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Abstract

Parallel computers have not yet had the expected impact on mainstream
computing. Parallelism adds a level of complexity to the programming task that
makes it very error-prone. Moreover, a large variety of very di�erent parallel
architectures exists. Porting an implementation from one machine to another
may require substantial changes.

This thesis addresses some of these problems by developing a formal basis for
the design of parallel programs in form of a re�nement calculus. The calculus
allows the stepwise formal derivation of an abstract, low-level implementation
from a trusted, high-level speci�cation. The calculus thus helps structuring and
documenting the development process. Portability is increased, because the
introduction of a machine-dependent feature can be located in the re�nement
tree. Development e�orts above this point in the tree are independent of that
feature and are thus reusable. Moreover, the discovery of new, possibly more
e�cient solutions is facilitated. Last but not least, programs are correct by
construction, which obviates the need for di�cult debugging.

Our programming/speci�cation notation supports fair parallelism, shared-
varia-ble and message-passing concurrency, local variables and channels. It
allows the development of reactive systems, that is, possibly non-terminating
programs designed to interact persistently with their environment. Moreover,
the speci�cation of liveness properties such as termination or eventual entry is
supported by our methodology.

The calculus rests on a compositional trace semantics that treats shared-
variable and message-passing concurrency uniformly. The re�nement relation
combines a context-sensitive notion of trace inclusion and assumption-commit-
ment reasoning to achieve compositionality. Most re�nement rules are syntax-
directed in the sense that each rule corresponds to a speci�c language construct.
The calculus straddles both concurrency paradigms. A shared-variable program
can be re�ned into a distributed, message-passing programand vice versa. More-
over, the framework naturally extends to �ne-grained levels of concurrency.

A large number of examples illustrate the use of the calculus. A complete
derivation of an n-process mutual exclusion algorithm is given and more e�cient
versions are developed. The all-pair, shortest-paths graph problem is used to
show the derivation of a distributed, message-passing program from a shared-
variable parallel version.
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Chapter 1

Introduction

Parallel computers consist of several computing elements connected either by a
shared-memory space or by a communication network. They support the execu-
tion of more than one operation at a given time and thus allow the simultaneous
execution of the activities necessary for solving a problem. Computing elements
cooperate either by reading from or writing to the shared-memory space or by
using the communication network to send and receive messages. Programming
parallel computers is signi�cantly more di�cult than programming uniproces-
sor machines. It presents substantial challenges which still seem to impede a
more widespread use of parallel computers. This thesis addresses some of these
challenges. We suggest to structure the programming process by means of a par-
ticular formal methodology. We intend to provide a solid theoretical foundation
for more experimental future work.

1.1 Programming parallel computers is di�cult

Compared to sequential computers, parallel machines o�er substantial perfor-
mance advantages at a relatively low cost increase. Moreover, tools for par-
allel programming are available and are becoming rapidly more sophisticated:
Graphical user interfaces support program construction by interconnecting pro-
cesses diagrammatically [L+92]. Compilers and pro�lers determine potential for
parallelism and help with the parallelization of existing code [BFG93, Lev93].
Debuggers use graphical ways to track and display the state of any process or
thread [Pan93]. However, despite their appealing performance-to-cost ratio and
the increasing availability of tools, parallel computers still fail to have the ex-
pected impact on mainstream computing. A close look at the state of the art
in parallel computing suggests at least two reasons:

� Parallel programming is inherently complex. Compared to sequential pro-
gramming the programmer additionally must deal with, for instance, in-
terference, race conditions, process creation and termination, shared re-
sources and consistency, synchronization and deadlock. Successful treat-

1



2 CHAPTER 1. INTRODUCTION

ment of these issues requires knowledge about, for instance, the location,
interconnection, and relative speeds of processors, and the location of and
access to data. Dijkstra has pointed out the competing forces governing
the representation of an algorithm in form of a sequential program:

\On the one hand I knew that programs could have a compelling
and deep logical beauty, on the other hand I was forced to admit
that most programs are presented in a way �t for mechanical
execution but, even if of any beauty at all, totally un�t for
human appreciation." [Dij76, page xiii]

This tension is magni�ed in concurrent programming. In parallel pro-
grams, e�ciency in terms of explicit, �ner-grained parallelism seems to
exclude robustness, maintainability, and veri�ability.

� The paradigms and patterns of program execution for various parallel
architectures di�er substantially. This lack of commonality makes par-
allel programming very architecture dependent. Consequently, it is hard
to move a program from one architecture to another. Even if the pro-
gramming environment seems similar, the underlying communication and
synchronization mechanisms are often very di�erent. Typically, a pro-
gram must be substantially modi�ed to take full advantage of, or even
to execute on, a di�erent architecture. Moreover, the development of re-
liable, widely-applicable performance models is di�cult. The change in
performance caused by porting a program may be very hard to predict. In
short, parallel programs typically are not portable. The loss of portability
in turn limits the expected lifetime of parallel implementations and their
economic viability.

In short, parallel programming to date still is a complex, di�cult endeavour
that results in e�cient, yet very specialized and often short-lived programs.

1.2 How this thesis addresses these problems

Traces have been known as a powerful model of concurrency for a long time,
e.g., [Abr79, Par79, Pnu85]. In recent work [Bro96b, Bro97], Stephen Brookes
has taken a particular kind of trace, called transition trace, and shown how
they give rise to a fully abstract model for concurrent computation that is
tractable, supports di�erent levels of granularity, and is reasonably architecture-
independent. Transition traces thus make an excellent candidate for a model for
formal parallel program design. The purpose of this thesis is to equip Brookes'
model with a viable software development methodology. In particular, we propose
a re�nement calculus that allows the formal, stepwise development of shared-
variable and distributed, message-passing parallel programs from trusted, ab-
stract speci�cations.

A re�nement calculus consists of a speci�cation and programming notation, a
re�nement relation and a set of rules that govern this relation. For a speci�cation
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and programming notation to provide a useful basis for a calculus it should have
certain properties:

� The notation should allow the expression of all necessary aspects of the
development process. Thus, it should leave room for abstract, nondeter-
ministic speci�cations, but also for concrete, executable programs. Such
a language has been called a wide-spectrum language [BBB+85].

� The notation should support fair parallel computation. A large number
of fairness notions exist [Fra86]. We will concentrate on weak fairness.
More precisely, we assume that every process that is enabled continuously,
will eventually be allowed to execute. Weak fairness is a useful minimal
assumption. On the one hand, it can be expected to be met by any
reasonable scheduler. On the other hand, it frees the user from having to
consider concrete scheduling policies and implementations and thus helps
to avoid overly detailed, operational reasoning. Fairness is a good example
of an abstraction that hides unnecessary detail while preserving essential
properties.

� The notation should support shared-variable and message-passing con-
currency. Both are equally important paradigms. We deem a uniform
treatment an important step towards architecture independence.

� The notation should support local variables and channels. In general, it is
good programming style to limit the scope of variables to their places of
usage. This principle is especially true for parallel programs, because scope
and locality can make reasoning about parallel programs substantially
more tractable. Knowing, for instance, that variable x is local, means
that other processes can neither read nor change the value of x. Thus, the
environment cannot invalidate program properties involving x, nor can it
be inuenced by changes to x. Local variable declarations thus provide
another useful abstraction tool. On the one hand, they allow abstraction
from parts of the internal workings of the body of the declaration. On
the other hand, they allow abstraction from the possible inuence of the
environment on certain program properties.

Moreover, the re�nement relation itself also should meet certain minimal re-
quirements.

� The relation should support stepwise, top-down program development and
compositional reasoning. Structured programming and compositionality
are important weapons against the complexity of parallel programming.
To be most e�ective, re�nement should support sequences of small, man-
ageable development steps and thus allow the exploration of di�erent de-
sign decisions and alternative implementations. Note that this requires the
re�nement relation to be reexive and transitive. The soundness proof
of each step should be compositional, that is, re�nement between two
composite programs should be derivable by showing re�nement between
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corresponding subprograms. The re�nement of a large, complex program
should be reducible to the hopefully easier task of �nding re�nements for
its parts.

� The relation should be context-sensitive. Typically, re�nement is carried
out in context. That is, an abstract component C is to be replaced by a
more concrete one C0 in a particular context E. Using information about
the speci�c nature of E makes this replacement substantially more pow-
erful and may provide information crucial for establishing the soundness
of the re�nement step. In other words, C0 may re�ne C only in context
E. In all other contexts, the re�nement may fail and replacing C by C0

would be unsound.

� The relation should support the introduction of local variables and chan-
nels. On the speci�cation level, computations are often described in very
abstract terms. During the course of the re�nement it may then be nec-
essary to esh out the implementation details of these abstract computa-
tions. This very often requires the introduction of local variables, which,
for example, step over an array, or compute temporary results. Changes
to local variables should be unobservable outside their scope.

� The relation should allow a seamless treatment of both concurrency para-
digms. It should be possible to re�ne a shared-variable program into a
distributed, message-passing program and vice versa.

� The relation should support the speci�cation and reasoning about live-
ness properties. The initial, top-level speci�cation of the program to be
developed must be able to express liveness properties. In the concurrent
world, liveness properties are important. The user must be able to specify
and prove, for instance, that a request will eventually be acknowledged,
or that a process will eventually be allowed to enter a critical region.

Finally, note that the rules should also have certain properties.

� The set of rules should be expressive, that is, they should allow the devel-
opment of a substantial class of interesting programs.

� The set of rules should be user-friendly, that is, the rules should not be
overly cumbersome or too numerous.

Issues not addressed in this thesis

Data-rei�cation, sometimes also called data-re�nement, allows the formal re-
placement of abstract data structures by more concrete and implementable
ones [Hoa72, DH72, dRE99]. Although it is an important part of formal pro-
gram design methodologies [Rey81, Jon90, Spi92], the work in this document
will not attempt to incorporate data-rei�cation into the framework. We regard
data-rei�cation as a largely orthogonal program development technique that



1.3. WHAT MAKES A SOLUTION DIFFICULT 5

should easily mesh with our work presented here on procedural or operation
re�nement.

Moreover, no attempt will be made to address performance or complexity
issues. The semantics will concentrate on the sequences of states a program
runs through during execution in parallel environments and will thus be geared
towards correctness. Consequently, if two programs exhibit the same traces they
will be equated in the semantics regardless of their performance or complexity.
While we are guardedly optimistic that the methodology can be equipped with
cost measures, for instance, this aspect is left for future research.

Finally, implementability issues will not be addressed. As mentioned earlier,
a model for concurrent computation should be e�ciently implementable on a
variety of architectures. Currently, we do not know to what extent our model
has this property. In fact, this aspect is the least developed in our research
program. A lot of further work is needed here.

1.3 What makes a solution di�cult

The above list of requirements for our calculus is fairly large. Some of these
requirements are in tension with each other and a right balance needs to be
found.

Compositionality, for instance, is hard to achieve in the presence of concur-
rency and liveness properties. Assumption-commitment reasoning as proposed
by Jones yields a compositional treatment of concurrency upon which we will
build. Moreover, liveness properties are often very di�cult to prove because the
proof requires a global view of the entire system. Since liveness properties are
vital, the challenge is to make their proofs as modular and thus as tractable
as possible. Finally, fairness also needs to be modeled compositionally. Most
treatments of fairness are operational [Fra86, AO83] and a denotational ap-
proach is still widely perceived to be di�cult. However, based on early work
by Park [Par79], Brookes and Older have shown that this perception is unjusti-
�ed [Bro96b, Old96].

A suitable wide-spectrum language needs to bridge the two extreme ends
of a spectrum. On the one hand, desired properties have to be expressed in
a high-level, abstract fashion. On the other hand, the low-level, detailed view
of an executable program needs to be supported. Moreover, both safety and
liveness properties need to be expressible.

We face a similar situation when determining the rules of the calculus. A
large number of rules guarantees expressiveness and applicability of the method-
ology in a large variety of settings, but may also lead to confusion and thus
impede user-friendliness.

Moreover, the wealth of paradigms and mechanisms in parallel programming
has given rise to an even more confusing wealth of di�erent models for these
paradigms. For instance, shared-variable concurrency has been modeled using
a variety of state traces and temporal logics. Message-passing concurrency on
the other hand has been modeled using, for instance, synchronization trees
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(CCS, [Mil89]), or failure-divergence traces (CSP, [BHR84]). The re�nement
of a shared-variable program into a distributed, message-passing program (and
vice versa), however, requires a uniform semantic model.

Finally, the introduction of parallelism, synchronization and communication
are crucial points in the development. It is not clear how a calculus can best
support them.

1.4 Contributions of this thesis

We de�ne a re�nement calculus that satis�es all of the mentioned requirements.
We present a wide-spectrum language that is general enough to allow the

speci�cation of the desired computation in very abstract terms. However, it can
also encode a standard language with fair, shared-variable parallelism, synchro-
nization, message-passing and local variables and channels.

A crucial step towards a re�nement calculus is the de�nition of a context-
sensitive notion of approximation. It allows the comparison of the behaviour
of two programs with respect to a particular environment. This capability is
extremely useful not only for the formulation of re�nement but also for speci�ca-
tion and veri�cation purposes. The de�nition of context-sensitive approximation
requires a slight but crucial change to the semantics by augmenting traces with
labels.

A re�nement calculus is presented that supports the stepwise development
of shared-variable and message-passing parallel programs in a context-sensitive
fashion. The rules allow the introduction of local variables and channels, and
the proof of certain liveness properties. Most of the rules are compositional.

A variety of detailed examples illustrates the use of the calculus and demon-
strates its expressiveness and relative ease of use. One of these examples deals
with an n-process mutual exclusion algorithm, contains a derivation from a con-
siderably more high-level representation, and reveals several alternative imple-
mentations, some of which exhibit more parallelism than the standard textbook
version.

1.5 Brief overview of related work

While our research builds on a very large body of existing work, it draws mainly
from the following three sources. A more detailed discussion of related work can
be found in Chapter 9.

The choice of the underlying semantics requires a close look at models for
concurrent programming. We have chosen Brookes transition trace semantics,
which in turn was inuenced by Park's work on modeling fairness [Bro96b,
Par79].

Research on compositional proof systems for concurrent programs has suc-
cessfully reconciled concurrency and compositionalityusing assumption-commit-
ment reasoning [Jon81]. We use a form of assumption-commitment reasoning
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that is due to Stirling [Sti88].
Finally, a number of re�nement calculi for sequential programs have been

proposed [Mor87, Mor89, Heh93]. This work provided intuition and clari�ed
some general questions about program design through stepwise re�nement.

1.6 The structure of this thesis

Chapter 2 presents the syntax and semantics of the language we use to express
abstract speci�cations and executable programs. The semantics is given
in terms of traces. Relevant properties of the semantics are discussed.

Chapter 3 reviews Jones' original formulation of assumption-commitment rea-
soning [Jon81] as well as Stirling's reformulation [Sti88]. Then, Stirling's
approach is adjusted to our setting and properties are presented.

Chapter 4 discusses di�erent ways to compare the behaviour of two programs.
One leads to a context-insensitive notion of approximation that analyzes
the behaviour of a program regardless of the environment in which it is
executing. The de�ciencies of this relation lead us to a context-sensitive
notion of approximation. Finally, a way of comparing environments with
respect to their capability for interference is de�ned.

Chapter 5 takes assumption-commitment reasoning and context-sensitive ap-
proximation and merges them into our re�nement relation. Properties and
rules are presented. The program development methodology is given.

Chapter 6 contains the formal derivations of four shared-variable programs.
Section 6.1 contains a simple example to illustrate the basic use of the
calculus. Section 6.2 derives a shared-variable parallel implementation of
the Floyd-Warshall algorithm for computing the shortest paths in a graph.
Section 6.3 derives a shared-variable parallel program to �nd the maxi-
mum in an array of integers. The derived implementation features nested
parallelism. Alternative derivations are discussed. Section 6.4 treats the
generalization of the maximum search problem: The �rst element in an
array that satis�es a property is to be found. We derive a shared-variable
parallel program and show how further re�nement can lead to more e�-
ciency.

Chapter 7 contains the formal derivations of two distributed, message-passing
programs. Section 7.1 discusses the pre�x sum algorithm (a generaliza-
tion of the list ranking algorithm). First, a shared-variable solution is
derived. Then, a distributed, message-passing implementation is obtained
through further re�nement. Section 7.2 addresses the all-pair shortest-
paths problem in a graph. Shared-variable and message-passing programs
are derived. We show that not every shared-variable solution gives rise to
an e�cient distributed implementation.



8 CHAPTER 1. INTRODUCTION

Chapter 8 discusses an n-process mutual exclusion algorithm called the tie-
breaker algorithm or Peterson's algorithm [Pet81]. A high-level repre-
sentation is given and veri�ed. The textbook implementation is derived
together with with several other, more parallel implementations.

Chapter 9 discusses related work. We employ a taxonomy that separates se-
quential from parallel approaches, compositional proof systems from pro-
gram transformation systems and re�nement calculi.

Chapter 10 presents future work. We distinguish between immediate improve-
ments of the framework, and more long-term extensions. A number of
potential areas of application are discussed.

Chapter 11 concludes.

Appendix A contains the soundness proofs of the re�nement rules. Moreover,
the proofs of certain lemmas needed in Chapters 6 and 7 are collected
here.



Chapter 2

Programs, contexts and

traces

One of the hallmarks of re�nement calculi is that typically speci�cations and
programs are expressed within the same formalism, and they are neither syntac-
tically nor semantically distinguished. Programs are speci�cations that happen
to be executable. Languages that aim at capturing all aspects of the program
development process have also been called wide-spectrum languages or mixed
languages [BBB+85].

In this section, we present the syntax and semantics of the language we will
use to express both high-level, abstract speci�cations and low-level, concrete
programs. Throughout this document the term \program" will denote an ele-
ment of this language and thus either be an non-executable speci�cation or a
standard, executable program.

2.1 Syntax of programs and contexts

We start by discussing program variables, and atomic and composite programs.

2.1.1 Program variables

Let Var denote the set of all program variables. Without loss of generality
we assume Var to be �nite. Typical examples for program variables used in
this document are x, y, z, mul, and A[1]. Every variable x has a set Domx

associated with it that contains the values that x can take on.

2.1.2 Atomic statements

Our notion of program allows for very abstract descriptions of computations.
The most basic program component speci�es a single atomic transition and is

9
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called an atomic statement. Atomic statements are inspired by Carrol Morgan's
speci�cation statement [Mor89] and are of the form

V :[P;Q]

where V is a �nite set of variables, sometimes also called a frame, and P and
Q are predicates. The atomic statement above describes atomic transitions
from initial states satisfying P . More precisely, an initial state satisfying P is
transformed in one step into some �nal state satisfying Q by only changing the
variables in V . If the initial state does not satisfy P , the statement does not
o�er any transitions. 1 For instance, a random assignment which may set x to
any natural number is described by

fxg:[tt; x � 0]

which we abbreviate by
x:[tt; x � 0]:

An idling, or stuttering, step is expressed as

skip � ;:[tt; tt]:

To be able to refer to the value a variable held initially, that is, at the beginning
of the transition, we reserve \hooked" variables

(
x in Q. It is easy to see that

atomic statements subsume simple and multiple assignments. The meaning of
the simple assignment x:=x+ 1 and the multiple assignment x; y:=x+ 1; 0, for
example, are captured by

x:[tt; x =
(
x +1]

and
fx; yg:[tt; x =

(
x +1 ^ y = 0]

respectively.
If a predicate does not contain hooked variables it is called unary. Otherwise

it is called binary. In an atomic statement V :[P;Q], P must be unary, whereas
Q may be unary or binary. Given a set of variables V � Var , the set of all
unary predicates whose free variables are in V is denoted by Preds(V ). Thus,
Preds(;) denotes the set of all closed predicates, that is, predicates without free
variables. For instance, true and false, abbreviated by tt and � respectively, are
members of Preds(;), as are 3 > 4 and 1 � 0. Moreover, Preds(Var) denotes
the set of all predicates over all variables.

The semantics of atomic statements is conveniently captured by character-
istic formulas.

1Note that our treatment of this case di�ers from Morgan's. In [Mor89], the behaviour of
the speci�cation statement is completely unconstrained if the precondition is not met. See
Section 9.1.1 for more details.
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De�nition 2.1 (Atomic statements)
Let � be a metavariable that ranges over program variables. Given an atomic
statement V :[P;Q], its characteristic formula cfV :[P;Q] is given by the predicate

cfV :[P;Q] �
(

P ^ Q ^ 8� 2 VarnV:� =
(
�

where
(

P abbreviates the substitution of all free variables in P by their hooked
counterpart. We interpret a binary predicate Q over pairs of states (s; s0) where s
assigns values to hooked variables and s0 to the unhooked ones. More precisely,
(s; s0) j= Q i� replacing the hooked variables in Q by their values in s and
replacing the unhooked variables in Q by their values in s0 makes Q true. �

For instance, the statement x; y:=x+ 1; 0 has the characteristic formula

cfx;y:=x+1;0 � x =
(
x +1 ^ y = 0 ^ 8� 2 Varnfx; yg:� =

(
� :

Characteristic formulas allow us to conveniently determine if a transition (s; s0)
conforms with a particular atomic statement V :[P;Q]. More precisely, the ex-
ecution of V :[P;Q] from the initial state s could result in the �nal state s0 i�
(s; s0) j= cfV :[P;Q] . In Section 2.2.2, the semantics of an atomic statement will
be de�ned as the set of transitions that satisfy its characteristic formula.

2.1.3 Composite programs

More complex programs can be built from atomic statements using sequential
and parallel composition, disjunction, iteration, and hiding. Let C and D range
over programs. An important extension to the standard shared-variable parallel
language involves labels. Syntactically, we allow programs to be enclosed in a
pair of angle brackets h i. The following grammar generates programs that
contain zero or more subprograms enclosed in angle brackets.

C ::= V :[P;Q] j
C1 ; C2 j
C1 kC2 j
C1 _ C2 j
C� j
C! j
new x = e in C j
hDi

D ::= V :[P;Q] j
D1 ;D2 j
D1 kD2 j
D1 _D2 j
D� j
D! j
new x = e in D
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where e ranges over constants and variables. Note that angle brackets cannot
be nested. A program that contains exactly one subprogram enclosed in angle
brackets is called labeled. A program that contains no angle brackets is unlabeled.
To motivation this extension of the language, consider an unlabeled parallel
composition C1 kC2 and suppose we want to re�ne C1. To this end, it will be
necessary to to distinguish the transitions of C1 from those of C2. Labels allow
us to achieve this distinction. As we will see in Section 2.2, the transitions of C1

in the labeled program hC1ikC2 cannot be confused with those of C2 regardless
of the shape of C1 and C2.

Example 2.1 (Well-formed labeled and unlabeled programs)
Both programs below are well-formed. C1 is unlabeled and C2 is labeled.

C1 � mul:[tt;mul =
(

mul +
(
x] ; cnt:[tt; cnt =

(

cnt �1]

C2 � fx; yg:[tt; x � 0 ^ y � 0];2
664
new cnt = y in
mul:[tt;mul = 0];
h(fcnt > 0g ;C1)� ; fcnt � 0gi

end

 sum:[tt; sum =
(
x +

(
y ]

3
775

However, neither C3 nor C4 is well-formed.

C3 � hx:[tt; x � 0]i k hy:[tt; y � 0]i

C4 � htmp:[tt; tmp =
(
x] ; x:[tt; x =

(
y ] ; hy:[tt; y =

(

tmp]ii

�

De�nition 2.2 (Abbreviations)
Let C1 stand for �nite and in�nite iteration over C and let C+ denote �nite,
non-trivial iteration over C, that is,

C1 � C� _C!

C+ � C ;C�:

�

The set of free variables in a program is de�ned as usual.

De�nition 2.3 (Free variables of a program)
Given a program C, the set free variables fv(C) in C is given by:

fv(V :[P;Q]) = V [ fv(P ) [ fv(Q)
fv(C1 ;C2) = fv(C1) [ fv(C2)

fv(hCi) = fv(C)
fv(C1 _C2) = fv(C1) [ fv(C2)

fv(C�) = fv(C)
fv(C!) = fv(C)

fv(C1 kC2) = fv(C1) [ fv(C2)
fv(new x = e in C) = fv(C)nfxg [ fv(e)



2.2. SEMANTICS OF PROGRAMS 13

where fv(P ) denotes the set of variables occurring free in predicate P and e is
either a constant or a variable. �

2.1.4 Contexts

Contexts play an important role in our work. They denote the environment
that a program might be executing in. Formally, a context, ranged over by E,
is an unlabeled program with exactly one hole.

E ::= [] j
C ;E j
E ;C j
C _E j
E _C j
C kE j
E kC j
E� j
E! j
new x = e in E

A context E gives rise to a program E[C], formed by replacing the hole in E
by C. E[C] can be de�ned by straightforward structural induction on E. Note
that placing a context E1 inside another context E2 yields the context E2[E1].
Very often, we will consider a labeled program hCi in some context, that is,
E[hCi] yields the labeled program that is obtained by replacing the hole in E
by hCi.

We call a context E parallel, if the hole is in the scope of a parallel compo-
sition. Formally, E is a parallel context if there exist contexts E1 and E2 and
a program C such that E is of the form E1[E2 kC]. The hole in E is inside E2

which is under the scope of a parallel composition. A context is sequential if it
is not parallel.

2.2 Semantics of programs

Before the semantics of labeled and unlabeled programs can be given, we need
to introduce labeled transition traces. These traces will be used in Sections 2.2.2
and 2.2.4 to de�ne a sequence of increasingly coarse-grained semantics for the
language we have just presented. Section 2.3 shows how our programming lan-
guage can be used to encode the standard programming language constructs.
Section 2.4 sketches how the semantics can be extended to model �ner-grained,
and thus more realistic, notions of concurrency like non-atomic assignments and
non-atomic expression evaluation.

2.2.1 Labeled transition traces

Throughout this document, s; s0; si 2 � denote states, that is, complete map-
pings from the �nite set of all program variables Var to values. We will use
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a particular kind of trace, called transition trace2, to model programs. Transi-
tion traces have proven very useful for the de�nition of compositional models
of shared-variable concurrency [Par79, dBKPR91, Bro96b]. One such trace is a
�nite or in�nite sequence of the form

(s0; s
0
0)(s1; s

0
1) : : : (si; s

0
i) : : :

and thus represents a possible \interactive" computation of a command in which
state changes made by the command (from si to s

0
i) are interleaved with state

changes made by its environment (from s0i to si+1). The meaning of a program
is given by a set of transition traces. To describe the meaning of a labeled
program hC1i kC2 we will consider labeled transition traces of the form

(s0; l0; s
0
0)(s1; l1; s

0
1) : : : (si; li; s

0
i) : : :

where each transition carries a label l from the set � � fp; eg. A transition
labeled with p was caused by a statement inside the angle brackets, that is,
by C1, and is called a program transition. A transition labeled with e is due
to C2 and is called an environment transition. A trace consisting of program
transitions only is called a program trace. Analogous for environment traces.
By describing a labeled program by means of labeled transition traces we thus
regard it as an open system while singling out the transitions made by a speci�c
part of the program. In other words, hC1i k C2 can be thought of as an open
system whose environment is known to at least comprise C2.

We now de�ne a few operations on traces and sets of traces. Let T , T1, and
T2 range over sets of labeled transition traces. The concatenation operation
T1;T2 and the in�nite iteration operation T! are de�ned as

T1;T2 = f�� j � 2 T1 ^ � 2 T2g

T! = f�0 : : :�n : : : j 8i � 0:�i 2 Tg:

T � denotes the smallest set containing T and the empty trace, closed under
concatenation, that is,

T � �
S
n2NT

n

where

T 0 � f�g

Tn+1 � T ; Tn:

Moreover, T+ is like T � except that it does not contain the empty trace, that
is,

T+ � T ; T �:

2Sometimes also called potential or partial computations or extended sequences.
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T1 denotes T � [ T!. Fair parallel composition is modeled by fair interleaving
of sets of traces

T1 k T2 =
[
f�1 k �2 j �1 2 T1 ^ �2 2 T2g

where �k � is the set of all traces built by fairly interleaving � and �. One way
to de�ne � k � formally can be found in [Bro96b].

� k � = f j (�; �; ) 2 fairmergeg
fairmerge = (L�RR�L)! [ (L [R)�A
L =

��
(s; l; s0); �; (s; l; s0)

�
j (s; l; s0) 2 (� � �� �)

	
R =

��
�; (s; l; s0); (s; l; s0)

�
j (s; l; s0) 2 (� � �� �)

	
A = f(�; �; �) j � 2 (� � �� �)1g

[f(�; �; �) j � 2 (�� ���)1g

where concatenation and iteration are extended to sets and triples of traces in
the obvious way: AB = f�� j � 2 A ^ � 2 Bg and (�1; �2; �3)(�1; �2; �3) =
(�1�1; �2�2; �3�3).

Let v range over values (constants) over some domain. We write [sjx = v]
to denote the state that is like s except that the value of x is updated to v.
Let � � (s0; l0; s00)(s1; l1; s

0
1) : : : (si; li; s

0
i) : : : be a transition trace. The trace

hx = vi� is like � except that x is initialized to v in the �rst state and that
the value of x is retained across points of possible interference. More precisely,
hx = vi� is

([s0jx = v]; l0; s
0
0)([s1jx = s00(x)]; l1; s

0
1) : : : ([sijx = s0i�1(x)]; li; s

0
i) : : :

The trace �nx on the other hand describes a computation like � except that
it never changes the value of x. That is, �nx is

(s0; l0; [s
0
0 j x = s0(x)])(s1; l1; [s

0
1 j x = s1(x)]) : : : (si; li; [s

0
i j x = si(x)]) : : : :

2.2.2 The �ne-grained semantics T

We are now ready to present the �rst semantics.

De�nition 2.4 (Semantic map T )

1. Let P(T ) denote the set of all subsets of T . The semantic function T
maps the set of labeled and unlabeled programs to P((�����)1) and
is de�ned as Te[[ ]] where Tl[[ ]] for l 2 � is given by

Tl[[V :[P;Q]]] = f(s; l; s0) j (s; s0) j= cfV :[P;Q]g
Te[[hCi]] = Tp[[C]]

Tl[[C1 ;C2]] = Tl[[C1]]; Tl[[C2]]
Tl[[C1 _C2]] = Tl[[C1]][ Tl[[C2]]
Tl[[C1 kC2]] = Tl[[C1]] k Tl[[C2]]

Tl[[C�]] = (Tl[[C]])�

Tl[[C!]] = (Tl[[C]])!

Tl[[new x = e in C]] = f�nx j �rst(�) j= e = v ^ hx = vi� 2 Tl[[C]]g
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where �rst(�) denotes the �rst state of �.

2. A trace (s0; l0; s
0
0)(s1; l1; s

0
1) : : : is interference-free if we have s

0
i = si+1 for

all i � 0. The executions E [[C]] of a program C are its interference-free
transition traces. Let C be a labeled or unlabeled program. Then,

E [[C]] = f� 2 T [[C]] j � is interference-freeg:

3. The execution corresponding to a program trace

(s0; p; s
0
0)(s1; p; s

0
1) : : :

is
(s0; p; s

0
0)�0(s1; p; s

0
1)�1 : : :

where �i = � if s0i = si+1 and �i = (s0i; e; si+1) otherwise for all i � 0.

4. C1 =T C2 and C1 =E C2 abbreviate T [[C1]] = T [[C2]] and E [[C1]] = E [[C2]]
respectively.

�

This de�nition is inspired by Brookes' transition trace semantics [Bro96b].
Brookes, however, does not use labels. The semantic mapping handles labels
by using a subscript that indicates whether the argument is inside a label or
not. The subscript e indicates that the argument is not inside a label. The
subscript p indicates that the argument is inside a label. Thus, the denotation
of the overall program is computed using Te. If during the computation of the
semantics a labeled subprogram is encountered, the subscript changes from e to
p. Note that the subscript never changes in the opposite direction, that is, from
p to e. Also, note that Tp[[hCi]] is not de�ned. Since labels cannot be nested,
this case cannot occur.

The traces of new x = e in C do not change the value of x and are obtained
by executing C under the assumption that x is set to the value of e initially and
that the environment cannot change the value of x.

Not every program has a non-empty denotation under T . The program
;:[� ;� ], for instance, has no traces associated with it. Moreover, not every
program that has traces, has executions. The program

x:=0 ; ;:[x = 1; x = 1]

for instance, has traces, but no executions. The �nal states of the �rst assign-
ment and the initial states of the second statement do not overlap. Intuitively,
the control ow \has no place to go". While programs with no executions or
traces are allowed in our speci�cation language, we typically do not use them.
Because they introduce the possibility of trivial re�nements, we will single out
an important subclass of programs that never have an empty set of traces or
executions in Section 2.3.10.
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2.2.3 Closure conditions

The semantic map T is very �ne grained. For instance, it is sensitive to the
number of transitions a program can take. Thus, C and C ; skip, for example,
are distinguished, as are x:=1 and new y = 0 in y:=1 ; x:=y. We will now
introduce two closure conditions, which make T more coarse-grained. These
closure conditions are inspired by the stuttering and mumbling closure condi-
tions proposed by Brookes to achieve full abstraction [Bro96b]. In his setting,
the closure conditions correspond, respectively, to reexivity and transitivity of
the !� relation in a conventional operational semantics. The addition of labels,
however, forces us to make slight adjustments to Brookes' de�nitions. The intu-
ition behind these adjustments is to keep program and environment transitions
distinct, that is, for instance, an unlabeled program C will have environment
transitions only and no program transitions. Also, every trace of C1 ; hC2i ;C3,
for example, will contain at least one program transition.

De�nition 2.5 (Closure conditions)
Let T be a set of traces.

� The s-closure of T , denoted T y, is the smallest set which contains T and
satis�es:

{ Stuttering:

1. Finite case: If �(s; l; s0)� 2 T y then �(s00; l; s00)(s; l; s0)� 2 T y

and �(s; l; s0)(s00; l; s00)� 2 T y for all s00, and

2. In�nite case: if

�0(s0; l0; s
0
0)�1(s1; l1; s

0
1)�2 : : : �i(si; li; s

0
i) : : : 2 T

y;

then
�0�0�1�1 : : : �i�i : : : 2 T

y

where for all i � 0,

�i = (si; li; s
0
i)(s

00
i ; li; s

00
i )

or
�i = (s00i ; li; s

00
i )(si; li; s

0
i)

for some s00i .

� The sm-closure of T , denoted by T z, is the smallest set which contains T
and satis�es:

{ Stuttering: as before.

{ Mumbling:

1. Finite case: If �(s; l; s0)(s0; l; s00)� 2 T z, then �(s; l; s00)� 2 T z,
and
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2. In�nite case: if

�0(s0; l0; s
0
0)(s

0
0; l0; s

00
0 )�1(s1; l1; s

0
1)(s

0
1; l1; s

00
1)�2 : : : 2 T

z;

then
�0(s0; l0; s

00
0 )�1(s1; l1; s

00
1)�2 : : : 2 T

z:
�

The stuttering condition makes the semantics insensitive to �nite amounts of
stuttering. A stuttering step with label l can only be inserted in the neighbour-
hood of an already existing transition with label l. Note that we can stutter
at in�nitely many places in an in�nite trace. However, stuttering cannot turn
a �nite trace into an in�nite trace. If two adjacent transitions share the in-
termediate state and have the same label, the mumbling condition allows the
absorption of that state. Thus, mumbling across label boundaries is not per-
mitted. Note that we can mumble at in�nitely many places in an in�nite trace.
However, mumbling cannot turn an in�nite trace into a �nite trace.

The �ne-grained semantics was given in terms of four operations on sets of
traces. We de�ne closed variants of these operations. The s-closed concatenation
T1 ;y T2 and the sm-closed concatenation T1 ;z T2 are de�ned as

T1 ;
y T2 = f�� j � 2 T1 ^ � 2 T2gy = (T1 ; T2)

y

T1 ;
z T2 = f�� j � 2 T1 ^ � 2 T2gz = (T1 ; T2)

z:

The closed in�nite iteration operations T!
y

and T!
z

are given by

T!
y

= f�0 : : :�n : : : j 8i � 0:�i 2 Tgy = (T!)y

T!
z

= f�0 : : :�n : : : j 8i � 0:�i 2 Tgz = (T!)z:

The sets T �
y

and T �
z

denote the smallest sets containing T and the empty
trace, closed under s-closed concatenation and sm-closed concatenation respec-
tively. The s-closed parallel composition T1 ky T2 and the sm-closed parallel
composition T1 kz T2 are de�ned as

T1 ky T2 =
S
f�1 k �2 j �1 2 T1 ^ �2 2 T2gy = (T1kT2)y

T1 kz T2 =
S
f�1 k �2 j �1 2 T1 ^ �2 2 T2gz = (T1kT2)z

where the fair merge of two traces �k� is de�ned as before in Section 2.2.1.

2.2.4 Two more coarse-grained semantics T y and T z

We use the closure conditions to de�ne two semantics that are more coarse-
grained and thus more suitable for our purposes than T . Both de�nitions di�er
from the de�nition of T only in their use of the closure conditions.

De�nition 2.6 (Semantic maps T y and T z)
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1. Let Py(T ) denote the set of all subsets of T that are closed under stut-
tering. The semantic function T y maps the set of labeled and unlabeled
programs C to Py((�����)1) and is de�ned as T y

e [[ ]] where T
y
l [[ ]] for

l 2 � is given by

T y
l [[V :[P;Q]]] = f(s; l; s0) j (s; s0) j= cfV :[P;Q]g

y

T y
e [[hCi]] = T y

p [[C]]

T y
l
[[C1 ;C2]] = T y

l
[[C1]] ;y T

y
l
[[C2]]

T y
l [[C1 _C2]] = T y

l [[C1]][ T
y
l [[C2]]

T y
l [[C1 kC2]] = T y

l [[C1]] k
y T y

l [[C2]]

T y
l [[C

�]] = (T y
l [[C]])

�y

T y
l [[C

!]] = (T y
l [[C]])

!y

T y
l [[new x = e in C]] = f�nx j �rst(�) j= e = v ^ hx = vi� 2 T y

l [[C]]g:

2. Let Pz(T ) denote the set of all subsets of T that are closed under stuttering
and mumbling. The semantic function T z maps the set of labeled and
unlabeled programs C to Pz((� � � � �)1). It is de�ned just like T y

except that every occurrence of y is replaced by z.

3. The semantic maps Ey and Ez return the executions of closed sets of traces.
That is,

Ey[[C]] = f� 2 T y[[C]] j � interference-freeg

and

Ez[[C]] = f� 2 T z[[C]] j � interference-freeg:

C1 =T y C2 and C1 �T y C2 abbreviate T y[[C1]] = T y[[C2]] and T y[[C1]] � T y[[C2]]
respectively. Similarly for T z, Ey, and Ez. �

Note that the denotation of a program C under T y is equivalent to the denota-
tion of C under T closed up under stuttering. An analogous property holds for
the denotation of C under T z. Formally, we have

T y[[C]] =
�
T [[C]]

�y
T z[[C]] =

�
T [[C]]

�z
:

Also note that under the closure conditions an unlabeled program C continues
to have environment transitions only, while a labeled program like hCi still has
only program transitions.

Properties of trace equivalence

The following lemma lists a few properties of trace equivalence. The list is
incomplete, but su�ces for the purposes of this thesis.
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Lemma 2.1 (Properties of trace equivalence)

1. Trace equivalence under T implies trace equivalence under T y and T z,
that is, C1 =T C2 implies C1 =T y C2 and C1 =T z C2. Moreover, trace
equivalence under T y implies trace equivalence under T z, that is, C1 =T y

C2 implies C1 =T z C2.

2. Parallel composition is associative and commutative, that is,

[C1 kC2] kC3 =T C1 k [C2 kC3]

C1 kC2 =T C2 kC1

3. Both sequential and parallel composition are invariant under the addition
of �nite stuttering, that is, if D �T z ; : [tt; tt], then

C ;D� =T z D�
;C =T z C kD� =T z C:

4. Nesting of Kleene-star operations does not add behaviour, that is,

C� =T (C�)�:

5. Parallel composition distributes over disjunction, that is,

[C1 _C2] kC3 =T [C1 kC3] _ [C2 kC3]:

6. Adding a declaration for a variable that does not occur free, does not
change the behaviour. Formally, if x 62 fv(C) then

C =T new x = e in C:

7. (Increasing parallelism) A multiple assignment involving two variables
that do not occur free in the parallel context can be replaced by two
parallel simple assignments, if one of the variables is local. Let E be a
sequential context. If neither x1 nor x2 nor any of the variables in e1 or
e2 are free in C, then

new x1 = e in
�
E[x1; x2:=e1; e2] kC

�
=T z new x1 = e in

�
E[x1:=e1 k x2:=e2] kC

�
:

8. Being able to choose between two identical alternatives is like having no
choice at all.

C =T C _ C

9. Trace equivalence is a congruence, that is,

C1 =T C2

implies

E[C1] =T E[C2]

for all contexts E.
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Proof: See Section A.1.1 in the appendix.

Note how an equivalence involving =T in the above lemma can be weakened
to an equivalence involving =T y or =T z using the fact that trace equivalence
under T implies trace equivalence under T y and T z.

Properties of trace inclusion

Trace inclusion will prove to be a useful reasoning tool. To be able to deal with
declarations in a compositional way, we de�ne trace inclusion modulo a set of
variables.

De�nition 2.7 (Trace inclusion modulo V)
A trace set T1 is included in another trace set T2 modulo a variable x,

T1 � T2 (mod x)

for short, if for every trace � in T1 such that hx = vi� for some v 2 Domx

also is in T1, there exists a trace � in T2 such that hx = vi� also is in T2 and
�nx = �nx.

Given a set of variables V , let T1 � T2 (mod V ) be the obvious generaliza-
tion. Let C1 �T z C2 (mod V ) stand for T z[[C1]] � T z[[C2]] (mod V ). �

We list a few properties in the next lemma. Again, no attempt at complete-
ness is made.

Lemma 2.2 (Properties of trace inclusion)

1. Trace inclusion under T implies trace inclusion under T y and T z, that
is, C1 �T C2 implies C1 �T y C2 and C1 �T z C2. Similarly, execution
inclusion under E implies execution inclusion under Ey and Ez, that is,
C1 �E C2 implies C1 �Ey C2 and C1 �Ez C2.

2. Trace inclusion implies execution inclusion. If C1 �T C2, then C1 �E C2.

3. The behaviour of a program C is subsumed by the �nite iteration C�, that
is, C �T C�.

4. Trace inclusion between parallel components implies trace inclusion be-
tween the entire parallel compositions, that is, if Ci �T C0

i for all 1 � i �
n, then

kni=1Ci �T kni=1C
0
i:

5. Trace inclusion between two atomic statements coincides with implication
of their characteristic formulas, that is,

V1:[P1; Q1] �T V2:[P2; Q2]

i�

cfV1:[P1;Q1] ) cfV2:[P2;Q2]:
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6. Trace inclusion is a congruence, that is,

C1 �T C2

implies

E[C1] �T E[C2]:

Note that the congruence property implies Property 4 above.

7. Trace inclusion modulo a set of variables V between two programs C1 and
C2 characterizes trace inclusion between two programs that di�er from C1

and C2 only in that the variables in V are declared local. More precisely,

C1 �T C2

�
mod fx1; : : : ; xng

�
if and only if

new x1 = e1; : : : ; xn = en in C1 �T new x1 = e1; : : : ; xn = en in C2

for all ei with values in Domxi , the domain of xi, and 1 � i � n.

8. (Decreasing parallelism) If C1 is �nite, the behaviour ofC1;C2 is subsumed
by C1 kC2.

(a) If C1 has only �nite traces, then

C1 kC2 �T C1 ;C2:

(b) IfC1 through Cn�1 have only �nite traces and i is not free inC1; : : : ; Cn,
then

kni=1Ci �T for i = 1 to n do Ci:

Proof: See Section A.1.2 in the appendix.

Note how an inclusion involving �T in the above lemma can be weakened
to an inclusion involving �T y or �T z using the fact that trace inclusion under
T implies trace inclusion under T y and T z.

Robust programs

Due to interference on shared-variables, the parallel execution of processes often
leads to unexpected results. The behaviour of some programs, however, is un-
a�ected by parallelism. The program x:=1 ; x:=1 is equivalent to the program
x:=1kx:=1. The notion of robustness generalizes this property. Informally, the
semantics of an n-fold parallel composition of a robust program is equivalent to
its n-fold sequential composition. Robustness will play an important role in our
calculus, because it facilitates the introduction of parallelism.
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Lemma 2.1

1. If C1 =T C2, then C1 =T y C2 and C1 =T z C2. If C1 =T y C2, then
C1 =T z C2.

2. [C1 kC2 kC3 =T z C1 k [C2 kC3] and C1 kC2 =T z C2 kC1.

3. If D �T z ;:[tt; tt], then C ;D� =T z D�
;C =T z C kD� =T z C.

4. C� =T (C�)�.

5. [C1 _C2] k C3 =T [C1 kC3] _ [C2 kC3].

6. If x 62 fv(C), then C =T new x = e in C.

7. If E is a sequential context and neither x1 nor x2 nor any of the variables
in e1 or e2 are free in C, then

new x1 = e in
�
E[x1; x2:=e1; e2] kC

�
=T z new x1 = e in

�
E[x1:=e1 k x2:=e2] kC

�
:

8. C =T C _C.

9. If C1 =T C2, then E[C1] =T E[C2] for all E.

Lemma 2.2

1. If C1 �T C2, then C1 �T y C2 and C1 �T z C2. If C1 �E C2, then
C1 �Ey C2 and C1 �Ez C2.

2. If C1 �T C2, then C1 �E C2.

3. C �T C�.

4. If Ci �T C 0
i for all 1 � i � n, then kni=1Ci �T kni=1C

0
i.

5. V1:[P1; Q1] �T V2:[P2; Q2] i� cfV1:[P1;Q1] ) cfV2:[P2 ;Q2].

6. If C1 �T C2, then E[C1] �T E[C2] for all E.

7. C1 �T z C2 (mod fx1; : : : ; xng) i�

new x1 = e1; : : : ; xn = en in C1 �T new x1 = e1; : : : ; xn = en in C2

for all ei with values in Domxi and 1 � i � n.

8. (a) If C1 has only �nite traces, then C1 kC2 �T C1 ;C2.

(b) If C1 through Cn�1 have only �nite traces, then

kni=1Ci �T for i = 1 to n do Ci:

Figure 2.1: Properties of trace equivalence and inclusion
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De�nition 2.8 (Robust programs)
A program C is called robust if

C� �T z Cn =T z knC

for all n � 1 where Cn and knC denote the n-fold sequential composition and
the n-fold parallel composition respectively, that is, C1 � C and Cn+1 � C ;Cn

and k1C � C and kn+1C � C k
�
kn C

�
. �

Besides x:=1, the programs x:=x + 1 and x:=x+ 1 ; x:=x + 1 are also robust.
The program x:=1 ;x:=x+ 1, however, is not. Robustness depends on the level
of granularity. Atomic statements and �nite loops over them are always robust.

Proposition 2.1 (Su�cient conditions for robustness)

1. Atomic statements V :[P;Q] are robust.

2. If C is robust, then Cm is also robust for all m � 0.

3. If C is robust, then C� is also robust.

Proof: 1) Let A � V :[P;Q] be an atomic statement. We show the proposition
by induction over n. Base: n = 1. Trivial. Step: n0 = n + 1. Suppose that
An =T z knA. We have

A�

�T z An+1 def

=T z A ;An def

=T z A ;

�
kn A

�
Induction hypothesis, Lemma 2.1

=T z A k
�
kn A

�
Lemma 2.1

=T z kn+1A: def

2) Let C be robust. We have to show C� �T z (Cm)n =T z kni=1C
m for all

n � 1. We have

C�

=T z (Cm)� def

�T z (Cm)n def

=T z Cn�m Lemma 2.1

=T z kn�mC C robust

=T z kn
�
km C

�
Lemma 2.1

knCm: C robust, Lemma 2.1

3) The robustness of C� follows from the robustness of Cm for all m � 1.
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2.3 Embedding a standard parallel programming
language

The standard shared-variable parallel programming language that was used
in [OG76a], for instance, is embedded into our setting through the following
abbreviations. The embeddings for conditionals, while loops, and the await
synchronization statement are directly taken from Brookes [Bro96b].

2.3.1 Idling

Let B be a boolean expression. An idling, or stuttering, step satisfying B will
be abbreviated by fBg. That is,

fBg � ;:[B;B]:

Recall that variables not mentioned in V remain unchanged by in the atomic
statement V :[P;Q]. Consequently, if V is empty, the initial and the �nal state
must be identical. Note that this implies

;:[B;B] =T z ;:[tt; B] =T z ;:[B; tt]:

The embedding of the skip statement thus is straightforward.

skip � fttg

2.3.2 Assignments

Assignment to a simple variable x is encoded as follows:

x:=e � x:[tt; x =
(
e ]:

An array A with indices from 1 to n stands for a set of variables A[1] through
A[n]. An array assignment A[e0]:=e is captured as follows.

A[e0]:=e �
�
A[1]; : : : ; A[n]

	
:[1 � e0 � n;Q]

where Q is

Q � 81 � i � n:A[i] =

(
(
e; if i =

(

e0
(

A[i]; otherwise.

Note that the above assignment has no traces if the array index e0 evaluates to
a value outside the array bounds. While the examples in the later chapters of
this document make ample use of arrays, the array index in these examples will
always be a constant i. In this case, the above encoding simpli�es to

A[i]:=e � A[i]:[1 � i � n;A[i] =
(
e ]:
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2.3.3 Conditionals

A conditional is characterized by two cases each corresponding to the execution
of one the branches. Before the then-branch is executed, execution exhibits a
stuttering step in which the test evaluates to true. Analogously for the else-
branch.

if B then C1 else C2 � (fBg ;C1) _ (f:Bg ;C2)

2.3.4 Case statements

A case statement abbreviates nested conditionals, that is,

case x of
e1 : C1j
e2 : C2j
...
en�1 : Cn�1j
else : Cn

end

stands for
if x = e1 then C1

else if x = e2 then C2

...
else if x = en�1 then Cn�1

else Cn:

2.3.5 Loops

A while loop also is characterized by two cases: One in which the iteration
terminates in a state falsifying the loop condition and one in which the iteration
does not terminate.

while B do C �
�
(fBg ;C)� ; f:Bg

�
_ (fBg ;C)!

Let C be a program in which i is an integer variable that is only read and never
assigned to. Also, let n be a constant. Then, a for loop can be de�ned as

for i = 1 to n do C � C[1=i] ; : : : ;C[n=i]

where C[j=i] denotes the program that is obtained from C by replacing all free
occurrences of i by j. Also, let

for i = n downto 1 do C � C[n=i] ; : : : ;C[1=i]:

Sometimes the loop body only is to be executed when a certain predicate P
is satis�ed. Let

for i = 1 to n do C st P � for i = 1 to n do if P then C:
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2.3.6 Declarations

As de�ned in Section 2.1.3, a local variable x can only be initialized by a constant
or a variable. Initialization of xwith an arbitrary expression e is de�ned in terms
of an assignment.

new x = e in C � new x = v in x:=e ; C

where e is an arbitrary expression over the domain of x, and v is some value in
the domain of x.

The declaration and initialization of an array A[1::n] can be abbreviated by

new A[1::n] = e in C � new A[1] = e; : : : ; A[n] = e in C:

We assume that the array variables A[1] through A[n] have the same domain
associated with them.

2.3.7 N-ary parallel compositions

In this thesis we will often consider parallel compositions with an arbitrary but
�nite number n of components. For notational convenience we introduce the
following abbreviations.

kni=1Ci � C1 k : : : kCn

k
f1;:::;ng
i Ci � C1 k : : : kCn

2.3.8 Synchronization statements

Two parallel processes can synchronize using the await statement. The exe-
cution of await B then C blocks the process until B becomes true and then
executes C atomically. To ensure termination, C is typically restricted to a se-
quence of assignments to distinct variables. We will adopt the same restriction.

await B then x1:=e1 ; : : : ; xn:=en end � fx1; : : : ; xng:[B;Q] _ f:Bg
!

where

Q � x1 =
(
e1 ^ : : :^ xn =

(
en

and all xi are distinct. An important special case arises when C is skip.

await B � await B then skip

� fBg _ f:Bg!

Note how the await statement is implemented using busy waiting. As in most
of the literature, e.g., [OG76a, Jon81, Sti88], the evaluation of expressions and
the execution of assignments is assumed here to be atomic. In Section 2.4 we
will sketch how the theory can be extended to non-atomic assignments and
expressions.
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2.3.9 Message-passing constructs

In most of the literature on concurrency theory, shared-variable and message-
passing concurrency are given sometimes very di�erent semantic models, e.g.,
[BHR84, Bro86, dBKPR91, UK93b, Bro96b]. Since we want to be able to
move freely between the two paradigms, we need a uniform model that cap-
tures shared-variable and message-passing concurrency in the same semantic
framework. Consider the two standard message-passing primitives c?x and c!e
where c is a channel. The input statement c?x reads the next item o� c and as-
signs it to x. If c is empty, the statement blocks until c is non-empty. Thus, if c
remains empty forever, the statement also blocks forever. The output statement
c!e evaluates the expression e and appends the resulting value at the end of c. It
never blocks. The two primitives thus receive an asynchronous communication
semantics.

We naturally �t these two constructs in our language by modeling a channel
c as variable ranging over queues. More precisely,

c?x � await c 6= � then x:=hd(c) ; c:=tl(c) end
c!e � c:=enqueue(c; e)

where c is a variable ranging over queues, hd(c) and tl(c) return the head and
tail of c respectively and enqueue(c; e) returns a queue that is like c except that
the value of e is appended at the end.

2.3.10 Properties of embedded programs

Every program over the constructs presented as abbreviations in this section
not only has a non-empty set of transition traces but also a non-empty set of
executions.

Proposition 2.2 (Programs with non-empty denotations)
If C consists of assignments, sequential and parallel compositions,while and for
loops, await statements, local variable declarations, and the message-passing
primitives only, then

1. C has a non-empty denotation under T , that is,

T [[C]] 6= ;;

2. C has a non-empty denotation under E , that is,

E [[C]] 6= ;:

Note that the above two properties also imply non-empty denotations under T y,
T z, Ey, and Ez.

Proof: We say a program C is complete if for every natural number n, and for
every sequence of states s0, s1, : : :, sn, there exists a transition trace in T [[C]]
of the form

(s0; s
0
0)(s1; s

0
1) : : : (sn; s

0
n)�:
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We can prove by structural induction that every program of the form described
above is complete. The �rst property then is an easy corollary. Repeated
applications of the completeness property then show that for every complete
program C and every initial state s0, C has an execution starting in that state.
The second proposition follows.

The notion of program de�ned in this section allows for the expression of pos-
sibly non-terminating programs that use the standard constructs over a simple,
imperative language, fair parallelism and local variables and channels. Means of
synchronization and communication are shared-variables, message-passing and
the await statement.

2.4 Modeling �ne-grained concurrency

So far, assignments and expression evaluation have been considered atomic.
While this rather high level of granularity can be achieved in realistic paral-
lel implementations through the use of more low-level atomic statements, the
loss of e�ciency typically is prohibitive. Moreover, coarse-grained parallelism
may represent poor use of resources. In this section, we will relax the atom-
icity constraint and achieve a �ner-grained, more realistic level of concurrency.
For instance, we might allow interruption of an assignment x:=e during the
evaluation of e, and interruption of a conditional or a while loop during the
evaluation of its test. Note that the introduction of non-atomic expressions has
signi�cant and sometimes surprising consequences. For instance, the evaluation
of done _ :done or x = x may now return � , because the values of variables
done or x may be altered concurrently. Similarly, the evaluation of x+ x where
x is an integer variable may yield an odd integer. Laws of programming that
are usually taken for granted, cease to hold. Finer levels of granularity further
increase the complexity of parallel programming.
Expression traces. Brookes has shown how the transition trace semantics can
be adapted straightforwardly to model �ne-grained parallelism [Bro96b]. The
key idea is to extend the semantics such that expressions denote sets of traces
of the form �

(s0; s0)(s1; s1) : : : (sn; sn); v
�

where each of the si is a state and v is a value. The intuitive meaning of such a
trace is that the evaluation of e is started in state s0, interrupted n times, where
the ith interruption changes the state from si�1 to si, and �nally results in value
v. For simplicity we will assume that the evaluation of expressions always ter-
minates. This idea can readily be extended to labeled transition traces. To
illustrate the basic approach, we restrict attention to boolean expressions over
the constants tt and � , variables, negation, and conjunction. Analogous de�-
nitions can be made for other boolean connectives and arithmetic expressions.
First, the closure operations must be extended to labeled boolean expression
traces. This is straightforward and omitted. Let Pz((�����)+ �ftt;� g) be
the set of closed sets of boolean expression traces.
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Extending the semantics. We then extend the semantic map T z such that
it maps boolean expressions B to Pz((�� ���)+ � ftt;� g). Because we will
later illustrate and compare the impact of di�erent evaluation strategies on the
program development process, we introduce four di�erent kinds of conjunctions.
B1 ^B2 stands for standard, atomic conjunction. B1 ^lr B2 evaluates its argu-
ments from left to right, B1 ^rl B2 evaluates its arguments from right to left,
and B1 ^p B2 evaluates its arguments in parallel. Let T z

l for l 2 � be de�ned
as follows.

T z
l [[tt]] = f((s; l; s); tt) j s 2 �gz

T z
l [[� ]] = f((s; l; s);� ) j s 2 �gz

T z
l
[[x]] = f((s; l; s); v) j s(x) = vgz

T z
l
[[:B]] = f(�;:v) j (�; v) 2 T z

l
[[B]]gz

T z
l [[B1 ^B2]] = f((s; l; s);� ) j ((s; l; s);� ) 2 T z

l [[B1]] [ T
z
l [[B2]]gz

[f((s; l; s); tt) j ((s; l; s); tt) 2 T z
l [[B1]]\ T

z
l [[B2]]gz

T z
l [[B1 ^lr B2]] = f(�;� ) j (�;� ) 2 T z

l [[B1]]g
z

[f(��; v) j (�; tt) 2 T z
l [[B1]]^ (�; v) 2 T z

l [[B2]]gz

T z
l [[B1 ^rl B2]] = f(�;� ) j (�;� ) 2 T z

l [[B2]]gz

[f(��; v) j (�; tt) 2 T z
l [[B2]]^ (�; v) 2 T z

l [[B1]]gz

T z
l [[B1 ^p B1]] = f(; v1 ^ v2) j (�; v1) 2 T

z
l [[B1]] ^ (�; v2) 2 T

z
l [[B2]]

^ 2 �k�gz:

Intuitively, T z[[B]] records which �nite stuttering sequences cause expression B
to be evaluated to which value. For instance, the trace set for the boolean
expression x ^lr :x contains traces of the form�

(x; l1; x)(:x; l2;:x); tt
�
;

where x and :x stand for states in which the value of x is tt and � , respectively.
In other words, in an environment that resets x between evaluation of the �rst
and second conjuncts x^lr:x can evaluate to true. As another example, consider
the boolean expression x ^lr y. It has the trace�

(x ^:y; l1; x ^ :y)(:x ^ y; l2;:x^ y); tt
�
;

that is, the evaluation of x ^lr y can yield true without ever passing through
a state in which both x and y are true simultaneously. Note that left-to-right
evaluation is equivalent to right-to-left evaluation on commuted arguments, that
is,

B1 ^lr B2 =T z B2 ^rl B1

for all boolean expressions B1 and B2.
Extending the syntax. To extend our framework appropriately we need to
give the user a way to use these evaluation traces for speci�cation purposes. To
this end, we augment our language with the statement fB + vg where B is a
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boolean expression and v is a boolean value. Formally, we extend the de�nition
of labeled and unlabeled programs C and D in Section 2.1.3 by the clauses

C ::= fB + vg

D ::= fB + vg

where v 2 ftt;� g. We will leave the scope of labels and the set of contexts
unchanged. Note, however, that the framework could easily be extended to
allow labeled expressions, contexts with their hole in the place of an expression,
and thus for re�nement of expressions. fB + vg stands for all �nite stuttering
sequences that cause B to be evaluated to v, that is,

T z[[fB + vg]] = f� j (�; v) 2 T z[[B]]g:

Adapting the embedding. The encoding of assignments to boolean variables,
conditionals and while loops can be rephrased as follows:

x:=B � fB + ttg ; x:[tt; x]_ fB + � g ; x:[tt;:x]

if B then C1 else C2 � (fB + ttg ;C1) _ (fB + � g ;C2)

while B do C �
�
(fB + ttg ;C)� ; fB + � g

�
_ (fB + ttg ;C)!:

Now, the execution of assignments may be interrupted during the evaluation of
the right-hand expression. The execution of conditionals and while loops may
be interrupted during the evaluation of the test. In Section 4.1.1 we will see
how evaluation strategies can be compared using trace inclusion.

