
BitValue Inference: Detecting and Exploiting

Narrow Bitwidth Computations

Mihai Budiu Seth Copen Goldstein

June 2000
CMU-CS-00-141

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

An abridged version of this text appeared in the Proceedings of 6th International
Euro-Par Conference, August 2000, published in LNCS 1900 by Springer Verlag.

Abstract

We present a compiler algorithm called BitValue, which can discover unused and constant
bits in dusty-deck C programs. BitValue uses forward and backward dataflow analyses,
generalizing constant-folding and dead-code detection at the bit-level. This algorithm
enables compiler optimizations targeting special processor architectures for computing on
non-standard bitwidths.
Using this algorithm we show that up to 36% of the computed bytes are thrown away;
also, we show that on average 26.8% of the values computed require 16 bits or less (for
programs from SpecINT95 and Mediabench). A compiler for reconfigurable hardware uses
this algorithm to achieve substantial reductions (up to 20-fold) in the size of the synthesized
circuits.

This work was supported by DARPA contract DABT63-96-C-0083 and an NSF CAREER grant.

Keywords: Compilation, dataflow analysis, reconfigurable hardware, CAD tools

1 Introduction

As the natural word width of processors increases, so grows the gap between the number
of bits used and those actually required for a computation. Recent architectural propos-
als have addressed this inefficiency by providing collections of narrow functional units or
the ability to construct functional units on the fly. For example, instruction set exten-
sions which support subword parallelism (e.g. [10]), Application-Specific Instruction-set
Processors (ASIPs) (e.g. [9]), and reconfigurable devices (e.g. [11]) all allow operations on
operands which are smaller than the natural word size.

Reconfigurable computing devices are the most efficient at supporting arbitrary size
data because they can be programmed post-fabrication to implement functions directly as
hardware circuits. In such devices it is possible to create functional units which exactly
match the bit-widths of the data values on which they compute.

State of the art methods for using the special architectural features require the program-
mer to use macro libraries or specify the bit-widths manually, a tedious and error-prone
process. Furthermore, there is little or no support in high-level languages for specifying
arbitrary bit-widths.

In this paper we present BitValue, an algorithm which enables the compilation of
unannotated high-level languages to take advantage of variable size functional units. Our
technique uses dataflow analysis to discover bits which are independent of the program
inputs (constant bits) and bits which do not influence the program output (unused bits).
By eliminating computations of both constant and unused bits the resulting program can
be made more efficient.

BitValue generalizes constant folding and dead-code elimination to operate on individ-
ual bits. When used on C programs, BitValue determines that a significant number of
the bit operations performed are unnecessary: on average 14% of the computed bytes in
programs from SpecINT95 and 21% of the bytes in Mediabench are useless. Our technique
also enables the programmer to use standard language constructs to pass width information
to the compiler using masking operations.

Narrow width information can be used to help create code for sub-word parallel func-
tional units. It can also be used to automatically find configurations for reconfigurable
devices. BitValue has been implemented in a compiler which generates configurations for
reconfigurable devices, reducing circuit size by factors of three to twenty.

Contributions. We summarize here the contributions of this paper:

• We formulate the problem of bit-value inference as a dataflow problem, of inferring
the value of each computed bit (as one of “constant”, “useful bit”, “don’t care”).

• We give an algorithm to solve the bit-value inference problem.

• We evaluate the implementation of our algorithm in a C compiler and in a compiler
for reconfigurable hardware.

• We measure the effects of our analysis for detecting narrow widths in programs from
SpecINT95 and Mediabench.

1

• We measure the reductions in circuit size due to our algorithm in a compiler for
reconfigurable hardware.

In Section 2 we present our BitValue inference algorithm. Section Section 3 shows the
algorithm in action on two examples. Results for the implementation in a C compiler are
in Section 4 and for a reconfigurable hardware compiler in Section 5. Related work is
presented in Section 6 and we conclude in Section 7.

2 The BitValue Inference Algorithm

For each bit of an arbitrary-precision integer, our algorithm determines whether (1) it has a
constant value, or (2) its value does not influence the visible outputs of the program. Those
two possibilities are similar to constant folding and dead code elimination, respectively. In
our setting, however, these are performed at the bit-level within each word.

We can cast our problem as a type-inference problem, where the type of a variable
describes the possible value that each bit can have during an execution of the program.
The BitValue algorithm solves this problem using dataflow analysis. In this section we
introduce first the dataflow lattice, we present the transfer functions, we give an outline of
the algorithm and conclude with two examples.

0 1

U

X

Figure 1: The bit values lattice. The ordering is defined by the “information content”.

The Bit-value Lattice. We represent the bit values by one of: 〈0〉, 〈1〉, don’t know
(denoted by 〈u〉) and don’t care, (denoted by 〈x〉). Let us call this set of values B. Some
bits are constant, independent of the inputs and control flow of the program; such bits are
labeled with their value, 〈0〉 or 〈1〉. A bit is labeled 〈x〉 if it does not affect the output;
otherwise a bit is labeled 〈u〉. These bit values form a lattice, depicted in Figure 1. We
write ∪ and ∩ for sup and inf in the lattice respectively. The top element of the lattice >
is 〈x〉 and the bottom ⊥ is 〈u〉.

The Bit String Lattice. We represent the type of each value in the program as a string
of bits. We write B∗ to denote all strings of values in B. For example, for the C statement1

unsigned char a = b & 0xf0, we determine that the type of a is 〈uuuu0000〉, and that
the type of b, assuming it is dead after this statement, is 〈uuuuxxxx〉. A regular 8-bit value
about which we know nothing is represented as 〈uuuuuuuu〉. We write the bitstrings like
numbers, with the most significant bit to the left. ⊥ is an infinite string of 〈u〉s, and > is
the empty string.

1ANSI C doesn’t mandate the size of a char or int; we just exemplify in the context of a plausible
implementation.

2

The bitstrings also form a lattice L. The ∪ and ∩ operations in L are performed
bitwise (i.e. 〈ab〉 ∪ 〈cd〉 = (〈a〉 ∪ 〈c〉)(〈b〉 ∪ 〈d〉)), where we have used juxtaposition to
denote concatenation. For example, 〈xu〉 ∪ 〈0x〉 = 〈xx〉 and 〈xu〉 ∩ 〈0x〉 = 〈0u〉.

When applied to strings of different lengths, ∪ gives a result of the shorter length,
while ∩ gives a result of the bigger length. The shorter value is sign-extended in the
lattice for the ∩ computation: a string representing an unsigned number is sign-extended
with 〈0〉 bits, while a string representing a signed number is sign-extended with its most
significant bit. For example, for signed numbers, 〈1u〉 ∩ 〈u0x〉 = 〈11u〉 ∩ 〈u0x〉 = 〈uuu〉,
while 〈1u〉 ∪ 〈u0x〉 = 〈1u〉 ∪ 〈0x〉 = 〈xx〉.

The Transfer Functions. To carry the dataflow analysis we need to show how each
operation in the program computes on values in the lattice L. We thus need to give the
definition of the transfer functions for these operations.

