of the resulting designs only for the first experiment, as explained earlier.

What software process fea-
tures are measurable and
interesting?

Target process features:
+ Time spent on each type of task activity

« Number and type of errors detected during review

The following tables in Section 6.4 provide details regarding the measurement of time and error.
+ Table 6.7 lists the activities timed by the subjects in the first experiment.

+ Table 6.8 lists the activities timed by the subjects in the second experiment.

« Table 6.9 lists the types of errors detected and counted by the subjects in the first
study.

+ Table 6.10 lists the types of errors detected and counted by the subjects in the
second study.

+ Table 6.11 lists the types of errors detected and counted by the experimenter for the
first study.

What is the desirable impact
that the research approach
should have on the product
and process features?

The goal is for use of the research approach to result in:
+ Software designs with lower change impact and higher degrees of reusability.

+ Less time needed for product evolution.

+ Lower potential for error during product evolution.

The research studies use the impact of change to gauge the impact on evolution time and poten-
tial error during product evolution. Note 7.1 explains the relationship between the impact of
change and the impact on evolution time and potential error during product evolution.

Note 7.1 The rationale for this estimation is the fact that the size of the impacted system directly
affects the expected time and potential error involved with changing the software. A larg-
er impact means that more of the system is involved in change and therefore that the
time needed for change as well as the potential for error would be higher.

The research approach does not specifically attempt to reduce the time required for de-
sign and does not specify the design review process. Therefore, the experimenter did
not formulate hypotheses regarding time for design-related activities or error detection
during design review. For exploratory purposes only, the experimenter directed the sub-
jects to record time spent on the activities of the assigned task as well as the number
and type of errors detected during review. It is logical to expect that designers who are
less experienced in using the research approach would take more time than those who
are experienced in its use to determine an appropriate set of software components. It
may also be probable that designers experienced in using the research approach may
require less time for generating a software architecture than they would require with the
use of another design method. The research approach provides step-wise directions and
guidelines for design decisions that are currently not covered well by popular design
methods.

118

Step 2: Determine and specify the product and process factor sto be measured (dependent variables).

Table 7.2 explains the empirical design decision that addresses each process question in step two.

Table 7.2 Step two in the design of an empirical study.

Process Question

Empirical Design Decision

Which measurable features explored in
step one will help to answer the ques-
tions that the researcher has about the
research approach?

As discussed in Section 6.2, both experiments involved direct evaluation through
assessment of changeability.

As presented in Section 6.3, only the first study included indirect evaluation via
assessment of structural complexity.

What artifacts need to be produced or
process data collected to determine
values for the target measures?

Both experiments required the subjects to produce a design specifying a software
architecture.

For the first study, the design must satisfy the requirements for the
creation of a software system from scratch.

For the second study, the design must satisfy the original requirements
plus new design objectives (redesign of part of an existing software
system).

The process data includes the time and error data discussed in Step 1.

Step 3: Identify the observable factor swhich could affect the dependent variables (independent vari-

ables).

Table 7.3 explains the empirical design decision that addresses each process question in step three.

Table 7.3 Step three in the design of an empirical study.

Process Question

Empirical Design Decision

What aspects of the research approach are
to be evaluated?

There are two primary features of the research approach.
1. Design rationale

2. Design approach

Do the dependent variables identified in Step
2 adequately evaluate the impact of the
research approach?

Yes.
+ Evolvability is measurable through assessment of changeability.

+ Evolvability predictors are structural complexity measures which
are correlated to changeability.

What characteristics of the software designer
could affect the dependent variables?

Characteristics of the software designer are the following.
+ Education/training

+ Experience
+ Natural capabilities
+ Teamsize

What characteristics of the software
designer’s work environment could affect the
dependent variables?

Characteristics of the software design work environment are the following.
+ Software design tools

« Environmental conditions which affect the designer's ability to
create software designs (e.g. lighting, desk space, and heating/
cooling)

119

Step 4: Classify theindependent variables as condition or nuisance variables.
Table 7.4 lists the condition or nuisance variables identified in step four.

Table 7.4 Step four in the design of an empirical study.

Condition Variables Nuisance Variables
Design rationale Designer’s education/training, experience, and natural capabilities as well as team size
Design approach Software design tools

Environmental conditions which affect the designer’s ability to create software designs (e.g. light-
ing, desk space, and heating/cooling)

Step 5: Analyze the condition variables and specify the treatment groups.
Table 7.5 explains the empirical design decision that addresses each process question in step five.

Table 7.5 Step fivein the design of an empirical study.

Process Question Empirical Design Decision

Which combinations of values for the condition variables make sense? | See Table 6.1 in Section 6.1.

3 treatment groups

How many treatment groups are needed so that each group receives | See Table 6.2 in Section 6.1 for a list of the treatment
a unique treatment as represented by one of the feasible combinations | groups and Figure 6.2 for a detailed description of each
of values for the condition variables. group.

Step 6: Analyze the nuisance variables and specify a way to control the potential effects of each nui-
sance variable.

Table 7.6 explains the empirical design decision that addresses each process question in step six.

Table 7.6 Step six in the design of an empirical study.

Process Question Empirical Design Decision

Yes.

The experimenter can eliminate the effects of the design tools. The subjects in the
research studies did not use software design tools. They did use word processors
Can the potential effects of a specific nui- | for documenting their designs, but the experimenter did not consider the type of
sance variable be eliminated completely? | word processor to be a nuisance variable.

How could the effects of the nuisance vari-
ables be equalized across the treatment
groups?

Would random assignment of the
subjects to treatment groups equalize | Yes.
these effects? Assignment to treatment groups was random.

120

Process Question

Empirical Design Decision

Do some characteristics of the sub-
jects occur in blocks (in other words,
there are a finite and manageable
number of categories for a character-
istic)?

Characteristics which occur in blocks:
« Major or academic program of study

+ Education/training
+ Experience
+ Availability to attend a “treatment” lecture (day/time)

Is it feasible and practical to first
assign the subjects to blocks and
then randomly assign an equal num-
ber of subjects from each block to
each of the treatment groups?

According to the pre-experiment surveys completed by the subjects for the first
experiment:
1. Most of the participants were engineering or science students. Some
participants were students pursuing degrees involving the technology-
oriented aspects of theater production systems.

2. All of the participants had some experience with programming in the
small (e.g. programs of less than 2000 lines of executable code).

3. A few participants had taken a high school programming course; but
most were enrolled in their first programming course.

In the first experiment, blocking was according to major or academic program and
day/time availability for the treatment lecture. The treatment lectures were held out-
side of the class from which the participants were recruited.

The body of subjects for the second experiment consisted of the following two pri-
mary groups.
1. Undergraduate computer science and engineering students

2. Graduate students with undergraduate degrees in engineering/
science and education/experience in computing

According to the pre-experiment surveys completed by the subjects for the second
experiment, the levels of education/training and experience were similar within
each of the two groups.

In the second experiment, blocking was also according to academic program. Day/
time availability was not a factor because the treatment lectures were conducted
during the time of the class from which the participants were recruited. The teach-
ing assistant for the class identified groups of students that typically worked
together on class projects. Whenever possible, the experimenter also blocked with
respect to student working groups.

Could each subject receive all of the
different treatments in a random
order without the interference of
learning (within-subjects design)?

No.
Random order is not feasible. The effects of learning are theoretically controllable
by having each subject respond independently to each treatment with treatments
administered in the following order:

1. Basic lecture,

2. Basic+rationale lecture,
3. Basic+rationale+method lecture.

Time constraints and the difficulty of equalizing the task performed by the subject
across different treatments precluded a within-subjects design.

Which assignment of subjects to
treatments best eliminates the effects
of the nuisance variables (e.g. ran-
dom assignment of subjects, random
assignment of subjects with block-
ing, or a within-subjects design)?

As discussed above, random assignment of subjects with blocking according to
academic program was the practical choice for both experiments.

The first experiment also included blocking according to day/time availability for the
treatment lecture. In the second experiment, subjects who most potentially would
interact with each other received the same treatment when possible.

121

Process Question

Empirical Design Decision

Due to time/space limitations, it was not practical to have the subjects complete the
assigned task in one location with identical environmental conditions. The subjects
were to perform the software design task in environments similar to those in which
they would complete a typical class assignment or project.

Can the environment variables which | The expectation was that the differences in environment across subjects would vary
are a nuisance be held constant for randomly. The effects of environment on software design are beyond the scope of

all subjects?

the research studies.

The subjects were to perform their assigned task independently.

The experimenter used several approaches to encourage the subjects to work on
their design task independently.

« The instructors for the courses from which the subjects were recruited
awarded the participants bonus points for completing the required
task. The experimenter assigned bonus points according to the
completeness, quality, and independence of the resulting designs.

+ The experimenter carefully explained that the award of bonus points
was not based on competition. Each design could potentially earn the
maximum bonus points.

+ The experimenter explained to the subjects the ethical responsibilities

Does it matter if the subjects interact of participants in research studies.
with subjects within their treatment « The experimenter offered help sessions to answer questions that the
groups or with subjects in other treat- subjects had about the assigned task.

ment groups? If so, how can the
experimenter control any potential for

interaction?

+ For the second research study, the experimenter assigned students
who typically worked together on class projects to the same treatment
group whenever possible.

Step 7: Identify the group of subjects.

Table 7.7 explains the empirical design decision that addresses each process question in step seven.

Table 7.7 Step seven in the design of an empirical study.

Process Question

Empirical Design Decision

What is the general popula-
tion of subjects to which the
hypothesis(es) about the
research approach are
applicable?

The general population includes software designers. This population exhibits high diversity with
respect to education, experience, skill, and domain expertise in software design. The population
is also geographically disperse. Sampling this population and controlling the variance in the char-
acteristics/backgrounds of the subjects is extremely difficult if not impossible.

The use of student subjects was the most practical option for the experimenter. The experimenter
thought that the impact of a precise design approach would be greater for beginner designers or
for designers with some education/experience (non-experts). Beginner designers, in particular,
have difficulty understanding the types of decisions that a designer must make.

There were two target populations of Carnegie Mellon University students.
1. Students beginning their study of software design

2. Students with education/experience in software design but without expert-level
understanding of software design

122

Process Question

Empirical Design Decision

Is it possible to find a sam-
ple of subjects who repre-
sent the target population?

To better control the differences among subjects, the experimenter searched for groups of stu-
dents with common levels of education and experience. For statistical purposes, the experimenter
looked for groups with the most students to recruit as subjects.

The experimenter looked for classes of students studying software design or software architec-
ture from which to recruit subjects. Due to time constraints and the need to cover requisite course
requirements, many classes of students studying software related topics were not available to
participate in experiments.

The instructor found two courses of approximately 80-100 students each from which to recruit
subjects for two experiments.
1. Beginning undergraduate course in the designiimplementation of software using
C++. The course was primarily offered to students in science and engineering who
were not majoring in computer science.

2. Graduate course in the study and design of distributed software systems. The course
was required for students pursuing a master's degree in networking and information
technology. Upper-level computer science and engineering students also enrolled in
the course.

Are there ethical, legal, and
institutional procedures that
must be followed to conduct
an experiment using human
subjects?

Are there permissions
that must be received
from the institution in
which the experiment
is to be conducted?

Appendix D contains the Carnegie Mellon University Human Subject Request for the research
studies. The experimenter submitted copies of Appendices E and F with the request.

How might one recruit
volunteers from a
potential group of sub-
jects?

Appendix E shows an example of a call for subjects to participate in a research study.

The reader should note that Carnegie Mellon University policy requires student participation in
experimental studies to be voluntary. A student participant has the right to withdraw from the
study at any time without penalty other than not receiving compensation for participation.

Mandatory participation in an empirical study as part of the requirements for a course and use of
artifacts resulting from the study for grading purposes is, in general, not permissible. The course
instructor would need to justify that participation in the proposed empirical study is a reasonable
learning objective for the course. This may be more easily done for research-oriented courses at
the graduate level.

Participation was voluntary for both experiments. The task for the second experiment was one of
the project options for the course taken by the students from which the subjects were recruited.
Though some students completed the task without participating in the experiment, most students
volunteered to be subjects for the experiment.

How should the sub-
jects formally consent
to participate in a
research study?

Appendix F consists of an example of a form to obtain a subject’s consent to participate in a
research study. The consent form should request the participant to acknowledge that he/she has
been advised as to:

1. His/her right to withdraw at any time without penalty.

2. The confidentiality of histher name and of his/her association with data collected in
the empirical study. This especially applies to any publication of the results of the
study.

123

Process Question

Empirical Design Decision

If the subjects receive
compensation for their
participation, how
might one record the
receipt of this compen-
sation?

ticipation in an experiment.

Appendix G provides an example of a form to record a subject’s receipt of compensation for par-

Table 7.8 summarizes the characteristics of the subjects in the research studies with respect to factors out-

lined in Table 6.4.

Table 7.8 Characteristics of the subjects who participated in the research studies.

Experiment Education & Training Experience Natural Capabilities Team Size
1 Programming Courses Programming in Small Organization 1
9 Programming& Abstraction, Organization, &
Software Engineering Courses Programming in Small Attention to Detail 1

Step 8: Specify the detailed task to be performed by the subjects.

Table 7.9 explains the empirical design decision that addresses each process question in step eight. The

reader should recall that RG and RMG are abbreviations for the Rationale Group and Rationale+Method

Group, respectively.

Table 7.9 Step eight in the design of an empirical study.

Process Question

Empirical Design Decision

(all treatment groups)
See Table B.1 in Appendix B.

See Table B.2 in Appendix B.

For the first experiment, the required resources were:
+ Analysis of requirements in the statement of work for the microwave oven software.

+ Analysis of the requirements for product evolution in the statement of work for the
microwave oven software (RG and RMG groups).

For the second experiment, the required resources were:

What resources do the sub-
jects need to perform the
task?

+ Analysis of the behavior for the Coda Client, the client-side software for the Coda
distributed file system. (all treatment groups)

+ Coda Client software and related documents [39]. (all treatment groups)
+ Analysis of the requirements for evolution of the Coda Client. (RG and RMG groups)
See Appendix M and Appendix O.

124

Process Question Empirical Design Decision

Where will the subjects per- | The subjects were expected to perform their assigned task in the environments in which they
form the task? normally completed class assignments.

The task performed by the subjects in the research study were:
+ For the first experiment, the design of the software for a microwave oven.

+ For the second experiment, the following project assignments:

+ Analysis of the Coda Client software (preparation for the redesign assignments).
+ Redesign of the Recoverable Virtual Memory facility of the Coda Client or RVM.
See Appendix L.
+ Redesign of the Kernel-Venus interface for the Coda Client.
See Appendix N.
+ Evaluation of the redesign of the RVM facility.
See Appendix P.
+ Evaluation of the redesign of the Kernel-Venus interface.

What are the complexity, See Appendix Q.

scope, and size of the task?

The time required for the research studies was:
What is the estimated time to + For the first experiment, similar to a homework assignment or about 15 hours.

? . .
complete the task? + For the second experiment, conducted over a period of about 14 weeks.

Due to the effects of learning, subjects for a within-subjects experiments would have to perform a
new design task for each treatment. An experimenter would need to demonstrate that the design
tasks across the treatments are of equal complexity, scope, and size. Exploration of ways to esti-
mate the difficulty of design tasks was beyond the scope of the research studies.

If a within-subjects design is
used, can the same task be Some additional notes regarding the feasibility of a within-subject design are the following.

performed for each treat- + The available time for the first experiment was not sufficient for a within-subjects
ment? If not, how will differ- experiment.

ent tasks be equalized with

+ For the second experiment, the use of three design tasks of equal complexity did
respect to factors such as

o not correlate to the project objectives for the course as discussed above. A within-
difficulty? subjects experiment was therefore not suitable.

Table 7.10 summarizes the characteristics of the tasks performed by the subjects in the research studies
with respect to factors outlined in Table 6.3.

Table7.10 Characteristics of the tasks for the research studies.

Experiment Task Complexity Scope Across Life Cycle Task Size Completion Time
1 Novelty Design 1-10 Components Homework (days)
9 Novelty, Analysis, Redesign, &
Functional Interrelationships Design Evaluation 11-51 Components Project (weeks)

125

Step 9: Determine the statistics needed to verify the experimental results and check that the experi-
mental design will generate the necessary data.

Table 7.11 outlines the statistics identified in step nine. Column two of the table indicates the data that is
required for each technique, and column four specifieswhether or not the data can be collected from the study.

Table 7.11 Step ninein the design of an empirical study.

Type of Is this
Statistic Required Data Data collectable
(for each subject group) a (Product/ data?
Process) (yes/no)
For the change impact of the designs within For each design: product yes
each treatment group: For each change and across all
For each level of evaluation changes:
(routine, component, and routine « Total size of routines reused
with comparative sizing): with modification
For each change and across * Total size of components
all changes: reused with modification
+ mean + Total comparative size of
. : routines reused with
medldandd - modification
) stan‘ ard deviation + Total size of routines reused
* Mmaximum without modification
* Mminimum + Total size of components
For the change impact means of the treatment reused without modification
groups: + Total comparative size of
Across all changes: routines reused without
. . modification
+ analysis of variance)
. - + Total software system size
+ hypothesis test (F statistic)
For each structural complexity measure and for For each design: product yes
the designs within each treatment group: + Value for each structural
mean complexity measure
For selected structural complexity measures: + Mean change impact across all
For the designs within a treatment group designs
and for all designs:
Correlation between the structural
complexity measure and the mean
change impact across all changes

126

Type of Is this
Statis_tic Required Data Data collectable
(for each subject group) (Product/ data?
Process) (yes/no)
For the time spent on each design activity by the | For each subject: process yes
subjects in each treatment group: Time spent on each activity of the
* mean assigned task
+ median
+ standard deviation
* maximum
s minimum
For the total time spent on the assigned task by
the subjects in each treatment group:
¢ mean
+ median
+ standard deviation
* maximum
s minimum
For the means (of the total time) across the
treatment groups:
+ analysis of variance
+ hypothesis test (F statistic)
For each type of error to be detected by the sub- | For each subject: process yes
jects in each treatment group: The number of each type of error
* mean detected by the subject during the
« median design review.
+ standard deviation
* maximum
s minimum
For the means (of the total number of errors
detected by the subjects) across the treatment
groups:
+ analysis of variance
+ hypothesis test (F statistic)
For each type of error to be detected by the For each design: product yes
experimenter for the designs in each treatment The number of each type of error
group: detected by the experimenter.
¢ mean
+ median
+ standard deviation
* maximum
s minimum
For the means (of the total number of errors
detected by the experimenter) across the treat-
ment groups:
+ analysis of variance
+ hypothesis test (F statistic)

127

7.2 Overview of the Experimental Resultsand Conclusions
This section overviews the most important results of the empirical studies used to validate the research ap-
proach. The experimenter used three types of comparisons as described below to evaluate the effectiveness
of theresearch approach. The primary measure for comparison was changeability. The reader should note that
the author uses the term “conclusion” to mean a general idea or understanding reached as a result of analyzing
a set of detailed observations.
1. A comparison of the designs produced by the experimental groups to a benchmark design created

by the experimenter who followed the research approach resulted in the following observation and
conclusion.

Observation: The benchmark design results are significantly better than those for any
experimental group.

Conclusion: The research approach effectively reduces the impact of change.

2. A comparison of the results from each experimental group support the following observation and
conclusion

Observation: There are no significant differences between groups.

Upon closer examination, it was apparent that many subjects who were taught the research
approach did not use it correctly in the development of their designs.

Conclusion: The research approach requires different or more training.

3. A comparison of designs produced by subjects who followed the research approach with those of
the benchmark design resulted in the following observation and conclusion.

Observation: Those subjects who were taught and correctly applied the research approach
achieved results similar to the benchmark results.

Conclusion: The research approach can be learned and is effective when applied.

The research approach is more effective at systematically reducing the impact of change than human intu-
ition or general design practices. The experiments show that a traditional classroom lecture with practice ex-
amples may not provide sufficient training to enable beginning designers to apply the research approach. A
problem for future research is how to best transfer this technology to practice.

The sections which follow provide detailed results that support the general conclusions.

7.3 Experiment 1: Change Impact

This section presents the summary statistics for the change impact values observed for the designs in each
treatment group as well as for the benchmark design. The benchmark design is an example of a design for the
microwave oven software created by a designer who is reasonably considered to be an expert in the use of the

research approach. The experimenter created the benchmark design, shown in Appendix H.

128

Inreview,

Change impact is a measure of the part of a software system which must be modified to satisfy new
requirements for the software. When measured across a set of new requirements, change impact is
an average of the impact for the modifications needed to satisfy each new requirement. Mean change
impact is the average change impact for the designs produced by a group of subjects, e.g. the Ratio-
nale+Method Group. Reducing change impact is important because it helps to reduce the amount of
effort needed to evolve the software system.

As shown in Figure 7.1, the author reports the change impact results as mean and median values with re-
spect to the following sets of change impact values.

» Across all types of change for a particular design
» Across all designs within an experimental group for a particular type of change
» Across all types of change and across all designs within an experimental group.

She also reports the results as a range of mean or median values across the experimental groups.

{Cﬂ% Cun Cz% Cod L}
Mean/median results across Mean/mediemor change j across all de-
all changes for design i signs within an experimental group

Mean/median results across all changes and across all
designs within an experimental group

Range of mean/median results across all experimental groups

Cjjis the change impact value for design i within an experimental group and change j.
{...} represents the change impact values for an experimental group.

Figure7.1 Types of change impact results.

Table 5.1 presented the types of change and their related change signatures for the expected evolution of
the microwave oven software. From here on, the text refers only to the change signatures.

7.3.1 Summary Statisticsfor Change Impact

The change impact analysis included three different evaluations as described in Figure 7.2. The experiment
used the method described in Section 4.5 to size routines and components specified in the designs produced

by the subjects.

129

1. Change impact at the routine level: ratio of the total size of the routines reused with modification to the total
size of all routines.

2. Change impact at the component level: total size of the components reused with modification to the total size
of all components.

3. Change impact at the routine level with comparative sizing: total size of the comparative routines reused with
modification to the total size of all routines.

Comparative routines encapsulate the logic specified by the subject but have “standardized” sizes which
reflect the size of this logic in the benchmark design. Comparative routines do not necessarily map directly
to benchmark routines, although in many cases direct mapping was possible. Rather, pieces of logic in the
routines map to similar pieces of logic in the benchmark design.

Figure 7.2 Types of evaluations for the change impact.

The third type of evaluation addresses the variance in the level of detail across the designs produced by
the subjects. Based on the logic from the detailed benchmark design, the experimenter determined a compar-
ative size for each routine specified as part of a subject’s design.
Analysis of changeimpact at theroutine level acrossall types of changes:

Table 7.12 shows the summary statistics for the change impact at the routine level across all changes and
all subjects within a treatment group. The reader can observe the results regarding the change impact at the
routine level in Figure 7.3.

« The mean for the control group, 17.26%, is the lowest achieved by the treatment groups.

+ The largest difference between the change impact means for any two of the treatment groups is the
difference between the means for the control and rationale groups or 2.61%.

+ The mean change impact for the benchmark design is:

+ 0.29t00.33 as large as the mean change impact for any of the treatment groups.
+ Approximately 3 times better than the mean change impact for any of the treatment groups.

(Dividing the mean change impact for a treatment group by 3 approximates the mean change impact
for the benchmark design.)

+ The median change impact for the benchmark design is:

+ 0.18100.31 as large as the median change impact for any of the treatment groups.
+ Approximately 3-5 times better than the median change impact for any of the treatment groups.

Figure 7.3 Results of the change impact across all changes at the routine level.

Table 7.12 Change impact at the routine level across all types of changes.

Statistic Control Group Rationale Group RatlonGa:ce):l;Iethod Benchmark Design
Mean 17.26% 19.87% 18.58% 5.69%
Median 12.03% 20.27% 12.85% 3.71%

130

Statistic Control Group Rationale Group RationGa:ce):l;Iethod Benchmark Design
Standard Deviation 15.28% 15.99% 18.17% 6.75%
Maximum 54.95% 97.30% 83.51% 25.27%
Minimum 0.00% 0.00% 0.00% 0.00%

Conclusions about the change impact at the routine level:

» There does not appear to be a significant difference between the mean change impact for each
treatment group. The analysis of variance in Subsection 7.3.2 verifies this.

* The benchmark design shows a significantly lower mean and median change impact than
that achieved by any of the treatment groups.

Analysis of changeimpact at theroutine level for particular changes:

For the results of the change impact at the routine level for each type of change, the reader should see Table
R.2 through Table R.15 in Appendix R. The reader can observe the results regarding the change impact at the
routine level for each type of change in Figure 7.4.

+ Except for the DFORM and RFORM changes, the mean change impact for the benchmark design is:

+ 0.023* (IMSWT, 0.00% for the benchmark in comparison to 43.87% for the Rationale Group) to 0.96
(CHD, 25.27% for the benchmark in comparison to 26.27% for the Control Group) as large as the mean
change impact for any of the treatment groups.

*Technically, 0.00%/43.87% is 0.00. This would mean that the benchmark design is 1/0.00 or infinitely
better than the Rationale Group’s Design. The author does not consider that this makes practical sense,
particularly because a 0.00% change impact value does not reflect the effort needed to determine that
there is no change impact. Hence, every occurrence of 0.00% is replaced by 1.00% in the comparative
type of results.

+ Approximately 1.04 to 44 times better than the mean change impact for any of the treatment groups.
+ For the DFORM and RFORM changes, the mean change impact for all treatment designs as well as the
benchmark design is 0.00%.

All subjects correctly used the related system routine calls as specified in the design requirements. Changes
to these routines, therefore, did not impact any of the designs.

+ Except for the DFORM and RFORM changes, the median change impact for the benchmark design is:

+ 0.022 (IMSWT, 0.00% for the benchmark in comparison to 44.58% for the Rationale+Method Group) to
0.96 (CHD, 25.27% for the benchmark in comparison to 26.47% for the Control Group) as large as the
median change impact for any of the treatment groups.

« Approximately 1.04 to 45 times better than the median change impact for any of the treatment groups.
+ Not considering the null DFORM and RFORM changes, there is a large range of change impact values for

the different types of changes.

+ The minimum change impact is 0.00% (HLWS, Control Group and Rationale+Method Group).

+ The maximum change impact is 83.51% (PSRC, Rationale+Method Group).

+ In half of the cases, the standard deviation for the Rationale+Method Group is larger than those for
the other treatment groups. In the other half of the change types, the standard deviation for the
Control Group is the largest.

Figure 7.4 Results of the change impact for individual changes at the routine level.

131

Conclusions about the change impact at theroutine level for particular changes:

» The variance within the treatment groups is high for many types of change. The Control Group
and Rationale+Method Group show the largest variance within their groups.

* The benchmark design shows a lower (and often, substantially lower) mean and median
change impact than that achieved by any of the treatment groups for all types of change.

Analysis of changeimpact at the component level acrossall types of changes:

Table 7.13 shows the summary statistics for the change impact at the component level across all changes
and all subjects within a treatment group. The reader can observe the results regarding the change impact at
the component level in Figure 7.5.

« The mean for the control group, 38.18%, is the lowest achieved by the treatment groups.

+ The largest difference between the change impact means for any two of the treatment groups is the
difference between the means for the control and rationale groups or 6.81%.

+ The mean change impact for the benchmark design is:

+ 0.19t00.22 as large as the mean for any of the treatment groups.
+ Approximately 5 times better than the mean change impact for any of the treatment groups.
+ The median change impact for the benchmark design is:

+ 0.08 to 0.14 as large as the median for any of the treatment groups.
+ Approximately 7 to 12 times better than the median change impact for any of the treatment groups.

Figure 7.5 Results of the change impact across all changes at the component level.

Table 7.13 Change impact at the component level across all types of changes.

Statistic Control Group Rationale Group RationGa:ce):lglethod Benchmark Design
Mean 38.18% 44.99% 41.66% 8.57%
Median 26.23% 42.68% 36.44% 3.59%
Standard Deviation 32.16% 32.87% 32.09% 10.36%
Maximum 100.00% 100.00% 95.65% 26.60%
Minimum 0.00% 0.00% 0.00% 0.00%

Conclusions about the change impact at the component level:

» There does not appear to be a significant difference between the mean change impact for each
treatment group. The analysis of variance in Subsection 7.3.2 verifies this.

* The benchmark design shows a significantly lower mean and median change impact than
that achieved by any of the treatment groups.

132

Analysis of change impact at the component level for particular changes:

For the results of the change impact at the component level for each type of change, the reader should see
Table R.2 through Table R.15 in Appendix R. The reader can observe the results regarding the change impact
at the component level for each type of change in Figure 7.6.

+ Except for the DFORM and RFORM changes, the mean change impact for the benchmark design is:

+ 0.014 (IMSWT, 0.00% for the benchmark in comparison to 73.22% for the Rationale Group) to 0.78
(FDBL, 26.60% for the benchmark in comparison to 34.14% for the Rationale+Method Group) as large as
the mean change impact for any of the treatment groups.

+ Approximately 1.28 to 73 times better than the mean change impact for any of the treatment groups.

+ For an explanation of the null DFORM and RFORM cases, the reader should see the discussion in the
change analysis at the routine level for particular changes.

* Not considering the null DFORM and RFORM changes, the median change impact for the benchmark
design is:

+ 1.04% larger than the median for the Control Group in the FDBL and EDA changes.

« For all other types of change, 0.014 (IMSWT, 0.00% for the benchmark in comparison to 72.26% for the
Rationale Group) to 0.82 (CHD, 26.60% for the benchmark in comparison to 32.31% for the Control
Group) as large as the median change impact for any of the treatment groups.

+ Approximately 1.22 to 73 times better than the median change impact for any of the treatment groups
(except in the FDBL and EDA cases).

+ Not considering the null DFORM and RFORM changes, there is a large range of change impact values for
the different types of changes.

+ The minimum change impact is 0.00% (HLWS, Control Group and Rationale+Method Group).

+ The maximum change impact is 100% (IMSWT, Control Group; Timer, Control Group and Rationale
Group).

Figure 7.6 Results of the change impact for individual changes at the component level.
Conclusions about the change impact at the component level for particular changes:
» The variance within the treatment groups is high for most types of change.
* The benchmark design shows a lower (and often, substantially lower) mean and median
change impact than that achieved by any of the treatment groups for all types of change.
Analysis of changeimpact at theroutine level with comparative sizing across all types of changes:
Table 7.14 shows the summary statistics for the change impact at the routine level with comparative sizing
across all changes and all subjects within a treatment group. The reader can observe the results regarding the

change impact at the routine level with comparative sizing in Figure 7.7.

« The mean for the rationale+method group, 20.50%, is the lowest achieved by the treatment groups.

+ The largest difference between the change impact means for any two of the treatment groups is the
difference between the means for the rationale and the rationale+method groups or 5.36%.

+ The mean change impact for the benchmark design is:

+ 0.22100.28 as large as the mean for any of the treatment groups.
+ Approximately 4 times better than the mean change impact for any of the treatment groups.

133

+ The median change impact for the benchmark design is:

+ 0.14100.27 as large as the median for any of the treatment groups.
+ Approximately 4 to 7 times better than the median change impact for any of the treatment groups.

Figure 7.7 Results of the change impact across all changes at the routine level with comparative sizing.

Table 7.14 Change impact at the routine level with comparative sizing across al types of changes.

Statistic Control Group Rationale Group RationGa:ce):l;Iethod Benchmark Design
Mean 23.08 25.86 20.50 5.69
Median 13.64 26.54 14.78 3.71
Standard Deviation 18.15 20.62 18.27 6.75
Maximum 54.29 99.45 85.23 25.27
Minimum 0.00 0.00 0.00 0.00

Conclusions about the change impact at the routine level with compar ative sizing:

» There does not appear to be a significant difference between the mean change impact for each
treatment group. The analysis of variance in Subsection 7.3.2 verifies this.

* The benchmark design shows a significantly lower mean and median change impact than
that achieved by any of the treatment groups.

Analysis of changeimpact at the routine level with comparative sizing for particular changes:

For the results of the change impact at the routine level with comparative sizing for each type of change,
the reader should see Table R.2 through Table R.15 in Appendix R. The reader can observe the results regard-
ing the change impact at the routine level with comparative sizing for each type of change in Figure 7.8.

+ Except for the DFORM and RFORM changes, the mean change impact for the benchmark design is:

« 0.025 (IMSWT, 0.00% for the benchmark in comparison to 40.78% for the Rationale Group) to 0.70 (CHD,
25.27% for the benchmark in comparison to 36.74% for the Rationale+Method Group) as large as the
mean change impact for any of the treatment groups.

+ Approximately 1.43 to 41 times better than the mean change impact for any of the treatment groups.

+ For an explanation of the null DFORM and RFORM cases, the reader should see the discussion in the
change analysis at the routine level for particular changes.

* Not considering the null DFORM and RFORM changes, the median change impact for the benchmark
design is:
+ 1.02% larger than the median for the Control Group in the HBSQ and DSNSR changes.

« Forall other types of change, 0.025 (IMSWT, 0.00% for the benchmark in comparison to 40.86% for the
Control Group) to 0.89 (ADO, 9.07% for the benchmark in comparison to 10.16% for the Rationale Group)
as large as the median change impact for any of the treatment groups.

+ Approximately 1.12 to 41 times better than the median change impact for any of the treatment groups
(except in the HBSQ and DSNSR cases).

134

+ Not considering the null DFORM and RFORM changes, there is a large range of change impact values for
the different types of changes.

+ The minimum change impact is 0.00% (HLWS, Rationale+Method Group).
+ The maximum change impact is 99.45% (IMSWT, Rationale Group).

Figure 7.8 Results of the change impact for individual changes at the routine level with comparative sizing.

Conclusions about the change impact at the routine level with comparative sizing for particular
changes:

» The variance within the treatment groups is high for most types of change.
* The benchmark design shows a lower (and often, substantially lower) mean and median
change impact than that achieved by any of the treatment groups for all types of change.

7.3.2 Analysesof Variance for Change I mpact

The next question is whether or not the difference between the mean change impact across all changes for
each treatment group is due to the different treatments or to experimental error. The answer to this question
requires one-way analysis of the variance in the change impact values within each group as well as across the
groups. This is done for each of the levels of evaluation. Those readers who are not familiar with the concepts
of analysis of variance, hypothesis testing viagitlsgatistic, and analysis of correlation may refer to Appendix
S which discusses these statistical techniques. The author also refers the reader to [82,96] for more detailed
explanations and example applications.

Because the sizes of the treatment groups were not equal, the experimenter used three techniques (as dis-
cussed in Appendix S) for analyzing variance with unequal sample sizes. In the first case, designs with the
poorest scores (highest mean change impact values) were removed to create equally sized groups. The exper-
imenter reasoned that subjects with lower innate ability were more likely to resign from the experiment.
Therefore, the groups with fewer remaining subjects had a higher percentage of subjects with the potential to
create better designs. The experimenter’s reasoning is based on comments from students who attempted but
did not complete their designs. Of the three techniques, using equally sized groups probably yields the least
reliable results.

The conclusion is the same for any observed differences in the mean change impact across the treatment

groups at the different levels of change analysis.

135

Conclusion:
The mean change impacts at the routine level, component level, and routine level with
comparative sizing are not significantly different between the treatment groups. Any observed
differences are due to experimental error alone (not due to differences in treatments).
Detailed calculations and results for analysis of variance are shown in Appendix T.
7.3.3 Analysisof Covariance for Change Impact
Sincethe analysis of variance did not yield any significant difference between the mean change impact for
each treatment group at any design level, the experimenter applied an anaysis of covariance with respect to

three concomitant variables or covariates. The three covariates were the following.

» Total time spent on completing the design task

» Largest program written before completing the design task (programming experience)

* Number of computer programming courses taken before completing the design task (computer-

related education)

The subjects submitted the total time that they spent on the design task and provided background informa-
tion about their pre-experiment related education and experience. The experimenter analyzed the correlation
between the mean change impact across all changes and at all design levels with respect to each covariate.
This process consisted of a correlation between the mean change impact and covariate values for all subjects
as well as a correlation within each treatment group.

The correlation tables (Table 7.15, Table 7.16, Table 7.16, and Table 7.18) indicate the following:

e For all subjects and at any design level, mean change impact across all changes has little

correlation with any of the covariates.

» For the Control Group, mean change impact across all changes and time have a weak, direct
correlation at the component level (0.72) .

» For the Rationale Group, mean change impact across all changes and programming experience
have a weak, indirect correlation at the routine level (-0.67) and at the component level (-0.79).

» For the Rationale+Method Group, mean change impact across all changes and time have a
moderate, direct correlation at the routine level and at the routine level with comparative sizing
(both 0.86).

* For the Rationale+Method Group, mean change impact across all changes and programming
experience have a weak, indirect correlation at the component level (-0.70).

As one would expect, the analysis of covariance with respect to each covariate resulted in acceptance of

Hgand rejection of;.

136

Conclusion:

Differences in the mean change impact across changes at the three design levels between the
treatment groups are not due to differences in the treatments, even when one takes into account
any experimental error due to differences in the subjects with respect to time spent on the task,

programming experience, and computer-related education.

Details of the calculations and results for the analysis of covariance appear in Appendix U.

Correlation Between Subject Characteristics and Change | mpact

Table 7.15 Correlation between subject characteristics and change impact at the routine, component, and
routine with comparative sizing levels. Use of equa size sample groups with 18 total subjects.

Characteristic of the Subject

Correlation to
Change Impact at
the Routine Level

Correlation to
Change Impact at
the Component

Correlation to
Change Impact at the
Routine Level

Level With Comparative Sizing
Total Time Spent on Completing the Design Task
0.40 0.33 0.33
Largest Program Written Before Completing the
Design Task 0.18 0.13 0.25
Number of Computer Programming Courses
Taken Before Completing the Design Task -0.27 -0.21 -0.22

Table 7.16 Correlation between subject characteristics of the Control Group and change impact at the
routine, component, and routine with comparative sizing levels. Use of equal size samples of 6 each.

Characteristic of the Subject

Correlation to
Change Impact at
the Routine Level

Correlation to
Change Impact at
the Component

Correlation to
Change Impact at the
Routine Level

Level With Comparative Sizing
Total Time Spent on Completing the Design Task
0.43 0.72 0.38
Largest Program Written Before Completing the
Design Task 0.29 0.06 0.37
Number of Computer Programming Courses
Taken Before Completing the Design Task -0.26 -0.26 -0.28

Table 7.17 Correlation between subject characteristics of the Rationale Group and change impact at the
routine, component, and routine with comparative sizing levels. Use of equal size samples of 6 each.

Characteristic of the Subject

Correlation to
Change Impact at
the Routine Level

Correlation to
Change Impact at
the Component
Level

Correlation to
Change Impact at the
Routine Level
With Comparative Sizing

Total Time Spent on Completing the Design Task

0.25

0.31

0.22

137

Characteristic of the Subject

Correlation to
Change Impact at
the Routine Level

Correlation to
Change Impact at
the Component

Correlation to
Change Impact at the
Routine Level

Level With Comparative Sizing
Largest Program Written Before Completing the
Design Task -0.67 -0.79 -0.53
Number of Computer Programming Courses
Taken Before Completing the Design Task -0.49 -0.33 -0.29

Table 7.18 Correlation between subject characteristics of the Rationale+Method Group and change impact
at the routine, component, and routine with comparative sizing levels. Use of equal size samples of 6 each.

Characteristic of the Subject

Correlation to
Change Impact at
the Routine Level

Correlation to
Change Impact at
the Component

Correlation to
Change Impact at the
Routine Level

Level With Comparative Sizing
Total Time Spent on Completing the Design Task
0.86 0.68 0.86
Largest Program Written Before Completing the
Design Task -0.06 -0.70 -0.10
Number of Computer Programming Courses
Taken Before Completing the Design Task -0.14 0.05 -0.21

74 Experiment 1: Structural Complexity

The focus in this section is on the correlation between the values obtained for the structural complexity
measures and the mean change impact across all changes, as measured across all design levels and for all
treatment groups. The goal isto find structural complexity measures with strong correlations to mean change
impact that can serve as predictors of change complexity in designs.