The following lemma collects a few properties of �ne-grained boolean ex-
pressions that we will need later.

Lemma 2.3 (Properties of �ne-grained boolean expressions)

1. An expression trace evaluates a negation :B to value v if and only if it
also evaluates B to :v, that is,

f:B + vg =T z fB + :vg

for all boolean expressions B and values v 2 ftt;� g.

2. The DeMorgan laws also hold for �ne-grained boolean expressions. We
only list the laws we will later need.

::B =T z B

:(B1 ^lr B2) =T z :B1 _lr :B2

Proof: Directly from the de�nitions.
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2.5 Discussion

This concludes our presentation of the syntax and semantics of our language.
We conclude that the language supports

� fair parallel computation,

� shared-variable and message-passing concurrency,

� local variables and channels,

� the expression of reactive systems.

Moreover, the transition trace semantics T z

� is easy to work with, because it is compositional. The semantics of a
composite program is determined solely in terms of the semantics of its
constituent programs. Moreover, the treatment of the standard program-
ming constructs is reminiscent of extended regular expressions and thus
rather intuitive and mnemonic.

� is robust. Finer levels of granularity or other language constructs can be
modeled rather straightforwardly.

� validates standard laws of concurrent programming (Lemmas 2.1 and 2.2).

� is fully abstract for standard, shared-variable parallel programs. In other
words, it is at the right level of abstraction compared to the standard
notion of operational behaviour [Bro96b]. It thus avoids unnecessary dis-
tinctions between programs like C and C ; skip, for instance.

� does not allow reasoning about complexity. For instance, all �nite amounts
of stuttering are equated, so that, skip =T z skip�.

Due to these properties, T z and Ez will be used as our semantic modeling
tools in this thesis. The term \closed" will stand for \sm-closed" unless noted
otherwise. The use of T and T y will mostly be con�ned to proofs.



Chapter 3

Assumption-commitment

reasoning

Few programs execute in complete isolation. Typically, programs interact with,
for example, other programs, users, devices, or sensors. Moreover, a program
usually is not expected to accomplish its purpose in completely arbitrary en-
vironments. A server will grant eventual exclusive access to a shared resource
only if other users always eventually release that resource. In its most general
form, assumption-commitment reasoning | sometimes also called assumption-
guarantee or rely-guarantee reasoning | allows the veri�cation of a program
under the assumption that its environment behaves a certain way. In the con-
current setting, assumption-commitment reasoning paves the way towards a
compositional treatment of concurrent composition.

Historically, the search for a compositional treatment of concurrency began
with Owicki and Gries' seminal work. In [OG76a], they attempt to extend
Hoare-logic to a shared-variable parallel language. More precisely, Hoare-triples
are generalized to proof outlines. A proof outline is an annotated program in
which any two adjacent statements are separated by a predicate describing the
properties that hold at that point. Two proof outlines can be put in parallel,
if they are interference-free, that is, none of the predicates of one program are
invalidated by the atomic statements of the other. In other words, the predicates
in the proof outline serve as assumptions that the program implicitly places on
the environment it is going to be executed in. The premises of the rule for
parallel composition require the user to identify these assumptions, and show
that each program respects the assumptions of the other. This non-interference
check ensures soundness, but also makes the rule non-compositional and thus
unsuitable for program development. In [Jon81], Jones addresses this problem
by using rely- and guarantee-conditions to state explicitly the assumptions and
the guarantees of a program. Formulas are of the form

C j= (P;R;G;Q)

33
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where C is a program and (P;R;G;Q) is a speci�cation consisting of four pred-
icates P , R, G and Q. The precondition P and the rely-condition R constitute
the assumptions that C can make about its environment. In return C must
satisfy the post-condition Q and the guarantee-condition G. Note that R and
G are binary in the sense of Section 2.1.2 to allow for the description of pairs
of states. Program C satis�es the rely-guarantee tuple (P;R;G;Q) if C termi-
nates in a state satisfying Q and all program transitions satisfy G, whenever the
initial state satis�es P and all environment transitions satisfy R. This notion
naturally extends Hoare-triples fPg C fQg for total correctness from sequen-
tial programming. Rather than placing assumptions on the initial state only,
we also come up with assumptions for the environment. Moreover, rather than
specifying the �nal state only, we also specify the intermediate behaviour of C.
The book-keeping of assumptions and guarantees pays o� when formulating the
rule for parallel programs.

C1 j= (P;R1; G1; Q1) C2 j= (P;R2; G2; Q2) G2 ) R1 G1 ) R2

C1 kC2 j= (P;R1 ^R2; G1 _G2; Q1 ^Q2)

The assumptions of one program have to be implied by the guarantees of the
other and vice versa. Informally, the two programs running in parallel have to
be shown to respect each other's needs.

Using Jones' idea of explicitly stating the assumptions and the commitments
of each program, Stirling generalized Owicki and Gries' logic [Sti88]. In his
setting, the formula

[P;�] C [Q;�]

expresses that if the initial state satis�es P and the parallel environment pre-
serves all the predicates in �, then C will terminate in a state satisfying Q while
also preserving the predicates in �. The parallel rule then takes on the following
shape.

[P;�1] C1 [Q1;�1] [P;�2] C2 [Q2;�2] �1 � �2 �2 � �1

[P;�1 [ �2] C1 k C2 [Q1 ^Q2;�1 \�2]

Compared to Owicki and Gries approach, Stirling's formulation is compositional
and more general. The following de�nition will adapt Stirling's compositional
formulation of assumption-commitment reasoning to our setting.

De�nition 3.1 (Assumption-commitment formulas)

1. Let s and s0 be two states, l be a label, P a unary predicate and � be a
set of unary predicates. We say that (s; l; s0) preserves P ,

(s; l; s0) j= pre P;

for short, if

(s; l; s0) j=
(

P ) P:
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We say that (s; l; s0) preserves �,

(s; l; s0) j= pre �;

for short, if
(s; l; s0) j= pre P;

for all P 2 �. pre P and pre � should thus viewed as a binary predicates.

2. Let � � (s0; l0; s00)(s1; l1; s
0
1) : : : be a labeled transition trace

� Let P be a unary predicate. We say that � satis�es the assumptions
P and �,

� j= assump(P;�);

for short, i� the �rst state satis�es P and � is preserved across all
gaps along �, that is,

{ s0 j= P and

{ (s0i; si+1) j= pre � for all 0 � i � length(�)

where length(�) stands for the number of pairs in � minus 1. Re-
member that � may be in�nite.

� Let Q be a unary predicate and let � be a set of unary predicates.
We say that � satis�es the guarantees Q and �,

� j= guar(Q;�);

for short, i� the last state in � (if it exists) satis�es Q and � is
preserved across all transitions along �, that is,

{ last(�) j= Q, if � is �nite and

{ (si; s0i) j= pre � for all 0 � i � length(�)

where last(�) denotes the last state of �, if � is �nite.

3. We say that � guarantees Q and � under assumptions P and �,�
P;�

�
�
�
Q;�

�
for short, i�

� j= assump(P;�)

implies
� j= guar(Q;�):

4. Let T be a set of transition traces. T guarantees Q and � under assump-
tions P and �, �

P;�
�
T
�
Q;�

�
for short, i� �

P;�
�
�
�
Q;�

�
for all � 2 T .
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5. Let C be a program. C guarantees Q and � under assumptions P and �,�
P;�

�
C

�
Q;�

�
for short, i� �

P;�
�
T z[[C]]

�
Q;�

�
:

6. We will call [P;�]C [Q;�] an assumption-commitment formula or assump-
tion-commitment speci�cation. �

Example 3.1 (Assumption-commitment formulas)
Let C be the following program to multiply two numbers stored in x and y by
repeated addition. The result is to be stored in mul.

C � mul:=0;

new cnt = y in
while cnt > 0 do
mul:=mul + x;

cnt:=cnt� 1
od

end

We assume that x and y are initialized with two natural numbers m and n
respectively. Clearly, C only computes n �m if certain restrictions are placed
on the way the parallel environment treats mul. The assumptions fmul = v j
v 2 Dommul ^ 0 � vg would preserve all predicates mul = v with 0 � v.
Consequently, the environment could not change the value of mul at all and
correctness of C would follow. Interestingly, however, it su�ces to assume that
the environment only preserves the value of mul if it is a multiple of m between
0 and n �m. �

x = m ^ y = n; fx = m ^ y = ng [ �mul

�
C�

mul = n �m ^ x = m ^ y = n;Preds(Varnfmulg)
�
:

where

�mul � fmul = v j v 2 Dommul ^ 0 � v � n �m ^ v mod m = 0g:

Under these assumptions C will leave the desired result in mul. Moreover, since
C only changes mul, it will leave all other variables unchanged. Consequently,
C will preserve all predicates with free variables in Varnfmulg, that is, all
predicates in Preds(Varnfmulg). Note that if there is an upper bound for m and
n, that is, both values are known to be below a certain maximal valuemax, then
the set of assumptions �mul becomes �nite and will contain precisely max=n
predicates. Also note that C preserves more than just the predicates in which
mul does not occur free. In other words, the set Preds(Varnfmulg) of preserved
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predicates is not complete for C. For instance, the predicates mul mod x = 0
and x � 0 ) mul � 0 are also preserved by C. This example thus points
us to a fundamental weakness of assumption-commitment formulas. A �nite
representation of the set of all predicates preserved by a program is typically
impossible. Instead, only those predicates whose preservation is essential will
be mentioned. �

3.1 Properties of assumption-commitment for-
mulas

We list a few useful properties of assumption-commitment formulas.
The �rst allows the addition and removal of closed predicates, because they

are always preserved.

Lemma 3.1 (Assumption-commitment and equivalent and closed pred-
icates)
We have

[P;�] C [Q;�]

i�
[P;�[ Preds(;)] C [Q;�[ Preds(;)]

where

� � fP 0 j P 2 � ^ P , P 0g

� � fP 0 j P 2 � ^P , P 0g:

Proof: It follows directly from the de�nitions that every transition preserves
all closed predicates.

Due to the above lemma, equivalent and closed predicates will not be ex-
plicitly mentioned in the set of assumptions and guarantees of a assumption-
commitment formula.

The next lemma allows for weakening using trace inclusion.

Lemma 3.2 (Weaken assumption-commitment formulas)
If C1 �T z C2 and

[P;�] C1 [Q;�];

then
[P;�] C2 [Q;�]:

Proof: Follows directly from the de�nition.

Thus, equivalent programs satisfy the same assumption-commitment formu-
las.
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Corollary 3.1 (Trace equivalence and assumption-commitment)
Let C1 =T z C2. We have

[P;�] C1 [Q;�]

if and only if
[P;�] C2 [Q;�]:

�

The next lemma enables us to ignore the traces that arise from the mumbling
closure condition when proving an assumption-commitment formula. More pre-
cisely, if T y is set of traces that is closed under stuttering and that guarantees
Q and � under assumptions P and �, then T z will also guarantee Q and �
under assumptions P and �. Intuitively, this is because mumbling can neither
change the �nal state nor introduce a transition that does not preserve �.

Lemma 3.3 (Closure and assumption-commitment formulas)
If �

P;�
�
T y[[C]]

�
Q;�

�
then �

P;�
�
T z[[C]]

�
Q;�

�
and thus �

P;�
�
C

�
Q;�

�
:

Proof: Let � 2 T y[[C]]. We show that�
P;�

�
�
�
Q;�

�
implies �

P;�
�
�0

�
Q;�

�
for all �0 that arise from � through �nite mumbling. The case for in�nite
mumbling is similar. Let

� � �1(s0; l; s1)(s1; l; s2) : : : (sn�2; l; sn�1)(sn�1; l; sn)�2

�0 � �1(s0; l; sn)�2

and let �0 j= assump(P;�). We need to show that �0 j= guar(Q;�). We also
have � j= assump(P;�). By assumption, � j= guar(Q;�). Consequently,

(s0; l; s1)(s1; l; s2) : : : (sn�2; l; sn�1)(sn�1; l; sn) j= guar(tt;�)

which implies (s0; sn) j= guar(tt;�). Thus, �0 j= guar(tt;�). Moreover, �0 is
in�nite i� � is in�nite; last(�0) = last(�) if � is �nite. Thus, �0 j= guar(Q;�).

Note that the lemma cannot be strengthened to T , that is, after the addition
of stuttering the trace may violate the assumption-commitment formula even if
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the original did not. To see this, consider the trace (s; l; [sjx = 0]) of program
x:=0. The trace satis�es�

tt;Preds(;)
�

(s; l; [sjx = 0])
�
x = 0;Preds(Varnfxg)

�
:

However, addition of the stuttering step ([sjx = 1]; l; [sjx = 1]) at the end, for
instance, destroys this property.

The remainder of this section identi�es conditions that are su�cient for
establishing assumption-commitment formulas. De�nition 3.1 de�ned pre P as
a binary predicate that is satis�ed by a transition if and only if the transition
preserves the validity of P . We will abuse notation and now also de�ne pre P to
be the most general atomic statement whose transitions preserve P . Similarily
for pre �.

De�nition 3.2 Given a predicate P and a set of predicates � � Preds(Var),
we de�ne

pre P � Var :[tt;
(

P ) P ]

pre � � Var :[tt; 8P 2 �:
(

P ) P ]

pre1 � � (pre �)1:

We say that program C preserves � in all contexts if

C �T z pre1�:

�

Note that a transition satis�es the binary predicate pre P if and only if it is a
trace of the atomic statement pre P . Since pre P is the most general atomic
transition that preserves P , pre1� is the most general program that preserves
all predicates in �.

Lemma 3.4.1 below makes use of the fact that a program preserves a set of
predicates in all contexts. Lemma 3.4.2 expresses that given an atomic state-
ment A, the formula

[P;�] A [Q;�]

is true if the precondition P and the characteristic formula of A imply the
postcondition, and both P and Q are preserved by the environment, and �
only contains predicates that are preserved by A in initial states satisfying P .

Lemma 3.4 (Su�cient conditions for assumption-commitment)

1. If C is known to preserve a set of predicates in all contexts, then it will
also preserve them in a speci�c context. Formally,�

P;�
�
C

�
tt;�

�
if every transition of every transition trace of C satis�es pre �, that is,

C �T z pre1�:
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2. Let A be an atomic statement. If

� fP;Qg � �, and

� (
(

P ^cfA)) Q, and

� � � fQ j (
(

P ^
(

Q ^cfA ) Q)g,

then �
P;�

�
A

�
Q;�

�
:

Proof:

1. Straightforward from the de�nitions.

2. Let � 2 T y[[A]]. � is of the form � � �1(s; s0)�2 where �1 and �2 are pos-
sibly empty, �nite sequences of stuttering steps. Let � j= assump(P;�).
The only non-stuttering transition along � is (s; s0). Thus, to show that
all transitions along � preserve �, we only need to argue that (s; s0) pre-
serves �. Since P 2 �, P is preserved by the environment and thus
not only the �rst state of � but also the state right before execution of
A also satis�es P , that is, s j= P . With the �rst premise, this implies
(s; s0) j= guar(Q;�). Since Q 2 �, Q is preserved by the environment
and thus the last state of � (if it exists) also satis�es Q. Consequently,�

P;�
�
�
�
Q;�

�
:

Lemma 3.3 implies the desired result.
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Notions of approximation

This chapter presents di�erent ways of comparing the behaviour of one program
with that of another. The semantics presented in the previous section gives rise
to a natural, powerful, but context-insensitive notion of approximation. It allows
us to compare the behaviour of two programs regardless of the environment that
they are executed in.

However, as described in the introduction, our requirements on a suitable
re�nement relation force the development of a context-sensitive notion of ap-
proximation in Section 4.2. It expresses that the behaviour of a program is
approximated by the behaviour of another program in a particular context.
While both notions are useful, it is the second that will form the basis of our
re�nement calculus.

Finally, a relation on contexts is de�ned in Section 4.3 that distinguishes
contexts with respect to their \capabilities" or \discriminating power". This
relation will help us to express that environment assumptions expressed in a
given context are stronger than those of some other context.

4.1 Context-insensitive approximation

A very natural notion of program approximation arises through transition trace
inclusion C1 �T z C2. The compositionality of the semantics lends a lot of power
to this notion. The notation pre P expresses that predicate P remains true if
it is true initially. No conclusions can be made if P is false initially. Very often
there is a need to express that the value of a variable, predicate, or expression
does not change regardless of the initial state. To express this, we introduce the
inv notation.

De�nition 4.1 Given an expression e, let inv e and inv1e stand for

inv e � Var :[tt; e =
(
e ]

inv1 e � (inv e)1:

�

41
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Thus, inv e denotes the most general atomic transition that leaves the value
of the expression e invariant, that is, unchanged. The program inv1 x, for
instance, is the most general program that never changes the value of x.

Given a predicate P , inv P comprises all atomic transitions that do not
change the value of P . Note that invariance implies preservation, that is,

inv P �T z pre P;

but not vice versa.
Compositionalitymakes trace inclusion C1 �T z C2 a powerful reasoning aid.

For instance, a programC always leaves the value of x invariant in all contexts i�
C �T z inv1 x. Similarly,C always preserves the invariant I � mul = (y�cnt)�x
in all contexts i� C �T z pre1 I.

Proposition 4.1 (Invariance and preservation)

1. A program C can only change the variables that occur free in it, that is,
all variables that do not occur free in C will be unchanged. Formally,

C �T z inv1(Varnfv(C))

for all C. Note that this invariance trivially implies preservation of all
properties over variables not free in C, that is,

C �T z pre1Preds(Varnfv(C)):

2. An atomic statement A preserves � in all contexts if

cfA ) for all P 2 �:
(

P) P:

3. If C preserves � in all contexts, then C� does, too.

Proof: Directly from the de�nitions.

Lemma3.4 in the previous chapter examined su�cient conditions for assump-
tion-commitment formulas. The corollary below combines this information with
the lemma above.

Corollary 4.1 (Su�cient condition for assumption-commitment)
A program always preserves all predicates over variables that do not occur free
in it. Formally, �

P;�
�
C

�
tt;Preds(Varnfv(C))

�
:

Proof: Using Proposition 4.1 and Lemma 3.4.
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Figure 4.1: Lattice of evaluation strategies for conjunction

4.1.1 Fine-grained concurrency

Recall the de�nitions of the three boolean operations B1 ^lr B2, B1 ^rl B2, and
B1 ^p B2 of Section 2.4. The �rst two compute the conjunction by evaluat-
ing their arguments from left-to-right and right-to-left respectively. The last
evaluates both arguments in parallel. We can use trace inclusion to compare
evaluation strategies. Intuitively, B1 ^p B2 is the most general and ordinary,
atomic conjunction B1 ^ B2 is the most restrictive. Indeed, as shown in Fig-
ure 4.1, the four operations form a lattice under trace inclusion. It is instructive
to see that these inclusions are proper.�

(:x ^ y;:x^ y)(x ^ :y; x ^ :y); tt
�

is a trace of B1 ^p B2, but not of B1 ^lr B2. Moreover,�
(x ^ :y; x ^ :y)(:x ^ y;:x ^ y); tt

�
is a trace of B1 ^lr B2, but not of B1 ^ B2, that is, under non-atomic, left-to-
right evaluation the conjunction can hold, that is, be evaluated to true, even
if the evaluation did not contain a state in which both arguments were true
simultaneously. In Section 5.6 we will revisit non-atomic boolean expressions
and examine the interplay between evaluation strategies and re�nement.

4.2 Context-sensitive approximation

Given the pleasant metatheory of the trace semantics, it seems natural to use
it also directly for re�nement. However, the very properties that make the se-
mantics so well-suited for determining the meaning of a parallel program, also
render it unsuitable as a basis for re�nement. To see why, suppose we considered
C2 a re�nement of C1 i� the denotation of C2 under T z is contained in that
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of C1 under T z, that is, if C1 �T z C2. Full abstraction as proved in [Bro96b]
means that we have C1 �T z C2 i� in all possible contexts the executions of
C1 are contained in those of C2 in the same context. Thus, whenever we want
to do re�nement in a speci�c context, trace set inclusion will typically be too
strong, because it does not incorporate information about that particular con-
text. In other words, the suggested notion is not context-sensitive. Consider,
for instance, the programs C1 � x:=1 and C2 � x:=x + 1. Clearly, the trace
set of these programs are incomparable, that is, C1 6�T z C2 and C2 6�T z C1.
However, if executed in initial states with x = 0 and in parallel contexts that do
not change the value of x if it is 0, then every transition of C1 can be matched
by C2 and vice versa.

The notion of approximation introduced below is context-sensitive. It allows
us, for instance, to capture the intended relationship between C1 and C2 above.
It will form the basis of our re�nement relation to be introduced in the next
section. As we will see, it generalizes trace inclusion. We will need the following
notation.

De�nition 4.2 (Execution inclusion modulo V)
Let V be a set of variables.

1. Two executions

� � (s0; l0; s1)(s1; l1; s2) : : :

� � (t0; l0; t1)(t1; l1; t2) : : :

are equal modulo V ,
� = � (mod V )

for short, if s0 = t0 and si = ti (mod V ) for all i � 1 where s = t (mod V )
abbreviates 8x 2 VarnV:s(x) = t(x). Note that � and � must have
matching labels and identical initial states.

2. A set of executions T1 contains another set of executions T2 modulo a
variable x,

T1 �Ez T2 (mod x)

for short, if for every execution � in T1 there exists an execution � in T2
such that � = � (mod fxg).

Given a set of variables, let T1 �Ez T2 (mod V ) be the obvious general-
ization. Also, let

C1 �Ez C2 (mod V )

stand for Ez[[C1]] � Ez[[C2]] (mod V ). �

In Section 4.2.1 the above de�nition will be used to capture when two programs
involving a local variable declaration have the same executions. The asymmetric
treatment of the initial state is necessary to achieve this result.
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De�nition 4.3 (Context-sensitive approximation)
Let C1 and C2 be unlabeled programs and E be a context and V be a set of
variables. C2 approximates C1 with respect to E and modulo V ,

C1 �E C2 (mod V )

for short, i�
E[hC1i] �Ez E[hC2i] (mod V ):

C1 =E C2 (mod V ) abbreviates C1 �E C2 (mod V ) and C2 �E C1 (mod V ) so
that C1 =E C2 (mod V ) i� E[hC1i] =Ez E[hC2i] (mod V ). Also, C1 �E C2 and
C1 =E C2 abbreviate C1 �E C2 (mod ;) and C1 =E C2 (mod ;) respectively.

�

Intuitively, C1 �E C2 (mod V ) if E causes C2 to exhibit only transitions that
can be matched by C1 modulo V . In other words, E cannot force C2 to go
beyond what C1 can do.

Example 4.1 (Context-sensitive approximation)

1. Consider the following three contexts.

E1 � fx = 0g ;

�
[] k inv1x

�
E2 � fx = 0g ;

�
[] k inv1(x = 0)

�
E3 � fx = 0g ;

�
[] k pre1(x = 0)

�
Clearly, in initial states with x = 0 and parallel environments which do not
change the value of x, the assignments x:=1 and x:=x+ 1 have matching
transitions. That is,

x:=1 =E1
x:=x+ 1:

However, the assumptions embodied in E1 are stronger than necessary.
Context E2, for instance, allows for x to change arbitrarily as long as
the value of the predicate x = 0 is unchanged. Thus, an environment
transition can neither assign a non-zero value to x if its current value is
0, nor can it assign 0 to x if its current value is not 0. That is,

x:=1 =E2
x:=x+ 1:

However, E2 is still unnecessarily strong. It su�ces to require that x is
unchanged if it is 0. In other words, the predicate x = 0 must be preserved.
This requirement is expressed in E3. We have

x:=1 =E3
x:=x+ 1:

Context E3 allows x to be changed arbitrarily as long as its value is not
0. In that case, it must continue to be 0. In contrast to E2, the value of
x can thus change from non-zero to 0.
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2. Let E4 � fy > 0g ; [[] k z:=0]. Then,

x:[tt; x >
(
x] �E4

x:=x+ y;

but

x:=x+ y 6�E4
x:[tt; x >

(
x]:

The �rst approximation holds, because the assignment x:=x + y on the
right hand side will always increase x since y is known to be greater than
0. The second approximation fails, because x:[tt; x >

(
x] can increase x by

any value not only by the value of y. For example, let y = 1 and x = v
in the initial state, then x:[tt; x >

(
x] has a transition to a �nal state with

x = v + 2 that x:=x+ y cannot match.

3. Let E5 � fy � 0g ; [[] k y:=0]. Then,

x:[tt; x >
(
x] 6�E5

x:=x+ y;

because in a state with y = 0, x:=x + y has transitions that cannot be
matched by x:[tt; x >

(
x]. �

4.2.1 Properties of context-sensitive approximation

The next lemma states a few helpful properties. First, context-sensitive approx-
imation is transitive. Second, context-insensitive approximationC1 �T z C2 can
be viewed as a special case of context-sensitive approximation C1 �E C2 where
the environment E is maximally general and unrestricted.

Lemma 4.1 (Properties of context-sensitive approximation)

1. C1 �E C2 (mod V ) and C2 �E C3 (mod V ) implies C1 �E C3 (mod V ).

2. C1 �T z C2 i� C1 �E C2 where E � [] kVar :[tt; tt]1.

3. C1 �T z C2 i� C1 �E C2 for all contexts E.

Proof:

1. E[hC1i] �Ez E[hC2i] (mod V ) and E[hC2i] �Ez E[hC3i] (mod V ) clearly
imply E[hC1i] �Ez E[hC3i] (mod V ).

2. The context [] k Var :[tt; tt]1 has an important property. The program
Var :[tt; tt]1 has the capability to change any variable arbitrarily. It can
thus always realize any state change from s0i to si+1 across a boundary.
Consequently, there is a one-to-one correspondence between the transition
traces of hCi and the executions of hCi k Var:[tt; tt]1. That is, for every
transition trace

(s0; p; s
0
0)(s1; p; s

0
1) : : :
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of a program hCi, there is an execution

(s0; p; s
0
0)(s

0
0; e; s1)(s1; p; s

0
1) : : :

of E[hCi] and vice versa.

=): This direction follows from the congruence property. (=: Let � be
a trace of C1 and let �0 be the corresponding execution of E[hC1i] using
the property above. By assumption, �0 also is an execution of E[hC2i].
Again, by the above property, � also is a trace of C2.

3. =): By congruence. (=: We show the contrapositive. Let � be a trace
of C1 but not of C2. Then, E[hC1i] has an execution that E[hC2i] does
not where E � []kVar :[tt; tt]1. Using the above property, the execution
corresponding to � is in E[hC1i] but not in E[hC2i].

The above lemma allows us to weaken context-sensitive approximation by
using trace inclusion and by enlarging the set of \modulo" variables.

Corollary 4.2 (Weakening context-sensitive approximation)
Suppose C2 �E C3 (mod V ).

1. If C1 �T z C2, then C1 �E C3 (mod V ).

2. If C3 �T z C4, then C2 �E C4 (mod V ).

3. If V � V 0, then C2 �E C3 (mod V 0).
�

The presence of labels in traces gives rise to a �ner grained notion of equiv-
alence. If a labeled program is equivalent to another labeled program, then the
corresponding unlabeled versions are also equivalent, whereas the converse is
not necessarily true.

Lemma 4.2 (Labeled trace inclusion implies unlabeled)
For all contexts E,

1. E[hC1i] �T z E[hC2i] implies E[C1] �T z E[C2].

2. E[hC1i] �Ez E[hC2i] implies E[C1] �Ez E[C2].

Proof: Both propositions follow from the fact that if two labeled transition
traces are equal, their unlabeled counterparts will also be equal.

To see why the reverse direction does not hold, consider the following coun-
terexample. The unlabeled program

await B k new x = 0 in while tt do x:=x+ 1

is equivalent to

fBg k new x = 0 in while tt do x:=x+ 1:
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The right-hand program exhibits in�nite stuttering so that the absence of the
in�nitely stuttering disjunct f:Bg! on the left-hand side is not noticed. If,
however, the left program is labeled, the equivalence fails, that is,

hawait Bi k new x = 0 in while tt do x:=x+ 1

is not equivalent to

hfBgi k new x = 0 in while tt do x:=x+ 1:

More precisely, the �rst program contains the trace

(s; e; s)(s; p; s)(s; e; s)(s; p; s)(s; e; s)(s; p; s) : : :

where s is a state that falsi�es B, whereas the second does not.

Lemma 4.3 (Execution inclusion modulo V and declarations)
We have

C1 �Ez C2 (mod fx1; : : : ; xng)

if and only if

new x1 = e1; : : : ; xn = en in C1 �Ez new x1 = e1; : : : ; xn = en in C2

where ei is a constant or a variable for all 1 � i � n.

Proof: We show the case n = 1. The general case follows.

=): Let � be an execution of new x = e in C1 where x has value v0 initially.
Also, we de�ne the update of a trace � � (s0; l0; s00)(s1; l1; s

0
1) : : : by

[�jx = v] � ([s0jx = v]; l0; [s
0
0jx = v])([s1jx = v]; l1; [s

0
1jx = v]) : : : :

Let v be the value of e in s0. By de�nition, C1 has an execution �0 where
x is v initially and � = [�0jx = v0]. By assumption, C2 has an execution
�0 such that �0 = �0 (mod fxg). Thus, the initial state of �0 also satis�es
x = v. Thus by de�nition, [�0jx = v0] is an execution of new x = v in C2.
Moreover, � = [�0jx = v0] = [�0jx = v0].

(=: Let hx = vi� be an execution of C1 where e = v and x = v0 in �rst(�).
Then, [�jx = v0] is an execution of new x = e in C1 and by assumption
also of new x = e in C2. By de�nition of new, C2 has an execution hx =
vi� such that e = v and x = v0 in �rst(�) and [�jx = v0] = [�jx = v0].
Thus, � = � (mod fxg).
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4.2.2 The power of context-sensitive approximation

While Example 4.1 above clari�es De�nition 4.3, it does not demonstrate the full
power of context-sensitive approximation. To this end, consider the following
scenario. Let C be a distributed system. Suppose C contains a server component
S that receives commands from its environment via some channel cmd to update
a data structure. More precisely, let C be of the form E[S] where

S � new c = no op; done = � in
while :done do
cmd?c;
case c of
cmd1 : C1j
...
cmdn : Cn

end
od

end:

If the environment E does not issue certain commands, the server can be sim-
pli�ed. For instance, if E never outputs commands cmdi+1 through cmdn to
channel cmd with i < n, S can safely be replaced by

S0 � new c = no op; done = � in
while :done do
cmd?c;
case c of
cmd1 : C1j
...
cmdi : Ci

end
od

end

that is, we have

S =E S0

which implies
C � E[S] =T z E[S0]

with Lemma 4.2. The point is that context E can be arbitrarily complex. It can
place the server S in the scope of loops, declarations, parallel compositions, or
after synchronization statements. Of course, the more complex E is, the harder
it probably will be to ascertain that E does not issue cmdi through cmdn.

Moreover, context-sensitive approximation can also serve as a speci�cation
tool that allows for the concise expression of complex program properties. Sup-
pose we want to formalize that the server behaviour in the given environment
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always has a certain property. Let S0 be a program that captures this property.
The behaviour of S in E meets the speci�cation S0, if and only if S0 �E S. Note
that the full power of trace sets is available to express S0.

For another, more concrete example, let await B be an await statement
in some program C, that is, C � E[await B] for some context E. Recall that
blocking is de�ned as in�nite stuttering, that is, await B � fBg _ f:Bg!.
Control always eventually gets past await B in C, if and only if the disjunct
that models in�nite blocking can be removed without changing the behaviour,
that is, if and only if await B =E fBg. This idea will be crucial in Chapter 8 to
formalize that a mutual exclusion algorithmhas the eventual entry property, that
is, that every process that has started the entry protocol, will always eventually
be allowed to enter the critical region.

4.3 Context-approximation

It seems natural to introduce a pre-order on contexts that orders contexts with
respect to their \discriminating power". For CCS, for instance, this was carried
out by Larsen in [Lar87]. In [Din96], we de�ne E1 v E2 to mean that context
E2 is at least as discriminating as context E1. We do the same here.

De�nition 4.4 (Context approximation)
E2 is at least as discriminating as E1, E1 v E2 for short, if for all programs C1

and C2, C1 �E2
C2 implies C1 �E1

C2. �

Example 4.2 (Context approximation)We revisit the contexts

E1 � fx = 0g ;

�
[] k inv1x

�
E2 � fx = 0g ;

�
[] k inv1(x = 0)

�
E3 � fx = 0g ;

�
[] k pre1(x = 0)

�
from Example 4.1. Moreover, let

E0 � fx = 0g ;

�
[] kwhile tt do y:=y + 1

�
E4 � fx = 0g ;

�
[] kVar :[tt; tt]1

�
:

1. Context E3 can only do those transitions that preserve the value of the
predicate x = 0, whereas context E4 can do any transition at any time.
Every approximation that holds with respect to E4 will also hold with
respect to E3, whereas the converse is not true. E4 is more general and
thus has more discriminating power. Consequently, E3 v E4.

2. Context E1 can only do those transitions that leave x invariant. Context
E2, however, can change the value of x as long as the predicate x = 0 is
left invariant and thus is more discriminating. Context E3 in turn is more
discriminating than E2, because E3 is allowed to change x arbitrarily, if
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x = 0 is false, whereas E2 has to leave the value of x = 0 unchanged.
More precisely, E3 is able to change the value of x = 0 from false to true,
whereas E2 is not. Consequently, E1 v E2 v E3.

3. Finally, context E0 is the least discriminating, because it is the most
speci�c. More precisely, E0 v E1, because the parallel program in context
E0 never changes the value of x.

Consequently, we have

E0 v E1 v E2 v E3 v E4:

�

4.3.1 Properties of context-approximation

Context approximation formalizes assumption-commitment reasoning and thus
allows for modular proofs of approximations like C1 �E C2. To see this, sup-
pose we want to show C1 �E C2. Furthermore, suppose that inspection of
the two programs reveals that the most general context in which the approxi-
mation holds is E0. Then, the proof of C1 �E C2 can be reduced to showing
E v E0. Context-approximation thus is a convenient reasoning tool. The
following lemma collects a few su�cient conditions for establishing when one
context approximates another. Enlarging the set of transition traces of a paral-
lel component of a context increases that context's discriminating power; that
is, the resulting context will be as least as discriminating. Moreover, weakening
a predicate also gives the context more behaviour and thus more discriminat-
ing power. Finally, adding local variables decreases the discriminating power.
Informally, local variables around a context act as an \equalizer". Consider, at
the most extreme end, the context new x1 = e1; : : : ; xn = en in E where x1
through xn are all the free variables of C1 and C2. If C1 and C2 have �nite (or
in�nite) traces only, this context will equate both programs regardless of their
behaviour, that is, C1 =E C2. This is because fv(C) � fx1; : : : ; xng implies

new x1 = e1; : : : ; xn = en in C =T z skip

if C has only �nite traces, and

new x1 = e1; : : : ; xn = en in C =T z while tt do skip

if C has only in�nite traces.

Lemma 4.4 (Properties of context-approximation)
For all contexts E,

1. If C1 �T z C2 then E[[] kC1] v E[[] kC2].

2. If P1 ) P2 then E[fP1g ;E0] v E[fP2g ;E0].
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3. new x = v in E v E.

Proof:

1. Let C1 �T z C2 and C �E[[]kC2 ] C
0 for some C and C0. We need to show

C �E[[]kC1 ] C
0. Let � 2 Ez[[E[hC0i kC1]]]. Suppose � 62 Ez[[E[hCi kC1]]].

Case: There exists a longest pre�x �0 of � that can be extended to an ex-
ecution in both sets. Then, �0 is followed by a program transition (s; p; s0)
of C 0 that C cannot match. Since C1 �T z C2, �0(s; p; s0) is also the pre�x
of some execution of E[hC0ikC2] but not of E[hCikC2] which contradicts
C0 �E[[]kC2 ] C. Case: There is no such longest pre�x �0 of �, that is, every
pre�x of � can be extended to executions of E[hC0ikC1] and E[hCikC1].
Consequently, � is in�nite. Moreover, there are in�nitely many program
transitions by hC0i along �. Together, these program transitions form
a trace � that cannot be matched by hCi in the same context. Since
C1 �T z C2, hC0i still has � in context E[[]kC2]. However, due to the sep-
aration between program and environment steps hCi still cannot exhibit
� in context E[[]kC2]. Consequently, � is an execution of E[hC0ikC2] but
not of E[hCikC2], which contradicts C �E[[]kC2 ] C

0.

2. The premise P1 ) P2 implies fP1g �T z fP2g. The remainder of the
argument is similar to the one in the previous case.

3. Let C �E C0 and let �nx be an execution of new x = e in E[hC0i] such
that e = v in �rst(�). We need to show that �nx also is an execution
of new x = e in E[hCi]. By de�nition, hx = vi� is an execution of
E[hC0i]. By assumption, hx = vi� also is an execution of E[hCi]. Thus,
by de�nition, �nx also is an execution of new x = e in E[hCi].

Informally, a context E can be viewed as a function that when applied to a
program C returns the program E[C]. It is tempting to try to de�ne approx-
imation between two contexts as a pointwise ordering between the functions
represented by the contexts, that is, E1 v E2 if and only if E1[C] �T z E2[C]
for all programs C. While Lemma 4.4.1 and 4.4.2 would still be valid under this
de�nition, Lemma 4.4.3 would not. For instance, the empty context [] would
cease to be as discriminating as the context new x = 0 in [], because the traces
of C and new x = 0 in C are not comparable in general.

4.3.2 Game-theoretic interpretation

In previous work [Din97] we use the simple syntactic structure of UNITY to in-
terpret context-sensitive approximation as a game-playing activity. Intuitively,
the game-theoretic interpretation of C1 �E C2 is as follows. Suppose that the
adversary makes moves in both the environment E and program C2 while the
player controls C1. In [Din97], we prove that C1 �E C2 i� there is there is no
sequence of moves, alternating between player and adversary, which ends in a
state in which the adversary can �nd a transition of C2 for which the player
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cannot �nd a matching transition of C1. In the light of this game-theoretic
characterization, the context pre-order E1 v E2 can be interpreted as com-
paring the \repertoire" of moves that E1 and E2 o�er. For example, a game
involving E2 � [] k Var:[tt; tt]� is easier for the adversary to win than a game
involving E1 � []k inv�x, because E2 o�ers a larger repertoire of moves for the
adversary. The context pre-order mentioned above can then be interpreted as
ordering contexts with respect to the size of their \repertoire" of moves. The
work in [Din97] thus gives a very intuitive game-theoretic interpretation of the
re�nement process and the notions involved.
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Chapter 5

Re�nement

We now have the right tools to de�ne a notion of re�nement that meets the
requirements stated in the introduction. Before we present the de�nition of the
re�nement relation that our calculus is based on in Section 5.2, we sharpen our
intuition by �rst considering a plausible, though ultimately unsuitable candi-
date.

5.1 Using assumption-commitment only

In Morris' and Morgan's re�nement calculi a sequential program C0 re�nes an-
other sequential programC i� for all postconditions Q, the weakest precondition
of C with respect to Q implies the weakest precondition of C0 with respect to
Q [Mor87, Mor94]. Formally,

wp(C;Q)) wp(C0; Q)

for all Q. Given that the Hoare-triple

fPg C fQg

holds i� P ) wp(C;Q), re�nement between C and C0 thus means that every
Hoare-triple satis�ed by C will also be satis�ed by C0. This is consistent with
our intuition that re�nement typically means a decrease in nondeterminism.

It is well-known that, in the presence of concurrency, Hoare-triples are no
longer adequate, e.g., [OG76a]. At the end of previous section, we have pre-
sented assumption-commitment formulas

[P;�] C [Q;�]:

A natural �rst attempt to de�ne a re�nement relation for concurrent programs
would therefore be to use these assumption-commitment formulas in the same
way as Hoare-triples have been used for the de�nition of re�nement for sequential
programs. More precisely, suppose we de�ne that C is re�ned by C0 i� every

55
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assumption-commitment formula satis�ed by C also holds for C0, that is, for all
P , �, Q, and �,

[P;�] C [Q;�]

implies
[P;�] C0 [Q;�]:

As straightforward and intuitive as this de�nition is, there is a serious problem
with it that renders it unsuitable for our purposes.

5.1.1 A problem with context-sensitivity

The notion of re�nement suggested above su�ers from the same drawback as
trace inclusion. It is not context-sensitive. For all preconditions and parallel
contexts, the behaviour of the re�ning program C0 is a subset of the behaviour
of the re�ned program C. The quanti�cation over all preconditions and paral-
lel contexts prevents the re�nement notion from making use of the particular
environment assumptions embodied in the given context and thus kills context-
sensitivity.

To illustrate this point, suppose we want to replace a complex, high-level
computation with a sequence of simpler, lower-level ones. For instance, the
abstract program to compute the maximum of two variables y and z,

C � fxg:[tt; x = max(y; z)]

can be implemented by a conditional statement

C0 � if y � z then x:=y else x:=z:

The problem is that C cannot be replaced by C0 in all contexts. Consequently,
there is an assumption-commitment formula satis�ed by the �rst program but
not by the second. To show that C correctly sets x to the maximum of y and z
it is su�cient to assume the preservation of x = max(y; z), that is, we have�

tt; fx = max(y; z)g
�

fxg:[tt; x = max(y; z)]
�
x = max(y; z); ;

�
:

In contrast, to show that C0 correctly sets x to the maximum of y and z, addi-
tional assumptions are necessary, that is, the following assumption-commitment
formula�

tt; fx = max(y; z)g
�

if y � z then x:=y else x:=z
�
x = max(y; z); ;

�
is not valid, because the parallel environment can change y or z right after
evaluation of the condition y � z. Thus, the second program is not a re�nement
of the �rst in the sense above. The problem is that re�nement as suggested
above thus does not allow us to express that C0 is a re�nement of C only in
certain contexts and thus under certain environment assumptions.
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Another example arises in a setting with �ner-grained parallelism. Consider
x:[tt; x even] and x:=x+ x. If the evaluation of x+ x is not atomic, we have�

tt; fx eveng
�

x:[tt; x even]
�
x even;Preds(;)

�
but not �

tt; fx eveng
�

x:=x+ x
�
x even;Preds(;)

�
;

because if x is odd initially and then changed to even halfway through the
evaluation of x + x, then the result will be odd. However, there clearly are
contexts in which it is safe to replace the atomic program by its non-atomic
counterpart. As in the above example, the notion of re�nement based solely on
assumption-commitment formulas does not allow us to formulate this situation.
We therefore �nd this notion not suitable for our purposes.

5.2 Combining assumption-commitment and
context-sensitive approximation

Intuitively, we want a notion of re�nement to express that given an environment
of a certain shape, the transitions of the re�ning program C0 can always be
matched by the re�ned program C. To achieve this we combine assumption-
commitment reasoning and context-sensitive approximation. As in the previous
attempt, our starting point is the assumption-commitment formula

[P;�] C [Q;�]

of Section 3 where P is the precondition, � is the set of predicates to be pre-
served by the parallel environment, Q is the postcondition, and � is the set of
predicates preserved by C. However, in contrast to the previous de�nition, we
make the re�nement of C into C0 relative to the assumptions and commitments
embodied by [P;�] and [Q;�] respectively. As a �rst approximation, we use

[P;�] C � C0 [Q;�]

to express that C0 re�nes C under the assumptions P and � and the commit-
ments Q and �. More formally, assuming that

� the initial state satis�es P and

� the parallel environment preserves all the predicates in �,

then

� C will be able to match every transition of C0 and

� both C and C0 preserve all the predicates in � and

� if C and C0 terminate, they do so in a state satisfying Q.
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We thus arrive at the following tentative de�nition.

[P;�] C � C0 [Q;�]

i�
[P;�] C [tt;�]

and
[P;�] C0 [Q;�]

and
C �E C0

where E is the most general context that starts in a state satisfying P and
preserves all predicates in �, that is,

E � fPg ; [[] k pre1�]:

To illustrate the use of this relation, consider, for instance, the programs

C � x:=x+ 1

C0 � x:=2:

We want to re�ne C into C0. Assuming an initial state that satis�es x = 1 and a
parallel context that preserves x = 1, every transition of C0 can be matched by
C and thus C can be re�ned into C0 (and vice versa). If, moreover, the parallel
context also preserves x = 2 we can conclude that x will have value 2 upon
termination. Also, C0 preserves a number of predicates including, for instance,
y = n for all n, but also x � 0 and x mod 2 = 0. In our calculus this will be
expressed by�

x = 1; fx = 1; x = 2g
�

x:=x+ 1 � x:=2
�
x = 2;�

�
where � is a set of predicates preserved by C and C0 under the given assump-
tions, that is, �

x = 1; fx = 1; x = 2g
�

x:=x+ 1
�
x = 2;�

�
and �

x = 1; fx = 1; x = 2g
�

x:=2
�
x = 2;�

�
:

More precisely, both C and C0 preserve all P for which

(
(

P ^cfx:=2 ) P ) ^ (
(

P ^cfx:=x+1 ) P ):

That is, we can choose

� � fP j (
(

P ^cfx:=2 ) P ) ^ (
(

P ^cfx:=x+1 ) P )g:
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As another example, consider the programs

C � x:=1 ; x:=x+ 1

C0 � x:=1 ; x:=2:

If the parallel environment preserves the predicates x = 1 and x = 2, then C
can match every transition of C0 and x will equal 2 upon termination. Formally,�

tt; fx = 1; x = 2g
�

x:=1 ; x:=x+ 1 � x:=1 ; x:=2
�
x = 2;�

�
where � contains at most all predicates that are preserved by the three assign-
ments x:=1, x:=x+ 1, and x:=1 ; x:=2, that is,

� � fP j (
(

P ^cfx:=1 ) P ) ^ (
(

P ^cfx:=2 ) P )

^(
(

P ^cfx:=x+1 ) P )g:

Note that in contrast to the previous example no assumptions need to be placed
on the initial state.

Allowing the introduction of local variables

The relation suggested above needs one �nal adjustment. Currently, it does not
support the introduction of local variables. C always has to be able to match
the transitions by C0 exactly regardless of the local variables that the re�nement
step introduced. To allow for C to match the transitions of C0 modulo a set of
variables V we subscript the re�nement relation as follows

[P;�] C �V C0 [Q;�]:

Intuitively, this re�nement expresses that C can match the transitions of C0

modulo the variables in V under the assumptions P and � and the guarantees
Q and �. Suppose, for example, that we want to split the assignment

C � x:=2 � x+ y

into a sequence of simpler ones

C0 � t:=2 � x ; x:=t+ y:

C0 introduces the auxiliary variable t. Obviously, not every transition of C0 can
be matched by x:=2 � x+ y. However, every transition that does not a�ect the
new, introduced variable t still can be matched. In other words, C can match
every transition of C0 modulo the changes to t. Formally,

[x = 1 ^ y = 1 ^ t = 0;�]

x:=2 � x+ y �ftg t:=2 � x ; x:=t+ y

[x = 3 ^ y = 1;�]
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where
� � fx = 1; y = 1; t = 2; x = 3g

and � is such that it contains all predicates preserved by C and C0. The
introduction of local variables has the following e�ect on our tentative de�nition
of re�nement.

� Since the values of the local variables may inuence the future behaviour
of the program, we want to be able to mention local variables in the
postcondition Q. However, the re�ned program and the re�ning program
may assign di�erent �nal values for the local variables which in general
makes it impossible to �nd non-trivial postconditions for the local variables
that are satis�ed by both programs. For instance, C terminates with
t = 0 whereas C0 establishes t = 2. We solve this problem by interpreting
the postcondition asymmetrically. Only the re�ning program C0 will be
required to establish Q.

� Global variables can depend on local variables. Di�erent values of a local
variable in C and C0 can cause a global variable to take on di�erent values
in C and C0. Consider, for instance, the following invalid re�nement
formula �

x = 0; fx = 0; x = 1g
�

skip ; y:=x �fxg x:=1 ; y:=x�
y = 1;Preds(;)

�
:

The �rst assignment x:=1 is matched by skip modulo x. However, the
second assignment y:=x in a state with x = 1 cannot be matched by y:=x
in a state with x = 0. The di�erent treatment of the local variable x
also causes the global variable y to take on two di�erent values in the two
programs. To remedy this situation, we require local variables V not to
occur free in the re�ned program C, that is, fv(C)\V = ;. Since the local
variables can always be consistently renamed, this requirement is a merely
syntactic restriction that does not limit the expressivity of the re�nement
relation.

We are now ready to give the formal de�nition of our re�nement relation.

De�nition 5.1 (Re�nement)
Let P , Q be predicates and �, � be sets of predicates, that is, P;Q 2 Preds(Var)
and �;� � Preds(Var). Also, let V be a set of variables. We say that C0 re�nes
C modulo V under assumptions P and � and guarantees Q and �,

[P;�] C �V C0 [Q;�]

for short, i� we have that

1. C is well-formed with respect to V , that is, no variable in V occurs free
in C, fv(C) \ V = ;, and
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2. C guarantees � under assumptions P and �, that is,�
P;�

�
C

�
tt;�

�
;

and

3. C0 guarantees Q and � under assumptions P and �, that is,�
P;�

�
C0

�
Q;�

�
;

and

4. C0 approximatesC in context E � fPg ; [[]kpre1�] modulo V . Formally,

C �E C0 (mod V ):

We will call [P;�] C �V C0 [Q;�] a re�nement formula or simply a re�nement.
�

Informally, re�nement expresses that assuming

� an initial state that satis�es P , and

� a parallel context that preserves the predicates in �,

then

� every transition of C and C0 will preserve the predicates in �, and

� every transition of C0 can be matched by C modulo the changes to vari-
ables in V , and

� ifC0 and the parallel context terminate, they will do so in a state satisfying
Q.

Due to the well-formedness condition, the variables in V are only used by the
re�ning program C0. They are used by C0, but still to be declared.

Example 5.1 (Re�nement formulas)
The following are valid re�nement formulas.

1. We return to the above example. We have�
x = 1 ^ y = 1 ^ t = 0; fx = 1; y = 1; t = 2; x = 3g

�
x:=2 � x+ y �ftg t:=2 � x ; x:=t+ y�

x = 3 ^ y = 1 ^ t = 2;Preds(Varnft; xg)
�
:

Note that the re�nement relation inherits the di�culty of capturing the set
of all preserved predicates from the assumption-commitment framework.
Both programs preserve more than just the predicates in which neither t
nor x occur free. For instance, the predicates t even and x + y = 0 are
also preserved. In general, only those predicates will be mentioned whose
preservation is essential.
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2. Let

C1 � fx; yg:[tt; x � 0 ^ y � 0];
mul:[tt; tt]� ; fmul = y � xg

C2 � fx; yg:[tt; x � 0 ^ y � 0];
new cnt = y in
mul:=0;

while cnt > 0 do mul:=mul + x ; cnt:=cnt � 1 od:

Under the assumption that the environment does not change either x or
y, and preserves the invariant I � mul = (y � cnt) � x, program C2 is a
re�nement of C1. �

tt; fIg
�

C1 �; C2�
mul = y � x;Preds(Varnfmulg)

�
Locality of cnt prevents environment interference, and ensures termination
of the computation. Note that the environment is allowed to update x and
y as long as the invariant I is preserved. Moreover, C1 and C2 preserve
all predicates over the variables Varnfmulg. �

5.3 Properties of re�nement

This section collects a number of useful properties concerning the re�nement
relation. Since closed predicates are always preserved, they can always be added
and removed from a re�nement.

Lemma 5.1 (Re�nement and equivalent and closed predicates)
We have

[P;�] C �V C0 [Q;�]

i�
[P;�[ Preds(;)] C �V C0 [Q;�[ Preds(;)]

where

� � fP 0 j P 2 � ^ P , P 0g

� � fP 0 j P 2 �^ P , P 0g:

Proof: Directly from Lemma 3.1 and the de�nitions.

Due to the above lemma, equivalent and closed predicates will not be explicitly
mentioned in the set of assumptions and guarantees of a re�nement.

The next lemma expresses that re�nement is reexive in the case of trivial
commitments and demonstrates how our re�nement notion subsumes assumption-
commitment formulas.
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Lemma 5.2 (Reexivity of re�nements)

1. We have
[P;�] C � C [Q;�]

i�
[P;�] C [Q;�]:

2. Also,
[P;�] C � C [tt;Preds(;)]:

Proof: Follows directly from the de�nitions.

Re�nement between a sequence of programs is transitive if the sets of free
variables of the programs does not decrease. If the sets of free variables are
allowed to decrease, the transitive re�nement may not be well-formed.

Lemma 5.3 (Transitivity of re�nements)
Let C1, C2, and C3 be programs such that every variable free in C1 is free in
C2, that is, fv(C1) � fv(C2). Then,

[P;�1] C1 �V1 C2 [Q1;�1]

and
[P;�2] C2 �V2 C3 [Q2;�2]

implies
[P;�1 [ �2] C1 �V1[V2 C3 [Q2;�1 \�2]:

Proof: We have to show that

[P;�1 [ �2] C1 [tt;�1 \�2]

and
[P;�1 [ �2] C3 [Q2;�1 \�2]

and
C1 �E C3 (mod V1 [ V2)

where E � fPg ; [[]kpre1(�1[�2)]. The �rst two formulas follow directly from
the assumptions. Let E1 and E2 be fPg ; [[]k pre1�1] and fPg ; [[]k pre1�2]
respectively. By assumption, C1 �E1

C2 (mod V1) and C2 �E2
C3 (mod V2).

Moreover, E v E1 and E v E2 by Lemma 4.4, that is, both E1 and E2 are as
at least as discriminating as E. Thus,

C1 �E C2 (mod V1 [ V2)

and
C2 �E C3 (mod V1 [ V2)
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by de�nition of context approximation and Corollary 4.2. This implies

C1 �E C3 (mod V1 [ V2)

since context-sensitive approximation is transitive. To see that the transitive
re�nement is well-formed, we need to show that fv(C1)\(V1[V2) = ;. We have
fv(C1)\V1 = ; and fv(C2)\V2 = ; by assumption. Since the variables free in
C1 are also free in C2, that is, fv(C1) � fv(C2), we get fv(C1) \ (V1 [ V2) = ;
as desired.

The next lemma allows weakening of re�nements.

Lemma 5.4 (Weakening re�nements)
Suppose

R � [P;�] C1 �V C2 [Q;�]

is valid.

1. Strengthening the assumptions and weakening the guarantees weakens R,
that is, if P 0 ) P , � � �0, Q) Q0, and �0 � �, then

[P 0;�0] C1 �V C2 [Q0;�0]

is valid.

2. Enlarging the set of local variables weakens R, that is, if V � V 0, then

[P;�] C1 �V 0 C2 [Q;�]

is valid.

3. Restricting the behaviour of C2 weakens R, that is, if C0
2 �T z C2, then

[P;�] C1 �V C0
2 [Q;�]

is valid.

4. Enlarging the behaviour of C1 while maintaining re�nement is a little
harder. The added behaviour also has to meet the guarantees under the
assumptions. If C1 �T z C0

1 and fv(C0
1) � fv(C1) and

[P;�] C0
1 [tt;�];

then
[P;�] C0

1 �V C2 [Q;�]

is valid.

Proof: Suppose [P;�] C1 �V C2 [Q;�].
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1. Assume P 0 ) P , � � �0, Q) Q0, and �0 � �. We have to show�
P 0;�0

�
C2

�
Q0;�0

�
and �

P 0;�0
�
C1

�
tt;�0

�
:

We prove the �rst formula. The second can be shown similarly. Let
� 2 T y[[C2]] and let � j= assump(P 0;�0). Since P 0 ) P and � � �0,
also � j= assump(P;�). The premise then implies � j= guar(Q;�). Since
Q) Q0 and �0 � �, also � j= guar(Q0;�0) by Lemma 3.2. Consequently,
[P 0;�0] � [Q0;�0] and Lemma 3.3 implies the result.

We also have to show C1 �E0 C2 (mod V ) where

E0 � fP 0g ; [[] k pre1�0]:

Since P 0 ) P and �0 � �, Lemma 4.4 implies that E0 is at least as
discriminating as E, that is, E0 v E. Thus, C1 �E0 C2 (mod V ) as
required.

2. Assume V � V 0. We only need to show C1 �E C2 (mod V 0) which follows
directly from the assumption that V � V 0, using Corollary 4.2.

3. Follows directly using weakening of context-sensitive approximation (Corol-
lary 4.2) and using weakening of the assumption-commitment formula
(Lemma 3.2).

4. Follows using weakening of context-sensitive approximation (Corollary 4.2)
and the assumptions.

Note that the above lemma implies that a program C in a re�nement formula
can always be replaced by an equivalent program C0, that is, a program C0 for
which C =T z C 0, without invalidating the re�nement.

Re�nement is also maintained if the re�ned program is replaced by another
that preserves the guaranteed predicates in all contexts, as shown by the corol-
lary below.

Corollary 5.1 (Weakening re�nements)
If C0

1 �T z C1, C0
1 �T z pre1�, and

[P;�] C1 �V C2 [Q;�];

then
[P;�] C0

1 �V C2 [Q;�]:

Proof: Using Lemma 3.4 and Lemma 5.4.

The next lemmaaddresses the relationship between re�nement and two other
notions of approximation: trace inclusion and execution inclusion. More pre-
cisely, it expresses both trace inclusion and execution inclusion as special cases
of re�nement.
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Consider the two sets of predicates Preds(Var) and Preds(;). Preds(;) con-
tains only the constant predicates tt and � (and their equivalents). Since tt
and � are always preserved by any program, Preds(;) places no restrictions and
thus allows the environment to change the state arbitrarily. Lemma 5.5.1 and
Lemma 5.5.2 below show that re�nement can capture trace inclusion by placing
only the trivial assumptions Preds(;) on the environment, that is, re�nement
with respect to an environment that preserves no non-trivial predicates, coin-
cides with trace inclusion. Preds(Var), on the other hand, contains all predicates
over Var . Thus, an environment that preserves all predicates in Preds(Var) can-
not change any state in any way. If we place the maximal amount of assumptions
Preds(Var) on the environment, we obtain execution inclusion. Lemma 5.5.3
and 5.5.4 show that re�nement with respect to an environment that preserves
all predicates implies execution inclusion and vice versa. All four lemmas follow
directly from the de�nitions.