The forward transfer function propagates constant bits forward through the program.
The backward transfer function propagates don’t care bits from destinations to sources.
We associate to each operation in the program one forward and one backward transfer
function which indicate how the operation computes on strings in L.

For example, for the “and” operation, denoted in C by &, we can completely describe
the forward transfer function by specifying how it operates for strings of only one bit. To
compute on longer strings we apply it bitwise. Table 1 gives the definition for individual
bits. To apply the “and” function to arbitrary strings in L, the shorter string is sign-
extended to the length of the longer one before we apply the operation bitwise.

& 〈x〉 〈0〉 〈1〉 〈u〉
〈x〉 〈x〉
〈0〉 〈0〉 〈0〉 〈0〉
〈1〉 〈0〉 〈1〉 〈u〉
〈u〉 〈0〉 〈u〉 〈u〉

Table 1: The transfer function for the “and” C function for strings of one bit. The empty
slots indicate cases which can never arise.

This definition is quite intuitive: we can apply the function bitwise, because this is how
the real “and” function operates: the i-th bit in the input influences only the i-th bit in
the output. For constant values the transfer function has to operate like the real function.
For 〈u〉 values it has to assume the worst-case value for the bit: it can be either 0 or 1,
and the result is the worst (∩) of these two cases.

The backward transfer function for the “and” operation also operates bitwise. For a &

b = c, the backward transfer function tells us the values of a and b in L given the value
of c. (Actually we will generalize the backward transfer function to also depend on the
known input bits, i.e. if we know that a bit of a is 〈0〉, the corresponding bit of b is 〈x〉.)

Table 2 shows that a don’t care in the output “propagates” to both inputs as a don’t
care, as we would expect (because “and” is symmetric in its inputs we display only the
dependence from the output to one input).

3

Output 〈x〉 〈0〉 〈1〉 〈u〉
Input 〈x〉 〈u〉 〈u〉 〈u〉

Table 2: A reverse transfer function for the “and” C function for strings of one bit.

In order to certify the correctness of our algorithm, we need to prove that the transfer
functions we define are monotone and conservative. We define A : (N → N) × L → L,
the forward transfer function of an operator in three steps. Given a unary2 operation
f : N→ N, A(f, ·) is its associated forward transfer function in L → L.

A bitstring whose all bits have constant values denotes a single integer value. For such
a bitstring the transfer function should behave identically to the corresponding function
in the program: e.g. A(f, v) = f(v) if v ∈ {0, 1}∗. (To simplify the notation, if v is a
bitstring with constant bits only (i.e. v ∈ {0, 1}∗), we denote with v both the bitstring v
and the integer number represented by this bitstring. Notice that the bitstring 〈11〉 may
represent either the number 3 or −1, depending on whether it is signed or unsigned. We
assume that the “signedness” of a bitstring is carried together with the string.)

If a bitstring contains 〈u〉 bits, it no longer represents a single constant value, but a set of
values. For example, 〈u0〉 represents the values 〈00〉 and 〈10〉. To capture this information
we define an “expansion” function expu : L → 2L, which takes a bitstring s and generates
a set of bistrings: all bitstrings that can be obtained from s by replacing the 〈u〉 bits in s
with some constant. For example expu(〈0u1u〉) = {〈0010〉, 〈0011〉, 〈0100〉, 〈0111〉}. Notice
that the expansion function is defined for strings which contain 〈x〉s too.

The transfer function A(f, ·) is conservative if ∀s ∈ {0, 1, u}∗.∀v ∈ expu(s).f(v) ∈
expu(A(f, s)); i.e. if v is in the set represented by s, then f(v) must be in the set represented
by A(f, s). We define thus A(f, s) =

⋂
y∈expu(s) f(y) for s ∈ {0, 1, u}∗.

To deal with don’t care bits, we will make a similar argument. Each string which
contains 〈x〉 bits actually represents a set of possible strings, in the same way: 〈0x0〉 can
stand for either of 〈000〉 or 〈010〉. We define similarly expx(s) : L → 2L as the set of all
bitstrings obtained from s by substituting the 〈x〉 bits will all possible constant values.

A bit is don’t care if its value doesn’t matter for the result. So we can choose any
constant value for these bits to compute the result. We can define A(f, s) =

⋃
y∈expx(s) f(y).

Then, for any y ∈ expx(s) we will have f(y) ∈ expx(A(f, s)).
Finally,

A(f, v) =
⋃

y∈expx(v)

⋂
x∈expu(y)

f(x).

The intuition behind this equation is the following: when we compute the transfer
function in L for an input value, we can choose the most convenient values for the input bits
which are marked 〈x〉, but we must “cover” with the result the entire space of possibilities
for the bits marked 〈u〉. This definition can be easily extended to deal with n-ary operators.

For example, here is what the above definition yields for the C complementation ~

2These definitions are easily generalized for functions with multiple arguments.

4

operator when applied to 〈u0x〉:

A(˜, 〈u0x〉) = A(˜, 〈u00〉) ∪A(˜, 〈u01〉)
= (A(˜, 〈000〉) ∩A(˜, 〈100〉)) ∪ (A(˜, 〈001〉) ∩A(˜, 〈101〉))
= ((˜〈000〉 ∩ ˜〈100〉) ∪ (˜〈001〉 ∩ ˜〈101〉))
= ((〈111〉 ∩ 〈011〉) ∪ (〈110〉 ∩ 〈010〉))
= 〈u11〉 ∪ 〈u10〉
= 〈u1x〉

In practice we implement transfer functions which are simpler to compute (the expan-
sion functions expu and expx can have as result a set with a number of elements exponential
in the size of their argument). However, all our transfer functions are conservative approx-
imations (in the function lattice L → L) of the functions given by A(f, ·).

The backward transfer function will discover don’t care bits in the input starting from
the don’t cares in the output. We define the backward functions using techniques from
Boolean function minimization [6].

The notion of don’t care input for a Boolean function f of n Boolean variables is well
known: an input xi is a don’t care if the derivative of f with respect to xi is zero: ∂f

∂xi
= 0,

i.e. f |xi=0 = f |xi=1. We can view an operator which computes many bits (like addition)
as a vector of Boolean functions, each computing one bit of the result. Let us denote with
x = (xn, xn−1, . . . , x0) the input bits and with y = (ym, ym−1, . . . , y0) the output bits. If
f(x) = y we can say that yk = fk(x), i.e. fk is the function which computes the k-th bit
of the output.

An input bit is don’t care for an operator if it is a don’t care for all the boolean functions
fi. We define the reverse transfer function for each fk for each input bit xi like this:

xi,k =

〈x〉 if yk = 〈x〉
〈x〉 if yk 6= 〈x〉 and ∂fk

∂xi
= 0

〈u〉 otherwise

We can then compute the i-th input bit from all the k values like this: xi = ∩kxi,k.
When some of the input bits have constant values, we consider the restriction of each

fk to the constant inputs when computing the don’t cares. For instance, if x0 = 〈0〉, then
in the above formula we use fk|x0=0 instead of fk.