7.4.1 Summary Statisticsfor Structural Complexity Measures

For each treatment group as well as the benchmark design, Table 7.19, Table 7.20, and Table 7.21 show
the mean value for each structural complexity measure at the routine, component, and system levels, respec-
tively. The reader may note the difference between the benchmark design and treatment group meansfor mea-
sures of size. The mean for the benchmark design is larger than those for the treatment groups because the
benchmark design, in general, contained much more detail than the designs created by the subjects in the

treatment groups.

138

Table 7.19 Structural complexity measures across the routines in a design and the designs in a group.

Type of Structural Complexity | Mean Value for the | Mean Value for the Mea_n Value for the Value for the

! : Rationale+Method Benchmark
Measure Per Routine Control Group Rationale Group .
Group Design

Number of Routine Attributes 1.67 121 1.05 6.97

Size of a Routine 9.97 9.86 8.39 25.10

Number of Calls

to Other Routines 3.64 3.27 3.69 4.14

Routine V(G) 2.64 2.76 247 5.17

Table 7.20 Structural complexity measures across the components in a design and designs in a group.

Type of Structural Complexity Mean Value for Mean Value Mea_n Value for the Value for the
Measure Per Component the _ for the Rationale+Method Benchmark
Control Group Rationale Group Group Design
Number of Component-Level Attributes 2.25 3.34 2.64 171
Number of Routines in a Component 5.04 5.06 3.63 4.00
Component Size 46.99 4143 30.54 53.71
Fan-In 0.73 0.82 0.76 3.29
Fan-Out 1.43 1.42 1.74 371
Number of Calls to External Routines 16.48 11.98 12.46 8.57
Component V(G) 11.98 10.06 8.00 10.71

Table7.21 Structura complexity measures for the system in a design and across the designsin a group.

Type of Structural Complexity | Mean Value for the | Mean Value for the Megn Value for the Value for the
! Rationale+Method Benchmark
Measure Control Group Rationale Group .
Group Design
Number of Routines 18.50 19.42 17.38 28.00
Number of Components 3.83 417 4.75 13.00
System Size 175.83 153.67 123.00 376.00
System V(G) 41,67 37.33 30.38 75.00
Comparative System Size 320.00 311.25 318.25 376.00
Comparative System V(G) 68.83 68.50 71.00 75.00

139

7.4.2 Correlation Between Structural Complexity Measures and Change | mpact

Table 7.22 indicates the correlation between structural complexity measures and change impact across all
changes and all treatment groups. Appendix V contains the tables which show the correlation between struc-
tural complexity and change impact within each treatment group.

Table7.22 Correlation between structural complexity measures and mean change impact acrossall changes
and al treatment groups (total of 26 designs).

Correlation to Correlation o Correlation to Mean
Mean Change
. Mean Change Change Impact at the
Structural Complexity Measure Impact at the .
Impact at the Component Routine Level
Routine Level P With Comparative Sizing
Level

Mean Number of Routine Attributes Per Routine -0.15 -0.01 -0.12
Mean Routine Size 0.38 0.30 0.40
Mean Number of Calls to Other Routines Per Routine 0.57 0.34 0.54
Mean Routine V(G) 0.60 0.40 0.58
Mean Number of Component Level Attributes
Per Component 0.01 -0.15 0.02
Mean Number of Routines Per Component -0.20 0.21 -0.12
Mean Component Size 0.11 0.39 0.22
Mean Fan-In Per Component -0.40 -0.53 -0.45
Mean Fan-Out Per Component -0.27 -0.39 -0.33
Mean Number of Calls to External Routines
Per Component 0.39 0.38 0.40
Mean Component V(G) 0.35 0.47 0.38
Number of Routines in the System -0.67 -0.58 -0.72
Number of Components in the System -0.53 -0.68 -0.63
System Size -0.23 -0.25 -0.24
System V(G) -0.34 -0.31 -0.37
Comparative System Size -0.26 -0.46 -0.28
Comparative System V(G) -0.09 0.04 -0.01

140

Observations from the correlation across all treatment groups:

* No strong correlations between structural complexity and change impact are evident.

* There is a weak, indirect correlation between the number of routines in a system (partitioning) and
the mean change impact at the routine level (-0.67) and at the routine with comparative sizing level
(-0.72).

* There is a weak, indirect correlation between the number of components (partitioning) in a system
and the mean change impact at the component level (-0.68) and at the routine with comparative
sizing level (-0.63).

Observations from the correlation within the Control Group:

» There is a strong, direct correlation betweemtban number of callsto other routines per routine
(coupling) and the mean change impact at all design levels (0.95 to 0.97).

* There is a weak, direct correlation betweenntien routine V(G) or control flow complexity and
the mean change impact at the routine level (0.61) and at the component level (0.74).

» There is a moderate, indirect correlation betweemigsn fan-in per component (coupling) and
the mean change impact at all design levels (-0.76 to -0.88).

» There is a moderate, indirect correlation betweemigsn fan-out per component (coupling) and
the mean change impact at all design levels (-0.83 to -0.88).

* There is a moderate to strong, indirect correlation betweenuthber of routines in the system
(partitioning) and the mean change impact at all design levels (-0.83 to -0.98).

» There is a moderate to strong, indirect correlation betweeanthger of componentsin the system
(partitioning) and the mean change impact at all design levels (-0.80 to -0.92).

« There is a weak, indirect correlation betweendtreparative system size and the mean change
impact at all design levels (-0.66 to -0.79).

Observations from the correlation within the Rationale Group:
There is little correlation between structural complexity and change impact at any design level.
Observations from the correlation within the Rationale+M ethod Group:

» There is a weak to moderate, direct correlation betweeamdtienumber of routine attributes per
routine and the mean change impact at the component level (0.81) and at the routine with
comparative sizing level (0.68).

« There is a weak to moderate, direct correlation betweenedreroutinesize and the mean change
impact at all design levels (0.70 to 0.88).

» There is a moderate, direct correlation betweenrian number of calls to other routines per
routine (coupling) and the mean change impact at all design levels (0.77 to 0.86).

e There is a weak to moderate, direct correlation betweeméae routine V(G) or control flow
complexity and the mean change impact at all design levels (0.71 to 0.89).

» There is a weak, indirect correlation betweenrtiean number of component level attributes per
component and the mean change impact at the component level (-0.72).

» There is a weak to moderate, direct correlation betweeméaa component size and the mean
change impact at the component level (0.88) and at the routine with comparative sizing level
(0.70).

141

* There is a moderate to strong, indirect correlation betweenm#aa fan-in per component
(coupling) and the mean change impact at all design levels (-0.87 to -0.95).

* There is a weak to moderate, direct correlation betweemé¢he number of calls to external
routines per component and the mean change impact at all design levels (0.65 to 0.87).

« There is a weak to strong, direct correlation betweenméam component V(G) and the mean
change impact at all design levels (0.64 to 0.92).

* There is a weak to strong, indirect correlation betweemtimaber of routines in the system
(partitioning) and the mean change impact at all design levels (-0.75 to -0.95).

» There is a moderate to strong, indirect correlation betweeanthger of componentsin the system
(partitioning) and the mean change impact at all design levels (-0.83 to -0.94).

« There is a weak, indirect correlation betweendtreparative system size and the mean change
impact at the component level (-0.62) and at the routine with comparative sizing level (-0.69).

Notes:

« The Control Group and Rationale+Method Group display moderate to strong correlations between
mean change impact and the following structural complexity measures.

* Mean number of calls to other routines per routine (coupling, direct correlation)
* Mean fan-in per component (coupling, indirect correlation)

* Number of routines in the system (partitioning, indirect correlation)

» Number of components in the system (partitioning, indirect correlation)

e The Control Group and Rationale+Method Group display weak between comparative system size
and mean change impact.

* The indirect correlation between mean fan-in per component and change impact may not be
intuitive. Why would high coupling be related to low change impact? A component may
encapsulate a substantial humber of services that change together and are needed by other
components.

75 Experiment 1: Design Effort

This section contains summary statistics for the time spent by the subjects on the design activities and for
the number of errors detected by the subjects and by the experimenter in the first experiment. Subsection 7.5.1
displays the summary statistics for time. Subsection 7.5.3 presents the summary statistics for the number of
errors (by type) detected by the subjects, and Subsection 7.5.5 shows the summary statistics for the number
of errors (by type) detected by the experimenter.

The analyses of variance for the mean total time, mean total number of errors detected by the subjects, and

mean total number of errors detected by the experimenter appear in Subsection 7.5.2, Subsection 7.5.4, and

Subsection 7.5.6, respectively.

142

The analyses of variance show:

» Differences in the mean total time between the treatment groupstadee to the differences in
treatments.

- Differences in the mean total number of errors detected by the subjects may or may not be due to
the differences in treatments.

The analysis of variance by unweighted means indicatedHghahould be rejected, while the
analysis of variance by weighted means indicatesHpahould be acceptel .y yiateq ~ 3-39 in
the first case and 3.21 in the second case, Ktz = 3.39.

If one rejectH,, then the Rationale+Method Group detected, on average, fewer errors than the
other treatment groups. It is inconclusive whether this means that the subjects in the
Rationale+Method Group had fewer errors in their designs or whether they are not as good at
detecting errors. One might reason that differences in detection capability are randomly
distributed across the treatment groups and that the lower mean total errors for the
Rationale+Method Group is due to fewer errors in this group’s designs.

- Differences in the mean total number of errors detected by the experimentet age to the
differences in treatments.

751 Summary Statisticsfor Time
Table 7.23 contains the summary statistics for the total time recorded by the subjects in each treatment
group.

Table 7.23 Summary statistics for time (minutes) spent on design activities for each treatment group.

H:?i?/i?; Statistic Control Group Rationale Group Rationale+Method Group
Analysis
Mean 56.50 105.92 75.63
Median 63.50 88.00 55.00
Standard
Deviation 17.60 86.31 77.28
Maximum 75.00 300.00 180.00
Minimum 30.00 0.00 15.00
Design
Mean 211.67 310.17 314.25
Median 186.50 27250 295.00
Standard
Deviation 81.98 146.50 111.09
Maximum 360.00 600.00 480.00
Minimum 130.00 145.00 165.00
Review

143

H:?i?/i?; Statistic Control Group Rationale Group Rationale+Method Group

Mean 109.83 79.25 53.88
Median 75.00 70.00 35.50

Standard
Deviation 105.19 45.97 48.14
Maximum 317.00 165.00 150.00
Minimum 20.00 15.00 15.00

All Activities

Mean 378.00 495.33 443.75
Median 355.00 454.00 468.00

Standard
Deviation 117.95 232.81 182.42
Maximum 577.00 925.00 720.00
Minimum 260.00 229.00 225.00

7.5.2 Analysisof Variancefor Total Time

This subsection contains the analysis of variance calculations and resultsfor the total time recorded by the

subjects in each treatment group.

Analysis of variance using unequal sample sizes and unweighted means analysis:

Table 7.24 Experiment 1 ANOVA: Total Time, Unequal Sample Sizes, Unweighted Means Anaysis -
Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group n;=6, ny=12, n3=8

Table 7.25 Experiment 1 ANOVA: Total Time, Unequal Sample Sizes, Unweighted Means Analysis -
Calculations for determining the F statistic.

Type of Variation

Related Sum of Squares

Related Degrees of Freedom

Related Mean Square

Explained by Treatments SST dfygr = 9-1 =2 MST = dsfi =32,816.91
MST
y
Error or Unexplained SSE dfyse = z [h,—10=23 MSE = dsfi =39,524.58
MSE

i=1

144

Table 7.26 Experiment 1 ANOVA: Total Time, Unequal Sample Sizes, Unweighted Means Analysis -
Testing the Hg hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision

MST
F = == =083
Fcalculated Calculated MSE
Fa Fo(dfysmdfuse) = Foos(2.23) = 3.39
Accept/Reject Ho Accept Hg since F,cuiated < Fa -

Analysis of variance using unequal sample sizes and weighted means analysis:

Table 7.27 Experiment 1 ANOVA: Totd Time, Unequal Sample Sizes, Weighted Means Analysis -
Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value

g number of treatment groups 3

n number of subjects in a treatment group n1=6, n,=12, n3=8

Table 7.28 Experiment 1 ANOVA: Totd Time, Unequal Sample Sizes, Weighted Means Analysis -
Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
- - SST
Explained by Treatments SST dfyst = 9-1 =2 MST = ==— =32,846.26
MST
Y
Error or Unexplained SSE dfyse = 9 z h, —10=23 MSE = SSE 39,524.58
dfyse

i=1

Table 7.29 Experiment 1 ANOVA: Tota Time, Unequal Sample Sizes, Weighted Means Analysis - Testing
the Hy hypothesis.

Name of Statistic or Decision

Determination of Statistic or Decision

MST
F = 22_ =283
FCaIcuIated Calculated MSE
Fa Fa(dfysmdfyse) = Foos(223) = 3.39
Accept/Reject Ho Accept Hg since F,cuiated < Fa -

145

7.5.3 Summary Statisticsfor Errors Detected by Subjects

Table 7.30 contains the summary statistics for the number of errors detected by the subjects in each treat-
ment group.

Table 7.30 Summary statistics for number and types of errors detected by each treatment group.

Type of Error Statistic Control Group Rationale Group Rationale+Method Group
Omission
Classes
Mean 0.33 0.44 0.14
Median 0.00 0.00 0.00
Standard
Deviation 0.82 0.53 0.38
Maximum 2.00 1.00 1.00
Minimum 0.00 0.00 0.00
Data
Definitions
Mean 2.00 2.70 0.25
Median 2.50 2.00 0.00
Standard
Deviation 1.67 2.36 0.46
Maximum 4.00 8.00 1.00
Minimum 0.00 0.00 0.00
Method
Definitions
Mean 2.67 2.10 1.38
Median 0.50 1.50 0.50
Standard
Deviation 3.78 2.81 2.39
Maximum 8.00 9.00 7.00
Minimum 0.00 0.00 0.00
Interface
Parameters
Mean 2.17 1.57 0.88
Median 1.50 2.00 0.00
Standard
Deviation 2.40 0.79 1.36
Maximum 6.00 2.00 3.00

146

Type of Error Statistic Control Group Rationale Group Rationale+Method Group
Minimum 0.00 0.00 0.00
Method
Calls
Mean 1.33 1.13 0.88
Median 0.50 1.00 0.00
Standard
Deviation 1.75 1.36 1.73
Maximum 4.00 4.00 5.00
Minimum 0.00 0.00 0.00
Commission
Classes
Mean 1.00 1.50 0.29
Median 0.00 0.50 0.00
Standard
Deviation 2.24 1.93 0.76
Maximum 5.00 5.00 2.00
Minimum 0.00 0.00 0.00
Data
Definitions
Mean 3.67 1.63 1.25
Median 2.50 2.00 0.50
Standard
Deviation 4.32 1.19 1.75
Maximum 12.00 3.00 4.00
Minimum 0.00 0.00 0.00
Method
Definitions
Mean 1.50 2.00 0.00
Median 1.00 1.00 0.00
Standard
Deviation 1.64 2.65 0.00
Maximum 4.00 8.00 0.00
Minimum 0.00 0.00 0.00
Interface
Parameters
Mean 2.33 1.25 1.00

147

Type of Error Statistic Control Group Rationale Group Rationale+Method Group
Median 2.50 1.00 0.00
Standard
Deviation 2.07 1.28 151
Maximum 5.00 3.00 4.00
Minimum 0.00 0.00 0.00
Method Calls
Mean 1.83 3.1 0.88
Median 1.50 2.00 0.50
Standard
Deviation 2.23 417 1.13
Maximum 6.00 12.00 3.00
Minimum 0.00 0.00 0.00
Total Errors
(Number of
Omission +
Number of
Commission)
Mean 18.67 12.75 6.88
Median 16.50 10.50 7.00
Standard
Deviation 13.60 12.34 6.79
Maximum 41.00 45.00 17.00
Minimum 5.00 0.00 0.00

754 Analysisof Variancefor Total Number of Errors Detected by Subjects

This subsection contains the analysis of variance calculations and results for the total number of errors de-
tected by the subjects in each treatment group.
Analysis of variance using unequal sample sizes and unweighted means analysis:

Table 7.31 Experiment 1 ANOVA: Total Number of Errors Detected by Subjects, Unequa Sample Sizes,
Unweighted Means Analysis -Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group n1=6, ny=12, n3=8

148

Table 7.32 Experiment 1 ANOVA: Total Number of Errors Detected by Subjects, Unequal Sample Sizes,
Unweighted Means Analysis - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
) _ _ _ SST _
Explained by Treatments SST dfys7 = 9-1 =2 MST = T 278.09
MST
Y
Error or Unexplained SSE dfyse = 9 z h,—10=23 MSE = SSE - g193
dfyse

i=1

Table 7.33 Experiment 1 ANOVA: Total Number of Errors Detected by Subjects, Unequal Sample Sizes,

Unweighted Means Analysis -Testing the Hg hypothesis.

Name of Statistic or Decision

Determination of Statistic or Decision

MST
F = == =339
FCaIcuIated Calculated MSE
Fa Fo(dfystdfyse) = Foos(2,23) = 3.39
Accept/Reject H Reject Ho since Fegyculated = F

a’

Analysis of variance using unequal sample sizes and weighted means analysis:

Table 7.34 Experiment 1 ANOVA: Total Number of Errors Detected by Subjects, Unequal Sample Sizes,
Weighted Means Analysis - Parameters used to calculate the F statistic.

Parameter Name

Parameter Meaning

Parameter Value

Y

number of treatment groups

3

n

number of subjects in a treatment group

n1=6,n2:12,n3=8

Table 7.35 Experiment 1 ANOVA: Total Number of Errors Detected by Subjects, Unequal Sample Sizes,
Weighted Means Analysis - Calculations for determining the F statistic.

Type of Variation

Related Sum of Squares

Related Degrees of Freedom

Related Mean Square

Explained by Treatments SST dfysr = 9—1 =2 msT = 25T =513
MST
y
Error or Unexplained SSE dfyse =9 5 -10=23 MSE = SSE 96077
< dfyse
| =

149

Table 7.36 Experiment 1 ANOVA: Total Number of Errors Detected by Subjects, Unequa Sample Sizes,
Weighted Means Analysis - Testing the Hq hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
MST
F = == =321
FCaIcuIated Calculated MSE
Fa Fo(dfystdfyse) = Foos(2.23) = 3.39
AcceptReject Ho Accept Hy since F i cutated < Fa -

755 Summary Statisticsfor Number of Errors Detected by Experimenter

Table 7.37 contains the summary statistics for the number of errors detected by the experimenter for each
treatment group.

Table 7.37 Summary statistics for number and types of errors detected by the experimenter.

Type of Error Statistic Control Group Rationale Group Rationale+Method Group
Omission
Number of
Component
Attributes
Mean 6.17 3.50 5.00
Median 4,00 2.00 6.00
Standard
Deviation 5.27 3.58 3.02
Maximum 15.00 13.00 9.00
Minimum 1.00 1.00 0.00
Required
Operations
Mean 7.17 9.75 14.38
Median 7.00 7.50 14.00
Standard
Deviation 2.23 6.52 8.07
Maximum 10.00 27.00 26.00
Minimum 4.00 1.00 2.00

150

Type of Error Statistic Control Group Rationale Group Rationale+Method Group
Parameters
in Routine
Interface
Mean 0.33 0.33 0.38
Median 0.00 0.00 0.00
Standard
Deviation 0.82 1.15 0.74
Maximum 2.00 4.00 2.00
Minimum 0.00 0.00 0.00
Parameters in
Routine Call
Mean 0.00 1.58 0.25
Median 0.00 0.00 0.00
Standard
Deviation 0.00 3.87 0.71
Maximum 0.00 13.00 2.00
Minimum 0.00 0.00 0.00
Routine
Attributes
Mean 2.50 0.92 2.88
Median 1.50 1.00 3.00
Standard
Deviation 3.27 1.00 2.53
Maximum 9.00 3.00 7.00
Minimum 0.00 0.00 0.00
Routine
Calls
Mean 2.83 6.42 5.75
Median 0.00 4.00 2.00
Standard 6.65 7.32
Deviation 6.01
Maximum 15.00 21.00 18.00

151

Type of Error Statistic Control Group Rationale Group Rationale+Method Group
Minimum 0.00 0.00 0.00
Status/Error
Checks
Mean 0.50 4.17 1.13
Median 0.00 3.50 0.00
Standard
Deviation 1.22 5.25 1.64
Maximum 3.00 19.00 4,00
Minimum 0.00 0.00 0.00
Status/Error
Codes
Mean 1.67 2.83 0.63
Median 1.50 2.50 0.00
Standard
Deviation 1.86 3.64 1.77
Maximum 4.00 13.00 5.00
Minimum 0.00 0.00 0.00
Commission
Number of
Component
Attributes
Mean 0.17 0.75 0.00
Median 0.00 0.00 0.00
Standard 041
Deviation 2.60 0.00
Maximum 1.00 9.00 0.00
Minimum 0.00 0.00 0.00
Required
Operations
Mean 1.50 2.00 0.75
Median 1.00 1.00 0.50

152

Type of Error Statistic Control Group Rationale Group Rationale+Method Group
Standard
Deviation 1.76 3.30 0.89
Maximum 5.00 11.00 2.00
Minimum 0.00 0.00 0.00
Parameters
in Routine
Interface
Mean 0.17 0.17 0.00
Median 0.00 0.00 0.00
Standard
Deviation 041 0.58 0.00
Maximum 1.00 2.00 0.00
Minimum 0.00 0.00 0.00
Parameters in
Routine Call
Mean 1.83 0.58 0.13
Median 0.00 0.00 0.00
Standard
Deviation 2.86 1.24 0.35
Maximum 6.00 4.00 1.00
Minimum 0.00 0.00 0.00
Routine
Attributes
Mean 0.83 0.08 0.00
Median 0.00 0.00 0.00
Standard 2.04 0.29 0.00
Deviation
Maximum 5.00 1.00 0.00
Minimum 0.00 0.00 0.00
Routine
Calls
Mean 5.50 1.42 3.75

153

Type of Error Statistic Control Group Rationale Group Rationale+Method Group
Median 0.50 1.00 0.50
Standard
Deviation 9.27 1.88 8.63
Maximum 23.00 6.00 25.00
Minimum 0.00 0.00 0.00
Status/Error
Checks
Mean 1.00 1.00 0.50
Median 0.00 0.00 0.00
Standard
Deviation 2.00 1.35 1.41
Maximum 5.00 3.00 4,00
Minimum 0.00 0.00 0.00
Status/Error
Codes
Mean 0.00 0.33 0.00
Median 0.00 0.00 0.00
Standard
Deviation 0.00 1.15 0.00
Maximum 0.00 4.00 0.00
Minimum 0.00 0.00 0.00
Total Errors
(Number of
Omission +
Number of
Commission)
Mean 32.17 35.83 35.50
Median 32.00 29.50 26.50
Standard
Deviation 15.42 21.11 21.33
Maximum 58.00 89.00 71.00
Minimum 10.00 9.00 9.00

154

7.5.6 Analysisof Variancefor Total Number of Errors Detected by Experimenter

This subsection contains the analysis of variance calculations and results for the total number of errors de-
tected by the experimenter for each treatment group.
Analysis of variance using unequal sample sizes and unweighted means analysis:

Table 7.38 Experiment 1 ANOVA: Total Number of Errors Detected by Experimenter, Unegual Sample
Sizes, Unweighted Means Analysis - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group n1=6, n,=12, n3=8

Table 7.39 Experiment 1 ANOVA: Total Number of Errors Detected by Experimenter, Unegual Sample
Sizes, Unweighted Means Analysis - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square

) _ SST _
Explained by Treatments SST df =g-1=2 MST = —— =32.89

MST dfyst
Y
i - _ _ SSE _
Error or Unexplained SSE dfyse = 9 z Dhi —-10=23 MSE = m =397.15
i=1

Table 7.40 Experiment 1 ANOVA: Total Number of Errors Detected by Experimenter, Unegual Sample
Sizes, Unweighted M eans Analysis - Testing the Hg hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
MST
F = == =008
FCaIcuIated Calculated MSE
Fa Fo(dfyst.dfyse) = Fos(2.23) = 3.39
AcceptReject Ho Accept Hy since F 4 cutated < Fa -

Analysis of variance using unequal sample sizes and weighted means analysis:

Table 7.41 Experiment 1 ANOVA: Total Number of Errors Detected by Experimenter, Unegual Sample
Sizes, Weighted Means Analysis - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group n1=6, n,=12, n3=8

155

Table 7.42 Experiment 1 ANOVA: Total Number of Errors Detected by Experimenter, Unegual Sample

Sizes, Weighted Means Analysis - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
Explained by Treatments SST dfyst = 9—1 =2 MsT = SST = 3154
fust
Y
Error or Unexplained SSE dfyse = 9 z h.—10=23 MSE = SSE 39715
‘ : MSE
i=1

Table 7.43 Experiment 1 ANOVA: Total Number of Errors Detected by Experimenter, Unegual Sample

7.6

Sizes, Weighted Means Analysis - Testing the Hg hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
MST
F = == =008
FCaIcuIated Calculated MSE
Fa Fo(dfyst.dfyse) = Foos(2.23) = 3.39
Accep/Reject Hy Accept Hy since F i cutated < Fa -

Experiment 2: Change I mpact

This section presents the summary statistics and analysis of variance for the mean change impact across

all changes for the redesigned Recoverable Virtual Memory (RVM) and Kernel-Venus Interface. The reader

should note that evaluation of performance, though done by the subjects for the RVM design, is not part of

the thesis research and therefore not presented in the dissertation.

The evaluation of change impact for the second experiment differs in the following ways from the first

experiment.

Using a prescribed sizing method, the subjects evaluated their own designs for the size of the
change impact.

In the first experiment, the experimenter evaluated the designs.

The size of the change impact for a particular change is the sum of the sizes of the solution
elements impacted by that change.

In the first experiment, the change impact was expressed as a ratio which normalized the size of
the impacted part by the size of the total system. This was necessary since the total system size
differed across the designs produced by different subjects. In the second experiment, the total

system size is estimated to be the size of the Coda Client software given to all subjects.

Subjects evaluated the size of the change impact for each of the following types of solution
elements, as listed below in order of increasing size.

» Data attributes (e.g. variables defined within methods or at the class level)

156

* Methods
* Classes
* Files

The experimenter observed that the Rationale+Method group, in general, did not apply the research ap-
proach correctly. The exception was the approach to partitioning control flow, which was successfully ap-
plied by some of the subjects in this group. Therefore, the experimenter evaluated the designs with respect to
the changes concerning control flow.

The experimenter found that for those subjects in the Rationale+Method Group who correctly applied the
research approach, the mean change impact is:

» Approximately0.10 of the mean change impact for the other treatment groups or approximately
10 times better, across routines.

» Approximately0.024 of the mean change impact for the other treatment groups or approximately
41 times better, across files.

Given the fact that the Rationale+Method group did not apply the research approach correctly, the exper-
imenter was not surprised to find that the analysis of variance showed no significant differences between the
mean change impact across all changes and all treatment groups. This was true for both the redesign of RVM
and redesign of the Kernel-Venus Interface and for all types of solution elements except files.

In the case of files, differences in the mean change impact may or may not be due to differences in treat-

ments as described below.

* For the RVM design, the analysis of variance with unweighted means analysis recommends that
Ho should be acceptedr{;cuiateq ~ 2-50 andq g5 = 3.26); while the analysis of variance with
weighted means analysis recommends lthgbe rejectedR g cuiated ~ 3-72 and=g g5 = 3.26).

If one rejectsHg, the lower mean change impact for the Rationale Group (4,675.25) and the
Rationale+Method Group (3,975.93), in comparison to the Control Group (7,086.78) are due to
the differences in treatment.

» For the Kernel-Venus Interface design, the analysis of variance with unweighted means analysis
recommends thady should be accepted {cyiated ~ 2-52 andrg g5 = 3.28); while the analysis of
variance with weighted means analysis recommendsHfiée rejectedR g cyiateq ~ 3-31 and
F0_05 = 328)

If one rejectsH,, the lower mean change impact for the Rationale Group (3,437.88) and the
Rationale+Method Group (3,872.36), in comparison to the Control Group (5,676.69) are due to
the differences in treatment.

157

7.6.1 Summary Statistics for the Change Impact with New Recoverable Virtual Memory
(RVM) Design

Table 7.44 presents the summary statistics for the size of the impacted solution elements (by type) in the
new RVM designs across all types of expected change and for all treatment groups.

Table 7.44 Summary statistics for the size of the impacted solution elements for the new RVM design
across al types of expected change.

Type of Solution Statistic Control Group Rationale Group Rationale+Method Group
Element
Data
Mean 1561 13.50 12.07
Median 8.50 14.50 10.00
Standard Deviation 24.42 10.89 12.99
Maximum 80.00 0.00 42.00
Minimum 0.00 0.00 0.00
Methods
Mean 535.11 248.25 210.29
Median 306.00 27.50 34.50
Standard Deviation 695.58 500.42 355.02
Maximum 2,337.00 1,466.00 1,299.00
Minimum 22.00 14.00 0.00
Classes
Mean 517.89 985.88 44514
Median 462.00 351.00 470.00
Standard Deviation 362.78 1,610.96 158.00
Maximum 1,420.00 4,926.00 685.00
Minimum 0.00 85.00 186.00
Files
Mean 7,086.78 4,675.25 3,975.93
Median 6,289.50 3,554.00 3,748.50
Standard Deviation 4,564.58 2,220.94 2,013.82
Maximum 21,862.00 8,048.00 9,264.00
Minimum 3,166.00 1,907.00 556.00

158

7.6.2 Analysisof Variancefor the Change I mpact with the New RVM Design

The calculations and results of the analysis of variance for the size of the change impact on solution ele-
ments (by type) in the new RVM designs appear in Appendix W.

7.6.3 Summary Statisticsfor the Change Il mpact with the new K er nel-Venus|nterface Design

Table 7.45 presents the summary statistics for the size of the impacted solution elements (by type) in the
new Kernel-Venus Interface designs across all types of expected change and for all treatment groups.

Table7.45 Summary statistics for the size of the impacted solution e ements for the new Kernel-Venus
Interface Design across all types of expected change.

Type of Solution Statistic Control Group Rationale Group Rationale+Method Group
Element
Data
Mean 169.56 99.25 168.43
Median 107.50 23.50 141.00
Standard Deviation 307.58 136.79 223.79
Maximum 1,283.00 367.00 889.00
Minimum 1.00 3.00 0.00
Methods
Mean 872.81 1,117.63 861.50
Median 588.50 1,420.50 771.50
Standard Deviation 799.19 757.85 563.78
Maximum 2,851.00 1,966.00 1,771.00
Minimum 84.00 153.00 86.00
Classes
Mean 552.88 1,256.38 479.21
Median 250.50 338.50 404.50
Standard Deviation 710.05 1,832.00 33247
Maximum 2,770.00 4,779.00 1,133.00
Minimum 20.00 202.00 88.00
Files
Mean 5,676.69 3,437.88 3,872.36
Median 4,529.00 3,006.00 3668.00
Standard Deviation 3,763.34 1,828.96 1,446.68
Maximum 15,548.00 6,762.00 6,765.00

159

Type of Solution

Element Statistic Control Group Rationale Group Rationale+Method Group

Minimum 2,422.00 1,545.00 2,281.00

7.6.4 Analysisof Variancefor the Change I mpact with the New Kernel-Venus I nterface
Design

The calculations and results of the analysis of variance for the size of the change impact on solution ele-
ments (by type) in the new Kernel-Venus Interface designs appear in Appendix X.

7.7 Experiment 2: Design Effort

This section contains summary statistics for the time spent by the subjects on the design activities and for
the number of errors detected by the subjects in the second experiment. Subsection 7.7.1 displays the sum-
mary statistics for time. Subsection 7.7.3 presents the summary statistics for the number of errors (by type)
detected by the subjects.

The analysis of variance for the mean total time appearsin Subsection 7.7.2. The experimenter did not con-
duct an analysis of variance for the mean total number of errors detected by the subjects because the summary
statistics show no significant variance between the treatment groups. The subjectsin all treatment groups re-
ported avery small number of errors. The subjects eval uated their own designs according to prescribed direc-
tions, while the experimenter evaluated the designs with respect to one type of change as described in
Subsection 7.6.4.

Theanalyses of variance for the total time shows:

Differences in the mean total time between the treatment groups for any of the four project
assignments (redesign of RVM, redesign of Kernel-Venus Interface, evaluation of new RVM
design, evauation of new Kernel-Venus Interface) are not due to differences in the treatments.

With respect to the total number of errorsreported by the subjects:

Dueto few reported errors (by most subjects), there is only a small difference between the means
reported for the treatment groups.

7.71 Summary Statisticsfor Time

Table7.46, Table 7.47, Table 7.48, and Table 7.49 contain the summary statisticsfor the total time record-

ed by the subjects in each treatment group for each of the four project assignments.

160

Table 7.46 Summary statistics for time (minutes) spent on the redesign of RVM for each treatment group.

Type of Activity Statistic %Orgtlzgl RaGtirg::Ie RationGaIrz:l\;ethod
Redesign of the RVM Facility
Review the Coda Client requirements specification.
Mean | 281.25 135.50 162.00
Median 90.00 75.00 105.00
Standard
Deviation 413.99 149.23 173.13
Max | 1500.00 480.00 600.00
Minimum 5.00 15.00 0.00
Think about the current design of the Coda client RVM facility.
Mean | 256.10 246.00 398.75
Median | 195.00 195.00 270.00
Standard
Deviation 218.66 179.33 295.88
Maximum | 900.00 600.00 1,200.00
Minimum 42.00 60.00 140.00
Determine a new design for the RVM facility.
Mean 134.90 186.00 216.19
Median | 120.00 180.00 180.00
Standard
Deviation 100.68 90.33 140.16
Maximum | 360.00 300.00 600.00
Minimum 28.00 60.00 30.00
Document the new design for the RVM facility.
Mean 124.95 141.00 135.31
Median 82.50 120.00 120.00
Standard
Deviation 110.96 84.91 106.39
Maximum 450.00 360.00 360.00
Minimum 0.00 60.00 10.00
Document the rationale for the new design of the RVM facility.
Mean 96.60 106.50 140.06
Median 60.00 60.00 60.00

161

Type of Activity Statistic %ﬁg:gl thirgzale RationGaIrz:l\;ethod
Standard
Deviation 105.70 98.09 164.27
Maximum | 450.00 360.00 600.00
Minimum 20.00 45.00 20.00
Review deliverables.
Mean 30.40 41.00 52.44
Median 25.00 30.00 20.00
Standard
Deviation 28.08 32.81 75.63
Maximum 120.00 120.00 300.00
Minimum 5.00 0.00 1.00
Total for All Activities
Mean | 924.20 856.00 1,104.75
Median | 630.00 940.00 975.00
Standard
Deviation 648.91 357.80 622.17
Maximum | 2,590.00 | 1,380.00 2,700.00
Minimum 178.00 345.00 255.00

Table 7.47 Summary statistics for time (minutes) spent on the redesign of the Kernel-Venus Interface for
each treatment group.

Type of Activity Statistic ?rrc])t;;l th:gg;le RationGa:ce):l:Iethod
Redesign of the Kernel-Venus Interface

Review the Coda Client requirements specification.
Mean 85.50 175.50 99.06
Median 60.00 135.00 90.00

Standard

Deviation 81.27 201.00 73.63
Maximum | 300.00 720.00 300.00
Minimum 0.00 15.00 15.00

Think about the current design of the Kernel-Venus Interface.
Mean | 232.50 240.00 316.25

162

Type of Activity Statistic CGOrgtlzgl Raét;g[};le Rationg:z:lglethod
Median | 180.00 210.00 300.00
Standard
Deviation | 182.75 135.65 160.58
Maximum | 810.00 480.00 600.00
Minimum 10.00 60.00 120.00
Determine a new design for the Kernel-Venus Interface.
Mean | 179.60 216.00 256.25
Median | 120.00 150.00 210.00
Standard
Deviation | 143.97 177.09 198.56
Maximum | 600.00 600.00 780.00
Minimum 20.00 60.00 20.00
Document the new design for the Kernel-Venus Interface.
Mean | 186.70 213.00 230.63
Median | 180.00 180.00 180.00
Standard
Deviation | 109.02 147.95 141.87
Maximum | 480.00 480.00 480.00
Minimum 30.00 30.00 60.00
Document the rationale for the new design of the Kernel-Venus
Interface.
Mean 97.05 90.50 80.75
Median 60.00 120.00 30.00
Standard
Deviation | 101.01 55.70 83.66
Maximum | 480.00 180.00 300.00
Minimum 30.00 5.00 15.00
Review deliverables.
Mean 31.05 58.50 80.88
Median 29.00 52.50 30.00
Standard
Deviation 27.76 49.22 103.75
Maximum 120.00 180.00 300.00
Minimum 0.00 0.00 5.00

163

Type of Activity Statistic CGOrr;tl:;l th;g[;;le RationGa:ce):lglethod
Total for All Activities
Mean | 812.40 993.50 1,063.81
Median | 795.00 877.50 937.50
Standard
Deviation 284.59 454.78 551.42
Maximum | 1,300.00 | 1,650.00 1,950.00
Minimum | 390.00 420.00 390.00

Table 7.48 Summary statistics for time (minutes) spent on the evaluation of the new RVM design for each

treatment group.
Type of Activity Statistic %Orztlzgl RaGtirg:z;Ie RationGa:ce):l;Iethod
Evaluation of the New RVM Design
Evaluate the spatial performance of the RVM design.
Mean 269.85 289.50 215.88
Median 210.00 210.00 195.00
Standard
Deviation 265.03 193.91 122.66
Maximum 1,200.00 720.00 480.00
Minimum 42.00 60.00 10.00
Evaluate the temporal performance of the RVM design.
Mean 102.70 152.00 109.94
Median 60.00 120.00 45.00
Standard
Deviation 132.05 118.21 127.54
Maximum 600.00 420.00 420.00
Minimum 15.00 20.00 9.00
Evaluate the impact of change on the RVM design.
Mean 248.90 225.00 206.56
Median 210.00 195.00 180.00
Standard
Deviation 140.44 154.43 135.75
Maximum 600.00 480.00 480.00

164

Type of Activity Statistic %Orgtl:gl RaGtirg:z;\)Ie Rationg:g:lglethod
Minimum 75.00 60.00 60.00
Review deliverables.
Mean 115.65 49.50 58.06
Median 30.00 60.00 30.00
Standard
Deviation 267.56 38.76 66.79
Maximum 1,200.00 120.00 270.00
Minimum 5.00 0.00 5.00
Total for All Activities
Mean 737.10 716.00 590.44
Median 577.50 645.00 447.50
Standard
Deviation 727.16 403.44 361.83
Maximum 3,600.00 1,500.00 1,500.00
Minimum 170.00 300.00 232.00

Table 7.49 Summary statistics for time (minutes) spent on the eva uation of the new K ernel-Venus design
for each treatment group.

Type of Activity Statistic CGOrr:L:S th;gz;le Rationg:z:l:lethod
Evaluation of the New Kernel-Venus Interface Design
Read and think about assignment.
Mean 7175 141.00 76.81
Median 60.00 120.00 52.50
Standard
Deviation 54.00 69.35 7431
Maximum | 240.00 300.00 300.00
Minimum 5.00 60.00 12.00
Evaluate the Kernel-Venus interface (Deliverable 1:
Questions 1-4).
Mean 133.25 159.00 102.06
Median 120.00 150.00 81.50
Standard
Deviation 83.45 105.88 61.35

165

Type of Activity Statistic CGorr;tl:gI RaGt;g:;Ie Rationg:z:lglethod
Maximum | 300.00 420.00 240.00
Minimum 40.00 30.00 30.00
Evaluate the Kernel-Venus interface (Deliverable 1: Question
5).
Mean | 143.00 112.50 82.06
Median 85.00 120.00 75.00
Standard
Deviation 199.40 53.50 42.10
Maximum | 900.00 180.00 180.00
Minimum 20.00 15.00 20.00
Evaluate the Kernel-Venus organization for ease of change.
Mean 176.10 114.00 117.38
Median | 130.00 120.00 120.00
Standard
Deviation 180.78 54.00 57.67
Maximum | 900.00 180.00 240.00
Minimum 30.00 40.00 30.00
Review deliverables.
Mean 34.65 41.50 62.19
Median 21.50 30.00 20.00
Standard
Deviation 33.69 39.16 130.64
Maximum 120.00 140.00 540.00
Minimum 5.00 0.00 5.00
Total for All Activities
Mean 558.75 568.00 440.50
Median | 417.50 540.00 348.00
Standard
Deviation | 389.47 210.02 248.29
Maximum | 1,885.00 900.00 1,080.00
Minimum 120.00 230.00 162.00

166

7.7.2 Analysisof Variancefor Total Time
This subsection contains the analysis of variance calculations and results for the total time recorded by the
subjects in each treatment group for each of the four project assignments.