Lemma 5.5 (Trace and execution inclusion via re�nement)

1. If �
tt;Preds(;)

�
C � C0

�
Q;�

�
for some Q and �, then C �T z C0.

2. If C �T z C 0, then�
tt;Preds(;)

�
C � C0

�
tt;Preds(;)

�
:

3. If
[P;Preds(Var)] C � C0 [Q;�]

for some �, then

fPg ; C �Ez fPg ;C0 and fPg C0 fQg

where fPg C 0 fQg is the standard Hoare-triple notation for partial cor-
rectness.

4. If fPg ;C �Ez fPg ;C0 then

[P;Preds(Var)] C � C0 [tt;Preds(;)]:

�

This lemma shows that trace and execution inclusion occupy the two extreme
ends of the re�nement spectrum. For illustration, consider Figure 5.1. The
more restrictions are put on the environment, the more re�nement behaves
like execution inclusion. The fewer restrictions are put on the environment, the
more re�nement behaves like trace inclusion. C1 �T z C2 compares C1 and C2 as
open systems subject to unlimited environment interference. On the other hand,
C1 �Ez C2 compares C1 and C2 as closed systems subject to no environment
interference. The bene�t of compositionality has to be paid for with unlimited
interference. The exclusion of interference, however, yields a non-compositional
semantics.
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more

compositionality

?

6

.......................
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...................... environment

assumptions[P;�] C1 � C2 [Q;�]

more

C1 �T z C2

C1 �Ez C2

Figure 5.1: Trace and execution inclusion as special cases of re�nement

5.4 The re�nement calculus

Having given the re�nement relation, we now present a collection of rules that
govern it. The treatment is reminiscent of Stirling's proof system in [Sti88].
Compositionality is achieved through assumption-commitment reasoning. The
major di�erence is, however, that assumption-commitment reasoning is har-
nessed for a notion of program re�nement. We will distinguish four kinds of
rules. Assumption-commitment rules allow the derivation of an assumption-
commitment formula. Basic rules deal with the basic constructs in the language.
Derived rules deal with the more standard programming language constructs
like if and while. Their soundness follows from the soundness of the basic rules
using the embedding in Section 2.3. The basic and the derived rules are syntax-
directed in the sense that the premises of each rule involve assertions about
the proper subprograms of the program mentioned in the rule's conclusion. In-
troduction rules allow the introduction of a new construct across a re�nement
step. We will now present each class of rules. The well-formedness condition on
a re�nement fv(C) \ V = ; will be abbreviated by wf (C; V ).

5.4.1 Assumption-commitment rules

We present only one rule to derive assumption-commitment formulas. This rule
applies to atomic statements only and is based directly on Lemma 3.4.

Rule ASSCOM

Let A be an atomic statement. If

� fP;Qg � �, and

� (
(

P ^cfA)) Q, and
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� � � fQ j (
(

P ^
(

Q ^cfA ) Q)g,

then �
P;�

�
A

�
Q;�

�
:

5.4.2 Basic rules

Each of the syntactic constructs in our language has a corresponding syntax-
directed re�nement rule. This rule is compositional in the sense that the re-
�nement of the overall program is obtained by re�ning each of the immediate
constituents. The basic rules are summarized in Figures 5.4 and 5.5.

Below we will state each rule and then briey explain the intuition behind
that rule. The full soundness proofs can be found in Section A.2.1.

Rule ATOM

If A1 and A2 are atomic statements and

1. [P;�] A1 [tt;�], and

2. [P;�] A2 [Q;�], and

3. (9x1 : : :xn:
(

P ^cfA2
)) (9x1 : : :xn:

(

P ^cfA1
), and

4. wf (A1; V ),

then
[P;�] A1 �V A2 [Q;�]

where V = fx1; : : : ; xng.
The �rst premise ensures that A1 guarantees � under the assumptions P

and �. The second premise ensures that A2 guarantees Q and � under the
same assumptions. Note that these assumption-commitment formulas can be
established using Lemma 3.4.2. The last two premises ensure that for every
transition (s; s02) of atomic statement A2 there is a transition (s; s01) of A1 such
that s02 coincides with s

0
1 modulo the variables in V .

Rule SEQ

[P;�1] C1 �V1 C
0
1 [Q1;�1] [Q1;�2] C2 �V2 C

0
2 [Q;�2]

[P;�1 [ �2] C1 ; C2 �V1[V2 C
0
1 ;C0

2 [Q;�1 \�2]

where wf (C1; V2) and wf (C2; V1).
First, each of the subprograms is re�ned separately. Then, the re�nements

are joined along an intermediate state satisfying Q1. A predicate needs to be
preserved in the overall re�nement i� one of the subprograms requires it. On
the other hand, a predicate is preserved by C1 ;C2 i� it is preserved by C1 and
by C2. The side condition ensures syntactic well-formedness.
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Rule OR

[P;�1] C1 �V1 C
0
1 [Q;�1] [P;�2] C2 �V2 C

0
2 [Q;�2]

[P;�1 [ �2] C1 _C2 �V1[V2 C
0
1 _ C

0
2 [Q;�1 \�2]

where wf (C1; V2) and wf (C2; V1).
The intuition behind this rule is similar to that of the SEQ rule. Note,

however, that both re�nements of the components use the same precondition P
and postcondition Q.

Rule STAR

[I;�] C �V C0 [I;�]

[I;�] C� �V (C0)� [I;�]

The re�nement of C into C0 with I as the invariant gives rise to the re�nement
of C� into C0�.

Rule OMEGA

[I;�] C �V C0 [I;�]

[I;�] C! �V (C0)! [Q;�]

As in the case of STAR, the re�nement of C into C0 with invariant I gives rise
to the re�nement of C! into C0!. Due to the partial correctness semantics
of the postcondition, the non-terminating program C0! vacuously satis�es any
postcondition Q.

Rule PAR

[P1;�1] C1 �V1 C
0
1 [Q1;�1] [P2;�2] C2 �V2 C

0
2 [Q2;�2]

[P1 ^P2;�1 [ �2] C1 kC2 �V1[V2 C
0
1 kC

0
2 [Q1 ^Q2;�1 \�2]

where �1 � �2 and �2 � �1 and wf (C1; V2) and wf (C2; V1).
This is where keeping track of the assumptions � and the commitments �

pays o� and allows the formulation of a compositional rule. Guarantees and
assumptions have to mutually imply each other. The requirements �1 of C1

have to be contained in the guarantees of C2 and vice versa. This means for
every parallel component Ci that the parallel environment of Ci cannot prevent
Ci from meeting its speci�cation. This rule is similar in spirit to corresponding
rules using assumption-commitment reasoning (e.g., [Jon81, Sti88]).
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Rule NEW

[P;�] C �V C0 [Q;�] x 62 V

[P [v=x];�0] new x = v in C �V new x = v in C0 [9x:Q;�0]

where
�0 � fP [v0=x] j P 2 � ^ v0 2 Domxg
�0 � fP; P [v0=x] j P [v0=x] 2 �^ v0 2 Domxg:

This rule re�nes a declaration by re�ning its body. This is one of only two
rules that allow for the weakening of the assumptions and the strengthening of
the commitments. Suppose C is re�ned into C0 under assumptions P and �
and commitments Q and �. Both assumptions and commitments may mention
x. The declaration of x initializes it and also withdraws it from environment
interference | the parallel environment cannot change its value anymore. The
choice of the initial value for x must be consistent with P , that is, the initial
state must now satisfy P [v=x]. Moreover, an assumption P 2 � involving x can
be weakened to P [v=x] 2 �0 for all v 2 Domx. Also, the value of x will not
change during execution of new x = v in C0. Thus, all commitments of form
P [v=x] 2 � can now be strengthened to P 2 �0. To use this rule \backwards",
that is, to prove

[P 0;�0]

new x = v in C �V new x = v in C0

[Q0;�0]

we must �nd P , �, Q, and � such that

[P;�]

C �V C0

[Q;�]

and P 0 , P [v=x], �0 = fP [v0=x] j P 2 �; v0 2 Domxg, Q0 , 9x:Q, and
�0 = fP; P [v0=x] j P 2 �; v0 2 Domxg.

In contrast to rule NEW-INTRO, x is not allowed to occur in V , that is, C
has to be able to match every state change to x by C0 precisely.

Rule WEAK

[P 0;�0] C0
1 �V 0 C0

2 [Q0;�0]

[P;�] C1 �V C2 [Q;�]

where C0
1 =T z C1, C2 �T z C0

2, P ) P 0, Q0 ) Q, �0 � �, � � �0, and V 0 � V .
This rule allows us to strengthen the assumptions and weaken the com-

mitments. Moreover, the behaviour of the re�ning program can be restricted
(C0

2 �T z C2).
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Example 5.2 (Basic rules)
We demonstrate the use of some of the basic rules using a small example. Sup-
pose we want to re�ne

y:[tt; y odd] k z:[tt; z mod 4 = 0]

into
x:=2 ; y:=x+ 1 k x:=10 ; z:=x+ x:

We start by deducing

R1 �
�
tt; fx eveng

�
skip �fxg x:=2 ASSCOM, ATOM�

x even;Preds(Varnfxg)
�

and

R2 �
�
x even; fx even; y oddg

�
y:[tt; y odd] � y:=x+ 1 ASSCOM, ATOM�

y odd;Preds(Varnfyg)
�
:

Composing both re�nements sequentially yields

R3 �
�
tt; fx even; y oddg

�
skip ; y:[tt; y odd] �fxg x:=2 ; y:=x+ 1 SEQ(R1 ,R2)�

y odd;Preds(Varnfx; yg)
�
:

Using ATOM and SEQ, we can derive similarly

R4 �
�
tt; fx even; z mod 4 = 0g

�
skip ; z:[tt; z mod 4 = 0]

�fxg ATOM, SEQ

x:=10 ; z:=x+ x�
z mod 4 = 0;Preds(Varnfx; zg)

�
:

Putting the re�nements R3 and R4 in parallel we obtain

R5 �
�
tt; fx even; y odd; z mod 4 = 0g

�
�
skip ; y:[tt; y odd] k skip ; z:[tt; z mod 4 = 0]

�
�fxg PAR(R3,R4)�

x:=2 ; y:=x+ 1 k x:=10 ; z:=x+ x
�

�
y odd ^ z mod 4 = 0;Preds(Varnfx; y; zg)

�
:
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Lemma 2.1 says that E[skip ;C] =T z E[C] for all programs C and contexts E.
Consequently, �

skip ; y:[tt; y odd] k skip ; z:[tt; z mod 4 = 0]
�

=T z

�
y:[tt; y odd] k z:[tt; z mod 4 = 0]

�
:

Using the above equivalence re�nement R5 can be weakened to

R6 �
�
tt; fx even; y odd; z mod 4 = 0g

�
�
y:[tt; y odd] k z:[tt; z mod 4 = 0]

�
�fxg�

x:=2 ; y:=x+ 1 k x:=10 ; z:=x+ x
�

�
y odd ^ z mod 4 = 0;Preds(Varnfx; y; zg)

�
with Lemma 5.4.

For an example involving NEW consider the re�nement�
x � 5 ^ y = 7; fx � 5; y = 7; x � 12g

�
x:[tt; x > 10] � x:=x+ y�

x � 12 ^ y = 7;Preds(Varnfxg)
�
:

In an initial state satisfying x � 5 ^ y = 7 and in an environment preserving
x � 5, y = 7, and x � 12, the assignment x:=x+y will set x to a number larger
than 10 and x will be greater or equal to 12 upon termination. An application
of NEW yields �

6 � 5 ^ y = 7; fv � 5; v0 � 12 j v; v0 2 Ng[ fy = 7g
�

new x = 6 in x:[tt; x > 10] � new x = 6 in x:=x+ y�
9x:x � 12 ^ y = 7;Preds(Var)

�
:

which is equivalent to�
y = 7; fy = 7g

�
new x = 6 in x:[tt; x > 10] � new x = 6 in x:=x+ y�

y = 7;Preds(Var)
�

by Lemma 5.1. Note that the initialization x = 6 is consistent with the pre-
condition x � 5 ^ y = 7, that is, 6 � 5 ^ y = 7 is satis�able. Declaring x local
shields it from environment interference, that is, the value of x and thus also
the predicates x � 5 and x � 12 will always be preserved by the environment.
Moreover, all changes to x become invisible to the environment, that is, both
the re�ned and the re�ning programs will not change the value of x and thus
preserve all predicates involving x. �
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5.4.3 Derived rules

The derived rules are summarized in Figures 5.7 and 5.6. We will now state each
rule and briey explain the intuition behind that rule. The soundness proofs
can be found in Section A.2.2.

Rule COND

If

1. [P ^B;�1] C1 �V1 C
0
1 [Q;�1], and

2. [P ^ :B;�2] C2 �V2 C
0
2 [Q;�2], and

3. P ) (B , B0), and

4. wf (C1; V2) and wf (C2; V1),

then
[P;�1 [ �2 [ fP;B

0;:B0g]

if B then C1 else C2 �V1[V2 if B
0 then C0

1 else C
0
2

[Q;�1 \�2]:

Each of the branches is re�ned separately. The condition B can be replaced by
B0 i� they are equivalent in initial states satisfying P . As in rule SEQ we need
to enforce that the local variables of one re�nement do not occur freely in the
other re�nement. Since the re�nements of the two branches require initial states
satisfying P ^ B and P ^ :B respectively, the preservation of P , B, and :B
needs to be ensured. To this end, P , B0 and :B0 are added to the assumptions
(note that we could also add P , B, and :B instead).

Rule FOR

If

1. i is an integer constant, and

2.
�
P [k� 1=i];�i

�
C[k=i] �V C0[k=i]

�
P [k=i];�i

�
for all 1 � k � n,

then �
P [1=i];

Sn

i=1�i
�

for i = 1 to n do C �V for i = 1 to n do C0�
P [n=i];

Tn

i=1�i

�
:

The loop counter i has to be an integer variable that is never assigned to in
both Ci and C0

i. Each iteration C[k=i] of C is re�ned by C0[k=i].
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Rule WHILE

[I ^B;�] C �V C0 [I;�] I ) (B , B0) fv(B) \ V = ;

[I;� [ fB0;:B0g] while B do C �V while B0 do C0 [I ^ :B0;�]

The re�nement of the loop body also determines the invariant I. Condition B
can be replaced by B0 i� they are equivalent under I. Intuitively, predicates
I and B0 need to be added to the assumptions, because the premise requires
initial states satisfying I ^B. Predicate :B0 additionally ensures I ^:B0 upon
termination. As in Rule COND, predicates B and :B could also have been
added instead.

Rule PAR-N

If

1. [Pi;�i] Ci �Vi C
0
i [Qi;�i], and

2. �i �
Tn

j=1;j 6=i�j, and

3. wf (Cj; Vi) for all 1 � j � n with j 6= i,

for all 1 � i � n, then�Vn

i=1Pi;
Sn

i=1�i
�

kni=1 Ci �
S
n
i=1

Vi k
n
i=1C

0
i

�Vn

i=1Qi;
Tn

i=1�i

�
:

This rule generalizes PAR. It allows the re�nement of an arbitrary number n of
parallel processes. As in PAR, SEQ and COND none of the local variables used
in one re�nement can occur freely in any other re�nement. The soundness of
PAR-N is shown inductively.

Rule PAR-V

[P1;�1] C1 � C0
1 [Q1;�2] [P2;�2] C2 � C0

2 [Q2;�2]

[P1 ^ P2;�1 [ �2] C1 kC2 � C0
1 kC

0
2 [Q1 ^Q2;�1 \�2]

where �1 � �2 and �2 � �1.
This rule di�ers from PAR only in that it requires an empty set of local

variables. Soundness thus follows directly from that of PAR.

Rule PAR-V-N

If

1. [Pi;�i] Ci � C0
i [Qi;�i], and

2. �i �
Tn

j=1;j 6=i�j

for all 1 � i � n, then�Vn

i=1Pi;
Sn

i=1�i
�

kni=1 Ci � kni=1C
0
i

�Vn

i=1Qi;
Tn

i=1�i

�
:

This rule generalizes PAR-V to an arbitrary number of parallel processes. The
soundness is shown inductively.
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5.4.4 Introduction rules

Additionally, we need rules that allow the introduction of constructs. These
rules are given in Figures 5.8 and 5.9. Again, soundness of the rules is proved
in Section A.2.3. Note that these rules require the set of local variables V to be
empty. The rules could easily be extended to that case by adding an appropriate
constraint as in SEQ, COND, or PAR. For our purposes, however, the simpler
version su�ces.

Rule PAR-INTRO

If

1. C is robust and preserves
T
i�i in all contexts, and

2. [P;�i] C � Ci [Qi;�i] for all 1 � i � n, and

3. �i �
Tn

j=1;j 6=i�j for all 1 � i � n, and

4. (81 � i � n:Qi)) Q,

then �
P;
S
i �i

�
C�

; fQg � kni=1Ci
�
Q;
T
i�i

�
:

This rule is very important, because given a robust program C, it allows the
introduction of parallelism. A loop C�

; fQg can be re�ned into a parallel
composition kni=1Ci if the four premises hold.

� Premise 1: As discussed at the end of Section 2.2.4, the �nite loop C�

over a robust program C can be re�ned into a parallel composition kni=1C.
More precisely, we have

C� � kni=1C

using Proposition 2.1. If, moreover, C preserves
T
i�i in all contexts, that

is,

C �T z pre1
T
i�i;

then we have�
tt;Preds(;)

�
C� � kni=1C

�
tt;
T
i�i

�
by Lemma 3.4.

� Premises 2, 3 and 4: If for all 1 � i � n, C can be re�ned into Ci under
assumptions [Pi;�i] and guarantees [Qi;�i] and each of the assumptions
�i are met by the commitments of the parallel environment knj=1;j 6=iCj,
and the conjunction of the postconditions of each of the parallel compo-
nents implies the desired postcondition of the entire parallel composition,
then kni=1C can be re�ned into kni=1Ci under assumptions [P;

Sn

i=1 �i] and
guarantees [Q;

Tn

i=1�i].
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The four premises imply the consequence via the following sequence of re�ne-
ments. �

P;
Sn

i=1 �i
�

C�

� Premise 1

kni=1C

� Premises 2, 3, and 4

kni=1Ci�
Q;
Tn

i=1�i

�
:

Rule WHILE-INTRO

If

1. [B ^ I;�] C � C0 [I;�] and

2. (:B ^ I)) Q and

3. there exists an arithmetic expression m over the free variables in B and
C0 such that m � 0, and m = 0) :B, and C0 always decreases m, that
is,

C0 �T z (inv�m ;Am ; inv�m)+

then �
I;� [ �m [ fQg

�
(fB ^ Ig ;C)� ; fQg � while B do C0

�
Q;�

�
where

Am � Var :[tt;
(
m= 0! m = 0 j m <

(
m]

�m � fm � n j n 2 Ng

and Pif ! PthenjPelse abbreviates (Pif ) Pthen) ^ (:Pif ) Pelse). This rule
allows the replacement of a �nite iteration by a while loop. A �nite loop
(fB ^ Ig ;C)� ; fQg can be re�ned into a while B0 do C0 loop if

1. the body C can be re�ned to C0,

2. the negation of the loop condition and the invariant imply the desired
postcondition,

3. This condition needs a little explanation. To show termination of the
resulting while loop we recast the well-known total correctness rule for
while loops in trace-theoretic terms and also transfer it to a concurrent
setting. Remember that Var denotes all program variables. Given a
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measure m, the statement Am decreases m if it is not zero and leaves it
unchanged if it is zero. Thus,

C0 �T z (inv�m ;Am ; inv�m)+

requires that each iteration decreases m. Since m is always non-negative
and the environment cannot increase m due to �m, m must eventually be
set to 0, which implies :B and thus termination of the loop.

Rule FOR-INTRO

If

1. i is an integer variable that is never assigned to and

2.
�
I[k=i];�k

�
C � C0[k=i]

�
I[k + 1=i];�k

�
for all 0 � k � n� 1 and

3. I[n=i]) Q,

then �
I[0=i];

Sn

i=1 �i
�

C�
; fQg � for i = 1 to n do C0�

Q;
Tn

i=1�i

�
:

Alternatively, a �nite loop C�
; fQg can be re�ned in the for loop for i =

1 to n do C0, if

1. the loop counter i is an integer variable and never assigned to in C0,

2. C can be re�ned to C0[k=i] for each iteration k using loop invariant I[k=i],

3. the desired postcondition Q is implied by I[n=i].

Rule NEW-INTRO

[P;�] C �V [fxg C
0 [Q;�]

[P [v=x];�0] C �V new x = v in C0 [9x:Q;�0]

where

�0 � fP [v0=x] j P 2 � ^ v0 2 Domxg

�0 � fP; P [v0=x] j P [v0=x] 2 �^ v0 2 Domxg:

If C can be re�ned into C0 by allowing changes to a variable x to be ignored
and under some precondition P , then C can also be re�ned into new x =
v in C0 in initial states satisfying P [v=x] and parallel environments preserving
all predicates in �0. Like rule NEW, this rule weakens the assumptions and
strengthens the commitments. NEW-INTRO is the only rule by means of which
the set of local variables in the subscript can be reduced. It is a straightforward
consequence of NEW, Lemma 2.1, and Lemma 5.4.
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Rule AWAIT-INTRO

If

1. [P1;�]
�
V :[B ^ P2; Q2] kD

�
[Q1;�] and

2. there exists an arithmetic expression m over the free variables in B and
D such that m � 0, and m = 0) B, and D decreases m in�nitely often,
or until m is 0, that is,

D �T z (inv�m ;Am)
! _ (inv�m ;Am ; inv�m)� ; fm = 0g ; inv�m

then

[P1;�[ �m]�
V :[B ^ P2; Q2] kD

�
�
�
await B then V :[P2; Q2] end kD

�
[Q1;�]

where �m � fm � n j n 2 Ng.
This rule allows the introduction of the synchronization statement await

with condition B. If

1. V :[B^P2; Q2]kD guarantees Q1 and � under assumptions P1 and �, and

2. the synchronization condition B can be shown to always eventually hold
forever, that is, the parallel program D in any context decreases some
measure m either in�nitely often or at least until it equals 0,

then V :[B ^P2; Q2] kD can be replaced by await B then V :[P2; Q2] provided
the environment never increases the measure. The correctness of this rule relies
on the fairness of parallel composition.

Example 5.3 (Introduction rules)

1. An application of NEW-INTRO to R5 of Example 5.2 yields�
tt; fy odd; z mod 4 = 0g

�
�
y:[tt; y odd] k z:[tt; z mod 4 = 0]

�
� NEW-INTRO

new x = 0 in�
x:=2 ; y:=x+ 1 k x:=10 ; z:=x+ x

�
�
y odd^ z mod 4 = 0;Preds(Varnfy; zg)

�
:

2. In Chapter 6.3, a program to �nd the maximum in an array A of integers
using n parallel processors is developed. The problem is broken into two
sequential parts. First, a boolean auxiliary array m is introduced and set
such that m[i] is true if and only if A[i] is maximal, that is,

P � 81 � i � n:m[i], max(A) = A[i]:
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Then, m is used to set x to the maximumof A. When deriving the second
part, we use PAR-INTRO to introduce parallelism�

P;�
�

x:[tt; tt]� ; fmax(A) = xg

� PAR-INTRO

kni=1if m[i] then x:=A[i]�
fmax(A) = x;�

�
where � ensures the preservation of P and of the result max(A) = x.

3. In Chapter 6.1 a while loop is introduced to compute the sum �A over
an array A. �

tt;�
�

�
fk � n ^ Ig ; fk; tg : [tt; tt]

��
; ft = �Ag

� WHILE-INTRO

while k � n do t:=t+ A[k] ; k:=k + 1�
t = �A;�

�
where � is such that it preserves the loop invariant I � t = �k�1

i=1A[i].

4. For an example of the AWAIT-INTRO rule, let m be 0, if the boolean
variable ack is true, and 1 otherwise.

m =

�
0; if ack
1; otherwise.

Then, an await statement can be introduced as follows�
tt; fm = 0;m = 1; doneg

�
�
done:[ack; done] k ack:=tt

�
� AWAIT-INTRO�

await ack then done:[tt; done] end k ack:=tt
�

�
done;Preds(Varnfack; doneg)

�
:

�

5.4.5 Using the calculus

We say that a re�nement R was derived using the calculus, if every re�nement
in the derivation of R was obtained using either a basic rule, a derived rule,
or an introduction rule. Moreover, every application of ATOM must have used
the rule ASSCOM to obtain the assumption-commitment formulas of the atomic
statements involved.

Given a re�nement that was derived using the calculus, the following lemma
allows us to reverse weakening through strengthening of assumptions and weak-
ening of the guarantees. It will be a crucial proof-theoretic tool.
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Lemma 5.6 (Weakest precondition and strongest postcondition of R)
Let R be a re�nement

R �
�
P;�

�
C �V C0

�
Q;�

�
that was derived using the calculus. Then there exist sets of predicates wp(R)
and sp(R) such that

� wp(R) � � and P )
V
wp(R), and

� sp(R) � � and
V
sp(R) ) Q, and

�
�V

wp(R);�
�
C �V C 0

�V
sp(R);�

�
.

Proof: The proof proceeds by structural induction over the derivation of

[P;�] C �V C0 [Q;�]

and can be found in Section A.2.4 on page 249.

5.5 General re�nement methodology

Let C1 be a high-level speci�cation of the implementation that is to be derived.
C1 can be viewed as an abstract statement of the computation to be performed.
More precisely, C1 de�nes the executions that all re�nements, and thus also the
�nal implementation, are allowed to exhibit. In Chapter 6.3, for instance, C1 is

C1 � x:[tt; tt]� ; fmax(x)g

where the predicate max(x) is true if and only if x is larger or equal to all
entries of some array A. Re�nements of C1 are thus required to only change x a
�nite number of times before they terminate in a state in which x contains the
maximumof array A. The re�nement of C1 then proceeds by �nding a sequence
of programs C2; : : : ; Cn such that

[P;�i] Ci � Ci+1 [Q;�i]

for 1 � i < n. Typically, a single re�nement step would

� introduce either local variables, local channels, loops or parallel compo-
sitions. The �rst re�nement in Chapter 6.3, for instance, introduces the
local boolean variables m[1] through m[n] and the �nite loop

fm[1]; : : :;m[n]g:[tt; 81 � i � n:Pi]
�

; fIg

where Pi speci�es that each m[i] cannot be set once it has been reset and
I expresses that m[i] is set if and only if A[i] contains the maximum of
A. This program says that each m[i] can only be changed in such a way
that P [i] holds at the end of each transition. Moreover, I must hold upon
termination of the loop. Given I and array m it is then straightforward
to determine the maximum of A.
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� or replace an abstract statement by a more concrete one. The next to the
last re�nement in Chapter 6.3, for instance, replaces

m[i]:[tt; Pi ^ Ii;j]

by
if A[i] < A[j] then m[i]:=�

where Ii;j requires m[i] to be set if A[i] is the maximum and m[i] to be
reset if A[j] is greater than A[i].

With transitivity (Lemma 5.3) the above sequence of re�nements then implies�
P;
S
i�i
�

C1 � Cn
�
Q;
T
i�i

�
which yields

fPg ;C1 �Ez fPg ;Cn

and

fPg Cn fQng

with weakening and Lemma 5.5.3. Thus, every execution � of Cn that starts
in a state satisfying P also is an execution of C1 and whenever � is �nite,
the last state satis�es Qn. Note that the re�nement process typically is not
deterministic, that is, at each stage Ci in the re�nement process several rules
may be applicable each leading to a di�erent re�nement Ci+1. Re�nement thus
gives rise to a tree rather than a linear sequence. It is the task of the user to �nd
the path through the tree that leads to the desired result. Figure 5.2 depicts the
re�nement process. Also note that the re�nement methodology assumes that
all Ci have a non-empty set of executions. Care must thus be taken to ensure
that both the initial program and all of its re�nements have a non-empty set of
executions.

Remember, however, that according to Proposition 2.2 all programs that
contain the standard programming language constructs only, do have non-empty
sets of executions. Consequently, whenever the most re�ned program Cn is syn-
tactically well-formed in the sense of Proposition 2.2, then the entire re�nement
is non-trivial.

5.5.1 Notation

1. A re�nement statement may be written as

R � [P;�] C1 �V C2 [Q;�] justi�cation

or as

R � [P;�]

C1 �V C2 justi�cation

[Q;�]
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Figure 5.2: General shape of the re�nement process

or as

R � [P;�]

C1

�V justi�cation

C2

[Q;�]

depending on the size of C1 and C2 where justi�cation is a list consisting
of =T z, �T z, a reference to a lemma or proposition or a re�nement rule.
The name R and the justi�cation may be omitted.

2. Very often, a single re�nement does not su�ce to derive the desired re-
sult and a sequence of re�nements is needed. Sometimes all re�nements
in that sequence hold under the same assumptions and guarantees. To
express the situation concisely, we introduce the following notation. Let
C1 through Cn be programs with a non-decreasing set of free variables,
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that is, fv(Ci) � fv(Ci+1) for all 1 � i � n� 1. Then,

R �
�
P;�

�
C1

�V1 justi�cation1

C2

�V2 justi�cation2

: : :

Cn�1

�Vn�1 justi�cationn�1

Cn�
Q;�

�
abbreviates�

P;�
�

Ci �Vi Ci+1

�
tt;�

�
justi�cationi

for all 1 � i � n� 2 and�
P;�

�
Cn�1 �Vn�1 Cn

�
Q;�

�
: justi�cationn�1

Note that by using transitivity n� 1 times, the re�nements above imply�
P;�

�
C1 �V Cn

�
Q;�

�
Lemma 5.3

where V �
S
i Vi. Consider, for example, the derivation of a program

that swaps the values of two variables x and y.�
x = m ^ y = n; fx = m; y = n; x = n; y = m; tmp = mg

�
fx; yg:[tt; tt]�

� �
T z

(def), Lemma 3.4.1

fx; yg:[tt; tt] ; fx; yg:[tt; tt] ; fx; yg:[tt; tt]

� �
T z

(Lemma 2.2.5), Lemma 3.4.1

skip ; fxg:[tt; tt] ; fyg:[tt; tt]

� �
T z

(Lemma 2.2.5), Lemma 3.4.1

skip ; x:=n ; y:=m

�ftmpg ATOM, SEQ

tmp:=x ; x:=y ; y:=tmp�
x = n ^ y = m;Preds(Varnftmp; x; yg)

�
:

This sequence implies�
x = m ^ y = n; fx = m; y = n; x = n; y = m; tmp = mg

�
fx; yg:[tt; tt]�

�ftmpg

tmp:=x ; x:=y ; y:=tmp�
x = n ^ y = m;Preds(Varnft; x; yg)

�
:
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5.6 Fine-grained concurrency

We revisit the extension to �ner levels of granularity of Section 2.4 and discuss
how it meshes with re�nement.

On the one hand, �ner-grained concurrency gives the speci�er more �ner-
grained control over, for instance, evaluation strategies. However, during the
initial, more high level phases of the development process we typically want
to abstract from these kinds of low-level detail. What counts is, for instance,
that if some boolean expression B holds, then C1 must be executed to maintain
some invariant, and otherwise C2. We want to get the logic of the program
right without having to worry about how precisely B will be evaluated. This
gives us the desired abstraction, but also makes the development process more
portable. The more the introduction of low-level, machine-dependent aspects
is postponed, the more will the initial phases of the design be adaptable to
di�erent machines or architectures.

However, this delay typically comes at a price. As demonstrated in Sec-
tion 2.4 the replacement of atomic by non-atomic expressions, for instance,
can introduce a lot of surprising, unwanted behaviour. Additional assumptions
must be placed on the environment to ensure soundness. In this section, we
show that the re�nement calculus meshes very well with �ner levels of granu-
larity. Su�cient conditions can be found which allow the replacement of atomic
boolean expressions by non-atomic ones. Moreover, the calculus clearly shows
how di�erent evaluation strategies require di�erent environment assumptions.

Recall that the boolean, binary operations ^lr , ^rl, and ^p compute conjunc-
tions by evaluating their arguments either from left-to-right, from right-to-left,
or in parallel. Let x and y be two boolean variables and C1 and C2 be two
programs and suppose we want to use the rule COND to re�ne

C �
�
fx^ yg ;C1

�
_
�
f:(x ^ y)g ;C2

�
into a conditional

C 0 � if x op y then C0
1 else C

0
2

where op stands for one the three conjunction operations and C1 is re�ned into
C0
1 under assumptions �1 and guarantees �1 and similarly for C2 and �2 and

�2. Depending on which evaluation strategy we choose, we get di�erent minimal
assumptions.

If variable x is evaluated �rst, then its value must be preserved, that is, the
value of x must not change.�

tt; fx;:xg[ �1 [ �2

�
�
fx ^ yg ;C1

�
_
�
f:(x^ y)g ;C2

�
� COND

if x ^lr y then C0
1 else C

0
2�

tt;�1 \�2

�
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If, however, variable y is evaluated �rst, then the value of y must not change.�
tt; fy;:yg [ �1 [ �2

�
�
fx ^ yg ;C1

�
_
�
f:(x ^ y)g ;C2

�
� COND

if x ^rl y then C0
1 else C

0
2�

tt;�1 \�2

�
Finally, if both arguments are evaluated in parallel, neither x not y can be
allowed to change.�

tt; fx;:x; y;:yg[ �1 [ �2

�
�
fx ^ yg ;C1

�
_
�
f:(x ^ y)g ;C2

�
� COND

if x ^p y then C0
1 else C

0
2�

tt;�1 \�2

�
Note that the contexts given by each of the �rst two re�nements are more
discriminating than the context given by the last re�nement. In other words,
the restrictions placed on the last context subsume the restrictions placed on
each of the �rst two contexts. Consequently, all three re�nements hold under the
assumptions fx;:x; y;:yg. We see that di�erent evaluation strategies require
di�erent assumptions. The trace semantics seems well suited to capture �ne-
grained evaluation strategies. The re�nement calculus not only supports the
re�nement of atomic expressions into non-atomic expressions, but also allows
for the comparison of di�erent evaluation strategies.

Note that �ner-grained parallelism does not always require additional as-
sumptions. Consider for instance, the re�nement�

P;�
�
x:=e � x:=v

�
Q;�

�
in the coarse-grained setting. Typically, the validity of this re�nement depends
on the variables in expression e carrying certain values. Thus, these variables
need to be protected from interference before execution of the assignment and
the appropriate assumptions need to be placed in �. The somewhat surprising
point is that this re�nement would continue to hold if the atomicity assump-
tion on expression evaluation is dropped. From a reasoning point of view, in-
terference during the execution of assignment is often just as detrimental as
interference right before or after the execution of the assignment.

5.7 Discussion

Before we illustrate the use of the calculus in the following chapters, we briey
summarize the advantages and disadvantages of the re�nement calculus pre-
sented in this chapter. The re�nement calculus
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� supports stepwise, top-down program development,

� is context-sensitive,

� supports the introduction of local variables and channels,

� treats shared-variable and message-passing concurrency uniformly,

� supports �ne-grained concurrency,

� is based on a powerful, fully abstract semantics.

We will see in the following chapters to what extend compositional reasoning
and reasoning about liveness properties is supported. However, the re�nement
calculus also

� only supports safety properties as assumptions. Liveness properties, for
instance, are not allowed,

� currently lacks a completeness result,

� contains rules whose precise shape is hard to justify. More precisely, while
the given introduction rules will allow the derivation of a number of al-
gorithms, a number of alternative introduction rules could be given. At
the moment, we lack a formal justi�cation for the choice and shape of
the introduction rules. The variety of examples, however, gives a strong
empirical indication that the rules provide a good starting point.

5.7.1 Alternative de�nitions of re�nement

It is instructive to review alternative de�nitions of the re�nement relation. Be-
low, two alternative de�nitions for re�nement relation � will be given.

De�nition 5.2 (Alternative de�nitions of �)

1. Let
[P;�] C �0

V C0 [Q;�]

be de�ned as the re�nement relation � in De�nition 5.1, except that the
fourth clause is replaced by

4. we have

C �E C0;

for all contexts E of the form

E � new x1 = v1; : : : ; xn = vn in fPg ; [[] k pre1�]

where xi 2 Domxi for all 1 � i � n.
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2. Let
C �T z C0 (P;�; x)

abbreviate that for all � 2 T z[[C0]] such that � j= assump(P;�), and
hx = vi� 2 T z[[C0]] for some v 2 Domx, there exists � 2 T z[[C]] such that
� j= assump(P;�), and hx = vi� 2 T z[[C]] and �nx = �nx. Given a set
of variables V , let C �T z C0 (P;�; V ) be the obvious generalization. Let

[P;�] C �00
V C0 [Q;�]

be de�ned as the re�nement relation � in De�nition 5.1, except that the
fourth clause is replaced by

4. we have C �T z C0 (P;�; V ).

�

The de�nition of �0 is very close to De�nition 5.1. It avoids the use of the
modulo notation (mod V ) by hiding the changes to the variables in V in a local
variable declaration. However, it also forces the explicit initialization of the
variables in V and thus gives rise to an awkward quanti�cation over all possible
initial values of the local variables. The relations �0 and � are equivalent.

Proposition 5.1 (Equivalence of �0 and �)
Re�nement

[P;�] C �V C0 [Q;�]

is valid if and only if
[P;�] C �0

V C0 [Q;�]

is valid.

Proof: Let E � fPg ; [[] k pre1�]. We have to show C �E C0 (mod V ) i�
C �E0 C0 for all contexts E0 of the form

E0 � new x1 = vn; : : : ; xn = vn in E

where vi 2 Domxi for all 1 � i � n. C �E C0 (mod V ) is short for E[hCi] �Ez

E[hC0i] (mod V ). By Lemma 4.3, this execution inclusion modulo V is equiva-
lent to E0[hCi] �Ez E

0[hC0i] which is is equivalent to C �E0 C0.

There is a subtle di�erence between �00 and �. Note that the initial state of a
trace of C0 in the de�nition of �00 satis�es the precondition P without the use of
environment assumptions. In the de�nition of � (or �0), however, assumptions
are needed to guarantee preservation of the precondition. Consequently, the two
relations are not equivalent. For instance,�

x = 3;Preds(;)
�
y:=4 �

00 y:=x+ 1
�
tt;Preds(;)

�
(5.1)

is valid whereas�
x = 3;Preds(;)

�
y:=4 � y:=x+ 1

�
tt;Preds(;)

�
is not. If, however, the assumptions are such that the precondition is always
preserved, the two relations coincide.
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Proposition 5.2 (Relationship between �00 and �)
Let �0 � �. Then,

[
V
�0;�] C �V C0 [Q;�]

if and only if
[
V
�0;�] C �00

V C0 [Q;�]:

Proof: The assumption �0 � � ensures the preservation of the preconditionV
�0. Thus, the di�erence between the two de�nitions vanishes.

Let C denote the re�nement calculus of Section 5.4. Calculus C00 arises from C
by replacing every occurrence of� by �00. Note that all rules remain sound. The
Rule ASSCOM ensures that a precondition used to show re�nement between two
atomic statements, always occurs in the assumptions. Consequently, the above
counterexample (5.1) is not derivable using C00 and di�erence between the two
relations again disappears.

Proposition 5.3 (Relationship between �00 and �)

1. All rules in C00 are sound.

2. Re�nement
[P;�] C �V C0 [Q;�]

is derivable using C if and only if

[P;�] C �00
V C0 [Q;�]

is derivable using C00.

Proof: 2) Lemma 5.6 also holds in C00. The proof is identical. The desired
result follows directly from both versions of this lemma.

The de�nition of�00 is interesting, because it avoids the use context-sensitive
approximation and thus of labels. The standard, unlabeled transition traces
su�ce for this de�nition. In other words, the calculus, as presented so far,
could also be de�ned without labels. However, in Chapter 8 context-sensitive
approximation and labels will be crucial for the speci�cation and proof of certain
properties and transformations.



5.8. SUMMARY OF THE REFINEMENT RULES 89

5.8 Summary of the re�nement rules

ASSCOM

If A is an atomic statement, and

� fP;Qg � �, and

� (
(

P ^cfA)) Q, and

� � � fQ j (
(

P ^
(

Q ^cfA ) Q)g,

then
[P;�] A [Q;�]:

Figure 5.3: Assumption-commitment rules

ATOM

If A1 and A2 are atomic statements and

1. [P;�] A1 [tt;�], and

2. [P;�] A2 [Q;�], and

3. (9x1 : : :xn:
(

P ^cfA2
)) (9x1 : : :xn:

(

P ^cfA1
), and

4. wf (A1; V ),

then
[P;�] A1 �V A2 [Q;�]

where V = fx1; : : : ; xng.

SEQ

[P;�1] C1 �V1 C
0
1 [Q1;�1] [Q1;�2] C2 �V2 C

0
2 [Q;�2]

[P;�1 [ �2] C1 ; C2 �V1[V2 C
0
1 ; C0

2 [Q;�1 \�2]

where wf (C1; V2) and wf (C2; V1).

Figure 5.4: Basic re�nement rules
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OR

[P;�1] C1 �V1 C
0
1 [Q;�1] [P;�2] C2 �V2 C

0
2 [Q;�2]

[P;�1 [ �2] C1 _C2 �V1[V2 C
0
1 _C

0
2 [Q;�1 \�2]

where wf (C1; V2) and wf (C2; V1).

STAR

[I;�] C �V C0 [I;�]

[I;�] C� �V (C0)� [I;�]

OMEGA

[I;�] C �V C0 [I;�]

[I;�] C! �V (C0)! [I;�]

PAR

[P1;�1] C1 �V1 C
0
1 [Q1;�1] [P2;�2] C2 �V2 C

0
2 [Q2;�2]

[P1 ^ P2;�1 [ �2] C1 kC2 �V1[V2 C
0
1 kC

0
2 [Q1 ^Q2;�1 \�2]

where �1 � �2 and �2 � �1 and wf (C1; V2) and wf (C2; V1)

NEW

[P;�] C �V C0 [Q;�] x 62 V

[P [v=x];�0] new x = v in C �V new x = v in C0 [9x:Q;�0]

where
�0 � fP [v=x] j P 2 � ^ v 2 Domxg
�0 � fP; P [v=x] j P [v=x] 2 � ^ v 2 Domxg:

WEAK

[P 0;�0] C0
1 �V 0 C0

2 [Q0;�0]

[P;�] C1 �V C2 [Q;�]

where C0
1 =T z C1, C2 �T z C0

2, P ) P 0, Q0 ) Q, �0 � �, � � �0, and
V 0 � V .

Figure 5.5: Basic re�nement rules (continued)
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COND

If

1. [P ^B;�1] C1 �V1 C
0
1 [Q;�1], and

2. [P ^ :B;�2] C2 �V2 C
0
2 [Q;�2], and

3. P ) (B , B0), and

4. wf (C1; V2) and wf (C2; V1),

then

[P;�1 [ �2 [ fP;B0;:B0]
if B then C1 else C2 �V1[V2 if B

0 then C0
1 else C

0
2

[Q;�1 \�2]:

FOR

If

1. i is an integer variable that is never assigned to in C or C0, and

2.
�
P [k� 1=i];�i

�
C[k=i] �V C0[k=i]

�
P [k=i];�i

�
for all 1 � k � n,

then �
P [1=i];

Sn

i=1�i
�

for i = 1 to n do C �V for i = 1 to n do C0�
P [n=i];

Tn

i=1�i

�
:

WHILE

[I ^B;�] C �V C0 [I;�] I ) (B , B0) fv(B) \ V = ;

[I;� [ fB0;:B0g] while B do C �V while B0 do C0 [I ^ :B0;�]

Figure 5.6: Derived re�nement rules
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PAR-N If

1. [Pi;�i] Ci �Vi C
0
i [Qi;�i], and

2. �i �
Tn

j=1;j 6=i�j, and

3. wf (Cj; Vi) for all 1 � j � n with j 6= i,

for all 1 � i � n, then�Vn

i=1Pi;
Sn

i=1�i
�

kni=1 Ci �
S
n
i=1

Vi k
n
i=1C

0
i

�Vn

i=1Qi;
Tn

i=1�i

�
:

PAR-V

[P1;�1] C1 � C0
1 [Q1;�1] [P2;�2] C2 � C0

2 [Q2;�2]

[P1 ^ P2;�1 [ �2] C1 kC2 � C0
1 kC

0
2 [Q1 ^Q2;�1 \�2]

where �1 � �2 and �2 � �1.

PAR-V-N If

1. [Pi;�i] Ci � C 0
i [Qi;�i], and

2. �i �
Tn

j=1;j 6=i�j

for all 1 � i � n, then�Vn

i=1Pi;
Sn

i=1�i
�

kni=1 Ci � kni=1C
0
i

�Vn

i=1Qi;
Tn

i=1�i

�
:

Figure 5.7: Derived re�nement rules (continued)
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PAR-INTRO

If

1. C is robust and preserves
T
i�i in all contexts, and

2. [P;�i] C � Ci [Qi;�i] for all 1 � i � n, and

3. �i �
Tn

j=1;j 6=i�j for all 1 � i � n, and

4. (81 � i � n:Qi)) Q,

then �
P;
S
i �i

�
C�

; fQg � kni=1Ci
�
Q;
T
i�i

�
:

WHILE-INTRO

If

1. [B ^ I;�] C � C0 [I;�] and

2. (:B ^ I)) Q and

3. there exists an arithmetic expression m over the free variables in B
and C0 such that m � 0, and m = 0) :B, and

C0 �T z (inv�m ;Am ; inv�m)+

then�
I;� [ �m [ fQg

�
(fB ^ Ig ; C)� ; fQg � while B do C0

�
Q;�

�
where

Am � Var :[tt;
(
m= 0! m = 0 j m <

(
m]

�m � fm � n j n 2 Ng:

FOR-INTRO

If

1. [I[k=i];�k] C � C0[k=i] [I[k+ 1=i];�k] for all 0 � k � n� 1 and

2. I[n=i]) Q and

3. i is a constant,

then�
I[0=i];

Sn

i=1 �i
�
C�

; fQg � for i = 1 to n do C0
�
Q;
Tn

i=1�i

�
:

Figure 5.8: Introduction rules
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NEW-INTRO

[P;�] C �V [fxg C
0 [Q;�]

[P [v=x];�0] C �V new x = v in C0 [9x:Q;�0]

where

�0 � fP [v=x] j P 2 � ^ v 2 Domxg

�0 � fP; P [v=x] j P [v=x] 2 � ^ v 2 Domxg:

AWAIT-INTRO

If

1. [P1;�] [V :[B ^ P2; Q2] kD] [Q1;�] and

2. there exists an arithmetic expression m over the free variables in B
and D such that m � 0, and m = 0) B, and

D �T z (inv�m ;Am)
! _ (inv�m ;Am ; inv�m)� ; fm = 0g ; inv�m

then

[P1;� [ �m]

[V :[B ^ P2; Q2] kD] � [await B then V :[P2; Q2] end kD]

[Q1;�]

where �m � fm � n j n 2 Ng.

Figure 5.9: Introduction rules (continued)



Chapter 6

Developing shared-variable

parallel programs

This chapter illustrates the use of the calculus for the development of shared-
variable parallel programs. Four examples are given. Section 6.1 contains a
simple example to illustrate the basic use of the calculus. Section 6.2 derives a
shared-variable parallel implementation of the Warshall-algorithm. Section 6.3
derives a shared-variable parallel program to �nd the maximum in an array of
integers. The derived implementation features nested parallelism. Alternative
derivations are discussed. Section 6.4 treats the generalization of the maximum
search problem: the �rst element in an array that satis�es a property is to
be found. We derive a shared-variable parallel program and show how further
re�nement can lead to more e�ciency.

6.1 Example: Bank accounts

The following example has also been used in [AS85, XJ91, Din99b]. Suppose
n � 1 bank accounts are represented by an array A[1::n]. Let the constants a
and b with 1 � a; b � n and a 6= b denote two accounts. We want to develop a
program which computes the sum s over all entries in A and concurrently also
transfers $20 from account a to account b. We start with a high-level program
C1 that is easily seen to be correct. Let C1 be

C1 �
�
s:=�A kA[a]; A[b]:=A[a]� 20; A[b] + 20

�
where �A stands for �A � �n

i=1A[i]. The summation of an array is not imple-
mentable in a single atomic step. Program C1 thus needs to be re�ned. The
entire re�nement is summarized in Figure 6.1.

95
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C1 �
�
s:=�A k A[a]; A[b]:=A[a]� 20; A[b] + 20

�

C2 � new k = 1; t = 0 in2
4 fk; tg:[tt; tt]�;
ft = �Ag;
s:=�A

 A[a]; A[b]:=A[a]� 20; A[b] + 20

3
5

C3 � new k = 1; t = 0 in2
4 fk; tg:[tt; tt]�;
ft = �Ag;
s:=t

 A[a]; A[b]:=A[a]� 20; A[b] + 20

3
5

C4 � new k = 1; t = 0 in2
4
�
fk � n ^ Ig ; fk; tg:[tt; tt]�

��
;

ft = �Ag;
s:=t

 A[a]; A[b]:=A[a]� 20; A[b] + 20

3
5

I � k � 1 � n ^ t = �k�1
i=1A[i]

C5 � new k = 1; t = 0 in2
664
while k � n do
t:=t+ A[k] ; k:=k + 1

od;

s:=t

 fA[a]; A[b]g:[P;Q]

3
775

P � (k < a ^ k < b) _ (k > a ^ k > b)

Q � A[a] =
(

A[a] �20 ^A[b] =
(

A[b] +20:

C6 � new k = 1; t = 0 in2
664
while k � n do
t:=t+ A[k] ; k:=k + 1

od;

s:=t


await P then
A[a]; A[b]:=A[a]� 20; A[b] + 20

end

3
775

Figure 6.1: Derivation of a solution to the bank problem



6.1. EXAMPLE: BANK ACCOUNTS 97

Re�ning C1 into C2

We will compute �A in the standard way using a loop that steps over A and
keeps the partial sum of elements seen so far. To this end, we �rst introduce
two local variables k and t and a �nite loop that modi�es these two variables
only and that is required to terminate in a state in which t contains the sum
over A.

Let Qs be the postcondition of the left parallel subprogram and let Pab and
Qab be the pre- and post-condition of the right parallel subprogram, that is,

Qs � s = �A Pab � A[a] = v1 ^A[b] = v2
Qab � A[a] = v1 � 20 ^A[b] = v2 + 20

where v1; v2 are integers. Formally, this re�nement is based on

R1 �
�
tt; fQsg

�
s:=�A

� =
T z

(Lemma 2.1), Lemma 5.4

skip� ; skip ; s:=�A

�fk;tg ATOM, SEQ, STAR

fk; tg:[tt; tt]� ; ft = �Ag ; s:=�A�
Qs; fPab; Qabg

�
:

We now derive an assumption-commitment formula for the right subprogram.
We need to show that it terminates in the desired state and that it preserves at
least the assumptions of the left subprogram, that is, the predicate Qs.

R2 �
�
Pab; fPab; Qabg

�
A[a]; A[b]:=A[a]� 20; A[b] + 20 ATOM�

Qab;�
�

where � � fQs; t = �Ag [ Preds(fk; t; sg) and Preds(V ) denotes the set of
all predicates over the variables in V . In other words, the multiple assignment
statement preserves at least Qs, t = �A, and all predicates over k, t, and s. It
also preserves a lot of other predicates, but for the sake of simplicity we only
mention the necessary ones.

To derive the desired re�nement between C1 and C2, we put the re�nements
R1 and R2 in parallel and then declare the variables k and t. Formally,�

Pab; fPab; Qab; Qsg
�

C1 � C2 PAR-V(R1,R2), NEW-INTRO(k,t)�
Qab ^Qs;Preds(;)

�
:
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Re�ning C2 into C3

If the predicate t = �A is preserved by the environment, then the abstract
assignment s:=�A can safely be replaced by s:=t. Formally, we have

R3 �
�
t = �A; fQs; t = �Ag

�
s:=�A � s:=t ATOM�

Qs; fPab; Qabg
�
:

Re�nement between C2 and C3 follows in a syntax-directed fashion.

R4 �
�
Pab; fPab; Qab; Qsg [ f�A = v j v 2 Ng

�
C2 � C3 SEQ, PAR(R2), NEW(k,t)�

Qab ^Qs;Preds(;)
�

is determined by the structure of C2 and C3 in a straight-forward, syntax-
directed fashion and thus omitted. Note that according to R2, the right parallel
subprogram preserves the predicates Qs and t = �A as required by R3. More
precisely, fQs; t = �Ag � �. Moreover, note how the application of NEW
simpli�es the assumptions. The requirement that t = �A is preserved, which
stems from R3, is replaced in R4 by the requirement that the sum over A, �A,
is left unchanged.

Re�ning C3 into C4

We now equip the loop in C3 with a termination condition B � k � n and an
invariant I � k� 1 � n^ t = �k�1

i=1A[i]. This requires replacing fk; tg:[tt; tt]
� by

(fB ^ Ig ; fk; tg:[tt; tt])�. Formally, we show

fk; tg:[tt; tt]�

=T z

�
skip ; fk; tg:[tt; tt]

��
Lemma 2.1

�T z

�
fk � n ^ Ig ; fk; tg:[tt; tt]�

��
: Lemma 2.2

using equivalence under �nite stuttering and congruence. Congruence then also
implies R5 � C3 �T z C4 which in turn yields the desired re�nement formula�

Pab; fPab; Qab; Qsg [ f�A = v j v 2 Ng
�

C2 � C4 Lemma 5.4(R4,R5)�
Qab ^Qs;Preds(;)

�
by weakening and the previous re�nement R4.

Re�ning C4 into C5

We will now replace the �nite loop on the left by a while loop. However, for
the while loop to correctly store the sum over A in t upon termination, the
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states in which the right subprogram can update A must be restricted. This
re�nement step modi�es the two parallel subprograms in C4 simultaneously.
Left subprogram: We want to use rule WHILE-INTRO to replace the �nite loop
by a while loop. The rule has three premises.

1. First, we must prove that I is indeed a loop invariant. The loop body is
re�ned at the same time. More precisely, we show�

k � n ^ I; fk � n; Ig
�

fk; tg:[tt; tt]�

� �
T z

(def: C�), Lemma 3.4

fk; tg:[tt; tt] ; fk; tg:[tt; tt]

� ATOM, SEQ

t:=t+ A[k] ; k:=k + 1�
I; fPab; Qabg

�
:

2. Next, we argue that t = �A holds upon termination of the loop, that is,
k > n ^ I ) t = �A.

3. Moreover, we need to �nd an arithmetic expression m1 that allows us to
prove termination of the while loop. Let

m1 � max(n+ 1� k; 0):

We check each of the three conditions onm1. Clearly,m1 always is nonneg-
ative and m1 = 0 implies violation of the loop condition, that is, m1 � 0
and m1 = 0 ) k > n. Moreover, the loop body decreases m1, because
k:=k + 1 does and t:=t+ A[k] leaves m1 unchanged. Formally,

(inv�m1 ;Am1
; inv�m1)

+

�T z inv m1 ;Am1
def: C+, C�

�T z t:=t+A[k] ; k:=k + 1: Lemma 2.2:

Thus,

R6 �
�
I;� [ �m1

�
(fk � n ^ Ig ; fk; tg:[tt; tt])�;

ft = �Ag;

s:=t

� WHILE-INTRO(1,2,3), SEQ

while k � n do

t:=t+ A[k] ; k:=k + 1

od;

s:=t�
Qs; fPab; Qabg

�
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where � � fk � n;Qs; I; t = �Ag and �m1
� fm1 � n j n 2 Ng.

Right subprogram: The above re�nement is subject to the constraints � and
�m1

. However, in its current form the right subprogram does not meet these
constraints. In particular, it does not preserve the invariant I. The transferred
money may be counted twice: once on account a and again on b. The solution
is to restrict the transitions of the interfering component such that it cannot
disturb the computation of the other. This is achieved by postulating that the
transition which transfers $20 from account a to account b preserves the value
of �k�1

i=1A[i] and thus the predicate t = �k�1
i=1A[i] for all values of k. Let

Q � A[a] =
(

A[a] �20 ^A[b] =
(

A[b] +20

R � �k�1
i=1A[i] = �

(

k�1
i=1

(

A[i] :

Then,

R7 �
�
Pab; fPab; Qabg

�
A[a]; A[b]:=A[a]� 20; A[b] + 20

� ATOM

fA[a]; A[b]g:[tt; Q^R]�
Qab;�

�
where � � fQs; I; t = �Ag[Preds(fk; t; sg). We re�ne this further by restrict-
ing the transfer to states in which either k < a and k < b, or k > a and k > b.
Let P � (k < a ^ k < b) _ (k > a ^ k > b). Then,

R8 �
�
Pab; fPab; Qabg

�
fA[a]; A[b]g:[tt; Q^R] � fA[a]; A[b]g:[P;Q] ATOM�

Qab;�
�
:

The above two re�nements imply with transitivity

R9 �
�
Pab; fPab; Qabg

�
A[a]; A[b]:=A[a]� 20; A[b] + 20

� Lemma 5.3(R7,R8)

fA[a]; A[b]g:[P;Q]�
Qab;�

�
:

This concludes the re�nement of the right parallel component.
Note that the re�ned right subprogram now meets the constraints placed on

it by the left subprogram. That is, we have � [ �m1
� �. The re�nements of

the left and right subprograms can now be combined into a re�nement of their
parallel composition. Re�nement between the overall programs C4 and C5 then
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is obtained with application of NEW.�
Pab; fPab; Qab; Qsg [ f�A = v j v 2 Ng

�
C4 � C5 PAR(R6,R9), NEW(k,t)�

Qab ^Qs;Preds(;)
�

As before, the NEW rule has a substantial simplifying e�ect on the assumptions
�[�m1

fromR6. Since k and t are local, the preservation of k � n, I, and �m1

is trivially ensured. More precisely, k � n is replaced by fv � n j v 2 Ng which
is trivially preserved because every predicate consists of constants only. Similar
arguments applied to I and all predicates in �m1

. Moreover, the requirement
that t = �A is preserved gives way to the requirement that the sum over A,
�A, is unchanged. More precisely, the predicate t = �A in � in R6 is replaced
by the set of predicates f�A = v j v 2 Ng.

Re�ning C5 into C6

This re�nement step will replace fA[a]; A[b]g:[P;Q] by

await P then A[a]; A[b]:=A[a]� 20; A[b] + 20:

We check the premises of rule AWAIT-INTRO.

1. First, an assumption-commitment formula for the subprogram to be re-
�ned and its parallel environment is needed. We have�

Pab; fPab; Qab; Qsg [ f�A = v j v 2 Ng
�

D k fA[a]; A[b]g:[P;Q] R9�
Qab ^Qs;Preds(;)

�
where D is

D � while k � n do
t:=t+ A[k] ; k:=k + 1

od;

s:=t:

2. Second, we need to �nd an arithmetic expression that allows us to show
that the parallel program D will eventually make the await condition
true. Let

m2 � cond(k > max(a; b); 0;max(a; b)� k + 1):

Clearly,m2 is always nonnegative andm2 = 0 implies the await condition,
that is, m2 � 0 and m2 = 0) (k < a^k < b)_(k > a^k > b). Moreover,
the program running in parallel must be shown to either decrease m2

in�nitely often or at least until m2 is 0. We show this as follows. The
parallel program D can be split into D =T z D1 _D2 where

D1 � (fk � ng ; t:=t +A[k] ; k:=k + 1)!
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and

D2 � (fk � ng ; t:=t+A[k] ; k:=k + 1)� ; fk > ng ; s:=t

using the de�nition of while loops and sequential composition. Since
k:=k + 1 decreases m2 while all other atomic statements in D1 leave m2

unchanged, D1 decreases m2 in�nitely often. Similarly, D2 decreases m2

until it is zero. The formal proof uses characteristic formulas of atomic
statements to determine trace inclusion, and the congruence property.
More precisely,

D1 �T z (inv�m2 ;Am2
; inv�m2)! Lemma 2.2

D2 �T z (inv�m2 ;Am2
; inv�m2)

�
; fm2 = 0g ; inv�m2: Lemma 2.2

Note that k > n implies k > max(a; b) and thus m2 = 0. The second
condition of rule AWAIT-INTRO follows.