For example, let us see how the backward propagation operates for the “xor” operator,
on the statement c = a^b when we know that the types of a, b and c are respectively 〈u0〉,
〈uu〉 and 〈xu〉; we expect the don’t care bit of c (the most significant) to be propagated to
a and b. The two bits of c are computed by two boolean functions, each having 4 inputs:
c0 = f0(a0 = 0, a1, b0, b1) = a0^b0 and c1 = f1(a0, a1, b0, b1) = a1^b1. Because c1 = 〈x〉, all
the input bits of f1 are 〈x〉.

Looking at the don’t cares of f0 we obtain that a1 is a don’t care, because f0|a1=0 =
f0|a1=1; b1 is also a don’t care of f0. To summarize, the inputs of f1 are 〈xx〉 and 〈xx〉.
The inputs of f0 are 〈ux〉 and 〈ux〉. The inputs of the “xor” will be computed taking the
infimum of these values: a = 〈xx〉 ∩ 〈ux〉 = 〈ux〉, and the same computation for b.

5

unsigned char
f(unsigned char c,

unsigned char a)
{

unsigned char d;
d = (c + a) & 0x33;
return (d >> 4)

+ (d << 2);
}

+ +

returned
value

&

33

r
+

<< >>

2

uu00uuuu

a c

4d

xxuuuuuu

uu

uuxxxx

uu00uu00

xxuu00uu

xxuu00uu

xxuuuuuu

xxuuxxuu

returned

&

33

r
+

<< >>

2

a c

110011

4d

uu00uuuu

00uu

uuuuuuuu

uuuuuuuu

10010

uuuuuuuu

uu00uu00

00uu00uu

value

Figure 2: A C function and the associated data-flow graph. The types inferred by forward
(backward) propagation are shown in the left (right) figure. We assume that a char has 8
bits.

When the algorithm described in Appendix A concludes the computation, each value
will get a type combining the information from the forward and backward passes using a
“sup”. The final types will be a = 〈u0〉 ∪ 〈ux〉 = 〈u0〉 and b = 〈uu〉 ∪ 〈ux〉 = 〈ux〉.

In this example the fact that a0 = 0 was not useful to infer more information in the
backward propagation, but if we change the operator from ^ to &, this information provides
the type 〈x〉 for b0.

In practice the transfer functions as given by the above definitions can be expensive to
compute, so we resort to using monotone conservative approximations. Appendix C shows
the current implementation we have for the various transfer functions.

The Dataflow Analysis. We compute the types using iterative dataflow analysis. We
maintain for each value two types: the best type and the current type. The best type is
initialized conservatively to ⊥ and moves up in the lattice after each pass. The analysis
alternates forward and backward dataflow passes, terminating when the best type does not
change during a pass.

Each pass starts by initializing the current type for all the values >, and proceeds to
do the dataflow computation; during this computation the current types move down in the
lattice until a fixed point is reached. At the end of each pass we update the best type: best
= best ∪ current.

Appendix A presents the complete pseudocode of the BitValue dataflow algorithm.

3 Examples

In this section we present two examples of the algorithm in action on two small programs.

6

char
f(unsigned a)
{

unsigned short i, r=0;
for (i=0; i < a; i++)

r += i;
return r;

}

+

+

+

+

1

<

a

i

r

8*u

16*u

returned

8*u 8*u

16*u

32*u 16*u

1

<

a

i

0u
r

01

32*u

16*u

32*u

returned

Figure 3: An example with a loop and the associated data-flow graph. The types inferred by
forward propagation are shown in the left figure, while the types inferred by the backward
pass are shown in the right figure. We use 32*u to denote a string of 32 〈u〉 bits. (We
assume that a C short has 16 bits, while a char has 8.)

Straight Line Code. We first analyze the program in Figure 2.3 The algorithm begins
with the forward pass and examines the first statement. First all the variables get a type
with width specified by the C width, and all bits don’t know, i.e. every bit is significant.
c+a from Figure 2 must be computed on 9 bits, but result will be truncated to 8 bits of
precision by taking ∪ with the best value. The masking operation creates a type for d with
a combination of constants and don’t knows, 〈00uu00uu〉.

The left shift in the return statement concatenates 〈0〉 bits at the least significant end,
while the right shift’s result will have the type 〈00uu〉. Using this information, the addition
in the return statement infers that the final result has type 〈uu00uuuu〉.

The backward pass uses this information as a starting point. It proceeds to determine
which bits of the computation are actually needed. In this example, the right shift indicates
that the bottom 4 bits of d are don’t cares, and the left shift indicates that the top 2 bits
are don’t cares. Since d is used in two expressions, its useful bits are represented by the
∩ of these two strings. The middle two bits of d have been found to be 0 by forward
propagation, and they are preserved by taking the ∪ with the best value.

From the & we deduce that the useful bits of the sum a+c are 〈xxuuxxuu〉. This don’t
care information propagates up through the transfer function associated with the plus
operation, and the compiler deduces that for both a and c only the bottom 6 bits are
significant.

During the next forward pass there are no changes and the algorithm terminates.

Cycles. Figure 3 illustrates how loops are handled, requiring the algorithm to make
several iterations. The forward pass discovers in the first iteration that the initial types
of both i and r are 〈0〉. After the first addition to r, it still has the type 〈0〉. After
processing the incrementation of i, however, it is noted that i must have type 〈1〉. The
forward algorithm takes the ∩ of the two values discovered for i so far, 〈0〉 and 〈1〉, yielding

3We assume that all computations are carried on 8 bits; a normal C implementation would cast all
values to int and back.

7

〈u〉. When the assignment r += i is processed, r also gets the type 〈u〉.
The second iteration will assign to i the type of i+1, that is 〈u〉+〈1〉, which is 〈uu〉. r

will be assigned r + i which is 〈uu〉 + 〈u〉, resulting in 〈uuu〉. Each additional iteration
adds additional 〈u〉’s, for up to 16 iterations, at which point both i and r are labeled
with 16 〈u〉 bits and the algorithm terminates. (The length never becomes more than 16,
because the values can never become “worse” in the lattice than the initial best value,
which is given by the C type.)

The backward pass finds that the top 8 bits of r are don’t cares because only a char is
returned. This information propagates up through the r += i instruction, finally resulting
in only 8 meaningful bits for r. This information also indicates that only 8 bits of i are
useful in the computation of r. However, we cannot restrict the number of bits of i to
8 because i is also used in the comparison operation in the test of the for loop. The
instruction i < a requires all of i’s bits to produce its result (i.e. it doesn’t propagate any
don’t cares upwards). The backward pass takes the ∩ of all the types of the instructions
using i: the comparison (16 〈u〉’s) and the incrementation (8 〈u〉’s), discovering that i’s
type is 16 〈u〉’s.

4 Experiments With a C Compiler

We evaluate our algorithm implemented in SUIF [16] on C programs from MediaBench [8]
and SpecINT95 [13]. We run BitValue after all the important compiler optimizations. We
use the basic SUIF compiler optimizations, augumented with a few optimizations of our
own; these optimizations are sometimes less powerful than the ones available in commercial
compilers, which can make BitValue look better.