Analysis of variance for the redesign of RVM using unequal sample sizes and unweighted means anal-
ysis:

Table 7.50 Experiment 2, Redesign of RVM ANOVA, Total Time, Unequa Size Samples, Unweighted
Means Analysis - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group ny=20, n,=10, n3=16

Table 7.51 Experiment 2, Redesign of RVM ANOVA, Total Time, Unequa Size Samples, Unweighted
Means Analysis - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
Explained by Treatments SST dfygtr = 9-1 =2 MST = SST . 233,237.89
dfyst
Y
Error or Unexplained SSE dfyse = 0 z Ch.—10 =43 MSE = SSE _ 347,890.28
! dfyse
i=1

Table 7.52 Experiment 2, Redesign of RVM ANOVA, Total Time, Unequa Size Samples, Unweighted
Means Analysis - Testing the Hj hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
MST
F = == =067
FCaIcuIated Calculated MSE
Fa Fo(dfystdfuse) = Fos((2,43) 03.22)
Accept/Reject Ho Accept Hy since F i cutated < Fa -

167

Analysisof variancefor theredesign of RVM using unequal sample sizes and weighted means analysis:

Table7.53 Experiment 2, Redesign of RVM ANOVA, Total Time, Unequal Size Samples, Weighted Means
Analysis - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group n1=20, n,=10, n3=16

Table7.54 Experiment 2, Redesign of RVM ANOVA, Total Time, Unequal Size Samples, Weighted Means
Analysis - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
i dfyer = g—1 =2 msT = 35T -731108.20
Explained by Treatments SST msT = 9—-1 = Tfyer
Y
Error or Unexplained SSE dfyse = 9 z Dhi —10=43 MSE = SSE =347,890.28
MSE
i=1

Table7.55 Experiment 2, Redesign of RVM ANOVA, Total Time, Unequal Size Samples, Weighted Means
Analysis - Testing the Hy hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
MST
F = == =066
FCaIcuIated Calculated MSE
Fa Fo(dfystdfyse) = Fos((2,43) 03.22)
Accept/Reject Ho Accept Hy since F i cutated < Fa -

Analysisof variancefor theredesign of the K ernel-Venus|nterface using unegual sample sizesand un-
weighted means analysis:

Table7.56 Experiment 2, Redesign of Kernel-Venus Interface ANOVA, Total Time, Unequal Size Samples,
Unweighted Means Analysis - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group n1=20, n,=10, n3=16

168

Table7.57 Experiment 2, Redesign of Kernel-Venus Interface ANOVA, Total Time, Unequal Size Samples,
Unweighted Means Analysis - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
. _ _ _ SST _

Explained by Treatments SST dfygt = 9-1 =2 MST = i =237,521.77

MST

y

Error or Unexplained SSE dfyse = z Oh. — 100 = 43 MSE = SSE 18514325

! dfyse

i=1

Table7.58 Experiment 2, Redesign of Kernel-Venus Interface ANOVA, Total Time, Unequal Size Samples,
Unweighted Means Analysis - Testing the Hy hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
MST
F = —— =128
FCaIcuIated Calculated MSE
Fa Fo(dfystdfyse) = Fos((2,43) 03.22)
Accept/Reject Ho Accept Hg since F~,cuiated < Fa -

Analysis of variance for the redesign of the Kernel-Venus I nterface using unequal sample sizes and
weighted means analysis:

Table7.59 Experiment 2, Redesign of Kernel-Venus Interface ANOVA, Total Time, Unequal Size Samples,
Weighted Means Analysis - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group ny=17, ny=9, n;=15

Table7.60 Experiment 2, Redesign of Kernel-Venus Interface ANOVA, Total Time, Unequal Size Samples,
Weighted Means Analysis - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
_ SST _
Explained by Treatments SST dfyst = 9-1 =2 MST = dfysr =299,751.04
’ SSE
Error or Unexplained SSE = 10 = MSE = —/—— =185,143.2
p dfyse =9 Y hj—10=43 S o 85,143.25
i=1

169

Table7.61 Experiment 2, Redesign of Kernel-Venus Interface ANOVA, Total Time, Unequal Size Samples,
Weighted Means Analysis - Testing the Hg hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
MST
= — =162
Fealculated MSE
Fa Fo(dfysmdfyse) = Foos(243) = 3.22
Accept/Reject Hy Accept Ho since F . cutated < Fa -

Analysis of variance for the evaluation of the new RVM design using unequal sample sizes and un-
weighted means analysis:

Table 7.62 Experiment 2, Evaluation of New RVM Design ANOVA, Total Time, Unequal Size Samples,
Unweighted Means Analysis - Parameters used to calculate the F statistic.

Parameter Name

Parameter Meaning

Parameter Value

Y

number of treatment groups

3

n

number of subjects in a treatment group

n1=20, n2:10, n3:16

Table 7.63 Experiment 2, Evaluation of New RVM Design ANOVA, Total Time, Unequal Size Samples,
Unweighted Means Analysis - Calculations for determining the F statistic.

Type of Variation

Related Sum of Squares | Related Degrees of Freedom

Related Mean Square

_ SST _
Explained by Treatments SST dfysr = 9-1 =2 MST = dfysr =88,755.39
Error or Unexplained SSE df =g z h.—10 =43 MSE = SSE =313,374.46
MSE i dfyse

Table 7.64 Experiment 2, Evaluation of New RVM Design ANOVA, Total Time, Unequal Size Samples,
Unweighted Means Analysis - Testing the Hg hypothesis.

Name of Statistic or Decision

Determination of Statistic or Decision

MST
F = == =028
FCaIcuIated Calculated MSE
Fa Fa(dfysndfyse) = Foes(243) 03.22
Accep/Reject Hy Accept Hg since F i cutated < Fa -

170

Analysisof variancefor theevaluation of thenew RVM design using unequal sample sizes and weighted
means analysis:

Table 7.65 Experiment 2, Evaluation of New RVM Design ANOVA, Total Time, Unequal Size Samples,
Weighted Means Analysis - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group n1=20, n,=10, n3=16

Table 7.66 Experiment 2, Evaluation of New RVM Design ANOVA, Total Time, Unequal Size Samples,
Weighted Means Analysis - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
) _ _ _ SST _

Explained by Treatments SST dfyst = 9-1 =2 MST = T =103,203.88

MST

’ SS

: E
Error or Unexplained SSE = —10= MSE = —— =313,374.46

p dfyse =9 5 My-10=43 Te

i=1

Table 7.67 Experiment 2, Evaluation of New RVM Design ANOVA, Total Time, Unequal Size Samples,
Weighted Means Analysis - Testing the Hq hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
MST
F = == =033
FCaIcuIated Calculated MSE
Fa Fo(dfysmdfyse) = Fos((2,43) 03.22)
AcceptReject Ho Accept Hg since F 4 cutated < Fa -

Analysisof variancefor the evaluation of the new K ernel-Venus| nter face design usingunequal sample
sizesand unweighted means analysis:

Table7.68 Experiment 2, Evaluation of New Kernel-Venus Interface Design ANOVA, Total Time, Unequal
Size Samples, Unweighted Means Analysis - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group n1=20, n,=10, n3=16

171

Table7.69 Experiment 2, Evaluation of New Kernel-Venus Interface Design ANOVA, Total Time, Unequal
Size Samples, Unweighted Means Analysis - Calculations for determining the F statistic.

Type of Variation

Related Sum of Squares

Related Degrees of Freedom

Related Mean Square

SST
Explained by Treatments SST dfygtr = 9-1 =2 MST = i =71,352.65
MST
y
Error or Unexplained SSE dfyse = 0 z Dhi _10=43 MSE = SSE _ 97 760.46
MSE
i=1

Table7.70 Experiment 2, Evaluation of New Kernel-Venus Interface Design ANOVA, Total Time, Unequal
Size Samples, Unweighted Means Analysis - Testing the Hg hypothesis.

Name of Statistic or Decision

Determination of Statistic or Decision

MST
F = == =073
FCaIcuIated Calculated MSE
Fa Fo(dfystdfyse) = Fos((2,43) 03.22)
Accept/Reject Hy

Accept Hg since F,cuiated < Fa -

Analysisof variancefor the evaluation of the new K ernel-Venus| nter face design usingunequal sample
sizesand weighted means analysis:

Table7.71 Experiment 2, Evaluation of New Kernel-Venus Interface Design ANOVA, Total Time, Unequal
Size Samples, Weighted Means Analysis - Parameters used to calculate the F statistic.

Parameter Name

Parameter Meaning

Parameter Value

Y

number of treatment groups

3

n

number of subjects in a treatment group

n1=20, n2=10, n3=16

Table7.72 Experiment 2, Evaluation of New Kernel-Venus Interface Design ANOVA, Total Time, Unequal
Size Samples, Weighted Means Analysis - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square

i dfysr = 9—1 =2 = SST

Explained by Treatments SST msT = 9 MST = 3 =77,094.48
MST
y

i - _ _ SSE _

Error or Unexplained SSE dfyse = 0 z Oh; —10 =43 MSE = E = 97,760.46
i=1

172

Table7.73 Experiment 2, Evaluation of New Kernel-Venus Interface Design ANOVA, Total Time, Unequal
Size Samples, Weighted Means Anadysis - Testing the Hg hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
MST
F = — =079
FCaIcuIated Calculated MSE
Fa Fo(dfystdfuse) = Foos((2,43) 03.22)
Accept/Reject Ho Accept Hg since F~,cuiated < Fa -

7.7.3 Summary Statisticsfor Number of ErrorsDetected by Subjects

Table7.74, Table 7.75, Table 7.76, Table 7.77 contain the summary statistics for the number of errors de-
tected by the subjects in each treatment group in each of the four project assignments.

Table7.74 Summary statistics for the total number of errors detected by the subjects in the redesign of

RVM.
Statistic Control Group Rationale Group Rationg:z:l!ethod
Mean 0.55 3.90 0.75
Median 0.00 0.00 0.00
Standard Deviation 157 10.12 2.02
Maximum 6.00 32.00 8.00
Minimum 0.00 0.00 0.00

Table 7.75 Summary statistics for the total number of errors detected by the subjects in the redesign of the
Kernel-Venus I nterface.

Statistic Control Group Rationale Group Rationg:z:l!ethod
Mean 3.80 1.40 0.38
Median 0.00 0.00 0.00
Standard Deviation 9.93 3.50 1.50
Maximum 42.00 11.00 6.00
Minimum 0.00 0.00 0.00

173

Table7.76 Summary statisticsfor thetotal number of errors detected by the subjects in the evaluation of the
new RVM design.

Statistic Control Group Rationale Group Rationg:z:l!ethod
Mean 0.50 0.20 1.06
Median 0.00 0.00 0.00
Standard Deviation 1.82 0.63 2.35
Maximum 8.00 2.00 7.00
Minimum 0.00 0.00 0.00

Table7.77 Summary statistics for the total number of errors detected by the subjects in the evaluation of the
new Kernel-Venus Interface design.

Statistic Control Group Rationale Group Rationg:z:l!ethod
Mean 0.30 0.10 0.75
Median 0.00 0.00 0.00
Standard Deviation 134 0.32 2.74
Maximum 6.00 1.00 11.00
Minimum 0.00 0.00 0.00

7.8 Final Observations and Conclusions about the Experimental Results
The following results for Experiment 1 best reflect the potential benefit of the research approach.
In general,

« At all design levels andcross all changes, the benchmark mean (median) change impact
outperforms the comparable mean (median) for any treatment group, by as much as:
« 3 (5) times at the routine level.
* 5(12) times at the component level.
* 4 (7) times at the routine level with comparative sizing.

» Atall design levels anfibr most individual changes, the benchmark mean (median) change impact
outperforms the comparable mean (median) for any treatment group, by as much as:

e 44 (45) times at the routine level.
e 73 (73) times at the component level.
* 41 (41) times at the routine level with comparative sizing.

174

More specifically,

* The benchmark mean or median change impact value is almost always better than the related mean
or median values of the experimental groups, often substantially so. At the routine level for
individual changes, for instance, it is better 72 times out of 84. The other 12 times, it is equal to
the experimental groups’ mean and median values. Example: For the PSRC change at the routine
level, the benchmark value is 4.40%; the experimental groups’ mean (median) values are: 18.36%
(15.42%), 24.93% (27.62%), and 30.93% (23.26%).

Conclusion: The research approach, when rigorously understood and applied, outperforms any
approach these beginner-level designers might have known prior to the experiment or to any
common-sense approaches they might have adopted during the experiment.

* For the experimental groups, tmedian change impact value is frequently and sometimes
substantially better than the relat®dan change impact value.

At the routine level for individual changes, for instance, the median values are better than the mean
values 25 times out of 42. In the experimental groups, it was common for at least one subject to
create a far-from-optimal design. Example: Regarding the TIMER change, the median value for
the Rationale+Method Group was 9.73%, while the mean value was 22.14%. The maximum value
was 64.95%.

Conclusion: Even in the relatively simple problem of the microwave, it is easy to make substantial
design mistakes.

» Often the minimum value within an experimental group is better than the benchmark value. At the
routine level for individual changes, for instance, the experimental group minima are better 22
times out of 42. Example: For the HBSQ change at the routine level, the experimental group
minima are 4.12%, 1.95%, and 8.77%; while the benchmark value is 11.26%.

Conclusion: Not unexpectedly, the research approach does not automatically lead to the very best
design. It is not a complete replacement for human creativity and insight.

* The experimental groups’ mean (median) results at the routine level are better compared to the
benchmark than their results at the component level. At the routine level across all types of change,
the benchmark is approximately 3 (3-5) times better and at the component level 5 (7-12) times.

Conclusion: Design is more difficult at the “big picture” level, the architectural design level. It is
more difficult to apply existing knowledge, common sense approaches, or a newly learned method
at this level than in the more local situation of optimizing a routine.

» The most obvious difference between the experimental group taught the research approach and the
other groups occurred for the FDBL change, a change that is local to a routine. The
Rationale+Method Group mean value at the routine level is 13.70%, while the mean values for the
Control and Rationale groups are 21.17% and 21.43%, respectively.

Conclusion: There is an indirect correlation between the scope of the solution to which the
research approach is applied and the ease by which it is applied. This reinforces the previous
conclusion about architectural versus routine-level design.

Four structural complexity measures indicate moderate to strong correlation with change impact as sum-

marized in Table 7.78. The correlation coefficient values range across the experimental groups.

Conclusion: The structural complexity measures shown in Table 7.78 may serve as predictors of
change complexity during the creation of a design.

175

Table 7.78 Structural complexity measures with moderate to strong correlation to change impact.

Type of Structural Complexity Measure Structural Complexity Measure Correlation Coefficient
Coupling Mean number of calls to other routines per routine 0.77 t0 0.97
Coupling Mean fan-in per component -0.76 t0 -0.95
Partitioning Number of routines in the system -0.751t0-0.98
Partitioning Number of components in the system -0.80t0 -0.94

The results from Experiment 2 particularly demonstrate the effectiveness of the control flow technique
whenitisapplied correctly. Designs produced by subjectswho weretaught and applied the technique reduced
the impact of change by as much as:

* 10 times across routines.
e 41 times across files.

Conclusion: The impact of poor partitioning decisions is greater for higher-level design
components (e.g. files).

The next section presents anecdotal information about the experiments that may help others who plan to
design empirical studies in software engineering.
7.9 Anecdotal Information

In addition to the differences in the innate capabilities of the subjects, a high attrition rate contributed to
experimental error.

Observations from the first experiment help to explain the attrition and indicate that software design is dif-
ficult for beginning software developers.

* The number of completed designs was low compared to the attendance at the lectures.

» Other class work and activities competed for the participants’ time.

» The design task required more effort than the participants expected.

» The design task was too difficult for many of the participants.

e The design task was optional and not required (according to organizational policy).
» Specific explanations from students were the following.

“I'm sorry that | cannot finish the experiment by tomorrow. I'm overwhelmed by homeworks, quizzes, and
interviews.”

“l am very sorry to tell you that | couldn’t participate in the research study due to my heavy workload this week.”

“Through my own fault and lack of time in the past week and a half, | have been unable to commit the time to the
project. | apologize deeply that | am backing out, especially at so late a point in time. | hope your project is
successful and thank you for offering such an opportunity to students.”

» The attendance to the Question-Answer sessions was low.

176

e Some participants asked questions via email.

» Undergraduate students sleep on Saturday (explained by several subjects who did not attend the
Saturday session).

* The participants started the task a day or two before the deadline and therefore did not have
guestions for the sessions (even though the last session was held on the night before the task
was to be submitted).

» Other class work and activities compete for the participants’ time.

» Specific comments from subjects indicate that some of them do not understand design, in general,
or design using an object-oriented approach.

“| cannot do this because | don't plan things out before | write the actual code.”
“Where do | start?”
“Why should | decompose classes?”

“Can this be done in just one class microwave? What is the general rule for deciding when we should use another
class? Because there could be more than one power source and sensor, does that mean | have to be make each
in a class of its own? | find the fewer the classes the shorter the program.”

Table 7.79 indicates the attrition that occurred in the first experiment.

Table7.79 Attrition in the first experiment.

Number of People

Number of People

Number of People

Activity in in in

Control Group Rationale Group Rationale+Method Group
Registration 20 19 21
Attendance at Lecture 17 20 18
Completion of Design 7 13 10
Completion of Usable Design 6 12 8

Table 7.80 indicates the attrition that occurred in the second experiment.

Table 7.80 Attrition in the second experiment.

Number of People | Number of People Number of People
Activity in in in
Control Group Rationale Group Rationale+Method Group
Registration 21 17 18
Attendance at Lecture(s) 21 17 18
Completion of All Assignments 20 10 16
Completion of Usable RVM Evaluation 18 8 14
Completion of Usable Kernel-Venus Evaluation 16 8 14

177

In addition to the treatment lecture and practice examples, the experimenter conducted help sessions and
answered questionsviae-mail and private meetings. The experimenter forwarded a question and answer only
to the subjects in the same treatment group as the person who asked the question. This helped to eliminate
any potential cross exposure of treatment across the treatment groups.

Thetraditional classroom instruction with supplemental help was not sufficient to transfer the research ap-
proach to the Rationale+Method Group. Of the 8 usable designs produced by the Rationale+Method Group
in Experiment 1, only 2 indicated that their designers correctly applied the research approach. As discussed
in the next chapter, further research is needed to better understand how to effectively teach the research ap-
proach to designers of varying skill levels.

The next chapter summarizes the contents of the dissertation and outlines the contributions of the thesis

research.

178

8 Summary

In summary, this dissertation presented a research approach for the systematic generation of an evolvable
software design and analyzed it theoretically as well as experimentally.

The thesis contributes four types of theoretical resultsillustrated in detail by practical examples:

1. A research approach consisting of precise steps to decompose a solution into partsthat ease future

changes, which is acommonly pursued goal of software engineering.

a An analytical method that partitions data with operations into components with the goal
of reducing the scope and size of the system that must evolve to satisfy new requirements.

b. Analytical methods for grouping control instructions with the same goal of reducing the
scope and size of the system that must evolve.

(1) Optimal but time-consuming partitioning.
(2) Heuristical but time-efficient partitioning to achieve near optimal partitions.

2. Aresearch approach that combines, in anovel way, stepsthat require designer judgment with steps
that use analytical methods.

3. A theoretica analysis of the research approach in mathematical terms including a proof of the
control flow heuristic being near optimal.

4. A theoretica andysis of the research approach with respect to automation.
The thesis contributes three types of experimental results:

1. Evidence of the effectiveness of the research approach and its analytical methods: a benchmark
design produced by closely following the approach outperformed the mean (median) results of the
groups by factors of 3-5 (5-12) across all design levels and types of change.

While the experimental groups consisted largely of beginning designers, this doesnot detract from
the value of the approach. In practice, many software developers have only rudimentary formal
design education, if any.

2. Resultsabout the difficulty of transferring adesign approach into practice by traditional classroom
teaching.

Overdl, the experimental groups taught the approach did not perform any better than the
experimental control groups. Teaching the approach did not have a statistically relevant effect.
This was true for beginners (Experiment 1) as well as for developers with some experience
(Experiment 2).

3. Resultsabout the correlation between the impact of software changes and well-known complexity
metrics.
The thesis hasvalue beyond its individual contributions. It demonstrates a comprehensive plan for explor-
ing new software engineering approaches in the laboratory and for validating them in practice. Thethesisin-

tegrates theory, practical illustration, and experimentation.

179

Additionally, the thesis contributesideas on how to addressthe practical difficulties of experimentsin soft-
ware engineering. For example, the experimenter created the benchmark design to bring the experimental
subjects’ designs to a consistent level of detail and completeness, in particular to make sizes of changes com-

parable.

The next chapter concludes the dissertation with a discussion of future research directions and final re-

marks.

180

9 FutureResearch Directionsand Final Remarks
There aretwo major areasfor future research, each of which can be subdivided into subordinate directions:

1. Theory

a Analytical design methods: The design approach defined in this thesis demonstrates that
one can formalize the derivation of partial optimal solutions (such as for grouping control
instructions).

(1) Future research should identify other design areas for which optimal solutions can be
produced anaytically. Distributing software across processors and grouping data in
database tables are candidate areas in which substantial work has already been done
[34,42]. A further research step is finding ways to combine the partial analytica
methods to create a more unified design space. The goas include, in particular, the
resolution of conflicting partial optimizations into a balanced overall optimization.

(2) Algorithms developed by researchers working in the areas of data anaysis and
clustering theory may help software researchers to model and automate additional
features of the design process. The reader should see [43] for an extensive collection
of data clustering algorithms and [123] for a review of the literature on clustering
theory.

(3) Finally, one can ask how the rich knowledge about design currently available can be
organized to make its use easier for practitioners who are not deep experts. How can
one combine traditional methods like object orientation, analytical design methods,
ideas from the patterns and architectural styles community, and others?

b. Automation: The design approach defined in thisthesis still requires judgment in many of
itssteps. Asthe experiments demonstrated, beginning designers may not be able to quickly
learn how to apply the research approach despite its overall precision and the presence of
analytical methods.

(1) Hence, automating the design work is another research topic. For the analytical
methodswithin the research approach, thisis possible, as discussed in this dissertation.

Questions that must be resolved include:

In what form should the information be input to a tool, managed by the tool, and
exported to related tools (such as code generators or repositories)?

How can the deterministic analytical methods be integrated with artificial intelligence
or genetic algorithms?

(2) One can aso explore the somewhat “philosophical territory” of computational
complexity and explore the limits of automation. Should the main research effort be
made in automating design or on the even more ambitious goal of directly converting
requirements into code, thus obviating the need for any automated assistance to human
designers?

2. Experimental Approach

a. Confirmation and refinement of conclusions about human factors: This thesis has
produced data, observations, and conclusions about the application of a research design
approach by people. These results merit further attention. For example, three questions
that this thesis was unable to pursue concerned the broader effects of teaching a design
approach.

(1) If the same experimental groups are exposed to their treatments (instruction) over
several problems, will they draw greater value from it over time?

(2) Do experimental groups with different compositions (e.g., subjects from a non-

181

academic setting) react differently to the research approach?

(3) Isthere away to have the same subjectsreceivethe different treatments (within-subject
experiment) to reduce the experimental error due to differences in hard-to-measure
innate capabilities?

b. Choice of data to collect: A difficulty of current design experiments is the lack of a
commonly accepted, minimal set of factors that are indicative of design quality.

(2) Further experimentation and analysis of correlations can help simplify the task of the
experimenter by identifying a basic set of factors from which others can be inferred.

(2) The vaidity of any metric depends upon how well it measures the targeted behavior.
A study of the type of cognitive tasks that programmers perform in maintaining and
evolving software systems may also help in the development of more comprehensive
metrics [157,152].

¢. Choice of application domain for the task: Jackson and Jackson suggest that hierarchical
decompositions yield reusable software modules in numerical applications but not
necessarily so in other domains [76]. Does the research approach yield evolvable
components in less mathematically-oriented applications such as multi-media and e-
commerce? There is good reason to think that this would be so since the steps in the
approach do not depend on features specific to a particular class of applications.

d. Experiment logistics: Providing software engineering researchers with different
conditions in which to conduct experiments merits attention.

For this research, the experimenter depended on the goodwill of instructors and students
at Carnegie Mellon University, who allowed the experimenter to use their courses for the
experiments. Thisimposed conditions on the experiment, in terms of duration, effort, and
choice of topic. Software engineering is a discipline affected by many human factors.
Researchers in software engineering need to explore ways to learn more about this crucial
aspect.
Final remarks:
Though theideaof applying information-theoretical modelsto the analysis of software structural compl ex-
ity ismore than twenty years old [23], the systematic application of information theory to software design is
an open area of study. Thereisaneed for further research and devel opment of methods to systematically and

semi-automatically synthesize designs that satisfy system design constraints such as evolvability and adapt-

ability to changing application objectives and available system resources [45].

182

Bibliography

[1] Adams, J. and D. Thomas, “Design Automation for Mixed Hardware-Software Systeets;bonic
Design, Vol. 45, No. 5, 1997, pp. 64-66 and pp. 71-72.

[2] Albrecht, A., “Measuring Application Development Productivity,”Rnoceedings Joint SHARE/
GUIDE/IBM Application Development Symposium, Oct. 1979, pp. 34-43.

[3] Alexander, C.Notes on the Synthesis of Form, Harvard University Press, Cambridge, MA, 1964.

[4] Alexander, C.A Pattern Language: Towns, Buildings, Construction, Oxford University Press, New
York, NY, 1977.

[5] Alexander, C.The Timeless Way of Building, Oxford University Press, New York, NY, 1979.

[6] Allen, R.,A Formal Approach to Architecture, Ph.D. Dissertation, School of Computer Science, Car-
negie Mellon University, Pittsburgh, PA, 1998.

[7] Allen, R. and D. Garlan, “A Formal Basis for Architectural Connectié«¢M Transactions on Soft-
ware Engineering and Methodology, Jul. 1997.

[8] Altmeyer, J., B. Schirmann, M. Schitze, “Generating ECAD Framework Code from Abstract Mod-
els,” In Proceedings of the Thirty-Second Design Automation Conference, San Francisco, CA, Jun.
1995.

[9] Arbib, M., Brains, Machines, and Mathematics, 2nd ed., Springer-Verlag, New York, NY, 1987.

[10] Arnold, R., Ed.Tutorial on Software Restructuring, IEEE Computer Society Press, Washington, D.C.,
1986.

[11] Arnold, R., “An Introduction to Software Restructuring,”Tatorial on Software Restructuring, R.
Arnold, Ed., IEEE Computer Society Press, Washington, D.C., 1986, pp. 1-11.

[12] Asada, T., R. Swonger, N. Bounds, and P. Dudtig,Quantified Design Space: A Tool for the Quan-
titative Analysis of Designs, Technical Report CMU-CS-92-213, Carnegie Mellon University, Pitts-
burgh, PA, Nov. 1992.

[13] Asada, T., R. Swonger, N. Bounds, and P. Duerig, “The Quantified Design Space,” Secti@of-2 in
ware Architecture: Perspectives on an Emerging Disciplineby M. Shaw and D. Garlan, Prentice-Hall,
Upper Saddle River, NJ, 1996, pp. 116-127.

[14] Bachman, F., L. Bass, C. Buhman, S. Comella-Dorda, F. Long, J. Robert, R. Seacord, and K. Wallnau,
Volume I1: Technical Concepts of Component-Based Softwar e Engineering, Technical Report CMU/
SEI-2000-TR-008, Carnegie Mellon University, Pittsburgh, PA, Jul. 2000.

[15] Ballista Project, Department of Electrical and Computer Engineering, Carnegie Mellon University,
Pittsburgh, PA, http://www.cs.cmu.edu/afs/cs.cmu.edu/project/edrc-ballista/www/ as of Jan. 2001.

[16] Basili, V., L. Briand, and W. Melo, “A Validation of Object-Oriented Design Metrics as Quality Indi-
cators,”|EEE Transactions on Software Engineering, Vol. 22, No. 10, Oct. 1996, pp. 751-761.

[17] Basili, V. et al., “Final Report: NSF Workshop on a Software Research Program Fot theri2dry,”
ACM Software Engineering Notes, Vol. 24, No. 3, May 1999, pp. 37-44.

183

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

Bass, L., P. Clements, and R. Kazman, Software Architecture in Practice, Addison-Wesley, Reading,
MA, 1998, pp. 32-33.

Bass, L., P. Clements, and R. Kazman, “A-7E: A Case Study in Utilizing Architectural Structures,”
Chapter 3 irSoftware Architecture in Practice, Addison-Wesley, Reading, MA, 1998, pp. 45-71.

Bass, L., P. Clements, and R. Kazman, “Analyzing Development Qualities at the Architectural Level,”
Chapter 9 irtoftware Architecture in Practice, Addison-Wesley, Reading, MA, 1998, pp. 189-220.

Batory, D. and B. Geraci, “Composition Validation and Subjectivity in GenVoca Generafg,”
Transactions on Software Engineering, Special Issue on Software Reuse, Feb. 1997, pp. 67-82.

Beam, W. Systems Engineering, Architecture and Design, McGraw-Hill, New York, NY, 1990.

Belady, L., “Complexity of Large Systems,” Chapter 1&aftware Metrics: An Analysis and Evalu-
ation, A. Perlis, F. Sayward, and M. Shaw, Eds., MIT Press, Cambridge, MA, 1981, pp. 225-233.

Bell, C. and A. NewellComputer Structures: Readings and Examples, McGraw-Hill, New York, NY,
1971.

Birmingham, W., A. Gupta, and D. Siewioréytomating the Design of Computer Systems: The Ml-
CON Project, Jones and Batrtlett, Boston, MA, 1992.

Boehm, B., “The High Cost of Software,” Keynote AddresPriaceedings of a Symposium on the
High Cost of Software, J. Goldberg, Ed., Naval Postgraduate School, Monterey, CA, Sep. 17-19, Stan-
ford Research Institute, Menlo Park, CA, 1973.

Booch, G.Object-Oriented Analysis and Design: With Applications, 2nd ed., Benjamin/Cummings,
Redwood City, CA, 1994.

Bredemeyer Consultingoftwar e Architecture Links, http://www.bredemeyer.com/links.htm as of
Jan. 2001.

Brilliant, S. and J. Knight, “NSF Workshop on Empirical Research in Software Engineek@iy,”
Software Engineering Notes, Vol. 24, No. 3, May 1999, pp. 45-52.

Britton, K. and D. Parna#g-7E Software Module Guide, NRL Memorandum Report 4702, Dec. 1981.

Brooks, F.,The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition, Addi-
son-Wesley, Reading, MA, 1995.

Burns, A. and A. Wellings, “Introduction to Real-Time Systems,” ChapteR&dh Time Systemsand
Their Programming Languages, Addison-Wesley, Wokingham, England, 1990, pp. 1-14.

Burns, A. and A. Wellings, “Designing Real-Time Systems,” ChapterR&dh Time Systems and
Their Programming Languages, Addison-Wesley, Wokingham, England, 1990, pp. 15-39.

Burns, A. and A. Wellings, “Distributed Systems,” Chapter 1Bdal- Time Systems and Their Pro-
gramming Languages, Addison-Wesley, Wokingham, England, 1990, pp. 369-429.

Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M Pated;n-Oriented Software Ar-
chitecture: A System of Patterns, John Wiley & Sons, Chichester, England, 1996.

184

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

Castaneda, W., “Software Complexity Analysis on Department of Defense Real-Time Systems,” In
Proceedings of the Second | EEE High-Assurance Systems Engineering Workshop, Aug. 11-12, IEEE
Computer Society Press, Los Alamitos, CA, 1997, pp. 130-131.

Chidamber, S. and C. Kemerer, “Towards a Metric Suite for Object-Oriented Designgthedings
of OOPSLA, Sigplan Notices, Vol. 11, No. 26, 1991, pp. 197-211.

Clements, P., “From Subroutines to Subsystems: Component-Based Software Develofiment,”
American Programmer, Vol. 8, No. 11, Nov. 1995.

Coda and Odyssey Projects, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA, http:/lwww.cs.cmu.edu/afs/cs/project/coda/Web/coda.html as of Jan. 2001.

Conte, S., H. Dunsmore, and V. Shsoftware Engineering Metrics and Models, Benjamin/Cum-
mings, Menlo Park, CA, 1986.

Cormen, T., C. Leiserson, and R. Rivéatroduction to Algorithms, MIT Press, Cambridge, MA,
1990.

Date, C.An Introduction to Database Systems, 6th ed., Addison-Wesley, Reading, MA, 1994,

Diday, E.,New Approachesin Classification and Data Analysis, Springer-Verlag, Berlin, Germany,
1994.

Ebert, C., “Classification Techniques for Metric-Based Software DevelopnSefttyare Quality
Journal, Vol. 5, No. 4, Dec. 1996, pp. 255-272.

Fayad, M. and M. Cline, “Aspects of Software Adaptabilifgdmmunications of the ACM, Vol. 39,
No. 10, Oct. 1996, pp. 58-59.

Fenton, N.Software Metrics: A Rigorous Approach, Chapman & Hall, London, 1991.

Florac, W. and A. Carletoieasuring the Software Process: Statistical Process Control for Software
Process Improvement, Addison-Wesley, Reading, MA, 1999.

Frakes, W. and S. Isoda, “Success Factors for Systematic Ri&tEe Software, Sep. 1994, pp. 14-
19.

Gagliardi, M., R. Rajkumar, and L. Sha, “Designing for Evolvability: Building Blocks for Evolvable
Real-Time Systems,” IRroceedings of the Real-Time Technol ogy and Applications Symposium, Jun.
10-12, IEEE Computer Society, Los Alamitos, CA, 1996.

Gamma, E., R. Helm, R. Johnson, and J. Vlissidesgn Patterns: Elements of Reusable Object-Ori-
ented Software, Addison-Wesley, Reading, MA, 1995.

Garlan, D., R. Allen, and J. Ockerbloom, “Architectural Mismatch, or, Why it's hard to build systems
out of existing parts,” IProceedings of the 17th International Conference on Software Engineering ,
Apr. 1995.

Garman, J., “The ‘Bug’ Heard ‘Round the WorlCM SIGSOFT: Softwar e Engineering Notes, Vol.
6, No. 5, Oct. 1981.

Goldberg, D.Genetic Algorithmsin Sear ch, Optimization, and Machine Learning, Addison-Wesley,
Reading, MA, 1989.

185

(54]

(55]

[56]

[57]

(58]

[59]

[60]
[61]
[62]
[63]

[64]

(65]

[66]

[67]

[68]

[69]

Grady, R., Practical Software Metrics for Project Management and Process | mprovement, Prentice-
Hall, Englewood Cliffs, NJ, 1992.

Gupta, A. and D. Siewiorek, “M1: A Small Computer System Synthesis Tool,” Technical Report
CMUCAD-90-8, Carnegie Mellon University, Pittsburgh, PA, Feb. 1990.

Halang, W., “Real-Time Systems: Another Perspective,” K.M. Kavi, Bahl-Time Systems: Ab-
stractions, Languages, and Design Methodologies, IEEE Computer Society Press, Los Alamitos, CA,
1992, pp. 11-18.

Halstead, M.Elements of Software Science, Elsevier/North-Holland, New York, NY, 1977.

Hecht, H., “What are the Most Critical Challenges to Integrating High Assurance Systeni&?." In
ceedings of the Fourth IEEE High-Assurance Systems Engineering Workshop, Nov. 17-19, IEEE
Computer Society Press, Los Alamitos, CA, 1999, p. 227.

Henderson-Sellers, BQbject-Oriented Metrics: Measures of Complexity, Prentice-Hall, Upper Sad-
dle River, NJ, 1996, p. 84.

Ibid., p. 124.

Ibid., pp. 128-129.

Ibid., pp. 150-156.

Hofstadter, D.GG6del, Escher, Bach: An Eternal Golden Braiidntage Books, New Y ork, NY, 1980.

Hoover, C., “TAP-D: A Model for Developing Specialization Tracks in a Graduate Software Engineer-
ing Curriculum,”Annals of Software Engineering, Vol. 6, Baltzer Science Publ., Bussum, The Neth-
erlands, 1998, pp. 253-279.

Hoover, C. and P. Khosla, “An Analytical Approach to Change for the Design of Reusable Real-Time
Software,” InProceedings of the Second Workshop on Object-Oriented Real-Time Dependable Sys-
tems, Feb. 1-2, IEEE Computer Society Press, Los Alamitos, CA, 1996, pp. 144-151.

Hoover, C. and P. Khosla, “Analytical Design of Evolutionary Control Flow ComponentBroin
ceedings of the Second |EEE High-Assurance Systems Engineering Workshop, Aug. 11-12, IEEE
Computer Society Press, Los Alamitos, CA, 1997, pp. 48-55.

Hoover, C. and P. Khosla, “Analytical Partition of Software Components for Evolvable and Reliable
MEMS Design Tools,” IlProceedings of the Third |EEE High-Assurance Systems Engineering Sym-
posium, Nov. 13-14, IEEE Computer Society Press, Los Alamitos, CA, 1998, pp. 188-199. A revised
version published in thismternational Journal of Software Engineering and Knowledge Engineering,

World Scientific Press, Singapore, 1999.

Hoover, C., P. Khosla, and D. Siewiorek, “Analytical Design of Reusable Software Components for
Evolvable, Embedded Applications,” Rroceedings of the IEEE Symposium on Application-Specific
Systems and Software Engineering & Technology, Mar. 24-27, IEEE Computer Society Press, Los
Alamitos, CA, 1999, pp. 70-77.

Hudak, J., B. Suh, D. Siewiorek, and Z. Segall, “Evaluation & Comparison of Fault-Tolerant Software
Techniques,’|EEE Transactions on Reliability, Vol. 42, No. 2, Jun. 1993, pp. 190-204.

186

[70] Humphrey, W., A Discipline for Software Engineering, Addison-Wesley, Reading, MA, 1995.

[71] Humphrey, W., Managing Technical People: Innovation, Teamwork, and the Software Process, Add-
ison-Wesley, Reading, MA, 1996.

[72] |EEE International Conference on Software Maintenance, proceedings from |EEE Computer Society
Press, Los Alamitos, CA. In particular, a Keynote Address presented at the conference in 2000 ad-
dressed the issues and challenges for software maintenance in the new millennium, http://www.com-
puter.org/proceedings/icsm/0753/0753toc.htm as of Jan. 2001.

[73] |EEE Software, Special Issue on Systematic Reuse, Vol. 11, No. 5, Sep. 1994.
[74] |EEE Software, Special Issue on Legacy Systems, Vol. 12, No. 1, Jan. 1995.

[75] |EEE Transactions on Software Engineering, Specia Section on Software Reuse, Vol. 23, No. 2, Feb.
1997.

[76] Jackson, D. and M. Jackson, “Problem Decomposition for Reuse,” Technical Report CMU-CS-95-
108, Carnegie Mellon University, Pittsburgh, PA, 1995.

[77] Jones, T. Capers, “Reusability in Programming: A Survey of the State of th&E&fE Transactions
on Software Engineering, Vol. 10, No. 5, Sep. 1984, pp. 488-494.

[78] Kan, S. Metricsand Modelsin Software Quality Engineering, Addison-Wesley, Reading, MA, 1995.

[79] Kazman, R., “Tool Support for Architecture Analysis and DesignPrbteedings of the Second Soft-
ware Architecture Workshop, San Francisco, CA, Oct. 1996, pp. 94-97.

[80] Kazman, M. Klein, and P. Clements, ATAM: A Method for Architecture Evaluation, Technical Report
SEIR 00-4, Carnegie Mellon University, Pittsburgh, PA, Aug. 2000.