Thus,

R10 �
�
Pab; fPab; t = �A;Qab; Qsg [ �m2

�
D k fA[a]; A[b]g:[P;Q]

� AWAIT-INTRO(1,2)

D k await P then A[a]; A[b]:=A[a]� 20; A[a] + 20�
Qab ^Qs;Preds(;)

�
where �m2

� fm2 � v j v 2 Ng. The declaration of k and t needs to be added
to R10 to obtain the desired overall re�nement.�

Pab; fPab; Qab; Qsg [ f�A = v j v 2 Ng
�

C5 � C6 NEW(R10 ,k,t)�
Qab ^Qs;Preds(;)

�
:

As in the previous re�nement, the application of the NEW rule simpli�es the
assumptions greatly. Since k is local, it cannot be changed by the environment
and thus �m2

is trivially preserved.

Putting it all together

By transitivity we get�
Pab; fPab; Qab; Qsg [ f�A = v j v 2 Ng

�
C1 � C6 Lemma 5.3�

Qab ^Qs;Preds(;)
�
:

With weakening and Lemma 5.5 this implies the desired result

fPabg ;C1 �Ez fPabg ;C6
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and

fPabg C6 fQab ^Qsg;

that is, every execution of C6 starting in a state satisfying Pab, will also be an
execution of C1. Moreover, if that execution terminates it does so in a state
satisfying Qab ^Qs.

Discussion

1. Local variables are not subject to environment interference. Declaring a
variable as local thus typically simpli�es the environment assumptions.
Note, for instance, that the loop invariant I is not mentioned in the as-
sumptions of the overall re�nement. This is because it mentions the local
variables k and t only and thus is trivially preserved.

2. Note that the assumptions only ask for Pab, Qab, Qs and the value of �A to
be preserved. This means that C6 could be put in a parallel context which,
for instance, atomically swaps two entries in A or atomically performs
another transfer.

3. We have shown that every execution of C6 starting with Pab also is an
execution of C1. A little thought shows that the converse also is true,
that is, that C1 and C6 have identical executions. Note, however, that in
its current form our calculus does not allow us to derive this.

6.2 Example: The Floyd-Warshall algorithm

The Floyd-Warshall algorithm is a dynamic programming formulation to solve
the all-pairs shortest-paths problem on a directed, weighted graph [CLR90]. Let
G be a graph G � (V;E) with vertices V � f1; : : : ; ng and edges E � V � V .
Also, let W be an n � n adjacency matrix representing the edge weights of G,
that is,

W [i; j] =

8<
:

0; if i = j
the weight of the edge (i; j), if i 6= j and (i; j) 2 E
1; if i 6= j and (i; j) 62 E:

Edges may have negative weights, but we shall assume that there are no negative-
weight cycles in G. Moreover, let �(i; j) be the length (weight) of the short-
est path in G from vertex i to vertex j if such a path exists. Otherwise, let
�(i; j) = 1. We will assume that W [i; j] and thus also �(i; j) are constants for
all i and j, that is, the adjacency matrix does not change.

We are to design an algorithm that computes the length of the shortest paths
between any two nodes in G. More precisely, we want to compute the matrix
D such that QD holds where QD � 81 � i; j � n:D[i; j] = �(i; j). The initial
speci�cation C1 thus is

C1 � D:[tt; QD]:
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Compared to most expositions of this algorithm in the literature, in [CLR90]
for instance, we will derive an implementation that exhibits more parallelism.
The entire re�nement is summarized in Figure 6.2 where new d = W in C
abbreviates new d[1; 1] = W [1; 1]; : : :; d[n; n] = W [n; n] in C.

Re�ning C1 into C2

The �rst re�nement step introduces a local matrix d together with a �nite loop
that updates it. d has the same type as D. According to the initial speci�cation
C1, D can only be updated once. d, however, can be updated a �nite number
of times until it holds the shortest distances, that is, until

Qd � 8i:8j:d[i; j] = �(i; j):

An assignment D:=d achieves the desired postcondition.
Formally, this step is justi�ed as follows. First, we show that d:[tt; tt]� ;fQdg

is subsumed by �nite stuttering if changes to d are ignored.

R1 �
�
tt; fQdg

�
skip� ; skip �fdg d:[tt; tt]

�
; fQdg ATOM, STAR, SEQ�

Qd;Preds(;)
�

Next, the behaviour of D:=d in initial states with Qd is shown to be subsumed
by D:[tt; QD]. That is,

R2 �
�
Qd; fQd; QDg

�
D:[tt; QD]

� ATOM

D:=d�
QD;Preds(;)

�
:

The sequential composition of these two re�nements yields

R3 �
�
tt; fQd; QDg

�
D:[tt; QD]

� =
T z

(Lemma 2.1), Lemma 5.4

skip� ; skip ;D:[tt; QD]

�fdg SEQ(R1 ,R2)

d:[tt; tt]� ; fQdg ;D:=d�
QD;Preds(;)

�
:

We now declare d to conclude re�nement between C1 and C2.�
tt; fQDg

�
C1 � C2

�
QD;Preds(;)

�
NEW-INTRO(R3,d)
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C1 � D:[tt; QD]

where QD � 81 � i; j � n:D[i; j] = �(i; j)

C2 � new d =W in
d:[tt; tt]� ; fQdg;
D:=d

where Qd � 81 � i; j � n:d[i; j] = �(i; j)

C3 � new d =W in
for k = 1 to n do
d:[tt; tt]� ; fQk

dg
od;

D:=d

where Qk
d � 81 � i; j � n:d[i; j] = �(i; j; k)

C4 � new d =W in
for k = 1 to n do

kn;ni;j=1;1d[i; j]:[tt; Q
i;j;k
d ]

od;

D:=d

C5 � new d = W in
for k = 1 to n do
kn;ni;j=1;1d[i; j]:=minfd[i; j]; d[i; k]+ d[k; j]g

od;

D:=d

Figure 6.2: Derivation of an implementation of the Floyd-Warshall algorithm
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Since d is now local and �(i; j) is constant, Qd is automatically preserved. More
precisely, the application of NEW-INTRO replaces the requirement to preserve
Qd by the requirement to never change �(i; j) for all 1 � i; j � n. Since �(i; j)
is constant, this is vacuously true.

Re�ning C2 into C3

The �nite loop d:[tt; tt]� ; fQdg is re�ned into a for loop with loop counter k
ranging from 1 to n. The kth iteration is assumed to establish

Qk
d � 81 � i; j � n:d[i; j] = �(i; j; k)

where �(i; j; k) is the length of the shortest path from i to j whose intermediate
vertices are all drawn from f1; : : : ; kg. If there is no such path, let �(i; j; k) =1.
Note that �(i; j) = �(i; j; n). Thus, upon termination we have Qn

d , which is
equivalent to Qd. Also note that Q0

d is equivalent to d = W .
Formally, we want to use FOR-INTRO. We �rst check each of its premises.

1. First, note that k is never assigned to in C2 or C3.

2. Second, each of the iterations can be re�ned as follows with Qk�1
d serving

as the loop invariant.�
Qk�1
d ; fQk

dg
�

d:[tt; tt]�

� =
T z

(Lemma 2.1), Lemma 5.4

d:[tt; tt]� ; skip

� ATOM, SEQ

d:[tt; tt]� ; fQk
dg�

Qk
d;Preds(;)

�
for all 0 � k � n � 1.

3. Since there are no negative-weight cycles in the graph, each vertex in
the graph can occur at most once in the shortest path between any two
vertices. Thus, the postcondition of the last iteration implies the desired
overall postcondition, that is, Qn

d ) Qd.

Thus, �
Q0
d; fQ

k
d j 0 � k � ng

�
d:[tt; tt]� ; fQdg

� =
T z

(Lemma 2.1), Lemma 5.4

(d:[tt; tt]�)� ; fQdg

� FOR-INTRO(1,2,3)

for k = 1 to n do

d:[tt; tt]� ; fQk
dg�

Qd;Preds(;)
�
:
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We compose this loop with the trailing assignment D:=d sequentially and
declare d. Formally,�

tt; fQDg
�

C2 � C3

�
QD;Preds(;)

�
: ATOM, SEQ, NEW(d)

Note that the initialization d = W establishes Q0
d and that the locality of d

guarantees the preservation of the predicates Qk
d for all k.

Re�ning C3 into C4

In the kth iteration the statement d:[tt; tt]� allows C3 to update d an arbitrary
but �nite number of times before Qk

d is established. This computation of Qk
d is

now re�ned into n2 parallel processes using PAR-INTRO. Process (i; j) computes

Qi;j;k

d � d[i; j] = �(i; j; k):

Note that 81 � i; j � n:Qi;j;k
d implies Qk

d . However, before we can use rule
PAR-INTRO for this re�nement, we must ensure that each parallel process (i; j)

preserves the postconditions Q
(r;s;k)
d of the other processes (r; s). Thus, the

computation of each of the future parallel processes needs to be restricted ap-
propriately. Formally,

R4 � d:[tt; tt]�

�T z d:[tt; 8i; j:pre Qi;j;k

d
]�: Lemma 2.2

We check the four premises of rule PAR-INTRO.

1. First, since d:[tt; 8i; j:pre Qi;j;k
d ] is atomic, its robustness follows directly

with Proposition 2.1. Moreover, it also preserves Qk
d using Proposition 4.1.

2. Second, d:[tt; 8i; j:pre Qi;j;k

d ] is re�ned into d[i; j]:[tt; Qi;j;k

d ]. Formally,�
tt; fQi;j;k

d g
�

d:[tt; 8i; j:pre Qi;j;k

d ]

� ATOM

d[i; j]:[tt; Qi;j;k
d ]�

Qi;j;k

d ;�
�

for all i and j where

� � fQk;i;j

d j 1 � i; j � ng:

Note that i and j occur bound in the re�ned program but free in the
re�ning program. Also, note that Qi;j;k

d is preserved for all i and j.

3. The assumptions of process (i; j) are contained in the guarantees of its
environment, that is, of all processes (r; s) with r 6= i or s 6= j. Formally,

fQi;j;k

d g � �, and thus,

fQi;j;k
d g �

T(n;n)
(r;s)=(1;1);(r;s)6=(i;j)� = �:
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4. The postcondition Qk
d follows from the conjunction of the postconditions

Qi;j;k
d of each of the processes, that is,

(81 � i; j � n:Qi;j;k

d )) Qk
d:

Thus, with PAR-INTRO,�
tt; fQi;j;k

d j 1 � i; j � ng
�

d:[tt; 8i; j:pre Qi;j;k
d

]� ; fQk
dg

� PAR-INTRO(1,2,3,4)

kn;ni;j=1;1d[i; j]:[tt; Q
i;j;k
d ]�

Qk
d;Preds(;)

�
which implies �

tt; fQi;j;k
d j 1 � i; j � ng

�
d:[tt; tt]� ; fQk

dg

� �
T z

(R4), Lemma 3.4

d:[tt; 8i; j:pre Qi;j;k
d ]� ; fQk

dg

�

kn;ni;j=1;1d[i; j]:[tt; Q
i;j;k
d ]�

Qk
d;Preds(;)

�
using R4 and weakening.

To obtain re�nement between C3 and C4, we build up the remaining context
using the rules indicated below.�

tt; fQDg
�

C3 � C4

�
QD;Preds(;)

�
FOR, SEQ, NEW(d)

Re�ning C4 into C5

Each of the parallel processes (i; j) is re�ned now. We use two transformations

to turn d[i; j]:[tt; Qi;j;k

d ] into an executable program. The Floyd-Warshall algo-
rithm is based on a property of boolean matrices and relies on the absence of
negative-weight cycles. For more details, see [War62, CLR90]. In our setting,
this property is expressed as

�(i; j; k) = minf�(i; j; k � 1); �(i; k; k� 1) + �(k; j; k� 1)g:

The above equation allows the computation of the shortest distance between
i and j via intermediate nodes 1 through k in terms of the shortest distances
between any two nodes in the graph via intermediate nodes 1 though k � 1.
More precisely, the update d[i; j]:[tt; Qi;j;k

d ] in C4 can be replaced by

d[i; j]:=minf�(i; j; k � 1); �(i; k; k� 1) + �(k; j; k� 1)g:
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Formally, we have

R5 � d[i; j]:[tt; Qi;j;k
d ]

=T z d[i; j]:=minf�(i; j; k � 1); �(i; k; k� 1) + �(k; j; k � 1)g:

The second transformation uses the loop invariant. At the beginning of the kth
iteration, Qk�1

d holds. Consequently, d[i; j] contains the length of the shortest
path from i to j via intermediate nodes 1 through k � 1, that is, �(i; j; k �
1). Thus, the current values of d[i; j], d[i; k] and d[k; j] can be used in the
computation of the next value of d[i; j]. However, since d[i; k] and d[k; j] are
also assigned to by processes (i; k) and (k; j) respectively, the non-interference
condition complicates this re�nement step.

Formally, �
Pi;j;�i;j

�
d[i; j]:=minf�(i; j; k � 1); �(i; k; k� 1) + �(k; j; k � 1)g

� ATOM

d[i; j]:=minfd[i; j]; d[i; k]+ d[k; j]g�
Qi;j;k

d ;�i;j

�
where

Pi;j � Qi;j;k�1
d

^Qi;k;k�1
d

^Qk;j;k�1
d

;

�i;j � fQi;j;k�1
d ; Qi;k;k�1

d ; Qk;j;k�1
d ; Qi;j;k

d g

�i;j � fQr;s;k�1
d ; Qr;s;k

d j (r; s) 6= (i; j)g [ fQi;j;k�1
d j i = k _ j = kg:

The guarantees �i;j need a short explanation. The preservation of Qr;s;k�1
d

and

Qr;s;k
d for (r; s) 6= (i; j) follows readily. However, the additional preservation of

Qi;j;k�1
d and if i = k or j = k is surprising. To see why these predicates are

preserved, note that whenever i = k or j = k, we have

minfd[i; j]; d[i; k]+ d[k; j]g = d[i; j];

because d[i; i] = d[j; j] = 0. Informally, the shortest path from i to j via 1; : : : ; k
is as long as the shortest path from i to j via 1; : : : ; k � 1, if the intermediate
vertex k is identical to either the beginning or the end of the path. Consequently,
if i = k or j = k, the assignment

d[i; j]:=minfd[i; j]; d[i; k]+ d[k; j]g

does not change the value of d[i; j] and thus additionally preserves the predicates
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Qi;j;k�1
d . Thus,

R6;i �
�
Pi;j;�i;j

�
d[i; j]:[tt; Qi;j;k

d ]

� =
T z

(R5), Lemma 5.4

d[i; j]:=minf�(i; j; k � 1); �(i; k; k� 1) + �(k; j; k � 1)g

� ATOM

d[i; j]:=minfd[i; j]; d[i; k]+ d[k; j]g�
Qi;j;k

d ;�i;j

�
:

Before we can put all n processes in parallel, the non-interference require-
ment needs to be checked. We have �i;j � �r;s for all (r; s) 6= (i; j) which
implies

�i;j �
T(n;n)

(r;s)=(1;1);(r;s)6=(i;j)�r;s

as required. Thus,

[8i; j:Pi;j;
Sn;n

i;j=1;1 �i;j]

kn;ni;j=1;1d[i; j]:=minf�(i; j; k � 1); �(i; k; k� 1) + �(k; j; k� 1)g

� PAR-N(R4;i)

kn;ni;j=1;1d[i; j]:=minfd[i; j]; d[i; k]+ d[k; j]g

[Qk
d;Preds(;)]:

Note that the precondition 81 � i; j � n:Pi;j can be strengthened to Qk�1
d .

The overall re�nement follows.

[tt; fQDg] C4 � C5 [QD;Preds(;)]: FOR, SEQ, NEW(d)

Putting it all together

By transitivity we get

[tt; fQDg] C1 � C5 [QD;Preds(;)]: Lemma 5.3

With weakening and Lemma 5.5 this implies the desired result

fttg ;C1 �Ez fttg ;C5 and fttg C5 fQDg:

Discussion

1. Typical implementations of the Warshall algorithm resort to a for loop
rather than a parallel composition to implement d:[tt; tt]� ;fQk

dg. Program
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C5 thus demonstrates that the sequentiality is not necessary. Note that
the sequential implementation could easily be derived by re�ning C5 us-
ing Lemma 2.2.8. Moreover, it could also by derived directly using our
calculus.

2. As in the previous example, the locality of the matrix variable d automati-
cally shielded the derived programs from interference destroying the valid-
ity of predicates involving d. Since most of the re�nement steps involved
local variables (only the �nal assignment D:=d uses a global variable), the
resulting program poses few assumptions on its parallel environment. In
fact, program C5 works correctly in all parallel environments as long as
the value of D[i; j] is not changed if it is �(i; j) for all i and j.

3. Using ideas from [vdS86], program C5 could be re�ned further into a dis-
tributed implementation. The use of re�nement to turn a shared-variable
implementation into a distributed message-passing implementation will be
illustrated later in Section 7.

6.3 Example: Maximum search

We are to develop a program that �nds the maximal entry in an array of integers
A[1::n] and stores it in variable x. Formally, upon termination we should have
x � A[i] for all 1 � i � n and x = A[j] for some 1 � j � n, abbreviated as
max(x). As we will see, the nature of the problem allows for a highly parallel
solution which gives rise to a number of more sequential variants.

We start with a program C1 that allows x to be changed arbitrarily an
arbitrary but �nite number of times before terminating in a state in which
max(x), that is,

x:[tt; tt]� ; fmax(x)g:

The �rst derivation of an implementation is summarized in Figure 6.3.

Re�ning C1 into C2

The program C2 breaks the problem into two sequential parts. The �rst part
updates a local boolean array m such that a certain relationship between an
entry in m and the corresponding entry in A holds upon termination. More
precisely, we want m[i] to be true if and only if A[i] contains the maximum of
A. The second part will later use this relationship to �nd the maximum of A
and store it in x. This re�nement step is concerned with the introduction of
the �rst part. A �nite loop updates m such that upon termination m[i] is true
if and only if A[i] is maximal, that is, m[i] , max(A[i]) for all 1 � i � n.
Assuming that all entries in m are set to true initially, we intend to use the
�nite loop to set m[i] to false whenever it has been determined that A[i] is not
maximal. Thus, once an entry has been reset, it will never be set again, that is,
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C1 � x:[tt; tt]� ; fmax(x)g

where max(x) � 81 � i � n:x � A[i]

C2 � new m[1::n] = tt in
m:[tt; 8i:pre :m[i]]� ; fIg;
x:[tt; tt]� ; fmax(x)g

where pre :m[i] � :
(

m[i]) :m[i]
I � 81 � i � n:Ii
Ii � m[i] , max(A[i])

C3 � new m[1::n] = tt in
m:[tt; 8i:pre :m[i]]� ; fIg;
kni=1if m[i] then x:=A[i]

C4 � new m[1::n] = tt in�
kni=1 m[i]:[tt; pre :m[i] ^ pre Ii]� ; fIig

�
;�

kni=1 if m[i] then x:=A[i]
�

C5 � new m[1::n] = tt in�
kni=1

�
knj=1m[i]:[tt; Ii;j ^ pre :m[i]]

� �
;�

kni=1 if m[i] then x:=A[i]
�

where Ii;j � (8j:A[j] � A[i]) m[i]) ^ (A[j] > A[i]) :m[i])

C6 � new m[1::n] = tt in�
kni=1 [k

n
j=1if A[i] < A[j] then m[i]:=� ]

�
;�

kni=1 if m[i] then x:=A[i]
�

C7 � new m[1::n] = tt in�
k
(n;n)
(i;j)=(1;1)

if A[i] < A[j] then m[i]:=�
�
;�

kni=1 if m[i] then x:=A[i]
�

Figure 6.3: Derivation of the �rst solution to the maximum search problem
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every update of m[i] preserves :m[i], that is, it satis�es

pre :m[i] � :
(

m[i]) :m[i]:

We show that when ignoring the updates to the local variables m[1] through
m[n], the �rst sequential component of C2 just exhibits a �nite number of stut-
tering steps.

Formally,

R1 �
�
tt;Preds(;)

�
skip

� =
T z

(Lemma 2.1), Lemma 5.4

skip� ; skip

�fm[1];:::;m[n]g ATOM, STAR, SEQ

m:[tt; 8i:pre :m[i]]� ; fIg�
tt;Preds(;)

�
where pre m[i] and I are given in Figure 6.3. Moreover, program

m:[tt; tt]� ; fmax(x)g

can easily be shown to establish the desired postcondition, because it enforces
it explicitly.

R2 �
�
tt; fmax(x)g

�
x:[tt; tt]� ; fmax(x)g

� ATOM, STAR, SEQ

x:[tt; tt]� ; fmax(x)g�
max(x);Preds(;)

�
:

The re�nements R1 and R2 are composed sequentially.

R3 �
�
tt; fmax(x)g

�
x:[tt; tt]� ; fmax(x)g

� =
T z

(Lemma 2.1), Lemma 5.4

skip;

x:[tt; tt]� ; fmax(x)g

�fm[1];:::;m[n]g SEQ(R1 ,R2)

m:[tt; P ]� ; fIg;

x:[tt; tt]� ; fmax(x)g�
max(x);Preds(;)

�
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To obtain re�nement between C1 and C2, the variables m[1] through m[n] are
declared. �

tt; fmax(x)g
�

C1 � C2�
max(x);Preds(;)

�
NEW-INTRO(R3)

Re�ning C2 into C3

Before re�ning the just introduced �rst part, we specify how the relationship
between m and A expressed in I should be used to compute max(x). Assuming
I, we will attempt to compute max(x) with maximal e�ciency, that is, the loop
x:[tt; tt]� ; fmax(x)g will be re�ned into a parallel composition of n processes.
We want process i to establish the postcondition

Qi � max(A[i])) max(x):

Note that 81 � i � n:Qi implies max(x). However, before we can use rule
PAR-INTRO to do this, we must ensure that each parallel process i preserves
the postconditions Qj of the other processes. Thus, the computation of each of
the future parallel processes needs to be restricted appropriately. Formally,

R4 � x:[tt; tt]� ; fmax(x)g

�T z x:[tt; 8i:pre Qi]� ; fmax(x)g: Lemma 2.2

Assuming I, the postcondition Qi can be achieved by setting x to some A[i]
for which m[i] holds. Thus, in the application of PAR-INTRO below, will re�ne
the computation of the loop body from

x:[tt; 8i:pre Qi]

into
if m[i] then x:=A[i]:

We check the four premises of the rule.

1. Robustness of x:[tt; 8i:pre Qi] follows directly with Proposition 2.1. More-
over, it can easily be seen that fI;Qi j 1 � i � ng is preserved in all
contexts using Proposition 4.1.
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2. Second, x:[tt; 8i:pre Qi] is re�ned into the desired conditional.�
I;�i

�
x:[tt; 8i:pre Qi]

� =
T z

(Lemma 2.1), Lemma 5.4

(skip ; x:[tt; 8i:pre Qi] _ skip ; x:[tt; 8i:pre Qi])

� �
T z

(Lemma 2.2), Lemma 3.4

if m[i] then x:[tt; 8i:pre Qi] else x:[tt; 8i:pre Qi]

� ATOM, COND

if m[i] then x:=A[i]�
Qi;�

�
for all 1 � i � n where

Qi � max(A[i])) max(x);
�i � fI;Qig; and
� � fIg [ fQi j 1 � i � ng:

Note that the re�nement preserves Qi for all i as desired. Moreover,
the last re�nement step requires property I to show that Qi holds upon
termination of the conditional.

3. The assumptions of process i are contained in the guarantees of its envi-
ronment, that is, of all processes j with j 6= i. Formally, �i � �, and
thus,

�i �
Tn

j=1;j 6=i� = �:

4. As mentioned above, the overall postcondition max(x) follows from the
conjunction of the postconditions Qi of each of the processes, that is,

(81 � i � n:Qi)) max(x):

Thus, �
I; fI;max(x)g [ fQi j 1 � i � ng

�
x:[tt; tt]� ; fmax(x)g

� �
T z

(R4), Lemma 3.4

x:[tt; 8i:pre Qi]� ; fmax(x)g

� PAR-INTRO(1,2,3,4), WEAK

kni=1if m[i] then x:=A[i]�
max(x);Preds(;)

�
To obtain re�nement between C2 and C3, we �rst sequentially add the �rst
part that computes I, and then declare the array m.�

tt; fmax(x)g [ fmax(A[i]);:max(A[i]) j 1 � i � ng
�

C2 � C3 SEQ, NEW(m)�
max(x);Preds(;)

�
:
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Note how the locality of arraym, and thus the application of NEW, replaces the
assumption that I be preserved by the assumptions that the value of max(A[i])
never changes. Moreover, the preservation of max(x) implies the preservation
of Qi for all i.

Re�ning C3 into C4

We now specify how property I should be achieved by the �rst part. The result-
ing re�nement and its derivation will be of similar structure than the previous
one from C2 to C3. Again, we will attempt to compute I as e�ciently as pos-
sible. The loop m:[tt; 8i:pre :m[i]]� will be replaced by a parallel composition.
As before, the desired postcondition Ii for each parallel process i must be de-
termined. Let

Ii � m[i], max(A[i]):

Note that 81 � i � n:Ii implies I. Before the loop can be re�ned into a parallel
composition using PAR-INTRO, we must ensure that the postconditions are
preserved by each of the parallel processes. Moreover, Ii is not trivial enough to
be established in a single step. Thus, we allow each parallel process an arbitrary
but �nite number of steps rather just one as in the case of C2. Formally,

R5 � m:[tt; 8i:pre :m[i]]� ; fmax(x)g

=T z Lemma 2.1�
m:[tt; 8i:pre :m[i]]�

��
; fmax(x)g

�T z Lemma 2.2�
m:[tt; 8i:pre :m[i]^ pre Ii]�

��
; fmax(x)g:

We will require Ii to be achieved by updating m[i] an arbitrary, but �nite
number of times in such a way that :m[i] and Ii are preserved until Ii holds.
More precisely, in the application of PAR-INTRO below

m:[tt; 8i:pre :m[i] ^ Ii]
�

is replaced by �
kni=1 m[i]:[tt; pre :m[i] ^ pre Ii]

�
; fIig

�
:

We check the four premises of the rule.

1. Since m:[tt; 8i:pre :m[i]^pre Ii]� is a �nite loop over an atomic statement,
robustness follows with Proposition 2.1. Moreover, it also preserves fIi j
1 � i � ng in all contexts. To see this, we use Proposition 4.1.

2. Second, each of the parallel programs

m[i]:[tt; pre :m[i] ^ pre Ii]
�

; fIig

is shown to be subsumed by

m:[tt; 8i:pre :m[i]^ pre Ii]
�;
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that is, �
tt; fIig

�
m:[tt; 8i:pre :m[i]^ pre Ii]�

� �
T z

(Lemma 2.2), Lemma 3.4

m[i]:[tt; pre :m[i] ^ pre Ii]
�

� =
T z

(Lemma 2.1), Lemma 5.4

m[i]:[tt; pre :m[i] ^ pre Ii]
�

; skip

� ATOM, STAR, SEQ

m[i]:[tt; pre :m[i] ^ pre Ii]� ; fIig�
Ii;�

�
for all 1 � i � n where � � fIi j 1 � i � ng.

3. Third, the non-interference condition is met, because fIig � �. Thus,

fIig �
Tn

j=1;j 6=i� = �:

4. Fourth, as mentioned above, the conjunction of the postconditions of each
of the processes implies the desired overall postcondition.

(8i:Ii)) I

Thus, �
tt; fIi j 1 � i � ng

�
m:[tt; 8i:pre :m[i]^]� ; fIg

� �
T z

(R5), Lemma 3.4�
m:[tt; 8i:pre :m[i]^ pre Ii]

�
��

; fIg

� PAR-INTRO(1,2,3,4), WEAK�
kni=1 m[i]:[tt; pre :m[i]^ pre Ii]� ; fIig

�
�
I;Preds(;)

�
:

Re�nement between C3 and C4 follows with the indicated rules.�
tt; fmax(x)g [ fmax(A[i]);:max(A[i]) j 1 � i � ng

�
C3 � C4 SEQ, NEW�

max(x);Preds(;)
�

Re�ning C4 into C5

The re�nement step above has broken the computation of I into a parallel com-
position of processes where process i is required to establish Ii while changing
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only m[i] and preserving :m[i] and Ii. More precisely, process i is of the form
m[i]:[tt; pre :m[i] ^ pre Ii]� ; fIig. This loop will be implemented by another
parallel composition. Each of the processes (i; j) will compute

Ii;j � (max(A[i])) m[i]) ^A[i] < A[j]) :m[i]:

Note that 81 � j � n:Ii;j implies Ii. To prepare for the application for PAR-
INTRO, we need to ensure that process (i; j) preserves the postconditions of
the other processes. It turns out, though, that no additional requirements are
need. To see this, assume Ii;j. Let (k; l) be a process in the environment of
(i; j). If k 6= i, then (k; l) does not modify m[i] which implies preservation of
Ii;j . If k = i, then (k; l) preserves A[i] < A[j] ) :m[i], because it preserves
:m[i]. Moreover, it also preserves max(A[i]) ) m[i], because it preserves Ii
by assumption. Thus, no additional requirements need to be added. Moreover,
assuming m[i] is set initially, Ii;j can be established in a single step by resetting
m[i] if A[i] < A[j]. We check the premises of rule PAR-INTRO.

1. Since m[i]:[tt; pre :m[i]^pre Ii] is atomic, robustness follows directly with
Proposition 2.1. Preservation of fIi;j j 1 � i; j � ng follows directly with
Proposition 4.1.

2. Second, we derive�
tt; fIi;jg

�
m[i]:[tt; pre :m[i] ^ pre Ii]

� �
T z

(Lemma 2.2), Lemma 3.4

m[i]:[tt; Ii;j]�
Ii;j;�

�
for all j where � � fIi;j j 1 � i; j � ng. Note that the above re�nement
preserves Il;m for all 1 � l;m � n, because only m[i] can be changed and
if every such change results in a state satisfying Ii;j .

3. The environment of (i; j) guarantees the preservation of Ii;j (the assump-
tion of process (i; j)), that is,

fIi;jg �
Tn

j=1;j 6=i� = �:

4. Finally,
(8j:Ii;j)) Ii:

Thus,

R6;i �
�
tt;�i

�
m[i]:[tt; pre :m[i] ^ pre Ii]� ; fIig

� PAR-INTRO(1,2,3,4)

knj=1m[i]:[tt; Ii;j ^ pre :m[i]]�
Ii;�

�
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where

�i � fIi;j j 1 � j � ng

� � fIi;j j 1 � i; j � ng:

Each of these n parallel compositions are now put in parallel resulting in nested
parallelism. �

tt;
Sn

i=1 �i
�

kni=1m[i]:[tt; Ii;j ^ pre :m[i]]� ; fIig

� PAR-N(R6;i)

kni=1[k
n
j=1m[i]:[tt; Ii;j ^ pre :m[i]]]�

I;�
�
:

The overall re�nement�
tt; fmax(x)g [ f:max(A[i]); A[i] � A[j] j 1 � i; j � ng

�
C4 � C5 WEAK, SEQ, NEW�

max(x);Preds(;)
�

follows.

Re�ning C5 into C6

We now re�ne m[i]:[tt; Ii;j ^ pre :m[i]]. This program will do nothing else but
reset m[i] in situations in which this reset makes Ii;j true, that is, if and only if
A[j] is less than A[i]. The only candidate for the re�nement thus is

if A[i] < A[j] then m[i]:=� :

Formally, we derive�
m[i]; fm[i]; Ii;j; A[i] < A[j]g

�
m[i]:[tt; Pi ^ Ii;j]

� =
T z

(Lemma 2.1), Lemma 5.4

skip ;m[i]:[tt; Ii;j ^ pre :m[i]]_ skip ;m[i]:[tt; Ii;j ^ pre :m[i]]

� �
T z

(Lemma 2.2), Lemma 3.4

if A[i] < A[j] then m[i]:[tt; Pi ^ Ii;j ]

else m[i]:[tt; Pi ^ Ii;j]

� ATOM, COND

if A[i] < A[j] then m[i]:=��
Ii;j;Preds(;)

�
:

Note that the last re�nement step relies on m[i] being set initially to show the
the conditional establishes the postcondition Ii;j. To obtain re�nement between
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C6 and C7, the nested parallel context needs to be built up.�
m[i]; fm[i]; Ii;j; A[i] < A[j] j 1 � j � ng

�
knj=1m[i]:[tt; Pi ^ Ii;j ]

� PAR-N

knj=1if A[i] < A[j] then m[i]:=��
I;Preds(;)

�
and �

8i:m[i]; fm[i]; Ii;j; A[i] < A[j] j 1 � i; j � ng
�

kni=1[k
n
j=1m[i]:[tt; Ii;j]]

� PAR-N

kni=1[k
n
j=1if A[i] < A[j] then m[i]:=� ]�

I;Preds(;)
�
:

Applications of SEQ and NEW conclude this re�nement step

R7 �
�
tt; fmax(x)g [ f:max(A[i]); A[i] < A[j]; A[i] � A[j] j 1 � i; j � ng

�
C5 � C6 SEQ, NEW�

max(x);Preds(;)
�
:

Re�ning C6 into C7

Since parallel composition is associative, nested parallelism as in kni=1[k
n
j=1Ci;j]

can be atten out, that is,

kni=1[k
n
j=1Ci;j] =T z k

(n;n)
(i;j)=(1;1)Ci;j

for all Ci;j. Thus, R8 � C6 =T z C7. Using the previous approximation we get�
tt; fmax(x)g [ f:max(A[i]); A[i]< A[j]; A[i] � A[j] j 1 � i; j � ng

�
C5 � C7 Lemma 5.4(R7,R8)�

max(x);Preds(;)
�

Putting it all together

Thus, �
tt; fmax(x)g [ fA[i] < A[j]; A[i] � A[j] j 1 � i; j � ng

�
C1 � C7 Lemma 5.3�

max(x);Preds(;)
�
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where the assumptions are a simpli�cation of

fmax(x)g
[fQi j 1 � i � ng
[f:max(A[i]);max(A[i]); A[i]< A[j]; A[i] � A[j] j 1 � i; j � ng:

Discussion

The assumptions in the �nal re�nement statement are worth analyzing. Clearly,
if the array A never changes, then all predicates in � are preserved, that is,

� � Preds(fAg):

However, this is more restrictive than necessary. � does leave some room for A to
be changed. More precisely, every environment transition that preserves A[i] <
A[j] for all 1 � i; j � n also obeys � and is thus permissible. Consequently,
the parallel environment, can, for instance, subtract a non-negative number
from the minimum, or add in one atomic step a positive number to every entry
without violating the assumptions and destroying the validity of the re�nement.

6.3.1 Alternative re�nements

Deriving a sequential implementation

The implementation we have derived is highly parallel. Given our calculus it
is straightforward to specialize it into a sequential implementation. Consider
Figure 6.4. The trace inclusion C6 �T z C0

7 is obtained with Lemma 2.2.8 to
decrease parallelism.

C6 � new m[1::n] = tt in�
kni=1 [k

n
j=1if A[i] < A[j] then m[i]:=� ]

�
;�

kni=1 if m[i] then x:=A[i]
�

C0
7 � new m[1::n] = tt in

for i = 1 to n do
for j = 1 to n do
if A[i] < A[j] then m[i]:=� ;

for i = 1 to n do
if m[i] then x:=A[i]

Figure 6.4: Derivation of the second solution to the maximum search problem

Programs C7 on the one hand and C0
7 on the other represent two extremes

on a spectrum from maximally parallel to maximally sequential. Various mixed
implementations could be derived using Lemma 2.2.8.
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Avoid multiple updates to m[i]

Program C6 implements the initial speci�cation C1 by �rst spawning n2 parallel
processes Ci;j each of which executes

if A[i] < A[j] then m[i]:=� :

The coupling between these parallel processes is very loose, that is, they neither
inuence each other nor depend on each other's behaviour. Consequently, the
assignmentm[i]:=� maybe executed several times. For instance, ifA[i] happens
to be the least element in A, m[i] is set to false n�1 times. In a truly concurrent
setting with n2 available processes, we are not penalized for this redundancy.
However, if we do not have n2 processes or parallelism is simulated on a single-
processor machine, one may wish for an implementation that is more e�cient in
the sense that it executes each m[i]:=� at most once. Figure 6.5 summarizes the
derivation of an alternative implementation C00

6 . The reduction in redundancy

C5 � new m[1::n] = tt in�
kni=1

�
knj=1m[i]:[tt; Ii;j ^ pre :m[i]]

� �
;�

kni=1 if m[i] then x:=A[i]
�

where Ii;j � (8j:A[j] � A[i]) m[i]) ^ (A[j] > A[i]) :m[i])

C00
6 � new m[1::n] = tt in�

kni=1 [k
n
j=1await tt then if m[i] ^A[i] < A[j] then m[i]:=� ]

�
;�

kni=1 if m[i] then x:=A[i]
�

Figure 6.5: Derivation of the third solution to the maximum search problem

in C00
6 must be paid for by tighter coupling and decreased parallelism.
Program C00

6 assigns false to m[i] at most once, but still executes the test
m[i] ^ A[i] < A[j] n � 1 times. Figure 6.6 summarizes a second alternative
re�nement that improves on this and executes the assignment at most once and
the test at most n� 1 times but possibly less often. Program C000

6 tests if there
is an element j in A that is greater than A[i] in one high-level step. Program
C000
7 implements this by scanning A sequentially until either all elements have

been looked at or a greater element is found. It thus minimizes the number
of redundant assignments and tests, at the cost of an even lower degree of
parallelism.

An overview of all re�nements presented in this section can be found in
Figure 6.7.
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C4 � new m[1::n] = tt in�
kni=1 m[i]:[tt; pre:m[i] ^ pre Ii]� ; fIig

�
;�

kni=1 if m[i] then x:=A[i]
�

C 000
5 � new m[1::n] = tt in�

kni=1 m[i]:[tt; pre:m[i] ^ pre Ii] ; fIig
�
;�

kni=1 if m[i] then x:=A[i]
�

C000
6 � new m[1::n] = tt in�

kni=1 if 9j:A[i] < A[j] then m[i]:=�
�
;�

kni=1 if m[i] then x:=A[i]
�

C 000
7 � new m[1::n] = tt in

� n
i=1

new ki = 1 in
while A[ki] � A[i] ^ ki � n do ki:=ki + 1;

if ki � n then m[i]:=�

�
;

�
kni=1 if m[i] then x:=A[i]

�
Figure 6.6: Derivation of the fourth solution to the maximum search problem
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6.4 Example: Array search

Let A[1::n] be an array. Let search(A) be the smallest index of an element
satisfying some predicate P , if it exists. Let search(A) = n + 1 otherwise.
Formally,

search(A) =

�
minfk j P (A[k])g; if P (A[k]) for some 1 � k � n
n+ 1; otherwise:

We seek to develop a program C that computes search(A) and stores it in x.
The initial speci�cation C1 thus is

C1 � x:=search(A):

Moreover, we want C to consist of m � n parallel subprograms. For simplicity,
we assume that m divides n. The ith subprogram will search the array entries
i; i +m; i+ 2m; : : : ; i+ n looking for x. We will call the entries 1 � j � n such
that j = i (mod m) the ith partition of A, that is,

partm;n(i) � fj j 1 � j � n ^ j = i (mod m)g:

This problem has occurred frequently in the literature on reasoning about
concurrent programs. The binary case (m = 2) is discussed in [OG76a, AO91].
Stirling, however, also treats the general case [Sti88]. In contrast, we will also
derive alternative implementations. The entire �rst re�nement is summarized
in Figure 6.8.

Re�ning C1 into C2

As in the development of the maximum search algorithm, the problem will be
split into two sequential parts where the �rst part will establish a predicate that
will allow a straightforward computation of the desired result in the second part.
This re�nement step will introduce the �rst part. The idea is to have m local
variables y1 through ym where yi ranges over partition i. Each variable yi will
be initialized with n + i indicating that no entry satisfying P has been found
yet in partition i. The value of these variables can be changed in a terminating
loop in a nonincreasing fashion. Upon termination of this loop, the desired
index search(A) should be given by the minimum over y1 through ym, that is,

Q � search(A) = minfy1; : : : ; yng:

Assigning minfy1; : : : ; ymg to x thus leaves x with the desired value.
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C1 � x:=search(A)

C2 � new y1 = n+ 1; : : : ; ym = n+m in
fy1; : : : ; ymg:[tt; 8i:yi �

(
yi]

�
;

fQg;
x:=minfy1; : : : ; ymg

where Q � minfy1; : : : ; ymg = search(A)

C3 � new y1 = n + 1; : : : ; ym = n+m in�
kmi=1 yi:[tt; yi �

(
yi]

�
; fQig

�
;

x:=minfy1; : : : ; ymg

where Qi � Ri ) yi = search(A) j yi � search(A)
Ri � search(A) 2 partm;n(i)

C4 � new y1 = n+ 1; : : : ; ym = n+m in� m
i=1

new xi = i in
fxi; yig:[tt; xi �

(
xi ^yi �

(
yi]

�
; fQig

�
;

x:=minfy1; : : : ; ymg

C5 � new y1 = n+ 1; : : : ; ym = n+m in2
4 

m

i=1

new xi = i in�
fxi < yi ^ Iig ; fxi; yig:[tt; xi �

(
xi ^yi �

(
yi]
��

;

fQig

3
5 ;

x:=minfy1; : : : ; ymg

where Ii � I1i ^ I
2
i ^ I

3
i

I1i � xi = i (mod m) ^
�
8j 2 partm;n(i):j < xi ) :P (A[j])

�
I2i � yi � n) xi = yi ^ P (A[yi])
I3i � yi = n+ i _ yi � n

C6 � new y1 = n+ 1; : : : ; ym = n+m in2
4 m

i=1

new xi = i in
while xi < yi do
if P (A[xi]) then yi:=xi else xi:=xi +m

3
5 ;

x:=minfy1; : : : ; ymg

Figure 6.8: Derivation of the �rst solution to the array search problem
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Formally, we derive

R1 �
�
tt; fQ; x= search(A)g

�
x:=search(A)

� =
T z

(Lemma 2.1), Lemma 5.4

skip� ; skip;

x:=search(A)

�fy1;:::;ymg ATOM, STAR, SEQ

fy1; : : : ; ymg:[tt; 8i:yi �
(
yi]�;

fQg;

x:=minfy1; : : : ; ymg�
x = search(A);Preds(;)

�
:

Declaring y1 through ym yields�
tt; fx = search(A)g [ fsearch(A) = v j v 2 Ng

�
C1 � C2 NEW-INTRO(R1, y1, : : :, ym)�

x = search(A);Preds(;)
�
:

The declaration replaces the requirement to preserve Q in R1 by the require-
ment that search(A) must not change.

Re�ning C2 into C3

The computation of Q is re�ned. The loop fy1; : : : ; ymg:[tt; 8i:yi �
(
yi]� ; fQg is

re�ned into a parallel composition of m processes where process i is responsible
for computing Qi, where

Qi � Ri ) yi = search(A) j yi � search(A)

Ri � search(A) 2 partm;n(i)

and Pif ) PthenjPelse abbreviates (Pif ) Pthen) ^ (:Pif ) Pelse) as before.
Informally, Qi requires yi to carry the value yi = search(A) if search(A) is in
the ith partition, and some value greater than or equal to search(A) otherwise.
Note that this particular choice of Qi guarantees that Q is implied once all
parallel processes terminate. However, before the loop can be broken into a
parallel composition using PAR-INTRO, we need to ensure that each process i
preserves the postconditions Qj of the other processes j. Moreover, process i
will require several steps to compute Qi.

R2 � fy1; : : : ; ymg:[tt; 8i:yi �
(
yi]

�

=T z

�
fy1; : : : ; ymg:[tt; 8i:yi �

(
yi]�

��
Lemma 2.1

�T z

�
fy1; : : : ; ymg:[tt; 8i:yi �

(
yi ^pre Qi]

�
��

Lemma 2.2
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We specify that process i achieves Qi in a �nite loop while updating only yi in
a nonincreasing fashion and preserving Qj for all j.

We check the four premises.

1. Since
fy1; : : : ; ymg:[tt; 8i:yi �

(
yi ^pre Qi]

�

is a �nite loop over an atomic statement, it is robust using Proposition 2.1.
It also preserves fQ1; : : : ; Qmg in all contexts (Proposition 4.1).

2. Second, we verify that each of the parallel programs

yi:[tt; yi �
(
yi ^pre Qi]

�
; fQig

approximates
fy1; : : : ; ymg:[tt; 8i:yi �

(
yi ^Qi]

�:

Formally, �
tt; fQig

�
fy1; : : : ; yng:[tt; 8i:yi �

(
yi ^pre Qi]�

� =
T z

(Lemma 2.1), Lemma 5.4

yi:[tt; yi �
(
yi ^pre Qi]� ; skip

� ATOM, STAR, SEQ

yi:[tt; yi �
(
yi ^pre Qi]� ; fQig�

Qi;�
�

for all i where � � fQ1; : : : ; Qmg.

3. Moreover, the non-interference condition holds, since fQig � �.

4. Finally, the conjunction of the postconditions Qi implies the overall post-
condition Q, that is, (8i:Qi)) Q.

Thus, �
tt; fx = search(A)g [ fQi j 1 � i � mg

�
fy1; : : : ; ymg:[tt; 8i:yi �

(
yi]

�
; fQg

� �
T z

(R2), Lemma 3.4

(fy1; : : : ; ymg:[tt; 8i:yi �
(
yi ^pre Qi]

�)� ; fQg

� PAR-INTRO(1,2,3,4)

kmi=1yi:[tt; yi �
(
yi ^pre Qi]

�
; fQig�

Q;Preds(;)
�
:

The proof is completed as follows

R3 �
�
tt; fx = search(A)g [ fsearch(A) = v j v 2 Ng

�
C2 � C3 SEQ, NEW(y1 ,: : :,ym)�

x = search(A);Preds(;)
�
:

Note that locality of y1 through ym ensures preservation of Qi for all 1 � i � n.
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Re�ning C3 into C4

Each of the parallel processes in C3 requires us to establish a state such that Qi

holds after a �nite iteration in which yi changes in a non-increasing fashion, all
other variable are unchanged, and Qi is preserved. To this end, we introduce an
auxiliary variable xi that ranges over the ith partition. Since only yi is allowed
to change, xi must be declared local. Assuming that the array is searched in
direction of increasing indices, xi is initialized with i| the smallest index equal
to i modulo m. This yields program C4. The correctness of this step follows
from �

tt;Preds(;)
�

�
yi:[tt; yi �

(
yi ^pre Qi] ; fQig

��
� ATOM, NEW-INTRO(xi)

new xi = i in�
fxi; yig:[tt; xi �

(
xi ^yi �

(
yi ^pre QI ] ; fQig

��
�
tt;Preds(;)

�
for all 1 � i � n. This implies trace inclusion by Lemma 5.5. The overall
re�nement R4 � C3 �T z C4 then is established using congruence. Using the
previous re�nement R3 and weakening this implies

R5 �
�
tt; fx = search(A)g [ fsearch(A) = v j v 2 Ng

�
C2 � C4 Lemma 5.4(R3,R4)�

x = search(A);Preds(;)
�
:

Re�ning C4 into C5

This re�nement step prepares the replacement of the �nite loop by a while loop
using rule WHILE-INTRO. To this end, we need to identify a loop termination
condition B and loop invariant Ii such that the conditions of the rule hold. Let

B � xi < yi
Ii � I1i ^ I

2
i ^ I

3
i

I1i � xi = i(mod m) ^
�
8j 2 partm;n(i):j < xi ) :P (A[j])

�
I2i � yi � n) xi = yi ^ P (A[yi])
I3i � yi = n+ i _ yi � n:

The correctness of the re�nement from C4 into C5 then follows from:

fxi; yig:[tt; xi �
(
xi ^yi �

(
yi ^pre Qi]

�
; fQig

=T z Lemma 2.1�
skip ; fxi; yig:[tt; xi �

(
xi ^yi �

(
yi ^pre Qi]

��
; fQig:

�T z Lemma 2.2�
fxi < yi ^ Iig ; fxi; yig:[tt; xi �

(
xi ^yi �

(
yi ^pre Qi]

��
; fQig:
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Thus, by congruence, R6 � C4 �T z C5 which implies�
tt; fx = search(A)g [ fsearch(A) = v j v 2 Ng

�
C2 � C5 Lemma 5.4 (R5,R6)�

x = search(A);Preds(;)
�
:

by re�nement R5 and weakening.

Re�ning C5 into C6

The �nite loop in C5 is re�ned into a while loop. The three premises of rule
WHILE-INTRO are checked.

1. We re�ne the loop body and prove that Ii is an invariant.�
xi < yi ^ Ii;�i

�
fxi; yig:[tt; xi �

(
xi ^yi �

(
yi ^pre Qi]

� =
T z

(Lemma 2.1), Lemma 5.4

(skip ; fxi; yig:[tt; xi �
(
xi ^yi �

(
yi ^pre Qi])

_(skip ; fxi; yig:[tt; xi �
(
xi ^yi �

(
yi ^pre Qi])

� �
T z

(Lemma 2.2), Lemma 3.4

if P (A[xi]) then fxi; yig:[tt; xi �
(
xi ^yi �

(
yi ^pre Qi]

else fxi; yig:[tt; xi �
(
xi ^yi �

(
yi ^pre Qi]

� ATOM, COND

if P (A[xi]) then yi:=xi else xi:=xi +m�
Ii;�i

�
where

�i � fxi < yi; Ii; P (A[xi]);:P (A[xi])g

�i � fIig [ PredsfA; xj; yj j j 6= ig:

Thus, process i preserves all predicates over variables A, xj, yj with j 6= i.

2. Next, we show that Qi holds upon termination of the loop, that is, xi �
yi ^ Ii ) Qi holds. To this end, assume xi � yi ^ Ii. Due to I

3
i , we only

need to distinguish two cases.

yi = n+ i: Thus, xi � n+ i. By I1i this means that there is no j between
1 and n such that j = i (mod m) and P (A[j]), that is, :P (A[j]) for
all 1 � j � n with j = i (mod m). By de�nition of search(A), we
must have :Ri. But since yi = n + i and search(A) � n + 1 by
de�nition, we also have yi � search(A).

yi � n: Then, with I2i we have xi = yi and P (A[yi]). Due to I1i there
is no index x0i that is less than xi and for which xi = x0i (mod m)
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and P (A[x0i]). If Ri, then we must have yi = search(A) due to
the de�nition of search(A). If :Ri, then i 6= search(A) (mod m).
(Note that search(A) � n + 1 is impossible since we already have
found yi � n such that P (A[yi])). Again, by de�nition of search(A),
yi � search(A).

3. Moreover, we need to �nd an arithmetic expression that allows us to prove
termination of the while loop. Let that expression be mi with

mi =

�
yi � xi; if yi � xi
0; otherwise:

Then, mi satis�es the properties required by the rule. More precisely,
mi is always nonnegative and mi = 0 implies the violation of the loop
condition, that is, mi � 0 and mi = 0) xi � yi. Furthermore, the loop
body does decrease mi, because

(inv�mi ; ami
; inv�mi)+

�T z inv mi ; ami
def: C�, C+

=T z inv mi ; ami
_ inv mi ; ami

def: C1 _ C2

�T z fP (A[xi])g ; yi:=xi _ f:P (A[xi])g ; xi:=xi +m Lemma 2.2

=T z if P (A[xi]) then yi:=xi else xi:=xi +m: def: if

Note that the assignment xi:=xi + m always increases xi since m is
assumed to be a constant greater than 0.

An application of the WHILE-INTRO rule then yields

R6 �
�
Ii;�i [ fQig [ fmi = n j n 2 Ng

�
�
fxi < yi ^ Iig ; fxi; yig:[tt; xi �

(
xi ^yi �

(
yi ^pre Qi]

��
; fQig

� WHILE-INTRO(1,2,3)

while xi < yi do

if P (A[xi]) then yi:=xi else xi:=xi +m�
Qi;�i

�
:

The declaration of xi leads to�
yi = n+ i; fQi; yi = v; P (A[v]);:P (A[v]) j v 2 Ng

�
new xi = i in�
fxi < yi ^ Iig ; fxi; yig:[tt; xi �

(
xi ^yi �

(
yi]
��

; fQig

� NEW(R6 ,xi)

new xi = i in

while xi < yi do

if P (A[xi]) then yi:=xi else xi:=xi +m�
Qi;Preds(fA; xj; yj j j 6= ig)

�
:
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where the required invariance of mi translates into the invariance of yi. We
conclude the derivation by building up the remaining context.�

tt; fx = search(A)g [ fP (A[v]);:P (A[v]) j 1 � v � ng
�

C5 � C6 PAR-N, SEQ, NEW(y1,: : :,ym)�
x = search(A);Preds(;)

�
:

Locality of y1 through ym and x1 and xm ensures preservation of Qi for all
i, and m < n for all n, and for all predicates in �i except for P (A[v]) and
:P (A[v]). Note that the invariance of search(A) is implied by the preservation
of P (A[v]) and :P (A[v]) for all v.

Putting it all together

Thus, by transitivity�
tt; fx = search(A)g [ fP (A[v]);:P (A[v]) j 1 � v � ng

�
C1 � C6 Lemma 5.3�

x = search(A);Preds(;)
�
:

Discussion

1. Just as in the previous examples it is interesting to observe the precise
requirements the implementation places on its parallel environment. In
this case, it is admissible, for instance, to change the contents of A as long
as the value of P (A[i]) remains unchanged for all i.

2. On �rst glance, the maximum search problem of Section 6.3 is an in-
stance of the array search problem discussed in this section. However, the
solutions to both problems di�er substantially in their degree of paral-
lelism. The reason is that the function search(A) looks for the �rst index
of A that satis�es P whereas in the maximum search problem any index
pointing to the maximal value su�ces. This requirement for search(A)
does not lend itself to a parallel implementation. Consider program C3 in
Figure 6.8. The parallel process i cannot be re�ned into a parallel compo-
sition analogous to the maximum search, because it is required to preserve
Qi which requires non-local knowledge. Note that program C6 and the
alternative, less parallel implementation C000

7 of Section 6.3 have similar
structure. Indeed, C000

7 �nds the smallest index ki that witnesses that A[i]
is not maximal.

6.4.1 Alternative re�nements

In the previous re�nement sequence yi was used to �nd the minimal index of
partition i pointing to an entry satisfying P which clearly implies search(A) =
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C4 � new y1 = n+ 1; : : : ; ym = n+m in� m
i=1

new xi = i in
fxi; yig:[tt; xi �

(
xi ^yi �

(
yi ^pre Qi]

�
; fQig

�
;

x:=minfy1; : : : ; ymg

C0
5 � new y1 = n+ 1; : : : ; ym = n +m in2

664

m

i=1

new xi = i in
(fxi < minfy1; : : : ; ymg ^ Ig;
fxi; yig:[tt; xi �

(
xi ^yi �

(
yi ^pre Qi])

�
;

fQig

3
775 ;

x:=minfy1; : : : ; ymg

where I � 81 � i � n:Ii

C0
6 � new y1 = n+ 1; : : : ; ym = n+m in2

4 m
i=1

new xi = i in
while xi < minfy1; : : : ; ymg do
if P (A[xi]) then yi:=xi else xi:=xi +m

3
5 ;

x:=minfy1; : : : ; ymg

Figure 6.9: Derivation of the second solution to the array search problem

minfy1; : : : ; yng. We will now look at implementations that achieve this equa-
tion without yi necessarily pointing to the minimal entry in partition i.

More e�ciency through earlier termination

An alternative implementation with improved best case behaviour can be found
by realizing that not every yi has to point to the �rst entry in partition i
satisfying P for search(A) = minfy1; : : : ; yng to hold. The search for such an
entry in partition i can safely be aborted as soon it is known that its index would
be greater than the �rst such index in some other partition. In other words,
the loop condition can be strengthened from xi < yi to xi < minfy1; : : : ; ymg
leading early termination in some cases. The alternative re�nement of C4 based
on this idea is summarized in Figure 6.9.

Re�ning C4 into C
0
5

Let

B � xi < minfy1; : : : ; ymg

I � 81 � i � n:Ii



134 CHAPTER 6. SHARED-VARIABLE PARALLEL PROGRAMS

where Ii is as above. The proof of re�nement between C4 and C0
5 is similar to

the one for C5 and omitted.

Re�ning C0
5 into C

0
6

The proof of �
tt; fx = search(A)g [ fP (A[v]);:P (A[v]) j v 2 N

�
C 0
5 � C0

6�
x = search(A);Preds(;)

�
has the same structure as that of�

tt; fx = search(A)g [ fP (A[v]);:P (A[v]) j v 2 N
�

C5 � C6�
x = search(A);Preds(;)

�
:

However, the stronger loop condition xi < minfy1; : : : ; ymg results in the fol-
lowing changes:

� The loop invariant must be strengthened from Ii to I. This means that
I must be preserved rather than Ii. Note that every process j with j 6= i
trivially preserves Ii because it cannot change xi or yi. Moreover, it also
preserves Ij . Thus, the environment of i preserves Ij for all j, and thus
also I.

� The proof that Qi holds upon termination of the loop is given by

xi � minfy1; : : : ; ymg ^ I ) Qi:

� The measure must be adapted to

mi =

�
minfy1; : : : ; ymg � xi; if minfy1; : : : ; ymg � xi
0; otherwise:

Search A in the opposite direction

C3 also could have been re�ned by searching the array in the direction of de-
creasing rather than increasing indices. The resulting program C00

6 is shown in
Figure 6.10. Note that now yi might be updated more than once before the
minimal index is found. This is in contrast to C6 and C0

6, which update each yi
at most once. Also, C00

6 does not allow an early exit out of the loop.
All re�nements of this section are summarized in Figure 6.11.
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C3 � new y1 = n+ 1; : : : ; ym = n +m in�
kmi=1 yi:[tt; yi �

(
yi ^pre Qi]

�
; fQig

�
;

x:=minfy1; : : : ; ymg

where Qi � Ri ) yi = search(A) j yi > search(A)
Ri � search(A) 2 partm;n(i)

C00
4 � new y1 = n+ 1; : : : ; ym = n +m in� m

i=1

new xi = n+ i in
fxi; yig:[tt; xi �

(
xi ^yi �

(
yi ^pre Qi]

�
; fQig

�
;

x:=minfy1; : : : ; ymg

C 00
6 � new y1 = n + 1; : : : ; yr = n+m in2

664

m

i=1

new xi = n�m + i in
while xi � 1 do
if P (A[xi]) then yi:=xi;
xi:=xi �m

3
775

x:=minfy1; : : : ; ymg

Figure 6.10: Derivation of the third solution to the array search problem
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Chapter 7

Developing distributed

programs

The examples of the previous chapter were based on the assumption of a memory
that is shared between parallel processes. Parallel processes share information
by simply reading from and writing to this shared memory. This section will
demonstrate the formal development of programs in which parallel processes
communicate solely through message passing. The development of the examples
in this chapter proceeds as follows.