We call a bit “useless” if it has a constant or don’t care value. This bit brings no useful
information at run-time. In the following we will present dynamic counts of the useless bits.
The dynamic counts are obtained by using run-time profile information collected on a single
input. The profile information is obtained by counting the execution frequency of each
instruction, using instrumented binaries. Arguably, the dynamic count is more important
than the static count, because it reflects the resources wasted by the computation. The
dynamic count can potentially be translated into application speed-up.

BitValue is implemented as an iterative dataflow algorithm based on work-lists; it uses
def-use chains [15]. We run BitValue intraprocedurally; an interprocedural implementation
would improve the results, at the cost of greater compilation time. We do not analyze any
of the library routines, and we do not include these in the dynamic counts. We treat library
routines conservatively: their arguments and return values are all 〈u〉s.

4.1 Sensitivity to the Def-Use Analysis

Computing precise def-use information can be prohibitively expensive in the presence of
arrays and pointers. To determine the sensitivity of our analysis to the precision of the def-
use information, we compare the results of a simple intraprocedural def-use analysis with
a sophisticated interprocedural analysis based on SPAN [12]. We implemented a def-use
pass which assumes that all pointer operations, global variables and arrays alias to each

8

Static Dynamic
local 12 17
SPAN 15 20

Table 3: Percent reduction in the number of useful bits computed; the numbers are the
geometric mean for a few of the smaller benchmarks in the Mediabench benchmark suite.

other; our analysis has a polynomial worst-case running time. SPAN is very precise, being
based on whole program alias analysis, and has an exponential worst-case running time.

Table 3 shows the geometric mean of the saved bytes (in percents) for some of the
benchmarks4 for each of the two def-use analyses. More precise def-use information would
enhance the quality of our algorithm by an additional 15%.

All the measurements we present in the subsequent sections use the fast and imprecise
def-use analysis, with BitValue run on each procedure separately.

4.2 Range Analysis

The BitValue algorithm does not do a very good job on loop carried dependences. For a
loop like for (int i=0; i<2; i++) the BitValue algorithm will infer a type of 32 〈u〉s for
i. However, from the loop bounds we can tell that two bits are enough to store its value.

To circumvent this problem we have also implemented a simplified variant of the
bitwidth analysis algorithm described in [14]. This algorithm maintains for each inte-
ger quantity a range of possible values. The loop bounds are used to derive the bounds
for loop induction variables. Dataflow analysis is used to derive the bounds for the other
values.

When both analyses are run, BitValue and the range analysis can reinforce each other,
discovering different sets of useless bits. The range analysis can only discover bits at the
most significant side of a word, by design. When loop bounds are unknown, BitValue can
be used to find approximate bounds for them, seeding the range analysis for the induction
variables. Alternatively, as shown in the case above, the savings found using the range
analysis for induction variables can be propagated by BitValue in the rest of the program.

In the following sections we present results which use both range and BitValue analysis.
We ran three experiments for each benchmark: the range analysis only, BitValue only, and
both. When we ran both analyses, they were alternated until a fixed point was reached,
as shown by the pseudocode in Appendix B.

4.3 Evaluation

We are evaluating our algorithms on programs from the Spec95 integer benchmark suite
and the Mediabench suite. In Mediabench some programs come in pairs encoder-decoder;
we indicate them using a e or d suffix. The graph in Figure 4 displays the percent of
the dynamic counts of useless bits, obtained using range analysis and BitValue analysis
together. For each benchmark we have four different bars.

4The exponential running time precluded us from using the precise analysis on the larger programs.

9

0

5

10

15

20

25

30

35

40

45

50

ad
pc

m
_e

ad
pc

m
_d

g7
21

_Q
_d

g7
21

_Q
_e

gs
m

_e

gs
m

_d

ep
ic

_e

ep
ic

_d

m
pe

g2
_e

m
pe

g2
_d

jp
eg

_e

jp
eg

_d

pe
gw

it_
e

pe
gw

it_
d

m
es

a

12
9.

co
m

pr
es

12
4.

m
88

ks
im

09
9.

go

13
0.

li

13
2.

ijp
eg

13
4.

pe
rl

14
7.

vo
rt

ex

m
ed

ia
vg

sp
ec

av
g

bits
msbits
msbyte
initial

Figure 4: Percent of the dynamically manipulated bits which are useless in programs from
Mediabench and SPECInt95.

• The bottom bar indicates bits which are saved by the C type declaration. For in-
stance, if a value is declared to be a short, we say that it saves 16 bits (we assume
a target machine with 32 bit word size).

• The second bar from the bottom counts only the whole bytes which are saved. More-
over, these bytes have to be present at the most significant part of the word. For a
value having a 〈u〉 bit in the most significant byte of a word and all the other bits
constant, we count no savings.

• The third bar additionally counts all the contiguous bits which are saved at the top
of a word. For a type like 〈01x0u0x0〉 we count 4 saved bits.

• The topmost bar additionally counts all the other saved bits, no matter where they
appear in the word.

The rightmost two bars are the arithmetic average for all the benchmarks in Mediabench
and SPECInt95 respectively. There are almost no savings for the epic benchmarks because
they operate with floating-point values in their innermost loops, being impermeable to our
analysis.

In general, the more narrow values are present in the original program (i.e. the program
is written using types shorter than int), the better our analyses perform, because they
can propagate such information to the sources and destinations of the instructions using
the narrow data.

10

g721_d

32
24
16
12
8
4
1

gsm_e

124.m88ksim pegwit_d

0%0%0%

0% 0% 0%

10%10%10%

10% 10% 10%

20%20%20%

20% 20% 20%

30%30%30%

30% 30% 30%

40%40%40%

40% 40% 40%

50%50%50%

50% 50% 50%

60%60%60%

60% 60% 60%

70%70%70%

70% 70% 70%

80%80%80%

80% 80% 80%

90%90%90%

90% 90% 90%

100%100%100%

100% 100% 100%
132.ijpeg

mpeg2_e

base range bitvalue both base range bitvalue both base range bitvalue both

base range bitvalue bothbase range bitvalue bothbase range bitvalue both

Figure 5: Percentage breakdown of widths from some programs (dynamic counts). The
’base’ bar is the original program; ’range’ indicates the distribution after range analysis,
’bitvalue’ after running BitValue and ’both’ after both analyses were run.

These results are roughly the same as the ones presented in [5]. However, there are
three differences with respect to that paper: (1) we have implemented a better dead-code
ellimination procedure, which is run before our analysis. This reduces the visible benefit of
our analyses, (2) we have improved the range analysis to deal with more instructions, and
(3) we alternate the range analysis with BitValue. This provides better results, because
the two analyses reinforce each other. The loss in savings due to the better dead-code
ellimination is ballanced by the more savings we find.

4.4 Size Histograms

Table 4 and Table 5 show the histograms of the data sizes for our benchmarks. The value
sizes are bucketed in bins as follows: 1 bit, 2–4 bits, 5–8 bits, 9–16 bits, 17–24 bits and
25–32 bits wide values. We count only useless bits from the most significant part. For each
program we present four histograms: one for the original program (with no analysis), one
for the range analysis alone, one for BitValue analysis alone, and one for both analyses.