[81] Kazman, R., B. Barbacci, M. Klein, and S. Carriere, “Experience with Performing Architecture
Tradeoff Analysis,” InProceedings of the International Conference on Software Engineering, May
16-22, Los Angeles, CA, ACM 1999, pp. 54-63.

[82] Keppel, G.Design and Analysis: A Researcher’'s Handh8odked., Prentice-Hall, Englewood Cliffs,
NJ, 1991.

[83] Ibid., pp. 27-32.
[84] Ibid., pp. 45-56.
[85] Ibid., pp. 279-288.
[86] Ibid., pp. 301-317.

[87] Khoshgoftaar, T. and E. Allen, “Predicting Fault-Prone Software Modules in Embedded Systems with
Classification Trees,” IfProceedings of the Fourth | EEE High-Assurance Systems Engineering Sym-
posium, IEEE Computer Society Press, Los Alamitos, CA, Nov. 17-19, 1999, pp. 105-112.

[88] Kirkpatrick, S., C. Gelatt, Jr., and M.Vecchi, “Optimization by Simulated AnnealBoignce, Vol.
220, No. 4598, May 13, 1983, pp. 45-54.

187

(89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]
(98]

[99]

Kitchenham, B., “Evaluating Software Engineering Methods and Tools,” Series of 12 articles in select
issues oACM Software Engineering Notes, Vols. 21-23, 1996-1998.

Klein, M. and R. Kazmarhttribute-Based Architectural Styles, Technical Report SEIR 99-22, Carn-
egie Mellon University, Pittsburgh, PA, Dec. 1999.

Knuth, D.,The Art of Computer Programming, Vols. 1-3, rev. ed., Addison-Wesley, Reading, MA,
1998.

Koopman, P. and J. DeVale, “The Exception Handling Effectiveness of POSIX Operating Systems,”
|EEE Transactions on Software Engineering, Vol. 26, No. 9, Sep. 2000, pp. 837-848.

Lane, T., Studying Software Architecture through Design Spaces and Rules, Technical Report SEIR
90-18, Carnegie Mellon University, Pittsburgh, PA, Oct. 1990.

Lane, T., A Design Space and Design Rules for User Interface Software Architecture, Technical Re-
port SEIR 90-22, Carnegie Mellon University, Pittsburgh, PA, Oct. 1990.

Lane, T., “Guidance for User-Interface Architectures,” Section 53bftaare Architecture: Perspec-
tives on an Emerging Discipline by M. Shaw and D. Garlan, Prentice-Hall, Upper Saddle River, NJ,
1996, pp. 97-115.

Lapin, L.,Probability and Statistics for Modern Engineering, Brooks/Cole Publ. Co. (Wadsworth),
Belmont, CA, 1983.

Ibid., pp. 28-31.
Ibid., pp. 343-347.

Ibid., pp. 476-478.

[100] Ibid., pp. 478-481.

[101] Ibid., pp. 481-485.

[102] Lawrence, T., “The Quality of Service Model and High Assurance?t deeedings of the Second

| EEE High-Assurance Systems Engineering Workshop, Aug. 11-12, IEEE Computer Society Press,
Los Alamitos, CA, 1997, pp. 38-39.

[103] Leach, R.Software Reuse: Methods, Models, and Cost; McGraw-Hill Co., New York, NY, 1997.

[104] Lee, M., B. Barta, and P. Juliff, EdSaftware Quality and Productivity: Theory, Practice, Education,

and Training, Chapman & Hall, London, UK, 1995.

[105] Leveson, N.Safeware: System Safety and Computers, Addison-Wesley, Reading, MA, 1995.

[106] Li, W. and S. Henry, “Object-Oriented Metrics That Predict Maintainabilikyytnal of System Soft-

ware, Vol. 23, 1993, pp. 111-122.

[107] Luckham, D., J. Kenney, L. Augustin, J. Vera, D. Bryan, and W. Mann, “Specification and Analysis

of System Architecture Using RapidéEEE Transactions on Software Engineering, Special Issue on
Software Architecture, Vol. 21, No. 4, Apr. 1995, pp. 336-355.

188

[108] Maxion, R. and R. Olszewski, “Eliminating Exception Handling Errors with Dependability Cases: A
Comparative, Empirical Study|EEE Transactions on Software Engineering, Vol. 26, No. 9, Sep.
2000, pp. 888-906.

[109] McCabe, T., “A Complexity MeasurelEEE Transactions on Software Engineering, Vol. 4, No. 2,
1976, pp. 308-320.

[110] MccCall, J., P. Richards, and G. Waltdfactors in Software Quality, Vols. |, 11,11l, US Rome Air De-
velopment Center Reports NTIS AD/A-049 014, 015, 055, 1977.

[111] Meyer, B., “The Significance of ComponentSgftware Development Online, Nov. 1999. The home
web page foBoftware Development Onlineis http://www.sdmagazine.com as of Jan. 2001.

[112] Meyer, B., “What to Compose 20ftware Development Online, Mar. 2000. The home web page for
Software Development Online is http://www.sdmagazine.com as of Jan. 2001.

[123] Mili, H., F. Mili, and A. Mili, “Reusing Software: Issues and Research DirectidEEE Transactions
on Software Engineering, Vol. 21, No. 6, Jun. 1995, pp. 528-562.

[114] Mok, A., “Towards Mechanization of Real-Time System Design,” A. van Tilborg and G. Koob, Eds.,
Foundations of Real-Time Computing: Formal Specifications and Methods, Kluwer Academic Publ.,
Boston, MA, 1991, pp. 1-37.

[115] Oman, P. and S. Pfleeger, Edgplying Software Metrics, IEEE Computer Society Press, Los Alam-
itos, CA, 1997.

[116] Parnas, D., “On the Criteria To Be Used in Decomposing Systems into Modidesyiunications of
the ACM, Vol. 15, No. 12, 1972, pp. 1053-1058.

[117] Parnas, D., P. Clements, and D. Weiss, “The Modular Structure of Complex Systéingceédings
of the Seventh International Conference on Softwar e Engineering, Mar. 1984, pp. 408-417. Reprinted
in |EEE Transactions on Software Engineering, SE-11, 1985, pp. 259-266.

[118] Paulk, M., C. Weber, and B. Curfie Capability Maturity Model: Guidelinesfor Improving the Soft-
ware Process, Addison-Wesley, Reading, MA, 1995.

[119] Pfleeger, S., “Assessing MeasuremelEEE Software, Vol. 14, No. 2, Mar./Apr. 1997, pp. 25-26.

[120] Ramachandran, M. and W. Fleisher, “Design for Large Scale Software Reuse: An Industrial Case
Study,” InProceedings of the Fourth International Conference on Software Reuse, Apr. 23-26, IEEE
Computer Society Press, Los Alamitos, CA, 1996, pp. 104-111.

[121] Rechtin, E., “The Art of Systems ArchitectingZEE Spectrum, Oct. 1992.

[122] Rechtin, E.Systems Architecting: Creating and Building Complex Systems, Prentice-Hall, Englewood
Cliffs, NJ, 1991.

[123] Reinke, R.Symbalic Clustering, Ph.D. Dissertation, Report No. UIUCDCS-R-91-1704, Department
of Computer Science, University of lllinois, Urbana-Champaign, IL, 1991.

[124] Rowe, P.Pesign Theory, MIT Press, Cambridge, MA, 1987.

[125] Rubinstein, M.Patterns of Problem Solving, Prentice-Hall, Englewood Cliffs, NJ, 1975.

189

[126] Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented Modeling and
Design, Prentice-Hall , Englewood Cliffs, NJ, 1988.

[127] Schneidewind, N., “Software Metrics Validation: Space Shuttle Flight Software ExarApials of
Software Engineering, Vol. 1, 1995, pp. 287-309.

[128] Selic, B., G. Gullekson, and P. WaReal-Time Object-Oriented Modeling, John Wiley & Sons, New
York, NY, 1994.

[129] Sha, L., R. Rajkumar, and M. Gagliardi, “Evolving Dependable Real Time SysterRsdckedings
of the |EEE Aerospace Applications Conference, Aspen, CO, Feb. 3-10, IEEE Computer Society
Press, New York, NY, 1996, pp. 335-346.

[130] Shaw, M., R. DeLine, and G. Zelesnik, “Abstractions and Implementations for Architectural Connec-
tions,” In Proceedings of the Third International Conference on Configurable Distributed Systems,
Annapolis, MD, May 1996.

[131] Shaw, M. and D. Garla@haracteristics of Higher-Level Languages for Software Architecture, Tech-
nical Report SEIR 94-23, Carnegie Mellon University, Pittsburgh, PA, Dec. 1994.

[132] Shaw, M. and D. Garlan, “What is Software Architecture,” Section 1Stftware Architecture: Per-
spectives on an Emerging Discipline, Prentice-Hall, Upper Saddle River, NJ, 1996, pp. 1-5.

[133] Shaw, M. and D. Garlan, “Architectural Styles,” Chapter Sofitware Architecture: Perspectiveson
an Emerging Discipline, Prentice-Hall, Upper Saddle River, NJ, 1996, pp. 19-32.

[134] Shaw, M. and D. Garlan, “UniCon: A Universal Connector Language,” Section &ftvirare Archi-
tecture: Perspectives on an Emerging Discipline, Prentice-Hall, Upper Saddle River, NJ, 1996, pp.
183-190.

[135] Shaw, M., D. Garlan, and J. GalmEzperience with a Course on Architectures for Software Systems
Part I1: Educational Materials, Technical Report SEIR 94-20, Carnegie Mellon University, Pitts-
burgh, PA, Aug. 1994.

[136] Shepperd, M Software Engineering Metrics Volume |: Measures and Validations, McGraw-Hill
Book Company Europe, Berkshire, England, 1993.

[137] Sitaraman, M., “Performance-Parameterized Reusable Software Compolmtertsational Journal
of Softwar e Engineering and Knowledge Engineering, Vol. 2, No. 4, 1992, pp. 567-587.

[138] Sitaraman, M. and B. Weide, Eds., “Component-Based Software Engineering Using RESOLVE,”
ACM S GSOFT Software Engineering Notes, Vol. 19, No. 4, Oct. 1994, pp. 21-67.

[139] Sitaraman, M., L. Welch, and D. Harms, “On Specification of Reusable Software Compdments,”
ternational Journal of Software Engineering and Knowledge Engineering, Special issue on Reusable
Software Components, Vol. 3, No. 2, Jun. 1993, pp. 207-229.

[140] Software Engineering Institutgoftware Architecture and the Architecture Tradeoff Analysis Initia-
tive, Carnegie Mellon University, http://www.sei.cmu.edu/ata/ata_init.html as of Jan. 2001.

[141] Software Engineering Institut8El Product Line Practice Publications, Carnegie Mellon University,
http://www.sei.cmu.edu/plp/plp_publications.html as of Jan. 2001.

190

[142] Software Engineering Institute, Smplex Architecture, Carnegie Mellon University, http://
www.sel.cmu.edu/activitieg/str/descriptions/simplex_body.html as of Jan. 2001.

[143] Stankovic, J., “Good System Structure Features: Their Complexity and Execution TimelGtost,”
rial on Software Restructuring, R. Arnold, Ed., IEEE Computer Society Press, Washington, D.C.,
1986, pp. 36-48. Reprinted frofBREE Transactions on Software Engineering, Vol. SE-8, No. 4, Jul.
1982, pp. 306-318.

[144] Stewart, D.Real-Time Software Design and Analysis of Reconfigurable Multi-Sensor Based Systems,
Ph.D. Dissertation, Department of Electrical and Computer Engineering, Carnegie Mellon University,
Pittsburgh, PA, 1994.

[145] Stewart, D. and P. Khosla, “The Chimera Methodology: Design of Dynamically Reconfigurable Real-
Time Software Using Port-Based Objects,Piroceedings of the | EEE Wor kshop on Object-Oriented
Real-Time Dependable Systems, Dana Point, CA, Oct. 1994.

[146] Stewart, D., D. Schmitz, and P. Khosla, “The Chimera Il Real-Time Operating System for Advanced
Sensor-Based Control Application$EEE Transactions on Systems, Man, and Cybernetics, Nov./
Dec. 1992, pp. 1282-1295.

[147] Szyperski, C., “Components and Objects Togettgaffivare Development Online, May 1999. The
home web page fdoftware Development Online is http://www.sdmagazine.com as of Jan. 2001.

[148] Thomas, D.The Design and Analysis of an Automated Design Style Selector, Ph.D. Dissertation, De-
partment of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, 1977.

[149] Thompson, CWorkshop on Compositional Software Architectures, Workshop Report, Monterey,
CA, Jan. 6-8, 1998. Representatives from the Object Management Group, the Defense Advanced Re-
search Projects Agency, Microelectronics and Computer Technology Corporation, Object Services
and Consulting, Inc., and academe met to discuss advances and challenges for the future in the devel-
opment of component software architectures, non-functional system-wide properties, and web/ORB
integration architectures. The home web page for the workshop is http://www.objs.com/workshops/
ws9801/index.html as of Jan. 2001.

[150] Tomayko, J., “Forging a Discipline: An Outline History of Software Engineering Educationgls
of Software Engineering, Vol. 6, Baltzer Science Publ., Bussum, The Netherlands, 1998, pp. 3-18.

[151] VanHilst, M. and D. Notkin, “Decoupling Change from Desigdftwar e Engineering Notes, Vol.
21, No. 6, Nov. 1996, pp. 58-69.

[152] von Mayrhauser, A. and A. Vans, “Program Comprehension During Software Maintenance and Evo-
lution,” Computer, Vol. 28, No. 8, Aug. 1995, pp. 44-55.

[153] Ward, P. and S. Mello&ructured Development for Real-Time Systems, Vol. 2: Essential Modeling
Techniques, Prentice-Hall, Englewood Cliffs, NJ, 1985.

[154] WEBSTER'’S II: New Riverside University DictiondRverside Publ. Co. (Houghton Mifflin), Bos-
ton, MA, 1984.

[155] Weide, B., W. Ogden, and M. Sitaraman, “Recasting Algorithms to Encourage R&Ee Soft-
ware, Sep. 1994, pp. 80-88.

[156] Weinberg, G.Rethinking Systems Analysis and Design, Dorset House, New York, NY, 1988.

191

[157] Weiser, M. and B. Shneiderman, “Human Factors of Software Design and Developiaentdl on
Software Restructuring, R. Arnold, Ed., IEEE Computer Society Press, Washington, D.C., 1986, pp.
67-81.

[158] Westerberg, K., “Development of Software for Solving Systems of Linear Equations,” Technical Re-
port EDRC-05-35-89, Carnegie Mellon University, Pittsburgh, PA, 1989.

[159] Wortmann, J.Object-Oriented Analysis for Advanced Flight Data Management, Report No. 96-43,
Technical University of Berlin, Germany, 1996.

[160] Yourdon, E. and L. Constantingructured Design: Fundamentals of a Discipline of Computer Pro-
gram and Systems Design, Yourdon Press (Prentice-Hall), Englewood Cliffs, NJ, 1979.

192

Appendix A Generic Process for Component-Based Product Development

Description of
Product to be Built

Specify product
requirements.

Product Requirements
Specification

Develop detailed
product model.

Product Req

uirements

Specification and
Detailed Product Model

Specify product
architecture.

Product Architecture ¢

Specification

Select or build
implementation
components.

and Build Di

rections

Product Components #

Build product
from implementation
components.

Finished Product ¢

193

194

Appendix B Statement of Work for the Microwave Oven Softwar e

Your job is to design the software necessary to operate a microwave oven. Use an object-oriented style for
your design, which should include the definition of the files, classes and methods, as well as pseudo-code for
the methods. The pseudo-code can be at a higher level than actual code, but it should be precise enough for a
reviewer to understand how much code would have to be written for each method and which functionality is
assigned to each method.

The remainder of the statement of work provides background on the microwave oven’s general structure, an
analysis of the requirements that its software must fulfill, and design directives. (Note that the information
does not necessarily correspond to an actual appliance. Do not assume that microwave ovens work precisely
as described here.)

Microwave Oven: Structure

The microwave oven consists of a container in which food can be heated by penetrating it with microwave
radiation. The radiation comes from one or more power sources. There are two primary controls for the oven:
(1) a timer, which limits the duration of the radiation, and (2) a power sensor, which checks the level of radi-
ation actually generated.

Users program the oven through a display and a keyboard, by which they can set the characteristics of the
radiation (e.g., power and duration). Since radiation is harmful to people, a door sensor monitors whether the
oven door is closed. If it is not closed, the microwave oven must shut off the radiation immediately.

Microwave Oven: Software
Electronics control the behavior of the oven (e.g., power sources). Software in turn controls the electronics.

The software should accomplish the following four functions, which build upon each other.

1. Drive the electronics: This part of the software is closest to the electronics. It gives instructions to
the hardware and obtains status in return. For example, it tells the power source to increase power
by one notch. (How this happens exactly does not have to concern you. From a high level view-
point, the drivers use electronic connections between the processing unit that runs the software and
the rest of the hardware.)

2. Control the electronics: This part of the software puts together the instructions to the hardware and
passes them to the device drivers. For example, it decides when to send a command to the power
source or to the timer.

3. Schedule a heating operation: This part of the software translates the user input into instructions
that match the hardware’s capabilities. For example, it calculates the time and power it takes to
reheat two servings of pizza, if that is what the user has entered.

4. Manage the user interface: This part of the software directly receives user input through the
keyboard and outputs messages on the display. For example, it understands that the button pushes
2,3,0 represent a duration of 2 minutes and 30 seconds. Button pushes 1,0,0,0 represent 10
minutes.

In your design, you must specify which files, classes, data and methods will be needed to fulfill each of these
four functions. Table B.1 is an analysis of the specific requirements for each function. The analysis has a data
part and a functionality part. It tells you the type of information is needed for each function and how the in-
formation is to be manipulated. Text enclosed by brackets provides design directives.

195

TableB.1 Analysis of the requirementsfor each basic function of the microwave oven software.

Basic

. i i Dat

Function Functionality ata

Manage [When you design this part of the software, assume that you have at | [The keyboard has buttons for the 10 dig-
User your disposal built-in methods called GET_KEYBOARD and its, as well as START, STOP, DEFROST,
Interface PUT_DISPLAY to read the next button push from the keyboard and REHEAT, POWER and TIMER buttons.

write text to the display. GET_KEYBOARD and PUT_DISPLAY are
part of the SYSTEM class residing in the system.h file.]

The user can request heating by the key sequences below.
+ Straight heating: The POWER button followed by a single
digit to set the power level. Then the TIMER button followed
by up to four digits setting a time between 0 seconds and 10
minutes 0 seconds. Programming concludes by the START
button.

The user interface must display an error message “ERROR”
if the user attempts to set a power higher than 9, a duration
longer than 10 minutes, or a number of seconds higher than
59.

+ Defrosting: The DEFROST button followed by up to four
digits setting a weight between 0 ounces and 10 pounds, 0
ounces. Programming concludes by the START button.

The user interface must display an error message “ERROR”
if the user attempts to set a weight higher than 10 pounds or
a number of ounces higher than 15.

+ Reheating: REHEAT button followed by up to two digits
setting a number of servings between 0 and 25. Pushing the
START button a first time continues the programming. It is
followed by up to four digits setting a weight between 0
ounces and 10 pounds, 0 ounces. Programming concludes
by pushing the START button a second time.

The user interface must display an error message “ERROR”
if the user attempts to request more than 25 servings, a total
weight higher than 10 pounds, or a number of ounces higher
than 15.

The user interface should also enable the following functions.
« The user can request the immediate halt to operation by
hitting the STOP button.

+ The user interface must display a status message “DONE”
whenever a heating or stop request completes normally.

« The user interface must display an error message “FAIL”
whenever a heating or stop request completes abnormally.

In general:
« The user interface must display an error message “ERROR”

if the user attempts any meaningless key sequence (e.g.,
POWER followed by DEFROST).

+ Any error, STOP request, or opening of the door cancels all
current programming. If those events occur, the oven
cancels any partially completed requests; and the user must
start over.

The display has a length of 5 characters.]

+ Power Level: 0 through 9.

+ Duration: 0 minutes, 0 seconds
through 10 minutes, 0 seconds.

+ Weight: 0 pounds, 0 ounces
through 10 pounds, 0 ounces.

¢+ Number of Servings: 0 through
25.

+ Weight per Serving: 0 through
10 pounds, 0 ounces.

+ Heating Type: heat, defrost, or
reheat.

196

Basic
Function

Functionality

Data

Schedule
Heating
Operation

Heat Request: The user has requested a Heat function. Convert the
button pushes into a Heat Operation consisting only of a power level
and duration. The type of heat may be heat, defrost, or reheat.
+ If Heat Type is heat, pass on power level and duration to
Heat Operation. Convert duration from minutes/seconds to
ticks (1 second = 1 tick).

+ If Heat Type is defrost, use a DEFROST formula to convert
Weight into a power level and duration. [Use the name
DEFROST whenever you want to refer to this calculation in
your design.]

+ If Heat Type is reheat, use a REHEAT formula to convert
Servings and Weight per Serving into a power level and
duration. [Use the name REHEAT whenever you want to
refer to this calculation in your design.]

If the user requests Stop, invoke the Stop Operation.

Pass on to the user interface the status or error code received from
the Heat or Stop Operations.

Power level received through
Heat Request and passed on to
Heat Operation: 0 through 9.

Duration received through Heat
Request: 0 minutes, 0 seconds
through 10 minutes, 0 seconds.

Duration passed on to Heat
Operation: 0 through 600 ticks.

Weight received through Heat
Request: 0 pounds, 0 ounces
through 10 pounds, 0 ounces.

Servings received through Heat
Request: 0 through 25.

Weight per serving received
through Heat Request: 0
through 10 pounds, 0 ounces.

Heat Type received through
Heat Request: heat, defrost, or
reheat.

Control
Electronics

Heat Operation: Move the power up to the desired level and keep it
there for the desired duration. Note that the electronics are very
primitive. The algorithm is correspondingly simplistic.

Set timer to desired duration.

Then go through a feedback loop that works as described below. You
can assume that each pass through the loop takes only fractions of a
second.

Initiate door status.

Initiate power source status.
Initiate power sensor read.
Read power sensor to check actual power achieved.

If power under desired level, increase power by 3 notches on
all sources.

If power over or at desired level, reduce power by 3 notches
on all sources.

Check timer - If expired, stop all power sources and return
status code.

Read status of all electronics - If malfunction or door open,
stop all power sources and return an error code.

Start over at the beginning of the loop.

Stop Operation: Shut off all power sources immediately.

Power level received by Heat
Operation: 0 through 9.

Duration received by Heat
Operation, provided to timer, or
returned by timer: 0 through 600
ticks, where each tick presents 1
second.

Status code returned by Heat
Operation and Stop Operation:
blank or Heating Complete.

Error code returned by Heat
Operation and Stop Operation:
blank or Malfunction.

4 identical power sources
(numbered 1 through 4).

1 power sensor.
1 door sensor.
1 timer.

Status returned by power
source: fail or functioning.

Power level returned by power
sensors: 0 through 9.

Status returned by power
sensor: fail or functioning.

Status returned by door sensor:
fail, open, or closed.

197

Basic

: Functionalit Dat
Function unctionality ata
Drive + Increase power by one notch for power source Status returned by power
Electronics « Decrease power by one notch for power source source: fail or functioning.

+ Shut off power source

+ Initiate power source status
+ Read status of power source
¢+ Initiate power sensor read

+ Read level on power sensor
+ Read status of power sensor
+ Initiate door status

+ Read status of door

+ Read status of door sensor

+ Settimer

+ Check timer status

[When you design this part of the software, assume that you have at
your disposal a built-in method called CALL_HARDWARE to request
the functionality above. The CALL_HARDWARE method is part of
the SYSTEM class residing in the system.h file.

For example:
« Toincrease power by one notch on power source 1, write the
pseudo-code CALL_HARDWARE (power source 1, increase
power by one notch).

+ To set the timer to 120 seconds, write CALL_HARDWARE
(timer, set, 120).

Also, you can assume that the electronics are automatically initial-
ized when the microwave oven is connected to the power source.]

Power level returned by power
sensors: 0 through 9.

Status returned by power
sensor: fail or functioning..

Status returned by door sensor:
fail, open, or closed.

Duration used by timer: 0
through 600 ticks.

198

Microwave Oven: Software - Additional Requirementsfor Product Evolution

We want to design the software so that it is not only suitable for this particular microwave but can be easily
adapted for our entire microwave product line. Table B.2 lists the additional considerations to keep in mind
for the product line.

TableB.2 Additional requirements for product evolution.

Functionality

Data

The product line will contain more sophisticated micro-
waves that allow not just the POWER-TIMER button
sequence to program the heating but also a TIMER
followed by POWER sequence.

Depending on the type of microwave oven, the defrost
and reheat formulas may change.

Microwaves might be built with power sources whose
behavior has to be controlled in a more sophisticated
way than up or down three notches (e.g., the increase
or decrease might have to be relative to how high the
power already is or the power level might not
stabilize).

Microwaves whose electronics respond faster would
allow for different feedback loops. The sequences
could be:

+ Initiate door status. Initiate power source status.
Initiate power sensor read. Read power sensor to
check actual power achieved. Adjust power if
necessary. Read status of all electronics. Check
timer for expiration.

+ Initiate door status. Initiate power source status.
Initiate power sensor read. Read status of all
electronics. Read power sensor to check actual
power achieved. Adjust power if necessary. Check
timer for expiration.

Some microwaves in the product line will be
for the international market. Error and status
messages, as well as weight measures,
could be different in content and format (e.g.,
changes in the length and characters used).

More powerful microwaves will be part of the
product line. They will have higher limits for
weight, servings, and weight per serving.

Microwaves could be built with parts from
different suppliers and thereby could require
different configurations (e.g., 10 power
sources and 4 power sensors). You can
assume that these ovens would include a
built-in function to determine an overall power
level for different levels detected by multiple
power Sensors.

Microwaves could be built with a different type
of power source. The parameters for
CALL_HARDWARE could change format
(e.q., instead of just specifying an increase or
decrease by one notch of the power level, the
driver software might have to specify an
angle for the radiation).

Similar possibilities exist for the power
sensor, door sensor, and timer.

199

200

Appendix C

Change Complexity Values Across Alternative Sequences

Change Complexity Change Complexity Change Complexity

for Alternative for Alternative Across All

Partition of Required Sequence Sequence 1 Sequence 2 Alternative

<B,C,D,E,F,GH,> <B,C,D,E,F,G,I,H> <B,C,D,l,E,F,G,H> Sequences
1. <C><D><E><F><G><H><I> 8 8 16
2. <C><D><E><F><G><H,|> 2 9 11
3. <C><D><E><F><G H><I> 9 7 16
4. <C><D><E><F><GH,I> 3 9 12
5. <C><D><E><F,G><H><I> 7 7 14
6. <C><D><E><F,G><H,I> 2 8 10
7. <C><D><E><F,G,H><I> 9 6 15
8. <C><D><E><F,GH,I> 4 9 13
9. <C><D><E,F><G><H><I> 7 7 14
10. <C><D><E,F><G><H,I> 2 8 10
11. <C><D><E,F><G,H><I> 8 6 14
12. <C><D><E,F><G H,I> 3 5 8
13. <C><D><E,F,G><H><[> 6 6 12
14. <C><D><E,F,G><H,I> 2 5 7
15. <C><D><E,F,G H><I> 9 5 14
16. <C><D><E,F,GH,I> 5 5 10
17. <C><D,E><F><G><H><|> 7 9 16
18. <C><D,E><F><G><H,I> 2 10 12
19. <C><D,E><F><G,H><I> 8 8 16
20. <C><D,E><F><G,H,I> 3 5 8
21. <C><D,E><F G><H><I> 6 8 14
22. <C><D,E><F,G><H,I> 2 6 8
23. <C><D,E><F,G,H><I> 8 7 15
24, <C><D,E><F,G,H,I> 4 6 10
25. <C><D,E,F><G><H><|> 6 9 15
26. <C><D,E,F><G><H,I> 2 10 12
27. <C><D,E,F><G,H><I> 7 8 15
28. <C><D,EF><GH,I> 3 6 9
29. <C><D,EF,G><H><I> 5 9 14

201

Change Complexity Change Complexity Change Complexity

for Alternative for Alternative Across All

Partition of Required Sequence Sequence 1 Sequence 2 Alternative

<B,C,D,E,F,GH,I> <B,C\D,E,FG,H> <B,C,D,lE,F,G,H> Sequences
30. <C><D,E,F,G><H,I> 2 6 8
31. <C><D,EF,G,H><I> 9 9 18
32. <C><D,E,F,GH,I> 6 6 12
33. <C,D><E><F><G><H><|> 7 7 14
34. <C,D><E><F><G><H,I> 2 8 10
35. <C,D><E><F><G,H><I> 8 6 14
36. <C,D><E><F><G,H,I> 3 5 8
37. <C,D><E><F,G><H><I> 6 6 12
38. <C,D><E><F,G><H,I> 2 7 9
39. <C,D><E><F,G,H><I> 8 5 13
40. <C,D><E><F,GH,I> 4 6 10
41. <C,D><E,F><G><H><|> 6 6 12
42. <C,D><E F><G><H,I> 2 7 9
43. <C D><E F><G,H><I> 7 5 12
44, <C,D><E,F><GH,I> 3 5 8
45. <C,D><E,F,G><H><I> 5 5 10
46. <C,D><EF,G><H,I> 2 5 7
47. <C,D><E,F,G,H><I> 8 4 12
48. <C,D><E,F,GH,I> 5 5 10
49, <C,D E><F><G><H><I> 6 9 15
50. <C,D,E><F><G><H,|> 2 10 12
51. <C,D,E><F><G,H><I> 7 8 15
52. <C,D,E><F><GH,I> 3 6 9
53. <C,D,E><F,G><H><I> 5 8 13
54. <C,D,E><F,G><H,I> 2 7 9
55. <C,D,E><F,G,H><I> 7 7 14
56. <C,D,E><F,GH,I> 4 7 11
57. <C,D,E,F><G><H><I> 5 9 14
58. <C,D,E,F><G><H,I> 2 10 12
59. <C,D,EF><G,H><I> 6 8 14
60. <C,D,E,F><GH,I> 3 7 10

202

Change Complexity Change Complexity Change Complexity

for Alternative for Alternative Across All

Partition of Required Sequence Sequence 1 Sequence 2 Alternative

<B,C,D,E,F,GH,I> <B,CD,E,FG,|H> <B,C,D,lE,F,G,H> Sequences
61. <C,D,EF,G><H><I> 4 9 13
62. <C,D,EF,G><H,I> 2 7 9
63. <C,D,EF,G,H><I> 9 9 18
64. <C,D,EF,GH,I> 7 7 14
65. <B,C><D><E><F><G><H><|> 7 7 14
66. <B,C><D><E><F><G><H,I> 2 8 10
67. <B,C><D><E><F><G,H><I> 8 6 14
68. <B,C><D><E><F><G,H,I> 3 8 11
69. <B,C><D><E><F,G><H><I> 6 6 12
70. <B,C><D><E><F,G><H,I> 2 7 9
71. <B,C><D><E><F,G H><I> 8 5 13
72. <B,C><D><E><F,GH,I> 4 8 12
73. <B,C><D><E F><G><H><|> 6 6 12
74. <B,C><D><E F><G><H,|> 2 7 9
75. <B,C><D><E F><G,H><I> 7 5 12
76. <B,C><D><E,F><GH,I> 3 5 8
77. <B,C><D><E,F,G><H><I> 5 5 10
78. <B,C><D><E,F,G><H,I> 2 5 7
79. <B,C><D><E,F,G,H><I> 8 4 12
80. <B,C><D><E,[,GH,I> 5 5 10
81. <B,C><D,E><F><G><H><I> 6 8 14
82. <B,C><D,E><F><G><H,I> 2 9 1
83. <B,C><D,E><F><G,H><I> 7 7 14
84. <B,C><D,E><F><GH,I> 3 5 8
85. <B,C><D,E><F,G><H><I> 5 7 12
86. <B,C><D,E><F,G><H,I> 2 6 8
87. <B,C><D,E><F,G,H><I> 7 6 13
88. <B,C><D,E><F,GH,I> 4 6 10
89. <B,C><D,E F><G><H><I> 5 8 13
90. <B,C><D,E,F><G><H,I> 2 9 1
91. <B,C><D,EF><GH><I> 6 7 13

203

Change Complexity Change Complexity Change Complexity

for Alternative for Alternative Across All

Partition of Required Sequence Sequence 1 Sequence 2 Alternative

<B,C,D,E,F,GH,I> <B,C\D,E,FG,|H> <B,C,D,lE,F,G,H> Sequences
92. <B,C><D,E,F><GH,I> 3 6 9
93. <B,C><D,E,F,G><H><I> 4 8 12
94. <B,C><D,E,F,G><H,I> 2 6 8
95. <B,C><D,EF,G,H><I> 8 8 16
96. <B,C><D,EF,GH,I> 6 6 12
97. <B,C,D><E><F><G><H><[> 6 6 12
98. <B,C,D><E><F><G><H,I> 2 7 9
99. <B,C,D><E><F><G,H><I> 7 5 12
100. <B,C,D><E><F><GH,I> 3 6 9
101. <B,C,D><E><F,G><H><I> 5 5 10
102. <B,C,D><E><F,G><H,|> 2 6 8
103. <B,C,D><E><F,G,H><I> 7 4 1
104. <B,C,D><E><F,G H,I> 4 7 1
105. <B,C,D><E,F><G><H><I> 5 5 10
106. <B,C,D><E,F><G><H,|> 2 6 8
107. <B,C,D><E,F><G,H><I> 6 4 10
108. <B,C,D><E,F><G,H,I> 3 5 8
109. <B,C,D><E,F,G><H><I> 4 4 8
110. <B,C,D><E,F,G><H,I> 2 5 7
111. <B,C,D><E,F,G,H><I> 7 3 10
112. <B,C,D><E,F,GH,I> 5 5 10
113. <B,C,D,E><F><G><H><I> 5 9 14
114. <B,C,D,E><F><G><H,|> 2 10 12
115. <B,C,D,E><F><G,H><I> 6 8 14
116. <B,C,D,E><F><G,H,I> 3 7 10
117. <B,C,D,E><F,G><H><I> 4 8 12
118. <B,C,D,E><F,G><H,I> 2 8 10
119. <B,C,D,E><F,G,H><I> 6 7 13
120. <B,C,D,E><F,G,H,I> 4 8 12
121. <B,C,D,E,F><G><H><I> 4 9 13
122. <B,C,D,E,F><G><H,I> 2 10 12

204

Change Complexity Change Complexity Change Complexity

for Alternative for Alternative Across All

Partition of Required Sequence Sequence 1 Sequence 2 Alternative

<B,C,D,E,F,G,H,I> <B,CD,E,F,G,I,H > <B,C,D,l,E,F,G,H> Sequences
123. <B,C,D,E,F><G,H><I> 5 8 13
124. <B,C,D,E,F><GH,I> 3 8 11
125. <B,C,D,E,F,G><H><I> 3 9 12
126. <B,C,D,E,F,G><H,I> 2 8 10
127. <B,C,D,E,F,G,H><I> 9 9 18
128. <B,C,D,E,F,GH,I> 8 8 16

205

206

Appendix D Human Subjects Clear ance Request

Carnegie Mélon University

Human Subjects Clearance Request

Date: 17 September 1999 CMU Protocol No.

New Request _ X__ Renewal

Overview of the Proposal for Experimentation

A.

Project and I nvestigators

Principal investigators:

Daniel P. Siewiorek, Director Carol L. Hoover, Doctoral Candidate
Human-Computer Interaction Institute Dept. of Electrical & Computer Engineering
Buhl Professor of Electrical & Computer Carnegie Mellon University

Engineering and Computer Science
Carnegie Mellon University

412-268-5228 412-268-6480
dps@cs.cmu.edu clh@cs.cmu.edu

Project Title: Analysis of an Experimental Approach for the Design of High-Assurance Soft-
ware

Project Dates: From 1 October 1999 To 1 May 2000
Name of Experimenter: Carol L. Hoover

Brief Description of Research: To study the affects of using experimental methods for design-
ing software on the resulting software artifacts.

Subjects, Benefits, and Risk Assessment

1. How many subjects will be used in this experiment? About 150-200

2. From what source do you plan to obtain subjects?
Undergraduate and graduate students taking programming or software engineering
courses offered by organizations such as the School of Computer Science (for example,
15-127, Introduction to Programming and Computer Science) and the Carnegie Institute
of Technology (for example, 12-741, Advanced Programming Concepts in Computer-
Aided Engineering).

3. Isthere any benefit gained by the subject for participating?

Pay and opportunity to learn innovative techniques useful for the development of well-
structured software.

207

4. Will the subjects include any of the following? No

Fetuses Mentally Retarded
Hospitalized Patients Minors
Institutionalized Patients Pregnant Women
Mentally Disabled Prisoners

5. Degree of physical risk to subjects: Negligible

6. Degree of psychological risk to subjects: Negligible

Abstract of the Proposed Experimentation

The purpose of the proposed experimentation is to determine the affects of applying an experimental
software design approach on the quality of the resulting software artifacts. The experimental
approach consists of away of thinking (rationale) about software quality properties as well as precise
and step-wise directions (design methods) to guide the human designer in the development of a soft-
ware design that will achieve the desired quality properties. Example software quality properties are
ease of change and adaptability.

The proposed experimentation will validate the effectiveness of the experimental approach. The
experimenters will measure effectiveness by whether or not and to what extent the new approach

helps software designers to more effectively, in comparison to software design without using the
experimental approach, to develop software designs that achieve target properties. Preliminary inves-

tigation has shown that the new approach when applied by the experimenter resulted in software

designs that achieved target quality properties. This experimentation will determine the usefulness of

the experimental approach across many more software designers and across factorsthat, in addition to

the design approach, may also affect the human designer’'s capability to produce a design that
achieves target quality properties

Experimental Treatment

We plan a series of three to four experiments with variation in the level of knowledge and skill as well
as task complexity (software design assignment) across the experiments. Within each experiment, we
will hold constant as much as is feasible the level of knowledge and skill of the subjects as well as the
task complexity. The goal is to determine not only if the experimental approach positively affects the
ability of the subjects to produce “good” software designs but also if the affect varies depending on
the software design expertise of the subjects and the complexity of the task.

We will recruit subjects from undergraduate and graduate students taking programming or software
engineering courses offered by organizations such as the School of Computer and the Carnegie Insti-
tute of Technology. To control the experimental factors that we discussed above, we will recruit par-
ticipants from one course per experiment. Participation will be voluntary. To manage the time spent
on the assignment while maximizing the benefit to the participants, we will prepare assignments that
are appropriate for the educational objectives of the target courses. Though all students in these
courses will complete the assignments that we are using for the experiments, participation in the
experiments will be voluntary. We will design the experimental treatment so that is does not signifi-
cantly increase the time that the participants need to complete their assignments.

Within each experiment, we will organize the pool of subjects into control and experimental groups.
Both groups will perform the same software design assignment and will receive the standard course
instruction for the assignment. In addition, the experimental groups will receive instruction on how to
apply the experimental approach that is designed to complement the course instruction. The experi-
mental groups will use the experimental approach along with their standard course instruction to

208

VI.

complete the assignment. Control subjectswill have the opportunity to learn about the technique after
the completion of the experiment.

The experimenter will evaluate the software artifacts (software designs and code) that both the con-
trol and experimental subjects produce. The experimenter will develop and apply metrics for measur-
ing the quality of these artifacts. The course instructors whose students are participating in the
experiments may review the experimental results but will not use the results to evaluate student per-
formance for the assignment.

Consent Form

The experimenter will give copies of the attached description of the experiment (Call for Participa-
tion in a Research Study) to potential participants in the experiment. Participation is optional. The
instructors of courses from which subjects are recruited will not penalize those students who chose
not to participant. The students who chose to participate in the experiments will read, comprehend
and sign copies of the attached consent form. Both the Call for Participation in a Research Study and
consent forms explain that the subject may stop the experiment at any time if he/she is uncomfortable
with his’her participation.

Confidentiality

The experimenter will evaluate the software designs produced by the subjects with respect to the test
metrics. Only the experimenter and the instructors whose students are participating in the experiment
will have access to the software designs that the student subjects produce and the evaluation of each
individual design. The investigators will report or publish only group data. They will not report or
publish the names of the subjects and will discard the names of the subjects when they are no longer
needed.