1. First, a shared-variable implementation is derived from the initial speci�-
cation using the exact same techniques as in the previous chapter.

2. Then, for each parallel process we determine which part of the state is
maintained and thus logically \owned" by that process. This part of the
state is called local. The remaining part is called non-local. We assume
that every process has direct memory access to its local information.

3. For every piece of non-local information that needs to ow into a parallel
process a channel is introduced connecting producer and consumer of the
information. Semantically, channels are local variables ranging over �nite
queues.

4. A sequence of re�nement steps gradually ensures that

� every parallel process makes the part of its local information required
by other processes available through these channels, and that

� every parallel process satis�es its needs for non-local information by
accessing channels rather than shared-memory.

5. The re�nement stops when every process obtains its non-local information
through channels.

137
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The above decomposition of the development is a matter of convenience,
not technical necessity. In other words, distributed programs could also be
developed directly from the initial speci�cation. However, the use of a shared-
variable implementation as an intermediate stepping stone allows us to separate
the introduction of parallelismand the introduction of channels and distribution.
Note that some algorithms may not allow this kind of separation.

Moreover, in principle, a shared-variable program could also be derived from
a distributed program. However, the use of distributed programs as intermedi-
ate stepping stones appears less useful, because of the overhead involved with
introducing channels and maintaining their contents.

7.1 Example: Pre�x sum

A pre�x computation is de�ned in terms of a binary, associative operator 
.
Given a sequence of values hv1; v2; : : : ; vni as input, the pre�x computation
produces the output hy1; y2; : : : ; yni where

y1 = v1

yi = yi�1 
 vi = v1 
 v2 
 : : :
 vi

for 2 � i � n. Suppose we have a collection of n objects where each object i
has �elds x[i] and prev[i]. We assume that each value is stored in some object
and that the objects form a singly linked list l. More precisely, for object i, let
prev[i] = j if j is the predecessor of i in l and prev[i] = nil if i is the head of the
list. Furthermore, assume that the assignment of the input values to objects
does not follow the layout of the objects in memory, but rather the layout of
the objects in the list. In other words, we do not necessarily have x[i] = vi, but
rather x[i] = vj if i is the jth object from the beginning of l. For illustration,
see Figure 7.1 below.

Pre�x computation is a central operation in the design of parallel algorithms,
because many problems on lists and trees can be reduced to it. For instance,
determining the distance of each element to the end of the list, also called list
ranking, can be solved by choosing the value x[i] at each object i to be 1 and the
operator to be addition. Another example for a common parallel algorithm that
can be reduced to a pre�x computation is the Euler tour technique to compute
the depth of each node in a binary tree [CLR90].

7.1.1 Deriving a shared-variable implementation

Let each of the numbers 1 through n each stand for an object. The predicate
Pi expresses that if i is the jth object in list l, then i carries value vj in x[i] and
prev[i] correctly points to the predecessor of i in l. Formally,

Pi � x[i] = vj ^ prev[i] = prevl(i)
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 #
?

� �6� �6
o1 o2 o3 o4

o3 o1 nil o2

v2 v3 v1 v4

v1 
 v2 v1 v1 
 v2 
 v3 
 v4v1 
 v2 
 v3

objects oi

prev[oi]

x[oi]

yoi

in list l

Figure 7.1: Illustration of the input to the pre�x sum algorithm for n = 4

where i is the jth object in l and prevl captures the layout of l by describing
the predecessor mapping, that is,

prevl(i) =

�
k; if k is predecessor of i in l
nil; if i has no predecessor in l.

For notational convenience, let

[i; j] � vi 
 vi+1 
 : : :
 vj

if i � j. In terms of this notation, the pre�x computation thus produces

x[i] = yj = [1; j]

if i is the jth object in the list. Thus, the initial speci�cation C1 is

C1 � fPg ; fx; prevg:[tt; tt]� ; fQg

where

P � 81 � i � n:Pi

Q � 81 � i � n:x[i] = [1; j] if i is jth object in list.

Q requires every object i to contain its corresponding pre�x sum in x[i]. The
�rst four re�nement steps are summarized in Figure 7.2. We start with the very
abstract and obviously correct program C1. It allows x and prev to be changed
arbitrarily an arbitrary but �nite number of times before terminating in a state
satisfying Q.
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C1 � fPg;
fx; prevg:[tt; tt]� ; fQg

where P � 81 � i � n:x[i] = vj ^ prev[i] = prevl(i)
Q � 81 � i � n:x[i] = [1; i]

C2 � fPg;�
fB ^ Ig ; fx; prevg:[tt; tt]� ; fIg

��
; fQg

where B � 91 � i � n:prev[i] 6= nil
I � 81 � i � n:Ii
Ii �

N
(i) = [1; i]

C3 � fPg;�
fB ^ Ig ; [kni=1fx[i]; prev[i]g:[tt; Ii ^ 8i:pre Ii]]

��
; fQg

C4 � fPg;�
fB ^ Ig ;

� n
i=1

if prev[i] 6= nil then
x[i]; prev[i]:=x[prev[i]]
 x[i]; prev2[i]

� ��
;

fQg

C5 � fPg;
while 9i:prev[i] 6= nil do� n

i=1

if prev[i] 6= nil then
x[i]; prev[i]:=x[prev[i]]
 x[i]; prev2[i]

�

Figure 7.2: Derivation of a shared-variable solution to the pre�x sum problem

Re�ning C1 into C2

Obviously, the computation of Q requires a number of steps. In many of the
previous examples, the postcondition or some intermediate predicate could be
achieved through parallel computation. Each parallel process computes a part
of the solution while respecting the computation of the other processes. There
is no obvious way in which the computation of Q can be parallelized in this
way. Instead, we opt to prepare for the re�nement of the �nite loop in C1 into a
while loop. We thus need to identify a loop condition B and a loop invariant I.
The loop should terminate at least when Q holds. Thus, we let B � :Q. Also,
let

N
(i) denote the product of the values in i and all its predecessors, that is,

N
(i) =

� N
(prev[i])
 x[i]; if prev[i] 6= nil

x[i]; otherwise.
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Given an object i that is the jth object in the list, the invariant Ii claims that
following the prev pointers towards the beginning of the list and \multiplying"
the values stored in each of the encountered objects, yields [1; j], the pre�x sum
to be stored at i. Formally,

Ii �
N
(i) = [1; j]; if i is jth object

I � 81 � i � n:Ii:

We now have the loop condition and the invariant. Assuming the invariant,
the loop condition can be simpli�ed. More concretely, if I holds, then an object
i that is jth in the list carries the �nal value [1; j] if and only if prev[i] = nil.
Formally,

I ) (:Q, B)

where B � 91 � i � n:prev[i] 6= nil. We prefer to use B over :Q, because it is
easier to check. Moreover, we need to allow for more than just a single update
of x and prev in the loop body. Formally, we derive

fx; prevg:[tt; tt]�

=T z

�
fx; prevg:[tt; tt]�

��
Lemma 2.1

=T z

�
skip ; fx; prevg:[tt; tt]� ; skip

��
Lemma 2.1

�T z

�
fB ^ Ig ; fx; prevg:[tt; tt]� ; fIg

��
Lemma 2.2

which implies C1 �T z C2 by congruence (Lemma 2.2).

Re�ning C2 into C3

The loop body has to be fully developed, before the �nite loop can be re�ned into
a while loop. This is because of the termination requirement in rule WHILE-
INTRO. The loop body has to maintain the invariant I while making progress
towards a solution, that is, towards falsifying B. While the computation of Q
could not be parallelized, the loop body can be. Each object i is assigned to a
parallel process that is responsible for updating x[i] and prev[i] in such a way
that Ii is achieved upon termination and the invariants Ij of the other processes
j are preserved. More concretely,

fx; prevg:[tt; tt]� ; fIg

is re�ned into
kni=1fx[i]; prev[i]g:[tt; Ii ^ 8i:pre Ii]:

Before PAR-INTRO can be applied, the preservation requirement must be added.

R1 � fx; prevg:[tt; tt]�

�T z fx; prevg:[tt; 8i:pre Ii]� Lemma 2.2

We check the premises of PAR-INTRO.
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1. Program fx; prevg:[tt; 8i:pre Ii] is atomic and thus robust (Proposition 2.1).
It can also readily be seen that it preserves fIg.

2. Process i is re�ned as follows.�
I; fIg

�
fx; prevg:[tt; 8i:pre Ii]

�

fx[i]; prev[i]g:[tt; Ii ^ 8i:pre Ii] �
T z

(Lemma 2.2)�
I; fIg

�
for all 1 � i � n. Note that the fact that process i only modi�es x[i] and
prev[i] does not imply that it also preserves Ij for all j 6= i.

3. From the above re�nement, it can easily be seen that the assumptions and
guarantees of the processes �t together. Every process preserves I, if it is
being preserved by its environment.

4. The postconditions of each process imply the overall postcondition, that
is, (81 � i � n:Ii)) I.

Thus, by PAR-INTRO,

R2 �
�
I; fIg

�
fx; prevg:[tt; tt]� ; fIg

� �
T z

(R1)

fx; prevg:[tt; 8i:pre Ii]� ; fIg

� PAR-INTRO(1,2,3,4),WEAK

kni=1fx[i]; prev[i]g:[tt; Ii ^ 8i:pre Ii]�
I;Preds(;)

�
:

Wrapping the remaining context around, yields�
P; fP; I;Qg

�
C2 � C3

�
Q;Preds(;)

�
: SEQ(R2), STAR, SEQ

Re�ning C3 into C4

Each of the parallel processes

fx[i]; prev[i]g:[tt; Ii ^ 8i:pre Ii]

is re�ned now. Since I is the loop invariant and Ii is preserved by all other
processes, process i can assume Ii before execution. Thus, skip would be a
correct re�nement. However, no progress towards the solution would be made,
and termination could thus never be shown. Alternatively, we will employ a
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technique commonly called pointer jumping [CLR90]. Let j be the predecessor
of i. The predecessor of i is set to the predecessor of j while replacing its value
with the product of its current value and the value of j. More precisely, each
process i

Di � fx[i]; prev[i]g:[tt; Ii ^ 8i:pre Ii]

is replaced by

D0
i � if prev[i] 6= nil then x[i]; prev[i]:=x[prev[i]]
 x[i]; prev2[i]

where prev2[i] short for

prev2[i] =

�
prev[prev[i]]; if prev[i] 6= nil
nil; otherwise.

Pointer jumpingmaintains the invariant and as we will see in the next re�nement
from C4 to C5 it also means progress towards a solution. Formally,

R3;i �
�
I;�i

�
Di

�

fx[i]; prev[i]g:[tt; Ii ^ 8i:pre Ii]

� �
T z

(Lemma 2.2), Lemma 5.4

skip ; fx[i]; prev[i]g:[tt; Ii ^ 8i:pre Ii]

_skip ; fx[i]; prev[i]g:[tt; Ii ^ 8i:pre Ii]

� �
T z

(Lemma 2.2), Lemma 5.4

fprev[i] 6= nilg ; fx[i]; prev[i]g:[tt; Ii ^ 8i:pre Ii]

_fprev[i] = nilg ; fIig

�

if prev[i] 6= nil then fx[i]; prev[i]g:[tt; Ii ^ 8i:pre Ii]

else fIig

� ATOM, COND

if prev[i] 6= nil then x[i]; prev[i]:=x[prev[i]]
 x[i]; prev2[i]

else skip

�

D0
i�

I;�i

�
where

�i � fI; prev[i] 6= nil; prev[i] = nilg

�i � fI; prev[j] 6= nil; prev[j] = nil j j 6= ig:

Re�nement for the loop body is obtained by putting all processes in parallel.
Note that the processes respect each other's requirements, that is, �i � �j for
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all j 6= i.

R4 �
�
I;
S
i�i
�

kni=1 Di � kni=1D
0
i

�
I; fIg

�
: PAR-V-N(R3;i)

Note that
T
i�i = fIg. Re�nement between C3 and C4 follows.�
P; fP; I;Qg[ Preds(fprevg)

�
C3 � C4 STAR, SEQ�

Q;Preds(;)
�
:

Re�ning C4 into C5

The loop body is now fully re�ned and the �nite loop can now be replaced by
a while loop using WHILE-INTRO. We check the premises of the rule.

1. The loop body does not need to be re�ned any further. To satisfy the �rst
premise, re�nement�

B ^ I;
S
i�i
�

kni=1 D
0
i � kni=1D

0
i

�
I; fIg

�
is obtained from R4 and strengthening of the precondition.

2. The negation of the loop condition and the invariant imply the solution,

(8i:prev[i] = nil ^ I)) Q:

3. The loop termination proof is a little more di�cult than in the previous
examples. As before, we �nd an arithmetic expression m that serves as
a variant. For each object i, the measure mi records the \distance" of i
from the beginning of the list.

mi =

�
mprev[i] + 1; if prev[i] 6= nil
0; otherwise

m =
Pn

i=1mi:

Note that m � 0 by de�nition and m = 0 ) 8i:prev[i] = nil, that is,
m = 0 ) :B. Moreover, if prev does not contain any cycles, then m is
�nite. Finally, we need to determine if and under what conditions the loop
body always decreases the measure. The loop condition B expresses that
at least one entry in prev is not nil. Without loss of generality, let that
index by k, that is, prev[k] 6= nil. Consequently, assuming that the values
of prev and thus prev[k] 6= nil are preserved, kni=1Ci can be simpli�ed by
replacing the conditional in k by its then-branch. Formally,

R5 �
�
B;Preds(fprevg)

�
kni=1D

0
i

�

x[k]; prev[k]:=x[prev[k]]
 x[k]; prev2[k] k [kni=1;i 6=kD
0
i]�

tt;Preds(;)
�
:
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Assuming prev does not contain any cycles, the pointer jump must bring
k closer to the beginning of the sublist that it is part of. Its distance to
the head of the sublist decreases and thus m decreases.�

ac(prev); fac(prev)g
�

Am

� ATOM

x[k]; prev[k]:=x[prev[k]]
 x[k]; prev2[k]�
ac(prev); fac(prev)g

�
where ac(prev) denotes that prev is free of cycles.

Each D0
i with i 6= k either decreases m or leaves it unchanged. It also does

not introduce cycles. Formally,�
ac(prev); fac(prev)g

�
(inv m ;Am) _ inv m � D0

i�
ac(prev); fac(prev)g

�
for all i with i 6= k. Consequently,

R6 �
�
ac(prev); fac(prev)g

�
(inv�m ;Am ; inv�m)+

�

x[k]; prev[k]:=x[prev[k]]
 x[k]; prev2[k] k [kni=1;i 6=kD
0
i]�

ac(prev); fac(prev)g
�

can be shown by induction over n. Thus, the loop body decreases m as
required. �

B ^ ac(prev);Preds(fprevg)
�

(inv�m ;Am ; inv�m)+ � kni=1D
0
i Lemma 5.3(R5,R6)�

ac(prev);Preds(;)
�
:

Informally, the loop body reduces the measure, if the loop condition
B is true, prev is acyclic, and prev is not changed by the environment.
Since prev is initialized as a list it must be acyclic initially. Since it
is preserved, ac(prev) is part of the invariant. In contrast to the other
examples, the termination proof is context-sensitive. Process k will only
decrease the measure if prev[k] 6= nil and ac(prev) are preserved. Note
that this context-sensitivity requires a slight adaptation of rule WHILE-
INTRO. The assumptions needed to prove that the body decreases the
measure need to be added to the assumptions of the overall re�nement.
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All obligations of rule WHILE-INTRO are satis�ed and we obtain�
I; fI;Qg [Preds(fprevg)

�
�
fB ^ Ig ;

�
kni=1D

0
i

� ��
; fQg

� WHILE-INTRO(1,2,3)

while B do kni=1 D
0
i�

Q;Preds(;)
�

and �
P; fP; I;Qg[ Preds(fprevg)

�
C3 � C4 SEQ�

Q;Preds(;)
�
:

Note that C5 coincides with the algorithm given in [CLR90]. The use of
a multiple assignment in program C5 prevents the environment from accessing
one of the entries in x and prev in inconsistent intermediate states. It thus
is crucial for correctness. On the other hand, it also restricts parallelism and
is thus undesirable. In Section 7.1.3 we will see how further re�nements allow
us to increase parallelism by replacing the multiple assignment by two single
assignments.

7.1.2 Deriving a distributed implementation

Using program C5 as a starting point, we would like to derive a distributed
implementation. More precisely, we want object i to access only the variables
v[i] and prev[i] directly while the values of other variables that i depends upon
are communicated to i by message passing. Figure 7.3 summarizes the derivation
of a distributed implementation.

Re�ning C5 into C6

This re�nement step introduces local channels c[1] through c[n]. After each
iteration, object i will use channel c[i] to communicate the updated values of
prev[i] and x[i] to the object that it is the successor of, that is, to the object j
with prev[j] = i. The formal proof of this re�nement step is based on�

I ^ inj(prev) ^ P 0;�
�

kni=1Di �fcg

�
kni=1D

0
i;

kni=1c[i]!(prev[i]; x[i])

�
(7.1)

�
I ^ inj(prev) ^Q0; fIg

�
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C5 � fPg;
while 9i:prev[i] 6= nil do� n

i=1

if prev[i] 6= nil then
x[i]; prev[i]:=x[prev[i]]
 x[i]; prev2[i]

�

C6 � fPg;
new c[1] = h(prev[1]; x[1])i; : : :; c[n] = h(prev[n]; x[n])i in
while 9i:prev[i] 6= nil do2
664

n

i=1

if prev[i] 6= nil then
new p = x = 0 in
c[prev[i]]?(p; x);
x[i]; prev[i]:=x
 x[i]; p

3
775 ;

kni=1c[i]!(prev[i]; x[i])

C7 � fPg;
new c[1] = h(prev[1]; x[1])i; : : : ;

c[n] = h(prev[n]; x[n])i; d= htti in
while d 6= hi do
empty(d);2
664

n

i=1

if prev[i] 6= nil then
new p = x = 0 in
c[prev[i]]?(p; x);
x[i]; prev[i]:=x
 x[i]; p

3
775 ;

kni=1[c[i]!(prev[i]; x[i])k if prev[i] 6= nil then d!tt]

where empty(d) � new x = 0 in while d 6= hi do d?x

Figure 7.3: Derivation of a distributed solution to the pre�x sum problem

where

Di � if prev[i] 6= nil then

x[i]; prev[i]:=x[prev[i]]
 x[i]; prev2[i]

D0
i � if prev[i] 6= nil then

new p = x = 0 in

c[prev[i]]?(p; x) ;

x[i]; prev[i]:=x
 x[i]; p

and

inj(prev) � prev is injective, that is,

81 � i; j � n:i 6= j ) (prev[i] 6= prev[j] _ prev[i] = prev[j] = nil)
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P 0 � 81 � i � n:(9j:prev[j] = i)) c[i] = h(prev[i]; x[i])i

Q0 � 81 � i � n:(9j:prev[j] = i)) c[i] = hi

� � Preds(fprev[i]; x[i]; c[i] j 1 � i � ng):

P 0 expresses that if i is the predecessor of some other process, then the channel
c[i] will contain prev[i] and x[i]. Q0 expresses that if i is the predecessor of some
other process, then the channel c[i] will be empty. The proof of this re�nement
is elegant but lengthy and thus postponed to Section A.3.1. Moreover, we can
show �

I ^ inj(prev) ^Q0; fI; inj(prev); Q0; P 0g
�

skip

�

skipn =
T z

(Lemma 2.1), Lemma 5.4

�fcg ATOM, PAR-N

kni=1c[i]!(prev[i]; x[i])�
I ^ inj(prev) ^ P 0;Preds(;)

�
:

Thus, the loop invariant I used in the derivation of the shared-variable imple-
mentation together with the injectivity of prev and Q0, form the invariants of
the modi�ed while loop in C5.�

tt;Preds(fx; prevg)
�

C4 � C5

�
Q;Preds(;)

�
follows with WHILE, NEW-INTRO, and SEQ.

Re�ning C6 into C7

The loop condition in C6 is both rather complex and also requires access to the
entire prev array. This re�nement step will simplify the implementation of the
loop condition. Another channel d is introduced such that we have d 6= hi if
and only if 9i:prev[i] 6= nil at the beginning of each iteration. More formally,
we show �

d = hi;Preds(fprev; dg)
�

kni=1c[i]!(prev[i]; x[i])

�fdg

kni=1[c[i]!(prev[i]; x[i])k if prev[i] 6= nil then d!tt]�
Q;Preds(;)

�
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where Q � d = hi , 8i:prev[i] = nil. This re�nement is obtained from�
R; fR;Sig

�
c[i]!(prev[i]; x[i])

�fdg�
c[i]!(prev[i]; x[i])k if prev[i] 6= nil then d!tt

�
�
R ^ Si; fR;Sj j j 6= ig

�
where

R � (81 � i � n:prev[i] = nil)) d = hi

Si � prev[i] 6= nil ) d 6= hi:

using PAR-N, and weakening together with the fact that d = hi ) R and
R^8i:Si ) Q. Predicate Q can be shown to be part of the loop invariant of the
while loop inC7. Assuming the invariant, the old loop condition 9i:prev[i] 6= nil
of C6 and the new loop condition d 6= hi of C7 are equivalent, that is,

Q ) (9i:prev[i] 6= nil , d 6= hi):

Thus, one can be replaced by the other using WHILE.

7.1.3 Increasing parallelism

We would like to derive a distributed implementation that also exhibits more
�ne-grained parallelism.

Inspection of program C7 reveals that the distributed implementation obvi-
ates the need to update the variables x[i] and prev[i] simultaneously, because
no other process mentions x[i] and prev[i] anymore. Consequently, no other
process can access x[i] or prev[i] while they are being assigned to. Let C8 be

C8 � new c[1] = h(prev[1]; x[1])i; : : : ;
c[n] = h(prev[n]; x[n])i; d= htti in

while d 6= hi do
empty(d);2
664

n

i=1

if prev[i] 6= nil then
new p = x = 0 in
c[prev[i]]?(p; x);
[x[i]:=x
 x[i] k prev[i]:=p]

3
775 ;

kni=1[c[i]!(prev[i]; x[i])k if prev[i] 6= hi then d!tt]:

However, while C8 constitutes a correct implementation in terms of its input-
output behaviour, it unfortunately is not a re�nement of C7. Intuitively, this
is because C8 allows x[i] and prev[i] to be updated in succession, whereas C7

always updates these variables simultaneously. However, if changes to one of
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the arrays are made invisible, that is, if one of them is declared local, then C7

and C8 exhibit equivalent behaviour.
Let dec stand for the following list of declarations

dec � prev[1] = p1; : : : ; prev[n] = pn

where pi be the predecessor of object i in list l. Using Lemma 2.1 we can thus
deduce

new dec in C7 =T z new dec in C8:

With the previous re�nements this implies

new dec in Ci �Ez new dec in C8

for all 1 � i � 7.
Note that the amount of parallelism in C5 could also have been increased

within the shared-variable paradigm and without introducing channels and mes-
sage passing. Program C0

6 shown below represents an alternative re�nement
of C5 that achieves more parallelism by introducing local variables x0[i] and
prev0[i]. These variables serve as local copies of x[i] and prev[i] respectively.

C0
6 � new prev0[1] = prev[1]; x0[1] = x[1]; : : :;

prev0[n] = prev[n]; x0[n] = x[n] in
while 9i:prev[i] 6= nil do� 

n

i=1

if prev[i] 6= nil then
x0[i]:=x[prev[i]]
 x[i] k prev0[i]:=prev2[i]

�
;

kni=1[prev[i]:=prev
0[i] k x[i]:=x0[i]]

We conclude this example with an overview of all re�nements performed in
this section in Figure 7.4.
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Figure 7.4: Overview of solutions to the pre�x sum problem
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7.2 Example: All-pair shortest-paths

Given an unweighted graph G � (V;E), the goal is to solve the all-pair shortest-
paths problem, that is, to compute dist(vi; vj), the length of the shortest path
between any two vertices vi; vj 2 V . The length of a path is given by the
number of vertices it contains minus 1. G may be directed or undirected. Let
n be the number of vertices in G, that is, n = jV j. The shortest distances are
to be stored in a two-dimensional array D. The initial program C1 allows an
arbitrary but �nite number of updates to the array D before the �nal state
satisfying Q � 8vi; vj 2 V:D[vi; vj] = dist(vi; vj) is established. That is,

C1 � D:[tt; tt]� ; fQg:

We will begin by deriving a shared-variable implementation for this problem.
Then, we will attempt to further re�ne this solution into a distributed imple-
mentation. Our �rst derivation is summarized in Figure 7.5.

Re�ning C1 into C4

The �rst re�nement C2 suggests to consider sequentially the vertices reachable
from some vertex v in the order of increasing distance. More precisely, �rst we
consider the vertices that can be reached from v via paths of length 1, then via
paths of length 2, and so on, until we have considered paths of length n� 1.

Re�nement C3 introduces the concept of a fringe. The fringe of a vertex v
with distance k, fringe(k; v) for short, is de�ned to be the set of vertices that
are reachable from v through paths of length k. Formally,

fringe(k; v) = fv0 j dist(v; v0) = kg:

If X = fringe(k; v) we say that X is the k-fringe of v. A local variable F [k; v]
that holds the k-fringe of v is introduced. In each iteration k, the computation
of the current fringe F [k; v] is obtained by considering the immediate neighbours
of all vertices in the k � 1-fringe of v. Formally, we have the property

fringe(k; v) =
SF [k�1;v]
v0 fv00 j (v0; v00) 2 E ^D[v; v00] = nilg: (7.2)

Note that while C2 already breaks the problem down into a sequence of n � 1
subproblems which are then solved sequentially, it is not the case that C2 obtains
the solution to the kth problem in terms of the solutions to the k�1 subproblems
already solved. Program C3, however, achieves that, and thus quali�es as an
instance of dynamic programming.

Re�nement C4 is obtained from C3 by breaking down the computation of
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C1 � D:[tt; tt]� ; fQg

where Q � 8vi; vj 2 V:D[vi; vj] = dist(vi; vj)
dist(vi; vj) � length of shortest path from vi to vj

C2 � kVv kVv0 if v = v0 then D[v; v0]:=0 else D[v; v0]:=nil;
for k = 1 to n� 1 do�
kVv [k

V
v00if dist(v; v

00) = k then D[v; v00]:=k]
�

od

C3 � new F [0::n� 1; v1::vn] = ; in
kVv F [0; v]:=fvg;
kVv kVv0 if v = v0 then D[v; v0]:=0 else D[v; v0]:=nil;
for k = 1 to n� 1 do" V

v

F [k; v]:=
SF [k�1;v]
v0

fv00 j (v0; v00) 2 E ^D[v; v00] = nilg;h
k
F [k;v]
v00 D[v; v00]:=k

i #

od
end

C4 � new F [0::n� 1; v1::vn] = ; in
kVv F [0; v]:=fvg;
kVv kVv0 if v = v0 then D[v; v0]:=0 else D[v; v0]:=nil;
for k = 1 to n� 1 do2
66666666666664


V

v

new t1 = ; in2
66664

F [k�1;v]

v0

new t2 = ; in
[kE(v0;v00)if D[v; v

00] = nil then

t2:=t2 [ fv00g];
t1:=t1 [ t2

end

3
77775 ;

F [k; v]:=t1
end;h
k
F [k;v]
v00 D[v; v00]:=k

i

3
77777777777775

od
end

Figure 7.5: Derivation of the �rst shared-variable solution to the all-pair,
shortest-paths problem
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the k-fringe of v. More precisely, we use the re�nement�
8v 2 V:F [k� 1; v] = fringe(k � 1; v);�

�
F [k; v]:=

SE

(v;v0)fv
00 2 fringe(k � 1; v0) j D[v; v00] = nilg

�

new t1 = ; in2
6664

F [k�1;v]

v0

new t2 = ; in�
kE(v0;v00) if D[v; v

00] = nil then t2:=t2 [ fv00g
�
;

t1:=t1 [ t2
end

3
7775 ;

F [k; v]:=t1
end;�

F [k; v] = fringe(k; v);�
�

where

� � Preds(fD[v; x]; F [k� 1; x]; F [k;x] j x 2 V g)

� � fF [k; v] = fringe(k; v)g [

Preds(fD[x; x0]; F [k� 1; x] j x; x0 2 V g [ fF [k; x] j x 2 V ^ x 6= vg):

Note that the correctness of this re�nement crucially depends on the atomicity
of the assignments to t1 and t2.

7.2.1 Deriving a distributed implementation

Suppose that

� every vertex only knows its immediate neighbours, that is, E is not globally
known or accessible,

� every vertex only knows its own fringe, that is, F [k] is not globally avail-
able,

� all other information is considered non-local.

We want to derive a solution to the all-pair shortest paths problem, that is
distributed in the sense that all non-local information that a vertex v may need
is communicated to v explicitly through message passing.

We will �rst attempt to re�ne C4 into a distributed implementation. Pro-
gram C4 requires every vertex v to know the immediate neighbours v00 of every
vertex v0 in the fringe of v. Unless v = v0, this is non-local information and thus
needs to be communicated via channels and message-passing. Consequently, in
each iteration, every vertex v0 in the graph would have to be prepared to send
a list l of its immediate neighbours to v. A distributed implementation based
on C4 would thus have the following advantages and disadvantages.

Advantages:
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� The size of l is bounded by the maximal number of neighbours of a vertex.

� In every iteration k, vertex v0 would always send the same message l.

Disadvantages:

� Since vertex v0 does not know the vertex v such that v0 appears in the
fringe of v, v0 has to be conservative and always send l to every vertex
in the graph. Thus, in every iteration, n2 messages need to be sent. The
total number of messages sent (including the initialization) would thus be
n3. This number is independent of the structure of the input graph. For
instance, both a strongly connected graph and a graph with no edges at
all would give rise to n3 send actions.

� Since not every vertex v0 appears in the fringe of another vertex v in every
iteration, some of these messages are redundant and will never be received.
In case of the graph with no edges, none of the n3 messages will ever be
received. All of them are redundant.

Given this analysis, we conclude that C4 is not a good base for a distributed
implementation. Instead, we revisit the second re�nement (from C2 to C3) and
suggest an alternative way of re�ning C2 that, hopefully, leads to a more e�cient
and less redundant distributed implementation. This alternative re�nement is
summarized in Figure 7.6.

Re�ning C2 into C
0
4

A di�erent representation of Equation (7.2) gives rise to an alternative way to
compute the k-fringe of v. The k-fringe of v is now obtained by considering the
k � 1-fringes of the immediate neighbours of v. Formally,

fringe(k; v) =
SE

(v;v0)fv
00 2 fringe(k � 1; v0) j D[v; v00] = nilg:

This property forms the basis of the re�nement of C2 into C
0
3. Just like C4, re-

�nement C0
4 breaks down the computation of the fringe. The formal justi�cation

is similar and thus omitted.

Re�ning C0
4 into C

0
5

From C0
4 we now derive a distributed implementation C0

5 which is given in
Figure 7.7. Let Cv be one of the parallel processes of the top-most parallel
composition in C0

4. Cv needs to access the fringes F [k � 1; v0] of all vertices
v0 it is adjacent to. This information is non-local to Cv and thus needs to be
explicitly communicated. To this end, we introduce a two dimensional array
of local channels. Each channel c[v0; v] will be used by vertex v0 to make its
current fringe F [k�1; v0] available to v. More precisely, the channels are subject
to the following invariant. Consider the kth iteration. If (v; v0) 2 E then
c[v0; v] contains fringe(k � 1; v0). A detailed proof of the re�nement step is
straightforward and omitted.
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C2 � kVv kVv0 if v = v0 then D[v; v0]:=0 else D[v; v0]:=nil;
for k = 1 to n� 1 do�
kVv [k

V
v00if dist(v; v

00) = k then D[v; v00]:=k]
�

od

C 0
3 � new F [0::n� 1; v1::vn] = ; in

kVv F [0; v]:=fvg;
kVv kVv0 if v = v0 then D[v; v0]:=0 else D[v; v0]:=nil;
for k = 1 to n� 1 do" V

v

F [k; v]:=
SE

(v;v0)fv
00 2 F [k� 1; v0] j D[v; v00] = nilg;h

k
F [k;v]
v00 D[v; v00]:=k

i #

od
end

C0
4 � new F [0::n� 1; v1::vn] = ; in

kVv F [0; v]:=fvg;
kVv kVv0 if v = v0 then D[v; v0]:=0 else D[v; v0]:=nil;
for k = 1 to n� 1 do2
66666666666666666664


V

v

new t1 = ; in2
66666666664


E

(v;v0)

new f = ; in
f:=F [k� 1; v0];
new t2 = ; in

[kfv00if D[v; v
00] = nil then

t2:=t2 [ fv00g];
t1:=t1 [ t2

end
end

3
77777777775

;

F [k; v]:=t1
end;h
k
F [k;v]
v00 D[v; v00]:=k

i

3
77777777777777777775

od
end

Figure 7.6: Derivation of the second shared-variable solution to the all-pair,
shortest-paths problem
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We compare C0
5, the re�nement based on C0

4, with the re�nement based on
C4 that we rejected above. C0

5 has the following advantages and disadvantages.

Advantages:

� In each iteration, every vertex v0 knows exactly which other vertex to
communicate with. More precisely, v0 needs to send its current fringe to
all its immediate neighbours. The number of messages sent thus depends
on the structure of the graph. If the graph has no edges, no message are
sent. If, however, the graph is strongly connected, n3 messages are sent.
Roughly speaking, the fewer edges the graph has, the fewer messages are
sent.

� There are no redundant messages. Every message that was sent will also
be received in the next iteration.

� In contrast to C4, the k � 1-fringe of v is not directly needed to compute
the k-fringe of v. In every iteration, F [k; v] is computed based solely on
the input from the neighbours of v. In other words, F [k � 1; v] does not
need to be kept across iterations.

Disadvantages:

� The size of l is bounded only by n� 1. No better bound can be given.

� In general, in every iteration k, vertex v0 would send a di�erent message
l.

We conclude that C0
5 features better best-case behaviour and less redundancy

than a distributed implementation based on C4.

Re�ning C0
5 into C

0
6

While the computation of fringe(k; v) in C0
4 requires direct access to variables

F [k � 1; v0] for all v0 such that (v; v0) 2 E, the corresponding computation
in C5 does not. Consequently, the space requirements of C0

5 can be reduced
by removing the array F , initializing the channel c[v0; v] directly with fv0g,
wrapping the declaration of a new local variable Fk;v around Cv, and replacing
F [k; v] by Fk;v in Cv.

We conclude this example with an overview of all re�nements performed in
this section in Figure 7.8.
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C0
5 � new c[v1::vn; v1::vn] = hi; F [0::n� 1; v1::vn] = ; in

kVv F [0; v]:=fvg;
kE(v;v0)c[v

0; v]!F [0; v0];

kVv kVv0 if v = v0 then D[v; v0]:=0 else D[v; v0]:=nil;
for k = 1 to n� 1 do2
66666666666666666664


V

v

new t1 = ; in2
66666666664


E

(v;v0)

new f = ; in
c[v0; v]?f ;

new t2 = ; in

[kf
v00if D[v; v

00] = nil then
t2:=t2 [ fv00g];

t1:=t1 [ t2
end

end

3
77777777775

F [k; v]:=t1
end;h
k
F [k;v]
v00 D[v; v00]:=k

i
k
h
kE(v00;v)c[v; v

00]!F [k; v00]
i

3
77777777777777777775

od
end

C0
6 � new c[v1::vn; v1::vn] = hi in

kE(v;v0)c[v
0; v]!fv0g;

kVv kVv0 if v = v0 then D[v; v0]:=0 else D[v; v0]:=nil;
for k = 1 to n� 1 do2
666666666666666666666664


V

v

new Fk;v = ; in
new t1 = ; in2
66666666664


E

(v;v0)

new f = ; in
c[v0; v]?f ;

new t2 = ; in

[kfv00if D[v; v
00] = nil then

t2:=t2 [ fv00g];
t1:=t1 [ t2

end
end

3
77777777775

Fk;v:=t1
end;h
k
Fk;v
v00

D[v; v00]:=k
i
k
h
kE(v00;v)c[v; v

00]!Fk;v
i

end

3
777777777777777777777775

od
end

Figure 7.7: Derivation of a distributed solution to the all-pair, shortest-paths
problem
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Figure 7.8: Overview of solutions to the all-pair, shortest-paths problem
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Chapter 8

N-process mutual exclusion

algorithms

In this section, we will apply our re�nement framework to n-process mutual ex-
clusion algorithms. This example di�ers from the ones in the previous sections
in two respects. First, due to the complex nature of the problem that these
algorithms attempt to solve, the correct behaviour cannot be speci�ed as suc-
cinctly as for other examples. However, using our speci�cation language we can
nonetheless identify an abstract, high-level representation of the algorithm. We
will �rst verify this high-level version and then successively re�ne it. The second
di�erence is that the rules of our re�nement calculus turn out to be insu�cient.
In particular, a more specialized rule allowing the introduction of parallelism is
needed. The necessary new re�nement rules need be introduced along the way.
As in the previous examples, the derivation of alternative, sometimes more ef-
�cient versions will play an important role.

8.1 Introduction

Suppose a resource is to be shared between a number of processes. For consis-
tency reasons, at most one process can access the resource at a time. Examples
for these kinds of resources are printers or databases. Mutual exclusion al-
gorithms solve this problem by granting access to the resource in a mutually
exclusive fashion. Consider, for instance, the two-process tie-breaker algorithm

161
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TIE (2) for mutual exclusion [Pet81].

new in[1::2] = 0; last = 0 in2
666666664

while tt do
in[1]:=1 ; last:=1;

await in[2] < in[1]_ last 6= 1;

cr1;
in[1]:=0;

nc1
od

end



while tt do
in[2]:=1 ; last:=2;

await in[1] < in[2]_ last 6= 2;

cr2;

in[2]:=0;

nc2
od

3
777777775

Neither the critical sections cr1 and cr2 nor the non-critical sections nc1 and nc2
change the values of in or last. Moreover, cr1 and cr2 are assumed to always
terminate. To prove that two processes cannot be in their critical regions at the
same time, one can attempt to �nd two predicates P1 and P2 such that

� P1 is always true whenever the left process is executing cr1,

� P2 is always true whenever the right process is executing cr2, and

� P1 ^P2 is unsatis�able.

Unfortunately, for TIE (2) this turns out to be impossible. Consider, for in-
stance, the obvious candidates for P1 and P2

P1 � in[1] = 1 ^ (in[2] = 0 _ last = 2)

P2 � in[2] = 1 ^ (in[1] = 0 _ last = 1):

While P1^P2 is indeed unsatis�able, P1 does not hold when C1 is in its critical
region and C2 has just expressed interest by executing in[2]:=1 but not yet
set last to 2. Similarly for P2 and C2. The problem is the intermediate state
between the two assignments. A popular solution is to augment the speci�cation
language such that we can express that control is between two statements and
thus in the problematic intermediate state. This can be achieved with the help
of either location predicates [MP95] or auxiliary variables [OG76a, AO91]. If,
for instance, two boolean auxiliary variables mid[1] and mid[2] are used and
TIE (2) is modi�ed to TIE 0(2),

new in[1::2] = 0; last = 0;mid[1] = � ;mid[2] = � in2
66666666664

while tt do
in[1];mid[1]:=1; tt;
last;mid[1]:=1;� ;

await in[2] < in[1]_ last 6= 1;

cr1;
in[1]:=0;

nc1
od

end



while tt do
in[2];mid[2]:=1; tt;
last;mid[2]:=2;� ;

await in[1] < in[2]_ last 6= 2;

cr2;

in[2]:=0;

nc2
od

3
77777777775
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then P1 and P2 can be chosen to be

P1 � in[1] = 1 ^ :mid[1]^ (in[2] = 0 _mid[2]_ last = 2) and

P2 � in[2] = 1 ^ :mid[2]^ (in[1] = 0 _mid[1]_ last = 1):

However, this technique poses some problems. The introduction of auxiliary
variables requires a deep understanding of the algorithm and the property to
be proved. A mechanization of this process seems out of reach. Moreover, the
method does not scale very well. The number of necessary auxiliary variables
increases with the number of parallel components. The predicates quickly be-
come unwieldy. More importantly, the auxiliary variables do not allow us to
prove another important property: Every process that is interested in entering
its critical region must eventually be allowed to do so. Note that this property
is stronger than deadlock-freedom. Unfortunately, the introduction of auxiliary
variables does not help with the veri�cation of this property.

In this section, we show how our re�nement calculus can be used to verify
the n-process tie-breaker algorithm without the use of auxiliary variables. We
�rst prove correctness of an abstract, high-level version which is then re�ned
successively into the desired implementation. Additionally, we will derive sev-
eral di�erent and sometimes more e�cient implementations and thus expose
the various \degrees of implementation-freedom" that the n-process tie-breaker
solution o�ers.

8.2 N-process mutual exclusion algorithms

We assume that an n-process mutual exclusion algorithmMX has the following
general form

MX (cr; nc) � new x1 = v1; : : : ; xm = vm in kni=1 Ci

where
Ci � while tt do

entryi; (* entry protocol *)
cri; (* critical region *)
exiti; (* exit protocol *)
nci (* non-critical region *)

od

and cr and nc stand for cr1; : : : ; crn and nc1; : : : ; ncn respectively. Additionally,
we impose the following restrictions. For all 1 � i � n,

� exiti and cri are always terminating,

� a subset of the local variables is reserved entirely for the sake of synchro-
nization. Thus, the values of these variables are only changed in the entry
and exit protocols and left unchanged by cri and nci.

Note that the non-critical region nci may not terminate. Sometimes we will
abbreviate MX (cr; nc) by MX if the particular shape of the critical and non-
critical regions is either understood from the context or irrelevant.
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8.3 Correctness criteria for mutual exclusion al-
gorithms

The following de�nition formally expresses what it means for a mutual exclusion
algorithm to be correct.

De�nition 8.1 (Correctness criteria)

1. Given a mutual exclusion algorithmMX , a subprogram C of MX is called
non-interfering with respect to MX if C does not change any of the vari-
ables used in either the entry or exit protocols of MX .

2. A critical region cri is called well-formed i� it is always terminating and
non-interfering with respect to MX .

3. A non-critical region nci is called well-formed i� it is non-interfering with
respect to MX .

4. A critical region cri is called indicative if it is of the form

pcri :=tt ; cr0i ; pcri :=�

where pcri is a fresh boolean variable that is not used anywhere else. The
idea is that pcri is true along an execution of MX (cr; nc) if and only if
process i is currently in its critical region. We assume that without loss of
generality every non-indicative critical region can be made to be indicative
by adding the indicator assignments.

5. A non-critical region nci is called indicative if it is of the form

pnci :=tt ; nc0i ; pnci :=�

where pnci is a fresh boolean variable that is not used anywhere else. Again,
the intuition is that pnci is true along an execution of MX (cr; nc) if and
only if process i is currently in its non-critical region. We assume that
without loss of generality every non-indicative non-critical region can be
made to be indicative by adding the indicator assignments.

6. Informally, a mutual exclusion algorithm MX satis�es the mutual exclu-
sion property if MX does not allow for an execution along which more
than one process is executing its critical region at the same time. More
precisely, for all well-formed non-critical regions nc and all well-formed
and indicative critical regions cr, it is not the case that MX (cr; nc) has
an execution that contains some state s such that there exist two distinct
processes 1 � i; j � n such that pcri and pcrj are both true in s.

7. A B-synchronization statement is a statement of the form

await B

or
while :B do skip:
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8. Informally, a mutual exclusion algorithm MX satis�es the eventual entry
property if control always eventually gets past every synchronization state-
ment in every entry protocol in MX . More precisely, for all well-formed
critical regions cr and well-formed and indicative non-critical regions nc,
it is not the case that there is an execution � of MX (cr; nc) and a process
1 � i � n such that pnci eventually remains false forever along �.

9. A mutual exclusion algorithm is correct, if it satis�es the mutual exclusion
and the eventual entry property. Note that deadlock-freedom is implied by
eventual entry. �

Note that the variables pcri and pnci are used only to de�ne correctness formally
and not for the veri�cation of the algorithm itself. They thus di�er from the
auxiliary variables used in [OG76a, AO91] which are essential for the veri�cation.

The following lemmacharacterizes eventual entry in terms of context-sensitive
approximation. This characterization will later allow us to formulate a su�cient
condition for eventual entry.

Lemma 8.1 (Characterizing eventual entry)
A mutual exclusion algorithm MX has the eventual entry property if and only
if the behaviour of every B-synchronization statement S in every entry protocol
in MX is captured by a single stuttering step in B, that is,

S =E fBg

where E is such that MX = E[S].

Proof: Suppose MX does not satisfy eventual entry. Thus, there are well-
formed and indicative non-critical regions such that MX (cr; nc) has an execu-
tion � along which pnci remains false forever for some i. Since exiti and cri
terminate, process i must be executing its entry protocol forever. Since syn-
chronization statements are the only non-terminating statements in the entry
protocol, process i must be blocked forever at a B-synchronization statement
S for some B. In that case, however, the behaviour of S not identical to �nite
stuttering, that is, S 6=E fBg for the relevant context E.

If, on the other hand, MX contains a B-synchronization statement whose
behaviour goes beyond �nite stuttering in the entry protocol of some process
i, then MX has an execution along which process i eventually never leaves its
entry protocol. If nci is indicative, p

nc
i will remain false forever.

Recall that the de�nition of every B-synchronization statement consists of two
disjuncts where the second one deals with the case that B never becomes true.
The above characterization implies that if C has the eventual entry property,
then this disjunct can be removed without changing the set of executions of C.

Corollary 8.1 (Simplifying synchronization statements)
Suppose C has the eventual entry property. If C is of the form E1[await B] for
some E1, then

C � E1[await B] =Ez E1[fBg]:
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If C is of the form E2[while :B do skip] for some E2, then

C � E2[while :B do skip] =Ez E2[fBg]:

Proof: Using Lemma 8.1, Lemma 4.2 and the fact that

await B =T z while :B do skip:

We need to be able to express that a property always holds when a certain
program fragment is executed.

De�nition 8.2 (B holds during C0 in C)
Given a program C with a subprogram C0, that is, C � E[C0] for some E, and
given a property B we say that B holds during C0 in C if for every execution
of C property B is always true when control resides in C0. Formally,

E[C] =Ez E[CdB]

where CdB adds B to the pre- and postcondition of every atomic transition of
C, that is,

V :[P;Q]dB � V :[P ^B;Q ^B]
(C1 ;C2)dB � (C1dB) ; (C2dB)
(C1 _C2)dB � (C1dB) _ (C2dB)
(C1 kC2)dB � (C1dB) k (C2dB)

C�dB � (CdB)�

C!dB � (CdB)!

(new x = e in C)dB � new x = e in (CdB):

�

Note the above notation could also be de�ned using an assumption-commitment
formula. Informally, B holds during C0 in C, if�

B;�
�
C

�
B;� [ fBg

�
such that the assumptions B and � can be \discharged" in the environment E
of C0. This de�nition is more informative, but also more inconvenient, because
it requires an explicit statement of the assumptions necessary for B to hold
during C0.

To obtain a tractable, su�cient condition for the eventual entry property,
we borrow a technique from sequential programming. To prove termination
of a loop while B do C in a sequential program, we �nd an expression m
such that m is always non-negative, and m = 0 implies :B, and m is always
decreased by C. To show eventual entry, we �nd such an expression for every
B-synchronization statement in the program and show that

� m is always non-negative, and
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� m = 0 implies B, and

� m will always eventually be set to zero by the environment.

The following lemma is based on this idea. If a certain predicate P is known
to hold during the synchronization statement, then this information can be
incorporated too.

Lemma 8.2 (Eventual entry in parallel program)
Let C be the parallel composition C � C0 kC1. Given an arithmetic expression
m over the variables in C, let Am denote

Am � Var :[tt;
(
m= 0! m = 0 j m <

(
m]

where Pif ! Pthen j Pelse stands for (Pif ) Pthen)^(:Pif ) Pelse). Intuitively,
Am decreases m if it is not zero and leaves it unchanged if it is zero.

� Ci has the eventual entry property, i� for every B-synchronization state-
ment S in Ci there exists a predicate P and an expression m over the
variables in C such that

1. P holds during S in C, and

2. m � 0, and

3. P ^m = 0 implies B, and

4. the parallel environment of Ci either decrements m in�nitely often
or does not allow for :B to be true in�nitely often. Formally,

C1�i �T z (inv�m ;Am)
! _ (inv�m ;Am)

�
;D;

for some D such that D has no execution along which :B is true
in�nitely often.

� C has the eventual entry property i� C0 and C1 do.

Proof: See Section A.4.1.

To prove that control always eventually gets past a B-synchronization state-
ment in C0, the third condition of the above lemma thus requires us to show
that along every trace of the environment of C0, the synchronization condition
B cannot be false in�nitely often, and thus C0 cannot block at the synchroniza-
tion statement forever. Note that the lemma supports compositional reasoning
in the sense that the eventual entry of C0 is determined by solely looking at its
parallel environment C1. However, the third condition requires us to consider
the executions of the environment, which cannot be done compositionally.
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8.4 Examples of n-process mutual exclusion al-
gorithms

We now present three n-process mutual exclusion algorithms following the ex-
position in [And91].

Example 8.1 (Tie-breaker algorithm)
We present the tie-breaker algorithm| also called Peterson's algorithm [Pet81].
The entry protocol in each process consists of a loop that iterates through n�1
levels. A process will only be allowed to enter the critical region, if it has
completed all n � 1 levels. The last process to enter a level l will be forced to
remain on that level until another process joins that level and thus becomes last.
Thus, informally, one process will always remain on each level. Since there are
n � 1 levels and n processes, at most two processes can be on the highest level
at the same time. The synchronization then ensures that only one of them can
complete the highest level. It is this process which will be allowed to progress
into its critical region. The synchronization conditions in the entry protocol are
weak enough to ensure deadlock freedom. Eventual entry is guaranteed because
the condition that a process i is waiting on will always eventually become true
and then remain true until i \moves on" to the next level. Let TIE be

TIE (cr; nc) � new in[1::n] = 0; last[1::n] = 0 in kni=1 Ci

where Ci is

Ci � while tt do
for l:=1 to n� 1 do
in[i]:= l;
last[l]:=i;
for j:=1 to n st j 6= i do
while in[j] � l ^ last[l] = i do skip

od
od;

9>>>>>>>>=
>>>>>>>>;

entry
protocol

cri;
in[i]:=0 ; exit protocol
nci

od

and where the values of in or last are not changed in cri or nci. Note that cri
and nci are well-formed i�

cri �T z inv�fin; lastg
nci �T z inv1fin; lastg:

Moreover, note that the algorithm is still correct if the execution of as-
signments and the evaluation of expressions is not assumed to be atomic. In
Section 8.8 we will discuss an extension of our framework to handle this case.

�
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Example 8.2 (Bakery algorithm)
The next algorithm achieves mutual exclusion by assigning a unique number
turn[i] to each process i that intends to enter its critical region. This number is
chosen to be greater than all the numbers already assigned so far. Permission
to enter the critical region is granted to process i when all remaining processes
j either are not interested in entering (turn[j] = 0) or have a greater number
(turn[j] > turn[i]). Deadlock cannot occur since the non-zero values of turn
are unique. Eventual entry is guaranteed for the same reasons as for the tie-
breaker algorithm. Since a similar scheme is adopted in some grocery stores,
this algorithm is called the bakery algorithm. Let BAK be

BAK (cr; nc) � new turn[1::n] = 0 in kni=1 Ci

where

Ci � while tt do
turn[i]:=maxfturn[j] j 1 � j � ng+ 1;

for j:=1 to n st j 6= i do
await turn[j] = 0 _ turn[i] < turn[j]

od

9>>=
>>;

entry
protocol

cri;
turn[i]:=0 ; exit protocol
nci

od

where the value of turn is not changed in cri or nci. Note that cri and nci are
well-formed i�

cri �T z inv�fturng
nci �T z inv1fturng:

In contrast to the tie-breaker algorithm, the correctness of the bakery algorithm
relies on the atomicity of the assignments and tests in the entry and exit pro-
tocols. �

Example 8.3 (Ticket algorithm)
The ticket algorithm is similar to the bakery algorithm. The ticket algorithm
di�ers from the bakery algorithm in that it uses a single global counter num to
set the local counter turn[i] rather than all of the other local counters turn[j]
for j 6= i. Let TIC be

TIC (cr; nc) � new num = 1; next = 1; turn[1::n] = 0 in kni=1 Ci

where

Ci � while tt do
turn[i]; num:=num; num+ 1;

await turn[i] = next;

�
entry protocol

cri;
next:=next+ 1 ; exit protocol
nci

od
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where the values of num, next or turn are never changed in cri or nci. Note
that cri and nci are well-formed i�

cri �T z inv�fnum; next; turng
nci �T z inv1fnum; next; turng:

Like the bakery algorithm, the ticket algorithm relies on the atomicity of the
assignments and the test in both the entry and the exit protocol. �

8.5 Veri�cation strategy

This section demonstrates how a n-process mutual exclusion algorithmMX can
be veri�ed using our framework. To verify MX we

1. �nd an appropriate coarse-grained representation MX 0,

2. verify MX 0 using program transformation, invariants and induction, and

3. successively re�ne MX 0 into MX by a sequence of correctness-preserving
program transformation steps.

The correctness of MX 0 implies the correctness of MX by the following lemma.

Lemma 8.3 (Correctness and execution inclusion)
Suppose we have

MX (cr; nc) �Ez MX 0(cr; nc): (8.1)

for some MX 0 and for all well-formed cr and nc. Then,

1. MX 0 satis�es mutual exclusion if MX does.

2. MX 0 has the eventual entry property if MX does.

Proof: 1) Suppose MX satis�es mutual exclusion but MX 0 does not, that is,
there are well-formednc and well-formed and indicative cr such thatMX 0(cr; nc)
has an execution � in which process i and process j execute their critical regions
simultaneously. Due to (8.1), � also is an execution of MX (cr; nc). This, how-
ever, contradicts the assumption that MX is mutually exclusive. 2) Suppose
MX satis�es eventual entry but MX 0 does not, that is, there are well-formed
cr and well-formed and indicative nc such that MX 0(cr; nc) has an execution �
along which some process i eventually \gets stuck" in its entry protocol, that
is, predicate pnci eventually remains false forever along �. Due to (8.1), � also
is an execution of MX (cr; nc). This, however, contradicts the assumption that
MX satis�es eventual entry.

We will now illustrate the veri�cation of an n-process mutual exclusion algo-
rithm using the tie-breaker algorithmas an example. An appropriately abstract,
coarse-grained representation is introduced and veri�ed in Section 8.6. The suc-
cessive re�nement of that abstract representation is dealt with in Section 8.7.
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8.6 Veri�cation of coarse-grained algorithms us-
ing invariants

To be able to verify TIE conveniently using invariants and without auxil-
iary variables or program locations, we choose the following considerably more
coarse-grained representation TIE1

at;at (the subscript indicates the atomic eval-
uation of the assignments to in and last and the test in the entry protocol).
Unless explicitly stated otherwise, i; j; k; l and x range over 1; : : : ; n.

TIE1
at;at � new in[1::n] = 0; last[1::n] = 0 in kni=1 Ei[entryi]

where Ei is
Ei � while tt do

for l:=1 to n� 1 do
[]

od;

cri;
in[i]:=0;

nci
od

and
entryi � in[i]; last[in[i] + 1]:=in[i] + 1; i;

await 8j 6= i:in[j] < in[i] _ last[in[i]] 6= i

where 8j 6= i:B stands for 81 � j � n:j 6= i ) B. Compared to TIE there are
two di�erences.

1. The sequential composition of the two assignments in[i]:=l ; last[l]:=i is
replaced by the multiple assignment in[i]; last[in[i] + 1]:=in[i] + 1; i.

2. The loop of tests

for j:=1 to n st j 6= i do
while in[j] � l ^ last[l] = i do skip

od

is replaced by one high-level test

await 8j 6= i:in[j] < in[i] _ last[in[i]] 6= i:

Very often, we will also use the equivalent, yet more mnemonic notation

await highest(i) _ :last(i)

where
highest(i) � 8j 6= i:in[j] < in[i]

last(i) � (last[in[i]] = i):

In the rest of this section we will give a detailed veri�cation of this coarse-
grained representation TIE1

at;at. We start with mutual exclusion.
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8.6.1 Mutual exclusion

The following predicates will be important.

last(i) � last[in[i]] = i
highest(i) � 8j 6= i:in[j] < in[i]
tower(i) � 81 � l � in[i]:in[last[l]] = l

where 1 � i � n. Intuitively, process i satis�es

� last(i) i� i is not the last process to have entered the level that it is
currently on.

� highest(i) i� all other processes are below i.

� tower(i) i� for all levels l below the level that i is on, last[l] points to a
process that is on that level. Process i can thus be thought of \standing
on the shoulders" of in[i]� 1 other processes.

To prove mutual exclusion for TIE1
at;at we �rst show that it preserves the

invariant P1^P2 de�ned below. Intuitively, P1 expresses that throughout every
execution of TIE1

at;at every process either is the highest or is standing on a
tower. P2 says that if a process i is on a level l greater than 0, then last[l] points
to a process that is also on l.

Lemma 8.4 (Invariant of the tie-breaker algorithm)
Let Ci range over the n processes in TIE1

at;at. Let

P1 � 81 � i � n:tower(i) _ highest(i)
P2 � 81 � i � n:in[i] > 0) in[last[in[i]]] = in[i]
P � P1 ^ P2

Bi � in[i] > 0) (highest(i) _ :last(i))
B � 81 � i � n:Bi

boti � in[i] = 0:

Then, �
P ^ 81 � i � n:boti;Preds(Var)

�
kni=1 Ci

�
tt; fPg

�
:

If started in a state in which all processes are on level 0, and that satis�es P and
in an environment that preserves every predicate, then the program kni=1Ci will
preserve the predicate P . In other words, P always holds along every execution
of kni=1Ci.
Proof: By induction over n. As is common in inductive proofs, we will prove a
slightly stronger statement, which gives us a more general induction hypothesis
and then specializes to the desired result. Let N denote N � f1; : : : ; ng. Given
a set J � N and predicates Bj for each j 2 J , let

BJ � fBj j j 2 Jg
�J � BJ [ Preds(fin[j] j j 2 Jg)

botJ � 8j 2 J:botj :
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Given a set J of process indices, �J contains for each process i in J , the await
condition Bi, and all predicates over in[i]. For an environment to satisfy the
assumptions �J , it must preserve Bi and leave in[i] unchanged for all i in J .
We show�

P ^ botf1;:::;jg; fPg [ �f1;:::;jg
�

kji=1 Ci
�
tt; fPg [ �fj+1;:::;ng

�
by induction over j. Note how weakening, that is, strengthening of the assump-
tions, and j = n imply the desired result.
Base: j = 1. We show in Section A.4.2, page 256, that process Ci preserves P
and all predicates in �Nnfig provided that the environment preserves P and all
predicates in �fig and the initial state satis�es P ^ botfig.�

P ^ botfig; fPg[ �fig
�

Ci
�
tt; fPg[ �N�fig

�
(8.2)

for all 1 � i � n which implies the base case�
P ^ botf1g; fPg[ �f1g

�
C1

�
tt; fPg [ �N�f1g

�
:

Step: j = j0 + 1. By induction hypothesis,�
P ^ botf1;:::;j0g; fPg[ �f1;:::;j0g

�
kj

0

i=1 Ci
�
tt; fPg[ �fj0+1;:::;ng

�
:

Also, using the assumption-commitment formula (8.2),�
P ^ botfj0+1g; fPg[ �fj0+1g

�
Cj0+1

�
tt; fPg[ �N�fj0+1g

�
:

Then, since the guarantees imply the assumptions

fPg [ �f1;:::;j0g � fPg [ �N�fj0+1g

and
fPg [ �fj0+1g � fPg [ �fj0+1;:::;ng

we conclude with rule PAR-V that�
P ^ botf1;:::;j0+1g; fPg [ �f1;:::;j0+1g

�
kj

0+1
i=1 Ci PAR-V�

tt; fPg [ �fj0+2;:::;ngg
�
:

This completes the induction.