In Figure 5 we show the same information graphically for some benchmarks which
achieve most savings. For example, we can interpret the graphs for g721 d in the following
way: the first bar says that about 16% of the values in the original program are 16-bit or
less. The fourth bar shows that using the combined analyses we discover that 16 bits are
actually enough for about 55% of the values in the program.

For some programs the range analysis finds most useless bits, for some programs Bit-
Value is more effective, but in general combining the two gives results better than any of
them isolated.

11

Benchmark Experiment 1 4 8 12 16 24 32
adpcm e Original 0 0 0 0 4 0 96

Range 4 0 4 0 4 0 88
BitValue 4 13.4 8 0 4 0 70.6
Both 4 13.4 8 0 4 0 70.6

adpcm d Original 0 0 0.9 0 1.9 0 97
Range 3.9 0 2.9 0 2 0 91.2
BitValue 5.9 17.3 6.9 0 2 0 67.9
Both 5.9 17.3 6.9 0 2 0 67.9

g721 d Original 0 0 0.6 0 15.3 0 84.1
Range 0.2 0 8.8 0 15.3 0 75.7
BitValue 0.2 1.9 10.1 1.7 35.5 5.7 44.9
Both 0.2 1.9 17 0.3 35.6 5.5 39.4

g721 e Original 0 0 0.4 0 15.8 0 83.8
Range 0.1 0 7.8 0 15.7 0 76.1
BitValue 0.2 1.9 9.1 1.6 36.7 5.8 44.7
Both 0.2 1.9 15.3 0.3 36.8 5.7 39.8

gsm e Original 0 0 0 0 22.2 0 77.8
Range 0.3 0 2.4 8.8 24.2 0 64.3
BitValue 0.3 0.1 0.2 0 30.7 4.3 64.4
Both 0.3 0.1 2.5 8.8 30.8 4.2 53.2

gsm d Original 0 0 0.1 0 19.3 0 80.6
Range 1.8 0 2 6.9 21.8 0 67.1
BitValue 1.9 0.2 0.2 0 30.6 5.9 61.2
Both 1.9 0.1 2.2 7.1 30.7 5.8 52.1

epic e Original 0 0 0.7 0 0.2 0 99.1
Range 0 0 0.6 0 0.1 0.2 98.7
BitValue 0 0 0.9 0 0.7 0.1 97.9
Both 0.1 0 1 0 0.8 0.4 97.7

epic d Original 0 0 4.4 0 2.1 0 93.5
Range 2.1 0 4.4 0 2.1 1 90.4
BitValue 2.1 0 6 0 5.2 0.6 86.1
Both 2.1 0 6 0 5.2 1.6 85.1

mpeg2 e Original 0 0 4.5 0 5.2 0 90.3
Range 0.5 0 17.1 24.3 5.2 0 52.9
BitValue 0.5 0.1 5.1 1.1 7.9 3.1 82.2
Both 0.5 0.1 17.7 25.4 8.2 2.7 45.4

mpeg2 d Original 0 0 7 0 7.6 0 85.4
Range 0.6 0 7.4 1.8 7.6 0 82.6
BitValue 0.8 0.1 7.5 2 10.2 6.7 72.7
Both 0.8 0.1 7.9 3.8 11.6 5.2 70.6

jpeg e Original 0 0 2.5 0 3.1 0 94.4
Range 2 0 2.6 2.9 3.1 0 89.4
BitValue 2.1 0.2 3.8 4.4 4.8 3.9 80.7
Both 2.1 0.2 3.9 7.4 4.8 3.9 77.7

Table 4: Percentage breakdown of widths (to continue).

The percentage of values which are less than 16 bits averaged over all the programs
when both analyses are applied is 26.8%. Simulation studies [3] have shown that for this
benchmark mix (and for a fixed input) around 50% of the values computed are less than
16 bits; our static analysis is able to discover almost half of these. Because our analysis

12

Benchmark Experiment 1 4 8 12 16 24 32
jpeg d Original 0 0 4.3 0 2.7 0 92.9

Range 1.5 0 4.4 2.1 2.7 0 89.2
BitValue 1.4 0.1 5.8 5.6 5.4 3.5 77.6
Both 1.5 0.2 6 7.8 5.5 3.6 75.4

pegwit e Original 0 0 0.3 0 16.1 0 83.4
Range 0.4 0 0.4 0 16.2 0 83
BitValue 0.7 0 3.7 2.4 26.3 6.6 59.8
Both 0.8 0 3.8 2.5 26.4 6.6 59.9

pegwit d Original 0 0 0.6 0 14.9 0 84.5
Range 0.3 0 0.6 0 14.8 0 84
BitValue 0.4 0 5.6 4.3 25.1 6.9 57.7
Both 0.4 0 5.6 4.3 25.1 6.9 57.7

mesa Original 0 0 2.8 0 0.8 0 96.4
Range 0.9 0 2.8 0 0.9 2.4 93
BitValue 2.8 0.1 3.7 0.2 1.4 4 87.8
Both 2.8 0.1 3.7 0.2 1.5 6.4 85.3

129.compress Original 0 0 8.1 0 1.7 0 90.2
Range 3.2 0 8.1 0.5 1.7 0.9 85.6
BitValue 3.2 3.2 11.3 0.6 1.7 0.7 79.2
Both 3.2 3.2 11.3 1.2 1.9 1.6 77.5

124.m88ksim Original 0 0 1.3 0 0 0 98.7
Range 8.1 0 1.6 1.8 0 0 88.4
BitValue 11.5 1.1 8.3 1.9 1.2 0.6 75.3
Both 11.5 1.2 9 4.1 1.2 0.6 72.4

099.go Original 0 0 0 0 0 0 100
Range 3.3 0 0 0 0 0 96.7
BitValue 3.3 0 0.1 0 0 0 96.6
Both 3.3 0 0.1 0 0 0 96.5

130.li Original 0 0 8.1 0 0 0 91.9
Range 12.7 0 8.1 0 0 0 79.2
BitValue 13.2 0 8.1 0 0 0 78.7
Both 13.2 0 8.1 0 0 0 78.7

132.ijpeg Original 0 0 8.9 0 1.7 0 89.4
Range 0.4 0 9.1 2.6 1.7 0 86.2
BitValue 0.3 0 10.7 8.6 5.8 3.7 70.3
Both 0.3 0 10.9 11.2 5.8 3.7 67.5

134.perl Original 0 0 7.5 0 2.3 0 90.2
Range 5.5 0 7.5 0 2.3 0 84.7
BitValue 6.3 0.1 8.2 0.3 2.6 0 82.4
Both 6.3 0.1 8.2 0.3 2.6 0 82.4

147.vortex Original 0 0 0.5 0 2.6 0 96.9
Range 3.9 0 0.5 0 2.6 0 93
BitValue 3.9 0.4 0.9 0 2.6 0.9 91.3
Both 3.9 0.4 0.9 0 2.6 0.9 91.3

Table 5: Percentage breakdown of widths (continued).

does not deal with arrays and accesses through pointers and because our results are valid
for any input data, we consider that these results are very strong.