Risk/Benefit Analysis

The risks to the subjects are negligible and no more than that expected for a programming class
assignment. The subjects will have 1-4 weeks to perform the tasks during time intervals set by the
subjects. The tasks (software design and programming assignments) will take no more than the
amount of time required for a similar type of class assignment. The subjects may choose to discon-
tinue their participation at any time.

In addition to a payment (type and amount currently under consideration by the principal

investigators!), the subjects will have the opportunity to learn about a new software design approach
that complements and enhances techniques used widely by professiona software developers. Control
subjects will have the opportunity to learn about the technique after the completion of the experiment.
The experimental approach may improve widely used software design techniques. Therefore, partici-
pants have the opportunity to contribute to the progress of their field of study.

The principal investigators will determine an appropriate payment and will indicate this on the actual
consent forms and Call for Participation in a Research Study.

209

210

Appendix E Call for Participation in a Resear ch Study

Analysis of an Experimental Approach for the Design of High-Assurance Software

Y ou have the unique opportunity to learn about a new design approach by participating in a research study.

The purpose of the design approach is to help the software developer design “good” software. In addition to
working correctly, good software has other properties that increase its value not only to the user but also to
the producer of the software. In the software engineering community, we designate such properties as quality
attributes. High-assurance computing requires that the software perform reliably as well as correctly on de-
mand, often in critical environments such as air traffic control and nuclear power plant management. The de-
sign of good software is especially important for these types of applications. Carol L. Hoover, a doctoral
student in the Department of Electrical and Computer Engineering, has developed the new design approach
and has tested it on a small scale. She is planning an experiment to test the effectiveness of her experimental
approach across a larger group of software developers and is looking for students to participate in her exper-
iment.

As a participant in this study, you will complete a software desigagrogramming for some experiments?)
assignment. The amount of time required for the assignment will be similar to that required for other program-
ming assignments in your class. Likewise, the difficulty of the assignment will be similar to your current class
assignments. Your instructor will count the software design that you develop as a regular class assignment,
while the experimenter will examine your designd program for some experiments®) only for experimental
purposes. Participation is voluntary, but students who do not participate in the study will do the same assign-
ment because it is important to the educational objectives for your course. Non-participants will not submit
their software artifacts to the experimenter. Your course instructor will not use the experimental data to eval-
uate your performance on the assignment.

For your participation in the experiment, the investigators will give paynfent type and amount still being
considered by the principal investigators?) as well as the opportunity to learn a new way to design software.
The experiment poses minimal risk, no more than that which you may incur in completing your class assign-
ments. If you are uncomfortable with the experiment for whatever reason, you may end your participation at
any time without penalty. The investigators will not use your name or reveal your identity in any description
or publication of the research.

At the end of the experiment, you will be able to obtain a full description of the study, including a discussion
of its scientific purpose and results. You can address any questions that you may have about this research now
or in the future to:

Carol L. Hoover Professor Daniel P. Siewiorek, Director

Dept. of Electrical & Computer Engineering Human-Computer Interaction Institute
Carnegie Mellon University Carnegie Mellon University
clh@cs.cmu.edu dps@cs.cmu.edu

412-268-6480 412-268-5228

Participation in the experiment is not only a unique learning opportunity but is also a way to contribute to the
progress of your field of study. In addition, applying the new technique may actually be fun!

We hope that you will volunteer!
Carol L. Hoover and Professor Daniel P. Siewiorek

1Some experiments will involve software design tasks and others programming tasks. The Call for Participa-
tion form will state the type of task to be done for the experiment.

2The principal investigators will determine an appropriate payment and will replace the italicized text with
the type of payment.

211

212

Appendix F Consent to Participatein a Research Study

Department of Electrical and Computer Engineering
Carnegie Mdlon University

Title of Study: Analysis of an Experimental Approach for the Design of High-Assurance Software

The purpose of thisresearch is to study the affects of using experimental methods for designing software on
the resulting software artifacts (software designs and code).

| agree to participate in the above named research study. Carol L. Hoover will explain to me the procedures
of the related experiment.

For my participation in the experiment, the investigators will give me (payment type and amount still being
considered by the principal investigator') as well as the opportunity to learn anew way to design software. |
understand that the experiment poses minimal risk. | am aware that as a participant in this study | will com-
plete a software design (or programmi ngz) task and that the time to perform the task will be similar to that
needed for aclass assignment. | realize that my participation is voluntary and that | may end my participation
at any time without penalty. | am aware that only the experimenter and my course instructor will have access
to information that | provide for the experiment. | understand that my course instructor will not use the ex-
perimental resultsto evaluate my performancein the course. Theinvestigatorswill not use my name or reveal
my identity in any description or publication of the research.

At the end of the experiment, | will be ableto obtain afull description of the study, including a discussion of
its scientific purpose and results. | can address any future questions that | may have about this research to:

Carol L. Hoover Professor Daniel P. Siewiorek, Director
Dept. of Electrical & Computer Engineering Human-Computer Interaction Institute
Carnegie Mellon University Carnegie Mdlon University
clh@cs.cmu.edu dps@cs.cmu.edu

412-268-6480 412-268-5228

| can direct any questions that | may have about my rights as a research participant to:

Susan Burkett

Associate Provost

Warner Hall 402

Carnegie Mellon University
412-268-8746

By signing thisform, | agreeto participate in thisstudy. | acknowledge that a copy of thisform hasbeen given
to me.

Printed Name

Signature Date

The principal investigators will determine an appropriate payment and will replace the italicized text with
the type of payment.

2Some experiments will involve software design tasks and others programming tasks. The consent form will
state the type of task to be done for the experiment.

213

214

Appendix G Receipt of Compensation Form

Carnegie Mdlon University
Receipt of Compensation for Participation in Experiment

Analysis of an Experimental Approach for the Design of High-Assurance Software

CMU Protocol Number: HS99-119

| verify that | received cashin theamount of $ in payment for my participationin theabove
named experiment.

Participant's Name (Please print.) Participant’s Signature

Social Security Number Date

215

216

Appendix H Benchmark Design for the Microwave Oven Software
The benchmark design consists of the following parts.

* Conventions for defining the elements of the design.
» Definition of the design elements with reference to the corresponding functional requirements.

Conventionsfor Defining Design Elements:

To show how the research approach applies to different design styles, the author defines each design ele-
ment with respect to object-oriented and structured designs, two popular design approaches. To eliminate
confusion, the names of structured design elements appear in parentheses. The author defines the names of
the design elements according to the following convention. The reader may prefer another convention.

» Class, file, or directory names consist of one or more English words whose first letters are
capitalized. Underscores connect the words (e.g. Power_Source).

« Method or routine names consist of lowercase English words connected by underscores. A set of
parentheses follow each method or routine name. The parentheses may enclose interface
parameters (e.g. initiate_power_source_status(powerSource)).

The exception are the names of predefined methods or routineswhich consist of English wordsthat contain capital
letters (e.g. PUT_DISPLAY () and CALL_HARDWARE()).

» Parameter names consist of lowercase English words whose first letters are capitalized, except for
the first word. Each name appears as a string of concatenated words (e.g. powerSource).

* The names of data types should conform to the following rules.

« Constants or predefined types contain English words that are capitalized and connected by
underscores.

» User-defined types consist of lowercase English words whose first letters are capitalized. Each
name appears as a string of concatenated words (e.g. StatusCode).

» Naming variables follows the convention for parameters.
Definition of the Design Elements:
The design elements (components) which handl®tiee Electronics software follow.

» Power_Source class
» Power_Sensor class
» Door_Sensor class

* Timer Class

class (file) Power _Source::/* Change signature for componeRSRC (RCG1). */
SYSTEM sysObj; * instance of SYSTEM class */

method (routine): StatusCode initiate_power_source_status(powerSource){
return sysObj.CALL_HARDWARE (powerSource,“initiate status”);
} /* Return FAIL or FUNCTIONING. */

method (routine): StatusCode read_power_source_status(powerSource){

217

return sysObj.CALL_HARDWARE(powerSource,“read status”);
} /* Return FAIL or FUNCTIONING. */

method (routine): StatusCode increase_power(powerSource){
return sysObj.CALL_HARDWARE (powerSource,“increase power”);
} /* Return FAIL or FUNCTIONING. */

method (routine): StatusCode decrease_power(powerSource){
return sysObj.CALL_HARDWARE (powerSource,“decrease power”);
} /* Return FAIL or FUNCTIONING. */

method (routine):StatusCode shut_off_power_source(powerSource){
return sysObj.CALL_HARDWARE (powerSource,“shut off power”);
} /* Return FAIL or FUNCTIONING. */
endclass Power_Source

class (file) Power_Sensor:: /* Change signature for componeRSNSR (RCG1). */
SYSTEM sysObj; * instance of SYSTEM class */

method (routine): StatusCode initiate_power_sensor_read(powerSensor){
return sysObj.CALL_HARDWARE (powerSensor,“initiate read”);
} /* Return FAIL or FUNCTIONING. */

method (routine): StatusCode read_power_sensor_level(powerSensor,powerLevel){
return sysObj.CALL_HARDWARE (powerSensor,
“read level”,powerLevel);
} /* Return FAIL or FUNCTIONING and power level. */

method (routine): StatusCode read_power_sensor_status(powerSensor){
return sysObj.CALL_HARDWARE (powerSensor,“read status”);
} /* Return FAIL or FUNCTIONING. */
endclass Power_Sensor

class (file) Door_Sensor:: /* Change signature for componeBtSNSR (RCG1). */
SYSTEM sysObj; * instance of SYSTEM class */

method (routine): StatusCode initiate_door_status(doorSensor){
return sysObj.CALL_HARDWARE(doorSensor,"initiate status”);
} /* Return FAIL or FUNCTIONING. */

method (routine): StatusCode read_door_status(doorSensor){
return sysObj.CALL_HARDWARE (doorSensor,“read door status”);
} /* Return OPEN, CLOSED, or FAIL. */

method (routine): StatusCode read_door_sensor_status(doorSensor){
return sysObj.CALL_HARDWARE(doorSensor,
“read door sensor status”);
} /* Return FAIL or FUNCTIONING. */
endclass Door_Sensor

class (file) Timer::/* Change signature for componemt:M ER (RCG1). */
SYSTEM sysObj; [* instance of SYSTEM class */

method (routine): Integer convert_to_ticks(numberOfMinutes,numberOfSeconds){

218

return numberOfMinutes* 60 + numberOf Seconds;
} /* Return number of ticks. */

method (routine):set_timer(numberOfTicks){
return sysObj.CALL_HARDWARE((timer,“set”,numberOfTicks);
} /*Return FAIL or FUNCTIONING. */

method (routine): StatusCode check_timer_status(){
return sysObj.CALL_HARDWARE(timer,“check status”);
} /* Return EXPIRED, FAIL, or FUNCTIONING. */
endclass Timer

The design elements (components) which handl€tmérol Electronics software follow.

Increase_Decrease_Power class
Stop_All_Power_Sources class
Initiate_Status_All_Power_Sources class
Hardware_Configuration class
Control_Electronics class

class (file) Increase Decrease Power:: /* Change signature for compone@PSRC.*/
method (routine):StatusCode increase_all_power_sources(powerSources,powerSourceObj,
errorCode){
StatusCode statusCode = FUNCTIONING;
Integer countl =1, count2 = 1;
errorCode = BLANK;
while (statusCode is FUNCTIONING) and (countl <= NUMBER_POWER_SOURCES) do{
while (statusCode is FUNCTIONING) and (count2 <= NUMBER_OF_NOTCHES) do{
statusCode = powerSourceObj.increase_power(powerSources[countl]);
if statusCode is not FUNCTIONING then{
errorCode = INCREASE_POWER_SOURCE_FAILURE;
}

count2 = count2 + 1;

}

countl = countl + 1;
}
return statusCode;
} /* Return status code of FUNCTIONING or FAIL and error code of BLANK or
INCREASE_POWER_SOURCE_FAIL. */

method (routine):StatusCode decrease_all_power_sources(powerSources,powerSourceObj,
errorCode){
StatusCode statusCode = FUNCTIONING;
Integer countl =1, count2 = 1;
errorCode = BLANK;
while (statusCode is FUNCTIONING) and (countl <= NUMBER_POWER_SOURCES) do{
while (statusCode is FUNCTIONING) and (count2 <= NUMER_OF_NOTCHES) do{
statusCode = powerSourceObj.decrease_power(powerSources[countl]);
if statusCode is not FUNCTIONING then{
errorCode = DECREASE_POWER_SOURCE_FAILURE;
}

count2 = count2 + 1;

219

countl = countl + 1;
}
return statusCode;
} /* Return status of FUNCTIONING or FAIL and error code of BLANK or
DECREASE POWER_SOURCE_FAIL. */
endclass Increase Decrease Power

class (file) Stop_All_Power_Sour ces::
method (routine): StatusCode stop_all_power_sources(power Sources,power SourceObj,

errorCode){

StatusCode statusCode = FUNCTIONING;

Integer count = 1;

errorCode = BLANK;

while (statusCode is FUNCTIONING) and (count <= NUMBER_POWER_SOURCES) dof
statusCode = powerSourceObj.shut_off_power_source(powerSources] count]);
if statusCode is not FUNCTIONING then{

errorCode = SHUT_OFF POWER_SOURCE_FAILURE;

}

count = count + 1;
}
return statusCode;
} /* Return status of FUNCTIONING or FAIL and errorCode of BLANK or
SHUT_OFF_POWER_SOURCE_FAILURE. */
endclass Stop_All_Power_Sources

class (file) Initiate_Status All_Power_Sources::
method (routine): StatusCode initiate_status all_power_sources(powerSources,powerSourceObj,
errorCode){
StatusCode statusCode = FUNCTIONING;
Integer count = 1;
errorCode = BLANK;
while (statusCode is FUNCTIONING) and (count <= NUMBER_POWER_SOURCES) dof
statusCode = powerSourceObj.initiate_power_source_status(powerSources| count]);
if statusCodeis not FUNCTIONING then{
errorCode = INITIATE_POWER_SOURCE_STATUS FAILURE;
}

count = count + 1;
}
return statusCode;
} /* Return status code of FUNCTIONING or FAIL and error code of BLANK or
INITIATE_ POWER_SOURCE_STATUS FAILURE. */
endclass Initiate_Status All_Power Sources

class (file) Hardware_Configuration:: /* Change signature for component: CHD, FDBL .*/
Power_Source powerSourceObj; /* instance of Power_Source class */
Power_Sensor powerSensorObj; /* instance of Power_Sensor class */
Door_Sensor doorSensorObj; /* instance of Door_Sensor class*/
Timer timerObyj; * instance of Timer class*/
Stop_All_Power_Sources stopObj; /* instance of Stop_All_Power_Sources class */

~

Power Sources powerSources,
Power Sensors power Sensors,
DoorSensors doorSensors;

220

method (routine): StatusCode read_all_devices_status(errorCode){
SY STEM sysObj; [* instance of SYSTEM class */
StatusCode statusCode = FUNCTIONING;
Integer count = 1;
errorCode = BLANK;
if sysObj.GET_KEYBOARD is STOP then{
statusCode = EXPIRED;

}
while (statusCode is FUNCTIONING) and (count <= NUMBER_POWER_SOURCES) dof{
statusCode = powerSourceObj.read _power_source_status(powerSources] count]);
if statusCode is not FUNCTIONING then{
errorCode = POWER_SOURCE_STATUS FAILURE;

}

count = count + 1;
}
count = 1;

while (statusCode is FUNCTIONING) and (count <= NUMBER_POWER_SENSORS) do{
statusCode = powerSensorObj.read_power_sensor_status(powerSensors| count]);
if statusCode is not FUNCTIONING then{
errorCode = POWER_SENSOR_STATUS FAILURE;

}

count = count + 1;
}
count = 1;

while (statusCode is FUNCTIONING) and (count <= NUMBER_DOOR_SENSORS) dof
statusCode = doorSensorObyj.read_door_sensor_status(doorSensors] count]);
if statusCode is not FUNCTIONING then{
errorCode = DOOR_SENSOR_STATUS FAILURE;
}else{
statusCode = doorSensorObj.read_door_status(doorSensors|count]);
if statusCode is OPEN then{
errorCode = DOOR_OPEN;
}eseif statusCode is CLOSED then{
statusCode = FUNCTIONING;
}else{
errorCode = DOOR_STATUS FAILURE;
}

}

count = count + 1;
}
if statusCode is FUNCTIONING then{
statusCode = timerObj.check_timer_status();
if statusCode is not (FUNCTIONING or EXPIRED) then{
errorCode=TIMER_STATUS FAIL;
}
}
return statusCode;

} /* endread all_devices status -- Return status code of FUNCTIONING, FAIL, EXPIRED,
OPEN and error code of BLANK, POWER_SOURCE_STATUS FAILURE,
POWER_SENSOR_STATUS FAILURE, DOOR_SENSOR_STATUS FAILURE,
DOOR_OPEN, DOOR_STATUS FAILURE, or TIMER_STATUS FAIL. */

221

method (routine): StatusCode control_flow_component_C1(errorCode){
Initiate_Status All_Power_Sources powerStatusObj;
[* instance of Initiate_Status All_Power Sources class */
StatusCode statusCode = FUNCTIONING;
errorCode = BLANK;
statusCode = doorSensorObj.initiate_door_status(doorSensor[1]);
if statusCode is not FUNCTIONING then{
errorCode = INITIATE_DOOR_STATUS FAILURE;
}else{
statusCode = powerStatusObj.initiate_status all_power_sources(powerSources,
power SourceObyj,errorCode);
if statusCode is FUNCTIONING then{
statusCode = powerSensorObj.initiate_power_sensor_read(powerSensor[1]);
if statusCodeis not FUNCTIONING then{
errorCode = INITIATE_POWER_SENSOR_READ_FAILURE;

}
}
}
return statusCode;
} /* end control_flow_component_C1: Return status code of FUNCTIONING or FAIL and
error code of BLANK, INITIATE_ DOOR_STATUS FAILURE,

INITIATE_POWER_SOURCE_STATUS_FAILURE, or
INITIATE_POWER_SENSOR_READ_FAILURE. */

method (routine): StatusCode control_flow_component_C2(errorCode){
Increase_Decrease Power control PowerObj;/* instance of Increase_Decrease Power class */
StatusCode statusCode = FUNCTIONING;
PowerL evel powerLevel;
errorCode = BLANK;
statusCode = powerSensorObj.read_power_sensor_level (powerSensor[1],powerL evel);
if statusCode is not FUNCTIONING then{
errorCode = READ_POWER_SENSOR _LEVEL_FAILURE;
}elseif powerLevel under desired level then{
statusCode = control PowerObj.increase_all_power_sources(powerSources,
power SourceObyj,errorCode);
if statusCode is FUNCTIONING then{
if powerLevel over desired level then{
statusCode = control PowerObj.decrease _all_power_sources(powerSources,
power SourceObyj,errorCode);

}
}
return statusCode;
} /* end control_flow_component_C2: Return status code of FUNCTIONING or FAIL and
error code of BLANK, READ_POWER_SENSOR_LEVEL_FAILURE,
INCREASE POWER_SOURCE_FAILURE,
DECREASE POWER _SOURCE_FAILURE. */

method (routine): StatusCode control_flow_component_C3(errorCode){
StatusCode statusCode = FUNCTIONING, statusCodel = FUNCTIONING;
ErrorCode errorCodel = BLANK;
errorCodel = BLANK;
statusCode = timerObj.check_timer_status();
if statusCode is EXPIRED then{

222

statusCode = stopObj.stop_all_power_sources(power Sources,power SourceObyj,
errorCode);
}eseif statusCode is FUNCTIONING{
statusCode = read_all_devices_status(errorCode);
if statusCode is not FUNCTIONING then{
statusCodel = stopObj.stop_all_power_sources(powerSources,powerSourceObyj,
errorCode?);
}
}else{
errorCode = CHECK_TIMER_STATUS FAILURE;
}

return statusCode;

} /* end control_flow_component_C3: Return status code of FUNCTIONING, FAIL, EXPIRED,
or OPEN and error code of SHUT_OFF_POWER_SOURCE_FAILURE,
POWER_SOURCE_STATUS FAILURE, POWER_SENSOR_STATUS FAILURE,
DOOR_SENSOR_STATUS FAILURE, DOOR_OPEN, or DOOR_STATUS FAILURE,
and CHECK_TIMER_STATUS FAILURE. */

method (routine): StatusCode heat_operation(powerL evel ,duration,errorCode){
StatusCode statusCode = FUNCTIONING, statusCodel = FUNCTIONING;
ErrorCode errorCodel = BLANK;
errorCodel = BLANK;
statusCode = timerObj.set_timer(duration);
if statusCode is not FUNCTIONING then{
errorCode= SET_TIMER_FAILURE;

}
while (statusCode is FUNCTIONING) and (errorCodeis BLANK){
statusCode = control_flow_component_C1(errorCode);
if statusCode is FUNCTIONING then{
statusCode = control_flow_component_C2(errorCode);
if statusCode is FUNCTIONING then{
statusCode = control_flow_component_C3(errorCode);

}
}
}
if statusCode is not EXPIRED or OPEN then{
statusCodel = stopObj.stop_all_power_sources(powerSources,power SourceObyj,
errorcodel);
return statusCode;

} /* end heat_operation: Return status code of EXPIRED, OPEN, or FAIL and error code
of BLANK, INITIATE_ DOOR_STATUS FAILURE,
INITIATE_POWER_SOURCE_STATUS FAILURE,
INITIATE_POWER_SENSOR_READ_FAILURE,
READ_POWER_SENSOR_LEVEL_FAILURE,
INCREASE_POWER_SOURCE_FAILURE, DECREASE POWER_SOURCE_FAILURE,
SHUT_OFF_POWER_SOURCE_FAILURE, POWER_SOURCE_STATUS FAILURE,
POWER_SENSOR_STATUS FAILURE, DOOR_SENSOR_STATUS FAILURE,
DOOR_OPEN, or DOOR_STATUS FAILURE, or
CHECK_TIMER_STATUS FAILURE. */

endclass Hardware_Configuration

223

class (file) Control_Electronics::
method (routine): StatusCode control _electronics(heatRequest,powerL evel ,duration,errorCode){

}

Hardware_Configuration hardwareObyj; /* instance of Hardware_Configuration class */
StatusCode statusCode = BLANK;
errorCode = BLANK;
if heatRequest isHEAT_OPERATION therf
statusCode = hardwareObj.heat_operation(powerL evel ,duration,errorCode);
if (statusCode is EXPIRED) and (errorCode is BLANK) then{
statusCode = HEATING_COMPLETE;
}else{
statusCode = BLANK;
errorCode = MALFUNCTION;
}
}
else if heatRequest is STOP_OPERATION then{
statusCode = hardwareObj.stopObj.stop_all_power_sources(hardwareObj.powerSources,
hardwareObj.powerSourceObj,errorCode);
if (statusCode is FUNCTIONING) and (errorCode is BLANK) then{
statusCode = HEATING_COMPLETE;
}else{
statusCode = BLANK;
errorCode = MALFUNCTION;

}
}
elsef

errorCode = INCORRECT_HEATING_TYPE;
}

return statusCode;
/* Return status code of BLANK or HEATING_COMPLETE and error code of BLANK
or MALFUNCTION. */

endclass Control _Electronics

The design elements which handle the Manage User Interface software follow.

Straight_Heat class

Defrost class

Reheat class

Manage_User_Interface Class

class (file) Straight_Heat:: /* Change signature for componehtBSQ. */
method (routine):StatusCode straight_heat(powerLevel, duration){

SYSTEM sysObj; * instance of SYSTEM class */
Timer timerObj; /* instance of Timer class */
StatusCode statusCode = OK;
KeyType key = NO_KEY_PRESSED;
Integer valuel =0, value2 =0, count = 1;
powerlLevel = 0;
duration = 0;
key = sysObj.GET_KEYBOARD();
if not (is_digit(key)) then{
statusCode = ERROR,;
telse{

224

sysObj.PUT_DISPLAY (convert_to_text(key));
powerLevel = convert_to_integer(key);
if not (MIN_POWER <= powerLevel <= MAX_POWER) then{
statusCode = ERROR;
}else{
key = sysObj.GET_KEYBOARD();
if not (key is TIMER) then{
statusCode = ERROR;
}else{
key = sysObj.GET_KEYBOARD();
while (statusCode is OK and key is not START and count <= 4) do{
if not (is_digit(key)) then{
statusCode = ERROR;
}else{
sysObj.PUT_DISPLAY (convert_to_text(key));
if count <= 2 then{
valuel = valuel* 10 + convert_to_integer(key);
}else{
value2 = value2* 10 + convert_to_integer(key);
}

key = sysObj.GET_KEYBOARD();
count = count + 1;
}
}
if not (key is START) therf
statusCode = ERROR;
}else{
if count <= 3 then{
value? = valuel,;
valuel = 0;
}
if not (MIN_SECONDS <=value2 <= MAX_SECONDS) then{
statusCode = ERROR;
}else{
duration = timerObj.convert_to_ticks(valuel,value?);
if not (MIN_TICKS <= duration <= MAX_TICKYS) then{
statusCode = ERROR;
}

}
}
return statusCode;

} /* end straight_heat: Return status of OK or ERROR, powerlLevel, and duration. */
endclass Straight_Heat

class (file) Defrost::
method (routine): StatusCode defrost(powerL evel, duration){
SYSTEM sysObyj; /* instance of SYSTEM */
StatusCode statusCode = OK;
KeyTypekey = NO_KEY_PRESSED;
Integer valuel = 0, value2 = 0, count = 1;
powerLevel =0;
duration = 0;

225

key = sysObj.GET_KEYBOARD();
while (statusCode is OK and key is not START and count <= 4) do{
if not (is_digit(key)) then{
statusCode = ERROR;
}else{
sysObj.PUT_DISPLAY (convert_to_text(key));
if count <=2 then{
valuel = valuel* 10 + convert_to_integer(key);
}else{
value2 = value2* 10 + convert_to_integer(key);
}

key = sysObj.GET_KEYBOARD();
count = count + 1;
}
}
if not (key is START) therf
statusCode = ERROR;
}else{
if count <= 3 then{
value? = valuel,;
valuel =0;
}
if not (MIN_OUNCES <= valuel <= MAX_OUNCEYS) then{
statusCode = ERROR;
}else{
/* Convert pounds to ounces. */
valuel = CONVERT_LARGER_UNITS TO SMALLER UNITS* valuel + value2;
if not (MIN_WEIGHT <= vauel <= MAX_WEIGHT) then{
statusCode = ERROR;
}else{
DEFROST (valuel,powerl evel ,duration);
}

}
}
return statusCode;
} /* end defrost: Return status of OK or ERROR, powerLevel, and duration. */
endclass Defrost

class (file) Reheat::
method (routine): StatusCode reheat(powerL evel, duration){
SY STEM sysObj; [* instance of SYSTEM class*/
StatusCode statusCode = OK;
KeyType key = NO_KEY_PRESSED;
Integer servings =0, valuel = 0, value2 = 0, count = 1;
powerLevel =0;
duration = 0
key = sysObj.GET_KEYBOARD();
while (statusCode is OK and key is not START and count <= 2) do{
if not (is_digit(key)) then{
statusCode = ERROR;
}else{
sysObj.PUT_DISPLAY (convert_to_text(key));
servings = servings* 10 + convert_to_integer(key);
key = sysObj.GET_KEYBOARD();

226

count = count + 1;
}
}
if not (key is START) therf
statusCode = ERROR;

}elseif not (MIN_SERVINGS <= servings <= MAX_SERVINGS) then{
statusCode = ERROR;

Pelse{
key = sysObj.GET_KEYBOARD();
count = 1;

while (statusCode is OK and key is not START and count <= 4) do{
if not (is_digit(key)) then{
statusCode = ERROR;
}else{
sysObj.PUT_DISPLAY (convert_to_text(key));
if count <= 2 then{
valuel = valuel* 10 + convert_to_integer(key);
}else{
value2 = value2* 10 + convert_to_integer(key);
}

key = sysObj.GET_KEYBOARD();
count = count + 1;
}
}
if not (key is START) therf
statusCode = ERROR;
}else{
if count <= 3 then{
value2 = valuel,;
valuel =0;
}
if not (MIN_OUNCES <= valuel <= MAX_OUNCES) then{
statusCode = ERROR;
}else{
/* Convert pounds to ounces. */
valuel = CONVERT_LARGER_UNITS TO SMALLER UNITS* valuel
+ valuez;
if not (MIN_WEIGHT <= valuel <= MAX_WEIGHT) then{
statusCode = ERROR;
}else{
REHEAT (servings,vauel,powerLevel ,duration);
}

}
}
return statusCode;
} /* endreheat: Return status of OK or ERROR, powerL evel, and duration. */

endclass Reheat

class (file) Manage User_Interface:: /* Change signature for component: APO. */
method (routine)::manage_user_interface(){

SY STEM sysObj; [* instance of SYSTEM class */
Control_Electronics controlObj; /* instance of Control_Electronics class */
Straight_Heat heatObyj; [* instance of Straight_Heat */

227

Defrost defrostObj; * instance of Defrost */
Reheat reheatOby; * instance of Reheat */
StatusCode statusCode = HEATING_COMPLETE;
ErrorCode errorCode = BLANK;
HeatingType heatRequest = NO_HEAT_TYPE;
KeyType key = NO_KEY_PRESSED;
M essageT ype statusMessage = NO_MESSAGE;
Integer powerLevel = 0, duration = 0;
while (statusCode = HEATING_COMPLETE and errorCode = BLANK) do{
heatRequest = HEAT;
key = sysObj.GET_KEYBOARD();
if key is POWER then{
statusCode = heatObj.straight_heat(powerL evel ,duration);
}eseif key is DEFROST then{
statusCode = defrostObj.defrost(powerLevel ,duration);
}eseif key isREHEAT then{
statusCode = reheatObyj.reheat(powerL evel ,duration);
}elseif key is STOP therf
heatRequest = STOP;
}else{
statusCode = ERROR;
}

if statusCode is not OK then{
statusM essage = ERROR_MESSAGE;
statusCode = BLANK;
}else{
statusCode = control Obj.control_electronics(heatRequest,powerL evel ,duration,
errorCode);
if (statusCodeisHEATING_COMPLETE) and (errorCode is BLANK) then{
statusM essage = DONE_MESSAGE;
}else{
statusMessage = FAIL_MESSAGE;
statusCode = BLANK;
}
}
sysObj.PUT_DISPLAY (convert_to_text(statusM essage));
}
} /* end manage_user_interface */
endclass Manage User_Interface

228

Appendix |

Data Collection Tablesfor Design Evaluation

Thisappendix contains the data collection tables for the evaluation of the designs produced by the subjects

who participated in the experiments discussed in Chapter 7. Table 1.3 and Table 1.2 indicate the types of data

that are needed to calculate values of the target change complexity measures. Table 1.3 - Table 1.4 list the

types of datarequired for the target structural complexity measures as discussed in Chapter 4 and Chapter 6.

Tablel.1 Change analysisfeatures at the routine level.

Size of Routines

Names of Routines Size of Routines Names of Routines
Change (Methods) Reused (Methods) Reused (Methods) Reused (Methods) Reused
With Modification With Modification Without Modification Without Modification
Tablel.2 Change anaysis features at the component level.
Names of Components Size of Components Names of Components Size of Components
Change (Classes) Reused (Classes) Reused (Classes) Reused (Classes) Reused
With Modification With Modification Without Modification Without Modification
Tablel.3 Structural complexity features for routines.
Number of Names of External
Name of Number of Calls to Other Components
Routine Routine (Method) | Size of Routine Routines (Classes) Providing | Number of Decision
(Method) Attributes (Method) Logic (Methods) Services Points V(G;)
@)) ®)
Tablel.4 Structural complexity features for components.
Fan-In Fan-Out V(Gj)
(number of (number of Number | (acrossall
external external of routines or
Number of components | components | External | methodsin
Component | Number of calling whose Routine the
Component (Class) Component | Component internal routines or | (Method) compo-
(Class) Level Routines (Class) Size routines or | methodsare Calls nent)
Name Attributes (Methods) | (Z(2)comp* 6) methods) called) (ZB)comp) | (Z(5)comp)
(6) ™ (8) © (10) (11) (12)

229

Tablel.5 Structural complexity features for systems.

Number of System Level Number of Components System Size System V(G)
Attributes in System (2(8))comp * 13) (2(12)comp)
(13) (14) (15) (16)

230

Appendix J Evaluation of Changeability for the Benchmark Design

This appendix contains the data collected to assess the changeability of the benchmark design. Table J.1
contains the data for evaluating changeability at the routine level, and Table J.2 contains the data for evalu-
ating changeability at the component level. For each type of change (as designated in the first column of each
table), the evaluator determined the impact on the routines and components specified in the benchmark de-
sign. Routines/components which must be modified or replaced to implement a particular change appear in
the “Reused With Modification” column of the same row. Routines/components that can reused without mod-
ification to implement a particular change appear in the “Reused Without Modification” column of the same
row. The third column contains the sum of the sizes of the routines/components reused with modification for
the related change. The fifth column contains the sum of the sizes of the routines/components reused without
modification for the related change. The reader should recall the relationship between the size of the part re-
used with modification and the size of the part reused without modification part as shown in Figure J.1. Sec-
tion 4.5 discussed the method used to size routines, components, component-level attributes, and system-level

attributes.

Size of the system = X(size(rwm;)) + Z(size(rwom;)) + nc + as.
= 2(size(cwm;)) + Z(size(cwom;)) +ns.

where each rwm; is a routine reused with modification, each rwom; is a routine reused without
modification, each cwm; is a component reused with modification, each cwom; is a component reused
without modification, nc is the number of component-level attributes, and ns is the number of system-
level attributes or logic defined/declared outside of the components.
FigureJ.1l Relationship between the sizes of the parts reused with and without modification.

TableJ.1 Evaluation of change impact on routines (methods) of the benchmark design.

Size of Routines
Size of Routines (Metho_d) Reused
Name of Routines (Methods) Without
; Names of Routines (Methods) Modification
Change (Methods) Reused Reused With . e .
. e o Reused Without Modification (Total size of 364
With Modification Modification X
(*in system.h) does not include
‘ 12 class-level
attributes.)
Microwave Oven Software minus
HBSQ straight_heat 41 {straight_heat} 323
DFORM | DEFROST size(DEFROST)* | Microwave Oven Software 364
RFORM | REHEAT size(REHEAT)* | Microwave Oven Software 364

231

Size of Routines
Size of Routines (Metho_d) Reused
Name of Routines (Methods) Without
. Names of Routines (Methods) Modification
Change (Methods) Reused Reused With . o .
. e . Reused Without Modification (Total size of 364
With Modification Modification .
(*in system.h) does not include
‘ 12 class-level
attributes.)
Microwave Oven Software minus
increase_all_power_sources, {increase_all_power_sources,
CPSRC | decrease_all_power_sources 30 decrease_all_power_sources} 334
Microwave Software minus
control_flow_component_C2, {control_flow_component_C2,
FDBL control_flow_component_C3 28 control_flow_component_C3} 336
size(DEFROST)
IMSWT | DEFROST, REHEAT + size(REHEAT)* | Microwave Oven Software 364
HLWS no change impact 0 Microwave Oven Software 364
heat_operation, Microwave Oven Software minus
control_flow_component_C1, {heat_operation,
control_flow_component_C2, read_all_devices_status,
control_flow_component_C3, control_flow_component_C1,
CHD read_all_devices_status 92 control_flow_component_C2, 272
control_flow_component_C3}
initiate_power_source_status
, read_power_source_status,
increase_power, Microwave Oven Software minus
decrease_power, {x: xis a routine (method) of the
PSRC shut_off_power_source 16 Power_Source component (class).} 348
initiate_power_sensor_read, Microwave Oven Software minus
read_power_sensor_level, {x: xis a routine (method) of the
PSNSR | read_power_sensor_status 1 Power_Sensor component (class).} 353
initiate_door_status, Microwave Oven Software minus
read_door_status, {x: xis a routine (method) of the
DSNSR | read_door_sensor_status 10 Door_Sensor component (class).} 354
Microwave Oven Software minus
convert_to_ticks, set_timer, {x: xis aroutine (method) of the Timer
TIMER check_timer_status 10 component (class).} 354
Microwave Oven Software minus
APO manage_user_interface 33 {manage_user_interface} 331
replacement of Microwave Oven Software minus
EDA heat_operation 19 {heat_operation} 345

232

TableJ.2 Evauation of change impact on components (classes) of the benchmark design.

Size of
Size of Components
Components (Classes) Reused
Names of Components .
(Classes) Names of Components (Classes) Without
Change (Classes) Reused . e e
With Modification Reused Reused Without Modification Modification
With (Total size of 376
Modification includes 12 class-
level attributes.)
Microwave Oven Software minus
HBSQ Straight_Heat 41 {Straight_Heat component} 335
DFORM | SYSTEM size(SYSTEM) Microwave Oven Software 376
RFORM | SYSTEM size(SYSTEM) Microwave Oven Software 376
Microwave Oven Software minus
CPSRC Increase_Decrease_Power 30 {Increase_Decrease_Power} 346
Microwave Oven Software minus
FDBL Hardware_Configuration 100 {Hardware_Configuration} 276
IMSWT SYSTEM size(SYSTEM) | Microwave Oven Software 376
HLWS no change impact 0 Microwave Oven Software 376
Microwave Oven Software minus
CHD Hardware_Configuration 100 {Hardware_Configuration} 276
Microwave Oven Software minus
PSRC Power_Source 16 {Power_Source} 360
Microwave Oven Software minus
PSNSR Power_Sensor 11 {Power_Sensor} 365
Microwave Oven Software minus
DSNSR Door_Sensor 10 {Door_Sensor} 366
Microwave Oven Software minus
TIMER Timer 10 {Timer} 366
Microwave Oven Software minus
APO Manage_User_Interface 33 {Manage_User_Interface} 343
replacement of
EDA heat_operation in Microwave Oven Software minus
Hardware_Configuration 100 {Hardware_Configuration} 276

233

234

Appendix K Evaluation of Structural Complexity for the Benchmark Design

This appendix contains the data collected to assess the structural complexity of the benchmark design. Ta-
bleK.1, Table K.2, and Table K.3 contain the structural complexity features at the routine, component, and
system levels, respectively. For the meaning of the table columns labeled 1-16, see Appendix I.

TableK.1 Evaluation of structural complexity features at the routine level.

Component (Class) Name Routine (Method) Name 2 4 5
Power_Source initiate_power_source_status 3 SYSTEM 0
read_power_source_status 3 SYSTEM 0
increase_power 3 SYSTEM 0
decrease_power 3 SYSTEM 0
shut_off_power_source 3 SYSTEM 0
Power_Sensor initiate_power_sensor_read 3 SYSTEM 0
read_power_sensor_level 4 SYSTEM 0
read_power_sensor_status 3 SYSTEM 0
Door_Sensor initiate_door_status 3 SYSTEM 0
read_door_status 3 SYSTEM 0
read_door_sensor_status 3 SYSTEM 0
Timer convert_to_ticks 4 none 0
set_timer 3 SYSTEM 0
check_timer_status 2 SYSTEM 0
Increase_Decrease_Power increase_all_power_sources 15 Power_Source 3
decrease_all_power_sources 15 Power_Source 3
Stop_All_Power_Sources stop_all_power_sources 12 Power_Source 2
Initiate_Status_All_Power_So
urces initiate_status_all_power_sources 12 Power_Source 2
Power_Source,
Power_Sensor,
Door_Sensor, Timer,
Hardware_Configuration read_all_devices_status 34 SYSTEM 11
Door_Sensor,
Initiate_Status_All_Power_
control_flow_component_C1 13 Sources, Power_Sensor 3
Increase_Decrease_Power,
control_flow_component_C2 14 Power_Sensor 4

235

Component (Class) Name Routine (Method) Name 1 2 3 4 5
Timer,
control_flow_component_C3 4 14 3 | Stop_All_Power_Sources 3
Timer,
heat_operation 6 19 2 | Stop_All_Power_Sources 5
Hardware_Configuration,
Control_Electronics control_electronics 6 21 2 Stop_All_Power_Sources 4
Straight_Heat straight_heat 8 41 7 | SYSTEM, TIMER 10
Defrost defrost 8 32 4 | SYSTEM 7
Reheat reheat 9 46 7 | SYSTEM 1
SYSTEM, Straight_Heat,
Defrost, Reheat,
Manage_User_Interface manage_user_interface 12 | 33 6 | Control_Electronics 7
TableK.2 Evaluation of structural complexity features at the component level.
Component (Class) Name 6 7 8 9 10 11 12
(Z(2)comp * 6) (ZB)comp) | (Z()comp)
Power_Source 1 5 16 5 1 5 0
Power_Sensor 1 3 1 3 1 3 0
Door_Sensor 1 3 10 2 1 3 0
Timer 1 3 10 3 1 2 0
Increase_Decrease_Power 0 2 30 1 1 2 6
Stop_All_Power_Sources 0 1 12 2 1 1 2
Initiate_Status_All_Power_Sources 0 1 12 1 1 1 2
Hardware_Configuration 8 5 102 1 8 17 26
Control_Electronics 0 1 21 1 2 2 4
Straight_Heat 0 1 41 1 2 7 10
Defrost 0 1 32 1 1 4 7
Reheat 0 1 46 1 1 7 11
Manage_User_Interface 0 1 33 0 5 6 7

TableK.3 Evaluation of structural complexity features at the system level.