Figure 8.1 below illustrates the invariant

P1 � 81 � i � n:tower(i) _ highest(i)

for the special case of ten processes, that is, for n = 10. The processes are
represented by the numbers 1 through 10. The levels of the pyramid represent
the possible values of a �eld of in. More precisely, process i is shown in level
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Figure 8.1: Illustration of invariant P1 of the tie-breaker algorithm

l i� in[i] = l. For instance, process 5 is on level 6 in both pyramids, that is,
in[5] = 6. In the left pyramid, process 5 is the highest, that is, highest(5) holds.
In the right pyramid, process 5 has been overtaken by process 4 and thus ceases
to be the highest process. However, it now stands on a tower of processes, that
is, we have tower(5).

The property P holds throughout the entire execution of TIE1
at;at. There

are a few properties that are essential for showing mutual exclusion, but that
only hold intermittently.

Lemma 8.5 (Properties during synchronization, critical and non-critical
region)
Let topi, boti and Bi denote

topi � in[i] = n� 1
boti � in[i] = 0
Bi � highest(i) _ :last(i):

Then, for all 1 � i � n,

1. the predicate :boti holds during the synchronization statement await Bi

in TIE1
at;at,

2. the predicate topi^Bi holds during the critical region cri in TIE1
at;at, and

3. the predicate boti holds during the non-critical region nci in TIE1
at;at.

Proof: See Section A.4.3, page 261.
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Figure 8.2: Illustration for the proof of mutual exclusion

Proposition 8.1 (Mutual exclusion for TIE1
at;at)

TIE1
at;at satis�es the mutual exclusion property.

Proof: To show mutual exclusion for TIE1
at;at(cr; nc) we show that along every

execution of kni=1Ci from an initial state satisfying in[1::n] = 0 ^ last[1::n] = 0
at most one process is in its critical region. Consider an execution � of kni=1Ci
starting in in[1::n] = 0^ last[1::n] = 0 and let s be a state along �. Suppose in
state s process i is in its critical region. Then, due to Lemma 8.5, s also satis�es
topi ^Bi. Remember that in Lemma 8.4 we showed that

P � P1 ^ P2

P1 � 81 � i � n:tower(i) _ highest(i)

P2 � 81 � i � n:in[i] > 0) in[last[in[i]]] = in[i]

is an invariant in TIE1
at;at. Thus, s also satis�es P . Suppose for a contradiction

that at least one other process j is in its critical region, too. Then, by the same
argument s also satis�es topj ^Bj . Since i and j are both on the highest level,
neither of them is highest. Thus, P implies tower(i) and tower(j). In other
words, n processes are distributed over n � 1 levels with one process on each
level between 1 and n � 1 and processes i and j on level n � 1. Figure 8.2
illustrates this situation by giving an example for the case of ten processes. By
P2 this implies that last[n� 1] is either i or j. Consequently, Bi ^Bj is false in
s which yields the desired contradiction.
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8.6.2 Eventual entry

We now show that TIE1
at;at has the eventual entry property. Let Bi be the

await condition in Ci, that is, Bi � 8j 6= i:highest(i) _ :last(i). We will use
Lemma 8.2. Let mi be

mi =

�
0; if :last(i) _ botiPn

j=1;j 6=i cond(in[j] = in[i]; n; in[i]� in[j] (mod n)); otherwise

where

cond(B; e1; e2) =

�
e1; if B
e2; otherwise.

Intuitively, mi = 0 i� process i can move to the next level. Moreover, if mi > 0,
then mi is the sum over the number of levels that each process j 6= i is away from
the level that i is on. Thus, mi indicates the maximal number of \steps" that
process i has to remain on its level until it is \released" via another process
that enters its level and thus becomes last. Note that if last(i) ^ :Bi, the
summation adds n for each process j 6= i for which in[j] = in[i]. This is
because process j needs to advance n levels before it can release process i.
Clearly, mi is always greater or equal to 0. Moreover, :boti^mi = 0 implies Bi

where :boti is known to hold during await Bi using Lemma 8.5. For natural
numbers m and n with m � n, let Dn

m denote the trace set in which every
process j with m � j � n and j 6= i eventually either forever blocks at a Bj-
synchronization statement or forever stays in the non-critical region executing
V :[botj; botj] where V � Varnfin; lastg. More precisely, let

Dn
k � inv�mi ;

�
knj=k;j 6=i (f:Bjg

! _ V :[botj; botj ]
!)
�
:

To establish the third condition we need to show that

1.

knj=1;j 6=iCj �T z (inv�mi ;Ami
)! _ (inv�mi ;Ami

)� ;Dn
1 ;

2. Dn
1 has no execution along which :Bi is true in�nitely often.

We prove the �rst item by induction over n.

Base: n = 1. We have

Cj �T z (inv�mi ;Ami
)! _ (inv�mi ;Ami

)� ;Dj
j

for all j 6= i where

Dj
j � inv�mi ; (f:Bjg

! _ V :[botj; botj]
!):

To see this let

Aj � in[j]; last[in[j] + 1]:=in[j] + 1; j
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and observe that

Aj �T z Ami
(8.3)

in[j]:=0 �T z Ami

for all j 6= i. The remaining atomic statements A in Cj always leave mi

unchanged, that is, A �T z inv�mi. Moreover, every trace � of Cj falls
into one of three categories:

1. The body of Cj is executed in�nitely often. Thus, mi is reduced
in�nitely often. In this case,

� 2 T z[[(inv�mi ;Ami
)! ]]:

2. The body of Cj is executed only �nitely often, because execution
eventually gets blocked forever at the Bj-synchronization statement
in its entry protocol, that is, after a �nite number of reductions of
mi, � ends in f:Bjg!. In this case,

� 2 T z[[(inv�mi ;Ami
)� ; inv�mi ; f:Bjg!]]:

3. The body of Cj is executed only �nitely often, because the non-
critical section never terminates, that is, after some �nite number of
reductions of mi, the non-critical region ncj is executed forever. Due
to Lemma 8.5, predicate botj always holds during ncj. Thus, in this
case,

� 2 T z[[(inv�mi ;Ami
)� ; inv�mi ; V :[botj ; botj]!]]:

To see (8.3) we show cfAj ) cfAmi and then use Lemma2.2.5. Let (s; s0) j=
cfAj . Ifmi = 0 in s then, alsomi = 0 in s0 since Aj preserves boti_:last(i).
Otherwise, if mi = v > 0 in s, then Aj brings j one level closer to i while
leaving the distances of other processes unchanged. Thus, mi < v in s0.
Consequently, (s; s0) j= cfAmi in both cases. This concludes the base case.

Step: n = n0 + 1. Let n0 + 1 6= i. By induction hypothesis, we have

kn
0

j=1;j 6=iCj �T z (inv�mi ;Ami
)! _ (inv�mi ;Ami

)� ;Dn0

1 :

We show that for every trace � of kn
0

j=1;j 6=iCj and every trace � of Cn0+1,
we have

� k � � T z[[(inv�mi ;Ami
)! _ (inv�mi ;Ami

)� ;Dn0+1
1 ]]:

Case 1: � trace of (inv�mi ;Ami
)! .

Subcase 1.1: � trace of (inv�mi ;Ami
)!. Then, clearly, all traces in

� k � are also in (inv�mi ;Ami
)!.
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Subcase 1.2: � trace of (inv�mi ; Ami
)� ; Dn0+1

n0+1. Since Dn0+1
n0+1 �T z

inv!mi, and the parallel merge operation as de�ned in Sec-
tion 2.2.1 is weakly fair, all traces in � k � are also in (inv�mi ;

Ami
)!.

Case 2: � trace of (inv�mi ;Ami
)� ;Dn0

1 .

Subcase 2.1: � trace of (inv�mi ;Ami
)!. We argue as in Subcase 1.2.

Subcase 2.2: � trace of (inv�mi ;Ami
)� ;Dn0+1

n0+1. Then, either

� 2 (inv�mi ;Ami
)� ; f:Bn0+1g

!

or

� 2 (inv�mi ;Ami
)� ; V :[botj; botj]

!:

In both cases, all traces in �k� are also in (inv�mi ;Ami
)� ;Dn0+1

1 .

This concludes the induction.

We now need to show that Dn
1 has no execution along which :Bi is true

in�nitely often. We will do this by contradiction. Let � be an execution of Dn
1 .

Thus, � = �1�2 where �1 2 inv�mi and

�2 2 knj=1;j 6=i(f:Bjg
! _ V :[botj ; botj ]

!):

Note that �2 has the following property: If :Bj or botj is true in some state
along �2, then it remains true forever. Together with fairness this implies that
there is a state s along � such that every process j 6= i is either blocked at
an Bj-synchronization statement or executing its non-critical region, that is,
s satis�es

Vn

j=1;j 6=i(:Bj _ botj). For a contradiction, assume that :Bi is true
in�nitely often along �. Then, s must be followed by a state s0 which satis�esVn

j=1(:Bj _ botj): (8.4)

Let J be the set of processes such that :Bj in s0, that is, J is the set of processes
that are not the highest and also the last on their level. Formally, j 2 J i�

s0 j= :highest(j) ^ last(j):

(Note that J is non-empty since :Bi holds by assumption.) Remember that
Lemma 8.4 showed that

P2 � 81 � i � n:in[i] > 0) in[last[in[i]]] = in[i]

is an invariant. By P2 we have that 8j 2 J:last(j) implies that no two processes
in J are on the same level, that is, 8j; j0 2 J:j 6= j0 ) in[j] 6= in[j0]. (Note
that P2 and in[j] = in[j0] for some j and j0 imply :last(j) _ :last(j0).) Con-
sequently, one of the processes k in J must be higher than all other processes
in J . Moreover, all processes not in J are on level 0 due to (8.4). Thus, k is
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the highest of all processes, that is, highest(k) for some k 2 J . However, this
contradicts :Bk. Thus, all conditions of Lemma 8.2 are satis�ed and we can
conclude that TIE1

at;at has the eventual entry property.
We thus have formally proved the correctness of our abstract, coarse-grained

representation TIE1
at;at. In the next section we will begin to re�ne this repre-

sentation.

8.7 Re�ning coarse-grained algorithms

Having veri�ed TIE1
at;at, how can we verify TIE , the algorithm from Exam-

ple 8.1, while minimizing the amount of additional veri�cation work? This
section will present rules which allow the correctness preserving re�nement of
high-level representations into low-level ones. We will illustrate the use of these
rules by re�ning TIE1

at;at into TIE .

8.7.1 Re�nement using program assertions

Consider TIE1
at;at. There is a correspondence between in[i], the level process

i is in, and the loop counter l. For instance, in Lemma 8.5 we showed that
l = in[i] + 1 holds during in[i]; last[in[i] + 1]:=in[i] + 1; i in TIE1

at;at. We
now want to use this correspondence to replace expressions containing in[i] by
expressions containing l. This re�nement will improve readability and e�ciency
of the code.

Proposition 8.2 (Re�ning TIE1
at;at into TIE

2
at;at)

Let Di be

Di � in[i]; last[in[i] + 1]:=in[i] + 1; i;
await 8j 6= i:in[j] < in[i] _ last[in[i]] 6= i

and let Ei be such that TIE1
at;at is of the form

TIE1
at;at � new in[1::n] = 0; last[1::n] = 0 in kni=1 Ei[Di]:

Let TIE2
at;at be as TIE

1
at;at except that every occurrence of Di is replaced by

D0
i where

D0
i � in[i]; last[l]:=l; i;

await 8j 6= i:in[j] < l _ last[l] 6= i;

that is,

TIE2
at;at � new in[1::n] = 0; last[1::n] = 0 in kni=1 Ei[D

0
i]:

Then, TIE2
at;at =T z TIE1

at;at.
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Proof: We prove this proposition using straight-forward program re�nement.
Let A1 and A2 be the two atomic statements in Di, that is,

A1 � in[i]; last[in[i] + 1]:=in[i] + 1; i

A2 � await 8j 6= i:in[j] < in[i] _ last[in[i]] 6= i

and let A0
1 and A

0
2 be the two atomic statements in D0

i, that is,

A0
1 � in[i]; last[l]:=l; i

A0
2 � await 8j 6= i:in[j] < l _ last[l] 6= i:

We derive

R1 �
�
v = in[i] + 1;Preds(fin[i]g)

�
(A1 ;A2)[v=l]

� ATOM, SEQ

(A0
1 ;A0

2)[v=l]�
v = in[i];Preds(fin[j] j j 6= ig)

�
for all 1 � v � n � 1. We now obtain a re�nement of the for loop.

R2 �
�
boti;Preds(fin[i]g)

�
for l:=1 to n� 1 do Di

� FOR(R1)

for l:=1 to n� 1 do D0
i�

topi;Preds(fin[j] j j 6= ig)
�
:

The sequential composition of critical section, exit protocol, and non-critical
section satis�es the following assumption-commitment formula.

R3 �
�
topi;Preds(fin[i]g)

�
cri ; in[i]:=0 ; nci Lemma 3.4�

boti;Preds(fin[j] j j 6= ig)
�

That is, if topi initially and the environment does not change in[i], we have
boti upon termination and in[j] is unchanged for all j 6= i. Remember that cri
and nci are well-formed by assumption, that is,

cri �T z inv�fin; lastg
nci �T z inv1fin; lastg:

Both re�nements are sequentially composed and embedded in the while loop.

R4;i �
�
boti;Preds(fin[i]g)

�
Ci � C 0

i SEQ(R2 ,R3), WHILE�
tt;Preds(fin[j] j j 6= ig)

�
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where Ci � Ei[Di] and C0
i � Ei[D0

i]. Now all n processes can be put in parallel.

R5 �
�Vn

i=1boti;Preds(fin[i] j 1 � i � ng)
�

kni=1Ci � kni=1C
0
i PAR-V-N(R4;i)�

tt;Preds(;)
�
:

Finally, declaring the arrays in and last gives us the desired re�nement.�
tt;Preds(;)

�
TIE1

at;at

�

E[kni=1Ci]

� NEW(R5 ,in[1::n],last[1::n])

E[kni=1C
0
i]

�

TIE2
at;at�

tt;Preds(;)
�

where
E � new in[1::n] = 0; last[1::n] = 0 in []:

With Lemma 5.5 this implies TIE1
at;at =T z TIE2

at;at.

The above re�nement not only improves the readability but also the e�-
ciency of the algorithm, because the double evaluation of the expressions in[i]
and in[i]+1 is avoided. However, as we will see later, it also increases generality
of the algorithm in the sense that it enables certain otherwise impossible further
re�nements.

8.7.2 Re�ning synchronization statements

We now describe under what conditions unimplementable, coarse-grained syn-
chronizations like

await 8j 6= i:in[j] < l _ last[l] 6= i

can be replaced by an implementable, �ne-grained sequence of synchronizations
like

for j:=1 to n st j 6= i do
while in[j] � l ^ last[l] = i do skip

or
knj=1;j 6=iwhile in[j] � l ^ last[l] = i do skip:

Re�nement Rule 8.1 (Re�ning synchronization statements)
Let B be a predicate. Then,

await B =T z while :B do skip:
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Proof: We have

await B � fBg _ f:Bg!

and

while :B do skip � (f:Bg ; skip)� ; fBg _ (f:Bg ; skip)!

=T z f:Bg� ; fBg _ f:Bg!:

Since fBg =T z f:Bg� ; fBg due the closure conditions, the result follows.

Note that the above equivalence depends on the atomic evaluation of loop
conditions. The next proposition applies the above re�nement rule.

Proposition 8.3 (Re�ning TIE2
at;at into TIE

3
at;at)

Let Ei be such that TIE2
at;at is of the form

TIE2
at;at � new in[1::n] = 0; last[1::n] = 0 in

kni=1Ei[await 8j 6= i:Bi;j ]

where Bi;j � in[j] < l _ last[l] 6= i. Let TIE3
at;at be as TIE2

at;at except that
every occurrence of

await 8j 6= i:Bi;j

is replaced by
while 9j 6= i::Bi;j do skip:

Formally,

TIE3
at;at � new in[1::n] = 0; last[1::n] = 0 in

kni=1Ei[while 9j 6= i::Bi;j do skip]:

Then,

TIE2
at;at =T z TIE3

at;at:

Proof: Direct consequence of Re�nement Rule 8.1 and congruence (Lemma2.2.6)

Each parallel process Ci in TIE3
at;at contains a single synchronization state-

ment
while 9j 6= i::Bi;j do skip:

We want to re�ne this synchronization statement by a sequence or a parallel
composition of synchronization statements. The following re�nement rule will
allow us to do this.
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Re�nement Rule 8.2 (Re�ning synchronization statements)
Let B1; : : : ; Bn be predicates. Assuming that the environment preserves each
of the Bi, the synchronization statement

while 9j 6= i::Bj do skip

can be re�ned into either a sequence or a parallel composition of simpler syn-
chronization statements. More precisely,�

tt; fBj j 1 � j � ng
�

while 9j 6= i::Bj do skip

�

for j:=1 to n st j 6= i do

while :Bi do skip�
tt;Preds(Var)

�
and �

tt; fBj j 1 � j � ng
�

while 9j 6= i::Bj do skip

�

for j:=n to i st j 6= i do

while :Bi do skip�
tt;Preds(Var)

�
and �

tt; fBj j 1 � j � ng
�

while 9j 6= i::Bj do skip

�

knj=1;j 6=iwhile :Bj do skip�
tt;Preds(Var)

�
Proof: See Section A.4.4, page 262.

Proposition 8.4 (Re�ning TIE3
at;at into TIEpar;at, TIEup;at and

TIEdown;at)
Let Ei;1 be

Ei;1 � in[i]; last[l]:=l; i;
[]

and let Ei be such that TIE3
at;at is of the form

TIE3
at;at � new in[1::n] = 0; last[1::n] = 0 in

kni=1Ei

�
Ei;1[while 9j 6= i::Bi;j do skip]

�
where :Bi;j � in[j] � l ^ last[l] = i.
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1. Let TIEpar;at be as TIE
3
at;at except that every occurrence of

while 9j 6= i::Bi;j do skip

is replaced by
knj=1;j 6=iwhile :Bi;j do skip:

Formally,

TIEpar;at � new in[1::n] = 0; last[1::n] = 0 in
kni=1Ei

�
Ei;1[knj=1;j 6=iwhile :Bi;j do skip]

�
:

Then, TIEpar;at =T z TIE3
at;at.

2. Let TIEup;at be as TIE
3
at;at except that every occurrence of

while 9j 6= i::Bi;j do skip

is replaced by

for j:=1 to n st j 6= i do while :Bi;j do skip:

Formally,

TIEup;at � new in[1::n] = 0; last[1::n] = 0 in
kni=1Ei

�
Ei;1[for j:=1 to n st j 6= i do

while :Bi;j do skip]
�
:

Then, TIEup;at =T z TIE3
at;at.

3. Let TIEdown;at be as TIE
3
at;at except that every occurrence of

while 9j 6= i::Bi;j do skip

is replaced by

for j:=n to 1 st j 6= i do while :Bi;j do skip:

Formally,

TIEdown;at � new in[1::n] = 0; last[1::n] = 0 in
kni=1Ei

�
Ei;1[for j:=n to 1 st j 6= i do

while :Bi;j do skip]
�
:

Then, TIEdown;at =T z TIE3
at;at.

Proof: 1) For all 1 � i � n we have�
tt; fBi;j j 1 � j � ng

�
while 9j 6= i::Bi;j do skip

�

knj=1;j 6=iwhile :Bi;j do skip�
tt;Preds(Var)

�
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due to Re�nement Rule 8.2. By ATOM, SEQ, and FOR

R6;i �
�
tt; fBi;j j 1 � j � ng

�
Ci � C0

i ATOM, SEQ, FOR�
tt; fBk;l j 1 � k; l � n ^ k 6= ig

�
where

Ci � Ei

�
Ei;1[while 9j 6= i::Bi;j do skip]

�
C0
i � Ei

�
Ei;1[k

n
j=1while :Bi;j do skip]

�
for all 1 � i � n. Then, by taking the parallel composition

R7 �
�
tt; fBi;j j 1 � i; j � ng

�
kiCi � kiC

0
i PAR-V-N(R6;i)�

tt;Preds(;)
�

and declaring the local variables

R8 �
�
tt;Preds(;)

�
TIE3

at;at � TIEpar;at NEW(R7,in,last)�
tt;Preds(;)

�
:

The desired trace equivalence follows from R8 with Lemma 5.5.
2) and 3) are analogous to previous case.

8.7.3 Re�nement by increasing granularity

We will now replace the coarse-grained multiple assignment

Ai � in[i]; last[l]:=l; i

by two �ner-grained statements. In contrast to the previous re�nements, this
one will destroy the invariant P of Lemma 8.4. Note how the simultaneity of
the updates of in[i] and last[i] is crucial for the proof of Lemma 8.4. More
speci�cally,

� if Ai was replaced by A0
i � in[i]:=l ; last[l]:=i, then�

P ^Bi; fPg [ �fig
�

A0
i

�
tt;�N�fig

�
would not hold, and

� if Ai was replaced by A00
i � last[l]:=i ; in[i]:=l, then neither�

P ^Bi; fPg[ �fig
�

A00
i

�
tt; fP1g

�
nor �

P ^Bi; fPg[ �fig
�

A00
i

�
tt; fP2g

�
would be valid.
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In both cases, P of Lemma 8.4 ceases to be an invariant. Note that P is used
not only to prove mutual exclusion but also eventual entry. In contrast to some
approaches in the literature [OG76a, And91, AO91] we will not attempt to �nd
a new invariant using auxiliary variables or location predicates. Instead, we will
apply correctness-preserving transformation laws which will now be developed.

To start us o�, we consider a special case of Lemma 2.1.7 from page 20.
Remember that a context is sequential if its hole is not in the scope of a parallel
composition.

Lemma 8.6 (Increasing granularity I)
If E is a sequential context and neither x1 nor x2 occur free in C, then

new x1 = v0;1; x2 = v0;2 in
�
E[x1; x2:=v1; v2] k C

�
=T z new x1 = v0;1; x2 = v0;2 in

�
E[x1:=v1 k x2:=v2] k C

�
:

�

This rule is not appropriate for re�ning TIE3
at;at, because both in[i] and

last[l] occur free in the parallel context C. More precisely, both variables occur
free in synchronization-statements in the parallel context. To encompass this
situation, we modify the above rule.

Re�nement Rule 8.3 (Increasing granularity II)
Let

E � new x1 = v0;1; x2 = v0;2 in E
0

where E0 � E00 k C for some sequential context E00 and some program C.
Consider the atomic statement x1; x2:=v1; v2. If

1. C mentions x1; x2 only in stuttering statements fBg,

2. for all stuttering statements fBg in C we have

� if [sjx1 = v1] j= B, then either s j= B or [sjx1 = v1; x2 = v2] j= B,
and

� if [sjx2 = v2] j= B, then either s j= B or [sjx1 = v1; x2 = v2] j= B

for all states s,

then E[x1; x2:=v1; v2] =T z E[x1:=v1 k x2:=v2]. �

Replacing x1; x2:=v1; v2 by x1:=v1 kx2:=v2 creates two, possibly new inter-
mediate states: [sjx1 = v1] and [sjx2 = v2]. Intuitively, condition 2 expresses
that whenever one of the intermediate states makes B true, then either the state
right before or the state right after both assignments also make B true. Due to
this condition, for instance, the multiple assignment x1; x2:=1; 1 in

new x1 = 0; x2 = 0 in�
x1; x2:=1; 1 k fx1 = 1 ^ x2 = 0g

�
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cannot be replaced by x1:=1 k x2:=1, because the re�nement would introduce
an execution (the above program has no executions). However, in program

new x1 = 0; x2 = 0 in�
x1; x2:=1; 1 k fx1 = 1 _ x2 = 0g

�
the same multiple assignment can be replaced by x1:=1kx2:=1. Unfortunately,
the above rule still is not applicable to TIE3

at;at. Suppose the parallel environ-
ment contains a process j that is entering level l. Then, variable last[l] will
also be written by process j. The variables in[i] and last[l] in TIE3

at;at are thus
accessed as follows:

in[i] is written only by process i, but read by the parallel environment,

last[l] is written by process i. The parallel environment also reads last[l]
and writes it in constant assignments, that is, assignments of the form
last[l]:=c where c is a constant.

The following rule addresses the situation.

Re�nement Rule 8.4 (Increasing granularity III)
Let

E � new x1 = v0;1; x2 = v0;2 in E
0

where E0 � E00 k C for some sequential context E00 and some program C.
Consider the atomic statement x1; x2:=v1; v2. If

1. C mentions x1 only in stuttering statements fBg, and

2. C mentions x2 only in stuttering statements fBg and on the right-hand
side of constant assignments, and

3. for all stuttering statements fBg in C we have

� if [sjx1 = v1] j= B, then s j= B

for all states s,

then E[x1; x2:=v1; v2] =T z E[x1:=v1 ; x2:=v2].

Proof: See Section A.4.5, page 264.

The intuition behind this rule is as follows. Right after the multiple as-
signment we have x1 = v1 ^ x2 = v2 and thus also x2 = v2 ) x1 = v1. The
environment may change the value of x2, but will leave x1 unchanged. Conse-
quently, the implication x2 = v2 ) x1 = v1 is preserved by the environment.
Moreover, the implication holds in the intermediate state after executing x1:=v1
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but before executing x2:=v2. Reversing the order of the two assignments in gen-
eral does not yield a correct re�nement, because the implication does not hold
in the intermediate step. For illustration, consider the following program

C � new r = 0; done = tt in2
664 await :done;
r; done:=x � x; tt


x:=5;

done:=� ;

await done;
await r 6= 25

3
775

In C, r; done:=x�x; tt can be replaced by r:=x�x;done:=tt without changing the
set of executions of C, because we have done) r = 25 in the intermediate and
�nal states. However, replacing r; done:=x � x; tt by done:=tt ; r:=x � x changes
the set of executions of C, because the ag done does not indicate r carrying
the result anymore.

Note that Re�nement Rule 8.4 also is applicable if the introduced assign-
ments x1:=v1 and x2:=v2 are not atomic. Unfortunately, the applicability of
this rule is still limited because x1 and x2 can only be mentioned in stuttering
steps fBg by the parallel environment. To be applicable to the tie-breaker al-
gorithm, for example, the environment must be allowed to mention x1 and x2
in synchronization statements. We thus want to generalize the rule to accom-
modate this situation. However, this poses the following problem. Suppose, for
instance, that hx1:=v1 ;x2:=v2i is executed in�nitely often along some execution
� of E0[hx1:=v1 ; x2:=v2i] and that C contains a B-synchronization statement
await B such that B is always false when control resides between the two as-
signments. Also assume that B is always true right after both assignments
have been executed. This means that hx1:=v1 ; x2:=v2i in context E0 o�ers
in�nitely many states along � with :B whereas hx1; x2:=v1; v2i does not nec-
essarily. Consequently, it may be the case that await B is blocked forever in
E0[hx1:=v1 ;x2:=v2i] but not in E0[hx1; x2:=v1; v2i]. As an illustration, consider
the program

new x1 = 0; x2 = 0 in2
664
while tt do
x1; x2:=0; 0;

x1; x2:=1; 1
od

 await x1 = x2

3
775

Replacing x1; x2:=1; 1 by x1:=1 ; x2:=1 would introduce an in�nite execution
in which the right program never terminates. To circumvent this problem,
we require that both the re�ned and the re�ning program have the eventual
entry property, that is, none of their synchronization statements is ever blocked
forever. We now �nally arrive at the re�nement rule that will allow us to re�ne
TIE3

at;at.

Re�nement Rule 8.5 (Increasing granularity IV)
Let

E � new x1 = v0;1; x2 = v0;2 in E
0
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where E0 � E00 k C for some sequential context E00 and some program C.
Consider the atomic statement x1; x2:=v1; v2. If

1. C mentions x1 only in stuttering statements fBg, and

2. C mentions x2 only in stuttering statements fBg and on the right-hand
side of constant assignments, and

3. for all stuttering statements fBg in C we have

� if [sjx1 = v1] j= B, then s j= B

for all states s, and

4. E0[x1; x2:=v1; v2] and E
0[x1:=v1 k x2:=v2] have the eventual entry prop-

erty,

then E[x1; x2:=v1; v2] =Ez E[x1:=v1 ; x2:=v2].

Proof: See Section A.4.6, page 266.

With the help of the above rule, each of the programs TIEpar;at, TIEup;at,
and TIEdown;at can now be re�ned by replacing

in[i]; last[l]:=l; i

by
in[i]:=l ; last[l]:=i:

Proposition 8.5 (Re�ning TIEpar;at, TIEup;at, and TIEdown;at)
Let Ei be as in Proposition 8.4.

1. Let Ei;1 be

Ei;1 � [];

knj=1while in[j] � l ^ last[l] = i do skip;

Then, TIEpar;at is of the form

TIEpar;at � new in[1::n] = 0; last[1::n] = 0 in
kni=1Ei

�
Ei;1[in[i]; last[l]:=l; i]

�
:

Let TIEpar;par be as TIEpar;at except that every occurrence of

in[i]; last[l]:=l; i

is replaced by
in[i]:=l ; last[l]:=i:

More formally,

TIEpar;par � new in[1::n] = 0; last[1::n] = 0 in
kni=1Ei

�
Ei;1[in[i]:=l ; last[l]:=i]

�
:

Then, TIEpar;par =T z TIEpar;at.
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2. Let Ei;2 be

Ei;2 � [];

for j:=1 to n do while in[j] � l ^ last[l] = i do skip;

Then, TIEup;at is of the form

TIEup;at � new in[1::n] = 0; last[1::n] = 0 in
kni=1Ei

�
Ei;2[in[i]; last[l]:=l; i]

�
:

Let TIEup;par be as TIEup;at except that every occurrence of

in[i]; last[l]:=l; i

is replaced by
in[i]:=l ; last[l]:=i:

More formally,

TIEup;par � new in[1::n] = 0; last[1::n] = 0 in
kni=1Ei

�
Ei;2[in[i]:=l ; last[l]:=i]

�
:

Then, TIEup;par =T z TIEup;at.

3. Let Ei;3 be

Ei;3 � [];

for j:=n to 1 do while in[j] � l ^ last[l] = i do skip;

Then, TIEdown;at is of the form

TIEdown;at � new in[1::n] = 0; last[1::n] = 0 in
kni=1Ei

�
Ei;2[in[i]; last[l]:=l; i]

�
:

Let TIEdown;par be as TIEdown;at except that every occurrence of

in[i]; last[l]:=l; i

is replaced by
in[i]:=l ; last[l]:=i:

More formally,

TIEdown;par � new in[1::n] = 0; last[1::n] = 0 in
kni=1Ei

�
Ei;2[in[i]:=l ; last[l]:=i]

�
:

Then, TIEdown;par =T z TIEdown;at.
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Proof: 1) Re�nement Rule 8.5 is applied n times where the ith application
establishes

TIEpar;at(i) � new in[1::n] = 0; last[1::n] = 0 in
ki�1
k=1Ek[in[k]:=l ; last[l]:=k]k
Ei[in[i]:=l ; last[l]:=i]k
knk=i+1Ek[in[k]; last[l]:=l; k]

=T z new in[1::n] = 0; last[1::n] = 0 in
ki�1
k=1Ek[in[k]:=l ; last[l]:=k]k
Ei[in[i]; last[l]:=l; i]k
knk=i+1Ek[in[k]; last[l]:=l; k]

� TIEpar;at(i� 1):

Consider the �rst two conditions of Rule 8.5 where C is the program that

Ei[in[i]; last[l]:=l; i]

is executing in parallel with.

C � ki�1
k=1Ek[in[k]:=l ; last[l]:=k]k
knk=i+1Ek[in[k]; last[l]:=l; k]:

Obviously,C mentions in[i] and last[l] only in synchronization statements. Also,
for every Bj-synchronization statement in C, if [sjin[i] = l] j= Bj , then

[sjin[i] = l; last[l] = i] j= Bj

and if [sjlast[l] = i] j= Bj , then

[sjin[i] = l; last[l] = i] j= Bj :

Suppose TIEpar;at(i � 1) was shown to satisfy the eventual entry property
using Lemma 8.2. Then, with the observation that in[j]:= l �T z Ami

and
last[l]:=j �T z Ami

if l = in[i], and last[l]:=j �T z inv�mi if l 6= in[i], the
same argument also applies to TIEpar;at(i). Since TIEpar;at(0) � TIEpar;at

and TIEpar;at(n) � TIEpar;par , we get the desired result by transitivity.
2) and 3) As above.

Note how the introduction of l was necessary for the re�nement of the mul-
tiple assignment. In other words, in[i]; last[in[i] + 1]:=in[i] + 1; i cannot be
replaced by in[i]:=in[i] + 1 ; last[in[i] + 1]:=i.

8.7.4 Putting everything together

Figure 8.3 gives an overview of the re�nements presented in this section. The
correctness of the most abstract version TIE1

at;at (Proposition 8.1) and Lemma8.3
imply the correctness of all re�nements.
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TIEup TIEpar TIEdown

Figure 8.3: Overview of implementations of the tie-breaker algorithm

Corollary 8.2 (Correctness)
All programs in Figure 8.3 are correct. �

TIEup is equivalent to TIE of Example 8.1 and we thus have achieved the
veri�cation of TIE which was one of our original goals.

8.8 Fine-grained concurrency

A very important property of the the tie-breaker algorithm is that it places no
atomicity constraints on the execution. Its correctness is completely indepen-
dent of the level of granularity of the parallel execution. Note that neither the
bakery nor the ticket algorithm have this property. In this section we briey
sketch how the re�nement of TIE2

at;at would proceed if the evaluation of boolean
expressions in while statements is not atomic. Not surprisingly, dropping the
atomicity requirement complicates the re�nement. Re�nement Rules 8.1 and 8.2
become unsound and need to be replaced. We �rst show under what conditions
a stuttering step in B can be replaced by the non-atomic evaluation of B.
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8.8.1 Re�ning non-atomic boolean expressions

For the purposes of this section, let Bj;k for 1 � j � m and 1 � k � n
range over atomic propositions, that is, non-composite boolean expressions that
are always evaluated in one single step. In accordance to the treatment in
Section 2.4, we will assume that the evaluation of the negation :Bj;k also is
atomic. Furthermore, we assume that conjunction Bj;1 ^ Bj;2 and disjunction
Bj;1 _ Bj;2 are evaluated in some �xed, but unknown order. The following
lemma shows under which conditions the non-atomic evaluation of the boolean
expressions

W
j

V
kBj;k and

V
j

W
k :Bj;k is equivalent to a single stuttering step

in
W
j

V
k Bj;k and

V
j

W
k :Bj;k respectively.

Lemma 8.7 (Non-atomic expressions)
If the environment preserves the Bj;k, then the non-atomic evaluation of

W
j

V
kBj;k

to true is equivalent to a single stuttering step in
W
j

V
kBj;k, that is,�

tt; fBj;k j 1 � j � m ^ 1 � k � ng
�

f
W
j

V
kBj;kg

�

f
W
j

V
kBj;k + ttg�

tt;Preds(Var)
�
:

Moreover, if the disjunctions
W
k :Bj;k are preserved by the environment, then

the non-atomic evaluation of
V
j

W
k:Bj;k to true is equivalent to a single stut-

tering step in
V
j

W
k:Bj;k, that is,�

tt; f
W
k:Bj;k j 1 � k � ng

�
f
V
j

W
k:Bj;kg

�

f
V
j

W
k:Bj;k + ttg�

tt;Preds(Var)
�
:

Proof:

1. Using the stuttering closure condition we can show that every trace of
f
W
j

V
kBj;kg also is a trace of f

W
j

V
kBj;k + ttg, that is,

f
W
j

V
kBj;kg �T z f

W
j

V
kBj;k + ttg;

which implies one direction of the equivalence. The other direction follows,
because the evaluation of

W
j

V
kBj;k in a parallel environment that pre-

serves all atomic propositions Bj;k for 1 � j � m and 1 � k � n, always
eventually passes through a stuttering step that satis�es

W
j

V
kBj;k.

2. As in the �rst case, the stuttering closure condition implies

f
V
j

W
k
:Bj;kg �T z f

V
j

W
k:Bj;k + ttg;
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and thus one direction of the equivalence. To show the other direction,
we have to argue that the evaluation of f

V
j

W
k:Bj;k + ttg in a parallel

environment that preserves all disjunctions
W
k:Bj;k for 1 � j � m, al-

ways eventually passes through a stuttering step that satis�es
V
j

W
k:Bj;k.

Suppose that during the evaluation Bj;k evaluates to true in some state.
Thus,

W
k:Bj;k also holds in that state. Due to the assumptions, this dis-

junction thus continues to hold. Thus,
V
j

W
k:Bj;k must also eventually

be true.

8.8.2 Re�ning non-atomic synchronization statements

The coarse-grained synchronization statement

await
V
j

W
k
:Bj;k

is equivalent to the �ne-grained synchronization statement

while
W
j

V
kBj;k do skip

if the environment preserves
W
k:Bj;k for all k and Bj;k for all j and k.

Re�nement Rule 8.6 (Equivalence of synchronization statements)�
tt; f

W
k:Bj;k j 1 � k � ng [ fBj;k j 1 � j � m ^ 1 � k � ng

�
await

V
j

W
k:Bj;k

�

while
W
j

V
kBj;k do skip�

tt;Preds(Var)
�

Proof: We show

R1 �
�
tt; fBj;k j 1 � j � m ^ 1 � k � ng

�
f
W
j

V
kBj;kg!

� Lemma 8.7, OMEGA

f
W
j

V
kBj;k + ttg!�

tt;Preds(;)
�
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and

R2 �
�
tt; f

W
k:Bj;k j 1 � k � ng

�
f
V
j

W
k:Bj;kg

� Lemma 8.7

f
V
j

W
k:Bj;k + ttg

� Lemma 2.3

f
W
j

V
kBj;k + � g

� =
T z

(Lemma 2.1)

f
V
j

W
k:Bj;k + ttg� ; f

W
j

V
kBj;k + � g�

tt;Preds(;)
�
:

The desired result follows with an application of OR to R1 and R2 and the
de�nitions of await and while.

We want to use Re�nement Rule 8.6 to re�ne TIE2
at;at into TIE3

at;at. The

synchronization statement of process i in TIE2
at;at can be transformed as follows

8j 6= i:in[j] < in[i] _ last[l] 6= i

� 81 � j � n:j 6= i) (in[j] < in[i]_ last[l] 6= i)

=
Vn

j=1;j 6=i(in[j] < in[i] _ last[l] 6= i)

=
Vn

j=1;j 6=i

W2
k=1:Bj;k

where

:Bj;1 � in[j] < in[i]

:Bj;2 � last[l] 6= i:

While the synchronization statement now has required shape, the rule is not
applicable, because neither Bj;1 � in[j] � in[i] nor Bj;2 � last[l] = i is preserved
as required. Predicate in[j] � in[i] is invalidated when process j leaves its its
critical region and then moves to level 0 by executing its exit protocol in[j]:=0.
Predicate last[l] = i is invalidated when some other process k also reaches level
l and updates the last pointer by executing last[l]:=k. In other words, the rule
is too weak for our purposes, because its assumptions are too strong.

Using eventual entry

With the help of the eventual entry property we now develop another re�nement
rule that will allow us to re�ne TIE2

at;at. The de�nitions of await B and
while :B do skip each consist of two disjuncts, the second of which deals
with the case where B never becomes true. Recall that Corollary 8.1 shows
that if program C has the eventual entry property, then these disjuncts can be
removed without changing the executions of C. Consequently, in this case only
the �rst disjunct needs to be re�ned. The following rule applies this idea. Note,
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however, that eventual entry is a property of the entire program. Consequently,
compositionality is compromised.

Re�nement Rule 8.7 (Equivalence of synchronization statements)
Let C be of the form

C � E[await
V
j

W
k:Bj;k] kD

where E is sequential. If the parallel context D preserves
W
k:Bj;k for all 1 �

j � n, that is, �
tt;Preds(Var)

�
D

�
tt; f

W
k:Bj;k j 1 � j � ng

�
and C has the eventual entry property, then

C0 � E[while
W
j

V
kBj;k do skip] kD

also has the eventual entry property and

C =Ez C0:

Proof: We have

E
�
await

V
j

W
k
:Bj;k

�
kD

=Ez Corollary 8.1

E
�
f
V
j

W
k:Bj;kg

�
kD

=Ez Lemma 8.7

E
�
f
V
j

W
k:Bj;k + ttg

�
kD

=Ez =
T z

(Lemma 2.1)

E
�
f
V
j

W
k:Bj;k + � g� ; f

V
j

W
k:Bj;k + ttg

�
kD

=Ez Corollary 8.1

E[while
W
j

V
kBj;k do skip] kD:

Using Rule 8.7, TIE2
at;at can be re�ned into TIE3

at;at. The following rule
allows the re�nement of the synchronization statement

while
W
j

V
kBj;k do skip

in TIE3
at;at into a parallel composition of synchronization statements

kjwhile
V
kBj;k do skip;

in TIEpar;at, if disjunctions are always evaluated in parallel.

Re�nement Rule 8.8 (Re�ning synchronization statements)
Let C be of the form

C � E[while
W
j

V
kBj;k do skip] kD
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where E is sequential. If all disjunctions in C are evaluated in parallel, that
is, B1 _B2 =T z B1 _p B2 for all B1 and B2, and D preserves

W
k:Bj;k for all

1 � j � m, that is,�
tt;Preds(Var)

�
D

�
tt; f

W
k:Bj;k j 1 � j � mg

�
;

and C has eventual entry property, then

Cpar � E[kjwhile
V
kBj;k do skip] kD

Cup � E[for j = 1 to m st j 6= k do while
V
kBj;k do skip] kD

Cdown � E[for j = m downto 1 st j 6= k do while
V
kBj;k do skip] kD

also have the eventual entry property and

C =Ez Cpar =T z Cup =Ez Cdown:

Proof: We prove the rule for Cpar only. The cases for Cup and Cdown are
similar. We have

E[while
W
j

V
kBj;k do skip] kD

=Ez Corollary 8.1

E
�
f
W
j

V
kBj;k + ttg� ; f

W
j

V
kBj;k + � g

�
kD

=Ez (�)

E
�
kj f

V
kBj;k + ttg� ; f

V
kBj;k + � g

�
kD

=Ez Corollary 8.1

E[kjwhile
V
kBj;k do skip] kD:

The equivalence (�) follows from

f
W
jPj + ttg

�
; f
W
jPj + � g =T z

�
kj fPj + ttg

�
; fPj + � g

�
for all predicates Pj, 1 � j � m, which can be shown by induction over m.

Note that the introduction of �ne-grained boolean expressions does not inval-
idate the properties of trace equivalence in Lemma 2.1 and of trace inclusion in
Lemma 2.2. Moreover, the su�cient condition for eventual entry in Lemma 8.2
and the Re�nement Rules 8.4 and 8.5 also continue to hold.

8.9 Discussion

This section described the completely rigorous veri�cation of the n-process tie-
breaker algorithm. Mutual exclusion, deadlock freedom and eventual entry were
shown. The treatment of �ner levels of granularity was sketched. Moreover,
several alternative implementations of the tie-breaker algorithm were derived.
Some of these implementations exhibit more parallelism than the standard text-
book implementation. As in the previous examples, the re�nement framework
has allowed us to expose the \degrees of implementation-freedom" o�ered by
the algorithm. In fact, this work was motivated partly by the question whether
TIEdown and TIEpar would indeed be correct solutions.
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Remarks about the derivation

A few remarks about the derivations in this section are in order.

� The n-process bakery algorithm and the n-process ticket algorithm as
presented in Examples 8.2 and 8.3 could have been veri�ed in a similar
fashion. However, compared to the tie-breaker algorithm these two algo-
rithms do not give rise to the same number of di�erent re�nements. The
resulting re�nement trees are neither as deep nor as bushy.

� Context-sensitive approximation and thus labels were essential for our
treatment of eventual entry | a liveness property that is notoriously hard
to establish. More precisely, both the characterization of eventual entry
in Lemma 8.1 and the su�cient condition expressed in Lemma 8.2 hinge
on context-sensitive approximation. Moreover, the Rules 8.4 and 8.5 that
allow the replacement of a multiple assignment x1; x2:=v1; v2 by two se-
quential assignments x1:=v1 ;x2:=v2 crucially depend on context-sensitive
approximation for their correctness proofs.

� Some of the re�nements of this section are not commutative. The re�ne-
ment of the synchronization statements from

await 8j 6= i:in[j] < l _ last[l] 6= i

into
knj=1;j 6=iwhile in[j] � l ^ last[l] = i do skip

for instance, crucially depended upon the preservation of the predicate
in[j] < l _ last[l] 6= i. The re�nement of in[i]; last[l]:=l; i into in[i]:=l ;

last[l]:=i in turn depended on the introduction of the loop counter l in
the �rst re�nement TIE2

at;at. However, this re�nement also destroys the
preservation of the above property. Thus, this step had to be postponed.

Comparison to examples in Chapters 6 and 7

Undoubtedly, the n-process mutual exclusion problem is substantially more dif-
�cult than the problems discussed earlier. Both the correctness properties and
the interactions between the parallel processes are a lot more intricate. The ad-
ditional level of complexity requires a treatment that di�ers from the previous
treatments, mainly in two aspects.

� Correct behaviour of a mutual exclusion algorithm cannot be captured as
easily and concisely as in the previous examples. Rather than a one-line
or two-line program, a more complex program has to be chosen as the
initial speci�cation. While the correctness of the initial speci�cation is
far from obvious, it still is abstract enough to allow for a straightforward
veri�cation. The tie-breaker example demonstrates that our approach
also supports the development of programs whose correct behaviour is
more involved and impossible to capture in terms of standard pre- and
postconditions, for instance.
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� In the previous examples, the rules o�ered in the calculus were su�cient
to cover the entire derivation. In this example, however, new, more spe-
cialized rules had to be developed. On the one hand, this illustrates that
no set of rules will ever be general enough to cover all possible derivation
and veri�cation needs. On the other hand, it also provides some hope that
missing rules can always be developed without too much e�ort.



200 CHAPTER 8. N -PROCESS MUTUAL EXCLUSION ALGORITHMS



Chapter 9

Related Work

Our work presents a methodology for the formal development of concurrent
programs. The results rest on the marriage of two lines of existing work:

1. the formal, systematic development and veri�cation of programs, on the
one hand, and

2. the work on semantic models for concurrent computation on the other.

The following two sections present related work in each of the two �elds in
more detail.

9.1 Formal program development and veri�ca-
tion

9.1.1 Re�nement calculi for sequential programs

This section reviews some formalizations of stepwise re�nement for sequential
programming. While some concepts used in these formalizations reappear in
our work, the main di�erence is that they do not address concurrency.

Hoare-triples and weakest preconditions induce a very natural notion of
re�nement between two sequential programs. C is re�ned by C0 i� every
Hoare-triple satis�ed by C also is satis�ed by C0, that is, fPg C fQg implies
fPg C0 fQg for all P and Q. Since fPg C fQg holds i� P implies the weakest
precondition of C with respect to Q, that is, P ) wp(C;Q), re�nement between
C and C0 can also be expressed as wp(C;Q) implies wp(C0; Q) for all Q. Infor-
mally, re�nement expresses that every behaviour of C0 can also be exhibited by
C. Typically, C0 exhibits less non-determinism than C. The calculi by Morris
and Morgan to be presented below both use this notion of re�nement.

Morris' re�nement calculus. Morris was one of the �rst people to use weak-
est preconditions for a formalization of the program development process sug-
gested by Dijkstra in [Dij76]. Inspired by the idea to embed programs and

201
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speci�cations within the same framework, e.g., [Abr85, Heh84, Hoa85], he in-
troduces prescriptions (P;Q) to specify an atomic transition that ends in a state
satisfying predicate Q provided the initial state satis�es predicate P . For in-
stance, (x = 0; x = 1) speci�es a statement that sets x to 1 if started in an
initial state with x = 0. It is thus re�ned by x:=1, for example. Since other
variables may be set arbitrarily, x; y:=1; 5 also re�nes the same prescription. If
variables other than x are not to be changed, this needs to be expressed ex-
plicitly in the prescription. Q is a simple predicate and thus speci�es only the
�nal state and cannot express a relation between initial and �nal state. This
necessitates the need for auxiliary variables to express that a variable does not
change or to characterize, for instance, the behaviour of x:=x + 1. Assuming
that Q is a property over an in�nite domain like the natural numbers, this
means the loss of bounded nondeterminism [Mor87]. This has deep semantic
consequences [Dij76, Rey98]. For a speci�cation language, however, this loss is
tolerable. Morris gives a weakest precondition semantics to prescriptions and
de�nes re�nement in terms of weakest preconditions just as outlined above.

Morgan's re�nement calculus. Independently, Morgan proposed speci�ca-
tion statements V :[P;Q] [Mor89]. Compared to Morris' prescriptions, speci�ca-
tion statements allow for more concise speci�cations, because all variables not
in V can implicitly be assumed to remain unchanged. For instance, fxg:[x =
0; x = 1] speci�es a statement that sets x to 1 if the initial state satis�es x = 0
and leaves all other variables unchanged. Moreover, using primed and unprimed
variables, Q is capable of expressing a relation between initial and �nal state
which allows x:=x + 1 to be characterized by fxg:[tt; x0 = x + 1] and thus ob-
viates the need for auxiliary variables. The resulting re�nement calculus rests
on the same notion of re�nement and features similar rules [Mor94, MV94].
Morgan's speci�cation statement resurfaces in our work. Note, however, that in
Morgan's setting the behaviour of V :[P;Q] in an initial state that does not sat-
isfy P is completely arbitrary. Even non-termination is possible. In our setting,
however, in initial states that do not satisfy P the statement V :[P;Q] exhibits
no behaviour at all. More concretely, to use Morgan's interpretation, we would
have to change the meaning of V :[P;Q] from our

f(s; s0) j (s; s0) j= cfV :[P;Q]g

to
f(s; s0) j s j= P ) (s; s0) j= cfV :[P;Q]g:

The reason for this change basically is that Morgan's implicative interpretation
is inappropriate for our purposes. To see why, consider, for instance, our trace-
theoretic de�nition of the conditional

if B then C1 else C2 �
�
fBg ;C1

�
_
�
f:Bg ; C2

�
where fBg � ;:[B;B]. Under Morgan's interpretation of V :[P;Q], the stutter-
ing step fBg in the then branch would exhibit arbitrary behaviour if B was
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not satis�ed. Consequently, the program on the right would not capture the
standard behaviour of the conditional anymore.

Note that the notion of re�nement based on weakest preconditions is not
context-sensitive in the sense of Section 4.2. For instance, in context

x:=0 ; []

the program x:=x+1 cannot be replaced by x:=1, because wp(x:=x+1; x = 2)
does not imply wp(x:=1; x = 2). Instead, the parts of the context must be
made part of the program. In this case, the weakest preconditions of the entire
program must be computed to determine that

wp(x:=0 ; x:=x+ 1; Q)

implies
wp(x:=0 ; x:=1; Q)

for all Q (and vice versa).

Hehner's re�nement calculus. Hehner's re�nement calculus di�ers from
the two calculi above in that atomic transitions are speci�ed not by using pre-
and postconditions but rather by predicates over primed and unprimed vari-
ables [Heh93]. For instance, x:=1 and x:=x+ 1 are expressed as x0 = 1 ^ 8y 6=
x:y0 = y and x0 = x+ 1 ^ 8y 6= x:y0 = y respectively. Re�nement is expressed
by implication. x:=1 re�nes x0 � 0 because x0 = 1 ^ 8y 6= x:y0 = y implies
x0 � 0. Besides sequential programs Hehner also considers message-passing
concurrency. The set of variables used by each process must be disjoint. Com-
munication is achieved through the introduction of message-passing constructs.
Liveness properties and deadlock are dealt with through a distinguished time
variable. No attempt at dealing with fairness or achieving compositional veri�-
cation is made.

The Z notation. Another successful and widely accepted formal program
speci�cation and development methodology is Z [Spi89, PST96]. Like Hehner's
work, Z also uses implication to de�ne re�nement but also uses explicit pre-
conditions. The precise relationship between the notion of re�nement used by
Hehner and Z on the one hand, and the weakest precondition-based notion of
re�nement used by Morris and Morgan on the other hand is unclear.

Algebraic approaches. An alternative idea is to use algebraic speci�ca-
tion techniques to express the desired properties of the system to be devel-
oped [BKL+91]. The resulting approaches emphasize a more property-oriented
and axiomatic style of speci�cation and are thus based on a theory that is
rather di�erent from ours. For instance, in the algebraic setting re�nements
arise as category-theoretic morphisms between speci�cations. Development
frameworks for sequential programs that employ this algebraic approach in-
clude the CIP project (\Computer-aided, Intuition-guided Programming") in
Munich [BBB+85, B+87, Par90], the PSI, CHI, KIDS, and Specware projects
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at Kestrel Institute [KB81, Kot83, Smi85, Smi91, Smi93, SM96, BS96, BGL+98],
and Extended ML [KST97].

9.1.2 Proof systems for parallel programs

Research in programmingmethodology clearly shows that the step from sequen-
tial programming to concurrent programming is not a trivial one. The presence
of concurrency complicates any theory of programming substantially. The vast
amount of research in this area bears witness to this.

Owicki and Gries' work. A lot of attempts have been made to �nd an ad-
equate extension of Hoare's logic to the concurrent setting. Indeed, the �rst
approaches towards a formal treatment of concurrency by Owicki and Gries in
1976 and Lamport in 1977 were based on this idea [OG76a, OG76b, Lam77].
In [OG76a, OG76b], Owicki and Gries introduce the notion of interference free-
dom to obtain a syntax-directed proof system for a shared-variable concurrent
language. Hoare-triples are generalized to proof outlines. Whereas a Hoare-
triple only captures properties of the initial and �nal states, a proof outline
additionally keeps track of the predicates that hold during the execution of the
program. Formally, a proof outline is an annotated program in which any two
statements are separated by an predicate describing the properties that hold at
that point. To prove a proof outline corresponding to

fP1 ^ P2g C1 kC2 fQ1 ^Q2g

Owicki and Gries suggest to �rst prove the outlines corresponding to

fP1g C1 fQ1g and fP2g C2 fQ2g

and then to check that the two proofs are interference-free, that is, all predicates
used in the �rst outline must be shown to be preserved by all assignments and
atomic regions in C2 and vice versa. Schneider later extended this approach to
proof outline logic [SA86, Sch97]. Independently, Lamport developed an idea
that is similar to Owicki and Gries' initial approach [Lam77].

Interference-freedom is a potentially very complex side-condition. Moreover,
it renders the logic non-compositional and thus only suitable for a-posteriori ver-
i�cation of existing programs and unsuitable for program development through
stepwise re�nement. The correctness of the composition can only be deter-
mined after C1 and C2 have been completely developed. Consequently, the
fact that the parallel composition C1 k C2 does not satisfy the Hoare-triple
fP1 ^ P2g C1 k C2 fQ1 ^ Q2g will only be discovered at the very end of the
design of C1 and C2. In a compositional proof system the proof rule for a
composite program depends only on the speci�cations of the immediate compo-
nents, without knowledge of the interior structure of these components. Thus,
useless development e�orts like the above are avoided from the start leading to
a much more e�cient development process. To summarize, Owicki and Gries'
work di�ers from ours in that it
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� is geared towards program veri�cation rather than program development.

� has no support for liveness properties except termination.

� does not handle fairness.

� is based on a coarse-grained trace semantics, that is, while the notion
of trace is very similar to transition traces, closure conditions are never
included or considered assignments are assumed to be atomic.

The next major contribution was the insight that in order to overcome the
problems with Owicki and Gries' logic and to achieve true compositionality and
thus modular proofs, the interference between concurrent programs had to be
taken into account at the speci�cation level. This insight lead to assumption-
commitment reasoning which was �rst proposed by Francez and Pnueli [FP78]
and Jones [Jon81]. Given a parallel composition C1 kC2, program C1 is shown
to behave correctly assuming that C2 behaves in a certain way and similarly
for C2. Sometimes the correctness of C1 and the correctness of C2 are mutually
dependent: the guarantees ofC1 inuence the assumptions of C2 which inuence
the guarantees of C2 which inuence the assumptions of C1 which inuence the
guarantees of C1 and so on. Care must be taken to ensure that the reasoning
does not become circular and thus unsound. Consider, for instance, the following
two programs.

C1 � y:=0;

await y = 1;

x:=1

and
C2 � x:=0;

await x = 1;

y:=1:

Let P (x; y) stand for

P (x; y) � If the environment eventually sets x to 1,
then the program will eventually set y to 1.

Although C1 and C2 satisfy P (y; x) and P (x; y) respectively, is not the case
that C1 kC2 will eventually set x and y to 1. x being set to 1 by C1 depends on
y being set to 1 by C2 which depends on x being set to 1 by C1 which depends
on ... The reasoning is circular and unsound. While all proof systems using
assumption-commitment reasoning in the literature are based on the idea of
explicitly specifying the assumptions and commitments of a program, there is a
lot of variation in the way they break this circularity. We will now review some
approaches that are most relevant to our work.

Francez and Pnueli's proof system. In [FP78], Francez and Pnueli consider
shared-variable parallel programs in which each variable is either a local variable,
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an input variable or an output variable. The behaviour of a program is modeled
by sequences of states

s0 ! s1 ! s2 : : :

where some of the steps may have been performed by the environment. Despite
the absence of explicit labeling a compositional treatment of parallel composition
is obtained, because program and environment transitions are identi�able by
the variables that they change. Speci�cations are of the form (';  ) where '
and  are formulas involving an explicit time variable. A behaviour meets the
speci�cation (';  ) i� it satis�es  whenever it satis�es '. The rule for parallel
composition uses explicit induction over some well-founded set. The induction
not only avoids circularity, but also allows arbitrary formulas (including liveness
properties) to be used as assumptions and commitments. Pnueli later extended
the approach to use linear temporal logic [Pnu85]. The work di�ers from our
re�nement calculus in that it

� has no explicit re�nement relation.

� does not handle fairness.

� is based on a coarse-grained trace semantics. All three approaches use
traces as the underlying semantic model. While the notion of trace is
very similar to transition traces, closure conditions are never included or
considered, which results in a rather coarse-grained semantics. Moreover,
assignments are assumed to be atomic.