In fact, for some benchmarks we discover a larger number of values less than 16 bits
than [3]y. There are two reasons for this: (1) the Suif compiler is less aggressive in optimiza-

13

tions than the Alpha compiler used for that study, so we may execute extra instructions on
narrow values, which bias the dynamic count in our favor; (2) that study reports percents
of instructions whose both inputs are less than 16 bits, but we report instructions whose
output is less than 16 bits. These quantities are not neccessarily the same, but should be
close.

We have examined the main sources of reductions to gain insight into the effectiveness
of the algorithm. The sources of reduction found by BitValue come from several patterns:
(1) the use of shift, bitwise “and” and “or” and multiplication by small constants; (2) the
propagation of cast information involving narrow types both forward and backward; (3)
array index computations and (4) loop induction variables for FORTRAN-like DO-loops.

The data show that BitValue may be a very useful ingredient for automatic compilation
for MMX-like parallelism. It is not clear though how many of the narrow values we discover
can be exploited by the scheduler of the compiler by being packed together.

These qualitative results encourage us to continue the exploration of computer archi-
tectures and compiler algorithms which can effectively exploit narrow data values.

4.5 Practical Issues

Our implementation of BitValue is fast and scales in practice linearly with program size.
The space complexity is linear, too. We analyze on average 1000 lines/second on a 750Mhz
PIII (excluding file I/O and def-use computations), with an untuned implementation.

BitValue effectively generalizes constant folding and dead-code elimination: the con-
stant values discovered by classical constant-folding algorithms will be a subset of the
constant values discovered by BitValue, and the dead code will be a subset of the in-
structions discovered by BitValue as having the output type 〈x〉. BitValue can potentially
discover more instances of constants and dead-code than usual algorithms. Actually Bit-
Value’s dead code discovery algorithm is more powerful than a simple-minded approach
based on pruning the instructions which have no users in the def-use chain: BitValue effec-
tively discovered cycles of instructions whose result is not visible globally, but which use
each other’s results.

We have validated our implementation by self-instrumenting the programs. After de-
tecting the type for each value, we have inserted operations to mask away the constant 〈0〉
bits, to set the constant 〈1〉 bits and we gave a random value to the 〈x〉 bits. The modified
programs were run to check the validity of the output.

An interesting side-effect of our analysis is that it gives a portable high-level method
for specifing widths: by using a masking operation the programmer can seed the BitValue
algorithm. For example, the statement c = c & 0x3c indicates that only the middle 4
four bits of c are useful, and this knowledge is propagated by BitValue throughout the
code.

We are now incorporating BitValue in a compiler which automatically extracts con-
figurations from C programs for execution in a mixed environment, consisting of a CPU
augumented with a reconfigurable fabric. Preliminary results indicate that BitValue will
enable non-trivial speed-ups.

14

5 Experiments with a Reconfigurable Hardware Com-

piler

In this section we evaluate the BitValue algorithm as it is used in the DIL compiler [4] de-
veloped for compiling to reconfigurable hardware. The DIL language operates on arbitrary-
precision integer data types and does not require the values to be annotated with an explicit
width.

With one exception, the algorithm used in the DIL compiler is essentially the same as
that used in the C compiler. Because it allows unbounded precision, the DIL compiler
tries to statically bound the precision of the manipulated values, to ensure the finiteness
of the lattice. There are cases when this is not possible (for instance when the program
cannot be approximated by any finite-precision program), and then the compiler asks the
user to give explicit bounds for the variables.

5.1 Reconfigurable Hardware Benchmarks

In order to evaluate BitValue with DIL, We analyze a set of kernels typical for reconfig-
urable hardware systems, shown in Table 6, and described in more detail in [7].

Benchmark Description
Cordic 12 stage implementation of Cordic vector rotations.
DCT One-dimensional, 8-point discrete cosine transform.
Encoder 8-bit Huffman encoder with the code table hardwired.
FIR FIR filter with 20 taps and 8-bit coefficients.
IDEA Complete 8 round International Data Encryption Al-

gorithm with the key compiled into the configuration.
Nqueens Evaluator for the n-queens problem on an 8x8 board.
Over Porter-Duff “over” operator.
Popcount Count the number of “1” bits in a 16-bit word.

Table 6: Benchmark kernels used to evaluate the DIL compiler.

5.2 Size Reductions for DIL Programs

Because of the nature of DIL, there is no baseline for comparing the performance of the
algorithm (in C we could compare the reduced sizes with the C type-specified sizes). For
evaluation purposes we artificially set the sizes of all variables to 32-bits5 and then we run
the algorithm to determine the reduction in size.

We examine two architectures: one which uses 8-bits wide processing elements (PEs)
and another which maps the program to a circuit with 1-bit PEs. The former is pro-
totypical of more recent reconfigurable devices, the latter of commercially available field
programmable gate arrays.

5Our C implementations of these kernels, used for evaluating their performance on a UltraSparc, were
written in this way [7]. Even if this methodology may be considered “unfair” because it starts from a very
large baseline circuit, it still evaluates the capacity of our algorithms to detect useless bits.

15

0

10

20

30

40

50

60

70

80

90

100

co
rd

ic

en
co

de
r dc

t fir
ide

a

nq
ue

en
s

ov
er

po
pc

nt

1-bit

8-bit

Figure 6: Percent of the hardware removed by BitValue when synthesizing programs for
reconfigurable hardware devices; the bottom bar shows savings when using 8-bit wide
processing elements, and the top bar when using 1-bit wide processing elements.

Figure 6 shows the reduction in the amount of hardware required to implement kernels
compiled with the DIL compiler. For 8-bit PEs, the compiler cannot optimize away all
useless bits: an 〈x〉 in the middle of a byte of 〈u〉 bits cannot be removed (but we can
remove all bytes with only useless bits, irrespective of their position inside of the word).
On the other hand, for 1-bit targets, the hardware reductions are maximum, because none
of the bits discovered by the compiler as useless must be implemented.

Note that the impact of the analysis is significant: it can decrease the silicon real-estate
(and implicitly, decrease the power consumption and the latency of the computation) by
a factor between 2 and 20. For PipeRench [7], a reconfigurable device developed at CMU,
any reduction in size translates immediately to higher speed.

5.3 Practical Issues

Compiling for reconfigurable devices is usually done with CAD tools, which use Boolean
function manipulation techniques to simplify the circuits. Although our reductions are
intrinsically less powerful than the algorithms based on Boolean functions, they generate
results of acceptable quality and run several orders of magnitude faster. The techniques
using Boolean simplifications often have worst-case exponential complexity, while our al-
gorithm has a theoretical quadratic run-time.

To compare our algorithm for DIL with the ones of commercial CAD tools, we ran the
DCT kernel through BitValue and the Synopsis Sinplify compiler; we report these results
also in [4]. We find that our analysis pass runs two orders of magnitude faster (a few
seconds compared to tens of minutes). When targeted to 1-bit processing elements, our
analysis produces a circuit with 2654 bit operations. The Synopsis tools produce a circuit
with 899 Xilinx 4xxx CLBs. A CLB is equivalent to 2–3 bit-operations, depending on how
it is being used. Thus our analysis yields results close to the more complicated analysis
of Synopsis (within 30%). Note that the Synopsis result is sensitive to the programmer’s
width specifications whereas our BitValue algorithm infers the widths automatically (the
circuit given to Synopsis was using the best estimates the programmers could manually
produce for the width of the values).