Number of System Level Number of Components System Size System V(G)
Attributes in System (2(8))comp * 13) (2(12)comp)

(13) (14) (15) (16)

0 13 376 75

236

Appendix L Redesign Softwar e Practice Exercise: Project Assignment 3

Resour ces:

» Documents describing Coda Client
* Coda lectures
» Design lectures

Task Objectives:

* Redesign the RVM facility of the Coda Client.
» Describe the rationale (reasons) for the new design.

Terminology:

The requirements document for the Coda Client contains a list of terms for understanding the functions of the
software.

Deliverables:

To receive full credit for this assignment, you should staple all pages together and include a title page with
the assignment name (Project Assignment 3), the course name, the due date, your name, and your e-mail ad-
dress. Also put a legible version of your name and e-mail address on each page in the packet.

If you are participating in the project experiment, please make a copy of your deliverables (entire packet) and
submit both the original and the copy by the due date. The experimenter will receive the copy of your assign-
ments.

1. Redesign of the RVM facility. See the task descriptions in the Task Section.

» Deliverable 1: Description of the new design for the RVM structures.
» Deliverable 2: Description of the rationale for your new design.

2. Submit the deliverables produckefore and after the review.Please mark the corrections that you
made on the pre-review version. Label the deliverables as pre-review or post-review. It is important
that the graders and experimenters be able to distinguish the before and after deliverables.

3. Complete thelata log form as you accomplish each task and include the form at the end of your deliver-
ables packet.

Introduction:

In Project Assignment 2, you analyzed the classes and functions that handle the Recoverable Virtual Memory
or RVM features of the Venus Cache Manager (Section 3.2 in the requirements specification). You should
now have a better understanding of the RVM organization. From here on the term Venus refers to the Venus
Cache Manager of the Coda client.

The maximum Venus cache size is limited by the amount of used RVM. Current RVM usage is approximately
10% of the size of the cache. Venus maps RVM into the virtual address space of the Coda client, which is on
Linux 2.2 kernels limited to 2GB. The client’s virtual address space also includes reserved areas for program
code, data, heap, shared libraries, memory-mapped files, and stack-space. As a result, the virtual address
space can fit at most 1 GB of RVM data and less on most platforms.

237

One of the current problemsis scalability: Coda cannot handle big client caches due to the current RVM de-
sign. Though stored in RV M, transient data does not need to be stored persistently. Transient dataisreinitial-
ized whenever Venusis started. Asyou can observe in the FSO structure (object), about 50% of the structure
contain transient data. Taking the transient data out of the RVM may help to reduce the RVM overhead.

In this assignment, you will suggest ways to redesign the RVM facility to improve its run-time performance
and scalability to larger Venus Client caches.

Tasks:

1. Redesign of the RVM fecility.

Consider the guidelines and techniques presented during the design lecture(s) that you attended to
help you redesign the RVM facility.

Reorganize the FSO structures (classes, functions, data definitions, etc.) to improve the RVM
performance (reduce memory usage and CPU overhead for RVM transactions). You may want to
define new classes or data structures and definitions. You may also want to recommend a different
partition of the definitions and declarations across files.

The FSO class definitions occur in Coda_Client/venus/fso.h. The definition of FSO isin the .cc
files whose names start with fso. Transient data is marked with the comment /*T*/. The RVvM
library function prototypes and data definitions are located in Coda_Client/coda-include/rvm.h.
See also rvm_segment.h, rym_statistics.h, and rvmlib.h in the same directory.

Use diagram(s) and text to describe your new design for the FSO structures. (Deliver able 1)
2. Explanation of rationae for redesign.

Describe your rationale or reasons for your new design. (Deliver able 2)
3. Review of deliverables

Review your deliverables carefully and make any necessary corrections. Please mark your
corrections on the pre-review versions. Label the pre-review and post-review versions of your
deliverables and submit both of them. You will not be penalized for corrections made to your pre-
review design and rationale descriptions.

238

Appendix M Additional Information for Groups2 & 3: Project Assignment 3

In Lecture 2, we discussed designing for reuse, change, and flexible performance. All of these features are

important for the design of reliable distributed systems that can be evolved to satisfy future as well as current

needs. The rationale is to “think ahead of time” during the design phase about how the parts of the solution
could be reused across the design as well as across other solutions that are similar though not identical. The
designer will also identify those parts of the solution that can or should have flexible performance. The key
is to localize (isolate in components) those parts of the solution that are reusable, change together, or should
have variant implementations with different levels of performance.

You have already been told about a change that we want to make to COD£oriowrove scalability by
reducing the size of the data structure stored in RVM. Only persistent data from the fso object should go to
RVM.

To reduce the effort involved in changing the system in the fuiweaevant you to consider during your re-
design that the following changes may need to be made later:

« Type and amount of the persistent data may change,

* Type and amount of the transient data may change,

» Operations on the persistent data may become different from the operations on the transient data,

» Activation of the operations on the persistent data may occur in a different order than for the
transient data.

239

240

Appendix N Redesign of Coda Client Features: Project Assignment 4

Resour ces:

* Documents describing Coda Client (Seé&p:/www.coda.cs.cmu.edu/doas well as the
requirements specification.)

* Coda lectures
» Design lectures

Task Objectives:

» Redesign the Kernel-Venus interface of the Coda Client.

» Describe the rationale (reasons) for your new design.

Terminology:

The requirements document for the Coda Client contains a list of terms for understanding the functions of the
software.

Deliverables:

To receive full credit for this assignment, you should staple all pages together and include a title page with
the assignment name (Project Assignment 4), the course name, the due date, your name, and your e-mail ad-
dress. Also put a legible version of your name and e-mail address on each page in the packet.

If you are participating in the project experiment, please make a copy of your deliverables (entire packet) and
submit both the original and the copy by the due date. The experimenter will receive the copy of your assign-
ments.

1. Redesign of the Kernel-Venus Interface. See the task descriptions in the Task Section.

» Deliverable 1: Description of your new design for the Kernel-Venus interface.
» Deliverable 2: Description of the rationale for your new design.

2. Submit the deliverables produced before and after the review. Please mark the corrections that you made
on the pre-review version. Label the deliverables as pre-review or post-review. It is important that the
graders and experimenters be able to distinguish the before and after deliverables.

3. Complete thelata log form as you accomplish each task and include the form at the end of your deliver-
ables packet.

Introduction:

In your analysis of the Coda Client, you should recall that there are three types of file system objects (files,
directories, and symbolic links). A 96-bit file identifier (FID) identifies file system objects (FSOs).

The Coda Kernel (Kernel) uses the FIDs to request access to specific FSOs from the Venus Cache Manager
(Venus). Venus provides the Kernel with access to a specific FSO by sending the device and inode numbers
of the container file in which the FSO is stored on local disk.

Internally, the Kernel code hashes the 96-bit FIDs to 32-bit inode numbers. The problem is that different
FSOs can become associated with the same inode number. On a Linux platfanogétasl lision will make

241

one of the colliding FSOs completely inaccessible. The Kernel code is also more complex than necessary to
support FIDs that change during reintegration. For example, the inode number of a mount-point is the inode
of the volume mount-point instead of the hashed FID of the volume’s root directory.

To simplify maintenance of the Kernel code in the future, we would like to “clean-up” the Kernel-Venus in-
terface. Venus should assign a unique inode number to every FSO so that the Kernel-Venus interface does
not require the use of the FID. Venus should keep track of the inode number assigned to each FID associated
with an FSO in the file cache. The Kernel will then refer to FSOs via the Venus-generated inode numbers,
while Venus will map the inode numbers of the incoming Kernel requests to the corresponding FIDs.

Tasks:

1. Redesign of the Kernel-Venus interface

Consider the guidelines and techniques presented during the design lecture(s) that you attended to
help you redesign the Kernel-Venus interfadl verable 1)

Use diagram(s) and English text to describe your new design for the Kernel-Venus upcalls and
downcalls as well as the related Kernel and Venus logic. In this assignment, we expect the upcall
and downcall definitions to change because the Kernel and Venus will identify file system objects
with unique Venus-generated inode numbers rather than 96-bit FIDs.

To understand how the Kernel-Venus upcall and downcall interface currently works, you will need
to study the following data structures as well as others.

e vproc — basic thread class that processes the Venus File System (VFS) requests. These include
the Kernel-Venus upcalls and downcalls. The vproc class definition appears in vproc.h.
Definitions of the VFS operations are in vproc_vfscalls.cc. You may want to examine the
venus_cnode structure defined in vproc.h that is used to package information to be passed back
to the Kernel from Venus.

» worker — derived thread class that inherits the vproc class. Worker objects receive the Kernel
requests to Venus by waiting for and receiving messages from a message queue. The worker
class definition occurs in worker.h, and the definitions of the worker operations are in
worker.cc. In particular, notice the “main” function that contains a large switch statement to
selectively handle the different types of Kernel to Venus requests.

» Msgent — message class for creating messages between the Kernel and Venus. The file worker.h
contains the definition for this class.

» Venus process that opens the connection with the Kernel device via a call to the
Workerlnit() function. The Venus process also sends messages from the Kernel to be
processed by a “worker” thread to the “worker multiplexor” via a call to WorkerMux().
The logic for this process appears in the main function in the file venus.cc.

Redesigning the Kernel-Venus interface may involve any combination of the following design
actions. Apply any or all of these actions to “clean-up” the Kernel-Venus interface as described in
the Introduction. You need not apply all of these actions.

* Reorganize existing data and operations (logic) differently in existing or new files, classes, and
methods.

» Add new data or operations into existing or new files, classes, or methods.

» Modify existing method or function interfaces. For example, add/delete parameters, change the
types of the parameters, or change the type of the method or function.

* Modify the logic of a method or function whose prototype has changed. For example, change
the logic within a method or function whose parameters have changed.

» Modify the logic of a method or function that calls a method or function whose prototype has
changed. For example, change the logic of a method that calls a method whose parameter list
has changed.

242

» Reorder logic within existing methods or functions. For example, reorder calls to other methods
or functions.

+ Create new directories.
» Organize existing and new files differently within the directories.

The specification of your new design should include the following types of information.

» Description of the directories and files that would contain the implementation of your design

» (Describe the parts of the design to be contained in each header file or other source code file.
Describe the files to be included in each directory.)

» Data type declarations
» Definition of classes and methods

Pseudo-code descriptions of the logic to be performed by each method or function

Carefully describe your design with English prose in addition to diagrams. For instance, if you use
diagrams to illustrate the classes in your design, discuss the purpose of the classes as well as the
type and purpose of each data and method encapsulated in the classes.

Please remember that the specification of your design should be complete and well organized so
that someone else could use your specification to help them code a new and correct
implementation for the Kernel-Venus Interface and related logic in the Coda Client.

2. Explanation of rationale for redesign

Discuss your rationale or reasons for your new design. For example, you might explain how and
why you used the redesign activities listed above. Likewise, you should try to apply the concepts
presented in the design lectures. In this section of your assignment, you should discuss how you
applied these concepts in the derivation of your deslpdier able 2)

3. Review of deliverables
Review your deliverables carefully and make any necessary corrections. Ask yourself the
following questions:
a. Does the new interface consistently use unique inode numbers generated by the Venus

Cache Manager to identify file system objects?

b. Isthe Kernel consistently using the Venus-generated inode numbers in place of the hashed
versions of the FIDs?

c. Does your design explain where and how Venus generates the unique inode number for
each FSO associated with an FID?

d. Does Venus properly map the inode numbers that it generates back to the actual FIDs
when processing Kernel requests?

e. Does my design specification provide enough information so that | could implement the
new Kernel-Venus interface and related logic correctly?

Please mark your correctionson thepre-review ver sions. Label the pre-review and post-review
versions of your deliverables and submit both of them. You will not be penalized for corrections
made to your pre-review design and rationale descriptions.

Help Questions:

Some questions that you should try to answer before redesigning the Kernel-Venus interface follow.

243

. What objects stay in existence while the Kernel is active? Is there a “Kernel” object?
. What objects stay in existence while Venus is active? Is there a “Venus” object?

. What objects are involved in creating and posting a Kernel request to Venus? What methods or
functions are involved?

. What objects are involved in receiving and processing a Kernel request to Venus? What methods
or functions are involved?

. Can you trace the sequence of method or function calls (object interactions) that occur to send a
request from the Kernel to Venus and for Venus to process the request and send any necessary
information back to the Kernel?

. What object hashes the 96-bit FIDs to 32-bit inode numbers used by the Kernel? Is this done via
a function/method call or in-line logic (e.g. MACRO expansion)?

. Where in the Kernel code are the 32-bit inode numbers used? What parts (if any) of the Kernel
design would need to change if the Kernel uses a unique inode number generated by Venus to
identify FSOs?

. What parts (if any) of the Venus design would need to change if Venus generates a unique inode
number for each FSO and uses these numbers to identify FSOs in communications with the
Kernel? Where and how should Venus generate these unique numbers? How should Venus keep
track of the unique inode assigned to each FID (FSO identifier)?

244

Appendix O Additional Information for Groups2 & 3: Project Assignment 4

In assignment 4, you are redesigning the Coda Kernel-Venus interface to simplify the Kernel logic. When
redesigning Venus to hide information about FIDs from the Kernel, we also want to design it to enable evo-
lution of the Coda Client in other related areas.

A Coda Client can currently only communicate with serversin asingle administrative domain called arealm.
Wewould like to redesign the Coda client so that adding support in the future for multiple realmswould have
minimal impact. Support for realms depends at least on the Kernel not knowing about FI Ds because different
realms will use the same FIDs to represent different objects. In other words, FIDs would be unique within a
realm but not unique across reams. Therefore, to refer to a unique object, Venus would need to know the

realm in which the object resides as well as its FID. In the client, a new persistent “realm” class/structure will

most likely be associated with volumes in a particular realm.

Venus will also need to support multiple tokens for a single user, one per realm. Each token would allow a
user to access file system objects within a specific realm for a period of time. The authentication daemons in
arealm would allocate persistent unique user ids (uids) for foreign users (user outside a realm) to avoid chang-

ing the client-server protocols.

When you redesign Venus for Assignment 4, you should organize your design so that the following types of

changes could be made in the future with minimal change to Venus or to the server.

1. Allow users to access file system objects from multiple realms.
a. Associate each FSO with a realm as well as with a unique FID within a realm.
b. Maintain multiple tokens (one per realm) for a single user.

2. Change the order of the initialization activities in the main Venus process. (See main function in
venus.cc.) The original order of the operations is as shown below. A letter in the margin identifies
each primary operation. Some related operations are grouped together. For example, the letter A
represents all of the logic from the line on which the letter is positioned to the line preceding the
line on which B is located.

Some feasible variations to this order are:

a. ABCDEFGHIJILKMNOPQRSTVUXWYZAABB
b. ABCDFEGHIJKLMNOPQRSTUVXWZY AABB
c. ABCDEFGHKIJLMNOPQRSTUVWXYZAABB

int main(int argc, char **argv) {
* Print to the console -- important during reboot. */

#if | defined(__CYGWIN32__) && ! defined(DJGPP)
A. freopen("/dev/console", "w", stderr);

#endif
fprintf(stderr, "Coda Venus, version %d.%d.%d\n\r",
VenusMajorVersion, VenusMinorVersion, VenusReleaseVersion);
fflush(stderr);
coda_assert_action = CODA_ASSERT_SLEEP;
coda_assert_cleanup = VFSUnmount;
ParseCmdline(argc, argv);
DefaultCmdlineParms();/* read vstab and /etc/codal/venus.conf */

245

HOBOVOZEIr A" IOMMOO

* open the console file and print vital info */

freopen(consoleFile, "w", stderr);

fprintf(stderr, "Coda Venus, version %d.%d.%d\n",
VenusMajorVersion, VenusMinorVersion,
VenusReleaseVersion);

fflush(stderr);

CdToCacheDir();

CheckInitFile();

#if | defined(__ CYGWIN32_) && ! defined(DIGPP)
SetRlimits();
#endif

/* Initidlize. N.B. order of execution isvery important here! */
/* RecovInit < VSGInit < Vollnit < FSOInit < HDB_Init */

#ifdef DIGPP
* disable debug messages */

__digpp_set_quiet_socket(1);
#endif

/* test mismatch with kernel before doing real work */
testk ernDevice();

/*

* Vproclnit MUST precede Logl nit. Log messages are stamped
* with the id of the vproc that writes them, so |og messages

* can't be properly stamped until the vproc classisinitialized.

* The logging routines return without doing anything if Loglnit
* hasn't yet been called.

*/

Vproclnit(); * init LWP/IOMGR support */

Loglnit(); /* move old Venuslog and create a new one */
LWP_Setl og(logFile, lwp_debug);

RPC2_Setl og(logFile, RPC2_Debugl evel);

Spoolnit(); * make sure the spooling directory exists*/

Daemonlnit(); /* before any Daemons initialize and after Loglnit */

ProfInit();

Statslnit();

Siglnit(); [* set up signal handlers*/

DIR_Init(DIR_DATA_IN_RVM);

RecovInit(); * set up RVM and recov daemon */

Comminit(); * set up RPC2, { connection,server,mgroup} lists, probe daemon */
Userlnit(); [* fire up user daemon */

V SGInit(); [* first alloc of recoverable vm, init VSGDB and daemon */
Vollnit(); * init VDB, daemon */

FSOInit(); * alocate FSDB if necessary, recover FSOs, start FSO daemon */
HDB_Init(); * alocate HDB if necessary, scan entries, start the HDB daemon */
Vmonl nit(); /* set up Vmon and start Vmon daemon */

246

N<XXS<C

AA.

BB.

Marinerlnit(); /* set up mariner socket */
Workerlnit(); /* open kernel device*/

CdlIBacklnit(); /* set up callback subsystem and create callback server threads */

WritebacklInit(); /* set up writeback subsystem */

Advicelnit(); /* set up AdSrv and start the advice daemon */
LRInit(); * set up local-repair database */

/I VFSMount();

[* Get the Root Volume. */

eprint(" Getting Root Volume information...");
while (GetRootV olume()) {

ServerProbe();

struct timeval tv;

tv.tv_sec = 15;

tv.tv_usec = 0;

V procSleep(&tv);

}
VFSMount();

#ifdef DIGPP

k_Purge();

#Hendif

UnsetInitFile();
eprint("Venus starting...");

* Act as message-multiplexor/daemon-dispatcher. */

for (;;) {

I* Wait for a message or daemon expiry. */

int rdfds = (KernelMask | MarinerM ask);
if (VprocSelect(NFDS, &rdfds, O, 0, & DaemonExpiry) > 0) {

/* Handle mariner request(s). */
if (rdfds & MarinerMask) MarinerMux(rdfds);

/* Handle worker request. */
if (rdfds & KernelMask) WorkerMux(rdfds);

}

* set in sighand.cc whenever we want to perform a clean shutdown */
if (TerminateVenus) break;

* Fire daemons that are ready to run. */
DispatchDaemons();

}

LOG(O, ("Venus exiting"));

VDB->FlushV olume();

RecovFlush(1);

RecovTerminate();

VESUnmount();

(void)CheckAllocs("TERM");

247

fflush(logFile);
fflush(stderr);
LWP_TerminateProcessSupport();
exit(0):}

[* end main */

Please Note:

Y ou do not need to incorporate these changes into the current design. Rather, you should design Venus so
that the changes could easily be madein the future. For example, you do not need to create anew realm class.
Rather, you should organize the existing class structures so that the addition of realms could be made more
easily in the future. The next section discusses some of the related data structures.

Relevant Data Structures:

In addition to the data structures discussed in the Project Assignment 4 handout, you may find it helpful to
study the following data structures.

e userent — class that represents a user logged onto a machine running a Coda Client. The definition
of the user class is in user.h. The definition of the user class methods are in user.cc.

» UserDaemon — a process that continually checks the time remaining for each user’s authentication.
The UserDaemon() function executes within a lightweight process initiated by USERD_Init().
The definition of both are in user.cc.

» SecretToken, ClearToken — structures that contain information regarding the authentication of
users by servers. The definitions of these structures and related prototypes for authentication
appear in auth2.h. Other server related prototypes appear in admon.h and adsrv.h.

» adviceconn — class that represents a Venus Advice Monitor. The adviceconn class definition is in
adviceconn.h. The definition of the adviceconn methods TokensAcquired() and TokensExpired()
are in advice.cc.

Help Questions:

Here are some questions that you should answer before redesigning Venus to make the changes listed above
easier to implement in the future.

1. Which Venus data structures (e.g. classes or structures) contain information about an FSQO'’s FID?

2. Where might the Venus keep information about an FSO’s realm? Can this be done to minimize the
impact on the existing Venus? Should some part of Venus be restructured to make the addition of
realms with respect to the identification of FSOs easier?

3. Which Venus data structures (e.g. classes or structures) contain information about server
authentication and tokens?

4. Where might Venus keep information about a user’s token for each realm in which files are to be
accessed? Can this be done to minimize the impact the existing Venus? Should some part of Venus
be restructured to make the addition of realms with respect to user authentication easier?

5. How might the main Venus process be redesigned to simplify reordering the operations that it
performs in the future?

248

Appendix P Design Evaluation Practice Exercise: Project Assgnment 5

Resour ces:

* Calculator

» Coda lectures

» Design lectures

» Documents describing Coda Client
* Assignment 3 deliverables

Task Objectives:

» Evaluate new Coda Client RVM Facility for performance improvements.
» Evaluate new Coda Client RVM Facility for ease of adding features.

Terminology:

The requirements document for the Coda Client contains a list of terms for understanding the functions of the
software. From here on, Venus and RVM refer to the Venus Cache Manager and the Recoverable Virtual
Memory facility of the Coda Client, respectively. The term FSO refers to file system object.

Deliverables:

To receive full credit for this assignment, you should staple all pages together and include a title page with
the assignment name (Project Assignment 5), the course name, the due date, your name, and your e-mail ad-
dress. Also put a legible version of your name and e-mail address on each page in the packet.

If you are participating in the project experiment, please make a copy of your deliverables (entire packet) and
submit both the original and the copy by the due date. The experimenter will receive the copy of your assign-
ments.

1. Redesign of the RVM facility. See the task descriptions in the Task Section.

» Deliverable 1: Evaluation of new Coda Client RVM Facility for performance improvements.
« Deliverable 2: Evaluation of new Coda Client RVM Facility for ease of adding features.

2. Submit the deliverables producbefore and after the review.Please mark the corrections that you
made on the pre-review version. Label the deliverables as pre-review or post-review. It is important
that the graders and experimenters be able to distinguish the before and after deliverables.

3. Complete thelata log form as you accomplish each task and include the form at the end of your deliver-
ables packet.

Introduction:

In Assignment 3, you learned that the maximum Venus cache size is limited by the amount of virtual memory
used for RVM and that the Coda Client is, therefore, not scalable to large Venus client caches. Your task for
this assignment was to suggest ways to redesign the RVM facility to improve its run-time performance and
scalability to larger client caches.

249

In thisassignment, you will eval uate the capability of your new design to satisfy the objectives of Assignment
3. In other words, you will determine how your new design would improve the Coda Client performance. Y ou
will also evaluate the impact of changing your new design to handl e other featuresthat the Codaresearch team
may want to make in the future.

A software design team can use this type of analysisto determineif the proposed design satisfies the desired
performance objectives. Likewise, impact evaluation is useful when planning the effort (time and skills)
needed to modify a current software product to satisfy new product needs. The basic idea is to identify the
features of the current product that would need to change and to estimate the effort needed to correctly change
each feature.

Tasks:

Analyze the original Coda client design as well as your new design to perform the following evaluations.
A. Evaluation of your new design of the Coda Client RVM for performance improvements.

Assume a Linux System 2.2 Kernel and a compatible C++ compiler to determine the size of basic data
types such as integers. For example, an integer (int) is 32 bits. Answer the following questions about the
current design aswell as your new design of the Coda Client RVM. Please show your calculations. (De-
liverable 1)

Spatial Analysis of Performance
First, analyze the savingsin RVM that should result from your new design of the RVM facility.
1. How many bytes db, of memory for persistent and transient data arein the original fsdb data struc-

ture? Be careful to count the size of each field of a struct.

2. How many bytes db,, of memory are in your new data structure(s) for storing the persistent data
from the old fsdb? Be careful to count the size of each field of a struct.

3. What isthe percent reduction in RVM needed for the database metadata?
[percent reduction = ((1 - db,/db,) * 100)]

4. How many bytes m, of memory for persistent and transient data are in the original fsobj data
structure? Be careful to count the size of each field of a struct.

5. How many bytes m,, of memory are in your new data structure(s) for storing the persistent data
from the old fsobj? Be careful to count the size of each field of a struct.

6. What is the percent reduction in RVM needed for an FSO’s metadata?
[percent reduction = ((1m,/m) * 100)]

7. Assume a limit of 1 GB of virtual memory for RVM adb, andm, to be the size of the original
fsdb andfsobj data structures, respectively. What is the maximum nufgloé=SCs that may be
allocated in the current Linux 2.2 system at any one tinig2 {1GB-db,)/m,]

8. Assume a limit of 1 GB of virtual memory for RVM adtl,, andm,, to be the size of your new
data structures to store persistent data. What is the maximum nfdégfSOs that may be
allocated in a Linux 2.2 system that uses your new design for persistent memory?

[f,= (1GB-dby,)/im,]

9. What is the percent increase in the maximum number of FSOs that can be allocated in the system?

[percent increase =f({f,- 1) * 100)]

10. The size of RVM is currently about 10% of the Venus cache size. If the maximum size of RVM is

250

about 1 GB, what is the approximate size of the current Venus cache?

11. Assume that the size of the Venus cache is directly related to the maximum number of FSOs that
can be allocated in the system at any onetime. Derive a formula that shows the size of the Venus
cache with respect to the maximum number of FSOsin the system. Now, use the formula and the
results from the previous questions to approximate the maximum size of the Venus cache using
your new design for persistent data.

12. Determine the percent increase in the maximum size of the Venus cache.
Temporal Analysis of Performance

Next, analyze the savings in execution time that may result from your new design of the RVM facility.
Assume that many RVM operations (method calls) consist of the following sub-operations.

a CTM - Callto RVM method (e.g. save current register values, push parameters onto stack,
save return address, change program counter to address of new method, etc.).

b. PRE — Pre-operations for transfer of persistent data (e.g. prepare for atomic transaction).

¢c. TRANS - Transaction involving persistent data.

d. POST - Post-operations from transfer of persistent data (e.g. end atomic transaction).
Now assume that each sub-operation requires the following time to execute. Constants aretstidwn in
and variables iitalics. Use the names of the constants in your calculations.

CTM —ctm

PRE —pre

TRANS —trans * m, wheremis the length of the persistent data.

POST —post

RTC —rtc

The total time to perform an RVM operation follows.
total time =ctm + pre + trans* m + post +rtc

13. Calculate the total timig needed to transfer metadata data about an FSO. (Use the vaiye of
from question 4.)

14. Calculate the total timi, needed to transfer the persistent data about an FSO using your new
design. (Use the value of, from question 5.)

15. Now generate a mathematical expression that indicates the percent reduction in execution time
needed for RVM operations.

Hint: (See the expression used in question 6 and use the valtgaraft, as determined in
guestions 13 and 14.)

. Explanation of your new design of the Coda Client RVM for ease of adding features.
Enumerated below are changes that the Coda research team might like to make in the future. For each type

of change, perform the impact analysis steps completely and accurately. Create an impactauialysis
for each change to graphically display the results of applying the impact analysis steps.

251

The grade assigned to your answers will depend upon completeness as well as accuracy. Use your new
design as well asthe related parts of the Coda Client code for the size estimates. (Deliverable 2)

Types of changes:

1.

Add two new persistent data fieldsto the cached file-system database metadata (current fsdb struc-
ture).

Change the type of the transient data fields “readers,” “writers,
and “refent” from short to int (currently in tHsdb structure).

openers,” “Writers,” “Execers,”

Create a new class called CacheStats that encapsulates the transient data DirAttrStats,
DirDataStats, FileAttrStats, and FileDataStats. An object of type CacheStats may reside in the
object that contains the transiefstb data. This new class will contain operations such as
UpdateCacheStats() and PrintCacheStats(). The type of these operations will be chamged to
The file fso0.cc currently contains the definitions for these functions.

Move the operation ResetTransient() fromfsab class to a class that encapsulates the transient
data that was originally storedfidb. The declaration of ResetTransient() in the clsdisoccurs
in fso.h, and the definition of ResetTransient() occurs in fso0.cc.

Impact Analysis Steps:

1.

N o A

List the program elements (other than classes, methods, or funtiiangjll need to be modi-
fied to handle the change. Indicate the container file for each program element.

List the classethat will need to bemodified to handle the change. The needed modification may
involve data definitions, method definitions or declarations, or references to methods of other
classes. Indicate the container file for each class definition.

List the methods or functiortbat will need to be modified to handle the change. The needed
modification may involve local variable declarations or program logic including references to
other methods or functions. Indicate the container class if the definition occurs within the class
definition. Indicate the container file for each method or function definition or implementation.

Estimate the size of each program element listed in Step 1.
Estimate the size of each class listed in Step 2.
Estimate the size of each method or function listed in Step 3.

Determine the size of each file that contains the declaration or definition of a data structure that
must change or a reference to the data structure that must change (those files listed in Steps 1-3).
Add the sizes of each include statement, pre-compiler directive, data definition, class definition,
method definition, and function definition contained in the file.

Estimating the Size of Program Elementsand Files:

Type Size

include statement 1

pre-compiler directive 1

data definition Count each semi-colon, “;”, in the definition. (e.g. The definition for a

struct that contains 3 semi-colons would have a count of 3.

program statements Count each semi-colon, “;”, in the statements.method or function

declaration 1.
(e.g. void ResetTransient(); in the cléstb would have a count of 1.)

252

Count the local data definitions and program statements in the method
orfunction.Countl ocal datadefinitionsandprogramstatementsasdescribed
above. (e.g. A method containing local variable definitions using

2 semi-colons and programming statements using 10 semi-colonswould
have asize of 12.)

method or
function definition

Count each data definition and method declaration or definition in the
class as described above. (e.g. A class containing data definitions using
5 semi-colons and 3 method declarations would have a size of 5+3 or 8.)
(e.g. A class containing data definitions of size 3, 4 method declarations,
and 1 method definition of size 10, would have asize of 3+4+10 = 17.)
Please note that the implementations of most class methods appear in
.cc files separate from the class definitions that occur in .h files.

class definition

file Count each include statement, pre-compiler directive, data definition,
method or function definition, and each class definition that occur in the
file. Use the above guidelines for sizing each element of the file.

Example:
TableP.1 Impact analysis for change type “a.”
Container . Container . Program . Methoq or Metho_d or
File File Size Class Class Size Element Data Size Fur_lc_tl_on Fun_ctlon
Definition Size
foo.h 50 NA struct fab
foo.h 50 class foo 15
foo.h 50 class goo 20 giddle() 7
foo.cc 34 NA enum fit 1

foo.cc 34 NA fiddle() 12
foo.cc 34 NA faddle() 14
foo.cc 34 NA fuddle() 7
foo2.cc 21 NA fy() 9

File foo.h contains the definition of a struct called fab that will need to be modified to handle change type
“a.” This file also contains the definitions for classes foo and goo that must also be modified to handle the
change type “a.” The size of foo.h is greater than the sum of the sizes of fab, foo, and goo (50 > 4+15+20)
because foo.h also contains the definitions of program elements that are not involved in the change type
“a”. The definition of fab does not occur within a class definition. Therefore, no container class is appli-
cable (NA). The method giddle must change to accommodate change type “a.” The definition for giddle()
occurs within the class goo. Therefore, goo is the container class for giddle(). The size of goo includes the
size of giddle().

File foo.cc contains definitions for the enumeration fit as well as for the methods fiddle, faddle, and fuddle.
Each of these definitionsrequiresmodification to handle change type “a.” The file does not contain any
other data structure definitions or program elements. Therefore, the size of foo.cc is the sum of the sizes
of enum fit, fiddle(), faddle(), and fuddle() or 34. The definitions of fit, fiddle, faddle, and fuddle occur
outside of a class definition: there is no applicable container class for these program elements.

253

The file foo2.cc contains the definition for a function called fy that must change to handle change type “a.”
Other program elements also reside in foo2.cc.

C. Review of deliverables
Review your deliverables carefully and make any necessary corred®lease mark your corrections
on the pre-review versions. Label the pre-review and post-review versions of your deliverables and sub-

mit both of them. You will not be penalized for corrections made to your pre-review design and rationale
descriptions.

254

Appendix Q Evaluation of New Kernel-Venus Organization: Project
Assignment 6

Resour ces:

* Calculator

* Coda lectures

» Design lectures

» Documents describing Coda Client
» Assignment 4 deliverables

Task Objectives:

+ Evaluate new Kernel-Venus interface.

» Evaluate new Kernel and Venus organization for ease of change.

Terminology:

The requirements document for the Coda Client contains a list of terms for understanding the functions of the
software. From here on, Venus and Kernel refer to the Venus Cache Manager and the Coda Client Kernel,
respectively. The term FID refers to the identifier for a file system object. The term FSO refers to afile system
object.

Deliverables:

To receive full credit for this assignment, you should staple all pages together and include a title page with
the assignment name (Project Assignment 6), the course name, the due date, your name, and your e-mail ad-
dress. Also put a legible version of your name and e-mail address on each page in the packet.

If you are participating in the project experiment, please make a copy of your deliverables (entire packet) and
submit both the original and the copy by the due date. The experimenter will receive the copy of your assign-
ments.

1. Redesign of the Kernel-Venus interface. See the task descriptions in the Task Section.

» Deliverable 1: Evaluation of the new Kernel-Venus interface.
» Deliverable 2: Evaluation of the new Kernel and Venus organization for ease of change.

2. Submit the deliverables producbefore and after the review.Please mark the corrections that you
made on the pre-review version. Label the deliverables as pre-review or post-review. It is important
that the graders and experimenters be able to distinguish the before and after deliverables.

3. Complete thelata log form as you accomplish each task and include the form at the end of your deliver-
ables packet.

Introduction:

In Assignment 4, you “cleaned-up” the Kernel-Venus interface so that maintenance on the Kernel and Venus
would be simplified. In this assignment, you will evaluate the capability of your new design to satisfy the ob-
jectives of Assignment 4. You will determine how well you isolated the knowledge of the 96-bit FIDs from
the Kernel. You will also analyze the impact of changing your Assignment 4 design to handle other features,

255

such as realms and multiple user authentication tokens, that the Coda research team may want to make in the
future.

A Coda Client currently communicates with serversin a single administrative domain called arealm. In the

future, we would like to change the Coda Client to support multiple realms. Support for realms depends at

least on the Kernel not knowing about FIDs because different realms will use the same FIDs to represent dif-

ferent objects. In other words, FIDswould be unique within arealm but not unique acrossrealms. Therefore,

to refer to a unique object, Venuswould need to know the realm in which the object resides aswell asits FID.

In the client, a new persistent “realm” class/structure will most likely be associated with volumes in a partic-
ular realm.

Venus will also need to support multiple tokens for a single user, one per realm. Each token would allow a
user to access file system objects within a specific realm for a period of time. The authentication daemons in
arealm would allocate persistent unique user ids (uids) for foreign users (user outside a realm) to avoid chang-
ing the client-server protocols.

Tasks:

To accomplish the following tasks, use your design from Assignment 4 as well as the original Coda Client
code.

A. Evaluation of the new Kernel-Venus interface.

Suppose that you have been consulted to determine the effort needed to “clean-up” the Kernel-Venus in-
terface. As described in Assignment 4, we would like Venus to convert the 96-bit FID assigned to an FSO
into a unique 32-bit inode number. Venus should use these unique inode numbers to identify FSOs when
communicating with the Kernel. Answer the following questions to evaluate your redesign of the Kernel-
Venus interface from Assignment 4. The grade assigned to your answers will depend upon completeness
as well as accuracy. You will receive credit for finding ways to improve your Assignment 4 design (no
penalty for mistakes in that you find in your Assignment 4 desi@diverable 1)

1. Inthe original Coda Client, which Kernel data structures (e.g. classes or structs) contain informa-
tion about an FSO’s FID?

List these data structures along with the names of the files that contain them.

2. Does your Assignment 4 design hide the Kernel data structures listed above from the original 96-
bit FID for an FSO?

For each data structure listed in the answer to Questioriefly explain how your Assignment
4 designdoes or does not hide the data structure from the 96-bit FID. For each data structure that
still uses the 96-bit FID, explain why or explain how the design could be improved.

3. In the original Coda Client, which Venus data structures (e.g. classes or structs) contain
information about an FSO’s FID?

List these data structures along with the names of the files that contain them.

4. Does your Assignment 4 design properly handle the conversion from 96-bit FIDs to 32-bit inode
numbers to uniquely identify each FSO?

a. List the data structure(s) in your Assignment 4 design that handles the conversion from
96-bit FIDs to 32-bit unique inode numbers.

b. List the data structures in your Assignment 4 design that correspond to the data structures
listed in the answer to Question 3. Identify those that still use the 96-bit FID and explain
why. Identify those that use the new 32-bit unique inode number and explain why.

5. Now apply the impact analysis steps from Assignment 5 (listed near the end of this document) to

256

estimate the size of the changes needed to “clean-up” the original Kernel-Venus interface.
Estimate the size of the program elements, class, methods or functions, and files in the original
Coda Client that must be modified to “clean-up” the Kernel-Venus interface. One way to do this

is to use your design from Assignment 4 to identify the old program features that would need to
be modified.

B. Evaluation of the new Kernel and Venus organization for ease of change.

Enumerated below are changes that the Coda research team might like to make in the future. For each type
of change, perform the impact analysis steps completely and accurately. Create an impactauialysis

for each change to graphically display the results of applying the impact analysis steps. These steps are
the same as those that you used in Assignment 5. The types of changes are, of course, different from those
in Assignment 5. Estimate the changes needed to a Coda Client implemented according to your Assign-
ment 4 design. If your design does not include enough detail, use the related parts of the Coda Client code
to help with the size estimates. The grade assigned to your analysis will depend upon completeness as well
as accuracy Oeliverable 2)

NOTE: This is somewhat different from part 5 of Deliverable 1. In part 5, you are estimating the effort to
change the original Coda Client so that it would conform to your Assignment 4 design or to a similar de-
sign if there were flaws in your Assignment 4 design. In this part, you are estimating the effort to make
additional changes to a Coda Client already implemented according to your Assignment 4 design. The idea
is to determine how well your Assignment 4 design facilitates these new changes. There is no penalty if
your Assignment 4 design does not easily accommodate the changes.

Types of changes:

1. Allow users to access file system objects from multiple realms. Associate each FSO with a realm
as well as with a unique FID within a realm.

2. Maintain multiple tokens (one per realm) for a single user.

3. Change the order of the initialization activities in the main Venus process to the following new
order ABCDFEGHIJKLMNOPQRSTUVXWZY AA BB.