Jones' rely-guarantee reasoning. The work in [Jon81, Jon83a, Jon83b] also
employs shared-variables as the means of communication. So called potential
computations

s0
l0�! s1

l1�! s2
l2�! s3 : : : si

li�! si+1
li+1
�! si+2

li+2
�! si+3 : : :

describe the program behaviour where each li is a label ranging over fp; eg.
Transitions labeled with p indicate program transitions whereas the label e
indicates environment transitions. Quadruples of predicates (P,R,G,Q) specify
the behaviour of a parallel program. The pre-condition P together with the rely-
condition R constitute assumptions the developer of a program can make about
the environment. In return the implementation must satisfy the guarantee-
condition G, and terminate in a state satisfying the post-condition Q. Thus,

C j= (P;R;G;Q)

means that if C is executed in initial states satisfying P and in environments
that change the state only according to R, then it will terminate in a state
satisfying Q and will only change the state according to G. A compositional,
syntax-directed proof system for total correctness of terminating, unfair, shared-
variable concurrent programs without synchronization based on rely-guarantee



9.1. FORMAL PROGRAM DEVELOPMENT AND VERIFICATION 207

reasoning (we have been using the term assumption-commitment reasoning) is
presented. Circularity is broken by admitting only safety properties as assump-
tions. This restriction allows the soundness proof of the parallel composition rule
to proceed by induction over the length of the behaviour. Many researchers have
extended Jones' approach. Complete compositional proof systems are presented
in [St�91, Xu92]. In [St�91], St�len also extended the work to incorporate syn-
chronization statements. Compared to our re�nement calculus, rely-guarantee
reasoning in the style of Jones di�ers as follows.

� It has no explicit re�nement relation.

� It has no support for liveness properties except termination.

� It does not handle fairness.

� The context can only be described in terms of a pre- and a rely-condition.
Our context-sensitive approximation, however, allows the use of arbitrary
programming contexts, as used, for instance, in the formalization of even-
tual entry in Lemma 8.1 on page 165.

� When capturing the environment assumptions for a program, rely-guarantee
reasoning emphasizes conciseness whereas our work emphasizes minimal-
ity. In other words, while the description of the environment assumptions
in rely-guarantee reasoning typically is very concise (e.g., x =

(
x, that is, x

does not change), it often also is stronger than necessary. In contrast, the
sets of predicates used in our work typically better support the expression
of the weakest necessary assumptions (e.g., x = 1 and x = 2 are preserved)
at the expense of being more unwieldy.

� It is based on a coarse-grained trace semantics. All three approaches use
traces as the underlying semantic model. While the notion of trace is
very similar to transition traces, closure conditions are never included or
considered, which results in a rather coarse-grained semantics. Moreover,
assignments are assumed to be atomic.

� It is geared towards terminating programs. Non-terminating programs
cannot be handled.

Stirling's generalization of Owicki and Gries' work. Stirling presents
a generalization of Owicki and Gries' proof system Again, compositionality is
achieved using assumption-commitment reasoning [Sti88]. Speci�cations of the
form

[P;�] C [Q;�]

are used to express that if executed in an initial state satisfying P and in a
parallel environment preserving all predicates in �, C promises to terminate
in a state satisfying Q and to preserve all the predicates in �. Note that our
interpretation in Chapter 3 di�ers from Stirling's only in that the parallel envi-
ronment of C cannot change the �nal state established by C. More precisely, in
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a judgement [P;�] C [Q;�] that was derived using our rules, the assumptions
� always contain enough predicates to imply Q, that is, just like the precondi-
tion, the postcondition needs to be protected from the environment interference
(Lemma 5.6). In Stirling's setting, however, � typically does not imply Q, be-
cause C is not subject to interference after termination. Like in Jones' work,
proofs are modular due to the use of assumption-commitment reasoning and thus
program development is supported. Moreover, circular reasoning is avoided by
using safety properties as assumptions. Compared to our work, Stirling's work
di�ers as follows.

� It has no explicit re�nement relation.

� It has no support for liveness properties except termination.

� It does not handle fairness.

� Like Jones' rely-guarantee reasoning, the context can only be described in
terms of a pre- and a rely-condition while our context-sensitive approxi-
mation allows more general descriptions.

� It is based on a coarse-grained trace semantics. All three approaches use
traces as the underlying semantic model. While the notion of trace is
very similar to transition traces, closure conditions are never included or
considered, which results in a rather coarse-grained semantics. Moreover,
Stirling assumes assignments to be atomic.

� It is geared towards terminating programs. Non-terminating programs
cannot be handled.

Other. A large number other proof systems for concurrent languages exist. We
have concentrated here on the ones that seem closed to our work. Overviews
of compositional proof systems for concurrent languages can be found in [dR85,
HdR86, dRdBH+00].

9.1.3 Transformation frameworks for parallel programs

Another line of research has explored the use of semantics preserving trans-
formations for the design and veri�cation of parallel programs. One major
di�erence to re�nement calculi and thus our work is that these transformations
are based on semantic equivalences rather than (trace-theoretic) approximations
and inclusions.

Jones' object-based design notation �o��. A lot of e�ort has been invested
into getting a formal handle on the notion of interference. Jones seminal work
on rely-guarantee reasoning has already been mentioned. In more recent work,
Jones argues that concepts from object-oriented languages present a promising
way of taming interference. In [Jon96], he presents an object-based design no-
tation called �o�� (read \pobble") that features the data encapsulation typical
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for object-oriented language but no inheritance. In �o��, objects that belong
to a class marked as unique are never shared and thus cannot interfere with
each other. Jones uses this fact to formulate two equivalences between �o��
programs which allow a sequential program to be replaced by an equivalent par-
allel counterpart. For situations in which objects are subject to interference, he
shows that standard rely-guarantee reasoning meshes well with the object-based
program notation. Despite some promising results, the work seems still in its
initial stages. An appropriate semantics is needed to prove the equivalences in
general, to facilitate the discovery of new equivalences, and to develop a proof
theory. The de�nition of such a semantics has proved a challenge. Two lines of
research exist. While it is straightforward to de�ne a mapping from �o�� to the
�-calculus, this approach has so far only been able to produce proofs of speci�c
examples of the equivalences. The de�nition of an operational semantics in the
style of Plotkin [Plo91] has been more successful [HJ]. Compared to our work,
Jones is more concerned with aiding veri�cation by removing parallelism rather
than formally constructing programs from speci�cations.

Apt and Olderog's combination of proof outlines and transformations.
Apt and Olderog complement Owicki and Gries' proof outline logic with pro-
gram transformations [AO91]. This allows them, for example, to deal with fair-
ness assumptions by using program transformations that embed a fair scheduler
into a given nondeterministic or concurrent program [AO83, OA88]. Rather
than verifying the original program under the fairness assumption, the trans-
formed program is veri�ed without fairness assumption. The embedded fair
scheduler ensures the soundness of this approach. Note, however, that the spe-
ci�c implementation of the scheduler now has to be included in the reasoning.
An additional use of program transformations is for the construction of con-
current programs from sequential ones or of computationally complex programs
from simpler ones. In contrast to our work, this approach has no re�nement
relation. Since it is based on proof outline logic, it is syntax-directed, but not
compositional. Just like in our setting, program transformations can be used
to introduce parallelism. The treatment of fairness, however, is fundamentally
di�erent.

This thesis and the related work presented so far was only concerned with
managing the complexity of concurrency from a program development point of
view. As mentioned in the introduction, this is not the only reason why parallel
computers have not had more of an impact on mainstream computing. The
other impediment is the diversity of parallel machine models which results in a
lack of portability and predictability of performance. There is a huge number
of sometimes very di�erent parallel architectures. Di�erent classes of parallel
architectures require radically di�erent paradigms for describing and executing
computations e�ciently. A number of di�erent attempts to solve this problem
have been made. We will now review two attempts that employ transformational
programming.
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Categorical datatypes. The Bird-Meertens formalism [Mee86, Bir87, Bir89]
consists of a collection of theories built on a base algebra. Each theory cap-
tures the behaviour of a particular class of data structures. Theories have been
developed for lists, trees and arrays. Skillicorn shows that the Bird-Meertens
formalism is a universal, machine-independent model for four di�erent archi-
tecture classes [Ski90]. He moreover argues that this model also addresses
the software engineering di�culties of parallel programming through its sup-
port for transformational programming. The rich set of algebraic identities not
only allows the stepwise transformation of an ine�cient, easy-to-understand
program into an e�cient implementation, but also might be the key to more
architecture-dependent optimization and adaptation. Categorical datatypes are
a generalization of this work [Ski94]. They capture a style of second-order
functional programming with strong mathematical (categorical) properties that
support transformation and reasoning about parallel programs. They subsume
languages like Gamma [BM91], Parallel SETL [HK93], and NESL [Ble92]. This
work di�ers from ours in that it is not concerned with formal program develop-
ment from speci�cations. Moreover, it includes complexity considerations which
are ignored in our work. Finally, both the Bird-Meertens formalism and cate-
gorical datatypes use implicit parallelism, that is, the compiler introduces the
parallelism without user interaction. Explicit, user-level parallelism as used in
our work is not considered.

Skeletons. The next approach also has its roots in functional programming.
Higher-order functions with a lot of implicit parallelism, so called skeletons,
are used as the basic building blocks for parallel implementations. Portabil-
ity is achieved through program transformations that convert between skele-
tons [DFH+93, Bra94]. A skeleton exposes only its declarative, functional mean-
ing to the programmer, while a particular implementation of that skeleton for
a particular architecture is responsible for the generation of e�cient, highly
parallel code. Most skeletons are de�ned in terms of the higher-order func-
tions map, �lter and reduce. Like categorical datatypes, skeletons are based
on implicit parallelism. It would be interesting to see if transformational ap-
proaches to the e�cient compilation of programs with explicit parallelism exist.
A close look at the work of SUIF compiler project would be interesting in this
respect [HAA+96].

Other. A number of other people have used program transformation for the
construction of concurrent programs from sequential ones, e.g., [AM71, Lip75,
FS81, Len82, Apt86]. We will not review these ideas here, because either they
have been used in work that we have already discussed, e.g., [AO91], or they
are not directly related to our work.

9.1.4 Re�nement calculi for parallel programs

The complexity inherent to concurrent programming makes formal approaches
to their development particularly appealing. Consequently, there has been quite
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a lot of work in this area. We will only review the approaches that seem the
most relevant, but we will also choose a more detailed presentation style, since
our work also �ts into this section.

Back's Action Systems. Back's Action Systems provide an alternative and
considerably more abstract way to model parallel computation [Bac89]. The
behaviour of a sequential, concurrent or distributed system is described in terms
of the actions that the processes in the system carry out in cooperating with
each other. Formally, an Action System is a set of actions operating on local
and global variables and has the form

A � [ var x1 = v1 : : : ; xn = vn
proc p1 = P1; : : : ; pn = Pn
do A1k : : :kAn od

]

where each action Ai is a guarded command g �! S with guard g and sequence
of assignments S. Actions are atomic and may be executed in parallel, as long
as they do not have any variables in common. Atomicity of actions guarantees
that a parallel execution of an Action System yields the same results as the
sequential execution. Atomicity simpli�es the programming task and the proof
theory. Parallel Action Systems can be described in terms of sequential guarded
command language. Back presents a re�nement calculus for Action Systems
where re�nement expresses the preservation of total correctness. For reactive
systems, the stronger, trace-based notion of strong simulation re�nement is sug-
gested. The re�nement rules are not syntax-directed. Consequently, re�nement
typically cannot be derived truly compositionally. To re�ne a reactive system,
the environment is partitioned into actions that can potentially inuence the
behaviour of the program and those that cannot. The �rst group constitutes
the interface between the program and the environment. The program and its
interface are re�ned simultaneously. Consequently, this decomposition is only
of value when the interface is small compared to the entire environment. More-
over, Action Systems do not have any kind of fairness conditions build into
them. Fairness constraints have to be encoded by means of an explicit sched-
uler as suggested by Apt and Olderog [AO91]. To summarize, the re�nement
calculus for Action Systems di�ers from ours as follows.

� Action Systems form a di�erent, more abstract computational model.

� The rules of the calculus are not syntax-directed.

� Speci�cations and programs are syntactically distinguished.

� Fairness assumptions are not directly modeled in the semantics, but must
be encoded into a scheduler.

Qiwen Xu and He Jifeng's work. The work of Xu and Jifeng further ex-
tended rely-guarantee reasoning [XJ91]. Like in ProCoS and in our work, traces
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are used as a unifying semantic model for both programs and speci�cations to
obtain a uni�ed framework. A re�nement relation between speci�cations is pre-
sented. Finally, an implementation relation bridges the gap between programs
and speci�cations and can be derived with a compositional proof system. To
summarize Xu and Jifeng's work di�ers from ours as follows:

� In [XJ91], both programs and speci�cations are mapped to the same math-
ematical structure (traces), and are thus treated the same semantically.
Syntactically, however, they are still distinct. In our work, there is no se-
mantic or syntactic di�erence between the two. Programs are executable
speci�cations.

� The framework is geared towards total correctness and terminating pro-
grams. Fairness thus is not handled.

� Apart from termination no other liveness properties can be handled.

� Message-passing concurrency is not addressed.

Previous work by the author. The de�nition of re�nement employed in
this thesis rests on a context-sensitive notion of approximation which in turn
rests on labeled transition traces. Both notions were introduced in [Din96].
In [Din97], context-sensitive approximation is employed directly as re�nement
relation. Rules are given that allow the replacement of a component by some
other component under certain minimal context assumptions, that is, in a con-
text that has a certain maximal discriminating power. A preorder E1 v E2 on
contexts similar to the one presented in Section 4.3 captures the capabilities of
a context for interference, that is, their discriminating power. The re�nement
process is similar to the one used in this thesis. Re�nement of a component in
some environment E1 involves �nding the appropriate rule, and showing that
E1 respects the assumptions E2 expressed in the rule. A major di�erence is,
however, that the re�nement relation itself does not contain guarantees. The
context preorder is used to show that E1 respects the assumptions expressed
in E2. In other words, the interplay between context-sensitive approximation
between programs and approximation between contexts allows compositional
proofs.

The simple syntactic structure of UNITY also allowed the formulation of
context-sensitive approximation as a game-playing activity. Stirling demon-
strates how the veri�cation of labeled transition systems with respect to mu-
calculus formulas can be recast using game theory [Sti96]. In general, proving
that a program C meets its speci�cation ' can be given the following natu-
ral game-theoretic interpretation. An adversary plays legal environment moves
to cause C to deviate from its speci�cation. If she succeeds, then C violates
its speci�cation. If she never succeeds, then C satis�es its speci�cation. In
sequential programming, for example, ' could be a Hoare-triple fPg C fQg.
The moves by the adversary would then be con�ned to the very beginning of
the play where the adversary would try to �nd an initial state that satis�es P
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but still causes C to terminate in a state that does not satisfy Q. In the con-
current world, ' could be some kind of assumption-commitment speci�cation
that places assumptions on the behaviour of the environment of C and in turn
makes certain guarantees about the behaviour of C whenever C is executing
in an environment that meets these assumptions. The adversary now has sub-
stantially more means at her disposal to show that C violates the speci�cation.
She can not only interfere before but also during the execution of C and change
the state arbitrarily as long as she observes the assumptions. In [Din97] we
show how games can also provide an appealing metaphor for context-sensitive
approximation C1 �E C2 in UNITY and thus for the compositional re�nement
or veri�cation of concurrent systems. Intuitively, the game-theoretic interpreta-
tion of C1 �E C2 is as follows. Suppose that the adversary makes moves in both
the environment E and program C2 while the player controls C1. In [Din97],
we prove that C1 �E C2 i� there is there is no sequence of moves, alternating
between player and adversary, which ends in a state in which the adversary can
�nd a transition of C2 for which the player cannot �nd a matching transition
of C1. In the light of this game-theoretic characterization, the context preorder
E1 v E2 can be interpreted as comparing the \repertoire" of moves that E1

and E2 o�er. For example, a game involving E2 � [] kVar :[tt; tt]� is easier for
the adversary to win than a game involving E1 � [] k inv�x, because E2 o�ers
a larger repertoire of moves for the adversary.

Note that the game-theoretic interpretation of C1 �E C2 is reminiscent of
the notion of simulation on transition systems [Mil89]. More precisely, given the
labeled transition systems for E[hC1i] and E[hC2i] we could de�ne a simulation
relation that keeps program and environment transitions distinct through the
labeling. Besides the fact that context-sensitive approximation is a linear-time
notion, whereas simulation is a branching-time notion, context-sensitive ap-
proximation di�ers from simulation in two additional ways. First, the matching
between two states does not have to be exact but only relative to the non-
local variables. Second, just like the trace sets in our semantics, the transition
systems would have to be closed under stuttering and mumbling.

While the work presented in this document grew out of this early work, there
are a number of substantial di�erences.

� As sketched above, the notion of assumption-commitment reasoning is
quite di�erent. In particular, we do not use a context-preorder to express
that a context satis�es certain assumptions.

� The re�nement rules in [Din97] are not syntax-directed and rather ad hoc.

� The work concentrates on UNITY-style shared-variable concurrency and
message-passing concurrency is not addressed.

The work reported in [Din99b] is a direct extension of the ideas described
above and a direct precursor of the work presented here. Rather than UNITY, a
simple shared-variablewhile language with synchronization is targeted. Message-
passing is missing. Stirling's assumption-commitment formulas and context-
sensitive approximation are combined to form the re�nement relation. Rules
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similar to the ones in this document are given and the bank account problem of
Section 6.1 is discussed.

A re�nement calculus for BSP.Bulk synchronous parallelism(BSP) [SHM96,
Val90] is a parallel programming model that abstracts from low-level program
structures in favour of super steps. A superstep consists of a set of independent
local computations, followed by a global communication phase and a barrier syn-
chronization. An advantage of BSP programs is that their cost can be accurately
be determined for a few simple architectural parameters, namely the permeabil-
ity of the communication network and the duration of a synchronization step.
Moreover, barrier synchronizations in general turned out to be not as expensive
as expected. As a result, the structure inherent to BSP brings considerable
bene�ts from an application-building perspective without major performance
penalties. Indeed, the advocates of BSP regard it as a promising candidate for
a viable, architecture-independent model for parallel programming.

Skillicorn addresses the issue of parallel software construction and extends
Morgan's re�nement calculus to allow for the formal design of programs in the
BSP style [Ski98]. He models a distributed-memory architecture by splitting
the frame V in Morgan's speci�cation statement into two parts (rf ;wf ):[P;Q]
where rf is the read frame and wf is the write frame. To express information
about which processor holds which value location predicates pi(x) are intro-
duced. pi(x) holds if the value of variable x resides in processor i. A �nal step
is the addition of three constructs distribute, collect and redistribute for the
movement of values using the distribution implied by the location predicates.
The resulting re�nement calculus is shown to be a conservative extension of
Morgan's calculus for sequential programs. A major di�erence to our approach
is that variables cannot be shared across processors. In the BSP model, the
computation on local data is followed by a barrier synchronization step which
realizes the data exchange needed for the next local computation. It would be
interesting to see how much our approach could support the BSP model.

UNITY. Just like Action Systems, the primary concern in UNITY is the logic
design of concurrent programs [CM88]. Compared to Action Systems, how-
ever, UNITY takes an even more abstract view on concurrent programming. It
separates what problem is to be solved from when, where, and how this can be
achieved. The what is speci�ed in a program, whereas the when, where, and how
are speci�ed in a mapping which describes how the constructs and variables are
to be mapped to a particular architecture. This separation, which is much more
rigorous than for Action Systems for example, allows for a simple programming
notation that is appropriate for a wide variety of architectures. Together with
a strong emphasis on non-operational reasoning, it is this simplicity that makes
the UNITY approach very appealing. On the other hand, however, due to the
high level of abstraction, the UNITY approach means a quite radical departure
from traditional methods for program development and veri�cation. The im-
plementation of a UNITY program on some parallel machine, for instance, can
be a non-trivial task. Chandy and Misra describe the situation as follows:
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\Of course, this simplicity is achieved at the expense of making
mappings immensely more important and more complex than they
are in traditional programs" [CM88, page 9].

Moreover, due to the absence of control ow in UNITY, existing theories for
program development and veri�cation are not applicable.

UNITY programs are based on a simple, computational model. A UNITY
program is of the form

Program name
declare declarations
always invariants
initially precondition
assign guarded-commands

end

where the guarded-commands are executed in an in�nite loop from an initial
state satisfying the precondition. On any iteration of the loop, a statement
whose guard is true is executed. If the guards of several statements are true, a
choice is made nondeterministically. The choice is subject to a fairness condition
saying that each statement must be chosen in�nitely often. All states encoun-
tered during the execution will satisfy the invariants. An execution that has
reached a �xed point, that is, that has ceased to change the state, is regarded
as terminated. Note that sequential composition is not o�ered as a language
construct, but has to be encoded by the programmer.

Development and veri�cation of UNITY programs is supported by speci�c
UNITY logic that contains primitives for the expression of safety and liveness
properties. Speci�cations are collections of properties. Stepwise re�nement is
achieved by strengthening speci�cations. Methods to compose larger programs
from smaller ones are suggested. The formal design of UNITY programs using
stepwise re�nement thus is reminiscent of the approaches based on algebraic
speci�cations like Kestrel's KIDS. Most nonalgebraic development techniques
propose a program skeleton and then esh out an underspeci�ed part in each
re�nement step. This has the advantage that the overall structure of the pro-
gram is apparent at the early stages of the design. In UNITY, however, the
speci�cation itself, i.e., the logical description of the desired properties of the
program, is re�ned. At each re�nement step, some program properties proposed
in previous steps are replaced by other, more detailed properties. This means
that the program structure may not be visible until the later stages of the de-
sign. Moreover, as opposed to most other approaches, the re�nement relation is
based on properties. The superposition theorem (in UNITY re�nement is called
superposition) makes this very obvious.

\Every property of the underlying program is a property of the trans-
formed program" [CM88, page 165].

Although trace semantics have been given for UNITY in a number of places,
e.g. [CM88, Liu89, dBKPR91, UK93b, UK93a, Din97], only a few approaches
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use them to de�ne a trace-based notion of re�nement [UK93b, UK93a, Din97].
Udink and Kok show that trace-based notions are strictly �ner grained, that
is, less abstract, than property-based notions [UK93b]. One signi�cant draw-
back of UNITY, as presented in [CM88], is its non-compositional computational
model. The behaviour of a composite program is not described solely in terms
of its components, making it hard to reason compositionally. This de�ciency
has been addressed in work [Col94, CK95] which views a UNITY program as an
open system which is subject to interruptions and intermediate state changes by
the environment. In his thesis, Collette [Col94] de�nes a compositional trace se-
mantics for UNITY based on potential computations. He augments the UNITY
logic with assumption-commitment speci�cations and uses a composition princi-
ple similar to the one proposed by Abadi and Lamport [AL93] to equip UNITY
with a compositional parallel proof rule for assumption-commitment speci�ca-
tions. The result is a syntax-directed, compositional complete proof system.
However, this extension also treats speci�cations of components as conjunc-
tions of properties. This casts some doubt on the scalability of this approach
in certain cases, because more complex components increase the danger that
properties a�ect each other in intricate and unexpected ways. Moreover, the se-
mantics of local variables is, in our opinion, not su�ciently abstract. While the
environment cannot change the values of local variables, it can observe changes
to them. Consequently, the programs

new x = 1 in x:=x+ 1 end new x = 1 in x:=x+ 2 end

are not considered equivalent. To summarize, the main di�erences between
UNITY and our approach are:

� UNITY is built on a di�erent, very abstract computational model.

� UNITY programs are speci�ed using a speci�c temporal logic.

� Re�nement is property-based and not trace-based.

� Scope and locality are handled di�erently.

Abadi and Lamport's work. Abadi and Lamport free themselves of any
particular program syntax or paradigm and study parallel programming from a
very abstract point of view that strives to replace operational by logical reason-
ing. In [AL93], they isolate in very general terms the conditions under which
assumption-commitment speci�cations for the components of a system imply
an assumption-commitment speci�cation of the overall system. These condi-
tions are captured in a proof rule called the composition principle. In [AL91],
they use a very general, abstract, semantic setting to study re�nement map-
pings. Behaviours are sequences of states closed under stuttering. A re�nement
mapping is used to verify that a lower-level speci�cation correctly implements
a higher-level one. In their setting, speci�cations are given as state machines
and re�nement mappings map the state space of the lower-level machine S1
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to the state space of the higher-level machine S2. The main contribution is a
completeness result: If S1 implements S2 and certain reasonable assumptions
are satis�ed, then by adding auxiliary variables the existence of a re�nement
mapping between S1 and S2 can be guaranteed. Re�nement through re�ne-
ment mappings is stronger than trace inclusion. Due to the generality of their
setting, their results are applicable to a variety of approaches to modeling con-
current computation. However, since they do not consider a particular syntax,
no syntax-directed proof system is given.

ProCoS. The ProCoS project (\Provably Correct Systems") resembles the CIP
project in its goals. It is a comprehensive wide-spectrum veri�cation project that
studies embedded, concurrent and communicating systems at various levels of
abstraction [B+89]. The levels encompass requirements' capture, speci�cation
language, programming language and machine language. The principal goal
of the project is to formally connect all these di�erent levels of abstraction
through stepwise transformation and thus allow the development of concurrent
systems that are correct by construction. A speci�cation language is used that
combines trace-based with state-based assertional reasoning. The trace part
speci�es safety and liveness properties of the communication behaviour of pro-
cesses. The state part consists of state variables and communication assertions
describing when a channel is enabled for communication and what the e�ect
of a communication is. Using a set of transformation rules, a speci�cation is
�rst successively transformed into a distributed, concurrent OCCAM-like pro-
gram [Ltd84, ORSS92, OR93]. The resulting program is then mapped to a
machine language. The theoretical foundation of ProCoS is strongly inuenced
by [Old91]. This approach shares with our work the emphasis on program devel-
opment through stepwise transformation and re�nement and the use of traces as
a speci�cation tool. However, since ProCoS addresses message-passing concur-
rency and not shared-memory concurrency, the notion of trace employed there is
based on actions rather than states. Moreover, neither a syntax-directed proof
system nor a re�nement calculus is given.

FOCUS. Like CIP and ProCoS, the FOCUS project also aims at supporting
the systematic formal speci�cation and development of distributed interactive
systems [BDD+92]. The notion of a trace (here the term stream is used) also
forms the foundation of the framework [Bro86]. Just like in ProCoS, message-
passing concurrency is emphasized: Streams either range over actions or mes-
sages. A logic allows the speci�cation of sets of traces. The behaviour of system
components is described in FOCUS by means of stream processing functions
which specify how tuples of input traces are mapped to tuples of output traces.
Methods for the compositional development and veri�cation of concurrent sys-
tems are given [BDD+92, Bro92]. St�len has augmented the stream function
model with assumption-commitment speci�cations and presented a re�nement
calculus [SDW95].
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9.2 Semantic models for concurrent computa-
tion

Traces. Traces have long been known as an adequate model for concurrent
computation. In its most basic form, a trace simply records all intermediate
states that a program runs through during its execution. A trace is just a
possibly in�nite sequence of states

s0 ! s1 ! s2 : : :

where every transition is caused by the program. We have called these traces
executions. Executions are useful when a program is to be analyzed in isolation,
as a closed system. Moreover, they form a natural generalization of the partial
and total correctness behaviours known from sequential programming. The
problem is that they do not adequately model reactive systems that are in
continuous interaction with their environment. Moreover, they do not allow the
de�nition of a compositional computational model: the executions of a parallel
program C1 kC2 cannot be obtained from the executions of C1 and C2 [Mil73].
To achieve an adequate, compositional model, environment interference has to
be taken into account. Francez and Pnueli were among the �rst people to realize
this [FP78]. As outlined in Section 9.1.2, the behaviour of a program is modeled
by sequences of states

s0 ! s1 ! s2 : : :

where some of the steps may have been performed by the environment. Program
and environment steps are distinguished based on the variables that they change.
Each variable is assigned to a parallel process that owns it and is allowed to
change it.

Potential computations. A compositional treatment can thus be obtained
without explicit labeling. The somewhat unnatural grouping of variables in a
shared-variable setting can be avoided by using explicit labels to di�erentiate
between program and environment steps. A potential computation (sometimes
also called extended sequence) is a sequence of program and environment tran-
sitions each marked with the appropriate label

s0
l0�! s1

l1�! s2
l2�! s3 : : : si

li�! si+1
li+1
�! si+2

li+2
�! si+3 : : :

where each li is a label ranging over fp; eg. Potential computations have been
used by, for instance, Jones, Stirling, St�len and Collette [Jon81, Sti88, St�91,
Col94] for the de�nition of complete, compositional proof systems.

Transition traces. Transition traces are isomorphic to potential computations.
For instance, the potential computation,

s0
p
�! s1

e
�! s2

p
�! s3 : : : si

p
�! si+1

e
�! si+2

p
�! si+3 : : :
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corresponds to the transition trace

(s0; s1)(s2; s3) : : : (si; si+1)(si+2; si+3) : : :

that is, state changes within parentheses are caused by the program and state
changes across parentheses are caused by the environment. This notion of
trace has been used in several places, e.g., [Abr79, Par79, dBKPR91, UK93b].
Brookes' contribution was the addition of the stuttering and mumbling closure
conditions. In his semantics programs are modeled as closed sets of transition
traces [Bro96b]. These closure conditions stand for reexivity and transitiv-
ity of the standard operational semantics, that is, the !� transition relation.
They allow the de�nition of a semantics that is is fully abstract with respect
to the standard notion of observational behaviour and satis�es many natural
laws of concurrent programming. Before Brookes' work, the only fully abstract
semantics for a shared-variable concurrent language was Hennessy and Plotkin's
resumption semantics [HP79]. However, they obtain this result at a rather heavy
price. Since their semantics distinguishes programs of di�erent length | skip
and skip ; skip, for instance are distinguished | the capabilities of program
contexts had to be strengthened such that skip and skip ; skip could also be
distinguished observationally. To this end, Hennessy and Plotkin add a rather
unnatural coroutining construct to the language.

Abadi and Lamport's and Collette's treatment di�ers in that they do include
a stuttering but no mumbling closure condition. Full abstraction is achieved by
none of the related work mentioned. Moreover, Jones', Stirling's and St�len's
treatment emphasizes total correctness and terminating programs, and can thus
avoid the modeling of fairness. Finally, Stirling does not address local variables
at all while Collette's treatment is not as abstract.

While transition traces lead to a semantics with very pleasant properties,
they do not support the kind of context-sensitive replacement that program
development through stepwise re�nement calls for. The problem is that in a
parallel composition C1 kC2 the transitions contributed by each of the compo-
nents cannot be distinguished. It is thus impossible to express the condition
that a re�ning program C0

1 does not exhibit more transitions than C1 did in
the given context C1 k []. To remedy this situation, we added labels to the
language and the semantics. In the labeled program C1 k hC2i, the transitions
of C2 are singled out and can be distinguished from those of C1. Formally, a
label is added to each transition indicating whether or not the transition is due
to the labeled subprogram or not. A labeled program is modeled by labeled
transition traces

(s0; l0; s
0
0)(s1; l1; s

0
1) : : : (si; li; s

0
i)(si+1; li+1; s

0
i+1) : : :

where li = p indicates a program step and li = e indicates an environment
step [Din96]. Labels are crucial in our de�nition of context-sensitive approxima-
tion C1 �E C0

1, because they allow the user to single out a speci�c subprogram
syntactically and semantically. The ability to label arbitrary subprograms then
allows us to de�ne a re�nement calculus and to characterize complex properties
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like eventual entry and to formulate su�cient conditions for it. This idea is by
no means speci�c to transition traces and would also work for potential com-
putations. However, labels also mesh well with the transition trace semantics.
In other words, our semantics based on labeled transition traces readily inherits
from Brookes' semantics the elegant, compositional treatment of fair, shared-
variable concurrent programs. Message-passing can easily be accommodated in
terms of queue-valued variables [Bro97].

While the underlying compositional model is quite di�erent, Larsen's work
on a context-sensitive notion of simulation for CCS, is clearly related and did
provide some intuition [Lar87].



Chapter 10

Future work

We distinguish between improvements, extensions and applications.

10.1 Improvements

We have demonstrated that the calculus presented in this thesis works well
on relatively short, yet intricate examples. However, it is not yet suited as a
complete and universal design methodology for larger programs and systems.
Necessary improvements include the following:

10.1.1 Incorporating data rei�cation

Data rei�cation (data re�nement) is an important part of formal program de-
sign methodologies [DH72, Hoa72, Rey81, Jon90, dRE99]. In our setting, an
abstraction mapping would map concrete traces to abstract traces. Without
having checked the details, we suspect the calculus to mesh well with data rei�-
cation. A good starting point might be Brookes' work on Parallel Algol in which
he has used a parametric trace model to formalize representation independence
for parallel programs [Bro96a].

10.1.2 Adding a procedure mechanism

A procedure mechanism would undoubtedly be helpful and facilitate the speci-
�cation and derivation of certain programs. Brookes has demonstrated how to
extend the language with call-by-name procedures [Bro98]. The handling of lo-
cal variables follows the \possible worlds" or \store shapes" approach �rst used
by Reynolds [Rey81] and Oles [Ole82] leading to a more general de�nition of
local variable and local channel declarations. The resulting language supports
fair shared-variable concurrency, asynchronous message-passing, and recursive,
call-by-name procedures leading to a generalization of the Kahn principle for
deterministic networks [Kah77]. We conjecture that this model is also robust
under the addition of labels as described in this thesis.

221
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10.1.3 Increasing generality

The development of certain kinds of programs is currently not well supported.
Consider, for instance, the programs

C1 � while tt do x:=x+ 1:

and
C2 � new c = d = � in

while tt do2
4 x:=x+ 1;

c:=tt;
await d


await c;
x:=x+ 1;

d:=tt

3
5

and
C 0
2 � new c = d = hi in

while tt do2
4 x:=x+ 1;

c! � ;

d?


c? ;

x:=x+ 1;

d!�

3
5 :

C0
2 can be viewed as a \miniature token ring" with \�" as the token. Unfor-

tunately, the AWAIT-INTRO rule is not applicable, because the environment of
each await statement cannot be shown to reduce the measure as required by the
rule. Consequently, it would not be straight-forward, and maybe impossible, to
re�ne C1 into C2 or C0

2 with our calculus despite the equivalence

C1 =T z C2 =T z C0
2:

The problem. The reason is that our (and Stirling's) notion of assumption-
commitment reasoning does not allow liveness properties in the assumptions
or guarantees. As described in Section 9.1.2, this restriction prevents cir-
cular reasoning and thus ensures soundness. While some other approaches,
e.g., [FP78, AL93], manage to break circularity without imposing this restric-
tion, it seems very hard, if not impossible, to incorporate the underlying ideas
into our setting.
A possible solution. Rather than allowing liveness properties in assumptions
and commitments, we propose a di�erent approach. Brookes has developed a
number of extremely powerful equivalences involving parallel compositions in
the scope of local variable declarations [Bro98]. Given the program

new c = l in [c!v ;C1 kC2]

for instance, the local output on c can be promoted before all transitions that
C2 might be able to do, if C2 never outputs on c. Formally, let fc(C) denote the
set of directions free in C where a direction is of the form c! or c? for channels
c. If C2 never outputs to channel c, that is, c! 62 fc(C2), then

new c = l in [c!v ;C1 k C2]
=T z new c = lv in [C1 kC2]:
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A similar rule exists for output. If C2 never inputs from channel c, that is,
c? 62 fc(C2), then

new c = vl in [c?x ;C1 kC2]
=T z new c = l in [x:=v ;C1 kC2]:

These and other laws allow the successive unrolling of a program. Equivalence
between two programs can then be shown by demonstrating that they satisfy the
same recurrence equations. The equivalence between the progams C1, C2 and
C0
2 above, for instance, can be shown using this technique. Brookes has used this

technique to verify the Alternating Bit Protocol by showing its equivalence to a
one-place bu�er. While these laws would make our framework more applicable,
they also require a certain amount of global reasoning and thus compromise
compositionality. More research is needed to determine to what degree these
laws would also obviate the need for liveness properties in assumptions and
guarantees.

10.2 Extensions

There are a number of aspects that the framework might usefully be extended
with. We list a few starting with lightweight, short-term extensions and ending
with more long-term investigations.

10.2.1 Identifying development tactics

A close look at the examples shows that certain sequences of transformation
steps occur repeatedly. A natural idea is to group these steps together into
\transformation macros" or high-level re�nement steps a la the tactics in Plan-
ware [Smi99]. For an example, consider the maxsearch, and the arraysearch
algorithms as presented in Chapters 6.2, 6.3, and 6.4 respectively. These algo-
rithms have in common that a certain value is to be computed and then stored
in a speci�c variable. For the purposes of this discussion, let that variable be x
and let Q(x) characterize the �nal state, that is, the state in which x carries the
desired value. The initial program C1 in each of the examples expresses that x
may be changed a �nite number of times before the computation terminates in
a state with Q(x). To capture this, each of the initial programs is of the form

fxg:[tt; tt]� ; fQ(x)g:

The idea now is to use local variables y1 to yn to �rst compute an intermediary
result. The computation of the desired value for x then uses this intermediary
result. More precisely, a �nite amount of computation, in which only the new
local variables y1 through yn are changed, is used to establish an intermediate
state in which Q0(y1; : : : ; yn). The second re�nements in the above mentioned
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examples thus have the shape

new y1 = v1; : : : ; yn = vn in
fy1; : : : ; yng:[tt; tt]�;
fQ0(y1; : : : ; yn)g;

�
compute intermediate values

fxg:[tt; tt]�;
fQ(x)g:

�
compute result from intermediate values

The development e�ort thus has been divided into two parts: the development
of the computation of the intermediate values and the development of the com-
putation of the �nal result from these values. Depending on the situation, each
part is now re�ned by introducing awhile or for loop, a parallel composition, or
a simple assignment. In case of the maxsearch algorithm, the �rst part is re�ned
a into for loop containing a parallel composition. The second part is replaced
by a simple assignment. The point is that this initial part of the development
of both programs could be conveniently summarized by the equivalence

C =T new y1 = v1; : : : ; yn = vn in
fy1; : : : ; yng:[tt; tt]

�
;

fQ(y1; : : : ; yn)g;
C

where none of the yi are assigned to in C and C is instantiated with fxg:[tt; tt]� ;

fQ(x)g.
Another possible \development macro" involves the introduction of paral-

lelism using the PAR-INTRO rule. Further research is needed to determine the
most useful ones.

10.2.2 Enhancing the tractability of assumption-commit-
ment speci�cations

The assumptions necessary for the soundness of a re�nement step are collected
during the formal derivation of the re�nement. To check that they are contained
in the guarantees, however, it is sometimes necessary to reformulate them and
state them more concisely. In recent work, Collette and Jones investigate ways
to improve the tractability of assumption-commitment speci�cations as they
arise in compositional proof systems for concurrent programs [CJ]. Although
the precise form of our speci�cations is di�erent, some of the ideas put forward
might still be applicable to our setting.

10.2.3 Extending the framework to BSP style programs

Skillicorn's extension of Morgan's re�nement calculus to BSP style programs
does allow the introduction of disjoint parallelism and the movement of values.
Shared-variables, however, are not allowed. It would be interesting to extend our
framework to incorporate BSP style programs. Currently, our notion of state
models memory in a at and monolithic way. To capture BSP, the memory has
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to be partitioned into local memories for each processor. The data movement
primitives have to be given a trace semantics. To incorporate Skillicorn's ideas,
the calculus then has to be augmented with read and write frames, and location
predicates.

An interesting point in this respect is that some of the examples already are
in a BSP style. Consider, for instance, the Floyd-Warshall algorithm. In each
iteration, n2 parallel processes are spawned to compute a new approximation
and then joined again.

for k = 1 to n do
kn;ni;j=1;1d[i; j]:=minfd[i; j]; d[i; k] + d[k; j]g

od

An equivalent yet more e�cient program would avoid the costly, repeated cre-
ation and destruction of parallel processes by replacing the loop of parallel
compositions with a parallel composition of loops. Equivalent behaviour is en-
sured through a barrier synchronization involving local variables. For instance,
an equivalent BSP-style program could have the form

new done1;1 = � ; : : : ; donen;n = � in2
664

n;n

i;j=1;1

for k = 1 to n do
d[i; j]:=minfd[i; j]; d[i; k]+ d[k; j]g;
synci;j

od:

3
775

where synci;j abbreviates

donei;j:=tt;
await 81 � i; j � n:donei;j;
donei;j:=� :

The above program still assumes one monolithic global memory that spans all
parallel processes. Concepts to distribute and move data must be introduced to
model BSP more faithfully.

Another, more interesting example is the pre�xsum algorithm of Section 7.1.
Each iteration consists of two parallel compositions each involving n processes.
The �rst composition performs the pointer jumping. The second updates the
channels.

while d 6= � do
empty(d);2
664

n

i=1

if prev[i] 6= nil then
new p = x = 0 in
c[prev[i]]?(p; x);
x[i]; prev[i]:=x
 x[i]; p

3
775 ;

kni=1[c[i]!(prev[i]; x[i])k if prev[i] 6= nil then d!tt]
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In each iteration, n parallel processes are created and destroyed twice. The
equivalent, more e�cient BSP program contains three synchronization steps.

new decl in2
6666666666666666664


n

i=1

while d 6= � do
empty(d);
sync1;i;
if prev[i] 6= nil then
new p = x = 0 in
c[prev[i]]?(p; x);
x[i]; prev[i]:=x
 x[i]; p

end;

sync2;i;
[c[i]!(prev[i]; x[i])k if prev[i] 6= nil then d!tt];
sync3;i

end

3
7777777777777777775

where decl is

decl � done1;1 = � ; done2;1 = � ; done3;1 = � ;
: : : ;
done1;n = � ; done2;n = � ; done3;n = �

and each of sync1;i, sync2;i and sync3;i is a synchronization step analogous to
the one above. Development tactics for the introduction of such synchronization
points could be investigated. Note that the resulting program above is more
e�cient, but also a lot harder to reason about. Program transformation allows
us to verify a simpler representation and add intricate, performance-improving
aspects at a later stage. The all-pair shortest-paths algorithm in Section 7.2
could be transformed in a similar fashion. In general, we feel that BSP style
programs are very amenable to development through stepwise re�nement.

10.2.4 Extending the language

Objects

The addition of object-oriented features is more di�cult. The encapsulation
of state is already supported. It is unclear, however, how inheritance should
be modeled. Existing work on formal models for parallel, object-oriented pro-
gramming might provide good starting points for future work in this area, e.g.,
[Ame92, dB91]. As pointed out by Jones [Jon96], object-based features can
be very helpful in taming interference and lead to a powerful reasoning and
development theory.

Complexity measures

The current semantics does not support complexity considerations. In fact, due
to the closure conditions the two programs

skip and skip�
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are indistinguishable. The ability to determine and compare the complexities
of di�erent re�nement options would greatly aid the design process. Consider
the all-pair shortest-paths algorithm of Section 7.2 again. Complexity consid-
erations lead us to reject re�nement C4 and choose re�nement C0

4 instead. A
tractable formalization of these considerations in terms of a cost calculus would
be ideal.

A �rst step towards a cost calculus might be to equip transitions and traces
with time bounds t. A single transition step would thus be of the form

(s; l; t; s0)

where t could indicate the exact, maximal or minimal duration of the transition.
The duration of a trace would be the sum over the durations of its transitions.
The duration of a program would be the maximumof the duration of its traces.
While these ideas are intuitive, more work is needed to determine how well they
mesh with our theory. The formulations of the closure conditions would have to
be reinvestigated. Unless a stuttering step takes no time, the stuttering closure
condition would not be appropriate any more. A time-sensitive formulation of
mumbling, however, might be possible.

Even under the time extension sketched above the semantics would still
would be insensitive to the amount of parallelism a program exhibits. More
precisely, the programs x:=0 ;x:=x+1 and x:=0kx:=x+1 would have the same
durations. In general, interleaving semantics do not seem to be well suited to
measure parallelism and a more radical departure from our theory might be
necessary.

10.2.5 Tool support for parallel programming

Another, more applied area of future research would be to look at CASE tools
for parallel programming. The idea is to use the concepts presented in this the-
sis for the implementation of a software development environment that supports
the transformational design of programs with explicit, user-level parallelism. A
session with the system would consist of a sequence of re�nement steps. In a
re�nement step, the user would specify a part of the current program to be
re�ned. Then, she would either choose from a list of applicable re�nement or
transformation rules, or input the desired result of the re�nement step upon
which the system would search for a sequence of rules realizing the re�nement.
Assumptions and guarantees would be collected, discharged in the existing en-
vironment and inuence the introduction of new parallel components. Ideally,
assumptions would be discharged automatically. However, it seems that such a
system would still be useful if discharging the assumptions was carried out by
the user, and the system just did the bookkeeping. To the best of our knowledge
there is currently very little CASE tool support for parallel programming. The
system sketched above might be a promising �rst step.
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10.3 Applications

Apart from its intended use as a �rst step towards a universal design method-
ology for parallel programs, our work might also be applicable to other areas.

10.3.1 Formal modeling

A very promising area of application is formal modeling. After the addition of a
procedure mechanism the language will be expressive enough to model complex
software conveniently. Moreover, the language has a rich and powerful theory.
This combination makes it ideally suited for the analysis of relatively short, yet
intricate pieces of software like protocols for instance. Brookes' abovementioned
straightforward veri�cation of the Alternating Bit Protocol for instance is very
encouraging in this respect [Bro99]. CSP and variants have successfully been
used to model software. For instance, Allen and Garlan have employed Wright,
an extension of CSP, to formally model and analyze architectural connections,
that is, the interactions between components [AG97]. It seems that our lan-
guage is at least as suited for such purposes as CSP. While CSP also features
strong theoretical underpinnings and a notion of stepwise re�nement, a major
advantage of our framework is that unlike CSP it supports both states and
messages. Depending on need, either one or the other can be emphasized, or
both could be used in conjunction. We view this as a de�nite advantage. In
our attempts to model aspects of High-level Architecture (HLA) for distributed
simulation, for instance, state-based and event-based formalisms turned out to
be useful [AGI98, Din99a].

A major advantage of CSP is the possibility of automatic veri�cation using
tools like FDR [For92]. The widespread use of our approach for software anal-
ysis will thus depend on the availability of automatic veri�cation tools. The
translation of a suitably restricted language subset into a �nite state descrip-
tion language for a model checker like SMV [BCL+94] for instance would be a
promising �rst step.

10.3.2 Using contextual constraints to obtain smallermod-
els

A major challenge facing automatic veri�cation tools like model checking is the
state space explosion problem. Typically, the state space grows exponentially
in the number of parallel components and thus quickly becomes too large to
be tractable. By de�nition, the behaviour of a reactive system depends on
the behaviour of its environment. Roughly speaking, knowledge about the en-
vironment behaviour translates into knowledge about the system behaviour.
Consequently, knowing that the environment will never behave in a certain way,
may allow a substantial simpli�cation of the system. The simpli�ed system
may then give rise to a smaller state machine and thus be amenable to auto-
matic veri�cation while the original, unsimpli�ed system was not. There is some
hope that precisely this kind of simpli�cation based on contextual constraints
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can be formalized in our setting. As an example, consider the following reac-
tive component. Commands are received along a channel in, executed on some
datastructure D, and the result is sent back on channel out. The command
begin record initiates storage of commands and their results in cmd list. An
end record causes the list to be sent along channel out and reinitializes cmd list
to the empty list.

cmd list:= hi;
rec:=� ;

while tt do
in?(cmd);
case cmd of
begin record : rec:=tt ; result:=ok j
end record : rec:=� ; result:=cmd list ; cmd list:=hi j
else : execute(cmd;D; result)

end;

out!(result);
if rec then insert(cmd; result; cmd list)

end:

If the environment never issues the begin record command, the variable cmd list
that stores the commands can be dispensed with. The above component can
safely be replaced by the following, simpler one.

cmd list:= hi;
rec:=� ;

while tt do
in?(cmd);
execute(cmd;D; result);
out!(result)

end

These kinds of simpli�cations may signi�cantly reduce the size of the model and
open up a way to automatic veri�cation.
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Chapter 11

Conclusion

This thesis presents a framework for the formal development of parallel pro-
grams. The framework rests on the following four components.

1. Initial requirements, executable programs, and intermediate combinations
of programs and abstract requirements are expressed in terms of a wide-
spectrum speci�cation language. This speci�cation language supports fair
parallelism, shared-variable and message-passing concurrency and local
variables and channels. Labels allow the separation of the behaviour of a
subprogram from its environment. The expressive power of the language
is demonstrated by means of a variety of parallel and distributed programs
and reactive systems.

2. The language is given a compositional trace semantics based on Brookes'
transition trace semantics [Bro96a], from which it inherits many of its
properties. More precisely, the behaviour of a program C is captured by
a closed set of sequences of triples (s; l; s0) where s and s0 are states and l
is a label indicating whether the transition was contributed by a labeled
subprogram of C or not. Due to two closure conditions, the semantics
validates many natural laws of parallel programming. Moreover, the se-
mantics can easily be extended to �ne-grained notions of concurrency.

3. A context-sensitive notion of approximation is de�ned that allows the com-
parison of two programs with respect to a particular context. It is used
not only for the de�nition of the re�nement relation but also for the speci-
�cation and veri�cation of liveness properties like eventual entry and thus
plays a crucial role in the calculus.

4. Context-sensitive approximation and assumption-commitment reasoning
are combined to form the re�nement relation. This relation is context-
sensitive and supports stepwise, top-down program development and com-
positional reasoning, the introduction of local variables and channels, and
the seamless treatment of shared-variable and message-passing concur-
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rency. The re�nement calculus identi�es a number of rules that govern
the re�nment relation. Most of the rules are compositional.

Moreover, the usage and applicability of the framework is demonstrated through
a wide variety of examples that involve shared-variable parallel programs, dis-
tributed programs, and mutual exclusion algorithms. All but one example em-
ploy an arbitrary but �xed number of parallel processes to implement the un-
derlying algorithms. The re�nement calculus allows not only the development
of a single implementation, but also the documentation of design decisions and
the principled exploration of alternative solutions. The formal analysis of the
n-process tie-breaker algorithm for mutual exclusion, for instance, also gives rise
to the discovery of alternative implementations some of which exhibit substan-
tially more parallelism than the standard text book implementation. Just as
the semantics, the framework can easily be extended to �ne-grained notions of
concurrency.

While the re�nement formulas involved in these examples can get complex,
they always remain manageable. This is because the algorithms feature a well-
de�ned interface between parallel processes which can be captured conveniently
in the re�nement formulas. If, however, the processes of a parallel program are
so tightly coupled as to render compositional reasoning and development impos-
sible, our framework will not be applicable. We consider these kinds of parallel
programs anomalous. Due to the tight coupling, the degree of parallelism is
likely to be very small, making it conceptually cleaner and computationally
more e�cient to merge the parallel processes into one.

At present, the most prominent limitations of our work include the lack of a
procedure mechanism, the lack of support for the development of circular process
topologies like token rings, and the lack of practical, experimental results. While
more work is needed to extend the framework appropriately and validate its
practical feasibility, we are con�dent that it can be done. The strong theoretical
underpinnings of the framework and its applicability leave us convinced that this
work presents a very promising �rst step towards a viable, formal development
methodology for parallel programs.



Appendix A

Proofs

A few lemmas are needed for the proofs in this section.
If a program approximates another with respect to the �ne-grained, unclo-

sured trace semantics T , then that approximation also holds under the coarser-
grained, closed semantics T y and T z.

Lemma A.1 (Closure and trace and execution inclusion)

1. If C1 �T C2 (mod V ), then C1 �T y C2 (mod V ). If C1 �T y C2 (mod V ),
then C1 �T z C2 (mod V ).

2. If C1 �E C2 (mod V ), then C1 �Ey C2 (mod V ). If C1 �Ey C2 (mod V ),
then C1 �Ez C2 (mod V ).

3. If T [[C1]] � T y[[C2]] (mod V ), then C1 �T y C2 (mod V ).

Proof:

� 1) We show the lemma for V = fxg. The more general case follows.
Assume C1 �T C2 (mod x). We show C1 �T y C2 (mod x). The proof of
C1 �T z C2 (mod x) is analogous. Let � 2 T y[[C1]] such that hx = vi� 2
T y[[C2]] for some v.

Case: � 2 T [[C1]]. Then, by assumption and the de�nition of the closure
conditions, there exists � 2 T y[[C2]] such that hx = v� 2 T [[C2]] and
�nx = �nx.

Case: � 62 T [[C1]]. Then, there exists �0 2 T [[C1]] such that �0 is obtained
from � through the stuttering closure condition and hx = vi�0 2
T [[C1]]. Then, by assumption, there exists �0 2 T [[C2]] such that
hx = vi�0 2 T [[C2]] and �0nx = �0nx. Consequently, there is � 2
T y[[C2]] such that hx = vi� 2 T [[C2]] and �nx = �nx.

This concludes the proof of C1 �T y C2 (modx).

� 2) and 3) are proved similarly as 1) above.
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A.1 Programs, contexts and traces (Section 2)

A.1.1 Proof of Lemma 2.1 on page 20

1. Corollary to Lemma A.1 above.

2. Using the de�nition, the fairmerge relation can be shown to be associative
and commutative, that is, (�k�)k = �k(�k) and �k� = �k� for all
traces �, �, and . Associativity and commutativity of parallel composi-
tion follows.

3. We show that D �T z ;:[tt; tt] implies C ; D� =T z C. The remaining
equivalences can can proved similarly. C ; D� �T z C follows from the
fact that � 2 D� by de�nition of the Kleene-star operation. To show
C ; D� �T z C, assume D �T z ;:[tt; tt] and � 2 T y[[C ;D�]]. Thus, � is
of the form � � �1�2 where �1 2 T y[[C]] and �2 2 T y[[D�]]. Due to the
assumption �2 consists of �nite stuttering only. Thus, � � �1�2 2 T y[[C]]
due to the stuttering closure condition. Thus, C ;D� �T y C. The desired
result follows with Lemma 2.2.

4. Directly from the de�nition.

5. To show [C1_C2]kC3 �T [C1kC3]_ [C2kC3], let � 2 T [[[C1 _C2] kC3]].
Thus, � arises from fairly merging two traces � 2 T [[C1 _C2]] and  2
T [[C3]]. Case: � 2 T [[C1]]. Then, � 2 T [[C1kC3]]. Case: � 2 T [[C2]]. Then,
� 2 T [[C2kC3]]. In both cases, � 2 T [[[C1kC2]_ [C2kC3]]].

The second inclusion [C1 _ C2] k C3 �T [C1 k C3] _ [C2 k C3] is shown
similarly.

6. Directly from the de�nition of new.

7. Directly from the de�nition of new.

8. Directly from the de�nition of C _C.

9. By structural induction over E.

A.1.2 Proof of Lemma 2.2 on page 21

1. Proof is similar to the one for Lemma 2.1.1.

2. Directly from the de�nition of executions.

3. Directly from the de�nition of the Kleene-star operation.

4. Directly from the congruence property.

5. Directly from the de�nition of cfV :[P;Q] and T [[V :[P;Q]]].

6. Using structural induction over E.
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7. We only consider the special case where n = 1. The general case is an
easy corollary.

=): Let � be a trace of new x = e in C1 and let e have value v in �rst(�).
By de�nition of new, � is of the form � � �0nx for some trace �0 of C1

such that hx = vi�0 also is a trace of C1 By assumption, C2 has a trace
�0 such that hx = vi�0 also is a trace of C2 and � � �0nx = �0nx. By
de�nition of new, �0nx also is a trace of new x = e in C2.

(=: Let � be a trace of C1 such that hx = vi� also is in C1 where v
is the value of e in �rst(�). Then, by de�nition of new, �nx is a trace
of new x = e in C1, and by assumption also of new x = e in C2. By
de�nition of new, there exists a trace � of C2 such that hx = vi� also is
a trace of C2 and �nx = �nx.

8. Directly from the de�nitions.

A.2 Re�nement calculus (Section 5.4)

Recall that the operation [�jx = v] sets the value of x along all of � to v.
Formally, if � � (s0; l0; s00)(s1; l1; s

0
1) : : :, then

[�jx = v] = ([s0jx = v]; l0; [s
0
0jx = v])([s1jx = v]; l1; [s

0
1jx = v]) : : : :

Lemma A.2 If � 2 T z[[C]] and x 62 fv(C), then [�jx = v] 2 T z[[C]] for all
v 2 Domx. �

We now prove the soundness of the rules of our re�nement calculus.

A.2.1 Basic rules

Rule ATOM

1. Due to the �rst two premises we already have�
P;�

�
A2

�
Q;�

�
and �

P;�
�
A1

�
tt;�

�
:

2. Thus, we only need to show

A1 �E A2 (mod V )

where
E � fPg ; [[] k pre1�]

and
V � fx1; : : : ; xng:
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We �rst show execution inclusion with respect to the unclosed semantics,
that is, we show

E[hA1i] �E E[hA2i] (mod V ); (A.1)

that is, for all � 2 E [[E[hA2i]]] there exists � such that

� 2 E [[E[hA1i]]] and

� = � (mod V ):

Let � 2 E [[E[hA2i]]]. � is of the form � � �1(s; p; s0)�2 where �1 and �2

consist of environment transitions of pre1� only. Due to the shape of E,
the �rst state of �1 satis�es P and P is preserved along �1 due to the fact
that P 2 �. Consequently, s also satis�es P , s j= P . Thus, the transition

(s; p; s0) satis�es (s; p; s0) j=
(

P ^cfA2
and (s; p; s0) j= 9V:

(

P ^cfA2
. By the

�rst premise, (s; p; s0) j= 9V:
(

P ^cfA1
. That is, there are values v1; : : : ; vn

for the local variables x1; : : : ; xn such that

(s; p; [s0jx1 = v1; : : : ; xn = vn]) j=
(

P ^cfA1
:

Let �02 be like �2 except that each local variable xi is set to vi,

�02 � [�2jx1 = v1; : : : ; xn = vn]:

Let
� � �1(s; p; [s

0jx1 = v1; : : : ; xn = vn])�
0
2:

� is interference-free and thus an execution. Since none of the local vari-
ables are changed along �02, and �02 and �2 are identical otherwise, �02
must also preserve all predicates in �, that is, �02 2 T [[pre1�]]. Thus,
we get � 2 E [[E[hA1i]]] and � = � (mod V ). This concludes the proof of
(A.1). With Lemma A.1

E[hA1i] �Ez E[hA2i] (mod V )

which is equivalent to
A1 �E A2 (mod V )

as desired.

Rule SEQ

1. We have to show �
P;�1 [ �2

�
C0
1 ;C0

2

�
Q;�1 \�2

�
and �

P;�1 [ �2

�
C1 ;C2

�
tt;�1 \�2

�
:
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(a) Let � 2 T y[[C0
1 ;C0

2]] and let � j= assump(P;�1 [ �2). We need to
show � j= guar(Q;�1 \�2).

Case: � 2 T y[[C0
1]]. Then, � is in�nite. Also, by the �rst premise and

weakening � j= guar(tt;�1 \�2). Since � is in�nite, this implies
� j= guar(Q;�1 \�2) as desired.

Case: � 62 T y[[C0
1]]. Then, by de�nition of T y[[C0

1 ; C0
2]], � is of

the form � � �1�2 where �1 2 T y[[C0
1]] and �2 2 T y[[C0

2]]. Then,
�1 j= assump(P;�1 [ �2). By the �rst premise and weakening,
�1 j= guar(Q1;�1 \�2) for some Q1. Due to Lemma 5.6, there is a
set of predicates sp(R1) such that sp(R1) � �1 and

V
sp(R1)) Q1

and
[P;�1] C1 �V1 C0

1 [
V
sp(R1);�1]:

Since � j= assump(P;�1 [ �2), and each predicate in sp(R1) is also
in �1,

V
sp(R1) is preserved across the gap between last(�1) and

�rst(�2), that is, �rst(�2) j=
V
sp(R1) and Thus, we have �rst(�2) j=

Q1. Thus, �2 j= assump(Q1;�1 [ �2). By the second premise
and weakening, �2 j= guar(Q;�1 \�2). Consequently, �1�2 j=
guar(Q;�1 \�2). Lemma 3.3 implies the result.