16

6 Related Work

There is a wealth of static and dynamic analyses which suggest that many of the bits
computed by a program are useless.

Brooks and Martonosi [3] use a simulator to show that for the programs in both
SpecInt95 and MediaBench more than half of all integer computations require at most
16 bits of precision. Our compile time analysis proves statically that on average 27% of
the widths are 16 bits or less for any input data. [3] also suggests hardware techniques for
creating instructions which operate on narrow widths on the fly. The work of Bondalapati
and Prasanna is similar, looking at dynamically changing functional unit sizes based on
dynamically maintained width information [2].

Static techniques for inferring minimum bit-widths using don’t care detection are preva-
lent in the logic synthesis community (for example [6]). This approach computes satisfi-
ability don’t care sets on a network of Boolean operators. Such an analysis operates at
the bit (and not at the word) level and is significantly slower but more precise than our
approach. These algorithms are exponential in complexity, and even heuristic methods
cannot address benchmarks of the size we are analyzing, while our algorithm has worst-
case quadratic complexity, and linear complexity in practice. We compared our algorithm
to the Synopsis Synplify compiler, a commercial CAD tool, using the DCT benchmark
from Section 5. Our analysis runs two orders of magnitude faster and generates circuits
within 30% of the size obtained by Synopsis.

Most similar to our work is Razdan [11]. His analysis uses a ternary logic of 0, 1 and
don’t know (denoted in this paper by x); he also operates on strings of bits, and uses
forward and backward analyses. Although he handles loop induction variables for loops
with a statically known trip-count, he does not offer a complete solution for handling
loop-carried dependences, where a lot of savings can be gained.

Babb et al. [1] suggest that width analysis can be performed by determining the max-
imum values that can be carried on the wires, for example by examining loop bounds.
This technique is further investigated by Stephenson et al. in [14]. These techniques are
orthogonal to ours. The technique in [14] was re-implemented in a simplified form by us as
the range analysis6; such a technique works better for loop carried dependences when the
loop bounds are know. By combining this analysis with BitValue we can obtain savings
even for loops where the bounds are not known at compile time.

7 Conclusions

We have presented BitValue, a compiler algorithm which infers statically the values of the
bits computed by a program. Trimming constant bits or unused bits can reduce the width
of the computed values, enabling the compiler to use narrow width functional units, which
have become available in new architectures (e.g. MMX, reconfigurable functional units,
and Application-Specific Instruction Processors).

6[14] does a more sophisticated loop induction variable detection. It also implements a backward
propagation, and relies on full-program alias analysis to analyze pointer and array data at the expense of
increased compilation cost.

17

BitValue can be used to analyze both C and DIL programs to significantly reduce
the number of bits used to perform computations. We show that BitValue inference can
determine that on average 14% of the most significant bytes (and 20% of the bits) com-
puted are unnecessary for programs from MediaBench and SpecINT95. BitValue analysis
can reduce the size of the programs synthesized for a reconfigurable architecture between
two- and twenty-fold. The algorithm we present is an essential ingredient in developing a
compiler which will target sub-word parallel media extensions, low power extensions, or
reconfigurable devices.

A The BitValue Dataflow Algorithm

Here is the pseudocode implementation of the BitValue dataflow algorithm. For brevity
we assume that each instruction has only one input and one output. The implementation
of the forward transfer and backward transfer functions is shown in Appendix C.

procedure initialize
begin

foreach value v
best(v) = v’s C type as bitstring

end

procedure clear
begin

foreach value v
if (not is input(v)) current(v) = >
else current(v) = best(v)

end

procedure mix
begin

foreach value v
best(v) = best(v) ∪ current(v)

end

procedure forward
begin

while (some current changed)
foreach instruction i

u = >
foreach definer d of input(i)

u = u ∩ current(d)
current(output(i)) = forward transfer(i, u) ∪ best(output(i))

end while
end

18

procedure backward
begin

while (some current changed)
foreach instruction i

u = >
foreach user d of output(i)

u = u ∩ current(d)
current(input(i)) = backward transfer(i, u) ∪ best(input(i))

end while
end

procedure bitvalue
begin

initialize()
while (best changed in last operation)

clear()
forward()
mix()
clear()
backward()
mix()

end while
end

B The Width Analysis Algorithm

The width analysis is carried by alternating BitValue with a range analysis [14]. The range
of a variable is represented as an interval of two integer values, which are the minimum
and maximum values that the variable can reach during any execution of the program. We
use two auxilliary procedures which can convert ranges to bitstrings and viceversa.

procedure convert intervals to types
begin

foreach value v
u = interval to type(best interval(v))
best(v) = best(v) ∪ u

end

procedure convert types to intervals
begin

foreach value v
u = type to interval(best(v))
best interval(v) = best interval(v) ∪ u

end

19

procedure width
begin

repeat
interval analysis()
change = convert intervals to types()
bitvalue()
change = change or convert values to intervals()

while (some change in best or best interval)
end

C Implementation of the transfer functions

In this section we give pseudo-code for our implementations of the transfer functions.
As described in Section 2, we only implement conservative approximations to the “best”
transfer functions7.

We use a few auxilliary procedures and constants, which are not shown in detail. The
leading zero bit of the constants below is useful to represent signed magnitudes:

signExtend: implements sign extension of a bitstring to a specified length, by either
padding it with 〈0〉 for unsigned values or by duplicating the most significant digit
for signed values.

equalizeLength: brings two bitstrings to the same length by sign-extending the shorter
one.

allunknown(length): returns a bitstring with all bits 〈u〉 of the given length.

True: is 〈01〉

False: is 〈0〉

Dontknow: is 〈0u〉

Many operations can be described by a table; in these cases the operation is imple-
mented bit by bit. equalizeLength is invoked first, to bring the two bitstrings to the
same length. All type computations first check if the arguments represent constant values;
if so, they use the native arithmetic of the machine to carry the computation and convert
the resulting value back to a bitstring.

C.1 Forward Transfer Functions

• inf(a, b):

7A best reverse transfer function may not even exist for the reverse data-flow analysis.

20

a b
0 1 u x

0 0 u u 0
1 u 1 u 1
u u u u u
x 0 1 u x

• sup(a,b): bring longest bitstring to length of shorter

a b
0 1 u x

0 0 x 0 x
1 x 1 1 x
u 0 1 u x
x x x x x

• a+b+carry [carry can never be 〈x〉]

a b carry
0 1 u

x x 0x 01 0u
x 0 00 01 0u
x 1 01 10 uu
x u 0u uu uu
0 x 00 01 0u
0 0 00 01 0u
0 1 01 10 uu
0 u 0u uu uu
1 x 01 10 uu
1 0 01 10 uu
1 1 10 11 1u
1 u uu 1u uu
u x 0u uu uu
u 0 0u uu uu
u 1 uu 1u uu
u u uu uu uu

• a-b-borrow [borrow can never be 〈x〉]

21

a b borrow
0 1 u

x x 00 00 00
x 0 00 00 00
x 1 00 10 uu
x u 00 0u uu
0 x 00 01 uu
0 0 00 11 uu
0 1 11 10 1u
0 u uu 1u uu
1 x 00 00 0u
1 0 01 00 0u
1 1 00 11 uu
1 u 0u uu uu
u x 0u uu uu
u 0 0u uu uu
u 1 uu 1u uu
u u uu uu uu

• a * b:

– check if one operand is a constant power of 2 and concatenate 〈0〉s at the end
of the other one

– ta = no of trailing zeros of a; tb = no of trailing zeros of b

– la = no of leading zeros of a; lb = no of leading zeros of b

– return allunknown(length(a) + length(b) −ta−tb− la− lb) concatenated with
(ta+ tb) 〈0〉s.