The main Venus process is in venus.cc. The code segment that follows shows the original order
(ABCDEFGHIJKLMNOPQRSTUVW XY ZAABB) of the operations in the Venus
process. A letter in the margin identifies each primary operation. Some related operations are
grouped together. For example, the letter A represents all of the logic from the line on which the
letter is positioned to the line preceding the line on which B is located.

int main(int argc, char **argv) {
* Print to the console -- important during reboot. */

#if | defined(__CYGWIN32__) && ! defined(DJGPP)
A. freopen("/dev/console", "w", stderr);

#endif
fprintf(stderr, "Coda Venus, version %d.%d.%d\n\r",
VenusMajorVersion, VenusMinorVersion, VenusReleaseVersion);
fflush(stderr);
coda_assert_action = CODA_ASSERT_SLEEP;
coda_assert_cleanup = VFSUnmount;
ParseCmdline(argc, argv);
DefaultCmdlineParms();/* read vstab and /etc/coda/venus.conf */

257

HOBOVOZEIr A" IOMMOO

* open the console file and print vital info */

freopen(consoleFile, "w", stderr);

fprintf(stderr, "Coda Venus, version %d.%d.%d\n",
VenusMajorVersion, VenusMinorVersion,
VenusReleaseVersion);

fflush(stderr);

CdToCacheDir();

CheckInitFile();

#if | defined(__ CYGWIN32_) && ! defined(DIGPP)
SetRlimits();
#endif

/* Initidlize. N.B. order of execution isvery important here! */
/* RecovInit < VSGInit < Vollnit < FSOInit < HDB_Init */

#ifdef DIGPP
* disable debug messages */

__digpp_set_quiet_socket(1);
#endif

/* test mismatch with kernel before doing real work */
testk ernDevice();

/*

* Vproclnit MUST precede Logl nit. Log messages are stamped
* with the id of the vproc that writes them, so |og messages

* can't be properly stamped until the vproc classisinitialized.

* The logging routines return without doing anything if Loglnit
* hasn't yet been called.

*/

Vproclnit(); * init LWP/IOMGR support */

Loglnit(); /* move old Venuslog and create a new one */
LWP_Setl og(logFile, lwp_debug);

RPC2_Setl og(logFile, RPC2_Debugl evel);

Spoolnit(); * make sure the spooling directory exists*/

Daemonlnit(); /* before any Daemons initialize and after Loglnit */

ProfInit();

Statslnit();

Siglnit(); [* set up signal handlers*/

DIR_Init(DIR_DATA_IN_RVM);

RecovInit(); * set up RVM and recov daemon */

Comminit(); * set up RPC2, { connection,server,mgroup} lists, probe daemon */
Userlnit(); [* fire up user daemon */

V SGInit(); [* first alloc of recoverable vm, init VSGDB and daemon */
Vollnit(); * init VDB, daemon */

FSOInit(); * alocate FSDB if necessary, recover FSOs, start FSO daemon */
HDB_Init(); * alocate HDB if necessary, scan entries, start the HDB daemon */
Vmonl nit(); /* set up Vmon and start Vmon daemon */

258

N<XXS<C

AA.

BB.

Marinerlnit(); /* set up mariner socket */
Workerlnit(); /* open kernel device*/

CdlIBacklnit(); /* set up callback subsystem and create callback server threads */

WritebacklInit(); /* set up writeback subsystem */

Advicelnit(); /* set up AdSrv and start the advice daemon */
LRInit(); * set up local-repair database */

/I VFSMount();

[* Get the Root Volume. */

eprint(" Getting Root Volume information...");
while (GetRootV olume()) {

ServerProbe();

struct timeval tv;

tv.tv_sec = 15;

tv.tv_usec = 0;

V procSleep(&tv);

}
VFSMount();

#ifdef DIGPP

k_Purge();

#Hendif

UnsetInitFile();
eprint("Venus starting...");

* Act as message-multiplexor/daemon-dispatcher. */

for (;;) {

I* Wait for a message or daemon expiry. */

int rdfds = (KernelMask | MarinerM ask);
if (VprocSelect(NFDS, &rdfds, O, 0, & DaemonExpiry) > 0) {

/* Handle mariner request(s). */
if (rdfds & MarinerMask) MarinerMux(rdfds);

/* Handle worker request. */
if (rdfds & KernelMask) WorkerMux(rdfds);

}

* set in sighand.cc whenever we want to perform a clean shutdown */
if (TerminateVenus) break;

* Fire daemons that are ready to run. */
DispatchDaemons();

}

LOG(O, ("Venus exiting"));

VDB->FlushV olume();

RecovFlush(1);

RecovTerminate();

VESUnmount();

(void)CheckAllocs("TERM");

259

fflush(logFile);
fflush(stderr);
LWP_TerminateProcessSupport();
exit(0):}

I* end main */

Impact Analysis Steps:

1.

N oo o A

List the program elements (other than classes, methods, or functions) that will need to be modi-
fied to handle the change. Indicate the container file for each program el ement.

List theclassesthat will need to be modified to handle the change. The needed modification may
involve data definitions, method definitions or declarations, or references to methods of other
classes. Indicate the container file for each class definition.

List the methods or functions that will need to be modified to handle the change. The needed
modification may involve local variable declarations or program logic including references to
other methods or functions. Indicate the container class if the definition occurs within the class
definition. Indicate the container file for each method or function definition or implementation.

Estimate the size of each program element listed in Step 1.
Estimate the size of each classlisted in Step 2.
Estimate the size of each method or function listed in Step 3.

Estimate the size of each file that contai ns the declaration or definition of adata structure that must
change or areference to the data structure that must change (those files listed in Steps 1-3). Add
the sizes of each include statement, pre-compiler directive, data definition, class definition,
method definition, and function definition contained in the file.

Estimating the Size of Program Elementsand Files

Type Size

include statement 1

pre-compiler directive 1

data definition Count each semi-colon, “;", in the definition. (e.g. The definition

for a struct that contains 3 semi-colons would have a count of 3.)

program statements Count each semi-colon, “;”, in the statements.

method or function declaration 1

method or function definition

class definition

(e.g. void ResetTransient(); in the cléstb would have a count of 1.)

would have a size of 12.)

class as described above.

(e.g. A class containing data definitions using 5 semi-colons and 3

method declarations would have a size of 5+3 or 8.)

(e.g. A class containing data definitions of size 3, 4 method declarations,
and 1 method definition of size 10, would have a size of 3+4+10 = 17.)

260

Count the local data definitions and program statements in the method
or function. Count local data definitions and program statements as
described above. (e.g. A method containing local variable definitions
using 2 semi-colons and programming statements using 10 semi-colons

Count each data definition and method declaration or definition in the

Please note that the implementations of most class methods appear in
.cc files separate from the class definitions that occur in .h files.

file Count each include statement, pre-compiler directive, data definition,
method or function definition, and each class definition that occur in the
file. Use the above guidelines for sizing each element of the file.

C. Review of deliverables

Review your deliverables carefully and make any necessary corrections. Please mark your corrections
on thepre-review versions. Label the pre-review and post-review versions of your deliverables and sub-
mit both of them. Y ou will not be penalized for corrections made to your pre-review design and rationale
descriptions.

Relevant Data Structures:

To complete the tasks for this assignment, you may find it helpful to study the following data structures.

userent — class that represents a user logged onto a machine running a Coda Client. The definition of the
user class is in user.h. The definition of the user class methods are in user.cc.

UserDaemon — a process that continually checks the time remaining for each user’s authentication. The
UserDaemon() function executes within a lightweight process initiated by USERD_Init(). The definition
of both are in user.cc.

SecretToken, ClearToken — structures that contain information regarding the authentication of users by
servers. The definitions of these structures and related prototypes for authentication appear in auth2.h.
Other server related prototypes appear in admon.h and adsrv.h.

adviceconn — class that represents a Venus Advice Monitor. The adviceconn class definition is in advice-
conn.h. The definition of the adviceconn methods TokensAcquired() and TokensExpired() are in ad-
vice.cc.

Help Questions:

Here are some questions that you should answer before identifying the parts of the Coda Client that would
need to change to add realms and multiple user authentication tokens.

1. Where might the Venus keep information about an FSO’s realm? Can this be done to minimize the
impact on the existing Venus?

2. Which Venus data structures (e.g. classes or structs) contain information about server
authentication and tokens?

3. Where might Venus keep information about a user’s token for each realm in which files are to be
accessed? Can this be done to minimize the impact the existing Venus?

261

262

Appendix R Change Impact for Each Expected or Feasible Change

TableR.1 Change signatures for the expected or feasible changes to the microwave oven software.

Expected or Feasible Evolution of the Microwave Oven Software Change Signature
POWER-TIMER as well as TIMER-POWER button sequences to program straight heating. HBSQ
Different defrost formula. DFORM
Different reheat formula. RFORM
More sophisticated control of power sources than up or down three notches. CPSRC
Different feedback loops to allow for electronics which respond faster. FDBL
Error and status messages, as well as weight measures, for the international market. IMSWT
More powerful microwaves with higher limits for weight, servings, and weight per serving. HLWS
Different configurations of hardware devices. CHD
Different type of power source with new parameters for the CALL_HARDWARE interface. PSRC
Different type of power sensor with new parameters for the CALL_HARDWARE interface. PSNSR
Different type of door sensor with new parameters for the CALL_HARDWARE interface. DSNSR
Different type of timer with new parameters for the CALL_HARDWARE interface. TIMER
Addition of programmed operations to heat specific foods such as bacon, popcorn, or vegetables. APO
Event-driven approach to controlling the hardware. EDA

Change Impact at the Routine L evel:

TableR.2 Change impact at the routine level for change HBSQ.

Statistic Control Group Rationale Group RationGa:ce):l;Iethod Benchmark Design
Mean 17.32% 19.05% 21.43% 11.26%
Median 14.65% 16.48% 15.07% 11.26%
Standard Deviation 13.38% 13.80% 16.55% NA
Maximum 38.46% 44.44% 59.79% 11.26%
Minimum 4.12% 1.95% 8.77% 11.26%

263

Table R.3 Change impact at the routine level for change DFORM.

Statistic Control Group Rationale Group RationGa:ce):l;Iethod Benchmark Design
Mean 0.00% 0.00% 0.00% 0.00%
Median 0.00% 0.00% 0.00% 0.00%
Standard Deviation 0.00% 0.00% 0.00% NA
Maximum 0.00% 0.00% 0.00% 0.00%
Minimum 0.00% 0.00% 0.00% 0.00%

TableR.4 Change impact at the routine level for change RFORM.

Statistic Control Group Rationale Group RationGa:ce):l;Iethod Benchmark Design
Mean 0.00% 0.00% 0.00% 0.00%
Median 0.00% 0.00% 0.00% 0.00%
Standard Deviation 0.00% 0.00% 0.00% NA
Maximum 0.00% 0.00% 0.00% 0.00%
Minimum 0.00% 0.00% 0.00% 0.00%

TableR.5 Change impact at the routine level for change CPSRC.

Statistic Control Group Rationale Group RationGa:ce):l;Iethod Benchmark Design
Mean 15.33% 17.69% 14.79% 8.24%
Median 9.40% 17.45% 10.82% 8.24%
Standard Deviation 12.27% 9.71% 9.27% NA
Maximum 37.18% 34.74% 34.67% 8.24%
Minimum 5.24% 3.45% 7.89% 8.24%

264

TableR.6 Change impact at the routine level for change FDBL.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 21.17% 21.43% 13.70% 7.69%
Median 22.25% 20.77% 9.62% 7.69%
Standard Deviation 10.95% 7.83% 11.04% NA
Maximum 39.74% 34.74% 34.67% 7.69%
Minimum 8.24% 8.33% 3.91% 7.69%
TableR.7 Changeimpact at the routine level for change IMSWT.
Statistic Control Group Rationale Group RatlonGa:ce):l;Iethod Benchmark Design
Mean 36.54% 43.87% 38.36% 0.00%
Median 35.90% 36.55% 44.58% 0.00%
Standard Deviation 16.79% 2651% 26.82% NA
Maximum 54.95% 97.30% 73.68% 0.00%
Minimum 9.68% 12.34% 0.00% 0.00%
Table R.8 Change impact at the routine level for change HLWS.
Statistic Control Group Rationale Group RatlonGa:ce):l;Iethod Benchmark Design
Mean 22.59% 22.83% 21.92% 0.00%
Median 23.35% 20.11% 20.14% 0.00%
Standard Deviation 13.54% 12.01% 19.67% NA
Minimum 0.00% 2.97% 0.00% 0.00%

265

Table R.9 Change impact at the routine level for change CHD.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 26.27% 30.54% 34.25% 25.27%
Median 26.40% 29.54% 36.41% 25.27%
Standard Deviation 11.69% 6.81% 9.35% NA
Maximum 39.74% 43.51% 47.56% 25.27%
Minimum 8.24% 20.27% 21.05% 25.27%

TableR.10 Changeimpact at the routine level for change PSRC.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 18.36% 24.93% 30.93% 4.40%
Median 15.42% 27.62% 23.26% 4.40%
Standard Deviation 11.12% 12.31% 24.75% NA
Maximum 37.18% 50.65% 83.51% 4.40%
Minimum 7.50% 6.03% 3.51% 4.40%

TableR.11 Change impact at the routine level for change PSNSR.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 12.45% 20.23% 14.35% 3.02%
Median 5.73% 19.51% 11.78% 3.02%
Standard Deviation 14.46% 10.80% 11.06% NA
Maximum 37.18% 35.14% 35.37% 3.02%
Minimum 1.05% 2.59% 1.75% 3.02%

266

Table R.12 Change impact at the routine level for change DSNSR.

Statistic Control Group Rationale Group RatlonGa:ce):l;Iethod Benchmark Design
Mean 11.84% 16.24% 14.01% 2.75%
Median 3.38% 19.35% 10.87% 2.75%
Standard Deviation 14.72% 12.04% 11.27% NA
Maximum 37.18% 35.14% 35.37% 2.75%
Minimum 2.09% 1.58% 0.88% 2.75%

TableR.13 Change impact at the routine level for change TIMER.

Statistic Control Group Rationale Group RatlonGa:ce):l;Iethod Benchmark Design
Mean 20.39% 21.01% 22.14% 2.75%
Median 6.68% 22.36% 9.73% 2.75%
Standard Deviation 24.40% 16.66% 21.04% NA
Maximum 53.85% 48.65% 64.95% 2.75%
Minimum 2.64% 1.05% 7.02% 2.75%
Table R.14 Change impact at the routine level for change ADO.
Statistic Control Group Rationale Group RatlonGa:ce):l;Iethod Benchmark Design
Mean 17.12% 18.19% 20.20% 9.07%
Median 11.62% 12.12% 16.48% 9.07%
Standard Deviation 11.57% 14.50% 17.65% NA
Maximum 38.46% 44.44% 59.79% 9.07%
Minimum 8.82% 2.92% 5.95% 9.07%

267

TableR.15 Change impact at the routine level for change EDA.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 22.20% 22.25% 14.35% 5.22%
Median 22.51% 22.83% 9.62% 5.22%
Standard Deviation 11.13% 7.57% 10.44% NA
Maximum 39.74% 34.74% 34.67% 5.22%
Minimum 8.82% 8.33% 5.36% 5.22%

Change Impact at the Component Level:

Table R.16 Change impact at the component level for change HBSQ.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 51.52% 52.78% 51.52% 10.90%
Median 47.30% 57.65% 43.53% 10.90%
Standard Deviation 30.37% 32.47% 26.54% NA
Maximum 96.30% 97.47% 95.65% 10.90%
Minimum 21.60% 3.47% 21.84% 10.90%

TableR.17 Change impact at the component level for change DFORM.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 0.00% 0.00% 0.00% 0.00%
Median 0.00% 0.00% 0.00% 0.00%
Standard Deviation 0.00% 0.00% 0.00% NA
Maximum 0.00% 0.00% 0.00% 0.00%
Minimum 0.00% 0.00% 0.00% 0.00%

268

TableR.18 Changeimpact at the component level for change RFORM.

Statistic Control Group Rationale Group RationGa:ce):l;Iethod Benchmark Design
Mean 0.00% 0.00% 0.00% 0.00%
Median 0.00% 0.00% 0.00% 0.00%
Standard Deviation 0.00% 0.00% 0.00% NA
Maximum 0.00% 0.00% 0.00% 0.00%
Minimum 0.00% 0.00% 0.00% 0.00%

TableR.19 Change impact at the component level for change CPSRC.

Statistic Control Group Rationale Group RatlonGa:ce):l;Iethod Benchmark Design
Mean 38.82% 51.98% 44.59% 7.98%
Median 27.11% 45.87% 31.00% 7.98%
Standard Deviation 29.68% 28.06% 31.28% NA
Maximum 96.30% 97.47% 95.65% 7.98%
Minimum 13.93% 13.49% 12.71% 7.98%

TableR.20 Change impact at the component level for change FDBL.

Statistic Control Group Rationale Group Ratlong:ce):l;lethod Benchmark Design
Mean 37.42% 51.85% 34.14% 26.60%
Median 25.69% 45.87% 29.92% 26.60%
Standard Deviation 30.58% 28.04% 27.43% NA
Maximum 96.30% 97.47% 95.65% 26.60%
Minimum 11.94% 18.25% 8.96% 26.60%

269

TableR.21 Changeimpact at the component level for change IMSWT.

Statistic Control Group Rationale Group RatlonGa:ce):l;Iethod Benchmark Design
Mean 60.15% 73.22% 59.01% 0.00%
Median 61.21% 72.26% 56.39% 0.00%
Standard Deviation 35.27% 2093% 32.21% NA
Maximum 100.00% 97.47% 95.65% 0.00%
Minimum 9.40% 38.17% 0.00% 0.00%

TableR.22 Change impact at the component level for change HLWS.

Statistic Control Group Rationale Group RationGa:ce):l;Iethod Benchmark Design
Mean 50.40% 59.37% 40.53% 0.00%
Median 49.78% 57.65% 36.68% 0.00%
Standard Deviation 33.89% 24.99% 36.27% NA
Maximum 96.30% 97.47% 95.65% 0.00%
Minimum 0.00% 26.83% 0.00% 0.00%

Table R.23 Change impact at the component level for change CHD.

Statistic Control Group Rationale Group RatlonGa:ce):l;Iethod Benchmark Design
Mean 41.26% 52.83% 53.52% 26.60%
Median 32.31% 45.87% 46.62% 26.60%
Standard Deviation 29.84% 26.91% 24.88% NA
Maximum 96.30% 97.47% 95.65% 26.60%
Minimum 11.94% 23.81% 31.03% 26.60%

270

TableR.24 Changeimpact at the component level for change PSRC.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 36.95% 41.89% 47.57% 4.26%
Median 25.69% 31.46% 41.96% 4.26%
Standard Deviation 30.83% 30.33% 30.84% NA
Maximum 96.30% 97.47% 95.65% 4.26%
Minimum 13.93% 10.48% 6.72% 4.26%

TableR.25 Change impact at the component level for change PSNSR.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 36.95% 41.37% 47.03% 2.93%
Median 25.69% 31.46% 40.36% 2.93%
Standard Deviation 30.83% 30.96% 30.86% NA
Maximum 96.30% 97.47% 95.65% 2.93%
Minimum 13.93% 4.29% 6.72% 2.93%

TableR.26 Change impact at the component level for change DSNSR.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 36.95% 40.43% 45.26% 2.66%
Median 25.69% 31.46% 38.80% 2.66%
Standard Deviation 30.83% 32.11% 31.81% NA
Maximum 96.30% 97.47% 95.65% 2.66%
Minimum 13.93% 1.79% 6.72% 2.66%

271

Table R.27 Change impact at the component level for change TIMER.

Statistic Control Group Rationale Group RatlonGa:ce):l;Iethod Benchmark Design
Mean 58.14% 54.39% 66.82% 2.66%
Median 50.01% 45.87% 72.30% 2.66%
Standard Deviation 32.79% 36.53% 24.51% NA
Maximum 100.00% 100.00% 95.65% 2.66%
Minimum 25.14% 1.43% 28.81% 2.66%

TableR.28 Change impact at the component level for change ADO.

Statistic Control Group Rationale Group Rationale+Method Benchmark Design
g
Group
Mean 47.44% 57.88% 51.52% 8.78%
Median 41.78% 66.56% 43.53% 8.78%
Standard Deviation 34.57% 28.85% 26.54% NA
Maximum 96.30% 97.47% 95.65% 8.78%
Minimum 9.40% 6.62% 21.84% 8.78%

TableR.29 Change impact at the component level for change EDA.

Statistic Control Group Rationale Group Ratlong:ce):l;lethod Benchmark Design
Mean 38.46% 51.85% 41.70% 26.60%
Median 25.69% 45.87% 32.89% 26.60%
Standard Deviation 3093% 28.04% 33.38% NA
Maximum 96.30% 97.47% 95.65% 26.60%
Minimum 11.94% 18.25% 8.96% 26.60%

272

Change Impact at the Routine L evel with Compar ative Sizing:

TableR.30 Changeimpact at the routine level with comparative sizing for change HBSQ.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 17.48% 16.75% 26.42% 11.26%
Median 11.02% 13.56% 26.57% 11.26%
Standard Deviation 21.14% 13.91% 13.84% NA
Maximum 54.29% 45.02% 49.70% 11.26%
Minimum 2.30% 1.95% 11.95% 11.26%
TableR.31 Change impact at the routine level with comparative sizing for change DFORM.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 0.00% 0.00% 0.00% 0.00%
Median 0.00% 0.00% 0.00% 0.00%
Standard Deviation 0.00% 0.00% 0.00% NA
Maximum 0.00% 0.00% 0.00% 0.00%
Minimum 0.00% 0.00% 0.00% 0.00%

TableR.32 Change impact at the routine level with comparative sizing for change RFORM.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 0.00% 0.00% 0.00% 0.00%
Median 0.00% 0.00% 0.00% 0.00%
Standard Deviation 0.00% 0.00% 0.00% NA
Maximum 0.00% 0.00% 0.00% 0.00%
Minimum 0.00% 0.00% 0.00% 0.00%

273

TableR.33 Change impact at the routine level with comparative sizing for change CPSRC.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 21.65% 29.45% 15.75% 8.24%
Median 10.21% 29.57% 9.80% 8.24%
Standard Deviation 16.90% 16.93% 11.93% NA
Maximum 42.14% 57.92% 40.15% 8.24%
Minimum 8.06% 8.26% 8.75% 8.24%

TableR.34 Change impact at the routine level with comparative sizing for change FDBL.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 36.30% 34.27% 19.81% 7.69%
Median 37.99% 30.22% 20.90% 7.69%
Standard Deviation 5.09% 11.57% 11.80% NA
Maximum 42.14% 57.92% 40.15% 7.69%
Minimum 28.49% 18.81% 4.78% 7.69%

Table R.35 Change impact at the routine level with comparative sizing for change IMSWT.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 38.21% 40.78% 36.38% 0.00%
Median 40.86% 32.07% 40.25% 0.00%
Standard Deviation 13.41% 27.32% 30.59% NA
Maximum 54.29% 99.45% 85.23% 0.00%
Minimum 23.72% 12.34% 0.55% 0.00%

274

TableR.36 Change impact at the routine level with comparative sizing for change HLWS.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 25.57% 25.08% 19.39% 0.00%
Median 23.72% 21.40% 19.17% 0.00%
Standard Deviation 17.79% 16.80% 18.17% NA
Maximum 54.29% 59.25% 49.70% 0.00%
Minimum 9.51% 2.05% 0.00% 0.00%

Table R.37 Change impact at the routine level with comparative sizing for change CHD.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 41.34% 44.15% 36.74% 25.27%
Median 42.14% 43.26% 34.61% 25.27%
Standard Deviation 4.70% 7.12% 7.49% NA
Maximum 47.75% 57.92% 48.48% 25.27%
Minimum 34.75% 29.08% 28.66% 25.27%

Table R.38 Change impact at the routine level with comparative sizing for change PSRC.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 24.52% 35.43% 32.31% 4.40%
Median 14.75% 43.24% 26.51% 4.40%
Standard Deviation 16.23% 18.15% 22.12% NA
Maximum 42.29% 57.92% 76.36% 4.40%
Minimum 10.51% 4.36% 4.37% 4.40%

275

TableR.39 Change impact at the routine level with comparative sizing for change PSNSR.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 18.08% 29.21% 17.20% 3.02%
Median 4.59% 32.49% 13.41% 3.02%
Standard Deviation 20.14% 19.26% 13.82% NA
Maximum 42.14% 57.92% 40.15% 3.02%
Minimum 2.69% 2.48% 2.92% 3.02%

TableR.40 Changeimpact at the routine level with comparative sizing for change DSNSR.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 17.51% 26.05% 16.98% 2.75%
Median 2.70% 26.50% 13.41% 2.75%
Standard Deviation 20.64% 21.43% 13.98% NA
Maximum 42.14% 57.92% 40.15% 2.75%
Minimum 2.30% 1.62% 2.62% 2.75%

TableR.41 Change impact at the routine level with comparative sizing for change TIMER.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 21.38% 29.38% 20.46% 2.75%
Median 6.61% 34.94% 11.62% 2.75%
Standard Deviation 24.70% 25.58% 20.60% NA
Maximum 52.69% 60.92% 53.94% 2.75%
Minimum 1.64% 1.57% 2.62% 2.75%

276

TableR.42 Changeimpact at the routine level with comparative sizing for change ADO.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 24.79% 15.93% 25.95% 9.07%
Median 11.83% 10.16% 26.57% 9.07%
Standard Deviation 20.40% 14.92% 14.68% NA
Maximum 54.29% 45.02% 49.70% 9.07%
Minimum 8.87% 2.92% 9.62% 9.07%

TableR.43 Change impact at the routine level with comparative sizing for change EDA.

Rationale+Method

Statistic Control Group Rationale Group Group Benchmark Design
Mean 36.30% 35.49% 19.57% 5.22%
Median 37.99% 34.39% 20.90% 5.22%
Standard Deviation 5.09% 11.91% 12.07% NA
Maximum 42.14% 57.92% 40.15% 5.22%
Minimum 28.49% 18.81% 5.67% 5.220%

277

278

Appendix S Analysisof Variance, the F Statistic, and the Correlation Analysis

Experimental error can cause differences between the treatment groups that are independent of the treat-
ment effects. Experimental error frequently originates from inadequate control of nuisance variables such as
the differences between subjects or from measurement error. It is extremely difficult, if not impossible, to
eliminate experimental error completely.

The research studies focused on change impact. In review,

Change impact is a measure of the part of a software system which must be modified to satisfy new
requirements for the software. Reducing change impact is important because it helps to reduce the
amount of effort needed to evolve the software system.

Therefore, the reader should note that differencesin the observations within the same treatment group (e.g.
change impact valuesfor the designs created by the subjects) are dueto experimental error. On the other hand,
differencesin the group means (e.g. mean change impact for each treatment group) are the result of treatment
effects and/or experimental error.

Asshownin Figure S.1, the null hypothesis, Hy, depicts the expectation that observed differences between
the treatment group means are due primarily to experimental error (the treatment effect is null or negligible).
The alternative hypothesis, H,, conveysthe experimental goal that observed differences are due to both treat-
ment effects and experimental error. Hy predicts that the treatment group means are near equal. Hq predicts
that differences between the treatment group means is statistically significant. In any given experiment, itis
possibleto obtain avaluethat is greater than 1.0 when Hy istrue or onethat is equal to or lessthan 1.0 when
H, istrue. Therefore, analysis of variance through application of the F statistic is used to determineif Hyis

true or false within a chosen degree of confidence.

differences among means of treatment groups _ experimental error _ 10 for H
- ' 0

differences among subjects treated alike experimental error

differences among means of treatment groups _ (treatment effects) + (experimental error) | 1.0 for H
= . 1

differences among subjects treated alike experimental error

Figure S.1 Comparison between the null and alternative hypotheses [83].

Variance is a measure of the deviation of a group of values from the group mean. Figure S.2 shows the

general mathematical expression for calculating variance.

279

" 2
i=1
df

where n is the number of values in the group, each y; is a value in the group,
y is the group mean, and df is the degrees of freedom.

Figure S.2 Genera mathematical expression for calculating variance [83,97].
The term in the numerator is the sum of squares, or the sum of the squared deviations between each value in
the group and the group mean. The degrees of freedom term in the denominator corresponds to the number
of values with independent information that enter into the calculation of the sum of squares.
Three types of deviation which are important to testing Hg are:

1. Within each treatment group G;, the deviation of each score y;; from the group mean)_/GJ- (within-
groups deviation).

2. The deviation of each group mean y; from the grand mean yt (between-groups deviation).

3. The deviation of each score y;; from the grand mean yr (total deviation).

Figure S.3 clarifies the meaning for each deviation. The mathematical expression for the grand mean

appearsin Figure S.4.

Yij yGi YT

‘ l ‘ ‘ ” ‘ ‘ ‘ ‘ | ‘ d?pendent variable y
l\’Vimin'GTOUDS Deviation Between-Groups Deviation
T‘ -

|
Total Deviation
- »!

| |
Figure S.3 Component deviations for testing Hp [83].

gn
> 2V
grand mean = Yy = _LEJ—IH—_

where n is the number in each treatment group, g is the number of treatment groups,
and yjis the i-th value in the j-th treatment group.

Figure S.4 Mathematical expression for the grand mean [99].

280

Figure S.5 through Figure S.7 show the sums of squares related to the three types of deviation discussed
previously. The sums of squares are related mathematically as shown in Figure S.8.

g
Treatment Sum of Squares SST = nz Eyj —yTﬁ

]

where g is the number of treatment groups, n is the number of observations in each treatment group,
y; is the mean of the j-th treatment group, and yr is the grand mean.

FigureS5 Mathematical expression for the Treatment Sum of Squares which measuresthe variability
between the treatment group means. Thisvariability is sometimes called the explained variability [100].

gn
Error Sum of Squares SSE = z z Eyij —yjﬁ

joi
where n is the number of observations in each treatment group, g is the number of treatment groups,
yjis the i-th value in the j-th treatment group, and y; is the mean of the j-th treatment group.

FigureS.6 Mathematical expression for the Error Sum of Squares which measuresthe individual vari-
ation within atreatment group due to chance or unexplained error [100].

gn
Total Sum of Squares or Total SS = z z Eyij —yTﬁ

joi
where n is the number of observations in each treatment group, g is the number of treatment groups,
yjis the i-th value in the j-th treatment group, and yr is the grand mean.

FigureS.7 Mathematical expression for the Total Sum of Squares which measuresthe variability that
results when all values are treated as a combined sample coming from a common population [100].

Total SS = SST + SSE

Figure S.8 Property of Sum of Squares[100].

The total variation, Total SS, has the two components SST (explained variation) and SSE (unexplained
variation). A comparison of the magnitudes of these two componentsis useful in determining whether or not
the variation is great enough to significantly refute Hp. For instance, the experimenter will most likely accept
Hg if the explained and unexplained variations are about the same magnitude. The experimenter cannot di-

rectly compare SST and SSE because they are the sums of different numbers of squared deviations. The ex-

281

perimenter must first convert them to mean sums of squares via division by the appropriate degrees of
freedom. The resulting statistics are the Treatment Mean Square and Error Mean Square shown in Figure S.9

and Figure S.10, respectively.

ssT

Treatment Mean Square = MST = o-1

where SST is the Treatment Sum of Squares and g is the number of treatment groups.

Figure S.9 Mathematical expression for the Treatments Mean Square [100].

SSE
gh—10

Error Mean Square = MSE =

where SSE is the Error Sum of Squares, g is the number of treatment groups, and n is the number of values in each
treatment group.

Figure S.10 Mathematical expression for the Error Mean Square [100].

The test statistic for the analysis of variance, the F statistic, isthe ratio of the variance explained by treat-

ments (MST) and the unexplained variance (MSE) as shown in Figure S.11.

F - Variance explained by treatments _ MST

Unexplained variance ~ MSE

FigureS.11 Test statistic for analysis of variance [84,101].

The experimenter can reject Hy if the calculated value of the F statistic is greater than or equal to Fy the
value from the F distribution associated with the appropriate degrees of freedom and desired significance lev-
el a. Ana of 0.05 means that there is a 5% probability that values taken by the random variable F will be
greater than F4. The significance level a aso indicates the probability of atype | error, rejecting Hg when it
istrue. The degrees of freedom are those used to cal culate MST and MSE. Many statistics texts contain atable
of F values for varying pairs of degrees of freedom and significance levels [82,96]. Table S.1 through Table

S.3 explain the data and cal culations used to test the Hp hypothesis.

282

TableS.1 Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups specified as part of the results of the experiment
n number of subjects in a treatment group specified as part of the results of the experiment

TableS.2 Caculationsfor determining the F stetistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
- dfygy = 9—1 - SST
Explained by Treatments SST MsT = 9 MST =
dfyst
g
- SSE
Error or Unexplained SSE dfyse =9) Hh—10 MSE = T
— MSE

Table S.3 Testing the Hy hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
F = M_ST
Fealculated Calculated = MqE™
Select the value from a statistical table of F
values, where o is the desired significance level.
Fa(dfysmdfyse)
F(]
Accept Hy if Fogjcurated < Fo -
Accept/Reject Hg Reject Ho if Feajculated 2 Fa -

The reader should note that the analysis of variance expressions presented above depend on the number of
observations (e.g. change impact values) for each treatment group being equal. In some cases, the number of
observations for each group may not be equal. This may happen if subjects withdraw from an experiment,
error in the data collection process occurs, or observations are unusable for some other reason. In the case of
theresearch studies, some subjects did not complete the required designs or produced designs which were not

measurable as discussed in Section 7.9. The result was an unequal number of observations in each treatment

group.

283

The following techniques are avail able for handling unequal sample or treatment groups.

1. Removal of observations from the largest treatment groups until each group has the same number
of observationsvia:

a Random removal.

b. Selective removal based on a policy that does not attempt to bias the results of any
particular treatment group.

2. Application of an approach to adjust for unequally sized treatment groups such as:
a Analysisof unweighted means.
b. Analysis of weighted means.

Though random removal is obviously the least biased removal approach, removal of specific observations
may be justifiable if the experimenter can determine areason for the unequal sizes that does not unfairly bias
the results of any particular treatment group. For instance, completion of the required task under the condi-
tions of one of the treatments may require a higher level of some skill or of some innate capability by the
subjects than the level required by the other treatments. If the level of this skill or capability was measured
before the experiment, then removal of either low or high observations based on subject skill or capability
possibly will not bias the results of the treatment group that requires more skilled or capable subjects. The
choice of removing either low or high observations depends on the context of the experiment and the type of
observations. In general, the experimenter would not remove both the lowest and the highest observations.

The two mathematical approaches for handling unequal treatment group sizes differ in the way that they
handle the treatment group means. The method of unweighted meanstreats each mean equally by substituting
a mean treatment group size (or sample size) for the actual sizes associated with the different treatment
groups. The other approach, the method of weighted means, weights each mean according to the actual sam-
ple sizes. The next paragraphs describe the changes to the standard analysis of variance calculations to im-

plement each approach.

284

The method of unweighted means requires two changes to the standard analysis of variance as shown in

Figure S.12.

1. A new calculation for the grand mean y* that is an average of the group means y;. The number
of groupsisg.

2. A substitution of the sample group size n with a special average ny, called the harmonic mean that
is obtained by dividing the number of groups g by the sum of the reciprocals of the group sample
Sizes.

i g . g
h ™ 1/n,+1/n ot 1/ng g

1 2
z s niIZI
i=1
Figure S.12 Mathematical expressionsfor cal culating the grand mean and harmonic mean used by the
method of unweighted means [85].

The method of weighted means substitutes a dightly different mathematical expression for the treatment
sum of squares. In this expression, the deviation of each group mean y; isweighted by the related sample size
n; as shown in Figure S.13.

g
Treatment Sum of Squares = SST = z[(ni)(yi—yT)ZJ

FigureS.13 Mathematical expression for calculating the treatment sum of squares used by the method
of weighted means [85].

Thefinal calculation to be discussed isthe product-moment correlation or analysis of correlation. Thiscal-
culation expresses the degree to which two variables are linearly related. The sign of the resulting value indi-
cates the direction of the relationship: a positive value indicates that the two variables vary in the same
direction, and a negative value indicates an indirect correlation. The magnitude of the absolute vaue of the
correlation ranges from O (indicating no correlation) to 1 (indicating perfect correlation). Figure S.14 presents

the mathematical expression for the product-moment correlation. The analysis of correlation is useful in the

285

research studiesfor determining if thereisacorrelation between structural complexity and change impact (the

dependent variable being tested).

n

Y X-X0y-j0
SP 4
product-moment correlation = r, = XY = i=1
y NETNEESw n n
0y D(—)'(Dzljjz iy —yo
i=1 =1

where X and Y are the variables being correlated, x is the mean of the group of X values, 9 is the mean of the group of
Y values, and n is the number of values in each group of X or Y values.

Figure S.14 Mathematical expression for the product-moment correlation or correlation analysis
[86,98].

For those cases in which the subjects within treatment groups may vary significantly with respect to an
independent variable that can affect the observations, analysis of covariance can help to statistically reduce

the experimental error. The reader should see [86] for a discussion of analysis of covariance.

286

Appendix T Experiment 1: Analysisof Variance (ANOVA) for Change I mpact

Analysis of variance of changeimpact at the routine level using equalized sample sizes:

The parameters and cal culations for the analysis of variance of the mean change impact at the routine level
using equalized samples appear in Table T.1, Table T.2, and Table T.3. Ascan be seenin Table T.3, the ex-
perimenter should accept Hy and reject H, when using equalized samples.

Conclusion: Any difference between the mean changeimpact at theroutine level of any treatment
group is due to experimental error aone (and not due to differencesin treatments).

TableT.1 Experiment 1 ANOVA: Routine Level, Equal Size Samples- Parameters used to calculate the F

statistic.
Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group 6

TableT.2 Experiment 1 ANOVA: Routine Level, Equal Size Samples - Calculations for determining the F

statistic.
Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
- dfyer = g—1 =2 MsT = ST —940
Explained by Treatments SST MsT = 9 Rl =24
MST
’ SSE
Error or Unexplained SSE dfysg = 9 z h,—10=15 MSE = T 61.6
MSE
i=1

TableT.3 Experiment 1 ANOVA: Routine Level, Equal Size Samples - Testing the Hg hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
_ MST _
FCaIcuIated FCaIcuIated - M_SE =0.39
Fa Fq(dfysmdfyse) = Foos(215) = 3.68
Accept/Reject Ho Accept Ho since F cgcutated < Fo -

287

Analysis of variance of change impact at the routine level using unequal sample sizes and unweighted
means analysis:

The parameters and cal culations for the analysis of variance of the mean change impact at the routine level
using unegqual sample sizes and unweighted means analysis appear in Table T.4, Table T.5, and Table T.6.
As can be seen in Table T.6, the experimenter should accept Hg and reject H, when using unequal sample
sizes and unweighted means analysis.

Conclusion: Any difference between the mean change impact at theroutine level of any treatment
group is due to experimental error aone (and not due to differencesin treatments).

TableT.4 Experiment 1 ANOVA: Routine Level, Unequal Size Samples, Unweighted Means Analysis -
Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group n1=6, n,=12, n3=8

TableT.5 Experiment 1 ANOVA: Routine Level, Unequal Size Samples, Unweighted Means Analysis -
Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
. a1 = _ SST _
Explained by Treatments SST dfyg7 = 9-1 =2 MST = —— =13.79
dfyst
g
Error or Unexplained SSE dfyse = 9 z h,—10=23 MsE = 5B 6119
T dfyse
| =

TableT.6 Experiment 1 ANOVA: Routine Level, Unequal Size Samples, Unweighted Means Analysis -
Testing the Hg hypothesis.

Name of Statistic or Decision

Determination of Statistic or Decision

Fcalculated Fealculated = m—:; =0.23
Fa Fq(dfyst.0fyse) = Foos(2:23) = 3.39
Accept/Reject Ho Accept H since F) cutated < Fa -

288

Analysis of variance of change impact at the routine level using unequal sample sizes and weighted
means analysis:

The parameters and cal culations for the analysis of variance of the mean change impact at the routine level
using unequal sample sizes and weighted means analysis appear in Table T.7, Table T.8, and Table T.9. As
can be seenin Table T.9, the experimenter should accept Hg and reject H, when using unegual sample sizes
and weighted means analysis.