(b) Analogous to the proof above of case (a).

2. We need to show

C1 ;C2 �E C0
1 ;C0

2 (mod V1 [ V2)

where

E � fPg ; [[] k pre1�1 [ �2]

and

V1 � fx1; : : : ; xmg:

We �rst show

E[hC1 ;C2i] �E E[hC0
1 ;C0

2i] (mod V1 [ V2); (A.2)

That is, for every � 2 E [[E[hC0
1 ; C0

2i]]] there exists � such that

� 2 E [[E[hC1 ;C2i]]] and

� = � (mod V1 [ V2):

The �rst premise implies

C1 �E1
C0
1 (mod V1)

where

E1 � fPg ; [[] k pre1�1]
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Due to Lemma 4.4 we get E v E1. Thus,

C1 �E C0
1 (mod V1 [ V2): (A.3)

Let � 2 E [[E[hC0
1 ; C0

2i]]].

Case: � 2 E [[E[hC0
1i]]]. Then, � is in�nite. By (A.3) there exists � such

that

� � 2 E [[E[hC1i]]] and

� � = � (mod V1 [ V2).

Since � must also be in�nite we get

� � 2 E [[E[hC1 ; C2i]]] and

� � = � (mod V1 [ V2).

Case: � 62 E [[E[hC0
1i]]]. Due to the de�nition of sequential composition,

T z[[C 0
1 ;C0

2]], � is of the form � � �1�2 where �1 is �nite and

�1 2 E [[E[hC0
1i]]]

�2 2 E [[hC
0
2i k pre

1�1 [ �2]]:

By (A.3) there exists �1 such that

� �1 2 E [[E[hC1i]]] and

� �1 = �1 (mod V1 [ V2).

Moreover, by the �rst premise, the last state of �1 satis�es Q1, last(�1) j=
Q1. Since � is an execution, the last state of �1 is identical to the �rst
state of �2 and thus �rst(�2) j= Q1. Thus,

�2 2 E [[E2[hC0
2i]]]

where
E2 � fQ1g ; [[] k pre1�1 [ �2]:

Using the second premise and an argument similar to above, we obtain

C2 �E2
C0
2 (mod V1 [ V2):

Thus, there exists �2 such that

� �2 2 E [[E2[hC2i]]] and

� �2 = �2 (mod V1 [ V2).

Note that �rst(�2) = �rst(�2) due to the de�nition of �2 = �2 (mod V ).
Thus, last(�1) and �rst(�2) may di�er only in the values they assign to
the variables in V1. Let v1; : : : ; vn be the values of x1; : : : ; xn in last(�1)
and let �02 � [�2jx1 = v1; : : : ; xn = vn]. Since C2 doesn't depend on any
of the variables in V1, that is, V1 \ fv(C2) = ;,

�02 2 E [[E[hC2i]]]

with Lemma A.2. Thus,
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� �1�
0
2 2 E [[E[hC1 ;C2i]]] and

� �1�2 = �1�
0
2 (mod V1 [ V2).

This concludes the proof of (A.2). With Lemma A.1 we get

E[hC0
1 ;C0

2i] �Ez E[hC1 ;C2i (mod V1 [ V2)

which is equivalent to

C0
1 ;C0

2 �E C1 ;C2 (mod V1 [ V2):

Rule OR

1. We have to show �
P;�1 [ �2

�
C0
1 _C

0
2

�
Q;�1 \�2

�
and �

P;�1 [ �2

�
C1 _C2

�
tt;�1 \�2

�
:

(a) Let � 2 T y[[C0
1 _C

0
2]] and let � j= assump(P;�1 [ �2). We need to

show that � j= guar(P;�1 \�2).

Case: � 2 T y[[C0
1]]. Then, � j= assump(P;�1 [ �2). Using the �rst

premise, we get � j= guar(Q;�1) and thus � j= guar(Q;�1 \�2).
Consequently, [P;�1 [ �1] � [Q;�1 \�2] and Lemma 3.3 implies
the result. Case: � 2 T y[[C0

2]]. Analogous to above case.

(b) Analogous to above proof.

2. We need to show

C1 _C2 �E C0
1 _C

0
2 (mod V1 [ V2)

where
E � fP1 ^ P2g ; [[] k pre1�1 [ �2]:

We �rst show

E[hC1 _C2i] �E E[hC0
1 _C

0
2i] (mod V1 [ V2); (A.4)

that is, for every � 2 E [[E[hC0
1 _C

0
2i]]] there exists � such that

� 2 E [[E[hC1 _C2i]]] and

� = � (mod V1 [ V2):

Let � 2 E [[E[hC0
1 _C

0
2i]]].

Case: � 2 E [[E[hC0
1i]]]. The �rst premise implies

C1 �E1
C0
1 (mod V1)
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where
E1 � fPg ; [[] k pre1�1]:

Since pre1�1 [ �2 �T z pre1�1, we have E v E1 by Lemma 4.4. Thus,
also

C1 �E C0
1 (mod V1 [ V2):

Consequently, there exists � such that

� 2 E [[E[hC1i]]] and

� = � (mod V1 [ V2):

By de�nition of T z[[C1 _C2]],

� 2 E [[E[hC1 _C2i]]] and

� = � (mod V1 [ V2):

Case: � 2 E [[E0[hC0
2i]]]. Analogous to case above.

This concludes the proof of (A.4). By Lemma A.1 we have

E[hC1 _C2i] �Ez E[hC0
1 _C

0
2i] (mod V1 [ V2)]

which is equivalent to

C1 _C2 �E C0
1 _C

0
2 (mod V1 [ V2)

as desired.

Rule STAR

Using the premise we can show by induction�
I;�

�
Cn �V (C0)n

�
I;�

�
for all n � 0. By OR we get�

I;�
� Wn

i=1C
i �V

Wn

i=1(C
0)i

�
I;�

�
for all n � 0. The desired result follows.

Rule OMEGA

Similar to the proof of STAR using trans�nite induction.
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Rule NEW

1. We have to show�
P [v=x];�0

�
new x = v in C0

�
9x:Q;�0

�
and �

P [v=x];�0
�
new x = v in C

�
tt;�0

�
:

(a) If P [v=x] is unsatis�able, then both re�nements above are vacuously
true. If P [v=x] is satis�able, let � 2 T y[[new x = v in C0]] such that
� j= assump(P [x=v];�0). By de�nition of new, there exists � such
that hx = vi� 2 T y[[C0]] and � is of the form � � �nx. Thus,

�nx j= assump(P [x=v];�0):

This implies �rst(hx = vi�) j= P . Moreover, since all predicates in �0

are preserved along gaps in �nx and the value of x does not change
across gaps in hx = vi�, all predicates in � are preserved along
gaps in hx = vi�. Thus, hx = vi� j= assump(P;�). By the �rst
premise, hx = vi� j= guar(Q;�) which implies last(hx = vi�) j= Q.
Since last(hx = vi�) di�ers from last(�nx) only in the value of x,
we have last(�nx) j= 9x:Q. Moreover, since no transition along �nx
changes the value of x, �nx also preserves all predicates in �0. Thus,
�nx j= guar(9x:Q;�0). � j= guar(9x:Q;�0) follows.

(b) Analogous to proof above.

2. We show

E[hnew x = v in Ci] �E E[hnew x = v in C0i] (mod V )

where
E � fP [v=x]g ; [[] k pre1�0]

and
V � fx1; : : : ; xng

and x 62 V . That is, for every � 2 E [[E[hnew x = v in C0i]]] there must
exist � such that

� 2 E [[E[hnew x = v in Ci]]] and

� = � (mod V ):

Let � 2 E [[E[hnew x = v in C0i]]], that is,

� 2 E [[fP [v=x]g ; [hnew x = v in C0i k pre1�0]]]:

Thus, � is of the form � � �1�2 where
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� Pre�x �1 is consists of a �nite number of environment steps and its
initial state satis�es P [v=x]. By de�nition of �0 all these environ-
ment steps preserve P [v=x] and thus the last state of �1 also satis�es
P [v=x].

� Su�x �2 is an execution of hnew x = v in C0i k pre1�0. That is,
there is a trace �02nx such that �0 is preserved across all gaps along
�02nx and hx = vi�02 2 T [[hC

0i]]. Since the value of x does not change
across gaps in hx = vi�02, all predicates in � are preserved across
gaps in hx = vi�02. Thus, hx = vi�02 has a corresponding execution �
in E [[hC0i k pre1�]]. The premise of the NEW rule implies

hCi k pre1� �E hC0i k pre1� (mod V ):

Thus, there exists a trace �02 of hCi, such that all predicates in � are
preserved across gaps and the execution �0 corresponding to �02 coin-
cides with � modulo the variables in V , that is, � = �0 (mod V ). Due
to the de�ntion of equivalence of executions modulo V (De�nition 4.2
on page 44), and to x 62 V , � and �0 must coincide with respect to x
after the initial state. Consequently, x = v in the initial state of �02
and x does not change across gaps along �02, that is, hx = vi�02 = �02.
Thus, there is an execution �2 of hnew x = v in Ci k pre1�0 such
that �2 = �2 (mod V ). Again, due to the de�ntion of equivalence of
executions modulo V , the initial states of �2 and �2 must be identical,
that is, �rst(�2) = �rst(�2).

Let � � �1�2. The trace �1�2 is an execution by assumption. Thus, the
�nal state of �1 (which must exist, because �1 is �nite) and the initial state
of �2 are identical, that is, last(�1) = �rst(�2). Consequently, last(�1) =
�rst(�2). It follows that � is an execution of

fP [v=x]g ;

�
hnew x = v in Ci k pre1�0

�
with � = �1�2 (mod V ).

Finally, by Lemma A.1

E[hnew x = v in Ci] �Ez E[hnew x = v in C0i] (mod V )

which is equivalent to

new x = v in C �E new x = v in C0 (mod V ):

Rule WEAK

Follows directly from Lemma 5.4 on page 64.
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Rules PAR, PAR-V, PAR-N, PAR-V-N

We show soundness of PAR.

1. We have to show�
P1 ^P2;�1 [ �2

�
C0
1 kC

0
2

�
Q1 ^Q2;�1 \�2

�
:

and �
P1 ^ P2;�1 [ �2

�
C1 kC2

�
tt;�1 \�2

�
(a) Let � 2 T y[[C0

1 kC
0
2]] and let � j= assump(P1 ^ P2;�1 [ �2). By

de�nition of T y[[C1 kC2]] there exist �1 and �2 such that �1 2 T y[[C0
1]]

and �2 2 T y[[C0
2]] and � 2 �1k�2. We �rst show that every gap along

�1 preserves �1 and every gap along �2 preserves �2, that is, �1 j=
assump(P1;�1) and �2 j= assump(P2;�2) 1. Suppose the contrary,
that is, suppose �1 6j= assump(P1;�1) and �2 6j= assump(P2;�2).
Consequently, there must be �01 and �

0
2, such that

�1 � �01(sm; e; s
0
m)�

00
1

�2 � �02(tn; e; t
0
n)�

00
2

�01 � (s0; e; s00)(s1; e; s
0
1) : : : (sm�1; e; s

0
m�1)

�02 � (t0; e; t00)(t1; e; t
0
1) : : : (tn�1; e; t

0
n�1)

where �01 and �02 are the longest pre�xes of �1 and �2 that satisfy
assump(P1;�1) and assump(P2;�2) respectively. Formally, the gap
(s0m�1; sm) does not preserve P 0 for some P 0 2 �1, and (t0n�1; tn)
does not preserve P 00 for some P 00 2 �2. Let �0 be the pre�x of �
up to (and including) (sm; e; s0m) or (tn; e; t

0
n) whichever comes �rst

in �. Note that �0 always exists. Without loss of generality as-
sume that (sm; e; s

0
m) comes before (tn; e; t

0
n) in �. Then, �0 is of

the form �0 � �1(sm�1; e; s
0
m�1)�2(sm; e; s

0
m) where �2 is a (possi-

bly empty) subtrace of �02. We will show that the gap (s0m+1; sm)
must preserve �1 which contradicts the maximality of �01. Since � j=
assump(P1 ^ P2;�1 [ �2) by assumption and �0 is a pre�x of �, it fol-
lows that �0 j= assump(P1 ^ P2;�1 [ �2) and �0 j= assump(P2;�2)
by weakening. Thus, �0 j= guar(tt;�2). Since �1 � �2, also
�0 j= guar(tt;�1) by weakening. Since �2 is a subtrace of �0, it
also preserves �1, that is, �2 j= guar(tt;�1). Since

� j= assump(P1 ^ P2;�1 [ �2);

it follows that if P 0 2 �1 holds in s0m�1, then it is preserved not only
by the environment but also along �2 and thus P 0 will also hold in
sm. This, however, contradicts the maximality of �1. Thus, we con-
clude �1 j= assump(P1;�1) and �2 j= assump(P2;�2). By the two

1Note that this is not obvious. Every gap in � might preserve �1, while not every gap in
�1 does.
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premises this implies �1 j= guar(Q1;�1) and �2 j= guar(Q2;�2).
Consequently, under the assumptions P1 ^ P2 and �1 [ �2, every
transition of C1 and C2 preserves �1 and �2 respectively. We now
show that � j= guar(Q1 ^Q2;�1 \�2).

� Every transition (s; e; s0) along � is either from �1 or �2 and thus
preserves either �1 or �2. Consequently, (s; e; s

0) must preserve
�1 \�2.

� Let � be �nite. Then, �1 and �2 are �nite. By assumption,
last(�1) j= Q1 and last(�2) j= Q2. By Lemma 5.6, sp(R1) �
�1 � �2 and sp(R2) � �2 � �1 sp(R1)) Q1 and sp(R2)) Q2

where R1 denotes the premise re�ning C1 into C0
1 andR2 denotes

the premise re�ning C2 into C0
2. Thus, last(�) j= Q1 ^Q2.

Thus, � j= guar(Q1 ^Q2;�1 \�2). Lemma A.1 completes the
proof.

2. We �rst show

E[hC1 k C2i] �E E[hC0
1 k C

0
2i] (mod V1 [ V2) (A.5)

where
E � fP1 ^ P2g ; [[] k pre1�1 [ �2]:

That is, for every � 2 E [[E[hC0
1 kC

0
2i]]] there exists � such that

� 2 E [[E[hC1 kC2i]]] and

� = � (mod V1 [ V2):

For a contradiction, suppose the contrary, that is, for all � 2 E [[E[hC1 kC2i]]]
with � = � (mod V1 [ V2) we have

� 62 E [[E[hC1 kC2i]]]:

Case: There is a longest pre�x �1 of � that can be extended to an ex-
ecution in E [[E[hC1 kC2i]]], that is, let � � �1(sn; ln; sn+1)�2 such
that

�1 2 E [[E[hC1 kC2i]]];

for some , but

�1(sn; ln; sn+1)� 62 E [[E[hC1 kC2i]]]

for all �. Since the two programs E[hC1 kC2i] and E[hC0
1 kC

0
2i] have

the same environment transitions, ln must be p, that is, (sn; ln; sn+1)
must be a program transition.

Subcase: (sn; ln; sn+1) was contributed by C1. Due to the shape of E,
every environment transition along �1 preserves �1. By the sec-
ond premise, every program transition along �1 contributed by
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C2 preserves �2 and thus also �1, since �1 � �2 by assumption.
More precisely, for all transitions (si; li; si+1) in �1, if li = e or
li = p and (si; li; si+1) was contributed by C2, then (si; li; si+1)
preserves all predicates in �1. Thus, there is an execution (di�er-
ing from �1(sn; ln; sn+1) only in the labeling) of hC0

1i in context
[] k pre1�1 that hC1i in the same context cannot exhibit, that
is, there is an execution that is in hC0

1i k pre1�1 but not in
hC1i k pre1�1. This, however, contradicts

C1 �E1
C0
1 (mod V1)

where E1 � fP1g ;

�
[] k pre1�1

�
and thus the �rst premise�

P1;�1

�
C1 �V1 C

0
1

�
Q1;�1

�
:

Subcase: (si; li; si+1) was contributed by C2. In this case, we get a
contradiction with�

P2;�2

�
C2 �V2 C

0
2

�
Q2;�2

�
for analogous reasons.

Case: There is no longest pre�x of � that can be extended to an execu-
tion in E [[E[hC1 kC2i]]]. Consequently, � is in�nite. Moreover, there
are in�nitely many program transitions by hC0

1 k C
0
2i along �. We

distinguish two cases.

Subcase: There are in�nitely many program transitions by C0
1 along

�. Since all transitions by C0
2 preserve �2 and thus also �1,

there is an execution (di�ering from � only in the labeling) of
hC0

1i in context
�
[] k pre1�1

�
that hC1i in the same context

cannot exhibit. This, however, contradicts the �rst premise�
P1;�1

�
C1 �V1 C

0
1

�
Q1;�1

�
:

Subcase: There are in�nitely many program transitions by C0
2 along

�. In this case we get a contradiction with the second premise�
P2;�2

�
C2 �V2 C

0
2

�
Q2;�2

�
:

This concludes the proof of (A.5). Thus, every transition by C0
1 k C

0
2 in

context E can be matched by C1 kC2 modulo V1 [ V2, that is,

E[hC1 kC2i] �E E[hC0
1i k hC

0
2i] (mod V1 [ V2):

By Lemma A.1 we get

E[hC1 kC2i] �Ez E[hC0
1 k hC

0
2i] (mod V1 [ V2)

which is equivalent to

C1 kC2 �E C0
1 kC

0
2 (mod V1 [ V2):
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A.2.2 Derived rules

Rule COND

The premise P ) (B , B0) implies�
P; fP;B0g

�
fBg � fB0g

�
P ^B0;Preds(Var)

�
and �

P; fP;:B0g
�

f:Bg � f:B0g
�
P ^ :B0;Preds(Var)

�
:

Using the �rst two premises and rule SEQ we get�
P; fP;B0g [ �1

�
fBg ;C1 �V1 fB

0g ;C0
1

�
Q;�1

�
and �

P; fP;:B0g [ �2

�
f:Bg ;C2 �V2 f:B

0g ;C0
2

�
Q;�2

�
:

The desired result follows with OR and the de�nition of COND.

Rule WHILE

The premise I ) (B , B0) implies�
I; fI; B0g

�
fBg � fB0g

�
I ^B0;Preds(Var)

�
and �

I; fI;:B0g
�
f:Bg � f:B0g

�
I ^ :B0;Preds(Var)

�
:

Using the �rst premise and the rules SEQ and STAR we get�
I; fI; B0;:B0g [ �

�
(fBg ;C)� ; f:Bg �V (fB0g ;C0)� ; f:B0g�

I ^ :B0;�
�
:

Moreover, by SEQ and OMEGA we obtain�
I; fI; B0g [ �

�
(fBg ;C)! �V (fB0g ;C0)!

�
I ^ :B0;�

�
:

The desired result follows with OR and the de�nition of while.

Rule FOR

Using each of the n premises and rule SEQ we get�
P [1=i];

S
i
�i
�

C[1=i] ; : : : ;C[n=i] �V C0[1=i] ; : : : ;C0[n=i]�
Q[n=i];

T
i�i

�
:

The desired result follows by de�nition of for.
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Rules PAR-V, PAR-N, and PAR-V-N

Since PAR-V is a special case ofPAR, the soundness is a straightforward corollary.
Soundness of PAR-N and PAR-V-N is shown inductively.

A.2.3 Introduction rules

Rule PAR-INTRO

Robustness of C implies by de�nition that C� �T z knC. Since C also pre-
serves

T
i�i, the �nite loop C

� does, too, that is, C� �T z pre1(
T
i�i). Using

Lemma 3.4, we get�
tt;Preds(;)

�
C� kni=1 C � kni=1Ci

�
tt;
T
i�i

�
:

The premises 2, 3 and 4 of the rule imply�
P;
S
i�i
�

kni=1 C � kni=1Ci
�V

iQi;
T
i�i

�
: PAR-N

Thus, with Lemma 5.4,�
P;
S
i�i
�
C� � kni=1Ci

�V
iQi;

T
i�i

�
:

Finally, the desired result follows, because�
P;�

�
C � C0

�
Q;�

�
if and only if �

P;�
�

C ; fQg � C0
�
Q;�

�
:

Rule WHILE-INTRO

If m is always eventually decremented, then B cannot remain true forever and
will eventually be falsi�ed. That is,�

fBg ; (inv� ;Am ; inv�)+
�!

has no executions. Formally,�
tt;�m

�
f� g �

�
fBg ; (inv� ;Am ; inv�m)+

�!
�
tt;Preds(Var)

�
:

Using the third premise and weakening we get

R1 �
�
tt;�m

�
f� g � (fBg ;C0)!�

tt;Preds(Var)
�
:
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Using the premise

R2 � [B ^ I;�] C � C0 [I;�]

and rule OR we obtain�
I;� [ �m

�
(fI ^Bg ; C)� ; fQg

� =
T z

(fI ^Bg ; C)� ; fQg _ f� g

� OR(R1,R2)

(fBg ;C0)� ; f:Bg _ (fBg ;C0)!

�

while B do C0�
Q;�

�
:

Rule FOR-INTRO

Using the premise and FOR we get�
I[0=i];

S
i�i
�

for i = 1 to n in C � for i = 1 to n in C0�
I[n=i];

T
i�i

�
which implies the result by

C� �T z for i = 1 to n in C

and weakening.

Rule NEW-INTRO

This rule is a straight-forward consequence of NEW, Lemma2.1, and Lemma5.4.

Rule AWAIT-INTRO

Given that either m is always eventually decremented forever or at least until
it is 0, then :B cannot be true forever. That is, f:Bg! in parallel with

(inv� ;Am)
! _ (inv� ;Am ; inv�m)� ; fm = 0g ; inv�m

has no executions. Formally,�
tt;�m

�
f� g

�
f:Bg! k (inv� ;Am)

! _ (inv� ;Am ; inv�m)� ; fm = 0g ; inv�m�
tt;Preds(Var)

�
:
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Using the second premise and weakening we get

R1 �
�
tt;�m

�
f� g � f:Bg! kD�

tt;Preds(Var)
�
:

Using the premise

R2 � [P1;�]

V :[B ^ P2; Q2] kD

[Q1;�]

and rule OR we obtain�
P1;�[ �m

�
V :[B ^ P2; Q2] kD

� =
T z�

V :[B ^ P2; Q2] kD
�
_ f� g

� OR(R1,R2)�
V :[B ^ P2; Q2] kD

�
_
�
f:Bg! kD

�
� =

T z
(Lemma 2.1)�

V :[B ^ P2; Q2] _ f:Bg!
�
kD

�

await B then V :[P2; Q2] end kD�
Q1;�

�
:

A.2.4 Proof of Lemma 5.6 on page 80

The proof proceeds by structural induction over the derivation of

[P;�] C �V C0 [Q;�]:

Let the above re�nement be obtained by a derivation that ends with the rule

ATOM: In this case, C and C0 are atomic statements. Due to the premises of
the rule we must have

[P;�] C [tt;�]

and
[P;�] C0 [Q;�]:

Since both assumption-commitment formulas were derived using ASS-

COM, we must have fP;Qg � �. Thus, let wp(R) � fPg and sp(R) �
fQg. The result follows.
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SEQ: In this case, C and C0 are of the form C = C1 ; C2 and C0 = C0
1 ; C0

2

respectively and there must be sets of predicates �1, �2, �1 and �2 and
sets of variables V1 and V2 such that � = �1 [ �2, � = �1 \ �2, and
V = V1 [ V2. Moreover, there must be a predicate Q1 such that

R1 � [P;�1] C1 �V1 C
0
1 [Q1;�1]

R2 � [Q1;�2] C2 �V2 C
0
2 [Q;�2]:

By induction hypothesis, there are wp(R1) � �1 and sp(R1) � �1 such
that P )

V
wp(R1) and

V
sp(R1)) Q1 and�V

wp(R1);�1

�
C1 �V1 C

0
1

�V
sp(R1);�1

�
:

Moreover, there also are wp(R2) and sp(R2) such that wp(R2) � �2 and
sp(R2) � �2 such that Q1 )

V
wp(R2) and

V
sp(R2)) Q and�V

wp(R2);�2

�
C2 �V2 C

0
2

�V
sp(R2);�2

�
:

Thus, �V
sp(R1);�2

�
C2 �V2 C

0
2

�V
sp(R2);�2

�
:

Let wp(R) � wp(R1) and sp(R) � sp(R2). Using SEQ we have�V
wp(R1;�1 [ �2

�
C1 ;C2 �V1[V2 C

0
1 ;C0

2

�V
sp(R2;�1 \�2

�
which implies the desired result.

PAR: In this case, C and C0 are of the form C = C1 k C2 and C0 = C0
1 k C

0
2

respectively, and P and Q are of the from P = P1 ^P2 and Q = Q1 ^Q2

respectively. Moreover, there must be sets of predicates �1, �2, �1 and
�2 and sets of variables V1 and V2 such that � = �1 [ �2, � = �1 \�2,
and V = V1 [ V2 and

R1 � [P1;�1] C1 �V1 C
0
1 [Q1;�1]

R2 � [P2;�2] C2 �V2 C
0
2 [Q2;�2]:

By induction hypothesis, there are wp(R1) � �1 and sp(R1) � �1 such
that P1 )

V
wp(R1) and

V
sp(R1)) Q1 and�V

wp(R1);�1

�
C1 �V1 C

0
1

�V
sp(R1);�1

�
:

Moreover, there also are wp(R2) and sp(R2) such that wp(R2) � �2 and
sp(R2) � �2 such that P2 )

V
wp(R2) and

V
sp(R2)) Q2 and�V

wp(R2);�2

�
C2 �V2 C

0
2

�V
sp(R2);�2

�
:

Thus, by rule PAR�V
wp(R1) ^

V
wp(R2);�1 [ �2

�
C1 kC2 �V2 C

0
1 kC

0
2�V

sp(R1) ^
V
sp(R2);�1 \�2

�
:
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Let wp(R) � wp(R1)[wp(R2) and sp(R) � sp(R2)[ sp(R2). Then, the
above re�nement implies the desired result, becauseV

wp(R) =
V
wp(R1) ^

V
wp(R2)V

sp(R) =
V
sp(R1) ^

V
sp(R2)

wp(R) � �1 [ �2

sp(R) � �1 [ �2

P1 ^ P2 )
V
wp(R)V

sp(R) ) Q1 ^Q2:

NEW: In this case, C and C0 are of the form C = new x = v in C1 and
C0 = new x = v in C0

1 respectively. Predicates P and Q are of the from
P = P 0[v=x] and Q = 9x:Q0 respectively where x 62 V . Moreover, there
must be �0 and �0 such that � and �0 arise from �0 and � respectively
by replacing every free occurrence of x by all values in Domx and

R0 � [P 0;�0] C1 �V C0
1 [Q0;�0]:

By induction hypothesis, there existwp(R0) and sp(R0) such that wp(R0) �
�0 and sp(R0) � �0 and P 0 )

V
wp(R0) and

V
sp(R0)) Q0 and�V

wp(R0);�0
�
C1 �V C0

1

�V
sp(R0);�0

�
:

By rule NEW�V
wp(R0)[v=x];�

�
new x = v in C1 �V new x = v in C0

1�
9x:
V
sp(R0);�

�
:

Let sp(R) � f9x:Q j Q 2 sp(R0)g. Since 9x:
V
sp(R0) implies

V
sp(R),

we get by weakening�V
wp(R0)[v=x];�

�
new x = v in C1 �V new x = v in C0

1�V
sp(R);�

�
:

Case: :
�V
wp(R0)

�
[v=x], that is,

V
wp(R0) is unsatis�able. In this case,

let wp(R) � f� g. Case:
�V
wp(R0)

�
is satis�able. In this case, let

wp(R) � fP [v=x] j P 2 wp(R0)g:

In both cases,
V
wp(R) implies

�V
wp(R0)

�
[v=x]. Thus, by weakening�V

wp(R);�
�

new x = v in C1 �V new x = v in C0
1�V

sp(R);�
�
:
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The above re�nement implies the desired result because

wp(R) � �

sp(R) � �

P 0[v=x] )
V
wp(R)V

sp(R) ) 9x:Q0:

A.3 Example: Pre�x sum (Section 7.1)

A.3.1 Proof of re�nement (7.1) on page 146

Throughout the execution of C4, the prev mapping partitions the set of indices
f1; : : : ; ng into several disjoint sequences where two indices i and j are in the
same sequence i� one can be reached from the other by following the prev
pointer. The proof of re�nement (7.1) makes heavy use of this property. It
requires two nested inductions. One over the length of these sequences and
another over the number of sequences. We �rst need to �x some notation.

� Let N � f1; : : : ; ng and let X � N .

� Let f : N ! N [ fnilg be a function. We call f injective i�

i 6= j ) (f(i) 6= f(j) _ f(i) = f(j) = nil)

for all i; j 2 N .

� Given a function f : N ! N [ fnilg, we call hil; : : : ; i1; i0i a sequence
under f and denote it by [k] i�

{ all its elements are drawn from N , that is, ij 2 N for all 0 � j � l,

{ k is the �rst element, that is, i0 = k,

{ every element ij is the image under f of its right neighbour ij�1, that
is, ij = f(ij�1) for all 1 � j � l,

{ the last element is mapped to nil, that is, f(il) = nil.

� A sequence [k] is non-trivial, if it has more than one element, that is, if
length([k]) > 1.

A sequence has the important property that the image of an element in the
sequence either is nil or is also an element of that sequence. We will say that
sequences are closed.

� A set of indices X � f1; : : : ; ng is closed under f : N ! N [ fnilg i�

f(i) = nil _ f(i) 2 X

for all i 2 X.
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� Given a set of indices X, we call i 2 X �rst in X with respect to f i� i is
not the image of any element in X, that is,

:9j 2 X:f(j) = i:

Let X�
f be the non-�rst elements of X with respect to f , that is,

X�
f � fi 2 X j i not �rst in X wrt fg:

Again, the subscript f may be dropped when it is safe to do so. Given
a sequence [k] under f , the set [k]� of non-�rst elements of [k] is de�ned
similarly.

Lemma A.3 Let f : N ! N [fnilg be injective. Let X be closed under f and
let [k] be a sequence under f . Then, Xn[k] is again closed under f .

Proof: By contradiction. Suppose Xn[k] is not closed, that is, there exists
i 2 Xn[k] such that f(i) 6= nil and f(i) 62 Xn[k]. Since X is closed, f(i) 2 X.
Thus, we must also have f(i) 2 [k], but i 62 [k]. By the de�nition of sequences,
there must be j 2 [k] such that j 6= i and f(j) = f(i). This, however, contradicts
the injectivity of f .

We start by showing how a single non-trivial sequence of processes k[k]i Di

can be re�ned into k
[k]
i D0

i. Given predicates Pj for each j, let PX and P[k]

denote the obvious extensions of Pj to an index set and sequence respectively,
that is,

PX � 8i 2 X:Pi

and
P[k] � 8i 2 [k]:Pi:

Lemma A.4 Let f : N ! N [ fnilg and g : N ! V be functions where f is
injective and let [k] be a non-trivial sequence under f . Then,

�
I[k] ^ P[k] ^ P

0
[k]� ;�[k]

�
k
[k]
i Di �fcg k

[k]
i D0

i

�
I[k] ^Q[k] ^Q

0
[k]� ;�[k] [ fIg

�
where

Ii �
N
(i) = [1; i]

Pi � x[i] = g(i) ^ prev[i] = f(i)

P 0
i � c[i] = h(f(i); g(i))i

Qi � prev[i] = f2(i) ^ x[i] = g(i) 
 g(f(i))

Q0
i � c[i] = �

�[k] � fIi; Pi; Qi j i 2 [k]g [ fP 0
i ; Q

0
i j i 2 [k]�g

�[k] � Preds(fprev[i]; x[i] j i 62 [k]_ f(i) = nilg) [

Preds(fc[i] j i 62 [k]�g) [ fIg:
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Proof: By induction over the length l of [k].
Base: l = 2. Thus, there exists j, such that [k] = hj; ki, f(k) = j, and
f(j) = nil. With P[k] this implies prev[k] = j, and prev[j] = nil. Using PAR
then it is straightforward to show�

I[k] ^ P[k] ^ P
0
[k]� ;�[k]

�
k
[k]
i Di

�fcg PAR

k
[k]
i D0

i�
I[k] ^Q[k] ^Q

0
[k]� ;�[k]

�
:

Step: l0 = l+1. Thus, there exists j such that f(k) = prev[k] = j and [k] = [j]::i.
By induction hypothesis,�

I[j] ^ P[j] ^ P
0
[j]� ;�[j]

�
k
[j]
k Dk �fcg k

[j]
k D

0
k�

I[j] ^Q[j] ^Q
0
[j]� ;�[j]

�
:

Also, �
Ik ^ Pk ^ P 0

j;�k
�

Dk �fcg D
0
k

�
Ik ^Qk ^Q0

j ;�k

�
:

Using PAR, we get�
I[j] ^ Ik ^ P[j] ^ Pk ^ P

0
[j]� ^P

0
j ;�[j] [ �k

�
k
[k]
i Di

� =
T z

k
[j]
i Di kDk �fcg k

[j]
i D

0
i kD

0
k

� =
T z

k
[k]
i D0

i�
I[j] ^ Ik ^Q[j] ^Qk ^Q0

[j]� ^Q
0
j;�[j] \�k

�
which implies the desired result. Note that I[j] ^ Ik � I[k], P

0
[j]� ^ Pj � P[k]� ,

and �[j] [ �k � �[k]. Similarly for P[j], Q[j], Q
0
[j]� , and �[j].

The following proposition generalizes the above lemma by showing under
what circumstances kXi Di can be re�ned into kXi D

0
i.

Proposition A.1 If f is injective and X is closed under f , then�
IX ^ PX ^ P 0

X� ;�X
�

kXi Di �fcg k
X
i D

0
i

�
IX ^QX ^Q0

X� ;�X

�
where IX ; PX ; P 0

X� ; QX ; Q
0
X� ;�X and �X are de�ned as in Lemma A.4.

Proof: By induction over the number t of non-trivial sequences in X.
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Base: t = 0. Thus, f(i) = prev[i] = nil for all i 2 X. Consequently, neither Di

nor D0
i change the initial state in any way. Using induction over the size

of X it is straightforward to show�
IX ^PX ^ P 0

X� ;�X
�

kXi Di �c k
X
i D

0
i

�
IX ^QX ^Q0

X� ;�X

�
:

Step: t0 = t+ 1. Thus, X contains at least one non-trivial sequence [k]. Using
Lemma A.3, Xn[k] is again closed under f . By induction hypothesis,�

IXn[k] ^ PXn[k] ^ P
0
(Xn[k])� ;�Xn[k]

�
k
Xn[k]
i Di �fcg k

Xn[k]
i D0

i�
IXn[k] ^QXn[k] ^Q

0
(Xn[k])� ;�Xn[k]

�
:

Also, by Lemma A.4,�
I[k] ^ P[k] ^ P

0
[k];�[k]

�
k
[k]
j Dj �fcg k

[k]
j D0

j

�
I[k] ^Q[k] ^Q

0
[k];�[k]

�
:

Thus, with PAR,�
IXn[k] ^ I[k] ^ PXn[k] ^P[k] ^P

0
(Xn[k])� ^P

0
[k]� ;�Xn[k] [ �X

�
kXi Di

� =
T z

k
Xn[k]
i Di k k

[k]
i Di

�fcg

k
Xn[k]
i D0

i k k
[k]
i D0

i

� =
T z

kXi D
0
i�

IXn[k] ^ I[k] ^QXn[k] ^Q[k] ^Q
0
(Xn[k])� ^Q

0
[k]� ;�Xn[k] \�[k]

�
which implies the desired result.

Finally, re�nement (7.1) is obtained from Proposition A.1 by instantiating
X with f1; : : : ; ng, strengthening the assumptions (injectivity of prev implies
PN ; moreover, �N � �) and weakening the commitments (injectivity of f im-
plies injectivity of f2. Thus, with QN this implies that prev is injective upon
termination).

A.4 N-process mutual exclusion algorithms (Sec-
tion 8)

A.4.1 Proof of Lemma 8.2 on page 167

Suppose the conditions of the lemma are satis�ed. For a contradiction assume
that C violates the eventual entry property. Thus, there is a context E and a B-
synchronization statement S such that C � E[S] and S 6=E fBg. Due the de�ni-
tion of the two B-synchronization statements await B and while :B do skip,
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we have fBg �T z S and thus fBg �E S. Consequently, S 6�E fBg, that is,
there exists � that is an execution of E[hSi] but not of E[hfBgi]. Then, there
must be �1 and �2 such that � � �1�2 and �2 contains in�nitely many program
transitions each of which is a stuttering step in a state satisfying :B. Let �2

be of the form (s1; l1; s2)(s2; l2; s3) : : :. Formally, for all j � 1,

if lj = p then sj = sj+1 and sj j= :B: (A.6)

Using condition 3 of Lemma 8.2 we distinguish two cases.

Case: The environment keeps on reducing m, that is, the environment transi-
tions, taken together, are in T z[[(inv�m ; am)

!]]. In this case, the envi-
ronment must eventually set m to 0 due to condition 1 (m � 0). More
formally, there must be an environment transition (sj ; e; sj+1) along �2

such that sj+1 j= m = 0. Since there are in�nitely many program tran-
sitions along �2 there must be in�nitely many program transitions after
this transition. Let (sk; p; sk) be the �rst. Since the environment tran-
sitions are in T z[[(inv�m ; am)! ]] and by de�nition of inv m and am, all
environment transitions also always preserve m = 0. Consequently, m = 0
in sk. By condition 2, sk also satis�es B which contradicts (A.6).

Case: The environment transitions, taken together, are in T z[[(inv�m ; am)� ;D]]
for some D which contains no execution along which :B is true in�nitely
often. Thus, :B holds along �2 only �nitely many times. This, however,
contradicts the assumption (A.6) that :B holds in�nitely often along �2.

A.4.2 Proof of assumption-commitment formula (8.2) in
the proof of Lemma 8.4 on page 173

To establish (8.2) in the proof of Lemma 8.4 we show the following lemma.

Lemma A.5 1. �
P ^Bi ^ in[i] = l � 1; fPg[ �fig

�
in[i]; last[in[i] + 1]:=in[i] + 1; i�

P ^ in[i] = l; fPg [ �Nnfig

�
2. �

P; fPg[Bfig

�
await highest(i) _ :last(i)

�
P ^Bi; fPg [ �Nnfig

�
3. �

P; fPg
�

cri
�
P; fPg [ �Nnfig

�
4. �

P; fPg[ �fig
�

in[i]:=0
�
P ^ boti; fPg[ �Nnfig

�
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5. �
P ^ boti; fPg[ �fig

�
nci

�
P ^ boti; fPg[ �Nnfig

�
�

Using assumption-commitment formulas (1), (2) of this lemma, and rules SEQ
and FOR, we get �

P ^ boti; fPg [ �fig
�

for l:=1 to n� 1 do
in[i]; last[in[i] + 1]:=in[i] + 1; i;
await highest(i) _:last(i)

od�
P ^Bi; fPg[ �Nnfig

�
:

Note that the invariant for the for loop is

P ^Bi ^ in[i] = l � 1:

By assumption-commitment formulas (3), (4), and (5), and rules SEQ and
WHILE, it is straightforward to conclude (8.2). The while loop has the in-
variant P ^Bi.
Proof of Lemma A.5:

1. We start with the most di�cult statement.�
P ^Bi ^ in[i] = l � 1; fPg[ �fig

�
Ai�

P ^ in[i] = l; fPg [ �Nnfig

�
for 1 � l � n�1 where Ai � in[i]; last[in[i]+1]:=in[i]+1; i. Using ATOM,
we need to show that

�
(

P ^
(

Bi ^cfAi ) P , and

�
(

P ^
(

in[i]= l � 1 ^ cfAi ) in[i] = l, and

�
(

P ^
(

Bi ^B ^ cfAi ) B for all B 2 �Nnfig.

The proof is by cases. If P is 8x:P 0 then let P [i=x] stand for the predicate
P 0[i=x] which arises from P 0 by replacing all free occurrences of x by i.

(a) Show
(

P ^
(

Bi ^cfAi ) P2. Let (s; s
0) such that (s; s0) j= cfAi and let

s j= P ^Bi. We need to show that s0 j= P2[i=x] and s0 j= P2[j=x] for
all j 6= i.

Case: Show s0 j= P2[i=x]. Clearly, s
0 j= last[in[i]] = i which implies

s0 j= in[last[in[i]]] = in[i] and thus P2[i=x].
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Case: Show s0 j= P2[j=x] for all j 6= i.

Subcase: Process i has just entered a level that process j was al-
ready on, that is, in[i] = in[j] in s0. By in[last[in[i]]] = in[i]
this implies in[last[in[j]]] = in[j] in state s0 which implies
P2[j=x].

Subcase: Processes i and j are on di�erent levels, that is,

in[i] 6= in[j]

in s0. Then, the values of in[j], last[in[j]], and in[last[in[j]]]
are unchanged. Since by assumption

s j= in[last[in[j]]] = in[j];

we thus also have

s0 j= in[last[in[j]]] = in[j]:

Consequently, P2[j=x].

(b) Show
(

P ^
(

Bi ^cfAi ) P1[i=x]. Let (s; s0) be such that (s; s0) j= cfAi .

Case: s j= P ^ highest(i). Then, highest(i) is preserved by Ai and
thus s0 j= P1[i=x].

Case: s j= P ^ :last(i). Thus, there exists j with j 6= i such that j
is last, that is, last[in[i]] = j in s. Instantiating P2 with i gives
in[last[in[i]]] = in[i]. Thus, i and j are on the same level, that
is, in[j] = in[i] in s. P1 implies P1[j=x] � highest(j) _ tower(j).
Since i and j are on the same level, j cannot be highest and
thus tower(j) in s. Since i is one level above j in s0, we have
s0 j= tower(i) which implies s0 j= P1[i=x].

(c) Show
(

P ^
(

Bi ^cfAi ) P1[j=x] for all j 6= i.

Case: s j= P1[j=x] because s j= tower(j).

Subcase: s j= in[i] > in[j]. Then, Ai preserves tower(j) and so,
s0 j= P1[j=x].

Subcase: s j= in[i] � in[j]. Then, i cannot be the highest process
and thus either in[i] = 0 or :last(i) due to Bi. If in[i] = 0 in
s, then Ai perserves tower(j) and thus, s0 j= P1[j=x]. Assume
:last(i). Thus, i shares the level it is on with another process
k which stays on that level when i moves on through the
execution of Ai. Thus, tower(j) is preserved by Ai, that is,
s0 j= tower(j) which implies s0 j= P1[j=x].

Case: s j= P1[j=x] because s j= highest(j).

Subcase: i was higher than j, that is, s j= in[i] � in[j]. This
case is impossible, because it contradicts s j= highest(j).
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Subcase: i was exactly one level below j and thus joins j through
transition, that is, s j= in[i] + 1 = in[j]. Thus, i cannot
be highest in s and therefore we must have s j= :last(i).
Using P2 and the same argument as in the previous case we
conclude that there exists k 6= i such that in[k] = in[i] and
last[in[i]] = k in s. P1 implies

P1[k=x] � tower(k) _ highest(k):

Since highest(j) by assumption, k cannot be the highest pro-
cess, must have tower(k) in s. Consequently, tower(j) and
thus P1[j=x] after execution of Ai in s

0.

Subcase: i was more than one level below j, that is,

s j= in[i] + 1 < in[j]:

Then, highest(j) is preserved by Ai and thus P1[j=x] in s0.

(d) Show
(

P ^
(

in[i]= l � 1 ^ cfAi ) in[i] = l. This follows directly with
ATOM.

(e) Show
(

P ^
(

Bi ^B ^ cfAi ) B for all B 2 �Nnfig. Since

�Nnfig � BNnfig [ Preds(fin[j] j j 6= ig)

we distinguish two cases.

Case: B 2 BNnfig. We show the stronger statement

(
(

highest(j) _:
(

last(j)) ^ cfAi ) (highest(j) _ :last(j))

for all j 6= i. Let (s; s0) be such that (s; s0) j= cfAi .

Subcase: s j= highest(j). Thus, in[i] < in[j] in s. This means
there are two cases to consider. If in[i] + 1 < in[j], then
Ai preserves highest(j). Otherwise, i joins j on its level and
becomes last, that is, since i 6= j, :last(j) after execution of
Ai. Thus, s

0 j= highest(j) _:last(j).

Subcase: s j= :last(j). Due to i 6= j, Ai will always preserve
:last(j).

Case: B 2 Preds(fin[j] j j 6= ig). Since B does not mention in[i],

it is preserved by Ai. Formally,
(

B ^cfAi ) B for all B 2
Preds(fin[j] j j 6= ig).

Thus,
(

P ^
(

Bi ^cfAi ) P and
(

P ^
(

Bi ^B ^ cfAi ) B for all B 2 �Nnfig.

2. To prove�
P; fPg[Bfig

�
await highest(i) _ :last(i)

�
P ^Bi; fPg [ �Nnfig

�
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we use the de�nition of the await statement and show�
P; fPg[Bfig

�
fhighest(i) _ :last(i)g ATOM�

P ^Bi; fPg[ �Nnfig

�
and �

P; fPg[Bfig

�
f:highest(i) ^ last(i)g! ATOM, OMEGA�

P ^Bi; fPg[ �Nnfig

�
:

The desired result follows with the OR rule.

3. The statement �
P; fPg

�
cri

�
P; fPg [ �Nnfig

�
follows from the fact that cri does not change in or last by assumption.
Thus, all predicates involving these variables only will always be preserved.
It can be shown formally using the rules that correspond to the structure
of cri.

4. Finally, �
P; fPg[ �fig

�
in[i]:=0

�
P ^ boti; fPg[ �Nnfig

�
is proved with ATOM by showing

(

P ^cfin[i]:=0 ) P ^ boti

and
(

P ^
(

B ^cfin[i]:=0 ) B

for all B 2 �Nnfig.

5. The statement�
P ^ boti; fPg[ �fig

�
nci

�
P ^ boti; fPg[ �Nnfig

�
follows from the invariance of in and last. Thus, all predicates involving
these variables only will always be preserved. It can be shown formally
using the rules that correspond to the structure of nci.
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A.4.3 Proof of Lemma 8.5 on page 174

We show the above lemma by transforming TIE1
at;at into a program TIE10

at;at

with identical executions where

1. await Bi is replaced by (await Bi)d:boti,

2. cri is replaced by crid(topi ^Bi), and

3. nci is replaced by ncidboti.

Let Ci be the ith process in TIE1
at;at and let entryi be the entry protocol of Ci.

Then, by AWAIT, SEQ, and FOR we derive

R1 �
�
boti;Preds(fin[i]g)[ fBig

�
entryi � entry0i�

topi ^Bi;Preds(fin[j] j j 6= ig) [ fBj j j 6= ig
�

where entry0i is like entryi except that the occurrence of await Bi is replaced
by (await Bi)d:boti where

(await Bi)d:boti
�

�
fBig _ f:Big!

�
d:boti

� fBi ^ :botig _ f:Bi ^ :botig!:

Informally, assuming that the environment never changes the value of in[i] and
preserves Bi and that we have boti initially, the entry protocol of Ci will ter-
minate in a state in which process i is on the highest level and Bi holds. Also,
:boti will hold during the execution of await Bi. Let cri be the critical region
statement in Ci. Since cri is well-formed and thus does not change in and last
we can show (using rules according to the structure of cri) that

R2 �
�
topi ^Bi; ftopi; Big

�
cri � (cridtopi ^Bi)�

topi ^Bi; fbotj; topj; Bj j j 6= ig
�
:

Then, by composing the above two re�nements sequentially

R3 �
�
boti;Preds(fin[i]g)[ fBig

�
entryi ; cri � entryi ; (cridtopi ^Bi) SEQ(R1 ,R2)�

topi ^Bi;Preds(fin[j] j j 6= ig) [ fBj j j 6= ig
�
:

Similarily, using the well-formedness of nci we can show

R4 �
�
topi; fboti; topig

�
in[i]:=0 ; nci � in[i]:=0 ; (ncidboti) ATOM, SEQ�

boti; fbotj; topj; j j 6= ig
�
:
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Let C0
i be like Ci except that await Bi is repaced by (await Bi)d:boti, and

cri is replaced by crid(topi ^Bi), and nci is replaced by ncidboti, that is,

C0
i � while tt do

entry0id:boti;
crid(topi ^Bi);
in[i]:=0;

ncidboti
od:

Then, by sequential composition and the WHILE rule

R5;i �
�
boti;Preds(fin[i]g) [ fBig

�
Ci � C 0

i SEQ(R3 ,R4), WHILE�
tt;Preds(fin[j] j j 6= ig) [ fBj j j 6= ig

�
:

By n-fold parallel composition, we get

R6 �
�Vn

i=1boti;Preds(fin[i] j 1 � i � ng) [ fBi j 1 � i � ng
�

kni=1Ci � kni=1C
0
i PAR-N(R5;i)�

tt;Preds(;)
�
:

Finally, rule NEW yields�
tt;Preds(;)

�
TIE1

at;at � TIE10

at;at

�
tt;Preds(;)

�
where

TIE10

at;at � new in[1::2] = 0; last = 0;mid[1] = � ;mid[2] = � in
kni=1C

0
i:

By Lemma 5.5, this implies that the two programs have the same traces, that
is,

TIE1
at;at =T z TIE10

at;at:

A.4.4 Proof of Re�nement Rule 8.2 on page 183

We will show the parallel case only. The remaining two sequential cases can be
proven analogously. More precisely, we show�

tt; fBj j 1 � j � ng
�

while 9j 6= i::Bj do skip

�

knj=1;j 6=iwhile :Bj do skip�
tt;Preds(Var)

�
by induction over n.
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Base: n = 2. Then the statement specializes to�
tt; fBjg

�
while :Bj do skip

�

while :Bj do skip�
tt;Preds(Var)

�
where j 6= i. This is easily seen to be true.

Step: n = n0 + 1. By induction hypothesis and PAR�
tt; fBj j 1 � j � n0g

�
while 9j 6= i::Bj do skip kwhile :Bn0+1 do skip

� induction hypothesis

kn
0

j=1;j 6=iwhile :Bj do skip kwhile :Bn0+1 do skip

� =
T z

kn
0+1

j=1;j 6=iwhile :Bj do skip�
tt;Preds(Var)

�
:

It remains to be shown that�
tt; fBj j 1 � j � n0 + 1g

�
while 9j 6= i::Bj do skip

�

while 9j 6= i::Bj do skip kwhile :Bn0+1 do skip�
tt;Preds(Var)

�
:

Consider an execution � of

while 9j 6= i::Bj do skip kwhile :Bn0+1 do skip

in a parallel environment that preserves Bj for all 1 � j � n0 + 1. We
distinguish two cases:

Case: Both loops terminate. In this case, � also is an execution of

f9j 6= i::Bjg
�

; f8j 6= i:Bjg:

in that same environment.

Case: At least one of the loops does not terminate. In this case, � also is
an execution of

f9j 6= i::Bjg
!

in that same environment.

Thus, � is an execution of while 9j 6= i::Bj do skip in an environment
that always preserves Bj for all 1 � j � n0 + 1.
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A.4.5 Proof of Re�nement Rule 8.4 on page 187

\�T z": E[x1; x2:=v1; v2] �T z E[x1:=v1 ; x2:=v2] holds due to the mumbling
closure condition.
\�T z": We have to show that

E[x1:=v1 ; x2:=v2] �T z E[x1; x2:=v1; v2]:

If we prove

E0[x1:=v1 ; x2:=v2] �T y E0[x1; x2:=v1; v2] (mod fx1; x2g) (A.7)

instead, the result follows with Lemmas A.1.1 and 2.2. We show (A.7) by
proving

T [[E0[hx1:=v1 ; x2:=v2i]]]

� T y[[E0[hx1; x2:=v1; v2i]]] (mod fx1; x2g) (A.8)

and then invoking Lemma A.1.3. Let � stand for the initialization of x1 and
x2, that is, � � (x1 = v0;1; x2 = v0;2). A trace of C that is not obtained
though stuttering or mumbling is called basic, that is, if � 2 T [[C]] then � is
a basic trace of C. According to De�nition 2.7 on page 21, to prove (A.8),
we have to show that for every basic trace � of E0[hx1:=v1 ; x2:=v2i] such
that h�i� also is a basic trace of E0[hx1:=v1 ; x2:=v2i], there exists a trace � of
T y[[E0[hx1; x2:=v1; v2i]]] such that h�i� also is a trace of T y[[E0[hx1; x2:=v1; v2i]]]
and �nx1nx2 = �nx1nx2. Formally,

8 � 2 T [[E0[hx1:=v1 ; x2:=v2i]]]:

h�i� 2 T [[E0[hx1:=v1 ; x2:=v2i]]])

9� 2 T y[[E0[hx1; x2:=v1; v2i]]]:

h�i� 2 T y[[E0[hx1; x2:=v1; v2i]]]

^ �nx1nx2 = �nx1nx2: (A.9)

To show (A.9) let � be a basic trace of E0[hx1:=v1 ;x2:=v2i] such that h�i� also
is a basic trace of E0[hx1:=v1 ; x2:=v2i]. Every trace of hx1:=v1 ; x2:=v2i along
� corresponds to a subtrace

(si; p; [sijx1 = v1)�i(ti; p; [tijx2 = v2])

where �i is �nite and possibly empty. Since the parallel environment does not
write to x1, it is safe to assume that x1 has value v1 in state ti, that is, ti(x1) =
v1. If �i is the empty trace, we call (si; p; [sijx1 = v1])�i(ti; p; [tijx2 = v2]) an
uninterrupted occurrence of x1:=v1 ;x2:=v2. Otherwise, we call it an interrupted
occurrence of x1:=v1 ; x2:=v2. If all occurrences of x1:=v1 ; x2:=v2 along � are
uninterrupted, then � is called benign. Note that if � consists of environment
transitions only, it is vacuously benign. Given an interrupted occurrence of
x1:=v1 ; x2:=v2,

(s1; p; [s1jx1 = v1])�1(t1; p; [t1jv1]);
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let
�1(s1; p; [s1jx1 = v1])(t1; p; [t1x2 + v2])

be the corresponding uninterrupted occurrence. Let swap(�) be the trace that
is like � except that every interrupted occurrence of x1:=v1 ; x2:=v2 has been
replaced by its corresponding uninterrupted occurrence. Thus, swap(�) is be-
nign. Note that swap(�) still is a basic trace of E0[hx1:=v1 ;x2:=v2i]. Moreover,
note that due to possible assignments to x2 along �i, �i cannot be moved after
the second assignment but must be moved before the �rst assignment.

The following lemma contains some useful properties of the swap operation
and benign executions.

Lemma A.6 Let E0 be as in Re�nement Rule 8.4, � be a basic trace of
E0[hx1:=v1 ; x2:=v2i] and � � (x1 = v0;1; x2 = v0;2). Let mumble(�) be a
trace that is the same as � except that all occurrences of

(si; p; [sijx1 = v1])(ti; p; [tijx2 = v2])

along � are replaced by

(si; p; [sijx1 = v1; x2 = v2]):

Thus, if � is benign, then mumble(�) creates a trace in which x1 and x2 are
always updated simultaneously.

1. If C mentions x1 only in stuttering steps fBg and x2 in stuttering steps
fBg and constant assignments and � 2 T [[C]] and h�i� 2 T [[C]] and

� if [sjx1 = v1] j= B, then s j= B

for all s, then swap(�) 2 T [[C]] and h�i(swap(�)) 2 T [[C]].

This lemma expresses that under certain conditions the set of basic traces
of C is closed under making a trace benign by moving the interfering
subtraces �i before the �rst assignment.

2. (a) If � 2 T [[E0[hx1:=v1 ; x2:=v2i]]] benign, then

mumble(�) 2 T [[E0[hx1; x2:=v1; v2i]]]:

Intuitively, mumbling a benign trace of E0[hx1:=v1 ;x2:=v2i] yields a
trace of E0[hx1; x2:=v1; v2i]

(b) If h�i� 2 T [[E0[hx1:=v1 ; x2:=v2i]]] benign, then

h�i(mumble(�)) 2 T [[E0[hx1; x2:=v1; v2i]]]:

3. The e�ect of the mumbling operator can be \mimicked" by adding a stut-
tering step at each place where mumbling takes place and by undoing
all changes to x1 and x2. That is, whenever mumble(�) 2 T [[C]] and
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h�imumble(�) 2 T [[C]], then there exists � 2 T y[[C]] such that h�i� 2
T y[[C]] and

�nx1nx2 = mumble(�)nx1nx2:

�

The proof of (A.9) now proceeds as follows. Let � be a basic trace of

E0[hx1:=v1 ; x2:=v2i]:

By 1) it follows that swap(�) and h�i(swap(�)) are benign, basic traces of

E0[hx1:=v1 ; x2:=v2i]:

Using 2) we conclude that

mumble(swap(�))

and
h�i(mumble(swap(�)))

are basic traces of E0[hx1; x2:=v1; v2i]. By 3) we conclude that there exists � in
T y[[E0[hx1; x2:=v1; v2i]]] such that

� h�i� 2 T y[[E0[hx1; x2:=v1; v2i]]] and

� �nx1nx2 = mumble(swap(�))nx1nx2.

This concludes the proof of (A.9) and thus of Rule 8.4.

A.4.6 Proof of Re�nement Rule 8.5 on page 188

\�Ez": E[x1; x2:=v1; v2] �T z E[x1:=v1 ; x2:=v2] holds due to the mumbling
closure condition and implies the result.
\�Ez": Let the contexts E, E

0, and E00 be as in the rule, that is,

E � new x1 = v0;1; x2 = v0;2 in E
0

where E0 � E00 k C for some sequential context E00 and some program C.
Moreover, given a synchronization statement await B in C, let E000 be such
that C � E000[await B]. Thus,

E[hx1; x2:=v1; v2i]
� new x1 = v0;1; x2 = v0;2 in�

E00[hx1; x2:=v1; v2i] kE000[await B]
�
:

Due to the eventual entry property await B can be replaced by the stuttering
step in B without changing the executions (Lemma 8.1). That is,

new x1 = v0;1; x2 = v0;2 in�
E00[hx1; x2:=v1; v2i] kE000[await B]

�
=Ez new x1 = v0;1; x2 = v0;2 in�

E00[hx1; x2:=v1; v2i] kE000[fBg]
�
:
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With Rule 8.4 we get

new x1 = v0;1; x2 = v0;2 in�
E00[hx1; x2:=v1; v2i] kE000[fBg]

�
=T z new x1 = v0;1; x2 = v0;2 in�

E00[hx1:=v1 ; x2:=v2i] kE
000[fBg]

�
:

Finally, by using the eventual entry property and thus Lemma 8.1 again, we
obtain

new x1 = v0;1; x2 = v0;2 in�
E00[hx1; x2:=v1; v2i] kE000[await B]

�
=T z new x1 = v0;1; x2 = v0;2 in�

E00[hx1; x2:=v1; v2i] kE000[fBg]
�

=T z new x1 = v0;1; x2 = v0;2 in�
E00[hx1:=v1 ; x2:=v2i] kE000[fBg]

�
=Ez new x1 = v0;1; x2 = v0;2 in�

E00[hx1:=v1 ; x2:=v2i] kE000[await B]
�

as desired.
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[BM91] J.P. Banâtre and D. Le M�etayer. Introduction to Gamma. In J.P.
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