• a | b:

a b
0 1 u x

0 0 1 u x
1 1 1 1 1
u u 1 u x
x x 1 x x

• a ^ b:

a b
0 1 u x

0 0 1 u x
1 1 0 u x
u u u u x
x x x x x

• a & b:

22

a b
0 1 u x

0 0 0 0 0
1 0 1 u x
u 0 u u x
x 0 x x x

• a && b:

– if a and b have 〈1〉 bits return False

– if a or b has 〈u〉 bits return Dontknow

– return False

• a || b:

– if either a or b have 〈1〉 bits return True

– if a or b has 〈u〉 bits return Dontknow

– return False

• a == b = ! (a != b)

• a != b

– if some bit of a or bis 〈u〉 return Dontknow

– if all bits are constant and two corresponding bits are different return True

– return False

• a < b: bring a and b to same length by signExtension; scan bits starting from
most significant and for each bit test:

– if a’s or b’s bit is 〈u〉 return Dontknow;

– if a’s bit is 〈0〉 and b’s is 〈1〉 return True;

– if b’s bit is 〈0〉 and a’s is 〈1〉 return False;

return False;

• a > b = b < a

• a <= b = !(a > b)

• a >= b = !(a < b)

• a % b return allunknown(min(length(a), length(b)))

• a / b return allunknown(length(a))

• a << b

23

– if (b is constant) return a concatenated with b 〈0〉s

– else return allunknown(length(a) concatenated with 2length(b))

• a >> b

– if (b is constant) return a without its bottom b bits

– else return allunkown(lenght(a))

• !a

– if a has a 〈1〉 bit return False

– if a has a 〈u〉 bit return Dontknow

– return True

• ~a

a
x 0 1 u
x 1 0 u

• (signed)a:

return 〈0〉 concatenated with a

• (unsigned)a:

[is supplied width of the result as argument] return signExtend(a, width)

• a cast to a different width:

– if width is enlarged by cast return a

– else truncate a to output width

C.2 Backward Transfer Functions

If a function is not indicated, or if some case is not treated, that operation propagates no
don’t cares from the output to the input. The only exception is when all bits of the output
are don’t cares; then they all propagate to all inputs (the output is dead code).

• all carry operations (+, -, *):

truncate all 〈x〉 bits from the most significant end

• a | b = c: for each bit of c

– if the output is 〈x〉, this input is also 〈x〉
– if the other input is 〈1〉 and this input is not 〈1〉, this input is 〈x〉
– else this input is 〈u〉

24

• a & b = c: for each bit of c

– if the output is 〈x〉, this input is also 〈x〉
– if the other input is 〈0〉 and this input is not 〈0〉, this input is 〈x〉
– else this input is 〈u〉

• a >> b = c

if (b is constant) a’s don’t cares = (c concatenated with b 〈x〉’s)

• a << b = c

if (b is constant) a’s don’t cares = c with b least significant bits removed

For these functions the output don’t cares are exactly copied to the input:

• bitwise complementation

• bitwise xor

• casts

For these functions no don’t cares are propagated to the input:

• all comparisons

• division, remainder

References

[1] J. Babb, M. Rinard, A. Moritz, W. Lee, M. Frank, R. Barua, and S. Amaras-
inghe. Parallelizing applications into silicon. In IEEE/FCCM Symposium on Field-
Programmable Custom Computing Machines, Napa Valley, CA, April 1999. MIT.

[2] K. Bondalapati and V.K. Prasanna. Dynamic precision management for loop com-
putations on reconfigurable architectures. In IEEE/FCCM Symposium on Field-
Programmable Custom Computing Machines, Napa Valley, CA, April 1999. Orga-
nization: University of Southern California.

[3] D. Brooks and M. Martonosi. Dynamically exploiting narrow width operands to
improve processor power and performance. In HPCA-5, January 1999. Princeton
University.

[4] M. Budiu and S.C. Goldstein. Fast compilation for pipelined reconfigurable fabrics. In
ACM/FPGA Symposium on Field Programmable Gate Arrays, Monterey, CA, 1999.

[5] Mihai Budiu, Majd Sakr, Kip Walker, and Seth Copen Goldstein. Bitvalue inference:
Detecting and exploiting narrow bitwidth computations. In Proceedings of 6th In-
ternational Euro-Par Conference, Lecture Notes in Computer Science 1900, Springer
Verlag, August 2000.

25

[6] M. Damiani and G. de Micheli. Don’t care specifications in combinational and syn-
chronous logic circuits. In IEEE Transactions on CAD/ICAS, pages 365–388, 1992.

[7] S.C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R.R. Taylor, and
R. Laufer. Piperench: A coprocessor for streaming multimedia acceleration. In Pro-
ceedings of the 26th Annual International Symposium on Computer Architecture, pages
28–39, May 1999.

[8] C. Lee, M. Potkonjak, and W.H. Mangione-Smith. Mediabench: a tool for evaluating
and synthesizing multimedia and communications systems. In Micro-30, 30th annual
ACM/IEEE international symposium on Microarchitecture, pages 330–335, 1997.

[9] P. Marwedel and G. Goossens, editors. Code generation for embedded processors.
Kluwer Academic Press, 1995.

[10] A. Peleg, S. Wilkie, and U. Weiser. Intel MMX for multimedia PCs. Communications
of the ACM, 40(1):24–38, 1997.

[11] Rahul Razdan. PRISC: Programmable reduced instruction set computers. PhD thesis,
Harvard University, May 1994.

[12] R. Rugina and M. Rinard. Pointer analysis for multithreaded programs. In Pro-
ceedings of the SIGPLAN ’99 Conference on Programming Languages Design and
Implementation, 1999.

[13] http://www.specbench.org/osg/cpu95/.

[14] M. Stephenson, J. Babb, and S. Amarasinghe. Bitwidth analysis with application
to silicon compilation. In Proceedings of the SIGPLAN conference on Programming
Language Design and Implementation, June 2000.

[15] E. Stoltz, M. P. Gerlek, and M. Wolfe. Extended SSA with Factored Use-Def chains to
support optimization and parallelism. In Proceedings Hawaii International Conference
on Systems Sciences, Maui, Hawaii, Jan. 1994.

[16] R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson, S. Tjiang, S.-W.
Liao, C.-W. Tseng, M. Hall, M. Lam, and J. Hennessy. SUIF: An infrastructure
for research on parallelizing and optimizing compilers. In ACM SIGPLAN Notices,
volume 29, pages 31–37, December 1994.

26