Conclusion: Any difference between the mean change impact at theroutine level of any treatment
group is due to experimental error aone (and not due to differencesin treatments).

TableT.7 Experiment 1 ANOVA: Routine Level, Unequal Size Samples, Weighted Means Analysis -
Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group n1=6, n,=12, n3=8

TableT.8 Experiment 1 ANOVA: Routine Level, Unequal Size Samples, Weighted Means Analysis -
Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
. Cn_ 1 = _ SST _
Explained by Treatments SST dfys7 = 9-1 =2 MST = T =14.33
MST
) SSE
i E = —10= MSE = —— =61.19
Error or Unexplained SS dfyse gz h,—10=23 dfyse
i=1

TableT.9 Experiment 1 ANOVA: Routine Level, Unequal Size Samples, Weighted Means Analysis -
Testing the Hg hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
MST
F = == =023
FCaIcuIated Calculated MSE
Fa Fo(dfyst.dfyse) = Foos(2.23) = 3.39
AcceptReject Ho Accept Hy since F i cutated < Fa -

289

Analysis of variance of changeimpact at the component level using equalized sample sizes:

The parameters and calculations for the analysis of variance of the mean change impact at the component
level using equalized samplesappearin Table T.10, Table T.11, and Table T.12. Ascanbeseenin Table T.12,
the experimenter should accept Hq and reject H, when using equalized samples.

Conclusion: Any difference between the mean change impact at the component level of any
treatment group is due to experimental error aone (and not due to differences in treatments).

TableT.10 Experiment 1 ANOVA: Component Level, Equal Size Samples - Parameters used to calculate

the F statistic.
Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group 15

TableT.11 Experiment 1 ANOVA: Component Level, Equal Size Samples - Calculations for determining

the F statistic.
Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
i dfyer = g—1 =2 msT = ST —1070
Explained by Treatments SST msT = 9 dfysr :
g
E
Error or Unexplained SSE dfysg = @ z (h,—10=15 MSE = dsfi =226.0
) MSE
| =

TableT.12 Experiment 1 ANOVA: Component Level, Equal Size Samples - Testing the Hy hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
_ MST _
FCaIcuIated FCaIcuIated - MSE =047
Fa Fo(dfysmdfyse) = Foos(215) = 3.68
Accept/Reject Ho Accept Hg since F . cutated < Fa -

290

Analysisof variance of changeimpact at the component level using unequal sample sizes and unweight-
ed means analysis:

The parameters and calcul ations for the analysis of variance of the mean change impact at the component
level using unequal sample sizes and unweighted means analysis appear in Table T.13, Table T.14, and Table
T.15. As can be seen in Table T.15, the experimenter should accept Hg and reject H; when using unequal
sample sizes and unweighted means analysis.

Conclusion: Any difference between the mean change impact at the component level of any
treatment group is due to experimental error aone (and not due to differences in treatments).

TableT.13 Experiment 1 ANOVA: Component Level, Unequal Size Samples, Unweighted Means
Analysis - Parameters used to calculate the F statistic

Parameter Name Parameter Meaning Parameter Value

g number of treatment groups 3

n number of subjects in a treatment group

n1=6, n2=12, n3=8

TableT.14 Experiment 1 ANOVA: Component Level, Unequal Size Samples, Unweighted Means
Analysis - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
: _ _ _ SST _
Explained by Treatments SST dfygr = 9-1 =2 MST = T 92.84
MST
g
E
Error or Unexplained SSE dfyse = 9 z (h,—10=23 MSE = dsfi =464.90
) MSE
| =

TableT.15 Experiment 1 ANOVA: Component Level, Unequal Size Samples, Unweighted Means
Analysis - Testing the Hg hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision

Fealculated Fealculated = m_:g =020
Fa Fo(dfysmdfyse) = Foos(223) = 3.39
AcceptiReject Ho Accept Hy since F i culated < Fa -

291

Analysis of variance of change impact at the component level using unegual sample sizes and weighted
means analysis:

The parameters and calculations for the analysis of variance of the mean change impact at the component
level using unequal sample sizes and weighted means analysis appear in Table T.16, Table T.17, and Table
T.18. As can be seen in Table T.18, the experimenter should accept Hg and reject H; when using unequal
sample sizes and weighted means analysis.

Conclusion: Any difference between the mean change impact at the component level of any
treatment group is due to experimental error aone (and not due to differences in treatments).

TableT.16 Experiment 1 ANOVA: Component Level, Unequal Size Samples, Weighted Means Analysis-
Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value

g number of treatment groups 3

n number of subjects in a treatment group n1=6, n,=12, n3=8

TableT.17 Experiment 1 ANOVA: Component Level, Unequal Size Samples, Weighted Means Analysis-
Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
) Cn_ 1 = _ SST _
Explained by Treatments SST dfyg7 = 9-1 =2 MST = T = 96.06
MST
g
Error or Unexplained SSE dfyse = 9 z th,—10 = 23 MSE = SSE =464.90
MSE
i=1

TableT.18 Experiment 1 ANOVA: Component Level, Unequal Size Samples, Weighted Means Analysis-
Testing the Hg hypothesis.

Name of Statistic or Decision

Determination of Statistic or Decision

MST
Fealculated Fealculated = MSE =021
Fa Fo(dfysmdfyse) = Foos(223) = 3.39
Accept/Reject Ho Accept Ho since F cgcutated < Fo -

292

Analysis of variance of change impact at the routine level with comparative sizing and using equalized
sample sizes:

The parameters and cal culations for the analysis of variance of the mean change impact at the routine level
with comparative sizing using equalized samples appear in Table T.19, Table T.20, and Table T.21. Ascan
be seen in Table T.21, the experimenter should accept Hy and reject H, when using equalized samples.

Conclusion: Any difference between the mean change impact at the routine level with
comparative sizing of any treatment group is due to experimental error alone (and not due to

differencesin treatments).

TableT.19 Experiment 1 ANOVA: Routine Level with Comparative Sizing, Equal Size Samples -
Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group 15

TableT.20 Experiment 1 ANOVA: Routine Level with Comparative Sizing, Equal Size Samples -
Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
Explained by Treatments SST dfys7 = 9-1 =2 MST = SST . 72.5
dfyst
g
Error or Unexplained SSE dfyse = 9 z [h,—10=15 MSE = 25E _ggp
S dfyse
| =

TableT.21 Experiment 1 ANOVA: Routine Level with Comparative Sizing, Equal Size Samples- Testing
the Hg hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
MST
F = —= =081
FCaIcuIated Calculated MSE
Fa Fo(dfystdfyse) = Fos(2,15) = 3.68
Accep/Reject Hy Accept Hg since F i cutated < Fa -

293

Analysis of variance of change impact at the routine level with comparative sizing and using unegual
sample sizes and unweighted means analysis:

The parameters and cal culations for the analysis of variance of the mean change impact at the routine level
using unequal sample sizes and unweighted means analysis appear in Table T.22, Table T.23, and Table T.24.

As can be seen in Table T.24, the experimenter should accept Hg and reject H; when using unequal sample

sizes and unweighted means analysis.

Conclusion: Any difference between the mean change impact at the routine level with
comparative sizing of any treatment group is due to experimenta error alone (and not due to

differencesin treatments).

TableT.22 Experiment 1 ANOVA: Routine Level with Comparative Sizing, Unegqua Size Samples,
Unweighted Means Analysis - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group n1=6, n,=12, n3=8

TableT.23 Experiment 1 ANOVA: Routine Level with Comparative Sizing, Unegqua Size Samples,
Unweighted Means Analysis - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
- dfyer = g—1 =2 mMsT = 55T =715
Explained by Treatments SST msT = 9 dfyor :
g
Error or Unexplained SSE dfysg = @ z th,—10=23 MSE = SSE - 10350
— dfyse
| =

TableT.24 Experiment 1 ANOVA: Routine Level with Comparative Sizing, Unegqual Size Samples,
Unweighted Means Analysis - Testing the Hy hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
MST
F = == =069
FCaIcuIated Calculated MSE
Fa Fo(dfystdfyse) = Foos(2.23) = 3.39
Accept/Reject Ho Accept Hy since F i cutated < Fa -

294

Analysis of variance of change impact at the routine level with comparative sizing and using unegual
sample sizes and weighted means analysis:

The parameters and cal culations for the analysis of variance of the mean change impact at the routine level
with comparative sizing using unequal samplesizes and weighted means analysisappear in Table T.25, Table
T.26, and Table T.27. As can be seen in Table T.27, the experimenter should accept Hg and reject H; when
using unequal sample sizes and weighted means analysis.

Conclusion: Any difference between the mean change impact at the routine level with
comparative sizing of any treatment group is due to experimental error alone (and not due to

differencesin treatments).

TableT.25 Experiment 1 ANOVA: Routine Level with Comparative Sizing, Unequal Size Samples,
Weighted Means Analysis - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group n1=6, n,=12, n3=8

TableT.26 Experiment 1 ANOVA: Routine Level with Comparative Sizing, Unequal Size Samples,
Weighted Means Analysis - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
i df =g-1 =2 _ SST _
Explained by Treatments SST msT = 9 MST = T =88.03
MST
g
Error or Unexplained SSE dfyse = 9 z (h,—10=23 MSE = SSE - 10350
— dfyse
| =

TableT.27 Experiment 1 ANOVA: Routine Level with Comparative Sizing, Unequal Size Samples,
Weighted Means Analysis - Testing the Hg hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
MST
F = == =085
FCaIcuIated Calculated MSE
Fa Fa(dfysmdfyse) = Foos(223) = 3.39
AcceptReject Ho Accept Hg since F,cuiated < Fa -

295

296

Appendix U

Experiment 1. Analysis of Covariance (ANOCOV) for Change
I mpact

Analysis of covariance of the total time and change impact at the routine level using equalized sample

Sizes:

TableU.1 Experiment 1 ANOCOV with Time: Routine Level, Equal Size Samples - Parameters used to

calculate the F statistic.

Parameter Meaning

Parameter Value

Parameter Name

Y

number of treatment groups

3

n

number of subjects in a treatment group

6

TableU.2 Experiment 1 ANOCOV with Time: Routine Level, Equal Size Samples - Calculations for
determining the F statistic.

Type of Variation Related Sum of Squares Related Degrees of Freedom Related Mean Square
_ _ SST pgj
Explained by Treatments SST dfyst = 9-1 =2 MST g = e =22.89
: SSEpq _
Error or Unexplained SSE dfyse = 9 z h—10-1=14 MSE g = o =55.02
. MSE
i=1

TableU.3 Experiment 1 ANOCOV with Time: Routine Level, Equal Size Samples - Testing the Hg

hypothesis.

Name of Statistic or Decision

Determination of Statistic or Decision

MSTAd-
Fealculated Fcalculated = —lMSE =042
Adj
Fa Fo(dfysdfyse) = Foos(2,14) = 3.74
Accept/Reject Ho Accept Hg since F) cutated < Fa -

297

Analysis of covariance of total time and change impact at the component level using equalized sample
sizes:

TableU.4 Experiment 1 ANOCOV with Time: Component Level, Equal Size Samples - Parameters used
to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group 6

TableU.5 Experiment 1 ANOCOV with Time: Component Level, Equal Size Samples - Calculations for
determining the F statistic.

Type of Variation Related Sum of Squares Related Degrees of Freedom Related Mean Square
SSTpgi
Explained by Treatments SsT dfysy = 9—1 =2 MST g = m =197.85
g
_ SSE,g;
Error or Unexplained SSE diyse =9 z (h—10-1 =14 | MSE,y = =201.49
T dfyse
| =

TableU.6 Experiment 1 ANOCOV with Time: Component Level, Equal Size Samples - Testing the H

hypothesis.
Name of Statistic or Decision Determination of Statistic or Decision
MSTAd-
Falculated Fcalculated = MSEny =0.98
Fa Fo(dfysmdfyse) = Foos(2.14) = 3.74
Accept/Reject Hy Accept Ho since F cgcutated < Fo -

298

Analysisof covariance of total timeand changeimpact at the routinelevel with comparativesiziingusing
equalized sample sizes:

TableU.7 Experiment 1 ANOCOV with Time: Routine Level with Comparative Sizing, Equal Size
Samples - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group 6

TableU.8 Experiment 1 ANOCOV with Time: Routine Level with Comparative Sizing, Equal Size
Samples - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares Related Degrees of Freedom Related Mean Square
. _ SSThgj _
Explained by Treatments SST dfyst = 9—-1 =2 MSTpgj = ey 74.84
g
_ SSE,g;
Error or Unexplained SSE dfyse =9) Chj—10-1=14 | MSE,y = — =83.49
T dfyse
| =

TableU.9 Experiment 1 ANOCOV with Time: Routine Level with Comparative Sizing, Equal Size
Samples - Testing the Hy hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
MST g
Fealculated Fcaculated = MSEAdj =0.90
Fa Fo (dfyst.dfyse) = Foos(2,14) = 3.74
AcceptiReject Ho Accept Hg since F . curated < Fa -

299

Analysis of covariance of the largest program written and change impact at the routine level using
equalized sample sizes:

TableU.10 Experiment 1 ANOCOV with Largest Program Written: Routine Level, Equal Size Samples -
Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group 6

TableU.11 Experiment 1 ANOCOV with Largest Program Written: Routine Level, Equal Size Samples -
Calculations for determining the F statistic.

Type of Variation Related Sum of Squares Related Degrees of Freedom Related Mean Square

SST,

Explained by Treatments SST dfyst = 9-1 =2 MST g = df—AdJ =27.17
MST

g

) SSE,g;

Error or Unexplained SSE dfyse = 9 z th,—10-1=14 MSE g = — A4 -6332
i1 dfyse

TableU.12 Experiment 1 ANOCOV with Largest Program Written: Routine Level, Equal Size Samples -
Testing the Hg hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
MSTAd-
FCaIcuIated FCaIcuIated = —1 =043
MSE g
Fa Fo@fystdfuse) = Foos(2,14) = 3.74
Accept/Reject Ho Accept Hy since F cacutated < Fo -

300

Analysis of covariance of the largest program written and change impact at the component level using

equalized sample sizes:

TableU.13 Experiment 1 ANOCOV with Largest Program Written: Component Level, Equal Size
Samples - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group 6

TableU.14 Experiment 1 ANOCOV with Largest Program Written: Component Level, Equal Size

Samples - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares Related Degrees of Freedom Related Mean Square
. _ SSTag _
Explained by Treatments SST dfyst = 9-1 =2 MST g = Tor 80.58
) SSE
Error or Unexplained SSE diyse = 9 z h,—10-1=14 | MSEpg = —Ad = 24169
) dfyse
| =

TableU.15 Experiment 1 ANOCOV with Largest Program Written: Component Level, Equal Size

Samples - Testing the Hy hypothesis.

Name of Statistic or Decision

Determination of Statistic or Decision

FC||td FClltd:—:'
alculate alculate MSE i
a a(dfMST'dfMSE) 0.05(2'1) 3.7

Accept/Reject Hy

Accept Hg since F,cuiated < Fa -

301

Analysis of covariance of the largest program written and change impact at the routine level with com-

parative sizing using equalized sample sizes:

TableU.16 Experiment 1 ANOCOV with Largest Program Written: Routine Level with Comparative
Sizing, Equal Size Samples - Parameters used to calcul ate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group 6

TableU.17 Experiment 1 ANOCOV with Largest Program Written: Routine Level with Comparative
Sizing, Equal Size Samples - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares Related Degrees of Freedom Related Mean Square
i df = 1=2 SST g
Explained by Treatments SST msT = 9-L1 = MST g = T I =71.79
MST
g
_ SSE,g;
Error or Unexplained SSE dfyse = 9 z (h,—10-1 =14 | MSEyy = o =88.99
T MSE
| =

TableU.18 Experiment 1 ANOCOV with Largest Program Written: Routine Level with Comparative

Sizing, Equal Size Samples - Testing the Hg hypothesis.

Name of Statistic or Decision

Determination of Statistic or Decision

MST y i
Fealculated Fcaculated = —lMSEAd- =081
i
Fa Foq(@fys10fyse) = Foos(2,14) = 3.74
Accept/Reject Ho Accept Hy since F gcutated < Fo -

302

Analysis of covariance of the number of programming cour ses and change impact at the routine level

using equalized sample sizes:

TableU.19 Experiment 1 ANOCOV with Number of Programming Courses: Routine Level, Equal Size
Samples - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group 6

TableU.20 Experiment 1 ANOCOV with Number of Programming Courses: Routine Level, Equal Size
Samples - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares Related Degrees of Freedom Related Mean Square
SSTpgi
Explained by Treatments SsT dfysy = 9-1 =2 MSTpg = m =33.40
g
_ SSE,g;
Error or Unexplained SSE diyse = 9 z (h—10-1=14 | MSE, = =59.56
— dfyse
| =

TableU.21 Experiment 1 ANOCOV with Number of Programming Courses: Routine Level, Equal Size
Samples - Testing the Hy hypothesis.

Name of Statistic or Decision

Determination of Statistic or Decision

MST,q

= _° Adj _
Fealculated Fcalculated MSEAdj 0.56
Fa Fa(@fystdfyse) = Foos(2.14) = 3.74
Accept/Reject Ho Accept Hy since F . curated < Fa -

303

Analysisof covariance of thenumber of programming cour sesand changeimpact at the component lev-
el using equalized sample sizes:

TableU.22 Experiment 1 ANOCOV with Number of Programming Courses: Component Level, Equal
Size Samples - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group 6

TableU.23 Experiment 1 ANOCOV with Number of Programming Courses: Component Level, Equal
Size Samples - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares Related Degrees of Freedom Related Mean Square
) SSTygi
Explained by Treatments SST dfygr = g—1 =2 MST g = df_J =100.74
MST
’ SSE
Error or Unexplained SSE dfysg = 9 z h,—10-1 =14 | MSE,y = —Ad = 231,79
) dfyse
| =

TableU.24 Experiment 1 ANOCOV with Number of Programming Courses: Component Level, Equal
Size Samples - Testing the Hg hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
MSTAd-
—] —
Fealculated Fcalculated = m =043
]
Fa Fo(dfysmdfyse) = Foos(2.14) = 3.74
Accept/Reject Hy Accept Ho since F 5 cutated < Fa -

304

Analysis of covariance of the number of programming cour ses and change impact at the routine level
with comparative sizing using equalized sample sizes:

TableU.25 Experiment 1 ANOCOV with Number of Programming Courses: Routine Level with
Comparative Sizing, Equal Size Samples - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group 6

TableU.26 Experiment 1 ANOCOV with Number of Programming Courses: Routine Level with
Comparative Sizing, Equa Size Samples - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares Related Degrees of Freedom Related Mean Square
) SSTpgi
Explained by Treatments SsT dfyst = 9-1 =2 MSTpg; = df—l =86.38
MST
’ SSE
Error or Unexplained SSE dfyse = 0 z h-10-1=14 | MSE,y = Z7Ad - gg39
— dfyse

TableU.27 Experiment 1 ANOCOV with Number of Programming Courses: Routine Level with
Comparative Sizing, Equal Size Samples - Testing the Hg hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
MSTAd-
FCaIcuIated Fcalculated = MSEAdj =098
Fa Fo(dfysmdfyse) = Foos(2.14) = 3.74
Accept/Reject Ho Accept Ho since Fcgcutated < Fo -

305

306

Appendix V Correlation Between Structural Complexity M easuresand Change

Impact for Each Treatment Group

TableV.1 Correlation between structural complexity measures and mean change impact across al changes
and within the Control Group (6 designs).

Correlation to Correlation o Correlation to Mean
Mean Change
. Mean Change Change Impact at the
Structural Complexity Measure Impact at the .
Impact at the Component Routine Level
Routine Level P With Comparative Sizing
Level
Mean Number of Routine Attributes Per Routine -0.49 -0.27 -0.58
Mean Routine Size -0.01 0.22 -0.10
Mean Number of Calls to Other Routines Per Routine 0.95 0.97 0.95
Mean Routine V(G) 0.61 0.74 0.53
Mean Number of Component Level Attributes
Per Component 0.27 0.09 0.32
Mean Number of Routines Per Component 0.32 0.24 0.34
Mean Component Size -0.06 0.03 -0.10
Mean Fan-In Per Component -0.88 -0.76 -0.86
Mean Fan-Out Per Component -0.88 -0.88 -0.83
Mean Number of Calls to External Routines
Per Component 0.70 0.57 0.76
Mean Component V(G) 0.45 0.45 0.42
Number of Routines in the System -0.94 -0.83 -0.98
Number of Components in the System -0.90 -0.80 -0.92
System Size -0.18 -0.24 -0.05
System V(G) -0.49 -0.33 -0.58
Comparative System Size -0.71 -0.66 -0.79
Comparative System V(G) -0.50 -0.49 -0.60

307

TableV.2 Correlation between structural complexity measures and mean change impact across al changes
and within the Rationale Group (12 designs).

Correlation to Correlation o Correlation to Mean
Mean Change
. Mean Change Change Impact at the
Structural Complexity Measure Impact at the .
Impact at the Component Routine Level
Routine Level P With Comparative Sizing
Level

Mean Number of Routine Attributes Per Routine -0.29 -0.43 -0.29
Mean Routine Size 0.36 -0.13 0.30
Mean Number of Calls to Other Routines Per Routine 0.47 -0.06 0.41
Mean Routine V(G) 0.52 -0.09 0.41
Mean Number of Component Level Attributes
Per Component -0.14 -0.08 -0.10
Mean Number of Routines Per Component -0.57 0.09 -0.49
Mean Component Size -0.20 0.02 -0.07
Mean Fan-In Per Component -0.05 -0.39 -0.28
Mean Fan-Out Per Component 0.10 -0.28 -0.03
Mean Number of Calls to External Routines
Per Component 0.06 0.00 0.17
Mean Component V(G) -0.04 0.13 0.04
Number of Routines in the System -0.54 -0.45 -0.67
Number of Components in the System -0.13 -0.54 -0.37
System Size -0.36 -0.43 -0.43
System V(G) -0.23 -0.40 -0.36
Comparative System Size -0.15 -0.47 -0.07
Comparative System V(G) 0.01 0.29 0.27

308

TableV.3 Correlation between structural complexity measures and mean change impact across al changes
and within the Rationale+Method group (8 designs).

Correlation to Correlation to Correlation to Mean
Mean Change
. Mean Change Change Impact at the
Structural Complexity Measure Impact at the .
Impact at the Component Routine Level
Routine Level P With Comparative Sizing
Level

Mean Number of Routine Attributes Per Routine 0.37 0.81 0.68
Mean Routine Size 0.70 0.88 0.88
Mean Number of Calls to Other Routines Per Routine 0.77 0.86 0.86
Mean Routine V(G) 0.71 0.77 0.89
Mean Number of Component Level Attributes
Per Component -0.25 -0.72 -0.46
Mean Number of Routines Per Component 0.1 0.50 0.14
Mean Component Size 041 0.88 0.70
Mean Fan-In Per Component -0.87 -0.95 -0.95
Mean Fan-Out Per Component -0.42 -0.47 -0.55
Mean Number of Calls to External Routines
Per Component 0.65 0.87 0.73
Mean Component V(G) 0.64 0.92 0.83
Number of Routines in the System -0.86 -0.75 -0.95
Number of Components in the System -0.83 -0.87 -0.94
System Size -0.51 -0.16 -0.50
System V(G) -0.46 -0.15 -0.31
Comparative System Size -0.40 -0.62 -0.69
Comparative System V(G) 0.03 -0.08 -0.08

309

310

Appendix W

with the New RVM Design

Experiment 2: Analysisof Variance (ANOVA) for Change I mpact

Analysis of variance for the impacted data across all types of expected change using unequal sample
sizesand unweighted means analysis:
TableW.1 Experiment 2 RVM ANOVA: Impacted Data, Unequal Size Samples, Unweighted Means

Analysis - Parameters used to calculate the F statistic.

Parameter Name

Parameter Meaning

Parameter Value

Y

number of treatment groups

n

number of subjects in a treatment group

n1:18, n2=8, n3=14

TableW.2 Experiment 2 RVM ANOVA: Impacted Data, Unequal Size Samples, Unweighted Means

Analysis - Calculations for determining the F statistic.

Related Degrees of Freedom

Related Mean Square

Error or Unexplained

i=1

Type of Variation Related Sum of Squares
Explai dfyer = g—1 =2 - SST _
xplained by Treatments SST msT = 9 MST i 56.19
MST
g
SSE dfyse =9 Y [h-10=37 | MSE = 25 = 24739
MSE

TableW.3 Experiment 2 RVM ANOVA: Impacted Data, Unequal Size Samples, Unweighted Means
Analysis - Testing the Hg hypothesis.

Name of Statistic or Decision

Determination of Statistic or Decision

Fealculated

_ MST

=023

FCaIcuIated - MSE

Fa

Fo (s dfyse) = Foos(2.37) = 3.26

Accept/Reject Hy

Accept Hg since F,cuiated < Fa -

311

Analysis of variance for the impacted data across all types of expected change using unequal sample

sizesand weighted means analysis:

TableW.4 Experiment 2 RVM ANOVA: Impacted Data, Unegqual Size Samples, Weighted Means
Analysis - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group n1=18, n,=8, n;=14

TableW.5 Experiment 2 RVM ANOVA: Impacted Data, Unegqual Size Samples, Weighted Means
Analysis Cdlculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
) _ SST _
Explained by Treatments SST dfyst = 9—1 =2 MST = o =8403
MST
g
Error or Unexplained SSE dfyse =9 5 M-10=37 | MSE = 255 —2473
— dfyse
| =

TableW.6 Experiment 2 RVM ANOVA: Impacted Data, Unegqual Size Samples, Weighted Means
Analysis - Testing the Hy hypothesis.

Name of Statistic or Decision

Determination of Statistic or Decision

_ MST _
Fealculated Fcalculated = MSE =0.34
Fa Fq(dfysmdfyse) = Foos(237) = 3.26
Accept/Reject Hy Accept Ho since F .z cutated < Fa -

312

Analysis of variance for theimpacted methods across all types of expected change using unequal sam-
plesizes and unweighted means analysis:

TableW.7 Experiment 2 RVM ANOVA: Impacted Methods, Unequal Size Samples, Unweighted Means
Analysis - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group n1=18, ny=8, n;=14

TableW.8 Experiment 2 RVM ANOVA: Impacted Methods, Unequal Size Samples, Unweighted Means
Andysis - Cdculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
. _ _ _ SST _
Explained by Treatments SST dfygr = 9-1 =2 MST = T 375,504.05
MST
g
E
Error or Unexplained SSE dfyse =9 Y n-10=37 | MSE = dsfi = 306,843.38
. MSE
i=1

TableW.9 Experiment 2 RVM ANOVA: Impacted Methods, Unequal Size Samples, Unweighted Means
Analysis - Testing the Hg hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
_ MST _
Fealculated Fealculated = VISE - 1.22
Fa Fo(dfysmdfyse) = Foos(237) = 3.26
Accept/Reject Hy Accept Ho since F .z cutated < Fa -

313

Analysis of variance for theimpacted methods across all types of expected change using unequal sam-
ple sizes and weighted means analysis:

TableW.10 Experiment 2 RVM ANOVA: Impacted Methods, Unegual Size Samples, Weighted Means
Analysis - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group n1=18, n,=8, ny=14

TableW.11 Experiment 2 RVM ANOVA: Impacted Methods, Unegual Size Samples, Weighted Means
Analysis - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
Explained by Treatments SST dfyst = g-1 =2 msT = SST - 54881488
dfyst
g
Error or Unexplained SSE dyse =9y -10=37 | msE = 255 -306843.38
— dfyse
| =

TableW.12 Experiment 2 RVM ANOVA: Impacted Methods, Unegual Size Samples, Weighted Means
Analysis - Testing the Hg hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
_ MST _
Fealculated Fealculated = VISE =1.79
Fa Fq(dfyst.0fyse) = Foos(2:37) = 3.26
Accept/Reject Hy Accept Hy since F i cutated < Fa -

314

Analysis of variancefor the impacted classes across all types of expected change using unequal sample
sizesand unweighted means analysis:

TableW.13 Experiment 2 RVM ANOVA: Impacted Classes, Unequal Size Samples, Unweighted Means
Analysis - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group n1=18, n,=8, n3=14

TableW.14 Experiment 2 RVM ANOVA: Impacted Classes, Unequal Size Samples, Unweighted Means
Anaysis - Cdculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
Explained by Treatments SST dfygt = 9-1 =2 MST = SST 1,025,251.55
fust
g
Error or Unexplained SSE dfyse = 9 z h,—10=37 MSE = SSE - 546,704.86
— dfyse
| =

TableW.15 Experiment 2 RVM ANOVA: Impacted Classes, Unequal Size Samples, Unweighted Means
Analysis - Testing the Hg hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
_ MST _
FCaIcuIated FCaIcuIated - M_SE =188
Fa Fq(dfysmdfyse) = Foos(237) = 3.26
Accept/Reject Hy Accept Ho since F . cutated < Fa -

315

Analysis of variancefor the impacted classes across all types of expected change using unequal sample
sizesand weighted means analysis:

TableW.16 Experiment 2 RvM ANOVA: Impacted Classes, Unequa Size Samples, Weighted Means
Analysis - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group n1=18, n,=8, n;=14

Table W.17 Experiment 2 RvM ANOVA: Impacted Classes, Unequa Size Samples, Weighted Means
Analysis - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
Explained by Treatments SST dfygr = 9-1 =2 msT = ST - 1,004,607.63
MST
g
Error or Unexplained SSE dfyse = 9 z [h,—10=37 MSE = SSE =546,704.86
) dfyse
| =

Table W.18 Experiment 2 RvM ANOVA: Impacted Classes, Unequa Size Samples, Weighted Means
Analysis - Testing the Hy hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
_ MST _
FCaIcuIated FCaIcuIated - MSE =184
Fa Fq(dfysmdfyse) = Foos(237) = 3.26
Accept/Reject Hy Accept Ho since F .z cutated < Fa -

316

Analysis of variance for the impacted files across all types of expected change using unequal sample
sizesand unweighted means analysis:

TableW.19 Experiment 2 RVM ANOVA: Impacted Files, Unequal Size Samples, Unweighted Means
Analysis - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group n1=18, n,=8, ny=14

TableW.20 Experiment 2 RVM ANOVA: Impacted Files, Unequal Size Samples, Unweighted Means
Analysis - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
| dfyst = -1 =2 mMsT = ST =31712 11548
Explained by Treatments SST msT = 9 T =31,712,115.
MST
g
E
Error o Unexplained SSE dfyse =9y -10=37 | MSE = S5E. = 12,697,138.62
) MSE
i=1

TableW.21 Experiment 2 RVM ANOVA: Impacted Files, Unequal Size Samples, Unweighted Means
Analysis - Testing the Hy hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
_ MST _
Fealculated FCaIcuIated - M_SE =250
Fa Fq@fysmdfyse) = Fpos(2.37) = 3.26
Accept/Reject Ho Accept Hy since F cgcutated < Fo -

317

Analysis of variance for the impacted files across all types of expected change using unequal sample
sizesand weighted means analysis:

TableW.22 Experiment 2 RvM ANOVA: Impacted Files, Unequa Size Samples, Weighted Means
Analysis - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group n1=18, n,=8, n;=14

Table W.23 Experiment 2 RvM ANOVA: Impacted Files, Unequa Size Samples, Weighted Means
Analysis - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
i df =g-1=2 - SST _ 2
Explained by Treatments SST msT = 9 MST = i =47,181,762.80
MST
g
E
Error or Unexplained SSE dfyse =9y n—10=37 | MSE = S5E. = 12,697,138.62
) MSE
i=1

TableW.24 Experiment 2 RvM ANOVA: Impacted Files, Unequa Size Samples, Weighted Means
Analysis - Testing the Hy hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
_ MST _
FCaIcuIated FCaIcuIated - MSE =3.72
Fa Fq(dfysmdfyse) = Foos(237) = 3.26
Accept/Reject Ho Reject Hg since Fecutated > Fo -

318

Appendix X

Experiment 2: Analysisof Variance (ANOVA) for Change I mpact

with the New Kernel-Venus I nterface Design

Analysis of variance for the impacted data across all types of expected change using unequal sample

sizesand unweighted means analysis:

Table X.1 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Data, Unequal Sized Samples,
Unweighted Means Analysis - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group n1=16, n,=8, n;=14

Table X.2 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Data, Unequal Sized Samples,
Unweighted Means Analysis - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
) a1 = _ SST _
Explained by Treatments SST dfygr = 9-1 =2 MST = T 19,128.74
MST
g
Error or Unexplained SSE dfyse = 9 z (h,—10 =35 MSE = SSE -62916.32
) dfyse
| =

Table X.3 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Data, Unequal Sized Samples,
Unweighted Means Analysis - Testing the Hy hypothesis.

Name of Statistic or Decision

Determination of Statistic or Decision

_ MST

FCaIcuIated FCaIcuIated - M_SE =0.30
Fa Fo(dfysmdfyse) = Foos(2,35) = 3.28
Accept/Reject Ho Accept Ho since F cgcutated < Fo -

319

Analysis of variance for the impacted data across all types of expected change using unequal sample

sizesand weighted means analysis:

Table X.4 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Data, Unequal Sized Samples,

Weighted Means Analysis - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning

Parameter Value

g number of treatment groups

3

n number of subjects in a treatment group

n1=16, n2=8, n3=14

Table X.5 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Data, Unequal Sized Samples,
Weighted Means Analysis - Calculations for determining the F statistic.

Type of Variation

Related Sum of Squares | Related Degrees of Freedom

Related Mean Square

SST 1942281

Explained by Treatments SST dfygt = 9-1 =2 MST =
dfMST
9
E
Error or Unexplained SSE dfyse =0 5 (-10=35 | MSE = dsfi = 62,016,332
i=1 MSE
i=

Table X.6 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Data, Unequal Sized Samples,
Weighted Means Analysis - Testing the Hg hypothesis.

Name of Statistic or Decision

Determination of Statistic or Decision

Fealculated Fealculated = m—:; =031
Fa Fq(dfysmdfyse) = Foos(2,35) = 3.28
Accept/Reject Hy Accept Ho since F .z cutated < Fa -

320

Analysis of variance for theimpacted methods across all types of expected change using unequal sam-

plesizes and unweighted means analysis:

Table X.7 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Methods, Unequal Sized Samples,
Unweighted Means Analysis - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning

Parameter Value

g number of treatment groups

n number of subjects in a treatment group

n1=16, n2=8, n3=14

Table X.8 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Methods, Unequa Sized Samples,
Unweighted Means Analysis -Calculations for determining the F statistic.

Type of Variation

Related Sum of Squares | Related Degrees of Freedom

Related Mean Square

= SST 5003554

Explained by Treatments SST dfygr = 9-1 =2
dfyst
g
Error or Unexplained SSE dfyse = 9 z h,—10=35 = dsfi =532,250.59
: MSE
i=1

Table X.9 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Methods, Unequa Sized Samples,

Unweighted Means Analysis - Testing the Hg hypothesis.

Name of Statistic or Decision

Determination of Statistic or Decision

_ MST
Fcalculated FCaIcuIated = _MSE =
Fa Fq(dfysmdfyse) = Foos(2,35) = 3.28
Accept/Reject Hy Accept Ho since F . cutated < Fa -

321

Analysis of variance for theimpacted methods across all types of expected change using unequal sam-
ple sizes and weighted means analysis:

Table X.10 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Methods, Unequa Sized Samples,
Weighted Means Analysis - Parameters used to calculate the F statistic.

Parameter Value

Parameter Name Parameter Meaning

3

g number of treatment groups

n1=16, n2=8, n3=14

n number of subjects in a treatment group

Table X.11 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Methods, Unequa Sized Samples,
Weighted Means Analysis - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
Explained by Treatments SST dfyst = 9-1 =2 msT = SST - 20,355.45
dfyst
g
SSE
Error or Unexplained SSE dfyse =9) [h;—-10=35 MSE = = =53225059
) MSE
| =

Table X.12 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Methods, Unequa Sized Samples,
Weighted Means Analysis - Testing the Hg hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision

MST
Falculated Fealculated = MSE =0.04
Fa Fq(dfysmdfyse) = Foos(2,35) = 3.28
Accept/Reject Hy Accept Hg since F 5 cutated < Fa -

322

Analysis of variancefor the impacted classes across all types of expected change using unequal sample
sizesand unweighted means analysis:

Table X.13 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Classes, Unequa Sized Samples,
Unweighted Means Analysis - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group n1=16, n,=8, n;=14

Table X.14 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Classes, Unequa Sized Samples,
Unweighted Means Analysis - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
) _ _ _ SST _
Explained by Treatments SST dfygt = 9-1 =2 MST = . 1,957,231.94
MST
g
E
Error or Unexplained SSE dfyse =gy h—10=35 | MSE = dsfi = 923,371.39
— MSE
| =

Table X.15 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Classes, Unequa Sized Samples,
Unweighted Means Analysis - Testing the Hg hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
_ MST _
FCaIcuIated FCaIcuIated - MSE =212
Fa Fo(dfysmdfyse) = Foos(2,35) = 3.28
Accept/Reject Ho Accept Ho since F cgcutated < Fo -

323

Analysis of variancefor the impacted classes across all types of expected change using unequal sample
sizesand weighted means analysis:

Table X.16 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Classes, Unequal Sized Samples,
Weighted Means Analysis - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group n1=16, n,=8, n;=14

Table X.17 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Classes, Unequal Sized Samples,
Weighted Means Analysis - Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
Explained by Treatments ssT dfyyqr = g—1 =2 mMsT = ST -1 969,773.82
dfyst
g
Error or Unexplained SSE dfyse = 9 z h,—10=35 MSE = dsfi =923,371.39
. MSE
i=1

Table X.18 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Classes, Unequal Sized Samples,
Weighted Means Analysis - Testing the Hq hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision
_ MST _
Fealculated Fealculated = VISE =213
Fa Fq@fysmdfyse) = Fpos(2:35) = 3.28
Accept/Reject Hy Accept Ho since Fcgcutated < Fo -

324

Analysis of variance for the impacted files across all types of expected change using unequal sample
sizesand unweighted means analysis:

Table X.19 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Files, Unequal Sized Samples,
Unweighted Means Analysis - Parameters used to calculate the F statistic.

Parameter Name Parameter Meaning

Parameter Value

g number of treatment groups 3

n

number of subjects in a treatment group

n1=16, n2=8, n3=14

Table X.20 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Files, Unequal Sized Samples,
Unweighted Means Analysis -Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
Explained by Treatments SST dfys7 = 9-1 =2 MST = dsfi =21,015,862.87
MST
g
Error or Unexplained SSE dfyse =9y h—10=35 | MSE = SSE - g344,854.38
— dfyse
| =

Table X.21 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Files, Unequal Sized Samples,
Unweighted Means Analysis -Testing the Hg hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision

Fealculated Fealculated = m—:; =252
Fa Fq(dfysmdfyse) = Foos(2,35) = 3.28
Accept/Reject Hy

Accept Hg since F,cuiated < Fa -

325

Analysis of variance for the impacted files across all types of expected change using unequal sample
sizesand weighted means analysis:

Table X.22 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Files, Unequal Sized Samples,
Weighted Means Analysis -Parameters used to cal culate the F statistic.

Parameter Name Parameter Meaning Parameter Value
g number of treatment groups 3
n number of subjects in a treatment group n1=16, n,=8, n;=14

Table X.23 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Files, Unequal Sized Samples,
Weighted Means Analysis-Calculations for determining the F statistic.

Type of Variation Related Sum of Squares | Related Degrees of Freedom Related Mean Square
. _ _ _ SST _

Explained by Treatments SST dfysr = 9-1 =2 MST = T 27,614,558.97

MST

g

Error or Unexplained SSE dfysg = 9 z (h,—10=35 | MSE = SSE 8,344,854.38

— dfyse

| =

Table X.24 Experiment 2 Kernel-Venus Interface ANOVA: Impacted Files, Unequal Sized Samples,
Weighted Means Analysis -Testing the Hg hypothesis.

Name of Statistic or Decision Determination of Statistic or Decision

MST
Fealculated Fealculated = MSE =331
Fa Fq(dfysmdfyse) = Foos(2,35) = 3.28
Accept/Reject Hy

Reject Hg since Ficutated ™ Fo -

326

